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ABSTRACT

NATHAN MONTGOMERY:  Epigenetic Defects in Stem Cells Deficient in Polycomb
Group Function

(Under the direction of Terry Magnuson, Ph.D.)

 During development, the expression states of many genes must be maintained

through cell divisions in order to ensure lineage-, time-, and dose-appropriate patterns of

gene expression.  This transcriptional memory is independent of permanent DNA

sequences changes and instead involves reversible epigenetic mechanisms.  Polycomb

Group (PcG) proteins represent a conserved family of developmental regulators that

mediate heritable transcriptional silencing by covalently modifying histone proteins.

Here, we demonstrate that mutations in the PcG gene Embryonic ectoderm development

(Eed) produce a variety of epigenetic defects in mouse embryos and stem cells.  EED is a

noncatalytic subunit of Polycomb Repressive Complex 2, a 600 kDa complex containing

a number of proteins, including the histone H3-lysine 27 (H3K27) methyltransferase

EZH2.  Consistent with the role of PcG genes in transcriptional memory, Eed mutant

embryos and trophoblast stem cells have defects in genomic imprinting, a process by

which an allele’s expression is dependent upon the gender of the parent from which it

was inherited.  To determine whether these gene expression defects revealed a required

role for EED in PRC2 function, we characterized the status of H3K27 methylation in Eed

mutant stem cells.  H3K7 can be mono-, di-, or trimethylated (H3K27me1, H3K27me2,

H3K27me3, respectively), but it has been unclear which of these marks are mediated by
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PRC2.  Here, we demonstrate that EED is required for all three methylation states.

Additionally, although EED is present as four distinct isoforms in mammalian cells, these

isoforms are not necessary for H3K27 methylation.  Instead, EED’s core WD-40 motifs

and histone binding domain alone are sufficient to mediate histone methylation.  Finally,

although the histone methylation defects in Eed mutant stem cells appear to be global, the

imprinted expression defects are restricted to DNA hypomethylated, extraembryonic

tissues  and to genes that are imprinted normally in DNA methyltransferase 1 (Dnmt1)

mutant placentas.  Together, these results suggest that histone methylation and DNA

methylation may have non-overlapping roles in imprinted gene regulation.
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PREFACE

The trajectory of scientific understanding is often defined by landmark

achievements punctuating periods of far more incremental progress.  I have been

fortunate to be a graduate student in genetics at an extraordinary time in the field’s

history, in the immediate aftermath of biology’s greatest achievement since cracking

life’s triplet code.  The first working drafts of the human genome were published the

same month that I interviewed for admission to the Curriculum in Genetics and

Molecular Biology at UNC.  These genetic blueprints to life have revolutionized modern

biology, and I have been fortunate to have had a front row view of the advances that have

followed their publication.

Ironically, during the same era when the amount of curated genomic sequence in

public databases was increasing logarithmically, a parallel movement had begun to

unravel the molecular mysteries underlying non-DNA based mechanisms of heredity, a

field known as epigenetics.  Eighteen months before I started my graduate training, Dr.

Brian Strahl, who was then a postdoctoral researcher at the University of Virginia but

who would later become a member of my thesis committee, published a landmark paper

with Dr. David Allis, in which they proposed that covalent modifications on the histone

proteins that package our DNA function as a heritable, regulatory code, instructing cells

how to respond to the associated genes.  Seven months later and less than a year before I

arrived at UNC, the molecular players responsible for this code began to be identified
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when Dr. Thomas Jenuwein and his colleagues in Vienna reported the identification of

the first enzyme, SUV39H1, capable of adding methyl groups to histone tails.

Hence, I started my graduate studies at an exciting time, and already, I had a

considerable interest in histone biology.  As an undergraduate, I had studied the yeast

Chromatin Assembly Factor-I (CAF-I), which is responsible for loading histones onto

DNA to produce nucleosomes.  Excited by Jenuwein’s results as well as a flurry of

papers that followed, it was a relatively easy decision to focus my graduate studies on

epigenetics.  It was clearly a field poised to make important progress on fundamental

biological questions.

Whereas my decision to study epigenetics was largely a conscious calculation

about the future, my decision to focus specifically on the mouse Polycomb Group gene

Eed was probably more a consequence of its past.  Perhaps no regulator of epigenetic

phenomena in the mouse has a richer history than Eed.  The gene was first uncovered by

Drs. Bill and Lee Russell, who identified deletions encompassing Eed as part of specific

locus testing at Oak Ridge National Laboratory.  Later, Dr. Eugene Rinchik generated

point mutations that failed to complement those deletions, and in 1996, a postdoctoral

researcher in the Magnuson laboratory, Dr. Armin Schumacher, positionally cloned the

gene.  In between, work by Dr. Salome Waelsch and by Dr. Cindy Faust, another

postdoctoral researcher in the Magnuson laboratory, began to reveal the fascinating

biology uncovered by these mutations.  In short, Eed is a rare mouse gene in that it was

identified by classical genetic approaches more commonly employed in Drosophila

laboratories.  That history appealed greatly to me, and I was more than a little enamored

by the opportunity to be linked, albeit indirectly by a thesis project, to great geneticists.
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Given that background, it is more than a little ironic then that the work that

follows is more molecular biology than genetics.  Throughout my graduate career, I have

tried to go where the science has taken me, even when it has taken me places I did not

initially expect to go.  After demonstrating with Jesse Mager that Eed is required for the

imprinted expression of a number of genes in the mouse (Chapter 2), I decided that

fundamental, mechanistic questions remained unanswered. Those questions required the

tools of molecular biology rather than the tools of genetics.  The pages that follow are my

attempts to answer those questions.
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BACKGROUND AND INTRODUCTION
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1.1  EPIGENETIC INHERITANCE AND THE HISTONE CODE

During development, gene expression states established in progenitor cells are

often maintained through cellular divisions in descendant cell populations[1].  This

“transcriptional memory” insures lineage-, time-, and dose-appropriate patterns of gene

expression.  In recent years, considerable effort has been focused towards elucidating the

molecular mechanisms underlying transcriptional memory.  Of particular importance, the

ability to derive viable clones from terminally differentiated somatic cells and the ability

of some differentiated cell types to transdifferentiate demonstrate that transcriptional

memory is independent of permanent DNA sequence changes and instead involves

reversible, non-genetic phenomena[2-4].  Collectively, these DNA sequence independent

mechanisms of cellular heredity are known as epigenetics.

Units of epigenetic inheritance are expected to share at least two critical features

with DNA, the unit of genetic inheritance.  First, they must harbor information, and

second, they must be able to be propagated.  Distinguishing them from DNA, units of

epigenetic inheritance must also be reversible, as epigenetic states are often reset during

germline or preimplantation development and after somatic cell nuclear transfer[5].  In

recent decades, the molecular mechanisms underlying epigenetic inheritance have begun

to be revealed.  From this work, it is now clear that two prominent mechanisms of

epigenetic regulation are DNA methylation and covalent histone modifications[6].  These

mechanisms appear to fulfill the criteria expected of units of epigenetic inheritance.

In many species, the cytosines of CpG dinucleotides are often symmetrically

methylated.  Methylated cytosines control gene expression states, are propagated by

maintenance DNA methyltransferases, and can be reversed by both passive and active
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means[6].  Consequently, DNA methylation fulfills the criteria expected for a unit of

epigenetic inheritance.  However, although DNA methylation is clearly an important

epigenetic mark in both plants and mammals, it is unlikely to be the sole unit of

epigenetic inheritance.  In other species, including the fruit fly Drosophila melanogaster

and the nematode Caenorhabditis elegans, little if any DNA methylation is present[7, 8].

Moreover, even in mammals, DNA methylation is not universally required for epigenetic

phenomena[9-11].  As a result, alternative mechanisms must also be crucial for

epigenetic inheritance.

Histones are small, basic, evolutionarily conserved proteins that associate with

eukaryotic DNA to produce DNA-protein complexes called nucleosomes[12].  Each

nucleosome consists of an octamer of histone proteins (two each of histones H2A, H2B,

H3, and H4) around which approximately 147 bp of DNA is wrapped[13]. Histones have

long been appreciated to perform an important function in packaging massive eukaryotic

genomes into relatively small eukaryotic nuclei, but more recently, it has become clear

that histones also perform important regulatory roles[12].

Diverse types of chemical modifications are found on histone amino-terminal

tails, including acetylation, methylation, phosphorylation, poly-ADP ribosylation,

sumoylation, and ubiquitination[14].  Recently, combinations of such modifications have

been proposed to function as a “histone code” that controls epigenetic states[14, 15].  In

this model, histone modifying enzymes, such as histone acetyltransferases and histone

methyltransferases (HMTases), write a code that instructs cellular machinery how to

respond to the associated DNA.  Subsequently, this code is recognized by other proteins,

which bind histone tails harboring a specific modification or combination of
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modifications, much in the same way that sequence-specific transcription factors bind

DNA sequences.  These recognition proteins then execute the code originally written by

the histone modifying enzymes.

 Early support for the histone code came from work with Su(Var) 3-9 Homolog 1

(SUV39H1), Heterochromatin Protein 1 (HP1) and their homologs in yeast and

Drosophila.  Jenuwein and colleagues demonstrated that SUV39H1 is a HMTase with

enzymatic activity directed towards histone H3 at lysine 9 (H3K9)[16].  This catalytic

activity resides in an evolutionary conserved domain called the SET domain, which is

found in many lysine methyltransferases[17].  Consistent with the histone code

hypothesis, after SUV39H1 methylates H3K9, HP1 binds to the modified histone via its

chromodomain and promotes higher order chromatin structures that inhibit

transcription[18].  In the last decade, the number of enzymes demonstrated to covalently

modify histones and the number of proteins shown to bind specifically to modified

histones have grown dramatically[19].

In addition to harboring regulatory information, covalent histone modifications

appear capable of fulfilling the remaining requirements for a heritable unit of epigenetic

inheritance, at least in some cases.  First, at least some histone modifications may be

propogated through mitotic divisions.  Histones H3 and H4 exist as a heterotetramer in

intact nucleosmes, and historically, that tetramer was thought to remain intact during

DNA replication[20].  This suggests that, unlike DNA replication, histone deposition may

not be a semiconservative process, meaning that one sister chromatid may inherit the

parental H3/H4 tetramer with appropriate modifications while the other sister chromatid

inherits a nascent tetramer lacking those modifications[21].  By itself, this mode of
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histone replication appears to be incompatible with histone modifications functioning as a

unit of epigenetic inheritance.  However, at least in the case of H3K9 methylation, the

mark is still propogated.  HP1, via its chromoshadow domain, can recruit SUV39H1 to

methylate adjacent nucleosomes, potentially propagating H3K9 methylation to nascent

histones after replication, provided that multiple, adjacent nucleosomes harbored the

modification prior to replication and provided that modified parental tetramers are

transmitted to each sister chromatid (Figure 1.1)[22].  Such a mechanism would allow

histone modifications to function as primary epigenetic marks, even if H3/H4 tetramers

are not inherited semiconservatively.  Interestingly, however, more recent data is

challenging traditional views of H3/H4 deposition. These studies demonstrate that

histone H3 and H4 associated with chromatin assembly complexes exist as dimers, rather

than as tetramers, arguing that H3/H4 tetramers may actually separate during DNA

replication[23].  If true, histone deposition may be truly semiconservative, and all histone

modifications may be faithfully propogated through cell divisions (Figure 1.2).  In either

case, the competing models both provide compelling mechanisms by which histone

modifications may be self-propagating, as required for any primary epigenetic mark.

Finally, fulfilling the last requirement for any unit of epigenetic inheritance, covalent

histone modifications are typically reversible.  For instance, histone deacetylases and

histone demethylases remove acetyl groups and methyl groups, respectively, from

histones, and in some cases, patterns of histone modifications are erased completely by

histone replacement[24-27].

The complexity of the histone code is a consequence not only of the large number

of modified residues and the diverse types of chemical modifications found on histones,
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but also it is a product of the number of moieties added to a particular residue.  For

instance, lysines can be mono-, di-, or trimethylated, and potentially, these three methyl

states could mediate three distinct biological outcomes[28].  Consistent with this

expectation, the chromodomain of HP1 binds trimethylated H3K9 with a binding affinity

seven- and ten-fold greater than its affinity for dimethylated and monomethylated H3K9,

respectively[29].  Additional support for functional distinctions between lysine methyl

states comes from localization data.  HP1α colocalizes only with the trimethylated form

of H3K9 at pericentric heterochromatin in vivo[18, 28].  Additionally, histone H4

trimethylated at lysine 20 is a marker of the pericentric heterochromatin, whereas the

monomethylated form of that residue is instead a marker of the inactive X

chromosome[30, 31].  Even without knowing the precise functions of all of these marks,

these results demonstrate that the number of methyl groups added to a particular

nucleosome is a regulated process.

1.2.  POLYCOMB GROUP BACKGROUND

One prediction of the histone code hypothesis is that proteins that mediate and

recognize histone modifications will have important roles in development.  Polycomb

Group (PcG) proteins represent one conserved family of developmental regulators that

mediate heritable transcriptional silencing by modifying histones[32, 33].  Bona fide PcG

genes produce a specific class of developmental defects when mutated in Drosophila[7,

8].  The fly thorax normally consists of three segments, known as T1, T2, and T3.  In

male flies, the legs of the first thoracic segment, T1, are distinguishable by the presence

of characteristic mating structures called sex combs.  Mutations in PcG genes transform
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the identity of one or more thoracic segments, producing flies with T1-T1-T1 or T1-T1-

T3 patterning defects instead of the typical T1-T2-T3 thorax.  Accordingly, male PcG

mutants have inappropriate sex combs on the legs of their second and even third thoracic

segments, which explains the nomenclature of PcG genes, including Polycomb, extra sex

combs, and Sex combs on the midleg.

The patterning defects in PcG mutant flies are a consequence of misexpression of

homeotic genes in the Antennapedia and bithorax complexes[7, 8, 34].  During early

Drosophila development, homeotic gene expression patterns are established by gap and

pair-rule segmentation proteins, which are DNA sequence specific transcription factors.

However, expression of gap and pair-rule proteins ceases by mid-embryogenesis.

Subsequently, the patterns established by those initiating molecules are maintained by the

combined action of PcG proteins, which are required to keep repressed homeotic genes

silent in descendant cells, and trithorax group proteins, which are required to keep

expressed homeotic genes active in descendant cells.  The molecular mechanisms linking

gap- and pair rule-mediated initiation to PcG- and trithorax group-mediated maintenance

remain elusive.

Homologs of fly PcG genes have been identified in many other species, including

plants, nematodes, and mammals, and in each case, the homologous genes appear to play

crucial roles in mediating heritable transcriptional silencing[7, 33, 35].  In the mouse,

Mus musculus, mutations in PcG genes produce patterning defects conceptually similar to

the homeotic transformations observed in Drosophila.  As in fly, these phenotypes

involve misexpression of homeotic genes, often resulting in transformation of various

vertebrae to the identity of their anterior or posterior neighbors[36].
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1.3.  BIOCHEMICAL CHARACTERIZATION OF PcG COMPLEXES

Biochemical characterization of PcG complexes has provided considerable insight

into the molecular mechanisms underlying PcG-mediated silencing.  In both flies and

mammals, PcG proteins exist in two biochemically separable complexes, generally

known as Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex

2 (PRC2).  Because a number of fly PRC1 genes are duplicated in the mammalian

lineage, in the mouse, PRC1 refers to a heterogeneous collection of 2 MDa complexes,

which have not been fully characterized[32].  Critical subunits of PRC1 include

chromodomain containing proteins (Cbx2, Cbx4, Cbx6, Cbx7, or Cbx8 in mouse and Pc

in fly) and ubiquitin E3 ligases (Ring1a or Ring1b in mouse and Sex combs extra in

fly)[37].  The latter allows PRC1 to monoubiquitinate histone H2A at lysine 119[38].

While this mark appears essential for PcG-mediated silencing, it is not clear how the

presence of monoubiquitin on histone H2A interferes with transcription.

PRC2 is an approximately 600 kDa complex defined in the mouse by the presence

of the SET-domain containing histone methyltransferase EZH2 (fly E(Z)), the WD-repeat

protein EED (fly ESC), the Zn-finger protein SUZ12 (fly Su(Z)12), and additional

proteins, including histone deacetylases, which appear to be at least transiently associated

with the complex[39-41].   EZH2 and its homologs in fly and nematode have all been

shown to methylate histone H3 at lysine 27 (H3K27)[40-44].  However, the functions of

the other, noncatalytic subunits are less clear.  In vitro EZH2 lacks HMTase activity in

the absence of EED and SUZ12, indicating that these subunits have some undefined role

in EZH2-mediated histone methylation[45].  Additionally, the N-terminus of both EED
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and ESC appear to bind histones, and fly Su(Z)12 may be necessary for PRC2 association

with chromatin[46, 47].

In mammals, the composition of PRC2 is complicated by the presence of four

distinct isoforms of the noncatalytic subunit EED[48, 49].  These isoforms are thought to

be produced by utilizing four, in-frame translational start sites in a common Eed mRNA.

Although most eukaryotic proteins initiate translation at canonical methionine-encoding

AUG codons, an increasing number of proteins are known to initiate translation at non-

AUG codons.  Often, these noncanonical initiation sites produce upstream isoforms of

proteins also translated from downstream AUG codons, and generally, the noncanonical

start codons differ from the canonical AUG sequence at only one nucleotide position[50,

51].  The putative EED isoform start sites are proposed to conform with both of these

general trends;  EED-1 and EED-2 are thought to be translated from non-canonical,

upstream GUG codons at nucleotide positions 169-171 and 274-276 in the Eed mRNA,

and EED-3 and EED-4 are believed to be translated from downstream, AUG codons at

positions 454-456 and 496-498, respectively (Figure1.3)[48, 52].  However, these sites

were proposed on the basis of limited, in vitro studies utilizing a rabbit reticulocyte, cell-

free translation system[52].  At the outset of this work, EED translational start sites had

not been characterized in living cells.

The functions of the four EED isoforms remain unclear, although isoform usage

appears to be developmentally regulated.  In particular, EED-2 has been reported to be

expressed only in undifferentiated stem cells and in tumor tissue, suggesting a potential

role for this isoform in pluripotency[49].  Mechanistically, initial in vitro studies

suggested that EED isoforms may control the substrate specificity of EZH2.  Specifically,
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EED-1 and EED-2 were suggested to direct EZH2 activity towards histone H1 at lysine

26, while EED-3 and EED-4 were reported to direct EZH2 activity towards the

conventional H3K27 substrate[48].  However, subsequent in vitro studies failed to

confirm these results, and to date, the only target of EZH2 or its homologs that has been

confirmed in vivo is H3K27[53].

H3K27 can be mono-, di-, or trimethylated (H3K27me1, H3K27me2, and

H3K27me3, respectively)[28].  While the functions of the former two marks remain

unclear, H3K27me3 alone appears to function as a binding platform for PRC1

chromodomain containing proteins, in much the same way that trimethylated H3K9

recruits HP1 binding[29, 54].  Support for this conclusion comes from both in vitro and

in vivo work.  In vitro, the binding affinity of fly Pc for H3K27me3 is four- to five-fold

greater than its affinity for H3K27me1 or H3K27me2[29].  In vivo, Pc and H3K27me3

staining largely colocalize on fly polytene chromosomes, but Pc and H3K27me2 do

not[55].  Additionally, Pc can be competed away from chromatin by trimethylated

H3K27 peptides but not by dimethylated H3K27 peptides[55].  Hence, considerable

evidence implicates H3K27me3 in recruiting PRC1.  However, the relationship between

PRC1 and H3K27me3 appears to be more complicated than the relationship between HP1

and H3K9me3.  Even where PRC1 and H3K27me3 colocalize cytologically, that

colocalization is limited to only a subset of H3K27 trimethylated nucleosomes[56].

Finally, at the outset of this work, it was unclear whether PRC2 alone was capable of

mediating mediating H3K27 methylation, or whether other complexes could mediate or

were even required for one or more of the H3K27 methylation states.
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Despite extensive characterization of PcG complexes, it remains unclear how PcG

proteins and PcG-mediated histone modifications inhibit transcription. It is generally

assumed that PcG proteins condense local chromatin environments to block access to the

transcriptional machinery, and in fact, preincubating nucleosomal arrays with PRC1

blocks SWI/SNF-mediated chromatin remodeling and transcription in vitro, suggesting

that the downstream-acting PcG complex mediates a chromatin state that is refractory to

transcription[37, 57].  More recently, reconstituted PRC1 complexes were shown to

physically compact a chromatinized template[58].  However, because PRC1 proteins

were present at extremely high concentrations in all of those experiments, it remains

unclear whether PcG proteins are able to condense chromatin under physiological

conditions, and no existing data in living cells confirms this conclusion[32].  In fact,

chromatin immunoprecipitation experiments demonstrate that RNA polymerase II

localizes to PcG-silenced promoters, implying that PcG-mediated repression is not

simply a consequence of promoter inaccessibility[59].  As an alternative to local

chromatin condensation, PcG proteins could interfere with cellular machinery required

for transcription.  Fly PRC1 copurifies with TBP-associated factors (TAFs), suggesting

that PcG proteins might inhibit transcription by directly associating with components of

the generation transcription machinery[60].  However, similar interactions have not been

observed in mammalian cells[32].  Finally, PcG-mediated histone modifications could

directly impact transcription.  Although PRC2-mediated H3K27me3 may function

primarily to recruit PRC1, the function of PRC1-mediated H2A ubiquitination is unclear.

It is possible that this downstream mark interferes directly with transcription by some

unknown mechanism.
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Whatever mechanism explains PcG-mediated silencing, it is unlikely to involve a

spreading mechanism comparable to position effect variegation in the fly or SIR-

mediated silencing in yeast.  In flies, PcG proteins are recruited by sequence-specific

DNA binding proteins to Polycomb Response Elements (PREs)[61].  Similar elements

have not been identified in mammals, where little is known about targeted recruitment of

PcG proteins.  Although a single insulator placed between a PRE and a promoter blocks

PcG-mediated silencing, this block is bypassed when an even number of insulators

separates the PRE and the promoter, implying that PcG proteins do not track along the

DNA from their recruitment site to their target[62].

1.4.  CHARACTERIZATION OF EED FUNCTION IN VIVO

The in vivo functions of mammalian PRC2 have been revealed largely by work

with mice and mouse embryos harboring mutations in Eed, Ezh2, and Suz12.  Of these,

an allelic series of mutations in Eed has been particularly revealing.  Deletions

encompassing Eed were first generated by William and Lee Russell at Oak Ridge

National Laboratory, as part of specific locus tests designed to characterize the dangers of

ionizing radiation in mammals[63, 64].  Eed is tightly linked to Tyrosinase (Tyr), a

mouse coat color gene used as a visible marker in the Russells’ specific locus test, and

lesions removing Tyr frequently deleted Eed as well.  Mapping deletion breakpoints

around Tyr identified six regions required for mouse viability, including one region that

caused lethality at embryonic day 8.5 (E8.5) when deleted[63, 65, 66].  Subsequently,

using the chemical mutagen N-ethyl-N-nitrosurea (ENU), point mutations were generated

that failed to complement this deletion phenotype[67, 68].  Mice harboring these point
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mutations were then used to positionally clone the gene responsible for the E8.5 lethality

in the deletion mutants.  That gene, now known as Embryonic ectoderm development

(Eed), is a five-WD repeat protein homologous to the fly PcG gene esc[69].

The phenotypic consequences of two ENU-generated Eed point mutations have

been characterized extensively. Eedl7Rn5-3354SB is a leucine-to-proline substitution in the

third of EED’s five confirmed WD-40 motifs (Figure 1.3)[69]. Eedl7Rn5-3354SB homozygous

embryos appear to recapitulate the phenotype caused by Eed deletion mutations,

suggesting that the Eedl7Rn5-3354SB is a null allele (as a result, Eedl7Rn5-3354SB will subsequently

be referred to as Eednull or Eed-)[70].  Supporting the possibility that EED is absolutely

required for PRC2 function, Eednull/null embryos arrest at perigastrulation stages

comparable to the stages at which Ezh2 and Suz12 mutant embryos also arrest[71, 72].

Consistent with Eed’s classification as a mouse PcG gene, animals homozygous

for a second, hypomorphic Eed allele, Eedl7Rn5-1989SB (herein referred to as Eedhypo) exhibit

segmental patterning defects reminiscent of the homeotic transformations observed in esc

mutant embryos[69, 73]. In this mutation, a nonpolar isoleucine is converted to a polar

asparagine in the same WD-40 motif in which the substitution caused by the Eednull allele

resides (Figure 1.3)[69].  On outbred backgrounds, Eedhypo/hypo animals are generally

viable but runted.[68, 69]  As with fly PcG mutant patterning defects, the homeotic

transformations associated with the hypomorphic allele are a consequence of shifted

homeotic gene expression boundaries[73, 74].  Eedhypo/null compound heterozygotes exhibit

an intermediate phenotype, with homeotic expression defects identical to Eedhypo/hypo

animals and with midgestation lethality, due to the absence of secondary trophoblast

giant cells.
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In addition to regulating anterior-posterior patterning, mouse PcG genes also

appear to play important roles in epigenetic regulation of additional targets, most notably

the inactive X chromosome (Xi).  In mammals, XX female mammals achieve dosage

compensation by inactivating one of their two X chromosomes.  In mouse

extraembryonic tissues as well as in preimplantation mouse embryos, the paternal X

chromosome is preferentially, if not universally, silenced[75].  As a consequence, X-

chromosome inactivation in mouse extraembryonic tissues is “imprinted”, meaning that

one of the two X-chromosomes must inherit an epigenetic mark dictating either that the

paternal X-chromosome be silenced or that that maternal X-chromosome remain active.

Mutations in the mouse PcG gene Eed lead to aberrant reactivation of the normally silent

paternal X chromosome in a subset of extraembryonic cells, indicating that PcG proteins

are required for the maintenance of imprinted X-chromosome inactivation[74, 76].

Additionally, PcG proteins colocalize with the Xi, as do H3K27me3 and ubiquitinated

histone H2A, histone modifications associated with PcG activity[77-79].

In mammals, a number of autosomal genes are also imprinted, and the

demonstration that Eed is required for imprinted X-chromosome inactivation led to an

examination of Eed’s role in the regulation of autosomal imprinted genes.  That work is

presented in Chapter 2.  Chapters 3 and 4 detail mechanistic studies addressing the

molecular details of EED function.  In chapter 3, work is presented characterizing EED’s

role in H3K27 methylation.  In chapter 4, that work is extended by mapping regions of

the EED protein required to mediate H3K27 methylation.
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FIGURE 1.1.  Model for the propagation of histone marks from intact parental

H3H4 tetramers

(Top Panel)  A series of nucleosomes with methylated H3K9 (red triangle), a mark bound

specifically by HP1.  For simplicity, only histones H3 and H4 are shown.

(Middle Panel)  After replication, modified, parental tetramers are inherited intact.

Modified, parental tetramers and unmodified, nascent tetramers are distributed to both

sister chromatids.  HP1's chromoshadow domain binds SUV39H1, recruiting that H3K9

HMTase to methylate the unmodified, nascent tetramers.  For simplicity, spreading of

H3K9 methylation is shown unidirectionally.

(Bottom Panel)  After SUV39H1 propagates the mark, both sister chromatids harbor the

parental chromatin profile, allowing the epigenetic state to be inherited by both daughter

cells after cell division.
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FIGURE 1.2.  Model for the propagation of histone marks from disassembled H3H4

tetramers

(Top Panel)  A series of nucleosomes with methylated H3K9 (red triangle), a mark bound

specifically by HP1.  For simplicity, only histones H3 and H4 are shown.

(Second Panel)  During replication, parental H3/H4 tetramers are disassembled to form

H3/H4 dimers, which mix with nascent, unmodified H3/H4 dimers to generate tetramers

containing both parental, modified histones and nascent, unmodified histones.

(Third panel)  Hybrid nucleosomes retain the parental modification on one H3 in each

tetramer.  This mark is propagated to the nascent histones in the same or neighboring

nucleosomes by SUV39H1 which is recruited by its association with HP1's

chromodomain. For simplicity, spreading of H3K9 methylation is shown unidirectionally.

(Bottom Panel)  After SUV39H1 propagates the mark, both sister chromatids harbor the

parental chromatin profile, allowing the epigenetic state to be inherited by both daughter

cells after cell division.
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FIGURE 1.3. Putative EED translation start sites and WD-40 motifs

EED isoform translation start sites proposed on the basis of in vitro translation studies are

indicated as EED-1, -2, -3, and -4, respectively  [52].  These numbers refer to EED start

sites proposed by Denisenko and Bomsztyk to reside at mRNA positions GUG 169-171,

GUG 274-276, AUG 454-456, and AUG 496-498.  Diagonally-hatched boxes refer to

EED-40 motifs at sequences 721-808 (WD-40 motif 1), 1012-1105 (WD-40 motif 2),

1150-1240 (WD-40 motif 3), 1330-1444 (WD-40 motif 4), and 1672-1762 (WD-40 motif

5). (Figure not drawn to scale)
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CHAPTER 2

IMPRINTING DEFECTS IN EED MUTANT EMBRYOS AND CELLS
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A portion of the work in this chapter was published in Nature Genetics 33(4):  502-507.

2.1.  INTRODUCTION

In mammals, maternally-inherited and paternally-inherited genomes are

functionally nonequivalent due to the presence of at least 80 imprinted autosomal genes

and the imprinted X-chromosome [1].  Unlike most genes, imprinted genes are

monoallelically expressed in a parent-of-origin dependent manner, and as a consequence,

both parental genomes are required for normal mammalian development and physiology

[2-4].

Most imprinted genes reside in clusters that are co-regulated by imprinting control

regions (ICR) [5].  These ICRs harbor germline imprints controlling the expression of

nearby imprinted genes and are often identifiable by distinct germline DNA methylation

patterns in eggs and in sperm.  Imprinting defects in various DNA methyltransferase

mutant mice demonstrate that these and other, post-zygotic differentially methylated

regions (DMRs) are important for imprinted gene expression [6-10].  However, the

mechanisms controlling imprinted gene expression are poorly understood and may differ

between clusters.

One of the most striking examples of imprinting in mammals is imprinted X-

chromosome inactivation.  Female mammals achieve dosage compensation by

inactivating one of their two X-chromosomes [11].  In marsupials and monotremes and

also in mouse preimplantation embryos and extraembryonic tissues, X-chromosome

inactivation is imprinted, and the paternally inherited X-chromosome is preferentially

inactivated [12].  Studies on the inactive X-chromosome (Xi) have been particularly
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revealing in the effort to elucidate molecular mechanisms underlying transcriptional

silencing in general and imprinting in particular, because the size of the Xi allows

proteins enriched on that chromosome to be identified cytologically.  These studies

suggest that transcriptional silencers identified in other systems are frequently enriched

on the inactive X-chromosome.  For instance, PcG proteins and PcG-mediated histone

modifications are both found on the Xi, and the PcG gene Eed is required to maintain

imprinted X-chromosome inactivation in a subset of mouse extraembryonic cells and in

differentiating trophoblast stem cells, confirming that PcG-mediated silencing is

functionally necessary for imprinted X-chromosome inactivation in those cells [13-17].

Less is known about the molecular mechanisms controlling regulation of

autosomal imprinted genes.  The imprinted genes on distal mouse chromosome 7

represent one of the best studied examples of autosomal imprinted genes in the mouse.

At least fifteen imprinted genes are found in a 1.2 Mb region of this chromosome.  These

15 genes are part of two separable imprinting clusters, which employ distinct regulatory

mechanisms and are defined by distinct germline ICRs [5].  Imprinting of the more

proximal H19/Igf2 cluster appears to be regulated by DNA-methylation sensitive and

allele-specific binding of the insulator CTCF, which blocks of the association of several

genes with an upstream enhancer on the maternal but not on the paternal chromosome

[18, 19].

Imprinting at the more distal KvDMR cluster appears to be more complicated.

The KvDMR cluster contains ten maternally expressed genes and one paternally

expressed gene spread over 800 kb (Figure 2.1).  The most proximal of these genes,

Ascl2, sits less than 300 kb from Ins2, the most distal gene in the H19/Igf2 cluster, but
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regulation of the two clusters is completely independent, with deletion of the germline

ICRs in either cluster having no impact on imprinted expression in the other cluster [20,

21].  The regulation of the KvDMR cluster appears to share a number of conceptual and

mechanistic similarities with imprinted X-chromosome inactivation.  First, although

DNA methylation plays a prominent role in imprinting at other clusters and in the random

X-chromosome inactivation that occurs in mouse embryonic tissues, neither imprinted X-

chromosome inactivation nor imprinted expression of a number of genes in the KvDMR

cluster are disrupted in DNA methyltransferase 1 (Dnmt1) mutant extraembryonic tissues

[22-24].  Additionally, both processes are dependent on cis-acting, non-coding RNAs.  Xi

specific transcript (Xist) is required in cis to silence genes on the Xi, and Kcnq1ot1

expressed from the paternal allele is similarly required to silence the neighboring,

paternal alleles of the protein-coding genes in the KvDMR cluster [21, 25, 26].  Given the

requirement for Eed in imprinted X-chromosome inactivation and given the similarities

between the Xi and the KvDMR cluster, we hypothesized that PRC2 might also be

required for imprinting at this autosomal locus.
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2.2. METHODS AND MATERIALS

Cell lines and cultures

CD1.JF1 (F1) hybrid trophoblast stem (TS) cells lines 5-4 (Eed+/null) and 3-5

(Eednull/null) were grown on irradiated fibroblast feeders as previously described [27, 28].

To differentiate, these cells were removed from Fgf4 and Activin.  Before harvesting for

expression analyses, cells were passaged at least twice in the absence of feeders to avoid

contamination.

Expression analyses

RNA was isolated from wild-type or Eednull/null E7.5 embryos, wild-type or

Eedhypo/null E9.5 embryos, and wild-type or Eednull/null TS cells using TRIzol Reagent

(Invitrogen). RNA was extracted from the TRIzol lysate in phenol-chloroform and

precipitated with an equal volume of isopropanol.  Precipitated nucleic acids were

washed in 70% ethanol and resuspended in sterile water.  In order to eliminate

contaminating genomic DNA, RNA preparations were incubated for one hour at 37º C

with DNase (Ambion).

cDNA was prepared using SuperScriptII Reverse Transcriptase (Invitrogen) and

then subjected to RT-PCR.  Whenever possible, intron-spanning amplicons were utilized

to avoid DNA contamination.  After RT-PCR, single nucleotide polymorphisms were

discriminated by sequencing or restriction digest as indicated below.  Insertion/deletion

polymorphisms were discriminated by single strand conformation polymorphism (SSCP)

analysis or by non-denaturing high performance liquid chromatography (HPLC).  For

SSCP analysis, RT-PCR reactions were spiked with 32P-dCTP and denatured by boiling

in formamide.  Then, reactions were loaded onto acrylamide gels (0.5X MDE, 0.6X TBE,
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0.04% TEMED, 0.04% APS) and run overnight.  For HPLC analysis of indels, PCR

reactions are run over an affinity column and then eluted with increasing concentrations

of acetonitrile.

Primers and assays utilized for these experiments are show below.

Ascl2
Fwd: TTTCCAGTTGGTTAGGGGGC
Rev: GGGACAGAGGTCATCTTTATTGTGC
Eednull/null Embryo Assay:  Direct sequencing

CD1:  A at position 86 beginning with the 5’ end of the reverse primer
JF1:  G at position 86 beginning with the 5’ end of the reverse primer

Eedhypo/null Embryo and Eednull/null TS Cell Assay:  Direct sequencing
CD1:  T at position 290 beginning with the 5’ end of the forward primer
JF1:  C at position 290 beginning with the 5’ end of the forward primer

Cdkn1c
Fwd:  CAGAACCGCTGGGACTTCAAC
Rev:  TGGGCTGCTCTACGCAACC
Assay:  Tsp509I digest

CD1:  680, 323 bp products
JF1:  1003 bp product

Cd81 (Tapa1)
Fwd:  GATCCCTGGAGTGACCAGAG
Rev:  CCCATGTGTGATGTCAGCTC
Assay:  Nondenaturing High Performance Liquid Chromatography

CD1:  183 bp product
JF1:  188 bp product

Kcnq1 (Kvlqt1)
Fwd:  GATCACCACCCTGTACATTGG
Rev:  CCAGGACTCATCCCATTATCC
Embryo Assay:  Direction sequencing digest

CD1:  T at position 325 beginning with the 5’ end of the forward primer
JF1:  G at position 325 beginning with the 5’ end of the forward primer

TS Cell Assay:  AluI digest
CD1:  215, 164, 108, 29 bp products
JF1:  379, 108, 29 bp products

Kcnq1ot1 (Lit1)
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Fwd:  GCTCCATCTTCGTTTTGCCG
Rev:  ACTCCACTCACTACCTTGGTGCTG
Assay:  HpyCH4IV digest

CD1:  228, 118 bp products
JF1:  346 bp product

Msuit
Fwd: AGCTGCTGAGAGGACTGACTGAAC
Rev: GGAGAAAGCAAGTGATGCAAGC
Assay:  Direct sequencing

CD1:  G at position 104 beginning with the 5’ end of the forward primer
JF1:  C at position 104 beginning with the 5’ end of the forward primer

Tssc3 (Ipl/Phlda2)
Fwd: CTGGAGAAGCGAAGCGACAG
Rev: CAACTGGTCCCGTGCGTTTC
Embryo Assay:  Direct sequencing

CD1:  T at position 352 beginning with the 5’ end of the reverse primer
JF1:  G at position 352 beginning with the 5’ end of the reverse primer

TS Cell Assay:  Direct sequencing
CD1:  A at position 33 beginning with the 5’ end of the forward primer
JF1:  C at position 33 beginning with the 5’ end of the forward primer

Tssc4
Fwd: ATGGCAGCAAGAAGCGGAG
Rev: CCTAAACACTGGGGCACAAAGG
Assay:  AluI digest digest

CD1:  239 bp product
JF1:  172, 66 bp products

Tssc5 (Slc22a1l/Impt1)
Fwd: TCACGCATACCCTCTGCCC
Rev: CCAGTCCCACAACAGCAAAGAC
Assay: NdeI digest

CD1:  559 bp product
JF1:  416 + 143 bp product

For all analyses of imprinted expression in embryos, CD1 animals were used as

dams, and JF1 animals were used as sires.  F1 TS cells were derived from a cross

between JF1 dams and CD1 sires.

Fluorescence in situ hybridization (FISH)
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BAC preparation

Bacterial Artificial Chromosomes (BACs) containing genomic DNA

corresponding to either the biallelically expressed gene Dlx1 (Incyte Genomics

A0199N02) or the imprinted genes Ascl2, Cd81/Tapa1, and Tssc4 (BACPAC, clone

RP24-376H20) were utilized as templates in nick translation reactions in order to

generate DNA FISH probes.  BACs were prepared using Qiagen maxiprep kits, following

the manufacturer’s protocol for plasmid DNA preparation.  However, after the addition of

Neutralization Buffer P3, lysates were centrifuged twice for fifteen minute at 9000 x g.

DNA was precipitated from the supernatant with isopropanol, washed in 70% ethanol,

and then resuspended in Qiagen Elution Buffer.  BAC identity and preparation purity

were assessed by restriction digest and comparison to BAC fingerprints predicted by

Internet Contig Explorer (iCE).

Probe labeling

dCTP-Cy3 labeled FISH probes were generated using BAC templates and an

Amersham nick translation kit, according to the manufacturers instructions and as

previously described [29].  Subsequently, smaller probe fragments were generated by

incubating labeled DNA with dilute DNase for 4 hours at 15° C.  The digestion was

terminated by treatment with 0.2 M EDTA, and double stranded probes were denatured

by incubating for 3 minutes at 95° C.  Probe fragments were separated from

unincorporated dCTP-Cy3 on a G50 sephadex column (Roche).  In order to reduce

nonspecific hybridization, unlabeled Cot-1 DNA and salmon sperm DNA were added to

block repetitive sequences in the BAC probes.  Next, the labeled and blocked probes

were precipitated with one-tenth volume of sodium acetate and three volumes of ethanol.



36

Finally, precipitated DNA was washed in 70% ethanol and resuspended in hydrization

buffer (50% formamide, 10% dextran sulfate, 1X SSC).

Probe hybrdization

Wild-type and Eednull/null TS cells were grown to mid-confluency and pulse labeled

for one hour in BrdU (20 µM) to label cells in S phase.  Then, the cells were harvested,

swollen in hypotonic solution (75 mM Kcl), fixed (3:1 methanol:acetic acid), and

dropped onto poly-lysine coated slides (Poly-prep, Sigma).  DNA from dropped cells

was denatured (70% deionized formamide, 2X SSC for 2 minutes at 70° C) and then

dehydrated by a series of ethanol washes.  Slides were incubated overnight in a humid

chamber at 37° C with FISH probes diluted in hybridization buffer, and then washed, first

in 50% formamide/2X SSC and then in a 2X, 1X, 4X series of SSC washes without

formamide.

Immunofluorescence

After FISH probe hybridization, nuclei actively replicating DNA were identified

by immunofluorescence.  Briefly, slides were blocked by incubation for 30 minutes with

anti-BrdU blocking buffer (4X SSC, 4mg/mL bovine serum albumin (BSA), 0.1%

Tween).  After blocking, slides were incubated for 90 minutes with FITC-conjugated

anti-BrdU antibodies (Becton Dickinson) diluted 1:200 in blocking buffer.  Blocking and

antibody incubations were always performed at 37° C in a humid chamber.  After the

antibody incubation, slides were washed in 4X SSC, first with and then without 0.1%

Tween.  Finally, slides were mounted with Vectashield™ containing 4’,6-diamidino-2-

phenylindole dihydrochloride (DAPI) (Vector Laboratories).  Stained slides were

visualized by fluorescence microscopy, and then black and white images were captured
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with a Spot CCD digital camera before being pseudo-colored and merged with Spot

software V3.5.9 (Diagnostic Instruments Inc.).  FISH hybridization patterns in BrdU-

positive nuclei were scored as single-single (SS, neither allele replicated), single-double

(SD, one allele replicated), or double-double (DD, both alleles replicated).
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2.3.  RESULTS

Imprinted expression defects in Eednull/null embryos

In order to assess EED’s role in imprinted expression of genes in the KvDMR

cluster, assays were necessary that could discriminate maternal and paternal allele gene

products.  CD1 and JF1 mouse strains are sufficiently diverged from one another such

that polymorphisms are frequently present in the expressed regions of genes, usually in 5’

and 3’ untranslated regions.   Assays were developed that would discriminate alleles on

the basis of those polymorphisms, and RNA was analyzed from CD1.JF1 (F1) wild-type

and Eednull/null E7.5 embryos.

Ascl2, which is also called Mash2, is the most centromeric gene in the KvDMR

cluster (Figure 2.1).  A T/C CD1/JF1 polymorphism was identified in the 3’UTR of

Ascl2, and this SNP was used to assess the status of imprinted expression.  Direct

sequencing of Ascl2 RT-PCR products revealed that the normally silent, paternally-

inherited allele becomes expressed in Eednull/null E7.5 embryos (Figure 2.2A).

Genes within an imprinted cluster are believed to be regulated by common

mechanisms.  As a result, the loss of Ascl2 imprinting observed in Eednull/null embryos

suggested that Eed may be required for imprinting of the entire KvDMR cluster.  Cd81,

also known as Tapa1, is the first gene distal to Ascl2 in the KvDMR cluster (Figure 2.1).

A 5 bp insertion present in the 3’ UTR of the JF1 allele of Cd81 allows maternal and

paternal allele gene products to be discriminated on a single strand conformation

polymorphism gel.  At E7.5, biallelic Cd81 expression was observed in both wild-type

and Eednull/null whole conceptuses, indicating that Cd81 is not imprinted in some tissues at
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these stages (Figure 2.2B).  However, only maternal Cd81 was detected in wild-type E7.5

extraembryonic tissues, demonstrating that Cd81 is imprinted in extraembryonic tissues

at this stage.  Similarly, in Eednull/null E7.5 extraembryonic tissues, expression was only

detected from the maternally-inherited allele, suggesting that Eed is not required for

Cd81 imprinting.

The KvDMR cluster is a large imprinted cluster with a centrally located imprinting

control region (Figure 2.1).  Both Ascl2 and Cd81 are located on the proximal end of the

cluster.  In order to assess the status of imprinted expression of genes closer to the ICR

and genes at the distal end of the cluster, the status of Kcnq1, Msuit, and Tssc3 imprinted

expression were assessed in wild-type and in Eednull/null E7.5 embryos.  Direct sequencing

of RT-PCR products from all three genes revealed monoallelic expression of both wild-

type and  in Eednull/null embryos (Figure 2.2C-E).  Together, these results indicate that Eed

is required for the normal imprinting of Ascl2 but not of several other genes in the

KvDMR cluster.

Imprinted expression analysis in Eedhypo/null embryos

The Eednull allele is an ENU-generated leucine-to-proline substitution in the third

of EED’s five WD-40 motifs [30].  A second, ENU-generated allele, Eedhypo, causes a less

severe phenotype, with homozygous animals exhibiting homeotic skeletal

transformations but surviving to adulthood on outbred backgrounds [30].  Like Eednull/null

embryos, Eedhypo/null embryos have defects in imprinted X-chromosome inactivation [13].

To assess whether Eedhypo/null embryos share the Ascl2 imprinting defects observed in null

embryos, Ascl2 RT-PCR products from wild-type and Eedhypo/null embryos were directly
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sequenced.  However, monoallelic expression was observed in all embryos, suggesting

that Eedhypo retains sufficient activity to silence the paternal allele of Ascl2 (Figure 2.3).

Imprinted expression defects in Eednull/null TS cells

Even though imprinted genes within the same cluster are typically thought to be

coregulated, in E7.5 conceptuses, Eed was required for imprinted expression of Ascl2 but

not of the neighboring Cd81, which is only 84 kb from Ascl2.  Recent work has

demonstrated that Eed is only functionally required for X-chromosome inactivation in a

small subset of extraembryonic cells  [14].  These defects are recapitulated in vitro in

trophoblast stem (TS) cells, a cell line representing primitive, extraembryonic tissues.  If

Eed’s role in imprinting were similarly tissue-specific, our ability to detect imprinting

defects could be obscured by normal imprinted expression in the vast majority of

embryonic cells.  As a result, I re-analyzed imprinted expression of genes in the KvDMR

cluster in wild-type and Eednull/null trophoblast stem (TS) cells.

Consistent with our observations in Eednull/null conceptuses, Ascl2 was biallelically

expressed in Eednull/null TS cells (Figure 2.4A).  To assess the expression of Cd81, I

employed a non-denaturing HPLC assay, in which the mobility of RT-PCR products

through the affinity column is determined by size.  As a result, the larger, maternal JF1

allele of Cd81 elutes later than the smaller CD1 allele.  Although Cd81 was expressed

primarily from the maternal allele in wild-type TS cells, approximately equal levels of

maternal and paternal allele gene product were observed in Eednull/null TS cells,

demonstrating that Eednull/null TS cells have broader imprinting defects than were observed

in Eednull/null conceptuses (Figure 2.4B).
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The gene immediately distal to Cd81 is Tssc4 (Figure 2.1).  Imprinting analyses

of Tssc4 in wild-type and in Eednull/null conceptuses failed to produce definitive results

(data not shown).  In wild-type TS cells, Tssc4 is expressed predominantly from the

maternal allele, with much lower levels of paternal allele gene product (Figure 2.4C).

Conversely, in Eednull/null TS cells, the levels of maternal and paternal allele gene product

were approximately equal, suggesting that Eed is also required for Tssc4 imprinting in

these cells (Figure 2.4C).

PcG proteins have been implicated in stem-cell maintenance, with some results

suggesting that PcG-deficient stem cells may inappropriately differentiate [31-33].  If Eed

mutant TS cells prematurely differentiate and if imprinting were to be relaxed during

differentiation, the imprinting defects observed in Eednull/null TS cells could be due simply

to differences in the differentiation state of wild-type and mutant cells, as opposed to Eed

having a direct role in imprinted expression.  To assess this possibility, we differentiated

wild-type and Eednull/null TS cells by removing Fgf4 and activin from the growth media.

These growth factors are required to prevent TS cells from differentiating and

endoreduplicating both in vivo and in vitro  [28].  Tssc4 imprinting remained intact in

differentiated wild-type TS cells, demonstrating that the observed loss of imprinting in

Eednull/null TS cells is not simply a consequence of premature differentiation (Figure 2.4C).

Ascl2, Cd81, and Tssc4 all reside on the proximal end of the KvDMR imprinting

control region.  To determine whether Eed is also required for imprinted expression of

genes near and distal to the ICR, I assessed expression of Kcnq1, Cdkn1c, Tssc5, and

Tssc3, which represent four of the six known imprinted genes expressed from promoters
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on the distal side of the ICR.  Unlike our observations on the proximal end of the cluster,

Eed was dispensible for imprinted expression of all four of these genes (Figure 2.5A-D).

The KvDMR imprinting control region overlaps with the promoter of the non-

coding RNA Kcnq1ot1, which is the only gene in the cluster expressed exclusively from

the paternally-inherited allele.  Paternally-inherited deletions eliminating the Kcnq1ot1

promoter and mutations prematurely terminating Kcnq1ot1 transcription both disrupt

silencing of the paternal alleles of the maternally-expressed genes in the KvDMR cluster

[21, 25].  These results indicate that the Kcnq1ot1 RNA itself or transcriptional

elongation of that RNA are required for KvDMR cluster imprinting.  To determine

whether defects in Kcnq1ot1 expression or imprinting were responsible for the imprinting

defects in Eed mutant TS cells, I assessed Kcnq1ot1 imprinting in Eednull/null TS cells.

Kcnq1ot1 was expressed exclusively from the paternally-inherited, CD1 allele in both

wild-type and Eednull/null TS cells, and imprinted expression was maintained even upon

differentiation of those cells (Figure 2.5E).

Maintained replication asynchrony in Eednull/null TS cells

In addition to allele-specific gene expression, imprinted genes are characterized

by additional asymmetries, including asymmetric DNA replication timing [34].

Generally, active alleles of imprinted genes replicate early in S-phase, whereas inactive

alleles replicate late during S-phase. Given that an approximately 100 kb region of the

KvDMR cluster from Mash2 to Tssc4 appears to lose its transcriptional imprinting in

Eednull/null TS cells (Figure 2.3A-C), we analyzed the replication behavior of this segment

to determine whether Eed is also required for asynchronous replication of the subdomain.
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These experiments employed a DNA FISH-based assay that allows direct

counting of resolved sister chromatids in actively replicating cells (Figure 2.6A).  In cells

that have replicated neither allele, the FISH probe detects two single dots, corresponding

to each of the two unreplicated, homologous chromosomes.  Conversely, once both

alleles have replicated, the FISH probe detects two double dots, corresponding to the

replicated sister chromatids on both homologous chromosomes.   Finally, if only one of

the two alleles has replicated, the FISH probe detects one single dot and one double dot,

corresponding to one unreplicated homolog and the two sister chromatids of the

replicated homolog, respectively.  This final class, termed “single-double”, is the

informative class in replication asynchrony assays.

Roughly consistent with previous findings, 38% of wild-type S-phase nuclei had a

single-double hybridization pattern with the Mash2-Cd81-Tssc4 probe, and 22% of nuclei

had a single-double hybridization pattern with a probe for Dlx1, a biallelically expressed

and synchronously replicating, control gene [34].  These values establish the behavior of

asynchronously replicating and synchronous replicating genes in my hands.  Surprisingly,

the percentage of cells exhibiting single-double hybridization patterns were

approximately the same in Eednull/null TS cells (22 and 41%, respectively, Figure 2.6B).

These results suggest that Mash2-Cd81-Tssc4 asynchronous replication is not dependent

on Eed.
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2.4.  DISCUSSION

Imprinting is one of the archetypal examples of epigenetic gene regulation in

mammals.  The role of DNA methylation in imprinted gene expression has been

characterized extensively [6-10].  However, the roles of other epigenetic marks, such as

covalent histone modifications, have received less attention.  Here, we have demonstrated

that the PcG gene Eed is required for imprinted expression of several genes in the

KvDMR cluster in both mouse conceptuses and TS cells.

While this work was underway, two groups reported that EED, EZH2, and

H3K27me3 are all enriched on the silent, paternal alleles of several maternally-expressed

genes in the KvDMR cluster in midgestation placental tissues [22, 35].  Together with the

imprinting defects we observed in Eed mutant conceptuses and TS cells, these results

suggest that EED is directly required for imprinting in the KvDMR cluster.  However,

whereas PRC2 subunits and H3K27me3 were enriched throughout the KvDMR in those

studies, the imprinting defects in Eed mutant TS cells reported here were restricted to the

three most proximal genes, Ascl2, Cd81, and Tssc4.  These results suggest that Eed-

independent regulatory mechanisms must be critical for the imprinting of the genes distal

to Tssc4.  The most compelling candidate to fulfill this function is DNA methylation.

Dnmt1 mutant placentas have imprinting defects nearly reciprocal to those observed in

Eed mutant trophoblast stem cells (Figure 2.7)  [22].  Together, these results suggest that

the KvDMR imprinting cluster can be subdivided into two subdomains.  In the proximal

subdomain, PRC2-mediated histone modifications may be the essential epigenetic mark

in extraembryonic tissues, whereas Dnmt1-mediated DNA methylation is likely to fulfill

this function for more distal genes in the cluster.
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The broader imprinting defects in Eednull/null TS cells relative to Eednull/null

conceptuses suggests that Eed’s role in imprinting, like its role in X-chromosome

inactivation, may be tissue specific.  One possible explanation for such tissue specificity

may be that covalent histone modifications are reinforced by DNA methylation to a far

greater extent in embryonic tissues than in extraembryonic tissues.  Mouse

extraembryonic tissues have much lower levels of DNA methylation than embryonic

tissues.  This distinction is a consequence of DNA methylation dynamics during

development [36].  After fertilization, the genome is passively demethylated until

embryonic and extraembryonic lineages are committed at the blastocyst stage.  After

implantation, the embryonic lineages are rapidly remethylated, but the extraembryonic

lineages remain hypomethylated.  As a consequence, covalent histone modifications,

such as PRC2-mediated H3K27me3, may be especially critical in these DNA-

hypomethylated extraembryonic tissues, where the absence of those marks cannot be

overcome by DNA methylation.

Although Ascl2, Cd81, and Tssc4 were all biallelically expressed in Eed mutant

TS cells, the maternal and paternal alleles of these genes continued to replicate

asynchronously.  Accordingly, imprinted gene expression and replication asynchrony are

uncoupled in Eednull/null TS cells, suggesting that the transcriptional machinery and the

replication machinery may recognize distinct epigenetic marks at imprinted loci.

However, this interpretation is complicated by the normal imprinted expression observed

in genes distal to Tssc4.  Mammalian replicons are poorly defined but are frequently as

large as several hundred kilobases [37].  Consequently, it is possible that the origin of

replication for the Eed-regulated genes Ascl2, Cd81, and Tssc4 actually lies in the Eed-
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insensitive distal end of the KvDMR cluster.  The epigenetic marks controlling expression

of those genes remain intact in Eednull/null TS cells and could be responsible for replication

timing at the proximal end of the cluster.  However, asynchronous replication timing and

imprinted gene expression have been truly uncoupled for entire imprinted clusters in

Dnmt1-/- ES cells, suggesting that replication timing and transcriptional imprinting

actually are governed by distinct epigenetic marks [38].

The work included in this chapter suggests that PRC2-mediated H3K27me3 is

required to silence the paternal alleles of genes at the proximal end of the KvDMR cluster.

However, EZH2, not EED, is not directly responsible for PRC2-mediated H3K27me3,

and in this chapter, we have not demonstrated that EED is required for the catalytic

activity of the complex.  That possibility is explored in Chapter 3.
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FIGURE 2.1.  Schematic illustration of the KvDMR imprinting cluster

Depicted is the KvDMR imprinting cluster on mouse chromosome 7.  The two most

proximal genes, Obph1 and Nap1l4, were not analyzed and are not included on the

diagram.  On the maternally-inherited chromosome (maternal- above), the noncoding

RNA Kcnq1ot1 is silenced, but all other genes in the cluster are expressed.  On the

paternally-inherited chromosome (paternal- below), Kncq1ot1 is expressed, and all other

genes in the cluster are silenced.
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FIGURE 2.2.  Imprinted expression analysis in Eednull/null E7.5 conceptuses and

extraembryonic tissues

Imprinted expression analysis in wild-type (wt or +/+) and Eednull/null (mut or null/null)

CD1.JF1 (F1) E7.5 embryos (A)  Direct sequencing of Ascl2 RT-PCR products. (B)

Single Strand Conformation Polymorphism gel analysis of Cd81 imprinting.  A 5 bp

insertion in the JF1 paternal allele (p) makes that band run more slowly than the smaller

CD1 maternal allele (m).  Unless otherwise indicated, samples were prepared from whole

conceptuses.  Samples prepared from dissected extraembryonic tissues are indicated by

“Ex. Em.”  (C)  Direct sequencing of Kcnq1 RT-PCR products.  (D)  Direct sequencing

of Msuit RT-PCR products.  (E)  Direct sequencing of Tssc3 RT-PCR products.
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FIGURE 2.3. Imprinted expression analysis in Eedhypo/null conceptuses

Ascl2 imprinted expression analysis in wild-type and Eedhypo/null CD1.JF1 (F1) E9.5

embryos by direct sequencing.  The amplicon is the same as that used in Figure 2.2A.

However, the forward primer was used for sequencing here, and the reverse primer was

used there.
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FIGURE 2.4.  Loss of imprinting in Eednull/null  trophoblast stem (TS) cells

Imprinted expression analysis in wild-type (wt) and Eednull/null (mut) JF1.CD1 (F1)

trophoblast stem cells.  (A)  Direct sequencing of Ascl2 RT-PCR products.  (B)  Cd81

imprinted expression assessed by non-denaturing HPLC of RT-PCR products.  The

smaller, CD1 paternal allele (pat) elutes from the column after approximately 3 minutes,

and the larger, JF1 maternal allele (mat) elutes at approximately 3.75 minutes.  (C)  Tssc4

imprinted expression utilizing a JF1-CD1 AluI RFLP.  Maternally-encoded, JF1 RT-PCR

products are cut, but paternally-encoded, CD1 RT-PCR products are not.
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FIGURE 2.5.  Maintained imprinting in Eednull/null  trophoblast stem (TS) cells

Imprinted expression analysis in wild-type (wt) and Eednull/null (mut) JF1.CD1 (F1)

trophoblast stem cells.  (A) Kcnq1 imprinted expression utilizing an AluI RFLP.

Paternally-encoded, CD1 RT-PCR products are cut, but maternally-encoded, JF1 RT-

PCR products are not.  (B)  Cdkn1c imprinted expression analysis using a Tsp509I RFLP.

Paternally-encoded, CD1 RT-PCR products are cut, but maternally-encoded, JF1 RT-

PCR products are not.  (C)  Tssc5 imprinted expression analysis using a NdeI RFLP.

Maternally-encoded, JF1 RT-PCR products are cut, but paternally-encoded, CD1 RT-

PCR products are not.  (D)  Direct sequencing of Tssc3 RT-PCR products.  (E)  Kcnq1ot1

imprinted expression analysis utilizing a HpyCH4IV RFLP.  The paternally-encoded,

CD1 RT-PCR products are cut, but the maternally-encoded, JF1 RT-PCR products are

not.
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FIGURE 2.6.  Maintained replication asynchrony in the KvDMR imprinted cluster

in Eednull/null  TS cells

Replication asynchrony assessed in wild-type and in Eednull/null  TS cells.  (A)

Fluorescence microscopy images of S-phase nuclei hybridized with DNA FISH probes.

When neither allele has replicated, two single dots are observed (Single-Single).  When

one allele has not replicated but one allele has replicated, one single dot and one double

dot are observed (Single-Double).  After both alleles have replicated, two double dots are

observed (Double-Double).  The Single-Double class is a readout of replication

asynchrony.  (B)  Results of replication asynchrony assays in wild-type and in Eednull/null

TS cells.  22% of both wild-type and Eednull/null  S-phase nuclei exhibit Single-Double

staining patterns with a probe to Dlx1, a known synchronously replicating control gene.

Conversely, 38% of wild-type and 41% of Eednull/null  S-phase nuclei exhibit Single-

Double staining patterns with a probe corresponding to the Ascl2-Cd81-Tssc4 region of

the KvDMR cluster.
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FIGURE 2.7.  Summary of imprinting defects in Eednull/null TS cells and in

Dnmt1null/null placentas

Imprinting defects previously reported in DNA methyltransferase 1 (Dnmt1) mutant

placentas and reported here in Eednull/null TS cells [22].  Dnmt1 and Eed are required to

regulate nearly reciprocal groups of genes, although the centrally located Kcnq1 is

imprinted normally in both cases.



64

Dnmt1-/- 

Placentas
Eednull/null 
TS Cells7

no
no
no
no

LOI
LOI
LOI
LOI

Ascl2
Cd81
Tssc4
Kcnq1
Kcnq1ot1
Cdkn1c
Tssc5
Tssc3

LOI
LOI
LOI
no
no
no
no
no



CHAPTER 3

THE MURINE POLYCOMB GROUP PROTEIN EED IS REQUIRED FOR

GLOBAL HISTONE H3 LYSINE-27 METHYLATION



66

The Murine Polycomb Group Protein Eed is Required for Global Histone H3

Lysine-27 Methylation

Nathan D. Montgomery1,2,3, Della Yee1,3, Andrew Chen1,3, Sundeep Kalantry1,3, Stormy J.

Chamberlain1,3, Arie P. Otte4, & Terry Magnuson1,2,3

1Department of Genetics, 2Curriculum in Genetics and Molecular Biology, and 3Carolina

Center for Genome Sciences,  University of North Carolina at Chapel Hill, CB#7264

Chapel Hill, NC 27599, USA

4Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM

Amsterdam, The Netherlands

This work was published in Current Biology 15(10): 942-7.



67

3.1.  SUMMARY

PcG proteins mediate heritable transcriptional silencing by generating and

recognizing covalent histone modifications.  One conserved PcG complex, PRC2, is

composed of several proteins including the histone methyltransferase (HMTase) Ezh2,

the WD-repeat protein Eed, and the Zn-finger protein Suz12.  Ezh2 methylates histone

H3 on lysine 27 (H3K27) [1-4], which serves as an epigenetic mark mediating silencing.

H3K27 can be mono-, di-, or trimethylated (H3K27me1, H3K27me2, and H3K27me3,

respectively) [5].  Hence, either PRC2 must be regulated so as to add one methyl group to

certain nucleosomes but two or three to others, or distinct complexes must be responsible

for H3K27me1, H3K27me2, and H3K27me3.  Consistent with the latter possibility,

H3K27me2 and H3K27me3, but not H3K27me1, are absent in Suz12-/- embryos, which

lack both Suz12 and Ezh2 protein [6].  Mammalian proteins required for H3K27me1

have not been identified.  Here, we demonstrate that, unlike Suz12 and Ezh2, Eed is

required not only for H3K27me2 and H3K27me3 but also global H3K27me1.  These

results provide a functionally-important distinction between PRC2 complex components

and implicate Eed in PRC2-independent histone methylation.
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3.2.  RESULTS

Reduced Histone H3 K27 Methylation in Eednull/null cells

To assess Eed’s role in H3K27 methylation, H3K27me1, H3K27me2, and

H3K27me3 were analyzed by immunofluorescence in wild-type and Eedl7Rn5-3354SB

homozygous (herein referred to as Eednull/null ) embryonic stem (ES) cells and trophoblast

stem (TS) cells.  Consistent with published reports from Eednull/null  embryos [7],

H3K27me3 was undetectable in Eednull/null  ES cells and TS cells (Figures 3.1C,F).

Additionally, H3K27me1 and H3K27me2 were also undetectable in Eednull/null  ES cells

and TS cells (Figure 3.1A,B,D,E).  However, no difference in trimethylation of histone

H3 lysine 9 staining was observed between wild-type and Eednull/null TS and ES cells (data

not shown), suggesting that the defect is specific to H3K27 methylation.

To confirm the immunofluorescence data, histones were isolated from wild-type

and Eednull/null ES cells by acid extraction, and H3K27 methylation was analyzed by

Western blotting.  H3K27me1, H3K27me2, and H3K27me3 were all dramatically

reduced in Eednull/null ES cells (Supplementary Figure 3.1). These results implicate Eed not

only in di- and trimethylation of H3K27, as had previously been suggested for other

PRC2 subunits, but also in monomethylation of H3K27.

Reduced Ezh2 Subunit Protein Levels in Eednull/null ES cells

To gauge the molecular basis for the loss of H3K27 methylation in Eednull/null cells,

Eed and Ezh2 subunit protein levels were compared in wild-type and Eednull/null ES cells

by Western blotting.  Consistent with the genetic classification of Eednull as a null allele,
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Eed protein is nearly undetectable in Eednull/null ES cells (Figure 3.2A) and in Eednull/null TS

cells (data not shown).

Suz12-/- embryos lack not only Suz12 but also Ezh2, suggesting that the stability

of Ezh2 may be dependent upon its incorporation into a functional PRC2 complex [6].

Similarly, Ezh2 protein levels were dramatically reduced in Eednull/null ES cells (Figure

3.2A) and in Eednull/null TS cells (data not shown).

Despite the dramatic reduction in Eed and Ezh2 protein levels in Eednull/null ES

cells, the mRNA levels of both gene products were unchanged (Figure 3.2B-D).

Together, these results suggest that Ezh2 is unstable outside of intact PRC2 complexes.

Eed Rescues H3K27 Methylation Defects in Eednull/null ES Cells

To confirm Eed’s role in mono-, di- and trimethylation of H3K27 and to assess

whether Eed is involved not only in the maintenance of these marks but also in their de

novo establishment, Eednull/null ES cells were transiently transfected with plasmids

expressing Eed or Eednull full length cDNAs containing all four putative Eed translation

start sites [8].  Expression of Eed but not Eednull rescued the H3K27 methylation defects

in a subset of Eednull/null ES cells  (Figure 3.3. and Supplementary Figures 3.2 and 3.3).

We hypothesized that the subpopulation of rescued cells represent the successfully

transfected cells in each population.  Consistent with this interpretation, the H3K27me1

defect was uniformly rescued in Eednull/null ES cells stably expressing wild-type Eed

(Figure 3.3).

Surprisingly, no H3K27me2 or H3K27me3 rescue was observed in these stable

lines (Supplementary Figures 3.2 and 3.3).  However, similar to the parental line,
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transient transfection of these lines with the Eed-expression plasmid successfully rescued

the H3K27me2 and H3K27me3 defects in a fraction of cells, confirming that the stable

lines remain competent for di- and trimethylation (Supplementary Figures 3.2 and 3.3).

We hypothesized that the discrepancy in H3K27 methylation in transient versus stable

lines might reflect differences in Eed expression levels.  Supporting this hypothesis,

much higher levels of Eed were observed in transient lines than in stable lines, even

though only a fraction of the cells in the transiently transfection receive the Eed-

expression plasmid (Figure 3.4A).  Additionally, consistent with previous data

demonstrating that Ezh2 is dispensable for H3K27me1 but required for H3K27me2 and

H3K27me3 [6], Ezh2 protein levels were rescued in transient but not stable lines (Figure

3.4A).

Eed, Eedhypo, and Eednull protein levels correlate with phenotypic severity

Whereas Eednull/null embryos die during embryogenesis at gastrulation stages,

animals homozygous for a hypomorphic allele, Eedl7Rn5-1989SB (herein referred to as

Eedhypo/hypo), are viable and fertile but are runted and exhibit skeletal transformations [9].

Despite this dramatic phenotypic difference, no biochemical features have been identified

that distinguish Eedhypo and Eednull proteins [10-12].  To determine whether complexes

containing Eedhypo mediate H3K27 methylation, Eednull/null ES cells were transiently

transfected with plasmids expressing Eedhypo.  Consistent with the mild phenotype of

Eedhypo/hypo animals, Eedhypo, like Eed but unlike Eednull, was able to rescue the H3K27

methylation defects in a percentage of Eednull/null ES cells (Figure 3.3, Supplementary
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Figures 3.2 and 3.3).  Additionally, Eedhypo/hypo fibroblasts retain H3K27me1, H3K27me2,

and H3K27me3 (data not shown).

Eedhypo’s ability to mediate H3K27 methylation suggests that, unlike Eednull,

Eedhypo must be stable. In order to assess the relative stability of Eedhypo and Eednull,

Eednull/null ES cells were transiently transfected with plasmids expressing Eed, Eedhypo, or

Eednull.  Consistent with the hypomorphic phenotype conferred by the mutation, Western

blotting of whole cell lysates from transfected cells indicated that the Eedhypo protein is

present at a level intermediate to Eed and Eednull (Figure 3.4B).  Although reduced

relative to wildtype, the level of Eedhypo on a per cell basis is apparently sufficient for

assembly of functional PRC2 complexes.  However, the qualitative nature of the

immunofluorescence assay precluded determination of whether Eedhypo mediates

qualitatively less H3K27 methylation than Eed.
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3.3.  DISCUSSION

The requirement of Eed for global  H3K27me1, H3K27me2, and H3K27me3

suggests either that PRC2 is necessary for all H3K27 methylation or that distinct Eed-

containing complexes mediate mono-, di- and trimethylation.  In support of the former

concept, the Drosophila Ezh2 homologue E(z) was recently shown to be required for

H3K27me1, H3K27me2, and H3K27me3  [13], suggesting that all H3K27 methylation is

mediated by PRC2 in that organism.  However, in mammals, the mechanism may be

more complex.  Suz12-/- embryos, which lack Suz12 and Ezh2 but retain Eed, maintain

H3K27me1 [6].  These results indicate that PRC2 may mediate only H3K27me2 and

H3K27me3 in mammalian cells.  This model is similar to H3K9 methylation, where

distinct enzymes mediate mono/dimethylation and trimethylation [5].

Importantly, the persistence of Eed in Suz12-/- embryos, which also retain

H3K27me1, and the absence of H3K27me1 in Eednull/null cells are consistent with the

possibility that Eed associates with a PRC2-independent H3K27 monomethylase.  This

interpretation is supported by the observation that H3K27me1 is rescued in Eednull/null ES

lines stably expressing low levels of Eed independent of any rescue of Ezh2 protein

levels.  It is unclear why the low level of Eed in the stable rescue lines failed to stabilize a

corresponding level of Ezh2.  However, one interpretation of these results is that, when

levels of Eed are limiting, Eed is preferentially assembled into the proposed

monomethylase complex.

The extensive covalent modifications on histone amino-terminal tails have been

proposed to serve as a histone code that controls chromatin conformations and

transcriptional states [14, 15].  The complexity of this code is a product not only of the
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large number of modified residues and the diverse types of chemical modifications

(acetylation, methylation, phosphorylation, etc.) but also the different number of

chemical moieties added to a particular residue.  H3K27me3 recruits a second PcG

complex, PRC1, which condenses local chromatin [1, 4, 16, 17].  However, the functions

of H3K27me1 and H3K27me2 are undefined.  The involvement of Eed in all three forms

of methylation suggests that the marks may be functionally related, perhaps reflecting

that H3K27me1 is a primed state that facilitates H3K27me2 and H3K27me3.  In this

model, Eed could bridge PRC2 and the putative monomethylase complex.  Alternatively,

H3K27me1 may itself be a functional mark, and preliminary analyses suggest that the

presence of H3K27me1 alone in our stable lines is sufficient to rescue a subset of

morphological defects in mutant cells (N.D.M., D.Y., and T.M., unpublished

observations).

While Ezh2 clearly provides catalytic activity to PRC2, the functional roles of the

noncatalytic subunits remain largely undefined.  Eednull protein is unable to bind Ezh2

[11, 12].  Here, we demonstrate that Ezh2 protein levels are dramatically reduced in

Eednull/null cells.  Together these results suggest that Ezh2 is unstable outside of functional

PRC2 complexes.  The S. cerevisiae WD-repeat protein Swd2p is similarly required for

the stability of the HMTase Set1p, perhaps reflecting a more general requirement for

WD-repeat proteins in the stable assembly of HMTase complexes [18].
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3.4.  MATERIALS AND METHODS

Immunofluorescence

Eednull/null ES cell line 21 and wild-type (Eed+/+) ES cell line 25.5  [19] or Eednull/null

TS cell line 3-5 and wild-type (Eed+/null) TS cell line 5-4 were grown on irradiated

fibroblast feeders, plated onto coverslips without feeders, and grown to subconfluency.

For immunofluorescence of transfected cells, ES cells were passaged two times without

fibroblast feeders, plated onto coverslips and subsequently transfected with

Lipofectamine 2000 (Invitrogen, Carlsbad, CA).

Coverslips and attached cells were treated with CSK buffer (100 mM NaCl,

300mM sucrose, 3mM MgCl2, 10mM PIPES pH=6.8) containing 0.5% Triton-X, fixed in

4% paraformaldehyde/1X PBS, and stored in 1X PBS, 0.2% Tween-20.  Subsequently,

cells were washed in 1X PBS and incubated in a humid chamber with blocking buffer

(1X PBS, 5% goat serum, 0.2% Tween-20, 0.2% Fish skin gelatin).  Blocked samples

were incubated in a humid chamber with primary antibodies (anti-H3K27me1 (Upstate,

Charlottesville, VA), anti-H3K27me2 [5], and anti-H3K27me3 [5]) diluted 1:250 in

blocking buffer.  Then, the cells were washed in 1XPBS/0.2% Tween-20, blocked again

in blocking buffer, and incubated in a humid chamber with secondary antibody (Goat

anti-Rabbit Alexa 594, Molecular Probes, Eugene, OR).  Finally, samples were washed in

1XPBS/0.2% Tween-20, and mounted with Vectashield (Vector Laboratories,

Burlingame, CA).  Stained slides were visualized by fluorescence microscopy.
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Plasmid Construction and Generation of Stable Lines

Full length Eed, Eedhypo, and Eednull cDNAs were cloned into the mammalian

expression vector pTarget (Promega, Madison, WI) by conventional molecular biology

techniques.  For generation of stable lines, the full length Eed cDNA was subcloned into

pcDNA3.1/Hygro (Invitrogen, Carlsbad, CA) to generate pNDM45.

PNDM45 was linearized by BglII restriction digest and electroporated into

Eednull/null ES cell line 21.  Clones stably expressing Eed were picked after eight days of

hygromycin selection.  Incorporation of the transgene was confirmed by PCR.

Coomassie Staining and Western blotting

For histone isolation, 1-2 x 107 ES cells were harvested and lysed with 0.002%

NP-40.  Nuclei were isolated by gentle centrifugation and then lysed in 0.4 N sulfuric

acid.  Nuclear proteins were precipitated with 20% trichloroacetic acid, washed in

acetone, and resuspended in sterile water.  For all other protein isolation, ES or TS cells

were grown to near confluency in 35mm dishes.  Whole cell lysates were generated by

lysing in urea lysis buffer (7.75M Urea, 0.01M Tris pH=8, 0.1M NaH2PO4).

For Coomassie staining, histone preparations from wild-type and Eednull ES cells

were electrophoresed on a 15% SDS-PAGE gel.  Gels were then washed in water, stained

1 hour in Simply Blue SafeStain (Invitrogen, Carlsbad, CA), and then destained

overnight in distilled water.

For Western blotting, protein preparations were separated on 10% (for nonhistone

proteins) or 15% (for histone proteins) SDS-PAGE gels in Tris-Glycine.  Subsequently,
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proteins were transferred to Immun-Blot PVDF membranes (BIO-RAD, Hercules, CA)

in Tris-Glycine-Methanol Transfer Buffer.  Membranes were blocked in 4-5% nonfat

dried milk in TBST (50mM Tris-HCl pH = 7.4, 150 mM NaCl, 0.1% Tween-20), and

then probed overnight at 4°C with primary antibodies diluted in blocking buffer (anti-Eed

[20], anti-Ezh2 [20], anti-Actin (Santa Cruz Biotechnology, Santa Cruz, CA), anti-

H3K27me1 (Upstate, Charlottesville, VA), anti-H3K27me2 [5], and anti-H3K27me3

[5]).  Subsequently, blots were washed in TBST, and then probed overnight at 4°C with

appropriate HRP-conjugated secondary antibodies (Pierce, Rockford, IL).  Blots were

washed first in TBST and then in TBS (50mM Tris-HCl pH = 7.4, 150 mM NaCl), before

detecting secondary antibodies with SuperSignal West Dura Extended Duration

Substrate (Pierce, Rockford, IL).  Finally, blots were exposed to film, which was then

developed.

Northern blotting

Triplicate samples of wild-type and Eednull/null ES cells were harvested and lysed

directly in TRIzol Reagent (Invitrogen, Carlsbad, CA).  RNA was isolated from the

TRIzol lysate by phenol-chloroform extraction, and RNA was precipitated with

isopropanol.  Precipitated nucleic acids were washed in 70% ethanol and resuspended in

sterile water.  Isolated RNAs were electrophoresed in 1X MOPS (20 mM MOPS, 50 mM

sodium acetate, 1 mM EDTA, pH=7), formaldehyde, agarose gels, and then, RNA was

transferred to Nytran SuperCharge membranes (Schleicher & Schuell, Keene, NH) in

10X SSC (1.5 M NaCl, 150mM Na3C6H5O7, pH=7).
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Radiolabeled Northern probes were generated by incubating the full length Eed

cDNA or a fragment of the Gapdh cDNA with random hexamers, dTTP, dATP, dGTP,

α-32P dCTP, and Klenow enzyme (New England Biolabs, Beverly, MA). Labeled probes

were purified from unincorporated nucleotides using ProbeQuant G-50 Micro Columns

(Amersham Biosciences, Amersham, UK).

Blots were prehybrdized at 65°C for 1-2 hours in Church buffer (1% BSA, 1mM

EDTA, 0.5M NaPO4, 7% SDS) and then hydridized at 65°C overnight with radiolabeled

probe diluted in Church buffer.  Subsequently, blots were washed in 0.2X-2X SSC, 0.1%

SDS at 65°C and then exposed to film overnight at -80°C.

RealTime RT-PCR

RNA was isolated from triplicate samples of wild-type and Eednull/null ES cells

using TRIzol Reagent (Invitrogen, Carlsbad, CA) as above, and contaminating DNA

was eliminated by treating with DNase for one hour at 37°C.  cDNA was prepared using

SuperScriptII Reverse Transcriptase (Invitrogen, Carlsbad, CA) and then analyzed by

RealTime PCR for Ezh2 and Hprt cDNA.  Ezh2 CT values were normalized to Hprt CT

values.
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FIGURE 3.1.  Loss of H3K27 Methylation in Eednull/null ES and TS cells

Immunofluorescence analysis of (A and D) H3K27me1, (B and E) H3K27me2, and (C

and F) H3K27me3 in wild-type and Eednull/null ES (A-C) and TS (D-F) cells. ES and TS

cell colonies indicated by arrows.  Examples of wild-type irradiated fibroblast feeders,

which serve as internal controls for the staining, indicated by asterisks.   The specificity

of the methyl-specific antibodies have been previously demonstrated [5].
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FIGURE 3.2.  Reduced Eed and Ezh2 Protein Levels but Normal mRNA Levels in

Eednull/null ES cells

(A)  Whole cell lysates from wild-type or Eednull/null  ES cells analyzed by Western

blotting with antibodies detecting Eed or Ezh2.  Equal loading was verified by blotting

with an antibody detecting Actin.  (B)  Eed and Gapdh Northern blots.  (C)  Eed mRNA

levels relative to Gapdh mRNA levels. Eed+/+ values were set to 1.0.  (D)  RealTime PCR

analysis of Ezh2 mRNA. Wild-type values were set to 1.0.
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FIGURE 3.3.  Defect in H3K27me1 Methylation in Eednull/null ES Cells is Rescued by

Wild-Type Eed

Immunofluorescence analysis of H3K27me1 in wild-type ES cells (top panels), in

Eednull/null ES cells either mock transfected (second panels) or transfected with plasmids

expressing Eed (third panels), Eedhypo (fourth panels), or Eednull (fifth panels), and in

Eednull/null ES cells stably expressing Eed (bottom panels).
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FIGURE 3.4.  Eed and Ezh2 Protein Levels in Rescue Lines

(A) Whole cell lysates from wild-type ES cells (+/+), Eednull/null  ES cells (null/null),

Eednull/null  ES cells stably expressing Eed (stable), or Eednull/null  ES cells transiently

transfected with an Eed expression plasmid (transient) analyzed by Western blotting with

antibodies detecting Eed, Ezh2, or Actin.  Low levels of Eed protein in Eednull/null  ES cells

may reflect a small amount of residual mutant protein or feeder contamination.  (B)

Eednull/null ES cells were cotransfected with a Gfp expressing plasmid and either mock or

plasmids expressing Eed, Eedhypo, or Eednull.  Transfections efficiencies were controlled by

Gfp fluorescence, and whole cell lysates were analyzed by Western blotting with anti-

Eed antibodies. Equal loading was verified by blotting with an antibody detecting Actin.
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SUPPLEMENTARY FIGURE 3.1.  Western Blot Confirmation of H3K27

Methylation Defects  in Eednull/null ES cells

Acid-extracted histones from wild-type and Eednull/null ES cells were analyzed by Western

blotting with antibodies recognizing H3K27me1, H3K27me2, and H3K27me3.  Equal

loading was verified by Coomassie stain.
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SUPPLEMENTARY FIGURE 3.2.  Defect in H3K27me2 Methylation in Eednull/null

ES  Cells is Rescued by Wild-Type Eed

Immunofluorescence analysis of H3K27me2 in wild-type ES cells (top panels), in

Eednull/null ES cells either mock transfected (second panels) or transfected with plasmids

expressing Eed (third panels), Eedhypo (fourth panels), or Eednull (fifth panels), in Eednull/null

ES cells stably expressing Eed (sixth panels), and in Eednull/null ES cells stably expressing

Eed and transiently transfected with a plasmid expressing Eed (bottom panels).
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SUPPLEMENTARY FIGURE 3.3.  Defect in H3K27me3 Methylation in Eednull/null

ES Cells is Rescued by Wild-Type Eed

Immunofluorescence analysis of H3K27me3 in wild-type ES cells (top panels), in

Eednull/null ES cells either mock transfected (second panels) or transfected with plasmids

expressing Eed (third panels), Eedhypo (fourth panels), or Eednull (fifth panels), in Eednull/null

ES cells stably expressing Eed (sixth panels), and in Eednull/null ES cells stably expressing

Eed and transiently transfected with a plasmid expressing Eed (bottom panels).
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CHAPTER 4

MOLECULAR AND FUNCTIONAL MAPPING OF ISOFORM START SITES

AND MOTIFS IN THE POLYCOMB GROUP PROTEIN EED
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4.1.  ABSTRACT

Polycomb Group (PcG) proteins represent a conserved family of developmental

regulators that mediate heritable transcriptional silencing by modifying chromatin states.

One PcG complex, the PRC2 complex, is composed of several proteins, including the

histone H3 lysine 27 (H3K27) methyltransferase EZH2 and the WD-repeat protein EED.

Histone H3K27 can be mono- (H3K27me1), di- (HeK27me2), or trimethylated

(H3K27me3).  However, it remains unclear what regulates the number of methyl groups

added to H3K27 in a particular nucleosome.  In mammalian cells, EED is present as four

distinct isoforms, which are believed to be produced by utilizing four distinct, in-frame

translation start sites in a common Eed mRNA.  To assess the roles of individual EED

isoforms in H3K27 methylation, we characterized three of the four EED isoform start

sites and demonstrated that individual isoforms are not necessary for H3K27me1,

H3K27me2, or H3K27me3.  Instead, the core WD-40 motifs and the histone binding

region of EED alone are sufficient to mediate all three marks, demonstrating that EED

isoforms do not control the enzymatic activity of the PRC2 complex.
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4.2.  INTRODUCTION

Polycomb Group (PcG) proteins are a conserved family of development

regulators that modify chromatin states in order to mediate heritable transcriptional

silencing.  PcG-mediated repression is important in diverse biological processes

including X-chromosome inactivation, genomic imprinting, and segmental patterning [1-

9].  One PcG complex, the PRC2 complex, is composed of several bona fide PcG

proteins, including the histone H3 lysine 27 (H3K27) methyltransferase EZH2 and the

WD-repeat protein EED [9-12].

Four EED isoforms are found in mammals, and these isoforms are thought to be

produced by utilizing four in-frame translation start sites in the Eed mRNA [13].  The

identities of those sites were postulated on the basis of in vitro translation studies, which

were supported by subsequent immunoblotting experiments with antibodies raised to

peptides predicted to be present in some but not other isoforms [13, 14].  However, the

four putative start sites have not been demonstrated formally in vivo.

Although most proteins initiate translation at methionine-encoding AUG codons,

an increasing number of proteins are recognized to initiate translation from non-AUG

codons.  Often, these alternative start sites generate upstream isoforms of proteins also

translated from downstream, canonical AUG initiation codons, and typically, the

alternative codons differ from the canonical AUG sequence at only one of the three

nucleotide positions [15, 16].  For instance, Fibroblast Growth Factor-2 (FGF2) is present

as five isoforms in mammalian cells, with four CUG initiation codons upstream of a

canonical AUG start site, and Vascular Endothelial Growth Factor (VEGF) is translated

from both an upstream CUG and a downstream AUG [17-21].  Translation of the putative
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EED isoforms appears to be consistent with both of these trends as well.  The upstream

EED-1 and EED-2 are postulated to initiate translation from non-canonical GUG codons

at positions 169-171 and 274-276 in the Eed cDNA, respectively, and the putative start

sites for EED-3 and EED-4 are canonical AUG sequences at positions 451-453 and 493-

495 [13, 14].

EED isoform usage is regulated developmentally, and EED-2, which has only

been observed in undifferentiated stem cells and in tumors, has been proposed to be

important in maintaining developmental plasticity [22].  However, definitive biochemical

functions of the various EED isoforms have not been demonstrated.  Previous work

postulated that EED isoforms control the substrate specificity of the PRC2 complex.  In

those initial studies, the largest isoforms, EED-1 and EED-2 appeared to direct EZH2

methyltransferase activity towards histone H1K26, whereas EED-3 and EED-4 appeared

to direct EZH2 methyltransferase activity towards H3K27 [13].  However, a second

recent study failed to confirm these findings [23].

Histone H3K27 can be mono- (H3K27me1), di- (HeK27me2), or trimethylated

(H3K27me3)[24].  H3K27me3 is a repressive histone modification that localizes to

confirmed targets of PcG silencing, including the inactive X-chromosome[1, 2, 25-27].

H3K27me3 mediates its repressive effect by recruiting to chromatin or at least stabilizing

the association of a second PcG complex, PRC1 [28-31].  Conversely, the functions of

H3K27me1 and H3K27me2 are not known.  Moreover, it remains unclear what regulates

the number of methyl groups added to H3K27 in a particular nucleosome.  Two

simplistic models have been proposed to explain this specificity [32].  The first model

proposes that distinct methyltransferases or distinct complexes mediate each H3K27
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methylation state.  In the second model, a single methyltransferase is responsible for all

three methylation states but is somehow regulated so as to add one methyl group to

certain nucleosomes and two or three methyl groups to others.

Because all four known EED isoforms associate with EZH2 [13, 22], we

examined whether these isoforms might control the number of methyl groups added to

H3K27 in a particular nucleosome.  In the present study, we definitively characterize

three of the four EED isoform start sites and demonstrate that individual isoforms are not

necessary for H3K27me1, H3K27me2, or H3K27me3.  Instead, EED’s core WD-40

motifs and histone binding region alone are sufficient to mediate all three marks,

demonstrating that EED isoforms do not control the enzymatic activity of the PRC2

complex.
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4.3.  METHODS AND MATERIALS

Cell lines and culture

CD1 murine embryonic fibroblasts (MEFs) were plated on gelatin-coated

coverslips and grown to subconfluency.  Wild-type embryonic stem (ES) cell line 25.5

and Eedl7Rn5-3354SB/l7Rn5-3354SB (herein referred to as Eed mutant or Eed-/-) ES cell line 21 were

grown first on irradiated fibroblast feeders before being plated on coverslips without

feeders and grown to subconfluency [33].  In transfection experiments, ES cells plated on

coverslips were transfected using Lipofectamine 2000™ (Invitrogen) and harvested 48

hours later.

Immunofluorescence

Cells on coverslips were permeabilized with CSK buffer (100 mM NaCl, 300 mM

sucrose, 3 mM MgCl2, 10 mM PIPES [pH 6.8]) and fixed in 4% paraformaldehyde.  To

stain, cells were washed in phospho-buffered saline (PBS) and incubated with blocking

buffer (PBS, 5% goat serum, 0.2% Tween-20, 0.2% fish skin gelatin).  After blocking,

samples were incubated with primary antibody (anti-H3K27me1 [Upstate], anti-

3mK27me2[24], anti-3mK27me3[24], or anti-HP1-∝ [Upstate]), which had diluted 1:250

in blocking buffer.  Subsequently, cells were washed in PBS/0.2% Tween-20 and then

incubated with secondary antibody (Goat anti-Rabbit Alexa 594 [Molecular Probes])

diluted 1:250 in blocking buffer.  Blocking and antibody incubations were always

performed in a humid chamber at 37° C.  Subsequently, cells were washed again in

PBS/0.2% Tween-20 and mounted with Vectashield™ containing 4’,6-diamidino-2-

phenylindole dihydrochloride (DAPI) (Vector Laboratories).  Stained slides were
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visualized by fluorescence microscopy, and then black and white images were captured

with a Spot CCD digital camera before being pseudo-colored and merged with Spot

software V3.5.9 (Diagnostic Instruments Inc.).

Plasmid Construction

Constructs expressing mes-6, esc, escl, or Eed cDNAs were cloned into the shuttle

TA-cloning vector pGEM®-T Easy (Promega) and then subcloned into EcoRI-digested

pTarget™ (Promega) by conventional molecular biology techniques.  The orientation and

identity of all inserted sequences were confirmed by fully sequencing the cDNA and the

cloning junctions.

Eed cDNAs were truncated by PCR, utilizing forward primers that annealed

within the Eed cDNA and reverse primers anchored in pTarget (primer sequences

available upon request).  Site-directed point mutations were generated by standard

methods.  Briefly, primers spanning EED-3 and EED-4 start sites but harboring

ATG→ATA mutations were used as forward primers with a reverse primer anchored in

the pTarget.  Finally, in order to engineer strong translation start sites, in frame consensus

Kozak-(GCCACC)ATG 5’ extensions were included on forward primers.

Western blotting

Wild-type ES cell line 25.5, wild-type ES cell line E14 [34], mock-transfected

Eed mutant ES cell line 21, and Eed mutant ES cell line 21 transfected with various

expression constructs were harvested in urea lysis buffer (7.5 M Urea, 0.01 M Tris [pH

8.0]), 0.1M NaH2PO4) 48 hours after transfection.  Urea-lysates were also harvested from
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mouse Wap-T121 mammary tumor tissue, which is generated by tissue-specific expression

of T121, a fragment of SV40 T antigen that interferes with the function of Retinoblastoma-

family proteins [35].   Proteins were separated on 10% SDS-PAGE gels in Tris-Glycine

running buffer and transferred to Immun-Blot PVDF membranes (Bio-Rad) in Tris-

Glycine Methanol transfer buffer.  Membranes were blocked in 5% non-fat dried milk

(NFDM [Food Lion])/TBST (50 mM Tris HCl [pH 7.4], 150 mM NaCl, 0.1% Tween-20)

and then incubated overnight at 4° C with a mouse monoclonal anti-EED antibody [36]

diluted 1:400 in 3% NFDM/TBST.  Membranes were vigorously washed in TBST and

then incubated overnight at 4° C with HRP-conjugated goat anti-rabbit antibody (Pierce)

diluted 1:3000 in 5% NFDM/TBST.  Membranes were then vigorously washed in TBST

and TBS (50 mM Tris HCl [pH 7.4], 150 mM NaCl), before adding SuperSignal West

Dura Extended Duration Substrate (Pierce) developing reagents.  Finally, blots were

exposed to film and developed.
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4.4.  RESULTS

Distinct localization of H3K27 methylation states

Unlike mouse stem cell lines, differentiated mouse cells, such as murine

embryonic fibroblasts (MEFs,) have a striking nuclear architecture, in which regions of

the genome packaged as part of the pericentric heterochromatin are clearly visible by

DAPI staining as DNA-rich foci.   Using this characteristic DNA staining pattern to

provide landmarks, we assessed the localization of H3K27me1, H3K27me2 and

H3K27me3 in CD1 MEFs (Figure 4.1).  As previously reported, H3K27me1 appeared to

be enriched in the DNA-rich pericentric heterochromatin (Figure 4.1A and[24]).

Conversely, H3K27me2 and H3K27me3 were specifically excluded from these regions,

instead staining in a pattern reciprocal to that of H3K27me1 (Figures 4.1B and 4.1C).

HP1-α, an established marker of pericentric heterochromatin[37-39], was also enriched

in the DNA-rich foci, confirming the identity of these regions (Figure 4.1D).  Finally,

H3K27me2 and H3K27me3 staining patterns were distinguished by the characteristic

enrichment of H3K27me3 on the inactive X-chromosome (Figure 4.1B and 4.1C).

Characterization of EED isoforms expressed in wild-type ES cells

The distinct localization patterns of the three H3K27 methylation states indicates

that the number of methyl groups added to H3K27 in a particular nucleosome is a

regulated process.  Given the existence of three H3K27 methylation states and four EED

isoforms, candidates to control this specificity include the EED isoforms themselves.  To

test this possibility, we aimed to rescue Eed mutant embryonic stem (ES) cells, which

lack detectable levels of endogenous H3K27me1, H3K27me2, and H3K27m3 [32], with
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constructs expressing individual EED isoforms.  However, before a systematic series of

rescue experiments was performed, we attempted to confirm the identities of the EED

isoforms.

Previous work indicates that all four EED isoforms are present in wild-type,

undifferentiated mouse ES cells[22]. However, we consistently detect only three isoforms

in multiple, independently-derived embryonic stem cell lines (Figure 4.2).  To confirm

the identity of the three isoforms observed in our undifferentiated ES cells, we compared

the isoforms present in those cells to the isoforms present in HeLa cells and in mammary

tumor tissue from mouse Wap-T121 mammary tumors.  Previous work has demonstrated

that EED-1, EED-3, and EED-4 are expressed in HeLa cells and that EED-2 is

upregulated in many mouse tumors[22].  Consistent with those reports, we observed high

levels of EED-1, EED-3 and EED-4 and much lower levels of EED-2 in HeLa cells

(Figure 4.2A).  Similarly, EED-2, along with EED-3 and EED-4, was observed in Wap-

T121 mammary tumors (Figure 4.2B).  Comparison of the isoforms present in those

sources with the isoforms present in our embryonic stem cells confirmed the identity of

the isoforms we observe in embryonic stem cells as EED-1, EED-3, and EED-4 (Figure

4.2).

Deletion mapping of EED isoform start sites

Previous work has suggested that the four EED isoforms are generated by

utilizing four distinct translation initiation sites in a common Eed messenger RNA[13].

In the mouse, those putative start sites correspond to GUG 169-171, GUG 274-276, AUG

451-453, and AUG 493-495, respectively (Figure 4.3A).  Overall, mouse and human
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EED are very similar proteins.  In fact, the predicted EED-3 and EED-4 isoforms are

100% identical between the two species (37).  However, the sequences between the

putative EED-1 and EED-2 start sites, are much more variable [40]. Given the abrupt

boundary between highly variable and nearly identical sequences, we questioned whether

the actual EED-1 start site might be further 3’ than previously reported.

To map EED isoform start sites, we generated a series of Eed expression

constructs progressively truncated at the 5’ end of the Eed cDNA (Figure 4.3A).

Individual constructs were then transiently transfected into Eed mutant ES cells, which

lack detectable endogenous EED, and EED isoform expression was assessed by western

blotting.  In these experiments, the furthest 5’ intact translational start site was generally

utilized preferentially to downstream translational start sites (Figure 4.3).  This

observation suggests that regulated usage of the various EED translational start sites is

not simply a consequence of the interaction between trans-acting factors and sequences

present in the message but instead may be influenced by upstream events, such as

splicing.  Additionally, because isoform expression could be lost either by deleting past

an isoform start site or by deleting an upstream regulatory element required for

translation from an intact start site, the absence of a band is uninformative in this assay.

However, the continued presence of an isoform after its putative start site has been

deleted is strong evidence that the actual start site must be further downstream.

Consistent with the relaxed sequence conservation between mouse and human

Eed sequences beginning with and immediately downstream from GUG 169-171, EED-1

was expressed from constructs truncated 32 (Δ201) and even 88 (Δ257) nucleotides

beyond the reported EED-1 start site, suggesting that EED-1 may not initiate translation
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at GUG 169-171 as previously proposed (Figure 4.3B).  EED-1 expression was lost only

after deleting the 5’ 312 nucleotides of the Eed cDNA, a deletion extending 143

nucleotides beyond the reported EED-1 start site and 38 nucleotides beyond the published

EED-2 start site (Figure 4.3B).  Consistent with the published identity of the EED-3 start

site at AUG 451-453, this isoform was observed after deleting the 5’ 417 nucleotides but

not after deleting the 5’ 455 nucleotides (Figure 4.3B).  Finally, EED-4 was present even

in the largest truncation, which deleted the 5’ 455 nucleotides, consistent with the

published EED-4 start site residing at AUG493-495 (Figure 4.3B).

Confirmation of EED isoform start sites

To verify that GUG 169-171 is upstream of the actual EED-1 start site, we forced

expression from this codon by replacing the sequences encoding GUG 169-171 with a

canonical translation start site consisting of a consensus Kozak sequence followed by an

AUG initiator codon (Figure 4.4A).  Consistent with the hypothesis that EED-1

translation actually initiates further downstream, the resulting product was substantially

larger than EED-1 (Figure 4.4B, asterisk).  A lower level of an EED-1 sized product,

presumably initiating at the actual start site further downstream, was also observed after

transfection with this construct (Figure 4.4B, arrow).

Given that the deletion mapping data indicates that either the true EED-1 start site

or some regulatory element required for translation from the true EED-1 start site maps

between nucleotides 257 and 312, we hypothesized that EED-1 may be produced by

translation initiating from the predicted EED-2 start site at GUG 274-276.  To test that

possibility, we forced expression of a protein initiating translation at that site by replacing
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GUG 274-276 with a consensus Kozak followed by an AUG initiator codon (Figure

4.4A).  Consistent with EED-1 translation initiating at this location, the resulting product

was the same size as EED-1 observed in mouse ES cells (Figure 4.4B).

Because EED-2 was not expressed in our wild-type ES cells or from any of our

truncated expression constructs, we were unable to characterize this isoform.  However,

driving translation from a candidate start site at GUG 397-399 produced a protein that

appears to be smaller than EED-2 (data now shown), suggesting that the EED-2 start site

lies between GUG 274-276 and GUG 397-399 or that EED-2 is generated by alternative

mechanisms.

Our deletion mapping data were consistent with the presumptive EED-3 and

EED-4 start sites residing at AUG 451-453 and AUG 493-495, respectively.  To confirm

that translation of those isoforms originates at those sites, we engineered AUG→AUA

site directed point mutations into the AUG 451-453 and AUG 493-495 codons (Figure

4.4A).  Consistent with those codons being the initiation codons for the two smaller

isoforms, constructs harboring those mutations failed to express EED-3 and EED-4

(Figure 4.4C).

Ability of EED isoforms to mediate H3K27 methyltransferase activity

To determine whether all three EED isoforms present in our ES cells are required

to mediate the three H3K27 methylation states, Eed mutant ES cells were transiently

transfected with a series of Eed cDNA expression constructs.  This rescue assay has

previously been utilized to demonstrate that protein(s) expressed from a full-length Eed



108

cDNA cassette can mediate all three H3K27 methylation states[32], although the role of

individual isoforms in that rescue has not been directly assessed.

Constructs harboring site-directed mutations to eliminate EED-3 and EED-4

expression or truncated to eliminate EED-1 expression were both able to rescue all three

H3K27 methylation states in Eed mutant ES cells (Figure 4.5D and E).  Additionally, a

construct retaining only the EED-4 start site also rescued H3K27me1, H3K27me2, and

H3K27me3 (Figure 4.5F).  As previously reported, expression of the Eedl7Rn5-3354SB allele,

which produces an unstable and nonfunctional protein harboring a L→P substitution,

failed to rescue H3K27 methylation(data not shown and [32]).  Collectively, these results

demonstrate that the three H3K27 methylation states are not dependent on individual

EED isoforms.

Disruption of EED WD-40 motifs eliminates methyltransferase activity

EED and its homologs in other organisms are WD-repeat proteins.  However,

there is disagreement about the number of WD-40 motifs present in EED, with estimates

varying between five and seven [41-43].  In functional studies assessing EED’s ability to

bind EZH2 or its ability to mediate transcriptional repression when tethered to a GAL4

DNA binding domain, only five WD-40 motifs have appeared functionally necessary [44,

45].  Those five motifs map to Eed cDNA sequences 721-808 (WD-40 motif 1), 1012-

1105 (WD-40 motif 2), 1150-1240 (WD-40 motif 3), 1330-1444 (WD-40 motif 4), and

1672-1762 (WD-40 motif 5).  To determine whether those same regions are required for

EED’s ability to mediate H3K27 methylation, Eed mutant ES cells were transiently
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transfected with a series of Eed cDNA expression constructs progressively truncated

from either the N- or C-terminus.

Deletion of any of the five putative WD-40 motifs abolished EED’s ability to

mediate H3K27 methylation, as demonstrated by immunofluorescence (Figure 4.6D-G).

However, N-terminally truncated proteins containing all five WD-40 motifs retained

H3K27 methyltransferase activity.  A protein lacking the N-terminal 16 amino acids of

EED-4 (Δ5’ 541) was able to mediate all three H3K27 methylation states (Figure 4.6B),

suggesting that the N-terminal regions in EED, including those amino acids that

distinguish individual isoforms, are not required for the catalytic activity of the PRC2

complex.  A second deletion, Δ5’ 697 also left the five putative WD-40 motifs intact.

However, protein expressed from this construct retains only 8 amino acids upstream of

WD-40 motif 1.  Although the expression of the Δ5’ 697 construct consistently rescued

the H3K27me1 defect, little if any H3K27me2 and H3K27me3 were observed (Figure

4.6C).

Nematode and fly Eed homologs fail to rescue H3K27 methylation defects in Eed

mutant cells

Given that EED’s WD repeats alone appear sufficient to mediate the PRC2

complex’s H3K27 methyltransferase activity, we examined whether the complex’s

requirement for a WD-repeat protein can be satisfied by WD-repeat proteins other than

EED, in particular Eed homologs from other organisms.  To address this question, Eed

mutant ES cells were transiently transfected with constructs expressing either the C.

elegans homolog of Eed, mes-6, or the D. melanogaster Eed homologs, esc and escl.
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Previous work has suggested that fly and mouse Eed homologs may not be functionally

equivalent, as Eed functions in a dominant negative fashion in flies.  Consistent with

functional differences in these homologous proteins, mes-6, esc, and escl were all unable

to rescue the H3K27 methylation defects in Eed mutant mouse ES cells (Figure 4.7), even

though MES-6 and ESC normally exist in PcG complexes with H3K27 methyltransferase

activity [10, 12, 46].
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4.5.  DISCUSSION

EED-1, EED-3, and EED-4 translation start sites map to GUG 274-276, AUG 451-

453, and AUG 493-495

Mammalian EED proteins are present as four isoforms of unclear function [13,

22, 23].  Previous work has suggested that the four EED isoforms are generated by

translation initiating at GUG 169-171, GUG 274-276, AUG 451-453, and AUG 493-495,

respectively [13, 14].  This interpretation followed from early studies by Denisenko and

Bomsztyk, who assessed EED proteins translated in a cell free system [14].

Subsequently, Kuzmichev et al. generated an isoform-restricted EED antibody, called

αNT, which was raised to peptides encoded by Eed cDNA sequences from positions 258-

453 (M26).  Because the αNT recognized EED-1 and EED-2 but not EED-3 and EED-4,

those results demonstrated that EED-1 and EED-2 must include the αNT epitope and

must initiate translation upstream of M451-453, as predicted by Denisenko and Bomsztyk

[14].

Here, we have directly assessed the identity of the EED translation start sites by a

combination approach involving deletion mapping, forced translation from reported start

sites, and site-directed mutagenesis of candidate initiation codons.  These experiments

definitively map EED-1, EED-3, and EED-4 start sites to GUG 274-276, AUG 451-453,

and AUG 493-495, respectively.  Importantly, because the informative αNT antibody

utilized by Kuzmichev et al. recognizes amino acids that would be present not only in a

hypothetical protein initiating at GUG 169-171 but also in a protein initiating at GUG

274-276, the EED-1 initiation site reported here, the immunoblotting data from

Kuzmichev et al. are fully consistent with the results presented in the present work [13].
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On other hand, these results do contradict the earlier work of Denisenko and Bomsztyk

[14].  Denisenko and Bomsztyk assessed EED proteins expressed from truncated and

engineered Eed cDNAs comparable to those utilized here.  However, whereas we

assessed translation from those messages in living cells, Denisenko and Bomsztyk

utilized a rabbit reticulocyte cell-free system.  In their assay, a truncation that would have

deleted the 5’ 222 nucleotides in our constructs eliminated EED-1 expression, even

though a truncation extending 35 nucleotides further (Δ257) did not disrupt EED-1

expression in our assay (Figure 4.3B).  The differences in our respective methodologies

may account for the discrepancy in our results.  The major advantage to the transient

transfection assay employed in this report is that it allows direct comparison of EED

expressed from expression constructs to endogenous EED expressed in the same cell

type.

In their cell-free system, Denisenko and Bomsztyk observed apparent

upregulation of EED-1 after mutating GUG 169-171 and flanking sequences to more

closely resemble a canonical initiation sequence.  Whereas a similar experiment in our

assays produced a protein larger than EED-1 (Figure 4.4B), Denisenko and Bomsztyk

reported production of an EED-1 sized protein.  A protein initiating at GUG 169-171 is

predicted to be less than 4 kDa larger than a protein initiating at GUG 274-276.  In our

hands, resolving these bands required large gels run at low voltage.  Accordingly,

differences in electrophoresis conditions could explain why the protein expressed in their

assay appeared to approximate the size of EED-1.

The absence of EED-2 expression precludes its characterization
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We were unable to characterize the EED-2 start site because endogenous

expression of that isoform was not detectable in our ES cells nor was EED-2 expression

detected from any truncated Eed expression construct expressed in ES cells.  Previous

studies demonstrated EED-2 expression in undifferentiated ES cells and in tumors [22].

It is not clear why EED-2 was not present in the ES cells utilized here.  Kuzmichev et al.

demonstrated that EED-2 is rapidly downregulated when ES cells are stimulated to

differentiate [22].  Hence, the most parsimonious explanation for our failure to detect

EED-2 is that the ES cells employed were beginning to differentiate when they were

harvested.  If so, the cells must nevertheless retain their full developmental potential,

because similarly cultured cells have contributed to all three germ layers in our hands in

embryonic chimera experiments [33].  In the event that the cells are beginning to

differentiate, one possible explanation would be the removal of the cells from fibroblast

feeders prior to harvesting in order to minimize feeder contamination in our

immunoblotting assays.  However, EED-2 was also not detectable in E14 ES cells

(Figure 4.2), which are feeder-independent [34].  Finally, because EED-2 was observed

in both mouse mammary tumors and in HeLa cells (Figure 4.2), the absence of EED-2 in

our ES cells is not simply a more general inability to detect EED-2.

Regardless of the reason that EED-2 was not expressed in our ES cells, its

absence precluded characterization of its start site.  However, a GUG at position 397-399

fulfills the minimal requirements of a translational start site [15, 16].  As a result, we

forced expression of a protein initiating at that location and compared it to EED-2 from

Wap-T121 mammary tumor tissue (data not shown).  The observed protein was smaller

than EED-2, implying that EED-2 translation must initiate upstream of GUG 397-399 but
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downstream of EED-1’s start site at GUG 277-279.  However, because we have not

observed EED-2 from an intact Eed mRNA, we cannot rule out that EED-2 could be

generated by a post-translational modification, such as cleaving, or by alternative

splicing.

EED isoforms do not regulate the number of methyl groups added to H3K27

Although the biological functions of H3K27me1 and H3K27me2 have not been

defined, it is clear from localization studies that the three H3K27 methylation states are

partitioned to nucleosomes associated with distinct regions of the genome (Figure 4.1 and

[24]).  This specificity, in turn, implies that the number of methyl groups added to a

particular nucleosome is a regulated process.  We hypothesized that EED isoforms could

function as regulatory switches controlling H3K27 methylation states.  However, none of

the EED isoforms were specifically required in order to generate H3K27me1,

H3K27me2, or H3K27me3 (Figure 4.5).  In fact, a truncated EED protein initiating

sixteen amino acids downstream of EED-4’s start site appeared to mediate H3K27

methylation as robustly as the full-length protein (Figure 4.6). These results demonstrate

that the N-terminal extensions discriminating EED isoforms are not required for the

enzymatic activity of the PRC2 complex.  Instead, we propose that the four isoforms

direct PRC2 complexes to distinct targets.  While such a regulatory function could

involve determining the protein substrates preferred by EZH2 as suggested by

Kuzmichev et al. [13], an equally intriguing possibility is that the isoforms function to

localize EED-containing complexes to distinct regions of the genome.
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EED WD-40 motifs and histone binding regions are required for H3K27

methylation

EED’s ability to mediate H3K27 methylation was lost in constructs truncated to

eliminate any of the protein’s five WD-40 motifs (Figure 4.6).  These observations are

consistent with earlier studies indicating that all five WD-40 motifs are required for

EZH2 binding and EED-mediated transcriptional repression [44, 45].  Interestingly,

whereas the Δ5’ 541 construct was able to rescue all three H3K27 methylation states, the

protein expressed from the Δ5’ 697 construct, which also retained all five WD-40 motifs,

was only able to mediate substantial levels of H3K27me1 (Figure 4.6B and 4.6C).

Recent work suggests that the N-termini of EED and of its fly homolog ESC bind to

histone H3 and that the histone binding N-terminus of ESC is required for H3K27me3

[47].  The Δ5’ 697 construct deletes the region of EED required for histone H3 binding.

Accordingly, the reduced levels of H3K27me2 and H3K27me3 mediated by this

construct suggest that, as in Drosophila, the histone H3-binding N-terminus of EED may

be required for full activity of PRC2 complex. Previously, we have demonstrated a

quantitative relationship between levels of EED and H3K27 methylation [32].  Whereas

low levels of EED are sufficient to mediate H3K27me1, higher levels appear necessary to

mediate H3K27me2 and H3K27me3.  The Δ5’ 697 protein is likely a severely impaired

protein that retains its ability to interact with the catalytic subunit via the intact WD-40

motifs but has greatly reduced activity due to the absence of the histone-binding N-

terminus.  As previously proposed, the histone-binding region of EED may be required to

position PRC2 complexes appropriately in order to mediate the necessary histone-

complex interactions required for full methylation [47]. Consequently, the Δ5’ 697
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protein appears to have an intermediate level of activity sufficient to mediate low levels

of H3K27 methylation but insufficient for full H3K27me3.

Fly and worm Eed homologs fail to rescue Eed mutant H3K27 methylation defects

Despite the presence of conserved functional motifs, including WD-40 motifs and

a histone binding amino terminus, the fly and worm homologs of Eed were unable to

rescue the H3K27 methylation defects in Eed mutant ES cells (Figure 4.7).  These results

extend earlier work indicating that EED and ESC and are not functionally equivalent.  In

Drosophila, Eed is unable to rescue esc mutant embryonic lethality and instead functions

in a dominant negative fashion, enhancing a leg transformation defect [48].  More

importantly, in vitro binding experiments fail to detect an interaction between mouse

EED and fly E(Z) [48].  Mouse EED and fly ESC are 55% identical and 74% similar in

the regions of the respective proteins harboring the WD-40 motifs that mediate

interaction with EZH2 and E(Z) [48].  Hence, these results suggest that subtle sequence

features that distinguish these proteins must be critical for functional interactions between

EED and EZH2 and between ESC and E(Z).
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FIGURE 4.1.  Localization of Histone H3K27 methylation marks

Immunofluorescence analysis of (A) H3K27me1, (B) H3K27me2, (C) H3K27me3, and

(D) HP1-α in CD1 murine embryonic fibroblasts.
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FIGURE 4.2.  Confirmation of EED isoform identities

Western blot analysis of EED comparing isoforms observed in wild-type or Eed mutant

embryonic stem cells to isoforms observed in (A) HeLa cells or (B) Mouse Wap-T121

mammary tumors.  On prolonged exposure, EED-2 becomes visible in HeLa lysates (A-

right panel).  EED isoforms 1-4 are indicated as 1, 2, 3, and 4.
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FIGURE 4.3.  Deletion mapping of EED translational start sites

(A) Constructs transfected into Eed mutant embryonic stem cell line 21 (below) are

shown.  Putative translation start sites for EED-1 (GUG 169-171), EED-2 (GUG 274-

276), EED-3 (AUG 451-453), and EED-4 (AUG 493-495) are indicated in the schematic

of the endogenous mRNA as 1,2,3, and 4 and correspond to codon locations in the mouse

Eed transcript (Accession number: BC012966).  Deletion numbers refer to nucleotides

removed from the 5’ end of the Eed cDNA (e.g. Δ210 refers to a construct expressing an

Eed cDNA lacking the 5’ 210 nucleotides of the full length message). (B)  Whole-cell

lysates from Eed+/+ ES cell line 25.5 (Wild-type), Eed-/- ES cell line 21 (Mutant), or Eed-/-

ES cell line 21 transiently transfected with the Eed expression constructs shown in

(A)were analyzed by Western blotting with an antibody detecting EED.
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FIGURE 4.4.  Verification of EED isoform start sites.

(A)  Constructs transfected into Eed mutant embryonic stem cell line 21.  1,2,3, and 4

indicate reported EED translational start sites GUG 169-171, GUG 274-276, AUG 451-

453, and AUG 493-495, respectively.  Black boxes refer to strong Kozak-AUG

sequences engineered into the expression construct in order to drive translation from the

169-171 codon (Kozak AUG 169-171) and from the 274-276 codon (Kozak AUG 274-

276), respectively.  “X” markings through the putative EED-3 and EED-4 start sites in

Δ417 no3,4 and in Δ455 no4  indicate AUG→AUA mutations intended to disrupt

translation intitation.  (B and C)  Whole-cell lysates from Eed+/+ ES cell line 25.5 (Wild-

type), Eed-/- ES cell line 21 (Mutant), or Eed-/- ES cell line 21 transiently transfected with

the Eed expression constructs shown in (A) analyzed by Western blotting with an

antibody detecting EED.
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FIGURE 4.5.  Histone H3K27 methylation in cells lacking one or more EED

isoforms

Immunofluorescence analysis of H3K27me1, H3K27me2, and H3K27me3 in wild-type

ES cell line 25.5 (Eed+/+) and in Eed mutant ES cell line 21 either mock transfected (Eed -

/-) or transiently transfected with the indicated constructs.  Eed expression constructs

transfected into ES cell line 21 are shown on the left.  Isoform start sites at GUG 274-

276, AUG 451-453, and AUG 493-495 are shown as 1*, 3, 4, respectively.  1*

discriminates the GUG 274-276 start site for EED-1 reported here from the GUG169-171

start site reported previously(7, 18).  DAPI-stained DNA is blue, and methylated histones

are shown in red.  “X” markings through the putative EED-3 and EED-4 starts sites in

Full length no 3,4 and in Δ417 no3,4 represent AUG→AUA mutations intended to

disrupt translation intitiation.  EED 1036-1038 L→P refers to Eedl7Rn5-3354SB, a point

mutant protein previously demonstrated to lack H3K27 methyltransferase activity. In the

transient transfection assay, approximately 10% of the ES cells are successfully

transfected, and with constructs expressing functional EED, a similar percentage of cells

are rescued.
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FIGURE 4.6.  Functional mapping of required WD-40 motifs in EED

Immunofluorescence analysis of H3K27me3 in Eed mutant ES cell line 21 either mock

transfected (Eed-/-) or transiently transfected with the indicated constructs. DAPI-stained

DNA is blue, and methylated histone are shown in red.  Diagonally-lined boxes refer to

putative WD-40 motifs encoded by cDNA sequences 721-808 (WD-40 motif 1), 1012-

1105 (WD-40 motif 2), 1150-1240 (WD-40 motif 3), 1330-1444 (WD-40 motif 4), and

1672-1762 (WD-40 motif 5) (38).  Black boxes refer to consensus Kozak + ATG initiator

sequences engineered into the construct.
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FIGURE 4.7.  Interspecies rescue analysis

Immunofluorescence analysis of H3K27me3 in Eed mutant ES cell line 21 transiently

transfected with constructs expressing the (A) mouse, (B) C. elegans or (C and D) D.

melanogaster Eed homologs.
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SUMMARY AND FUTURE DIRECTIONS
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In recent decades, genetic and biochemical data in a variety of systems have

begun to clarify the role of PcG proteins in transcriptional memory.  However, critical

details of PcG-mediated silencing remain elusive.  Three particularly important questions

are 1)  how are PcG proteins recruited to their targets, 2)  how do PcG-mediated histone

modifications interplay with other epigenetic marks, and 3)  how are PcG-mediated

histone modifications regulated.  The data presented here begin to address all of these

questions.  Of equal importance, these data also define critical future experimental

directions that may further clarify the mechanistic details of PcG-mediated silencing. 

These issues are considered in detail below.

 

5.1.  RECRUITMENT OF POLYCOMB GROUP PROTEINS

In flies, PcG proteins are often recruited by sequence-specific transcription factors

to Polycomb Response Elements, which contain multiple copies of binding sites for a

number of Drosophila transcription factors, including Pleiohomeotic and GAGA Factor

[1].    However, similar elements have not been identified in mammals.  More recent

work suggests that fly PcG proteins can also be targeted by small RNAs [2].  Data

presented here and elsewhere demonstrate that Eednull/null cells and embryos have defects

in both X-chromosome inactivation and in KvDMR cluster imprinting (Figure 2.1-2) [3-

5].  Notably, both of these processes are dependent on noncoding RNAs.  These RNAs,

Xist and Kcnq1ot1, have been proposed to recruit trans-acting factors in cis to silence

genes on the Xi and in the KvDMR cluster, respectively[6-9].  Together, these

results suggest that mammalian PcG proteins could be recruited to the Xi, to the KvDMR

cluster, and perhaps to many other targets by noncoding RNAs like Xist and Kcnq1ot1. 
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Although this model is appealing, PcG proteins have not yet been demonstrated to

associate directly with Xist or Kcnq1ot1, and future studies must determine whether these

RNAs directly recruit PRC2 or whether they recruit intermediate molecules that

subsequently recruit PcG proteins.  This putative association could be assessed by

electrophoretic mobility shift assays with Xist or Kcnq1ot1 RNAs incubated with isolated

PRC2 complexes.

5.2.  INTERPLAY BETWEEN PcG-MEDIATED HISTONE MODIFICATIONS

AND OTHER EPIGENETIC MARKS

Diverse mechanisms are employed to modify and remodel the chromatin template

in order to influence gene expression.  In addition to the vast array of covalent

modifications found on histone tails, nucleosomes are also modified by the presence of

histone variants and physically displaced by ATP-dependent remodeling complexes [10,

11].  In some species, including mammals, an additional layer of epigenetic control is

provided by DNA methylation.  Accordingly, the cell has a diverse repertoire of

regulatory mechanisms at its disposal.

In many systems, stable gene expression states are produced by hierarchical

recruitment of several of these epigenetic regulators.  For instance, in a variety of

systems, transcriptional silencing is achieved by the coordinated action of HMTases and

DNA methyltransferases, often with, H3K9 methylation serving as an epigenetic mark

that directly or indireclty recruits DNA methyltransferases [12-14].

In contrast, the relationship between H3K27 methylation and DNA methylation is

less clear.  In at least one tumor cell line, DNMT1 directly associates with PRC2, and
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PRC2 is required for DNA methylation at several PcG-target genes in those cells [15].

Conversely, our own previous work has demonstrated that parent-of-origin DNA

methylation is maintained at several DMRs in Eednull/null embryos, including two DMRs

in the KvDMR cluster[4].  Given that EZH2 is lost in Eednull/null cells (Figure 3.2), these

results suggest that parent-of-origin DNA methylation, unlike imprinted expression at

these same loci, is not dependent on PRC2.  Hence, unlike the tumor cell data, these

results imply that PcG-mediated histone modifications and DNA methylation may be

targeted independently.

The data presented here support that interpretation.  If the functions of PcG

proteins and DNA methyltransferases are interdependent, one would expect mutations in

PcG genes and in DNA methylransferases to influence overlapping target genes.  Here,

we have demonstrated that Eednull/null TS cells have imprinting defects reciprocal to those

observed in Dnmt1null/null placentas (Figure 2.7) [9].  Specifically, the three proximal

genes in the KvDMR cluster that become biallelically expressed in Eednull/null TS cells are

imprinted normally in Dnmt1null/null placentas; conversely, the central and distal genes

misexpressed in Dnmt1null/null placentas are imprinted normally in Eednull/null TS cells.

These results suggest that maintenance DNA methylation and PcG-mediated histone

modifications have distinct targets and function independently in the KvDMR cluster.

However, these conclusions are tempered by an important caveat.  Although TS cells do

represent a primitive placental precursor, we have not assessed imprinting defects in

matched tissues from Eed and Dnmt1 mutants.  Accordingly, these conclusions may be

strengthened considerably by future work comparing KvDMR cluster imprinting in

Eednull/null and Dnmt1null/null TS cells.
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Even in the absence of a direct comparison between Eed and Dnmt1 mutant cells,

the tissue-specficity of epigenetic defects in Eed mutants is notable.  X-chromosome

inactivation defects in Eednull/null conceptuses are restricted to a population of

differentiating extraembryonic cells [5].  Similarly, I observed broader imprinting defects

in Eednull/null TS cells than in Eednull/null conceptuses, suggesting that defects in autosomal

imprinting in Eed mutants may also be restricted to, or at least more severe in,

extraembryonic cells.  In the mouse, extraembryonic tissues are DNA hypomethylated

relative to embryonic tissues, because embryonic tissues, unlike extraembryonic tissues,

are remethylated after implantation [16].  Eed may be dispensable at many loci in

embryonic tissues, because DNA methylation provides a robust, alternative epigenetic

memory system.  According to this model, in the absence of that reinforcement in

extraembryonic tissues, mutations in Eed have more dire consequences.  This

interpretation is supported by the ability to rescue Eedhypo/null midgestation lethality with

wild-type extraembryonic tissues, and it supports the view that DNA methylation and

PcG-mediated histone modifications function independently at many targets in the mouse

[17].

5.3.  REGULATED ADDITION OF METHYL GROUPS TO HISTONE H3K27

Histones can be mono-, di-, or trimethylated at several lysine residues, including

at H3K27.  However, in most cases, it is unclear what regulates how many methyl groups

are added to histones associated with a particular region of the genome.  Two simple

models have been proposed to control this specificity [18].  In the first model, distinct

mono-, di-, and trimethylating enzymes are responsible for each methyl state.  In the
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second model, a single enzyme mediates all three methyl states but is regulated so as to

add one methyl group to certain nucleosomes and two or three to others.  Regulation of

the enzyme could be mediated by the presence of regulatory subunits, post-translational

modifications, etc.

Here, we have demonstrated that the PcG gene Eed is required for all three

H3K27 methylation states in our high passage ES and TS cells (Figure 3.1 and

Supplementary Figure 3.1).  Eednull/null cells have dramatically reduced levels of EZH2,

the catalytic subunit of the PRC2 complex, suggesting that EZH2 is unstable outside of

intact PRC2 complexes (Figure 3.2).  Additionally, we have demonstrated that transient

transfection of an Eed cDNA expression cassette rescues the H3K27 methylation defects

in Eednull/null cells, confirming that EED can mediate H3K27me1, H3K27me2, and

H3K27me3 (Figure 3.4 and Supplementary Figures 3.2 and 3.3).

Alone, these results appear to support the second model, in which a single

complex mediates all three methyl states.  However, unlike Eed mutants, embryos and

cells homozygous for a gene trap mutation in the PRC2 subunit Suz12 retain H3K27me1

[19].  Suz12 mutants have been reported to lack EZH2, while retaining EED.  These

results imply that SUZ12 and EZH2, unlike EED, are dispensable for H3K27me1.

Supporting this conclusion, Eednull/null cells stably expressing a low level of EED have

robust H3K27me1, even in the absence of an observable rescue of EZH2 protein levels

(Figures 3.3 and 3.4).

We have interpreted these results to suggest that EED mediates monomethylation

independently of SUZ12 and EZH2 (Chapter 3).  However, there are alternative

interpretations to explain the presence of H3K27me1 in both Suz12 gene trap mutants and
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in Eednull/null  cells stably expressing Eed.  Although Suz12 gene trap mutants appear to be

null mutants as assessed both by embryonic phenotype (which is comparable to the

Eednull/null mutant phenotype) and by the apparent absence of residual SUZ12 protein,

gene traps do not provide a “clean” genetic lesion.  That is to say, gene traps terminate

transcription by providing a strong splice acceptor sequence upstream of a transcriptional

termination sequence.  The splice acceptor allows the cassette to “trap” spliced transcripts

in order to produce truncated and often unstable proteins.  As a result, gene traps will

produce a true null mutation only if all transcripts splice into the trap.  On the other hand,

if a percentage of transcripts splice around the trap, wild-type message and wild-type

protein will be produced.  As a consequence, proving that a gene trap is a null allele is

dependent on the detection limits of molecular assays used to identify the untrapped

mRNA or protein.  Hence, it is formally possible that the Suz12 gene trap creates a severe

hypomorphic but not null allele.  For similar reasons, it is possible that a low level of

EZH2 persists in those mutants and in our Eednull/null  cells that stably express Eed.  As a

result, an alternative interpretation of our data is that H3K27me1 requires only a very low

level of PRC2, and that sufficient PRC2 persists in Suz12 gene trap mutants and in

Eednull/null  cells stably expressing Eed.  This possibility cannot be formally excluded until

cells harboring a deletion that removes the Ezh2 SET domain have been analyzed for

H3K27me1.

As an alternative, we proposed that PRC2 complexes containing distinct EED

isoforms could be responsible for H3K27me1, H3K27me2, and H3K27me3.  We have

demonstrated that EED-1, EED-3, and EED-4 are produced by translation initiating at the

positions GUG 277-279, AUG 452-454, and AUG 494-496 in the Eed mRNA,
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respectively (Figures 4.3 and 4.4).  However, these isoforms are not required for any of

the H3K27 methylation states (Figure 4.5).  Instead, a truncated form of EED containing

only the protein’s WD-40 and histone binding motifs is sufficient for all three marks

(Figure 4.6).  Hence, the mechanisms controlling the number of methyl groups added to

H3K27 remain elusive.  However, as an important starting point, we have identified the

first protein, EED, involved in mediating all three marks.

Determining the mechanisms regulating H3K27me1, H3K27me2, and H3K27me3

may prove to be a formidable task.  Because there are no known biological readouts of

H3K27me1 or H3K27me2, it would be difficult to design an effective screen for genes

required for these marks.  In simpler organisms with more comprehensive genetic tools,

such as S. cerevisiae, it would be possible to prepare histones from a library of mutants

with mutations in all known genes and then to directly assess the status of each methyl

state in each mutant by western blotting.  However, neither S. cerevisiae nor S. pombe,

have H3K27 methylation or orthologs of PcG proteins.

A related question is whether methyl groups are added sequentially to H3K27 or

whether unmethylated histones can be directly di- or trimethylated.  We have observed a

quantitative relationship between EED protein levels and H3K27 methylation (Chapter

3).  Additionally, in cells harboring a Suz12 mutation that may be hypomorphic for PRC2

function, the normally H3K27 trimethylated inactive X chromosome becomes

dimethylated (S. Chamberlain and T. Magnuson, submitted).  These results suggest that a

low level of PRC2 activity may be sufficient for lower H3K27 methylation states and that

higher levels may be required for full methylation.  If true, the mechanisms controlling

H3K27 methylation states may simply involve regulating the stability of PRC2
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association with chromatin.  Regions were PRC2 is only transiently associated with

histones may be monomethylated, whereas regions where PRC2 is stably tethered may be

di- or even trimethylated.  If true, this trend might be recapitulated by tethering PRC2 to

DNA binding transcription factors with weak or strong affinity for various templates.  A

variation on this model is that H3K27me1 could be added to histones prior to their

incorporation into chromatin and that di- and trimethylation are marks that are only added

to nucleosomal substrates.  This possibility could be assessed by analyzing H3K27

methylation in free histones associated with chromatin assembly complexes.

The functions of EED isoforms also remain unclear.  At a mechanistic level,

initial studies suggested that EED-3 and EED-4 direct EZH2 to methylate H3K27,

whereas EED-1 and EED-2 direct EZH2 towards histone H1K26[20].  However,

subsequent studies utilizing similar biochemical strategies failed to confirm these

findings[21].  Additionally, we have demonstrated that the EED-3 and EED-4 start sites

are dispensable for H3K27 methylation (Figure 4.5).  As a result, mechanistic distinctions

between the isoforms have not been clearly defined.

However, EED isoforms do appear to be developmentally regulated, and EED-2

is clearly upregulated in many tumors and may also be upregulated in stem cells[22].

This dynamic regulation suggests that EED isoforms are functionally significant.  One

intriguing possibility is that these isoforms are required to recruit PRC2 complexes to

distinct target genes.  However, identifying isoform-specific targets awaits the

availability of robust isoform-restricted antibodies or the generation of mice harboring

mutations that eliminate the expression of individual isoforms.
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5.4.  Conclusions

Although transcriptional silencing by PcG proteins has been co-opted to regulate

diverse targets in the course evolution, the molecular mechanisms responsible for this

silencing are remarkably conserved.  The data presented in this dissertation reflects both

the adaptability of PcG-silencing and the conservation of the molecular mechanisms

responsible for that silencing.  We have demonstrated a specific role for the mouse PcG

gene Eed in genomic imprinting, but we also have uncovered what is likely to be a more

general requirement for Eed and its homologs in histone methylation.  Together, these

results extend our understanding of the evolutionarily diverse roles for PcG silencing as

well as the evolutionary conserved mechanisms of PRC2 function.
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APPENDIX

PERINATAL LETHALITY OF C57BL/6.CD1 (N4-N6F1) EEDHYPO/HYPO MICE
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6.1.  INTRODUCTION

As mentioned in previous chapters, two ENU-generated Eed alleles, Eednull and

Eedhypo, have been utilized to characterize PRC2 function in vivo. Transient transfection

of constructs expressing Eedhypo rescues the H3K27 methylation defects in Eednull/null cell

lines, and H3K27me1, H3K27me2, and H3K27me3 are all present in Eedhypo/hypo

fibroblasts (Figure 3.3, Supplementary Figures 3.2 and 3.3, and data not shown).  These

results indicate that unlike Eednull, Eedhypo retains the ability to mediate PRC2 function, at

least at a low level.  Instead, the phenotypes in Eedhypo/hypo animals are likely a

consequence of the reduced stability of the EEDhypo protein (Figure 3.4).

Eedhypo/hypo animals are generally viable but runted on outbred backgrounds, with

skeletal transformations due to abnormal homeotic gene expression boundaries[1-3].  The

animals also appear to be subfertile, although a detailed analysis of Eedhypo/hypo fertility has

not been performed.  Many mutations in the mouse produce strain-dependent phenotypes,

which are a consequence of genetic interactions between that mutation and one or more

variants present at other loci[4, 5].  Eedhypo/hypo animals have been characterized

predominantly on an outbred CD1 background[3].

The Eedhypo allele is an T→A substitution that converts a nonpolar isoleucine in

the third of EED’s five WD-40 motifs into a polar asparagine[2].  This point mutation

does not create or eliminate any known restriction enzyme recognition sites, meaning that

one must utilize linked markers for genotyping.  Originally, the coat color gene

Tyrosinase (Tyr) was used as a linked, visible marker for maintenance of the Eedhypo

stock[3].  However, Tyr is nearly 3 Mb from Eed, and recombination events, though

infrequent, can complicate stock maintenance.  Following the publication of the mouse
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genome sequence, the increasing availability of strain single nucleotide polymorphism

(SNP) data facilitated the identification of an informative SNP 2.1 kb from the Eedhypo

mutation.  Because the Eed mutant alleles were originally generated on a Balb/c

background and because this SNP generates a restriction fragment length polymorphism

(RFLP) in which NlaIII cuts a C57BL/6 allele but not a Balb/c allele, it provides a useful

molecular marker for Eedhypo genotyping.  In the course of backcrossing the Eedhypo

mutation onto a C57BL/6 background for genotyping purposes, we observed highly

penetrant, perinatal lethality not previously reported in Eedhypo/hypo animals.
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6.2. METHODS AND MATERIALS

Strain maintenance and genotyping

A Balb/c – C57BL/6 NlaIII RFLP was identified in the Celera mouse genome

database.   This SNP resides 2.1 kb from the site of the Eedhypo mutation.

In the first generation, sequence-confirmed Eedhypo/+ animals were backcrossed to

C57BL/6 animals.  The genotypes of animals in new litters were determined as follows.

First, genomic DNA was prepared from ear tissue by treatment in ear lysis buffer (50 mM

Tris, pH 8.8;  1 mM EDTA;  0.5% Tween-20;  20 µg/mL proteinase K).  Lysates were

genotyped by PCR with primers flanking the polymorphism (Fwd:

CAGGCAGTCATTTCATCCGTTC,  Rev:  GGAGGAGGAGGAAGATTTCAACAC),

followed by digestion with NlaIII (New England Biolabs).  In subsequent backcrosses,

both Eedhypo/+ males and females were utilized to insure that both sex chromosomes were

also being crossed onto the C57BL/6 background.

For intercrosses, C57BL/6 backcross generation-matched Eedhypo/+ dams and sires

were mated, and cages were checked daily for new litters.  At birth, animals were first

visually genotyped by eye pigmentation (Eedhypo/hypo animals are typically albino because

Eed is tightly linked to Tyr, and the ENU-generated Eed alleles were generated in an

albino Balb/c stock).  At weaning, DNA was prepared from survivors for molecular

genotyping as described above.  Deviation from predicted Mendelian frequencies was

assessed by chi-square testing.

For embryological analyses, timed-matings were performed, and dams were

sacrificed at embryonic day 18.5 (E18.5).  Embryos were dissected from maternal tissue,

weighed, and genotyped by eye pigmentation.
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6.3.  RESULTS

As the Eedhypo allele was backcrossed onto a C57BL/6 background, regular

intercrosses were performed to generate Eedhypo/hypo animals.  Consistent with previous

reports, in outcrosses involving either the original, outbred stock or Eedhypo/+ animals

generated from one or two backcrosses to C57BL/6 (herein referred to C57BL/6.CD1

(N1), C57BL/6.CD1 (N2), etc.), Eedhypo/hypo animals were observed at predicted

frequencies at weaning (Table 6.1).  However, Eedhypo/hypo animals were almost never

observed at weaning in litters from intercrosses involving Eedhypo/+ C57BL/6.CD1 (N4-

N6) animals (Table 6.1).

In order to determine whether the preweaning lethality of Eedhypo/hypo

C57BL/6.CD1 (N4-N6F1) animals occurred before or after birth, intercross cages were

checked daily for new litters, and pups were genotyped at birth.  Eedhypo/hypo

C57BL/6.CD1 (N4-N6F1) animals and corpses were recovered at Mendelian frequencies

at postnatal day 1 (P1) (Table 6.2).  However, half of these animals were already dead,

and the remainder died by postnatal day 2 (P2).

In order to determine whether any Eedhypo/hypo embryos were dying prenatally,

timed Eedhypo/+ C57BL/6.CD1(N6) intercross matings were performed and litters were

collected at embryonic day 18.5 (E18.5). C57BL/6.CD1(N6F1) Eedhypo/hypo E18.5 embryos

were alive but runted (Table 6.3 and Figure 6.1).  On average, C57BL/6.CD1(N6F1)

Eedhypo/hypo embryos were 25% smaller than their wild-type littermates.
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6.5.  DISCUSSION

The cause of death in C57BL/6.CD1 (N4-N6F1) Eedhypo/hypo animals is unclear.

Perinatal lethality can be caused by a wide range of developmental defects, and

determining a primary cause of death in mutants dying at these stages can be difficult.

As a consequence, in the absence of physiological details, perinatal lethality is often

explained as a “failure to thrive.”  Although that description is mechanistically vague, it

may be appropriate in discussing C57BL/6.CD1 (N4-N6F1).  Eedhypo/hypo perinatal

lethality.

After four to six backcrosses, the Eedhypo mutation is expected to reside in a

background where, on average, 93.75%-98.4% of unlinked loci are C57BL/6.  The strain-

dependent lethality indicates that one or more C57BL/6 alleles are compromising the

fitness of Eedhypo/hypo animals.  While this genetic interaction could reveal gene products

important to Eed function, it is also possible that the strain-dependent lethality simply

reflects the reduced vigor of an inbred mouse strain.  In other words, C57BL/6.CD1 (N4-

N6F1) Eedhypo/hypo animals may essentially be “sick with two, unrelated diseases,” the first

caused by the Eed genotype and the second caused by being inbred.  Together, those two

independent but additive disadvantages may make it difficult for these animals to

compete with their siblings for their mother’s resources.  Supporting this conclusion,

E18.5 C57BL/6.CD1 (N6F1) Eedhypo/hypo E18.5 embryos are already runted, and these

smaller mutant animals are likely to be at a competitive disadvantage in the critical hours

immediately following parturition.  If true, C57BL/6.CD1 (N4-N6F1) Eedhypo/hypo lethality

might be rescued simply by separating mutants from their wild-type siblings and

providing them with a competent, outbred foster mother.
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The prenatal runting in C57BL/6.CD1 (N6F1) Eedhypo/hypo embryos is itself an

interesting phenotype. Eedhypo/hypo fibroblasts have proliferation defects (Y. Chen and T.

Magnuson, personal communication), suggesting that this runting could be due to a

developmental delay caused by slowed growth in mutant embryos.  The perigastrulation

arrest in Eednull/null embryos is partially rescued by a mutation in Cdkn1c, a cell cycle

inhibitor (J. Mager and T. Magnuson, personal communication).  If the prenatal runting

and perinatal lethality in C57BL/6.CD1 (N4-N6F1) Eedhypo/hypo embryos is due to reduced

rates of proliferation, mutations in cell cycle inhibitors may be able to rescue these

defects as well.
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C57BL/6 Backcrosses Eed+/+ Eedhypo/+ Eedhypo/hypo χ2 P value
0-2 7 (8.5) 19 (17) 8 (8.5) 0.53 0.767
4-6 13 (9.5) 24 (19) 1 (9.5) 10.21 0.006

TABLE 6.1. Strain-dependent lethality in Eedhypo/hypo animals

C57BL/6.CD1 (N0-N2) or C57BL/6 (N4-N6) Eedhypo/+ animals were intercrossed, and

progeny were molecularly genotyped at weaning.  Observed numbers of animals of

genotype are indicated with expected numbers shown in parentheses.  Deviation from

expected ratios was assessed by chi square analysis, assuming one degree of freedom.
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 Wild-type Eedhypo/hypo

P1 18 6*

P2 18 3**

TABLE 6.2.  Perinatal lethality of C57BL/6.CD1 (N4-N6F1) Eedhypo/hypo animals

C57BL/6.CD1 (N4-N6) Eedhypo/+ animals were intercrossed, and progeny were genotyped

at P1 or P2 by scoring eye pigmentation.  Because Eedhypo is tightly linked to a

nonfunctional Tyr allele, animals lacking eye pigmentation will generally be Eedhypo/hypo

and animals with pigmented eyes will be Eed+/+ or Eedhypo/+.

*  3 of 6 albino animals recovered at P1 were dead.

**  3 of 3 albino animals recovered at P2 were dead.
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 Wild-type Eedhypo/hypo

Mass (g) 1.30 ± 0.04 0.98 ± 0.13

TABLE 6.3. Prenatal runting in C57BL/6.CD1 (N6F1) Eedhypo/hypo embryo

Timed intercross matings were conducted between C57BL/6.CD1 (N4-N6) Eedhypo/+

animals, and litters were sacrificed at E18.5.  Embryos were weighed and then genotyped

by scoring eye pigmentation as explained above. Means and standard deviations are

shown.  The difference in mean mass between wild-type and mutant embryos is

statistically significant, as assessed by an unpaired t-test (P < 0.0001).
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FIGURE 6.1.  Prenatal runting in C57BL/6.CD1 (N6F1) Eedhypo/hypo embryos

C57BL/6.CD1 (N6F1) Eedhypo/hypo (left) and wild-type (right) E18.5 embryos from

C57BL/6.CD1 (N6) Eedhypo/+ intercrosses.  On average, mutants are 25% smaller than

their wild-type littermates (Table 6.3).
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