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ABSTRACT 

 

Nikolas M. Stasulli: Identification of Host and Bacterial Factors that Contribute to 
Lung Lesion Structure During Pneumonic Plague  

(Under the direction of William E. Goldman) 
 

Yersinia pestis, the causative agent of plague, is a high-priority pathogen that 

continues to cause outbreaks worldwide. The ability of Y. pestis to be transmitted via 

respiratory droplets and its history of weaponization has led to its classification as a 

Tier 1 Select Agent most likely to be used as a biological weapon. The most deadly 

form of disease caused by Y. pestis, pneumonic plague, results from the deposition 

of bacteria into the lungs and has mortality rates approaching 100% in the absence 

of treatment within 24 hours of the onset of symptoms. The Goldman lab has 

previously characterized pneumonic plague progression as biphasic, presenting with 

two distinct disease phases. Rapid bacterial growth during an initial pre-inflammatory 

phase transitions into the second pro-inflammatory phase where disease symptoms 

present and lead to death of the host. Using in vivo analyses and focusing on 

relevant cell types during pneumonic plague infection host pathways can be 

identified that may be manipulated to extend the 24 hour window for treatment of 

pneumonic plague. 

 During pneumonic plague, the bacterium Yersinia pestis elicits the 

development of neutrophil-rich inflammatory lung lesions that continue to expand, 
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eventually consolidating entire lobes of the lung during infection. This lesion 

development and persistence is poorly understood. In this dissertation I examine 

spatially distinct regions of lung lesions using laser capture microdissection and 

RNAseq to identify transcriptional differences between lesion microenvironments. I 

provide evidence that cellular pathways involved in leukocyte migration and 

apoptosis are down-regulated in the center of lung lesions compared to the 

periphery. Probing for the bacterial factor(s) important for the alteration in neutrophil 

survival, I provide evidence that Y. pestis increases neutrophil survival through a 

mechanism that is dependent on the type III secretion system effector YopM. 

Additionally, I investigate the roles of reactive oxygen and nitrogen species that are 

typically used as neutrophil defense mechanisms, and provide evidence that these 

molecules are important for controlling early establishment of Y. pestis in the lungs. 

This research explores the complexity of spatially distinct host-microbe interactions 

in vivo and emphasizes the importance of cell-relevant assays in understanding Y. 

pestis virulence.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview 

The causative agent of the disease known as “plague” was identified 

independently in August of 1894 by both Alexandre Yersin and Shibasaburo 

Kitasato. Yersin, however, is primarily credited with the official identification because 

of his more accurate and descriptive paper describing the gram-negative 

coccobacillus, which he named Bacterium pestis. He continued his research and by 

1900 had used antiserum to cure a plague patient, and ultimately made the link 

between rats and plague outbreaks (Hirst, 1953; Zietz and Dunkelberg, 2004). The 

name of the bacterium identified by Yersin has changed several times since its 

discovery: first in 1900 to Bacillus pestis, then in 1923 to Pasteurella pestis (after 

Louis Pasteur, Yersin’s mentor), then finally in 1970 to Yersinia pestis (after its 

identifier) (Zietz and Dunkelberg, 2004).  

Y. pestis is a high-priority pathogen that poses a severe threat to both human 

and animal health, and continues to cause modern day plague outbreaks worldwide 

(Inglesby et al., 2000; Stenseth et al., 2008). The ability of Y. pestis to be transmitted 

via respiratory droplets and its past weaponization has led to its classification as a 

Tier-1 select agent that must be handled under strict biosafety level 3 (BSL3) 

conditions. The natural re-emergence of plague as a global public health threat is 
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also of concern since the identification of the first antibiotic resistant strains of Y. 

pestis in 1995 (Galimand et al., 2006). 

The most deadly form of plague disease known as primary pneumonic plague 

results from the inhalation of Y. pestis. The Goldman lab has previously 

characterized pneumonic plague in a murine model as a biphasic disease with an 

initial anti-inflammatory phase followed by rapid activation of the innate immune 

system (Lathem et al., 2005). If antibiotic treatment is not administered within 24 

hours after the onset of symptoms, the disease approaches 100% mortality 

(Inglesby et al., 2000). While not the most common form of plague disease, 

pneumonic plague is of the highest concern when considering transmission and 

disease treatment. The rapid bacterial growth in the lung during the initial anti-

inflammatory phase primes the patient to be infectious to others once disease 

symptoms emerge. Additionally, the rapid disease progression can lead to death 

before Y. pestis infection can be diagnosed and confirmed. 

 

1.2 Manifestations of plague 

 The identification of small mammals as the reservoir of endemic plague 

infections was established in 1927. The natural transmission cycle of Y. pestis 

between small mammals and fleas was termed sylvatic plague (Zietz and 

Dunkelberg, 2004). As humans unintentionally enter this sylvatic cycle (or as Y. 

pestis is intentionally dispersed through nefarious means) there are three 

manifestations of disease that can result: bubonic, pneumonic, and septicemic 

plague. 
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1.2.1 Bubonic plague 

Bubonic plague is the most common disease caused by Y. pestis. Bubonic 

plague can be caused by contamination of open wounds or direct inoculation 

through the bite of an infected flea (Riedel, 2005). After establishing in the dermis, Y. 

pestis infiltrates the cutaneous lymphatics and migrates to the nearest draining 

lymph node (Gonzalez et al., 2015; Riedel, 2005). After an incubation period of 2-6 

days after inoculation, there is a sudden onset of flu-like symptoms followed by a 

swelling of the draining lymph nodes that forms the namesake “buboes” (Riedel, 

2005). In the pre-antibiotic era the mortality rate of bubonic plague could reach as 

high as 70% during epidemics (Stenseth et al., 2008). Today, with early detection 

and treatment, mortality has dropped to as low as 5% (Inglesby et al., 2000). Even if 

a patient recovers form bubonic plague, buboes may remain for several weeks after 

symptoms have dissipated (Riedel, 2005).  

 

1.2.2 Pneumonic plague 

When Y. pestis colonizes the lower respiratory system either secondary or 

primary pneumonic plague will result. Secondary pneumonic plague occurs after 

bubonic or septicemic plague disseminates into the lung compartment, allowing it to 

be spread by aerosol from person-to-person. Primary pneumonic plague occurs after 

inhalation of Y. pestis directly into the lungs. This can occur by person-to-person 

transmission, through aerosolizing bacteria (i.e. butchering an infected animal), or 
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during the intentional release of an aerosol as a biological weapon (Inglesby et al., 

2000). It is believed that person-to-person transmission via respiratory droplets 

occurs within approximately one meter of an infected individual (Kool, 2005). Further 

discussion of pneumonic plague epidemiology throughout modern times can be 

found in Section 1.3.3 of Chapter 1. 

There is a short quiescent time of 1-3 days after inhalation of bacteria before 

flu-like symptoms emerge. Unfortunately, pneumonic plague must be treated within 

24 hours after symptoms begin or mortality approaches 100% only three to four days 

after inhalation (Inglesby et al., 2000). Disease progression and symptoms are 

similar in the murine model of infection. Based on our animal model, the progression 

of pneumonic plague is biphasic: an initial anti-inflammatory phase precedes a pro-

inflammatory phase of disease. In the first phase, bacteria are present in the lungs 

and freely replicate with little to no detectable immune responses. Disease 

symptoms, increased cytokine levels, and the infiltration of neutrophils into the 

airways signal entry into the pro-inflammatory phase of infection. Pneumonic plague 

can be characterized by the formation of lung lesions followed by destruction of 

surrounding alveolar architecture. Condensed pockets of Y. pestis surrounded by 

innate immune cells, primarily neutrophils, form these pulmonary lesions (Lathem et 

al., 2005). Death from pneumonic plague can be attributed to pneumonia due to 

alveolar destruction and the subsequent septicemia late in disease resulting from 

dissemination of bacteria from the lungs (Finegold et al., 1968).  
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1.2.3 Septicemic plague 

If Y. pestis manages to infiltrate the bloodstream of the host the disease will 

manifest as septicemic plague. Primary septicemic plague from direct inoculation of 

Y. pestis into the blood stream is fairly rare. However, secondary septicemic plague 

often results during the late stages of bubonic and pneumonic plague. Once bacteria 

have disseminated from initially localized sites, septicemia can induce shock, blood 

clots leading to gangrenous extremities, multiple organ failure, and respiratory 

distress (Riedel, 2005).  

 

1.3 History and epidemiology of plague 

The disease caused by Yersinia pestis known as “plague” has been 

described for thousands of years. It is generally agreed upon by scholars that the 

oldest written mention of plague is recounted in the Bible (1 Samuel 5&6) referring to 

a time between 1320 – 1000 BC (Griffin, 2000; Ligon, 2006). This bacterium has 

also been responsible for 3 major pandemics throughout recorded history that were 

so devastating to the population that it completely altered the makeup of society. 

 

1.3.1 The Justinian pandemic 

The first major plague pandemic is now referred to as the “plague of 

Justinian”, after the presiding emperor of Rome. The pandemic may have started as 

early as 532 BC, but definitively took hold in 541/42 BC with outbreaks in 

Constantinople and Greece (Ligon, 2006; Zietz and Dunkelberg, 2004). It is believed 
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that ~40% of Constantinople’s population died during this outbreak. After disease 

spread through trade routes, up to 100 million Europeans are believed to have 

succumbed to plague over the next 250 – 300 years as pockets of disease 

continually reemerged. This devastating death toll depleted trade occupations, the 

ability to form armies, and the ability to staff many of the religious monasteries 

throughout Europe and Western Asia (Ligon, 2006). 

 

1.3.2 The Black Death   

The second and most well known plague pandemic is commonly referred to as “The 

Black Death”. The initial outbreak is thought to have started in China in the 1330’s. 

The disease then spread west through trade routes and began establishing itself in 

Europe. From 1346 – 1352 the spread of Y. pestis resulted in the death of over 25 

million people, over one-third of the world’s population at the time. Another 20 million 

were believed to have died by the end of the century. This pandemic lasted through 

the 1720’s, decimating large cities with resurgences throughout Europe (Ligon, 

2006; Zietz and Dunkelberg, 2004).  

 With over one-third of the world’s population deceased within 6 years, this 

pandemic had wide rippling effects throughout society. Commerce, trade, and 

government came to a near standstill, and the economy of Europe collapsed from 

the large and sudden loss of life. The population and economy only began to 

rebound in the late 1600’s. Interestingly, in Western Europe, the sudden decrease in 

the peasant population caused increased competition for the remaining, now 
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valuable, laborers. This competition is believed to have started an early form of 

capitalism and led to the rise of a “middle class” that was not present prior to the 

pandemic. Culture throughout Europe also began to morph and took on a macabre 

tone, with the influence of death permeating artwork, literature, and music. Many 

people at the time became more religious, as evidenced by the canonization of new 

“plague saints” by the Catholic Church. Unfortunately, this new-found focus on 

religion also caused societal rifts as Christians, Muslims, and Jews all blamed each 

other for incurring “God’s wrath” and causing the horrible disease (Ligon, 2006; Zietz 

and Dunkelberg, 2004). 

 

1.3.3 The Modern pandemic: global spread, and tracking of pneumonic plague 

The “modern pandemic” of plague is believe to have started in China around 

1855 in the Yunnan province, and marked a critical point in the dissemination of 

plague into a global issue. By 1894 plague had reached Hong Kong and, with the 

growth of the trans-oceanic shipping industry, lead to global spread of Y. pestis 

(Caten and Kartman, 1968; Ligon, 2006; Zietz and Dunkelberg, 2004). Stowaway 

rats on shipping vessels would transport Y. pestis, and the flea vectors that transmit 

it, across oceans. The first reported incidence of plague in the Western Hemisphere 

came in Santos, Brazil in October of 1899 (Furman and Williams, 1973), and marked 

the beginning of three decades of large epidemics throughout the world. Between 

1900-1930 every continent except Antarctica experienced outbreaks of plague 
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(Ligon, 2006). Even Australia, which has not had a case of plague since 1925, was 

struck with over 1,300 cases of plague in the first part of the 1900’s (Garrett, 1991).  

In the United States, this first quarter of the 20th century also saw several 

epidemics of plague in California. The first epidemic occurred from 1900-1904 in a 

Chinese immigrant-populated district of San Francisco. This was followed by a 

second outbreak in San Francisco in 1907. These two outbreaks included both 

bubonic and pneumonic plague cases, infecting over 280 people. A smaller epidemic 

occurred in 1919 in Oakland, CA, where a man developed secondary pneumonic 

plague and became the source of 13 primary pneumonic plague cases, 12 of whom 

died (Anderson, 1978; Caten and Kartman, 1968; Kool, 2005). This was also 

documented as the first instance of a primary pneumonic plague epidemic in the 

Western Hemisphere (Kellogg, 1920). The fourth US outbreak occurred in Los 

Angeles in late 1924, and was also caused by pneumonic plague, resulting in 39 

documented cases with 33 deaths (Anderson, 1978; Kool, 2005). A fifth outbreak 

occurred around the Gulf Coast of the United States in 1924, causing over 70 cases 

of plague (Anderson, 1978).  

 While there was a spike of plague cases in the United States between 1900-

1908 and again between 1918-1926, after the mid-1920’s there were relatively few 

yearly cases of plague. However, unlike Australia that was seemingly able to 

eradicate plague disease after 1925 (Garrett, 1991), endemic sylvatic plague 

established itself in small-mammal populations in the U.S. west of the Mississippi 

River (Anderson, 1978; Caten and Kartman, 1968). According to compiled 
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information from the Centers for Disease Control and Prevention and other 

published sources, beginning in the mid-1960’s through the 1970’s and into the early 

1980’s, there was a resurgence of plague cases in the U.S. (Anderson, 1978). These 

cases were located throughout the Southwestern U.S., mainly New Mexico, Arizona, 

and California (Anderson, 1978; Kaufmann et al., 1980). Between 1900 and 2010, 

there were over 1,400 reported cases of plague in the contiguous U.S. and Hawaii 

(Kaufmann et al., 1980). Of these U.S. cases, as many as 20% have been due to 

pneumonic plague.  

 In addition to the two pneumonic plague outbreaks in California in the early 

1900’s, there have been several global instances of pneumonic plague outbreaks 

during the “modern plague” era. The largest of these epidemics took place in the 

Manchuria region in China. This region had large pneumonic plague epidemics in 

1910-1911 and again in 1920-1921 that left ~60,000 and ~9,300 people dead, 

respectively (Wu et al., 1936). Interestingly, the larger of the two epidemics in 1910-

1911 was caused by a dramatic increase in the price of marmot fur. Thousands of 

poor laborers flocked to this region of China to hunt marmots, whose population was 

unknowingly endemically infected with Y. pestis. The butchering and eating of these 

animals by hunters unwittingly aerosolized the bacteria and caused a major 

epidemic (Summers, 2012). China continues to have relatively large numbers of 

plague cases yearly. Between 1994-2003 there were 11 countries that reported 

more than 100 confirmed cases of plague (China being number 11). The country 

with the highest rate of plague during this time was Madagascar, with approximately 
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3% of cases being pneumonic plague. For this 10 year time period, that equates to 

over 350 cases of pneumonic plague (Butler, 2009). In the first full decade of the 21st 

century, however, the WHO reported that the Congo became the number one 

reporting country with over 10,500 cases of plague. This increase in cases also 

coincided with a large pneumonic plague outbreak in 2005-2006 in the Oriental 

Province that left over 130 people dead from pneumonic plague alone (Butler, 2013). 

There should continue to be a heightened awareness of outbreaks of pneumonic 

plague to ensure that larger epidemics do not continue to occur, especially with the 

identification of naturally antibiotic-resistant Y. pestis strains (Galimand et al., 2006).  

 

1.4 Yersinia pestis as a biological weapon 

The first known use of Y. pestis as a biological weapon dates back to 1346 

during the war between the Tartar army and Genoese sailors at the port city of 

Caffa. The Tartars were losing many of their soldiers to plague, and out of 

desperation placed the corpses of people who had died of plague onto catapults and 

flung them over the city walls to infect enemy troops. Similar corpse-catapulting 

strategies were documented in 1422 by the Lithuanians and in 1710 by the Russians 

(Ligon, 2006; Riedel, 2004).  

During World War II, the Japanese army established a research program 

(Unit 731) that secretly studied biological-warfare agents. This unit extensively 

studied Yersinia pestis, and infected fleas were released over the Chinese 

population several times in the early 1940’s. “Bombs” were built and tested that were 

constructed of clay pots filled with Y. pestis carrying fleas encased in rice and paper. 
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It is believed that tens-of-thousands of people died from plague epidemics 

throughout China during the 1940’s due to Unit 731’s biological-weapon 

experiments. Unit 731’s field tests of Y. pestis on the Chinese people were ceased 

after Japanese troops died of plague due to the unpredictability of the fleas and 

spread of disease (Ligon, 2006; Riedel, 2004; Williams and Wallace, 1989). 

After WWII, biological weapons programs were slowly dismantled, starting 

with the United Kingdom shutting down its program in 1950. The United States 

followed suit in 1969, but only after developing at least seven type-classified 

microorganisms into biological weapons. The shut down of the US biological 

weapons program preceded the drafting of the Biological and Toxin Weapons 

Convention (BWC) in 1972. The BWC called for multilateral disarmament of all 

biological weapons. The Soviet Union, however, continued with their biological 

weapons program until 1992 despite signing the BWC (Ligon, 2006; Riedel, 2004).  

In 1970 just prior to the drafting of the BWC, the WHO convened a group of 

experts to determine the casualties that would be expected from an aerosolized 

biological attack from several select agents. The WHO committee determined that, 

under their defined parameters, the release of 50 kg of aerosolized Y. pestis over an 

economically developed city of 5,000,000 people would result in the incapacitation of 

150,000 and death of 36,000 people, assuming prompt action is taken following the 

attack. Out of all biological weapon agents surveyed by this committee, only B. 

anthracis would cause more casualties, most likely due to its ability to travel farther 

and stay viable for much longer than Y. pestis. Unlike Anthrax, however, Y. pestis 
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can be spread from person to person, and any extended delay in initiating treatment 

could cause casualty numbers to rise. A sylvatic reservoir of Y. pestis could also be 

established if small mammals become infected during an attack. Along with the 

presence of susceptible flea populations, this new rodent reservoir could lead to 

more long-term effects of recurring bubonic plague due to the establishment of a 

sylvatic cycle. This assessment of biological and chemical weapons has been 

updated as recently as 2004 (World Health Organization, 2004). Despite the unlikely 

use of Y. pestis as a biological weapon there has also been an assessment of 

antibiotic treatment courses recommended in the case of both contained or mass 

casualty outbreaks (Inglesby et al., 2000). 

Modeling of well-documented pneumonic plague outbreaks in the 20th century 

has found that R0=~1.3 (the ability of an infection to sustain itself in a population). An 

R0<1 indicates that an infection cannot sustain it self in a population. An R0>1 

indicates that pneumonic plague has the potential to sustain itself and spread in a 

population if action is not taken to control the infection. However, an R0 value so 

close to 1 signifies the need for close proximity to infect and a small window of 

transmission before symptoms begin. The disease could be stopped through 

isolation of infected individuals and antibiotic treatment for those who have come into 

contact with the infected (Gani and Leach, 2004). 

 
1.5 Pulmonary immune defense and neutrophils  

The respiratory tract is continuously in contact with a diverse repertoire of 

constantly changing environmental antigens. To continue functioning efficiently, the 
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lungs must maintain an immunological homeostasis, balancing between potentially 

harmful and non-harmful antigens. Recognition of antigens begins in the mucosal 

tissue of the conducting airways. The airway epithelial cells (AECs) are the first line 

of defense. The AECs act as a physical barrier, but also secret proteins and 

peptides into the lung mucosa to defend against invading pathogens (Holt et al., 

2008). Secreted proteins and molecules such as lysozyme, peroxidase, lactoferrin, 

defensins, collections, ficolins, and complement factors can all directly act on 

invading microbes to promote killing and help ensure lung homeostasis (Tsai and 

Grayson, 2008). From the conducting airways, the bronchi of the lungs continue to 

branch and form the parenchymal lung, consisting of bronchioles and alveolar ducts, 

and terminates in alveolar sacs that are necessary for oxygen exchange (Holt et al., 

2008). Besides the AECs there are various resident dendritic cells and macrophages 

that patrol and sample the mucosa and alveolar spaces to ensure proper 

homeostasis and recruit additional immune cells if necessary (Guilliams et al., 2013; 

Holt et al., 2008).  

In addition to the resident immune cells, neutrophils are an important and 

necessary component of the innate immune system. Neutrophils are short-lived cells 

that are constantly being generated in the bone marrow, circulating in the blood 

stream, and then returning to the bone marrow for cellular turnover. During their 

circulation, neutrophils also monitor the lung environment for invading pathogens. 

During a bacterial infection neutrophils are rapidly called to the site of insult and can 

quickly activate a myriad of antimicrobial functions in an attempt to control invading 
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pathogens (Craig et al., 2009; Segal, 2005). This rapid antimicrobial response is 

facilitated by neutrophil priming that results from signals initiated by the innate 

immune system upon detection of a pathogen. This priming retains neutrophils in the 

lungs as they “survey” during normal circulation (Singh et al., 2012; Summers et al., 

2010). Upon direct interaction with a secondary stimulus, such as invading microbes, 

there is enhancement of the respiratory burst, cytoskeletal rearrangements that 

retain neutrophils in the lung and facilitate phagocytosis, regulation of neutrophil 

surface antigens (Singh et al., 2012), and release of antimicrobial peptides/proteins 

from granules (Kobayashi et al., 2003). After mounting an antimicrobial response, 

neutrophils ordinarily undergo necrosis, apoptosis, or NETosis, all of which ultimately 

lead to macrophage infiltration. The newly infiltrated macrophages facilitate the 

clearance of dead or dying neutrophils as well as any remaining bacteria (Brinkmann 

et al., 2004; Kebir and Filep, 2013; Luo and Loison, 2008; Silva, 2011). This double 

priming, however, can lead to acute lung injury if the neutrophils are not efficiently 

released from the pulmonary compartment back into circulation, or appropriate 

neutrophil turnover and removal does not occur (Singh et al., 2012; Summers et al., 

2010). There is also data to suggest that there is cross talk between neutrophils and 

various other cell types at sites of inflammation that can promote a continued innate 

immune response and even bridge the gap between innate and adaptive immunity 

(Mantovani et al., 2011). 
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1.6 Pathogenesis and innate immune response during pneumonic plague 

Pathogenic microbes have evolved ways to evade the immune system of the 

hosts that they infect. The work presented in this dissertation is focused on the 

ability of bacteria to manipulate activated neutrophils (Urban et al., 2006), resulting in 

increased disease severity and mortality (Balamayooran et al., 2010). Pathogens 

have been shown to utilize various mechanisms to alter neutrophil function including 

inhibiting neutrophil chemotaxis (Bignold et al., 1991; de Haas et al., 2004; Van Dyke 

et al., 1982), preventing phagocytosis (Grosdent et al., 2002; Spinner et al., 2013; 

2008; Visser et al., 1995), altering degranulation (Arnett et al., 2014; Bertram et al., 

1986), and, importantly for this work, inhibiting neutrophil apoptosis (Choi et al., 

2005; Erttmann et al., 2014; Ge and Rikihisa, 2006; Schwartz et al., 2013; 2012). 

Despite the recruitment of neutrophils to control Y. pestis in the lungs, 

bacterial numbers continue to increase throughout the duration of infection (Lathem 

et al., 2005). The increase in bacterial burden coincides with continued neutrophil 

recruitment, accumulation in the lungs, and subsequent targeting of neutrophils by 

the Y. pestis type III secretion system (T3SS) (Marketon et al., 2005; Pechous et al., 

2013). The massive neutrophilic infiltration during pneumonic plague results in the 

formation of histopathologically distinct lung lesions that arise during the later (pro-

inflammatory) phase of disease. These lesions expand in the lungs as neutrophils 

continue to accumulate until death of the host, with no evidence of bacterial or 

neutrophil clearance (Lathem et al., 2005). The continued influx of neutrophils and 

their apparent prolonged survival is contrary to typical neutrophil function but has 
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also been observed in neutrophils of cystic fibrosis patients (Tirouvanziam et al., 

2008). The continuous neutrophil influx during pneumonic plague results in alveolar 

destruction within lung lesions and culminates in a severe and deadly necrotizing 

pneumonia (Finegold et al., 1968).  

Yersinia pestis is known to inhibit the host immune response via various 

virulence mechanisms (Ben-Gurion and Shafferman, 1981; Du et al., 2002; Jackson 

and Burrows, 1956; Lathem et al., 2007; Trosky et al., 2008). However, It has just 

recently been appreciated that the functions of specific T3SS effectors may vary 

depending on the cell type being targeted (Spinner et al., 2010). Neutrophils are the 

most prominent immune infiltrate during pneumonic plague, are selectively targeted 

by Y. pestis, and are necessary for development of lung lesions (Pechous et al., 

2013). Early recruitment of neutrophils is also linked to decreased bacterial burden 

and increased survival of Y. pestis infected mice (Vagima et al., 2015).  

In the Yersinia pestis field, pneumonic plague is fairly understudied as a 

separate disease from bubonic plague despite the dissimilar disease progression. 

Most research is done using bubonic plague models or in in vitro assays. These 

results are usually inferred, but not directly tested, to be relevant during pneumonic 

plague. Relatively few laboratories use fully virulent Y. pestis to specifically study the 

effects of virulence factors on pneumonic plague (Cantwell et al., 2010; Lathem et 

al., 2007; van Lier et al., 2014). Most other groups working on pneumonic plague 

use attenuated strains missing either the pigmentation locus or the pCD1 plasmid 

(Fetherston et al., 2010; Galvan et al., 2010; Lee-Lewis and Anderson, 2009). This 
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dissertation and other studies from the Goldman lab continue to show the necessity 

of using fully virulent Y. pestis and in vivo infections by presenting data that could not 

be elucidated in less pathogenic models (Lathem et al., 2005; Pechous et al., 2013; 

2015; Price, 2011). 

 

1.7 Significance 

Endemic maintenance of Yersinia pestis in sylvatic cycles continues to cause 

spikes of plague disease around the world. Despite the signing of the BWC there is 

still fear of Y. pestis being used as a biological weapon during acts of terrorism. With 

the vague symptoms and rapid progression of pneumonic plague, it remains 

important to be vigilant and continue to characterize this disease, particularly 

focusing on more effective late-stage treatments. With the development of 

pneumonia being caused by the continued replication of Y. pestis and infiltration of 

neutrophils into the pleural cavity, it is important to move away from in vitro studies 

and to study the disease in a more relevant in vivo setting. 

I hypothesized that spatially distinct transcriptional modulation of the 

important neutrophil population would be observable in Y. pestis lung lesions. This 

line of in vivo questioning, which could not be undertaken in vitro, specifically looked 

at the most relevant cell type important during pneumonic plague disease. In this 

body of work, fully virulent Y. pestis is employed along with the novel use of laser 

capture microdissection (LCM) and RNAseq technology to evaluate host 

transcription within the expanding neutrophil-rich lung lesions that arise during 

pneumonic plague. I hoped to identify novel cellular responses that are necessary in 
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vivo for disease progression, and to characterize both bacterial and host factors 

responsible for the distinctive pneumonic plague lung lesions that form late during 

infection. It is necessary to interrogate this inflammatory environment in the context 

of neutrophils to understand how interactions with Y. pestis determine pneumonic 

plague presentation and progression. By determining how interaction of Y. pestis 

and neutrophils induce responses uniquely within sites of infection, the scientific 

community will better understand the mechanisms by which neutrophils typically 

work in a broad range of diseases in which neutrophil infiltration becomes harmful to 

the host. 
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CHAPTER 2: CHARACTERIZATION OF THE LUNG LESION 

MICROENVIRONTMENT BY LASER CAPTURE MICRODISSECTION AND 
RNAseq ANALYSIS*  

 

2.1 Overview 

This chapter describes the use of fully virulent Y. pestis, laser capture 

microdissection (LCM), and RNAseq technology to evaluate host transcription within 

the expanding neutrophil-rich lung lesions that arise during the pro-inflammatory 

disease phase of pneumonic plague. This work provides evidence that lung lesions 

begin as small foci that expand outward throughout infection, and that Y. pestis 

inhibits apoptosis of neutrophils in the center of lung lesions compared with those 

found around the lesion periphery. This work is the first application of LCM to 

evaluate the effects of a bacterial pathogen on a microenvironment within its host 

during infection. This novel use of LCM allowed us to identify spatially distinct 

transcriptional changes in vivo within sites of tissue injury that cannot be 

characterized in vitro. This work evaluates how interactions with Y. pestis induce 

unique transcriptional responses in neutrophils within spatially distinct sites of  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
* This data has been published in: Stasulli NM, Eichelberger KR, Price PA, Pechous 
RD, Montgomery SA, Parker JS, Goldman WE. 2015. Spatially distinct neutrophil 
responses within the inflammatory lesions of pneumonic plague. mBio 6(5):e01530-
15. doi:10.1128/mBio.01530-15. 
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infection. Research of this nature will better help expound on mechanisms by which 

neutrophils typically work in a broad range of diseases where neutrophil infiltration 

becomes harmful to the host.  
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2.2 Introduction 

Large dataset analyses have become invaluable for new and innovative 

research in the bacterial pathogenesis field. Several studies have investigated the 

regulation of the Yersinia transcriptome by both microarrays (Du et al., 2009; Han et 

al., 2007; Liu et al., 2009; Pechous et al., 2015; Sebbane et al., 2006; Zhou et al., 

2006) and deep sequencing (Koo et al., 2011; Schiano et al., 2014; Yan et al., 2013) 

under varying environmental conditions in vitro and during disease in vivo. Very few 

studies, on the other hand, have focused on the transcriptional changes of the host 

during Y. pestis infection. One microarray study by Liu et al. evaluated both bacterial 

and host transcription in multiple organs by qRT-PCR and microarray analysis after 

pulmonary challenge with Y. pestis. This host analysis focused on transcriptional 

changes in cytokines (Liu et al., 2009). A less high-throughput study using Northern 

blot analysis also observed transcriptional changes in human neutrophils after 

interaction with Y. pestis (Subrahmanyam et al.).         

Despite previous research on interactions between neutrophils and Y. pestis 

in vivo (Laws et al., 2010; Lukaszewski et al., 2005; Marketon et al., 2005; Pechous 

et al., 2013; Shannon et al., 2013), there is little information to explain the 

architecture and rapid expansion of neutrophil-rich lesions that are the pathological 

hallmark of pneumonic plague. Previous research has indicated that Y. 

pseudotuberculosis regulates its genes spatially within infected tissue (Davis et al., 

2015). Combined with the information that bacterial pathogens can alter neutrophil 

gene expression (Schwartz et al., 2013; Subrahmanyam et al.), the research in this 

chapter investigates the possibility that spatially distinct transcriptional modulation of 
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neutrophils is observable in lung lesions that develop during pneumonic plague.  

Laser capture microdissection (LCM) was first described in 1996 (Emmert-

Buck et al., 1996), and is a technique that can be used to investigate spatial gene 

regulation in tissue samples. The work in this dissertation was performed using a UV 

laser Zeiss P.A.L.M. microscope. With this system, lung tissue slices are adhered 

onto a slide containing a polyethylene napthalate membrane for use with the UV 

laser. The laser is focused and cuts around the desired section of tissue. The 

defocused laser is then pulsed in the center of the cut membrane where it is 

catapulted off of the slide and into an RNA preserving resin in the top of an 

Eppendorf tube, where the RNA can be isolated for downstream applications 

(Espina et al., 2007; Schütze et al., 2007). This technique is sophisticated enough to 

allow for DNA, RNA, and protein extraction at the single-cell level (Suarez-Quian et 

al., 1999). Its use in the field of microbial pathogenesis, however, has rarely been 

exploited and has mainly been limited to plant pathogens (Balestrini et al., 2007; 

Berruti et al., 2013; Klink et al., 2005; Klink and Matthews, 2008; Klink et al., 2007) 

or in vitro studies (Schulte et al., 2011). 

 

2.3 Methods 

All reagents were obtained form Sigma-Aldrich™ unless otherwise noted. 

 

2.3.1 Ethics statement 

The use of live vertebrate animals was performed in accordance with the 

Public Health Service (PHS) policy on Humane Care and Use of Laboratory Animals, 
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the Amended Animal Welfare Act of 1985, and the regulations of the United States 

Department of Agriculture (USDA). All animal studies were approved by the 

University of North Carolina at Chapel Hill Office of Animal Care and Use, protocols 

#12-028.0 and #15-022.0. 

 

2.3.2 Bacterial strains and culture conditions 

The fully virulent Yersinia pestis strain CO92 was obtained from the U.S. 

Army, Ft. Detrick, MD. Y. pestis was grown on brain-heart infusion (BHI) agar (Difco 

Laboratories) at 26°C for two days. For infections, liquid cultures of Y. pestis CO92 

were grown in BHI broth for 6–12 h at 26°C. The cultures were then diluted to an 

OD620 of 0.05–0.1 in BHI supplemented with 2.5 mM CaCl2 and grown 12–16h at 

37°C with constant shaking.  

 

2.3.3 Animals and infections 

Six- to eight-week old female C57BL/6J mice were obtained from Jackson 

Laboratories. Mice were provided with food and water ad libitum and maintained at 

25°C and 15% humidity with alternating 12 h periods of light and dark. For animal 

infections, groups of three to ten mice were lightly anesthetized with 

ketamine/xylazine and inoculated intranasally with a lethal dose of 104 
colony-

forming units (CFUs) suspended in 20μL PBS. Actual CFUs inoculated was 

determined by plating serial dilutions of the inoculum on BHI.  
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2.3.4 Tissue preparation, Laser Capture Microdissection, and RNA isolation 

 All solutions are either RNase free or have been treated with 

diethylpyrocarbonate (DEPC). Lungs were inflated via tracheal cannulation with 

RNAlater® (Ambion®) and incubated for 30 min. Lungs were then fully inflated with 

4% fresh paraformaldehyde and incubated for 2 h for fixation and removal from the 

BSL 3 laboratory. Lungs were placed in phosphate buffer (pH 7.4) with 30% Sucrose 

and 20% O.C.T. compound (Tissue-Tek®) for 3 h with intermittent inverting. Lungs 

were removed, covered in O.C.T. for 10 min, frozen on dry ice, and stored at -80°C. 

 Lungs were sectioned into 20-μm slices using a Leica®-1850 cryostat and 

adhered to 1.0 mm PEN-MembraneSlides (Zeiss™). To remove O.C.T. media from 

sections, slides were dipped in 100% ethanol and allowed to dry, incubated in 

DEPC-treated water for 3-5 min, then dipped into increasing concentrations of 

ethanol (70%, 95%, 100%) and allowed to fully dry. 

 For LCM, slides were then loaded onto a Zeiss PALM LCM microscope and a 

4X objective was used to observe lung lesions. Opaque AdhesiveCap Eppendorf 

tubes were loaded and positioned directly over the slides. The desired sections of 

each lung lesion were traced, cut by a laser, and laser pulse-catapulted into the resin 

preservative in the top of the AdhesiveCap tubes. The tubes containing isolated 

lesion pieces were stored at -80°C prior to RNA isolation. Total RNA was isolated 

from the LCM-extracted lesion pieces using an RNeasy FFPE kit (Qiagen™) as per 

the manufacturers instructions with the exception of a 3 h incubation at 56°C after 

the addition of proteinase K.  
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For bone marrow neutrophil isolation, femurs of C57BL/6J mice were 

collected and flushed with cold PBS to extract marrow. Marrow cells were 

disaggregated by repetitive passes through an 18 gauge needle. Bone marrow 

neutrophils (BM-PMNs) were then isolated using a MACS Neutrophil isolation kit 

(Miltenyi Biotec) per the manufacturer’s instructions. The final volume of BM-PMNs 

was resuspended in TRIzol® Reagent (Ambion®) and total RNA was isolated per 

the manufacturer’s instructions.  

 

2.3.5 RNAseq library prep and analysis 

 Total RNA was sent for library preparation and sequencing at the High 

Throughput Sequencing Facility at The University of North Carolina at Chapel Hill. 

Briefly, a Qubit™ RNA Assay Kit for use with a Qubit® Fluorometer was used to 

quantify the total RNA concentration of each sample. Both eukaryotic and 

prokaryotic ribosomal-RNA was then removed from the samples using an 

Epidemiology Ribo-Zero™ Magnetic Gold Kit (Epicentre®). Complementary DNA 

was generated using a SMARTer® Universal Low Input RNA Kit (Clontech®) 

followed by RNAseq library sequencing template preparation using a Low Input 

Library Prep Kit (Clontech®). The library was prepared and run on a MiSeq® 

sequencer (Illumina®) to test the quality of the library. After library verification, 

samples were diluted and barcoded for paired end amplification and clustered 

(TruSeq® SBS Kit v2 (200cycles) and TruSeq® PE Cluster Kit v2 (Illumina®)) using 

a cBot™ (Illumina®) for running on a HiSeq® 2000 system (Illumina®). Quality 
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control steps throughout the RNAseq library preparation were performed using a 

DNA 12K Analysis Kit (Experion®) or a LabChipGX HT DNA LabChip® Kit 

(Caliper™). All MiSeq and HiSeq kits used the v2 chemistry.  

 Purity filtered reads were aligned to the Mus musculus reference genome 

(mm9) using MapSplice (Davis et al., 2015; Wang et al., 2010). The alignment profile 

was summarized by Picard Tools (Broad Institute) v1.64. Aligned reads were sorted 

and indexed using SAMtools (Li et al., 2009; Schwartz et al., 2013; Subrahmanyam 

et al.), translated to transcriptome coordinates, and filtered for indels, large inserts, 

and zero mapping quality using UBU v1.0. Transcript abundance estimates for each 

sample were performed using an Expectation-Maximization algorithm implemented 

in RSEM (Li and Dewey, 2011) based on the UCSC knownGene definitions. Raw 

counts were normalized to the upper quartile (Bullard et al., 2010). Log transformed 

normalized gene expression estimates were assessed for differential expression 

using Student’s t-test, and these results were filtered to highlight genes achieving p < 

0.05 in both comparisons (BM-PMN and lung lesions). Cluster analysis was 

performed to assess the patterns of differential expression (hierarchical clustering 

based on complete linkage and a Pearson correlation) for several defined gene sets 

testing for differential activity between the conditions. The gene set test performed a 

Wilcoxon rank-sum test of the log fold change estimates between genes in a set and 

those in the entire transcriptome where there were greater than three gene 

reads. Gene set results were visualized using density plots in R (version 3.1.1). Raw 

RNAseq data is available on the NCBI repository, series record GSE70819. 
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2.4 Results 

2.4.1 Characterizing host gene regulation in spatially defined regions of 

pneumonic plague lung lesions  

Pulmonary infection of mice with Y. pestis results in the formation of distinct 

inflammatory lesions in the lung during the pro-inflammatory phase of disease. The 

lesions consist primarily of Y. pestis bacteria and densely packed pockets of 

neutrophils, and these inflamed sites expand throughout the duration of infection, 

ultimately covering entire lobes of the lung (Lathem et al., 2005). At 48 hours post-

inoculation (hpi) with Y. pestis strain CO92, we observed that a typical H&E-stained 

lung section contained up to 5 distinct foci of inflammation per lobe. These sites 

were as large as 3 mm in diameter, with inflammation occupying 5-10% of the total 

examined tissue plane (Figure 2.1A). The inflammatory infiltrate displayed very little 

cellular necrosis and was composed predominantly of neutrophils, with fewer 

dispersed macrophages. Interspersed amid inflammatory infiltrate were abundant 

extracellular organisms and variable amounts of fibrin, hemorrhage, edema, and 

cellular debris. The majority of large and small bronchi remained unaffected, even 

those located immediately adjacent to inflammatory foci. Occasional dense 

aggregates of extracellular bacteria formed small colonies, particularly at the 

periphery of lesions (Figure 2.1C). These observations suggested that I could learn 

more quantitative information from these lesions by spatially dissecting them to 

analyze unique microenvironments.  



	   34	  

To further characterize these inflammatory lung lesions, I focused on 

analyzing transcriptional responses in neutrophils to understand the lack of turnover 

and clearance of this key cell type. The T3SS of Y. pestis has potent anti-

inflammatory effects on targeted mammalian cells (Aepfelbacher et al., 2007). As a 

result of their direct contact with Y. pestis, we predicted that those neutrophils found 

within the initiating focus of the lung lesions, the lesion “center,” would have a 

different transcriptional profile than those found in the lesion periphery, where I 

assumed the most recent wave of migrating neutrophils would be found. To test this, 

I devised an approach to identify transcriptionally regulated host pathways in 

neutrophils found within these spatially distinct regions. Briefly, I infected mice with 

104 CFU of Y. pestis CO92, a fully virulent strain previously isolated from a 

pneumonic plague patient. At 48 hpi I treated lungs with an RNA preservative, then 

used LCM on fixed and frozen sections to collect tissue from the center and 

periphery of the lesions (Figure 2.1D, E).   

Total RNA was isolated from these captured microenvironments, RNAseq 

libraries were prepared, and samples were sequenced to define host transcriptional 

responses. Additionally, I harvested total RNA from MACS-isolated neutrophils 

residing in the bone marrow (BM-PMNs) of Y. pestis-infected (and mock-infected) 

mice at 48 hpi for comparison. Using Student’s t-test, 976 genes were identified that 

were differentially expressed between the periphery and center of the lung lesions 

(p-value < 0.05). This analysis was simultaneously performed on the infected- and 

mock-infected-mouse BM-PMN samples. This comparison identified 3,198 genes 
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that were differentially expressed in BM-PMNs from infected mice compared to 

mock-infected mice. Importantly, transcriptionally altered BM-PMN genes represent 

neutrophil-specific responses to Y. pestis infection at 48 hpi, and are a heterologous 

tissue match to the lung lesion samples collected at the same time point during 

infection.  Matching genes in the lesion periphery/center comparison to those genes 

found in the BM-PMN comparison allowed me to narrow the lung lesion gene set to 

those genes regulated specifically in neutrophils rather than other cell types in the 

lung. The initial list of 976 genes was reduced to 224 genes that were differentially 

expressed in both the BM-PMN and lung lesion comparisons, with a significant 

enrichment value of p = 0.02 (Figure 2.2, Table 2.1). This confirms that there are 

transcriptional alterations in neutrophil genes between the lesion periphery and 

center, and establishes that Y. pestis causes a sustained change in neutrophil 

transcription at distinct locations in lung lesions. Interestingly, when the four 

conditions (infected BM-PMN, mock-infected BM-PMN, lesion periphery, lesion 

center) were clustered across samples, the differential expression patterns of the 

224 genes showed that (i) the BM-PMN from mock-infected mice and lesion center 

conditions clustered together, and (ii) the BM-PMN from Y. pestis-infected mice and 

lesion periphery conditions clustered together (Figure 2.2). This suggests that the 

neutrophils in the lesion center had a transcriptional pattern more similar to 

“unstimulated” bone marrow neutrophils, despite residing in a highly inflammatory 

microenvironment in the infected lungs. 
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2.4.2 Gene set analysis implications for lesion development and neutrophil 

fate.  

Using the Ingenuity® Pathway Analysis (IPA®) program (QIAGEN Redwood 

City) and the Molecular Signatures Database (Subramanian et al., 2005), we 

compiled various gene sets (Table 2.2) to analyze pathways for differential gene 

expression patterns between the lesion periphery and center. Density curves were 

generated based on the ratio of RNA expression estimates between the lesion 

periphery and lesion center (when there were more than three reads in both 

conditions). A Wilcoxon rank-sum test was performed comparing the log ratio 

distribution from the individual gene sets to the entire transcriptome, with the goal of 

identifying bias in specific gene sets.  

Based on the log ratio of lesion periphery compared to the center, there was a 

statistically significant shift for genes in “leukocyte migration” pathways compared to 

the entire transcriptome (Figure 2.3B). This shift indicates relatively lower expression 

in the center of lesions; i.e., the lesion centers show an overall down-regulation of 

genes in this list. In contrast, “general cell migration” genes showed no shift in the 

lesion periphery/center ratio compared to the entire transcriptome (Figure 2.3A, 

Table 2.2). These transcriptional comparisons in the “leukocyte migration” pathways 

suggest that newly infiltrating neutrophils are localized at the periphery of the 

expanding lesions, while the neutrophils at the center were likely recruited much 

earlier. The histopathological evidence in the lungs also supports this scenario. 

Centrally within inflammatory foci, neutrophils are densely packed, completely filling 
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alveolar spaces and leading to loss of the alveolar septa. Peripherally there are 

fewer, loosely packed neutrophils with some remaining clear air space.  

We additionally evaluated whether neutrophil apoptosis/survival was being 

altered in the center of lung lesions, since this could explain continued neutrophil 

accumulation due to a lack of turnover in the lung. A set of genes representing 

various apoptosis pathways was compiled (Table 2.2) and showed a statistically 

significant shift in the lesion periphery/center ratio compared to the entire 

transcriptome, indicating a down regulation of genes in the apoptosis pathways in 

the lesion center (Figure 2.3C). Overlaying individual apoptotic genes from the 

density curve analysis with a p-value < 0.5 onto the IPA® “Apoptosis Signaling” 

pathway (QIAGEN) showed that small transcriptional changes throughout this 

pathway could result in decreased apoptosis in cells at the center of lung lesions 

(Figure 2.1). 

 

2.5 Discussion 

The work presented in this chapter describes a novel approach to examining 

bacterial pathogenesis, using LCM to dissect unique spatial phenotypes of tissue 

damage during infection in vivo that cannot be studied in vitro. I hypothesized that Y. 

pestis directly alters the ability of neutrophils to progress through their cellular life 

cycle, leading to a failure of clearance from the lungs. This lack of clearance likely 

leads to development of the continually expanding inflammatory lesions, causing 

significant pulmonary damage. In the work presented here, I show that RNAseq 

analysis after LCM is a viable technique to study host/pathogen interactions during 
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infection. Further, I can glean information about disease progression by spatially 

dissecting regions of inflammation and damage in vivo that could not be obtained 

through in vitro studies alone. In the future it will be beneficial to be able to perform 

dual RNAseq to obtain both the host and bacterial transcriptome simultaneously.  

The formation of lung lesions during pneumonic plague is well documented in 

several animal models (Adamovicz and Worsham, 2006; Agar et al., 2009; Anderson 

et al., 2009; Fellows et al., 2012; Koster et al., 2010; Lathem et al., 2005; Layton et 

al., 2011; Van Andel et al., 2008). In this study, I present the first analysis of how 

these lung lesions develop and persist during pneumonic plague. Further, I probe 

the transcriptomes of host cells in the periphery and center of these lesions in an 

effort to better understand this complex microenvironment. The resulting data 

indicated that within the lung lesions, there are spatially defined differences in gene 

expression. Due to the high concentration of Y. pestis targeted neutrophils within the 

lesions (Marketon et al., 2005; Pechous et al., 2013), I was most interested in 

dissecting out neutrophil-specific transcriptional responses. When performing LCM, 

non-neutrophil RNA would also be isolated and complicate the neutrophil-specific 

analysis I was seeking. To abrogate this, I isolated BM-PMNs from mock-infected 

and Y. pestis-infected mice at 48 hpi to generate a list of genes I could identify as 

neutrophil-regulated responses to Y. pestis infection. By this time during infection, Y. 

pestis has disseminated into the bloodstream (Lathem et al., 2005) and can even be 

detected in the bone marrow (Vagima et al., 2012). I anticipated that any BM-PMN 

genes responsive to Y. pestis infection might also be identified in neutrophils in the 
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lesion comparison. Analyzing the lesion periphery and lesion center gave me an 

unbiased list of differentially expressed genes between these two regions in any cell 

type present. Matching differentially expressed genes from the lesion 

periphery/center comparison to the same genes in the BM-PMN comparison resulted 

in a set of 224 genes we identified as likely neutrophil-specific transcriptional 

responses to Y. pestis infection. Using the BM-PMN list gave me confidence that the 

224 genes identified in both comparisons are indicating a significant alteration in 

neutrophil gene expression between the lesion periphery and center, as opposed to 

contaminating monocytic infiltrate or lung epithelium.  

In addition to analyzing differential expression between regions of lung 

lesions, I wanted to test the hypothesis that lesions develop from small initiating foci 

and continue expanding outward throughout the course of infection. Alternatively, 

neutrophils could be infiltrating randomly into the lesion space. To examine this, the 

RNAseq data was analyzed based on defined lists of genes involved in general cell 

migration and leukocyte-specific migration compared to the entire transcriptome. The 

density distribution of the ratios of genes in each list was analyzed comparing the 

lesion periphery to the lesion center. This distribution was then compared to the 

same distribution from the entire transcriptome. This statistical comparison helped 

evaluate if transcription of genes in each of the lists were being skewed compared to 

the entire transcriptome. I observed a statistically significant shift in the log ratio in 

the leukocyte migration gene set, indicating decreased transcription in the center of 

lung lesions; in contrast, no shift was observed for genes involved in general cell 
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migration. This implies that neutrophils in the center of lesions were recruited earlier 

during infection, and these cells subsequently decreased transcription of genes such 

as cytokine and cell-cell adhesion receptors that are necessary for chemotaxis and 

lung infiltration (Table 2.2).  

I also postulated that the lesions continue to expand over time as a result of 

Y. pestis-mediated alteration of neutrophil apoptosis and survival. The apoptotic 

pathways gene list was analyzed as described above. A significant shift in the log 

ratio distribution of the apoptosis gene set suggested that these pathways were 

down-regulated in the center of lesions compared to the periphery. Analyzing the 

RNAseq data at the pathway level allowed me to statistically evaluate how small 

changes in expression of pathway-related genes may manifest into greater changes 

downstream in the pathway, since individual genes in pathways did not always show 

discrete statistically significant differences (p < 0.05) between areas of the lesion. 

For example, caspases-8 and 9 both had non-significant p-values (< 0.5); Looking 

closer at where these caspases intersect in apoptosis signaling pathways, it can be 

observed how a transcriptional decrease in caspase-8 can prevent the activation of 

BID to tBID, ultimately preventing the release of proteins allowing for downstream 

caspase activation. Both caspases-8 and 9 are important for direct cleavage of 

caspase-3, the converging point of both the extrinsic and intrinsic apoptosis 

pathways (McCracken and Allen, 2014). The decrease in transcription of both of 

these initiator caspases is an additional downstream hindrance to apoptosis (Figure 

2.4).  
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In summary, I introduced a unique application of LCM technology to directly 

examine the spatially distinct microenvironments resulting from host-pathogen 

interactions during primary pneumonic plague. As a result, I was able to identify 

pathways that are regulated by the interaction of Y. pestis with neutrophils in lung 

lesions during pneumonic plague. The directionality of these transcriptional changes 

suggest that neutrophils build from small foci in the lungs, and the neutrophils that 

first interact with Y. pestis in the center of these lesions are hindered in initiating 

apoptosis. Further defining and characterizing mediators of the dramatic pulmonary 

inflammation that occurs during pneumonic plague will help in understanding the 

lethality of this disease and may contribute to our understanding of severe 

pulmonary infection with other respiratory pathogens. 
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2.6 Figures and Tables 

 

Figure 2.1: Lung lesion histology and laser capture microdissection of lesions  

Representative H&E stained sections of a Y. pestis-infected lung at 48 hpi, shown at 

different magnifications (A-C, scale bar equals 500, 50, and 20u μm respectively). 

(C) The green arrows indicate dense aggregates of Y. pestis. Representative images 

of a lung section (D) before and (E) after laser capture microdissection (scale bar 

equals 300 μm). The lung lesion (outlined in black) was identified and the periphery 

and center of the lesions were spatially defined (outlined in white). Laser cutting and 

pulse catapulting into a preservative resin selectively removed white-outlined lesion 

sections.  

 

A! B! C!

D! E!
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Figure 2.2: Clustered genes showing differential transcription 

A heatmap showing 224 genes differentially expressed in two comparisons (BM-

PMNs from mock-infected v. infected mice and lesion periphery v. center). The red 

and green colors represent an increase or decrease, respectively, relative to the 

median value of each of the two initial comparisons. The X-axis clustering shows 

that all triplicates clustered together and that mock-infected BM-PMN and lesion 
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Usp20|74270Csrp2bp|228714Rpap1|68925Pskh1|244631Kcnk6|52150Zfp526|210172Ebna1bp2|69072Fen1|14156Nat10|98956Kalrn|545156Nol11|68979Nolc1|70769Scly|50880Slc10a3|214601Cenpf|108000Elp2|58523Ctla2a|13024Naip6|17952Polr3e|26939Trerf1|224829Acd|497652Camsap1|227634Cdipt|52858Ttk|22137Ppan|235036Zfp64|227224933427D14Rik|74477Ndst2|17423Tmem229b|268567Ctcf|13018Nek7|59125Tmem67|329795Zfp955b|100043468Adam9|11502Hdlbp|110611Rnft1|768922610101N10Rik|67958M6pr|17113Eif3i|54709Tbp|21374Zfp192|93681Ptpn4|19258Phc3|241915Slfn9|237886BC016423|105203Npat|244879Brix1|67832Zcchc4|78796Mrps25|64658Nol8|70930Fundc2|67391Slfn3|20557Dbi|13167Syncrip|56403Impa1|55980Nup88|19069Rlim|198202210018M11Rik|233545Gclc|14629Eltd1|170757F630043A04Rik|219114Dock4|238130Psd3|234353Prpf40a|56194Chd9|109151Mysm1|320713Sub1|20024Snapc3|77634Senp1|223870Cir1|66935Rbpj|19664Piga|18700Clock|12753Pigy|66459Serbp1|66870Arl4a|11861Golm1|105348Pecam1|18613Pdia6|71853Timp3|21859Pphln1|223828Abi2|329165Cwc27|67285Rbmxl1|19656Zfp187|432731Slc31a1|20529Vwf|22371Esco1|77805Eif1a|13664Zfp280c|208968Zeb1|21417Las1l|76130Rpl36al|66483Ly6e|17069Ogdh|18293Sugt1|67955Yipf6|77929Pde5a|242202A730017L22Rik|613258Bpnt1|23827Rif1|51869Il6st|16195Atp5o|28080Il15ra|16169Snrpd1|20641Atl3|109168Zfp207|22680Fubp1|51886Fmr1|14265Sec63|140740Ahi1|52906Ube2j1|56228Rrm2b|382985Tmem167|66074Rnf144b|218215Trove2|20822Gpr65|14744Dhx15|13204Qrich1|69232C1ra|50909Anxa4|11746Stt3a|16430Beta−s|100503605Lpar6|67168Gpx3|14778Cfh|12628Ghitm|66092Gnpnat1|54342Pmm2|54128Sf3a1|67465Ddx46|212880Lrp6|16974Mtpn|14489Orm1|18405Ceacam1|26365Tra2b|20462Prpf39|328110Canx|12330Slc43a3|58207Golim4|73124Vcam1|22329Zbtb20|564909030624J02Rik|71517H2−T24|15042Rin2|74030Cdc37l1|67072Arrb1|109689Mylip|218203Hmg20a|66867Il28ra|242700Maz|17188Arrdc3|105171Cep350|74081Ngly1|59007Atp2c1|235574Utrn|22288Kif1b|16561Nt5e|23959Ddx17|67040Ankrd44|329154Mtap4|17758Phf20l1|239510Bmpr1a|12166Rps15a|267019A930001N09Rik|77128Aftph|216549Gnb1|14688Slc12a6|107723Slc44a1|100434Ube3a|22215Ralgapa2|241694Rtf1|76246Dlg1|13383BC005537|79555Smek1|68734Cd47|16423Rbm33|381626Rap1gds1|229877Slmap|83997Sptlc2|20773Ghdc|80860Smcr7|237781Slc38a10|72055Tmem8|60455Gatad2b|229542Tpcn1|252972Tubgcp6|3285802310021P13Rik|268721Pcnxl3|104401Cln3|12752Wdfy4|545030Fkrp|2438532410016O06Rik|71952Clta|12757Plec|18810Nat8l|269642Sipa1l2|244668Triobp|110253Itprip|414801Scaf1|233208Ubn1|170644Prr12|233210Stx2|13852Fam40a|229707Sytl1|269589Lmnb1|16906Klhl25|207952Lrrc61|243371Sec22c|215474Cd101|630146Rnf145|743151700020L24Rik|66330Fam193b|212483Zfp516|329003Zfp710|209225Agrn|11603Ankrd33b|67434Crlf3|54394A830007P12Rik|227612Arhgap23|58996Btbd19|78611Zc3h12d|237256Fam102a|98952Nipal3|74552
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center samples clustered more closely, as did infected BM-PMN and lesion 

periphery samples. Each gene shows significant differences (p < 0.05 in Student’s t-

test) in each of the two initial comparisons. The blue, orange, yellow, and purple 

colored bars represent the four possible outcomes of gene regulation comparisons 

(e.g., blue bar shows genes that were decreased in BM-PMNs from infected 

compared to mock-infected mice and increased in the lesion center compared to the 

periphery). 
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Figure 2.3: Density curves of defined gene sets compared to the entire 
transcriptome 

Gene sets were compiled to represent A) general cell migration, B) leukocyte 

migration, and C) apoptosis pathways. Using the log ratio of RNAseq reads in lesion 

periphery compared to lesion center, log ratios of each of these compiled gene sets 

(blue lines) were contrasted against the entire transcriptome (grey lines) using a 

Wilcoxon rank-sum test. The Y-axis values are arbitrary units as calculated by 

Gaussian kernel density estimates. Only genes with > 3 reads from the RNAseq 

analysis were graphed.   
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Figure 2.4: Ingenuity® Pathway Analysis “Apoptosis Signaling” pathway 
overlaid with relevant genes from density curve analysis 

Genes from the “Apoptosis Signaling” pathway from IPA® were included in the 

“Apoptosis genes” list used in the density curve analysis. The density curve analysis 

identified the “Apoptosis genes” list as being transcriptionally decreased in the 

Cytoplasm*

Extracellular*space*
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center of lesions so individual genes with p < 0.5 were overlaid onto the IPA® 

“Apoptosis Signaling” pathway (green) to visually represent small transcriptional 

changes throughout the pathway in the center of lesions. Red lines represent direct 

interactions that would be affected by decreased transcription of identified genes in 

cells. Orange lines represent secondary affects of the identified genes being down-

regulated in cells. 
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Table 2.1: List of 224 differentially regulated in both the infected versus 
uninfected BM-PMN and lesion periphery versus center comparisons 

Gene names Entrez 
numbers 

p-value 
(infected/uninfected 

BM-PMN) 

p-value        
(lesion 

periphery/center) 

Pattern of 
differential 
expression 

1700020L24Rik 
2210018M11Rik 
2310021P13Rik 
2410016O06Rik 
2610101N10Rik 
4933427D14Rik 
9030624J02Rik 
A730017L22Rik 
A830007P12Rik 
A930001N09Rik 

Abi2 
Acd 

Adam9 
Aftph 
Agrn 
Ahi1 

Ankrd33b 
Ankrd44 
Anxa4 

Arhgap23 
Arl4a 
Arrb1 
Arrdc3 

Atl3 
Atp2c1 
Atp5o 

BC005537 
BC016423 

Beta-s 
Bmpr1a 
Bpnt1 
Brix1 

Btbd19 
C1ra 

Camsap1 
Canx 

Cd101 
Cd47 

Cdc37l1 
Cdipt 

66330 
233545 
268721 
71952 
67958 
74477 
71517 

613258 
227612 
77128 

329165 
497652 
11502 

216549 
11603 
52906 
67434 

329154 
11746 
58996 
11861 

109689 
105171 
109168 
235574 
28080 
79555 

105203 
100503605 

12166 
23827 
67832 
78611 
50909 

227634 
12330 

630146 
16423 
67072 
52858 

1.785E-03 
2.390E-03 
1.884E-03 
2.340E-05 
2.148E-03 
8.521E-05 
3.365E-04 
8.267E-04 
1.342E-04 
1.181E-04 
5.410E-04 
1.457E-04 
3.363E-04 
2.212E-03 
1.651E-03 
4.990E-05 
2.271E-03 
1.774E-03 
2.192E-03 
2.015E-03 
1.610E-04 
2.618E-03 
1.206E-03 
2.172E-04 
4.490E-05 
2.394E-03 
3.890E-04 
1.190E-04 
1.571E-03 
2.208E-04 
5.592E-04 
3.344E-06 
5.192E-04 
1.083E-03 
7.791E-04 
1.442E-03 
2.684E-03 
2.823E-03 
3.366E-05 
1.810E-03 

3.813E-02 
4.503E-02 
3.917E-02 
1.943E-03 
4.178E-02 
4.736E-03 
1.289E-02 
2.235E-02 
6.709E-03 
6.266E-03 
1.674E-02 
7.469E-03 
1.278E-02 
4.287E-02 
3.675E-02 
3.264E-03 
4.341E-02 
3.806E-02 
4.258E-02 
4.055E-02 
7.882E-03 
4.751E-02 
2.863E-02 
9.122E-03 
3.082E-03 
4.508E-02 
1.354E-02 
6.309E-03 
3.535E-02 
9.151E-03 
1.717E-02 
4.679E-04 
1.603E-02 
2.650E-02 
2.172E-02 
3.324E-02 
4.791E-02 
4.935E-02 
2.394E-03 
3.837E-02 

blue 
yellow 
blue 
blue 

yellow 
purple 
orange 
yellow 
blue 

orange 
yellow 
purple 
yellow 
orange 

blue 
yellow 
blue 

orange 
yellow 
blue 

yellow 
orange 
orange 
yellow 
orange 
yellow 
orange 
yellow 
yellow 
orange 
yellow 
yellow 
blue 

yellow 
purple 
yellow 
blue 

orange 
orange 
purple 
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Ceacam1 
Cenpf 

Cep350 
Cfh 

Chd9 
Cir1 
Cln3 
Clock 
Clta 
Crlf3 

Csrp2bp 
Ctcf 

Ctla2a 
Cwc27 

Dbi 
Ddx17 
Ddx46 
Dhx15 
Dlg1 

Dock4 
Ebna1bp2 

Eif1a 
Eif3i 
Elp2 
Eltd1 
Esco1 

F630043A04Rik 
Fam102a 
Fam193b 
Fam40a 

Fen1 
Fkrp 
Fmr1 
Fubp1 
Fundc2 
Gatad2b 

Gclc 
Ghdc 
Ghitm 
Gnb1 

Gnpnat1 
Golim4 
Golm1 
Gpr65 
Gpx3 

H2-T24 

26365 
108000 
74081 
12628 

109151 
66935 
12752 
12753 
12757 
54394 

228714 
13018 
13024 
67285 
13167 
67040 

212880 
13204 
13383 

238130 
69072 
13664 
54709 
58523 

170757 
77805 

219114 
98952 

212483 
229707 
14156 

243853 
14265 
51886 
67391 

229542 
14629 
80860 
66092 
14688 
54342 
73124 

105348 
14744 
14778 
15042 

1.634E-03 
2.396E-03 
4.066E-04 
2.824E-04 
9.402E-05 
2.450E-03 
6.450E-07 
1.731E-03 
6.241E-05 
2.848E-03 
5.572E-04 
1.609E-04 
3.487E-04 
8.800E-05 
5.053E-04 
1.248E-03 
1.074E-03 
1.771E-03 
1.551E-05 
1.785E-03 
3.270E-05 
1.037E-03 
5.940E-04 
2.920E-04 
1.341E-03 
1.697E-04 
1.566E-03 
1.886E-03 
6.371E-04 
2.790E-04 
5.300E-04 
8.457E-04 
4.797E-04 
1.234E-03 
1.828E-06 
1.288E-03 
3.705E-05 
2.727E-04 
4.152E-04 
2.041E-03 
5.198E-04 
8.254E-04 
9.266E-05 
5.077E-04 
1.257E-04 
1.869E-03 

3.623E-02 
4.514E-02 
1.387E-02 
1.152E-02 
5.200E-03 
4.566E-02 
3.500E-05 
3.785E-02 
3.622E-03 
4.942E-02 
1.713E-02 
7.860E-03 
1.297E-02 
5.039E-03 
1.593E-02 
2.958E-02 
2.643E-02 
3.803E-02 
1.377E-03 
3.819E-02 
2.229E-03 
2.609E-02 
1.817E-02 
1.180E-02 
3.110E-02 
7.903E-03 
3.526E-02 
3.923E-02 
1.892E-02 
1.145E-02 
1.651E-02 
2.276E-02 
1.562E-02 
2.944E-02 
3.273E-04 
3.001E-02 
2.631E-03 
1.110E-02 
1.412E-02 
4.077E-02 
1.605E-02 
2.217E-02 
5.169E-03 
1.593E-02 
6.321E-03 
3.906E-02 

yellow 
purple 
orange 
yellow 
yellow 
yellow 
blue 

yellow 
blue 
blue 

purple 
yellow 
purple 
yellow 
yellow 
orange 
yellow 
yellow 
orange 
yellow 
purple 
yellow 
yellow 
purple 
yellow 
yellow 
yellow 
blue 
blue 
blue 

purple 
blue 

yellow 
yellow 
yellow 
blue 

yellow 
blue 

yellow 
orange 
yellow 
orange 
yellow 
yellow 
yellow 
orange 
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Hdlbp 
Hmg20a 

Il15ra 
Il28ra 
Il6st 

Impa1 
Itprip 
Kalrn 
Kcnk6 
Kif1b 
Klhl25 
Las1l 

Lmnb1 
Lpar6 
Lrp6 

Lrrc61 
Ly6e 
M6pr 
Maz 

Mrps25 
Mtap4 
Mtpn 
Mylip 

Mysm1 
Naip6 
Nat10 
Nat8l 
Ndst2 
Nek7 
Ngly1 
Nipal3 
Nol11 
Nol8 
Nolc1 
Npat 
Nt5e 

Nup88 
Ogdh 
Orm1 
Pcnxl3 
Pde5a 
Pdia6 

Pecam1 
Phc3 

Phf20l1 
Piga 

110611 
66867 
16169 

242700 
16195 
55980 

414801 
545156 
52150 
16561 

207952 
76130 
16906 
67168 
16974 

243371 
17069 
17113 
17188 
64658 
17758 
14489 

218203 
320713 
17952 
98956 

269642 
17423 
59125 
59007 
74552 
68979 
70930 
70769 

244879 
23959 
19069 
18293 
18405 

104401 
242202 
71853 
18613 

241915 
239510 
18700 

1.695E-03 
2.798E-04 
2.239E-04 
2.156E-03 
1.909E-04 
3.539E-05 
2.792E-03 
2.950E-04 
2.365E-03 
1.276E-03 
8.177E-04 
4.798E-05 
2.632E-03 
4.162E-04 
1.936E-03 
6.254E-05 
1.917E-03 
4.919E-04 
1.468E-03 
7.352E-04 
1.368E-03 
1.020E-04 
1.128E-03 
2.689E-03 
2.473E-04 
5.594E-04 
1.498E-04 
1.064E-04 
2.560E-03 
1.790E-03 
2.578E-03 
2.463E-03 
2.834E-03 
1.704E-03 
3.345E-04 
6.090E-05 
9.513E-04 
1.139E-04 
8.525E-04 
9.165E-05 
5.994E-04 
1.859E-03 
1.219E-03 
1.428E-04 
1.113E-03 
6.141E-05 

3.753E-02 
1.150E-02 
9.260E-03 
4.202E-02 
8.574E-03 
2.513E-03 
4.904E-02 
1.197E-02 
4.481E-02 
2.989E-02 
2.207E-02 
3.210E-03 
4.759E-02 
1.417E-02 
3.994E-02 
3.634E-03 
3.985E-02 
1.567E-02 
3.373E-02 
2.069E-02 
3.200E-02 
5.410E-03 
2.698E-02 
4.828E-02 
1.022E-02 
1.751E-02 
7.494E-03 
5.747E-03 
4.696E-02 
3.825E-02 
4.713E-02 
4.574E-02 
4.937E-02 
3.768E-02 
1.267E-02 
3.585E-03 
2.431E-02 
6.009E-03 
2.302E-02 
5.139E-03 
1.823E-02 
3.881E-02 
2.920E-02 
7.247E-03 
2.677E-02 
3.598E-03 

yellow 
orange 
yellow 
orange 
yellow 
yellow 
blue 

purple 
purple 
orange 

blue 
yellow 
blue 

yellow 
yellow 
blue 

yellow 
yellow 
orange 
yellow 
orange 
yellow 
orange 
yellow 
purple 
purple 
blue 

purple 
yellow 
orange 

blue 
purple 
yellow 
purple 
yellow 
orange 
yellow 
yellow 
yellow 
blue 

yellow 
yellow 
yellow 
yellow 
orange 
yellow 
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Pigy 
Plec 

Pmm2 
Polr3e 
Ppan 

Pphln1 
Prpf39 

Prpf40a 
Prr12 
Psd3 
Pskh1 
Ptpn4 
Qrich1 

Ralgapa2 
Rap1gds1 

Rbm33 
Rbmxl1 

Rbpj 
Rif1 
Rin2 
Rlim 

Rnf144b 
Rnf145 
Rnft1 

Rpap1 
Rpl36al 
Rps15a 
Rrm2b 

Rtf1 
Scaf1 
Scly 

Sec22c 
Sec63 
Senp1 
Serbp1 
Sf3a1 

Sipa1l2 
Slc10a3 
Slc12a6 
Slc31a1 

Slc38a10 
Slc43a3 
Slc44a1 

Slfn3 
Slfn9 

Slmap 

66459 
18810 
54128 
26939 

235036 
223828 
328110 
56194 

233210 
234353 
244631 
19258 
69232 

241694 
229877 
381626 
19656 
19664 
51869 
74030 
19820 

218215 
74315 
76892 
68925 
66483 

267019 
382985 
76246 

233208 
50880 

215474 
140740 
223870 
66870 
67465 

244668 
214601 
107723 
20529 
72055 
58207 

100434 
20557 

237886 
83997 

4.350E-04 
1.644E-03 
2.884E-03 
1.820E-03 
1.584E-03 
5.886E-04 
3.325E-04 
3.789E-04 
2.271E-05 
8.944E-04 
5.221E-04 
4.970E-04 
6.860E-04 
2.762E-04 
2.586E-03 
1.304E-03 
2.387E-04 
1.376E-04 
2.219E-03 
1.648E-03 
4.269E-04 
1.444E-04 
1.145E-04 
5.695E-04 
1.643E-03 
1.841E-03 
6.438E-04 
3.912E-04 
1.117E-03 
8.171E-05 
1.031E-03 
8.462E-04 
4.979E-04 
1.393E-03 
7.059E-04 
1.305E-03 
1.016E-04 
1.627E-03 
1.127E-03 
9.491E-04 
2.215E-04 
1.613E-03 
1.165E-03 
4.833E-06 
2.525E-03 
2.683E-04 

1.497E-02 
3.661E-02 
4.979E-02 
3.841E-02 
3.551E-02 
1.813E-02 
1.256E-02 
1.320E-02 
1.894E-03 
2.379E-02 
1.613E-02 
1.574E-02 
1.987E-02 
1.133E-02 
4.734E-02 
3.015E-02 
9.591E-03 
6.919E-03 
4.302E-02 
3.664E-02 
1.471E-02 
7.281E-03 
6.080E-03 
1.785E-02 
3.648E-02 
3.873E-02 
1.916E-02 
1.375E-02 
2.689E-02 
4.572E-03 
2.593E-02 
2.279E-02 
1.576E-02 
3.250E-02 
2.012E-02 
3.016E-02 
5.384E-03 
3.609E-02 
2.692E-02 
2.423E-02 
9.159E-03 
3.594E-02 
2.744E-02 
6.037E-04 
4.653E-02 
1.087E-02 

yellow 
blue 

yellow 
purple 
purple 
yellow 
yellow 
yellow 
blue 

yellow 
purple 
yellow 
yellow 
orange 
orange 
orange 
yellow 
yellow 
yellow 
orange 
yellow 
yellow 
blue 

yellow 
purple 
yellow 
orange 
yellow 
orange 

blue 
purple 
blue 

yellow 
yellow 
yellow 
yellow 
blue 

purple 
orange 
yellow 
blue 

yellow 
orange 
yellow 
yellow 
orange 
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Smcr7 
Smek1 
Snapc3 
Snrpd1 
Sptlc2 
Stt3a 
Stx2 
Sub1 
Sugt1 

Syncrip 
Sytl1 
Tbp 

Timp3 
Tmem167 

Tmem229b 
Tmem67 
Tmem8 
Tpcn1 
Tra2b 
Trerf1 
Triobp 
Trove2 

Ttk 
Tubgcp6 
Ube2j1 
Ube3a 
Ubn1 
Usp20 
Utrn 

Vcam1 
Vwf 

Wdfy4 
Yipf6 

Zbtb20 
Zc3h12d 
Zcchc4 
Zeb1 

Zfp187 
Zfp192 
Zfp207 
Zfp280c 
Zfp516 
Zfp526 
Zfp64 

Zfp710 
Zfp955b 

237781 
68734 
77634 
20641 
20773 
16430 
13852 
20024 
67955 
56403 

269589 
21374 
21859 
66074 

268567 
329795 
60455 

252972 
20462 

224829 
110253 
20822 
22137 

328580 
56228 
22215 

170644 
74270 
22288 
22329 
22371 

545030 
77929 
56490 

237256 
78796 
21417 

432731 
93681 
22680 

208968 
329003 
210172 
22722 

209225 
100043468 

2.532E-04 
2.066E-05 
1.707E-03 
1.607E-03 
1.205E-03 
2.715E-03 
6.584E-04 
1.393E-03 
2.735E-04 
2.175E-03 
5.621E-04 
2.555E-04 
1.904E-03 
7.523E-04 
2.096E-04 
1.155E-04 
8.552E-04 
3.229E-04 
2.422E-03 
1.483E-03 
1.482E-03 
1.740E-03 
9.224E-05 
1.411E-04 
9.973E-04 
1.244E-03 
1.102E-03 
2.059E-03 
2.157E-03 
1.360E-03 
1.093E-03 
2.603E-04 
1.027E-05 
1.257E-03 
2.045E-03 
9.434E-04 
1.783E-03 
2.101E-04 
5.407E-05 
1.306E-03 
2.246E-03 
1.144E-03 
9.628E-04 
7.049E-07 
8.023E-04 
4.244E-04 

1.039E-02 
1.865E-03 
3.774E-02 
3.590E-02 
2.851E-02 
4.842E-02 
1.935E-02 
3.246E-02 
1.126E-02 
4.235E-02 
1.752E-02 
1.057E-02 
3.947E-02 
2.083E-02 
8.968E-03 
6.114E-03 
2.312E-02 
1.227E-02 
4.552E-02 
3.409E-02 
3.403E-02 
3.788E-02 
5.162E-03 
7.009E-03 
2.499E-02 
2.954E-02 
2.654E-02 
4.101E-02 
4.211E-02 
3.141E-02 
2.653E-02 
1.065E-02 
9.813E-04 
2.970E-02 
4.078E-02 
2.416E-02 
3.808E-02 
9.036E-03 
3.348E-03 
3.020E-02 
4.317E-02 
2.729E-02 
2.449E-02 
6.244E-05 
2.187E-02 
1.446E-02 

blue 
orange 
yellow 
yellow 
orange 
yellow 
blue 

yellow 
yellow 
yellow 
blue 

yellow 
yellow 
yellow 
purple 
yellow 
blue 
blue 

yellow 
purple 
blue 

yellow 
purple 
blue 

yellow 
orange 

blue 
purple 
orange 
orange 
yellow 
blue 

yellow 
orange 

blue 
yellow 
yellow 
yellow 
yellow 
yellow 
yellow 
blue 

purple 
purple 
blue 

yellow 
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Table 2.2: Gene composition of lists used for density curve analysis 

General cell migration                                   Molecular Signatures Database * 
ABI2 
ABI3 

ACVRL1 
AIMP1 

ALOX15B 
AMOT 
ANG 

ANGPTL3 
ARAP3 
AZU1 

BCAR1 
BMP10 
CALCA 

CCDC88A 
CD24 

CD2AP 
CD34 

CDH13 
CDK5R1 

CKLF 

CLIC4 
CNTN4 
CX3CL1 
CXCR2 
DOCK2 
DPYSL5 
EGFR 

ENPEP 
FEZ1 
FEZ2 

GDNF 
GLI2 

GTPBP4 
HMGCR 

IL10 
IL12A 
IL12B 

IL8 
ITGB1 

ITGB1BP1 

ITGB2 
KAL1 
KRT2 

LAMB1 
LAMC1 
MDGA1 

MIA3 
MYH9 
NEXN 
NF1 

NF2 
NRD1 
NRP1 
NRP2 
NRTN 

NRXN1 
NRXN3 
OPHN1 
OTX2 

PARD6B 

PARP9 
PF4 
PLG 

PPAP2A 
PPAP2B 
PRSS3 
PTEN 
RTN4 

S100A2 
S100P 

SAA1 
SCG2 

SEMA3B 
SEMA4F 
SFTPD 

SHH 
SHROOM2 

SIAH1 
SLIT1 
SLIT2 

SPHK1 
SPON2 

SYK 
TBX5 

TDGF1 
TGFB2 
THBS4 
THY1 

TNFSF12 
TNN 

TRIP6 
UBB 

UNC5C 
VCL 

VEGFC 
WNT1 

Leukocyte migration                                     Molecular Signatures Database ** 
ACTB 

ACTG1 
ACTN1 
ACTN2 
ACTN3 
ACTN4 
AIMP1 

ARHGAP35 
ARHGAP5 

BCAR1 
CD34 
CD99 

CDC42 
CDH5 

CKLF 
CLDN1 

CLDN10 
CLDN11 
CLDN14 
CLDN15 
CLDN16 
CLDN17 
CLDN18 
CLDN19 
CLDN2 

CLDN20 
CLDN22 
CLDN23 

CLDN3 
CLDN4 
CLDN5 
CLDN6 
CLDN7 
CLDN8 
CLDN9 

CTNNA1 
CTNNA2 
CTNNA3 
CTNNB1 
CTNND1 
CX3CL1 
CXCL1 

CXCL12 
CXCL2 
CXCR1 
CXCR2 
CXCR2 
CXCR4 
CYBA 
CYBB 

DOCK2 
ESAM 
EZR 
F11R 
GNAI1 
GNAI2 

GNAI3 
ICAM1 
IL10 
IL8 

ITGA4 
ITGAL 
ITGAM 
ITGB1 
ITGB2 
ITGB2 

ITK 
JAM2 
JAM3 

LOC100418883 

LOC646821 
MAPK11 
MAPK12 
MAPK13 
MAPK14 

MIA3 
MLLT4 
MMP2 
MMP9 
MSN 

MYL10 
MYL12A 
MYL12B 

MYL2 

MYL5 
MYL7 
MYL9 

MYLPF 
NCF1 
NCF2 
NCF4 
NOX1 
NOX3 
OCLN 

PECAM1 
PF4 

PIK3CA 
PIK3CB 

PIK3CD 
PIK3CG 
PIK3R1 
PIK3R2 
PIK3R3 
PIK3R5 
PLCG1 
PLCG2 
PRKCA 
PRKCB 
PRKCG 
PTK2 

PTK2B 
PTPN11 

PXN 
RAC1 
RAC2 

RAP1A 
RAP1B 

RAPGEF3 
RAPGEF4 
RASSF5 
RHOA 
RHOH 
ROCK1 
ROCK2 
SAA1 
SCG2 

SFTPD 
SIPA1 
SYK 

TGFB2 
THY1 
TXK 

VASP 
VAV1 
VAV2 
VAV3 

VCAM1 
VCL 

Apoptosis pathways                                       Ingenuity® Pathway Analysis *** 
ACIN1 
AIMF1 

Akt 
APAF1 

BAD 
BAK1 
BAX 

BCL2 
BCL2A1 
BCL2L1 

BCL2L10 
BCL2L11 

BID 
BIRC6 

CASP10 
CASP12 
CASP2 
CASP3 
CASP6 
CASP7 
CASP8 

CASP9 
CDK1 

CDKN2A 
Ciap 

CYCS 
DFFA 
DFFB 

DIABLO 
ENDOG 
ERK1 
ERK2 
FADD 
FAS 

FASLG 

GAS2 
GRB2 

GTRA2 
IGF1 

IGF1R 
IkB 
IKK 

Jnk 
Jnkk 

LMNA 
MAP2K1 
MAP2K2 
MAP3K5 
MAPK8 

MCL1 
MYC 
NFkB 
NIK 

PARP1 
PI3K 
PKC 

PLC 
RAF1 
Ras 

ROCK1 
RPS6ka1 

SHC1 
Sos 

SPTAN1 
TNF 
TP53 

* - Compiled from the Molecular Signatures Database (Subramanian et al., 2005) “KEGG Leukocyte Transendothelial 
Migration” (http://www.broadinstitute.org/gsea/msigdb/cards/KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION.html) 
and “Gene Ontology Leukocyte Migration” (http://www.broadinstitute.org/gsea/msigdb/cards/LEUKOCYTE_MIGRATION.html) 
pathways.  
** - From the Molecular Signatures Database (Subramanian et al., 2005) from the “Gene Ontology Cell Migration” 
(http://www.broadinstitute.org/gsea/msigdb/cards/CELL_MIGRATION.html) pathway   
*** - Compiled using Ingenuity® Pathway Analysis program from the “Apoptosis Signaling” and “Myc Mediated Apoptosis” 
pathways (QIAGEN Redwood City) 
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CHAPTER 3: INDUCTION OF NETUROPHIL SURVIVAL BY Yersinia pestis 

THROUGH THE TYPE III SECRETION SYSTEM EFFECTOR YopM† 

 

3.1 Overview 

 This Chapter describes the ability of Yersinia pestis to prolong the survival of 

neutrophils, which may lead to more severe pneumonia due to the prolonged 

accumulation of neutrophils in the lower respiratory tract. Global transcriptional 

analysis in defined lesion microenvironments from Chapter 2 is used as a foundation 

for in vitro and in vivo characterization of neutrophils during a Y. pestis infection. 

These studies provide evidence that Y. pestis promotes neutrophil survival and 

inhibits apoptosis in a novel type III secretion system (T3SS) effector-dependent 

manner. By determining how Y. pestis alters neutrophil lifespan and induces unique 

transcriptional responses within sites of infection, we will better understand the 

mechanisms by which neutrophils typically work in a broad range of diseases in 

which neutrophil infiltration becomes harmful to the host.   

 

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
† This data has been published in: Stasulli NM, Eichelberger KR, Price PA, Pechous 
RD, Montgomery SA, Parker JS, Goldman WE. 2015. Spatially distinct neutrophil 
responses within the inflammatory lesions of pneumonic plague. mBio 6(5):e01530-
15. doi:10.1128/mBio.01530-15.	  
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3.2 Introduction 

While there are many genetic mutations and insertions that differentiate the 

three pathogenic species of Yersinia (enterocolitica, pseudotuberculosis, and pestis) 

there are several shared virulence plasmids and genomic islands that are vital for 

virulence (Perry and Fetherston, 1997; Wren, 2003). Three of these virulence 

determinants important during pneumonic plague are the pCD1 plasmid (Ben-Gurion 

and Shafferman, 1981), the genomic pigmentation locus (pgm) (Jackson and 

Burrows, 1956), and the pla gene encoded on the pPCP1 plasmid (Sodeinde et al., 

1988).  

The pCD1 plasmid (known as pYV in Y. pseudotuberculosis and Y. 

enterocolitica) is a common ancestral virulence factor for all three pathogenic 

Yersinia species (Wren, 2003). The acquisition of the pCD1 plasmid gave non-

pathogenic environmental yersiniae the ability to transcribe genes for the functional 

needle complex of a T3SS, along with effector proteins that are injected by this 

apparatus (Cornelis et al., 1998). Despite the lack of an identified receptor for the Y. 

pestis T3SS, it appears to have an affinity for injecting innate immune cells during 

infection (Marketon et al., 2005; Pechous et al., 2013). Early during pneumonic 

plague, macrophages are the most frequently injected cell type. However, as 

neutrophils being to infiltrate the alveolar spaces they are preferentially injected by 

the Y. pestis T3SS (Pechous et al., 2013). While each Yop effector has unique 

functions and may act in different compartments of the cell, the global cell effects 

overlap to ultimately suppress innate immune anti-microbial functions. The effector 

YopE is a GTPase activating protein that leads to the inactivation of Rho and Rac 



	   61	  

GTP binding proteins (Aepfelbacher et al., 2007). This results in the blocking of 

phagocytosis and inhibition of reactive oxygen species (ROS) production of several 

cell types including neutrophils (Ruckdeschel et al., 1996). The effector YopH is a 

tyrosine phosphatase that primarily dephosphorylates focal adhesion proteins. This 

effector, similar to YopE, results in decreased phagocytosis in various cell types and 

an inhibition of ROS generation in neutrophils (Aepfelbacher et al., 2007; 

Ruckdeschel et al., 1996). The effector YopJ/P is a serine/threonine 

acetyltransferase that has been shown to act on MAPK kinases and IκB kinase-β. 

This transferase activity has been shown to be important for dampening the immune 

response and promoting apoptosis of macrophages (Trosky et al., 2008). 

Interestingly, however, neutrophils are resistant to YopJ/P-induced apoptosis 

(Spinner et al., 2010). The effector YopM has no known enzymatic function. Rather, 

it has been shown to have protein-protein binding functions. While the global cellular 

effects of its scaffolding are not clear, it has been shown to be important for full 

virulence during bubonic plague (Trosky et al., 2008). The effector YopO (YpkA) has 

been shown to have multiple functions. YopO is a serine/threonine kinase that can 

auto-phosphorylate upon binding actin, disrupt the actin cytoskeleton, and has 

guanidine nucleotide dissociation inhibitor activity. While its function during plague 

pathogenesis is not fully understood, it has been shown to promote apoptosis in 

macrophages (Park et al., 2007), hinder phagocytosis, and it has been suggested 

that it may be the cause of the abnormal bleeding experienced during plague 

(Navarro et al., 2007; Trosky et al., 2008). The effector YopT is a cysteine protease 
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that targets Rho GTPases attached to an isoprenoid moiety. It has been shown to 

mildly inhibit phagocytosis and interfere with actin assembly in various cells including 

neutrophils (Aepfelbacher et al., 2007).  

After acquiring the pCD1 virulence plasmid, two distinct species of Yersinia 

evolved, Y. enterocolitica and Y. pseudotuberculosis. One virulence factor that 

distinguishes these two species is the pgm locus that was acquired by Y. 

pseudotuberculosis (Wren, 2003). This locus contains two distinct gene islands: The 

first contains the genes necessary for the production and utilization of yersiniabactin, 

a small siderophore that sequesters host iron. The second island contains a 

somewhat random assortment of genes necessary for biofilm formation and flea 

transmission of Y. pestis to a mammalian host (Bearden et al., 1997; Buchrieser et 

al.; Hinnebusch et al., 1996). While regions of the pgm locus are necessary for full 

virulence in both bubonic and pneumonic plague (Fetherston et al., 2010; 

Hinnebusch et al., 1996), it is possible to complement a deletion of the pgm locus 

and restore pathogenesis during bubonic plague in an infected individual with 

elevated levels of iron (Quenee et al., 2012). 

The final of these three virulence factors to be acquired was the pla gene via 

acquisition of the pPCP1 plasmid. The presence of pla is one of the factors that 

uniquely distinguishes Y. pestis from Y. pseudotuberculosis (Sodeinde et al., 1988; 

Wren, 2003). Pla is necessary for the development of both bubonic and pneumonic 

plague (Lathem et al., 2007; Perry and Fetherston, 1997). The pla gene encodes a 

protease that cleaves plasminogen into active plasmin that can degrade fibrin clots 
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(Perry and Fetherston, 1997). Pla is described as a promiscuous protease and can 

cleave many components of the plasminogen pathway, complement proteins, outer 

membrane proteins, and Fas ligand. There are also indications that it can act as an 

adhesin in addition to its proteolytic functions (Caulfield and Lathem, 2012; Caulfield 

et al., 2014; Perry and Fetherston, 1997; Sodeinde et al., 1988). 

Deletion of any of these factors from the Y. pestis genome attenuates lung 

lesion development and ultimately virulence of Y. pestis. Both the pgm- and pCD1- 

strains of Y. pestis are attenuated to such a degree that they can be studied under 

BSL 2 conditions instead of the BSL 3 conditions required for fully virulent Y. pestis. 

While there have been many studies on these virulence factors, there is still more 

information to be assembled using disease-relevant cell types and in vivo infection 

models. 

 

3.3 Methods 

All reagents were obtained form Sigma-Aldrich™ unless otherwise noted. 

 

3.3.1 Ethics statement 

The use of live vertebrate animals was performed in accordance with the 

Public Health Service (PHS) policy on Humane Care and Use of Laboratory Animals, 

the Amended Animal Welfare Act of 1985, and the regulations of the United States 

Department of Agriculture (USDA). All animal studies were approved by the 

University of North Carolina at Chapel Hill Office of Animal Care and Use, protocols 

#12-028.0 and #15-022.0. 
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3.3.2 Bacterial strains and culture conditions 

The fully virulent Yersinia pestis strain CO92 and the plasmid-cured strain 

(pCD1-) were obtained from the U.S. Army, Ft. Detrick, MD. The presence or 

absence of pCD1 and the pgm locus was confirmed by PCR for each strain before 

use. The construction of Y. pestis strains Δpla and ΔyopH has previously been 

described (Lathem et al., 2007; Price et al., 2012). Yop deletion strains (ΔyopE, J, 

M, O, T) were constructed using a lambda red recombination system as described 

previously (Price et al., 2012). The yopM gene was complemented back into its 

native site on the pCD1 plasmid using the pSR47S recombination method as 

previously described (Cathelyn et al., 2006; Walker and Miller, 2004). 

Strains were grown on brain-heart infusion (BHI) agar (Difco Laboratories) at 

26°C for two days. For infections, liquid cultures of Y. pestis CO92 were grown in 

BHI broth for 6–12 h at 26°C. The cultures were then diluted to an OD620 of 0.05–0.1 

in BHI supplemented with 2.5 mM CaCl2 and grown 12–16h at 37°C with constant 

shaking.  

 

3.3.3 Animals and infections 

Six- to eight-week old female C57BL/6J mice were obtained from Jackson 

Laboratories. Mice were provided with food and water ad libitum and maintained at 

25°C and 15% humidity with alternating 12 h periods of light and dark. For animal 

infections, groups of three to ten mice were lightly anesthetized with 
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ketamine/xylazine and inoculated intranasally with a lethal dose of 104 
colony-

forming units (CFUs) suspended in 20μL PBS. Actual CFUs inoculated was 

determined by plating serial dilutions of the inoculum on BHI. Moribund animals were 

euthanized with an overdose of sodium pentobarbital. For determination of bacterial 

burden, lungs were removed at the indicated times and homogenized in PBS using a 

Dremel® Tissue Homogenizer. Serial dilutions of each organ homogenate were 

plated on BHI agar and reported as CFU/lung. 

 

3.3.4 Isolation of primary human neutrophils and in vitro assays 

Human blood samples were obtained anonymously from consenting donors 

through the UNC Center for AIDS Research Virology Core Laboratory by common 

venipuncture according to IRB protocols #96-0859 and #08-0328. Blood was mixed 

with equal parts of a 3% dextran in 0.9% saline solution at room temperature for 

erythrocyte sedimentation. The top serum layer was removed and centrifuged at 250 

x g at 4°C for 10 min and the supernatant was removed. The pellet was 

resuspended in 0.9% saline and underlaid with Ficoll-Paque™ PLUS (GE 

Healthcare®). The gradient was centrifuged at 400 x g at 26°C for 40 min and both 

gradient layers were removed. To remove the remaining erythrocytes the pellet was 

resuspended in 0.2% saline for 1 min. An equal volume of 1.6% saline was added 

and the suspension was centrifuged at 250 x g at 4°C for 6 min. This erythrocyte 

wash was repeated and the final pellet was resuspended in cold PBS. Neutrophils 

were enumerated using a hemocytometer.  
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 For in vitro assays 12-well cell culture plates (Costar®) were pre-incubated 

with fetal bovine serum for 1 h at 37°C. FBS was removed and the wells were 

washed three times with PBS. Wells were plated with ~106 freshly isolated 

neutrophils suspended in modified RPMI media (RPMI 1640 without phenol red and 

HEPES and with L-glutamine (Gibco™) was buffered to pH 7.2 with 0.25 mM 

HEPES) and each well was supplemented with 5% FBS (HyClone™), 2.0 mM L-

glutamine (CellGro™), and 2.5 mM CaCl2. The cells were then inoculated with 

various strains of Y. pestis or treated with chemical inhibitors for 24 h at 37°C with 

5% CO2. The chemical inhibitors BI-D1870 (Cayman Chemical Co.™) and Z-YVAD-

FKM (BioVision™) were used at various concentrations to inhibit the kinase activity 

of RSK isoforms and inhibit the active site of caspase-1, respectively. 

 

3.3.5 Harvesting and staining of neutrophils for flow cytometry 

 Neutrophils were resuspended in wells by repetitive pipetting, collected into 

Eppendorf tubes, and spun 2 min at 1000 x g. Cells were washed in 2% FBS in PBS 

(flow buffer) and pelleted by spinning 2 min at 1000 x g. Cells were resuspended in 

antibody staining solution (flow buffer plus desired conjugated antibodies at a 1:200 

concentration: CD11b-phyoerythrin (Clone M1/70.15; Invitrogen), Ly6G-

phycoerythrin-Cy7 (Clone 1A8; BD Bioscience) on ice for 30 min. Cells were then 

stained for the apoptotic marker phosphatidylserine using Annexin V-FITC and for 

cell death using Propidium Iodide (Annexin V Apoptosis Detection kit FITC, 

Affymetrix™) as per the manufacturers instructions. A Guava easyCyte™ 5HT flow 



	   67	  

cytometer (EMD Millipore™) was used to detect cell staining in a 96-well plate 

format. Flow cytometry results were analyzed using InCyte Software (EMD 

Millipore™), analyzed in Microsoft Excel™ and graphs were generated using 

GraphPad Prism™. 

 

3.3.6 Histopathology and TUNEL staining 

Groups of three mice were inoculated intranasally as described above, and 

lungs were inflated with 10% neutral buffered formalin via tracheal cannulation, then 

removed and incubated in 10% formalin for a minimum of 24 h. Lungs were 

immersed in 70% EtOH, and embedded in paraffin. Five-μm lung sections were 

adhered to glass slides, stained with hematoxylin/eosin for examination, and a 

coverslip was added. 

A TUNEL Apo-Green Detection kit (Biotool™) was used to detect damaged 

DNA indicative of apoptosis. Stained slides were mounted with SlowFade® Gold 

with DAPI (Invitrogen™) and coverslips were added prior to imaging with an 

Olympus BX60 fluorescence microscope and iVision software v. 4.0.0 (BioVision 

Technologies). All images were imported into Adobe Photoshop® to merge color 

channels. Input levels were then uniformly adjusted for images from the same 

staining experiment for publication purposes.   

 

3.4 Results 

Based on pathway analysis of the LCM/RNAseq data in Chapter 2 I wanted to 

verify that Y. pestis alters neutrophil death pathways leading to increased survival, 
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which may contribute to continued lesion expansion. 

 

3.4.1 Yersinia pestis effects on human neutrophil survival in vitro. 

I compared the survival of uninoculated primary human neutrophils to both Y. 

pestis- and non-pathogenic Escherichia coli-inoculated neutrophils in vitro. At 24 

hours post infection (hpi) neutrophils were harvested for analysis of apoptotic and 

dying cells by flow cytometry. An aliquot of cells was also fixed at 0 hpi to retain the 

initial starting concentration of neutrophils in each assay. After 24 hpi, the population 

of remaining “healthy” (AnnexinV-, PI-) neutrophils ranged from 40-60% of the initial 

seeding population depending on the donor. Inoculation with non-pathogenic E. coli 

resulted in survival of only 20-30% of the initial population. In contrast, inoculation 

with Y. pestis resulted in 60-80% survival of the initial population (Figure 3.1A), a 

significant increase in surviving healthy neutrophils compared to uninoculated or E. 

coli-inoculated neutrophils. 

 

3.4.2 Role of the type III secretion system in increased survival of human 

neutrophils  

After determining that Y. pestis significantly increased the survival of 

neutrophils, I tested if this could be attributed to a known virulence determinant of Y. 

pestis. I inoculated human neutrophils in vitro with Y. pestis strains lacking the 

pigmentation locus (pgm-), the plasminogen activator protease (Δpla), and the 

plasmid encoding the T3SS (pCD1-). I observed that neutrophils inoculated with a 
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pgm- or Δpla mutant showed similar survival to those inoculated with wild type Y. 

pestis, while infection with a pCD1- mutant significantly decreased neutrophil survival 

(data not shown and Figure 3.1B), indicating that the phenotype is dependent on the 

T3SS. I next tested mutants of the six primary T3SS effectors (ΔyopE, ΔyopH, 

ΔyopJ, ΔyopM, ΔyopO, ΔyopT) in the neutrophil assay and observed that only 

infection with the ΔyopM mutant showed a significant decrease in neutrophil survival 

compared to inoculation with wild type Y. pestis (Figure 3.1C). I also observed that a 

ΔyopM:yopM complemented strain reproduced the phenotype of the wild type strain 

(Figure 3.1D), and validated my conclusion that YopM is important in modulating 

neutrophil survival. 

 

3.4.3 A novel function for YopM in neutrophil survival  

YopM is known to have two intracellular functions: (i) binding ribosomal S6 

kinase (RSK) and protein kinase N1 (PKN) (McDonald et al., 2003), which induces 

prolonged activation of RSK (Hentschke et al., 2010); and (ii) inhibiting caspase-1 

activity and inflammasome formation that leads to pyroptotic cell death (Chung et al., 

2014; LaRock and Cookson, 2012). To determine which function of YopM might be 

responsible for enhancing neutrophil survival, I performed a neutrophil infection 

assay in the presence of inhibitors of these two functions. To test the effect of 

continued YopM-induced RSK activity on neutrophil survival, I used the RSK inhibitor 

BI-D1870. Addition of increasing doses of BI-D1870 to neutrophils inoculated with 

wild type Y. pestis showed no decrease in neutrophil survival (Figure 3.2A), 



	   70	  

indicating that the prolonged kinase activity of RSK induced by YopM had no effect 

on neutrophil survival. I validated the functionality BI-D1870 by monitoring the 

phosphorylation of the S6 protein (Roux et al., 2007) at the highest tested dose of 

this RSK inhibitor. Even after 24 hours, neutrophils treated with BI-D1870 showed 

decreased phosphorylation of S6 (Figure 3.3). I next tested the effect of inhibiting 

caspase-1 during inoculation with a ΔyopM mutant, using the caspase-1 inhibitor Z-

YVAD-FMK. In the presence of this inhibitor, neutrophil survival was not enhanced 

after inoculation with the ΔyopM mutant compared to uninoculated neutrophils. I did 

observe an overall increase in neutrophil survival in samples treated with Z-YVAD-

FMK, though this was significantly lower than the survival seen during infection with 

wild type Y. pestis. This indicates that there is a certain amount of caspase-1-

dependent neutrophil death, but this is not the mechanism through which YopM is 

acting (Figure 3.2B). These findings suggest a novel function of YopM specifically 

related to neutrophil survival that does not involve its known functions of RSK and 

PKN binding or caspase-1 inhibition. 

 

3.4.4 Role of YopM in the inhibition of apoptosis in lung lesions  

Since YopM is important for prolonging neutrophil survival in vitro, I tested if 

YopM is involved in sustaining neutrophil health within inflammatory lung lesions in 

vivo. Lungs of mice infected with wild type or ΔyopM Y. pestis were collected at 48 

hpi and sectioned for hematoxylin & eosin staining. Neither the size nor number of 

inflammatory lesions was significantly altered in the ΔyopM-infected lungs compared 
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to wild type infection. The bacterial burden in the lungs was similar between the two 

infections, but there was a significant decrease in the bacterial burden in spleens of 

ΔyopM-infected mice (Figure 3.3A). This decreased spleen burden indicates a 

decreased ability of Y. pestis to disseminate from the lungs. While the overall pattern 

of pulmonary inflammation was similar between the two infections (Figure 3.3B,C), 

the centers of the largest inflammatory foci in the ΔyopM mutant displayed more 

prominent necrosis of the alveolar septa. I also observed a striking difference in lung 

lesion cellular appearance between wild type and ΔyopM mutant-infected mice 

(Figure 3.3D, E). In the ΔyopM mutant-infected tissues, increased numbers of 

neutrophils were degranulated and had faded nuclei. Additionally, amidst viable 

inflammatory cells there were individual amphophilic cell bodies (3-5 µm in diameter, 

round to slightly misshapen) that lacked a discernible nucleus and often displayed 

faint stippling (Figure 3.3E blue arrows). Correspondingly, I observed increased DNA 

damage via fluorescent TUNEL staining in lung lesions of ΔyopM mutant-infected 

mice compared to wild type Y. pestis-infected mice (Figure 3.4). This TUNEL 

staining is indicative of apoptotic cell death and correlates with the presence of the 

amphophilic cell bodies. These in vivo observations confirm the importance of YopM-

induced neutrophil survival in vitro.  Furthermore, these results are consistent with 

the RNAseq analysis suggesting that the cells in the center of lesions have a 

decreased capacity to undergo apoptosis during wild type Y. pestis infection, leading 

to the distinctive lung lesions seen in pneumonic plague.  
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3.5 Discussion 

In this chapter I sought to confirm that apoptosis is inhibited during Y. pestis 

infection in vitro and in vivo, and also identify the bacterial factor(s) that are 

responsible for this phenotype. I therefore inoculated primary human neutrophils with 

fully virulent Y. pestis, as well as a repertoire of mutant strains lacking key virulence-

related genes for a more detailed analysis. Prior to inoculation, Y. pestis was grown 

at 37°C and was not pre-opsonized to most closely mimic conditions during 

pneumonic plague disease (Lathem et al., 2005). It has previously been observed 

that the pCD1 virulence plasmid of Y. pestis is necessary to inhibit neutrophil 

production of reactive oxygen species and decrease neutrophil apoptosis (Spinner et 

al., 2010). Though I initially began evaluating apoptosis and death of neutrophils I 

found that, despite an obvious loss of viable neutrophils, AnnexinV staining was not 

consistently different by 24 hpi. While neutrophils express phosphatidylserine as a 

marker of apoptosis, they continue to progress through apoptosis and are no longer 

detectable by flow cytometry at later time points. Thus, examining a singular time 

point only visualizes cells that are currently apoptotic and fails to capture those that 

have already gone through apoptosis. I therefore changed my readout to detect 

surviving “healthy neutrophils” by subtracting the apoptotic neutrophils (AnnexinV+), 

dead neutrophils (PI+), and neutrophils that became undetectable by flow cytometry 

due to turnover (subtracting neutrophils at 24 hpi from total starting neutrophils) from 

the starting number of neutrophils. I have shown with this assay that Y. pestis leads 

to increased survival of primary human neutrophils, and that the T3SS effector YopM 

is necessary for this phenotype. This is the first direct evidence that a single Y. 
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pestis gene is able to extend the survival of neutrophils.  

After testing for the known YopM functions of RSK activation and caspase-1 

inhibition, I was unable to confirm that either of these functions had any effect on 

neutrophil survival in vitro. I hypothesize that, similar to YopJ/P (Spinner et al., 

2010), YopM has a function in neutrophils that differs from what is observed in 

macrophages. YopM was initially shown to bind α-thrombin (Leung et al., 1990) and 

subsequently α1-antitrypsin (Heusipp et al., 2006), though neither of these binding 

functions contribute to Y. pestis virulence (Leung et al., 1990). YopM was later 

shown to bind p90 ribosomal S6 kinase (RSK) and protein kinase N1 (PKN) isoforms 

(McDonald et al., 2003). The C-terminal end of YopM binds phosphorylated RSK 

(McCoy et al., 2010), inhibiting dephosphorylation and prolonging its kinase activity 

(Hentschke et al., 2010). YopM binding to RSK and PKN also facilitates activated 

RSK to phosphorylate PKN and activate its kinase activity (McDonald et al., 2003). 

The RSK and PKN binding domains of YopM are required for IL-10 production 

during a Y. pseudotuberculosis intravenous infection (McPhee et al., 2010) and the 

deletion of these domains result in attenuation of virulence (McPhee et al., 2012). 

More recently it has been shown that YopM can also bind both active caspase-1 

(LaRock and Cookson, 2012) and IQGAP1 (Chung et al., 2014), depending on the 

isoform of YopM being tested. Both of these binding activities lead to an inhibition of 

inflammasome assembly and impede pyroptosis in macrophages. Other studies 

have shown the effects of YopM on bubonic plague and systemic infection through 

cytokine analysis and organ-specific cell composition of lesions (Kerschen et al., 
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2004; Ye et al., 2014; 2009; 2011), but this is the first study to suggest a function of 

YopM during pneumonic plague as well as its ability to  promote neutrophil survival. 

The influence of YopM on apoptosis of neutrophils has been previously 

studied in systemic infection by a pgm- strain of Y. pestis, and appears to be organ-

specific (Ye et al., 2014). My work focuses on neutrophils and pathology in the lung 

during infection with a fully virulent Y. pestis strain. I demonstrate the importance of 

YopM for neutrophil survival in vitro as well as for neutrophil integrity and reduction 

of apoptosis in vivo, as demonstrated by lesion histopathology and TUNEL staining. 

Linking the in vitro phenotype of increased neutrophil survival to apoptosis in vivo 

further validates the LCM-RNAseq conclusion that the apoptosis pathway is inhibited 

in the center of lung lesions compared to the periphery. The decrease in 

disseminated bacteria is intriguing, as it implies that YopM prevents Y. pestis killing 

by neutrophils. The function of neutrophils is typically to attack invading bacteria, 

degranulate, and undergo apoptosis, necrosis, or the formation of neutrophil 

extracellular traps (NETs). Along with observing cells that lacked a discernable 

nucleus, we detected increased, diffuse TUNEL staining after infection with the 

ΔyopM mutant strain. This physiology and diffuse damaged DNA staining could 

suggest the formation of neutrophil extracellular traps (NETs) within the lung lesions. 

Further investigating the formation of NETs after infection with a ΔyopM mutant 

strain of Y. pestis could elucidate the specific function that YopM is having on 

neutrophils. However, the continuing hypothesis for the line of questioning leading 

into Chapter 4 is that the increase in neutrophil survival may result from the failure to 
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degranulate, suggesting that YopM is inhibiting degranulation of neutrophils and 

buildup of granule contents is aiding in lung lesion formation. 

In summary, I introduced a unique application of LCM technology to examine 

directly the spatially distinct microenvironments resulting from host-pathogen 

interactions during primary pneumonic plague. As a result, I was able to show that Y. 

pestis modulates neutrophil survival in vivo in a YopM-dependent manner. Further 

defining and characterizing mediators of the dramatic pulmonary inflammation that 

occurs during pneumonic plague will help in understanding the lethality of this 

disease and may contribute to our understanding of severe pulmonary infection with 

other respiratory pathogens.  
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3.6 Figures 

 

Figure 3.1: The type III secretion system effector YopM is necessary for 
enhanced neutrophil survival 

Primary human neutrophils were incubated in buffered RPMI at 37°C and 5% CO2, 

with or without bacterial inoculation. After 24 hours, remaining “healthy neutrophils” 

were assayed by flow cytometry (CD16+, CD66b+, AnnexinV-, 7-AAD/PI-). (A) After 

incubation with wild type Y. pestis, there were significantly more healthy neutrophils 

compared to both uninoculated cells and non-pathogenic E. coli-inoculated cells. (B) 

After incubation with a Δpla mutant, there was no difference in healthy neutrophils 

compared to inoculation with wild type Y. pestis. However, inoculation with a pCD1- 

(T3SS negative) mutant caused a significant decrease in healthy neutrophils. (C) 

Comparing inoculations with six individual T3SS effector mutants, only the ΔyopM 

mutant significantly decreased the percentage of healthy neutrophils compared to 
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inoculation with wild type Y. pestis. (D) Complementation of the ΔyopM strain 

restored neutrophil survival to the level seen with wild type Y. pestis. Results are 

from representative experiments performed in triplicate. Data are represented as 

mean ± SEM; asterisks represent statistical significance based on Tukey’s multiple 

comparison tests from an ordinary one-way ANOVA, **p < 0.01, ***p < 0.001. 
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Figure 3.2: Inhibiting known functions of YopM does not alter neutrophil 
survival  

Primary human neutrophils were incubated with or without bacterial inoculation and 

drug treatment. After 24 hours, remaining “healthy neutrophils” were assayed by flow 

cytometry (CD16+, CD66b+, AnnexinV-, 7-AAD/PI-). (A) Treatment with the RSK 

inhibitor BI-D1870 had no effect on the percentage of healthy neutrophils in culture 

for either uninoculated or wild type Y. pestis-inoculated samples. (B) Treatment with 

the caspase-1 inhibitor Z-YVAD-FMK showed a significant increase in the 

percentage of healthy neutrophils compared to untreated samples.  However, there 

was also still a significant difference in the percentage of healthy neutrophils 

remaining in uninoculated and ΔyopM mutant-inoculated samples compared to wild 

type Y. pestis-inoculated samples. Results are from representative experiments 

performed in triplicate. Data are represented as mean ± SEM; asterisks represent 

statistical significance based on Tukey’s multiple comparison tests from an ordinary 

one-way ANOVA, ***p < 0.001.  
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Figure 3.3: BI-D1870 continues to inhibit RSK activity after 24 hours in isolated 

human neutrophils 

Primary human neutrophils were incubated with or without bacterial inoculation and 

RSK inhibitor (BI-D1870). After 24 hours, neutrophils were harvested and lysed for 

Western blot analysis. Treatment with the BI-D1870 caused a decrease in the 

phosphorylation of S6 in both uninoculated and wild type Y. pestis-inoculated 

samples, even after 24 hours.  
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Figure 3.4: YopM-dependent effects on bacterial burden and histopathology 
during pulmonary infection with Y. pestis 

(A) At 48 hpi, there is no difference in lung bacterial burden but there is a significant 

difference in spleen bacterial burden between mice infected with wild type and 

ΔyopM mutant Y. pestis. (B, C) At low magnification there is no distinct difference in 

size or number of lung lesions in mice infected with wild type or ΔyopM mutant Y. 

pestis. (D, E) At higher magnification, however, large numbers of necrotic cells can 

be seen throughout the lung lesions in mice infected with the ΔyopM mutant 

(representative cells marked with blue arrows) that are not present during an 

infection with wild type Y. pestis. Scale bar in images represents (B, C) 200 μm or 

(D, E) 20 μm. Data are compiled from two separate experiments and represented as 
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geometric mean ± 95% CI; asterisks represent statistical significance based on 

Mann-Whitney tests, **p < 0.005. 
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Figure 3.5: TUNEL staining of infected mouse lung sections 

Representative composite images of lung lesions (48 hpi) stained for damaged DNA 

using TUNEL (green) and total DNA using DAPI (blue). TUNEL staining, generally 

indicative of apoptosis, was primarily restricted to lung lesions during Y. pestis 

infection.  More apoptosis was evident in the lung lesions of mice infected with the 

ΔyopM mutant compared to those infected with wild type Y. pestis.  
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CHAPTER 4: CHARACTERIZING THE IMPACT OF REACTIVE 

OXYGEN/NITROGEN SPECIES IN VIVO DURING PNEUMONIC PLAGUE 

 

4.1 Overview 

This chapter describes the in vivo characterization of small reactive molecule 

stresses that Y. pestis experiences within the lung during pneumonic plague. 

Activated neutrophils release both reactive oxygen and nitrogen species (ROS and 

RNS) that can kill bacteria, but may also injure host cells. I initially hypothesized that 

the inflammatory lung lesions that develop during pneumonic plague are a result of 

host-mediated injury via ROS and RNS. In the work described in this chapter, 

however, I provide evidence to the contrary that indicates ROS and RNS play a 

significant role in hindering early establishment of Y. pestis during pneumonic 

plague. Both the extent of lung injury and bacterial burdens in the lungs were 

increased when these stresses were negated in a murine intranasal infection. This 

work is the first to evaluate in vivo how these small host defense molecules affect 

the tissue damage and lesion composition in lungs during pneumonic plague. 

Characterizing innate immune stresses, and how Y. pestis is affected by them, will 

lead to a better understanding of Y. pestis - host interactions during pneumonic 

plague, and may help to identify new therapeutics that can prolong the treatment 

window for Y. pestis infection. 
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4.2 Introduction 

The studies presented in this chapter focus on the small molecules, termed 

reactive oxygen species (ROS) and reactive nitrogen species (RNS), that are 

generated by neutrophils and other innate immune cells in response to infection. 

These small molecules act during host defense to kill invading microbes by 

disrupting normal cell function, but can also incidentally injure the host. Therefore, a 

delicate balance must be kept to prevent extensive host damage while maintaining 

the antimicrobial activity of ROS/RNS. Consequently, many bacteria have evolved 

mechanisms to counteract oxidative and nitrosative bursts. If an immune response is 

prolonged due to bacterial resistance, ROS and RNS can cause damage to host 

tissue, particularly in a location like the alveolar spaces, which are lined by a single 

layer of epithelial cells (Folkerts et al., 2001). Based on the rapid neutrophil response 

and hyper-inflammatory state in the lungs late during pneumonic plague, the lung 

lesions that form may be the result of the over-production of ROS and RNS due to 

the uncontrolled burden of Y. pestis that replicates unchecked in the lungs early 

during infection (Lathem et al., 2005).  

In response to infection, most antimicrobial ROS are generated from the initial 

reaction of O2 and NADPH with the NADPH oxidase complex. This reaction 

generates superoxide (O2
-) that can be converted to hydrogen peroxide (H2O2) and 

then to hydroxyl radicals. O2
- can also react with nitric oxide (NO) to generate 

peroxynitrite (ONOO-), another potent reactive molecule (Bogdan et al., 2000; Fang, 

1997; Segal, 2005; Thomas et al., 1988). Additionally, conversion of H2O2 by 

neutrophil myeloperoxidase (MPO) can generate antimicrobial hypochlorous acid 
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(HOCl) and chloramines (Bogdan et al., 2000; Thomas et al., 1988). It is important 

for immune cells to control and target the ROS they produce due to their generalized 

pleiotropic and harmful effects. Proteins, lipids, DNA, and RNA can all be targets of 

oxygen radicals, and if ROS are overproduced they can damage the host through 

their interactions with these cellular components. Both the sugar moieties and the 

base structures of DNA and RNA can be targeted, resulting in strand breaks. 

Membrane lipids are attacked at polyunsaturated fatty acids to disrupt membrane 

fluidity and membrane-protein structures. Proteins can likewise be targeted, causing 

the modification of sulfur bonds, oxidation of amino acids around metal binding sites, 

and peptide fragmentation, among other effects (Cabiscol et al., 2000). 

Most RNS generated in response to bacterial infection result from the 

metabolism of L-arginine by the inducible nitric oxide synthase (iNOS) protein, which 

utilizes O2 and NADPH to form citrulline and NO. NO can be further converted into 

other antimicrobial RNS including ONOO-, S-nitrosothiols (RSNO), various nitrogen 

oxides, and dinitrosyl-iron complexes (Fang, 1997). NO can be an inflammatory 

mediator, up-regulating the production of over 20 cytokines within numerous cell 

types. Both NO and RSNOs can also affect the apoptotic potential of cells (Bogdan 

et al., 2000). Specifically within neutrophils, NO is important for recruitment and 

adhesion through cytokine regulation and integrin expression. RNS can work by 

altering transcription through signaling pathways, or can directly affect activity 

through tyrosine nitration of proteins (Bogdan, 2001). These RNS can hinder 

bacterial growth in many ways. For example, RSNOs can be generated through NO 
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reacting with SH-groups on free amino acids, which are able to disrupt metal-sulfur 

clusters to kill bacteria (Bogdan et al., 2000; Fang, 1997; Marcinkiewicz, 1997; 

Pacelli et al., 1995). Interestingly, there is some evidence that host-NO can react 

with bacterial-derived O2
- and generate ONOO- within a bacterium to cause tyrosine 

nitration of bacterial proteins to affect their functions (Bogdan, 2001).  

The NADPH oxidase complex and iNOS have been studied in the context of 

many bacterial infections. Both ROS (Brennan et al., 2004; Cha et al., 2010; Jann et 

al., 2009; Mendez-Samperio et al., 2009; Pacelli et al., 1995) and RNS (Bogdan, 

2001; Brennan et al., 2004; Fang, 1997; Marcinkiewicz, 1997; Pacelli et al., 1995; 

Richardson et al., 2006) have been shown to be important to varying degrees in 

controlling a number of bacterial infections. In vitro studies of Y. pestis have 

described a role for these reactive small molecules in regulating bacterial gene 

expression and how the bacterium attempts to control host generation of these 

molecules (Paauw et al., 2009; Pradel et al., 2014; Sebbane et al., 2006). It is 

necessary, however, to define the role of ROS and RNS in vivo during pneumonic 

plague. If these mechanisms contribute to the progression of pneumonic plague, 

they could be manipulated to prolong the timeframe during which treatment is 

effective. The work described in this chapter examines the affects of both ROS and 

RNS on pneumonic plague using intranasal infection with a fully virulent strain of Y. 

pestis. The use of mouse strains that lack production of leukocyte based ROS 

(gp91phox-/-) and RNS (iNOS-/-) allow us to determine how these reactive species 

influence pneumonic plague disease progression and lesion development.  
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4.3 Methods 

All reagents were obtained form Sigma-Aldrich™ unless otherwise noted. 

 

4.3.1 Ethics statement 

The use of live vertebrate animals was performed in accordance with the 

Public Health Service (PHS) policy on Humane Care and Use of Laboratory Animals, 

the Amended Animal Welfare Act of 1985, and the regulations of the United States 

Department of Agriculture (USDA). All animal studies were approved by the 

University of North Carolina at Chapel Hill Office of Animal Care and Use, protocols 

#12-028.0 and #15-022.0. 

 

4.3.2 Bacterial strains and culture conditions 

The fully virulent Yersinia pestis strain CO92 was obtained from the U.S. 

Army, Ft. Detrick, MD. Y. pestis was grown on brain-heart infusion (BHI) agar (Difco 

Laboratories) at 26°C for two days. For infections, liquid cultures of Y. pestis CO92 

were grown in BHI broth for 6–12 h at 26°C. The cultures were then diluted to an 

OD620 of 0.05–0.1 in BHI supplemented with 2.5 mM CaCl2 and grown 12–16h at 

37°C with constant shaking.  

 

4.3.3 Animals and infections 

Six- to eight-week old female C57BL/6J mice were obtained from Jackson 

Laboratories. Knockout mouse strains, gp91phox-/- and iNOS-/-, were originally 
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obtained from Jackson Laboratories and bred at the University of North Carolina at 

Chapel Hill according to the Division of Laboratory Animal Medicine regulations. 

Mice were provided with food and water ad libitum and maintained at 25°C and 15% 

humidity with alternating 12 h periods of light and dark. For animal infections, groups 

of three to ten mice were lightly anesthetized with ketamine/xylazine and inoculated 

intranasally with a lethal dose of 103-104 
colony-forming units (CFUs) suspended in 

20μL PBS. Actual CFUs inoculated was determined by plating serial dilutions of the 

inoculum on BHI. Mice were continuously monitored at 12-hour intervals and scored 

for disease severity. If mice were moribund at any time point they were humanely 

euthanized as per the Animal Care and Use protocol. 

 

4.3.4 Bacterial organ burden determination 

After humanely euthanizing infected mice, both lungs and spleens are removed and 

separately placed into conical tubes containing PBS. Organs were homogenized in 

the PBS using a Dremel® tissue homogenizer. Dilutions of tissue homogenate were 

prepared samples were spotted onto BHI agar. Agar was incubated at 26°C for 2 

days to allow for growth of the bacterial colony forming units (CFUs). The CFUs 

were enumerated and back-calculating the dilutions revealed the bacterial burden 

per organ.  
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4.3.5 Lung histopathology staining 

Groups of three mice were inoculated intranasally as described above. At the 

defined time point mice were humanely euthanized and lungs were inflated with 10% 

neutral buffered formalin via tracheal cannulation, then removed and incubated in 

10% formalin for a minimum of 2 h. Lungs were placed in phosphate buffered saline 

(pH 7.4) with 30% Sucrose and 20% O.C.T. compound (Tissue-Tek®) for 3 h with 

intermittent inverting. Lungs were removed, covered in O.C.T. for 10 min, frozen on 

dry ice, and stored at -80°C. Ten-μm lung sections were adhered to glass slides, 

stained with hematoxylin/eosin for examination, and a coverslip was added. 

 

4.4 Results 

 Chapters 2 and 3 of this Dissertation have shown that during pneumonic 

plague, neutrophils aggregate outward from small initiating foci and suffer from a 

lack of turnover and cell clearance, which results in alveolar destruction late during 

pneumonic plague. This damage likely results from neutrophil defense mechanisms 

such as degranulation and the release of granule contents as new neutrophils begin 

infiltrating into the lungs. These neutrophil granules include proteins and protein 

complexes that generate ROS and RNS that can lead to damaging effects on host 

tissue. Determining the effects of ROS and RNS on lung lesion development will give 

insight into how components of the innate immune response cause alveolar damage 

during pneumonic plague. 
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4.4.1 Histological comparison of the effects of reactive oxygen and nitrogen 

species on pneumonic plague lung lesions 

 To determine the effects of small ROS and RNS molecules on the 

development of lung lesions during pneumonic plague, I obtained gp91phox-/- mice 

lacking the ability to produce ROS from the leukocyte NADPH oxidase complex, and 

iNOS-/- mice lacking the ability to produce RNS. Mice were infected via intranasal 

inoculation with 104 fully virulent Y. pestis, and lungs were harvested at various time 

points and sectioned for gross histopathological analysis by hematoxylin and eosin 

staining. At 36 hpi, C57BL/6J (wild type) mice showed very little lung damage with 

only a few small foci beginning to form (Figure 4.1A). Alternatively, infected iNOS-/- 

and gp91phox-/- mice both had significant lung lesion development by 36 hpi. Lungs 

of iNOS-/- mice displayed levels of inflammatory damage similar to what is seen in 

the lungs of wild type mice later at 48 hpi (Figure 4.1C, 4.1B respectively). Similarly, 

lungs of gp91phox-/- mice had more consolidated lesions by 36 hpi, and also 

appeared similar to wild type lungs at 48 hpi (Figure 4.1E, 4.1B respectively). This 

difference was less defined at later time points during infection, where by 48 hpi the 

lungs of iNOS-/- mice had a similar amount of lung area covered by lesions as wild 

type mice. However, the distribution of lesions appeared unique: there tended to be 

fewer but larger lesions that likely cause more severe alveolar damage at this later 

time point in the lungs of iNOS-/- mice (Figures 4.1D).  In contrast, lung lesion 

development in gp91phox-/- mice displayed more coverage of lung surface area, and 

lungs contained visibly more lesions compared to wild type mice (Figure 4.1F).  
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4.4.2 Determining the effects of ROS/RNS on bacterial burden after intranasal 

infection with Y. pestis 

 The more advanced lesion development in the lungs of both iNOS-/- and 

gp91phox-/- mice at 36 hpi led me to question whether there were differences in 

bacterial burden within the organs of these mice. To this end, both lung and spleen 

burdens were assessed at 36 and 48 hpi in all three strains of mice after intranasal 

inoculation with 104 Y. pestis CFUs. Spleen burden is a representative assessment 

of bacterial dissemination from the lungs (Lathem et al., 2005). The Y. pestis burden 

in the lungs of all three strains of mice remained equivalent at both 36 and 48 hpi 

(Figure 4.2). Bacterial burden in the spleen, however, was altered between the three 

mouse strains. While at 36 hpi there was no significant difference in spleen burdens 

between the three strains of mice, there was a clear trend that the iNOS-/- and 

gp91phox-/- mice had higher spleen burdens at this time point (Figure 4.2). The 

difference in spleen bacterial burden became more apparent by 48 hpi, where both 

the iNOS-/- and gp91phox-/- mice had significantly higher bacterial burdens compared 

to those seen in wild type mice (Figure 4.2). These findings imply that dissemination 

is occurring earlier in the iNOS-/- and gp91phox-/- mice, suggesting that 

establishment of Y. pestis in the lungs is unhindered in these mice compared to wild 

type mice.  
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4.4.3 Survival of mice lacking the ability to produce small reactive species 

Based on differences in both lung lesion area and Y. pestis burdens in the 

spleen, I sought to determine if the absence of ROS and RNS effected the survival of 

mice during pneumonic plague. An intranasal dose of 103 Y. pestis was administered 

to wild type, iNOS-/-, and gp91phox-/- mice. Due to the extremely rapid progression of 

pneumonic plague this lower dose was used to attempt to compensate for the 

overwhelming burden normally experienced in wild type mice. I could then better 

determine survival differences specifically do to earlier development of disease. The 

health of all mice was assessed every 12 hours, and when the mice became 

moribund they were euthanized and the span of their survival was recorded. While 

iNOS-/- mice had a moderately extended time to death compared to wild type mice, 

this difference was not statistically significantly. Likewise, gp91phox-/- mice had a 

similar survival time as wild type mice (Figure 4.3). This data suggests that, while 

small reactive molecules may have effects on lung lesion development and 

composition, they are dispensable in relation to survival during our mouse model of 

infection. 

 

4.5 Discussion 

While several laboratories have demonstrated relevance of innate immune 

cells (including neutrophils) during plague infection (Grabenstein et al., 2006; 

Kerschen et al., 2004; Laws et al., 2010; Lukaszewski et al., 2005; Marketon et al., 

2005; O'Loughlin et al., 2010; Pechous et al., 2013; Pujol and Bliska, 2005; Welkos 
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et al., 1998; Zauberman et al., 2006), there is a lack of information regarding 

whether neutrophils use small reactive species such at ROS and RNS to control Y. 

pestis within lung lesions during pneumonic plague. Neutrophils are able to confer 

several different stresses on bacteria while attempting to control infection 

(Kobayashi et al., 2003; Segal, 2005; Tsai and Grayson, 2008). We predicted that 

ROS/RNS likely contribute to lung damage in pneumonic plague due to the densely 

packed, neutrophil-rich nature of the inflammatory lung lesions (Bogdan, 2001; 

Bogdan et al., 2000; Brennan et al., 2004; Fang, 1997; Pacelli et al., 1995; Roos et 

al., 2003; Segal, 2005). While ROS (Gao et al., 2011; Sebbane et al., 2006), RNS 

(Sebbane et al., 2006), and neutrophils (Laws et al., 2010; O'Loughlin et al., 2010) 

have each proven effective in combating Y. pestis in vitro, no comprehensive study 

has observed these effects during pneumonic plague, a disease characterized 

largely as the destruction of lung tissue by a hyper-activated innate immune 

response (Lathem et al., 2005).  

In this chapter, I sought to determine the in vivo affects of small reactive 

molecules on disease progression and development of lung lesions during 

pneumonic plague. To perform these studies I utilized two strains of knockout mice: 

iNOS-/- and gp91phox-/-. In generating ROS, neutrophils utilize a specific 

phagocytic/leukocyte version of NADPH oxidase that contains the gp91phox (NOX2) 

subunit (Brandes and Kreuzer, 2005). The specificity of this gp91phox subunit can 

be taken advantage of, and gp91phox-/- mice can be used to study the depletion of 

leukocyte ROS (Gao et al., 2002). Inhibiting the NADPH oxidase complex in this 
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manner can also affect the generation of ROS by MPO since H2O2, a downstream 

product generated by the NADPH oxidase complex, is necessary for the activity of 

MPO (Bogdan et al., 2000). In generating RNS, there are three forms of NOS: 

inducible, endothelial, and neuronal. The eNOS protein is necessary for vasodilation, 

nNOS is necessary for neuronal cell communication, and both aid in the regulation of 

blood pressure (Folkerts et al., 2001; Forstermann and Sessa, 2012). The iNOS 

protein is found expressed in cells as a defense response to invading pathogens, 

and is therefore primarily found in innate immune cells or cells such as airway 

epithelial cells that act as sentinels to detect and combat invading pathogens 

(Bogdan et al., 2000; Folkerts et al., 2001). The specificity of iNOS during infection 

can be taken advantage of, and iNOS-/- mice can be used to study the depletion of 

RNS in vivo (MacMicking et al., 1995; Wei et al., 1995). 

The observation that small lung lesions begin to develop at 36 h after 

intranasal infection of wild type mice with Y. pestis is consistent with previous 

findings in the Goldman lab (Lathem et al., 2005). It was therefore surprising to 

observe that larger lesions had developed by 36 h in the lungs of both the iNOS-/-, 

and gp91phox-/- mice after intranasal infection. This was contrary to my initial 

hypothesis that ROS and RNS were responsible for a large amount of damage in the 

lungs after infection, and that their depletion would mitigate much of this damage. On 

the contrary, this data suggests that both ROS and RNS play a role in preventing 

initial establishment of Y. pestis in the lungs. 
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Along with early lesion development, the increased dissemination of Y. pestis 

from the lungs of both iNOS-/- and gp91phox-/- mice may indicate that there is an 

initial stalling of Y. pestis by these reactive species that prevents earlier systemic 

spread. There is a potential correlation between the increase in bacterial 

dissemination, as determined by bacterial burden in the spleen, and the earlier 

development of larger lung lesions. An increase in the spleen burden of both the 

iNOS-/- and gp91phox-/- mice suggests that dissemination from the lungs begins 

earlier during these infections. This earlier infiltration could lead to lesions 

developing earlier in the iNOS-/- and gp91phox-/- mice after intranasal infection with 

Y. pestis. This could imply that there is a threshold of bacterial burden or host 

damage in the lungs that triggers dissemination, and without these reactive species 

Y. pestis is less adept at disseminating from the lungs into distal tissues.  

The initial hypothesis that ROS and RNS were responsible for extensive 

damage within lung lesions also predicted that there would be an increase in the 

survival of the iNOS-/- and gp91phox-/- mice once that damage was mitigated. Upon 

observing that there was earlier lesion development and increased dissemination in 

knockout mice, it was not surprising that there was no change in iNOS-/- or 

gp91phox-/- mouse survival compared to wild type mice after intranasal challenge. 

On the contrary, my current model suggests that the iNOS-/- and gp91phox-/- mice 

would succumb to disease more quickly due to the advanced progression of lesion 

formation and increased septicemia. It is possible that using an inoculum above the 

LD50 for Y. pestis overwhelms the mouse and masks any significant change in 
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survival. Use of a lower inoculum, at which not all wild type mice succumb to 

infection, may be necessary to observe a change in survival in the iNOS-/- and 

gp91phox-/- mice. 

A great deal of work has focused specifically on Y. pestis itself, or the direct 

interaction of bacteria with specific host innate immune cells. However, as Y. pestis 

represents a potential bio-weapon threat, more research should focus on a whole-

host view of disease. Observing in vivo immune responses during disease 

progression allows for the identification of new pathways that could not be identified 

with in vitro assays alone. Y. pestis vaccine research is primarily focused on proteins 

known to directly interact with host cells. In addition to these, Y. pestis proteins 

affecting and responding to the environment may be equally important. This unique 

look at the effect of ROS and RNS in lung lesions gives insight into how individual 

molecules can affect disease symptoms. It also offers a peek into the potential 

information that may be revealed when the RNAseq data from Chapter 2 are 

evaluated to identify patterns in genes affected by the generation of ROS and RNS.  
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4.6 Figures 

 

Figure 4.1: Comparative histopathology of wild type, iNOS-/-, and gp91phox-/- 
mice during intranasal Y. pestis infection 

At 36 hpi lung sections of (A) wild type mice infected with 104 Y. pestis had very little 

apparent inflammation. At this same time point, lungs sections of both (C) iNOS-/- 

and (E) gp19phox-/- mice had much more progressed inflammation with the 

development of sizeable lesions. At 48 hpi (B) lung sections of wild type showed the 

typical progressive development of lung lesions. At this same time point lung 

sections of (D) iNOS-/- mice had a few expansive lung lesions taking up a majority of 

individual lung lobes. Lung sections of (F) gp91phox-/- mice had an abundant number 

of lesions throughout all lobes of the lung consuming a large expanse of the lung. All 

representative images are captured at 40x magnification. 
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Figure 4.2: Bacterial burden of both the lung and spleen of wild type, iNOS-/-, 
and gp91phox-/- mice during intranasal Y. pestis infection 

After intranasal infection with 104 Y. pestis, wild type, iNOS-/-, and gp91phox-/- mice 

were euthanized at various time points to obtain a measurement of bacterial burden. 

(A) After 36 hpi the lung burden of all 3 mouse strains were equivalent. Spleen 

burden also did not show a significant change, but there was a trend of higher 

burden in iNOS-/- and gp91phox-/- mice. (B) After 48 hpi the lung burden of all 3 

mouse strains was still equivalent. Spleen burden differences had become more 

apparent and there was a significant increase in burden for both iNOS-/- and 

gp91phox-/- mice compared to wild type mice. Data are from representative 

experiments and represented as geometric mean ± 95% CI; asterisks represent 

statistical significance based on Mann-Whitney tests, *p < 0.05. 
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Figure 4.3: Survival graph of wild type, iNOS-/-, and gp91phox-/- mice during 
intranasal Y. pestis infection 

All mice were inoculated with 103 Y. pestis and were observed for disease 

symptoms. Wild type, iNOS-/-, and gp91phox-/- had median survival times of 72 h, 84 

h, and 72 h respectively. Data is represented as percent survival of mice and there 

was no significant difference in survival by log-rank Mantel-Cox tests. 
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CHAPTER 5: DISCUSSION AND FUTURE EXPERIMENTS 

 

5.1 Summary of results 

Chapter 1 of this dissertation gives a brief overview of the intriguing past of 

Yersinia pestis and how plague disease has altered human history. It also focuses 

on pneumonic plague and discusses the lung and the innate immune system that 

attempts to control infection but instead leads to lung damage and pneumonia.  

While in vitro work is certainly critical to advancing our understanding of 

pathogenesis, certain information can only be obtained through in vivo analysis 

during infection. Chapter 2 tackles this in vivo research using a novel method to 

evaluate infection in the lung, using LCM and RNAseq to investigate spatial 

differences in transcription within inflammatory sites after intranasal inoculation with 

fully virulent Y. pestis. We isolated RNA from the center and periphery of the 

inflammatory lung lesions that form during the later stages of pneumonic plague in 

order to define, by generating a transcriptome using RNAseq, how Y. pestis was 

affecting the cells present in these two regions. In addition, we isolated and 

sequenced RNA from bone marrow isolated neutrophils (BM-PMNs) of infected and 

uninfected mice as a distal match to our lung samples, providing us with a gene 

repertoire that was known to be neutrophil-specific. By performing statistical 

comparisons between the lesion center and periphery, and separately between the 
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uninfected and infected BM-PMNs, we uncovered 976 and 3,198 genes that were 

significantly different between these comparisons, respectively. Comparing these 

two gene sets resulted in a list of 224 genes with an enrichment value of p=0.02 that 

represented genes in the lung lesion comparison that were neutrophil specific. The 

transcriptional profiles for the 224 genes were then clustered to identify patterns 

between the four tested groups based on the differential regulation between the two 

comparisons (e.g. A gene is up-regulated in the infected BM-PMNs compared to the 

uninfected BM-PMNs and then down-regulated in the lesion center compared to the 

lesion periphery). Interestingly, we observed that the profiles of the uninfected BM-

PMN and lesion center regulation clustered together, while the infected BM-PMN 

and lesion periphery regulation profiles clustered together, indicating that neutrophil 

transcription profiles in the center of the lesions are more similar to “unstimulated” 

neutrophils (The above example would represent this profile phenotype). This 

apparent down-regulation of neutrophil transcription was supported through density 

curve analysis of defined gene sets using a ratio of genes in the lesion periphery 

compared to the lesion center. We found that gene sets involved in leukocyte 

(neutrophil) migration and apoptotic pathways were overall more down-regulated in 

the center of lung lesions compared to the periphery, indicating that these pathway 

functions were being down-regulated in the center of lesions. For example, more 

genes in the apoptosis pathways were being down regulated than expected by 

chance, indicating that neutrophils in the center of lesions are hindered in going 

through apoptosis. 



	   110	  

Chapter 3 validates the RNAseq analysis that indicated genes involved in 

neutrophil apoptosis are down-regulated in the lesion centers. In vitro infection 

assays using isolated human neutrophils were subsequently employed to evaluate 

the survival of neutrophils after challenge with various bacterial strains. We 

concluded that, compared to neutrophils that were uninfected or infected with non-

pathogenic Escherichia coli, fully virulent Y. pestis infection caused an increase in 

neutrophil survival after 24 h. We went on to identify the T3SS effector YopM as 

being important in causing this prolonged survival of neutrophils. Despite identifying 

a role for YopM, the mechanism of YopM function in this system remains unknown. 

We tested the two known intracellular binding functions of YopM using the 

appropriate inhibitors, but preventing either of the known functions had no effect on 

neutrophil survival. Moving to our in vivo mouse model of infection, we determined 

that YopM is important for the composition of lung lesions during pneumonic plague. 

We observed a significant population of cells, presumably neutrophils, which appear 

to be degranulated in the lungs of mice infected with a ΔyopM strain of Y. pestis. 

This observation also correlates with increase TUNEL staining within lung lesions 

after a ΔyopM infection, indicative of increased apoptosis. This supports the in vitro 

data and indicates that Y. pestis prolongs neutrophil survival in vivo in a YopM-

dependent manner. 

Chapter 4 focuses on the role of reactive small molecules released by 

neutrophils that should kill invading bacteria, but can end up harming host tissue in 

the process. Interestingly, these in vivo studies involving intranasal infection of wild 
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type, iNOS-/-, and gp91phox-/- mouse strains with Y. pestis, indicated that both ROS 

and RNS may be important for hindering early establishment of Y. pestis in the 

lungs. The lung histopathology of both the iNOS-/-, and gp91phox-/- mice showed 

increased lung damage compared to wild type mice after infection. Both iNOS-/-, and 

gp91phox-/- mice also had increased dissemination of bacteria from their lungs as 

observed by bacterial burden in spleens. These differences did not significantly 

affect the survival of infected iNOS-/-, and gp91phox-/- mice at the doses tested. 

Together, these three chapters unite to better define the cause of lung lesion 

development during pneumonic plague by looking directly at interactions of Y. pestis 

with relevant cell types in an in vivo intranasal infection model. 

 

5.2 Filling gaps in plague research 

Several laboratories have demonstrated the relevance of innate immune cells 

during plague pathogenesis (Laws et al., 2010; Marketon et al., 2005; Pechous et 

al., 2013), and the effects on macrophages (Grabenstein et al., 2006; Pujol and 

Bliska, 2005; Zauberman et al., 2006) and neutrophils (O'Loughlin et al., 2010; 

Spinner et al., 2013; 2008; 2010; Welkos et al., 1998) after interacting with various 

virulence determinants of Y. pestis. Despite this work, there remains a large gap in 

the field regarding the inability of neutrophils, the most abundant cell type interacting 

with Y. pestis in the lungs during pneumonic plague (Pechous et al., 2013), to control 

Y. pestis infection leading to the lesions seen in this disease. Prior to the research 

presented in this dissertation, no in-depth analysis has been performed to determine 

how Y. pestis may be altering neutrophil function within the lungs to facilitate lesion 
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expansion in the absence of noticeable immune cell or bacterial clearance. Isolating 

the most relevant cell type in lung lesions and using assay conditions that most 

closely mimic the extracellular nature of Y. pestis during pneumonic plague (Price, 

2011) enhanced the study of this common theme throughout this dissertation. A 

unique tissue level approach is described in Chapter 2 that investigated the effects 

of Y. pestis on neutrophils in vivo. Evaluation of the spatial differences in gene 

regulation within lung lesions not only allows for the isolation for relevant cell types, 

but also highlights the idea that there are some questions that cannot be tackled 

using in vitro assays and attenuated Y. pestis strains. Through the use of LCM and 

RNAseq, we specifically evaluated neutrophil transcript regulation within lung lesions 

that developed during pneumonic plague. In Chapter 2, we evaluated three sets of 

genes for their spatial regulation within lesions, and found that two of these sets 

were significantly altered between the two regions. The RNAseq approach offers the 

opportunity to look for host pathways that are differentially regulated within these 

sites of tissue damage to identify how neutrophils are altered after interaction with Y. 

petsis. Additionally, chapter 3 addresses the issue of Y. pestis altering neutrophil 

function during pneumonic plague, and identifies that the T3SS effector protein 

YopM alters neutrophil survival both in vitro and in vivo.  

Chapter 3 also investigates the unique nature of lung lesions that continue to 

expand throughout disease. We are the first group to focus on the composition of 

these lesions and how they establish within the lung. Very few of the neutrophils 

within these lesions appear to be undergoing apoptosis despite the highly 
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inflammatory microenvironment and significant bacterial numbers in the lungs. The 

characterization of a role for YopM in Chapter 3 begins to elucidate these 

observations, and shows how the unique composition of these lung lesions is partly 

dependent on the ability of YopM to inhibit the progression of neutrophils through the 

apoptotic pathway. The reason why there is not a more drastic reduction in lesion 

size during infection with a ΔyopM Y. pestis mutant is likely due to the pleiotropic 

effects of other Yops, which will be investigated in detail in future studies.  

It is unknown what aspects of the immune response are responsible for the 

alveolar damage that occurs during pneumonic plague. It is possible that the lack of 

neutrophil turnover is a primary cause of alveolar destruction. As a result of this lack 

of turnover more activated neutrophils infiltrate and aggregate to form the lesions. 

These infiltrating neutrophils may be causing a heightened level of damage through 

releasing ROS and RNS while attempting to control the infection and continuously 

calling more neutrophils to the site of infection. While some research suggests that 

neutrophils can kill Y. pestis in vitro (Laws et al., 2010; O'Loughlin et al., 2010), 

these bacteria are able to persist in infected lungs despite massive neutrophilic 

influx. Current research has not addressed this in vitro/in vivo difference or defined 

the immune stresses present in the lung lesion microenvironment that may be the 

cause of host damage. Chapter 4 begins to reveal the impact of neutrophil defense 

mechanisms, and whether their granule contents contribute to lung lesion 

development and damage. This chapter suggests that ROS and RNS contribute to 

the control of Y. pestis in the lung, but not enough to contain infection, which soon 
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runs rampant in the lungs and disseminates to other organs in the body. Further 

investigations of the neutrophil granule contents will help to address which of these 

components can be manipulated to aid in treating pneumonic plague. 

Many studies focus specifically on individual Y. pestis virulence factors and 

how they alone interact with host immune cells. Y. pestis vaccine research is also 

based mainly on specific Y. pestis surface proteins known to directly interact with 

host cells. However, the work presented in this dissertation has taken a different 

approach by focusing on how the host and Y. pestis respond in the context of an 

actual infection and not as individual components of cells or bacteria. This research 

is innovative in how it accounts for the host - Y. pestis interactions leading to lung 

lesion formation and identifies genes that are altered within the lesion 

microenvironments. No other group has looked specifically at lung lesions to 

determine how Y. pestis is able to survive and persist within this hyper-inflammatory 

host microenvironment. Continued research in these unexplored areas of Y. pestis 

infection may not only affect pneumonic plague treatment, but may also reveal 

factors involved in acute lung infection with other pathogens. 

  

5.3 Implications for the study of plague and pathogen-associated tissue 
damage 

 Much of the research in the Y. pestis field is performed in vitro and with 

attenuated strains of the bacterium. In the past, these approaches have been 

important for studying individual virulence factors and their functions, but lack in the 

ability to wholly translate to fully virulent disease. While the necessity of a BSL 3 



	   115	  

laboratory has slowed research on this historically important pathogen, The 

Goldman lab has consistently used fully virulent Y. pestis, and virulence factor 

mutants, to gain a greater appreciation for virulence in vivo (Lathem et al., 2007; 

2005; Pechous et al., 2013; 2015; Price et al., 2012; Sivaraman et al., 2015) and the 

work in this dissertation continues in this vein. This more biologically relevant model 

allows us to ask questions that could not be tackled using in vitro assays or 

attenuated Y. pestis strains.  

Combining the use of fully virulent organisms with the applications of LCM 

and RNAseq has allowed us to dissect regions of lung lesions that form during the 

late stage of pneumonic plague disease. Isolating RNA from separate regions of the 

center and periphery of these lesions allowed assessment of unique 

microenvironments within the lungs. The ultimate goal of this work was to observe 

how Y. pestis interactions with the host affected the transcription of infiltrating 

neutrophils, eventually causing the development of histopathologically distinct lung 

lesions. This technique, however, may have much broader appeal to the bacterial 

pathogenesis community. I have hypothesized, and observed, that even between 

relatively small regions of damaged tissue, there are observable spatial differences 

in how host cells are responding. This approach could be used in similar systems 

where pathogen-induced host damage leads to severe disease complications or 

death of the host. Investigating host pathways that could be manipulated to alter the 

mechanisms by which damage is occurring may bring about approaches for 
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specifically targeting the immune system to allow for more efficient treatment of 

infections.  

 For in vitro assays, we also used relevant cell types and assay conditions for 

the questions we were asking. This has become more important recently, as it has 

been observed that at least one of the Yop effector proteins has different effects on 

different cell types (Spinner et al., 2010). We have recently shown that neutrophils 

seem to be selectively targeted for injection by the Y. pestis T3SS and are the cell 

type most important for lung lesion development (Pechous et al., 2013). We 

therefore wanted to use neutrophils in the in vitro assays presented in this 

dissertation. Our findings that YopM has a novel undefined function in prolonging 

neutrophil survival only emphasizes the importance of using relevant cells types 

during research. Neutrophils are a notoriously difficult cell type to assay, but we 

emphasize with this work that, while immortalized and derived cell lines can be 

extremely useful, primary cells of the relevant lineages are necessary to more deeply 

understand the pathogenesis of diseases. Likewise, we ensure that we are using the 

most relevant assay conditions for our study. While several labs pre-grow Y. pestis 

at room temperature and pre-opsonize the bacteria prior to functional infection 

assays, we utilized conditions most relevant to pneumonic plague. We mimic primary 

pneumonic plague by pre-growing Y. pestis at 37°C to mimic the lung temperature 

prior to person-to-person transmission, and we do not pre-opsonize our bacteria 

since we observe very little intracellular Y. pestis during pneumonic plague. Varying 

conditions in other neutrophil studies could very well explain some of the conflicting 
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data on their ability to kill Y. pestis and how they are affected by various virulence 

factors (Laws et al., 2010; Lukaszewski et al., 2005; O'Loughlin et al., 2010; Spinner 

et al., 2010). Better defining the interactions between the host and Y. pestis that are 

responsible for the formation of lung lesions and pneumonia will lead to a better 

understanding of Y. pestis infection and identification of potential treatments to 

improve survival during a Y. pestis infection. 

In conclusion, my work has advanced the field by introducing a new method 

for analyzing the transcription of cells within areas of tissue damage caused by 

bacterial infection. I have also characterized the effects of both bacterial and host 

factors on the lung lesions that develop during pneumonic plague, including the Y. 

pestis T3SS effector YopM and host ROS and RNS.  

 

5.4 Future Experiments 

 Future work on the studies performed within this dissertation will continue to 

lead to a better understanding of Y. pestis disease development. This new 

information can be utilized to prolong the time window during which treatment can be 

effectively delivered against pneumonic plague and other inflammatory respiratory 

pathogens. Below are suggestions for continuing the work in this dissertation to 

define the lung damage caused by the interaction of Y. pestis and neutrophils: 

 

1. Continue generating gene lists of interest and testing them on the 

density curve model to find pathways that are altered between the 

lesion periphery and center.  
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2. Perform LCM to isolate Y. pestis RNA from the periphery and center 

of lesions to transcript profiles after RNAseq. 

3. Perform qRT-PCR on lung lesion-obtained RNA for genes in the 

pathways identified as being altered in the density curve model to 

identify genes which are truly regulated by the interactions of Y. 

pestis. 

4. Perform qRT-PCR analyses on lung lesion-obtained RNA from mice 

infected with ΔyopM and wild type Y. pestis to compare apoptosis 

pathway genes and determine how YopM is inhibiting cell turnover 

and increasing the survival of neutrophils. 

5. Explore how the degranulation of neutrophils alters infection and the 

survival of Y. pestis.  Particularly investigate a ΔyopM mutant and 

the effect YopM may have on neutrophil degranulation based on 

histology of lungs from ΔyopM-infected mice. 

6. Investigate the formation of NETs by neutrophils after infection with 

a ΔyopM mutant based on histology of lungs from ΔyopM-infected 

mice. Also explore the effect of NET formation on Y. pestis survival. 

7. Test a ΔlcrV Y. pestis mutant (The component of the T3SS that 

encodes the tip of the needle necessary for injecting the effectors) or 

double-Δyop mutants, in the neutrophil assay. This will help 

determine if the ΔyopM mutant-infected neutrophil phenotype (in 
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between wild type and pCD1- infections) is due to compensation 

from other Yops or is due to some other factor on the pCD1 plasmid. 

8. Generate lists of host genes that are regulated by the presence of 

ROS and RNS and plot them on a density curve model using the 

RNAseq data to identify regulation of these genes in lung lesions. 

9. Infect iNOS-/- and gp91phox-/- mice with ΔyopM Y. pestis to observe 

how the lack of ROS or RNS response affects lesion formation when 

neutrophils are more readily going through apoptosis (and 

presumably degranulating). 

10. Monitor survival of wild type, iNOS-/-, and gp91phox-/- mice at the Y. 

pestis LD50 of wild type mice to determine of the more advanced 

lung lesions in iNOS-/- and gp91phox-/- mice cause increased 

mortality. 

11. Test strains of knockout mice which are deficient for components of 

neutrophils granules such as myeloperoxidase, neutrophil elastase, 

or various proteases (Eyles et al., 2006; Faurschou and Borregaard, 

2003) to determine components of neutrophil defense important for 

lesion formation. 
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