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Abstract

YINGQI ZHAO: SEMIPARAMETRIC AND NONPARAMETRIC
METHODS IN DATA MINING AND STATISTICAL LEARNING WITH

APPLICATIONS IN PUBLIC HEALTH SURVEILLANCE AND
PERSONALIZED MEDICINE

(Under the direction of Michael R. Kosorok)

The field of statistical learning has been growing rapidly over the past few decades,

with a diverse range of applications. In this dissertation, we develop methodology

mainly using semiparametric and nonparametric statistical learning techniques for the

areas of public health surveillance and personalized medicine.

Surveillance, providing early warning for impending emergencies, is a key function

of public health. In Chapter 2, we propose a semiparametric spatiotemporal method

to model spatiotemporal lattice data via a local linear fitting combined with day-of-

week effects, in which both spatial and temporal information are taken into account.

Detection of abnormal events are carried out using an ARMA time series technique

for residuals combined with a resampling approach to determine the threshold for sig-

nificance. We conduct simulations to assess the performance of the proposed method.

Also, the method is illustrated using the data on daily asthma admissions collected

through North Carolina emergency departments that occurred between 2006 and 2007.

There is increasing interest in personalized medicine: the idea of tailoring treatment

for each individual to optimize patient outcome. In Chapter 3, we focus on the single-

decision setup. We show that estimating such an optimal treatment rule is equivalent to

a classification problem where each subject is weighted proportional to his or her clinical

outcome, although the true class labels, to which treatment group the patients belong
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as the optimal, are unknown in the training set. We then propose a new approach

based on the support vector machine framework from computer science. We show the

resulting estimator of the treatment rule is consistent, and further derive fairly accurate

convergence rates for this estimator. The performance of the proposed approach is

demonstrated via simulation studies and an analysis of chronic depression data.

It is not uncommon that the best clinical strategies may require adaptation over

time. We thus in Chapter 4 generalize the outcome weighted learning method to the

multi-decision setup, aiming at finding the dynamic treatment regimes, customized se-

quential decision rules for individual patients which can adapt over time to the evolving

illness, to maximize the long term health outcome. Inspired by the intrinsic idea in dy-

namic programming, we conduct outcome weighted learning for each stage backwards

through time. We further introduce an iterative procedure which can improve the per-

formance of the algorithm. The methods are evaluated by simulation studies and an

analysis on a smoking cessation data set.
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Chapter 1

Introduction

In this dissertation, we investigate two problems: (1) the problem of developing a

reliable on-line surveillance system which can quickly identify anomalies and provide

early warning for impending emergencies (Chapter 2); and (2) the problem of discov-

ering the optimal individualized treatment strategies for different patients based on

their own characteristics, which can improve patients outcomes on average if the dis-

covered strategies are implemented in the future (Chapter 3 for single-decision setup

and Chapter 4 for multi-decision setup). Both research problems are studied using

statistical learning combined with semi- and non-parametric modeling techniques.

1.1 Overview of Statistical Learning

Over the last few decades, the field of machine learning has been growing at an

unprecedented rate. It is usually categorized into supervised learning and unsupervised

learning. In supervised learning, we have a training set of data where outcomes and a

set of features are observed on subjects. The task is to build a prediction model, with

which we can predict the values of the outcomes for new subjects. In the unsupervised

learning problem, we observe only features without outcomes being measured. In this

situation, we concentrate on the structures of the observed feature data, for example,

how they are organized or clustered. Given a dataset with observations recorded, a



machine learning algorithm builds a model based on the data, and generalizes to future

data using the estimated model.

All the learning procedures are implemented by the computer without human in-

tervention in machine learning. Statistical learning, on the other hand, formulates

the learning methods within the probabilistic framework. Statistics enables a rigorous

analysis of machine learning methods and provides guarantees on the expected results.

The prediction task in supervised learning is called regression when the outcomes are

continuous, and classification when the outcomes are discrete. Statistical decision the-

ory provides a framework for developing models that can fulfill the prediction task,

which requires a loss function to penalize the prediction error. A natural choice for

continuous outcomes is the squared error loss functions, while zero-one loss is applica-

ble for categorical outcomes. Measure of success can be evaluated via the expectation

of the loss function over the joint distribution of the data, which leads to a clear un-

derstanding in adequacy and effectiveness of different methods. Common prediction

methods include parametric learning methods (linear model fit by least squares possibly

along with shrinkage methods), semi-parametric learning methods (neural networks),

non-parametric learning methods (k-nearest-neighbor prediction rule, kernel smoothing

methods, tree based methods, support vector machines and boosting methods). Unsu-

pervised learning focuses on directly inferring the properties of the probability density

of the feature data. Most commonly used techniques include association rules, clus-

ter analysis, principal components and the variants, independent component analysis.

Interested readers can refer to Hastie et al. (2009) for more details.

An important subfield of the non-traditional setting, with stochastic sequential de-

cision processes involved, is referred as reinforcement learning. In this context, there is

an “agent”, which is a learner or decision-maker. “Environment” refers to the thing the
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agent interacts with, comprising everything outside the agent. While the agent contin-

ually interacts with the environment, it produces a sequence of “actions”, to which the

environment can respond and provide feedback in turn. As a consequence, the agent

can achieve a goal, usually to maximize the total amount of reward it receives over the

long run, by learning from its own experience. More details can be found in Sutton

and Barto (1998).

Statistical learning has been widely applied to various areas related to biostatistical

research, for example, investigating the influences of prognostic factors on the clinical

outcomes using the regression approach (Pages 49-51, Hastie et al. (2009)), classify-

ing biological samples using gene expression data (Tibshirani et al., 2002), treating

behavioral disorders with reinforcement learning (Pineau et al., 2007). In this disser-

tation, we develop methodology using semiparametric and nonparametric statistical

learning techniques, which can be applied in the fields of public health surveillance and

personalized medicine.

1.2 Overview of Public Health Surveillance

The role of public health surveillance is to collect, analyze, and interpret data

related to planning and evaluation of public health practice, and to disseminate the

information to administrators (Thacker and Berkelman, 1988). Specifically, off-line

surveillance monitors the process retrospectively for some fixed and predetermined time

period. On-line systems monitor processes continually observed in real time, and try to

detect the aberrations as quickly as possible after they occur. Conventionally, public

health surveillance relies on off-line analysis (Ogata, 1988; Kulldorff, 1997; Schoenberg,

1999, 2003; Gangnon and Clayton, 2004; Kulldorff et al., 2005). Though traditional

off-line disease surveillance approaches for the early detection of outbreaks can offer a

closer and more reliable supervision, the utility of it is limited by delays in obtaining
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and analyzing the data. The recent interest in surveillance requires the analysis be done

in near real time. This has motivated a large literature concerning anomaly detection

in the on-line situation. A variety of temporal anomaly detection methods have been

developed for the purpose of surveillance (Hutwagner et al., 1997; Lewis et al., 2002;

Tsui et al., 2003; Reis and Mandl, 2003). However, pure temporal surveillance methods

are not sufficient when we can collect space and time data, since they lack power to

detect outbreaks starting locally or they can result in severe problems of multiple testing

if carried out on several small areas simultaneously. It is more appropriate to do space-

time detection, incorporating available spatial information (Kulldorff, 2001; Kleinman

et al., 2004; Diggle et al., 2005; Karr et al., 2009). The complexity in public health

surveillance necessitates the development of new methodologies to handle statistical

issues involved. In the first part of this dissertation, we introduce a statistical model

and computational methods for disease surveillance and illustrate the approach by

showing how the method helps with alarm detection in a timely manner.

1.3 Overview of Personalized Medicine

In many different diseases, patients can show significant heterogeneity in response

to treatments. Among multiple active treatments which are available, a treatment

that works for a majority of individuals may not work for a subset of patients with

certain characteristics. The emerging field of personalized medicine, enabling a more

personalized approach to health care, has been offering possibilities for improving the

health of individuals. It is worth noting that newly developed drugs may be abandoned

because no significant improvements have been detected across a population, whereas

it is highly possible that subgroups of patients could be benefit from them. Thus the

goal of personalized medicine is to achieve the optimal clinical outcome by steering

patients to the right drug at the right dose at the right time (Hamburg and Collins,
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2010). In this case, the decisions and practices are tailored for the individual patients,

based on all the information from them, including but not limited to demographics

information, clinical measures, medical histories and genetic information. A complete

process for effective personalized medicine discovery typically includes five key steps

(Ren et al., 2012): obtain patients individual data that can reflect personal charac-

teristics; identify potential biomarkers that may indicate the stratification of patients

into subgroups with common features (Eisen et al., 1998; Dhanasekaran et al., 2001;

Yeung and Ruzzo, 2001; Tibshirani et al., 2002); develop and select candidate ther-

apeutic regimens; measure the relationship between clinical outcomes and prognostic

variables, such as biomarkers, and treatment choices; and verify the relationship in a

prospective randomized clinical trial. Specifically, challenges arising from discovering

effective treatment regimes by estimating the relationship between outcomes and indi-

vidual predictors have motivated us to develop new methodologies to tackle the wide

range of potential statistical problems. In the second and third part of this disserta-

tion, we propose methods for finding the optimal treatment assignment rule based on

individual characteristics within a non-parametric statistical learning framework.

1.3.1 Individualized Treatment Rules for Single-Decision Setup

Very often existing methods for assigning treatments make the assumption that pa-

tients are homogeneous. It is important to recognize that a better understanding of

patient heterogeneity will lead to greater health outcomes. There has been a consider-

able amount of literature focusing on this matter. For example, molecularly targeted

cancer drugs are only effective for patients with tumors expressing targets (Grünwald

and Hidalgo, 2003; Buzdar, 2009), and a high variability exists in responses among pa-

tients with different levels of psychiatric symptoms (Piper et al., 1995; Crits-Christoph

et al., 1999). Ishigooka et al. (2000) found that some patients with schizophrenia may
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experience remarkable improvement, others may not or even have worsening symptoms

after taking olanzapine. Fukuoka et al. (2011) show that epidermal growth factor re-

ceptor (EGFR) mutations are the strongest predictive biomarker for administrating

first-line therapy in patients with advanced non-small cell lung cancer, that progres-

sion free survival and tumor response were significantly improved for gefitinib versus

chemotherapy. Thus significant improvements in public health could potentially result

from judiciously treating individuals based on his or her prognostic or genomic data

rather than using a “one size fits all”approach.

Treatments and clinical trials tailored for patients have enjoyed recent popularity in

clinical practice and medical research, and, in some cases, have provided high quality

recommendations accounting for individual heterogeneity (Sargent et al., 2005; Insel,

2009). These proposals have focused on smaller, specific and well-defined subgroups,

sought to provide guidance in clinical decision making based on individual differences,

and have attempted to achieve better risk minimization and benefit maximization.

1.3.2 Dynamic Treatment Regimes for Multi-Decision Setup

It is not uncommon that the best clinical strategies may require adaptation over

time. Recognizing that there exist time varying characteristics among patients, and

moreover, that the nature of diseases is as evolving and diversified as the people, clini-

cians have found that treatments which work now may not work later. This is especially

common in the case of chronic diseases. Even if a “once and for all dosing” is easy to

implement, it may not be the best strategy for the patients. To name a few, treatment

for major depressive disorder is usually driven by additional factors emerging over time,

such as side-effect severity, treatment adherence and so on (Murphy et al., 2007); typ-

ically, the regimen for cancer patients involve multiple lines of treatment to improve

survival, for example, non small cell lung cancer (Socinski and Stinchcombe, 2007);
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clinicians routinely update therapy according to the risk of toxicity and antibiotics re-

sistance in treating cystic fibrosis (Flume et al., 2007). Such problems have motivated a

vast literature on personalized treatment strategies. Ideally, treatment decisions should

adapt with time dependent outcomes, such as patients response to previous treatments

and side effects. Moreover, instead of focusing on a short-term benefit of a treatment,

the goal should be an improvement of the long-term gain by considering the treatment

delayed effects to the patients.

Dynamic treatment regimes (DTR), also called adaptive treatment strategies (Mur-

phy, 2005a), are sequential decision rules for individual patients which can adapt over

time to an evolving illness. At each decision point, the covariate and treatment histories

of a patient are taken as input for the decision rule, which outputs an individualized

treatment recommendation subsequently. Therefore, not only heterogeneities among

individuals are taken into consideration, but also those across time within an individu-

als are incorporated into this framework. In other words, various aspects of treatment

strategies, including treatment types, dosage levels, timing of delivering and etc, can

evolve with time according to subject-specific needs. On the other hand, it has drawn

the attention of researchers that treatments resulting in the best immediate effect may

not necessarily lead to the most favorable long term outcomes. Consequently, with

the flexibility of managing the long-term clinical outcomes, dynamic treatment regimes

have become increasingly popular in clinical practice. In general, the goal is to identify

the optimal dynamic treatment regime, defined as the rule that will maximize the mean

response at the end of the time period.

1.4 Outline of Thesis

In the present chapter, we have reviewed some of the existing literature regarding

statistical learning. We have also introduced the general concepts and problems of
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interests in the fields of public health surveillance and personalized medicine. In Chap-

ter 2, we develop a real-time surveillance system via local linear fitting and residual

analysis. In Chapter 3, we propose a novel outcome weighted learning framework to

estimate the optimal individualized treatment rules within the single-decision setup,

where the clinician only makes one time decision for the patient. The derived regimes

tailored to different patients can maximize the expected outcomes if they are imple-

mented on future patients. It is likely that the clinician has several decision times to

determine the treatment. Thus we need to identify customized sequential decision rules

for individual patients which can adapt over time to the evolving illness. The proposed

outcome weighted learning methodology is generalized to optimal dynamic treatment

regimes discovery within the multi-decision setup in Chapter 4. We discuss possible

extensions and future work in Chapter 5.
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Chapter 2

Detecting Disease Outbreaks Using

Local Spatiotemporal Methods

In this chapter, a real-time surveillance method is developed with emphasis on rapid

and accurate detection of emerging outbreaks. See Zhao et al. (2011b). We develop a

model with relatively weak assumptions regarding the latent processes generating the

observed data, ensuring a robust prediction of the spatiotemporal incidence surface.

Estimation occurs via a local linear fitting combined with day-of-week effects, where

spatial smoothing is handled by a novel distance metric that adjusts for population

density. Detection of emerging outbreaks is carried out via residual analysis. Both daily

residuals and AR model-based de-trended residuals are used for detecting abnormalities

in the data given that either a large daily residual or an increasing temporal trend in

the residuals signals a potential outbreak, with the threshold for statistical significance

determined using a resampling approach.

2.1 Introduction

The primary purpose of disease surveillance is to detect unusual spatial or temporal

patterns of disease; this may lead to further investigation to determine the causes of



an unusual pattern of disease. To provide early warning and enable rapid public health

intervention, it is important to develop a reliable disease surveillance system that can

quickly identify anomalies. Such a system might combine available information sources

such as emergency department (ED) visit data, physician office data, disease reports

from clinical laboratories, and data on over-the-counter drug sales.

The North Carolina Disease Event Tracking and Epidemiologic Collection Tool (NC

DETECT) was created by the NC Division of Public Health (NC DPH) in 2004 in col-

laboration with the UNC Department of Emergency Medicine to provide statewide early

recognition of outbreaks and monitoring of public health using various data sources.

Currently, NC DETECT’s sources of data include emergency departments (ED), the

Carolinas Poison Center, and the Pre-hospital Medical Information System (PreMIS),

as well as pilot data from the NCSU College of Veterinary Medicine Laboratories and

select urgent care centers. All hospitals in NC with 24-hour-acute care emergency de-

partments must report electronic data in near-real time. This dissertation focuses on

the use of spatiotemporal methods for early identification and situational awareness

of unexpected variation in the incidence of asthma reported to NC DETECT from

emergency departments, considering ED admissions that occurred between January

1, 2006 and December 31, 2007. A variety of methods have been developed for the

purpose of surveillance. A standard surveillance tool used by CDC, as well as NC

DETECT, is cumulative sums (CUSUM), a quality control method (Hutwagner et al.,

1997). CUSUM accumulates deviations between observed and expected values; if the

expectation is modeled poorly, signals detected by CUSUM may not reflect the true

underlying changes. Time series approaches are also used to detect disease outbreaks

(Reis and Mandl, 2003; Craigmile et al., 2007), although these methods do not account

for spatial correlation. Openshaw et al. (1987) developed a graphical method, the geo-

graphical analysis machine (GAM), counting the observed cases in multiple overlapping
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circles with increasing radii and identifying those significantly higher than the expected

value. GAM, however, is criticized by Kulldorff and Nagarwalla (1995) for its limitation

in handling multiple testing. Kulldorff (1997) proposed a spatial scan statistic, widely

used for cluster investigations, which searches over a given set of regions and applies

the likelihood ratio test for the null hypothesis that the probability of events happen-

ing in the window is the same as that outside the window. However, it is difficult to

derive the exact distribution of this likelihood ratio statistic. Bernoulli and Poisson

data are analyzed using the spatial scan statistic in Kulldorff (1997), and it has also

been generalized to ordinal data (Jung et al., 2007). Cucala et al. (2009) note that the

spatial scan statistic can be computationally infeasible, proposing instead graph-based

spatial scan tests linking those events closer than a given distance, allowing completely

data-based clusters rather than only those of predetermined shape. This has been

generalized to the detection of disease clusters in the space-time domain (Kulldorff

et al., 1998). Application of prospective disease surveillance may be done using space-

time scan statistics to detect new clusters resulting from an emerging disease outbreak

(Kulldorff, 2001; Neill et al., 2005).

Representing the cases as a point pattern, it is natural to extend point process

methodology to the surveillance problem. There is a vast literature on spatial point

processes, motivated by growing numbers of data sets being collected in fields such

as epidemiology, environmental studies, geography, seismology and forestry (Ripley,

1977; Cressie, 1993; Møller and Waagepetersen, 2004). However, methodology for the

analysis of spatiotemporal point processes is less well developed.

One common approach for the analysis of spatiotemporal point processes is to con-

sider the conditional intensity, which can be interpreted as the hazard of the occurrence

of an event at location s and time t, given the history of the process over the interval

[0, t], which uniquely determines the probability structure of the point process when it
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exists (see Daley and Vere-Jones (2003)). Estimation of this intensity function, how-

ever, is more important in scenarios for which the mean behavior of the process is of

primary interest, and estimates for the intensity function are usually obtained para-

metrically, see, e.g. Schoenberg (2004). However, because the assumptions made for

model based inference may not be valid, Diggle et al. (1985) proposed a nonparametric

estimator utilizing kernel smoothing, selecting bandwidths via data-driven procedures.

Diggle et al. (2005) formulated the problem of online spatiotemporal disease surveil-

lance by obtaining predictions in the context of a non-stationary log-Gaussian Cox pro-

cess and calculating the exceedance probabilities of the intensities over a pre-specified

threshold value. Unfortunately, unreliable estimates may result from violations of the

Cox model assumption.

We develop a real-time surveillance method, utilizing a local linear estimation

method incorporating day-of week effects to construct the predicted spatiotemporal

incidence rate surfaces and implementing residual analysis to identify anomalies. Our

method makes fewer assumptions about the latent processes, resulting in greater ro-

bustness in prediction than existing methods. We do not impose Poisson process or log

Gaussian Cox process (Diggle et al., 2005) assumptions where intensity functions are

straightforward for modeling; instead, we only assume event counts at each location

follow a Poisson distribution with a marginal Poisson rate. We first form a model to es-

timate marginal Poisson rates, which is complex enough to capture the spatiotemporal

structure of the data; the proposed prediction methodology accounting for spatial and

temporal variation in the underlying incidence rates enables us to detect true clusters

more precisely. We can then carry out flexible testing for abnormalities based on resid-

ual analysis in a computationally fast manner. The surveillance system we develop has

usefulness beyond cluster detection because users can gain information on the regular

pattern of incidence, which other methods (e.g. scan statistics) cannot provide.
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In section 2.2 we propose a spatiotemporal model for the marginal Poisson rate

that is estimated using local linear regression methods. We then discuss detection of

outbreaks via residual analysis. In Section 2.3 we present a data application using

asthma ED admissions to illustrate how the proposed surveillance system works and

provide results of a carefully designed simulation study comparing our method to the

CUSUM and space-time scan statistic (Kulldorff, 2001). Finally, we summarize the

results and give a brief discussion in Section 2.4.

2.2 Methodology

2.2.1 Model

Let the number of observed cases at location s on day t be N(s, t), and let n(s)

be the population of location s, which we assume is constant during the study period.

We want to provide a reliable prediction of the normal pattern of spatial and temporal

incidence of cases, i.e., we need to estimate the incidence rates for the underlying

spatiotemporal point process from the collected data.

When studying events such as hospital admissions or emergency department visits,

there are some commonly-observed systematic patterns to event occurrence. For exam-

ple, the number of ED admisssions at a hospital tends to be greater on weekends than

on week days. Therefore, natural day-of-week variation must be accounted for in the

model. We assume that the observed incidence rate at a given location and on a given

day is the product of a base incidence rate at this location and a value dependent on

the day of week. The model for the Poisson rate λ(s, t) is:

λ(s, t) = µ(s, w)e
∑7

l=1 αl(s)I(Day=l) + ǫ(s, t), (2.2.1)
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subject to
7
∑

l=1

αl(s) = 0

where µ(s, w) is the baseline Poisson rate of location s in the week w in which day

t, the lth day of the week, occurs. (i.e. for Sunday, January 8, t = 8, w = 2, l = 1.)

We assume the day-of-week effect, denoted by αl(s), l = 1, · · · , 7 is the same across

the whole period but varies across the region, allowing each location to have a specific

weekly pattern. Then we estimate the expected rate at location s on day t and use this

to detect the outbreaks.

2.2.2 Estimation

The model (2.2.1) has two types of parameters: local parameters for the weekly

baseline effect µ(s, w) and global parameters for the day-of-week effect αl(s). Local pa-

rameters are only determined by a local neighborhood, while global parameters depend

on all locations. We discuss the estimation procedures in the following sections.

Local Linear Estimates for Baseline Weekly Effect

The weekly baseline rate is the geometric mean of each day’s rate in the given week.

We focus on the smoothing method for incidence rates by day first and then discuss

the estimation of day-of-week effects.

Nonparametric smoothing methods have been widely used in many statistical areas,

although they have seen relatively little use in the point process field. Diggle et al.

(1985) discusses kernel smoothing methods for one-dimensional point processes. The

weaknesses of this type of kernel smoother have been well discussed, including its poor

boundary performance, large bias and low efficiency (see e.g. Fan and Gijbels (1996)).

The boundary effects can be even worse in two or higher dimensions. We therefore
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smooth the three-dimensioned spatiotemporal point processes via local linear fitting,

which is gaining increasing popularity for its desirable properties over kernel smoothing.

We implement local linear fitting by approximating the unknown Poisson rate func-

tion λ by a linear function in time in the neighborhood of any point (s, t), using weighted

least squares, with weights provided by a spatiotemporal kernel. For location s, we es-

timate λ(s, wk)l, l = 1, · · · , 7, which is the rate in location s for the lth day of the kth

week, denoted by wk, in a year, based on that day’s data (e.g, all Mondays).

For every lth day of the week, at each (s, tl), we solve

min
∑

i,k

Ki,k(s, tl)(λ(si, twk l)− β0(s, tl)− β1(s, tl)(twk l − tl))
2, (2.2.2)

for β̂0(s, tl), β̂1(s, tl). Here i indexes the location, i = 1, · · · , S, and k indexes the weeks,

k = 1, · · · ,M . We have

Ki,k(s, tl) = K1

(‖s− si‖
cs,tlan

)

K2

(‖θ(tl)− θ(twk l)‖
an

)

, (2.2.3)

where λ(si, twk l) = N(si, twk l)/n(si), N(si, twk l) is the recorded visit count on the lth

day of kth week, denoted by twk l at location si, and n(si) is the population of location si.

K(s, tl) is the kernel function assigning weights to points in a region around (s, tl) based

on the distance from (s, tl). The kernel function is factored into a spatial kernel K1 and

a temporal kernel K2, accounting for spatial and temporal effects on the incidence rate.

We use a Gaussian kernel function for both kernels. The weight decreases exponentially

with the distance in the spatial domain from s in K1 and in the temporal domain from

tl in K2. The temporal distance is defined based on the function θ(t) = exp(i2πt/365).

We also define a new distance metric—population density adjusted distance—in the

space kernel, and we leave this for later discussion.

The solution to the minimization problem (2.2.2) is easily shown to be (X ′WX)−1X ′WΛ,

15



where Λ is a vector of length ST with stacked rates, and W is an ST × ST diagonal

matrix with (((7k + l)− 1)S + i)th entry being

K1

(‖s− si‖
cs,tlan

)

K2

(‖θ(t)− θ(twk l)‖
an

)

,

where T is the total number days during the study period. an is a sequence of band-

widths tending to zero as n goes to infinity. Note that an controls the size of the local

temporal neighborhood. Because of different scales in space and time, we use a scaling

factor cs,tl in the kernel K1, where

cs,tl =
mediani‖s− si‖

medianj‖θ(tl)− θ(twj l
)‖ .

This simplifies the selection of two bandwidths simultaneously in a reasonable way

because cs,tl reflects the relative magnitude in the spatial domain compared to the

temporal domain. By multiplying an by cs,tl, we can have the bandwidth controlling

the size of the spatial neighborhood. The bandwidths can then be selected via data-

driven cross validation. Thus we obtain

λ̂(s, tl) = β̂0(s, tl). (2.2.4)

Using all the estimated daily incidence rates, we can now calculate baseline weekly

effects as

µ̂(s, wk) =
7

√

√

√

√

7
∏

l=1

λ̂(s, twk l), (2.2.5)

where λ̂(s, twk l) is obtained from (2.2.4).
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Temporal Distance

For two time points tl, twj l
, the length of the time interval |tl − twj l

| is a common

distance measure. We propose instead to use the temporal distance |θ(tl) − θ(twj l
)|,

where θ(t) = exp(i2πt/365), ensuring the rates at the end of one year and beginning of

the next should be close, as this complex number distance metric has attractive features

in representing cyclical patterns.

Population density adjusted distance

Distance measures widely used in spatial data analysis include ordinary Euclidean

distance, great circle distance, and others. We are interested in the disease cluster being

adjusted for spatial variations in the population density because potential clustering

can emerge by chance due solely to population clustering. There is information about

case incidence in the population, and intuitively, more densely populated areas contain

more information than rural areas. We propose a new distance measure for spatial

smoothing that adjusts for population density in the sense that we try to stretch out

the denser area and make sparser areas more compact, in order to ensure a similar

degree of smoothing for all individuals in the population.

Let Di denote the population density in the ith location. Let ρg be the Euclidean

distance measure. We propose an adjusted distance between two locations s1, s2 defined

as

ρp(s1, s2) =
S
∑

i=1

∫ 1

0

1

h
K̃

(

ρg(s1 + u(s2 − s1), si)

h

)

Did(ρg(s1 + u(s2 − s1), si)). (2.2.6)

We use a kernel smoothing method with a Gaussian kernel K̃. Let vi(u) = ρg(s1 +
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u(s2 − s1), si), minimized globally at ui. Define weights wj as follows: if ui ∈ [0, 1],

wi = Φ

(

vi(0)

h

)

+ Φ

(

vi(1)

h

)

− 2Φ

(

vi(ui)

h

)

;

otherwise if ui 6∈ [0, 1],

wi = Φ

(

max{vi(0), vi(1)}
h

)

− Φ

(

min{vi(0), vi(1)}
h

)

.

Thus we have

ρp(s1, s2) =
S
∑

i=1

wiDi.

The proposed distance between two locations ρp(s1, s2) is actually a weighted sum

of all the locations’ population densities, while the weights depend on the real geo-

distances between s1 and s2. Compared to the geo-distances commonly used in spatial

statistics, the adjusted distance has appealing properties in terms of spatial smoothing

in surveillance applications. Figure 2.3 illustrate Euclidean distance versus population

density adjusted distance for the state of North Carolina.

Estimation of Day-of-Week Effect

The day-of-week effect is handled in an ANOVA-type framework. Given that we

have the estimated baseline effects µ̂(s, wk) from (2.2.5), we can use these in our

objective function (2.2.1). Let α(si) = (α1(si), · · · , α7(si))
′, and U l

wk
= (I(twk l =

Sun), · · · , I(twk l = Sat))′. Then

α̂(si) = argmin
∑

i,k,l

(λ(si, twk l)− µ̂(si, wk)e
α(si)

TUwk
l

)2.
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We can estimate α̂(si) using the Fisher scoring algorithm as follows. Letting

Q(α(si)) =
∑

i,k,l

(λ(si, twk l)− µ̂(si, wk)e
α(si)TU l

wk )2,

we have

∂Q(α(si))

∂α(si)
= −2

∑

i,j

U l
wk
µ̂(si, wk)e

α(si)TU l
wk (λ(si, twk l)− µ̂(si, wk)e

α(si)TU l
wk ),

∂2Q(α(si))

∂α(si)
2 = −2

∑

i,k,l

U l
wk
U l
wk

T
µ̂(si, wk)e

α(si)
TDjλ(si, twk l)

+ 4
∑

i,k,l

U l
wk
U l
wk

T
µ̂(si, wk)

2e2α(si)
TU l

wk , and

E

(

∂2Q(α(si))

∂α(si)
2

)

= 2
∑

i,k,l

U l
wk
U l
wk

T
µ̂(si, wk)

2e2α(si)
TU l

wk ,

subject to
7
∑

l=1

αl(s) = 0.

Then we obtain

α(si)
n+1 = α(si)

n +

{

E

(

−∂
2Q(α(si)

n)

∂α(si)
2

)}−1{
∂Q(α(si)

n)

∂α(si)

}

.

Figure 2.1 plots the average day-of-week effects on asthma rate in North Carolina.

With respect to admissions to the ED, the plot indicates a general higher rate on

Sunday and then followed by Monday, although this effect varies for different counties.

2.2.3 Detecting Outbreaks via Residual Analysis

Once we observe new data, i.e, the case records from each location, we calculate

the residuals for detection of abnormalities in the data. A square root transformation

is applied to the count data to stabilize the variance, with the residual for the disease
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rate defined as

Xij = 2

(
√

N(si, tj)

n(si)
−
√

λ̂(si, tj)

)

,

where j indexes the days in the study period, j = 1, · · · , T . This raw residual is taken

after removing the systematic pattern in the counts, adjusted for spatial effects.

Each location has a residual time series of high autocorrelation. Fitting an AR(2)

model to the ith residual series, we have

Xij = µi + φi1Xi,j−1 + φi2Xi,j−2 + ǫij . (2.2.7)

Our diagnostic shows that the autocorrelation vanishes after AR(2) model fitting in

some degree for our data, and the residuals from the model are approximately white

noise, see Figure 2.2. Moreover, the model residual ǫij is taken after the trend com-

ponents in Xij are removed. This de-trended model residual, as opposed to the raw

residual, can better reflect temporal changes in the raw residual. It is possible that

other time series models should be fitted when analyzing data of different diseases or

from different areas, but the idea summarized in this section is generic. Given that we

can estimate µi, φi1 and φi2 from (2.2.7), the model residual is

eij = Xij − µ̂i − φ̂i1Xi,j−1 − φ̂i2Xi,j−2.

We then have two types of residuals: original/raw residuals, Xij, and model based

residuals, ǫij , for location si on day tj . Both residuals are useful for detection, because

either a statistically significant large daily residual or a large temporal change in the

residuals can indicate a possible disease outbreak at a specific time and county. We

conduct inference based on the standardized residuals, which are compared on the

same scale, as well as the unstandardized residuals which are less variable. In the

NC DETECT data, we frequently encounter higher variability in incidence rates for
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locations with a larger population base. The unstandardized residuals are more sensitive

in these scenarios, but the tests based on standardized residuals can have lower power

to detect outbreaks.

We use a resampling approach to determine the threshold for significance. This per-

mits detecting abnormalities without being overly sensitive. We outline the procedures

below:

1. From the time series model in (2.2.7), we estimate µ̂i, φ̂i1, φ̂i2 and σ̂2
i .

2. Critical values for eij are then obtained by

• Generating replicates Zi ∼ MVN(0, Σ̂S×S), i = 1, · · · , m, where ΣS×S =

diag(σ̂2
i ).

• For each vector Zi, taking the maximum γi = maxj |Zi,j| and γ′i = maxj |Zi,j|/σi.

Let Γ = (γ1, · · · , γm) and Γ′ = (γ′1, · · · , γ′m). This step is mainly done to con-

trol the type I error rate. We obtain the critical value for the unstandardized

model filter residuals, obtaining Γ(0.95m), and for the standardized ones, ob-

taining Γ′
(0.95m), which are the 95% quantiles of Γ and Γ′.

3. Critical values for Xijs are obtained as follows. To generate raw residual se-

quences, we need to retain the first and the second true Xts as baselines. The

steps are

• Generate Zi3 ∼ N(0, σ̂2
i ), i = 1, · · · , S.

• Calculate Xi3 = µ̂i + φ̂i1Xi2 + φ̂i2Xi1 + Zi3, i = 1, · · · , S.

• Among all the generated X·3, take δ1 = maxi |Xi3| for the unstandardized

and δ′1 = maxi |Xi3|/σi for the standardized versions.

• Repeat the previous steps m times, and record δi and δ′i each time. Let

∆ = (δ1, · · · , δm) and ∆ = (δ′1, · · · , δ′m). We obtain the critical value for the
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unstandardized raw residuals, denoted ∆(0.95m), and for the standardized

ones, denoted ∆′
(0.95m).

Assuming the critical value for raw residuals is c1, and the critical value for model

residuals is c2 ( the model filtered critical value), we have

2

(
√

N(si, tj)

n(si)
−
√

λ̂(si, tj)

)

≤ c1,

which leads to

N(si, tj)

n(si)
≤ ×

(

c1/2 +

√

λ̂(si, tj)

)2

. (2.2.8)

and, for the model filtered critical value, we have

N(si, tj)

n(si)
≤
(

µ̂i + φ̂i1Xi,j−1 + φ̂i2Xi,j−2 + c2
2

+

√

λ̂(si, tj)

)2

. (2.2.9)

While using the critical value of the standardized version—denoted c3 for the scaled

raw residuals and c4 for the scaled model filter residuals—we replace c1 with c3σ̂i in

(2.2.8) and c2 with c4σ̂i in (2.2.9). This is very informative in the sense that users can

have direct impressions about how large the disease case counts are for determining

emerging outbreaks.

2.3 Data Application and Simulation Study

2.3.1 Data Application: ED Asthma Admissions

The data of interest consist of daily counts of asthma ED admissions. For every

patient, data on age, sex, county of residence, date of admission to the emergency

department, and diagnosis at discharge (coded according to the 9th Revision of the

International Classification of Diseases Clinical Modification) are recorded. Mid-year
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population estimates for 2006 and 2007 were derived using the Population Division of

the United States Bureau of the Census county population estimates for NC.

The surveillance system we propose requires that we develop a predictive model for

the outcome of interest. Prediction is carried out using existing data for prior days of

observation. In our example, we predict daily asthma incidence rates for each county in

NC using the prior 2 years of NC DETECT data; as the system is currently configured,

we update this predictive model every 90 days in order to incorporate more recent

data. At each update, county-specific critical values are obtained and tabled for use in

determining whether daily counts are excessive over the next 90 day period.

For the prediction, we need to obtain the population density adjusted distance

measure for NC as described in Section 2.2.3. We want to make the local window

narrow in order to obtain stable smoothed distances adjusted for the population density,

choosing the bandwidth for the kernel in (2.2.6) to be 0.1 mile. Figure 2.3 shows the

implied North Carolina county layout based on our proposed distance.

The baseline weekly incidences are obtained following the local spatio-temporal

approaches discussed in Section 2.2.1. When doing daily incidence estimation, we let

cross validation automatically choose the bandwidth an in (2.2.3) from 0.241, 0.361,

0.482, 0.602 and 0.723, corresponding to θ(14), θ(21), θ(28), θ(35) and θ(42). In other

words, we vary the temporal window from 2 weeks to 6 weeks, and cross validation

chooses the best fitted one. Figure 2.4 shows the baseline weekly ED asthma admission

rate of the 9th, 22nd, 35th and 48th weeks of the year for all the counties of North

Carolina. These weeks are shown mainly because they announce the beginning of

spring, summer, autumn and winter. Our prediction reflects the seasonal variation in

asthma. As can be seen from the figure, the whole state experiences higher incidence

in asthma as spring approaches, yet the rates are reduced in the summer season and

increase when fall comes. This is expected, considering that allergies, particularly
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prevalent in the spring and fall due to high pollen levels in the air, can have a huge

impact.

Following the strategies described in Section 2.3, we carry out the residual analysis to

identify aberrations from regular patterns. All the counties identified to have potential

outbreaks during the two-year period are shown in Figure 2.5, which can give users a

direct view of the these counties’ distribution.

The map suggests that patterns in the years 2006 and 2007 are very similar: out-

breaks are more likely emerging at the northeastern and western boundaries of North

Carolina. This may be due to regional differences in pollution levels, weather trends

and population demographics. It could also be due to variations in access to health

care outside the ED in these regions of the state. Lack of access to good primary care

may mean poor management of the disease, more or more severe exacerbations, and

lack of options for seeking care in a crisis.

2.3.2 Simulation Studies

We create simulated data sets by artificially producing outbreaks in the current data.

We want to see if our method can detect emerging outbreaks rapidly and accurately,

comparing it to CUSUM and scan statistics.

We chose two counties: Wake, population size 832,875, and Hyde, population size

5449, for adding counts; they represent large and small counties with no known out-

breaks in 2006-2007. One simulated outbreak period starts on November 10th, 2006,

and the other starts on April 10th, 2007. The prediction of counts for Hyde County

during the simulated outbreak periods ranges from 0.03 to 0.49, and for Wake County

ranges from 10.56 to 16.70. Generally, we obtain higher admission counts estimates in

the spring than in the fall.

We incorporate two types of outbreaks for the simulation: one with a high constant
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Poisson intensity, and the other with a peak intensity in the middle of the period, with

intensity increasing beforehand and decreasing afterward. We consider both short (3

days) and long (7 days) lasting outbreaks to compare different surveillance algorithms’

sensitivities. The counts in the simulated outbreak with constant intensity follow a

Poisson distribution with rate λ, P (λ). To simulate patterns with a peak, we set

the starting date and have the counts initially follow a P (λ0) distribution. During

the following days, we first increase and then decrease the intensity by λ1 every day.

Therefore, for example, if we want to generate an outbreak with a peak seven days

long, the corresponding intensities for the counts generated are λ0, λ0 + λ1, λ0 + 2λ1,

λ0 + 3λ1, λ0 + 2λ1, λ0 + λ1, and λ0. We first present the proportions of simulated

outbreaks being detected, defined as any day in the simulated period having an alarm,

out of 500 simulation runs.

As illustrated in Table 2.1 and Table 2.2, we see that CUSUM has extremely high

sensitivity at the expense of sounding excessive false alarms. While flagging possible

aberrations is of priority for a surveillance system, we are hesitant to apply the CUSUM

algorithm due to its oversensitivity from so many detections. For the scan statistics,

we did not conduct as many simulations due to computational complexity. Instead, we

randomly selected 5 simulated data sets for each pattern-period combination, and tested

them using scan statistics. Our study suggests that the scan statistic is not sensitive

when detecting short time outbreaks, especially for small counties. For example, it fails

to detect any aberration for three-day simulated periods, except when the intensity for

Wake is as high as 70. Scan statistics identify one cluster including more than 20

counties, and the length of the outbreak is from September to December, which is too

general for the public health system to take prompt corresponding action.

While our method generally has lower sensitivity than the CUSUM method, it

also drastically reduces the number of false alarms as shown in Table 2.3, providing a
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reasonable algorithm for real-time outbreak detection. Thus we found the scan statistic

to be insensitive to detecting short term outbreaks, the CUSUM method to have strong

sensitivity at the expense of sounding excessive alarms (on average two thousand false

alarms in a 2-year period in NC), and our method to have acceptable sensitivity and a

greatly reduced false positive rate.

2.4 Discussion

The local spatiotemporal estimation method is here applied to aggregated data

over counties, i.e., the number of cases in the counties that reported in local EDs. The

proposed approach can be naturally extended to point process data. By modeling the

space-time intensity of incident cases from accumulated historical data, we can predict

the regular pattern if there are no outbreaks. Inference can further be done based on

the sptiotemporal residuals obtained after removing the normal trends.

In disease surveillance, there are often many different data streams or different out-

comes that we want to monitor. Kulldorff et al. (2007) propose an extension of the

spatial and space-time scan statistic that can simultaneously handle multiple data sets.

We want to develop techniques to monitor many potential health outcomes simultane-

ously, such as obesity, asthma, stroke, and unintentional injury, based on our existing

work. This can be very challenging, given that we will encounter a fairly complicated

situation of having correlated health outcomes in addition to the existing complex

spatiotemporal dependence structure.

The new surveillance method will be further developed and validated. It is expected

that the new methodology will be generally useful for conducting state-wide or nation-

wide public health surveillance.
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Table 2.1: Proportion of Simulated Outbreaks being Detected: Constant Pattern

Three Days Outbreak with Constant λs

Hyde County
λ

1 2 3 4 5 6

Fall,2006
Proposed Methods 65% 92% 100% 100% 100% 100%

CUSUM 95% 100% 100% 100% 100% 100%

Spring,2007
Proposed Methods 8% 33% 85% 95% 98% 100%

CUSUM 97% 98% 100% 100% 100% 100%

Wake County
λ

30 40 50 60 70 80

Fall,2006
Proposed Methods 0% 11% 75% 100% 100% 100%

CUSUM 99% 100% 100% 100% 100% 100%

Spring,2007
Proposed Methods 10% 81% 99% 100% 100% 100%

CUSUM 100% 100% 100% 100% 100% 100%
Seven Days Outbreak with Constant λs

Hyde County
λ

1 2 3 4 5 6

Fall,2006
Proposed Methods 77 % 96% 99% 100% 100% 100%

CUSUM 100% 100% 100% 100% 100% 100%

Spring,2007
Proposed Methods 14% 60% 89% 99% 100% 100%

CUSUM 100% 100% 100% 100% 100% 100%

Wake County
λ

30 40 50 60 70 80

Fall,2006
Proposed Methods 0% 13% 89% 100% 100% 100%

CUSUM 97% 100% 100% 100% 100% 100%

Spring,2007
Proposed Methods 21% 95% 100% 100% 100% 100%

CUSUM 100% 100% 100% 100% 100% 100%

The start date of outbreak for fall, 2006 is November 10th, and the start date of outbreak for spring,

2007 is April 10th. Each outbreak lasts for 3 days. Simulated count in Hyde (Wake) County follows

Poisson distribution with λ varying from 1 to 6 (30 to 80).
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Table 2.2: Proportion of Simulated Outbreaks being detected: Peak Pattern

Three Days Outbreak with a Peak

Hyde County
λ1

1 2 3 4 5

Fall,2006
Proposed Methods 100% 100% 100% 100% 100%

CUSUM 100% 100% 100% 100% 100%

Spring,2007
Proposed Methods 78% 86% 85% 97% 99%

CUSUM 100% 100% 100% 100% 100%

Wake County
λ1

5 10 15 20 25

Fall,2006
Proposed Methods 1% 6% 30% 59% 82%

CUSUM 94% 100% 100% 100% 100%

Spring,2007
Proposed Methods 23% 29% 76% 92% 98%

CUSUM 93% 100% 100% 100% 100%
Seven Days Outbreak with a Peak

Hyde County
λ1

1 2 3 4 5

Fall,2006
Proposed Methods 99% 100% 100% 100% 100%

CUSUM 100% 100% 100% 100% 100%

Spring,2007
Proposed Methods 88% 99% 100% 100% 100%

CUSUM 100% 100% 100% 100% 100%

Wake County
λ1

5 10 15 20 25

Fall,2006
Proposed Methods 1% 51% 100% 100% 100%

CUSUM 83% 99% 100% 100% 100%

Spring,2007
Proposed Methods 70% 100% 100% 100% 100%

CUSUM 81% 99% 100% 100% 100%

The start date of outbreak for fall, 2006 is November 10th, and the start date of outbreak for spring,

2007 is April 10th. Each outbreak last for 3 days. Simulated count in Hyde (Wake) follows Poisson

distribution with starting/ending days intensity λ0 = 2 (λ0 = 25).

Table 2.3: Number of False Outbreaks Detected, Seven-Day Peak Pattern, Year 2006-
2007

λ1(Hyde) 1 2 3 4 5
λ1(Wake) 5 10 15 20 25

Proposed Method 137 136 134 128 127
CUSUM 2889 2889 2889 2889 2889
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Fig. 2.1: Day-of-Week Effects in ED Asthma Admissions in North Carolina
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Figure 2.1: The average multiplicative day-of-week effects are: 1.66 on Sunday, 1.44 on Monday, 1.29 on Tuesday, 1.24

on Wednesday, 1.12 on Thursday, 1.16 on Friday and 1.33 on Saturday

Fig. 2.2: Q-Q Plot of Residuals Before and After Time Series Modeling for Wake County
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Fig. 2.3: Green shading shows how use of the proposed population distance metric
affects the shape of North Carolina. In particular, the densely-populated areas in the
center of the state are expanded, while the sparsely populated counties in Western
North Carolina are shrunk. In this manner, a similar degree of person-level smoothing
is applied regardless of population density.
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Fig. 2.4: Baseline Weekly Asthma Rate (per 100,000 population) of the 9th, 22nd, 35th

and 48th Week in a Year

Fig. 2.5: Counties in North Carolina Detected for Potential Outbreaks
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Chapter 3

Estimating Individualized

Treatment Rules Using Outcome

Weighted Learning

There is increasing interest in discovering individualized treatment rules for pa-

tients who have heterogeneous responses to treatment. In particular, one aims to find

an optimal individualized treatment rule, which is a deterministic function of patient

specific characteristics maximizing expected clinical outcome. In this chapter, it is

shown that estimating such an optimal treatment rule is equivalent to a classification

problem where each subject is weighted proportional to his or her clinical outcome. See

Zhao et al. (2012). An outcome weighted learning approach is then proposed based on

the support vector machine framework. We show that the resulting estimator of the

treatment rule is consistent, and further obtain a finite sample bound for the differ-

ence between the expected outcome using the estimated individualized treatment rule

and that of the optimal treatment rule. The performance of the proposed approach is

demonstrated via simulation studies and an analysis of chronic depression data.



3.1 Introduction

In many different diseases, patients can show significant heterogeneity in response to

treatments. One statistical approach for developing individual-adaptive interventions

is to classify subjects into different risk levels estimated by a parametric or semipara-

metric regression model using prognostic factors, and then to assign therapy according

to risk level (Eagle et al., 2004; Marlowe et al., 2007; Cai et al., 2010). However, the

parametric or semiparametric model assumptions may not be valid due to the complex-

ity of the disease mechanism and individual heterogeneity. Moreover, these approaches

require preknowledge in allocating the optimal treatment to each risk category. There is

also a significant literature examining discovery and development of personalized treat-

ment relying on predicting patient responses to optional regimens (Rosenwald et al.,

2002; van’t Veer and Bernards, 2008), where the optimal decision leads to the best

predicted outcome. One recent paper by Qian and Murphy (2011) applies a two-step

procedure which first estimates a conditional mean for the response and then estimates

the rule maximizing this conditional mean. A rich linear model is used to sufficiently

approximate the conditional mean, with the estimated rule derived via l1 penalized least

squares (l1-PLS). The method includes variable selection to facilitate parsimony and

ease of interpretation. The conditional mean approximation requires estimating a pre-

diction model of the relationship between pretreatment prognostic variables, treatments

and clinical outcome using a prediction model. Reduction in the mean response is re-

lated to the excess prediction error, through which an upper bound can be constructed

for the mean reduction of the associated treatment rule. However, by inverting the

model to find the optimal treatment rule, this method emphasizes prediction accuracy

of the clinical response model instead of directly optimizing the decision rule.

In this Chapter, we proposed a new method for solving this problem which cir-

cumvents the need for conditional mean modeling followed by inversion by directly
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estimating the decision rule which maximizes clinical response. Specifically, we demon-

strate that the optimal treatment rule can be estimated within a weighted classification

framework, where the weights are determined from the clinical outcomes. We then al-

leviate the computational problem by substituting the 0-1 loss in the classification with

a convex surrogate loss as is done with the support vector machine (SVM) via the

hinge loss (Cortes and Vapnik, 1995). The directness of this outcome weighted learn-

ing (OWL) approach enables us to better select targeted therapy while making full use

of available information.

This chapter is organized as follows. In Section 3.2, we provide the mathemati-

cal concepts and framework for individualized treatment rules, and then formulate the

problem as OWL. The proposed weighted SVM approach for constructing the optimal

ITR is then developed in detail. In Section 3.3, consistency and risk bound results

are established for the estimated rules. Faster convergence rates can be achieved with

additional marginal assumptions on the data generating distribution. We present sim-

ulation studies to evaluate performance of the proposed method in Section 3.4. The

method is then illustrated on the Nefazodone-CBASP data (Keller et al., 2000) in Sec-

tion 3.5. We close this chapter with a short discussion in Section 3.6. The proofs of

theoretical results are given in the Appendix 1.

3.2 Methodology

3.2.1 Individualized Treatment Rule (ITR)

We assume the data are collected from a two-arm randomized trial. That is, treat-

ment assignments, denoted by A ∈ A = {−1, 1}, are independent of any patient’s prog-

nostic variables, which are denoted as a d-dimensional vector X = (X1, . . . , Xd)
T ∈ X .

We let R be the observed clinical outcome, also called the “reward,” and assume that
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R is bounded, with larger values of R being more desirable. Thus an individualized

treatment rule (ITR) is a map from the space of prognostic variables, X , to the space

of treatments, A. An optimal ITR is a rule that maximizes the expected reward if

implemented.

Mathematically, we can quantify the optimal ITR in terms of the relationship among

(X,A,R). To see this, denote the distribution of (X,A,R) by P and expectation

with respect to the P is denoted by E. For any given ITR D, we let PD denote the

distribution of (X,A,R) given that A = D(X), i.e., the treatments are chosen according

to the rule D; correspondingly, the expectation with respect to PD is denoted by ED.

Then under the assumption that P (A = a) > 0 for a = 1 and −1, it is clear that PD is

absolutely continuous with respect to P and dPD/dP = I(a = D(x))/P (A = a), where

I(·) is the indicator function. Thus, the expected reward under the ITR D is given as

ED(R) =

∫

RdPD =

∫

R
dPD

dP
dP = E

[

I(A = D(X))

Aπ + (1−A)/2
R

]

,

where π = P (A = 1). This expectation is called the value function associated with

D and is denoted V(D). Consequently, an optimal ITR, D∗, is a rule that maximizes

V(D), i.e.,

D∗ ∈ argmax
D

E

[

I(A = D(X))

Aπ + (1−A)/2
R

]

.

Note that D∗ does not change if R is replaced by R + c for any constant c. Thus,

without loss of generality, we assume that R is positive.

3.2.2 OWL for Estimating Optimal ITR

Assume that we observe i.i.d data (Xi, Ai, Ri), i = 1, ..., n from the two-arm ran-

domized trial described above. Previous approaches to estimating optimal ITR first
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estimate E(R|X,A), using the observed data via parametric or semiparametric mod-

els, and then estimate the optimal decision rule by comparing the predicted value

E(R|X,A = 1) versus E(R|X,A = −1) (Robins, 2004; Moodie et al., 2009; Qian and

Murphy, 2011). As discussed before, these approaches indirectly estimate the optimal

ITR, and are likely to produce a suboptimal ITR if the model for R given (X,A) is

overfitted. As an alternative, we propose a nonparametric approach which directly

maximizes the value function based on an outcome weighted learning method.

To illustrate our approach, we first notice that searching for the optimal ITR, D∗,

which maximizes V(D), is equivalent to finding D∗ that minimizes

E[R|A = 1] + E[R|A = −1]− V(D) = E

[

I(A 6= D(X))

Aπ + (1− A)/2
R

]

.

The latter can be viewed as a weighted classification error, for which we want to classify

A using X but we also weigh each misclassification event by R/(Aπ+(1−A)/2). Hence,

using the observed data, we approximate the weighted classification error by

n−1
n
∑

i=1

Ri

Aiπ + (1− A)/2
I(Ai 6= D(Xi))

and seek to minimize this expression to estimate D∗. Since D(x) can always be repre-

sented as sign(f(x)), for some decision function f , minimizing the above expression for

D∗ is equivalent to minimizing

n
∑

i=1

n−1 Ri

Aiπ + (1− A)/2
I(Ai 6= sign(f(Xi))) (3.2.1)

to obtain the optimal f ∗, and then setting D∗(x) = sign(f ∗(x)).

The above minimization also has the following interpretation. That is, we intend

to find a decision rule which assigns treatments to each subject only based on their
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prognostic information. For subjects observed to have a large reward, this rule is apt

to recommend the same treatment assignments that the subject has actually received;

however, for subjects with small rewards, the rule is more likely to give the opposite

treatment assignment to what they received. In other words, if we stratify subjects into

different strata based on the rewards, we will expect that the optimal ITR misclassifies

less subjects in the high reward stratum as compared to the low reward stratum.

In the machine learning literature, (3.2.1) can be viewed as a weighted summation of

0-1 loss. It is well known that minimizing (3.2.1) is difficult due to the discontinuity and

non-convexity of 0-1 loss. To alleviate this difficulty, one common approach is to find

a convex surrogate loss for the 0-1 loss in (3.2.1) and develop a tractable estimation

procedure (Zhang, 2004; Lugosi and Vayatis, 2004; Steinwart, 2005). Among many

choices of surrogate loss, one of the most popular is the hinge loss used in the context

of the support vector machine (Cortes and Vapnik, 1995), which we will adopt in this

dissertation. Furthermore, we penalize the complexity of the decision function in order

to avoid overfitting. In other words, instead of minimizing (3.2.1), we aim to minimize

n−1
n
∑

i=1

Ri

Aiπ + (1−A)/2
(1−Ai(f(Xi)))

+ + λn‖f‖2, (3.2.2)

where x+ = max(x, 0) and ‖f‖ is some norm for f . In this way, we cast the problem of

estimating the optimal ITR into a weighted classification problem using support vector

machine techniques.

3.2.3 Linear Decision Rule for Optimal ITR

Suppose that the decision function f(x) minimizing (3.2.2) is a linear function of

x, that is, f(x) = 〈β, x〉 + β0, where 〈·, ·〉 denotes the inner product in Euclidean

space. Then the corresponding ITR will assign a subject with prognostic value X into
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treatment 1 if 〈β,X〉+ β0 > 0 and -1 otherwise.

In (3.2.2), we define ‖f‖ as the Euclidean norm of β. Following the usual SVM, we

introduce a slack variable ξi for subject i to allow a small portion of wrong classification.

Denote C > 0 as the classifier margin. Then minimizing (3.2.2) can be rewritten as

max
β,β0,‖β‖=1

C subject to Ai(〈β,Xi〉+ β0) ≥ C(1− ξi), ξi ≥ 0,
∑ Ri

πi
ξi < s,

where πi = πI(Ai = 1)+ (1− π)I(Ai = −1) and s is a constant depending on λn. This

is equivalent to

min
1

2
‖β‖2 subject to Ai(〈β,Xi〉+ β0) ≥ (1− ξi), ξi ≥ 0,

∑ Ri

πi
ξi < s,

that is

min
1

2
‖β‖2 + κ

n
∑

i=1

Ri

πi
ξi subject to Ai(〈β,Xi〉+ β0) ≥ (1− ξi), ξi ≥ 0,

where κ > 0 is a tuning parameter and Ri/πi is the weight for the ith point. We

observe that the main difference compared to standard SVM is that we weigh each

slack variable ξi with Ri/πi.

After introducing Lagrange multipliers, the Lagrange function becomes:

1

2
‖β‖2 + κ

n
∑

i=1

Ri

πi
ξi −

n
∑

i=1

αi{Ai(X
T
i β + β0)− (1− ξi)} −

n
∑

i=1

µiξi,

with αi ≥ 0, µi ≥ 0. Taking derivatives with respect to (β, β0) and ξi, we have β =

∑n
i=1 αiAiXi, 0 =

∑n
i=1 αiAi and αi = κRi/πi − µi. Plugging these equations into the
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Lagrange function, we obtain the dual problem

max
α

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjAiAj〈Xi, Xj〉

subject to 0 ≤ αi ≤ κRi/πi, i = 1, . . . , n, and
∑n

i=1 αiAi = 0. Quadratic programming

algorithms from many widely available software packages can be used to solve this dual

problem. Finally, we obtain that

β̂ =
∑

α̂i>0

α̂iAiXi,

and β̂0 can be solved using the margin points (0 < α̂i, ξ̂i = 0) subject to the Karush-

Kuhn-Tucker conditions (Page 421, Hastie, Tibshirani & Friedman 2009). The decision

rule is given by sign{〈β̂, X〉 + β̂0}. Similar to the traditional SVM, the estimated

decision rule is determined by the support vectors with α̂i > 0.

3.2.4 Nonlinear Decision Rule for Optimal ITR

The previous section targets a linear boundary of prognostic variables. This may

not be practically useful since the dimension of the prognostic variables can be quite

high and complicated relationships may be involved between the desired treatments

and these variables. However, we can easily generalize the previous approach to obtain

a nonlinear decision rule for obtaining the optimal ITR.

We let k : X × X → R, called a kernel function, be continuous, symmetric and

positive semidefinite. Given a real-valued kernel function k, we can associate with it

a reproducing kernel Hilbert space (RKHS) Hk, which is the completion of the linear

span of all functions {k(·, x), x ∈ X}. The norm in Hk, denoted by ‖ · ‖k, is induced by

39



the following inner product,

〈f, g〉k =
n
∑

i=1

m
∑

j=1

αiβjk(xi, xj),

for f(·) =∑n
i=1 αik(·, xi) and g(·) =

∑m
j=1 βjk(·, xj).

We note that our decision function f(x) is from Hk equipped with norm ‖ · ‖k.

Thus since any function in Hk takes the form
∑m

i=1 αik(·, xi), it can be shown that the

optimal decision function is given by

n
∑

i=1

α̂iAik(X,Xi) + β̂0,

where (α̂1, ..., α̂n) solves

max
α

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjAiAjk(Xi, Xj)

subject to 0 ≤ αi ≤ κRi/πi, i = 1, . . . , n, and
∑n

i=1 αiAi = 0. We note that if we choose

k(x, y) = 〈x, y〉, then the obtained rule reduces to the previous linear rule.

3.3 Theoretical Results

In this section, we establish consistency of the optimal ITR estimated using OWL.

We further obtain a risk bound for the estimated ITR and show how the bound can be

improved for certain specific, realistic situations.
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3.3.1 Notation

For any ITR D(x) = sign(f(x)) associated with decision function f(x), we define

R(f) = E

[

R

Aπ + (1− A)/2
I(A 6= sign(f(X)))

]

and the minimal risk (called Bayes risk in the learning literature) asR∗ = inff{R(f)|f :

X → R}. Thus, for the optimal ITR D∗(x) = sign(f ∗(x)) (called the Bayes classifier

in the learning literature), R∗ = R(f ∗). In terms of the value function, we note that

V(D∗)− V(D) = R(f)−R(f ∗).

In the OWL approach, we substitute 0-1 loss I(A 6= sign(f(X))) by a surrogate

loss, φ(Af(X)), where φ(t) = (1− t)+. Thus we define the φ-risk

Rφ(f) = E

[

R

Aπ + (1− A)/2
φ(Af(X))

]

,

and, similarly, the minimal φ−risk as R∗
φ = inff{Rφ(f)|f : X → R}.

Recall that the estimated optimal ITR is given by sign(f̂n(X)), where

f̂n = argmin
f∈Hk

{

1

n

n
∑

i=1

Ri

πi
{1−Aif(Xi)}+ + λn‖f‖2k

}

. (3.3.1)

3.3.2 Fisher Consistency

We establish Fisher consistency of the decision function based on surrogate loss φ(t).

Specifically, the following result holds:

Proposition 3.3.1. If f̃ minimizes Rφ(f), then D∗(x) = sign(f̃(x)).

Proof. First, we note

D∗(x) = sign {E[R|X = x,A = 1]− E[R|X = x,A = −1]} .
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Next, for each x ∈ X ,

E

(

R
φ(Af(X))

Aπ + (1−A)/2

∣

∣

∣
X = x

)

=E(R|A = 1, X = x)(1− f(x)) + E(R|A = −1, X = x)(1 + f(x))

=((E(R|A = −1, X = x)− E(R|A = 1, X = x))f(x)

+E(R|A = −1, X = x) + E(R|A = 1, X = x)).

Therefore, f̃(x), which minimizes Rφ(f), should be positive if E(R|A = 1, X = x) >

E(R|A = −1, X = x) and negative if E(R|A = 1, X = x) < E(R|A = −1, X = x).

That is, f̃(x) has the same sign as D∗(x). The result holds.

This theorem justifies the validity of using φ(t) as the surrogate loss in OWL.

3.3.3 Excess Risk for R(f) and Rφ(f)

The following result shows that for any decision function f , the excess risk of f under

0-1 loss is no larger than the excess risk of f under the hinge loss. Thus, the loss of

the value function due to the ITR associated with f can be bounded by the excess risk

under the hinge loss. The proof of the theorem can be found in the Appendix 1.

Theorem 3.3.2. For any measurable f : X → R and any probability distribution for

(X,A,R),

R(f)−R∗ ≤ Rφ(f)−R∗
φ. (3.3.2)

The proof follows the general arguments of Bartlett et al. (2006), in which they

bound the risk associated with 0-1 loss in terms of the risk from surrogate loss, utilizing

a convexified variational transform of the surrogate loss. In our proof, we extend this

concept to our setting by establishing the validity of a weighted version of such a

transformation.

42



3.3.4 Consistency and Risk Bounds

The purpose of this section is to establish the consistency of f̂n, and, moreover, to

derive the convergence rate of R(f̂n)−R∗.

First, the following theorem shows that the risk due to f̂n does converge to R∗, and,

equivalently, the value of f̂n converges to the optimal value function. The proof of the

theorem is deferred to the Appendix 1.

Theorem 3.3.3. Assume that we choose a sequence λn > 0 such that λn → 0 and

λnn→ ∞. Then for all distributions P , we have that in probability,

lim
n→∞

{

Rφ(f̂n)− inf
f∈H̄k

Rφ(f)

}

= 0.

Thus, if f ∗ belongs to the closure of lim supn Hk, where Hk depends on parameters

varying with n, we have limn→∞Rφ(f̂n) = R∗
φ in probability. It then follows that

limn→∞R(f̂n) = R∗ in probability.

One special situation where f ∗ belongs to the limit space of Hk is when we choose

Hk to be an RKHS with Gaussian kernel and let the kernel bandwidth decrease to zero.

This will be shown in Theorem 3.3.4 below.

We now wish to derive the convergence rate of R(f̂n)−R∗ under certain regularity

conditions on the distribution P . Specifically, we need the following “geometric noise”

assumption for P (Steinwart and Scovel, 2007): Let

η(x) =
E[R|X = x,A = 1]−E[R|X = x,A = −1]

E[R|X = x,A = 1] + E[R|X = x,A = −1]
+ 1/2, (3.3.3)

then 2η(x)− 1 is the decision boundary for the optimal ITR. We further define X+ =

{x ∈ X : 2η(x) − 1 > 0}, and X− = {x ∈ X : 2η(x)− 1 < 0}. A distance function to

the boundary between X+ and X− is ∆(x) = d̃(x,X+) if x ∈ X−, ∆(x) = d̃(x,X−) if
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x ∈ X+ and ∆(x) = 0 otherwise, where d̃(x,O) denotes the distance of x to a set O

with respect to the Euclidean norm. Then the distribution P is said to have geometric

noise exponent 0 < q <∞, if there exists a constant C > 0 such that

E

[

exp

(

−∆(X)2

t

)

|2η(X)− 1|
]

≤ Ctqd/2, t > 0. (3.3.4)

In some sense, this geometric noise exponent describes the behavior of the distribution

in a neighborhood of the decision boundary. For example, for distinctly separable data,

i.e., when |2η(x) − 1| > δ > 0, for some constant δ, and η is continuous, q can be

arbitrarily large.

In addition to this specific assumption for P , we also restrict the choice of RKHS

to the space associated with Gaussian Radial Basis Function (RBF) kernels, i.e.,

k(x, x′) = exp(−σ2
n‖x− x′‖2), x, x′ ∈ X ,

where σn > 0 is a parameter varying with n. One advantage of using the Gaussian

kernel is that we can determine the complexity of Hk in terms of capacity bounds with

respect to the empirical L2-norm, defined as

‖f − g‖L2(Pn) =

(

1

n

n
∑

i=1

|f(Xi)− g(Xi)|2
)1/2

.

For any ǫ > 0, the covering number of functional class F with respect to L2(Pn),

N(F , ǫ, L2(Pn)), is the smallest number of L2(Pn) ǫ-balls needed to cover F , where an

L2(Pn) ǫ-ball around a function g ∈ F is the set {f ∈ F : ‖f − g‖L2(Pn) < ǫ}.

Specifically, according to Theorem 2.1 in Steinwart and Scovel (2007), we have that

for any ǫ > 0,

sup
Pn

logN(BHk
, ǫ, L2(Pn)) ≤ cν,δ,dσ

(1−ν/2)(1+δ)d
n ǫ−ν , (3.3.5)
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where BHk
is the closed unit ball of Hk, and ν and δ are any numbers satisfying

0 < ν ≤ 2 and δ > 0.

Under the above conditions, we obtain the following theorem:

Theorem 3.3.4. Let P be a distribution of (X,A,R) satisfying condition (4.3.5) with

noise exponent q > 0. Then for any δ > 0, 0 < ν < 2, there exists a constant C

(depending on ν, δ, d and π) such that for all τ ≥ 1 and σn = λ
−1/(q+1)d
n ,

Pr∗(R(f̂n) ≤ R∗ + ǫ) ≥ 1− e−τ ,

where

ǫ = C

[

(

1

λn

)
2

2+ν
+ (2−ν)(1+δ)

(2+ν)(1+q)
(

1

n

)
2

2+ν

+

(

1

λn

)
q

q+1 τ

n
+ λ

q
q+1
n

]

.

The first two terms bound the stochastic error, which arises from the variability

inherent in a finite sample size and which depends on the complexity of Hk in terms of

covering numbers, while the third term controls the approximation error due to using

Hk, which depends on both σn and the noise behavior in the underlying distribution.

We expect better approximation properties when the RKHS is more complex, but,

conversely, we also expect larger stochastic variability. Using the above expression, an

optimal choice of λn that balances bias and variance is given by

λn = (n)
− 2(1+q)

(4+ν)q+2+(2−ν)(1+δ) ,

so the optimal rate for the risk is

R(f̂n)−R∗ = Op

(

(n)−
2q

(4+ν)q+2+(2−ν)(1+δ)

)

.

In particular, when data are well separated, q can be sufficiently large and we can let

(δ, ν) be sufficiently small. Then the convergence rate almost achieves the “parametric”
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rate n−1/2. However, if the marginal distribution of X has continuous density along

the boundary, it can be calculated that q = 2/d. In this case, the convergence rate

is approximately n−2/(d+2). Clearly, the speed of convergence is slower with larger

dimension of the prognostic variable space.

To prove Theorem 3.3.4, we note that according to Theorem 3.3.2, it suffices to

prove the result for the excess φ risk. We also use the fact that

Rφ(f̂n)−R∗
φ = Rφ(f̂n)− inf

Hk

Rφ(f) + inf
Hk

Rφ(f)−R∗
φ.

We will then bound the first difference on the right-hand side using the empirical

counterpart plus the stochastic variability due to the finite sample approximation. The

latter can be controlled using large deviation results from empirical processes and some

preliminary bound for ‖f̂n‖k. The second difference on the right-hand side will be

bounded by using the approximation property of the RHKS and the geometric noise

assumption of the underlying distribution P . The details are provided in the Appendix

1.

3.3.5 Improved Rate with Data Completely Separated

In this section, we show that a faster convergence rate can be obtained if the data

are completely separated. We assume

(A1) ∀x ∈ X , |η(x)− 1/2| ≥ η0, where η(x) is defined in (3.3.3), and η is continuous.

(A2) ∀x ∈ X ,min(η(x), 1− η(x)) ≥ η1.

Assumption (A1) can be referred as a “low noise” condition equivalent to |E(R|A =

1, X) − E(R|A = −1, X)| ≥ η0. Thus, a jump of η(x) at the level of 1/2 requires a

gap between the rewards gained from treatment 1 and -1 on the same patient. This
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assumption is an adaptation of the noise condition used in classical SVM to obtain fast

learning rates and it is essentially equivalent to one of the conditions in Blanchard et al.

(2008).

Theorem 3.3.5. Assume that (A1) and (A2) are satisfied. For any ν ∈ (0, 1) and

q ∈ (0,∞), let λn = O(n−1/(ν+1)) and σn = λ
−1/(q+1)d
n . Then

R(f̂n)−R∗ = Op

(

n− 1
ν+1

q
q+1

)

.

We can let q go to ∞ and ν go to zero, and this theorem shows that the convergence

rate for R(f̂n)−R(f ∗) is almost n−1, a much faster rate compared to what was given

in Theorem 3.4. This result is similar to results for SVM described in Tsybakov (2004);

Steinwart and Scovel (2007); Blanchard et al. (2008).

To prove Theorem 3.3.5, we can rewrite the minimization problem in (3.3.1) as:

min
S∈R+

{

min
f :‖f‖k≤S

1

n

n
∑

i=1

Ri

πi
{1− Aif(Xi)}+ + λS2

}

.

Thus the problem can be viewed in the model selection framework: a collection of

models are balls in Hk, and for each model, we solve the penalized empirical φ-risk

minimization to obtain an estimator f̂n. We can utilize a result for model selection,

presented in Theorem 4.3 of Blanchard et al. (2008), to choose the model which yields

the minimal penalized empirical φ-risk among all the models. Proof details are provided

in the Appendix 1.

3.4 Simulation Study

We have conducted extensive simulations to assess the small-sample performance

of the proposed method. In these simulations, we generate 50-dimensional vectors
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of prognostic variables X1, . . . , X50, consisting of independent U [−1, 1] variates. The

treatment A is generated from {−1, 1} independently of X with P (A = 1) = 1/2. The

response R is normally distributed with mean Q0 = 1 + 2X1 +X2 + 0.5X3 + T0(X,A)

and standard deviation 1, where T0(X,A) reflects the interaction between treatment

and prognostic variables and is chosen to vary according to the following four different

scenarios:

1. T0(X,A) = 0.442(1−X1 −X2)A.

2. T0(X,A) = (X2 − 0.25X2
1 − 1)A.

3. T0(X,A) = (0.5−X2
1 −X2

2 ) (X
2
1 +X2

2 − 0.3)A.

4. T0(X,A) = (1−X3
1 + exp(X2

3 +X5) + 0.6X6 − (X7 +X8)
2)A.

The decision boundaries in the first three scenarios are determined by X1 and X2.

Scenario 1 corresponds to a linear decision boundary in the truth, where the shape

of the boundary in Scenario 2 is a parabola. The third is a ring example, where the

patients on the ring are assigned to one treatment, and another if inside or outside the

ring. The decision boundary in the fourth example is fairly nonlinear in covariates,

depending on covariates other than X1 and X2. For each scenario, we estimate the

optimal ITR by applying OWL. We use the Gaussian kernel in the weighted SVM

algorithm. There are two tuning parameters: λn, the parameter for penalty, and σn,

the inverse bandwidth of the kernel. Since λn plays a role in controlling the severity

of the penalty on the functions and σn determines the complexity of the function class

utilized, σn should be chosen adaptively from the data simultaneously with λn. To

illustrate this, Figure 3.1 shows the contours of the value function for the first scenario

with different combinations of (λn, σn) when n = 30. We can see that λn interacts with

σn, with larger λn generally coupled with smaller σn for equivalent value function levels.

In our simulations, we apply a 5-fold cross validation procedure, in which we search
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over a pre-specified finite set of (λn, σn) to select the pair maximizing the average of

the estimated values from the validation data. In case of tied values for parameter pair

choices, we first choose the set of pairs with smallest λn and then select the one with

largest σn.

Additionally, comparison is made among the following four methods:

• the proposed OWL using Gaussian kernel (OWL-Gaussian)

• the proposed OWL using linear kernel (OWL-Linear)

• the l1 penalized least squares method (l1-PLS) developed by Qian and Murphy

(2011), which approximates E(R|X,A) using the basis function set (1, X,A,XA)

and applies the LASSO method for variable selection, and

• ordinary least squares method (OLS), which estimates the conditional mean re-

sponse using the same basis function set as in 3 but without variable selection.

We consider the OWL with linear kernel (method 2) mainly to assess the impact of

different kernels in the weighted SVM algorithm. In this case, there is only one tuning

parameter, λn, which can be chosen to maximize the value function in a cross-validation

procedure. The selection of the tuning parameters in the l1-PLS approach follows

similarly. The last two approaches estimate the optimal ITR using the sign of the

difference between the predicted E(R|X,A = 1) and the predicted E(R|X,A = −1).

In the comparisons, the performances of the four methods are assessed by two criteria:

the first criterion is to evaluate the value function using the estimated optimal ITR when

applying to an independent and large validation data; the second criterion is to evaluate

the misclassification rates of the estimated optimal ITR from the true optimal ITR using

the validation data. Specifically, a validation set with 10000 observations is simulated

to assess the performance of the approaches. The estimated value function using any

ITR D is given by P
∗
n[I(A = D(X))R/P (A)]/P∗

n[I(A = D(X))/P (A)] (Murphy et al.,

49



2001), where P
∗
n denotes the empirical average using the validation data and P (A) is

the probability of being assigned treatment A.

For each scenario, we vary sample sizes for training datasets from 30 to 100, 200, 400

and 800, and repeat the simulation 1,000 times. The simulation results are presented

in Figures 3.2 and 3.3, where we report the mean square errors (MSE) of both value

functions and misclassification rates. Simulations show there are no large differences in

the performance if we replace the Gaussian kernel with the linear kernel in the OWL.

However, there are examples presenting advantages of the Gaussian kernel, which sug-

gests that under certain circumstances, it is useful to have a flexible nonparametric

estimation procedure to identify the optimal ITR for the underlying nonparametric

structures. As demonstrated in Figure 3.2 and Figure 3.3, the OWL with either Gaus-

sian kernel or linear kernel has better performance, especially for small samples, than

the other two methods, from the points of view of producing larger value functions,

smaller misclassification rates, and lower variability of the value function estimates.

Specifically, when the approximation models used in the l1-PLS and OLS are correct in

the first scenario, the competing methods perform well with large sample size; however,

the OWL still provides satisfactory results even if we use a Gaussian kernel. When the

optimal ITR is nonlinear in X in the other scenarios, the OWL tends to give higher

values and smaller misclassification rates. OLS generally fails unless the sample size is

large enough since it encounters severe bias for small sample sizes. This is due to the

fact that without variable selection for OLS, there is insufficient data to fit an accu-

rate model with all 50 variables included. We also note that l1-PLS has comparatively

larger MSE, resulted from high variance of the method, which may be explained by the

conflicting goals of maximizing the value function and minimizing the prediction error

(Qian and Murphy, 2011).
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3.5 Data Analysis

We apply the proposed method to analyze real data from the Nefazodone-CBASP

clinical trial (Keller et al., 2000). The study randomized 681 outpatients with non-

psychotic chronic major depressive disorder (MDD), in a 1:1:1 ratio to either Nafa-

zodone, Cognitive Behavioral-Analysis System of Psychotherapy (CBASP) or the com-

bination of Nefazodone and CBASP. The score on the 24-item Hamilton Rating Scale

for Depression (HRSD) was the primary outcome, where higher scores indicate more

severe depression. After excluding some patients with missing observations, we use a

subset with 647 patients for analysis. Among them, 216, 220 and 211 patients were as-

signed to Nafazodone, CBASP and the combined treatment group respectively. Overall

comparisons using t-tests show that the combination treatment had significant advan-

tages over the other treatments with respect to HRSD scores obtained at end of the

trial, while there are no significant differences between the nefazodone group and the

psychotherapy group.

To estimate the optimal ITR, we perform pairwise comparisons between all combi-

nations of two treatment arms, and, for each two-arm comparison, we apply the OWL

approach. We only present the results from the Gaussian kernel, since the analysis

shows a similarity with that of the linear kernel. Rewards used in the analyses are

reversed HRSD scores and the prognostic variables X consist of 50 pretreatment vari-

ables. The results based on OWL are compared to results obtained using the l1-PLS

and OLS methods which use (1, X,A,XA) in their regression models. For comparison

between methods, we calculate the value function from a cross-validation type analy-

sis. Specifically, the data is partitioned into 5 roughly equal-sized parts. We perform

the analysis on 4 parts of the data, and obtain the estimated optimal ITRs using dif-

ferent methods. We then compute the estimated value functions using the remaining

fifth part. The value functions calculated this way should better represent expected
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value functions for future subjects, as compared to calculating value functions based on

the training data. The averages of the cross-validation value functions from the three

methods are presented in Table 3.1.

From the table, we observe that OLS produces smaller value functions (correspond-

ing to larger HRSD in the table) than the other two methods, possibly because of the

high dimensional prognostic variable space. OWL performs similarly to l1-PLS, but

gives a 5% larger value function than l1-PLS when comparing the Combination arm to

the Nefazodone arm. In fact, when comparing combination treatment with nefazodone

only, OWL recommends the combination treatment to all the patients in the validation

data in each round of the cross validation procedure; the OLS assigns the combination

treatment to around 70% of the patients in each validation subset; while the l1-PLS rec-

ommends the combination to all the patients in three out of five validation sets, and 7%

and 28% to the patients for the other two, indicating a very large variability. If we need

to select treatment between combination and psychotherapy alone, the OWL approach

recommends the combination treatment for all patients in the validation process. In

contrast, the l1-PLS chooses psychotherapy for 10 out of 86 patients in one round of

validation, and recommends the combination for all patients in the other rounds. The

percentages of patients who are recommended the combination treatment range from

66% to 85% across the five validation data sets when applying OLS. When the two sin-

gle treatments are studied, there are only negligible differences in the estimated value

functions from the three methods and the selection results also indicate an insignificant

difference between them. In this case, about 20% of the patients are recommended to

take the psycotherapy and the other 80% are recommended to be treated with nefa-

zodone. Thus OWL not only yields ITRs with the best clinical outcomes, but the ITRs

also have lowest variability compared to the other methods.
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3.6 Discussion

The proposed OWL procedure appears to be more effective, across a broad range of

possible forms of the interaction between prognostic variables and treatment, compared

to previous methods. A two-stage procedure is likely to overfit the regression model,

and thus cause troubles for value function approximation. The OWL provides a non-

parametric approach which sidesteps the inversion of the predicted model required in

other methods and benefits from directly maximizing the value function. The conver-

gence rates for the OWL, aiming to identify the best ITR, nearly reach the optimal for

the nonparametric SVM with the same type of assumptions on the separations. The

rates, however, are not directly comparable to Qian and Murphy (2011), because we al-

low for complex multivariate interactions and formulate the problem in a nonparametric

framework.

We only considered binary options for treatment. When there are more than two

treatment classes, although we could do a series of pairwise comparisons as done in

Section 3.5 above, this approach may not be optimal in terms of identifying the best

rule considering all treatments simultaneously. It would thus be worthwhile to extend

the OWL approach to settings involving three or more treatments. The case of multi-

category SVM has been studied recently (Lee et al., 2004; Wang and Shen, 2006), and

a similar generalization may be possible for finding ITRs involving three or more treat-

ments. Another setting to consider is optimal ITR discovery for continuous treatments

such as, for example, a continuous range of dose levels. In this situation, we could

potentially utilize ideas underlying support vector regression (Vapnik, 1995), where the

goal is to find a function that has at most ǫ deviation from the response. Using a

similar rationale as the proposed OWL, we could develop corresponding procedures for

continuous treatment spaces through weighing each subject by his/her clinical outcome.

Obtaining inference for individualized treatment regimens is also important and
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challenging. Due to high heterogeneities among individuals, there may be large varia-

tions in the estimated treatment rules across different training sets. Laber and Murphy

(2011) construct an adaptive confidence interval for the test error under the non-regular

framework. Confidence intervals for value functions help us determine whether essen-

tial differences exist among different decision rules. Thus an important future research

topic is to derive the limiting distribution of V(D̂n)−V(D∗) and to derive corresponding

sample size formulas to aid in design of personalized medicine clinical trials.

In some complex diseases, dynamic treatment regimes may be more useful than the

single-decision treatment rules studied in this chapter. Dynamic treatment regimes are

customized sequential decision rules for individual patients which can adapt over time

to an evolving illness. Recently, this research area has been of great interest in long

term management of chronic disease. See, for example, Murphy et al. (2001); Thall

et al. (2002); Murphy (2003); Robins (2004); Moodie et al. (2007); Zhao et al. (2011a).

Extension of the proposed OWL approach to the dynamic setting would be of great

interest and thus discussed in the next chapter.

54



Table 3.1: Mean Depression Scores (the Smaller, the Better) from Cross Validation
Procedure with Different Methods

OLS l1-PLS OWL
Nefazodone vs CBASP 15.87 15.95 15.74
Combination vs Nefazodone 11.75 11.28 10.71
Combination vs CBASP 12.22 10.97 10.86

Fig. 3.1: Contour Plots of Value Function for Example 1 with λn ∈ (0, 10) and σn ∈
(0, 10)
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Fig. 3.2: MSE for Value Functions of Individualized Treatment Rules
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Fig. 3.3: MSE for Misclassification Rates of Individualized Treatment Rules
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Chapter 4

Optimal Dynamic Treatment

Regimes using Outcome

Weighted Learning

In this chapter, we extend the previous proposed outcome weighted learning method

to the multi-decision setup. The provided learning procedure is fundamentally differ-

ent from Q-learning and other approaches currently used for finding optimal dynamic

treatment regimes. Simulation results and a data analysis on the smoking cessation

trial are presented to support the discussion.

4.1 Introduction

It is not uncommon that the optimal clinical strategies may require adaptation over

time. Recognizing that there exist time varying characteristics among patients, and

moreover, that the nature of diseases is as evolving and diversified as the people, clin-

icians have found out that even within the same patient, treatments which work now

may not work later. This is especially common in the case of chronic diseases and

conditions. Even if a “once and for all dosing” can be easily implemented, it may not

be the best therapeutic plan for the patients’ health. For example, treatment for major



depressive disorder is often driven by additional factors emerging over time, such as

side-effect severity, treatment adherence and so on (Murphy et al., 2007); typically, the

regimen for cancer patients involve multiple lines of treatment to prolong their lives or

improve their progression free survival, such as non-small cell lung cancer (Socinski and

Stinchcombe, 2007). Such problems have motivated plenty of literature on personal-

ized treatment strategies, which ideally, should adapt with time dependent outcomes,

including but not limited to patients response to previous treatments and side effects.

Furthermore, rather than concentrating on a short-term benefit of a treatment, the

goal here should be an improvement of the long-term gain by taking into account the

treatment delayed effects to the patient.

Dynamic treatment regimes (DTR), also called adaptive treatment strategies (Mur-

phy, 2005a), are sequential decision rules for individual patients which can adapt over

time to an evolving illness. At each decision point, the covariate and treatment histories

of a patient are taken as input for the decision rule, which outputs an individualized

treatment recommendation subsequently. In general, we are interested in identifying

the optimal dynamic treatment regime, defined as the sequence of decision rules that

will maximize the mean response at the end of the time period.

A convenient way to formalize the problem in finding optimal dynamic treatment

regimes is through potential outcomes (Neyman, 1990; Rubin, 1974, 1978; Robins,

1986), the value of the response variable that would be achieved, if contrary to the

fact, the patient had been assigned to different treatments. Potential outcomes can

be compared to find the regime that leads to the highest expected outcome if followed

by the population. However, potential outcomes are not directly observable, since we

can never observe all the results that could occur under different treatment regimes on

the same patient. We need to construct estimators of the optimal dynamic treatment

regimes using data from longitudinal studies.
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Usually, several assumptions are made on the data:

• Stable Unit Treatment Value Assumption (SUTVA): A subject’s outcome is un-

affected by the treatment assignments to the other subjects (Rubin, 1986).

• Consistency: if the subject received the treatment assignments dictated by the

regime, the observed outcomes will equal the potential outcomes under that

regime (Robins, 1997).

• Positivity: the treatment patterns that match the dynamic treatment regime

must have a positive probability of occurring. Thus, the information of treatment

strategies are contained in the observed data to estimate their performance.

• No unmeasured confounders: the newly assigned treatments are independent of

potential future outcomes from the treatment, conditional on the past and present

observations.

There are different designs available to develop dynamic treatment regimes. A simple

strategy is to randomize patients into possible groups with different treatment regimes

at the baseline. However, lack of flexibilities and large sample size requirements may

drive up the cost of such clinical trials. Alternatively, a sequential multiple assignment

randomized trial (SMART) design has been advocated for this purpose(Lavori and

Dawson, 2000, 2004; Dawson and Lavori, 2004; Murphy, 2005a; Murphy et al., 2007).

In this design, multiple randomizations at the decision points are conducted, i.e., at

each decision time, each patient is randomized to one of the possible treatments. The

randomization probability may depend on all the observed information up to date.

There are numerous SMART trials which have been conducted on different diseases,

for example, prostate cancer (Thall et al., 2000), CATIE trial for Alzheimer disease

(Schneider et al., 2001), STAR*D for depression (Rush et al., 2004), and a smoking
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cessation trial (Strecher et al., 2008). SMART designs guarantee that the assumption

of no unmeasured confounders is satisfied.

Traditionally, people use dynamic programming to find the optimal decision rules,

which requires a knowledge of the distribution of the entire process. Lavori and Daw-

son (2000) use multiple imputation techniques to estimate all potential outcomes, and

the adaptive strategies can be compared based on the imputed outcomes. Murphy

et al. (2001) employed a structural model to estimate the mean response that would

have been observed if the whole population followed a particular dynamic treatment

regime. Likelihood-based approaches are proposed in Thall et al. (2000, 2002, 2007),

where both frequentist and Bayesian methods are applied to estimate parameters and

thus the optimal strategies. Semiparametric methods are proposed to evaluate and

compare different treatment policies when survival distributions are of interest in two-

stage oncology trials (Lunceford et al., 2002; Wahed and Tsiatis, 2004, 2006). Two

common approaches to constructing a dynamic treatment regime from data include Q-

learning (Watkins, 1989; Sutton and Barto, 1998) and A-learning (Murphy, 2003; Blatt

et al., 2004), where ‘Q’ denotes ‘quality’ and ‘A’ denotes ‘advantage’. Q-Learning,

originally proposed in the computer science literature, has become a powerful tool to

discover optimal regimes in the clinical research arena (Murphy et al., 2007; Zhao et al.,

2009, 2011a). Q-learning constructs decision rules through fitting Q-functions, which

are the conditional mean functions of outcomes given the histories and treatments.

When the dimension of the potential actions is small, linear regression methods should

be adequate for fitting Q-functions, but in more extreme cases these methods can be

problematic. A richer class of basis functions may be desirable for estimation, such

as quadratic regression. The unclear and potentially complex structure of Q-functions

has motivated researchers to seek other methods with more flexibility. Zhao et al.
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(2009) utilized flexible nonparametric methods, specifically, the support vector ma-

chine and extremely randomized trees for fitting Q-functions. Murphy (2003) proposed

a semiparametric method for estimating optimal decisions, where the regret function is

modeled. Later Robins (2004) deduced optimal decision rules using structural nested

mean models. Moodie et al. (2007) provided a nice discussion showing that the two

methods are closely related, that Robins modeled effects relative to the predictor value

of 0, and Murphy’s model focused on the effects relative to the optimal predictor value.

It turns out that Murphy’s model is a special case of Robins’. Chakraborty et al. (2009)

showed that Q-learning is an efficient version of Robins’ method under certain condi-

tions. For more discussion on the relationship between Q- and A-learning, we refer

readers to Schulte et al. (2012). However, the optimal dynamic treatment regimes can

not be obtained if models are misspecified or poorly fitted. Moreover, while the goal

is to maximize the long term outcome, estimation based on minimizing the prediction

error may not necessarily yield the desired results for decision making.

In this chapter, we provide novel methodologies for finding optimal dynamic treat-

ment regimes, concentrating on directly maximizing the expected long term outcome

without positing the model for the outcomes giving the patients’ history information

at each stage. For the single decision setup, we have shown that the optimization can

be achieved within a weighted classification framework, where weights are determined

by the clinical outcomes. A heuristic inspired by dynamic programming guides us to

identify a sequence of optimal decision rules using the same algorithm but through

a backwards recursive fashion. We also develop an outcome weighted learning proce-

dure for two stage problems, where the computational burden arising from the two

dimensional 0-1 losses is mitigated by using a two-dimensional surrogate loss function.

The integration of statistical machine learning techniques and optimal decision rule

discoveries has provided us alternative views on the problem.
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The remainder of the chapter is organized as follows. In Section 4.2, we formulate

the problem of finding the optimal dynamic treatment regimes in a mathematical frame-

work. Two different approaches are proposed stemming from the concept of outcome

weighted learning proposed in Chapter 3, while now taking into account the dynamic

aspects. Section 4.3 provides theoretical justifications for the proposed methods in Sec-

tion 4.2 and shows nice properties for finding the optimal DTR. We present an empirical

comparison on the performances of the proposed methods and Q-learning. Section 4.5

focuses on the application of the proposed outcome weighted learning methods for the

multi-decision setup, where the data comes from a smoking cessation trial. We provide

a brief discussion in Section 4.6.

4.2 General Methodology

4.2.1 Dynamic Treatment Regimes (DTR)

Consider a multistage decision problem where decisions are made at set times t ∈

{1, . . . , T} with total sample size n. We use X and A to denote random variables, where

Xt is the observation available at the tth stage, and At is the treatment chosen at the

tth stage subsequent to observing Xt. We assume that At is binary with values taken

in At = {−1, 1}. Let Ht = {X1, A1, . . . , Xt−1, At−1, Xt} ∈ Ht denote the covariate and

treatment history available at the tth stage, with the dimension of Ht denoted by pt, t =

1, . . . , T . In this dissertation, we consider a sequential multiple assignment randomized

trial design, and assume that two possible treatments are randomized with known

probabilities possibly dependent on Ht at each stage. Without loss of generality, we let

P (At = 1|Ht) = πt, t = 1, . . . , T , where the πts are known constants. Corresponding

lower cases are used to denote realizations of the random variables. Let the observed

clinical outcome, also called the “reward”, following the tth stage be given by Rt =
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L(Ht+1), where L is a deterministic function of all histories up to stage t + 1. The

Rt are assumed to be bounded, with larger values being more preferable. We define

a dynamic treatment regime d ∈ D, as a sequence of deterministic decision rules,

{d1, . . . , dT}, mapping from the history space Ht, to the space of available treatments

At at the t
th stage. Given ht, dt(ht) = at is a treatment at stage t depending on history.

The goal at each stage is to decide on the treatment which will lead to the maximized

long-term benefit, that is, to find a DTR to optimize the overall mean outcome through

the final follow-up time T .

Assume that the finite longitudinal trajectories are drawn at random from a fixed

and unknown distribution P and denote expectations with respect to P by E, where a

trajectory is defined as a realization of (X1, A1, R1, . . .XT , AT , RT ). Let Pd denote the

distribution of (X1, A1, R1, . . .XT , AT , RT ) when regime d is used to assign treatments,

and correspondingly, the expectation with respect to Pd is denoted by Ed. We only

consider the collection of all regimes, still denoted by D, satisfying

P

(

T
∏

t=1

P (At = dt(Ht)|Ht) > 0

)

= 1,

which indicates that treatments following regime d = {d1, . . . , dT} can occur in the

longitudinal data. Thus, the information of treatment strategies d are contained in

the observed data to estimate their performance. To choose the regime that yields the

most desirable long term consequence, we seek a DTR that maximizes the expectations

of the sum of the rewards over the time trajectories. For d ∈ D, we establish the value

function as,

V (d) = Ed

[

T
∑

t=1

Rt

]

.

The optimal value function is defined as V ∗ = maxd∈D V (d), and the optimal dynamic

treatment regime, denoted by d∗, is the regime leading to the value function with the
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highest value. Additionally, the expected total reward that can be accumulated over

the future from the tth stage is defined as

Vt(ht) = Ed

[

T
∑

l=t

Rl|Ht = ht

]

,

and the optimal value function from stage t is V ∗
t (ht) = maxd∈D Vt(ht).

A fundamental property of value functions is that they satisfy particular recursive

relationships such as the Bellman equation (Bellman, 1957; Sutton and Barto, 1998).

According to the Bellman optimality equation, we have

V ∗
t (ht) = max

at
E(Rt + V ∗

t+1(Ht+1)|Ht = ht, At = at), (4.2.1)

with V ∗
T+1(HT+1) = 0. And the optimal regime for the tth stage satisfies the following

relation:

d∗t (ht) = argmax
at

E[Rt + V ∗
t+1(Ht+1)|Ht = ht, At = at],

where V ∗
t+1(Ht+1) is the cumulative sum of rewards from stage t + 1 to stage T when

using the optimal regime d∗ thereafter, given the history Ht+1.

Traditionally, people use dynamic programming to find the optimal decision rules.

In this case, the complete probability distribution must be specified. Another popu-

lar method to construct dynamic treatment regime is Q-learning, which requires less

computation. The time-dependent Q-function is defined as

Qt(ht, at) = E(Rt + V ∗
t+1(Ht+1)|Ht = ht, At = at).

Hence, there exists a recursive form as follows:

Qt(ht, at) = E(Rt +max
at+1

Qt+1(Ht+1, at+1)|Ht = ht, At = at).
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The optimal sequence of decision rules can be determined from d∗t (ht) = argmaxat Qt(ht, at).

Usually, linear models are used for estimating Q-functions, and the optimal DTR can

be identified given the history of the patient. However, Murphy (2005b) pointed out

that there is a mismatch between Q-learning and the goal of learning a regime that

maximizes the value function. In addition, the approximation space may not be com-

plex enough to capture the Q-function structure, which can yield a large bias. In the

section below, we propose approaches which enable us to directly estimate the dynamic

treatment regime maximizing the value function.

4.2.2 Outcome Weighted Learning for the Multi-Decision Setup

In this section, we introduce our methods for constructing optimal dynamic treat-

ment regimes from a sequential multiple assignment randomized trial. The developed

methods identify the optimal strategy by directly maximizing the expected long term

outcome (the value function). We have introduced the OWL method for the single

stage decision problem, formulated in a weighted support vector machine framework

in Chapter 3. This section is organized as follows. We first extend the methodology

to the multiple stage decision problem by repeatedly estimating the optimal regimes

backwards from the end of the study. We then provide an iterative procedure to find

the optimal dynamic treatment regimes for a two-stage decision problem.

Backwards Outcome Weighted Learning (BOWL)

Assume that we observe a training data set (X1i, A1i, R1i, . . . , XT i, AT i, RT i), i =

1, . . . , n consisting of n i.i.d. patient trajectories from a SMART study. Outcome

weighted learning can be applied in a backward fashion to yield the optimal decision

for stage t, t = 1, . . . , T . At the tth stage, we can write the optimal value function
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(4.2.1) in the following way that

V ∗
t (ht) = max

dt
E

[

(Rt + V ∗
t+1(Ht+1))I(At = dt(ht))

Atπt + (1−At)/2

∣

∣

∣

∣

Ht = ht

]

.

Therefore, the optimal treatment rule d∗t should minimize the risk function at that

stage, defined as

Rt(ht) = E

[

(Rt + V ∗
t+1(Ht+1))I(At 6= sign(ft(ht)))

Atπt + (1−At)/2

∣

∣

∣

∣

Ht = ht

]

,

where dt(ht) is represented as sign(ft(ht)) with some decision function ft. Note that

the risk function at the tth stage is defined so that the optimal treatment regime d∗ is

applied thereafter.

For estimation purposes, we generally replace the expected value with its empirical

analog in terms of the observed data, and then conduct the optimization. However,

the resulting problem is difficult to optimize directly because of the discontinuity and

non-convexity of the 0-1 loss. Similarly as in the one-decision point problem, we can

mitigate the computational burden and develop a tractable estimation procedure by

using a convex surrogate loss, such as hinge loss, in place of the 0-1 loss. In addition,

we penalize the complexity of the decision function ft to avoid overfitting. Hence, we

aim to minimize

En

[

(Rt + V ∗
t+1(Ht+1))φ(Atft(ht))

Atπt + (1− At)/2

∣

∣

∣

∣

Ht = ht

]

+ λt,n‖ft‖2, (4.2.2)

where En denotes the empirical measure of the observed data and λt,n is the penalization

parameter for stage t. We still need to find an estimate of V ∗
t+1(Ht+1). Given that the

optimal dynamic treatment regimes from stage t + 1 to stage T have been estimated,

one finds a natural estimate to be the mean response of all patients whose assigned

67



treatments after stage t + 1 are consistent with the estimated regime. Let d̂t,n(ht) =

sign(f̂t,n(ht)), t = 1, . . . , T be the estimated rule at stage t, then

V̂t+1,n(f̂t+1,n, . . . , f̂T,n) = En

(

T
∑

l=t+1

Rl|Al = sign(f̂l,n(Hl)), l = t + 1, . . . , T

)

is the estimated value from stage t + 1 to stage T when using the estimated regime

sign(f̂n) thereafter.

To fix ideas, we start BOWL with the final stage T , where V̂T+1,n = 0. Therefore,

solving (4.2.2) reduces to a single stage problem. d̂T,n(HT ) can be estimated following

the developed weighted support vector machine procedure in Zhao et al. (2012) and

V̂T,n is obtained subsequently. We can then repeatedly find the optimal decision rule

at each decision point by solving

f̂t,n(ht) = argmin
ft

{

En

[

(Rt + V̂t+1,n(f̂t+1,n, . . . , f̂T,n))φ(Atft(ht))

Atπt + (1− At)/2

∣

∣

∣

∣

∣

Ht = ht,

Al = sign(f̂l,n(Hl)), l = t+ 1, . . . , T
]

+ λt,n‖ft‖2
}

.

Consequently, to estimate the optimal decision rule for stage t, the analysis is restricted

to the subset of patients who have been assigned to the estimated optimal treatments

after that stage. The size of available data for estimation in the current step is decreased

while implementing backwards outcome weighted learning, compared to the previous

step. We denote the sample size for estimation at stage t by nt. For example, under

pure randomization with randomization probability 0.5 at each decision point, the

size is reduced by half as we proceed compared to the previous estimation step, i.e.,

nt = nt+1/2.

If the decision function ft at stage t is a linear function of ht, ft(ht) = βtht + β0t,

then ‖ft‖ is defined as the Euclidean norm of βt. Consider a nonlinear decision rule,
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where ft resides in a reproducing kernel hilbert space (RKHS) Hkt , associated with a

real-valued kernel function kt. The use of the kernel function enables us to deal with

data of a more complex structure. In this case, Hkt is equipped with the RKHS norm

‖ · ‖kt , and ‖ft‖ is defined as ‖ft‖kt .

Iterative Outcome Weighted Learning (IOWL)

Though the performance of backwards outcome weighted learning is robust under

various sample sizes, as shown in later sections, we develop an iterative procedure for

the two-stage setup to compensate for the fact that we do not make full use of the data

across all stages. Specifically, the the objective is to find the dynamic treatment regime

with a sequence of two decision rules, which can maximize Ed(R1 +R2), the expected

total amount of reward when the treatments are chosen according to regime d. For any

DTR (d1(h1), d2(h2)) = sign(f1(h1), f2(h2)) associated with decision functions f1(h1)

and f2(h2) in two stages respectively, the objective value function for maximizing the

expected long term outcome, defined as V (f1, f2), can be written in the following form,

V (f1, f2) = E

[

(R1 +R2)
I(A1 = sign(f1(H1)))I(A2 = sign(f2(H2)))

(A1π1 + (1−A1)/2)(A2π2 + (1− A2)/2)

]

. (4.2.3)

The optimal dynamic treatment regime d∗ leads to the maximal value, that is, d∗ =

(d∗1, d
∗
2) = sign(f ∗

1 , f
∗
2 ), where (f ∗

1 , f
∗
2 ) = argmaxf1,f2 V (f1, f2). And the optimal value

as V ∗ = V (f ∗
1 , f

∗
2 ).

As stated in the previous section, after completing the analysis for stage 2, we only

use a subset of data to estimate the optimal treatment rule for stage 1. A modification

of the BOWL procedure can be implemented which potentially utilizes the whole data

set to find (d∗1, d
∗
2). Upon obtaining the stage 1 estimated rule d̂1,n using BOWL, we

reestimate the optimal stage 2 rule d̂new2,n based on the subset of patients whose stage 1

treatment assignments are consistent with d̂1,n. We continue with the reestimation of
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the optimal stage 1 rule d̂new1,n using the information of patients with A2 = d̂new2,n . The

process is then iterated until the estimated value converges. The iteration procedure is

described as follows.

1. Estimate the optimal dynamic treatment regime sign(f̂1,n, f̂2,n) using BOWL.

2. Given f̂1,n, we find an updated optimal stage 2 treatment decision function f̂new
2,n

by maximizing

En

[

En

(

(R1 +R2)
I(A2 = sign(f2(H2)))

A2π2 + (1− A2)/2

∣

∣

∣

∣

A1 = sign(f̂1,n(H1))

)]

.

Set f̂2,n = f̂new
2,n .

3. Substituting f̂2,n into the value function, we obtain f̂new
1,n by maximizing

En

[

En

(

(R1 +R2)
I(A1 = sign(f1(H1)))

A1π1 + (1− A1)/2

∣

∣

∣

∣

A2 = sign(f̂2,n(H1))

)]

.

Set f̂1,n = f̂new
1,n .

4. We iterate between Step 2 and 3 until

|V (f̂1,n, f̂2,n)− V (f̂new
1,n , f̂new

2,n )| ≤ ǫ

for a prespecified threshold ǫ.

In each step, we only update the decision rule for one stage while leaving the other

unchanged. The value gets replaced by a hopefully better estimate after each iteration,

which can be elaborated by calculating the form of the decision rule. In step 2, the

updated rule can be obtained as a function of f̂1,n, denoted as f̂new
2,n = T2(f̂1,n), where

sign(f̂new
2,n ) = sign[E(R2|A1 = sign(f̂1,n), X2, A2 = 1)−E(R2|A1 = sign(f̂1,n), X2, A2 = −1)].
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Letting Q∗
2(f̂1,n) = maxa2∈{−1,1} EnR2|A2 = a2, A1 = sign(f̂1,n), X2), the objective quan-

tity in Step 3 equates to

En

[

En(R1 +Q∗
2(f̂1,n))I(A1 = f1(H1))|A2 = sign(T2(f̂1,n))

]

.

Therefore, with the operator T1 on f̂2,n introduced, where f̂2,n has been replaced by

f̂new
2,n , we define f̂new

1,n = T1(T2(f̂1,n)), and

sign(f̂new
1,n ) =sign

[

En(R1 +Q∗
2(f̂1,n)|A2 = sign(T2(f̂1,n)), X1, A1 = 1)

−En(R1 +Q∗
2(f̂1,n)|A2 = sign(T2(f̂1,n)), X1, A1 = −1)

]

.

We thus have

V (T1(T2(f̂1,n)), T2(f̂1,n)) = max
a1∈{−1,1}

En(R1 +Q∗
2(f̂1,n)|A2 = sign(T2(f̂1,n)), X1, A1 = a1).

It is straightforward to see that each iteration of the algorithm increases the value

function, since

V (T1(T2(f̂1,n)), T2(f̂1,n)) ≥ V (f̂1,n, T2(f̂1,n)) ≥ V (f̂1,n, f̂2,n).

In the beginning, only part of the data, where the second stage assignments matched

the estimated treatments, are utilized in finding the first stage strategy. We then

continue to the next step and reestimate the second stage strategy, based on the subset

where subjects indeed received the estimated first stage assignment. If the optimal

dynamic treatment regime has been identified from the beginning, most likely we obtain

the same results and the iterations stop. On the other hand, we may see a different

second stage strategy produced, resulting in a different subset that can be applied for
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selecting the first stage therapy. Subsequently, we are able to use the information

that was not applied initially for the first stage estimation. As the iterations progress,

the results are gradually refined with more of the data until a firm solution has been

determined.

4.3 Theoretical Results

In this section, we present the theoretical results for the methods described in Sec-

tion 4.2, which provide justifications for using backwards outcome weighted learning to

find the optimal dynamic treatment regimes.

4.3.1 Fisher Consistency

In the following proposition, we show that by replacing the zero-one loss with the

hinge loss in the target function (4.2.1) and solving the resulting optimization prob-

lem with the surrogate loss backwards, we obtain a sequence of decision rules that is

equivalent to the optimal dynamic treatment regime.

Proposition 4.3.1. If we minimize (4.2.2) backwards through time t = T, T − 1, . . . , 1

and obtain a sequence of decision functions {f̃T (hT ), . . . , f̃1(h1)} by replacing V ∗
t+1(Ht+1)

with Vt+1(Ht+1)|d=sign(f̃) at stage t, then d
∗ = sign{f̃1(h1), . . . , f̃T (hT )}.

Proof. To show this, first note that V ∗
T+1(HT+1) = 0. According to the previous

results on Fisher consistency for the single stage problem, we obtain that d∗T (hT ) =

sign(f̃T (hT )), and the resulting value function for stage T is indeed V ∗
T (hT ). Repeating

the arguments for stages T − 1, . . . , 1, we have the desired conclusion.

This theorem validates the usage of the hinge loss in the implementation, indicates

that the BOWL procedure aims at the optimal dynamic treatment regime directly.
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4.3.2 Consistency

The theorem below shows that, as sample size increases, the value of the deduced

treatment regimes starting at arbitrary stage t via BOWL converges to the best possible

value. To this end, we first define for t = 1, . . . , T ,

R̂t,n(f̂t,n, . . . , f̂T,n) = En

[

(Rt + V̂t+1,n(f̂t+1,n, . . . , f̂T,n))I(At 6= sign(f̂t,n(ht)))

Atπt + (1−At)/2

∣

∣

∣

∣

∣

Ht = ht, Al = sign(f̂l,n(Hl)), l = t+ 1, . . . , T
]

. (4.3.1)

R̃t(ht, f̂t+1,n, . . . , f̂T,n) = min
ft

E

[

(Rt + V̂t+1,n(f̂t+1,n, . . . , f̂T,n))I(At 6= sign(ft(ht)))

Atπt + (1− At)/2

∣

∣

∣

∣

∣

Ht = ht, Al = sign(f̂l,n(Hl)), l = t+ 1, . . . , T
]

. (4.3.2)

R∗
t (ht) = min

ft
E

[

(Rt + V ∗
t+1(Ht+1))I(At 6= sign(ft(ht)))

Atπt + (1−At)/2

∣

∣

∣

∣

Ht = ht,

Al = sign(f̂l,n(Hl)), l = t + 1, . . . , T
]

. (4.3.3)

Note that (4.3.3) follows since Rt and V
∗
t+1(Ht+1) are independent of Al, l = t+1, . . . , T,

given Ht. We have the following theorem showing that the value calculated from

(f̂1,n, . . . , f̂T,n) converges to the optimal value function. The proof of the theorem can

be found in the Appendix 2.

Theorem 4.3.2. Assume that at stage t, t = 1, . . . , T , we choose a sequence λt,n such

that λt,n → 0, ntλt,n → ∞. In addition, if the minimizer of R̃t(f̂t,n, . . . , f̂T,n) belongs to

the closure of lim supn Hkt, then for all distributions P , we have that in probability,

lim
nt→∞

V̂t,n(f̂t,n, . . . , f̂T,n) = V ∗
t (ht).
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The penalization parameter λt,n, t = 1, . . . , n changes with n. How to select the

sequence of λt,n is an important problem. In our simulation study, we apply the common

approach of cross validation to choose λt,n at each stage. With appropriately selected

tuning parameters, the estimated sequence of treatment regimes approaches the optimal

DTR asymptotically.

4.3.3 Risk Bound and Convergence Rate

In addition to asymptotic consistency results, we are interested in how fast the

convergence to the optimal value happens. It is also important that the algorithm

guarantees a small error when comparing with the optimal. We now derive the conver-

gence rate of V̂t,n(f̂t,n, . . . , f̂T,n) − V ∗
t (ht). Some regularity conditions are required on

the data distribution. Specifically, we have a “geometric noise” assumption as follows.

Let

ηt(ht) =
E(Rt + V ∗

t+1(Ht+1)|Ht = ht, At = 1)− E(Rt + V ∗
t+1(Ht+1)|Ht = ht, At = −1)

E(Rt + V ∗
t+1(Ht+1)|Ht = ht, At = 1) + E(Rt + V ∗

t+1(Ht+1)|Ht = ht, At = −1)
+1/2.

(4.3.4)

Then 2ηt(ht) − 1 is the decision boundary for the optimal ITR in the tth stage. For

each stage t, we further define H+
t = {ht ∈ Ht : 2η(ht) − 1 > 0}, and H−

t = {ht ∈

Ht : 2η(ht) − 1 < 0}. A distance function to the boundary between H+
t and H−

t is

∆(ht) = d̃(ht,H+
t ) if h ∈ H−

t , ∆(ht) = d̃(ht,H−
t ) if ht ∈ H+

t and ∆(ht) = 0 otherwise,

where d̃(ht,O) denotes the distance of ht to a set O with respect to the Euclidean

norm. Then the distribution P is said to have geometric noise exponent 0 < qt < ∞

(Steinwart and Scovel, 2007), if there exists a constant C > 0 such that

E

[

exp

(

−∆(Ht)
2

ϑ

)

|2ηt(Ht)− 1|
]

≤ Ctqtpt/2, ϑ > 0. (4.3.5)

Additionally, to calculate the convergence rate of the BOWL estimator, we consider
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the RKHS Hkt , in which the stage t decision function ft resides, as the space associ-

ated with Gaussian Radial Basis Function (RBF) kernels kt(ht, h
′
t) = exp(−σ2

t,n‖ht −

h′t‖2), ht, h′t ∈ Ht. σt,n > 0 is a parameter varying with n controlling the bandwidth

of the kernel. The Gaussian RBF kernel, a nonlinear kernel, has shown good gen-

eral performance and has been widely used in various application areas. Because of

its flexibility, RBF may summarize the targeted functions better. Moreover, by using

the Gaussian RBF kernel, the complexity of Hkt can be controlled via the empirical

L2-norm, defined as

‖f − g‖L2(Pn) =

(

1

nt

nt
∑

i=1

|f(Ht,i)− g(Ht,i)|2
)1/2

.

For any ǫ > 0, the covering number of a functional class F with respect to L2(Pn),

N(F , ǫ, L2(Pn)), is the smallest number of L2(Pn) ǫ-balls needed to cover F , where an

L2(Pn) ǫ-ball around a function g ∈ F is the set {f ∈ F : ‖f − g‖L2(Pn) < ǫ}. We have

that at stage t, for any ǫ > 0,

sup
Pn

logN(BHkt
, ǫ, L2(Pn)) ≤ cν,δ,ptσ

(1−ν/2)(1+δ)pt
t,n ǫ−ν ,

where BHkt
is the closed unit ball of Hkt , and ν and δ are any numbers satisfying

0 < ν ≤ 2 and δ > 0.

Theorem 4.3.3. Let the distribution of (Ht, At, Rt), t = 1, . . . , T satisfy condition

(4.3.5) with noise exponent qt > 0. Then for any δ > 0, 0 < ν < 2, there exists a

constant Ct (depending on ν, δ, pt and πt), such that for all τ ≥ 1 and σt,n = λ
−1/(qt+1)pt
t,n ,

Pr∗

(

V̂t,n(f̂t,n, . . . , f̂T,n) ≥ V ∗
t (ht)−

T
∑

l=t

2l−tǫl

)

≥ 1−
T
∑

l=t

2l−te−τ ,
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where

ǫl = Cl

[

(

1

λl,n

)
2

2+ν
+

(2−ν)(1+δ)
(2+ν)(1+ql)

(

1

nl

)
2

2+ν

+

(

1

λl,n

)

ql
ql+1 τ

nl
+ λ

ql
ql+1

l,n

]

, (4.3.6)

and nl =
∑n

i=1 I(Al+1 = f̂l+1,n, . . . , AT = f̂T,n). Specifically, nl = n/2T−l if π1 = . . . =

πT = 0.5.

Theorem 4.3.3 measures the probability that the difference between the value of

the estimated DTR and the optimal value is sufficiently small. Furthermore, we can

derive the rate of convergence of the estimated values approaching the corresponding

targeted optimal values. Each ǫl, l = 1, . . . , T consists of the estimation error, the first

two terms, and the approximation error, the last term. Estimation error reflects the

variability from using finite sample sizes, while the candidate function spaces are fixed.

Approximation error essentially represents the bias by comparing the best possible

result in the selected function spaces with that across all possible spaces. In particular,

we can let q1 = . . . = qT = q, and choose λt,n for stage t as

λt,n = nt
− 2(1+q)

(4+ν)q+2+(2−ν)(1+δ) ,

which balances bias and variance. Then the optimal rate for the value of the estimated

regimes starting at arbitrary stage t using BOWL is

V̂t,n(f̂t,n, . . . , f̂T,n) ≥ V ∗
t (ht)− Op

(

nt
− 2q

(4+ν)q+2+(2−ν)(1+δ)

)

.

In the above formula, δ is a free parameter which can be set arbitrarily close to zero. The

geometric noise component q is related to the noise condition regarding the separation

between two optimal treatment groups. ν measures the order of complexity for the

associated reproducing kernel hilbert space. If q is sufficiently large, which is possible
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when two optimal treatment groups are well separated, and ν is close to zero, the

convergence rate is approximately n
−1/2
t . Here nt is the sample size for the stage t

treatment estimation.

4.3.4 Improved Rate with Data Completely Separated

Analogous to the single stage setup, we show that a faster convergence rate can be

obtained if the data are completely separated. Intuitively, this means patients are more

sensitive to different treatments across all stages. Assume that for each stage t,

(A1) ∀ht ∈ Ht, |ηt(ht) − 1/2| ≥ η0 > 0, where ηt(ht) is defined in (4.3.4), and ηt is

continuous.

(A2) ∀ht ∈ Ht, min(ηt(ht), 1− ηt(ht)) ≥ η1 > 0.

The following theorem gives a faster convergence rate:

Theorem 4.3.4. Assume that (A1) and (A2) are satisfied. For any ν ∈ (0, 1) and

qt ∈ (0,∞), t = 1, . . . , T , let λt,n = O(n
−1/(ν+1)
t ) and σt,n = λ

−1/(qt+1)pt
t,n . Then

V ∗
t (ht)− V̂t,n(f̂t,n, . . . , f̂T,n) =

T
∑

l=t

Op

(

n
− 1

ν

ql
ql+1

l

)

,

where nl =
∑n

i=1 I(Al+1 = f̂l+1,n, . . . , AT = f̂T,n). Specifically, nl = n/2T−l if π1 =

. . . = πT = 0.5.

Assuming that the geometric noise components are the same in all the stages, i.e.,

q1 = . . . = qT = q, we obtain for any t = 1, . . . , T

V ∗
t (ht)− V̂t,n(f̂t,n, . . . , f̂T,n) = Op

(

n
− 1

ν
q

q+1

l

)

.
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Letting q go to ∞ and ν go to zero, the convergence rate for V ∗
t (ht)− V̂t,n(f̂t,n, . . . , f̂T,n)

at stage t is almost n−1
t .

4.4 Simulation Studies

To assess the performance of the proposed methods, we conduct simulations under

various scenarios. We consider a two stage clinical trial. 50 dimensional baseline

covariates X1,1, . . . , X1,50 are generated according to N(0, 1). Treatments A1, A2 were

randomly generated from {−1, 1} with equal probability 0.5. The resulting outcomes

for different stages, R1 and R2, vary under different settings stated below. Thus we

observe data of the form (X1, A1, R1, X2, A2, R2) on each patient, where X2 denotes the

variables observed prior to stage 2. Specifically, histories available at each stage are:

H1 = X1, and H2 = (X1, A1, R1, X2). In each scenario, we simulate a validation data

set of sample size 10000, where the expected summation of outcomes E(R1 + R2) are

evaluated. 500 replications of training data sets are also simulated, with sample sizes

varying from 100 to 200, 400 and 800. For illustration, we present three scenarios,

1. Stage 1 outcome R1 = 0, and stage 2 outcome R2 is generated according to

N(−0.5A1 + 0.5A2 + 0.5A1A2, 1).

2. Stage 1 outcome R1 is generated according to N(0.446X1,3A1, 1), and stage 2

outcome R2 is generated according to N(((X2
1,1 +X2

1,2 − 0.2)(0.5−X2
1,1 −X2

1,2) +

R1)A2, 1).

3. A more complex model with intermediate variables after stage 1, specifically,

(a) Stage 1 outcome R1 is generated according to N((1 + 1.5X1,3)A1, 1).

(b) Two intermediate variables are generated with X2,1 ∼ N(1.25X1,1A1, 1), and

X2,2 ∼ N(−1.75X1,2A1, 1).
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(c) Stage 2 outcome R2 is generated according to N((0.5+R1+0.5A1+0.5X2,1−

0.5X2,2)A2, 1).

Scenario 1 is a toy example with simple models studied in Chakraborty et al. (2009).

Here we add 50 dimensional baseline covariates into the setup, which are pure noise

and have no effects on the outcomes. There are no time-varying covariates involved

in scenario 2, and a non-linear relationship exists between baseline covariates and the

optimal stage 2 treatment. Also, intermediate outcomes R1 play a role in determining

the second stage outcomes. We incorporate two time-varying covariates in scenario 3,

i.e., the values of the first and second baseline variables will change after stage 1.

Different methods are compared, including Q-learning with linear regression, back-

wards outcome weighted learning (BOWL) with linear kernel and iterative outcome

weighted learning (IOWL). The analysis model for Q-learning is Qj(Hj , Aj) = βjHj +

(ψjHj)Aj, j = 1, 2. Considering that the outcomes are modeled with linear regression

in Q-learning, we carry out the proposed outcome weighted learning methods utilizing

linear kernels for illustration, and do not further explore the use of Gaussian kernels

hereafter. We follow the BOWL procedures described in Section 4.2.2, where the opti-

mal stage 2 treatments are obtained via a weighted support vector machine technique

based on history H2, with the optimization target defined in (4.2.2). The estimation

of the optimal treatment in stage 1 is then carried out using the history information

H1 on the subset of patients whose assignments A2 are consistent with the estimated

decisions d̂2. We use 5-fold cross validation to select tuning parameters in each stage.

The data is partitioned into 5 subsets. Each time 4 subsets are used as the training data

for treatment estimation using OWL, while the remaining set is used as the validation

data for calculating the value of the estimated rule. The process is repeated 5 times

and we average the value obtained each time. In particular, using the linear kernel in
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the implementation of the weighted support vector machine, we choose the penaliza-

tion parameter λt,n in (4.2.2) for stage t, t = 1, 2, which maximizes the average of 5

estimated values, among a pre-defined set of values in each stage. The IOWL updates

the estimated decisions back and forth between two stages. As mentioned in Section

4.2.2, in each iteration, the one stage rule is rediscovered using the weighted support

machine technique, based on the group of patients receiving the recommended treat-

ment for the other stage. Here again, cross validation is utilized to select the required

tuning parameter via a grid search. The iterative procedure stops upon stabilization

of the value functions or reaching the maximum number of iterations, set at 20 in our

simulations.

We can compute the exact values of the value function when estimated dynamic

treatment regimes are applied to the large simulated validation set using different meth-

ods. Subsequently, we plot the probability distribution of the obtained values in Figure

4.1, 4.3 and 4.5, which are estimated based on a Gaussian kernel function with the

bandwidth set to 0.5. We also plot quantiles of the differences between estimated and

optimal values against quantiles of the estimated values from Q-learning linear, see

Figure 4.2, 4.4 and 4.6 for Scenario 1, 2 and 3, respectively. For the first scenario

with a simple effects model, Q-learning performs worse comparatively, especially with

smaller sample sizes. There is little difference between different outcome weighted

learning based methods as can be seen by observing that the kernel density estimates

almost overlap in Figure 4.1. Most of the time, they correctly identify the optimal

decision rules and reach the exact best values, see Figure 4.2. For Scenario 2, the

linear relationship between covariates and desired treatments is not valid with a fairly

non-linear effect existing in the second stage. In this situation, Q-learning linear may

never achieve the correct decision boundary. As shown in Figure 4.3, Q-learning linear

tends to estimate the wrong target since the mean of the distribution deviates from
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the optimal value substantially. This is anticipated because the linear model for the

response can never catch the truth of non-linear treatment effects. Outcome weighted

learning methods outperform Q-learning linear, and the gain becomes more pronounced

with increasing sample sizes. The strength of iterative outcome weighted learning is

demonstrated in this example. By taking advantage of this iterative process cycling

over the complete data set, it improves the decision from BOWL with better precision.

Behaviors of the two outcome based learning methods are consistent in the sense that

different approaches most of the time lead to the same value, which is close to the truth:

see the partially overlapped lines in Figure 4.4. Scenario 3 takes evolving variables into

consideration. Still, Q-learning linear gives worse performances, especially with small

sample sizes.

Tables 4.1, 4.2, and 4.3 show the mean values of the estimated DTR on the testing

set over 500 runs. Among all scenarios, Q-learning does not achieve good results until

sample sizes reach 400, sometimes even 800. Implementing outcome weighted learning

in an iterative fashion render the results more stabilized. Table 4.4 reports the per-

centages when the estimated values using BOWL or IOWL are higher than or equal to

those using Q-learning. It turns out that most of the times, outcome weighted learning

based methods yield better dynamic treatment regimes on average, even if occasionally

mean results can be strongly affected by the outliers with low values.

4.5 Data Analysis: Smoking Cessation Study

The smoking cessation study consists of two stages. The purpose of stage 1 of

this study (Project Quit), lasting for 6 months, was to find an optimal multicomponent

behavioral intervention to help adult smokers quit smoking; and among the participants

of Project Quit, the following 6-month stage 2 (Forever Free) was conducted to help

those who already quit stay quit, and help those who failed continue the quitting
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process. However, many participants from Project Quit did not continue to Forever

Free, where only 479 out of 1848 subjects decided to continue. For more details, see

Chakraborty et al. (2009).

The baseline covariates considered in stage 1 include 10 variables, described in Table

4.5. We consider Story as the only stage one treatment variable A1, coded 1 and -1,

representing two levels with high vs. low tailoring depth, i.e., whether or not the

story is tailored to the individual. At stage 2, FFArm denotes the treatment effects

A2, where 1 indicating subjects assigned into the treatment group and -1 indicating

subjects assigned into the control group. Note that there were originally 4 different

treatment groups. However, they were combined for the analysis since there were little

differences between them.

Total number of months without smoking is taken as the outcome of interest in

the study. The stage 1 outcome R1, nonsmoking months in the Project Quit period,

is collected at 6 months from the date of randomization, and the stage 2 outcome R2,

nonsmoking months in the Forever Free period, is obtained at 6 months from the date

of stage 2 randomization (i.e., 12 months from the date of stage 1 randomization). Only

281 subjects completed the stage 2 six-month survey, and there were some missingness

in the collected variables. By excluding all the missingness, we have 193 observations

for stage 2.

We are mainly interested in examining the performance of different outcome weighted

learning based approaches, i.e., BOWL and IOWL. Also, Q-learning is conducted as a

competitor. For the implementation of Q-learning, we need to posit a model for each

decision point. We first incorporate all the history covariates and covariate-treatment

interactions into the prediction models for Q-functions, and denote this approach as Q-

learning complete. Furthermore, it is found that the effect of story is thought to interact

with education, that highly tailored level of story is more effective for participants with
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lower education. Hence, another strategy is to consider a parsimonious model which

only includes the interaction term between education (X1,2) and story (A1) in the first

stage. We call it “Q-learning simple”. To avoid potential problems from overfitting, we

compute value estimates from a cross validated procedure, which is repeated 100 times.

Specifically, each time we randomly split the data into 5 roughly equally sized parts. 4

out of 5 parts of the data are used as the training set, on which different methods are

applied to construct the optimal dynamic treatment regimes, and the remaining part

is retained for validation by calculating values of the obtained estimates. The process

is repeated 5 times and the averages of the computed values are recorded.

Results of 100 cross validated values are shown in Figure 4.7. It can be seen that

IOWL gives larger cross validated values most of the times, indicating potentially bet-

ter sequences of treatments for the patients who can benefit from a longer time without

smoking. Performances of BOWL and Q-learning simple are close, while Q-learning

complete method is the worst comparatively, probably due to the large set of interac-

tions to account for. Indeed, Table 4.6 gives the mean of the cross validated values

across 100 times, where IOWL yields the highest value on average.

4.6 Discussion

It is critical to recognize that the presented approaches are developed for the dis-

covery of optimal dynamic treatment regimes. In contrast to the typical randomized

clinical trials, which are conducted to confirm the efficacy of the new treatments, the

SMART designs mentioned at the beginning are devised for exploratory purposes in

developing optimal DTRs. However, a confirmatory trial with a phase III structure can

be used for followed up to validate the superiority of the optimal adaptive treatment

strategies compared to existing therapies.
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We have proposed novel methodologies for identifying the optimal dynamic treat-

ment regimes from outcome weighted learning perspectives. The presented methods,

formulated in a nonparametric framework, are computational efficient, easy and intu-

itive to apply, and can effectively handle the potential complex relationship between

sequential treatments and prognostic or intermediate variables in the multi-decision

problem. For backwards outcome weighted learning, we conduct the estimation pro-

cedure backwards through time, i.e., from the last time point back to the beginning

of the study, without knowing the underlying distribution of the entire process as is

required in dynamic programming. Instead of modeling the Q-function at each stage,

we directly maximize the value function stepwise. An iterative procedure can be further

introduced which potentially yield more stabilized and accurate results. The conver-

gence rates derived for different OWL based methods, are essentially the same under

prespecified conditions on separation, smoothness and complexity of the approximation

spaces. Clearly, the proposed methodologies, augmenting the current literature in dy-

namic treatment regimes from a different point of view, can be powerful and promising

tools for improving long term health outcomes when managing chronic diseases.
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Table 4.1: Mean Values of the Estimated DTR for Scenario 1, where the Optimal Value
Equals 0.500

Q-learning BOWL IOWL
0.223 0.496 0.488
0.154 0.499 0.494
0.487 0.499 0.498
0.500 0.500 0.500

Table 4.2: Mean Values of the Estimated DTR for Scenario 2, where the Optimal Value
Equals 7.095

Q-learning BOWL IOWL
0.639 4.933 5.413
0.679 4.872 5.899
3.992 4.253 5.800
5.548 4.410 6.520

Table 4.3: Mean Values of the Estimated DTR for Scenario 3, where the Optimal Value
Equals 3.750

Q-learning BOWL IOWL
0.839 2.633 2.466
0.575 2.837 2.642
2.347 3.052 2.739
3.016 3.198 2.955
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Table 4.4: Proportions of Higher or Same Values using BOWL and IOWL Compared
to using Q-learning

Scenario 1 Scenario 2 Scenario 3
BOWL IOWL BOWL IOWL BOWL IOWL
100.0% 99.2% 82.0% 87.4% 94.2% 91.6%
100.0% 99.8% 81.0% 90.8% 98.0% 97.0%
96.8% 96.6% 60.8% 85.2% 91.4% 81.0%
96.4% 97.0% 42.4% 94.3% 76.6% 37.4%

Table 4.5: Baseline and Intermediate Variables for Smoking Cessation Study

Baseline Variables
X1,1 Age
X1,2 Education (≤ high school vs. > high school )
X1,3 Gender ( Male vs. Female )
X1,4 Race1 (Black vs. Non Black)
X1,5 Race2 (White vs. Non White)
X1,6 Baseline motivation to quit smoking*
X1,7 Baseline self efficacy**
X1,8 Average number of cigarettes smoked per day at baseline

Intermediate Variables
X2,1 Motivation to quit smoking at 6 months*
X2,2 Self efficacy at 6 months**

*: originally scaled from 1 to 10 and categorized subjects with 1-5 into 0 and 6-10 into 1.

**: originally scaled from 1 to 10 and categorized subjects with 1-5 into 0 and 6-10 into 1.

Table 4.6: Mean Cross Validated Values using Different Methods

BOWL IOWL Q-learning Complete Q-learning Simple
1.726 1.886 1.259 1.695
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Fig. 4.1: Kernel Density Approximations of Estimated Values for Scenario 1
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The vertical magenta line represents the optimal value with V ∗ = 0.5 under Setting 1.
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Fig. 4.2: Quantile-Quantile Plot of Estimated Values for Scenario 1
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Fig. 4.3: Kernel Density Approximations of Estimated Values for Scenario 2
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The vertical magenta line represents the optimal value with V ∗ = 7.095 under Setting 2.
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Fig. 4.4: Quantile-Quantile Plot of Estimated Values for Scenario 2
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Fig. 4.5: Kernel Density Approximations of Estimated Values for Scenario 3
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The vertical magenta line represents the optimal value with V ∗ = 3.766 under Setting 3.
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Fig. 4.6: Quantile-Quantile Plot of Estimated Values for Scenario 3
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Fig. 4.7: Quantile-Quantile Plot of Cross Validated Values
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Chapter 5

Future Work

This dissertation investigates the application of statistical learning in public health

surveillance and personalized medicine. In this chapter, we briefly discuss several prob-

lems which are worth pursuing in the future.

5.1 Identifying Potential Causes in Public Health Surveillance

It is important not only to detect potential disease outbreaks but also to evaluate

them. When multiple outbreaks are observed, we can next investigate the risk factors

associated with such outbreaks. As we mentioned, some demographic characteristics of

patients come with surveillance data. Other risk factors of interest include sociodemo-

graphic variables, geographic information, and environmental influences. Using normal

periods as the control, we can assess the significance of each potential risk factor. If

change in the surveillance processes is due to some external covariate processes, such as

weather, pollution, etc., we expect to detect changes in the feature space considering

the potential association. Assuming that some features or attributes may influence

the surveillance processes, we also want to find the associated anomalies in the feature

space, while we are proposing methodology for detecting space-time anomalies. By

observing the historical data, we attempt to discover the relevant covariate processes.

To find associated aberrations of weather/pollution data for different alarmed days



at different locations, one approach for mining exploration is to conduct a review of

available records to see if one or more possible causes emerge, such as temperature, lev-

els of ozone (ppb), levels of PM2.5(ug/m
3) and levels of PM10(ug/m

3), etc. Similarly,

we can use local linear methods to obtain estimation for the regular pattern of mea-

surements of interest. Let y denote the variable of interest. For location s on day t, we

solve for β̂(s, t), where

β̂(s, t) = argmin
∑

i,j

Ki,j(s, t)(y(si, tj)− β0(s, t)− β1(s, t)(tj − t))2.

Once we obtain the expected pattern from historical data, we conduct residual analysis

for screening, including detrended residuals and differenced detrended residuals. Since

the measurements are continuous, we define detrended residuals as y(s, t) − ŷ(s, t),

while differenced detrended residuals are derived via time series modeling. How to

choose the order of the time series model depends specifically on data analyzed using

the AIC criteria. This aberration analysis procedure enables us be informed of outliers

in explanatory variables. We can match these findings with identified alarms from

surveillance.

5.2 Extensions in Optimal DTRs Discovery

One important generalization is methodology development for right-censored sur-

vival data. Within the Q-learning framework, Zhao et al. (2011a) applied support

vector regression to fit the Q-function, which can accommodate right censoring. Gold-

berg and Kosorok (2012) developed methodology for the multi-decision problem where

survival times are outcomes of interests with censoring. They allowed flexible number

of stages for different patients depending on disease progression and failure event time.

Finite sample bounds are obtained on the generalization error of the estimated DTRs
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using the proposed Q-learning algorithm. Outcome weighted learning approaches, how-

ever, have not been adapted to censored data setting. It is of great interests to pursue

this area.

With the advances in new high-throughput technologies, we have encountered chal-

lenges arising from huge bodies of data with increasing complexity. Valid methods

should be developed to tackle the problem for ultra-high dimensional predictor spaces.

An optimal dynamic treatment regime discovery platform that mines variable selection

techniques will be more useful, in terms of the simpler and thus more interpretable

decision rules. Recall that the proposed OWL is based on a weighted SVM which

minimizes the weighted hinge loss function subject to an l2 penalty. If the dimension

of the covariate space is sufficiently large, not all the variables would be essential for

optimal ITR construction. By eliminating the unimportant variables from the rule, we

could simplify interpretations and reduce health care costs by only requiring collection

of a small number of significant prognostic variables. For standard SVM, the l1 penalty

has been shown to be effective in selecting relevant variables via shrinking small coef-

ficients to zero (Bradley and Mangasarian, 1998; Zhu et al., 2003). It outperforms the

l2 penalty when there are many noisy variables and sparse models are preferred. Other

forms of penalty have been proposed such as the F∞ norm (Zou and Yuan, 2008) and

the adaptive lq penalty (Liu et al., 2007). In the future, we can examine use of these

sparse penalties in the OWL method. It is likely that multiple, usually more than two,

active treatments are available at each decision points. Sometimes we need to deter-

mine the dosage level for different patients. Therefore, extensions to multicategory or

continuous treatments should be considered for practical reasons.

Conducting statistical inference for dynamic treatment regimes is meaningful to

address scientific questions such as “How much confidence do we have in concluding

that the obtained optimal dynamic treatment regime is the best compared to other
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strategies?” or “How many patients are needed in a SMART in order to guarantee

that we will obtain a DTR very close to the optimal one, using the proposed method-

ology?” Efforts have been made to construct confidence intervals for the parameters

in the Q-function, with main challenges coming from nonregularity due to the non-

differentiability of the max operator (Robins, 2004; Chakraborty et al., 2009; Laber

et al., 2011). We have shown that the proposed OWL based methods lead to a reason-

ably low bias in estimating the optimal DTR and have derived the finite sample bounds

for the difference between the expected cumulative outcome using the estimated DTR

and that of the optimal one. We believe that this article paves the way for further

developments in finding the limiting distribution of the value function and calculating

the required sample sizes for the multi-decision problem.

In this dissertation, we have only considered data generated from SMART designs.

However, dynamic treatment regimes can be estimated from observational studies. In

this setting, the assumption of ‘no unmeasured confounders’ may be violated. The

proposed methods should be applicable by using techniques such as propensity scores

(Rosenbaum and Rubin, 1983). Accordingly, other aforementioned issues could be

investigated in the context of observational studies as well.

5.3 Concluding Remarks

Recent developments in statistical learning offer a host of new research opportuni-

ties. This dissertation has investigated problems related to the two general areas of

public health surveillance and personalized medicine, using state-of-the-art statistical

learning methods together with semi- and non- parametric modeling techniques. We

believe that the current work opens appealing avenues for additional developments, and

we are well positioned to continue addressing the potential questions and concerns in

the near future.
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Appendix 1: Chapter 3 Proofs

Proof of Theorem 3.3.2

We consider the case where rewards are discrete. Arguments for the continuous

rewards setting follow similarly. Let ηr(x) = p(A = 1|R = r,X = x) and qr(x) =

rp(R = r|X = x). We can write

R(f) = E

[

∑

r

rp(R = r|X)E

(

I(A 6= sign(f(X)))

Aπ + (1−A)/2

∣

∣

∣
R = r,X

)

]

= E

[

∑

r

qr(X)

(

ηr(X)

π
I(sign(f(X)) 6= 1) +

1− ηr(X)

1− π
I(sign(f(X)) 6= −1)

)

]

= E [c0(X)(η(X)I(sign(f(X)) 6= 1) + (1− η(X))I(sign(f(X)) 6= −1))] , (5.3.1)

where c0(x) =
∑

r qr(x)[ηr(x)/π+ (1− ηr(x))/(1− π)], and η(x), defined previously in

(3.3.3), is equal to
∑

r qr(x)ηr(x)/πc0(x). Similarly,

Rφ(f) = E [c0(X)(η(X)φ(f(X)) + (1− η(X))φ(−f(X)))] .

We define C(η, α) = ηφ(α) + (1− η)φ(−α). Then the optimal φ-risk satisfies

R∗
φ = E

[

c0(X) inf
α∈R

C(η(X), α)

]

and

Rφ −R∗
φ = E

[

c0(X)

(

C(η(X), f(X))− inf
α∈R

C(η(X), α)

)]

.
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By a result in Bartlett et al. (2006) for a convexified transform of hinge loss, we have

2η − 1 = inf
α:α(2η−1)≤0

C(η, α)− inf
α∈R

C(η, α). (5.3.2)

Thus, according to (5.3.1) and (5.3.2), we have

R(f)−R∗ ≤ E (I(sign(f(X)) 6= sign[c0(X)(η(X)− 1/2)]) |c0(X)(2η(X)− 1)|)

= E

[

c0(X)I(sign(f(X)) 6= sign[c0(X)(η(X)− 1/2)])

(

inf
α:α(2η(X)−1)≤0

C(η(X), α)− inf
α∈R

C(η(X), α)

)

≤ E

[

c0(X)

(

C(η(X), f(X))− inf
α∈R

C(η(X), α)

)]

= Rφ(f)−R∗
φ.

The last inequality holds because we always have C(η(x), f(x)) ≥ infα∈R C(η(x), α) on

the set where sign(f(x)) = sign[c0(x)(η(x)−1/2)] andC(η(x), f(x)) ≥ infα:α(2η(x)−1)≤0 C(η(x), α)

when sign(f(x)) 6= sign[c0(x)(η(x)− 1/2)].

Proof of Theorem 3.3.3

Define Lφ(f) = Rφ(Af)/(Aπ+ (1−A)/2). By the definition of f̂n, we have for any

f ∈ Hk,

Pn

(

Lφ(f̂n)
)

≤ Pn

(

Lφ(f̂n) + λn

∥

∥

∥
f̂n

∥

∥

∥

2
)

≤ Pn

(

Lφ(f) + λn ‖f‖2
)

,

where Pn denotes the empirical measure of the observed data. Thus lim supn Pn(Lφ(f̂n)) ≤

P(Lφ(f)). It leads to lim supn Pn(Lφ(f̂n)) ≤ inff∈H̄k
P(Lφ(f)). Theorem 3.3.3 holds if

we can show Pn(Lφ(f̂n))− P(Lφ(f̂n)) → 0 in probability.
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To this end, we first obtain a bound for ‖f̂n‖2k. Since Pn(Lφ(f̂n)) + λn‖f̂n‖2 ≤

Pn(Lφ(f)) + λn‖f‖2k for any f ∈ Hk, we can select f = 0 to obtain

‖f̂n‖2k ≤
1

λn

1

n

∑ Ri

πi
φ(0) ≤ 2

λn

E(R)

min{π, 1− π} .

Let M = 2E(R)/min{π, 1− π} so that the Hk norm of
√
λnf̂n(X) is bounded by

√
M .

Note that the class {
√
λnf : ‖

√
λnf‖k ≤

√
M} is contained in a Donsker class. Thus,

{√
λnLφ(f), ‖

√
λnf‖k ≤

√
M
}

is also P-Donsker because (1 − Af(X))+ is Lipschitz

continuous with respect to f . Therefore,

√
n(Pn − P)Lφ(f̂n)

=
√

λ−1
n

√
n(Pn − P)

[

R

Aπ + (1− A)/2

(

√

λn − A
√

λnf̂n(X)
)+
]

= Op

(

√

λ−1
n

)

.

Consequently, from nλn → ∞, Pn(Lφ(f̂n))− P(Lφ(f̂n)) → 0 in probability.

Proof of Theorem 3.3.4

First, we have

Rφ(f̂n)−R∗
φ ≤ λn‖f̂n‖2k +Rφ(f̂n)−R∗

φ

≤
[

λn‖f̂n‖2k +Rφ(f̂n)− inf
f∈Hk

(λn‖f‖2k +Rφ(f))

]

+

[

inf
f∈Hk

(λn‖f‖2k +Rφ(f)−R∗
φ)

]

.

(5.3.3)

We will bound each term on the right-hand-side separately in the following arguments.

For the second term on the right-hand-side of (5.3.3), we use Theorem 2.7 in Stein-

wart and Scovel (2007) to conclude that

inf
f∈Hk

(

λn‖f‖2k +Rφ(f)−R∗
φ

)

= O
(

λq/(q+1)
n

)

, (5.3.4)
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when we set σn = λ
−1/(q+1)d
n .

Now we proceed to obtain a bound for the first term on the right-hand-side of

(5.3.3). To do this, we need the useful Theorem 5.6 of Steinwart and Scovel (2007)

presented below:

Theorem 5.6, Steinwart and Scovel (2007). Let F be a convex set of bounded

measurable functions from Z to R and let L : F × Z → [0,∞) be a convex and line-

continuous loss function. For a probability measure P on Z we define

G := {L ◦ f − L ◦ fP,F : f ∈ F}.

Suppose that there are constants c ≥ 0, 0 < α < 1, δ ≥ 0 and B > 0 with EP g
2 ≤

c(EPg)
α + δ and ‖g‖∞ ≤ B for all g ∈ G. Furthermore, assume that G is separable

with respect to ‖ · ‖∞ and that there are constants a ≥ 1 and 0 < p < 2 with

sup
T∈Zn

logN(B−1G, ǫ, L2(T )) ≤ aǫ−p

for all ǫ > 0. Then there exists a constant cp > 0 depending only on p such that for all

n ≥ 1 and all τ ≥ 1 we have

Pr∗(T ∈ Zn : RL,P (fT,F) > RL,P (fP,F) + cpǫ(n, a, B, c, δ, τ)) ≤ e−τ ,

where

ǫ(n, a, B, c, δ, x) := B2p/(4−2α+αp)c(2−p)/(4−2α+αp)
(a

n

)2/(4−2α+αp)

+Bp/2δ(2−p)/4
(a

n

)1/2

+B
(a

n

)2/(2+p)

+

√

δx

n
+
(cτ

n

)1/(2−α)

+
Bτ

n
.
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In their paper, fP,F ∈ F is a minimizer of RL,P (f) = E(L(f, z)), and fT,F is similarly

defined when T is an empirical measure. To use this theorem, we define F , Z, T,G, fT,F
and fP,F according to our setting. It suffices to consider the subspace of Hk, denoted

by BHk

(

√

M/λn

)

, as the ball of Hk of radius
√

M/λn. Specifically, we let F be

BHk

(

√

M/λn

)

and Z be X . The loss function we consider here is Lφ(f)+λn‖f‖2k and

G is the function class

Gφ,λn
=
{

Lφ(f) + λn‖f‖2k − Lφ(f
∗
φ,λn

)− λn‖f ∗
φ,λn

‖2k : f ∈ BHk

(

√

M/λn

)}

,

where f ∗
φ,λn

= argmin
f∈BHk

(√
M/λn

)(λn‖f‖2k + Rφ(f)). fP,F and fT,F correspond to

f ∗
φ,λn

and f̂n, respectively. Therefore, to apply this theorem, we will show that there are

constants c ≥ 0 and B > 0, which can possibly depend on n, such that E(g2) ≤ cE(g)

and ‖g‖∞ ≤ B, ∀g ∈ Gφ,λ. Moreover, there are constants c̃ and 0 < ν < 2 with

sup
Pn

logN(B−1Gφ,λn
, ǫ, L2(Pn)) ≤ c̃ǫ−ν ,

for all ǫ > 0.

Let CL denote sup{R/min(π, 1 − π)}, which is finite provided that R is bounded.

Since the weighted hinge loss is Lipschitz continuous with respect to f , with Lipschitz

constant CL, and since ‖f‖∞ ≤ ‖f‖k given that k(x, x) ≤ 1, for any g ∈ Gφ,λn
, we have

|g| ≤ |Lφ(f)− Lφ(f
∗
φ,λn

)|+ λn
∣

∣‖f‖2k − ‖f ∗
φ,λn

‖2k
∣

∣

≤ CL|f(x)− f ∗
φ,λn

(x)|+M

≤ 2CL

√
Mλ−1/2

n +M. (5.3.5)

Therefore, we can set B = 2CL

√
Mλ

−1/2
n +M .
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For any g ∈ Gφ,λn
, we have

g(f) ≤ |Lφ(f)− Lφ(f
∗
φ,λn

)|+ λn
∣

∣‖f‖2k − ‖f ∗
φ,λn

‖2k
∣

∣

≤ CL|f − f ∗
φ,λn

|+ λn‖f − f ∗
φ,λn

‖k‖f + f ∗
φ,λn

‖k

=
(

CL + 2
√

Mλn

)

‖f − f ∗
φ,λn

‖k.

Squaring both sides and taking expectations yields

E(g2) ≤
(

CL + 2
√

Mλn

)2

‖f − f ∗
φ,λn

‖2k. (5.3.6)

On the other hand, from the convexity of Lφ, we have

1

2
(Lφ(f) + λn‖f‖2k + Lφ(f

∗
φ,λn

) + λn‖f ∗
φ,λn

‖2k)

≥Lφ

(

f + f ∗
φ,λn

2

)

+ λn
‖f‖2k + ‖f ∗

φ,λn
‖2k

2

=Lφ

(

f + f ∗
φ,λn

2

)

+ λn

∥

∥

∥

∥

f + f ∗
φ,λn

2

∥

∥

∥

∥

2

k

+ λn

∥

∥

∥

∥

f − f ∗
φ,λn

2

∥

∥

∥

∥

2

k

≥Lφ

(

f ∗
φ,λn

)

+ λn
∥

∥f ∗
φ,λn

∥

∥

2

k
+ λn

∥

∥

∥

∥

f − f ∗
φ,λn

2

∥

∥

∥

∥

2

k

.

Taking expectations on both sides leads to E(g) ≥ λn‖f − f ∗
φ,λn

‖2k/2. Combining this

with (5.3.6), we conclude that E(g2) ≤ cE(g), where

c =
2

λn

(

CL + 2
√

Mλn

)2

. (5.3.7)

To estimate the bound for N(B−1Gφ,λn
, ǫ, L2(Pn)), we first have

N(B−1Gφ,λn
, ǫ, L2(Pn)) = N

(

B−1
{

Lφ(f) + λn‖f‖2k : f ∈ BHk

(

√

M/λn

)}

, ǫ, L2(Pn)
)

.
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From the sub-additivity of the entropy,

logN
(

B−1Gφ,λn
, 2ǫ, L2(Pn)

)

≤ logN
(

B−1
{

Lφ(f) : f ∈ BHk

(

√

M/λn

)}

, ǫ, L2(Pn)
)

+ logN
({

λn‖f‖2k, f ∈ BHk

(

√

M/λn

)}

, ǫ, L2(Pn)
)

.

(5.3.8)

Using the Lipschitz-continuity of the weighted hinge loss, we now have that if u, u′ ∈

B−1{Lφ(f) : f ∈ BHk
(
√

M/λn)} with corresponding f, f ′ ∈ BHk
(
√

M/λn), then ‖u−

u′‖L2(Pn) ≤ B−1CL‖f − f ′‖L2(Pn), and therefore the first term on the right-hand-side of

(5.3.8) satisfies

logN
(

B−1
{

Lφ(f) : f ∈ BHk

(

√

M/λn

)}

, ǫ, L2(Pn)
)

≤ logN

(

BHk

(

√

M/λn

)

,
Bǫ

CL

, L2(Pn)

)

≤ logN

(

BHk
,

Bǫ

CL

√

M/λn
, L2(Pn)

)

≤ logN (BHk
, 2ǫ, L2(Pn)) .

The last inequality follows because B/CL

√

M/λn ≥ 2. It is trivial to see that for the

second term on the right hand side of (5.3.8),

logN
({

λn‖f‖2k, f ∈ B
(

√

M/λn

)}

, ǫ, L2(Pn)
)

≤ log

(

M

Bǫ

)

.

Thus,

logN
(

B−1Gφ,λn
, 2ǫ, L2(Pn)

)

≤ logN (BHk
, 2ǫ, L2(Pn)) + log

(

M

Bǫ

)

.
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Using (3.3.5) and a given choice for B, we obtain for all σn > 0, 0 < ν < 2, δ > 0,

ǫ > 0,

sup
Pn

logN
(

B−1Gφ,λn
, ǫ, L2(Pn)

)

≤ c2σ
(1−ν/2)(1+δ)d
n ǫ−ν ,

where c2 depends on ν, δ and d.

Consequently, from Theorem 5.6 in Steinwart and Scovel (2007), there exists a

constant cν > 0 depending only on ν such that for all n ≥ 1 and all τ ≥ 1, we have the

bound for the first term

P ∗
(

λn‖f̂n‖2k +Rφ(f̂n) > inf
f∈Hk

(λn‖f‖2k +Rφ(f)) + cνǫ(n, c̃, B, c, τ)

)

≤ e−τ ,

where

ǫ(n, c̃, B, c, τ) =
(

B +B
2ν
2+ν c

2−ν
2+ν

)

(

c̃

n

)
2

2+ν

+ (B + c)
τ

n
.

With B and c as defined in (5.3.5) and (5.3.7), i.e., c̃ = c2σ
(1−ν/2)(1+δ)d
n and σn =

−λ1/(q+1)d
n , we obtain

ǫ(n, c̃, B, c, τ) = C1

(

1

λn

)
2

2+ν
+ (2−ν)(1+δ)

(2+ν)(1+q)
(

1

n

)
2

2+ν

+ C2

(

1

λn

)
q

q+1 τ

n
, (5.3.9)

where C1 and C2 are constants depending on ν, δ, d,M and π. We complete the proof

of Theorem 3.3.4 by plugging (5.3.4) and (5.3.9) into (5.3.3).

Proof of Theorem 3.3.5

We apply Theorem 4.3 in Blanchard et al. (2008) on the scaled loss function L̃φ(f) =

Lφ(f)/CL to obtain the rates in Theorem 3.3.5. Without loss of generality, we can

assume that the Bayes classifier f ∗ ∈ Hk, since we can always find g ∈ Hk such that

Rφ(g) = Rφ(f
∗) = R∗

φ, provided that Hk is dense in C(X ). Let S be a countable

and dense subset of R+, and let BHk
(S) denote the ball of Hk of radius S. Then
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BHk
(S), S ∈ S is a countable collection of classes of functions. We can then use

Theorem 4.3 in Blanchard et al. (2008) after we verify the following conditions (H1)–

(H4):

(H1) ∀S ∈ S, ∀f ∈ BHk
(S), ‖L̃φ(f)‖∞ ≤ bS, bS = 1 + S;

(H2) ∀f, f ′ ∈ Hk, Var(L̃φ(f)− L̃φ(f
′)) ≤ d2(f, f ′), d(f, f ′) = ‖f − f ′‖L2(P );

(H3) ∀S ∈ S, ∀f ∈ BHk
(S), d2(f, f ∗) ≤ CSE(L̃φ(f)− L̃φ(f

∗)), CS = 2(S/η0 + 1/η1);

(H4) Let

ξ(x) =

∫ x

0

√

logN(BHk
, ǫ, L2(Pn))dǫ.

We have

E
[

sup
f ∈ BH

k
(S)

d2(f, f ′) ≤ r

(P − Pn)(L̃φ(f)− L̃φ(f
′))
]

≤ inf
ϑ>0

{

4ϑ− 12√
n
ξ(ϑ) +

12√
n
ξ

( √
r√
2S

)}

= ψS(r).

ψS , S ∈ S, is a sequence of sub-root functions, that is, ψS is non-negative, non-

decreasing, and ψS(r)/
√
r is non-increasing for r > 0. Denote x∗ as the solution

of the equation ξ(x) =
√
nx2. If r∗S denotes the solution of ψS(r) = r/CS, then

r∗S ≤ inf
ϑ>0

CS{4ϑ− 12ξ(ϑ)/
√
n}+ c2C2

Sx
2
∗.

Under these conditions, we define for n ∈ N the following quantity:

γn = inf
ϑ>0

{

4ϑ− 12√
n
ξ(ϑ) + x2∗(n)

}

.

Given Hk is associated with the Gaussian kernel, we can show that ξ(x) � ǫ1−ν for

any 0 < ν < 2. Thus, γn � max(n−1/2ν , n−1/(ν+1)). By the choice of λn = O(n−1/(ν+1))
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for any ν ∈ (0, 1), this satisfies

λn ≥ c

(

γn + η−1
1

log(τ−1 logn) ∨ 1

n

)

.

Therefore, according to Theorem 4.3 in Blanchard et al. (2008), the following bound

holds with probability at least 1− τ , where τ > 0 is a fixed real number:

E(L̃φ(f̂n))−E(L̃φ(f
∗)) ≤ 2 inf

f∈Hk

[E(L̃φ(f))−E(L̃φ(f
∗)) + 2λn‖f‖2k] + 4λn(8 + cη1η

−1
0 ).

The result does not change after we scale back to the original loss Lφ(f). We have

shown that inff∈Hk
[Rφ(f)−Rφ(f

∗) + 2λn‖f‖2k] = O(λ
q/(q+1)
n ) in the proof of Theorem

3.3.4. Thus

R(f̂n)−R∗ = Op(λ
q/(q+1)
n ) = Op

(

n− 1
ν+1

q
q+1

)

.

The remainder of the proof is to verify conditions (H1)–(H4).

For condition (H1), ‖L̃φ(f)‖∞ ≤ sup{R/(Aπ + (1 − A)/2)}(1 + S)/CL ≤ 1 + S,

‖f‖k ≤ S.

For condition (H2), let d(f, f ′) = ‖f − f ′‖L2(P ). Lφ(f) is a Lipschitz function with

respect to f with Lipschitz constant CL. Then L̃φ(f)− L̃φ(f
′) ≤ |f(x)− f ′(x)|. Hence

(H2) is easily satisfied.

For condition (H3), the proof is similar to Lemma 6.4 of Blanchard et al. (2008)

with CS = 2(S/η1 + 1/η0), where η0 and η1 are as defined in Assumptions (A1) and

(A2) of Section 3.5.

For condition (H4), we introduce the notation for Rademacher averages: let ε1, . . . , εn

be n i.i.d Rademacher random variables, independent of (Xi, Ai, Ri), i = 1, . . . , n.

For any measurable real-valued function f , the Rademacher average is defined as

Lnf = n−1
∑n

i=1 εif(Xi). Also let Ln(F) be the empirical Rademacher complexity

of function class F , LnF = supf∈F Lnf .
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First we have from Lemma 6.7 of Blanchard et al. (2008) that for f ′ ∈ Hk,

E

[

sup
f∈Hk

(P − Pn)(L̃φ(f)− L̃φ(f
′))

]

≤ 4E [Ln{f − f ′, f ∈ Hk}] .

Thus for the set {f ∈ Hk : ‖f‖k ≤ S, d2(f, f ′) ≤ r} and f ′ ∈ BHk
(S),

E

[

sup
f∈Hk

(P − Pn)(L̃φ(f)− L̃φ(f
′))

]

≤ 4E
[

Ln{f − f ′, f ∈ Hk : ‖f‖k ≤ S, d2(f, f ′) ≤ r}
]

,

the right-hand-side of which is equivalent to 4E
[

Ln{f, f ∈ Hk : ‖f‖k ≤ 2S, ‖f‖2L2(Pn)
≤ 2r}

]

.

Now we proceed to show that

ELn

{

f ∈ Hk : ‖f‖k ≤ 2S, ‖f‖2L2(Pn) ≤ 2r
}

≤ inf
ϑ>0

{

4ϑ+
12√
n

∫

√
r√
2S

ϑ

√

logN(BH, ǫ, L2(Pn))dǫ

}

= ψS(r),

by slightly modifying the procedure in obtaining Dudley’s Entropy Integral for Rademacher

complexity of sets of functions. For j ≥ 0, let rj =
√
2r2−j and Tj be a rj-cover of

BHk
(2S) with respect to the L2(Pn)-norm. For each f ∈ BHk

(2S), we can find an

f̃j ∈ Tj, such that ‖f − f̃j‖L2(Pn) ≤ rj . For any N , we express f as f = f − f̃N +
∑N

j=1(f̃j − f̃j−1), where f̃0 = 0. Note f̃0 = 0 is an r0-approximation of f . Hence,

Ln(BHk
(2S)) = E

[

sup
f∈BHk

(2S)

1

n

n
∑

i=1

εi

(

f(Xi)− f̃N(Xi) +
N
∑

j=1

(f̃j(Xi)− f̃j−1(Xi))

)]

≤ E

[

sup
f∈BHk

(2S)

‖ε‖L2(Pn)

∥

∥

∥
f − f̃N

∥

∥

∥

L2(Pn)

]

+
N
∑

j=1

E

[

sup
f∈BHk

(2S)

1

n

n
∑

i=1

(

f̃j(Xi)− f̃j−1(Xi)
)

]

≤ rN +

N
∑

j=1

E

[

sup
f∈BHk

(2S)

1

n

n
∑

i=1

(

f̃j(Xi)− f̃j−1(Xi)
)

]

.
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Note that

∥

∥

∥
f̃j − f̃j−1

∥

∥

∥

2

L2(Pn)
≤
(

∥

∥

∥
f̃j − f

∥

∥

∥

L2(Pn)
+
∥

∥

∥
f − f̃j−1

∥

∥

∥

L2(Pn)

)2

≤ (rj + rj−1)
2 = 9r2j .

We therefore have

Ln(BHk
(2S)) ≤ rN +

N
∑

j=1

3rj

√

2 log(|Tj ||Tj−1|)
n

≤ rN + 12

N
∑

j=1

(rj − rj+1)

√

logN(BHk
(2S), rj, L2(Pn))

n

≤ rN + 12

∫

√
r/

√
2S

rN+1

√

logN(BHk
, ǫ, L2(Pn))

n
dǫ.

For any ϑ > 0, we can choose N = sup{j : rj > 2ϑ}. Therefore, ϑ < rN+1 < 2ϑ, and

rN < 4ϑ. We therefore conclude that

Ln(BHk
(2S)) ≤ inf

ϑ>0

{

4ϑ+ 12

∫

√
r/

√
2S

ϑ

√

logN(BHk
, ǫ, L2(Pn))

n
dǫ

}

= inf
ϑ>0

{

4ϑ− 12√
n
ξ(ϑ) +

12√
n
ξ

( √
r√
2S

)}

= ψS(r).

The function ψS is sub-root because logN(BHk
, ǫ, L2(Pn)) is a decreasing function of ǫ.

To show the upperbound of r∗, let t∗S = c2C2
Sx

2
∗. Then

√

t∗S/
√
2S = cCSx∗/

√
2S,

CS/S ≥ 1. Assuming that c ≥ 2, we have
√

t∗S/
√
2S ≥ x∗. Since x

−1ξ(x) is a decreasing

function, it follows that

ξ

(

√

t∗S√
2S

)

≤ c
CS√
2S
ξ(x∗) =

√
n

cSCS

t∗S.

Therefore, by selecting an appropriate constant c,

ψS(t
∗
S) ≤ inf

ϑ>0

{

4ϑ− 12√
n
ξ(ϑ)

}

+
12

cSCS
t∗S ≤ CS infϑ>0{4ϑ− 12/

√
nξ(ϑ)}+ t∗S

CS
.
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The desired result follows from the property of sub-root functions, which states that if

ψ : [0,∞) → [0,∞) is a sub-root function, then the unique positive solution of ψ(r) = r,

denoted by r∗, exists, and for all r > 0, r ≥ ψ(r) if and only if r∗ ≤ r (Bartlett et al.,

2005).
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Appendix 2: Chapter 4 Proofs

Proof of Theorem 4.3.2

Proof. At stage T , R̃T (hT ) = R∗
T (hT ). It is not difficult to verify V̂T,n → V ∗

T by

applying the consistency results under the single stage setup, if λT,n → 0, nTλT,n → ∞

and f ∗
T belongs to the closure of lim supnHkT , where d

∗
T = sign(f ∗

T ).

f̂T−1,n(hT−1) is obtained via minimizing

E

[

(RT−1 + V̂T,n(f̂T,n))φ(AT−1fT−1(hT−1))

AT−1πT−1 + (1−AT−1)/2

∣

∣

∣

∣

∣

HT−1 = hT−1,

AT = sign(f̂T,n(HT ))
]

+ λT−1,n‖fT−1‖2.

We have

R̂T−1,n(f̂T−1,n, f̂T,n)−R∗
T−1(ht) = R̂T−1,n(f̂T−1,n, f̂T,n)− R̃T−1(hT−1, f̂T,n)

+ R̃T−1(hT−1, f̂T,n)−R∗
T−1(hT−1),

Using the established consistency results for the single stage setup, R̂T−1,n(f̂T−1,n, f̂T,n) →

R̃T−1(hT−1, f̂T,n) if λT−1,n → 0, nT−1λT−1,n → ∞ and the minimizer of R̃T−1(hT−1, f̂T,n)

111



belongs to the closure of lim supnHkT−1
. We also have

R̃T−1(hT−1, f̂T,n)

=min
fT−1

E

[

(RT−1 + V ∗
T (HT )− V ∗

T (HT ) + V̂T,n(f̂T,n))I(AT−1 6= sign(fT−1(hT−1)))

AT−1πT−1 + (1−AT−1)/2

∣

∣

∣

∣

∣

HT−1 = hT−1, AT = sign(f̂T,n(HT ))
]

→R∗
T−1(hT−1),

since V̂T,n(f̂T,n) → V ∗
T (hT ). Therefore, V̂T−1,n(f̂T−1,n, f̂T,n) → V ∗

T−1(hT−1). Repeated

arguments lead to the consistency results, that is, V̂t,n(f̂t,n, . . . , f̂T,n) → V ∗
t (ht), in

probability, for all t = 1, . . . , T .

Proof of Theorem 4.3.3

Directly applying the results from the single-decision setup, we obtain that at stage

T, if the distribution of (HT , AT , RT ) satisfies condition (4.3.5) with noise exponent

qT > 0, there exists a constant CT , depending on ν, δ, pT and πT , such that for all τ ≥ 1

and σT,n = λ
−1/(qT+1)pT
T,n ,

Pr∗(R̂T,n(fT,n) ≤ R∗
T (hT ) + ǫT ) ≥ 1− e−τ ,

or equivalently,

Pr∗(V̂T,n(fT,n) ≥ V ∗
T (hT )− ǫT ) ≥ 1− e−τ .

Proceeding to stage T − 1, if the geometric noise exponent condition holds for the

distribution (HT−1, AT−1, RT−1), there exists a constant CT−1 (depending on ν, δ, pT−1

and πT−1) such that for all τ ≥ 1 and σT−1,n = λ
−1/(qT−1+1)pT−1

T−1,n ,

Pr∗(R̂T−1,n(f̂T−1,n, f̂T,n) ≤ R̃T−1(hT−1, f̂T,n) + ǫT−1) ≥ 1− e−τ , (5.3.10)

112



where R̂T−1,n(f̂T−1,n, f̂T,n) and R̃T−1(hT−1, f̂T,n) are defined in (4.3.1) and (4.3.2) by

letting t = T − 1. Moreover,

Pr∗(R̃T−1(hT−1, f̂T,n) ≤ R∗
T−1(hT−1) + ǫT ) ≥ 1− e−τ , (5.3.11)

Combining (5.3.10) and (5.3.11), we obtain that

Pr∗(R̂T−1,n(f̂T−1,n, f̂T,n) ≤ R∗
T−1(hT−1) + ǫT−1 + ǫT ) ≥ 1− 2e−τ .

Note that

V ∗
T−1(hT−1)− V̂T−1,n(f̂T−1,n, f̂T,n)

=E

[

(RT−1 + V ∗
T (HT ))− (RT−1 + V̂T,n(f̂T,n))

AT−1πT−1 + (1−AT−1)/2

∣

∣

∣

∣

∣

HT−1 = hT−1, AT = sign(f̂T,n(HT ))

]

+R̂T−1,n(f̂T−1,n, f̂T,n)−R∗
T−1(hT−1).

Thus

Pr∗(V̂T−1,n(f̂T−1,n, f̂T,n) ≥ V ∗
T−1(hT−1)− ǫT−1 − 2ǫT ) ≥ 1− 3e−τ .

Repeating the arguments, we obtain that at stage t, if for stages l, l = t, . . . , T , σl,n =

λ
−1/(ql+1)pl
l,n ,

Pr∗

(

V̂t,n(f̂t,n, . . . , f̂T,n) ≥ V ∗
t (ht)−

T
∑

l=t

2l−tǫl

)

≥ 1−
T
∑

l=t

2l−te−τ .

Proof of Theorem 4.3.4
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We can apply the conclusion from the single stage decision problem to stage T . For

any ν ∈ (0, 1) and qT ∈ (0,∞), let λT,n = O(n
−1/(ν+1)
T ) and σT,n = λ

−1/(qT+1)pT
T,n . Then

R̂T,n(f̂T,n)−R∗
T (hT ) = Op

(

n
− 1

ν

qT
qT +1

T

)

,

indicating

V ∗
T (hT )− V̂T,n(f̂T,n) = Op

(

n
− 1

ν

qT
qT +1

T

)

.

For stage T − 1, the analysis is restricted to the subset of patients whose assigned

treatments are the same as their estimates in stage T . With the available sample size

denoted as nT−1, for any ν ∈ (0, 1) and qT−1 ∈ (0,∞), if (A1) and (A2) are satisfied

and λT−1,n and σT−1,n are appropriately selected, we have

R̂T−1,n(f̂T−1,n, f̂T,n)− R̃T−1(hT−1, f̂T,n) = Op

(

n
− 1

ν

qT−1
qT−1+1

T−1

)

.

In addition,

R̃T−1(hT−1, f̂T,n)−R∗(hT−1) = Op

(

n
− 1

ν

qT
qT +1

T

)

.

Thus,

V ∗
T−1(hT−1)− V̂T−1,n(f̂T−1,n, f̂T,n) = Op

(

n
− 1

ν

qT−1
qT−1+1

T−1

)

+Op

(

n
− 1

ν

qT
qT +1

T

)

.

Recycling arguments, we have

V ∗
t (ht)− V̂t,n(f̂t,n, . . . , f̂T,n) =

T
∑

l=t

Op

(

n
− 1

ν

ql
ql+1

l

)

,

and the desired result follows.
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