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ABSTRACT 
 

Laura E. Conner: The relationship Between Humeral Rotation and Scapular Tipping. 
(Under the direction of Darin A. Padua, PhD, ATC) 

 
 
Background:  Decreased shoulder range of motion as well as aberrant scapular mechanics are 

suggested as risk factors for shoulder pain.  Minimal data describing scapular motion during 

humeral rotation exists even though it is evaluated clinically.  The purpose of this study was 

to determine the relationship between humeral rotation and scapular tipping.   

 

Methods: Twenty-five participants were studied. A universal goniometer was used to assess 

shoulder range of motion.  Three-dimensional motion tracking was used to assess scapular 

kinematics.   

 

Findings: Statistically significant negative relationships were found between shoulder 

internal rotation ROM and scapular tipping at maximum humeral IR range during passive 

rotation task (r = -0.418, p = 0.033), as well as, scapular tipping ROM at 90° of humeral 

flexion angle (r = -0.367, p = 0.055) during a functional diagonal task.  The total arc of 

shoulder rotation ROM was also negatively related to both scapular tipping ROM at 90° of 

humeral flexion angle (r = -0.397, p = 0.041) and scapular tipping ROM at maximal humeral 

flexion angle during functional diagonal task (r = -0.477, p = 0.017).  The posterior shoulder 

flexibility measure was positively related to scapular tipping ROM at 90° of humeral flexion 
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angle (r = 0.414, p = 0.035) and scapular tipping ROM at maximal humeral flexion angle 

during functional diagonal task (r = .384, p = 0.048). 

 

Interpretation:  This study is the first to assess the relationship between clinical measures of 

shoulder ROM and scapular tipping ROM during functional tasks.  Decreased shoulder ROM 

was related to increased scapular tipping ROM.  Both decreased shoulder ROM and 

increased scapular tipping during shoulder rotation has been associated with shoulder pain.   

 

Key words: scapular kinematics, scapular tipping, range of motion, 3-D motion tracking 
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Chapter One 

INTRODUCTION 

 

     Shoulder injury is common in athletics, composing 8-13% of all athletic injuries.  

These injuries include traumatic injuries such as dislocations, subluxations and fractures.  

Shoulder injuries can also include overuse disorders such as impingement, scapular 

dyskinesis, and labral tears.  Shoulder pain is common in overhead athletes.  This group of 

athletes consists of those whose sports require elevation of the arm during a majority of time 

in participation.  Overhead athletes are even more at risk to develop shoulder pain (Hill 

1983).  43.8% of overhead athletes (volleyball players and swimmers) complained of 

shoulder problems and more specifically, 50% of adolescent pitchers report shoulder and/or 

elbow pain (Tullos and King 1973; Lo, Hsu et al. 1990).   

     Overhead athletics place a tremendous amount of stress on the shoulder.  It has been 

shown that the angular velocity during pitching approximates 7000°/s while a tennis serve 

can approach 1500°/s (Kibler 1995; Williams and Kelley 2000).  These high velocities 

produce distraction forces that can reach 860N or 80% of body weight (Williams and Kelley 

2000; Burkhart, Morgan et al. 2003).  Not only are there high velocities and large loads, but 

also overhead athletics are typically very repetitive. According to Neer, insidious shoulder 

pain typically occurs in the older population of greater than 40 years (Neer 1983).  However, 

due to the repetitive nature of overhead athletics, the process of degeneration is catalyzed.  

According to Sokolovas (2000), freestyle swimmers will typically train approximately 
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60,000 to 77,000 yards per week.  That results in about 10,000 yards per day amounting to 

approximately 8,000 revolutions per day.  Pitchers are limited to an estimated 100 pitches per 

game resulting in approximately 1400 pitches per season (Sokolovas 2003; Howell 2005). 

     The shoulder motion during pitching results in four times the kinetic energy as 

compared to the leg motion during kicking (Harryman, Sidles et al. 1990).  Over time 

cumulative stress along with abnormal force couple and length tension relationships can lead 

to breakdown in the musculoskeletal system. 

     The musculoskeletal breakdown of the shoulder is most often indicated by pain.  One 

common source of shoulder pain in the overhead athlete is mechanical impingement, which 

is characterized by compression or abrasion of the rotator cuff as it passes under the 

coracoacromial arch during shoulder elevation (Ludewig and Cook 2000).  I An 

asymmetrical capsule, implicating capsuloligamentous laxity or contracture, and poor 

scapular mechanics have been suggested as possible mechanisms that create shoulder 

impingement (Williams and Kelley 2000).  Many overhead athletes display posterior 

shoulder inflexibility which is thought to result from repetitive hyper-external rotation and 

deceleration of the humerus.  Burkhart et al. (2003) suggested that the anterior glenohumeral 

(GH) laxity many athletes display is the result of repetitive stretching of the anterior capsule 

and anterior inferior GH ligament during humeral abduction and humeral external rotation 

(ER).  Laxity diminishes static stability within the joint allowing greater humeral head 

translation in the glenoid fossa.  Posterior shoulder tightness resulting from posterior capsule 

contracture or posterior rotator cuff (RTC) tightness and anterior laxity produce a superior 

and anterior migration of the humeral head in the glenoid further putting the athlete at risk for 

impingement and labral tears (Tyler, Nicholas et al. 2000).  Posterior shoulder tightness is 
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clinically seen as a loss of humeral internal rotation (IR).  Glenohumeral Internal Rotation 

Deficit (GIRD) is defined as the loss of 25 º of internal rotation as compared to the non-

throwing shoulder (Burkhart, Morgan et al. 2003).  Burkhart et al. (2003) described the loss 

of IR as the most important pathological process that occurs in throwers.   

     Another risk factor for shoulder pain is aberrant scapular mechanics (Burkhart, 

Morgan et al. 2003).  As humeral elevation increases, the scapula upwardly rotates, 

posteriorly tips and externally rotates.  Clinical theory suggests adequate scapular upward 

rotation during humeral elevation elevate the lateral acromion to clear the greater tuberosity 

(Litchfield, Hawkins et al. 1993; Lukasiewicz, McClure et al. 1999).  Traditionally, 

scapulohumeral rhythm has been defined as the ratio between glenohumeral elevation and 

scapular upward rotation, which is approximately 2:1.  However, recent evidence shows that 

the relationship is more complex.  Earlier kinematic studies observed motion in two 

dimensions, often with X-ray imaging.  Advances in technology have allowed many recent 

studies to use three-dimensional tracking systems to report the scapulohumeral relationship.  

The relationship of humeral elevation and scapular motion has been studied by numerous 

authors (Ludewig, Cook et al. 1996; Ludewig and Cook 2000; Borsa, Timmons et al. 2003; 

Myers, Laudner et al. 2005).  Some research has been done to detect differences in scapular 

kinematics between injured and uninjured individuals (Lukasiewicz, McClure et al. 1999; 

Ludewig and Cook 2000; McClure, Bialker et al. 2004).  Individuals with impingement 

exhibit altered scapular kinematics resulting in increased anterior tipping at the end of range 

of motion (ROM) (Lukasiewicz, McClure et al. 1999; Ludewig and Cook 2000).  Recent 

research has studied scapular motion during passive and active humeral elevation (Price, 

Franklin et al. 2000; Ebaugh, McClure et al. 2005).  Ebaugh et al. (2005) indicated that level 
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of muscle activity influenced scapular motion.  They found there was increased scapular 

upward rotation and scapular posterior tipping during active humeral elevation due to activity 

of the serratus anterior and upper and lower portions of the trapezius.   

     While it is clear that humeral elevation influences scapular motion, the effect of 

humeral rotation on scapular kinematics is not well understood.  There is minimal data 

describing accessory scapular motion during humeral rotation even though it is evaluated 

clinically.  During humeral IR, the scapula remains internally rotated and anteriorly tipped 

(Thigpen, Padua et al. 2006).  It is hypothesized that contracture of the posterior capsule or 

cuff will cause “pulling” of the scapula resulting in earlier scapular anterior tipping and 

delayed scapular posterior tipping.  Both early scapular anterior tipping and delayed scapular 

posterior tipping would theoretically decrease the space between the acromion and the 

humerus for the rotator cuff to glide.  It is vital to understand the changes that occur in 

scapular motion, specifically scapular tipping because of its potential to exacerbate 

impingement syndromes.   

  

Statement of Purpose 

     Therefore, the purpose of this study is to determine the relationship between humeral 

rotation and scapular tipping during active and passive rotation tasks, humeral  flexion task 

and functional diagonal task.  A secondary purpose of the study is to determine the 

relationship of clinical measures of shoulder ROM and scapular tipping during active and 

passive rotation task, humeral flexion and functional diagonal task.   
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Research Questions 

1: Is there a relationship between humeral rotation and tipping of the scapula 

during a passive rotation task, active rotation task, flexion task and functional 

diagonal task? 

2:  Is there a relationship between shoulder ROM measures and range of 

scapular tipping during humeral rotation and elevation? 

 

Null Hypothesis 

1. Ho: There will be no relationship between humeral rotation and scapular 

tipping during a passive rotation task, active rotation task, flexion task and 

functional diagonal task. 

2.  Ho:  There will be no relationship between shoulder ROM measures and 

range of scapular tipping during humeral rotation and elevation. 

 

Research Hypothesis 

1. HA: There will be a negative relationship between humeral rotation and 

scapular tipping during a passive rotation task, active rotation task, flexion 

task and functional diagonal task. 

2.  HA:  There will be negative a relationship between shoulder ROM measures 

and range of scapular tipping during humeral rotation and elevation. 
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Definition of Terms 

Scapular anterior and posterior tipping: rotation about an axis parallel to the scapular 

spine 

Dynamic stability: stability accomplished through dynamic restraints such as muscles and 

tendons 

Electromagnetic tracking: three-dimensional tracking system utilizing an electromagnetic 

transmitter and sensors to detect position, angles, and movement. 

Static stability: stability accomplished through static restraints such as capsule, ligaments, 

labrum. 

Glenohumeral Internal Rotation Deficit: deficit of internal rotation greater than 25° as 

compared to the non-throwing arm 

Shoulder kinematics:  the study of the positions, angles, velocities, and accelerations of 

shoulder during motion 

Scapulothoracic motion: movement of the scapula on the thorax at the scapulothoracic 

articulation. 

Scapulohumeral rhythm: degrees of upward rotation as a function of humeral elevation.  It 

is the ratio between glenohumeral and scapular rotation, which is approximately 2:1. 

Shoulder impingement: compression or mechanical abrasion of the rotator cuff as it passes 

under the coracoacromial arch during shoulder elevation. 

 

Definition of Operational Terms 

Overhead athletes: athletes participating in sports in which the upper extremity is elevated 

60-120° repetitively. 
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Diagonal pattern: proprioceptive neuromuscular facilitation D2 pattern moving into flexion 

and extension. 

Dominant arm:  the arm the subject would throw a ball with. 

Posterior shoulder:  the posterior capsule and posterior rotator cuff 

 

Assumptions 

1. Subjects will answer the medical history truthfully. 

2. Subjects will perform the skills to the best of their abilities. 

3. Subjects will understand instructions given to them by the primary investigator. 

4. Subjects will be fully relaxed during passive humeral rotation. 

5. Instrumentation will be properly calibrated and testing will be accurate and precise. 

 

Limitations 

1. Subjects may answer dishonestly on the medical history form. 

2. There may be accessory movement of sensors. 

3. Subjects may not be completely relaxed during passive testing. 

 

Delimitations 

1. Subjects consisted of 25 healthy individuals ages 18-35 with no previous history of 

instability or shoulder injury within the past year. 

2. All subjects will perform the same rotation, flexion and diagonal motions.   

3. Subjects were all tested on their dominant arm. 

4. All tests will be performed by the primary investigator. 
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Significance of the Study 

     Previous studies have shown the importance of scapular tipping in prevention of 

impingement syndromes.  Because it is not yet known how humeral rotation affects scapular 

motion, it is important to establish this relationship to give clinicians a better understanding 

of potential causes of shoulder pain in overhead athletes.  The overhead athlete presents a 

challenge to the clinician to needs to promote proper humeral and scapular mechanics in 

order to establish the greatest amount of dynamic stability, allow the maximum amount of 

mobility, and prevent debilitating injury.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 

 
Chapter Two 

 
LITERATURE REVIEW 

 
 
 

The shoulder’s purpose is to position the hand for functional tasks.  Due to the large 

ROM, the shoulder is able to create thousands of hand positions (Houglum 2001).  It is a 

unique joint that presents complexity because of its extreme ROM, ability to adapt to 

physical demands, enormous force production and its innate instability.  These issues present 

challenges for clinicians dealing with the athletic shoulder.  It is, therefore, important for the 

clinician to understand the relationship between performance and injury risk factors.  

 

Shoulder Anatomy 

     A review of the significant anatomy will provide a map to navigate through the 

structures that play a vital role in the shoulder’s function.  The shoulder consists of three 

joints and one articulation.  The sternoclavicular joint, acromioclavicular joint, glenohumeral 

(GH) joint, and the scapulothoracic articulation make up the shoulder girdle.   

 

Bony Anatomy 

Bony anatomy of the sternoclavicular joint involves the articulation between the 

sternum and the proximal clavicle.  This is a very stable joint with little movement, 

reinforced by the capsule and sternoclavicular, costoclavicular and intersclavicular ligaments.  
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Movements at this joint include elevation, depression and retraction.  The acromioclavicular 

joint is comprised of the acromion process of the scapula and the distal end of the clavicle.  

The acromioclavicular, coracoclavicular and coracoacromial ligaments reinforce this joint.  

The GH joint consists of the humeral head articulating with the glenoid fossa of the scapula.  

The humeral head is larger than the surface area of the glenoid fossa, therefore, the 

congruency in the GH joint is minimal.  

 

Soft Tissue Anatomy 

Due to the incongruence of the GH joint, the joint relies on the soft tissue structures 

to create optimal congruency and stability.  The soft tissue structures include the capsule, 

labrum, ligaments, muscles and tendons.  The joint capsule surrounds the articulating bones 

holding the humeral head in the glenoid fossa.  The capsule is made of dense collagen able to 

withstand the forces acting on the shoulder.  The glenoid labrum, made of dense cartilage, 

attaches to the rim of the glenoid fossa creates more depth in the articulation.  The labrum 

also acts as a seal around the humeral head.  The capsule creates a negative intra-articular 

pressure that assists keeping the head of the humerus in place within the fossa.  The 

periscapular and RTC muscles and tendons surrounding the shoulder complex provide 

dynamic stability.  The broad RTC tendons insert into the capsule; therefore, when the 

muscles contract, they generate greater compression within the articulation, thus creating 

more stability.   
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Functional Anatomy 

The anatomy of the human shoulder is required to function within an intricate balance 

between mobility and stability.  The stabilizing mechanisms of the shoulder must compensate 

for the greater ROM.  The shoulder also capable of creating movement at great speeds, forces 

the stabilizers to work at extreme speeds and forces.  The shoulder relies on the 

capsuloligamentous and musculotendinous structures to maintain stability.   The interaction 

among the capsule, ligaments, muscles and tendons is not completely understood nor has 

been fully explained (Curl and Warren 1996).  This complex interaction warrants further 

discussion.   

 

Dynamic Stability 

     As discussed previously, the musculature surrounding the shoulder acts as dynamic 

stabilizers.  These muscles include the RTC and periscapular muscles.   The RTC muscles 

are the supraspinatus, infraspinatus, teres minor and subscapularis.  The supraspinatus runs 

from the supraspinous fossa through the subacromial space and the labrum to the superior 

part of the greater tuberosity of the humeral head.  It acts concentrically to initiate shoulder 

elevation, eccentrically to resist superior migration of the humeral head and isometrically to 

stabilize by pulling the head into the fossa.  It is most active during the late cocking phase of 

pitching/throwing (Meister 2000).  The infraspinatus originates off the infraspinous fossa of 

the scapula inserting on the middle facet of the greater tuberosity of the humerus.  It acts 

concentrically to externally rotate the humerus and assists with some humeral extension.  The 

infraspinatus peak activity occurs in the late cocking phase where it contributes 

approximately 90% of the humeral ER power (Bramhall 1998).  Activity also peaks during 
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follow through, where the muscle acts to decelerate the arm.  The teres minor originates off 

the middle 1/3 of the lateral border of the scapula wrapping around the humerus inserts on 

the lower portion greater tuberosity of the humerus.  It acts alongside the infraspinatus to 

externally rotate the humerus, resisting humeral IR, and stabilizes in this motion.  The 

subscapularis originating off the subscapular fossa on the undersurface of the scapula inserts 

on the lesser tubercle of the humeral head pulling the humerus into IR.  The subscapularis 

acts to stabilize and resist humeral ER torque.  Its peak activity occurs during late cocking 

while it contracts eccentrically and during acceleration creating the greatest amount of 

humeral IR force (Meister 2000).  These muscles act throughout the ROM to create stability 

of the humerus in the glenoid.  One mechanism by which they create stability is they blend 

into the GH capsule and ligaments.  Therefore, as these muscles contract, they pull the 

capsule taught and tension is produced within the capsule, compressing and centering the 

head of the humerus into the glenoid fossa.  Another mechanism by which they create 

stability is by acting as force couples with the surrounding muscles to create optimal joint 

contact. 

     The periscapular muscles also create stability at the shoulder.  These muscles include 

the levator scapula, trapezius (upper, middle, and lower), rhomboids, serratus anterior, and 

some portion of the latissumus dorsi.  The levator scapulae act to produce scapular elevation 

as well as scapular downward rotation.  The upper trapezius produces scapular elevation and 

scapular upward rotation.  The middle trapezius creates scapular retraction.  The lower 

trapezius generates scapular depression and scapular upward rotation. The rhomboids, major 

and minor, retract and downwardly rotate the scapula.  The serratus anterior produces 

scapular protraction, scapular upward rotation and acts to stabilize the scapula on the thorax.  
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The latissimus dorsi acts along with the teres major to produce humeral extension, humeral 

IR and humeral adduction.  Scapular stabilizers can be grouped into elevators, depressors, 

protractors, retractors, upward rotators and downward rotators.  The levator scapula and 

upper trapezius act to elevate the scapula.  A portion of the latissimus dorsi, lower trapezius, 

lower serratus anterior and pectoralis minor all act to depress the scapula.  The scapular 

protractors are the serratus anterior and the pectoralis muscles.  Scapular retraction is 

produced by the rhomboid major and minor, middle trapezius.  Scapular upward rotation is 

accomplished by the trapezius and serratus anterior; while scapular downward rotation is 

produced by a combination of levator scapula and rhomboids (Bramhall 1998).  The 

pectoralis major acts to adduct, horizontally adduct and internally rotate the humerus.  

Pectoralis minor protracts, depresses and downwardly rotates the scapula.  The deltoids act 

on the shoulder to create humeral flexion, humeral adduction, and humeral extension as well 

as humeral IR and ER.  These muscles act to create optimal stability and positioning of the 

scapula. 

     All these motions act to produce a scapulohumeral rhythm that is essential to the 

proper functioning of the shoulder complex.  By stabilizing the scapula, the shoulder is able 

to transmit the force generated by the lower extremity and trunk to the hand.   

     

Static Stability 

     The static stabilizers include the capsule, the ligaments and the glenoid labrum.  The 

capsule surrounds the head the glenoid fossa and the head of the humerus.  The ligaments are 

thickenings of the capsule.  The ligaments of the shoulder consist of the superior GH 

ligament (SGHL), middle GH ligament (MGHL), and inferior GH ligament (IGHL) complex.  
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The IGHL is comprised of three bands: the anterior band, and the posterior band and the 

axillary pouch.  The anterior component of the IGHL prevents anterior translation in humeral 

ER and the posterior component prevents posterior translation in humeral IR.  The superior 

GH ligament (SGHL) provides static restraint to inferior and posterior translation in humeral 

adduction.  The MGHL provides static restraint to anterior humeral head translation.  The 

coracohumeral ligament also contributes to the static stability of the shoulder (Curl and 

Warren 1996).  The coraocoacromial ligament prevents superior humeral head translation 

and assists in prevention of inferior translation.  The posterior capsule provides passive 

control of humeral horizontal adduction and humeral IR in the abducted GH joint (Nyland, 

Caborn et al. 1998).    

 

Shoulder Kinematics 

     Normal motions at the shoulder occur at the GH joint and scapulo-thoracic 

articulation.  Motions occurring at the GH joint include flexion, extension, abduction, 

adduction, internal rotation, external rotation and horizontal abduction and adduction.  The 

humerus translates on the glenoid during movement.  During humeral abduction, the humerus 

translates superiorly and inferiorly.  The humerus translates posteriorly during humeral 

extension and humeral ER.  This is thought to be due to tightening of the anterior capsule 

(Harryman, Sidles et al. 1990).  Harryman, Sidles et al. showed that during passive humeral 

flexion beyond mid range of motion at approximately 55º the humeral head moves anteriorly 

and superiorly; while passive humeral extension after 35º caused the head to translate 

posteriorly.  After incising the capsuloligamentous structures, the humerus did not translate.  

Passive humeral IR and ER at 0º of humeral abduction produce anterior and posterior 
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displacement, respectively.  Cross body adduction revealed anterior translation of the head on 

the glenoid.  After surgical tightening of the capsule, the translations occurred to a greater 

degree (Harryman, Sidles et al. 1990).  Howell, Galinat et al. reported that translation also 

occurs during combinations of movements at the shoulder (Howell, Galinat et al. 1988). 

     Normal motion at the scapulothoracic articulation includes scapular upward and 

downward rotation, scapular depression and elevation, scapular retraction and protraction, 

and scapular anterior and posterior tipping.  During humeral elevation, the clavicle retracts 

and elevates.  The scapula upwardly rotates, posteriorly tips, and externally rotates(Ludewig, 

Cook et al. 1996; Lukasiewicz, McClure et al. 1999; Ludewig and Cook 2000). These 

motions occur to elevate the acromion preserving subacromial space during humeral 

elevation.  The relationship between scapular motion and GH motion is referred to as 

scapulohumeral rhythm.  In the literature, the ratio of humeral elevation to scapular rotation 

has been described as 2:1 during the mid ranges of the total arc of elevation.  During active 

humeral elevation, the scapula upwardly rotates which increases with increasing angles of 

elevation.  The scapula posteriorly tips slightly up to 90º of humeral elevation after which it 

moves to anterior tipping (Ebaugh, McClure et al. 2005).     

Scapulohumeral rhythm can be influenced by actively or passively performing 

humeral elevation.  Ebaugh et al. (2005) found that decreased amounts of scapular upward 

rotation occurred when the humerus was passively elevated.  Their findings concurred with 

the findings of McQuade and Smidt (McQuade, Dawson et al. 1998; Ebaugh, McClure et al. 

2005).   

     Myers et al. (2005) studied scapular position and orientation in throwing athletes as 

compared to a non-throwing control group.  Their results indicated that throwing athletes’ 
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scapular position is more upwardly rotated, internally rotated and retracted.  They theorized 

that scapular upward rotation was an adaptive change to decrease impingement pathologies 

and retraction facilitated maximum cocking position thus creating a more explosive 

acceleration.  They posited that the scapular internal rotation change could be problematic 

because it decreases the subacromial space (Myers, Laudner et al. 2005).   

      Ludewig et al. (2000) found that individuals with subacromial impingement have an 

altered scapulohumeral rhythm.  The scapula in shoulders with impingement shows 

decreased upward rotation during elevation and demonstrates a more anteriorly tipped 

position (Ludewig, Cook et al. 1996; Ludewig and Cook 2000).  Scapulohumeral rhythm is 

also altered in individuals with shoulder instability.  Individuals with inferior instability or 

multidirectional instability also demonstrate a decrease in scapular upward rotation (Ozaki 

1989; Ludewig, Cook et al. 1996).   

     Tsai et al. (2003) researched the effects of muscle fatigue on scapular kinematics.  

They found the greatest differences at resting position or the beginning of humeral elevation.  

The scapula assumed a more anteriorly tipped, internally rotated, and downwardly rotated 

after fatigue of the humeral external rotators.  Often throwers have a low ratio of humeral ER 

to IR strength; therefore, fatigue of weaker muscles can decrease stabilization and force 

production (Tsai, McClure et al. 2003).  Birkelo et al. (2003) found that scapular upward 

rotation and external rotation were decreased after a simulated 5 innings of pitching (Birkelo, 

Padua et al. 2003). 

     Kebaetse et al. (1999) found that thoracic posture can also affect scapular position 

and motion.  The study demonstrated a superior translation between 0º and 90º of humeral 

abduction, less scapular upward rotation along with less scapular posterior tipping between 
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90º and maximum humeral abduction.  They also found more scapular internal rotation 

throughout the ROM (Kebaetse, McClure et al. 1999).  Similarly, Finley et al. (2003) 

conducted a study examining the effects of thoracic posture on scapular kinematics.  The 

results demonstrated a slouched posture was associated with increased scapular anterior 

tipping and increased scapular upward rotation at rest.  During humeral elevation, scapular 

posterior tipping decreased (Finley and Lee 2003).  Poor position and movement of the 

scapula can lead to changes to the length and tension of each muscle, thus adversely affecting 

muscle force generation and dynamic stability.   

 

Athletic Shoulder 

     Overhead athletes are a unique population of athletes that are required to function in a 

position of humeral elevation above the head for the majority of their participation.  These 

athletes utilize the shoulder’s extreme mobility repetitively on a daily basis in practice or 

competition.  Overhead athletes participate in sports such as baseball, softball, volleyball, 

swimming and tennis.  All of these sports demand considerable force production from the 

trunk and shoulder to accelerate the arm sufficiently to transmit the force to the ball, racket or 

to propel the body through the water. 

 

Physical Demands of Athletic Shoulder 

     Pitching and throwing create extreme loads about the shoulder complex.  Pitching is a 

smooth motion that occurs within seconds.  There are six phases delineated in the literature 

that are used to describe the pitching/throwing motion.  The first phase is the windup.  

Minimal stress is placed on the shoulder during this phase with minimal muscular activity.  
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The windup is followed by the second phase, known as early cocking, which moves the 

shoulder into 90º of abduction.  The third phase or late cocking readies the shoulder for force 

generation.  It begins when the lead leg is planted and ends in maximal humeral ER.  Late 

cocking is followed by acceleration in which the humerus rotates in abduction until ball 

release.  During this phase, the loads placed on the GH joint are minimal even though speeds 

of humeral rotation exceed 7000º/second (Burkhart, Morgan et al. 2003).  Deceleration, the 

fifth phase, is recognized as the most violent of the throwing motion, lasting approximately 

0.1 second (Moynes, Perry et al. 1986).  The humeral external rotators must act to decelerate 

the arm and work against the distraction momentum.  Posterior shear forces of 400 N, 

inferior shear forces of 300 N and compressive forces of greater than 1000 N have been 

recorded during deceleration (Meister 2000).  The distraction force at the GH joint 

approximates 1 to1 ½ times body weight.  The posterior RTC muscles are responsible for 

dissipating these forces.  Upon examination, overhead throwing athletes demonstrate 

significant posterior musculature weakness and tightness (Wilk and Arrigo 1993).  The sixth 

and final phase of throwing, the follow-through, involves the body moving forward to 

rebalance until motion is complete.  Muscle activity diminishes to resting levels, joint loads 

decrease; however, compressive forces can still approximate 400 N.  Of the six segments of 

the pitch, acceleration and deceleration are the two that create the greatest amount of stress.  

During cocking, the shoulder is in a position of maximal humeral external rotation at 90º of 

humeral abduction.   During acceleration, the humeral internal rotators are most active 

concentrically to accelerate the hand for ball release.  This is most likely the fastest motion in 

any of the sports (Meister 2000).  
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Incidence of Injury in Athletic Shoulder 

     Shoulder injuries are common in athletics composing 8-13% of all athletic injuries.  

Overhead athletes are even more at risk to experience shoulder injury (Hill, 1983).  Due to 

the repetitive nature of these sports, chronic injuries are common. An epidemiological study 

done in 1990 revealed that of 372 overhead athletes, 43.8 % complained of shoulder 

problems (Lo, Hsu et al. 1990).  Twenty-nine percent of these athletes complained of 

shoulder pain, among them most prevalently volleyball players and swimmers (Lo, Hsu et al. 

1990). A survey done by the ASMI found over 50,000 injuries per year in baseball and that 

50% of pitchers experience shoulder or elbow pain.  The most common injuries seen in 

pitchers are chronic injuries that result from soft tissue trauma.  Many throwers experience 

what is known as the “dead arm syndrome”(Myers, Pasquale et al. 2005).  Burkhart et al. 

(2003) defined “dead arm” syndrome as any pathological shoulder condition in which the 

thrower is unable to throw with pre-injury velocity and/or control because of pain or 

subjective unease at the shoulder.  They reported this typically occurs in late cocking or early 

acceleration and was most often related to labral tears (Burkhart, Morgan et al. 2003). 

 

Shoulder Instability 

Instability is a clinical syndrome that occurs when shoulder laxity produces 

symptoms of pain or inability to stabilize the joint dynamically.  Often the term “instability” 

is confused with the term “laxity”.  However, laxity is used to describe the increase in 

translation of the joint.  Congenital hypermobility, traumatic injury, or repetitive stretching of 

the static restraints may cause instability.   
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Shoulder Impingement 

Mechanical impingement is another injury that affects overhead athletes.  

Subacromial impingement involves the supraspinatus tendon, long head of biceps tendon, or 

subacromial bursa trapped under the coracoacromial arch which is made up of the coracoid, 

acromion, and coracoacromial ligament.  Subacromial impingement is subdivided into two 

types classified by their mechanism.  Primary impingement is a compressive RTC disease.  

In primary impingement, there is mechanical impingement of the tendons under the 

coracoacromial arch that may be due to the morphology of the acromion.  Typically, primary 

impingement is seen in the older recreational athlete; however, the repetitive nature of 

overhead athletics expedites the process of tendon failure.  These individuals will 

demonstrate positive impingement signs and negative instability signs.  Secondary 

impingement also falls under subacromial impingement and is associated with GH instability 

due to capsular injury or labral injury, and/or functional scapulothoracic instability.  

Individuals will display joint hypermobility, positive impingement signs, and positive 

instability signs.  Often secondary impingement is due to overuse; stretched static stabilizers 

that allow translation of the humerus in glenoid, leading to increased load on RTC.  Increased 

demands on RTC lead to fatigue and ultimately failure of the tendons resulting in anterior 

superior migration of humeral head.  Scapular dysfunction exacerbates the pathology because 

asynchronous motion of scapula and humerus can lead to decrease subacromial space 

increasing compression on the RTC tendons.  Another type of impingement, first described 

by Walch (1992), is an intra-articular impingement of the undersurface of the posterosuperior 

RTC between the posterosuperior labrum and greater tuberosity of the humerus (Walch, 

Marechal et al. 1992).  This type of impingement is known as internal impingement.  Jobe 
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(1995) theorized that internal impingement was associated with anterior instability (Jobe 

1995).  However, Halbrecht et al. (1999) showed an anteriorly translated humeral head 

created by anterior instability would have less contact with the posterosuperior glenoid 

thereby lessening the internal impingment (Halbrecht, Tirman et al. 1999).  Wilk et al. (2003) 

demonstrated this type of impingement was a normal phenomenon that occurs in normal 

shoulders as well as athletic shoulders.  In 90º of humeral abduction and 90º of elbow 

flexion, the undersurface of the posterosuperior RTC contacts the posterosuperior glenoid 

labrum and becomes pinched between the labrum and greater tuberosity, which can become 

aggravated by the hyperexternal rotation of 130º in throwers (Wilk and Arrigo 1993).  The 

last type of impingement involves the subscapularis tendon.  The tendon becomes pinched 

between the coracoid process of the scapula and the lesser tuberosity of the humerus.  

Burkhart et al. (2003) associated coracoid impingement and pain with scapular dyskinesis 

and malposition (SICK Scapula) associated with pectoralis minor and short head of biceps 

tightness (Burkhart 2003).   

     The pathological cascade leading to impingement in overhead athletes involves 

abnormal function of static and dynamic stabilizers.  Failure of RTC to dynamically stabilize 

produces excessive translation and instability.  The inferior RTC consisting of infraspinatus, 

teres minor, subscapularis act to depress and compress the humeral head.  Research has 

shown that in individuals with impingement the subscapularis is stronger (IR) than the 

infraspinatus and teres minor (ER), creating abnormal force couple that pulls the humeral 

head anteriorly.  Weakness in inferior RTC creates abnormal force couple with deltoid that 

pulls the humeral head superiorly into the acromion.  Weakness in supraspinatus allows for 

superior migration of humeral head.  As previously discussed, the RTC tendons blend into 
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capsule; thereby, creating tension in capsule when contracted.  However, weakness in the 

RTC can produce dynamic instability.  Repetitive humeral ER creates posterior cuff tightness 

and capsular contracture producing an anterosuperior migration of the humeral head further 

decreasing space between the greater tuberosity and undersurface of acromion.  Scapular 

muscles are needed to stabilize the shoulder with appropriate length-tension relationship with 

the RTC and to produce movement at the acromion in order for the greater tuberosity to clear 

it during humeral abduction, flexion and rotation.  Weakness in the levator scapula or upper 

trapezius creates decreased scapular elevation.  Weakness in lower trapezius decreases 

scapular depression allowing scapular anterior tipping.  Middle trapezius and rhomboid 

weakness positions the scapula more externally rotated.  It is clear that malfunction of the 

musculotendinous structures around the shoulder result in a pathological cascade resulting in 

shoulder pain due to impingement. 

 

Relationship between shoulder impingement and instability 

There is a clear relationship between shoulder instability and shoulder impingement.  

As the static stabilizers are stretched, translation of the humeral head in the glenoid fossa 

increases.  The RTC and periscapular muscles must compensate by dynamically stabilizing 

the joint.  However, by attempting to limit translation often the RTC and the periscapular 

muscles fatigue resulting in overuse syndromes of the tendons.  As the process ensues, the 

muscles are unable to control the humeral head because of muscle weakness and tendon 

failure.  As the muscles and tendons of the RTC fail, the humeral head migrates 

anteriosuperiorly in the glenoid.  As the periscapular muscles and tendons fail, the scapular 
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upward rotation decreases and anterior tipping increases.  Both conditions cause a decrease in 

the subacromial space, which increases pinching of the RTC.   

 

Glenohumeral internal rotation deficit 

     Most overhead throwers exhibit range of motion disparity, having excessive humeral 

ER and a compensatory loss of humeral IR measured at 90º of humeral abduction.  It has 

been shown that the difference is about 7º of increase in humeral ER and about 7º loss of 

humeral IR.  Pitchers have an average of 129.9º of humeral ER and 62.6º of humeral IR, 

while normal ROM ranges from 90-100º of humeral ER and 80-90º of humeral IR.  Although 

total ROM is not significantly different between the dominant and nondominant shoulders in 

baseball players, there is a significant difference in isolated humeral ER and IR between the 

dominant and nondominant shoulders (Ellenbecker, Roetert et al. 2002).  The backward shift 

of ROM can be attributed to changes in integrity of the capsule, musculotendinous structures 

and alterations in bony orientation.  This change in the ROM is explained by the significant 

laxity of the GH capsule and ligaments.  This laxity has been referred to as acquired laxity 

(JR Andrews) and is a result of repetitive throwing.  This hypermobility in humeral ER 

allows the athlete to increase the speed and force of the throw (Wilk and Arrigo 1993).  

Overhead athletes over time show an increase in humeral ER.  It has been hypothesized that 

this is due to the repetitive lengthening of the anterior capsule and ligaments.  This may 

result in repetitive trauma to the anterior capsule allowing excessive movement of the 

humerus within the glenoid fossa predisposing the athlete to impingement pain, SLAP or 

“dead arm syndrome”.  Burkhart et al. (2003) stated that the loss of humeral IR was the most 

important pathological process that occurs in overhead athletes.  The loss of humeral IR is 
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also affected by the accumulation of fibrous tissue within the musculotendinous structures 

creating tightness and inextensibility (Burkhart, Morgan et al. 2003).  The last factor 

contributing to a loss in humeral IR is changes in the orientation of the humeral head.  A 

retroverted humeral head has been revealed on CT scans of professional baseball players.  

Sixteen degrees of retroversion was measured between the dominant and nondominant 

shoulders.  The implications for this retroversion include a predisposition for impingement 

because it predisposes instability within the GH joint (Ellenbecker, Roetert et al. 2002). 

     Glenohumeral internal rotation deficit (GIRD) is a recent termed used to define a loss 

of humeral IR ROM of the throwing shoulder as compared to the non-throwing shoulder 

(Burkhart, Morgan et al. 2003).  There have been two proposed causes of this loss in humeral 

IR.  One factor may be a thickening in the posterior capsule resulting in a contracture of the 

tissue (Burkhart, Morgan et al. 2003).  Burkhart et al. (2003) found arthroscopically that 

patients with severe pathological GIRD have a contracture or a thickening of 6mm or more in 

the posterior band of the IGHL (Burkhart, Morgan et al. 2003).  The second factor is a loss in 

the extensibility of the external rotators of the RTC.  This factor was proposed after an 

inconclusive arthroscopic study revealing no thickening of the capsule (Wilk and Arrigo 

1993). 

     The clinical consequence of this humeral IR loss is that there is a high correlation 

between losses in humeral IR and SLAP lesions, some type of chronic inflammation of the 

tendons or chronic pain in the musculature including the teres minor, infraspinatus and long 

head of the biceps resulting in tears or tightness.  The pathological cascade may result in 

further damage to the shoulder complex with internal impingement, “acquired” anterior 
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instability, Bankart lesions and undersurface RTC tears (Ellenbecker, Roetert et al. 2002; 

Burkhart, Morgan et al. 2003);  (Morgan 2003). 

 

Stretching protocol for overhead throwing athletes 

     Wilk et al. (1993) describe a protocol for improving flexibility of the shoulder in 

overhead throwing athletes (Wilk and Arrigo 1993).  They suggest initiating humeral IR and 

horizontal adduction stretches to normalize shoulder motion.  Burkhart et al. (2003) suggest 

using the side-lying sleeper stretch to increase humeral IR.  The sleeper stretch is done by 

positioning the shoulder at 90º of flexion and the elbow at 90º of flexion.  The rollover 

sleeper stretch was also suggested as an effective stretch of the posterior shoulder.  During 

this stretch, the shoulder is flexed 50-60º. The individual is instructed to roll over onto the 

arm about 30-40º.  Finally, the cross arm stretch applies a stretch to the posterior shoulder.   

The shoulder flexed to 90º in the starting position.  A passive humeral adduction force is then 

applied with the uninvolved shoulder.  These stretches focus on the posterior-inferior capsule 

and posterior musculature.  No protocol involving duration or frequency was included in the 

report (Burkhart, Morgan et al. 2003). 

Proprioception 

     The motor control system explains the integration of sensory, motor and central 

components to maintain functional joint stability.  The sensorimotor system is the component 

of the motor control system most responsible for creating a defense mechanism that protects 

joints from injury during functional activities.  The umbrella term, sensorimotor system, can 

be further broken down into two mechanisms controlling movement: neuromuscular control 

and proprioception.  Reimann and Lephart, 2002, described neuromuscular control as the 
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unconscious activation of dynamic restrains in preparation and in response to joint motion 

with the purpose of maintaining functional joint stability (Riemann and Lephart 2002).  

Proprioception was defined by Sherrington at the beginning of the 20th century as type of 

feedback sent from the limb and received by the nervous system.  The term was initially used 

to describe afferent information from “proprioceptors” about extremity position and direction 

of movement.   

     Sherrington described proprioception was vital for maintaining posture, equilibrium, 

joint stability and muscle sense.  These ideas have fused into what is now termed kinesthesia, 

joint position sense and sense of resistance.  Kinesthesia is defined as the detection of active 

and passive motion.  Joint position sense is a static sense of the posture of a segment, while 

sense of resistance is sensation of heaviness or force placed on the soft tissue (Riemann and 

Lephart 2002).  

 

Anatomical Structures 

     Proprioception is mediated by peripheral receptors in the joints, muscles and the skin 

(Warner, Lephart et al. 1996).  What Sherrington called “proprioceptors” at the turn of the 

20th century, we now call “mechanoreceptors”.  Mechanoreceptors send sensory information 

from the joint to the brain.  Previously, the anatomy and function of mechanoreceptors had 

been studied in the cat model.  Only within the last ten years, these studies have been 

conducted on the human knee and shoulder.  Vangsness et al. (1995) conducted a study that 

showed the neural anatomy of the GH ligaments, labrum and subacromial bursa.  

Mechanoreceptors are located throughout the shoulder complex (Vangsness, Ennis et al. 

1995).  One type of receptors called Ruffini corpuscles is low threshold, slowly adapting 
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sensors were found to be the most abundance in the joint capsule and ligaments (Nyland, 

Caborn et al. 1998).  It is hypothesized that the abundance of these receptors in the shoulder 

ligaments is due to the protective need for joint sense during extreme range of motion.  A 

second receptor, Pacini corpuscles are low threshold, rapidly adapting receptors that sense 

movement and velocity.  These again are mainly located in the capsule and ligaments.  

Vangsness et al. (1995) found that the glenoid labrum showed no evidence of 

mechanoreceptors (Vangsness, Ennis et al. 1995). The next two types of proprioceptors are 

located in the musculotendinous units.  The muscle spindles are located within the muscle in 

the intrafusal fibers.  The muscles spindles are sensitive to changes in length and the rate of 

length change within the muscle and create muscle contraction to protect the muscle from 

overstretch.  The final receptor we will discuss is the Golgi tendon organs (GTOs) that are 

located at the muscle tendon juncture.  The GTOs sense changes in tension within the muscle 

and initiates muscle relaxation. Vangsness provided a muscle spindle density review that 

suggests that there is a greater density of muscle spindles within the muscles that attach at the 

corocoid process and those that cross the GH joint anteriorly.  These muscles include the 

long head of the biceps, teres minor and latisimuss dorsi (Vangsness, Ennis et al. 1995). 

 

Role in injury prevention 

     The aforementioned receptors fire in response to extreme ranges of motion in order to 

protect the joint from reaching unstable positions.  The muscle spindles act to protect the 

muscle from injury.  Sensing the muscles’ length, they will create a reflex contraction that 

will shorten the muscle, pulling it out of a potential tear that would occur from increased 

forces acting to create excessive length.  The GTOs act to create relaxation in the muscle 
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when there are forces that exceed the muscles’ contraction threshold.  At the shoulder, these 

mechanoreceptors fire activating the muscle to stabilize by creating optimal compression and 

positioning for functional activities.  

 

Factors Affecting Proprioception 

     Many factors have been shown to have an impact on proprioceptive ability.  These 

factors have been studies in the knee, ankle and shoulder.  Muscle fatigue has been 

demonstrated in some studies to have a negative effect on proprioception.  Fatiguing muscle 

contractions can increase the amount of intramuscular concentrations of metabolites and 

inflammatory substances.  This reduces the sensitivity of the muscular mechanoreceptors, 

therefore, decreasing the ability to sense position and activity.  Carpenter et al. (1998) found 

that after introducing a fatigue protocol there was no difference between dominant and 

nondominant shoulders (Carpenter, Blasier et al. 1998).  They did find, however, in a 

threshold to detection protocol, fatigued shoulders performed worse than pre-exercise 

measures.  The previous studies have shown that there is no relationship between fatigue and 

decreases in proprioception.  Lee et al. (2003) only found significant changes during an 

active repositioning task in humeral ER (Lee, Liau et al. 2003).  All other tasks of active and 

passive repositioning in humeral IR and ER were not statistically significant.  However, 

obvious discrepancies are found because not all studies have followed the same testing 

procedure or tested the same measure of proprioception. 

     Position in the ROM also has an effect on the ability of the shoulder to detect 

proprioceptive information.  As discussed previously, there is an abundance of Pacini 

corpuscles and Ruffini whatevers located in the capsuloligamentous structures of the 
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shoulder creating increased sensitivity allowing these structures to send large amounts of 

information to the brain.  Most studies show an increase in proprioception at end range in ER 

and IR as compared to midrange when using a threshold to detection protocol or 

repositioning tasks (Janwantanakul, Magarey et al. 2001). 

     Instability of the GH joint has demonstrated detrimental effects on proprioception.  It 

is thought that injury or repetitive microtrauma causes deafferentation or soft tissue 

lengthening which, in turn, diminishes proprioceptive sensitivity.  Lephart et al. (1994) and 

Forwell and Carnahan (1996) demonstrated significant deficits in position sense in unstable 

shoulders (Lephart, Warner et al. 1994) (Forwell and Carnahan 1996).  Blasier et al. (1994) 

demonstrated that proprioceptive deficits are also present in individuals with multidirectional 

instability or joint hypermobility with no history of instability or injury (Lephart, Myers et al. 

2002); (Blasier, Carpenter et al. 1994);  (Myers and Lephart 2002).  Most studies have shown 

that dominant shoulders of overhead athletes demonstrate deficits in kinesthesia when 

compared to the non-dominant or uninvolved shoulder.  This confirms the idea that joint 

instability plays a major role in effecting kinesthesia.  In his study on surgically repaired 

shoulders, Lephart et al. (1994) reported no significant differences between normal subjects 

and surgically repaired subjects bilaterally, therefore demonstrating a restoration of normal 

kinesthesia post-operative as compared to the non-dominant shoulder (Lephart, Warner et al. 

1994).  Lephart et al. (2002) indicate that shoulder proprioception is possibly restored or 

improved post-surgically because of rehabilitation and the re- establishment of normal 

capsular integrity (Lephart, Myers et al. 2002). These results also confirm that joint 

hypermobility or laxity decreases the proprioception sense in the shoulder.   
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     Instability in the static stabilizers of the shoulder has been shown to have an effect on 

the dynamic stabilizers as demonstrated in the motor program and muscle recruitment 

patterns.  Glousman et al. (1988) conducted an EMG study of pitching in individuals with 

instability.  They showed compensatory increase recruitment of the supraspinatus and long 

head of the biceps.  Decreases in activity were shown in the subscapularis, pectoralis major, 

latissimus dorsi and serratus anterior during lack cocking (Glousman, Jobe et al. 1988).  The 

decreased muscular activity is problematic because activation of these muscles is necessary 

to generate anterior stability in its vulnerable position.  Ligamentous laxity creates changes in 

the motor programs and recruitment patterns thus altering the force couple relationships 

between the muscles and perpetuating the instability by reducing optimal muscle 

contractions.   

     Strength training has also been proposed to improve joint kinesthesia especially after 

injury.  A study done by Docherty et al. (1998) showed that ankle joint position sense in 

inversion and plantar flexion improved with ankle strengthening exercises in those 

individuals with functional ankle instability.  They proposed that the change was due to 

increases in muscle spindle sensitivity (Docherty, Moore et al. 1998).  Another similar study 

done on the shoulder compared open and closed kinetic chain exercises. Rogol et al. (1998) 

found that both the groups experienced improved joint position sense from pretest to posttest.  

They suggested training might refine proprioceptive awareness.  The researchers found that 

performing one resistance exercise three days a week for six weeks made significant 

improvements in proprioception (Rogol, Ernst et al. 1998). 
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Proprioception and Stretch 

     Recent research studies have suggested that stretching may induce a stretch tolerance 

within the muscles.  This may be due to alterations in muscle spindle and GTO activity.  

Muscle spindles are affected by muscle contraction and stretching.  A study done by Larsen 

et al. (2005) showed that there was no significant decrease in proprioception at the knee after 

an acute stretch of the quadriceps and hamstring muscles (Larsen, Lund et al. 2005).  The 

investigators measured joint position sense by using the reproduction of a specific target 

position method.  A thixotropic behavior of the muscles spindles was discussed in the article 

as having an effect on the receptor’s ability to send input.  It was discussed that this behavior 

is only observed for a very short period of time, therefore having no lasting effects on 

proprioception at the knee as determined by target position replication (Larsen, Lund et al. 

2005).  McNeal and Sands (2005) conducted a study on the effects of acute static stretch on 

joint position sense in the shoulder.  They utilized a three-dimensional motion tracking 

system to test position replication.  They did not report differences in joint position sense but 

suggested that three-dimensional tracking be used to assess joint position sense (McNeal and 

Sands 2005). 

 
 
 
 



 

 
 
 
 

 

Chapter Three 

METHODOLOGY 

 

Subjects 

     Twenty-five college-age individuals (age, 21.6 ± 2.18 years; mass, 77.0±14.6 kg; 

height, 178.7 ± 10.9 cm) from the student population at The University of North Carolina 

participated in this study.  Four subjects were left-handed, and 21 were right handed.  

Subjects were healthy volunteers.  Subjects were recruited with informational flyers and 

verbal requisition.  Subjects were excluded if they suffered any shoulder pain during testing.  

Subjects were also excluded if they had undergone shoulder surgery or formal rehabilitation 

for shoulder injury within the last year; in addition, if they had sustained a GH joint 

dislocation or subluxation within the past year or had missed more than two weeks of activity 

because of an upper extremity injury during the past year.  Thirteen males and 12 females 

participated in this study.  The principal investigator evaluated all subjects.  Descriptive 

statistics for the subjects are presented in Table 1. 

 

Instrumentation 

     The three-dimensional kinematics of humeral and scapular motion was measured 

using the Flock of Birds ® electromagnetic motion analysis system (Ascension Technology 

Corporation; Burlington, VT) controlled by Motion Monitor (Innovative Sports Training, 
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Inc.; Chicago, IL) data acquisition computer software.  Lightweight electromagnetic sensors 

(2.3 X 2.8 X 1.5 cm, 17 g) were attached to the test arm using double-sided adhesive tape.  A 

standard range direct current transmitter containing three orthogonal coils that generate an 

electromagnetic field was mounted on a plastic shelving unit near each subject allowing joint 

and segment orientation to be collected by Motion Monitor.  The three sensors attached to the 

subject recorded the electromagnetic changes in the field generated by the transmitter and 

then transferred the signals to a recording computer via hard wiring.  The electromagnetic 

motion analysis system was calibrated prior to data collection. A universal goniometer was 

used to measure ROM of supine shoulder flexion, shoulder external rotation, shoulder 

internal rotation, total shoulder rotation, and shoulder sleeper internal rotation. A standard 

tape measure was used to assess posterior shoulder tightness as proposed by Tyler et al. 

(2000).  A bubble level was attached to the stationary arm of the goniometer.   

 

Procedures 

     Before data collection, subjects were briefed on the testing procedures and were 

asked to sign an informed consent approved by the IRB and complete a brief medical history 

questionnaire prior to testing.  The subjects reported to the Sports Medicine Research 

Laboratory on one occasion for testing.  Testing lasted approximately 60 minutes.  The 

subject’s height (cm), mass (kg), age (yrs) and dominant arm were all recorded at this time.  

During the testing session, ROM and scapular kinematics were assessed.  The order of ROM 

and scapular kinematics testing were counterbalanced to limit learning, investigator bias, and 

error. 
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Range of Motion Assessment 

     To assess shoulder flexion ROM the subject lay supine on a standard treatment table. 

The goniometer axis was positioned over the glenoid fossa, the stationary arm was aligned 

parallel to the coronal plane or thorax, and the distal arm was aligned with the lateral 

epicondyle.  The subject moved his or her arm into flexion.  Starting position was defined as 

the arm at his or her side; this was described as 0º of flexion.  End position was determined 

by a cessation of movement (Figure 1).  Subjects were instructed to limit spinal extension.  

The procedure was repeated for three trials and was measured in degrees. 

  Shoulder internal rotation ROM was measured with the arm abducted to 90º and the 

elbow flexed to 90º with a towel to support the humerus.  In this position, the tester passively 

moved the arm into internal rotation.  Using the manual stabilization method proposed by 

Ellenbecker et al. (1996) the principal investigator measured shoulder internal rotation ROM 

by passively internally rotating the arm, while stabilizing the scapula at the coracoid process.  

The subject began with the forearm perpendicular to the floor.  This position was defined as 

the starting position and describes 0º of rotation.  The end range of motion was defined as the 

cessation of rotation or sensation of scapular movement (Figure 2).  Measurements were 

taken with a universal goniometer with a bubble level attached to the stationary arm.  

According to the method proposed by Norkin and White (1985), the goniometer axis was 

placed over the olecranon process, the stationary arm was positioned parallel to the floor, and 

the movable arm was align with the ulnar styloid (Norkin and White 1985).  Awan et al. 

(2002) demonstrated that this technique had an interrater reliability of .50 and an intrarater 

reliability of .65(Kibler, Chandler et al. 1996; Awan, Smith et al. 2002).  We demonstrated 

this technique revealed intersession reliability of .97 (SEM = 2.415) and intrasession 
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reliability of .98 (SEM = 2.068).  This procedure was repeated for three trials and was 

measured in degrees.  The mean degree of ROM was recorded.  The subject’s arm was then 

passively moved into external rotation.  External rotation was measured with similar 

techniques as internal rotation (Figure 3).  The procedure was repeated for three trials and 

was measured in degrees.  The subject’s shoulder internal rotation was then measured in the 

sleeper position which was proposed to better isolate humeral rotation (Burkhart, Morgan et 

al. 2003).  The subject was positioned in side-lying on the side of their dominant arm.  The 

shoulder was positioned in 90º of flexion with both acromion processes level and 

perpendicular to the table. The elbow was positioned in 90º of flexion.  The subject began 

with the forearm perpendicular to the table/floor, which was defined as the starting position.  

The subject then grasped and pushed their forearm of the dominant arm toward the table.  

The end position was indicated by the cessation of rotation (Figure 4).  A normal ROM 

consists of 60-70º.  The procedure was repeated on the non-dominant arm as well.  Three 

trials were performed and the ROM was measured in degrees.   

Posterior shoulder flexibility was also assessed.  A procedure introduced by Tyler et 

al. (1999) measures shoulder horizontal adduction.  The amount of shoulder horizontal 

adduction indicates the amount of posterior shoulder tightness or inflexibility.  This 

procedure required the subject to lie on the side of the non-dominant arm.  The knees were 

flexed to 90º while the hips were flexed to 90º.  The back was positioned perpendicular to the 

table.  The non-dominant arm was placed under the subject’s head.  A mark with a felt tip 

marker was placed on the medial epicondyle of the dominant arm.  The shoulders were 

aligned perpendicular to the treatment table.  The investigator faced the subject and stabilized 

the lateral border of the scapula in a retracted position, in order to restrict scapular 
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movement.  The procedure started in a position of 90º of humeral abduction and 0º of 

humeral rotation.  The subject was instructed to relax as the tester lowered his or her arm into 

shoulder horizontal adduction while maintaining scapular stabilization and 0º of humeral 

rotation.  End ROM was defined as maximal horizontal adduction or initiation of scapular 

movement (Figure 5).  Using a standard tape measure, the investigator measured the distance 

from the bottom of the treatment table to the mark on the medial epicondyle.  The procedure 

was performed three times on each limb and was measured in centimeters.  Posterior 

shoulder flexibility was calculated as the difference in measured horizontal adduction 

between the dominant arm and non-dominant arm. 

 

Shoulder Kinematics Protocol 

     The electromagnetic motion analysis was set up according to the International Society 

of Biomechanics Shoulder Group (van der Helm 2004).  At a sampling rate of 50 Hz, 

wooden stylus attached to a sensor was configured and the three-dimensional world axis 

system was defined with a point 0.2m down the X-axis which is anterior or in the direction 

the subject is facing. The Z-axis was defined by a point 0.2m from the origin in the lateral 

direction or to the right of the subject.  The Y-axis was defined as the vertical axis.  

Electromagnetic sensors were adhered on the subject’s dominant shoulder on the distal 

humerus, the broad surface of the acromion angle, and the C7 spinous process (Figure 6).  

The electromagnetic sensors were adhered using double-sided tape.  The distal humerus 

sensor was secured onto a thermoplastic cuff in order to better represent humeral motion 

(Figure 7).  The thermoplastic cuff was custom-made for each subject.  Ludewig et al. (2002) 

reported a surface-mounted sensor closely represented underlying angular movements when 
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compared to a bone-fixed sensor.  The study revealed valid measures of movement to the last 

5º of motion with a thermoplastic cuff and valid measures of movement to the last 15º of 

motion without a thermoplastic cuff (Ludewig, Cook et al. 2002).  Next, the subjects stood in 

a neutral position with arms at their sides while body segments were digitized by using the 

stylus to locate particular anatomical landmarks.  Anatomical landmarks digitized include 

T12/L1, T8, C7, sternal notch (IJ), xiphoid process (PX), medial scapular spine (TS), inferior 

angle of scapula (AI), acromion angle (AA), and medial and lateral epicondyles of humerus 

(EM, EL) (van der Helm 2004).  The thorax was defined by the positions of the C7, T8, T12, 

xiphoid process, and sternal notch.  The position of the scapula was defined by the medial 

scapular spine, inferior angle of the scapula, and the acromion angle.  The digitized points on 

the lateral and medial epicondyles of the humerus were used to define the position of the 

humerus during data collection (Figures 8 & 9).  

     Subjects were tested in the active and passive rotation tasks while seated.  An 

adjustable tripod was used as an armrest in order to limit humeral elevation.  A small 

platform constructed of thermoplastic material was attached onto the tripod in order to allow 

the subject to maintain the abducted position and decrease translation of the elbow on the 

tripod.  Subjects were seated with their shoulder propped at 90º of abduction and elbow at 

90º of flexion.   

     Active rotation task was performed.  The starting position was defined as the palm of 

the hand facing caudally with the forearm positioned parallel to the floor (Figure 10).  Each 

subject was taken through the available ROM passively before performing the task to 

become familiar with the ROM.  The subject was given three practice trials.  During these 

trials, the subject was given verbal feedback to correct the motion.  The investigator verbally 
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instructed the subjects to initiate movement into internal rotation followed by external 

rotation (Figures 11 &12).  Seven test trials were done. The mean range of scapular tipping 

taken at maximum humeral IR and maximal humeral ER during the middle five test trials 

was recorded.   

The passive rotation task was then performed.  The subject was instructed to relax 

and allow the investigator to take his or her arm through the entire available ROM.  The 

starting position was defined as the palm of the hand facing caudally with the forearm 

positioned parallel to the floor (Figure 13).  Three practice trials were done to assure the 

subject was relaxed and was not assisting with motion.  The investigator initiated movement 

into IR followed by ER (Figures 14 & 15).  The investigator performed seven test trials.  The 

mean range of scapular tipping taken at maximum humeral IR and maximum humeral ER 

during the middle five test trials was recorded. 

     The subject then performed a humeral flexion task.  The subject was instructed to 

stand in anatomical position with their thumbs pointing forward which was defined as the 

starting position (Figure 16).  The subject was instructed to maximally elevate the arm in the 

sagittal plane (Figure 17).  The subject was given three practice trials, followed by seven test 

trials.  The mean range of scapular tipping taken at 90º of flexion, 120º of flexion and 

maximum humeral flexion of the middle five test trials was recorded.   

The subject then performed a functional diagonal pattern, consisting of a 

proprioceptive neuromuscular facilitation pattern (PNF D2 pattern).  D2 flexion 

encompassed humeral flexion, abduction, and ER.  D2 extension consisted of humeral 

extension, adduction, and IR.  The subject was instructed to begin the functional diagonal 

pattern with his or her thumb resting at the opposite anterior superior iliac spine (ASIS) 
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(Figure 18).  The subject was instructed to keep the thumb pointed behind him or her to 

ensure that the subject’s humerus was externally rotated at the end of the functional diagonal 

pattern (Figure 19).  The subjects were allowed three practice trials.  The subject completed 

seven test trials.  The mean range of scapular tipping taken at 90º of flexion and maximum 

humeral flexion during the functional diagonal pattern moving into flexion of the middle five 

test trials was recorded.  A metronome set at 69 Hz was used for all tasks in order to 

standardize velocity.   

 

Data Reduction 

     Raw data was processed using Motion Monitor software and mechanical axes were 

defined by the digitized anatomical landmarks on the thorax, humerus, and scapula as 

recommended by the International Society of Biomechanics Shoulder Group (van der Helm 

2004).  The mechanical axes were converted to coordinate axes for each segment.  The 

coordinate system was defined as the x-axis being horizontal with positive direction pointing 

anteriorly or in the direction the subject is facing, the y-axis being vertical with positive 

direction pointing upward, and the z-axis being horizontal with positive pointing to the right 

of the subject.  Kinematic data were smoothed through a Butterworth low pass digital filter at 

an estimated optimal cutoff frequency of 3.5 Hz.  Scapular rotations were expressed as Euler 

angles in relation to the trunk with the first rotation about the y-axis, which is the axis 

pertaining to scapular protraction and retraction; the second rotation was about the z-axis, 

which is the axis explaining upward and downward scapular rotation; and the third rotation 

was about the x-axis, which is the axis involved in anterior and posterior scapular tipping 

(Figures 20-22). 
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Data Analysis 

     Statistical analysis was performed with SPSS 13.0 (SPSS, Inc.; Chicago, IL).  

Separate Pearson Product moment correlations were used to determine the relationship for 

the following pairs of variables: 1) range of scapular tipping and its relationship to maximal 

humeral IR measured during active and passive rotation tasks; 2) range of scapular tipping 

during humeral rotation during active and passive rotation tasks and its relationship with 

maximum shoulder IR ROM as measured by supine and sleeper IR; 3) range of scapular 

tipping and its relationship with humeral flexion measured at 90º, 120º and maximum 

flexion; 4) range of scapular tipping at 90º, 120º and maximal humeral flexion and the 

association with maximum shoulder IR ROM as measured by supine IR and sleeper IR; 5) 

range of scapular tipping and its relationship with humeral flexion measured at 90º and 

maximal humeral flexion in a functional diagonal task; 6) range of scapular tipping at 90º of 

humeral elevation and maximal humeral elevation during a functional diagonal task and the 

association with maximum shoulder IR ROM as measured by supine IR and sleeper IR.  For 

the purpose of this study correlation coefficients were interpreted as follows: below .50 was 

poor, .50-.75 was good, and above .75 was excellent.  An a priori alpha level of 0.05 was 

used (Borsa, Timmons et al. 2003).  A summary of the analysis is presented in Table 2. 

 
 
 
 
 



 

 
 
 
 
 

Chapter Four 

RESULTS 

 
 
Descriptive Statistics 
 

The Interclass Correlation Coefficients (ICC) (2,1)  for shoulder ROM measurements 

were above 0.9, suggesting excellent within subject reliability. The standard error of 

measurement (SEM) for each shoulder ROM measure ranged from 0.28° to 2.4°.  The 

shoulder flexion range of motion measure exhibited good reliability with an ICC (2,1) value of 

.80 with an SEM value of 2.96°.   The ICC (3,k) values for three-dimensional scapular tipping 

and humeral kinematic measures were analyzed at maximal humeral IR and ER angles; 90°, 

120° and maximal humeral flexion angles; maximal humeral IR and ER angles at 90° of 

humeral flexion angle and maximal humeral flexion angle during functional diagonal task. 

All measures displayed excellent reliability within trials with ICC values ranging from .98 to 

.99, and SEM values ranging from 0.68º to 3.8º.   

Means, standard deviations, ICC, and SEM values for goniometric shoulder ROM 

and three-dimensional scapular and humeral motion tracking for each task are presented in 

Tables 3, 5, 7, and 9. 

 

Passive Rotation Task 

       Correlation analyses revealed that shoulder IR ROM as measured by a goniometer was 

negatively correlated with scapular tipping ROM at the maximum humeral IR angle during 
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passive rotation task (r = -0.418, p = 0.033) (Figure 23).  Regression analysis reveals that 

17.5% of variance in scapular tipping ROM can be explained by shoulder IR ROM (r2 = 

0.175).  As shoulder IR ROM increases, scapular tipping ROM decreases.  No other ROM 

variables were significantly correlated with scapular tipping ROM (p > 0.05).  However, the 

total arc of shoulder rotation ROM approached a significant correlation with scapular tipping 

ROM at maximum humeral IR angle during passive rotation task (r = -.372, p = 0.053) 

indicating a strong trend (Figure 24).  Regression analysis did reveal an r2 value of 0.139, 

representing 13.9% of variance in scapular tipping ROM can be explained by the total arc of 

shoulder rotation ROM.  Correlation analysis is presented in Table 4. 

 

Active Rotation Task 

Correlation analyses revealed no shoulder ROM variables were significantly 

correlated with scapular tipping ROM (p > 0.05).  Shoulder IR ROM approached 

significance when correlated with scapular tipping ROM at maximum humeral IR angle 

during active rotation task (r = -0.368, p = 0.055).  This finding indicates a strong trend that 

as shoulder IR ROM increases, scapular tipping ROM decreases.  Regression analysis 

revealed that 13.5% variance of scapular tipping ROM can be explained with shoulder 

internal rotation ROM (Figure 25).  Correlation analysis is presented in Table 6. 

 

Functional Diagonal Task 

Correlation analyses revealed the shoulder IR ROM approached significance with 

scapular tipping ROM at 90° of humeral flexion angle during functional diagonal task (r = -

0.367, p = 0.055).  As shoulder IR ROM increases, there is less scapular tipping ROM. 
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Regression analysis revealed that 13.5% of variance in scapular tipping ROM can be 

explained with shoulder IR ROM (r2 = 0.135) (Figure 26).  The total arc of shoulder rotation 

ROM was also significantly correlated with both scapular tipping ROM at 90° of humeral 

flexion angle (r = -0.397, p = 0.041) and scapular tipping ROM at maximal humeral flexion 

angle during the functional diagonal task (r = -0.477, p = 0.017) (Figures 27 & 28).  These 

findings demonstrate that as total arc of shoulder rotation ROM increases there is less 

scapular tipping ROM.  Twenty-three percent of variance of scapular tipping ROM at 90° of 

humeral flexion angle can be explained by total arc of shoulder rotation ROM (r2 = 0.228); 

while, 16% of variance of scapular tipping ROM at maximal humeral flexion angle can be 

explained by total arc of shoulder rotation ROM (r2 = 0.15.8).   The posterior shoulder 

flexibility measure was positively correlated with scapular tipping ROM at 90° of humeral 

flexion angle (r = 0.414, p = 0.035) and scapular tipping ROM at maximal humeral flexion 

angle during functional diagonal task (r = .384, p = 0.048) (Figures 29 & 30).  This was the 

only significant finding with the posterior shoulder flexibility measure.  This indicates that 

the greater distance recorded during the posterior shoulder flexibility measure, the less 

flexible the posterior shoulder and; moreover, the more scapular tipping ROM observed.  

Regression analysis revealed r2 values of 0.174 and 0.147 for scapular tipping ROM at 90° of 

humeral flexion angle and maximal humeral flexion angle, respectively.  Correlation analysis 

is presented in Table 8. 
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Flexion Task 

  Correlation analyses revealed no shoulder ROM variables were significantly 

correlated with scapular tipping ROM (p > 0.05).  Correlation analysis is presented in Table 

10. 

 

Range of Motion 

      The shoulder IR ROM measure is highly associated with the sleeper shoulder IR 

ROM measure (r = .712, p < .001).  However, neither measure was correlated with the 

posterior shoulder flexibility measure (p < 0.05).   



 

 

 
 
 

Chapter Five 

DISCUSSION 

 

The purpose of this study was to examine the relationship of clinical measures of 

shoulder range of motion (ROM) with scapular tipping ROM.  Our results indicate that 

scapular tipping ROM is significantly related to passive shoulder IR ROM during the passive 

rotation task and the functional diagonal task.  Scapular tipping ROM approached a 

significant relationship with passive shoulder IR ROM during the active rotation task. The 

total arc of shoulder rotation ROM was significantly related to scapular tipping ROM during 

the functional diagonal task.  And, finally, the posterior shoulder flexibility measure was 

significantly related to scapular tipping ROM during the functional diagonal task.  These 

results suggest decreases in clinical measures of shoulder ROM were related to greater 

scapular tipping ROM.  This suggests that shoulder ROM influences scapular tipping ROM 

supporting the interdependence of humeral and scapular motion in shoulder function.   

Our results show that during the passive rotation task at maximum humeral IR angle, 

shoulder IR ROM was negatively correlated with scapular tipping ROM.  Passive shoulder 

IR ROM also approached significance when correlated with scapular tipping ROM at 

maximal humeral IR angle during the active rotation task.  These results indicate that greater 

shoulder IR ROM was related to smaller ranges of scapular tipping ROM during the active 

and passive rotation tasks.  
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The differences between the relationship of shoulder ROM measures and scapular 

tipping ROM during the passive and active rotation tasks may be the result of muscle 

activity.  All shoulder ROM measures were taken passively.  This was done in order to better 

represent true joint mobility.  Typically, active ROM is less than passive ROM signifying 

weakness or lesion in the active contractile tissue (Starkey, book).  Moreover, active ROM 

assesses the ability of the muscles to function and move.  Consistency of measure was 

another reason the shoulder ROM was taken passively.  Both the shoulder sleeper internal 

rotation ROM and posterior shoulder flexibility measure are assessed passively.  However, 

this may have impacted our results.  The dynamic structures may have inhibited the ability to 

assess the static structures during functional tasks.  Because the dynamic structures are 

controlling the motion, they may limit the scapular ROM during the active rotation task.  If 

during active humeral rotation, the external rotators are functioning normally, they may 

influence the amount of anterior tipping during IR.  Our results are in agreement with Borsa 

et al. (2003) who found weak relationships between humeral IR and ER and elevation ROM 

and scapular upward rotation during humeral elevation in the scapular and sagittal planes.  

Similarly, the investigators had taken shoulder ROM passively and required the subjects to 

perform the humeral elevation task actively.  They suggested that other factors, such as 

muscle force, contributed more significantly to scapular upward rotation than did static 

capsular restraints (Borsa, Timmons et al. 2003).   

The observed difference between active and passive rotation tasks is supported by 

studies comparing scapular kinematics during active and passive shoulder elevation (Price, 

Franklin et al. 2000; Ebaugh, McClure et al. 2005).  All have posited that scapulothoracic 

motion is influenced by whether the arm is actively or passively elevated.  Price et al. (2000) 
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found that there were no statistically significant differences in motion between active 

elevation and passive elevation. The investigation, however, only studied motion from 10º to 

50º of humeral elevation (Price, Franklin et al. 2000).  McQuade et al. (1998) found 

decreased amounts of scapular upward rotation when the arm was passively elevated but did 

not quantify muscle activity (McQuade, Dawson et al. 1998).  However, Ebaugh et al. (2005) 

found differences in scapular kinematics during active and passive elevation.  They found 

that scapular upward rotation decreased when the arm was passively elevated.  This indicated 

that the periscapular muscles (upper and lower trapezius and serratus anterior) were vital in 

production of scapular motion.  They determined the scapula posteriorly tips up to 90º of 

humeral elevation after which it moved into an anteriorly tipped position.  The study found 

no significant differences in posterior tipping between the active and passive conditions.  It 

was suggested that other factors such as pectoralis minor length and posterior capsule length 

may have been responsible for producing tipping motion (Ebaugh, McClure et al. 2005).   

During the functional diagonal task, at 90° of humeral elevation in the coronal plane, 

there was a significant relationship between the clinical measure of shoulder external rotation 

and scapular tipping ROM.  Also, the total arc of shoulder rotation ROM was related to 

scapular tipping ROM at 90º and maximal humeral elevation angle during the functional 

diagonal task.  Additionally, the measure of posterior shoulder flexibility was related to 

scapular tipping ROM 90° and maximal humeral flexion angle. Additionally, there was a 

trend observed between shoulder IR ROM and scapular ROM at 90º of humeral elevation 

angle during the functional diagonal task.  This suggests that shoulder flexibility influences 

scapular tipping ROM during a functionl task.  However, there were no significant 

relationships between shoulder flexibility during the flexion task. This highlights the 
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relationship between humeral rotation and scapular tipping. The functional diagonal, active 

and passive humeral rotation tasks all required more humeral rotation ROM (total arc of 

humeral rotation: active rotation task, 130º; passive rotation task, 143º; functional diagonal 

task, 19º; flexion task, 8º) when compared to the flexion task.  This agrees with the findings 

of Thigpen (2006) who observed differences in scapular kinematics between empty can and 

full can shoulder exercises.  The results demonstrated greater scapular internal rotation and 

anterior tipping during the empty can exercise in which the humerus is internally rotated 

during humeral elevation (Thigpen, Padua et al. 2006).  Together with our results, this 

suggests less humeral rotation was exhibited during the flexion task when compared to the 

active and passive rotation tasks as well as the functional diagonal task.  Therefore, one 

would expect less scapular tipping ROM to be used.  

The plane of humeral elevation chosen may also have influenced the results.  This is 

consistent with Borsa et al. (2003) who observed greater scapular upward and downward 

rotation within the end ROM of humeral elevation in the scapular plane suggesting that 

greater humeral ROM results in greater scapular ROM.  They did report, however, that 

scapular positioning varied significantly between the planes of humeral elevation (Borsa, 

Timmons et al. 2003).  In sum, these results highlight the importance of humeral rotation on 

scapular kinematics and the potential influence of task selection.   

The relationship between shoulder rotation ROM and scapular tipping ROM is 

consistent with the relationship between shoulder elevation ROM and scapular upward and 

downward rotation (Borsa, Timmons et al. 2003). The results demonstrate as shoulder ROM 

decreases, scapular tipping ROM increased.  This is important based on clinical assumptions 

of GH capsular mobility related to scapular kinematics (Borsa, Timmons et al. 2003; 
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Thigpen, Padua et al. 2006).  It is thought that the mechanism facilitating this alteration in 

scapular tipping patterns is posterior shoulder inflexibility (Tyler, Nicholas et al. 2000; 

Borsa, Timmons et al. 2003; Burkhart, Morgan et al. 2003).  It has been suggested that as the 

humerus internally rotates the posterior capsule and RTC tension resulting in increased 

scapular internal rotation and scapular anterior tipping.  As these posterior structures tighten, 

the humerus will pull the scapula into more internal rotation and anterior tipping (Thigpen, 

Padua et al. 2006).  Borsa et al. (2003) proposed that decreased capsular mobility, as 

measured by shoulder ROM, may result in a “pulling” of the scapula during elevation 

causing an increase in scapular upward rotation (Borsa, Timmons et al. 2003).     

Observed differences in scapular kinematics in overhead athletes also support the idea 

that shoulder rotation ROM influences scapular kinematics.  Myers et al. (2005) found that 

throwers exhibited increased scapular upward rotation in a resting position in the dominant 

arm.  When compared to non-throwers, throwers have increased scapular upward rotation, 

scapular internal rotation and scapular retraction (Myers, Laudner et al. 2005).  Throwing 

athletes are thought to develop chronic adaptations to contribute to improved throwing skill, 

injury prevention and/or injury provocation.  In a different study, Myers et al. (2005) 

demonstrated that throwing athletes with pathologic internal impingement demonstrated less 

shoulder internal rotation ROM and greater posterior shoulder inflexibility (Myers, Laudner 

et al. 2005).  These findings indicate that a reduction in GH ROM influences scapular 

motion.  Adaptive posterior capsule contracture and posterior RTC tightness along with a 

loss of humeral IR may contribute to shoulder pain.   

     While not a primary research aim, relationships between the proposed measures of 

ROM isolating the posterior shoulder may have important clinical implications.  Passive 
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shoulder internal rotation ROM was significantly related to the passive sleeper shoulder 

internal rotation ROM. However, neither was significantly related with measures of posterior 

capsular tightness.  The sleeper internal rotation ROM measure was proposed by Burkhart et 

al. (2003) to isolate humeral internal rotation from scapular motion by stabilizing the scapula 

with the table (Burkhart, Morgan et al. 2003).  This measurement attempts to isolate the 

posterior capsule and RTC of the shoulder.  The supine internal rotation measure also 

attempts to isolate humeral rotation with stabilization of the coracoid process of the scapula; 

however, it may not isolate the posterior structures as well.  The posterior shoulder flexibility 

assessment was determined by Tyler et al. (2000) to be a reliable measure of assessing the 

posterior capsule of the shoulder.  They established a relationship between decreases in 

shoulder sleeper IR ROM and increases in the posterior shoulder measure.  They posited that 

for every 4º of IR loss there would be 1 cm of posterior shoulder tightness (Tyler, Nicholas et 

al. 2000).  We, however, did not find any significant relationships between the posterior 

shoulder flexibility measure and the sleeper internal rotation ROM measurement.  The values 

we used in the correlation analysis were not side-to-side differences but the actual values 

obtained on the dominant arm; therefore, body size may have influenced the measure as well 

as its validity.  In order to use those values, it may be beneficial to normalize to body height 

or length of humerus.  When side-to-side differences of posterior shoulder flexibility were 

correlated with scapular tipping ROM, still no significant correlations were found (p < .05).  

The lack of strong significant correlations could be due to sampling size, which could have 

affected the statistical power of the research design.  Downar and Sauers (2005) collected 

ROM measures on professional baseball players including shoulder internal rotation ROM 

and posterior shoulder flexibility.  Their results failed to reveal significant differences 
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between the throwing and the non-throwing arm.  They suggested this was due to low 

statistical power.  They also found no significant relationships between the clinical measures 

of shoulder mobility (Downar and Sauers 2005).  The conflicting results concerning the 

relationship between clinical measures of shoulder mobility warrants further investigation.   

Clinically, we use ROM measures to identify risk factors for injury.  A question arises 

as to which measure of posterior shoulder tightness is better than the rest.  Our results 

indicated a stronger relationship with the shoulder internal rotation ROM and shoulder 

sleeper internal rotation ROM.  However, it may be important to assess multiple measures of 

internal rotation in overhead athletes because these different measures may result in 

evaluation of different structures.  

 

Limitations 

     The subjects were normal healthy volunteers; therefore, caution must be used in 

extrapolating these findings to other populations such as an injured population or overhead 

athletes.  In addition, the velocity of the movement during testing was much slower than 

normal velocities during sport activity or activities of daily living.  Again, caution must be 

used in extrapolating these findings to athletic activity.   

     All ROM measures were taken passively.  This could have been a potential 

limitation to the study.  It would be beneficial to take the shoulder ROM actively to 

determine whether a stronger correlation existed between shoulder ROM and scapular 

tipping ROM during the active rotation task. 

Although, we did see differences between the results of the active and passive 

rotation tasks, muscle activity was not quantified during the passive rotation task.  Although 
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the subjects were instructed to relax completely there may have been muscle activity still 

present that may have contributed to motion.    

  Another limitation was that skin-based sensors provide only a representation of 

scapular and humeral motion.  However, the method has been validated and shown to be 

reliable within humeral elevation ranges from 30º to 120º (Ludewig and Cook 2000).  

Variability in findings due to skin artifact, selection of bony landmarks, plane and angle of 

elevation, as well as Euler angle decomposition have been suggested as reasons for 

differences in scapular motion.   

The spread of ROM values may have suppressed the correlation values (spread of 

shoulder internal rotation ROM: 37.3º-79.5º; spread of shoulder sleeper internal rotation 

ROM: 25.7º-60.3º).  Side-to-side differences for the shoulder sleeper internal rotation ROM 

ranged from 3º to 17.7º.  Tyler et al. (2000) indicated that greater posterior shoulder tightness 

in the throwing arm compared to non-throwing arm may range from 2-7 cm (Tyler, Nicholas 

et al. 2000).  However, statistically significant differences have been found at 2.1 cm (Borsa, 

Timmons et al. 2003).  Our values ranged from 0.4 to 4 cm.  Again, a greater sampling size 

may have provided with a greater spread between the ROM values created stronger 

relationships between the variables.   

 

Future Research     

     Future research should seek to clarify the role of humeral rotation on scapular 

kinematics. Clinically, humeral rotation and scapular kinematics are thought to be important 

to shoulder function.  The relationship of humeral rotation and scapular kinematics as well as 

their influence on the development of shoulder pain in not understood.   
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Conclusion 

This study is the first to assess the relationship between clinical measures of shoulder 

range of motion and scapular tipping ROM during functional tasks.  Decreased shoulder 

ROM was related to increased scapular tipping ROM.  Both decreased shoulder ROM and 

increased scapular tipping during shoulder rotation has been associated with shoulder pain.   
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Table 1.  Means and standard deviations for subject characteristics 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Mean Standard Deviation 

Age (yrs) 21.6 2.18 

Height (cm) 178.7 10.9 

Mass (kg) 77.0 14.6 
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Table 2.  Summary of research questions and data analysis.   
 

Research Question Data Source Data Analysis 

1: Is there an 
association between 
humeral rotation and 
humeral elevation and 
scapular tipping 
during active and 
passive rotation tasks, 
humeral flexion task 
and functional 
diagonal pattern? 

Predictor: 
Humeral Rotation 
Explanatory: Scapular 
tipping ROM at max IR, 
max ER; 90º, 120º and 
max flexion; and 90º and 
max flexion during 
diagonal task. 

Separate Pearson 
Correlation 

2:  Is there a 
relationship between 
shoulder ROM 
measures and scapular 
tipping during 
humeral rotation and 
elevation? 

Predictor:  Shoulder 
ROM measures 
Explanatory:  Scapular 
tipping ROM  

Separate Pearson 
Correlation 
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Table 3.  Descriptive statistics for clinical measures of passive humeral range of motion and 
three-dimensional measures of passive humeral rotation and scapular anterior/posterior 
tipping during passive humeral rotation task. 
 
 

 
 
 
 
 
 
 
 
 

 Mean (deg) St Dev ICC(2,1) SEM 

Supine Internal 
Rotation 53.36 12.78 0.97 

 
2.41 

 

Supine External 
Rotation 121.79 12.33 

 
0.98 

 

 
1.43 

 
Total Arc of 

Rotation 175.15 20.89   

Sleeper Internal 
Rotation 45.72 10.65 

 
0.99 

 

 
0.71 

 

Posterior Capsule 25.03 3.91 0.99 0.28 

Maximum IR 64.95 18.83 0.99 3.21 

Range of Scapular 
Tipping at 

Maximum IR 
7.15 9.48 0.99 1.34 

Maximum ER 79.57 19.14 0.99 1.97 

Range of Scapular 
Tipping at 

Maximum ER 
10.17 11.39 0.99 0.67 
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Table 4. Correlation analyses of clinical measures of humeral range of motion and passive 
humeral internal/external rotation and scapular anterior/posterior tipping range of motion 
during passive humeral rotation task. 
 

 
* Indicates significant Pearson r 
 
 
 
 
 
 

 IR ER 
Total 
Arc 

Sleeper 
IR 

Posterior 
Capsule 

Max 
IR 

Scapular 
tipping @ 
Max IR 

Max 
ER 

Scapular 
tipping @ 
Max ER 

IR  Pearson 
Correlation 1 .384* .838* .712* -.163 -.340 -.418* .559* -.177 

  Sig. (1-tailed)   .047 .000 .000 .246 .071 .033 .005 .227 

ER  Pearson 
Correlation   1 .825* .418* -.263 -.314 -.197 .577* .348 

  Sig. (1-tailed)     .000 .033 .131 .088 .202 .004 .067 

Total Arc  Pearson 
Correlation     1 .682* -.255 -.394* -.372 .682* .097 

  Sig. (1-tailed)       .000 .139 .043 .053 .000 .342 

Sleeper IR  Pearson 
Correlation       1 -.016 -.091 -.211 .338 .027 

  Sig. (1-tailed)         .473 .351 .186 .073 .455 

Posterior 
Capsule 

Pearson 
Correlation         1 .097 -.063 -.277 .014 

  Sig. (1-tailed)           .342 .395 .118 .477 

Max IR Pearson 
Correlation           1 .528* -.602* .250 

  Sig. (1-tailed)             .008 .003 .144 

Scap tipping @ 
Max IR  

Pearson 
Correlation             1 -.369 .458 

  Sig. (1-tailed)               .055 .021 

Max ER Pearson 
Correlation               1 -.163 

  Sig. (1-tailed)                 .246 

Scap tipping @ 
Max ER  

Pearson 
Correlation                 1 
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Table 5. Descriptive statistics for clinical measures of passive humeral range of motion and 
three-dimensional measures of active humeral rotation and scapular anterior/posterior tipping 
range of motion during active humeral rotation task.

 Mean (deg) St Dev ICC(2,1) SEM 

Supine Internal 
Rotation 

 
54.18 

 
12.23 

 
0.97 

 

 
2.41 

 

Supine External 
Rotation 121.67 12.43 

 
0.98 

 

 
1.43 

 
Total Arc of 

Rotation 175.85 20.61   

Sleeper Internal 
Rotation 45.27 10.19 

 
0.99 

 

 
0.71 

 

Posterior 
Capsule 24.79 3.58 

 
0.99 

 

 
0.28 

 

Maximum IR 55.65 17.51 0.99 2.10 

Scapular Tipping 
at Max IR 7.80 9.96 0.99 1.06 

Maximum ER 75.82 13.12 1.00 1.18 

Scapular Tipping 
at Max ER 15.50 10.92 0.99 1.13 
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Table 6. Correlation analyses of clinical measures of humeral range of motion and passive 
humeral internal/external rotation and scapular anterior/posterior tipping range of motion 
during active humeral rotation task. 
 

 
* Indicates significant Pearson r 
 
 
 
 
 
 

 IR ER 
Total 
Arc 

 
 

Sleeper 
IR 

Posterior 
Capsule 

Max 
IR 

Scapular 
tipping @ 
Max IR 

Max 
ER 

Scapular 
Tipping @ 
Max ER 

IR Pearson 
Correlation 1 .397* .833* .669* -.233 -.257 -.368 .492* -.235 

  Sig. (1-
tailed)   .041 .000 .001 .161 .137 .055 .014 .160 

ER Pearson 
Correlation   1 .839* .461* -.158 -.127 -.115 .440* -.202 

  Sig. (1-
tailed)     .000 .020 .252 .297 .315 .026 .196 

Total Arc Pearson 
Correlation     1 .675* -.234 -.229 -.287 .557* -.261 

  Sig. (1-
tailed)      .001 .160 .166 .110 .005 .133 

Sleeper IR Pearson 
Correlation       1 .015 -.066 -.089 .263 -.009 

  Sig. (1-
tailed)        .475 .391 .355 .131 .484 

Posterior 
Capsule 

Pearson 
Correlation         1 -.193 .181 -.310 .168 

  Sig. (1-
tailed)          .207 .222 .092 .240 

Max IR Pearson 
Correlation           1 .548 -.266 .308 

  Sig. (1-
tailed)            .006 .128 .093 

Scapular 
tipping @ 
Max IR  

Pearson 
Correlation             1 -.453* .726* 

  Sig. (1-
tailed)               .022 .000 

Max ER Pearson 
Correlation               1 -.246 

  Sig. (1-
tailed)                 .147 

Scapular 
Tipping @ 
Max ER 

Pearson 
Correlation                 1 
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Table 7. Descriptive statistics for clinical measures of passive humeral range of motion and 
three-dimensional measures of active humeral rotation and scapular anterior/posterior tipping 
range of motion during diagonal task. 

 
 
 
 
 
 
 
 
 

 Mean (deg) St Dev ICC(2,1) SEM 

Supine Internal 
Rotation 54.13 11.83 

 
0.97 

 

 
2.41 

 

Supine External 
Rotation 121.67 11.55 

 
0.98 

 

 
1.43 

 
Total Arc of 

Rotation 175.80 18.97   

Sleeper Internal 
Rotation 45.92 10.18 

 
0.99 

 

 
0.71 

 

Posterior 
Capsule 24.49 3.52 

 
0.99 

 

 
0.28 

 
Humeral 

Rotation @ 90º 
of Flexion range 

39.68 47.84 0.99 1.72 

Scapular Tipping 
@ 90º  of 

Flexion range 
12.31 12.74 0.98 1.42 

Humeral 
Rotation @ Max 

Flexion range 
20.25 36.74 0.98 3.79 

Scapular Tipping 
@ Max Flexion 

Range 
25.13 13.46 0.98 1.74 
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Table 8. Correlation analyses of clinical measures of humeral range of motion and humeral 
rotation and scapular anterior/posterior tipping during diagonal task. 

 
* Indicates significant Pearson r 

 IR ER 
Total 
Arc 

Sleeper 
IR 

Posterior 
Capsule 

Humeral 
Rotation @ 
90 deg of 
Flexion 

Scapular 
tipping @ 
90 deg of 
Flexion 

Humeral 
Rotation @ 
Max Flexion 

Scapular 
tipping @ 
Max 
Flexion 

IR Pearson 
Correlation 1 .316 .816* .655* -.172 .049 -.367 .098 -.275 

  Sig. (1-
tailed)   .087 .000 .001 .234 .419 .055 .340 .120 

ER Pearson 
Correlation   1 .806* .341 -.252 -.179 -.407 -.052 -.371 

  Sig. (1-
tailed)     .000 .071 .142 .225 .037 .414 .054 

Total Arc Pearson 
Correlation     1 .616* -.261 -.079 -.477* .030 -.397* 

  Sig. (1-
tailed)       .002 .133 .370 .017 .451 .041 

Sleeper IR Pearson 
Correlation       1 .086 .007 .074 .160 .199 

  Sig. (1-
tailed)         .359 .488 .378 .250 .201 

Posterior 
Capsule 

Pearson 
Correlation         1 .097 .414* .088 .384* 

  Sig. (1-
tailed)           .342 .035 .356 .048 

Humeral 
Rotation @ 90 
deg of Flexion 

Pearson 
Correlation           1 .136 .934* .062 

  Sig. (1-
tailed)             .284 .000 .398 

Scapular 
tipping @ 90 
deg of Flexion 

Pearson 
Correlation             1 .213 .903* 

  Sig. (1-
tailed)               .184 .000 

Humeral 
Rotation @ 
Max Flexion 

Pearson 
Correlation               1 .147 

  Sig. (1-
tailed)                 .268 

Scapular 
tipping @ 
Max Flexion 

Pearson 
Correlation                 1 
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Table 9. Descriptive statistics for clinical measures of passive humeral range of motion and 
three-dimensional measures of scapular anterior/posterior tipping range of motion during 
flexion task. 
 
 

 
 
 
 
 
 
 
 

 Mean (deg) St Dev ICC(2,1) SEM 

Supine Internal 
Rotation 52.77 12.71 

 
0.97 
 

 
2.41 
 

Supine External 
Rotation 120.45 11.01 

 
0.98 
 

 
1.43 
 

Total Arc of 
Rotation 173.22 18.46   

Sleeper Internal 
Rotation 45.39 10.05 

 
0.99 
 

 
0.71 
 

Posterior 
Capsule 25.20 4.06 

 
0.99 
 

 
0.28 
 

Scapular Tipping 
at 90 degrees of 
Flexion range 

12.50 13.09 0.99 0.99 

Scapular Tipping 
at 120 degrees of 
Flexion range 

20.01 17.81 0.99 0.86 

Scapular Tipping 
at Maximum 
Flexion Range 
 

33.01 18.00 0.99 1.06 
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Table 10. Correlation analyses of clinical measures of humeral range of motion and humeral 
flexion and scapular anterior/posterior tipping during flexion task. 
 
 

 
* Indicates significant Pearson r 

 

 IR ER Total Arc Sleeper IR 
Posterior 
Capsule 

Scapular 
tipping @ 

90º of 
Flexion 

Scapular 
tipping @ 

120º of 
Flexion 

Scapular 
tipping 
@ Max 
Flexion 

IR Pearson 
Correlation 1 .208 .812* .694* -.179 -.240 -.284 -.185 

  Sig. (1-tailed)   .176 .000 .000 .213 .141 .106 .205 

ER Pearson 
Correlation   1 .740* .291 -.275 -.111 -.205 -.186 

  Sig. (1-tailed)     .000 .094 .108 .312 .186 .204 

Total Arc Pearson 
Correlation     1 .651* -.287 -.231 -.314 -.238 

  Sig. (1-tailed)       .001 .098 .150 .083 .143 

Sleeper IR Pearson 
Correlation       1 .008 .069 .000 .106 

  Sig. (1-tailed)         .485 .380 .500 .319 

Posterior 
Capsule 

Pearson 
Correlation         1 .256 .281 .249 

  Sig. (1-tailed)           .125 .108 .132 

Scapular 
tipping @ 
90º of 
Flexion 

Pearson 
Correlation           1 .972* .805* 

  Sig. (1-tailed)             .000 .000 

Scapular 
tipping @ 
120º of 
Flexion 

Pearson 
Correlation             1 .940* 

  Sig. (1-tailed)               .000 

Scapular 
tipping @ 
Max 
Flexion 

Pearson 
Correlation               1 
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Figures 
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Figure 1.  End position of shoulder flexion ROM 
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Figure 2.  End position of shoulder internal rotation ROM. 
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Figure 3.  End position of shoulder external rotation ROM. 
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Figure 4.  End position of shoulder sleeper internal rotation ROM. 
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Figure 5.  End position of posterior shoulder tightness measure. 
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Figure 6.  Set up of electromagnetic sensors on C7, acromion and posterior humerus 
according to ISB. 
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Figure 7.  Thermoplastic cuff attached to posterior humerus 
. 
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Figure 8.  Anterior digitized landmarks 
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Figure 9.  Posterior digitized landmarks 
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Figure 10.  Starting position of active rotation task. 
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Figure 11.  End position of maximum humeral IR during active rotation task. 

 
 
 
 
Figure 12.  End position of maximum humeral ER during active rotation task. 
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Figure 13.  Starting position of passive rotation task. 
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Figure 14.  Maximal humeral IR during passive rotation task. 

 
 
 
 
 
Figure 15.  Maximal humeral ER during passive rotation task. 
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Figure 16 & 17.  Starting position of flexion task.  End position of flexion task. 
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Figure 18 & 19.  Starting position of functional diagonal pattern.  End position of functional 
diagonal pattern. 
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Figure 20. Scapular local axis system and bony landmarks. 
 
 
 
 

 

Z 

X 

Y 



 

 82

 

Figure 21. Humeral local axis system and bony landmarks 
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Figure 22. Thoracic local axis system and bony landmarks 
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Figure 23. Scatter plot of shoulder internal rotation ROM and scapular tipping ROM at 
maximum humeral IR during the passive humeral rotation task.   
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Figure 24. Scatter plot of total arc of shoulder rotation ROM and scapular tipping ROM at 
maximum humeral IR during the passive humeral rotation task.   
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Figure 25. Scatter plot of shoulder internal rotation ROM and scapular tipping ROM at 
maximum humeral IR during the active humeral rotation task. 
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Figure 26. Scatter plot of shoulder internal rotation ROM and scapular tipping ROM at 90º of 
humeral flexion during the functional diagonal task 
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Figure 27.  Scatter plot of total arc of shoulder rotation ROM and scapular tipping ROM at 
90º of humeral flexion during the functional diagonal task. 
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Figure 28. Scatter plot of total arc of shoulder rotation ROM and scapular tipping ROM at 
maximum humeral flexion during the functional diagonal task 
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Figure 29. Scatter plot of posterior shoulder flexibility measure and scapular tipping ROM at 
90º of humeral flexion during the functional diagonal task 
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Figure 30. Scatter plot of posterior shoulder flexibility measure and scapular tipping ROM at 
maximum humeral flexion during the functional diagonal task 
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INTRODUCTION 

Shoulder injury is a common complaint in athletics, accounting for 8-13% of all 

athletic injuries (Hill 1983).   Overhead athletes are at risk to develop shoulder pain as 

evidenced by 43.8 % of volleyball players and swimmers reporting shoulder pain (Lo 1990).  

Additionally, 50% of adolescent baseball pitchers report a greater incidence of shoulder 

and/or elbow pain(Tullos and King 1973; Lo, Hsu et al. 1990).  The increased incidence and 

prevalence of shoulder injuries is thought to be the result of the tremendous amount of stress 

on the shoulder.  Angular velocity during pitching approximates 7000°/s while a tennis serve 

can approach 1500°/s (Kibler 1995; Williams and Kelley 2000).  These velocities produce 

distraction forces that can reach approximately 80% of body weight (Williams and Kelley 

2000; Burkhart, Morgan et al. 2003).  Not only are there high velocities and large loads, but 

also overhead activities in athletics are typically very repetitive.  The repetitive nature of 

overhead athletics is thought to accelerate the process of tissue degeneration leading to the 

development of shoulder pain (Neer 1983).   

One common source of shoulder pain in the overhead athlete is subacromial 

impingement, which is characterized by compression or abrasion of the rotator cuff as it 

passes under the coracoacromial arch during shoulder elevation (Ludewig and Cook 2000).  

An asymmetrical capsule, implicating capsuloligamentous laxity or contracture, and poor 

scapular mechanics have been suggested as possible mechanisms that create subacromial 

impingement (Williams and Kelley 2000).  Many overhead athletes display posterior 

shoulder inflexibility suggested to result from repetitive hyper-external rotation and 

deceleration of the humerus (Burkhart, Morgan et al. 2003).  Posterior shoulder inflexibility 

resulting from posterior capsule contracture and/or posterior rotator cuff (RTC) tightness is 
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clinically seen as a loss of glenohumeral (GH) internal rotation (IR).  Glenohumeral Internal 

Rotation Deficit (GIRD) is defined as the loss of 25º of IR as compared to the non-throwing 

shoulder (Burkhart, Morgan et al. 2003).  Burkhart et al. (2003) described the loss of IR as 

the most important pathological process that occurs in throwers.  Overhead athletes display 

anterior GH laxity which is hypothesized to be a result of repetitive stretching of the anterior 

capsule and anterior inferior GH ligament during abduction and external rotation (ER) of the 

humerus (Burkhart, Morgan et al. 2003).  It is thought that posterior shoulder inflexibility 

and anterior laxity results in a superior and anterior migration of the humeral head in the 

glenoid further putting the athlete at risk for impingement and labral tears (Tyler, Nicholas et 

al. 2000).   

Another potential risk factor for shoulder pain is aberrant scapular mechanics 

(Burkhart, Morgan et al. 2003).  Traditionally, scapulohumeral rhythm has been defined as 

the ratio between GH elevation and scapular upward rotation, which is approximately 2:1.  

However, recent evidence shows that the relationship of humeral elevation and scapular 

motion is more complex.  The scapula upwardly rotates, posteriorly tips and externally 

rotates as humeral elevation increases.  Clinical theory suggests adequate scapular upward 

rotation, posterior tipping, and external rotation during humeral elevation allows the lateral 

acromion to clear the greater tuberosity (Litchfield, Hawkins et al. 1993; Lukasiewicz, 

McClure et al. 1999).  Individuals with subacromial impingement exhibit altered scapular 

kinematics resulting in increased scapular anterior tipping at the end of range of motion 

during elevation (ROM) (Lukasiewicz, McClure et al. 1999; Ludewig and Cook 2000; 

McClure, Bialker et al. 2004).  Increased scapular upward and external rotation during 

humeral elevation have been reported following shoulder girdle fatigue (McQuade, Dawson 
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et al. 1998; Ebaugh, McClure et al. 2005).   This indicates greater scapulothoracic motion 

was observed with less GH motion. Additionally, decreased humeral rotation was observed 

during humeral elevation following the fatigue protocol during shoulder elevation (Ebaugh, 

McClure et al. 2005).  This highlights the importance of scapular kinematics and humeral 

rotation. 

While it is clear that humeral elevation influences scapular motion, the effect of 

humeral rotation on scapular kinematics is not well understood.  Alterations in scapular 

motion have been attributed to changes in humeral rotation when the plane and degree of 

humeral elevation have been controlled (Ebaugh, McClure et al. 2005; Thigpen, Padua et al. 

2006).  It has been suggested that during humeral IR, the scapula remains internally rotated 

and anteriorly tipped because the posterior capsule and RTC tension pulling the scapula more 

forward.  It is hypothesized that inflexibility of the posterior shoulder will cause “pulling” of 

the scapula resulting in earlier scapular anterior tipping during humeral IR and delayed 

scapular posterior tipping during humeral ER (Borsa, Timmons et al. 2003).  These 

alterations in scapular anterior and posterior tipping may decrease the subacromial space.  

Understanding the relationship of humeral rotation and scapular tipping may be important in 

the treatment and prevention of shoulder pain. 

 Therefore, the purpose of this study is to determine the relationship between humeral 

rotation and scapular tipping during passive and active rotation tasks, humeral flexion task 

and functional diagonal task.  A secondary purpose of the study is to determine the 

relationship clinical measures of ROM and scapular tipping during passive and active 

rotation tasks, humeral flexion task and functional diagonal task.   
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METHODS 

Subjects 

Twenty-five healthy individuals (Age, 21.6 ± 2.18 years; Mass, 77.0±14.6 kg; Height, 

178.7 ± 10.9 cm) volunteered to participate in this study.  Subjects were recruited with 

informational flyers and verbal requisition.  Subjects were excluded if they suffered from any 

shoulder pain during testing.  Subjects were also excluded if they had undergone shoulder 

surgery or formal rehabilitation for shoulder injury within the last year; in addition, if they 

had sustained a GH joint dislocation or subluxation within the past year or had missed more 

than two weeks of activity because of an upper extremity injury during the past year.  The 

principal investigator evaluated all subjects.  Subjects were briefed on the testing procedures 

and were asked to sign an informed consent approved by the University of North Carolina 

Biomedical Institutional Review Board and complete a brief medical history questionnaire 

prior to testing.  Descriptive statistics for the subjects are presented in Table 1. 

The subjects reported to the Sports Medicine Research Laboratory on one occasion 

for testing.  The subject’s height (cm), mass (kg), age (yrs) and dominant arm were all 

recorded at this time.  Arm dominance was determined by the hand with which the subjects 

would throw a ball.  During the testing session, ROM and scapular kinematics were assessed.  

The order of ROM and scapular kinematics testing were counterbalanced to limit learning, 

investigator bias, and error.   

 

Instrumentation 

The three-dimensional kinematics of humeral and scapular motion was measured 

using the Flock of Birds ® electromagnetic motion analysis system (Ascension Technology 
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Corporation; Burlington, VT) controlled by Motion Monitor (Innovative Sports Training, 

Inc.; Chicago, IL) data acquisition computer software.  Lightweight electromagnetic sensors 

(2.3 X 2.8 X 1.5 cm, 17 g) were attached to the dominant or test arm using double-sided 

adhesive tape.  A standard range direct current transmitter containing three orthogonal coils 

that generate an electromagnetic field was mounted on a plastic shelving unit near each 

subject allowing joint and segment orientation to be collected by Motion Monitor.  The three 

sensors attached to the subject recorded the electromagnetic changes in the field generated by 

the transmitter and then transferred the signals to a recording computer via hard wiring.  The 

electromagnetic motion analysis system was calibrated prior to data collection.  The 

electromagnetic motion analysis was set up according to the International Society of 

Biomechanics Shoulder Group (van der Helm 2004).  At a sampling rate of 50 Hz, a wooden 

stylus attached to a sensor was configured and the three-dimensional world axis system was 

defined with a point 0.2m down the X-axis which is anterior or in the direction the subject is 

facing. The Z-axis was defined by a point 0.2m from the origin in the lateral direction or to 

the right of the subject.  The Y-axis was defined as the vertical axis.  Electromagnetic sensors 

were adhered using double-sided tape on the subject’s dominant shoulder on the distal 

humerus, the broad surface of the acromion angle, and the C7 spinous process (Figure 6).  

The distal humerus sensor was secured onto a custom thermoplastic cuff to better represent 

humeral rotation (Figure 7).  Ludewig et al. (2002) reported a surface-mounted sensor closely 

represented underlying angular movements when compared to a bone-fixed sensor.  The 

study revealed valid measures of movement to the last 5º of motion with a thermoplastic cuff 

and valid measures of movement to the last 15 º of motion without a thermoplastic cuff 

(Ludewig, Cook et al. 2002).  Next, with the subjects standing in a neutral position with arms 
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at their sides, body segments were digitized by using the stylus to locate specific anatomical 

landmarks. Anatomical landmarks digitized include T12/L1, T8, C7, sternal notch (IJ), 

xiphoid process (PX), medial scapular spine (TS), inferior angle of scapula (AI), acromion 

process (AA), and medial and lateral epicondyles of humerus (EM, EL) (van der Helm 2004) 

(Figures 8 & 9).  The thorax was defined by the positions of the C7, T8, T12, PX and IJ.  The 

position of the scapula was defined by TS, AI and AA.  The digitized points on the EM and 

EL were used to define the position of the humerus during data collection.  

A universal goniometer with an attached bubble level was used to measure shoulder 

flexion ROM, shoulder internal rotation ROM, shoulder external rotation ROM and shoulder 

sleeper internal rotation ROM. The total arc of shoulder rotation ROM was calculated using 

the ROM taken from the shoulder internal rotation ROM and shoulder external rotation 

ROM.  A standard tape measure was used to assess posterior shoulder flexibility as proposed 

by Tyler et al. (Tyler, Nicholas et al. 2000).   

 

Range of Motion Assessment 

Shoulder flexion ROM was assessed according to the procedure described in Norkin 

and White (Norkin and White 1985).  To assess ROM the subject lay supine on a standard 

treatment table with his or her arm at the side.  This position was defined as the starting 

position and described as 0° of flexion. The subject moved his or her arm into flexion and 

given a slight overpressure by investigator at the end position.  The end position was 

determined by a cessation of movement (Figure 1).  The procedure was repeated for three 

trials and was measured in degrees.   
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Shoulder internal rotation ROM was measured in supine with the arm abducted to 90º 

and the elbow flexed to 90º with a towel to support the humerus.  In this position, the tester 

passively moved the arm into internal rotation.  Using the manual stabilization method 

proposed by Ellenbecker et al (1996), the principal investigator measured internal rotation 

ROM at the shoulder by passively internally rotating the arm, while stabilizing the scapula at 

the coracoid process (Ellenbecker, Roetert et al. 2002).  The subject began with the forearm 

perpendicular to the floor.  This position was defined as the starting position and describes 0º 

of rotation.  The end position was defined as the cessation of rotation or sensation of scapular 

movement (Figure 2).  The goniometer axis was placed over the olecranon process, the 

stationary arm was positioned perpendicular to the floor, and the movable arm was aligned 

with the ulnar styloid (Norkin and White 1985).  We demonstrated this technique revealed 

intersession reliability of .97 (SEM = 2.415) and intrasession reliability of .98 (SEM = 

2.068).  This procedure was repeated for three trials and was measured in degrees.  The mean 

degree of ROM was recorded.   

External rotation was measured with similar techniques as internal rotation.  The 

subject’s arm was passively moved into external rotation (Figure 3).  The procedure was 

repeated for three trials and was measured in degrees.   

The subject’s shoulder sleeper internal rotation ROM was then measured as a 

suggested method to better isolate humeral rotation from scapular motion (Burkhart, Morgan 

et al. 2003).  The subject was positioned side-lying on the side of their dominant arm.  

Shoulder was positioned in 90° of flexion with both acromion processes aligned 

perpendicular to the table. The elbow was positioned in 90° of flexion.  The subject began 

with the forearm perpendicular to the table, which was defined as the starting position and 0° 
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of rotation.  The subject then grasped and pushed their forearm of the dominant arm toward 

the table.  The end position was indicated by the cessation of rotation (Figure 4).  A normal 

ROM consists of 60-70° of motion. The procedure was performed bilaterally, repeated for 

three trials and was measured in degrees.   

Posterior shoulder flexibility was also assessed.  A procedure introduced by Tyler et 

al. (2000) measures horizontal adduction (Tyler, Nicholas et al. 2000).  The amount of 

horizontal adduction indicates the amount of posterior shoulder flexibility.  This procedure 

required the subject to lie on the side of the non-dominant arm.  The legs were positioned 

with the knees in 90º of flexion and hips in 90º of flexion.  The back was perpendicular to the 

table.  The non-dominant arm was placed under the subject’s head.  A mark with a felt tip 

marker was placed on the medial epicondyle of the dominant arm. Both acromion processes 

were aligned perpendicular to the treatment table.  The investigator faced the subject and 

stabilized the lateral border of the scapula in a retracted position, in order to restrict scapular 

movement.  The starting position consisted of 90º of abduction and 0º of rotation.  The 

subject was instructed to relax and the tester lowered his or her arm into humeral adduction 

while maintaining 0º of rotation and scapular stabilization.  End position was defined as 

maximal horizontal adduction or initiation of scapular movement (Figure 5).  Using a 

standard tape measure, the investigator measured the distance from the bottom of the 

treatment table to the mark on the medial epicondyle.  The procedure was performed three 

times on each limb and was measured in centimeters.  Posterior shoulder flexibility was 

calculated as the difference in measured horizontal adduction between the dominant arm and 

non-dominant arm.  A greater distance between the table and the medial epicondyle indicates 
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greater shoulder inflexibility.  Typical range of measurement is approximately 2-7 cm (Tyler 

et al. 2000)   

 

Shoulder Kinematics Protocol 

Subjects were tested in the active and passive rotation tasks while seated.  An 

adjustable tripod was used as an armrest in order to limit humeral elevation.  A small 

platform constructed of thermoplastic material was attached onto the tripod in order to allow 

the subject to maintain the abducted position and decrease translation of the elbow on the 

tripod.  Subjects were seated with their shoulder propped at 90º of abduction and elbow at 

90º of flexion.  The investigator verbally instructed the subjects how to complete the task and 

gave feedback about ROM throughout the task.   

 Active rotation task was performed.  The starting position was defined as the palm of 

the hand facing caudally with the forearm positioned parallel to the floor (Figure 10).  Each 

subject was taken through the available ROM passively before performing the task to 

become familiar with the ROM.  The subject was given three practice trials.  During these 

trials, the subject was given verbal feedback to correct the motion.  The investigator verbally 

instructed the subjects to initiate movement into internal rotation followed by external 

rotation (Figures 11 & 12).  Seven test trials were done. The mean range of scapular tipping 

taken at maximum humeral IR and maximal humeral ER during the middle five test trials 

was recorded. 

The passive rotation task was then performed.  The subject was instructed to relax 

and allow the investigator to take his or her arm through the entire available ROM.  The 

starting position was defined as the palm of the hand facing caudally with the forearm 
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positioned parallel to the floor (Figure 13).  Three practice trials were done to assure the 

subject was relaxed and was not assisting with motion.  The investigator initiated movement 

into IR followed by ER (Figures 14 & 15).  The investigator performed seven test trials.  The 

mean range of scapular tipping taken at maximum humeral IR and maximum humeral ER 

during the middle five test trials was recorded.  

 The subject then performed a humeral flexion task.  The subject was instructed to 

stand in anatomical position with their thumbs pointing forward which was defined as the 

starting position (Figure 16).  The subject was instructed to maximally elevate the arm in the 

sagittal plane (Figure 17).  The subject was given three practice trials, followed by seven test 

trials.  The mean range of scapular tipping taken at 90º of flexion, 120º of flexion and 

maximum humeral flexion of the middle five test trials was recorded.   

The subject then performed a functional diagonal pattern, consisting of a 

proprioceptive neuromuscular facilitation pattern (PNF D2 pattern).  D2 flexion 

encompassed humeral flexion, abduction, and ER.  D2 extension consisted of humeral 

extension, adduction, and IR.  The subject was instructed to begin the functional diagonal 

pattern with his or her thumb resting at the opposite anterior superior iliac spine (ASIS) 

(Figure 18).  The subject was instructed to keep the thumb pointed behind him or her to 

ensure that the subject’s humerus was externally rotated at the end of the functional diagonal 

pattern (Figure 19).  The subjects were allowed three practice trials.  The subject completed 

seven test trials.  The mean range of scapular tipping taken at 90º of flexion and maximum 

humeral flexion during the functional diagonal pattern moving into flexion of the middle five 

test trials was recorded.  A metronome set at 69 Hz was used for all tasks in order to 

standardize velocity.   
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Data Reduction 

 Raw data was processed using Motion Monitor software and mechanical axes were 

defined by the digitized anatomical landmarks on the thorax, humerus, and scapula as 

recommended by the International Society of Biomechanics Shoulder Group (van der Helm 

2004).  The mechanical axes were converted to coordinate axes for each segment.  The 

coordinate system was defined as the x-axis being horizontal with positive direction pointing 

anteriorly or in the direction the subject is facing, the y-axis being vertical with positive 

direction pointing upward, and the z-axis being horizontal with positive pointing to the right 

of the subject.  Kinematic data were smoothed through a Butterworth low pass digital filter at 

an estimated optimal cutoff frequency of 3.5 Hz.  Scapular rotations were expressed as Euler 

angles in relation to the trunk with the first rotation about the y-axis, which is the axis 

pertaining to scapular protraction and retraction; the second rotation was about the z-axis, 

which is the axis explaining upward and downward scapular rotation; and the third rotation 

was about the x-axis, which is the axis involved in anterior and posterior scapular tipping 

(Figures 20-22).   

 

Data Analysis  

Statistical analysis was performed with SPSS 13.0 (SPSS, Inc.; Chicago, IL).  

Separate Pearson Product moment correlations were used to determine the relationship for 

the following pairs of variables: 1) range of scapular tipping and its relationship to maximal 

humeral IR measured during active and passive rotation tasks; 2) range of scapular tipping 

during humeral rotation during active and passive rotation tasks and its relationship with 
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maximum shoulder IR ROM as measured by supine and sleeper IR; 3) range of scapular 

tipping and its relationship with humeral flexion measured at 90º, 120º and maximum 

flexion; 4) range of scapular tipping at 90º, 120º and maximal humeral flexion and the 

association with maximum shoulder IR ROM as measured by supine IR and sleeper IR; 5) 

range of scapular tipping and its relationship with humeral flexion measured at 90º and 

maximal humeral flexion in a functional diagonal task; 6) range of scapular tipping at 90º of 

humeral elevation and maximal humeral elevation during a functional diagonal task and the 

association with maximum shoulder IR ROM as measured by supine IR and sleeper IR.  For 

the purpose of this study correlation coefficients were interpreted as follows: below .50 was 

poor, .50-.75 was good, and above .75 was excellent.  An a priori alpha level of 0.05 was 

used (Borsa, Timmons et al. 2003).  A summary of the analysis is presented in Table 2.   

 
 
RESULTS 
 

The Interclass Correlation Coefficients (ICC) (2,1) for shoulder rotation range of 

motion measurements were above 0.9, suggesting excellent within subject reliability.  The 

standard error of measurement (SEM) for each shoulder ROM measure ranged from 0.28° to 

2.4°.  The shoulder flexion ROM measure exhibited good reliability with an ICC (2,1) value of 

.80 with an SEM value of 2.96°.   The ICC (3,k) values for three-dimensional scapular tipping 

and humeral kinematic measures were analyzed at maximal humeral internal and external 

rotation angles; 90°, 120° and maximal humeral flexion angles; maximal humeral internal 

and external rotation angles at 90° of humeral flexion angle during diagonal task and 

maximal humeral flexion angle. All measures displayed excellent reliability within trials with 

ICC values ranging from .98 to .99, and SEM values ranging from 0.68º to 3.8º. 
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Means, standard deviations, ICC, and SEM values for goniometric humeral ROM and 

three-dimensional scapular and humeral motion tracking for each task are presented in Tables 

3, 5, 7, and 9. 

 

Passive Rotation Task 

       Correlation analyses revealed that shoulder internal rotation ROM as measured by a 

goniometer was negatively correlated with scapular tipping ROM at the maximum humeral 

internal rotation angle during the passive rotation task (r = -0.418, p = 0.033) (Figure 23).   

Regression analysis revealed that 17.5% of variance in scapular tipping ROM can be 

explained by shoulder internal rotation ROM (r2 = 0.175).  As shoulder internal rotation 

ROM increases, scapular tipping ROM decreases.  No other ROM variables were 

significantly correlated with scapular tipping ROM (p > 0.05).  However, the total arc of 

shoulder rotation ROM approached a significant correlation with scapular tipping measures 

ROM at maximum humeral internal rotation angle (r = -.372, p = 0.053) indicating a strong 

trend (Figure 24).  Regression analysis did reveal an r2 value of 0.139, representing 13.9% of 

variance in scapular tipping ROM can be explained by the total arc of shoulder rotation 

ROM.  Correlation analysis is presented in Table 4. 

 

Active Rotation Task 

Correlation analyses revealed no ROM variables were significantly correlated with 

scapular tipping ROM (p > 0.05).  Again, shoulder internal rotation ROM approached 

significance when correlated with scapular tipping ROM at maximum humeral internal 

rotation angle during rotation task (r = -0.368, p = 0.055) indicating a strong trend that the 
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greater shoulder internal rotation ROM, the less scapular tipping ROM.  Regression analysis 

revealed that 13.5% variance of scapular tipping ROM can be explained with shoulder 

internal rotation ROM (Figure 25).  Correlation analysis is presented in Table 6. 

 

Functional Diagonal Task 

Correlation analyses revealed the shoulder internal rotation ROM approached 

significance with scapular tipping ROM at 90° of humeral flexion angle (r = -0.367, p = 

0.055).  As shoulder internal rotation ROM increases, there is less scapular anterior tipping 

ROM. Regression analysis revealed that 13.5% of variance in scapular tipping ROM can be 

explained with shoulder internal rotation ROM (r2 = 0.135) (Figure 26).  The total arc of 

shoulder rotation ROM was also significantly correlated with both scapular tipping ROM at 

90° of humeral flexion angle (r = -0.397, p = 0.041) and scapular tipping ROM at maximal 

humeral flexion angle (r = -0.477, p = 0.017) (Figures 27 & 28).  These findings demonstrate 

that as total arc of shoulder rotation ROM increases there is less scapular tipping ROM.  23% 

of variance of scapular tipping ROM at 90° of humeral flexion angle can be explained by 

total arc of shoulder rotation ROM (r2 = 0.228); while, 15.8% of variance of scapular tipping 

ROM at maximal humeral flexion angle can be explained by total arc of shoulder rotation 

ROM (r2 = 0.158).   The posterior shoulder flexibility measure was positively correlated with 

scapular tipping ROM at 90° of humeral flexion angle (r = 0.414, p = 0.035) and scapular 

tipping ROM at maximal humeral flexion angle (r = .384, p = 0.048) (Figures 29 & 30).  This 

was the only significant finding with the posterior shoulder flexibility measure.  This shows 

that the greater distance recorded during the posterior shoulder flexibility measure, the 

greater scapular tipping ROM.  Regression analysis revealed r2 values of 0.174 and 0.147 for 
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scapular tipping ROM at 90° of humeral flexion angle and maximal humeral flexion angle, 

respectively.  Correlation analysis is presented in Table 8. 

 

Flexion 

  Correlation analyses revealed no ROM predictor variables were significantly 

correlated with scapular tipping ROM (p > 0.05).  Correlation analysis is presented in Table 

10. 

 

Range of Motion 

      The shoulder internal rotation ROM measure is highly associated with the shoulder 

sleeper internal rotation ROM measure (r = .712, p < .001).  However, neither measure was 

correlated with the posterior shoulder flexibility measure (p < 0.05).   

 

DISCUSSION 

The purpose of this study was to examine the relationship of clinical measures of 

shoulder range of motion (ROM) with scapular tipping ROM.  Our results indicate that 

scapular tipping ROM is significantly related to passive shoulder internal rotation ROM 

during the passive rotation task and the functional diagonal task.  Scapular tipping ROM 

approached a significant relationship with passive shoulder internal rotation ROM during the 

active rotation task.  The total arc of shoulder rotation ROM was also significantly related to 

scapular tipping ROM during the diagonal task.  Finally, the posterior shoulder flexibility 

measure was significantly related to scapular tipping ROM during the functional diagonal 

task.  These results suggest decreases in clinical measures of shoulder ROM were related to 
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greater scapular tipping ROM.  This suggests that shoulder rotation ROM influences scapular 

tipping ROM supporting the interdependence of glenohumeral and scapular motion in 

shoulder function.   

Our results show that during the passive rotation task at maximum humeral internal 

rotation angle, shoulder internal ROM was negatively related to scapular tipping ROM.  The 

relationship between passive shoulder internal rotation ROM and scapular tipping ROM at 

maximal internal rotation angle during the active rotation task also approached significance.  

These results indicate that greater shoulder internal rotation ROM was related with less 

scapular tipping ROM during the active and passive humeral rotation tasks. 

The differences between the relationship of shoulder ROM measures and scapular 

tipping ROM during the passive and active rotation tasks may be the result of muscle 

activity.  All shoulder ROM measures were taken passively.  This was done in order to better 

represent true joint mobility.  Typically, active ROM is less than passive ROM signifying 

weakness or lesion in the active contractile tissue (Starkey 2002).  Moreover, active ROM 

assesses the ability of the muscles to function and move.  Consistency of measure was 

another reason the shoulder ROM was taken passively.  Both the shoulder sleeper internal 

rotation ROM and posterior shoulder flexibility measure are assessed passively.  However, 

this may have impacted our results.  The dynamic structures may have inhibited the ability to 

assess the static structures during the functional tasks.  Because the dynamic structures were 

controlling the motion, they may have limited the scapular ROM during the active rotation 

task.  During active humeral rotation, the humeral external rotators may influence the amount 

of scapular anterior tipping during humeral IR.  Our results are in agreement with Borsa et al. 

(2003) who found weak relationships between humeral IR and ER and elevation ROM and 
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scapular upward rotation during humeral elevation in the scapular and sagittal planes.  The 

investigators similarly had taken shoulder ROM passively and required the subjects to 

perform the humeral elevation task actively.  They suggested that other factors, such as 

muscle force, contributed more significantly to scapular upward rotation than did static 

capsular restraints (Borsa, Timmons et al. 2003).  This could have been a potential limitation 

to the study.  It would be beneficial to take the shoulder ROM actively to determine whether 

a stronger correlation existed between shoulder ROM and scapular tipping ROM during the 

active rotation task. 

The observed difference in the active and passive rotation tasks is supported by 

studies comparing scapular kinematics during active and passive shoulder elevation (Price, 

Franklin et al. 2000; Ebaugh, McClure et al. 2005).  All have posited that scapulothoracic 

motion is influenced by whether the arm is actively or passively elevated.  Price et al. (2000) 

found that there were no statistically significant differences in motion between active 

elevation and passive elevation. The investigation, however, only studied motion from 10º to 

50º of humeral elevation (Price, Franklin et al. 2000).  McQuade et al. (1998) found 

decreased amounts of scapular upward rotation when the arm was passively elevated but did 

not quantify muscle activity (McQuade, Dawson et al. 1998).  However, Ebaugh et al. (2005) 

found differences in scapular kinematics during active and passive elevation.  They found 

that scapular upward rotation decreased when the arm was passively elevated.  This indicated 

that the periscapular muscles (upper and lower trapezius and serratus anterior) were vital in 

production of scapular motion.  They determined the scapula posteriorly tips up to 90º of 

humeral elevation after which it moved into an anteriorly tipped position.  The study found 

no significant differences in posterior tipping between the active and passive conditions.  It 
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was suggested that other factors such as pectoralis minor length and posterior capsule length 

may have been responsible for producing tipping motion (Ebaugh, McClure et al. 2005).  

Although, we did see differences between the results of the active and passive rotation tasks, 

muscle activity was not quantified during the passive rotation task.  Although the subjects 

were instructed to relax completely there may have been muscle activity still present that 

may have contributed to motion.    

During the functional diagonal task, at 90° of humeral elevation in the coronal plane, 

there was a significant relationship between the clinical measure of shoulder external rotation 

and scapular tipping ROM.  Also, the total arc of shoulder rotation ROM was related to 

scapular tipping ROM at 90º and maximal humeral elevation angle during the functional 

diagonal task.  Additionally, the measure of posterior shoulder flexibility was related to 

scapular tipping ROM at 90° and maximal humeral elevation angle. Additionally, there was a 

trend observed indicating that as shoulder internal rotation ROM decreased, scapular tipping 

ROM at 90º of humeral elevation angle increased.  This suggests that shoulder flexibility 

influences scapular tipping ROM during a functional task.  However, there were no 

significant relationships between shoulder ROM and scapular tipping ROM during the 

flexion task.  This highlights the relationship between humeral rotation and scapular tipping. 

The functional diagonal, active and passive humeral rotation tasks all required more humeral 

rotation ROM (total arc of humeral rotation: active rotation task, 130º; passive rotation task, 

143º; functional diagonal task, 19º; flexion task, 8º) when compared to the flexion task.  This 

agrees with the findings of Thigpen et al. (2006) who observed differences in scapular 

kinematics between empty can and full can shoulder exercises.  Their results demonstrated 

greater scapular internal rotation and anterior tipping during the empty can exercise in which 



 

 111

the humerus is internally rotated during humeral elevation (Thigpen, Padua et al. 2006).  

Together with our results this suggests shoulder rotation was less during the flexion task 

when compared to the active and passive rotation tasks as well as the diagonal tasks.  

Therefore, one would expect less scapular tipping ROM to be used.   

The plane of humeral elevation chosen may also have influenced the results.  This is 

consistent with Borsa et al. (2003) who observed greater scapular upward and downward 

rotation within the end ROM of humeral elevation in the scapular plane.  They did report, 

however, that scapular positioning did vary significantly between the planes of humeral 

elevation (Borsa, Timmons et al. 2003).  In sum, these results highlight the importance and 

the potential influence of task selection.   

The relationship between shoulder rotation ROM and scapular tipping ROM is 

consistent with the relationship between shoulder ROM and scapular upward and downward 

rotation (Borsa, Timmons et al. 2003). The results demonstrate as shoulder ROM decreases, 

scapular tipping ROM increased.  This is important based on clinical assumptions of GH 

capsular mobility related to scapular kinematics (Borsa, Timmons et al. 2003; Thigpen 

2006).  It is thought that the mechanism facilitating this alteration in scapular tipping patterns 

is posterior shoulder inflexibility (Tyler, Nicholas et al. 2000; Borsa, Timmons et al. 2003; 

Burkhart, Morgan et al. 2003).  It has been suggested that as the humerus internally rotates, 

the posterior capsule and RTC tension resulting in increased scapular internal rotation and 

scapular anterior tipping. As these posterior structures tighten, the humerus will pull the 

scapula into more internal rotation and anterior tipping (Thigpen, Padua et al. 2006).   Borsa 

et al. (2003) proposed that decreased capsular mobility, as measured by shoulder ROM, may 



 

 112

result in a “pulling” of the scapula during elevation causing an increase in scapular upward 

rotation (Borsa, Timmons et al. 2003).     

Observed differences in scapular kinematics in overhead athletes also support the idea 

that shoulder rotation ROM influences scapular kinematics.  Throwing athletes are thought to 

develop chronic adaptations to contribute to improved throwing skill, injury prevention 

and/or injury provocation.  Throwing athletes with pathologic internal shoulder impingement 

demonstrated less shoulder internal rotation ROM and greater posterior shoulder inflexibility 

(Myers 2005).  Throwing athletes have also been reported to exhibit increases in scapular 

upward rotation, scapular internal rotation and scapular retraction when compared to non-

throwers (Myers, Laudner et al. 2005)  These findings support the notion that a reduction in 

glenohumeral ROM influences scapular tipping ROM.  Together with our results these 

studies provide evidence that adaptive posterior capsule and posterior rotator cuff tightness 

with subsequent glenohumeral internal rotation deficit may contribute to shoulder pain.   

     While not a primary research aim, relationships between the proposed measures of 

posterior shoulder tightness may have important clinical implications.  Passive shoulder 

internal rotation ROM was significantly related to the passive shoulder sleeper internal 

rotation ROM. However, neither was significantly related with measures of posterior 

shoulder flexibility.  The sleeper internal rotation ROM measure was proposed by Burkhart 

et al. (2003) to isolate humeral IR from scapular motion by stabilizing the scapula with the 

table (Burkhart, Morgan et al. 2003).  This measurement attempts to isolate the posterior 

capsule and RTC.  The supine internal rotation ROM measure also attempts to isolate 

humeral rotation with stabilization of the coracoid process of the scapula; however, it may 

not isolate the posterior structures as well.  The posterior shoulder flexibility assessment was 
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determined by Tyler et al. (2000) to be a reliable measure of assessing the posterior capsule 

of the shoulder.  They established a relationship between decreases in shoulder internal 

rotation and increases in the posterior shoulder tightness.  They posited that for every 4º of IR 

loss there would be 1 cm of posterior shoulder tightness (Tyler, Nicholas et al. 2000).  We, 

however, did not find any significant relationships between the posterior shoulder flexibility 

measure and the shoulder sleeper internal rotation ROM measurement.  The values we used 

in the correlation analysis were not side-to-side differences but the actual values obtained on 

the dominant arm; therefore, body size may have influenced the measure as well as its 

validity.  In order to use those values, it may be beneficial to normalize to body height or 

length of humerus.  When side-to-side differences of posterior shoulder flexibility were 

correlated with scapular tipping ROM, still no significant correlations were found (p < .05).  

The lack of strong significant correlations could be due to sampling size which could have 

affected the statistical power of the research design.  Downar and Sauers (2005) collected 

ROM measures on professional baseball players including shoulder internal rotation ROM 

and posterior shoulder flexibility.  Their results failed to reveal significant differences 

between the throwing and the non-throwing arm.  They suggested this was due to low 

statistical power.  They also found no significant relationships between the clinical measures 

of shoulder mobility (Downar and Sauers 2005).  The conflicting results concerning the 

relationship between clinical measures of shoulder mobility warrants further investigation.   

Clinically, we use ROM measures to identify potential risk factors for injury.  A 

question arises as to which measure of posterior shoulder tightness is best.  Our results 

indicated a stronger relationship with the shoulder internal rotation ROM and shoulder 

sleeper internal rotation ROM.  However, it may be important to assess multiple measures of 
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internal rotation in overhead athletes because these different measures may result in 

evaluation of different structures.  

 

LIMITATIONS 

     The subjects were normal healthy volunteers; therefore, caution must be used in 

extrapolating these findings to other populations such as an injured population or overhead 

athletes.  In addition, the velocity of the movement during testing was much slower than 

normal velocities during sport activity or activities of daily living.  Again, caution must be 

used in extrapolating these findings to athletic activity.    

Another limitation was that skin-based sensors provide only a representation of 

scapular and humeral motion.  However, the method has been validated and shown to be 

reliable within humeral elevation ranges from 30º to 120º (Ludewig and Cook 2000).  

Variability in findings due to skin artifact, selection of bony landmarks, plane and angle of 

elevation, as well as Euler angle decomposition have been suggested as reasons for 

differences in scapular motion. 

 The spread of ROM values may have suppressed the correlation values (spread of 

shoulder internal rotation ROM: 37.3º-79.5º; spread of shoulder sleeper internal rotation 

ROM: 25.7º-60.3º).  Side-to-side differences for the shoulder sleeper internal rotation ROM 

ranged from 3º to 17.7º.  Tyler et al. (2000) indicated that greater posterior shoulder tightness 

in the throwing arm compared to non-throwing arm ranges from 2-7 cm.  However, 

statistically significant differences have been found at 2.1 cm(Tyler, Nicholas et al. 2000).  

Our values ranged from 0.4 to 4 cm.  Again, a greater sampling size may have provided with 
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a greater spread between the ROM values created stronger relationships between the 

variables.   

 

FUTURE RESEARCH 

     Future research should seek to clarify the role of humeral rotation and scapular 

kinematics. Clinically, humeral rotation and scapular kinematics are thought to be important 

to shoulder function.  The relationship of humeral rotation and scapular kinematics as well as 

their influence on the development of shoulder pain is not understood.   

 

CONCLUSION 

This study is the first to assess the relationship between clinical measures of shoulder 

ROM and scapular tipping ROM during functional tasks.  Decreased shoulder ROM was 

related to increased scapular tipping ROM.  Both decreased shoulder ROM and increased 

scapular tipping during shoulder rotation has been associated with shoulder pain.   
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University of North Carolina-Chapel Hill 
Consent to Participate in a Research Study  
Adult Subjects  
Biomedical Form 
________________________________________________________________________ 
 
IRB Study #____05-EXSS-789______________ 
Consent Form Version Date: ___01/04/06_____  
 
Title of Study: The Relationship between Humeral Rotation and Anterior/Posterior Tipping 
of the Scapula. 
 
Principal Investigator: Laura E. Conner, ATC, LAT 
UNC-Chapel Hill Department: EXSS 
UNC-Chapel Hill Phone number:       
Email Address: leconner@email.unc.edu   
Co-Investigators: William E. Prentice, PhD, ATC, LAT; Charles Thigpen MA, PT, ATC, LAT; 
Jason Mihalik, MA, CAT, ATC, LAT. 
Faculty Advisor:  Darin Padua, PhD, ATC, LAT  
Funding Source: none 
 
Study Contact telephone number:  Laura E. Conner, ATC, LAT 
Study Contact email:  leconner@email.unc.edu  
_________________________________________________________________ 
  
What are some general things you should know about research studies? 
You are being asked to take part in a research study.  To join the study is voluntary.  
You may refuse to join, or you may withdraw your consent to be in the study, for any reason. 
 
Research studies are designed to obtain new knowledge that may help other people in the 
future.  You may not receive any direct benefit from being in the research study. There also 
may be risks to being in research studies. 
 
Deciding not to be in the study or leaving the study before it is done will not affect your 
relationship with the researcher, your health care provider, or the University of North 
Carolina-Chapel Hill.  If you are a patient with an illness, you do not have to be in the 
research study in order to receive health care.  
 
Details about this study are discussed below.  It is important that you understand this 
information so that you can make an informed choice about being in this research study.  
You will be given a copy of this consent form.  You should ask the researchers named above, 
or staff members who may assist them, any questions you have about this study at any time. 
                                    
What is the purpose of this study?  
The mechanics of shoulder blade motion during arm elevation has been indicated in the 
development of shoulder pain.  Often, the shoulder blade does not function ideally creating 
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faulty mechanics causing a risk factor for shoulder pain.  Little is known about the 
relationship between arm rotation and shoulder blade motion.  No research to date has 
explored the behavior of the shoulder blade during arm rotation. 
 
Therefore, the purpose of this study is to examine shoulder blade motion during a rotation 
activity.   
 
This will be accomplished by first assessing your total arm rotation range of motion 
including external rotation, and two internal rotation measurements.  External rotation is 
described as rotation of the hand backwards in a position of 90 degrees of arm elevation to 
the side with elbow bent to 90 degrees.  Internal rotation is described as rotation of the hand 
forward in a position of 90 degrees of arm elevation to the side with elbow bent to 90 
degrees.  During the testing session you will be asked to perform a rotation task, flexion task 
and a functional diagonal pattern 7 times.  Your shoulder blade motion will be monitored 
during these tasks. 
 
You are being asked to participate in this study because you represent the general student 
population. 
     
Are there any reasons you should not be in this study? 
You should not be in this study if you  

• Suffer any shoulder abnormalities that cause pain during testing 
• Have undergone shoulder surgery within the last year  
• Perform formal rehabilitation for shoulder injury with in the last year 
• Sustained a glenohumeral joint dislocation or subluxation within the 

past year 
• Have missed more than 2 weeks of activity because of an upper 

extremity injury during the past year. 
 

How many people will take part in this study? 
If you decide to be in this study, you will be one of approximately 60 people in this research 
study. 
 
How long will your part in this study last?  
Testing will take approximately 75 minutes. 
 
What will happen if you take part in the study? 
During testing, you will be asked to do the following: 

• You will be asked to report to the Motor Control Laboratory in Fetzer 
Gym. 

• You will be briefed on the testing procedures 
• You will be asked to read and sign an informed consent. 
• If you have questions or concerns, at this time those will be discussed. 
• You will be asked to lie on a treatment table in order to take several 

range of motion assessments with a goniometer, which is a tool that 
measures range of motion. 
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• You will be asked to relax. 
• Your arm will be moved into the ranges of motion to be assessed. 
• Three trials will be done of the range of motion assessment. 
• You will be given 5 minutes to perform any self-selected stretches 

before you begin motion testing. 
• Sensors will be placed on your arm just above your elbow, right on the 

tip of your shoulder and upper back right below your neck using double-
sided adhesive tape.  These sensors track arm movement. 

• You will be seated or standing depending on the task.   
• You will be instructed on the task and given three practice trials. 
• You will be asked to perform several tasks including arm rotation, 

shoulder elevation and a diagonal pattern of movement.  
• You will perform each task 7-10 times with 1 minute of rest in between 

each set. 
 

Range of Motion Testing 
You will be asked to wear comfortable pants, a sports bra or tank if you are female or no shirt 
if you are male.  You will be asked to lie face up on a treatment table.  Your arm will be 
placed in a 90/90 position (90 degrees of arm elevation and elbow bent to 90 degrees).  You 
will be asked to relax and your arm will be taken through the available range of motion.  This 
procedure will be repeated 3 times. 

Shoulder Blade Motion 

Females will be asked to wear a sports bra and/or a tank and comfortable pants.  Males will 
be asked to remove their shirt for testing and to wear comfortable pants.  You will have 
sensors attached to your neck, shoulder blade and arm that will track movement patterns.  
You will be asked to perform a series of tasks while sitting or standing in place.  You will be 
instructed in the movement patterns and be allowed to practice 3 times to learn the motion, in 
order to become comfortable with the testing procedure.  You will perform each task 7 times.   
  
 
What are the possible benefits from being in this study? 
Research is designed to benefit society by gaining new knowledge.  There is no direct benefit 
from participating in this study.  Copies of your shoulder range of motion and shoulder blade 
motion will be available to you to correct any deficiencies.  The results of this study may aid 
the sports medicine community in understanding underlying causes of shoulder pain and in 
developing appropriate rehabilitation programs for individuals at risk to shoulder pain.   
 
You may benefit from receiving information about your movement patterns and your range 
of motion.  You will be able to ask the investigator questions about your shoulder motion in 
order to correct any problems. 
 

 

What are the possible risks or discomforts involved with being in this study?   
 

• Possibility of muscle soreness in your upper extremity 
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• Possibility of skin irritation from adhesive 
• In addition, there may be uncommon or previously unknown risks 

that might occur.  You should report any problems to the 
researchers. 

 
What if we learn about new findings or information during the study?  
You will be given any new information gained during the course of the study that might 
affect your willingness to continue your participation.   
 
How will your privacy be protected?   
Your privacy is important.  Your identifying information will not be seen by anyone except 
the principal investigator.  We will protect your privacy in the following ways: 

o All records will be stored either on a secure computer or in a locked filing cabinet in 
the Sports Medicine Research Laboratory or the Motor Control Research Laboratory. 

o The consent form will be the only piece of identifying information from you.  You 
will be assigned a code number that will be attached to all other data.   

 
No subjects will be identified in any report or publication about this study. Although every 
effort will be made to keep research records private, there may be times when federal or state 
law requires the disclosure of such records, including personal information.  This is very 
unlikely, but if disclosure is ever required, UNC-Chapel Hill will take steps allowable by law 
to protect the privacy of personal information.  In some cases, your information in this 
research study could be reviewed by representatives of the University, research sponsors, or 
government agencies for purposes such as quality control or safety.    

 
What will happen if you are injured by this research? 
All research involves a chance that something bad might happen to you.  This may include 
the risk of personal injury. In spite of all safety measures, you might develop a reaction or 
injury from being in this study. If such problems occur, the researchers will help you get 
medical care, but any costs for the medical care will be billed to you and/or your insurance 
company. The University of North Carolina at Chapel Hill has not set aside funds to pay you 
for any such reactions or injuries, or for the related medical care. However, by signing this 
form, you do not give up any of your legal rights. 
 
What if you want to stop before your part in the study is complete? 
You can withdraw from this study at any time, without penalty.  The investigators also have 
the right to stop your participation at any time. This could be because you have had an 
unexpected injury, or have failed to follow instructions, or because the entire study has been 
stopped. 
 
Will you receive anything for being in this study? 
You will not receive anything for taking part in this study. 
 
Will it cost you anything to be in this study? 
It will not cost you anything in addition to routine transportation costs to the Motor Control 
Research Laboratory in Fetzer Gym. 
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What if you are a UNC student? 
You may choose not to be in the study or to stop being in the study before it is over at any 
time.  This will not affect your class standing or grades at UNC-Chapel Hill.  You will not be 
offered or receive any special consideration if you take part in this research. 
 
What if you are a UNC employee? 
Taking part in this research is not a part of your University duties, and refusing will not affect 
your job.  You will not be offered or receive any special job-related consideration if you take 
part in this research.   

 
What if you have questions about this study? 
You have the right to ask, and have answered, any questions you may have about this 
research. If you have questions, or if a research-related injury occurs, you should contact the 
researchers listed on the first page of this form. 
 
What if you have questions about your rights as a research subject? 
All research on human volunteers is reviewed by a committee that works to protect your 
rights and welfare.  If you have questions or concerns about your rights as a research subject 
you may contact, anonymously if you wish, the Institutional Review Board at 919-966-3113 
or by email to IRB_subjects@unc.edu. 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
Subject’s Agreement:  
 
I have read the information provided above.  I have asked all the questions I have at this time.  
I voluntarily agree to participate in this research study. 
 
_________________________________________   _________________ 
Signature of Research Subject     Date 
 
_________________________________________ 
Printed Name of Research Subject 
 
_________________________________________  _________________ 
Signature of Person Obtaining Consent   Date 
 
_________________________________________ 
Printed Name of Person Obtaining Consent 
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Subject Information Form 
 

Subject Number:  ________ 
 
Circle One:  Right handed      Left handed 
 
Age:  _______     Height:  ________  Weight:  _________ 
 
Previous Experience: 
 
Are you actively participating in competitive/collegiate overhead athletics such as volleyball, 

baseball/softball, swimming, or lacrosse?   Yes  No 

Last time competed in an overhead sport:   ______________  (Month/Year) 
 
 In what sport?    
 
Medical History: 

Do you currently have any pain when you lift your arm overhead? Yes No  

Are you currently being treated for any shoulder problems?  Yes  No 

 Have you been treated for a shoulder injury in the past year? Yes No 

 

Range of Motion Trial 1 Trial 2 Trial 3 Mean 
     
Supine Flexion (Flex) 
 

    

Supine Passive Internal 
Rotation (IR) 

    

Supine Passive External 
Rotation (ER) 

    

Sleeper IR: Dominant 
(SIRd) 

    

Sleeper IR: Non-
dominant (SIRnd) 

    

Posterior Capsule: 
Dominant (PCd) 

    

Posterior Capsule: Non-
dominant (PCnd) 

    

 
Stylus      Length: _____  RMS: ______ 
Humerus Length: _____  RMS: ______ 
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Appendix E 
 

Raw Data 
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Passive Rotation Task 
 
Subject Flexion IR ER Total Arc SIRd Sirnd PCd PCnd diff maxIR_hflex maxIR_hrot

1 172 44 117.3 161.3 45.3 60.7 28.5 22.8 5.7 -4.9617 63.5606
2 165.7 60.7 131.7 192.4 52 59.3 26.8 20.5 6.3 -4.9726 82.0439
3 171.7 72.3 110 182.3 56.7 61.3 27 28.3 -1.3 -111.7902 60.2289
4 168.7 52.7 109.3 162 49.3 61.3 24.8 23.5 1.3 -7.1945 85.4576
5 155.7 37.3 120 157.3 28.7 42.3 22 24.5 -2.5 -8.6485 71.2561
6 169.7 45 121 166 25.7 25.3 24.8 25.2 -0.4 -14.6491 37.0079
7 162.3 54 110 164 40 46 31.8 30.7 1.1 1.8848 70.3569
8 171.3 49.7 129.7 179.4 49.7 8 31 21.7 9.3 -28.4438 82.1019
9 168.3 40.3 147.3 187.6 51 58.3 25.7 23.3 2.4 6.2749 61.6500

10 163.3 48.7 116.7 165.4 59.3 44.3 25.5 18.7 6.8 -8.3821 67.7206
11 169 60.7 124 184.7 42.3 51.7 20.3 19.3 1 -15.9171 80.3385
12 159 46 114 160 43.7 52.7 24 23.3 0.7 3.0436 84.9914
13 160 38 111 149 32 37.3 20.7 17.3 3.4 -0.0409 43.5057
14 165.3 67.7 126.7 194.4 60.3 69.3 25.7 23.8 1.9 -1.8828 47.2954
15 168.7 54.3 128.3 182.6 45.3 50 22.7 16.8 5.9 -13.0945 45.9589
16 170.3 63.3 129.3 192.6 49.7 35.3 17.3 21.3 -4 0.5698 75.8294
17 174 77.7 149.3 227 59 53.7 19.5 14 5.5 -2.4022 48.5501
18 157.7 59 124 183 40 57.7 31 29.3 1.7 -7.4158 40.8362
19 171.7 67 117 184 55.7 35.7 24.3 20.7 3.6 -9.3215 44.4440
20 166.7 28.7 99.3 128 28.7 31.7 27.2 28.2 -1 5.5235 105.9426

 
maxIR_er maxIR_ur maxIR_tip maxER_hflex maxER_hrot maxER_er maxER_ur maxER_tip

9.5084 -1.9807 14.3410 4.4361 50.5365 10.1309 -7.6928 24.6875
8.4354 -4.0892 14.3490 14.5837 84.7379 15.2957 1.4625 15.7207
2.5741 -12.0738 -8.0296 129.2002 94.2323 14.1210 -3.6196 -11.6828

13.1823 -10.3419 32.4250 14.6416 74.9924 7.6011 -7.7856 11.1541
4.2457 -3.0639 5.6134 10.1463 71.9638 17.6275 3.9755 13.7156

-2.7653 7.2515 6.4405 20.2144 93.9181 6.7037 12.0950 11.3456
9.2373 -6.6332 -4.6181 19.9155 80.3197 -0.8545 -8.9193 -14.9903
8.4561 8.0248 11.1473 38.8173 80.8596 22.2745 -4.4457 31.5928

-10.3940 16.7894 8.0441 -0.0748 97.9691 16.1354 11.6968 15.8877
2.6902 -0.4319 3.2101 17.5481 69.1604 8.8725 -5.3969 7.2207
8.8964 -3.6337 15.1349 17.6188 88.5663 13.5665 -6.1946 26.5458

-8.7623 26.0863 16.9510 2.8317 72.9922 16.4578 25.8786 10.0358
1.4541 8.4060 5.1220 -14.8453 98.2728 4.9139 12.7273 -1.2900
3.0889 -1.8041 -5.2901 -5.1917 91.0720 4.7662 8.6570 18.3849

-2.8864 6.9747 9.9624 -7.5431 75.2948 -3.0789 6.4203 1.8843
-5.4740 19.1475 6.2197 16.7546 79.5122 5.0210 9.5374 3.6881
4.5635 -1.1442 -6.3318 1.6421 105.7791 11.3733 14.6821 10.8696
2.9659 0.6582 1.6573 17.8373 80.8372 9.7010 13.6840 9.1799

-1.4474 5.4970 5.2490 7.7975 82.6919 6.3239 12.2085 6.7113
13.5099 6.8643 11.4606 2.3205 17.7426 15.5272 2.9308 12.8087
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Active Rotation Task 
 
Subject Flexion IR ER total arc SIRd Sirnd PCd PCnd diff maxIR_hflex maxIR_hrot

1 172 44 117.3 161.3 45.3 60.7 28.5 22.8 5.7 1.3101 50.4189
2 165.7 60.7 131.7 192.4 52 59.3 26.8 20.5 6.3 -0.2485 36.8685
3 171.7 72.3 110 182.3 56.7 61.3 27 28.3 -1.3 -29.5117 21.3768
4 168.7 52.7 109.3 162 49.3 61.3 24.8 23.5 1.3 -3.0829 65.2753
5 169.7 45 121 166 25.7 25.3 24.8 25.2 -0.4 -7.3522 47.2921
6 171.3 49.7 129.7 179.4 49.7 8 31 21.7 9.3 -14.9346 69.6630
7 168.3 40.3 147.3 187.6 51 58.3 25.7 23.3 2.4 6.1323 60.0596
8 163.3 48.7 116.7 165.4 59.3 44.3 25.5 18.7 6.8 -13.9484 50.0101
9 169 60.7 124 184.7 42.3 51.7 20.3 19.3 1 -22.1032 50.6940

10 170.3 56.1 119.3 175.4 46 42.7 26.7 23.3 3.4 3.4651 60.7680
11 159 46 114 160 43.7 52.7 24 23.3 0.7 1.7811 90.3623
12 160.7 51.7 108.3 160 33.7 33.7 22.3 26.3 -4 10.9087 63.7271
13 160 38 111 149 32 37.3 20.7 17.3 3.4 -12.5072 76.8351
14 165.3 67.7 126.7 194.4 60.3 69.3 25.7 23.8 1.9 2.1064 75.5022
15 168.7 54.3 128.3 182.6 45.3 50 22.7 16.8 5.9 -7.9360 28.1124
16 170.3 63.3 129.3 192.6 49.7 35.3 17.3 21.3 -4 3.6421 72.2818
17 174 77.7 149.3 227 59 53.7 19.5 14 5.5 -16.6995 39.7088
18 157.7 59 124 183 40 57.7 31 29.3 1.7 -0.4548 41.1383
19 171.7 67 117 184 55.7 35.7 24.3 20.7 3.6 4.7033 66.4918
20 166.7 28.7 99.3 128 28.7 31.7 27.2 28.2 -1 -8.0383 46.4846

 
maxIR_er maxIR_ur maxIR_tip maxER_hflex maxER_hrot maxER_er maxER_ur maxER_tip

11.4090 3.9632 22.0722 7.3453 44.9240 11.5604 -6.1294 22.0499
-0.1525 0.5806 6.7683 15.0968 77.8503 20.5773 -2.7778 17.8598
10.3012 2.9157 -11.9316 -8.4792 84.9802 3.7712 -3.4861 -5.6686

-27.4850 2.5687 34.4307 20.2616 79.0522 316.0393 -15.9776 49.8079
-2.9281 10.8322 6.6164 17.5680 72.3961 6.8385 18.8846 7.0869
7.4436 2.1283 12.8477 11.4346 64.3115 16.8447 -1.6444 22.6656

-7.0384 16.2147 14.3713 -6.7061 84.8238 10.7353 10.8396 11.7998
4.3932 -1.7616 -0.0765 21.0738 64.1296 7.9490 -6.7504 17.4240
2.0165 1.8066 -0.3945 22.5484 79.1599 12.6674 -8.1333 28.5944
7.1204 0.2339 17.9378 26.3955 59.8740 9.1661 -6.3748 17.7622

-9.5042 24.4943 12.7985 4.8279 73.0240 15.0551 24.1849 14.7898
8.5762 -21.2086 5.8167 -38.6166 70.3899 2.8592 -21.2839 11.5765

-1.5791 12.6761 9.9512 -0.8482 66.6547 0.4413 9.3514 8.7552
2.0788 11.3251 5.4924 -5.0210 88.1488 2.0825 6.1654 15.7714
2.6827 2.5574 -1.5018 16.7306 78.1110 -1.7907 14.3638 8.0690

-6.4603 18.5340 6.3117 9.0197 78.7422 5.9470 15.4628 9.7800
3.7486 3.1490 -1.8576 16.6705 109.9545 12.0912 9.1824 4.8818
5.4782 8.4417 2.7688 17.3985 84.5361 6.3427 18.0094 14.3486
2.5217 21.1356 10.6957 -1.5775 72.4294 2.4536 11.3022 13.8205

-3.2447 -8.3599 2.9837 -0.3522 82.9718 -20.7103 -8.7732 18.7796
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Functional Diagonal Task 
 

Subject Flexion IR ER 
Total 
Arc SIRd Sirnd PCd PCnd diff d90_flex d90_rot 

1 172 44 117.3 161.3 45.3 60.7 28.5 22.8 5.7 90.8822 -94.0903
2 155 40 109 149 42.7 51.3 30.3 31 -0.7 90.9642 -15.7224
3 165.7 60.7 131.7 192.4 52 59.3 26.8 20.5 6.3 90.6458 -33.3216
4 171.7 72.3 110 182.3 56.7 61.3 27 28.3 -1.3 90.9060 -4.6782
5 168.7 52.7 109.3 162 49.3 61.3 24.8 23.5 1.3 91.1159 -50.7607
6 155.7 37.3 120 157.3 28.7 42.3 22 24.5 -2.5 90.0011 -39.0441
7 169.7 45 121 166 25.7 25.3 24.8 25.2 -0.4 91.0812 -32.5397
8 168.3 40.3 147.3 187.6 51 58.3 25.7 23.3 2.4 90.9126 -35.5175
9 163.3 48.7 116.7 165.4 59.3 44.3 25.5 18.7 6.8 101.0713 12.2654

10 169 60.7 124 184.7 42.3 51.7 20.3 19.3 1 90.4089 -50.9017
11 170.3 56.1 119.3 175.4 46 42.7 26.7 23.3 3.4 90.9230 -76.3348
12 159 46 114 160 43.7 52.7 24 23.3 0.7 90.3575 -43.4554
13 160.7 51.7 108.3 160 33.7 33.7 22.3 26.3 -4 90.9023 91.3151
14 160 38 111 149 32 37.3 20.7 17.3 3.4 90.9588 -61.7332
15 165.3 67.7 126.7 194.4 60.3 69.3 25.7 23.8 1.9 89.8094 9.8407
16 168.7 54.3 128.3 182.6 45.3 50 22.7 16.8 5.9 90.5137 -139.3295
17 170.3 63.3 129.3 192.6 49.7 35.3 17.3 21.3 -4 90.6753 -83.8770
18 174 77.7 149.3 227 59 53.7 19.5 14 5.5 91.0269 -21.0651
19 157.7 59 124 183 40 57.7 31 29.3 1.7 100.6432 -40.2928
20 171.7 67 117 184 55.7 35.7 24.3 20.7 3.6 100.2396 -84.3844

 
d90_er d90_ur d90_tip dMAX_flex dMAX_rot dMAX_er dMAX_ur dMAX_tip

0.6206 2.4948 15.1580 122.6330 -78.4153 19.9039 4.0304 42.7899
12.5527 0.6139 35.0889 97.4403 -11.6633 15.0088 -0.6251 41.7352
5.4578 4.7182 14.2738 125.9322 -15.2952 21.0975 -6.4939 23.5297

-2.3963 -7.0612 16.1896 113.4000 -12.2930 -9.9417 -3.4465 26.6892
3.1607 1.3848 32.1635 105.9890 -18.0887 15.2260 -2.8864 46.2607

24.2670 6.1899 28.7848 93.2257 -26.9496 29.9211 4.9609 32.7883
-2.9382 33.3161 -3.5933 129.5359 -19.8975 -6.3052 23.8074 10.3831
5.1939 32.4836 10.9257 109.2589 -9.3739 11.5035 41.2022 23.5689
3.6235 3.0775 31.2868 134.7223 51.6251 7.7597 -9.9768 49.8043

-9.5615 8.2218 19.3266 124.8083 -23.2457 9.9186 8.9546 36.5808
-7.8003 3.2109 19.8112 122.4429 -44.4312 8.5243 -7.4705 32.4776
-8.3944 32.5484 10.7669 111.2919 -33.1406 -4.9655 36.2732 26.0407
20.5636 -19.1973 -1.7657 152.6257 50.2138 13.0486 -37.9222 10.4510
-8.7772 9.8052 9.1693 108.2636 -32.6787 -4.9320 17.7153 15.5978
17.5397 26.2949 11.2237 95.2307 25.4281 19.8594 29.1259 18.1319
-7.0254 17.7753 -5.0651 127.8971 -99.4294 5.5772 39.4544 1.6669

-12.9195 16.1611 -2.5822 143.9770 -53.5405 -6.8024 39.7700 11.0644
6.6878 29.5447 -3.9528 113.7967 2.3278 15.2949 38.6685 13.0735

-4.4673 33.3830 6.9976 119.5592 -8.3075 1.1881 29.2750 16.0835
-14.7914 27.5768 2.0607 132.5328 -47.9207 -2.8721 34.6335 23.9787
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Flexion Task 
 
Subject Flexion IR ER Total Arc SIRd Sirnd PCd PCnd diff flex90_flexh flex90_hrot

1 172 44 117.3 161.3 45.3 60.7 28.5 22.8 5.7 91.1306 -77.1737
2 155 40 109 149 42.7 51.3 30.3 31 -0.7 90.6395 -25.1905
3 165.7 60.7 131.7 192.4 52 59.3 26.8 20.5 6.3 90.3349 -25.3928
4 171.7 72.3 110 182.3 56.7 61.3 27 28.3 -1.3 90.1138 -3.5749
5 168.7 52.7 109.3 162 49.3 61.3 24.8 23.5 1.3 90.9521 -44.6558
6 155.7 37.3 120 157.3 28.7 42.3 22 24.5 -2.5 90.6860 -4.2846
7 169.7 45 121 166 25.7 25.3 24.8 25.2 -0.4 90.8442 -52.5417
8 162.3 54 110 164 40 46 31.8 30.7 1.1 90.2409 -101.7045
9 171.3 49.7 129.7 179.4 49.7 8 31 21.7 9.3 90.4480 -73.4047

10 168.3 40.3 147.3 187.6 51 58.3 25.7 23.3 2.4 90.3613 -9.7377
11 163.3 48.7 116.7 165.4 59.3 44.3 25.5 18.7 6.8 90.4245 -26.4460
12 169 60.7 124 184.7 42.3 51.7 20.3 19.3 1 90.4681 -49.2290
13 170.3 56.1 119.3 175.4 46 42.7 26.7 23.3 3.4 90.9391 -62.2809
14 159 46 114 160 43.7 52.7 24 23.3 0.7 91.3287 -55.0392
15 160 38 111 149 32 37.3 20.7 17.3 3.4 91.0584 99.5711
16 165.3 67.7 126.7 194.4 60.3 69.3 25.7 23.8 1.9 90.9666 -71.2552
17 170.3 63.3 129.3 192.6 49.7 35.3 17.3 21.3 -4 90.9217 -81.6987
18 168.3 79.7 123.7 203.4 57 55 20 22 -2 91.2600 -32.7906
19 157.7 59 124 183 40 57.7 31 29.3 1.7 91.4009 -54.5000
20 171.7 67 117 184 55.7 35.7 24.3 20.7 3.6 91.2159 -82.7348
21 166.7 28.7 99.3 128 28.7 31.7 27.2 28.2 -1 90.1781 -42.0699

 
flex90_er flex90_ur flex90_tip flex120_hflex flex120_hrot flex120_er flex120_ur flex120_tip

-4.5169 8.4607 20.1468 121.0126 -78.0334 -0.7320 13.5212 36.2520
-7.8247 3.7823 19.1359 120.3629 -25.8040 -8.3969 -5.5475 36.4133

-10.2099 3.4997 7.8250 120.4821 -36.8101 -5.9468 -0.3055 12.0233
5.4689 -14.5041 16.1049 120.1406 8.0968 6.0287 -11.7852 21.7262

-3.7069 7.7111 36.3665 120.6377 -43.4487 -1.7432 8.7214 54.9982
1.0495 10.6053 37.4009 120.6774 -5.2128 4.8519 7.0981 54.9300

-8.5038 31.7774 -8.9228 120.8233 -58.5631 -10.6910 36.8375 -4.2152
3.7532 7.6516 25.6334 120.0167 -96.6841 5.6120 21.8368 29.0605

-7.4438 7.1001 20.1313 120.4313 -75.1125 -6.2843 5.5595 30.9920
-14.1468 28.3551 10.2930 120.2185 -6.1868 -16.4282 36.5329 13.6262

-6.9632 2.8924 29.2464 120.2984 -24.5660 -11.2697 3.5901 34.3674
-7.4848 11.0771 16.7480 120.4295 -46.0347 -4.9835 15.9636 28.8199

-10.3599 8.5418 13.9829 131.2317 -67.8186 -10.8431 6.4997 27.1002
-18.7392 33.5203 5.8064 121.2605 -52.8309 -21.9777 42.2432 10.5521
18.9734 -11.7259 -0.8473 120.6853 96.5158 20.6642 -24.0195 0.4676

-18.4417 26.8376 12.7182 121.1054 -73.4357 -20.0198 39.4436 19.9686
-17.6872 15.7857 -3.3102 120.8317 -83.8872 -22.6756 25.4747 0.8642
-10.5729 22.4985 -5.3658 120.9646 -37.2037 -15.0904 28.6633 -2.1612
-12.9676 21.6625 3.8124 121.2036 -51.0727 -16.6470 27.5955 5.7629
-21.3754 22.9466 -4.1883 121.4992 -80.3250 -23.8977 31.2312 -3.2443

6.4494 -17.6537 3.2623 119.8383 -46.5814 1.9082 -27.5645 12.0126
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flexMAX_hflex flexMAX_hrot flexMAX_er flexMAX_ur flexMAX_tip 

151.1855 -83.3044 10.4077 16.9206 61.2503 
132.5669 -26.4775 -7.9881 -11.8496 44.1065 
163.7173 -49.9251 2.6527 -12.8679 24.4494 
150.4647 10.6766 9.8505 -1.8213 26.1577 
135.0939 -40.2149 -0.3265 6.1892 65.2012 
142.6651 -9.1218 9.9917 -0.5199 65.2938 
144.7040 -58.3686 -10.3130 36.1057 6.2657 
143.7593 -98.8796 6.3981 30.5473 28.5360 
159.0015 -63.2502 1.3740 -10.5720 50.3806 
151.4865 3.7087 -9.9766 53.4239 25.7424 
151.6972 -17.8693 -9.6818 -2.0019 47.5193 
158.7690 -36.3133 2.8406 11.9164 50.7544 
169.4073 -55.8089 -5.9176 -6.6083 43.6494 
153.6024 -45.7899 -13.5540 46.9126 30.0988 
167.7735 85.1164 22.3495 -36.6095 11.7931 
145.2961 -60.2556 -11.5941 48.8193 37.5259 
169.4182 -78.0417 -14.1047 47.8028 18.8011 
160.1478 -37.5968 -11.8504 47.5775 18.3373 
155.7307 -51.7492 -12.7201 28.1784 21.2316 
154.4820 -77.9083 -20.2585 36.7928 16.4114 
132.9575 -86.9474 -7.0914 -34.7268 23.1548 
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