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Abstract

DAVID C. KESSLER: Bayesian Nonparametric Methods for High-Dimensional
Data

(Under the direction of Dr. David B. Dunson and Dr. Amy H. Herring)

Bayesian nonparametric (BNP or NP Bayes) methods have enjoyed great strides forward

in recent years. BNP methods embody the belief that inference is best driven by the data

itself with minimal assumptions about the underlying model; this approach has motivated a

wide variety of BNP techniques that have met with with much success.

In the first dissertation paper, we address a long-standing complaint about the nonparametric

priors used in BNP analyses, that they do not necessarily reflect the analyst’s prior belief or

intention, and so are not really Bayesian. In fact, it can be demonstrated that a supposedly

uninformative nonparametric prior framework is actually very informative about certain

aspects of the distribution it models. We develop a novel method to incorporate prior

information about functionals of the unknown distribution, replacing undesirable induced

priors on those functionals with prior distributions that reflect real prior belief. We show

that the new prior enjoys the support characteristics of the original prior, and we demonstrate

with examples the effect of the marginal prior on the quality of inference.

In the second and third dissertation papers, we address challenges in the analysis of high-

dimensional data, with a focus on density regression. Many areas of inquiry, particularly in

genetics research, are concerned with the modeling of a continuous physical trait as some

function of a very large set of predictors. In most cases the number of predictors p is much

larger than the number of observations n. In addition, the response to be modeled may have

a nontrivial conditional distribution. In the second dissertation paper we develop a solution
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for this problem in the context of uncorrelated observations, and apply the technique to a

problem in molecular epidemiology. In the third dissertation paper we expand the method

to address correlated observations. We illustrate the utility of the proposed method in an

application to a family-based data from a whole-genome linkage analysis of a neurological

condition.
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Chapter 1

Introduction

1.1 Literature Review and Motivation

1.1.1 Marginally Specified Priors for Nonparametric Bayes Analysis

In the first paper, we demonstrate a technique for introducing marginal prior information

into nonparametric Bayes (NP Bayes) analyses. Many real-world data analysis situations

are not well-suited to a description that is governed by a finite-dimensional parameter; this

has led to the development of a rich class of NP Bayes methods. These approaches aim to

obtain inference under a prior that has support on the entire space of relevant probability

distributions (Ferguson 1973). These methods have been applied to a variety of problems,

including quantitative trait loci mapping (Zou et al. 2010), density estimation (Muller et al.

1996), regression and classification (Neal 1999), image segmentation (Sudderth and Jordan

2008), speaker diarization (Fox et al. 2011), and functional data analysis (Petrone et al.

2009). This diversity in application reflects the utility of NP Bayes methods in modern

statistical practice.

NP Bayes techniques require some introduction, since the “nonparametric” label is somewhat

misleading. Much contemporary NP Bayes research traces its origin to Ferguson’s 1973



paper, which presented the idea of the Dirichlet process (DP) prior. This paper was titled

“A Bayesian Analysis of Some Nonparametric Problems;” in the NP Bayes setting, the

problem itself is nonparametric, not the analysis. Nonparametric analysis addresses problems

like density estimation and flexible regression models; in both cases the “parameter” to be

estimated has infinite or very high dimension. The attraction of NP Bayes analysis and

nonparametric analysis in general is that structural assumptions about the quantity to be

modeled or estimated are significantly more flexible.

The careful development of NP Bayes techniques has made them successful in the areas

already mentioned. Nevertheless, the complexity of the high- or infinite-dimensional parameter

of interest can make the “Bayes” portion of NP Bayes more challenging. When the parameter

is a complete distribution, a prior on that parameter that is chosen for large support and

convenience in computation can induce priors on functionals of that distribution that are

not consistent with actual information.

We are motivated by situations in which there is reliable prior information about marginal

aspects of an unknown distribution. For example, consider a demographic survey which

collects a small, detailed sample of the population. Assume that an earlier, large-scale census

surveyed a much larger sample of the population, but recorded observations for many fewer

population characteristics. The two surveys, small and large, are not identical and so are

not driven by exactly the same underlying distribution, but they overlap on a few measured

quantities. The Bayesian approach is to use the available prior information from the earlier,

larger survey on those overlapping quantities to inform inference in the newer survey. If

we are using a nonparametric prior for the distribution of interest in the smaller survey, we

may not be able to directly manipulate that nonparametric prior to accommodate this prior

information without inducing undesirable behavior into other aspects of our nonparametric

prior. We may be able to come up with an ad hoc prior distribution for our situation, but
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we cannot guarantee that this bespoke prior will have the same support as generally applied

nonparametric priors.

Density estimation provides a good example of the utility of NP Bayes approaches and

further illustrates the challenges with the inclusion of prior information. In the nonparametric

Bayes treatment of density estimation, the practicioner need not be restricted by a specific

parametric form such as a multivariate normal. The early work of Ferguson (1973; 1974),

Blackwell and MacQueen (1973) and Antoniak (1974) established theoretical properties for

the Dirichlet process (DP) prior, a prior over probability measures. For a given sample

space Y , a DP prior over distributions on Y is parameterized in terms of a “base measure”

Q0 on Y and a “concentration parameter” α. One limiting aspect of the DP prior is

that it produces random measures that are almost surely discrete, making it less suitable

for modeling continuous outcomes directly. To address this, Antoniak (1974), Lo (1984),

and Ferguson (1983) presented the idea of a Dirichlet process mixture model (DPMM),

where the DP prior serves as the prior for a mixing distribution; this provides a more

appropriate method for modeling the distribution of continuous quantities. In that setting,

the data are assumed to come from a population with density p(y|Q) =
∫
p(y|ψ)Q(dψ),

where {p(y|ψ) : ψ ∈ Ψ} is a simple parametric family. As Q is discrete with probability 1,

the resulting model for the population distribution is a countably infinite mixture model,

where the parameters in the component measures are determined by Q0, and the number of

components with non-negligible weights is increasing in α.

Sampling from the posterior distribution under such a prior is problematic due to its

complexity; MCMC techniques were developed in Escobar (1994) and Escobar and West

(1995). These methods performed well for conjugate DPMs; Kleinman and Ibrahim (1998a;b)

demonstrated the use of DPMs to model the distribution of random effects in the generalized

linear mixed model.
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In cases where the base measure Q0 is not conjugate to the component likelihood,

the integrations required in the method of Escobar and West can significantly expand

computation time. Ishwaran and James (2001) developed techniques for an alternative

treatment of the DPM, based upon the “stick-breaking” representation for the DP that

was developed by Sethuraman (1994). The Ishwaran and James approach avoids integrating

over the random mixing measure unlike in the Escobar and West method. This makes

non-conjugate base measures in DPM models more feasible than in the Pólya-urn style of

sampler developed in the earlier works. Sampling methods for DPM models evolved with

the introduction of the retrospective sampler (Papaspiliopoulos and Roberts 2008), the slice

sampler (Walker 2007; Kalli et al. 2011) and the exact block Gibbs sampler (Yau et al. 2011).

These continuing improvements in sampling techniques have prompted the application of the

DPM model to an expanding variety of problems.

In the case of the DPMM, the choice of α and Q0 will have a significant effect on the prior

for the population density, and potentially on posterior inference. Many applications include

priors for the base measure (Escobar and West 1995; Muller et al. 1996) and incorporate

estimation of Q0 and α into the posterior inference. Other approaches have addressed the

challenge of specifying Q0 by applying empirical Bayes techniques to develop a point estimate

for Q0 (McAuliffe et al. 2006). Although it is common to give the base measure an over-

dispersed form in an attempt to avoid an unduly informative prior, such an approach is

actually highly informative in favoring allocation to a single cluster unless α is appropriately

adapted (Bush et al. 2010). The particular case of the DP prior illustrates the general

challenge of incorporating prior information in a nonparametric setting. The results of

Yamato (1984) and Lijoi and Regazzini (2004) can be extended to adjust α and Q0 in normal

DPMMs so that the induced prior expectation and variance of the population mean can be

approximately specified although specification beyond the population mean is problematic.

4



Moala and O’Hagan (2010) proposed a method to update a Gaussian process (GP) prior

with expert assessments of the mean and other aspects of an unknown density. As with

the Dirichlet process prior, the GP prior requires specification of the mean and covariance

functions that characterize the GP. These provide a base for the prior in the same way

that the Q0 base measure does for the Dirichlet process prior. In the Moala and O’Hagan

approach, elicitation of these quantities is derived from expert assessments of quantiles of

the unknown distributions.

Many NP Bayes methods for finite sample spaces are built on the Dirichlet distribution

(DD); in this case the unknown parameter π = (π1, . . . , π|Y|−1) can be interpreted as the

parameter of a multinomial distribution. The DD prior is nonparametric in the sense that

it has support on the entire (|Y| − 1)-dimensional simplex. Such a prior on a distribution π

depends on concentration parameters αj, j = 1, . . . , |Y|. Large values for these parameters

result in a prior concentrated near the center of the simplex, while small values concentrate

the prior at the vertices of the simplex.

This highlights the general challenge with Bayesian methods and the thornier challenge

with nonparametric Bayes methods, the elicitation of a prior. In the usual parametric Bayes

analysis, we are concerned with specifying priors for parameters that have some readily

interpretable effect on the overall model. This can be daunting in complex parametric

models; for example, log-linear models for high-dimensional contingency tables have a large

number of parameters that require prior specifications. In the nonparametric Bayes case, the

parameter of interest has either high or infinite dimension, and elicitation of a meaningful

prior is an even more difficult task.

An increase in dimensionality can quickly become a challenge in the analysis of multivariate

data, whether those data are discrete or continuous. Simply considering the pairwise interactions

for p−dimensional continuous data gives some sense of the scale, since the number of such

5



interactions increases as the square of the dimension of the observations. In the case of

categorical data the problem can be even more daunting, particularly if we wish to include

all possible interactions. For example, genetics data is sometimes presented as multivariate

unordered categorical data, with each element in an observation indicating one of four

nucleotides. A sequence of 10 nucleotides then needs 410 ≈ 106 parameters to describe

a saturated model, while a sequence of only twice as many nucleotides needs 420 ≈ 1012

parameters. This is clearly intractable for any parametric treatment of this problem that

attempts to address the complete dependency structure.

Frequently, simplifying assumptions are made about the extent of meaningful correlations.

For example, the copula Gaussian graphical model presented in Dobra and Lenkoski (2011)

eliminates some of this complexity through the use of the copula and the accompanying

transformation of categorical variables, but the graphical model introduces additional simpli-

fication of the covariance structure in the transformed space so that elements of the Gaussian

covariance are constrained to be zero. More familiar approaches for multivariate unordered

categorical data, such as the log-linear model in either frequentist or Bayesian analysis, might

also discard higher-order interactions pre-emptively. In the case of maximum likelihood

analysis, a complex model applied to a moderately-sized data set will certainly result in

empty cells in such a high-dimensional multiway contingency table; this will mean that

asymptotic assumptions may not hold (Fienberg and Rinaldo 2007). In Bayesian analysis,

the sheer number of models possible under this scenario may make it extremely difficult for

any one model to appear better than another. Prior specification may also be problematic,

though there exist more sophisticated methods for prior choice in this setting (Massam et al.

2009).

An NP Bayes approach to this scenario was proposed by Dunson and Xing (2009).

Instead of modeling the complex interactions between all variables directly, they allow this

6



interaction structure to be unknown, and model the joint distribution of all variables as a DP

mixture of product multinomials. In effect, this treats the observations as if they come from

a mixture of subpopulations. Within each subpopulation the variables are conditionally

independent. Marginalizing over the mixing measure for these subpopulations induces

dependence between the several variables, without making strong assumptions about the

nature of that dependence. This substantially reduces the number of parameters within the

model; in the 20 nucleotide example, the number of parameters is linear in the number

of mixture components. This approach results in a sparse structure for the data, but

Bhattacharya and Dunson (2012) pointed out that increasing the dimension of the problem

could result in a proliferation of components, since the entire observation vector is used to

weight the cluster allocations. As an alternative, Bhattacharya and Dunson proposed the

simplex factor model, a more general solution that potentially avoids this difficulty.

These underline the difficulty with prior elicitation in nonparametric approaches. While

it is possible to introduce simplifying assumptions and more nuanced models, the challenge

of making an appropriate prior specification remains. Our goal in the first dissertation

paper is to retain the large support provided by popular nonparametric priors but to allow

the introduction of prior information where such prior information is available, replacing

induced priors with the desired prior.

1.1.2 Density Regression With Many Interacting Predictors

In the second and third dissertation papers, we are motivated by efforts to link quantitative

traits with genetic and other factors. In many cases, the quantitative traits have nontrivial

distributions, even when conditioning on many predictors, and it is unappealing to assume a

smooth parametric form for these conditional densities. Furthermore, such data commonly

has a large p, or number of observed predictors per observation, relative to n, the total
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number of observations. Because many phenotypes are associated with more than one locus,

the interaction between multiple loci can be just as important as their separate action. In

these settings of “large p, small n”, the additional complexity of interactions makes standard

methods intractable, and we wish to develop methods that can address predictor selection

at the same time as we consider conditional densities of nontrivial shape. Finally, we wish

to expand these models to accommodate correlated responses, as are found in family-based

studies of complex phenotypes.

A common scenario involves measurements of many single nucleotide polymorphisms

(SNPs) and a continuous, or quantitative, phenotype. In many treatments of this problem,

the strategy is to assess each locus or SNP independently with appropriate controls for overall

false discovery rate (FDR). If it could always be believed that traits of interest are governed

by single factors, then this would be an acceptable approach. However, it seems unlikely

that these traits are so simply explained, and so consideration of multi-factor associations is

desirable.

As discussed in Hoggart et al. (2008), simultaneous consideration of multiple SNPs can

have many advantages. Due to the colossal number of possible multi-factor interactions, this

consideration of many factors simultaneously usually assumes a model where the factors enter

additively, each contributing some part to the quantitative trait. One common approach to

the problem is the Lasso (Tibshirani 1996), which imposes an L1 penalty and limits the

overall sum of coefficients in the additive model, leading to a sparse set of contributing

factors. A corresponding method is ridge regression (Hoerl and Kennard 1970), which uses

an L2 penalty, allowing smaller individual contributions to the response from a larger number

of predictors. There are many other methods with the same general approach but using

different penalty structures; for example, the elastic net (Zou and Hastie 2005) combines L1

and L2 penalties to gain advantages of both the Lasso and ridge regression.
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While each of these methods has advantages, they all assume strictly additive behavior

for the separate factors, with interactions not considered. Practicioners in genetics are well

aware of the possibility for interaction between SNPs, and there are many methods in the

literature to address the more biologically plausible scenario of multi-factor interaction. Lou

et al. (2007) developed a generalized multi factor dimensionality reduction combinatorial

algorithm. Chen et al. (2007) proposed a forest-based approach to identify gene-gene inter-

actions. Zou et al. (2010) used a Gaussian process prior for the regression function that

incorporated variable selection, enabling selection of a subset of interacting SNPs impacting

the mean of the distribution of a quantitative trait. Yi (2010) surveys statistical approaches

for identifying genetic interactions in high-dimensional settings, including genome-wide asso-

ciation studies (GWAS). Cordell (2009) reviews methods for selecting interactions between

genetic loci contributing to human disease.

None of these approaches directly addresses density regression; we wish to acknowledge

the possibility that the conditional density of quantitative traits given genetic factors may

vary in more than just mean location as a function of those factors. This can be of

considerable interest if the conditional mean does not change appreciably but the variance

or skewness do, so that certain combinations of factors influence the probability of more

extreme forms of the trait.

This assessment of behavior outside of mean shifts has prompted the development of

quantile regression (Koenker and Bassett 1978) methods. These have been used in diverse

areas of genetics research, including the assessment of copy number variation (Eilers and

de Menezes 2005) and the analysis of age-dependent gene expression (Ho et al. 2009).

Quantile regression works with selected quantiles of the response of interest, but we are

more concerned with a characterization of the entire response distribution, and so wish to

develop techniques for density regression. One motivating example concerns the distribution
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of body mass index (BMI), a measure of health that has certain clinically important cut

points. In particular, individuals with a BMI in excess of 30 are classified as obese and at

higher risk for many debilitating health consequences. A quantile regression approach can

only estimate whether a specific quantile is above or below the point of interest. Density

regression lets us model the entire conditional distribution so that we can identify the quantile

corrresponding to the obesity cutpoint or any other point of interest.

Density regression has enjoyed extensive treatment in the Bayesian literature. The

hierarchical mixture of experts (HME) model (Jordan and Jacobs 1994) gives one of the

most accessible forms of density regression, representing an arbitrary conditional density as

a convex combination of continuous kernels. The expectation maximization (EM) approach

(Dempster et al. 1977) provides an attractive computational framework for estimating the

parameters in these models via maximum a posteriori estimates. Models like the HME

typically assume a specific or maximum number of kernels for the representation. The NP

Bayes literature has developed a number of methods based upon DP mixtures, where the

number of components is one of the parameters to be estimated. DP mixtures have been

adapted in many different ways to the density regression problem, bringing predictors into

the mean functions for the components, the mixing weights, or both.

One approach to conditional density estimation is described in Muller et al. (1996). In

this approach, one estimates of the joint density of the response and the predictors and then

derives a conditional density. This approach has been developed in several other settings

(Shahbaba and Neal 2009; Hannah et al. 2011; Dunson and Xing 2009) and works well in

those applications. One drawback to these joint estimation methods is the need to estimate

the entire joint distribution when we are interested only in a specific conditional distribution.

The additional effort to estimate what becomes a high-dimensional nuisance parameter is

not appealing when we have a particular question in mind from the beginning.
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One challenge to all of these methods is the “curse of dimensionality”, or the increasing

difficulty in obtaining a parsimonious description of the conditional distribution in the

presence of more and more predictors. (Chung and Dunson 2009) proposed methods of

predictor selection in these models, and methods for dimensionality reduction have also

been proposed (Tokdar et al. 2010; Reich et al. 2011), but these encounter difficulty with

larger values of p and do not directly address correlated data.

Random forests (Breiman 2001) provide an approach to density estimation that also

provides support for predictor selection. Nevertheless, the form of the random forest makes

it difficult to assess the role of specific predictors and their influence on the response.

Also, random forests and related ensemble methods do not explicitly address correlated

observations.

This question of correlated data in the presence of many potentially informative predictors

has motived considerable recent research due to the direct relevance for family-based studies

of genetic influences on quantitative traits. Most of this has centered around the adaptation

of the standard linear mixed model (LMM) to high-dimensional predictor sets. Listgarten

et al. (2012) and the related Lippert et al. (2011) propose an LMM-based approach that

uses SNPs to derive a realized relationship matrix between the individuals in the study.

They leverage work by Hayes et al. (2009) demonstrating the advantages of this form of

relationship matrix over that derived from typical pedigree analysis, and develop algorithms

to address the large number of SNPs. In the same direction, Rakitsch et al. (2013) developed

the “LMM-Lasso”, an adaptation of the L1 penalty method to situations involving correlated

observations. These approaches address the important situation of correlated observations

but do not consider the possibility that the conditional density may have a nontrivial form

depending on particular combinations of SNPs.

Our goal in the second and third papers is to develop general techniques for conditional
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density regression in settings with many predictors. In addition to addressing predictor

selection, we wish to produce flexible representations for the conditional density that are

suitable for the investigation of behavior outside of simple mean shifts. We also derive

approaches for correlated data, motivated by studies involving family-based data.
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Chapter 2

Marginally Specified Priors for
Nonparametric Bayesian Estimation

2.1 Introduction

Many real-world data analysis situations do not lend themselves well to simple statistical

models indexed by a finite-dimensional parameter. This has led to the development of a

rich class of nonparametric Bayesian (NP Bayes) methods, the general idea of which is to

obtain inference under a prior that has support on the entire space of relevant probability

distributions (Ferguson 1973). These methods have been applied to a variety of problems,

such as density estimation (Muller et al. 1996), image segmentation (Sudderth and Jordan

2008), speaker diarization (Fox et al. 2011), regression and classification (Neal 1999), functional

data analysis (Petrone et al. 2009) and quantitative trait loci mapping (Zou et al. 2010) to

name only a few. This breadth of applications reflects the utility of NP Bayes methods in

modern statistical data analysis.

Many NP Bayes methods are built upon either the Dirichlet distribution (DD) for finite

sample spaces or the Dirichlet process (DP) (Ferguson 1973) for infinite sample spaces.

For the latter case, the body of work on parameter estimation (Escobar 1994), density



estimation and inference (Escobar and West 1995) and the steady improvement in sampling

methods (Escobar 1994; Walker 2007; Yau et al. 2011; Kalli et al. 2011) have all made the

DP prior an attractive choice for many applications. For a given sample space Y , a DD

or DP prior over distributions on Y is parameterized in terms of a “base measure” Q0 on

Y and a “concentration parameter” α. Although samples from the DP prior are discrete

with probability one, this prior is nonparametric in the sense that it has weak support on

the set of all distributions having the same support as Q0. Analogously, the DD prior is

nonparametric in the sense that it has support on the entire (|Y| − 1)-dimensional simplex.

For both the DD and DP, a large value of α corresponds to a prior concentrated near Q0.

For the DP, a small α results in distributions with probability mass concentrated on only a

few points, drawn independently from Q0. For the DD, a small α can result in mass being

concentrated near the vertices of the simplex.

For many NP Bayes methods, the DP is used as a prior for a mixing distribution in a

mixture model: The data are assumed to come from a population with density p(y|Q) =∫
p(y|ψ)Q(dψ), where {p(y|ψ) : ψ ∈ Ψ} is a simple parametric family. A DP prior on Q

results in a Dirichlet process mixture model (DPMM) (Lo 1984; Escobar and West 1995;

MacEachern and Müller 1998). As Q is discrete with probability 1, the resulting model

for the population distribution is a countably infinite mixture model, where the parameters

in the component measures are determined by Q0, and the number of components with

non-negligible weights is increasing in α.

Clearly, the choice of α and Q0 will have a significant effect on the prior for the population

density, and potentially on posterior inference. Many applications include priors for the base

measure (Escobar and West 1995; Muller et al. 1996) and incorporate estimation of Q0 and

α into the posterior inference. Other approaches have addressed the challenge of specifying

Q0 by applying empirical Bayes techniques to develop a point estimate for Q0 (McAuliffe
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et al. 2006). Although it is common to give the base measure an over-dispersed form in an

attempt to avoid an unduly informative prior, such an approach is actually highly informative

in favoring allocation to a single cluster unless α is appropriately adapted Bush et al. (2010).

In many applications, the base measure is given an overdispersed form in an attempt to

avoid an unduly informative prior. Of course, doing so precludes the incorporation of prior

information into the inference. The particular case of the DP prior illustrates the general

challenge of incorporating prior information in a nonparametric setting. The results of

Yamato (1984) and Lijoi and Regazzini (2004) can be extended to adjust α and Q0 in normal

DPMMs so that the induced prior expectation and variance of the population mean can be

approximately specified (as will be discussed further in Section 3), although specification

beyond the population mean is problematic. Moala and O’Hagan (2010) proposed a method

to update a Gaussian process (GP) prior with expert assessments of the mean and other

aspects of an unknown density. As with the Dirichlet process prior, the GP prior requires

specification of the mean and covariance functions that characterize the GP. These provide

a base for the prior in the same way that the Q0 base measure does for the Dirichlet process

prior. In the Moala and O’Hagan approach, elicitation of these quantities is derived from

expert assessments of quantiles of the unknown distributions.

In this paper, we propose a very general method that allows for the combination of an

arbitrary prior on a finite set of functionals with a nonparametric prior on the remaining

aspects of the high- or infinite-dimensional unknown parameter. In the next section we show

how such a partially informative prior distribution can be constructed from the combination

of any prior distribution on the functionals of interest with the conditional distribution of the

parameter given the functionals under a canonical nonparametric prior. We show that the

resulting marginally specified prior (MSP) inherits desirable features from the canonical

prior: The MSP will generally share the support of the canonical prior, and posterior

15



approximation under the MSP can typically be made via small modifications to any Markov

chain Monte Carlo algorithm applicable under the canonical prior.

In Section 3 we illustrate the use of the marginally specified prior in the context of

multivariate density estimation using normal DPMMs. In an example, we show that existing

approaches to incorporate prior information on mean and covariance into DPMMs lead to

poor density estimates relative to marginally specified priors unless the parametric base

model is an accurate approximation.

In Section 4 we examine the important problem of NP Bayes analysis of large sparse

contingency tables in the presence of prior information on the margins. In this context, we

develop a marginally specified prior from a canonical NP Bayes approach. In an example, we

illustrate how canonical NP Bayes methods designed to be informative on the margins result

in poor performance in terms of margin-free functionals (such as dependence functions). In

contrast, a marginally specified prior accommodates prior information about the population

margins while being minimally informative about other aspects of the population, resulting

in strong performance in terms of both marginal and margin-free aspects of the population.

A discussion of the results and directions for future research follows in Section 5.

2.2 Marginally specified priors: Construction and computation

We consider the general problem of Bayesian inference for a parameter f belonging to a

high- or infinite-dimensional space F . For example, Section 3 considers multivariate density

estimation over the space of all densities on Rp with respect to Lebesgue measure, and

Section 4 considers the high-dimensional space of multiway contingency tables. In general,

Bayesian inference for f is based on a posterior distribution π(f ∈ A|y) derived from a

sampling model {p(y|f) : f ∈ F} and a prior distribution π defined on a σ-algebra A of F .

In many high-dimensional problems there are only a few classes of priors for which posterior
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inference is tractable. Typically, practitioners choose a member π0 of such a class based

on support considerations and the feasibility of posterior approximation, rather than how

well it accurately represents any information we have about specific features of f . In this

section, we show how to construct a nonparametric prior π1 that is informative about specific

features of f , but has the same support as π0 and is “close” to π0 in terms of Kullback-Leibler

divergence. We also show how MCMC approximation methods for π0 can be modified to

obtain posterior inference under π1.

2.2.1 Construction of a marginally specified prior

Let θ = θ(f) be a function of f , such as a population mean of p(y|f), variance, marginal

probability vectors or some finite set of functionals, and let Θ be the range of θ. Any prior

distribution π0 on (F ,A) induces a prior distribution P0 on (Θ,B) defined by

P0(B) = π0({f : θ(f) ∈ B}), (2.1)

for each B ∈ B. If π0 is chosen for computational convenience, the induced prior P0 need

not show substantial agreement with available prior information P1 for the functional θ(f).

In some cases a prior π0 selected from a computationally feasible class will make the induced

prior P0 similar to P1: The results of Lijoi and Regazzini (2004) and Yamato (1984) provide

some guidance for Dirichlet process priors if the functionals are means, but in general this will

be difficult. Furthermore, depending on the structure of the nonparametric class, selecting

π0 in order to match P0 to P1 will result in π0 being inappropriate for other aspects of f . We

present an example in Section 2.3 to illustrate a case where making π0 highly informative

about θ(f) also makes it highly informative about other aspects of f .

Suppose a nonparametric prior π0 has been identified that is viewed as reasonable in

some respects, such as being computationally feasible and having a large support, but
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does not represent available prior information P1 about θ. The information in P1 can be

accommodated by replacing P0, the θ-margin of π0, with the desired margin P1. Specifically, a

marginally specified prior (MSP) π1 for f is obtained by combining the conditional distribution

of f given θ with our desired marginal distribution P1 for θ, so that

π1(A) =

∫
Λ0(A|θ)P1(dθ) ∀A ∈ A, (2.2)

where Λ0(A|θ) is the conditional probability of A given θ under π0. A prior π1 constructed

this way should have the desired marginal distribution P1 over(Θ,B), and if P1 � P0, should

also have the same support as π0, since the conditional probabilities under π1 should match

those under π0.

Such a construction is straightforward if f is finite dimensional. Accommodation of

nonparametric problems where f is potentially infinite dimensional requires some additional

mathematical detail. We consider the case where A are the Borel sets of a Hausdorff space

F , and θ : F → Θ is a measurable map with respect to a σ-algebra B on Θ. Let the prior

π0 be a regular probability measure on (F ,A), and let P0 be the induced prior distribution

on (Θ,B), i.e., for all B ∈ B, P0(B) = π0({f : θ(f) ∈ B}).

Example (Dirichlet process mixture model): Recall the Dirichlet process mixture

model prior, defined by

p(y|Q) =

∫
p(y|ψ)Q(dψ)

Q ∼ DP(α,Q0),

where {p(y|ψ), ψ ∈ Rp} is a collection of absolutely continuous probability densities over

some Euclidean space Y and Q0 is an absolutely continuous probability measure over Rp.

The random mixing measure Q has a representation as an infinite weighted sum of point
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mass measures, Q
d
=
∑
wkδψk , where ψ = {ψ1, ψ2, . . .} are an infinite i.i.d. sample from Q0,

and wk = vk
∏

j<k(1−vj), with v = {v1, v2, . . .} are an infinite i.i.d. sample from a beta(1, α)

distribution. Therefore the prior over Q can be represented as a prior over f = (ψ, v) ∈ R∞.

This space, with the usual product topology, is Hausdorff. Now let θ be a moment of p(y|Q),

so that

θ(f) =

∫
g(y)p(y|Q)dy

=
∞∑
k=1

[vk
∏
j<k

(1− vj)]
∫
g(y)p(y|ψk)dy.

The function θ is Borel measurable as long as p(y|ψ) is measurable in ψ for each y ∈ Y .

Returning to the marginally specified prior given by (2.2), note that π0(A|θ) is not well

defined on null sets of P0. To make (2.2) meaningful, we restrict attention to informative

prior distributions such that P1 is dominated by P0. Under this condition and the conditions

on (F ,A) and θ given above, the measure π1 on A is well defined and the θ-marginal of π1

is given by P1.

Theorem 1. Let Λ0(·|·) : A × Θ → [0, 1] be a conditional probability function for π0 given

θ and let P1 be a probability measure on (Θ,B) such that P1 � P0. Then π1 : A → [0, 1],

defined by

π1(A) =

∫
Λ0(A|θ)P1(dθ),

1. is a probability measure over A;

2. satisfies π1({f : θ ∈ B}) = P1(B) for each B ∈ B;

3. is dominated by π0 with Radon-Nikodym derivative

dπ1

dπ0

(f) =
dP1

dP0

(θ(f)).
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For notational economy, we have used θ to represent both an element of Θ and as the

function mapping F to Θ, depending on the context. A proof of the Theorem is provided in

the appendix.

The MSP π1 constructed above is dominated by π0, but ideally we would like it to have

the same support as π0. Since π1 and π0 share conditional distributions, intuitively it seems

that π1 should have reduced support relative to π0 only if P1 has reduced support relative

to P0. This result can be shown with the aid of the Radon-Nikodym derivative given above,

which implies that π1(A) can be computed as

π1(A) =

∫
A

p1(θ(f))

p0(θ(f))
π0(df) = Eπ0 [1(f ∈ A)p1(θ)

p0(θ)
],

where p1 and p0 are densities of P1 and P0 with respect to some common dominating measure

(which could be taken to be P0, for example). Based on this identity, we have the following

result:

Lemma 1. Suppose P1 � P0 � P1. Then π1 � π0 � π1.

Proof. It is clear from the definition of π1 that π1 � π0. To show π0 � π1, let A ∈ A be a set

such that π1(A) = 0. We will show that P0 � P1 implies π0(A) = 0. Let Bj = {θ : pj(θ) > 0}

and Aj = {f : θ(f) ∈ Bj} so that πj(Aj) = Pj(Bj) = 1 for j ∈ {0, 1}. We have

0 = π1(A) = π1(A ∩ A1)

= Eπ0 [1(A ∩ A1)p1
p0

]

= Eπ0 [1(A ∩ A0 ∩ A1)p1
p0

]. (2.3)

Since p1/p0 > 0 on A0 ∩ A1, (2.3) implies that π0(A ∩ A0 ∩ A1) = 0. Since π0(A0) = 1, we

have π0(A ∩ A1) = π0(A) − π0(A ∩ Ac1) = 0. Since 0 = π1(Ac1) = P1(Bc
1) and P0 � P1, we
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must have 0 = P0(Bc
1) = π0(Ac1), and so π0(A) = 0.

We also note that π1 has a characterization as the prior distribution that is closest to

π0 in terms of Kullback-Leibler divergence, among priors with θ-marginal density equal to

p1. This follows from re-expressing the probability measures π1 and π0 in terms of densities

with respect to a common dominating product measure, so that

πk(A ∩ θ−1B) =

∫
B

∫
A

λk(f |θ)pk(θ) µ(df)× ν(dθ)

for k ∈ {0, 1}. The Kullback-Leibler divergence is then

D(π1||π0) = Eπ1 [ln
λ1(f |θ)p1(θ)
λ0(f |θ)p0(θ)

] = Eπ1 [ln
λ1(f |θ)
λ0(f |θ) ] + Eπ1 [ln

p1(θ)
p0(θ)

].

Fixing p1, the divergence is is minimized by setting λ1(f |θ) = λ0(f |θ) for θ a.e. P1, i.e.

matching the conditional distributions, giving D(π1||π0) = D(P1||P0).

Lemma 2. Let P1 � P0. Then among probability measures π1 on (F ,A) with θ-marginal

equal to P1, the Kullback-Leibler divergence of π0 from π1 is minimized when π1(A) =∫
Λ0(A|θ)P1(dθ) for all A ∈ A and θ a.e. P1.

A more detailed derivation of this result is given in the appendix.

2.2.2 Posterior approximation under MSPs

Let {p(y|f) : f ∈ F} be a dominated statistical model, i.e. a family of probability

densities with respect to a common measure. Given a prior distribution π, inference for f ∈ F

proceeds via the conditional probability distribution π(·|y) : A → [0, 1], or alternatively the
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conditional density π(f |y), given by

π(f |y) =
p(y|f)π(f)

p(y)
≡ p(y|f)π(f)∫

p(y|f ′)π(f ′)µ(df ′)
,

where π(f) denotes the density of π with respect to a dominating measure µ. This represents

the conditional measure in that
∫
A
π(f |y)µ(df) is a version of the conditional probability

π(A|y) for each A ∈ A.

For practical reasons the most commonly used priors are those for which there exist

straightforward Gibbs samplers or Metropolis-Hastings algorithms for posterior approximation.

In many cases, simple modifications to these algorithms will allow for the incorporation of

informative priors over functionals of interest. To illustrate, suppose that under prior π0 we

have a Gibbs sampler for a high dimensional parameter f . Recall that the Gibbs sampler

can be viewed as a Metropolis-Hastings algorithm for which the proposals are accepted with

probability one. From this perspective, a Gibbs sampler for approximating the posterior

density π0(f |y) is constructed from proposal distributions with densities J(f ∗|f, y) that are

proportional to the posterior density, so that

J(f ∗|f, y)

J(f |f ∗, y)
=
π0(f ∗|y)

π0(f |y)
. (2.4)

For example, decomposing f as {f1, . . . , fK}, the full conditional distribution π0(fk|f−k, y)

is one such proposal distribution.

Posterior approximation of π1(f |y) can proceed by using the proposal distributions of

the Gibbs sampler for π0(f |y), but adjusting the acceptance probability. Specifically, the

algorithm for approximating π1(f |y) proceeds by iteratively simulating proposals f ∗ from

distributions of the form J(f ∗|f, y) which satisfy (2.4), and accepting each proposal f ∗ with
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probability 1 ∧ rMH, where

rMH =
π1(f ∗|y)

π1(f |y)
× J(f |f ∗, y)

J(f ∗|f, y)

=
π1(f ∗|y)

π1(f |y)
× π0(f |y)

π0(f ∗|y)

=
p(y|f ∗)π1(f ∗)

p(y|f)π1(f)
× p(y|f)π0(f)

p(y|f ∗)π0(f ∗)
=
π1(f ∗)/π0(f ∗)

π1(f)/π0(f)
.

Let the θ-marginal distribution of π0 be P0, and let π1 be a marginally specified prior based

on π0 and a θ-marginal distribution P1 � P0. Let p0 and p1 be the densities of P0 and P1

with respect to a common dominating measure. By Theorem 1, π1(f)/π0(f) = p1(θ)/p0(θ)

and the acceptance ratio simplifies to

p1(θ∗)/p0(θ∗)

p1(θ)/p0(θ)
.

Similarly, an approximation algorithm for π1(f |y) can be constructed from a Metropolis-

Hastings algorithm for π0(f |y) via the same adjustment. Suppose we have a proposal

distribution J(f ∗|f, y) such that the acceptance ratio r0
MH for π0 is computable:

r0
MH =

π0(f ∗|y)

π0(f |y)

J(f |f ∗, y)

J(f ∗|f, y)

The Metropolis-Hastings algorithm for approximating π1(f |y) using J(f ∗|f, y) has acceptance

ratio

rMH =
π1(f ∗|y)

π1(f |y)

J(f |f ∗, y)

J(f ∗|f, y)

=
π1(f ∗|y)

π1(f |y)

π0(f |y)

π0(f ∗|y)
r0

MH

=
p1(θ∗)/p0(θ∗)

p1(θ)/p0(θ)
r0

MH.
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These results show that an MCMC approximation to π1(f |y) can be constructed from an

MCMC algorithm for π0(f |y) as long as the ratio p1(θ)/p0(θ) can be computed. The value of

p1(θ) for each θ ∈ Θ is presumably available as p1 is our desired prior distribution for θ. In

contrast, obtaining a formula for p0(θ) will be difficult in some settings. In situations where

the dimension of θ is moderate, one simple solution is to obtain a Monte Carlo estimate of

p0 based on samples of f from π0. Specifically, we can obtain an i.i.d. sample {θi = θ(fi), i =

1, . . . , S} from f1, . . . , fS ∼ i.i.d. π0, and then approximate p0 with a kernel density estimate

or flexible parametric family. The method of approximation will depend on the nature of

θ; the approaches just described are appropriate when p0(θ) is absolutely continuous with

respect to Lebesgue measure. Note that this can be done before the Markov chain is run, so

that the same estimate of p0 is used for each iteration of the algorithm.

In situations where obtaining a reliable estimate of p0 is not feasible, it is still possible

to induce a prior p1 that is approximately equal to a target prior p̃1, as long as p0 is chosen

to be flat compared to p̃1. This can be done by replacing p0, the θ-marginal density of π0,

with p1(θ) ∝ p0(θ)p̃1(θ) = Kp0(θ)p̃1(θ). This defines a valid probability density as long as

p0p̃1 is integrable, which is the case, for example, if either density is bounded. In terms of

the MCMC approximation to the resulting marginally specified prior π1, the adjustment to

the acceptance ratio is then

p1(θ∗)/p0(θ∗)

p1(θ)/p0(θ)
=

p̃1(θ∗)

p̃1(θ)
,

which is presumably computable as p̃1 is the desired prior density. In this setting, p̃1 contains

the marginal prior information and p1 takes on a form with computational convenience.

The proposed algorithm is closely related to importance sampling (IS) methods described

in the literature. Besag et al. (1995) detail an IS-based approach for assessing prior sensitivity.

In this development, an existing MCMC chain {θ(t)} is weighted using the ratios h̃(θ(t))/h(θ(t)),
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where h(·) is the original prior used to produce the sample and h̃(·) is an alternative prior.

The similiarity with our proposed method and its use of ratios of the marginally specified

prior p1 to the induced prior p0 is clear; one important distinction is that our method

replaces an induced prior on functionals with an elicited prior on those functionals, rather

than substituting a prior in the main specification.

2.3 Density estimation with marginally adjusted DPMM

Perhaps the most commonly used NP Bayes procedure is the Dirichlet process mixture

model, or DPMM (Lo 1984; Escobar and West 1995; MacEachern and Müller 1998). The

DPMM consists of a mixture model along with a Dirichlet process prior for the mixing

distribution. The population density to be estimated and the prior can be expressed as

p(y|Q) =

∫
p(y|ψ)Q(dψ)

Q ∼ DP(αQ0),

where α and Q0 are hyperparameters of the Dirichlet process prior, with Q0 typically chosen

to be conjugate to the parametric family of mixture component densities, {p(y|ψ) : ψ ∈

Ψ}, to facilitate posterior calculations. In this section we show how to obtain posterior

approximations under a marginally specified prior π1 based on a DPMM. The approach

is illustrated with the specific case of multivariate density estimation, for which we take

the parametric family to be the class of multivariate normal densities. In an example

analysis of the well-known bivariate dataset on eruption times of the Old Faithful geyser, we

construct a prior distribution π1 based on the multivariate normal DPMM with a marginally

specified informative prior on the marginal means and variances. Here, we use a parametric

approximation for the induced joint distribution p0 of these specific functionals θ. Inference
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under π1 is compared to inference under two standard DPMMs, one where the hyperparameters

are chosen to be informative about θ and another where the hyperparameters are noninformative.

2.3.1 Posterior approximation

Given a sample y1, . . . , yn ∼ i.i.d. p(y|Q), posterior approximation for conjugate DPMMs

is often made with a Gibbs sampler that iteratively simulates values of a function that

associates data indices to the atoms of Q. In a DPMM, since Q is discrete with probability

one, a given mixture component (atom of Q) may be associated with multiple observations.

Let g : {1, . . . , n} → {1, . . . , n} be the unknown mixture component membership function,

so that gi = gj means that yi and yj came from the same mixture component. Note that g

can always be expressed as a function that maps {1, . . . , n} onto {1, . . . , K}, where K ≤ n.

Inference for conjugate DPMMs often proceeds by iteratively sampling each gi from its

full conditional distribution p(gi|y1, . . . , yn, g−i) (Bush and MacEachern 1996). Additional

features of Q and p(y|Q) can be simulated given g1, . . . , gn and the data.

This standard algorithm for DPMMs can be modified to accommodate a marginally

specified prior distribution on a parameter θ = θ(Q). Let f = {g, θ} and let π0 be the

prior density on f induced by the Dirichlet process on Q. Our marginally specified prior

is given by π1(f) = π0(f)p1(θ)/p0(θ), where p0 is the density for θ induced by π0 and

p1 is the informative prior density. An MCMC approximation to π1(f |y1, . . . , yn) can be

obtained via the procedure outlined in Section 2.2. Given a current state of the Markov

chain f = {θ, gk, g1, . . . , gk−1, gk+1, . . . , gn} = {θ, gk, g−k}, the next state is determined as

follows:

1. Generate a proposal f ∗ = {θ∗, g∗k, g−k} from π0(θ, gk|g−k, y) = π0(gk|g−k, y)π0(θ|g, y)

by

(a) generating g∗k ∼ π0(gk|g−k, y);
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(b) generating θ∗ ∼ π0(θ|g∗k, g−k, y).

2. Set the value of the next state of the chain to f ∗ with probability

1 ∧ [p1(θ∗)/p0(θ∗)]/[p1(θ)/p0(θ)],

otherwise let the next state equal the current state.

This procedure is iterated over values of k ∈ {1, . . . , n}, possibly in random order, and

repeated until the desired number of simulations of f is obtained. Note that steps 1.(a)

and 1.(b) compose a standard Gibbs sampler for the DPMM in which posterior inference

for θ is provided, although typically we would only simulate θ once per complete update of

g1, . . . , gn. The algorithm for the marginally specified prior π1 requires that θ be simulated

with each proposed value of gk so that the acceptance probability in step 2 can be calculated.

Implementing the steps of this MCMC algorithm involves two non-trivial computations:

simulation of θ from π0(θ|g, y), and calculation of p0(θ) in order to obtain the acceptance

probability. General methods for the latter were discussed in Section 2.2. For the former, we

suggest using a Monte Carlo approximation to Q based upon a representation of Dirichlet

processes due to Pitman (1996). Let K be the number of unique values of g1, . . . , gn and

let nk be the number of observations i for which gi = k. If Q0 is conjugate, then the

parameter values ψ(1), . . . , ψ(K) corresponding to the mixture components can generally be

easily simulated. Corollary 20 of Pitman (1996) gives the conditional distribution of Q given

ψ(1), . . . , ψ(K) and counts n1, . . . , nK as

{Q(H)|ψ(1), . . . , ψ(K), n1, . . . , nK}
d
= γ

K∑
k=1

1(ψ(k) ∈ H)wk + (1− γ)Q̃(H),

where γ ∼ Beta(n, α), w ∼ Dirichlet(n1, . . . , nK) and Q̃ ∼ DP(αQ0). A Monte Carlo

approximation to Q, and therefore any functional of Q, can be obtained via simulation of

a large number S of ψ-values from Q. To do this, we first simulate γ and w1, . . . , wK from
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their beta and Dirichlet full conditional distributions. From these values we sample cluster

memberships for a sample of size S from Q using a multinomial(S, {γw1, . . . , γwK , 1 − γ})

distribution. Note that the count s for the K+1st category represents the number of ψ-values

that must be simulated from Q̃. To obtain the sample from Q̃ we run a Chinese restaurant

process of length s, and then generate the unique ψ-values from Q0 for each partition. This

can generally be done quickly for two reasons: First, the expected number of samples needed

from Q̃ is only Sα/(α + n). For example, with S = 1000, n = 30 and α = 1, we expect

to only need about s = 32 simulations from Q̃. Second, the number of unique values in a

sample of size s from Q̃ is only of order log s, which will generally be manageably small.

The marginal sampler we describe above has advantages in terms of efficiency and

convergence rates (MacEachern 1994). However, because it does marginalize out the random

measure Q, we must use the embedded Pitman method to draw samples from θ(Q) in order

to evaluate the Metropolis-Hastings ratio. An alternative approach is to use a stick-breaking

representation that does not integrate out the random measure. We can then use a slice

sampler (Kalli et al. 2011) or exact block Gibbs sampler (Yau et al. 2011) and compute θ(Q)

without needing an embedded sampling step, but at the possible expense of lower efficiency

in the sampler.

2.3.2 Example: Old Faithful eruption times

The Old Faithful dataset consists of 272 bivariate observations of eruption times and

waiting times between eruptions, both measured in minutes. To illustrate and evaluate

the MSP methodology we construct two subsets of these data: a random sample of size

n0 = 30 from which we obtain prior information and a second, non-overlapping random

sample of size n = 30 representing our observed data. The random samples were obtained

by setting the random seed in R (version 2.14.0) to 1, sampling the prior dataset, and then
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sampling the observed dataset from the remaining observations. The observed sample had

marginal means (2.97, 64.2) and marginal variances (1.29, 206.7). The prior sample had

marginal means (3.54, 71.9) and marginal variances (1.24, 134.9). For the purpose of this

example, we view the full dataset of 272 observations as the true population. A scatterplot

of the observed data and marginal density estimates are shown in Figure A.1. The observed

dataset consisting of n = 30 observations clearly captures the bimodality of the population.

However, the marginal plots indicate that the sample has overrepresented one of the modes.

Suppose our knowledge of the prior sample is limited to the bivariate marginal sample

means m0 ∈ R2 and sample variances v0 ∈ (R+)2. In such a situation it would be desirable to

construct a prior density p1 over the unknown population marginal means m and variances

v based on the values of m0, v0 and n0, and combine this information with the information

in our fully observed sample to improve our inference about the population. Incorporating

this information with conjugate priors would be straightforward if our sampling model were

bivariate normal, but it is difficult in the context of a DPMM. Proposition 5 of Yamato

(1984) indicates that if the base measure Q0 in the Dirichlet process prior is multivariate

normal(µ0,Σ0), then the induced prior distribution on the mean
∫
xQ(dx) is approximately

multivariate normal(µ0,Σ0/[α+1]). This result is not directly applicable to the multivariate

normal DPMM for two reasons, one being that Q represents the mixing distribution and not

the population distribution, and the other being that in the conjugate multivariate normal

DPMM the parameter ψ in the mixture component consists not just of a mean µ but also a

covariance matrix Σ. Specifically, in the conjugate p-variate normal DPMM, the density q0

of the base measure Q0 for ψ = (µ,Σ) is given by

q0(µ,Σ) = normalp(µ : µ0,Σ/κ0)× inverse-Wishart(Σ : S−1
0 , ν0) (2.5)

where the functions on the right-hand side are the multivariate normal and inverse-Wishart
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densities respectively, the latter being parameterized so that E[Σ] = S0/(ν0 − p− 1). Given

a choice for α it is possible to obtain values of the hyperparameters (µ0, κ0, S0, ν0) so that

the induced prior distributions on the population mean m(Q) =
∫ ∫

yp(y|ψ)Q(dψ)dy and

variance V (Q) =
∫ ∫

yyTp(y|ψ)Q(dψ)dy −m(Q)m(Q)T have the following properties:

E[m(Q)] = m0 , Var[m(Q)] =
V0

n0 − p− 1
≈ V0/n0 , E[V (Q)] =

n0 + α + 1

n0

n0V0

n0 − p− 1
≈ V0

(2.6)

Here, m0 is the desired prior mean and V0 is the desired prior covariance matrix, derived from

the marginal prior information. Within the context of the DPMM, it is difficult to specify the

prior on V (Q) separately from that on m(Q). We construct three different nonparametric

prior distributions for a comparative analysis of the Old Faithful data:

• Informative DPMM πI0 : The base measure density q0 is as in (2.5) with (µ0 = m0, κ0 =

n0/(α + 1), ν0 = n0, S0 = ν0V0), where the diagonal of V0 is v0, the marginal variances

from the prior sample, and the correlation is equal to the sample correlation from the

observed data. This results in a prior on Q satisfying (2.6), thereby utilizing the prior

information.

• Noninformative DPMM πN0 : The base measure density q0 is as in (2.5) with (µ0 =

ȳ, κ0 = 1/10, ν0 = p + 2 = 4, S0 = Sy), where ȳ is the sample mean from the n = 30

values in the observed sample, and Sy is the sample covariance matrix. This prior

does not use information from the prior sample, and is designed to promote relative

diffuseness of the induced prior on the marginal population means and variances. Note

that using sample moments for the hyperparameters weakly centers the prior around

the observed data. We can view this as a type of “unit information” prior (Kass and

Wasserman 1995).

• Marginally specified prior π1: Letting θ = (m1,m2, v1, v2) be the unknown population
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means and marginal variances, we construct a marginally specified prior by replacing

the θ-margin of πN0 with p1(θ), a product of two univariate normal and two inverse-

gamma densities, chosen to match the prior on θ induced by πI0 as closely as possible.

Figure A.2 compares p1 with kernel density estimates of the marginal priors induced

by πI0 .

Thus πI0 and π1 have very similar θ-margins, but otherwise π1 matches the more diffuse

prior πN0 . We can give π1 any θ-margin we wish, but matching the margins of πI0 and

π1 facilitates comparison. The hyperparameter α was set to 1 for all of the above prior

distributions. In order to evaluate the Metropolis-Hastings ratios when approximating the

posterior distribution under π1, we found that a skewed multivariate t-distribution provided a

very accurate approximation to the joint distribution of the marginal means and log variances

induced by πN0 . Via a change of variables, this provides an accurate approximation to p0(θ),

with which the acceptance probability is computed for approximation of π1(f |y). Figure A.3

gives an assessment of the adequacy of this approximation, comparing a smoothed density

estimate of random draws from the approximated p0 with a smoothed density estimate of

random draws from the true p0 induced by π0
N .

We ran Markov chains of length 25,000 under each prior, with parameter values being

saved every 10th iteration, resulting in 2500 simulated values of each parameter with which

to make posterior approximations. The chains showed no evidence of non-stationarity and

mixed well under each prior: Based on the dependent MCMC sequences of length 2500, the

equivalent number of independent observations of θ (i.e., the effective sample sizes) were

estimated as above 2000 for each element of θ and under each prior. We did sample from

the posterior under π1 using a stick-breaking representation and a slice sampler. The results

were not markedly different from those obtained using the marginal sampler. This slice

sampling approach required dependent MCMC sequences of length 550, 000 to achieve an
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effective sample size of 2500; computational time per independent sample was 95% that of

the marginal sampler.

Posterior predictive distributions under the three priors are shown in Figure A.4. The

informative DPMM provides a poor representation of the population distribution, given in

light gray contours. This is primarily a result of having to set the κ0 hyperparameter to

be moderately large (κ0 = 15) in order to obtain the desired informative prior variance for

the population mean m = (m1,m2). Unfortunately, setting this parameter so high means

that values of µ in the mixture model are tightly concentrated around m0, and so the

multimodality is not captured. In contrast, the posteriors under the noninformative DPMM

πI0 and the MSP π1 are able to capture the multimodality of the population.

Figure A.5 gives marginal density estimates under the different priors. The figure suggests

that the posterior under π1 is better at representing the underlying population than the

posteriors under the other priors. Recall that the observed sample contains an unrepresentative

number of low-valued observations. The posterior under the non-informative prior πN0 uses

only the observed data and thus is equally unrepresentative of the population. In contrast,

π1 is able to use some information from the prior sample, and is therefore more representative

of the population.

Finally, the marginal posterior distributions of the marginal parameters m and log v are

given in Figure A.6. The priors are given in gray and the resulting posterior distributions are

given in black. The population values based upon the full set of 272 observations are given

by gray vertical lines. Across all parameters, π1 gives posteriors that are most concentrated

around the population means. Note that the difference between the priors and the posteriors

under πI0 is not that large. We conjecture that this is primarily a result of the fact that under

πI0 , most observations are estimated as coming from the same mixture component, thereby

overestimating the entropy, when in fact the data are bimodal. In contrast, π1 is able to
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recognize the bimodality and obtain improved estimates of the marginal densities.

In this example, we have shown that efforts to make the canonical DPMM informative in

terms of marginal means and variances leads to poor density estimates, while a noninformative

DPMM leads to suboptimal estimates of functionals due to its inability to incorporate prior

information. In contrast, a marginally specified prior is able to both incorporate prior

information and provide accurate density estimation.

2.4 Marginally specified priors for contingency table data

Even when multivariate categorical data include only moderate numbers of variables and

categories, large or full models that allow for complex or arbitrary multivariate dependence

can involve a very large number of parameters. For example, a full model for the 2×3×2×8×

12-way contingency table data we consider later in this section requires a 1151-dimensional

parameter. One Bayesian approach to the analysis of such data is via model selection among

reduced log-linear models (Dawid and Lauritzen 1993; Dobra and Massam 2010). However,

model selection can be difficult even for moderate numbers of variables and categories, due

to the large number of models with low posterior probability and the resulting difficulty in

completely exploring the model space. An alternative NP Bayes approach is provided by

Dunson and Xing (2009), who developed a prior based on a Dirichlet process mixture of

product multinomial distributions. Such a prior has full support on the parameter space but

concentrates prior mass near simple submodels. One drawback to this approach is the lack

of a straightforward method for the incorporation of the type of marginal prior information

that is frequently available for categorical data.

In this section we consider an alternative NP Bayes approach based on a marginal

adjustment to a standard Dirichlet prior distribution. This approach is computationally

straightforward and allows for the incorporation of prior information on specific functionals
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of the unknown population distribution, such as the univariate marginals.

2.4.1 The canonical Dirichlet prior

Multivariate categorical data consist of observations yi = (yi1, . . . , yip), for which yij ∈

{1, 2, . . . , dj} for j = 1, . . . , p. A p−way contingency table is a common representation for

such data, in which each cell of the table indicates the count of observations yi such that

yi1 = c1, . . . , yip = cp for a specific response vector c = (c1, . . . , cp). The sampling model

for a contingency table can be expressed as a multinomial distribution, where for each cell

c ∈ C = {c : 1 ≤ cj ≤ dj, j = 1, . . . , p} we define fc ≡ Pr(yi1 = c1, . . . , yip = cp). The full

model of all distributions for the data can then be indexed by the parameter f = {fc : c ∈ C},

which lies in the (
∏
dj − 1)-dimensional simplex. Given n i.i.d. observations, the likelihood

is L(f |y1, . . . , yn) =
∏d1

c1=1× · · · ×
∏dp

cp=1 f
∑
i 1(yi1=c1,··· ,yip=cp)

c , for which a standard conjugate

prior is the Dirichlet distribution with hyperparameter α ∈ (R+)
∏
dj . This is a nonparametric

prior in the sense that it gives full support on the space of possible values of f .

The Dirichlet prior is an appealing choice computationally because of its conjugacy, but

this convenience can have undesirable side effects. In particular, choosing an uninformative

Dirichlet prior for f induces substantial informativeness about the marginals {θ1, . . . , θp},

where θj = {θj1, . . . , θjdj} = {Pr(yij = 1|f), . . . ,Pr(yij = dj|f)}. For example, setting αc = 1

for each cell c ∈ C results in a uniform prior distribution for f , often used as a default prior

distribution in the absence of prior information. However, the induced prior on the marginals

θ1, . . . , θp is highly informative: The marginalization properties of the Dirichlet distribution

result in θj ∼ Dir(
∏

k 6=j dk, . . . ,
∏

k 6=j dk), which is generally highly concentrated around the

uniform distribution on {1, . . . , dj}. On the other hand, it is reasonably straightforward to

choose values of αc to induce particular marginal Dirichlet priors on the θj’s, although each

marginal prior must have the same concentration. However, this approach to constructing
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an informative prior for the margins necessarily induces a prior over the remaining aspects

of f , such as the dependence structure, that could be undesirably informative.

2.4.2 A marginally specified prior

To overcome these undesirable features of the Dirichlet prior, we construct a nonparametric

prior on f based upon a Dirichlet distribution with a low total concentration, but with

the induced marginal priors for θ1, . . . , θp replaced with informative priors to reflect known

information. Specifically, our prior for f takes the form

π1(f) = π0(f |θ)× p1(θ)

= π0(f |θ)×
p∏
j=1

p1j(θj),

where π0(f) is a Dirichlet(α0, . . . , α0) distribution on the (
∏
dj − 1)-dimensional simplex

and p1j is an informative Dirichlet distribution on (dj− 1)-dimensional simplex. Recall from

Section 2 that the marginally specified prior π1 is the closest distribution in Kullback-Leibler

divergence to π0 that has the desired priors on θ1, . . . , θp. Also note that the methodology

does not require that these induced priors be Dirichlet, although making them so will

facilitate comparison to an informative Dirichlet prior distribution on f in the example

data analysis that follows.

Estimation of f via the posterior distribution π1(f |y) can proceed via an MCMC algorithm.

As in the previous section, we modify an MCMC algorithm for simulating from π0(f |y),

the posterior under the canonical nonparametric prior, in order to obtain simulations from

π1(f |y), the posterior under the marginally specified prior. Our particular MCMC scheme

relies on the representation of a Dirichlet-distributed random variable as a set of independent

gamma variables scaled to sum to one. That is, if Zc ∼ gamma(αc, 1) and fc = Zc/
∑
Zc′ ,
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then f ∼ Dirichlet(α1, . . . , α|C|). We employ an MCMC algorithm that is based upon

simulating proposed values of {lnZc : c ∈ C} from a normal distribution centered at the

current values. Because of the high dimension of the parameter f , proposing changes to

every element of f simultaneously results in low acceptance rates. To avoid this problem,

at each iteration of the algorithm we propose changes to randomly chosen subvectors of f .

The steps in a single iteration of the MCMC algorithm are then as follows:

1. Generate a proposal {f ∗, θ∗1, . . . , θ∗p}:

(a) randomly sample a set of cells C ′ ⊂ C;

(b) simulate proposals {logZ∗c : c ∈ C ′} = {logZc : c ∈ C ′}+ ε, ε ∼ normal(0, δI);

(c) compute the corresponding f ∗ and marginal probabilities θ∗1, . . . , θ
∗
p.

2. Compute the acceptance ratio r = r0r1 from r0, the acceptance ratio for f under π0,

and r1, the marginal prior ratio:

r0 =
p(y|f ∗)π0(Z∗)

p(y|f)π0(Z)

∏
c

(Z∗c /Zc) , r1 =
p1(θ∗)/p0(θ∗)

p1(θ)/p0(θ)
.

3. Accept f ∗, θ∗1, . . . , θ
∗
p with probability 1 ∧ r.

Note that the ratio r0 includes the Jacobian of the transformation from Z to lnZ, as the

proposal distribution is symmetric on the log-scale. The number of cells |C ′| to update at

each step and the variance parameter δ in the proposal distribution can be adjusted to

achieve target acceptance rates.

As mentioned above, we take p1 to be a product of Dirichlet densities representing

prior information about the margins θ1, . . . , θp. To calculate r1 we must also compute the

corresponding joint distribution p0 of θ1, . . . , θp under the Dirichlet distribution π0 on f . We

approximate p0 by the product of the prior marginal densities of θ1, . . . , θp under π0, each of
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which are Dirichlet. However, we note that the θj’s are only approximately independent of

each other under π0.

2.4.3 Example: North Carolina PUMS data

We evaluate the performance of the marginally specified prior and several associated

priors in terms of their performance under the scenario of a researcher with accurate prior

information about the marginal distributions of the p categorical variables. Our scenario is

based on data from the Public Use Microdata Sample (PUMS) of the American Community

Survey, a yearly demographic and economic survey. We consider data on gender (male,

female: d1 = 2), citizenship (native, naturalized, non-citizen: d2 = 3), primary language

spoken (English, other: d3 = 2), class of worker (d4 = 8), and mode of transportation to

work (d5 = 12) from 40,769 survey participants. The latter two variables are each dominated

by a single category, “employee of private company” (63.75%) for worker class and “car, truck

or van” (91.97%) for transportation. These classifications yield a five-way contingency table

with |C| = 1, 152 cells. From these data we constructed a true joint distribution f̃ and

marginal frequencies θ̃ by filling out the multiway contingency table with the PUMS data,

replacing zero counts in the contingency table with small fractional counts, and normalizing

the resulting counts to produce a probability distribution over |C|. We then simulated smaller

datasets of various sample sizes from f̃ , and obtained posterior estimates for each under three

different prior distributions:

• Informative Dirichlet prior πI0 : A Dirichlet distribution with parameter αIf
I
0 , where

αI = |C| and f I0 is in the (|C| − 1)-simplex. Using the method of Csiszar (1975), the

prior mean f I0 of f was chosen to be the frequency vector closest in Kullback-Leibler

divergence to the uniform distribution on |C| among those with margins equal to θ̃.

The induced marginal prior on each θj is then Dir(|C|θ̃j), which has prior expectation
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θ̃j as desired. Note that the concentration hyperparameter αI is the same as that for

a uniform prior on the simplex.

• Noninformative Dirichlet prior πN0 : A Dirichlet distribution with parameter αNf
N
0 ,

where αN =
√
|C| and fN0 = {1/|C|, . . . , 1/|C|}. This prior has the same prior

expectation as the uniform prior on the (|C|−1)-simplex, but a smaller prior concentration

by a factor of
√
|C|.

• Marginally specified prior π1: Constructed by replacing the marginal prior for θ induced

by πN0 with the marginal prior under πI0 . To compute acceptance ratios, we have used a

product of independent Dirichlets corresponding to the marginal distributions induced

by πN0 to approximate p0. The adequacy of the approximation to p0 is assessed in

Figure A.7. through a comparison of smoothed density estimates of random draws

from the approximated p0 with smoothed density estimates of random draws from the

true p0 induced by π0
N .

We used the true joint distribution f̃ to generate 200 replicate data sets of sizes n ∈ { 100,

1000, 5000, 10000, 20000, 40000 }. The πI0 and πN0 priors are conjugate to the multinomial

likelihood, and so their posterior distributions are available in closed form. For estimation

under π1, the MCMC algorithm described above was run for 3 × 106 iterations for each

simulated dataset. The acceptance rate varied with the sample size n, from 89% at n = 100

down to 63% at n =10,000. Effective sample sizes corresponding to thinned Markov chains

based on every 500th iterate were obtained and were found to be around 1000 (based on

thinned chains of length 6000).

For each simulated dataset and prior we obtain posterior mean estimates (f̂ , θ̂) which

we compare to the true values (f̃ , θ̃) used to generate the simulated data. To evaluate θ̂,

we use an average of the absolute value of the Kullback-Leibler divergence between the true
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marginal distributions {θ̃1, . . . θ̃p} and the estimated marginal distributions {θ̂1, . . . θ̂p}:

M =
1

p

p∑
j=1

∣∣∣∣ dj∑
c=1

θ̃jc ln
(
θ̂jc/θ̃jc

)∣∣∣∣.
Smaller values of M indicate better performance with respect to this marginal metric.

To assess the performance of f̂ on aspects of f other than the marginal distributions, we

compared the true and estimated values of the local dependence functions (LDFs) of the
(
p
2

)
separate two-way marginal distributions. These LDFs describe the two-way dependencies

among the variables, and are invariant to changes in the marginal distributions (Goodman

1969). The LDFs are formed from cross-product ratios of f as follows: Letting f j1,j2c1,c2
=

Pr(yj1 = c1, yj2 = c2|f), we define

LDF j1,j2
c1,c2

(f) = ln

(
f j1,j2c1,c2

f j1,j2c1+1,c2+1

f j1,j2c1,c2+1 f
j1,j2
c1+1,c2

)
.

For each simulated dataset and prior distribution, we computed the average squared error

between LDF j1,j2
c1,c2

(f̂) and LDF j1,j2
c1,c2

(f̃) as

L =

(
p

2

)−1 ∑
j1<j2

1

(dj1 − 1)(dj2 − 1)

dj1−1∑
c1=1

dj2−1∑
c2=1

(LDF j1,j2
c1,c2

(f̂)− LDF j1,j2
c1,c2

(f̃))2.

Smaller values of L indicate better performance in terms of representing the two-way dependence

structure of the true distribution f̃ .

Figure A.8 shows the M and L performance metrics for each prior and simulated dataset,

with the averages over simulations at each sample size joined by lines. The sample sizes are

displayed ordinally, with a slight horizontal shift for each prior so that the results under

different priors can be distinguished. πI0 and π1 outperform those under πN0 , as these former

two priors were designed to have correct prior expectations for θ. The initial non-monotonic
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trend in the performance of πI0 with sample size is due to the fact that πI0 has exactly

correct prior expectation. If the sample size were zero, then M would be zero as well. In

contrast, the second plot in Figure A.8 indicates that πI0 provides poor estimates of the

dependence functions: At all sample sizes, this prior underperforms compared to the other

two, demonstrating the cost of making πI0 directly informative about the marginals. On

the other hand, πN0 and π1 have very comparable performance in terms of estimation of

the dependence functions. These comparisons, using both the marginal and margin-free

performance metrics, highlight the desirable properties of the marginally specified prior

formulation: A marginally specified prior π1 is able to represent prior information about

specific functionals θ of the high-dimensional parameter f without being overly informative

about other aspects of the parameter.

2.5 Discussion

Nonparametric priors for a high-dimensional parameter f based on Dirichlet processes

or Dirichlet distributions do not easily facilitate partial prior information about arbitrary

functionals θ = θ(f). Attempts to make such priors informative about θ can make the prior

undesirably informative about other aspects of f .

In this article, we have presented a simple solution to this problem, via construction of

a marginally specified prior (MSP) that can induce a target marginal prior on a functional

θ, but is otherwise as close as possible to a given canonical “noninformative” nonparametric

prior. We have provided general posterior approximation schemes for such priors, based on

simple modifications to standard MCMC routines for canonical nonparametric priors. In

two examples we have shown that the MSP behaves as anticipated: Given accurate prior

information, the MSP provides improved estimation for θ as compared to “noninformative”

priors, while providing similar or better estimation performance for other aspects of the
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unknown parameter f .

One barrier to the adoption of MSPs is that the posterior approximation schemes we

have presented require that the ratio p1(θ)/p0(θ) be computable, where p1 is the desired

informative prior for θ and p0 is the prior induced on θ by a canonical prior π0. Generally,

p0 will not have a closed form, and so must be approximated numerically or otherwise. If

the dimension of θ is small, it should generally be feasible to approximate p0 with a kernel

density estimate, or by a simple parametric family. If θ is high-dimensional, then other

approximation strategies will be required, such as approximating the joint density of θ as a

product density (i.e. assuming independence of subvectors of θ) or perhaps by using mixture

models. The latter strategy is more flexible than the former, but it doubles the modeling

efforts in any given problem by requiring one to estimate p0 before estimating f .
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Chapter 3

Learning Phenotype Densities
Conditional on Many Interacting

Predictors

3.1 Introduction

Many areas of research are concerned with learning the distribution of a response conditional

on numerous categorical (discrete) predictors. The predictors that have actual importance

for the characterization of this distribution are not usually known in advance, and in many

cases hundreds or thousands of predictors are associated with each response. In addition, it

is frequently the case that the predictors interact in complex ways. Methods that attempt

to consider each potential interaction can quickly become mired in the enormous space of

models. For example, in a moderate-dimensional case involving p = 40 categorical predictors,

each with dj = 4 possible realizations, considering all possible levels of interaction leads to a

space of 440 ≈ 1024 possible models. Parallelization and technical tricks may work for smaller

examples, but data sparsity and the sheer volume of models force us to consider different

approaches. In addition, approaches to learning conditional densities that are based on mean

regression do not always consider the variation in form of the density. That is, the conditional



density may vary in more than just location, as illustrated in Figure B.1. Methods that score

well for measures based upon mean square prediction error (MSPE) may fall short on other

important questions. Figure B.2 illustrates a synthetic case where distinct combinations x(1)

and x(2) of predictors have E(y|x(1)) = E(y|x(2)), but P (y > c|x(1))� P (y > c|x(2)). Such

differences in the predicted probability of extreme observations can be of considerable interest

in environmental, financial, and health outcomes settings. In the work that follows, we

present a novel nonparametric Bayes (NPB) approach to learning conditional densities that

makes use of a conditional tensor factorization to characterize the conditional distribution

given the predictor set, allowing for complex interactions between the predictors. The

particular form assumed for the conditional density gives rise to an attractive predictor

selection procedure, providing support for distinct predictor selection steps. This addresses

the challenges of high-dimensional data and produces conditional density estimates that

allow assessment of tail risks and other complex quantities.

3.2 Approach

The primary goal for our work is to model the conditional density f(y|x), where the

form of this density for the response y changes flexibly with the predictor vector x. There

is a large body of work devoted to this idea of density regression in settings involving x of

dimension p ≤ 30, and such models have provided many options for that situation. We wish

to develop techniques for problems involving much larger p, and ideally to scenarios where

p > 1, 000. While several techniques exist for this high-dimensional setting, they can result

in black-box models that do not motivate understanding of the effect of a particular predictor

on the response. We want to provide a method that performs variable selection, assesses the

probability of a predictor’s inclusion in the model, and provides easily interpretable estimates

of the impact of different predictors.
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This classically nonparametric problem has been addressed with variations on the finite

mixture model,

f(y) =
K∑
h=1

πhK(y; θh). (3.1)

When predictors are incorporated into the model, this becomes the basic hierarchical mixture

of experts model (HME, Jordan and Jacobs (1994)). In this representation, K represents

the number of contributing parametric kernels K(; θh) distinguished by parameters θh. The

πh provide the weights in this convex combination of kernels, where
∑K

h=1 πh = 1 and

(π1, . . . , πK) ∈ SK−1, the K−1 probability simplex. The most straightforward forms rely on

a prespecified K and include the predictors x in a linear model for the mean. HME methods

in the frequentist literature have often relied on expectation maximization (EM) (Dempster

et al. 1977) techniques, which can suffer from overfitting (Bishop and Svensén 2003). EM

approaches in the Bayesian literature seek to avoid this; Waterhouse et al. (1996) employed

EM to find maximum a posteriori (MAP) estimates, using the inherent Bayesian penalty

against complexity to regulate those estimates. In addition, the Bayesian framework allows

the quantification of uncertainty about the parameters in the model.

Nonparametric Bayes (NPB) methods, such as Dirichlet process (DP), prompted techniques

like that in Muller et al. (1996), which induced flexible conditional regression through joint

modeling of the response and predictors. Subsequent methods included the predictors in πh

and/or θh via dependent Dirichlet Process (DDP) mixtures. De Iorio et al. (2004) proposed

an ANOVA DDP model with fixed weights {πh} that used a small number of categorical

predictors to index random distributions for the response. Griffin and Steel (2006) developed

an ordered DDP, where the predictor vectors were mapped to specific permutations of the

weights {πh}, yielding different density estimates for different predictor vectors. Reich and

Fuentes (2007) and Dunson and Park (2008) employed the kernel stick-breaking process to
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allow predictors to influence the weights. Chung and Dunson (2009) presented a further

alternative in the probit stick-breaking process, which uses a probit transform of a real-

valued function of the predictors to incorporate them into the weights. Methods that use

joint modeling of response and predictors (Shahbaba and Neal 2009; Hannah et al. 2011;

Dunson and Xing 2009) are popular and can work well under many circumstances, but

estimation of the marginal distribution of the predictors is a burden.

While the discrete mixture approach (both finite and infinite) has provided the bulk

of techniques for Bayesian density regression, there are notable exceptions. For example,

Tokdar et al. (2010) developed a technique based upon logistic Gaussian processes. Jara and

Hanson (2011) presented an approach using mixtures of transformed Gaussian processes.

These and other methods of Bayesian density regression have proven successful, but as

data sets have grown in size and complexity, these approaches encounter difficulties. One

particular challenge derives from the so-called “curse of dimensionality” - that is, as we

consider problems in higher and higher dimensions, where we consider larger and larger

predictor vectors, the complexity of interaction between these explanatory variables grows

explosively and data sets may only sparsely fill the associated space. This is even more

daunting when we consider discretely valued predictors, since we must consider the factorial

combinations of those levels.

The associated challenges of variable selection and dimensionality reduction have been

explored in Bayesian density regression. Dimensionality reduction has a goal similar to that

of variable selection, that of finding a minimal set of predictors that account for variation

in the response. The logistic Gaussian process approach of Tokdar et al. (2010) includes

a subspace projection method to reduce the dimension of the predictor space. Reich et al.

(2011) developed a technique for Bayesian sufficient dimensionality reduction based upon a

prior for a central subspace. While all of these approaches have demonstrated their utility,
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they do not scale easily beyond p = 30 predictors.

There are also techniques like the random forest (Breiman 2001) that aim to find parsimonious

models for density estimation involving a large number of predictors. One disadvantage to

this type of “black box” method is in interpreting the impact of specific predictors on the

response. Bayesian additive regression trees (BART) (Chipman et al. 2006; 2010) focus on

modeling the conditional mean and assume a common residual distribution. As previously

noted, there are many questions that require learning about more than just the conditional

mean of the response. Another flexible approach is the Bayes network (BN), which considers

the predictors and the response on equal footing to develop a parsimonious network linking

all variables (Pearl 1999; Cowell et al. 1999; Lauritzen 1992). The conditional distribution

of the response given the predictors can be derived from such a model, using developed

BN techniques for mixed continuous and discrete data (Lauritzen 1992; Moral et al. 2001;

Langseth et al. 2012). One aspect of using a BN for conditional density estimation is that

the BN estimates a joint density for all of the predictors and the response in order to arrive

at a conditional density. If the conditional density is of primary interest, the effort required

to estimate what amounts to a huge-dimensional nuisance parameter is unattractive.

To address these disparate challenges, we propose an approach based upon a conditional

tensor factorization (CTF) for the mixing weights. As in the DDP and certain of the kernel

stick-breaking methods, the predictors influence the mixing weights for this CTF model. The

conditional tensor factorization facilitates borrowing of information across different profiles

in a flexible representation of the unknown density. We focus our attention on situations

involving continuous responses and categorical predictors.
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3.3 Methods

We consider a univariate response y and a vector of p categorical predictors x = (x1, . . . , xp),

where the jth predictor xj can take values 1, . . . , dj. We would like a model that can

flexibly accommodate conditional densities that change in complex ways with changes in

the predictor vector. In addition, we must consider situations where p� n. In this setting,

there may be very few or no exemplars for certain predictor vectors. This sparsity can derail

methods that rely on the complete predictor vector x for learning about the conditional

distribution of the response. To address this, we propose a Tucker-style factorization with

the following general model for the conditional density f(y|x):

f(y|x) =

k1∑
h1=1

· · ·
kp∑

hp=1

πh1,··· ,hp(x) λ(y; θh1,··· ,hp)

where

πh1,··· ,hp(x) =

p∏
j=1

π
(j)
hj

(xj). (3.2)

Each π(j) can be visualized as a matrix, where the row indexed by xj contains weights for the

combinations of the observed predictor value xj and the latent predictor values hj = 1, . . . , kj.

The weights for a particular value of xj are constrained to be ∈ [0, 1], and
∑kj

hj=1 π
(j)
hj

(xj) = 1.

The number of latent predictors, p, is the same as the number of observed predictors. The

actual dimension of the latent space will be determined by the vectors π
(j)
hj

. While this

does resemble the general HME, an important distinction is in the treatment of the weights

πh1,··· ,hp(x) as a tensor factorization and the assumed form of the kernels λ(y; θh1,··· ,hp), which

do not have direct dependency on the predictor vector x. This is similar in spirit to the

classification approach proposed by Yang and Dunson (2012).
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Tucker decompositions (Tucker 1966) and other kinds of decompositions have appeared

in the machine learning literature before. Xu et al. (2012) developed an “infinite” Tucker

decomposition, making use of latent Gaussian processes rather than explicit treatment of

tensors and matrices; in comparison, the proposed method uses the Tucker decomposition

to characterize the mapping of predictors into weights. Other factorizations have been

used for similar problems; Hoff (2011) presented a reduced-rank approach for table data,

but this approach focused on the development of estimates for the mean of a continuous

response. Chu and Ghahramani (2009) derive an approach for partially observed multiway

data based upon a Tucker decomposition; their objective is to learn about the latent factors

driving observations rather than the characterization of the response distribution or variable

selection.

The collection across j = 1, . . . , p forms a “soft” clustering from the d1 × · · · × dp

dimensional space of the observed x to a potentially smaller k1×· · ·×kp-dimensional space.

That is, a predictor vector x is not exclusively associated with a single kernel, but rather

with all k1 × · · · × kp kernels through the corresponding weights. This form for the mixing

weights allows borrowing of information across different combinations of h1, . . . , hp. Learning

about the density conditional on a sparsely observed predictor vector x(∗) does not rely

exclusively on observations with that predictor vector; instead, each observation contributes

some information. The impact of non-matching predictor vectors is governed by the set

of maps π(j), rather than some hard classification. In settings of extreme sparsity, where

most predictor vectors are not represented, this is an attractive property. This uses many

fewer parameters than a full factorial representation, and is still flexible enough to represent
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complex conditional distributions. Finally, we assume normal kernels for the λ, yielding:

f(yi|xi)

=

k1∑
h1=1

· · ·
kp∑

hp=1

{
N(yi; θh1,··· ,hp , τ

−1
h1,··· ,hp)

×
p∏
j=1

π
(j)
hj

(xij)
}

(3.3)

This resembles other mixture-based approaches to density estimation as originally specified

in (3.1), but the proposed model for the weights provides the desired support for sparsity

and information borrowing previously discussed.

We consider two primary tasks in learning the conditional distribution. The first is

to identify those predictors which provide the most information about the response, and

the second is to learn the form of the conditional distribution given the set of informative

predictors. Both tasks will be influenced by our prior assumptions about uncertainty in

the model parameters, quantified as prior distributions. For computational convenience, we

employ conjugate priors where possible. The model proposed in (3.3) can be augmented to

give a complete-data likelihood assuming a specific classification vector zi for each observation,

kernel mean parameters θh1,··· ,hp , kernel precision parameters τh1,··· ,hp and the soft-clustering

parameters π(j):

N∏
i=1

k1∏
h1=1

· · ·
kp∏

hp=1

{
N(yi; θh1,··· ,hp , τ

−1
h1,··· ,hp)×

p∏
j=1

π
(j)
hj

(xij)
}1[zi=(h1,··· ,hp)]

(3.4)

The dimension of the full vectors θ and τ will be denoted by M , where M = k1 × kp.
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3.3.1 Prior Structure

1. θh1,··· ,hp ∼ N(0, τ−1
0 ).

2. τh1,··· ,hp ∼ Gamma(δt/2, γt/2)

3. π(j)(xj) = (π
(j)
1 (xj), . . . , π

(j)
kj

(xj)) ∼

Dir( 1
kj
, . . . , 1

kj
)

for j = 1, . . . , p and xj = 1, . . . , dj

4. τ0 ∼ Gamma(δ0/2, γ0/2)

The final set of parameters, the k1, . . . , kp, present a particular challenge. Since each kj

can take on the values 1, . . . , dj, the resulting discrete space can be immense, and including

these as parameters in the sampler is not an attractive option. Instead, we develop a

stochastic search variable selection (SSVS) step that makes use of a “hard” clustering to

evaluate different kj values.

3.3.2 Full Conditionals

Given the augmented likelihood in (3.4), the assumed prior distributions and fixed values

k1, . . . , kp, the full conditional distributions are:

1. θh1,··· ,hp | · · · ∼ N(µ∗h1,··· ,hp , (τ
∗
h1,··· ,hp)

−1), where:

τ ∗h1,··· ,hp = τ0 + τh1,··· ,hp
∑N

i=1 1[zi = (h1, · · · , hp)]

µ∗h1,··· ,hp =

{τh1,··· ,hp
∑N

i=1 yi1[zi = (h1, · · · , hp)]}/τ ∗h1,··· ,hp

2. τh1,··· ,hp| · · · ∼ Gamma(δ∗/2, γ∗/2), where: δ∗ = δt +
∑N

i=1 1[zi = (h1, · · · , hp)]

γ∗ = γt +
∑N

i=1 1[zi = (h1, · · · , hp)](yi − θh1,··· ,hp)2
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3. τ0| · · · ∼ Gamma([δ0 +M ]/2, [γ0 + θTθ]/2)

4. ( π
(j)
1 [xj], . . . , π

(j)
kj

[xj] )| · · ·

∼ Diri(1/kj +
N∑
i=1

1[zij = 1], . . . ,

1/kj +
N∑
i=1

1[zij = kj])

5. Pr[zi = z∗jm ≡ (h1, . . . , hj−1,m, hj+1, . . . , hp)]| ∝

φ
[
(yi − θz∗jm)

√
τz∗jm

]
× π(j)

m (xij)

for m = 1, . . . , kj within each j = 1, . . . , p.

The updates for θ, τ and π(j) can be done blockwise. The zi can updated blockwise at each

position j. In updating the zi or classification vectors, we consider each j separately and draw

updates according to the usual finite mixture model approach. The conditional posterior

probability of assignment to the different levels 1, . . . , kj are determined by normalizing the

weighted likelihoods at each level. The weights come from the probability tensor π, indexed

by xi, and the likelihoods from the response yi and the atoms θ and τ .

3.3.3 Predictor Selection and Parameter Estimation

Predictor selection is of paramount importance in settings with a large number of predictors.

As discussed above, the sheer number of possible interactions of predictors makes the development

of full models infeasible. The form of the weights shown in (3.3) provides an attractive

method for predictor selection that we now develop.

To learn appropriate values for k1, . . . , kp, we use a predictor selection step based upon a
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special form of the π(j). This special form of the mapping in (3.2) results if exactly one of the

elements of π(j)(xj) is equal to 1, with the other kj − 1 elements equal to zero. This gives a

“hard” clustering of each predictor vectors xi to exactly one element of the M−dimensional

space outlined above. Given a particular clustering and the prior structure outlined above,

we can approximate a marginal likelihood for that clustering; these marginal likelihoods

provide calibrated measures of different clusterings that drive a stochastic search. We make

the simplifying assumption that τ0 = τ and retain the Gamma(δt/2, γt/2) prior for τ . This

gives an exact form for the marginal likelihood of one group within the hard clustering.

There will be M = k1× · · · × kp such groups, indexed by m. The log marginal likelihood for

the mth group is then:

Nm

2
log(π)− 1

2
log(Nm + 1) + log Γ

(Nm + δt
2

)
− log Γ

(δt
2

)
+
δt
2
log(γt)−

1

2
(Nm + δt) log(Y T

mYm −
(Y T

mJNm)2

Nm + 1
+ γt),

where Ym is the vector of responses and Nm is the number of observations in group m. The

product of these M approximated marginal likelihoods drives a stochastic search through

the space of clusterings. For each j = 1, . . . , p we consider “split” moves that result in

an increase of kj by one, and “merge” moves that result in a decrease of kj by one. For

example, if the current mapping for observed predictor j from observed labels to latent

labels is {1→ 1, 2→ 1, 3→ 2, 4→ 2}, one “split” move would be to change the mapping

so that 4 → 3, increasing kj from 2 to 3. The available “merge” move is to change the

mapping so that 3→ 1 and 4→ 1, decreasing kj from 2 to 1. We select from all available

moves with equal probability. We repeat this process for some number of iterations. After

discarding burn-in iterations, we use the remaining set to compute inclusion probabilities

for each j = 1, . . . , p. These are the proportion of iterations in which the separate kj are
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greater than 1, and indicate the importance of the corresponding predictor to the conditional

distribution. This stochastic search approach is similar to the presentation in George and

McCulloch (1997).

In the first stage, we examine each of the p predictors in isolation. Since it is then

feasible (for dj ≤ 5) to encapsulate the entire stochastic search of corresponding split and

merge moves in a discrete time Markov chain, this step proceeds very quickly. This can

be done in an embarrassingly parallel fashion, but experimentation at p = 5000 where

dj = 4 for all j showed that the computation of each inclusion probability required 0.3s

and so serial computation was not overly burdensome. We did investigate a marginal

likelihood computation that made fewer simplifying assumptions and relied on numerical

approximations. This approach did not produce materially different results and gave a

tenfold increase in computational time.

We use the inclusion probabilities from this single-site pass to reorder the predictors

in decreasing order of inclusion probability. We also impose a cutoff from the first stage,

including only those predictors with inclusion probability greater than some value, typically

0.5. The cutoff may also be determined by a limit on the size of the space we wish

to consider or for computational convenience. The re-ordering before the second stage

of variable selection combats the tendency of the stochastic search to jump from simple

clusterings to complex clusterings with similar or slightly degraded marginal likelihoods. If

the best candidates from the first-pass search are considered before weaker candidates, the

second-pass search performs better. The second stage of variable selection uses a sequential

stochastic search variable selection, proceeding for a moderate number of iterations to

produce a second set of inclusion probabilities. This uses the same approximated marginal

likelihood approach as in the individual predictor assessment. Predictors with inclusion

probabilities exceeding the cutoff value of 0.5 are then used in the Gibbs sampling step.
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The Gibbs sampler produces a posterior sample according to the steps detailed in section

3.3.2. Each element from this MCMC sample defines a model that we can use to produce

predicted values and intervals around predicted values for a test set.

3.4 Simulation Study

To assess the variable selection and prediction performance of the CTF, we conducted

a simulation study, varying the number of training observations N ∈ {300, 500, 1000, 1500}

and using a consistent ground truth to produce simulated data sets with total number of

predictors p = 1000. In each case, the true model was based on three predictors at positions

30, 201 and 801, each with dj = 4 levels and including three-way interactions among these

predictors. The combination of predictor values is associated with the mean of an underlying

Gaussian, and simulated using a common residual variance τ .

For each of 20 training sets, we produced selected predictor sets and posterior samples

based upon the models defined by those sets and the assumed prior structure. We then

used the derived models to make predictions for 20 validation sets drawn from the same

underlying true distribution. As competitor methods we used random forests (RF) and

quantile regression random forests (QRF) (Meinshausen 2006); these are implemented in the

randomForest and quantregForest packages in R. BART as implemented in the BayesTree

package was unable to run to completion on any of the training sets, though we were able to

use BART with the real data example in Section 3.5. We chose these methods as competitors

for different reasons. RF and QRF include predictor selection directly, and QRF directly

addresses the idea of coverage proportion. BART is another MCMC based approach, but

it does not directly address variable selection, allowing us to investigate the impact of the

large predictor space. We considered the use of Bayes networks, but the implicit cost in

estimating the joint distribution of predictors and response made this unattractive.
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To compare the methods, we used two metrics. We computed mean square prediction

error (MSPE) as the average squared difference between the response value predicted by the

model for a predictor vector from the validation set and the actual response value for that

observation. We defined coverage proportion (COV) as the proportion of times that the

95% prediction interval for an observation in the validation set included the actual response

value, averaged over the intervals for each posterior sample. When comparing performance

with that of the competitors, we attempted to give those competitors what advantages we

could. In the case of RF, this meant that we did two passes over the training data. The

first pass identified important variables using the importance method in the randomForest

package. We used the “mean decrease in accuracy” style of importance; this measurement

is derived from the impact of permuting out-of-bag data for each tree in the forest. We then

fed those variables identified as important as a preselected set into a second run of RF. This

generally improved the MSPE performance of RF. An analogous method was not available

for QRF, so we could not treat that method in the same manner. In each of the 20 cases

for p = 1000 and training N = 500, the CTF outperformed RF on mean square prediction

error and showed comparable 95% coverage proportions to those derived from QRF; this is

summarized in Figure B.4. The CTF and RF showed comparable accuracy in identifying

important predictors, but RF tended to include many unimportant predictors. In contrast,

the CTF produced no false positive results, identifying the correct subset of predictors in

each case. This performance is particularly attractive given the large number of possible

interactions in the original predictor set. Both RF and QRF may have suffered due to the

strong interactions present in these simulated data.
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3.5 Molecular Epidemiology Application

To illustrate the utility of this approach, we apply it to a real-world dataset and compare

its performance to that of the same competitor methods (RF, QRF, and BART). The dataset

concerns DNA damage to instances of different cell lines when exposed to environmental

chemicals. The exposure types are hydrogen peroxide (H2O2) and methyl methane sulfonate

(MMS), and the remainder of the predictor set is genotype information on 49,428 single

nucleotide polymorphisms (SNPs). Rodriguez et al. (2009) provides extensive details on

the original experiments. 100 separate instances of each of 90 cell lines were exposed to

each chemical and examined at each of 3 time points (before treatment, immediately after

treatment, and a longer time after treatment). The nature of the measurement is destructive;

at the desired time interval, comet assay was performed on each cell and the Olive tail

moment (Olive et al. 1991) recorded; this assesses the amount of DNA damage in the cell,

with higher measurements indicating more damage. The cells from each line are genetically

identical, but the resulting distribution of Olive tail moment (OTM) has a different shape

for each cell line. In addition, these distributions are different at the separate time points;

generally, the Olive tail moments are smallest (least damage) before exposure to the chemical,

largest (most damage) immediately after exposure, and somewhere in-between after a longer

recovery time.

To develop an appropriate response, we computed empirical quantiles at percentiles

(1/32, 2/32, . . . , 31/32) for each cell line at each of the three time points and then derived

a single-number summary wij to tie these three quantile vectors together for cell line i and

exposure j. The summary measure wij ∈ (0, 1) is the value that minimizes

31∑
h=17

∣∣∣wijQij,N,h + (1− wij)Qij,L,h −Qij,A,h

∣∣∣ (3.5)
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Here, Qij,N,h indicates the h/32th quantile for the ith cell line’s Olive tail moment distribution

at the “No treatment” time, with corresponding quantities for the “Later” time point and

the “immediately After” time point. The use of only the higher quantiles reflects our desire

to learn more about the extremes of DNA repair. We used a logit transform to derive

our final response yij = log(
wij

1−wij ); this is appropriate for the assumptions of the model.

Negative values of the response indicate that the OTM distribution long after treatment is

closer to the distribution right after treatment; positive values indicate that the “long after”

distribution is closer to the distribution before treatment.

The researchers genotyped the cell lines at 49,428 individual SNPs, each of which had

previously been associated with some aspect of DNA repair. Given the small number of cell

lines and the fact that many individuals have two copies of the major allele for these SNPs,

many of the SNP profiles were identical and many also had no individuals with two copies

of the minor allele. We recoded the genotypes so that 1 indicated at most one copy of the

major allele and 2 indicated two copies of the major allele. After recoding, we reduced the

predictor set to those SNPs with distinct profiles, leaving 23,210 SNPs for analysis.

We used leave-one-out cross-validation to assess the performance of the CTF against that

of the three competitors RF, QRF, and BART. Each model from the CTF is represented

by an MCMC chain, so for each iterate we developed expected values and 95% prediction

intervals for the left-out observation. We ran the variable selection chain for 5,000 burn-in

iterations and computed inclusion probabilities from 10,000 samples. We ran the MCMC

chain for 40,000 burn-in iterations and retained a sample of 20,000 iterations. Autocorrelation

diagnostics indicated an effective sample size of 15,000. We used the same burn-in and

posterior sample sizes for BART. As in the simulation study, we used the results from a first

run of RF to seed a final run of RF.

The CTF showed consistent selection of the treatment (H2O2 or MMS) as the most
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important predictor and selected a set of four SNPs (IGFBP5, TGFBR3, CHC1L, XPA) as

predictors; information about these SNPS is summarized in Table B.1. In contrast, RF chose

the treatment variable in only 56 of the 180 cross-validation scenarios and did not consistently

identify any other predictors. The CTF has a higher computational time requirement and

took approximately twenty times as long as RF or QRF to estimate a model. Nevertheless,

the improved performance is attractive.

When we recoded the SNPs as binary variables, there were many blocks of SNPs with

identical profiles. We included only one representative from each block in the analysis. Of

the four SNPs included in the model, two (TGFBR3 and CHC1L) were the representatives

for multi-SNP blocks. The SNPs that shared profiles with these two representatives are

summarized in Tables B.2 through B.5.

Comparison with the competitor methods showed patterns similar to the simulation

study; Table B.6 compares the results from each method. The interactions between the

treatment and the various SNPs may be weak enough that they do not contribute to the

same elevated MSPE that RF demonstrated in the simulation study. Even though the MSPE

for RF was close to that for the CTF, the CTF was able to achieve lower MSPE while not

sacrificing coverage performance.

Figure B.5 shows estimated conditional densities given varying levels of the treatment

and of the IGFBP5 SNP while holding the other three SNPs at the “Zero/One Copy” level,

and illustrates how the conditional density changes in more than the conditional mean when

the predictor vector changes. In this case, the interaction between MMS treatment and

two copies of the major allele for this IGFBP5 SNP tightens the density markedly, while it

has a more muted impact on the conditional mean. The change is less dramatic under the

exposure to H2O2. In this setting, the shift in the mean response as treatment and genetic

profile change is less interesting than the difference in conditional variance; under treatment
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with H2O2, the mean response is slightly different than under treatment with MMS, but the

tail probabilities are noticeably different.

3.6 Conclusion

We have presented a novel method for flexible conditional density regression in the

common case of a continuous response and categorical predictors. The simulation study

and real data example suggest that this conditional tensor factorization method can have

better performance than other modeling tools when there is substantial interaction between

the predictors of interest. The CTF does have a higher computational time requirement

than the competitor methods, but the improvement in prediction accuracy and coverage still

make the CTF an attractive method.

A particularly appealing aspect of the CTF is predictor selection, which finds low-

dimensional structure in the high-dimensional predictor set. This reduction to more parsimonious

models yields a succinct description of the ways in which the phenotype varies given exposure

and SNPs. Finally, a distinct advantage of the CTF is its ability to produce these conditional

density estimates. This property of the CTF provides insight beyond a simple conditional

expectation and makes it possible to answer more complex questions about the relationship

between the response and the predictors.
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Chapter 4

Nonparametric Selection of
Interacting Polymorphisms Predictive

of Quantitative Traits From Family
Data

4.1 Introduction

4.1.1 Motivation and Proposed Approach

Large p, small n problems have become commonplace in statistical analyses of genetic

data. In settings with very large p, such as studies of single nucleotide polymorphisms

(SNPs), there is a multi-layered challenge, as it is necessary to develop scalable methods,

which can address the computational and statistical curse of dimensionality, while leading to

interpretable results that are not overly subject to false discoveries. There is a rich literature

addressing problems of this type. The most common approach relies on independent screening

with false discovery rate (FDR) control, but incorporating SNPs simultaneously can have

substantial advantages Hoggart et al. (2008). This is typically done within an additive

generalized linear model, with a penalty incorporated to allow p � n. For example, L1



penalties lead to Lasso and sparse estimation (Tibshirani 1996), while L2 penalties lead to

ridge regression procedures that allow large numbers of SNPs with small coefficients (Hoerl

and Kennard 1970), and the elastic net combines L1 and L2 penalties (Zou and Hastie 2005).

The assumption in such approaches is that SNPs have an additive relationship with the

(transformed) mean of the response phenotype. Clearly, this assumption is very restrictive

and it is natural biologically to expect interactions among the SNPs and with environmental

exposures, with the density of a quantitative trait not simply shifting in mean as the

important factors vary but changing in variance and shape. The focus of this article is

on developing a practically implementable statistical method that allows this degree of

flexibility, while additionally accommodating variable selection, covariate adjustments and

dependence arising within families.

There is a considerable statistical and bioinformatics literature focused on identifying

interacting predictors of a quantitative trait from among a very large number of candidates.

Lou et al. (2007) developed a generalized multi factor dimensionality reduction combinatorial

algorithm. Chen et al. (2007) proposed a forest-based approach to identify gene-gene interactions.

Zou et al. (2010) incorporated variable selection within a Gaussian process prior for the

regression function, enabling selection of a subset of interacting SNPs impacting the mean

of the distribution of a quantitative response. Yi (2010) provide an overview of statistical

approaches for identifying genetic interactions in high-dimensional settings, such as genome-

wide association studies. Cordell (2009) reviews methods for selecting interactions between

genetic loci contributing to human disease.

These methods lack the density regression flexibility, which is a key aspect we are focused

on. In particular, our hypothesis is that genetic variants and environmental factors impacting

the phenotype density do not simply shift the mean in a simple way, but may impact

the variance and shape. Such changes in variance, skewness, and higher moments of the
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phenotype density seem a natural consequence of genetic heterogeneity. By incorporating

this flexibility within our statistical model, we aim to increase power to detect important

SNPs and environmental factors. There is a literature on density regression, reviewed below,

but current methods fail to produce a variable selection procedure that can adjust for family

dependence and scale to very large p.

We propose a model based upon a tensor factorization for the weights on a set of normal

kernels. This factorization depends on soft clusterings of observed categorical predictors into

a lower-dimensional space. This approach implicitly accounts for interactions and gives a

flexible form for the density conditional on predictors and random effects. This conditional

tensor factorization for correlated data (CTFC) method accommodates the possibility that

the density of the response conditional on the predictors may change in ways that are more

complex than a simple shift in conditional mean.

This is an important consideration in contexts where real concern is over behavior in the

tails of the conditional distribution. For example, if the quantitative trait is a measure of

health like body mass index (BMI), it may be the case that certain combinations of SNP

variability have minimal impact on the average BMI, but that the conditional probability

of being obese vary widely with these same combinations. Figure C.1 uses data drawn from

the 2001-2002 National Health and Nutrition Examination Survey (NHANES) to illustrate

distributions for adults of different educational attainments; this is not variation associated

with SNPs, but the concept is the same. The two groups have very similar median BMI but

noticeably different 90th percentile BMI.

Such considerations have motivated research into quantile regression (Koenker and Bassett

1978). Quantile regression has been used in the modeling of quantitative traits as a function

of genetic variation; Ho et al. (2009) used a range of quantile regression techniques to find

age-dependent gene expression patterns, and the technique has been used in the analysis of
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comparative genomic hybridization data (Eilers and de Menezes 2005). In these applications,

the practitioner chooses specific quantiles to focus on. In contrast, the density regression

approach models all quantiles simultaneously. Our approach addresses predictor selection

and density estimation in separate stages, and combines deterministic approximations with

Markov Chain Monte Carlo (MCMC) techniques for inference. The proposed method makes

no parametric assumptions about the form of this conditional density, instead using an

adaptable nonparametric form. An important component is selection of those predictors

with the most influence on the response allowing p� n.

4.1.2 Background on Density Regression

There is a rich literature on estimation of the conditional density of a response variable

y ∈ Y given predictors x = (x1, . . . , xp)
′ ∈ X . For example, the hierarchical mixtures of

experts (HME) model (Jordan and Jacobs 1994) lets

f(y|x) =
K∑
h=1

πh(x)K(y;x, θh). (4.1)

Here, K represents the number of contributing parametric kernels. Each kernel K(y;x, θh)

is distinguished by its parameters θh and consequently the manner in which the predictors

x influence the response. This is a convex combination of kernels, weighted by the πh(x),

where
∑K

h=1 πh(x) = 1 and {π1(x), . . . , πK(x)} ∈ SK−1, the K−1 probability simplex. In the

simplest form, K is pre-specified and the predictors x enter into a linear model for the mean.

HME implementations have often relied on expectation maximization (EM) (Dempster et al.

1977) techniques, which can suffer from overfitting (Bishop and Svensén 2003). Bayesian

approaches seek to avoid this; for example, Waterhouse et al. (1996) developed maximum

a posteriori (MAP) algorithm, using the inherent Bayesian penalty against complexity to
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regulate those estimates.

Much of the work in nonparametric Bayes (NPB) methods has centered on the Dirichlet

process (DP). Muller et al. (1996) jointly model the response and predictors to induce flexible

conditional densities. More recent extensions of this idea have been proposed by Shahbaba

and Neal (2009) and Hannah et al. (2011) among others. An unappealing attribute is the

need to estimate a potentially high-dimensional nuisance parameter corresponding to the

marginal distribution of x. Alternative models have been defined directly for the conditional

density using dependent Dirichlet process (DDP) mixtures. De Iorio et al. (2004) proposed

an ANOVA DDP model with fixed weights {πh} that used a small number of categorical

predictors to index random distributions for the response. Griffin and Steel (2006) developed

an ordered DDP, where the predictor vectors were mapped to specific permutations of the

weights {πh}, yielding different density estimates for different predictor vectors. Predictor-

dependent stick-breaking processes have also been proposed, including kernel stick-breaking

Dunson and Park (2008) and probit stick-breaking (Chung and Dunson 2009).

For moderate p, these and other methods of density regression have been successful. As p

increases, one encounters the curse of dimensionality. Some methods are available for variable

selection (Chung and Dunson 2009) and dimensionality reduction (Tokdar et al. 2010; Reich

et al. 2011), but these methods do not scale much beyond p = 30 and do not account for

correlation in the data, such as occurs in family studies. There is a literature on generalizing

penalization methods to adjust for dependence. Rakitsch et al. (2013) propose “LMM-

Lasso”, extending Lasso to correlated responses. Lippert et al. (2011) develops a realized

relationship matrix (RRM) based upon a limited number of SNPs, and then introduces a

streamlined optimization method of estimation. This approach and the related approach in

Listgarten et al. (2012) are based on the idea that a linear mixed model (LMM) with no

fixed effects, where the correlation structure is derived from the SNPs, is equivalent to a
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regression of those SNPs on the response of interest. Zhang et al. (2010) instead compressed

samples into a smaller set of clusters, where clustering is based on kinship of individuals.

Our focus is instead of including dependence within a scalable nonparametric Bayes density

regression approach.

4.2 Methods

We consider situations where we have observations from N different groups (families).

The ith group has ni members, each with a response observation yij and a vector of predictors

xij = (xij1, . . . , xijp)
′. The sth element, xijs, is assumed to take on a value in {1, . . . , ds}.

We first present the conditional density for the response yij. Given a family-specific random

effect vector bi and the subject-specific feature vector xij, we assume

f(yij|xij, bi) =

k1∑
h1=1

· · ·
kp∑

hp=1

{
N(yij; θh1···hp + bij, τh1···hp)

}
×
{ p∏
s=1

π
(s)
hs

(xijs)
}

(4.2)

This defines a mixture of normal kernels, where the kernels are indexed by h1, · · · , hp and

the weight given to a particular kernel is driven by the predictor vector xij through the

selections from the π(s) for that predictor vector. The representation in (4.2) is notable in

that the predictors appear only in the expression for the weight on the kernel indexed by

h1, · · · , hp. The parameter π(s) is a collection of ds vectors, where the cth such vector is

{π(s)
1 (c), . . . , π

(s)
hs

(c)} and
∑hs

`=1 π
(s)
` (c) = 1. One special case results if each vector π(s)(c)

has exactly one entry equal to 1. Under this configuration, each predictor vector xij

maps exclusively to a single kernel parameterized by the (θh1···hp , τh1···hp) pair. This “hard”

clustering defines a typical mean-shift scenario through a full-interaction model, and the

conditional densities are straightforward Gaussians. In contrast, when the π(s)(c) give

nontrivial weights to each latent level, this “soft” clustering drives a more flexible form
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for the conditional density.

The representation in (4.2) assumes knowledge of the k1, . . . , kp, whose product M =∏p
s=1 ks determines the number of kernels used in the conditional mean. Given this assumption,

we can introduce prior distributions for the remaining parameters and proceed with the

estimation necessary for the density regression. Without this information, we will be required

to search over a very large discrete space of potential models defined by the possible combinations

of the kj. In a low-dimensional situation, we might do the predictor selection through the

introduction of priors on inclusion for each predictor, but in high-dimensional situations this

would require a much larger parameter set and longer computational time.

An important observation is that if ks = 1 for a particular predictor, that predictor

does not participate in the model. The resulting vectors π(s)(c) for each c ∈ {1, . . . , dj} will

simply be scalar values of 1, indicating that different values of c produce no change in the

weighting term, and hence have no influence on the conditional distribution. This aspect of

the representation in (4.2) provides a pathway to predictor selection. Instead of including the

predictor selection alongside sampling of the other parameters in the model, we undertake

predictor selection as a separate first step.

4.2.1 Predictor Selection

The central approach in our predictor selection method is the identification of those ks

that we set equal to 1 and so remove from the model. As outlined above, an important

special case results when exactly one entry in each vector π(s)(c), c ∈ {1, . . . , ds} is equal to

1, resulting in a “hard” mapping of the observed predictor vector xij to a selection vector

zij. Given different sets of such “hard” mappings, including that for ks = 1, we can evaluate

the associated marginal likelihoods for each under a particular prior structure and identify

models with the highest marginal likelihoods. Under a particular set of {k1, . . . , kp}, the
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dimension of the parameter θ is M =
∏p

s=1 ks.

To evaluate the marginal likelihood under a particular “hard” mapping, we couple the

sampling model in (4.2) with the following prior structure:

1. τ ∼ Gamma(δt/2, γt/2)

2. θ ∼ N(0, τ−1
0 IM)

3. τ0 ∼ Gamma(δ0/2, γ0/2)

4. bi ∼ N(0, η−1Ri), where Ri is a correlation matrix specific to the ith family.

5. η ∼ Gamma(δe/2, γe/2)

We assume that the entries in the correlation matrices Ri are defined by the kinship between

pairs of individuals in the family. We assume Ri(i, j) = 2−d(i,j), where the kinship metric

d(i, j) is derived from the degree of relationship: d(i, j) = ∞ for unrelated individuals,

d(i, j) = 1 for first-degree relatives (parent and child, full siblings), and d(i, i) = 0 for

self-kinship.

For the specific deterministic mapping defined by the ks and the π(s), the p-dimensional

predictor vector xij will map to anM-dimensional vector zij, where exactly one element of

zij is equal to 1 and all other elements are zero. The resulting likelihood conditional on the

random effects bi is then
N∏
i=1

N(Ziθ + bi, τ
−1Ini) (4.3)

Here, Zi is the stacked set of zij. After multiplying by the specified priors for θ, τ , τ0, η,

67



and each bi, we can integrate out θ and the bi, leaving the marginal likelihood expression:

∫ ∫ ∫
2π

N
2

{ N∏
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where

W =
N∑
i=1

ZT
i Σ−1

i Yi ; V = τ0IM +
N∑
i=1

ZT
i Zi ; Σi = τ−1Ini + η−1Ri

This final integral is not available in closed form; we use the method of Laplace to approximate

the marginal likelihood. We log-transformed the precision parameters τ, τ0, η so that we

could work in R3 and use unconstrained optimization to find the mode and Hessian for

computation of the approximate value. Note that there is one difference between the form

assumed here and that shown in (4.2); we use a common τ . Using different τh1···hp would

substantially complicate the Laplace approximation due to the need to integrate over a higher

dimensional space.

It will not be feasible to evaluate marginal likelihoods for each possible mapping, except in

very low-dimensional cases whereM is small. Instead, we develop a stochastic search method

to traverse the possible model space. Assuming we start with a particular “hard” mapping

with an associated marginal likelihood MLc, we move sequentially through the features from

s = 1, . . . , p. For the sth feature, if the current maximum mapped index ks is less than the

maximum possible index ds, we consider new maps such that k∗s = ks + 1. Depending on the

value of ds (the maximum value for the observed xijs), there are several possibilities. For

instance, if the current map is {1→ 1, 2→ 1, 3→ 2}, where ks = 2 and ds = 3, a new map
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could specify 2 → 3, with ks = 3. If the current ks > 1, we also consider new maps such

that k∗s = ks − 1. Using the same example map, a new map could set 3→ 1, so that ks = 1.

After drawing a candidate map from these possibilities, we evaluate the marginal likelihood

MLp for this proposed map and accept the move with probability 1 ∧ (MLp/MLc). At

the conclusion of a pass through the p predictors, we examine the current set of maps and

increment a count cs by one if the current map has ks > 1, indicating that the sth predictor

has some influence on the response. After T such tours through the predictor set, we can

identify those predictors such that the inclusion proportion ps = cs/T is greater than some

threshold, usually 0.5. We then proceed with estimation of the parameters associated with

the model that includes only those predictors.

The order of evaluation of the predictors can be crucial. In simulation, we noticed that

even a predictor designed to be very important in prediction of the response might not

be identified if it was at a large offset s and so was evaluated very late in the search. This

appeared to be due to rough alignment of other predictors with these intentionally important

features, coupled with the random nature of the search. In some cases, a disadvantageous

move would be accepted; the search would never escape the resulting state and would never

identify the important predictors.

To combat this tendency, we implement a first-stage process to assign each predictor a

preliminary score that we can use to preferentially order the predictors for the stochastic

search. This first-stage process uses exactly the same core method as the full search, but

with a single predictor. If ds is moderate (ds < 6), the number of possible mappings is small

enough that we can feasibly evaluate marginal likelihoods for each mapping and consider

them in a compact discrete-time Markov chain. This “collapsed” stochastic search uses

the same idea of proposed transitions and acceptance probabilities, but arrives at inclusion

proportions ps without using random acceptance steps. For example, for a dichotomous
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predictor, there are only two distinct mappings from the two-dimensional space of observed

values; map A takes 1 → 1 and 2 → 2, and map B takes both 1 and 2 to 1. Once we

have computed marginal likelihoods for each mapping, we can collapse the stochastic search

framework into a manageably-sized transition matrix. In this case, we have:

P =

[
pAA pAB

pBA pBB

]
(4.5)

In this notation, pij is the probability of accepting the transition from map i to map j,

where pij = 1 ∧ (MLj/MLi). The form of Pm as m → ∞ gives the long-run proportion

of times that a corresponding stochastic search will spend in each state. Since map B is

equivalent to a model in which ks = 1 for the corresponding predictor, the complement of

the proportion of time that the search spends in this state yields an inclusion probability

ps for the predictor. We do this for each predictor and use the set of ps to define an order

of evaluation in the full stochastic search. This first stage of predictor selection can be

completely parallelized, because each predictor is considered in isolation. It is then possible

to use emerging techniques for massively parallel computation, such as GPU exploitation

and general cloud-based computing, to complete this stage in a greatly reduced time. After

this first stage is complete, we sort the predictors by these first-stage inclusion probabilities

to guide the second stage of predictor selection. Any predictor with a first-stage inclusion

probability ps below a certain threshold (usually 0.5) is not included in the second stage. In

the notation of (4.2), ks = 1 for those predictors not included, indicating that each observed

level maps to a single latent level and the predictor does not inform the response. This type

of multistage approach to predictor selection has been investigated in the genetics literature

previous; Marchini et al. (2005) provides an assessment of this approach in simulation, and

Hoh et al. (2000) describes an application to cohort study data. As in much of the literature,
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these association studies have investigated discrete outcomes like disease status rather than

complex quantitative traits. Furthermore, they do not consider interactions more complex

than two-way.

4.2.2 Density Estimation

Once we have selected a set of predictors, we implement a Gibbs sampler sized according

to the selected predictor set and approximate a draw from the posterior distribution using

the full conditional distributions. The resulting draws of the several parameters give us an

approximation to the posterior distributions of the various conditional densities. We use

the same prior structure as in the marginal likelihood calcuations in the predictor selection

step, but allow the residual precision parameters τh1···hp to be component-specific, with prior

distributions τh1···hp ∼ Gamma(δt/2, γt/2) such that the prior expectation of τh1···hp is δt/γt.

In addition, we place Dirichlet priors on each vector π
(s)
hs

. Finally, we introduce vectors

sij = (sij1, . . . , sijp) to indicate latent assignments for each observation. This augmentation

scheme gives a complete-data likelihood that facilitates updating of the other parameters in

the model:
k1∏

h1=1

· · ·
kp∏

hp=1

N∏
i=1

ni∏
j=1

{
N(yij; θh1···hp + bij, τ

−1
h1···hp)

}1[sij=(h1,··· ,hp)]

(4.6)

sij = (h1, . . . , hp) indicates that the jth individual in the ith family is associated with

the kernel Under this prior specification, and using augmentation variables sij to indicate

assignment to one of theM groups, we update parameters according to the following steps.

In these full conditional distributions, Sh1,··· ,hp indicates the set of observations such that

sij = (h1, . . . , hp).

1. Pr(sijs = hs) ∝ π
(j)
hs

(xijs)×N(yij; θsij1,··· ,sij(s−1),hs,sij(s+1),··· ,sijp+bij, τ
−1
sij1,··· ,sij(s−1),hs,sij(s+1),··· ,sijp)

2. θh1···hp | · · · ∼ N(µ∗, τ
−1
∗ ), where
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τ∗ = τ0 + τh1···hp ·
∑
Sh1,··· ,hp

(1)

µ∗ = [τh1···hp ·
∑
Sh1,··· ,hp

(yij − bij)]τ−1
∗

3. τh1···hp | · · · ∼ Gamma(δ∗/2, γ∗/2), where

δ∗ = δt +
∑
Sh1,··· ,hp

(1)

γ∗ = γt +
∑
Sh1,··· ,hp

(yij − θh1···hp − bij)2

4. η | · · · ∼ Gamma([δe +
∑

i ni]/2, [γe +
∑

i b
T
i R
−1
i bi]/2)

5. τ0 | · · · ∼ Gamma([δ0 +M]/2, [γ0 + θTθ]/2)

6. bi | · · · ∼ N(mi, Vi), where

Vi = [diag(τsi1 , . . . , τsi,ni ) + η ∗R−1
i ]−1 and

mi = Vi × (diag(τsi1 , . . . , τsi,ni )[Zi(θsi1 , . . . , θsi,ni )
T − yi])

7. (π
(s)
1 (c), . . . , π

(s)
ks

(c)) ∼ Diri[1/ks +
∑

i,j 1(xijs = c)× 1(sijs = 1) . . . ,

1/ks +
∑

i,j 1(xijs = 1)× 1(sijs = ks)]

We can then combine these parameters to get conditional density estimates given different

predictor vectors, and produce conditional expectations and prediction intervals.

4.3 Simulation Study

To evaluate the performance of the proposed method, we conducted a simulation study,

varying conditions of data generation under the structure outlined in (4.2). In this study,

we simulated p = 500 predictors, each with dj = 4 levels. Of these simulated predictors,

three actually had influence on the response through a full-interaction model. The precision

parameters were set as τ = 1.0 and η = 2.0, and the 64 θ values spaced across (−10, 10). We

used a varying number of families, N ∈ {300, 400, 500, 700, 1200}, as training sets and used

a consistent family size ni = 4, with a correlation structure corresponding to two parents
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and two children. We did 25 replicate sets at each value of N . For each result, we did out-

of-sample comparisons with another set drawn from the same ground truth. We compared

results with the Lasso (Tibshirani 1996). The Lasso does not deal explicitly with mixed

effects models, but provided a useful comparison with respect to predictor selection and

general estimation. In this case the simulated model is close to a linear additive model and

the Lasso should not be at an obvious disadvantage. We used the glmnet R package to do

the Lasso comparisons.

The CTFC method showed good performance on predictor selection and out-of-sample

prediction under each simulation scenario. At sizes N ∈ {300, 400, 500}, the CTFC was

comparable to the Lasso in terms of MSPE, and it was much better than the Lasso when N ∈

{700, 1200}. Figure C.2 summarizes the comparative MSPE performance across training

sample sizes.

4.4 Chiari Malformation I Data

As a real example we consider data from a family-based study of Chiari malformation type

I (CMI). CMI is a hereditary disorder resulting in extension (herniation) of the cerebellar

tonsils into the foramen magnum. CMI is sometimes asymptomatic, but can also present

many neurological symptoms, including hydrocephalus, muscle weakness, insomnia, or depression.

The goal of the original research was to identify genetic loci associated with a positive

diagnosis of Chiari Malformation I. In our approach, we model a continuous phenotype, the

average tonsillar herniation, that has some relationship with this binary diagnosis.

Full details for this family-based study are described in Markunas et al. (2013), but we

summarize the most relevant aspects here. Families with at least two afflicted individuals

were enrolled via self-referral. CMI status was determined by an MRI measurement for some

individuals (N = 126), but in a preponderance of cases (N = 241), CMI status was derived
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from examination of medical records or from the individual’s physician. Where MRI info

was available, if the MRI indicated cerebellar tonsillar herniation of 3 mm or more for both

cerebral tonsils or herniation of 5 mm or more for either tonsil, the subject was classified as

affected. Each of the N = 367 individuals had some genotype information determined for a

large (N = 214436) set of SNPs. These individuals were genotyped for a larger set of SNPs

(N = 592532), but after quality control this set was reduced, and not all remaining SNPs

were available for all individuals. We determined the largest overlapping set of available

SNPs and MRI information, and after filtering in this manner we had 105 observations,

including information for 210164 SNPs. These 105 individuals represented 47 families; of

these 47 families, 16 were represented by only a single family member. The final data set

also included four nongenetic factors: the age of the individual at the time of the MRI, the

individual’s sex, whether the individual was the proband for his/her family, and whether

the family had any clinical features associated with connective tissue disease (CTD). We

discretized the age at MRI into one of four classes using the SUGS method (Wang and

Dunson 2011). Families with formally diagnosed hereditary CTDs had been excluded from

the study, but Markunas et al. included identification of families where at least one member

exhibited conditions associated with CTDs. The goal of this identification was to drive a

stratified analysis to account for potentially different CMI disease pathways.

Because all non-missing observations for average tonsillar herniation were non-negative,

we needed to transform them to a scale more appropriate for normal kernels. In addition,

15 of the 105 observations had average tonsillar herniation of zero. We used as our response

log([avg. hern] + 0.01) to address the zero observations and to model on a scale consistent

with normal kernels. While this is related to the criteria used to determine affected status

in the original work, the two measurements are not directly comparable.

Family-based studies (Spielman and Ewens 1996) were developed to combat the spurious
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associations that result from population heterogeneity. In some cases, there may be no

association between a response of interest and some observed predictor, but the structure

of the population can induce correlation where none in fact exists. The use of family-based

controls eliminates mismatching of subjects with ethnically different controls and thus avoids

inducing marginal correlation. One aspect of the family-based study that we do not directly

address is ascertainment bias, which can arise when families are recruited based upon the

presence of the disease of interest. For a hereditary disorder, the increased probability of at

least one member of the family suffering the affliction means that some families are more

likely to be part of the enrollment set; the increased proportion of affected individuals can

introduce bias into estimates of association with different predictors. Pfeiffer et al. (2001)

demonstrate the resulting bias in logistic regressions under these circumstances, and present

an approach to this problem in family-based studies of disease incidence, using a conditional

likelihood to address the ascertainment effect. Zhang et al. (2009) also addresses logistic

regression for disease incidence and provides a semiparametric Bayes approach for situations

involving very low-dimensional predictors.

4.4.1 Cross-Validation

To assess performance of the CTFC method in this case, we conducted a leave-one-out

cross-validation process. In parallel, we excluded one observation at a time from the full

set (N = 105) and conducted the complete predictor selection and model estimation using

the remaining observations. Once the model was estimated using this “training” set, we

examined the prediction error. In many cases, the pattern of missingness resulted in singleton

“families” with no remaining family members to provide additional prediction information.

In those cases where there were remaining family members, we developed predictions for the

left-out jth family member based on the fixed SNPs for that family member as well as the
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conditional expectation for the left-out random effect, bij|bi\j. The resulting prediction for

the left-out individual was based upon the component-specific intercepts θh1···hp , weighted

according to the predictor-driven loadings
∏p

j=1 π
(j)
hj

(xij) for distinct h1, . . . , hp as specified in

(4.2). The 105 different training samples were well-aligned in their identification of important

predictors. Figure C.3 illustrates the results of the first pass selection, showing this general

agreement on important predictors. We compared the mean squared prediction error (MSPE)

with random forests (Breiman 2001) and the coverage probabilities with quantile regression

random forests (Meinshausen 2006). While neither random forests nor quantile regression

random forests are designed explicitly to address random effects, the number of singleton

families in this analysis may have made this less of a factor. Over the left out observations,

CTFC had an average MSPE of 3.09 and RF had an average MSPE of 2.92. The CTFC

method’s 95% coverage intervals included the left-out observation 94% of the time, in stark

contrast to the QRF’s average rate of 82%. This sharp discrepancy in coverage is likely due

to the nontrivial form for the conditional density. Even though the random forest family of

methods performs well for MSPE, they appear to fall short in assessment of higher moments

for the conditional distributions.

4.4.2 Full Data Set

Using the full dataset of subjects with both MRI information and genotype information,

we ran the variable selection and model estimation steps previously outlined. We ran the

second stage of predictor selection for 1000 iterations over the 32 predictors selected in the

first stage. The small sample size led to some numerical instabilities for certain combinations

of predictors, and the second stage of predictor selection quickly found only a few stable

configurations. This identified four genetic factors and one physical factor, the age at MRI,

as predictors important for the prediction of the transformed response; the descriptions of

76



these factors are shown in Table C.1. We ran the Gibbs sampler for 20,000 burn-in iterations

and derived conditional density estimates for the phenotype from a retained sample of 20,000.

Figure C.4 shows selected conditional density estimates for particular predictor vectors. In

each case, the levels of the three final predictors were fixed at two copies of the major allele

for RS11877713, zero/one copy for RS16954106, and two copies for RS10981955. We varied

RS6894946 between zero/one and two copies of its major allele and varied the age at MRI

across the four discretized levels. The conditional densities indicate some interaction between

the two predictors. While the change from zero/one copy to two copies of the major allele for

RS6894946 generally promotes the leftmost peak, the effect is most pronounced at the second

level of the age at MRI variable. In that case, the credible bands indicate more support for

this interaction. The credible bands are wide in each case, which is not surprising given the

small sample size. This also illustrates the complex nature of this phenotype and indicates

that there are likely additional explanatory predictors.

The conclusions from this approach to the data do not widely concur with the Markunas

et al. study. This could be due to several factors. Many fewer subjects had available

MRI data, giving us a much smaller sample size. We were able to use only 105 of the

367 original observations, representing 47 of the original 66 families; Markunas et al. had

complete information on affliction status and predictors for all 367 individuals. Furthermore,

after filtering for available MRI and predictor data, several of the families were represented

by a single individual, hampering our ability to distinguish between intra-family variation

and residual variation. In addition, we are using a continuous measurement of a physical

condition rather than a binary disease status as our response, and used one of many possible

transformations of this measurement in our model. The binary measurement used by

Markunas et al. is related to but not equivalent to the continuous measurements of tonsillar

herniation that we used as a response. The demarcation of “normal” and “afflicted” is
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based upon much clinical experience, but is necessarily subjective; our use of the continuous

underlying quantity is free of this subjectivity. We also examined a set of 210160 SNPs

(after filtering for missingness) without regard for spacing of those SNPs. In contrast,

Markunas et al. used a set of 12056 SNPs derived from an initial clustering of SNPs and

thinning to get an acceptable spacing between SNPs. The SNPs we identified may be in

linkage disequilibrium with those identified by Markunas et al.. Finally, we made specific

assumptions about intra-family correlation structure that the original study did not use.

4.5 Discussion

We have presented the CTFC, the conditional tensor factorization method for correlated

data. This is a general method for the analysis of correlated data in the presence of high-

dimensional categorical predictor sets. In simulation studies and in an analysis of a real data

example relating a continuous phenotype to a large number of SNPs and other categorical

predictors, we have seen good performance. When appropriate parallelization steps are taken,

the method scales well to high-dimensional predictor sets. Most importantly, the models

produced by the CTFC provide insight beyond the conditional expectation for different

combinations of predictors, and capture the complexity in higher moments of the phenotype’s

conditional distribution. This ability to identify important predictors and to capture complex

conditional densities in the presence of correlated observations makes the CTFC an attractive

method for the modeling of quantitative phenotypes. The CTFC method gives a differential

expression of the predictors across different combinations of those predictors. That is, the

influence of one level of a predictor may produce a straightforward Gaussian conditional

distribution when combined with a specific combination of other predictors, but changing

the level of that predictor results in a more complex conditional density. What we provide
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is a targeted method for the commonly encountered special case, modeling a continuous

response conditional on categorical predictors. In addition, we provide an approach for

potentially correlated observations. In cases where the typical LMM is too inflexible to

describe apparent variation, our nonparametric approach gives an attractive alternative.
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Chapter 5

Discussion and Future Directions

In the first dissertation paper we presented a general approach for the introduction of

one-dimensional marginal prior information in different applications of NP Bayes techniques,

specifically the DPM model and the canonical Dirichlet prior. The multivariate unordered

categorical data example suggests one future direction for this work. The original source

for that data (the North Carolina PUMS) also includes cross-tabulation information for

many of the quantities involved. Since these tables were formed from a much larger dataset

(the data for the entire state of North Carolina), they could provide very reliable prior

information about the correlation structure between the two variables they summarize.

While simply incorporating a two-way table is not, in theory, a significant departure from

the work already done, it may expose further difficulties with our assumptions about the

form of the joint distribution of the marginals, p0(θ), induced under the base nonparametric

prior. In the work already presented, we made simplifying assumptions about that induced

prior. Those assumptions may have been warranted, but as the marginal prior information

becomes more complex, the corresponding induced p0(θ) may not be well-approximated.

In addition, we considered only two nonparametric priors in our analysis. Different NP

Bayes approaches, such as that developed in Dunson and Xing (2009) to address multivariate



unordered categorical data, might also benefit from our treatment of marginal prior information.

In the second and third papers we addressed the problem of density regression in the

presence of multiple interacting categorical predictors, with and without correlated responses.

While the wide array of genetic epidemiology and other data sets involving large numbers

of SNPs makes this special case important, the technique will be of greater utility when we

extend it to predictors and responses of mixed type. The speed of computation, particularly

in the mixed model setting, remains an issue. While we can achive faster real time results

through parallelization, further refinements of our technique could reduce the total computation

time needed. Even though the discussions around “Big Data” contain a great deal of

hyperbole, there are certainly difficult high-dimensional questions to answer, and techniques

like ours, successfully adapted, could be important tools to separate the signal from the

noise.
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Appendix A: Chapter 2

A.1 Proofs

Proof of Theorem 1. Let A be the Borel sets of a Hausdorff space F and let θ be

a measurable map from (F ,A) to the measurable space (Θ,B). Let P0 be the probability

measure over B defined by P0(B) = π(θ−1B) ∀B ∈ B. The results of Hoffmann-Jørgensen

(1971) give the existence of a regular conditional probability function Λ0(A|θ) such that

Λ0(A|·) is B-measurable for each A ∈ A, Λ0(·|θ) is a probability distribution over A for each

θ ∈ Θ, and that Λ0(A|θ(f)) is a version of the conditional probability of A given B, in that

E0[1(θ(f)) ∈ B)× π0(A|θ(f))] ≡
∫
B

Λ0(A|θ) P0(dθ) = π0(A ∩ θ−1B) ∀B ∈ B,

where θ represents either the function mapping F to Θ or a point in Θ, depending on the

context.

Let P1 be a probability measure on B such that P1 � P0. Define π1 : A → [0, 1] by

π1(A) =

∫
Λ0(A|θ)P1(dθ).

Then clearly 0 = π1(∅) ≤ π1(A) ≤ π1(F) = 1 for all A ∈ A. Additionally, for a countable
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disjoint collection of sets {A1, A2, . . .} ⊂ A with A = ∪Ai, we have

π1(A) =

∫
Λ0(A|θ)P1(dθ)

=

∫ ∞∑
i=1

Λ0(Ai|θ)P1(dθ)

=
∞∑
i=1

∫
Λ0(Ai|θ)P1(dθ)

=
∞∑
i=1

π1(Ai),

where the second-to-last line follows from the monotone convergence theorem. Therefore,

π1(A) is a probability measure on (F ,A). To compute the marginal distribution of π1, let

B ∈ B and h(θ) = dP1/dP0. Then

π1(θ−1B) =

∫
Λ0(θ−1B|θ)P1(dθ)

=

∫
Λ0(θ−1B|θ)h(θ)P0(dθ).

The Radon-Nikodym derivative h(θ) is positive and measurable, and so we can express h(θ)

as the limit of simple functions, h(θ) = limn→∞
∑n

k=1 hn,k1(θ ∈ Bn,k). By the monotone

convergence theorem we have

π1(θ−1B) = lim
n→∞

n∑
k=1

hn,k

∫
Λ0(θ−1B|θ)1(θ ∈ Bn,k)P0(dθ)

= lim
n→∞

n∑
k=1

hn,kΛ0(θ−1(B ∩Bn,k))

= lim
n→∞

n∑
k=1

hn,kP0(B ∩Bn,k) =

∫
B

h(θ)P0(dθ) =

∫
B

dP1

dP0

(θ)P0(dθ) = P1(B).

Finally, the Radon-Nikodym derivative of π1 with respect to π0 can be found via a similar

83



calculation: For any A ∈ A,

π1(A) =

∫
Λ0(A|θ)P1(dθ)

=

∫
Λ0(A|θ)h(θ)P0(dθ)

= lim
n→∞

n∑
k=1

hn,k

∫
π0(A|θ)1(θ ∈ Bn,k)P0(dθ)

= lim
n→∞

n∑
k=1

hn,kπ0(A ∩ θ−1Bn,k)

=

∫
A

(
lim
n→∞

n∑
k=1

hk1(θ(f) ∈ Bn,k)

)
π0(df)

=

∫
A

h(θ(f))π0(df) =

∫
A

dP1

dP0

(θ(f))π0(f).

Proof of Lemma 2: Let A be the Borel sets of a Hausdorff space F . For k ∈ {0, 1}

let πk be a probability measure on (F ,A) and let Pk be the measure on (Θ,B) induced by

the measurable map θ : F → Θ. Recall that if π1 6� π0, then the KL divergence D(π1||π0)

is infinite. On the other hand, we will show that if π1 � π0 and P1 � P0, then the KL

divergence D(π1||π0) of π0 from π1 can be expressed in terms of marginal and conditional

densities with respect to a common dominating measure, and that if P1 and P0 are fixed,

the divergence is minimized by matching the conditional distributions of π0 and π1.

Let µ be a dominating measure for π0 and π1, and let ν be a dominating measure for P1

and P0. The results of Hoffmann-Jørgensen (1971) give the existence of a regular conditional

probability function Λ̃0(·|·) : A × Θ → [0, 1] with the properties described in the proof of

Theorem 1. Now for each A ∈ A and θ ∈ Θ, define Λ0(A|θ) = Λ̃0(A|θ) × 1(π0(A) > 0). It

is easy to check that this is measurable in θ for each A ∈ A, is a version of the conditional

probability of A given θ and is dominated by π0, and therefore by µ, for each θ ∈ Θ.

Therefore, the measures {Λ0(·|θ) : θ ∈ Θ} form a dominated class with densities {λ0(·|θ) :
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θ ∈ Θ} with respect to µ. By Tonelli’s theorem we can write

Pr0({f, θ} ∈ A×B) ≡ π0(A ∩ θ−1B) =

∫
B

∫
A

λ0(f |θ)p0(θ) µ(df)× ν(dθ),

and so π0 has a density λ0(f |θ)p0(θ) with respect to the product measure µ× ν. The same

construction can be made for π1, giving the existence of a conditional probability density

λ1(f |θ) for which

Pr1({f, θ} ∈ A×B) ≡ π1(A ∩ θ−1B) =

∫
B

∫
A

λ1(f |θ)p1(θ) µ(df)× ν(dθ).

Letting B = {θ : p0(θ) > 0}, the KL divergence is

D(π1||π0) =

∫
Θ

∫
F

log λ1(f |θ)p1(θ)
λ0(f |θ)p0(θ)

λ1(f |θ)p1(θ) µ(df)× ν(dθ)

=

∫
B

∫
F

log λ1(f |θ)p1(θ)
λ0(f |θ)p0(θ)

λ1(f |θ)p1(θ) µ(df)× ν(dθ)

=

∫
B

∫
F

log λ1(f |θ)
λ0(f |θ)λ1(f |θ)p1(θ) µ(df)× ν(dθ) +

∫
B

log p1(θ)
p0(θ)

p1(θ) ν(dθ)

=

∫
Θ

D(Λ1(·|θ)||Λ0(·|θ)) P1(dθ) +D(P1||P0), (A.1)

where the last line follows from the assumption that P1 � P0 and so P1(B) = P0(B) = 1.

Since the integrand in (A.1) is always greater than or equal to zero, we have D(π1||π0) ≥

D(P1||P0) with equality when Λ1(·|θ) = Λ0(·|θ) for θ-a.e. P1.
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A.2 Figures
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Figure A.1: Population and sample: The left-most panel shows the contours of the population
density and a scatterplot of the n = 30 randomly sampled observations. The center and right
panels show marginal densities for the population (light gray) and sample (black).
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Figure A.2: p1 priors (black) and kernel density estimates of priors induced by πI0 (grey).
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Figure A.3: Comparison of approximated p0 (grey) and p0 induced by πN0 (black).
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Figure A.4: Contour plots of the posterior predictive density in black and the population
density in gray, under πI0 , πN0 and π1 from left to right.
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Figure A.5: Marginal population densities and estimates from the three priors: informative
DPMM (IDPMM), noninformative DPMM (NDPMM) and marginally specified prior (MSP).

90



−5 0 5 10

0.
0

1.
0

2.
0

ID
P

M
M

0 50 100 150

0.
00

0.
10

0.
20

−2 0 1 2 3 4 5

0.
0

1.
0

2.
0

3.
0

3 4 5 6 7 8 9 10

0.
0

1.
0

2.
0

−5 0 5 10

0.
0

1.
0

2.
0

N
D

P
M

M

0 50 100 150

0.
00

0.
10

0.
20

−2 0 1 2 3 4 5

0.
0

1.
0

2.
0

3.
0

3 4 5 6 7 8 9 10

0.
0

1.
0

2.
0

−5 0 5 10

0.
0

1.
0

2.
0

m1

M
S

P

0 50 100 150

0.
00

0.
10

0.
20

m2

−2 0 1 2 3 4 5

0.
0

1.
0

2.
0

3.
0

log(v1)
3 4 5 6 7 8 9 10

0.
0

1.
0

2.
0

log(v2)

Figure A.6: Priors (gray) and posteriors (black) for the marginal means and log variances.
Gray vertical lines indicate the corresponding population values derived from the full (n =
272) data set.
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Figure A.7: Comparison of approximated p0 (grey) and p0 induced by πN0 (black) for a subset
of the margins. To facilicate comparison, a logit transform was used.
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Appendix B: Chapter 3

B.1 Tables

Table B.1: Details for SNPs included in the final CTF model for the molecular epidemiology
data.

Gene SNP Chromosome position

IGFBP5 rs11575170 217256085
TGFBR3 rs17880594 92118885
CHC1L rs9331997 47986441
XPA rs3176745 99478631
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Table B.2: Single nucleotide polymorphisms with binary-coded response profiles matching
rs17880594.

Chromosome
Gene SNP Position

TGFBR3 rs17880594 92118885
BCL2 rs4987854 58944606
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Table B.3: Single nucleotide polymorphisms with the same binary-coded response profile as
rs9331997.

Chromosome Chromosome
Gene SNP Position Gene SNP Position

CHC1L rs9331997 47986441 PTCH2 rs11573584 45066714
FGF6 rs17177088 4426536 PTCH2 rs11573575 45069786
NF1 rs17880186 26506162 CAPN9 rs28359586 228950268
LIG3 rs3136010 30349600 BCL2 rs4987713 59126421
FGFR1 rs17175968 38398906 FGF1 rs17223786 141959671
GSR rs8190916 30693097 CAPN1 rs17881440 64706952
GSR rs8190961 30684329 DNCH1 rs17512481 101553661
RFC4 rs3917098 188005373 DNCH1 rs17540908 101530971
BRCA2 rs4987117 31812236 RAD23B rs11573610 109085600
TNFRSF14 rs11573983 2482568 RAD23B rs11573639 109096805
FANCC rs4647349 97119778 FGF10 rs17234471 44348233
FANCC rs4647527 96917421 FGF10 rs17227997 44363031
FANCC rs4647530 96915299 CDC27 rs11570580 42551656
PPIA rs17860078 44807042 CDC27 rs11570463 42613866
WT1 rs5030148 32411407 ELA2 rs17216572 802482
CDC42 rs16831112 22290768 ELA2 rs17216558 802398
CDC42 rs16826272 22259266 ELA1 rs17860348 50012447
DMC1 rs11570424 37264433 CASP6 rs5030524 110842527
NQO2 rs28383640 2962424 FANCA rs17225754 88408115
PGR rs11571218 100439035 FANCA rs17226218 88385110
PGR rs11571191 100465781 MCM4 rs17287656 49044945
PGR rs11571143 100504864 MCM4 rs17334528 49050745
RAD21 rs16889009 117946263 MCM4 rs17334423 49043956
POLB rs3136810 42347715 MCM4 rs17334388 49041325
RAF1 rs5746260 12598664 MCM4 rs17334444 49045259
RAF1 rs5746186 12634639 MCM4 rs17287775 49052710
RAF1 rs5746244 12601660 MCM4 rs17334570 49053493
PLA2G4A rs12720501 185097363 MCM4 rs17287649 49044042
TGFBR3 rs17883484 92143941 CHEK2 rs17880159 27414052
TGFBR3 rs17884942 91997887 CHEK2 rs17884403 27413867
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Table B.4: Single nucleotide polymorphisms with the same binary-coded response profile as
rs9331997 (cont’d).

Chromosome Chromosome
Gene SNP Position Gene SNP Position

POLG rs1801377 87661134 PRKDC rs8178198 48902462
IGF2R rs8191880 160412860 PRKDC rs8178023 49011100
IGF2R rs8191759 160370739 PRKDC rs8178203 48895779
NFKB1 rs4648034 103723297 PRKDC rs8178019 49014249
NFKB1 rs4647967 103648667 PRKDC rs8178098 48962528
MMP14 rs17886822 22385392 PRKDC rs8178254 48852731
CAPN6 rs17885539 110381073 E2F1 rs3213151 31735677
MSH6 rs3136295 47874069 PLA2G5 rs11573266 20285946
UHRF1 rs17883957 4897362 PLA2G5 rs11573257 20281406
NEIL1 rs5745918 73432177 POLK rs5744688 74918394
FGF20 rs17515275 16895733 POLK rs5744654 74908042
HK2 rs28362992 74948254 MCM3AP rs17176254 46523745
PRKDC rs8178199 48902372 NBS1 rs13312875 91058912
PRKDC rs8178100 48962068 NBS1 rs11782136 91030314
PRKDC rs8178031 49008531 NBS1 rs1805832 91058243
PRKDC rs8178205 48895013 ACTB rs13447431 5531830
PRKDC rs8178180 48907242 E2F4 rs3730392 65783637
PRKDC rs8178194 48903699 MNAT1 rs4151296 60416414
PRKDC rs8178081 48974070 CDC16 rs17338382 114054745
PRKDC rs8178208 48892675 CDC16 rs17338089 114034538
PRKDC rs8178133 48935851 UMPS rs17843831 125940890
PRKDC rs8178189 48905990 UMPS rs17843817 125938826
PRKDC rs8178186 48906417 MMP2 rs17859847 54072820
PRKDC rs8178020 49013821 CDC14B rs16905626 98366751
PRKDC rs8178110 48956030 CDC14B rs16911213 98353465
PRKDC rs8178154 48932763 CDC14B rs16910936 98295236
PRKDC rs8178256 48852275 MYBPC3 rs11570089 47318048
PRKDC rs8178220 48875683 MYBPC3 rs11570052 47327990
PRKDC rs8178069 48978232 RAD9A rs17887226 66918883
PRKDC rs8178109 48956139 CDC34 rs16989739 482530
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Table B.5: Single nucleotide polymorphisms with the same binary-coded response profile as
rs9331997 (cont’d).

Chromosome Chromosome
Gene SNP Position Gene SNP Position

CDC34 rs16990717 494574 CDC7 rs13447522 91754636
CDC34 rs16990514 484034 CDC7 rs13447481 91744826
MLH1 rs4647267 37032389 E2F3 rs4134948 20592183
GCSH rs8177861 79682996 E2F3 rs4134988 20601214
CCNA2 rs3217755 122965533 PPARD rs9658160 35499882
FGF13 rs17497235 137622887 DNAJC3 rs17882245 95127641
FGF13 rs17538934 137578160 CKN1 rs1479646 60250260
FGF13 rs17510123 137612210 CKN1 rs4647114 60232029
PAWR rs8176872 78538735 HGF rs5745640 81224063
CDC25C rs11567965 137692492 E2F2 rs3218185 23715878
CDC25C rs11567960 137694074 WRN rs11574310 31094575
IGFBP4 rs10305281 35854525 TAF11 rs4646912 34964538
MLL rs9332811 117867064 REV3L rs17510914 111801601
MLL rs9332780 117851777 REV3L rs17510485 111874469
CCNB2 rs28383493 57184700 REV3L rs17540138 111743699
RAD17 rs17236198 68703997 EDNRA rs10305874 148636071
FGFR3 rs3135891 1776372 EDNRA rs10305882 148641981
FGFR3 rs3135837 1766073 EDNRA rs10305891 148653972
NEIL2 rs8191662 11680702 EDNRA rs10305873 148628144
EGFR rs17336905 55200059 EDNRA rs10305877 148636750
EGFR rs17337037 55207181 XRCC3 rs3212073 103240944
EGFR rs17289260 55120684 CCNI rs4252906 78195123
EGFR rs17290538 55226523 CCNI rs4252822 78206864
EGF rs11569137 111150901 CCNI rs4252941 78189857
MCM2 rs17538530 128810869 JUNB rs17887128 12763196
BNIP1 rs5745129 172511519 CTNND1 rs11570177 57302097
ESR1 rs9340797 152204717 CTNND1 rs11570227 57340387
ESR1 rs9340862 152252435 NR3C1 rs10482677 142661078
ESR1 rs9340996 152384481 NR3C1 rs10482624 142748328
ESR1 rs9340992 152384082
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Table B.6: Comparison of mean square prediction error (MSPE) and coverage proportion
(COV) for different methods applied to molecular epidemiology data.

Metric CTF RF QRF BART

MSPE 0.263 0.353 - 0.425
95% Coverage 0.961 - 0.928 0.817

99



B.2 Figures
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Figure B.1: Conditional densities with similar means but predictor-dependent higher
moments; (Chung and Dunson 2009)
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Expected ← Unacceptable →

Figure B.2: Hypothetical scenario of conditional distributions with the same expected value
but different tail probabilities
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Figure B.3: Simulation study density; three underlying predictors interact to produce a
complex population density. Separate lines indicate different assumed residual precisions.
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in coverage (COV) relative to quantile regression random forests.
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the IGFBP5 SNP. All other SNPs are held at the “Zero/One Copy” level.
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Appendix C: Chapter 4

C.1 Tables

Table C.1: Predictors selected in analysis of full data set, presented in inclusion probability
order.

Predictor

Chromosome 5, SNP RS6894946
Age at MRI (discretized)
Chromosome 18, SNP RS11877713
Chromosome 15, SNP RS16954106
Chromosome 9, SNP RS10981955
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C.2 Figures

20 30 40 50 60

Body Mass Index

Less than 9th Grade
Some College or AA Degree

Figure C.1: Body Mass Index (BMI) data from NHANES 2001-2002. The black curve
indicates the empirical BMI density for adults with less than a 9th grade education; the grey
curve is for adults with some college or an associate’s degree. Vertical lines indicate 50th and
90th percentiles for the separate populations; the 50th percentile for the two populations is
very similar.
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Figure C.3: First-pass inclusion probabilities for predictors selected in at least one leave-out
scenario. Heavy gray vertical lines indicate the range of inclusion probabilities across leave-
out sets. Predictors selected in all leave-out scenarios are indicated with darker labels on
the horizontal axis.
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Figure C.4: Conditional densities with varying levels of RS6894946 and age at MRI. Rows
indicate different levels of RS6894946 (zero/one copy or two copies of the major allele), and
columns indicate different levels of the age at MRI variable. Heavy black lines indicate
posterior mean, light grey lines indicate 95% credible intervals.
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