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ABSTRACT 

Elizabeth Humphries Altenau: Analysis of surface water dynamics along the Tanana River, AK 
using in situ observations, AirSWOT measurements, and hydrodynamic modeling 

(Under the direction of Tamlin M. Pavelsky) 

Fluctuations in water surface elevations (WSEs) along rivers have important implications 

for water resources, flood hazards, and biogeochemical cycling. However, current hydrodynamic 

modeling and remote sensing methods exhibit key limitations in characterizing spatiotemporal 

hydraulics in many of the world’s river systems, particularly multichannel rivers. This 

dissertation investigates the capabilities of state of the art hydrodynamic models and new remote 

sensing observations to characterize surface water dynamics across a large-scale, anabranching 

river.  In Chapter 1, I build and compare six different hydrodynamic models along the Tanana 

River, AK to investigate (1) how well a simple, raster-based model can simulate 2D channel 

hydraulics, and (2) how degrading the physical representation of a multichannel river system 

affects spatial and temporal errors in model outputs. I show that simple, raster-based models can 

accurately simulate 2D, in-channel hydraulics in a complex multichannel river, and that inclusion 

of the anabranching network is essential for simulating proper hydraulics at regional-scales. In 

Chapter 2, I validate new radar measurements of WSE and slope from AirSWOT, an airborne 

analogue to the Surface Water and Ocean Topography (SWOT) mission.  I find that AirSWOT 

accuracies are at least as good as what we expect from SWOT, and in some cases, substantially 

better, with RMSEs of 9.0 cm for river WSEs when averaged over 1 km2 areas, and 1.0 cm/km 

for slopes along 10 km reaches. In Chapter 3, I investigate AirSWOT’s ability to capture multi-

temporal fluctuations in WSE and slope. I demonstrate that AirSWOT can provide a 
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comprehensive picture of river dynamics by observing decimeter-level WSE changes when 

averaged over 1 km2 areas and centimeter-per-kilometer-level slope changes for reaches ≥5 km 

with RMSEs of 10.4 cm, and 1.0 cm/km respectively. Additionally, AirSWOT measurements 

add marginal differences when estimating discharge with an RMSE of 15.3% compared to in situ 

discharge estimates and 42% of AirSWOT discharge estimates falling within the in situ 

discharge uncertainty. In the future, AirSWOT measurements can be used to study detailed 

passages of flood waves, understand how features of riverbeds and banks affect patterns of flow, 

and integrate into local and regional-scale hydrodynamic models to improve flood predictions.  
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CHAPTER 1:  THE EFFECTS OF SPATIAL RESOLUTION AND DIMENSIONALITY ON 
MODELING REGIONAL-SCALE HYDRAULICS IN A MULTICHANNEL RIVER1 

1.1. Introduction 

Hydrodynamic modeling is a useful tool for predicting the spatially distributed water 

surface elevations (WSEs) needed for estimating flood magnitude, extent, and timing, especially 

in areas where field data are sparse and river morphologies are complex [Bates and De Roo, 

2000; Horritt and Bates, 2001; Hunter et al., 2007; Beighley et al., 2009; Bates et al., 2010; Neal 

et al., 2012a, 2012b; Nguyen et al., 2015].  Research over the past few decades has shown that 

models with simplified approximations of flow perform well and produce accurate estimates of 

WSE and inundation extent compared to more complex solutions of the full shallow water 

equations [Bates and De Roo, 2000; Bradbrook et al., 2004; Neal et al., 2012b; de Almeida and 

Bates, 2013].  Additionally, advances in remote sensing observations of key hydraulic variables 

have allowed substantial developments in implementing hydrodynamic models at regional to 

global scales [Paiva et al., 2011, 2013; Yamazaki et al., 2011; Sampson et al., 2015, Schumann et 

al., 2016].  Despite recent progress, the need to balance spatiotemporal resolution, computational 

efficiency, and data availability limits regional-scale flood models spanning river lengths ≥100 

km to using downscaling techniques, subgrid representations, and 1D routing schemes to 

simulate channel flows [Cloke and Pappenberger, 2009; Bierkens et al., 2015; Sampson et al., 

                                                
1 This chapter previously appeared as an article in Water Resources Research.  The original 
citation is as follows: Altenau, E. H., Pavelsky, T. M., Bates, P. D., Neal, J. C. (2017). The 
effects of spatial resolution and dimensionality on modeling regional-scale hydraulics in a 
multichannel river. Water Resources Research, 53(2), doi:10.1002/2016WR019396. 
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2015].  This requisite level of simplicity may limit the accuracy of model outputs, especially in 

rivers that are not well represented in 1D, such as multichannel systems.  Such environments are 

quite common.   Allen and Pavelsky, [2015] observe that for the North American continent 

multichannel river systems make up approximately 26% of Landsat-observable rivers above 60 

degrees north, and Latrubesse et al. [2008] demonstrate that many of the world’s largest river 

systems display anabranching morphologies. 

To date, the most common approaches to regional-scale hydrodynamic modeling have 

not been rigorously tested in multichannel systems due to these rivers’ challenging dynamics.  

There is extensive research using detailed 2D and 3D models at scales of 1-30 km to simulate the 

hydraulics and morphodynamics of multichannel rivers [Bridge, 1993; Lane and Richards, 1998; 

Lane et al., 1999; Nicholas and Sambrook Smith, 1999; Nicholas et al., 2012; Williams et al., 

2013; Ziliani et al., 2013].  However, practical application of these models across hundreds of 

kilometers, much less globally, is computationally infeasible due to the need for fine grid scales 

and full solutions to the Saint Venant or Navier-Stokes equations [Bates et al., 2005].  Decision-

makers need efficient models of multichannel rivers at regional scales in order to predict flood 

patterns, which threaten people and valuable infrastructure within these highly complex river 

environments.  

An important question that arises is one of appropriate complexity: How simple can we 

make a regional-scale model of a multichannel system and still produce useful information for 

science or management?  Simpler model formulations reduce computational burden, increase 

viable domain sizes, and improve the feasibility of ensemble modeling. Previous research has 

explored the effects of spatial resolution and model dimensionality independent of one another 

on both single-thread and multichannel rivers [Lane et al., 1999; Horritt and Bates, 2001, 2002; 
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Horritt et al., 2006; Nicholas et al., 2012; Schubert et al., 2015; Javernick et al., 2016].  To the 

best of our knowledge, however, no previous work has explored the effects of both model 

resolution and dimensionality on a multichannel river at the scale of ~100 km or more.  

Fortunately, advances in algorithms, data availability, and computational resources now allow us 

to address this question, as we can build fine-resolution (≤ 25 m) models of 100 km+ reaches that 

can resolve all river channels explicitly [Schubert et al., 2015].  These fine-resolution models can 

act as benchmarks against which we assess how simplifications to the bifurcating and converging 

channel network affect modeling flood wave propagation, water level, and inundation extent in 

multichannel systems at regional to global scales. 

In order to address these questions, we compare six different LISFLOOD-FP models 

along a ~90 km, multichannel reach of the Tanana River, Alaska.   For the first time in a highly 

complex, anabranching river, we test how well a simple, raster-based model can simulate 2D 

channel flows by assessing temporal and spatial outputs of WSE and inundation extent at the 

~100 km reach scale.  We then compare the 2D models to several models of lower 

dimensionality and coarser resolution.  Simulations range from a 10 m resolution, 2D model that 

fully captures the river’s complexity to a 500 m resolution 1D model that substantially simplifies 

the overall river structure.  We focus on addressing (1) how well a simple, raster-based model 

can simulate 2D channel hydraulics, and (2) how degrading the physical representation of a 

multichannel river system affects spatial and temporal errors in model outputs. 

1.2. Hydrodynamic Model 

	 For this study we use the raster-based, hydrodynamic model LISFLOOD-FP 

[Bates and De Roo, 2000; Bates et al., 2010; de Almedia et al., 2012, Neal et al., 2012a].  

LISFLOOD-FP uses an explicit finite difference scheme to simulate shallow water waves over a 
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staggered grid using a local inertial approximation of the 1D Saint-Venant or shallow water 

equations [Cunge et al., 1980]:   

𝜕𝐴
𝜕𝑡 +  

𝜕𝑄
𝜕𝑥 = 0, (1.1) 

𝜕𝑄
𝜕𝑡

acceleration

+
𝜕
𝜕𝑥

𝑄!

𝐴
advection

+
𝑔𝐴𝜕 ℎ + 𝑧

𝜕𝑥
water slope

 +
𝑔𝑛!𝑄!

𝑅
!
!𝐴

friction slope

= 0, 
(1.2) 

where equation 1.1 describes the continuity of mass and equation 1.2 the continuity of 

momentum such that Q[L3T-1] is the discharge, A[L2] is the flow cross section, g[LT-2] is the 

acceleration due to gravity, R[L] is the hydraulic radius, h[L] is the water depth, z[L] is the bed 

elevation, n[TL-1/3] is the Manning friction coefficient, x[L] is the longitudinal coordinate, and 

t[T] is the time.  The local inertial formulation incorporates the friction slope, water slope and 

local acceleration terms from the momentum equation of the shallow water equations above but 

neglects advection because bed friction tends to dominate over advective processes for large 

length scales [Hunter et al., 2007].  Inclusion of local acceleration allows for faster computations 

with increased stability compared to simpler diffusive wave models [Bates et al., 2010; de 

Almeida et al., 2012; Neal et al., 2012a].   

For model resolutions ≤100 m we represent the channel bathymetry directly in the model 

grid and compute the time evolution of flow over this complex surface in 2D (Figure 1.1a,d).  

This study tests LISFLOOD-FP’s ability to simulate 2D channel flows in a multichannel river 

environment for the first time.  To do so, LISFLOOD-FP simultaneously solves the continuity of 

mass and momentum equations.  The continuity equation for a raster cell over a time step Δt is: 

ℎ!,!!!!! = ℎ!,! +  Δ𝑡
𝑄! !!!/!,!
!!!! −  𝑄! !!!/!,! 

!!!! +  𝑄! !!!/!,!
!!!!  −  𝑄! !!!/!,!

!!!!    
𝐴!,!

, 
(1.3) 
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where Q is the flow between cells, h is the cell water depth, A is the cell area, and the subscripts i 

and j are cell indices in the x and y directions [Neal et al., 2012a].  For the momentum equation, 

flows in the x and y directions are decoupled and solved using the same calculation.  The 

momentum equation for flow 𝑄 between raster cells in the x direction is: 

𝑄!!!/!!!!! =
𝑞!!!/!! − 𝑔ℎ!"#$! Δ𝑡𝑆!!!/!!

1+ 𝑔Δ𝑡𝑛! 𝑞!!!/!! /(ℎ!"#$! )!/!
 Δ𝑥, 

(1.4) 

where Δ𝑥 is the cell width, 𝑔 is acceleration due to gravity, 𝑞! is flow from the previous time 

step 𝑄!divided by cell width Δ𝑥, S is water slope between cells, n is the Manning friction 

coefficient, and hflow is the depth between cells which water can flow [Neal et al., 2012a].  To 

maintain stability, the model uses a time-stepping equation based on the Courant-Friedrichs-

Lewy condition [Courant et al., 1928] and is limited to: 

Δ𝑡 =  𝛼
𝑥

max ℎ! 𝑔
 , (1.5) 

where max(ht) is the maximum water depth in the model domain and α is a stability coefficient 

that ranges from 0.2 to 0.7 for most floodplains.  As the grid size decreases, the time step scales 

with 1/Δx [Bates et al.,	2010; Neal et al., 2012a].  

As the model spatial resolutions increase to ≥100 m, the grid scale imposes an 

increasingly severe restriction on the simulation of channelized flows, and we therefore treat 

channels as subgrid-scale features using the approach of Neal et al. [2012a].  Here, flow in 

channels narrower than the grid resolution are simulated using a 1D interpretation of the same 

local inertial formulation used for the 2D scheme with two additional variables that represent the 

channel bed elevations (zc) and channel widths (w) (Figure 1.1b,c,e) [Neal et al., 2012a; 

Schumann et al., 2014a; Sampson et al., 2015].  This approach is adopted because an explicit 
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representation of channels is known to be important for connectivity and water partitioning in 

floodplain dynamics [Neal et al., 2012a; Sampson et al., 2015].  

	

Figure 1.1:  Conceptual schematic of (a) 2D channel flow model, (b) hybrid 1D/2D channel flow 
model, (c) 1D channel flow model, (d) 2D raster cell with relevant variables, and (e) 1D subgrid 
raster cell with relevant variables.   

The primary inputs for the models are floodplain topography, bathymetry, roughness 

parameters, discharge, and stage information.  LISFLOOD-FP is suitable for gradually-varied 

flow and can become unstable at low Manning’s n values (less than 0.01) or under supercritical 
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flow conditions [Bates et al., 2010; Neal et al., 2012b; de Almeida and Bates, 2013], however, 

these conditions do not arise in our study reach for the model resolutions that we use.  We chose 

LISFLOOD-FP as an appropriate model for this study because it is computationally efficient, can 

simulate flows in multiple dimensions, and is widely used within the hydrodynamic modeling 

community.   

1.3. Study Site 

We chose a ~90 km reach of the Tanana River in Alaska between the towns of Fairbanks 

and Nenana to assess the effects of model resolution and dimensionality on multichannel river 

hydraulics (Figure 1.2). The Tanana drains a large swath of the eastern Alaska Range and central 

Alaskan highlands, flowing northwest until it joins with the Yukon River.  The shape of the 

annual hydrograph is largely determined by melt of snowpack and glaciers during the spring and 

summer.  Low flows in the winter lead to a rapid increase of flow during the springtime and peak 

flows during the summer.  Mean discharge during the open water season (May to October) for 

the Tanana is ~1299 m3/s according to records from the USGS station at Nenana (Station 

Number: 15515500) from 1962 to 2013.  Field calculations and modeling performed by Toniolo 

et al., [2010], indicate flows along the Tanana are gradually varied and subcritical with an 

average Froude number of 0.30 along the Thalweg and are therefore suitable for modeling with 

LISFLOOD-FP.  	

The Tanana’s glacial origin results in a high sediment load, which interacts with local 

topography to produce a complex morphology that ranges from highly braided to a single 

meandering channel. The suspended sediment load in the Tanana is extremely high (an estimated 

33 metric tons per year) and consists primarily of silt and clay.  For comparison, the farthest 

downstream station on the Yukon River recorded an estimated 68 metric tons of suspended 
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sediment per year with a mean annual discharge of ~6428 m3/s [Brabets et al., 2000; Dornblaser 

and Striegl, 2009]. The bed of the Tanana, composed of sand and gravel, is quite mobile, which 

results in comparatively rapid changes in channel planform.  Physiographic characteristics of the 

region include alluvial deposits and discontinuous permafrost [Brabets et al., 2000].  

	

Figure 1.2:  Location of the Tanana River shown using a Landsat 8 satellite image acquired on 
06/18/2013.  Bathymetric observations collected using a single-beam echo sounder during a field 
campaign between 07/01/2013 and 07/08/2013 are color coded along the river with close-up 
insets for detail.  Locations of the USGS gauge stations (red triangles), internal water level 
loggers (red circles), and major tributaries are shown.  RapidEye imagery extents used to create 
the river mask for the custom interpolation are shown for 07/12/13 in the white dashed lines and 
05/28/13 in the yellow dashed lines. 

The study reach contains multiple morphologies ranging from a single channel to as 

many as eight different channels in a cross section.  It is an ideal site for this research because of 

its diverse morphology and because it is bounded by two USGS gauge stations needed for model 

boundary conditions (Figure 1.2).  We define several subreaches based on changes in river 
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morphology (Figure 1.3).  The first 16 km of the reach contains a primary main channel with an 

average width of ~450 m and smaller sloughs no wider than 100 m.  Most of the flow is carried 

by the large main channel (Figure 1.3.1).  In the next 27 km of the river, flow is partitioned into 

many anabranching channels ranging from 20 – 240 m wide that divert more of the flow around 

the main channel (Figure 1.3.2).  About halfway through the study reach the anabranching 

channels converge into a single channel due to bedrock bluffs to the north.  This reach continues 

for 15 km and only contains two small sloughs in addition to the main stem.  Therefore, we 

expect this portion of the reach to behave hydraulically much like a single channel (Figure 1.3.3).  

The final 35 km subreach returns to a planform with several channels but remains more confined 

and less complex than the upstream anabranching subreach (Figure 1.3.4).   

 

Figure 1.3:  Extent of predefined subreaches used to calculate error statistics in the profile 
analysis. 

 

1.4. Model Setup  

1.4.1 Existing Datasets 

 Datasets needed to build the models tested here include a fine-resolution digital elevation 

model (DEM), bathymetry, and hydrometric information including river discharge and stage.  

We use an Alaska interferometric synthetic aperture radar (IfSAR) DEM 
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[http://ifsar.gina.alaska.edu/] with five-meter resolution for the floodplain topography.  Mean 

vertical accuracy of the Alaska IfSAR products is three meters, and the horizontal accuracy is 

12.2 meters.  Errors in the floodplain topography are a low concern since the primary focus of 

this study is on in-channel hydraulics, and very little of the floodplain topography is inundated in 

our simulations. Discharge and stage records at 15-minute intervals from USGS gauge stations in 

Fairbanks and Nenana, Alaska provide model boundary conditions.  The upstream boundary 

consists of time-varying discharge information, and the downstream boundary is a time series of 

stage. We add point-source discharge to the model at two locations to represent the Chena River 

and Salchaket Slough, which are inflowing tributaries.  Salchaket Slough is a ~50 km long sub-

channel of the Tanana River that splits from the main channel upstream of the Fairbanks gauge 

station and reenters below it.  For the Chena River, we use USGS discharge records from a 

gauge station ~15 km upstream of the confluence with the Tanana.  The distance between the 

Chena gauge station and the Tanana River confluence is unlikely to affect the model simulations 

because there are no inflowing point sources along the Chena between the gauge and the Tanana.  

Additionally, the Chena River flood wave’s transit time is relatively small compared to the 

dynamics of the Tanana River flood wave.  Salchaket Slough does not have a gauge station, so 

we estimate discharge based on in situ measurements acquired with a Sontek M9 acoustic 

doppler current profiling (ADCP) system 

[http://www.sontek.com/productsdetail.php?RiverSurveyor-S5-M9-14] during a separate field 

campaign on 8 June 2015.  To measure discharge, we set up a cableway across Salchaket Slough 

just upstream of its confluence with the Tanana River.  Six discharge measurements acquired 

between 3:15 and 3:30 PM ranged from 90.29 to 94.01 m3/s, with an average discharge of 91.48 

m3/s.  On this date, Salchaket Slough was contributing 14% of the downstream discharge 
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observed at the Nenana gauge station, and we assume that this percentage is constant in time. 

Adding discharge inputs from the Chena River and Salchaket Slough result in an average 

difference of 1% between the discharge records at the Fairbanks and Nenana model boundaries, 

thereby effectively closing the reach mass balance.  We assume the discharge measurements are 

error-free, but in reality they are likely to have errors ranging between ± 6% and ± 19% [Harmel 

et al., 2006; Di Baldassarre and Montanari, 2009; Bates et al., 2013].  Reported channel 

conditions from USGS field measurements at the upstream boundary of our study site during the 

duration of our model simulations (July – September 2013) are described as follows:  Channel 

Stability - Firm, Channel Material - Sand and Gravel, Channel Evenness - Even 

[http://waterdata.usgs.gov/nwis/measurements].  Based on these USGS reports and the increased 

likelihood that the Tanana River is subject to morphological changes, we estimate the discharge 

uncertainty in our model ranges between ± 10% and ± 20% [Harmel et al., 2006].  Therefore, the 

actual uncertainty in discharge is probably considerably larger than the 1% discrepancy between 

the two gauges resulting from our analysis.  Remaining discrepancies can likely be attributed to 

groundwater interactions with the river and other much smaller tributary inputs. 

1.4.2 Field Measurements 

Detailed bathymetric information is necessary to implement the 2D models.  We 

collected measurements of channel bathymetry and WSE during a two-week field campaign 

from 29 June 2013 through 13 July 2013.  In total, we collected depth and WSE at ~220,000 

points using a single-beam SonarMite Echo Sounder v.3.0 and Trimble R9 survey-grade GPS 

system (Figure 1.2).  Using a side-scanning sonar system was unfeasible due to high costs and 

risk of damage to the equipment in the harsh conditions of the Tanana River.  We mounted the 

echo sounder and GPS unit on the right stern of a 28-foot aluminum-hulled riverboat.  The 
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transducer was placed perpendicular to the water surface and submerged 0.18 m below the 

surface.  Reported accuracy for the SonarMite Echo Sounder is ± 0.025 m 

[http://www.ohmex.com/sonarmite.html].  We were unable to compensate for roll or heave 

motion from the boat because the GPS antennas we had access to did not have National Marine 

Electronics Association (NMEA) capabilities.  We took precautions to minimize roll and heave 

motions by traveling at a low speed of ~15 mph, though vessel motion likely increases 

uncertainty in the depth measurements.     

We set the echo sounder and GPS to record every 0.5 seconds and matched bathymetric 

point observations to associated GPS locations using the recorded time stamps.  To estimate 

error in the depth and WSE measurements, we identified 914 crossover point pairs in the 

observations within a 0.10 m radius of each other and calculated root mean square error (RMSE) 

for depth and WSE.  RMSE for depth observations is 0.267 m and RMSE for WSE observations 

is 0.162 m.  Bias is very small for both the depths and WSEs at -0.017 m and 0.016 m 

respectively.  In addition to the bathymetry collection, we installed two Solinst pressure 

transducer water level loggers [solinst.com] at ~23 and ~70 km downstream of Fairbanks (Figure 

1.2).  We used differential GPS and WSE surveys to achieve elevation accuracy of ± 4 cm at the 

water logger sites.  The water loggers recorded stage information at five-minute intervals from 

the start of our field campaign on 29 June 2013 through early September.  We converted stage 

values to WSE by using an optical survey level and stadia rod to measure the difference between 

the water surface at the logger sites and GPS survey benchmarks on the banks of the river near 

the water loggers.  

1.4.3 2D Channel Topography  
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We develop a custom interpolation method to transform the irregularly spaced 

bathymetric point data into a raster grid (Figure 1.4).  Isotropic interpolation methods available 

in  

Figure 1.4:  Schematic of the custom interpolation method.  (a) Input needed for the interpolation.  
(b) Distance-from-centerline (DFC) image used to interpolate in the general flow orientation.  (c) 
For each pixel, the DFC region is identified and all observation points are isolated to those 
falling within the DFC region and a specified radius.  (d) The code expands into adjacent DFC 
regions to identify a minimum number of observations.  (e) Inverse distance weighting (IDW) is 
performed on the observations.  (f) A Gaussian smoothing filter is applied to the entire image.  (g) 
Final interpolated output for the ~ 90 km river reach.  (h) Final seamless DEM of the combined 
interpolated bathymetry and existing floodplain DEM (Alaska IfSAR). 
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ArcGIS and similar software do not produce hydrologically intuitive bathymetric patterns due to 

the anisotropic flow direction characteristic of rivers.   We considered using other river-based 

interpolation methods that account for flow direction.  The most common methods involve 

tailored search radii that utilize the anisotropic shape of a river cross-section [Osting, 2004], or 

channel-based coordinate systems guided by a channel centerline [Smith and McLean, 1984; 

Goff and Nordfjord, 2004; Merwade et al., 2005, 2006, 2008; Legleiter and Kyriakidis, 2006, 

2008; Merwade, 2009].  These methods are suitable for sinuous, single-channel systems where 

one centerline is applicable [Smith and McLean, 1984].  Extreme sinuosity, significant changes 

in direction, and braided channels are problematic for interpolation methods using channel-based 

coordinate systems [Goff and Nordfjord, 2004; Legleiter and Kyriakidis, 2008; Merwade et al., 

2008].  Implementing a standard channel transformation in a river like the Tanana that contains 

multiple flow centerlines and directions within a cross-section would require extensive manual 

work or multiple coordinate transformations and were thus discarded.  The custom interpolation 

used for this study combines image processing techniques with similar concepts used in 

traditional channel transformations to adapt the search radius to interpolate points in the general 

flow directions of a multichannel river with little manual input.   

Inputs needed for the interpolation are a set of channel centerlines calculated using the 

RivWidth software package [Pavelsky and Smith, 2008], a river mask, and the bathymetric point 

observations in TIFF format (Figure 1.4a).  First, we create the river mask using five-meter 

resolution RapidEye imagery [http://www.satimagingcorp.com/satellite-sensors/other-satellite-

sensors/rapideye/] acquired during the week of the field campaign on 12 July 2013 (Figure 1.2).  

The only exception is the image used for the westernmost seven kilometers of the study reach, 

which was acquired three months earlier in May of 2013 (Figure 1.2).  This portion of the river 
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covered by the older RapidEye image is constrained by tall bedrock bluffs, so the planform of 

the river is unlikely to have changed substantially between May and our field campaign in July.  

We extract river inundation extent by thresholding a normalized difference water index (NDWI) 

transformation of the imagery [McFeeters, 1996].  To correct for areas near the riverbanks that 

are identified as river in the floodplain DEM and not in the imagery, we add these areas to the 

river mask.  This correction is necessary to prevent interpolation artifacts in the DEM river 

surface from creating large errors in the model outputs, and the additional area accounts for a 

very small percentage (4.2%) of the total river surface area.  We apply RivWidth to the river 

mask in order to create the channel centerline image needed for the interpolation, which consists 

of centerlines for every channel along the reach (Figure 1.4a).  The interpolation code uses the 

centerline image to create regions parallel to the centerlines that represent the river’s general 

flow orientation.  These areas are defined by the distance from the centerline and are used to 

identify the optimal observations needed for interpolation (Figure 1.4b).   We refer to these 

divisions as the distance-from-centerline (DFC) regions.  The code identifies bathymetric point 

observations that fall within a defined radius of each river mask pixel and the DFC region of the 

pixel (Figure 1.4c).  If a minimum number of observational points are not found within the DFC 

region and the specified radius, the search algorithm expands to include observations in adjacent 

DFC regions (Figure 1.4d).  For this interpolation, we choose a search radius of 500 m and a 

minimum number of eight bathymetric observations.  Once the minimum number of points is 

identified, the algorithm uses an inverse distance weighting (IDW) interpolation method (Figure 

1.4e).  The IDW formula to predict the bathymetric elevation for a given pixel location of 

unknown value is:  
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𝑍(𝑙!) = 𝑤!𝑍(𝑙!)
!

!!!

 
(1.6) 

where 𝑍(𝑙!) is the predicted elevation for a given location (𝑙!), n is the number of observed 

sample points surrounding the prediction location, 𝑍 𝑙!  is the observed elevation value at 

location (𝑙!), and 𝑤! are the weights assigned to each observed elevation point determined by the 

following formula: 

𝑤! = 𝑑!!
!!/ 𝑑!!

!!
!

!!!

 
(1.7) 

For greater distances, the weight is reduced by a factor of p, which we assign a value of five, and 

di0 is the distance between the predicted location and each of the observed locations.  This 

process is repeated for all river pixels.  When the entire river is interpolated, we apply a Gaussian 

smoothing filter to remove high-frequency variability associated with data-sparse areas (Figure 

1.4f,g). 	

The depth range for the echo sounder is 0.30-75 m 

[http://www.ohmex.com/sonarmite.html].  As a result, our survey includes few observations in 

very shallow portions of the river reach (≤0.30 m), and interpolated values are likely too deep in 

these areas.  Without additional modifications, diagnostic model runs produce unrealistically low 

width variations.  To diminish this problem, we apply corrections to the interpolation in shallow 

areas around submerged bars (Figure 1.5).  First, we create a second river mask identifying areas 

of exposed bars at low summertime flows (1185.4 m3/s) using RapidEye imagery acquired on 14 

August 2012, and we use the river mask from the initial interpolation to define the high-water 

bar extents at higher flows (1449.3 m3/s).  This comparison allows us to convert stage 

differences between imagery dates to elevation values using field observations of WSE.  Next, 

we create a bar mask from differences in the two river masks to isolate areas of exposed bars at 
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low water levels (Figure 1.5a).  We use USGS gauge records to calculate stage differences 

between high and low water levels and to create stage contours that represent high and low bar 

extents (Figure 1.5b).  To estimate the stage differences between these contours, we use the same 

IDW formula from the original interpolation (Figure 1.5c).  Finally, we convert the stage 

differences to elevation changes using the field survey of spatially distributed WSEs (Figure 

1.5d).  This correction results in more realistic bar extents in areas that are not captured in the 

field data.  We combine the final bathymetry with the floodplain DEM to create the topographic 

input for the model simulations (Figure 1.4h).  Over time, the sand bars are likely to shift and 

change morphology due to the mobility of the Tanana riverbed.  However, the timescale of the 

simulation and the moderate discharges observed in this study make it unlikely that there would 

be significant changes in the bars that would affect the model outputs.  Once the DEM is 

finalized, we resample the 5 m DEM to 10 m, 25 m, 100 m, and 500 m resolutions using bilinear 

interpolation in ArcGIS.       

We perform a bootstrapping error estimation for the bathymetry by randomly removing 

20% of the observational points before implementing the interpolation and using the removed 

points to calculate RMSE.  This bootstrapping method is common in other riverbed interpolation 

studies [Osting, 2004; Merwade et al., 2006; Merwade, 2009].  To test the effects of the 

percentage of points removed, and random sample generation on the calculated errors, we 

perform a sensitivity analysis on the interpolation.  Four different random samples removing 

20% of the points are tested, as well as a single random sample removing 1%, 5%, 10%, and 

20% of the points.  We find the interpolation to be insensitive to the percentage of points and 

random sampling techniques used with a maximum difference in RMSE of 0.07 m.  Final RMSE 

for the interpolated DEM is 0.890 m.  Since the points we use to calculate errors in the  
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Figure 1.5:  Schematic of the process used to correct submerged bar elevations in the interpolated 
bathymetry (Figure 1.4).  (a) Submerged bar areas identified using RapidEye imagery at low 
water levels.  (b) Contours of low and high water extents created using the bar areas.  High water 
contours (red) were given a value of zero and low water contours (green) were assigned a 
negative stage value calculated using USGS gauge records.  (c) Interpolated stage values for the 
identified bar areas.  Inverse distance weighting (IDW) was used for interpolation.  (d) 
Converted elevation values. Interpolated stage values were subtracted from linearly interpolated 
water surface elevation observations collected in the field.   

bathymetry are extracted from the original depth observations, the estimated error is 

representative of areas in the bathymetry with higher observational density.  In areas where we 

have limited observations, errors may be much greater than the calculated RMSE and could be a 

substantial contributor to model errors, especially in the 2D models where small variations in 

bathymetry are likely to have larger effects on WSE.  
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1.4.4 Model Structures 

To test the effects of spatial resolution and dimensionality on model output, we build six 

different models (Table 1.1).  The fundamental architecture of LISFLOOD-FP consists of a 2D 

floodplain component and a 1D channel component.  In our study, discharge volumes throughout 

the simulations do not reach water levels high enough for overbank flow.  Therefore, when 

referring to 1D/2D model structures we are solely referring to channelized flow dimensionalities 

and do not consider the 2D floodplain component as part of our model descriptions.   

Model Acronym Model Description 
Simulation 

Time 
(mins) 

10 m 2D 2D flow simulation of the river channels at 10 m resolution. 25,992 

25 m 2D 2D flow simulation of the river channels at 25 m resolution. 2,588 

100 m 2D  2D flow simulation of the river channels at 100 m resolution. 19.6 

100 m SGC 
Hybrid 1D/2D model: 2D flow simulation of the main river channel.  
1D flow simulation of 32 channels with average widths narrower 
than the model resolution of 100 m using the subgrid solver. 

9.8 

500 m 1D-VAR 
1D flow simulation of the entire river using the subgrid solver. 
Bathymetry varies in each grid cell and is estimated by averaging 
observational depths falling within a channel grid cell. 

0.2 

500 m 1D-AVG 
1D flow simulation of the entire river using the subgrid solver. 
Bathymetric slope is estimated from an average depth value 
calculated from the observations. 

0.2 

Table 1.1:  Model descriptions. 

The most detailed model is a 2D, 10 m resolution model (10 m 2D) with 9,996,801 grid 

cells.  We also run 2D simulations at 25 m (25 m 2D) and 100 m (100 m 2D) resolutions with 

1,600,518 and 99,998 grid cells, respectively.  In addition to the 2D simulations (Figure 1.1a,d), 

we build a hybrid 1D/2D model at 100 m resolution in which the main channel is represented in 

2D and 32 smaller channels are represented as subgrid features in 1D (100 m SGC) (Figure 

1.1b,e).  This model contains the same number of grid cells as the 100 m 2D model but has 

additional representation of the 32 subgrid channels.  Finally, we run two simulations at 500 m 
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resolution, in which a 1D main channel centerline represents the entire study reach (Figure 

1.1c,e) and is treated as a subgrid channel so these models are effectively 1D with no 2D channel 

component.  One of the 500 m simulations contains variable bed elevations along the reach (500 

m 1D-VAR), and the other simulation contains a smooth bed slope created using an average 

water depth value for the entire reach (500 m 1D-AVG).  Both 500 m models have 4,010 grid 

cells.   

The models that include subgrid representations require specification of width and bed 

elevation values for each subgrid channel.  We manually assign each subgrid channel in the 100 

m SGC model an average width measured from the river mask and an average bed elevation 

calculated from the surveyed field observations.  For each cell along the channel centerlines in 

the 500 m 1D models, we assign individual width and bed elevation values.  We calculate width 

values from the five-meter resolution river mask using RivWidth and average the width values at 

500 m resolution. For the 500 m 1D-VAR model, we average bed elevation observations within 

each grid cell, while for the 500 m 1D-AVG model we subtract the average water depth value 

from the observed WSE slope along the study reach.  

1.5. Model Calibrations and Simulations 

The main parameter needed for calibration in each model is the roughness coefficient, in 

this case Manning’s n.  We calibrate uniform roughness values for the river channel in each 

model using the spatially distributed observations of WSE and depth collected by boat from 1 

July 2013 to 8 July 2013.  We choose to use a uniform roughness value because this parameter 

compensates for many factors affecting the simulated flow, including the hydraulic resistance 

from bed formations, model dimensionality, grid resolution, model process representation, and 

errors in the boundary conditions [Bates et al., 2013].  In a river as large as the Tanana, errors in 
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the inflow boundary conditions and bathymetry are likely to dominate model errors compared to 

small-scale variations in sediment composition.  Additionally, the complex planform makes it 

difficult to identify obvious zones of different roughness values within the study reach.  For the 

floodplain roughness, we assign a standard uniform value of 0.06.  We do not calibrate the 

floodplain roughness value since there is no overbank flow occurring in our simulations.  

Before running the calibrations, we correct the WSE variations between dates of the boat 

observations to July 1st using the temporally varying observations of WSE recorded by the water 

loggers.  We test roughness values between 0.008 and 0.06 completing a total of 55 calibration 

runs per model.  Model calibrations begin on 29 June 2013 and end on 2 July 2013.  The first day 

of the simulations is model spin-up time.  Once the calibrations are complete, we run 63-day 

dynamic simulations for each model from 29 June 2013 to 31 August 2013 using the optimal 

roughness value for each model.  The simulations span the entire period measured by the two 

water loggers.  Final computation times per simulation range from 0.2 minutes to 18 days on a 

2.40 GHz Intel Xeon 6 core processor with 40 GB of RAM (Table 1.1).  The LISFLOOD-FP 

code is parallelized to use all cores available on a machine.   

1.6. Model Validation   

We evaluate each model’s ability to simulate inundation extent, temporally varying WSE, 

and spatial patterns in WSE and depth.  To validate inundation extent, we compare model spatial 

outputs to a five-meter resolution river mask created with RapidEye imagery from 1 August 

2013.  The maximum variation in discharge at the Nenana gauge station on August 1st is 48 m3/s.  

This range in flow comprises 2.5% of the average discharge of 1895 m3/s on that date and is 

unlikely to result in changes to the channel extent within the observed river mask.  We re-sample 

model outputs to five-meter resolution for direct comparison to the observed river mask and 
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classify both the observed and modeled outputs as inundated or dry pixels.  Errors of commission 

are considered areas where the model produces inundated pixels and the observations show dry 

pixels, while errors of omission are areas where the model produces dry pixels and the 

observations show inundated pixels.  We count inundated pixels in both the models and 

observations as correctly modeled areas.  Lastly, we calculate a measure of fit statistic (also 

known as the Critical Success Index (CSI) in the meteorological forecast literature) to further 

assess the models’ capabilities for simulating river inundation extent:   

𝐹𝑖𝑡 % =  
𝐼𝐴!"# ⋂ 𝐼𝐴!"#
𝐼𝐴!"# 𝐼𝐴!"#

 ×100 
(1.8) 

The CSI compares the observed inundation (IAobs) to the modeled inundation (IAmod) and 

penalizes model over- and under- predictions [Bates et al., 2010; Sampson et al., 2015], but is 

not biased by the large and easy to predict areas observed and correctly simulated as dry.    

To estimate spatial errors in model outputs, we use the 20% of survey points we removed 

before the bathymetric interpolation to calculate RMSE, mean bias, and absolute errors between 

model outputs and spatially distributed observations of WSE and depth.  Additionally, we 

analyze WSE errors along 1D river profiles.  We create the 1D profiles by deriving a centerline 

vector along the main channel of the river using RivWidth and compare the in situ WSE 

observations along the centerline to model-derived WSE.  Since the spatial observations were 

collected from 1 July 2013 to 8 July 2013, we average the model spatial outputs from this 

timespan before comparing them to the observations.  We then calculate RMSE and Nash-

Sutcliffe Efficiency (NS) values [McCuen et al., 2006] for the river profile and for each of the 

subreaches.   Finally, we validate temporal fluctuations in modeled WSE by calculating NS 

values against observations at the two water logger locations.  To assess the effects of discharge 
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uncertainty on model outputs, we perform a sensitivity analysis on the 25 m 2D model by 

running simulations with ± 10% and ± 20% differences in the upstream discharge. 

1.7. Results 

  Model errors in spatially distributed WSE significantly increase and the CSI substantially 

worsens as model resolution coarsens and dimensionality decreases.  The 10 m and 25 m 2D 

models are best at capturing spatially distributed WSE and inundation extent within the main 

channel and sub-channels (Figure 1.6).  Absolute errors in spatially distributed WSE are lowest 

and evenly spread along the reach in the 25 m 2D and 10 m 2D models (Figure 1.6b).  The 

primary area of over-predicted WSEs in these simulations occurs where the anabranching 

subreach converges into the single channel subreach.  Improved RMSE from the 25 m to the 10 

m 2D model is minimal for spatially distributed WSE but more substantial for depths, with a ~10 

cm improvement in RMSE (Table 1.2).  Along the observed profile, both models show similar 

patterns in WSE variations, but the 10 m 2D model slightly outperforms the 25 m 2D model at 

the downstream end of the study reach (Figure 1.7a,b, Table 1.3).  The CSI for inundated area is 

strongest in the 10 m 2D (90.3%) and 25 m 2D (88.5%) models (Table 1.4).  Both the 25 m and 

10 m model resolutions are fine enough to capture proper channel morphology and sub-channel 

connectivity in 2D (Figure 1.6a).  Primary errors of commission for the 10 m and 25 m 2D 

models result from bathymetric uncertainties in areas with little observational data, especially 

around bar formations.  These shallow, erroneously inundated areas affect the CSI but do not 

substantially affect simulation of discharge.  Roughness coefficients in the 10 m 2D and 25 m 2D 

model simulations are most consistent with the literature (Table 1.2).  Roughness values can 

range from 0.026 to 0.08 in channels with morphological characteristics and sediment types 

similar to the Tanana River [Chow, 1959; Arcement and Schneider, 1989; Toniolo, 2013].   
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Figure 1.6:  Spatial output of (a) WSE and inundation extent and (b) absolute errors between the 
modeled and observed WSE on 1 July 2013. 

More prominent patterns in the errors of spatially distributed WSE become apparent in 

the 100 m model simulations (Figure 1.6b).  The 100 m SGC model outperforms the 100 m 2D 

model by preserving channel connectivity with the inclusion of the 1D subgrid channels, which 

increases channel capacity and reduces overall errors in the anabranching subreach, in particular.  

In contrast, the 100 m 2D model tends to over-predict WSEs in the anabranching subreach.  

These over-predictions are likely a result of a decrease in channel capacity from the loss of the 

bifurcating channels at the coarser resolution (Figure 1.6b, Figure 1.7c,d).   Additionally, 

incorporating the channel connectivity using the subgrid channels decreases RMSE by ~16% for 

spatially distributed WSE and ~7% for depths in the 100 m SGC model compared to the 100 m  
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MODEL 
RMSE 
WSE 
(m) 

RMSE 
Depth 

(m) 

Bias 
WSE 
(m) 

Bias 
Depth 

(m) 

NSE 
Upstream 

NSE 
Upstream 

(-Bias) 

NSE 
Down-
stream 

NSE 
Down-
stream 
(-Bias) 

Roughness 
Coefficient 

10 m 2D 0.226 0.712 -0.011 -0.075 0.341 0.945 0.844 0.881 0.023 

25 m 2D 0.259 0.794 -0.014 -0.019 0.747 0.943 0.742 0.859 0.021 

100 m 
SGC 0.318 1.51 -0.053 0.241 0.783 0.873 0.317 0.758 0.014 

100 m 
2D 0.379 1.62 0.0019 0.301 -2.258 0.903 0.633 0.756 0.011 

500 m 
1D-VAR 0.564 2.54 0.070 0.646 -5.199 0.709 -5.539 0.734 0.010 

500 m 
1D-AVG 0.352 1.88 0.028 0.321 -0.634 0.977 0.495 0.970 0.017 

Table 1.2: Error statistics for spatial and temporal model outputs.   

 

2D model (Table 1.2).  The coarser resolution of the 100 m models approaches the limit for 

representing the Tanana River morphology in 2D by averaging out the small anabranching 

channels whilst preserving the larger main channels.  Therefore, the CSIs for inundation extent in 

the 100 m models are lower than the 10 m and 25 m 2D models at 72.6% for the 100 m SGC 

model and 72.2% for the 100 m 2D model (Table 1.4).   

The anabranching channel network is not simulated at 500 m resolution, and distinct 

alternating patterns emerge in the absolute errors of spatially distributed WSE (Figure 1.6).  

Absolute errors in both 500 m models alternate between under-predicting WSE by as much as 

1.61 m and over-predicting WSE by 1.41 m (Figure 1.7e,f).  These alternating patterns result in 

low mean biases for spatially distributed WSE in the 500 m models even though the models do 

not accurately represent the spatial dynamics.  The 500 m 1D-AVG model shows 38% 

improvement in RMSE for spatial patterns of WSE compared to the 500 m 1D-VAR model, and 

a slightly better RMSE compared to the 100 m 2D model, though the alternating patterns in 

absolute errors are still present along the reach (Table 1.2, Figures 1.6b and 1.7f).  In addition to 
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high errors in spatially distributed WSE, the 500 m models poorly predict inundated area, with 

CSIs  

	

Figure 1.7: Plots of modeled WSE errors along the main channel profile. 

 

around 41% (Table 1.4).  These low CSIs are due to large over-predictions in inundated area as a 

result of the coarse grid size, which averages the main channel and sub-channels into a single 
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raster cell (Figure 1.6a).  Roughness coefficients decrease as model process representation 

simplifies from the 2D models to the 500 m 1D-VAR model, with the exception of the 500 m  

 Entire Reach 1. Upstream 2. Anabranching 3. Single 4. Downstream 

MODEL RMSE NS RMSE NS RMSE NS RMSE NS RMSE NS 

10 m 2D 0.194 0.9990 0.282 0.9595 0.207 0.9889 0.160 0.9708 0.137 0.9952 

25 m 2D 0.217 0.9988 0.309 0.9514 0.207 0.9889 0.174 0.9652 0.187 0.9911 

100 m SGC 0.276 0.998 0.437 0.9029 0.256 0.983 0.194 0.9571 0.216 0.9881 

100 m 2D 0.322 0.9973 0.475 0.8854 0.285 0.9789 0.329 0.8761 0.245 0.9846 

500 m 1D-
VAR 0.517 0.993 0.627 0.8073 0.359 0.9672 0.745 0.3664 0.415 0.956 

500 m 1D-
AVG 0.351 0.9968 0.452 0.8996 0.259 0.9829 0.396 0.8210 0.332 0.9719 

Table 1.3:  Error statistics of WSE along the main channel profile.  Column numbers and 
headings coincide with the subreaches defined in Figure 1.3. 

 

1D-AVG model, which displays a roughness value higher than both the 100 m models and 500 

m 1D-VAR model (Table 1.2).  The increase in model roughness value in the 500 m 1D-AVG 

model is likely a result of its smoother bathymetric slope.  The variations in the bed topography 

in the 100 m and 500 m 1D-VAR models have higher friction effects compared to the smooth 

bed slope of the 500 m 1D-AVG model.  This increase in friction from the bed topography in the 

100 m and 500 m 1D-VAR models requires a lower roughness coefficient compared to the 500 

m 1D-AVG model to balance the higher bathymetric roughness.    

 Temporal variations in WSE from all models at both water logger locations show good 

agreement with observations in predicting WSE fluctuations, but large biases from the observed 

WSEs occur depending on the model structure.  Time series of WSE outputs and errors for each 

model are shown in Figure 1.8, and associated NS values are in Table 1.2.  Upstream water 
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logger results show consistent over-predictions in the 500 m 1D-VAR and 100 m 2D models, 

and consistent under-predictions in the 500 m 1D-AVG model.  These poor model performances 

are reflected in the NS values, which are well below zero.  The large deviations are likely caused 

by spatial biases stemming from bathymetric uncertainties and reduced channel connectivity that 

result in over-predictions in WSE levels at the upstream water logger location in the 500 m 1D-

VAR and 100 m 2D models.  By comparison, the 100 m SGC and 25 m 2D models produce 

more accurate temporal dynamics with NS values of 0.783 and 0.747, respectively.  The 25 m 

2D model follows the observations most closely during low water intervals, while the 10 m 2D 

model under-predicts WSE, reducing the upstream NS value to 0.341.  During high stage 

intervals the 100 m SGC, 25 m 2D, and 10 m 2D models all under-predict WSE (Figure 1.8a,c).   

MODEL 
Correctly 

Modeled Area 
(%) 

Errors of 
Commission 

(%) 

Errors of 
Omission (%) 

Critical 
Success 

Index (%) 
10 m 2D 96.42 6.69 3.58 90.37 
25 m 2D 95.41 7.80 4.59 88.51 
100 m SGC 88.66 22.17 11.34 72.57 
100 m 2D 80.04 10.84 19.96 72.21 
500 m 1D-VAR 70.51 72.74 29.49 40.82 
500 m 1D-AVG  71.20 73.17 28.80 41.12 

Table 1.4:  Percentage statistics and measure of fit for modeled river inundation extent. 

WSE dynamics at the downstream water logger show reverse patterns for most of the 

models.  The 500 m 1D-VAR model continues to over-predict WSE by about half a meter.  

However, the 500 m 1D-AVG model switches from consistently under-predicting WSE at the 

upstream location to being much closer to the observations at the downstream location with an 

improved NS value of 0.495.  The other four models tend to over-predict WSE at low water 

intervals and come closer to the observations at high water intervals (Figure 1.8b,d).  

Performances between the 100 m SGC and 100 m 2D models switch at the downstream location 

with the 100 m SGC model’s NS value dropping to 0.317 and the 100 m 2D model’s NS value 
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increasing to 0.633.  The 25 m 2D model performance stays consistent downstream with an NS 

value of 0.742, while the 10 m 2D model performance improves with an NS value of 0.844 

(Table 1.2). 

	

Figure 1.8:  Temporal variations and absolute errors in modeled WSE.  The (a,c) upstream and 
(b,d) downstream water logger locations are ~23 and ~70 km downstream of Fairbanks, 
respectively (Figure 1.2).  Panels (a) and (b) display the modeled WSEs versus observations over 
time, while panels (c) and (d) display model WSE errors.  Grey shaded areas represent 
observational errors.   

To determine the effects of spatial errors on temporal outputs, we subtracted the mean 

bias for each model at the upstream and downstream water logger locations and re-calculated NS 

values (Table 1.2).  Variances in model performances decrease and NS values for all models 
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greatly increase when subtracting out the biases.  However, model performances gradually 

diminish as the resolution coarsens and dimensionality decreases.  The one exception is the 500 

m 1D-AVG model, which shows the best and most consistent performance after subtracting out 

the mean bias with NS values of 0.977 upstream and 0.970 downstream. 

Observational errors for the water loggers are small at ± 0.04 m and do not significantly 

affect the temporal results.  However, errors in discharge associated with the model boundary 

conditions could have a substantial effect on model outputs.  Results of the sensitivity analysis 

show a 14-62% increase in spatial RMSE for a ± 10% to ± 20% change in discharge.  

Additionally, depending on spatial location of the observations, NS values for temporal model 

outputs drop well below zero for a ± 20% change in discharge and display a large range in NS 

values of -0.005 to 0.873 for a ± 10% change in discharge.   

1.8. Discussion & Conclusion  

 This study is the first to test a simple, raster-based model’s ability to simulate 2D, in-

channel flows along a ~100 km reach of a multichannel river.  We find that given proper 

parameterization and input information, raster-based models like LISFLOOD-FP can produce 

accurate 2D simulations of spatial patterns in WSE and inundation extent.  Both the 10 m 2D and 

25 m 2D models produce RMSE values less than 0.26 m for spatially distributed WSE and have 

a CSI for inundation extent of at least 89% (Table 1.2, Table 1.4).  These CSIs approach the 

maximum performance achieved when using hydraulic models, even when built using detailed 

LiDAR data [Bates et al., 2006; Neal et al., 2009].  RMSE for the spatially distributed 

observations of WSE and depth are 0.162 m and 0.267 m, suggesting that observational error 

likely accounts for a significant portion of the model errors, in addition to discharge uncertainties 

and model structural errors.  
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 Bathymetric uncertainties	likely exert a dominant control on patterns in spatially 

distributed WSE errors in both the 10 m and 25 m 2D models.  Certain areas of the Tanana were 

inaccessible by boat due to shallow sub-channels, log jams, or submerged bars.  This 

inaccessibility results in little to no observational data in these areas and larger uncertainties in 

the interpolated bathymetry.  Based on the interpolation results, errors in the bathymetry that are 

father away from our observations could be greater than 0.890 m.  These bathymetric 

uncertainties likely manifest as higher localized errors in modeled WSE in the small sub-

channels and in areas of significant change in planform along the reach (Figure 1.6b).  For 

example, the 2D models tend to over-predict WSE in areas where multiple channels collapse into 

a single channel.  The larger WSE errors in areas of morphological change could also be a result 

of model structural errors from the exclusion of advection in the momentum equation.  

Additionally, the uniform roughness coefficient used here likely fails to capture spatial variations 

present in an environment as complex as the Tanana.  It is possible that errors occurring at 

significant morphological transitions, as well as some of the errors caused by bathymetric 

uncertainties, could be lowered using spatially varying roughness coefficients along the reach.  

More research is needed to investigate the controlling factors on roughness values in 

multichannel rivers at reach-scales ≥100 km.      

Analysis of temporal dynamics in WSE highlights larger differences between the 10 m 

and 25 m 2D models.  At the downstream water logger location, both models produce reasonable 

NS values, though they slightly over-predict WSE at low water intervals.  However, at the 

upstream water logger location, the 10 m 2D model’s performance drops substantially in 

comparison to the 25 m 2D model due to consistent under-predictions of WSE throughout the 

span of the simulation (Table 1.2, Figure 1.8).  Differences in temporal WSE variations between 
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the 10 m and 25 m 2D models are likely caused by spatial biases due to bathymetric uncertainties 

and differences in channel connectivity due to model resolution.  The finer spatial resolution of 

the 10 m model allows better connectivity in some of the anabranching sub-channels compared 

to the 25 m model (Figure 1.6a).  This increase in channel connectivity, combined with 

bathymetric errors, likely distributes more flow to the sub-channels upstream of the water logger 

location, which decreases the flow and lowers WSE in the main channel where the observations 

are recorded.   The effect of spatial biases in the temporal results is demonstrated when 

subtracting out the mean bias in the model outputs.  Without spatial biases, the 10 m 2D and 25 

m 2D models have negligible differences in NS values at the upstream and downstream water 

logger locations (Table 1.2).  In the future, access to a larger observational network of water 

loggers measuring temporally varying WSE would provide more insight into model limitations 

and spatiotemporal controls on WSE throughout the study reach.     

Despite limitations, results from the 2D model analysis demonstrate the practical 

application of a simple, raster-based model in simulating 2D channel hydraulics in multichannel 

river environments across 100 km reach scales.  These efficient 2D models are important for 

future analysis of new remote sensing observations from sensors such as the Surface Water and 

Ocean Topography Mission (SWOT), which is scheduled to launch in 2021 [Biancamaria et al., 

2016].  SWOT  aims to record spatially-continuous, 2D observations of WSE and slope for the 

world’s rivers 50-100 m in width and greater [http://swot.jpl.nasa.gov/].  However, it is not clear 

how effectively SWOT will observe multichannel systems.  Fine-resolution, 2D model outputs of 

in-channel WSE are needed for pre-launch simulation and post-launch data assimilation of 

SWOT observations [Durand et al., 2008; Biancamaria et al., 2011, 2016; Bates et al., 2014].  
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Additionally, scientists and managers can use efficient 2D models like those tested here to help 

identify areas that are vulnerable to flooding in these complex environments [Surian, 2015].   

 Comparisons between the detailed 2D models and models of lower dimensionality and 

coarser resolution reveal that bathymetry is a predominant control on WSE in the finer resolution 

2D models, while simplifications to the multichannel network exert a larger control on WSE in 

the coarser resolution, 1D models.  The 10 m and 25 m 2D models provide the highest level of 

process representation along the study reach.  In these models, spatial and temporal errors in 

WSE are primarily influenced by spatial biases from bathymetric errors (Figures 1.6 and 1.8). As 

model resolution coarsens to 100 m, a combination of bathymetric uncertainties and improper 

channel connectivity dominate model errors.  Many of the small sub-channels are lost in the 

anabranching subreach due to the coarser grid size in the 100 m 2D model.  As a result, larger 

over-predictions in WSE occur in this subreach due to a decrease in channel capacity.  

Representing the smaller sub-channels using subgrid representations, as in the 100 m SGC 

model, results in more evenly spaced WSE errors and a ~16% decrease in RMSE.  Additionally, 

including channel connectivity using the subgrid channels in the 100 m SGC model improves 

temporal WSE dynamics compared to the 100 m 2D model (Table 1.2, Figure 1.8).  

 The elimination of the anabranching morphology is the prominent factor influencing 

spatial and temporal hydraulics in the 500 m 1D models when compared to the finer resolution 

models.  This is demonstrated through the differing bathymetric conditions in the 500 m models.  

The 500 m 1D-VAR model’s bed slope contains larger variations along the reach compared to 

the smooth bed slope in the 500 m 1D-AVG model.  While the smoother bed slope of the 500 m 

1D-AVG model reduces the average spatial error in WSE compared to the 500 m 1D-VAR 

model, both models produce notable alternating patterns in spatially distributed WSE errors 
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(Figure 1.6b, Figure 1.7).  These alternating errors are likely a result of unrealistic decreases or 

increases in channel capacity as the anabranching channels are averaged together at the coarser 

resolution and represented as single effective width values in the 1D model structure.  

Additionally, the general drop in roughness coefficients from the 2D models to the 1D models 

reflects the effects of simplifying the multichannel network.  The decrease in roughness with 

coarser model resolution is likely due to the spatial averaging of bathymetry across multiple 

channels, which reduces the overall channel capacity and requires a lower friction value to 

convey the same discharge dynamics along the study reach.  As a result, large biases emerge in 

the models’ temporal dynamics that indicate the 500 m model performances are no better (or 

even worse) than the mean of the observations in many locations and are likely to misrepresent 

hydraulics in multichannel rivers like the Tanana.   

Various 1D solvers, like the one in this study, are the primary hydraulic routing methods 

currently used in regional to global scale models [Yamazaki et al., 2011; Schumann et al., 2014b, 

2016; Sampson et al., 2015].  The results of this study demonstrate the importance of channel 

bifurcations and convergences in accurately simulating WSE in multichannel systems, which are 

not accounted for in regional and global models.  As a result, these 1D solvers can produce 

significant model errors in spatial and temporal WSE dynamics in multichannel rivers due to the 

neglect of anabranching channels.  Large errors in WSE along river reaches can result in 

improper flood predictions and slope estimates that could lead to incorrect discharge estimates in 

data sparse regions [Durand et al., 2008].   

Future development of regional to global scale models requires better observational data 

of WSE and bathymetry to calibrate and validate channel hydraulics in multichannel river 

environments.  The SWOT mission plans to substantially improve spatial coverage of river WSE 



 35 

and slope observations at regular temporal intervals, which will help to improve models through 

data assimilation and improved boundary conditions [Bates et al., 2014; Biancamaria et al., 

2016].  In the meantime, regional and global scale models of large multichannel rivers can be 

improved by using downscaling techniques or subgrid channel schemes that allow for better 

representation of anabranching channel networks, rather than lumping the channel conveyance 

into a single effective centerline [Neal et al., 2012a; Schumann et al., 2014b; Sampson et al., 

2015].  If results on the Tanana hold true for other rivers, then models such as the 100 m SGC 

model presented here would come close to matching the accuracy of 2D simulations without the 

required computational burden. 

 

  



 36 

REFERENCES 

Allen, G. H., and T. M. Pavelsky (2015), Patterns of river width and surface area newly revealed 
by the satellite-derived North American River Width (NARWidth) dataset, Geophys. Res. 
Lett., 42(2), 395-402, doi:10.1002/2014GL062764. 

 
Arcement, G. J., and V. R. Schneider (1989), Guide for Selecting Manning’s Roughness 

Coefficients for Natural Channels and Flood Plains United States, United States Geological 
Survey, Water-Supply Paper 2339. 

 
Bates, P. D., and A. P. J. De Roo (2000), A simple raster-based model for flood inundation 

simulation, J. Hydrol., 236(1-2), 54–77, doi:10.1016/S0022-1694(00)00278-X. 
 
Bates, P. D., M. S. Horritt, N. M. Hunter, D. Mason, and D. Cobby (2005), Numerical modelling 

of floodplain flow, John Wiley and Sons Ltd.: Chichester, UK, 271-304. 
 
Bates, P. D., M. D. Wilson, M. S. Horritt, D. C. Mason, N. Holden, and A. Currie (2006), Reach 

scale floodplain inundation dynamics observed using airborne synthetic aperture radar 
imagery: Data analysis and modelling, J. Hydrol., 328(1), 306–318, 
doi:10.1016/j.jhydrol.2005.12.028. 

 
Bates, P. D., M. S. Horritt, and T. J. Fewtrell (2010), A simple inertial formulation of the shallow 

water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 
387(1), 33–45, doi:10.1016/j.jhydrol.2010.03.027. 

 
Bates, P. D., F. Pappenberger, R. J. Romanowicz (2013), Uncertainty in Flood Inundation 

Modelling.  Applied uncertainty analysis for flood risk management, K. Beven, J. Hall 
(eds). Imperial College Press: Singapore, 232–269. 

 
Bates, P. D., J. C. Neal, D. Alsdorf, and G. J. P. Schumann (2014), Observing Global Surface 

Water Flood Dynamics, Surv. Geophys., 35(3), 839–852, doi:10.1007/s10712-013-9269-4. 
 
Beighley, R. E., K. G. Eggert, T. Dunne, V. Gummadi, and K. L. Verdin (2009), Simulating 

hydrologic and hydraulic processes throughout the Amazon River Basin, Hydrol. Process., 
23(8), 1221–1235, doi:10.1002/hyp. 

 
Biancamaria, S., M. Durand, K. M. Andreadis, P. D. Bates,  A. Boone, N. M. Mognard, E. 

Rodríguez, D. E. Alsdorf, D. P. Lettenmaier, and E. A. Clark (2011), Assimilation of virtual 
wide swath altimetry to improve Arctic river modeling, Remote Sens. Environ., 115(2), 
373–381, doi:10.1016/j.rse.2010.09.008. 

 
Biancamaria, S., D. P. Lettenmaier, and T. M. Pavelsky (2016), The SWOT Mission and its 

capabilities for land hydrology, Surv. Geophys., 37(2), 307-337, doi:10.1007/s10712-015-
9346-y. 

 
Bierkens, M. F. P., V. A. Bell, P. Burek, N. Chaney, L. E. Condon,  C. H. David, A. P. J. De 



 37 

Roo, P. Döll, N. Drost, J. S. Famiglietti, M. Flörke, D. J. Gochis, P. Houser, R. Hut, J. 
Keune, S. Kollet, R. M. Maxwell, J. T. Reager, L. Samaniego, E. Sudicky, E. H. 
Sutanudjaja, N. van de Giesen, H. Winsemius, and E. F. Wood (2015), Hyper-resolution 
global hydrological modelling: what is next?: “Everywhere and locally relevant.”, Hydrol. 
Process., 29(2), 310–320, doi:10.1002/hyp.10391. 

 
Brabets, T. P., B. Wang, and R. H. Meade (2000), Environmental and hydrologic overview of the 

Yukon River Basin , Alaska and Canada, US Dep. Inter. US Geol. Surv. 
 
Bradbrook, K. F., S. N. Lane, S. G. Waller, and P. D. Bates (2004), Two dimensional diffusion 

wave modelling of flood inundation using a simplified channel representation, Int. J. River 
Basin Manag., 2(3), 211–223, doi:10.1080/15715124.2004.9635233. 

 
Bridge, J. S. (1993), The interaction between channel geometry, water flow, sediment transport 

and deposition in braided rivers, Geol. Soc. London, Spec. Publ., 75(1), 13–71, 
doi:10.1144/GSL.SP.1993.075.01.02. 

 
Chow, V. T. (1959), Open-Channel Hydraulics, 680 pp., McGraw-Hill, N. Y. 
 
Cloke, H. L., and F. Pappenberger (2009), Ensemble flood forecasting: A review, J. Hydrol., 

375(3), 613–626, doi:10.1016/j.jhydrol.2009.06.005. 
 
Courant, R., K. Friedrichs, and H. Lewy (1928), Partial differential equations of mathematical 

physics, Math. Ann., 100, 32–74. 
 
Cunge, J. A., F. M. Holly, and A. Verwey (1980), Practical Aspects of Computational River 

Hydraulics, 420 pp., Pitman, London, U.K. 
 
de Almeida, G. A. M., P. D. Bates, J. Freer, and M. Souvignet (2012), Improving the stability of 

a simple formulation of the shallow water equations for 2-D flood modeling, Water Resour. 
Res., 48(5), doi:10.1029/2011WR011570. 

 
de Almeida, G. A. M., and P. D. Bates (2013), Applicability of the local inertial approximation 

of the shallow water equations to flood modeling, Water Resour. Res., 49(8), 4833–4844, 
doi:10.1002/wrcr.20366. 

 
Di Baldassarre, G., and A. Montanari (2009), Uncertainty in river discharge observations: a 

quantitative analysis, Hydrol. Earth Syst. Sci., 13(6), 193-921, doi:10.5194/hessd-6-39-
2009. 

 
Dornblaser, M. M., and R. G. Striegl (2009), Suspended sediment and carbonate transport in the 

Yukon River Basin, Alaska: Fluxes and potential future responses to climate change, Water 
Resour. Res., 45(6), doi:10.1029/2008WR007546. 

 
Durand, M., K. M. Andreadis, D. E. Alsdorf, D. P. Lettenmaier, D. Moller, and M. Wilson 

(2008), Estimation of bathymetric depth and slope from data assimilation of swath altimetry 



 38 

into a hydrodynamic model, Geophys. Res. Lett., 35(20), doi:10.1029/2008GL034150. 
 
Goff, J. A., and S. Nordfjord (2004), Interpolation of fluvial morphology using channel-oriented 

coordinate transformation: a case study from the New Jersey Shelf, Math. Geol., 36(6), 
643–658, doi:10.1023/B:MATG.0000039539.84158.cd. 

 
Harmel, R. D., R. J. Cooper, R. M. Slade, R. L. Haney, and J. G. Arnold (2006), Cumulative 

uncertainty in measured streamflow and water quality data for small watersheds, 
Transactions of the ASABE, 49(3), 689–701, doi: 10.13031/2013.20488. 

 
Horritt, M. S., and P. D. Bates (2001), Effects of spatial resolution on a raster based model of 

flood flow, J. Hydrol., 253(1), 239–249, doi:10.1016/S0022-1694(01)00490-5. 
 
Horritt, M. S., and P. D. Bates (2002), Evaluation of 1D and 2D numerical models for predicting 

river flood inundation, J. Hydrol., 268(1), 87–99, doi:10.1016/S0022-1694(02)00121-X. 
 
Horritt, M. S., P. D. Bates, and M. J. Mattinson (2006), Effects of mesh resolution and 

topographic representation in 2D finite volume models of shallow water fluvial flow, J. 
Hydrol., 329(1), 306–314, doi:10.1016/j.jhydrol.2006.02.016. 

 
Hunter, N. M., P. D. Bates, M. S. Horritt, and M. D. Wilson (2007), Simple spatially-distributed 

models for predicting flood inundation: A review, Geomorphology, 90(3), 208–225, 
doi:10.1016/j.geomorph.2006.10.021. 

 
Javernick, L., D. M. Hicks, R. Measures, B. Caruso, and J. Brasington (2016), Numerical 

Modelling of Braided Rivers with Structure-from-Motion-Derived Terrain Models, River 
Res. Appl., 32(5), 1071–1081, doi:10.1002/rra.2918. 

 
Lane, S. N., and K. S. Richards (1998), High resolution , two-dimensional spatial modelling of 

flow processes in a multi-thread channel, Hydrol. Process., 12(8), 1279-1298, doi: 
10.1002/(SICI)1099-1085(19980630)12:8<1279::AID-HYP615>3.0.CO;2-E. 

 
Lane, S. N., K. F. Bradbrook, K. S. Richards, P. S. Biron, and A. G. Roy (1999), The application 

of computational fluid dynamics to natural river channels : three-dimensional versus two-
dimensional approaches, Geomorphology, 29(1), 1–20, doi: 10.1016/S0169-
555X(99)00003-3 

 
Latrubesse, E. M. (2008). Patterns of anabranching channels: The ultimate end-member 

adjustment of mega rivers. Geomorphology, 101(1), 130-145. doi: 
10.1016/j.geomorph.2008.05.035. 

 
Legleiter, C. J., and P. C. Kyriakidis (2006), Forward and inverse transformations between 

Cartesian and channel-fitted coordinate systems for meandering rivers, Math. Geol., 38(8), 
927–958, doi:10.1007/s11004-006-9056-6. 

 
Legleiter, C. J., and P. C. Kyriakidis (2008), Spatial prediction of river channel topography by 



 39 

kriging, Earth Surf. Process. Landforms, 33(6), 841–867, doi:10.1002/esp. 
 
McCuen, R. H., Z. Knight, and A. G. Cutter (2006), Evaluation of the Nash–Sutcliffe efficiency 

index, J. Hydrol. Eng., 11(6), 597–602, doi:10.1061/(ASCE)1084-0699(2006)11:6(597). 
 
McFeeters, S. K. (1996), The use of the Normalized Difference Water Index (NDWI) in the 

delineation of open water features, Int. J. Remote Sens., 17(7), 1425–1432, 
doi:10.1080/01431169608948714. 

 
Merwade, V. M., D. R. Maidment, and B. R. Hodges (2005), Geospatial representation of river 

channels, J. Hydrol. Eng., 10(3), 243–251, doi:10.1061/(ASCE)1084-0699(2005)10:3(243) 
CE. 

 
Merwade, V. M., D. R. Maidment, and J. A. Goff (2006), Anisotropic considerations while 

interpolating river channel bathymetry, J. Hydrol., 331(3), 731–741, 
doi:10.1016/j.jhydrol.2006.06.018. 

 
Merwade, V., A. Cook, and J. Coonrod (2008), GIS techniques for creating river terrain models 

for hydrodynamic modeling and flood inundation mapping, Environ. Model. Softw., 23(10), 
1300–1311, doi:10.1016/j.envsoft.2008.03.005. 

 
Merwade, V. (2009), Effect of spatial trends on interpolation of river bathymetry, J. Hydrol., 

371(1), 169–181, doi:10.1016/j.jhydrol.2009.03.026. 
 
Neal, J. C., P. D. Bates, T. J. Fewtrell, N. M. Hunter, M. D. Wilson, and M. S. Horritt (2009), 

Distributed whole city water level measurements from the Carlisle 2005 urban flood event 
and comparison with hydraulic model simulations, J. Hydrol., 368(1), 42–55, 
doi:10.1016/j.jhydrol.2009.01.026. 

 
Neal, J., G. J. P. Schumann, and P. D. Bates (2012a), A subgrid channel model for simulating 

river hydraulics and floodplain inundation over large and data sparse areas, Water Resour. 
Res., 48(11), doi:10.1029/2012WR012514. 

 
Neal, J., I. Villanueva, N. Wright, T. Willis, T. Fewtrell, and P. D. Bates (2012b), How much 

physical complexity is needed to model flood inundation?, Hydrol. Process., 26(15), 2264–
2282, doi:10.1002/hyp.8339. 

 
Nguyen, P., A. Thorstensen, S. Sorooshian, K. Hsu, A. AghaKouchak, B. Sanders, V. Koren, Z. 

Cui, and M. Smith (2015), A high resolution coupled hydrologic–hydraulic model 
(HiResFlood-UCI) for flash flood modeling, J. Hydrol., doi:10.1016/j.jhydrol.2015.10.047. 

 
Nicholas, A. P., and G. H. Sambrook Smith (1999), Numerical simulation of three-dimensional 

flow hydraulics in a braided channel, Hydrol. Process., 13(6), 913-929, doi: 
10.1002/(SICI)1099-1085(19990430)13:6<913::AID-HYP764>3.0.CO;2-N 

 
Nicholas, A. P., S. D. Sandbach, P. J. Ashworth, M. L. Amsler, J. L. Best, R. J. Hardy, S. N. 



 40 

Lane, O. Orfeo, D. R. Parsons, A. J. H. Reesink, G. H. Sambrook Smith, and R. N. 
Szupiany (2012), Modelling hydrodynamics in the Rio Paraná, Argentina: An evaluation 
and inter-comparison of reduced-complexity and physics based models applied to a large 
sand-bed river, Geomorphology, 169, 192–211, doi:10.1016/j.geomorph.2012.05.014. 

 
Osting, T. D. (2004), An improved anisotropic scheme for interpolating scattered bathymetric 

data points in sinuous river channels. Cent. Res. Water Resour., University of Austin. 
 
Paiva, R. C. D., W. Collischonn, and C. E. M. Tucci (2011), Large scale hydrologic and 

hydrodynamic modeling using limited data and a GIS based approach, J. Hydrol., 406(3), 
170–181, doi:10.1016/j.jhydrol.2011.06.007. 

 
Paiva, R. C. D., W. Collischonn, and D. C. Buarque (2013), Validation of a full hydrodynamic 

model for large-scale hydrologic modelling in the Amazon, Hydrol. Process., 27(3), 333–
346, doi:10.1002/hyp.8425. 

 
Pavelsky, T. M., and L. C. Smith (2008), RivWidth : A software tool for the calculation of river 

widths from remotely sensed imagery, IEEE Geosci. Remote Sens. Lett., 5(1), 70–73, doi: 
10.1109/lgrs.2007.908305 

 
Sampson, C. C., A. M. Smith, P. D. Bates, J. C. Neal, L. Alfieri, and J. E. Freer (2015), A high-

resolution global flood hazard model, Water Resour. Res., 51(9), 7358–7381, 
doi:10.1002/2015WR016954.Received. 

 
Schubert, J. E., W. W. Monsen, and B. F. Sanders (2015), Metric-Resolution 2D River Modeling 

at the Macroscale: Computational Methods and Applications in a Braided River, Front. 
Earth Sci., 3, 74, doi:10.3389/feart.2015.00074. 

 
Schumann, G. J. P., P. D. Bates, J. C. Neal, and K. M. Andreadis (2014a), Fight floods on a 

global scale, Nature, 507(7491), 169-169. doi:10.1038/507169e. 
 
Schumann, G. J. P., K. M. Andreadis, and P. D. Bates (2014b), Downscaling coarse grid 

hydrodynamic model simulations over large domains, J. Hydrol., 508, 289–298, 
doi:10.1016/j.jhydrol.2013.08.051. 

 
Schumann, G. J. P., D. Stampoulis, A. M. Smith, C. C. Sampson, K. M. Andreadis, J. C. Neal, & 

P. D. Bates (2016), Rethinking flood hazard at the global scale, Geophy. Res. Lett., 43(19), 
doi: 10.1002/2016GL070260. 

 
Smith, J. D., and S. R. McLean (1984), A model for flow in meandering streams, Water Resour. 

Res., 20(9), 1301–1315, doi:10.1029/WR020i009p01301. 
 
Surian, N. (2015), Fluvial Processes in Braided Rivers, in Rivers-Physical, Fluvial and 

Environmental Processess, 255–277. doi: 10.1007/978-3-319-17719-9_15. 
 
Toniolo, H., P. Duvoy, S. Vanlesberg, and J. Johnson (2010), Modelling and field measurements 



 41 

in support of the hydrokinetic resource assessment for the Tanana river at Nenana, Alaska, 
Proc. Inst. Mech. Eng. Part A: J. Power Energy, 224(8), 1127–1139, 
doi:10.1243/09576509JPE1017. 

 
Toniolo, H. (2013), Bedforms andsediment characteristics along the thalweg on the Tanana 

River near Nenana, Alaska, USA, Nat. Resour., 04(01), 20–30, doi:10.4236/nr.2013.41003. 
 
Williams, R. D., J. Brasington, M. Hicks, R. Measures, C. D. Rennie, and D. Vericat (2013), 

Hydraulic validation of two-dimensional simulations of braided river flow with spatially 
continuous aDcp data, Water Resour. Res., 49(9), 5183–5205, doi:10.1002/wrcr.20391. 

 
Yamazaki, D., S. Kanae, H. Kim, and T. Oki (2011), A physically based description of 

floodplain inundation dynamics in a global river routing model, Water Resour. Res., 47(4), 
doi:10.1029/2010WR009726. 

 
Ziliani, L., N. Surian, T. J. Coulthard, and S. Tarantola (2013), Reduced-complexity modeling of 

braided rivers: Assessing model performance by sensitivity analysis, calibration, and 
validation, J. Geophys. Res. Earth Surf., 118(4), 2243–2262, doi:10.1002/jgrf.20154. 

 

 

 

 

 

 



 42 

 

CHAPTER 2:  AIRSWOT MEASUREMENTS OF RIVER WATER SURFACE ELEVATION 
AND SLOPE: TANANA RIVER, AK2 

2.1. Introduction 

Rivers play a critical role in earth’s water cycle by transporting surface runoff to the 

oceans.  In doing so, they provide key ecological habitat, play an important part in nutrient 

cycling, act as navigation pathways for trade and recreation, and help sustain human life as 

sources of fresh water.  Research over the past several decades reveals a growing urgency to 

monitor the globe’s spatial and temporal surface water fluxes as they adjust to climate change 

[Famiglietti and Rodell, 2013; Bates et al., 2014; Clark et al., 2015; Rodell et al., 2015].  

However, existing in situ and remote sensing methods for measuring rivers and lakes have 

limitations that prevent a consistent and comprehensive view of global-scale surface water 

dynamics [Alsdorf et al., 2007b; Schumann et al., 2009; Bates, 2012].  

  Remote sensing technology provides intriguing new ways to address the limitations of in 

situ observations, which often fail during overbank flows and are unavailable in many parts of 

the globe [Hannah et al., 2011; Di Baldassarre and Uhlenbrook, 2012].  Optical sensors such as 

Landsat and SPOT can accurately observe inundation extent, but they cannot measure WSEs and 

are limited by clouds and darkness [Marcus and Fonstad, 2008].  Several types of active radars 

                                                
2This chapter previously appeared as an article in Geophysical Research Letters. The original 
citation is as follows: Altenau, E. H., T. M. Pavelsky, D. Moller, C. Lion, L. H. Pitcher, G. H. 
Allen, P. D. Bates, S. Calmant, M. Durand, and L. C. Smith (2017), AirSWOT measurements of 
river water surface elevation and slope: Tanana River, AK, Geophys. Res. Lett., 1–9, 
doi:10.1002/2016GL071577. 
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overcome the drawbacks of  optical sensors, though all current systems also have limitations of 

their own [Smith, 1997; Calmant et al., 2008; Schumann et al., 2009].  Radar altimetry 

measurements from sensors such as Jason-2 and ENVISAT provide point-based measurements 

of river WSEs, which can be used to interpolate slopes and develop stage-discharge relationships 

[O’Loughlin et al., 2013; Paris et al., 2016].  However, altimeter observations have low spatial 

and temporal resolutions, with vertical errors of decimeters to meters [Calmant et al., 2008; 

Biancamaria et al., 2016a; O’Loughlin et al., 2016].  Interferometric synthetic aperture radar 

(InSAR) images can recover WSE changes under inundated vegetation, but existing spaceborne 

InSARs cannot ordinarily retrieve WSEs over open water [Alsdorf et al., 2007a].  Therefore, 

current remotely sensed measurements of WSEs and slopes are constrained by resolutions and 

accuracies that limit the visibility of surface waters at global scales [Alsdorf et al., 2007b; Bates, 

2012; Garambois et al., 2016]. 

 The Surface Water and Ocean Topography (SWOT) Mission aims to address the 

principal limitations of remote sensing for estimating surface water fluxes [Biancamaria et al., 

2016b].  SWOT is expected to provide simultaneous, 2D measurements of WSEs for many of the 

world’s prominent rivers, lakes, and wetlands, with decimeter-level accuracy over 1 km2 areas 

[Pavelsky et al., 2014].  Biancamaria et al. [2016b] provides further information regarding the 

capabilities and limitations of SWOT to measure rivers and lakes.  AirSWOT, an airborne 

instrument that produces radar measurements analogous to (but not identical to) SWOT, was 

designed to assess sensor capabilities, develop algorithms, and eventually validate SWOT 

measurements.  Unlike SWOT, AirSWOT provides an opportunity to explore important 

questions regarding river hydraulics at spatial and temporal resolutions unattainable by satellites.  

To date, however, there has been no published evaluation of AirSWOT’s ability to accurately 
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measure these important hydrologic variables or the spatial scales required for averaging the data 

in order to meet the proposed accuracies.  

Here, we present analysis of new measurements of river WSE and slope acquired on June 

9, 2015 during an AirSWOT campaign over the Tanana River, Alaska.  The objectives of this 

study are to (1) determine the WSE and slope errors associated with AirSWOT measurements of 

rivers, (2) to evaluate AirSWOT’s effectiveness as a validation instrument for the SWOT 

hydrology measurements, and (3) to explore whether AirSWOT’s measurements are precise 

enough to capture centimeter-per-kilometer-scale variations in river slope, which are critical for 

characterizing reach-scale river hydraulics.  More detailed measurements of WSE and slope are 

needed to understand the primary factors controlling slope variability along river systems, which 

are essential for predicting floods and for defining reaches used to estimate discharge from 

remotely sensed data [Durand et al., 2016; Garambois et al., 2016].   

 2.2. AirSWOT  

 The AirSWOT payload comprises a multi-baseline Ka-band InSAR, a state-of-the-art 

inertial measurement unit (Applianix 610), and a 3-band color infrared (CIR) camera 

[http://cirrus-designs.com/].  These sensors are operated from a NASA B200 aircraft typically at 

an altitude of 8,230 meters above sea level.  AirSWOT’s Ka-band InSAR has multiple temporal 

and cross-track baselines in order to characterize the scattering and statistics expected from the 

primary instrument on SWOT (the Ka-band Radar Interferometer, or KaRIN [Enjolras and 

Rodriguez, 2009; Biancamaria et al., 2016b]), provide data for developing classification 

algorithms, and improve the understanding of the instrument performance and limitations over 

the large variety of landscape conditions that SWOT will observe (i.e. sea ice, water obscured by 

vegetation, frozen or partially frozen rivers, etc).  AirSWOT is designed with high-accuracy 
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elevation mapping capabilities and a swath mode that enables mapping of entire river networks 

in a reasonable timeframe.  Further description of system parameters and calibration/validation 

requirements of AirSWOT’s InSAR are presented by Moller et al., [2011].  

 It is important to note the difference between the two separate observation swaths 

collected by the AirSWOT Ka-band InSAR. The inner swath has incidence angles ranging from 

0-6 degrees, which fully encompasses KaRIN incidence angles of 0.6-3.9 degrees [Fjørtoft et al., 

2014], while the outer swath has incidence angles ranging from 4-25 degrees.  When data is 

collected from ~8,200 meters, the inner swath is approximately 800 m in width, while the outer 

swath covers ~4 km.  In this paper, we exclusively assess data from the wider outer swath 

because robust methods have not yet been developed to process data from the inner swath.  

Differences in incidence angles and viewing geometry render AirSWOT’s observations 

substantially different from anticipated SWOT observations.  While the random elevation errors 

of AirSWOT’s outer swath should be smaller than what could be achieved by SWOT [Fu et al., 

2012], the SWOT platform will have superior stability compared to AirSWOT and SWOT 

incidence angles will likely produce better signal-to-noise ratios compared to AirSWOT’s outer 

swath.  Nonetheless, because AirSWOT’s outer swath is designed to produce highly accurate 

WSE measurements it is likely to be useful for validating SWOT WSE measurements. 

In preparation for the SWOT mission, the scientific community has identified WSE and 

slope accuracies needed for executing robust science of global surface water dynamics, which we 

use as a baseline to assess AirSWOT’s performance and suitability as a validation instrument and 

its capabilities to provide useful hydraulic measurements in its own right.  These accuracies are 

±10 cm or better for WSEs when averaged over 1 km2 areas and ±1.7 cm/km for slopes after 

processing along a maximum of 10 km of flow distance [Biancamaria et al., 2016b; Rodriguez, 
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2016].  Primary sources of error for AirSWOT likely include layover from high topography and 

vegetation, random noise, and elements of the processing methodology such as the estimation of 

ambiguity height in phase unwrapping [Rosen et al., 2000].   

2.3. Study Site 

For this study, we chose a ~90 km reach of the Tanana River, Alaska, bounded by two 

USGS gauge stations in the towns of Fairbanks and Nenana (Figure 2.1).  This site is ideal for 

assessment of AirSWOT’s capabilities to measure WSEs and slopes over a highly-dynamic, 

multi-channel river.  The shape of the annual hydrograph on the Tanana is dominated by melt of 

snowpack and glaciers during the spring and summer.  Mean annual discharge for the open-water 

season (May to October) at the gauge at Nenana (station 15515500) from 1962 to 2015 is ~1299 

m3/s.  The mean daily discharge on June 9, 2015 was 835 m3/s, which is extremely low for that 

day of the year.  For comparison, average discharge on June 9th from 1962 to 2015 is ~1220 

m3/s.  The glacial origin of the Tanana River results in a high sediment load, which interacts with 

local topography to produce a complex morphology that ranges from highly braided to a single 

meandering channel [Brabets et al., 2000]. This varied river morphology, in combination with 

ubiquitous sandbars and high bluffs (20-50 m high) along the study reach, makes this a 

challenging test site for AirSWOT’s InSAR technology.	

2.4. Methods   

2.4.1. Field Methods 

We conducted a six-week field campaign from May 15, 2015 to June 27, 2015 to 

measure key hydrologic variables using in situ and AirSWOT measurements along the Tanana 

River, AK (Figure 2.1).  This paper’s focus is on the June 9, 2015 AirSWOT data collection, 

which is currently the only date for which AirSWOT radar data has been fully processed, though 



 47 

we also use optical data from June 17, 2015 due to thin clouds present during the June 9th data 

collection.  To assess AirSWOT’s ability to measure river slopes and WSEs, we produced a 

high-resolution profile of WSEs.  We used a Trimble R9 survey-grade GPS system attached to 

the back of a 28-foot river boat to measure WSEs nearly continuously (0.5 second intervals; ~3 

m spacing) along the main channel of the river on June 7, 2015 (Figure 2.1).  In total, we 

collected 26,827 WSE measurements.  In situ measurements were infeasible on June 9th due to 

logistical constraints, but hydraulic conditions were very similar between the two dates aside 

from a small decline in stage.  Between June 7th and June 9th, stage dropped 12 cm at Fairbanks 

and 17 cm at Nenana, resulting in a 0.05 cm/km difference in average slope between the two 

dates (24.80 cm/km on June 7th vs. 24.85 cm/km on June 9th).   
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Figure 2.1:  Location of the Tanana River study reach shown using a Landsat 8 near-infrared 
image acquired on 6/18/2013. AirSWOT elevation measurements and extent from June 9, 2015 
are shown in the white dashed boxes. 

 

In addition to the GPS profile measurements of WSE, we installed a network of 20 

Solinst Levelogger pressure transducers throughout the study reach to record temporal variations 

in stage every two-minutes.  Reported accuracy for the pressure transducers at a maximum depth 

of 10 m is ±1 cm [http://www.solinst.com/products/dataloggers-and-telemetry/].  Eight of the 20 

transducers are not considered here due to the instruments shifting or being buried by mobile 

sediment or collapsed riverbanks.  This left 12 transducers available for analysis (Figure 2.1).  

We used static GPS surveys to convert the transducer stage values to WSEs by measuring the 

height difference between the water surface and the GPS-surveyed benchmarks using an optical 

survey level.  The pressure transducers recorded similar declines in stage between June 7th and 
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June 9th compared to the USGS gauge measurements.  Of the 12 transducers with viable stage 

measurements, eight were located on the main channel where the GPS profile measurements 

were taken.  Changes in stage at the transducers located on the same channel as the GPS profile 

ranged from -15 cm to -20 cm, with an average difference of -17.8 cm and an average slope 

difference of 0.02 cm/km (23.98 cm/km on June 7th vs. 24.00 cm/km on June 9th).  Differences 

between slopes across the entire study reach calculated using the USGS gauge stations and 

transducer sites are quite small (< 0.05 cm/km) when compared to the reach average slope of ~24 

cm/km.  As a result, we subtracted the average stage difference calculated from the pressure 

transducers (-17.8 cm) from the June 7th profile observations to produce an estimated profile for 

June 9th that we compare to the AirSWOT measurements.   

 To achieve centimetric accuracies for the in situ WSE measurements, we used Natural 

Resources Canada’s Canadian Geodetic Survey Precise Point Positioning tool (CSRS-PPP) for 

kinematic post-processing of the GPS profile measurements and static post-processing of GPS 

surveys conducted at the transducer sites [http://www.nrcan.gc.ca/earth-

sciences/geomatics/geodetic-reference-systems/].  Vertical error estimates are not provided when 

processing kinematic measurements, so we estimated the random error for the profile elevations 

by applying a Gaussian filter to the profile and calculating the root mean squared error (RMSE) 

between the raw measurements and smoothed profile.  We chose a window of 100 points, which 

produces a smoothed profile that preserves sub-kilometer scale features but eliminates noise.  

Larger smoothing windows result in convolution of signal (i.e. actual variations in WSE) with 

error and were thus avoided.  RMSE between the smoothed profile and raw profile 

measurements is 2 cm, which is small compared to the anticipated AirSWOT measurement error.  

Elevation accuracies from the GPS surveys conducted at the transducer sites used to shift the 
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profile are ±3.6 to ±6.4 cm.  Given the combined pressure transducer instrument and survey 

errors (±1.5 cm), total uncertainty for the GPS profile increases to ±9.9 cm.   

The AirSWOT flight on June 9, 2015 began at 7:52 AM and ended at 10:30 AM.  

AirSWOT collected 21 swaths of elevation data; 9 swaths along a 43 km east region and 12 

swaths along a 32 km west region of the study area (Figure 2.1).  The CIR camera onboard the 

AirSWOT platform collected 1.16 m resolution optical photographs for each AirSWOT flight.  

Accurate location and orientation (latitude, longitude, altitude, roll, pitch, heading) of the CIR 

camera at the instant of each image acquisition were obtained using the AirSWOT platform 

Applanix GPS/IMU.  Imagery was geo-rectified and processed into ortho-mosaics using Agisoft 

PhotoScan software [http://www.agisoft.com/]. 

2.4.2. Remote Sensing Methods 

 The AirSWOT team at the NASA Jet Propulsion Laboratory (JPL), which processes the 

AirSWOT radar data, provided several data products for each AirSWOT line, all stored in flat 

binary files on regular grids.  Data products used in this study include elevation in meters above 

the WGS84 ellipsoid, magnitude of the relative backscatter received by the sensor measured in 

decibels (dB), and estimated elevation error.  Elevation errors are estimated from the phase 

variance (Cramer-Rao bound) which depends on the coherence between the two interferometric 

images [Rosen et al., 2000].  Spatial resolution is 3.6 m for all binary files.   

To extract WSEs from the radar imagery, we create a water mask from AirSWOT optical 

imagery using a binary threshold of 0.30 in the Normalized Difference Water Index (NDWI) 

transformation [McFeeters, 1996] (Figure 2.2).  Due to cloudy conditions on June 9th, we use 

optical imagery from June 17th to create the water mask.  Water levels on June 17th were lower 

than those on June 9th (-22 cm), reducing the likelihood of land elevations being captured in the 
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water mask but potentially resulting in the exclusion of some area inundated on June 9th. We 

multiply the AirSWOT elevation images by the optical water mask, which removes land pixels 

from analysis (Figure 2.3).  There is potential for the chosen binary threshold to misclassify 

some land pixels as water in the mask, which would introduce error into the AirSWOT WSE 

images.  Errors resulting from misclassified water/land pixels are likely minimal since water 

levels were slightly lower on the date used to create the water mask, and visual inspection of the 

water mask shows good agreement of water/land boundaries. 
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Figure 2.2:  Derivation of the water mask used for the Tanana River study area.  (a) False color 
composite of the color infrared (CIR) imagery acquired on 06/17/15. (b) Normalized Difference 
Water Index (NDWI) transformation of the CIR imagery.  A threshold of 0.30 was used to 
differentiate water pixels from land pixels.  (c) Binary water mask where water equals one (white 
area) and all land pixels equal zero (black area).  (d) Final water mask across the entire Tanana 
River study reach.            

 We apply a two stage filtering process to refine the AirSWOT WSEs before comparing 

them to the field measurements (Figure 2.3).  First, we use a ratio of magnitude divided by 

elevation error and exclude WSE pixels with ratios ≤5 dB of magnitude per meter of error.  This 

threshold removes WSE pixels that are likely affected by layover and enforces stricter error 

limits on lower magnitude values.  Since the magnitude decreases inside the swath, this method 

allows us to have a range-dependent threshold for the errors.  Next, we use a moving 2 km2 

window to reduce remaining outliers by removing WSE pixels that are ±3 standard deviations  
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Figure 2.3:  Methodology for filtering the AirSWOT elevations displayed using the west region.  
(a) Mosaic of all AirSWOT lines across the west region of the study area from 06/09/15.  (b) 
Inset showing detailed AirSWOT elevations within the mosaic.  (c) Before filtering the 
AirSWOT water surface elevations (WSEs), all flight lines are isolated using the water mask 
created using the CIR imagery acquired on 06/17/15 (Figure S1).  (d) For each individual 
AirSWOT line, such as the example shown here, a ratio of (e) magnitude to (f) error is used to 
create a (g) fractional image, and (h) WSE pixels with fractions less than 5 dB/m are eliminated. 
This threshold removes WSE pixels that are likely affected by layover and enforces stricter error 
limits on lower magnitude values.  Since the magnitude decreases inside the swath, this method 
allows us to have a range-dependent threshold for the errors.  (i) Lastly, remaining outliers are 
removed by using a moving 2 km2 window to identify pixels that are ±3 standard deviations 
away from the mean elevation within the window.  (j) The filtered elevations for all lines are 
used to estimate AirSWOT WSE and slope errors.   
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away from the mean AirSWOT-derived elevation within the window.  The remaining outliers are 

likely caused by misclassified water/land pixels from the water mask and poor ambiguity 

rejections at incidence angles <5 degrees [Goldstein et al., 1988].  On average, the filters 

eliminate 65% of the original WSE pixels in the east region and 39% of the original WSE pixels 

in the west region.  When compared to the observed water mask area, the filtered elevations 

retain 84% of the water surface area in the east region and 95% of the water surface area in the 

west region due to overlap of AirSWOT measurement swaths.  The filters eliminate more water 

pixels and area in the east region due to higher error values and lower magnitudes likely resulting 

from a combination of high adjacent topography and more complex channel morphology.  

 To determine AirSWOT WSE and slope errors, we compare the filtered AirSWOT WSEs 

to the GPS profile measurements.  First, we calculate a mean AirSWOT elevation along a 

transect orthogonal to the GPS profile (Figure 2.4).  We interpolate a 1 km orthogonal vector 

(±500 m) at each GPS profile measurement, extract the WSEs from the filtered AirSWOT 

images along this orthogonal, and average them together.  Next, we segment the water mask in 

the downstream direction into 1 km2 bins and average the AirSWOT WSEs and GPS profile 

measurements within each bin (Figure 2.4). We subtract the average AirSWOT WSEs from the 

average profile measurements in each bin to estimate the AirSWOT WSE error over 1 km2 areas.  

We focus primarily on 1 km2 bins because the SWOT science requirements are defined against 

this area, but we also test bin sizes ranging from 100 m2 to 10 km2. Finally, we calculate slopes 

from AirSWOT and GPS profile data using a moving 10 km window that advances down the 

profile every 100 m.  For each 10 km reach, we calculate slopes for both AirSWOT orthogonal 

mean values and the GPS profile measurements using linear regressions, then subtract the 

AirSWOT slopes from the GPS profile slopes.  To assess AirSWOT’s ability to capture slope 
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variability, we compute Nash-Sutcliffe Efficiency (NSE) values of the AirSWOT slopes relative 

to the GPS-derived slopes for the east and west regions [McCuen et al., 2006].  NSE values 

range from –∞ to 1, with an NSE of 1 indicating that the GPS and AirSWOT slopes are identical 

and an NSE less than zero indicating that the mean GPS profile slope better characterizes slope 

variability than do the AirSWOT measurements.  We also assess AirSWOT slope measurement 

capabilities along reach lengths ranging from 1-20 km using both RMSE and NSE.   

 

Figure 2.4:  Methodology for averaging AirSWOT WSEs at the GPS profile measurements 
across orthogonal vectors and 1 km2 areas.  For visual clarity, one orthogonal vector is plotted 
for every 20 GPS transect points.   

2.5. Results 

 Comparison of AirSWOT and in situ WSE profiles shows strong similarities between the 

measurements.  Figure 2.5 shows the orthogonal means of AirSWOT WSEs and the GPS WSE 

profiles for the east (Figure 2.5a) and west (Figure 2.5b) regions.  The majority (73%) of WSE 

errors within 1 km2 regions fall below the science requirements defined by the SWOT mission of 

±10 cm, with an RMSE of 9.0 cm and mean absolute error (MAE) of 7.1 cm (Figure 2.5c).  Bias, 

at 0.65 cm, is a very small component of AirSWOT measurement error relative to in situ 

observations.  The largest AirSWOT WSE deviations from the observations occur in the first 10 
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km of both the east and west regions.  WSE errors vary with the size of the averaging bins, with 

higher errors at smaller bin sizes (Figure 2.6a).  Given the uncertainty in the GPS profile 

measurements (±9.9 cm), observational uncertainty likely accounts for a substantial portion of 

the AirSWOT WSE errors. 

 

Figure 2.5: WSE profiles derived from GPS (black) and AirSWOT (red) for the (a) east and (b) 
west regions.  Standard deviations (SD) are shown for the AirSWOT WSEs in the grey shaded 
areas.  (c) Differences between GPS WSEs and AirSWOT WSEs averaged over 1 km2 areas.  
Blue dashed lines mark the SWOT science requirement for WSE accuracies (±10 cm). 
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Figure 2.6: (a) Root mean squared error (RMSE) for AirSWOT WSEs versus the spatial area 
used to average the AirSWOT and in situ measurements.  (b) RMSE for AirSWOT slopes versus 
the reach length used to calculate the AirSWOT and in situ slopes.  Blue dashed lines indicate 
the SWOT science requirements of 10 cm of error across 1 km2 areas for WSEs and 1.7 cm/km 
for slopes across 10 km reaches. 

 
 For 10 km reach lengths, AirSWOT is capable of accurately measuring slopes with an 

RMSE of 1.0 cm/km, as well as capturing detailed variations in slopes, with NSE values of 0.76 

and 0.93 for the east and west regions, respectively.  Figure 2.7 shows slopes along 10 km 

reaches for the east (Figure 2.7a) and west regions (Figure 2.7b).  Out of 499 overlapping 10 km 

reaches (289 east and 210 west), 90% of slope errors are at or below the SWOT science 

requirements of ±1.7 cm/km (Figure 2.7c).  Slope errors range from -2.4 cm/km to 2.2 cm/km, 
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with an RMSE of 1.0 cm/km and an MAE of 0.83 cm/km.  Slope errors decline predictably with 

reach length, from 17.8 cm/km for 1 km reaches to 0.6 cm/km for 20 km reaches (Figure 2.6b).  

NSE values are generally lower for shorter reaches, though the increase is not monotonic with 

reach length (Figure 2.8).  Slopes with errors greater than the SWOT science requirement are 

likely affected by topographic layover from high bluffs adjacent to the channel (Figure 2.5) and 

incorrect ambiguity heights.  Ambiguity heights are used in InSAR processing to unwrap the 

interferometric phase, an important step in retrieving the elevations, and are sensitive to areas of 

high topography as well as aircraft pitch and roll [Rosen et al., 2000].  Therefore, incorrect 

ambiguity heights may lead to large errors in elevation measurements. Additionally, some 

portion of the difference between the AirSWOT and GPS profile slopes could be attributable to 

slope changes that may have occurred between June 7th, when the in situ measurements were 

collected, and the June 9th AirSWOT flight.   
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Figure 2.7:  Slopes from GPS profile and AirSWOT for the 499 overlapping 10 km reaches 
within the (a) east and (b) west regions versus the center of each reach in order of downstream 
distance.  Successive reach segments are shifted downstream by 100 m. c) Histogram of slope 
errors for AirSWOT slopes relative to GPS-derived measurements.  Red dashed lines mark the 
SWOT science requirement for slope accuracies (±1.7 cm/km). 
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Figure 2.8:  Nash-Sutcliffe Efficiency (NSE) values versus reach length used to calculate the 
AirSWOT and in situ measurement slopes for the (a) east and (b) west regions.  NSE values 
above the red dashed lines indicate AirSWOT measurements are more capable of predicting 
slope variability than the mean slope of the in situ measurements.   

 

2.6. Discussion 

AirSWOT provides a new, robust method for measuring WSEs and slopes over 

considerable reach lengths without the need for in situ data.  Results indicate that AirSWOT 

accuracies are high enough to capture decimeter-level variations in WSEs with estimated errors 

at or below 10 cm when averaged over areas ≥700 m2 (Figures 2.5, 2.6a).  We observe a mean 

bias in averaged AirSWOT WSEs of <1 cm without any intercalibration between in situ and 
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AirSWOT measurements.  Furthermore, AirSWOT measurements are capable of capturing 

centimeter-per-kilometer level variations in slopes with an RMSE of 1.0 cm/km for 10 km 

reaches (Figure 2.7) and an RMSE as low 0.6 cm/km for 20 km reaches (Figure 2.6b).  There are 

no previous airborne or satellite missions that, like AirSWOT, use short (Ka-band) wavelength 

radar measurements acquired at low incidence angles to measure rivers.  As a result, while 

AirSWOT processing is similar to other InSAR methodologies, new procedures for handling the 

complexities arising during calibration remain under development and may account for some of 

the observed error.  Despite current processing limitations, AirSWOT provides unprecedented 

remotely-sensed measurements of river WSE and slope even in a challenging river environment 

like the Tanana.   

The impressive details observed by AirSWOT offer new opportunities to explore surface 

water hydrology.  Future studies can use AirSWOT to characterize spatial controls on regional 

stream hydraulics at comparatively fine spatial and temporal resolutions.  SWOT is expressly 

designed to observe surface water dynamics, but it will have significant gaps in spatial coverage, 

with 2-10 revisits per 21 day orbit cycle and will only observe rivers wider than 50-100 m 

[Biancamaria et al., 2016b].  These characteristics limit SWOT observations of surface water 

fluxes to weekly and monthly timescales, which can miss the peaks and troughs of rapid 

hydrologic events.  In contrast, AirSWOT can be tasked to take repeat measurements across 

hundreds of kilometers of river reaches at hourly or daily timescales.  These measurements can 

be used to observe detailed passages of flood waves and provide estimates of WSE and slope 

variability between existing in situ gauges or altimeter measurements to help understand spatial 

controls on river hydraulics [Garambois et al., 2016].  Additionally, AirSWOT’s fine spatial 

resolution (<4 m) allows for better visibility in small river systems that play a non-negligible role 
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in the water and carbon cycles and are poorly gauged or not observable by satellites [Raymond et 

al., 2013; Biancamaria et al., 2016a].  AirSWOT measurements can be spatially averaged to get 

WSE and slope estimates in rivers with widths <50 m.  AirSWOT measurements are also 

valuable for distributed hydrological analysis in highly multi-dimensional systems, such as 

braided rivers and deltas, where spatially-distributed in situ observations are difficult to attain 

and tidal effects require fine temporal resolution measurements [Wolski et al., 2006; Schubert et 

al., 2015]. 

 AirSWOT measurements can be a powerful tool to enhance flood models.  

Hydrodynamic models suffer from a lack of spatially distributed calibration and validation data 

and are often constrained by point measurements of WSE from ground campaigns, altimeters, or 

gauge stations.  These data constraints limit the capabilities of models by admitting many 

“optimal” parameter combinations during calibration [Pappenberger et al., 2005; Hunter et al., 

2007; Bates et al., 2013].  Scientists can use AirSWOT measurements to constrain model 

parameters over long reach distances and to improve understanding of the physical processes 

controlling the spatial distribution of model parameters [Hall et al., 2005; Warmink et al., 2013].  

AirSWOT measurements can also be used to validate models’ abilities to reproduce spatial 

variations in slope across hundreds of kilometers and can be assimilated to improve model 

accuracies.  Additionally, AirSWOT is capable of acquiring measurements in cloudy conditions 

and can be assigned to take measurements during critical hydraulic events (e. g. after a storm) to 

capture flood peaks and maximum inundation extents that are often missed by existing satellite 

sensors [Biancamaria et al., 2016a].  These measurements can enable better model calibration 

and validation, allowing improved prediction of areas vulnerable to flooding. 
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 Finally, these results support the use of AirSWOT as a future validation instrument for 

SWOT.  The results of this study show that AirSWOT is capable of producing SWOT-quality or 

better measurements of river WSEs and slopes.  Considering lower errors are expected at lower 

incidence angles, these errors are likely to decrease as processing methods advance and 

AirSWOT data at SWOT-like incidence angles can be included.  In addition to SWOT 

validation, other ongoing projects are using AirSWOT data to help determine the effects on radar 

returns of specular water surfaces associated with low wind speeds, better quantify the frequency 

and extent of topographic layover effects, and assess returns from inundated vegetation 

[Biancamaria et al., 2016b].  The results of this study present the first published demonstration 

of AirSWOT’s ability to accurately measure WSEs and slopes and its promise as a future 

validation instrument for the SWOT mission.  Future work should seek to validate AirSWOT’s 

ability to measure 2D slopes in floodplain environments, to characterize AirSWOT’s accuracy 

across a variety of river sizes and morphologies, and to understand AirSWOT’s abilities to 

measure WSEs in lakes and wetlands.   
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CHAPTER 3:  HIGH-PRECISION RIVER HEIGHT AND SLOPE CHANGES CAPTURED 
BY AIRSWOT 

3.1 Introduction 

The recent, rapid expansion of remote sensing technology provides exciting opportunities 

to address global-scale questions regarding river processes, especially in areas where in situ 

stream gauges are declining or do not exist [Hannah et al., 2011; Pavelsky et al., 2014]. 

Currently, the most robust method for remotely observing river heights and slopes is satellite 

altimetry [Calmant et al., 2008; Bates et al., 2014; Tourian et al., 2016]. There have been many 

studies using available altimeters to measure surface water heights with accuracies ranging from 

10 cm (ICESat, SARAL/Altika) to several decimeters (TOPEX/Poseidon, Jason-2, Envisat) 

[Calmant et al., 2008; O’Loughlin et al., 2016]. These altimeter measurements have been used to 

validate flood models, create time series of water level changes, estimate discharge, and quantify 

river height and slope variability in hard-to-reach river basins [Kouraev et al., 2004; Papa et al., 

2010; Domeneghetti, 2016; Garambois et al., 2016; Paris et al., 2016; Tourian et al., 2016]. 

However, altimeter missions and their processing chains were primarily developed to view ocean 

processes.  As a result, altimeter observations have low temporal (10-35 days) and spatial (70-

600 m) resolutions, as well as complex error characteristics due to variable waveforms, height 

changes along rivers and lakes, surrounding land elevations, and specular reflections [Alsdorf et 

al., 2007; Calmant et al., 2008]. These characteristics limit the hydraulic visibility of altimeters 

to the world’s largest river systems [Smith, 1997; Alsdorf et al., 2007; Calmant et al., 2008; 

Maillard et al., 2015; Garambois et al., 2016].  
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The upcoming Surface Water and Ocean Topography (SWOT) mission plans to vastly 

increase global observations of rivers ≥100 m wide by providing simultaneous, 2D 

measurements of surface water elevations from ~78°N to ~78°S [Fjørtoft et al., 2014; 

Biancamaria et al., 2016]. SWOT’s goal is to measure river heights and slopes with accuracies 

of 10 cm when averaged over 1 km2 areas and 1.7 cm/km along 10 km reaches [Rodriguez, 

2016]. As part of the SWOT mission, NASA has developed AirSWOT, an airborne analogue to 

SWOT [Fu et al., 2015; Biancamaria et al., 2016; Altenau et al., 2017a]. AirSWOT is designed 

to measure high-accuracy elevations in a ~5 km wide swath that enables mapping of hundreds of 

kilometers of river reaches in a reasonable timeframe, and at substantially higher resolution than 

what SWOT will provide. There are significant differences between AirSWOT’s incidence 

angles and viewing geometry and those of the anticipated SWOT observations.  However, 

AirSWOT provides comparable measurements to SWOT by recording elevations at the same 

radar wavelength (Ka-Band) and at narrower incidence angles (0.5-30°) than existing sensors. 

More detailed summaries of the differences between AirSWOT and SWOT, along with 

AirSWOT’s capabilities, are presented by Moller et al. [2011] and Altenau et al. [2017a].   

Previous work has shown, that for a single day, AirSWOT can capture detailed spatial 

variations in river profiles and slopes with accuracies of 9.0 cm over 1 km2 areas and 1.0 cm/km 

over 10 km reaches [Altenau et al., 2017a].  These results demonstrate AirSWOT is capable of 

measuring SWOT hydrology variables within the mission error requirements, and is useful for 

understanding river hydraulics at scales that will be unobservable by SWOT [Altenau et al., 

2017a].  To date, however, the ability of AirSWOT to accurately measure multi-temporal 

variations in river heights and slopes remains uncertain.     
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 For the first time, we present analysis demonstrating the ability of AirSWOT to record 

river height and slope changes between six different AirSWOT collections acquired over the 

course of three weeks. Furthermore, we investigate the potential of AirSWOT measurements for 

deducing other hydraulic quantities by comparing discharge estimates calculated from AirSWOT 

heights and slopes to discharge estimates from in situ observations. Changes in river heights and 

slope are imperative for characterizing hydraulic controls, which are important for monitoring 

changes in freshwater resources, flood risk, and ecological health [Puckridge et al., 1998; 

Schumm, 2007].  

3.2. Methods 

3.2.1 Field Measurements 

 To validate AirSWOT measurements of river height and slope, we conducted a six-week 

field campaign from May 15, 2015 to June 27, 2015 along a ~90 km reach of the Tanana River, 

AK (Figure 3.1a). We chose this study reach due to its complex morphology, high surrounding 

topography, and boreal location, which are all challenging factors to test the capabilities of 

AirSWOT [Altenau et al., 2017a]. We installed a network of 20 Solinst M5 Levelogger Edge 

pressure transducers (PTs) throughout the study reach to record high-resolution, in situ 

measurements of changes in river height as well as two Solinst Barologgers to compensate for 

atmospheric pressure fluctuations [https://www.solinst.com/products/data/3001.pdf]. Eight of the 

20 pressure transducers are not used in this study because they were buried by mobile sediment 

or riverbanks after installation as a result of fluvial geomorphological processes. This left us with 

12 viable pressure transducers to calculate river height and slope changes (Figure 3.1a). The 

distance between pressure transducers ranges from 0.29-23 km, with the majority of the pressure 

transducers spaced 4-8 km apart. We set the pressure transducers to record at 2 min intervals. 
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Reported accuracy for the Leveloggers is ±0.3 cm and Barologgers is ±0.05 kPa (0.5 cm), 

resulting in a combined instrument accuracy for water level measurements of ±0.8 cm 

[https://www.solinst.com/products/data/3001.pdf].  

To convert the water level measurements to river heights, we used an optical survey level 

to measure the height difference between the water surface and GPS benchmark sites located at 

each pressure transducer location. We used Natural Resources Canada’s Canadian Geodetic 

Survey Precise Point Positioning tool for static post processing of the GPS surveys, providing us 

centimeter-level accuracies on the absolute heights at each pressure transducer site 

[http://www.nrcan.gc.ca/earth-sciences/geomatics/geodetic-reference-systems/]. The accuracy of 

the GPS surveys ranges from ±3.6-6.3 cm, while our optical survey accuracy is ±0.2 cm, 

bringing the total uncertainty for the pressure transducers to ±4.6-7.3 cm. It is also possible that 

the pressure transducers experienced some shifting or sinking due to the high mobility of the 

Tanana River bed [Brabets et al., 2000]. Any potential movements would add to the uncertainty 

in the pressure transducer heights. However, we did not have robust methods for measuring these 

effects, therefore they are not accounted for in our uncertainty calculations.    
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Figure 3.1: a) Tanana River study reach depicted with a Landsat 8 near-infrared image acquired 
on June 15, 2015. Pressure transducer (PT) locations are indicated by the different colored circles 
and GPS profile measurements are indicated by the light blue line. Upper left inset displays the 
study reach location within the state of Alaska. Lower right inset displays the Nenana gauge 
hydrograph during the open water season for the 2015 water year (WY). The grey shaded area 
within the hydrograph shows the timeframe of the field campaign. b-g) AirSWOT extent and 
height mosaics for the six different flights.   
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In addition to the pressure transducers, we collected a high-resolution GPS profile along 

the main channel of the study reach on June 7, 2015 (Figure 3.1a). We collected the profile using 

a Trimble R9 survey-grade GPS system attached to the back of an 8.5 m river boat. The profile 

measurements provide nearly continuous observations of river heights with ~3 m spacing 

between points and an uncertainty of ±0.02 m [Altenau et al., 2017a]. Along with the river 

heights, we collected depths at each GPS profile point using a single-beam SonarMite Echo 

Sounder v.3.0. Instrument accuracy for the echo sounder is ±0.025 m 

[http://www.ohmex.com/sonarmite.html].  

3.2.2 AirSWOT Measurements  

AirSWOT collected measurements on six different days (June 7, June 9, June 16, June 

17, June 18, and June 22, 2015) during the field campaign to capture multi-temporal fluctuations 

in river height and slope. Each AirSWOT mission consists of 4-24 overlapping flight lines per 

day resulting in a total of 66 individual lines of AirSWOT height measurements. The June 9th 

and June 16th collections contain 24 flight lines that cover a 43 km east region and 32 km west 

region of the study reach, while the remaining days contain 4-6 flight lines of data covering the 

entire 90 km study reach (Figure 3.1b-g). The AirSWOT team at NASA’s Jet Prolusion 

Laboratory processes the AirSWOT data using custom software. Each AirSWOT flight line 

consists of 4 products with the primary product being the AirSWOT heights measured in meters 

above the WGS84 ellipsoid. Other products provided with the heights are relative radar 

backscatter (dB), incidence angle (°) and estimated height errors (m). Estimated height errors are 

calculated from the phase variance (Cramer-Rao bound) which is based on the correlation 

between the two interferometric images and depends on the sensor incidence angles, radar 

wavelength, and underlying surface type (high topography, vegetation type, soil moisture, etc.) 
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[Rosen et al., 2000; Altenau et al., 2017a]. All AirSWOT products are in a raster format and have 

a pixel resolution of 3.6 m with a UTM 6N projection.   

In this paper, we focus on the ability of AirSWOT to record changes in river heights and 

slopes. To do so, we filter the AirSWOT data before comparing it to the in situ pressure 

transducer measurements. For each AirSWOT line, we use a binary river mask created from a 

three-band color infrared (CIR) camera [http://cirrus-designs.com/] on board the AirSWOT 

platform to isolate the river pixels from surrounding land pixels. Regrettably, the majority of CIR 

images collected during the AirSWOT flights were cloudy or covered by high cirrus clouds that 

did not substantially impact the visible bands but affected the near-infrared band. These clouds 

prevent us from using automatic methods to create an independent river mask for each date. The 

imagery was clear for the June 17th flight, however, so we use this imagery to create the river 

mask and filter out the land pixels in each AirSWOT line. We produce the river mask using a 

normalized difference water index (NDWI) transformation with a threshold of 0.3 to identify 

water pixels [McFeeters, 1996]. All pixels greater than the threshold are assigned a value of one 

for water and any pixels less than the threshold are assigned a value of zero. The river on June 

17th was at lower stage than the majority of the data collections with the exception of June 16th, 

which had a stage about 5 cm lower than June 17th. As a result, the river extent observed in the 

river mask should be comparable to June 16th, but is likely to exclude some inundated pixels on 

the other collection days. Once the river heights are isolated, we use a 2 km2 moving window to 

remove extreme outliers by erasing pixels ±3 standard deviations away from the mean river 

height in the window [Altenau et al., 2017a]. This filter helps eliminate pixels affected by 

layover from adjacent high topography and vegetation, as well as misclassified water/land pixels 

from the water mask.    
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When using near-nadir geometry, layover tends to occur in environments with moderate-

to-high topography, and the ambiguity height parameter that is used to calculate the water 

heights has a faster range variation [Neeck et al., 2012]. As a result, calculating ambiguity 

heights can be more difficult, especially in the near-swath and in areas adjacent to higher 

topography. Incorrect ambiguity heights often lead to high vertical errors and geolocation errors 

[Biancamaria et al., 2016]. Ambiguity height errors are prominent in 9 of the 66 AirSWOT 

lines. These large areas of incorrect pixels are not removed during our filtering process because 

they significantly affect the statistics within the 2 km2 window we use to eliminate the outliers.  

Therefore, we manually remove the incorrect pixels in these areas (Figure 3.2).   

 

Figure 3.2: Examples of ambiguity height errors in two AirSWOT lines from June 9, 2015 and 
June 16, 2015. The areas of dark blue pixels, which designate significant vertical drops and 
geolocation errors, are manually removed.  
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3.2.3 Height Validation 

 The SWOT baseline mission error requirement for river heights of 10 cm is based on 

averaging pixels within 1 km2 areas, a threshold the SWOT Science Team has determined will 

allow significant advances in fluvial hydrology [Rodriguez, 2016].  Therefore, we use this area 

requirement as a baseline for assessing AirSWOT’s capabilities for measuring same-day river 

heights as well as capturing river height changes over time [Altenau et al., 2017a]. To quantify 

height differences between AirSWOT and the in situ measurements for each flight date, we 

calculate a weighted average of the filtered AirSWOT heights within 1 km2 areas around each 

pressure transducer using the following equation: 

 

𝑥 =
𝑥!𝑤!!

!!!

𝑤!!
!!!

 
(3.1) 

where 𝑥 is the weighted average of the AirSWOT heights at a single pressure transducer 

location, 𝑥! is the AirSWOT height for each pixel (i), and 𝑤! is the weight associated with each 

pixel and is determined by the estimated height error (𝑒!): 

𝑤! =
1
𝑒!!

 (3.2) 

  Despite filtering of the AirSWOT heights described in section 3.2.2, some remaining 

erroneous pixels affected by ambiguity height errors are still present in the data. These pixels 

tend to have large height offsets compared to field observations but low 𝑒! values, resulting in 

comparatively high errors in the weighted average calculation. To reduce the effects of these 

pixels, we calculate the median for each 1 km2 area and retain 70% of the AirSWOT heights that 

surround the median value. We also eliminate pixels that have estimated errors of < 0.1 m 

because we find these particularly low error estimates often correspond with pixels that are 
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affected by ambiguity height errors. Pixels with estimated errors < 0.1 m make up less than 1% 

of the data, therefore this second filter preserves about 70% of the data while reducing the errors 

in the weighted average that are caused by the incorrect pixels.  

It is difficult to calculate uncertainties for the averaged heights using the AirSWOT data 

alone. We can calculate the random error component of the uncertainty for the averaged 

AirSWOT heights based on the weights (𝑤!): 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =
𝐹
𝑤!!

!!!
  

(3.3) 

where F is a factor that accounts for the oversampling of pixels within the gridded UTM product 

relative to the sampling assumed when estimating the height errors and depends on the incidence 

angle (I):  

𝐹 =
0.52
sin(𝐼) 

(3.4) 

The constant 0.52 comes from the ratio (1.87 m)/(3.6 m) where 1.87 m is the effective resolution 

for 80 MHz bandwidth and 3.6 m is the UTM posting.  Equation 3.3 accounts for the random 

error component (noise on the interferometric phase) in the AirSWOT measurement uncertainty, 

but does not include systematic errors that are due to variations in antenna pointing and 

knowledge of the airborne platform location such as attitude errors, baseline errors, and position 

errors [Rodriguez and Martin, 1992; Rosen et al., 2000]. As a result, the uncertainties calculated 

using equation 3.3 are unrealistically low, ranging from 0.1 – 2.0 cm. Systematic errors in the 

AirSWOT data affect the accuracy of the heights, and likely add to the random error uncertainty, 

but cannot be quantified from the data itself or from ancillary information available to us. Rather 

than present misleading uncertainty values, we elect not to designate uncertainties for the 
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averaged AirSWOT heights and focus on reporting the differences between the AirSWOT and in 

situ measurements. 

Once the averaged AirSWOT heights are determined, we calculate the same-day height 

differences and associated root mean square errors (RMSEs) between the AirSWOT and pressure 

transducer heights. Although Altenau et al. [2017a] report no bias in the June 9th AirSWOT 

measurements, we observe a spatially consistent negative bias across the AirSWOT heights that 

ranges from -18 cm to -24 cm depending on the collection day. The AirSWOT data we present in 

this paper is processed using different methods from the data presented in Altenau et al. [2017a] 

and we have not determined the source of the bias in the current data at this time. Possible 

explanations for the bias include improper common range calibrations, differences in how solid 

earth tide corrections are incorporated, erroneous GPS solutions, and problems with the 

troposphere correction. As a result, we subtract the mean bias on each day from the AirSWOT 

heights and recalculate the differences and RMSEs between the same-day AirSWOT and 

pressure transducer heights (Table 3.1).  

In addition to the same-day heights, we calculate height change values for the pressure 

transducers and AirSWOT between the first AirSWOT date (June 7th) and all subsequent dates (n 

= 58), as well as height changes between all possible AirSWOT date combinations (n = 161). We 

estimate uncertainties for the in situ height changes by taking the root sum of squares of the 

uncertainties in the daily pressure transducer heights. Finally, we calculate height change 

differences and RMSEs between the AirSWOT and pressure transducer observations for the 

height changes between June 7th and all subsequent dates as well as height changes between all 

possible date combinations.  
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Date Height RMSE 
(cm) 

Mean Height 
Bias (cm) 

Height RMSE,   
Bias removed (cm) 

Slope RMSE 
(cm/km) 

June 7 27.4 -24.0 13.2 1.4 
June 9 23.9 -18.0 14.9 1.8 
June 16 27.1 -24.0 10.6 1.8 
June 17 20.1 -17.6 9.7 1.6 
June 18 27.2 -24.0 12.7 1.7 
June 22 23.8 -17.6 14.3 1.2 
All Days 25.0 -20.9 12.7 1.6 

 
Table 3.1: Same-day AirSWOT height and slope RMSEs.  
 

3.2.4 Slope Validation 

Using pairs of the 12 pressure transducer locations, we identify a total of 63 combinations 

for calculating slopes with reach lengths ≥5 km. We calculate slopes across varying reach 

lengths ranging from 5.1 to 83.6 km. AirSWOT slopes for reach lengths <5 km start to be 

severely affected by noise in the AirSWOT data. Before we calculate AirSWOT slopes, we 

create high-resolution AirSWOT profiles using the GPS profile collected in the field (Figure 

3.1a).  At each GPS profile point, we calculate a 1 km orthogonal vector across the Tanana River 

and use equation 3.1 to calculate a weighted mean of the AirSWOT heights along the orthogonal 

vector. After weighted averaging, we create the final AirSWOT profiles by applying a running 

median filter with a window of 500 pixels (~1600 m) to eliminate large peaks in the initial 

profiles (Figure 3.3). The running median filter reduces high frequency variability, which is 

unrealistic for a large river like the Tanana. While a window size of 500 pixels works well for 

the Tanana River profile, optimal window size likely varies between river environments 

depending on geology, morphology, size and other factors.   
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Figure 3.3: AirSWOT river height profiles. River heights are measured in meters above the 
WGS84 ellipsoid. We remove severe peaks in the initial profiles (grey) by using a running 
median filter with a window size of 500 points (~1600 m) resulting in the final profiles (colors). 
We use the final profiles to calculate slopes and slope changes. 

We use ordinary least squares linear regressions to calculate same-day slopes along the 

AirSWOT profiles between each pressure transducer pair. For each pressure transducer 

combination, we estimate the in situ slopes using the elevations at each pressure transducer point 

and reach length between the points. We estimate AirSWOT slope uncertainties using the linear 
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regressions, and the pressure transducer slope uncertainties by calculating the difference between 

the maximum and minimum slopes for each pressure transducer pair, which are based on the 

pressure transducer height uncertainties. To validate AirSWOT slope measurements, we 

calculate same-day slope differences and RMSEs between the AirSWOT and pressure transducer 

slopes. 

Next, we calculate the slope changes between the first AirSWOT date (June 7th) and all 

subsequent dates (n = 297), as well as all possible AirSWOT date combinations (n = 766). We 

estimate uncertainties for the slope changes by taking the root sum of squares of the uncertainties 

in the same-day pressure transducer and AirSWOT slopes. We then calculate slope change 

differences and RMSEs between the AirSWOT and pressure transducer slope changes between 

June 7th and all subsequent dates, and slope changes between all possible date combinations. 

Finally, we perform a Welch two-sample t-test to determine whether the slope change 

distributions observed by AirSWOT and the pressure transducers are significantly different.   

3.2.5 Discharge Estimation 

In addition to validating AirSWOT’s ability to capture multi-temporal fluctuations in 

river height and slope, we assess how well AirSWOT observations compare to the pressure 

transducer observations when estimating discharge using Manning’s equation [Manning et al., 

1890]. To calculate discharge, we need to approximate the roughness (Manning’s n), slope, 

depth, and width of the Tanana River at each pressure transducer cross section. First, we use the 

depth measurements collected with the GPS profile to calculate an average bed slope and 

bathymetric elevation at each pressure transducer location. Then, we calculate average depths at 

each of the pressure transducer sites by subtracting the bathymetric elevations from the pressure 

transducer and AirSWOT river heights [Altenau et al., 2017b] . Next, we determine slopes at 
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each cross section by locating the closest upstream and downstream pressure transducers to the 

current pressure transducer location and calculate the slope between the two bounding sites.  The 

two exceptions are pressure transducer locations #1 (PT01) and #12 (PT12) for which we use the 

closest downstream and upstream location only to calculate the slopes. For example, we 

determine the slope for PT05 by calculating the slope between PT04 and PT06, and we 

determine PT01’s slope by calculating the slope between PT01 and PT02. For cross sectional 

widths, we use the CIR imagery collected during each AirSWOT flight to manually measure the 

river widths at the various pressure transducer sites, since the clouds in the imagery inhibit us 

from using automatic width detection methods. We exclude two pressure transducer sites from 

our discharge estimates due to a lack of width measurements from dense cloud cover (PT07) and 

fewer AirSWOT observations (PT10), leaving us ten locations to estimate discharge. Finally, we 

calibrate n at each location using the discharge at the Nenana USGS gauge station (15515500) 

(Figure 3.1a, Table 3.2). To estimate in situ discharge uncertainties, we calculate maximum and 

minimum discharge values based on the pressure transducer height and slope uncertainties. We 

compare the AirSWOT and pressure transducer discharge estimates by calculating daily RMSE 

values.  

We perform a sensitivity analysis for 4 different cross sectional shapes (rectangle, 

parabola, triangle, and trapezoid) and find a negligible (0.2%) effect on mean discharge 

differences. As a result, we use a simple rectangular geometry when estimating discharge values. 

Our goal in this discharge analysis is to assess how using AirSWOT heights and slopes change 

discharge estimates compared to in situ measurements. Given the simplifications to channel 

geometry compared to the complexity of the Tanana River, as well as the uncertainties in the 
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Manning’s equation parameters, we do not attempt to compare either the in situ or AirSWOT 

results against gauge measurements. 

Pressure 
Transducer Average Width (m) Number of Channels in 

Cross Section Manning’s n 

1 553 5 0.07 
2 434 4 0.065 
3 323 1 0.05 
4 541 6 0.07 
5 519 6 0.06 
6 403 4 0.05 
8 282 2 0.04 
9 229 2 0.03 

11 339 2 0.045 
12 269 1 0.04 

 
Table 3.2: Manning’s equation parameters for each pressure transducer cross section. 

 

3.3. Results 

RMSEs for the same-day AirSWOT heights range from 9.7 cm to 14.9 cm with an 

overall RMSE of 12.7 cm (Figure 3.4a,c; Table 3.1). The patterns in height differences between 

the same-day AirSWOT and pressure transducer heights are similar across all days (Figure 3.4c), 

which indicates the different AirSWOT flights are affected by comparable error sources (likely 

layover). In addition to the same-day height measurements, AirSWOT is able to reproduce 

patterns in multi-temporal height changes between June 7th and all subsequent dates as well as 

height changes between all possible date combinations with RMSEs of 10.3 cm and 10.4 cm 

(Figure 3.5). AirSWOT height change differences shift from underestimations upstream to 

overestimations downstream (Figure 3.5d). The variations in height change differences between 

the pressure transducer sites are likely due to the different environmental conditions at each 

location are how they affect the radar returns. Additionally, PT10 displays a much larger range in 

height change errors. PT10 is directly adjacent to an area of high topography making it 

susceptible to layover errors and is not covered by the June 9th and June 16th AirSWOT 
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collections, giving it less data to average out individual pixel errors (Figure 3.1). 

 

Figure 3.4: AirSWOT vs. pressure transducer (PT) heights (a) and slopes (b). Dashed diagonal 
lines indicate the 1:1 lines. AirSWOT height (c) and slope (d) differences compared to the 
pressure transducers for the various AirSWOT collections. Height differences are shown with the 
daily mean biases removed. Dashed horizontal lines indicate zero height and slope differences. 



 85 

 

Figure 3.5: Pressure transducer (PT) (a) and AirSWOT (b) height changes between June 7th and 
all subsequent dates (n = 58). c) AirSWOT height change differences between June 7th and all 
subsequent dates. d) AirSWOT height change differences at each pressure transducer location for 
all possible date combinations (n = 161). Different colors represent the various PT locations. 
Pressure transducer uncertainty bars are too small to see.  

AirSWOT is able to precisely observe slopes with centimeter-per-kilometer-level 

accuracies. Same-day slope differences increase as reach length decreases, with an RMSE of 1.6 

cm/km and 98% of slope differences below 3.0 cm/km for reach lengths ≥5 km (Table 3.1, 

Figure 3.4d). Tanana River slopes do not change much over the six AirSWOT collection days, 

though slight increases in slope are observed by the pressure transducers as stage decreases 

(Figure 3.6a). Mean slope changes observed by pairs of pressure transducers from June 7th to all 

subsequent dates ranged from 0.07 cm/km to 0.17 cm/km, while mean AirSWOT slope changes 

ranged from -0.35 cm/km to 0.26 cm/km. For the slope changes between June 7th and all 
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subsequent days, only the AirSWOT slope change distribution between June 7th and June 9th is 

determined statistically different from the pressure transducers at the 95% confidence level and a 

p-value of 0.006. All other AirSWOT slope change distributions from June 7th to all subsequent 

dates cannot be determined significantly different from the pressure transducers with p-values 

ranging from 0.106 to 0.612. While the June 7th to June 9th AirSWOT slope changes are 

considered significantly different from the pressure transducer slope changes, the AirSWOT 

slope change distribution for all possible date combinations cannot determined significantly 

different from the pressure transducers with a p-value of 0.075. This indicates that, overall, 

AirSWOT measurements of slope changes cannot be distinguished from the pressure transducer 

slope change observations. Even with the slight variations in slope throughout the field 

campaign, AirSWOT is able to capture the general pattern in slope changes with an RMSE of 1.0 

cm/km (Figure 3.6a,b). Additionally, AirSWOT displays lower uncertainties compared to the 

pressure transducers with uncertainties decreasing exponentially as reach length increases 

(Figure 3.6b). 
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Figure 3.6: a) Boxplots of observed slope changes by the pressure transducers (grey) and 
AirSWOT (white) between June 7th and all subsequent dates (n = 297), as well as all possible 
date combinations (All) (n = 766). Outliers make up 15% of the data points and are not shown in 
the boxplots of slope change distributions. The red horizontal line designates zero slope change, 
while the black vertical dashed line separates the consecutive height change distributions from 
the distributions for all possible date combinations. b) AirSWOT and pressure transducer (PT) 
slope change uncertainties versus reach length. c) AirSWOT slope change differences for all 
possible date combinations. 
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Both the pressure transducer and AirSWOT discharge estimates are able to capture the 

general hydrograph pattern observed during the field campaign (Figure 3.1a) with discharge 

decreasing until June 16th and increasing thereafter (Figure 3.7). AirSWOT discharge estimates 

display a 15.3% difference, on average, compared to the pressure transducer estimates with 

RMSEs ranging from 11.8% to 18.3% between dates (Table 3.3). Additionally, 42% of the 

AirSWOT discharge estimates fall within the pressure transducer uncertainty bounds for 

discharge estimates. Discharge differences are predominately related to the AirSWOT height 

differences. A linear regression between discharge differences and height differences (R2=0.95) 

shows a 1.2% increase in discharge difference with every centimeter of height difference (Figure 

3.8a). Conversely, there is no relationship between AirSWOT slope differences and discharge 

differences, with an R2 of 0.03 (Figure 3.8b). The variations in discharge patterns observed 

between pressure transducer sites are likely explained by our lack of temporal variation in 

Manning’s n, bathymetric slope assumptions, and not accounting for variations in cross-sectional 

shape across the locations. 

Date RMSE (m3/s) RMSE (%) 
June 7 147.0 13.1 
June 9 160.6 18.3 

June 16 88.4 15.0 
June 17 74.1 11.8 
June 18 111.8 14.8 
June 22 171.0 14.2 

All Days 130.7 15.3 
 
Table 3.3: RMSEs between AirSWOT and pressure transducer discharge estimates. We estimate 
discharge using Manning’s equation.  
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Figure 3.7: Estimated discharge using Manning’s equation. Solid colored lines display discharge 
estimates using the pressure transducer (PT) heights and slopes, while dashed colored lines 
display discharge estimates using AirSWOT heights and slopes. Shaded areas indicate the 
pressure transducer discharge uncertainties. Manning’s n (n), average width (w), and number of 
channels in the cross section (#c) are shown. 
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3.4. Discussion and Conclusion 

 In this study, we present a first analysis of AirSWOT’s ability to collect high-precision, 

multi-temporal measurements of river heights and slopes over variable reach lengths and flexible 

timescales. Altenau et al. [2017a] document AirSWOT’s ability to record accurate river heights 

and slopes for one collection date, while here we analyze the consistency of AirSWOT 

measurements over the course of three weeks and six different AirSWOT flights. Comparisons 

with in situ observations illustrate that AirSWOT is able to accurately measure surface water 

fluctuations along a complex, anabranching river system, with an RMSE of 12.7 cm for same-

day river heights averaged across 1 km2 areas and 1.6 cm/km for same-day slopes with reach 

lengths ≥5 km (Table 3.2). It is not always straightforward for AirSWOT to measure same-day 

river heights due to errors and biases that are likely related to the movement of the aircraft and 

difficulties in phase unwrapping at narrower incidence angles (<5°). AirSWOT heights for the 

six independent collection days are affected by the same types of errors and produce similar 

spatial patterns in the same-day height and slope differences when compared to in situ heights 

(Figure 3.4c,d, Table 3.1). Despite these errors, AirSWOT is able to capture decimeter-level 

height changes and centimeter-per-kilometer-level slope changes between collection days 

(Figure 3.5d, Figure 3.6c). RMSEs for AirSWOT height and slope change measurements 

between all possible AirSWOT date combinations are 10.4 cm when averaged over 1 km2 areas 

and 1.0 cm/km for reach lengths ≥5 km, respectively. 

Despite the challenges inherent in making precise measurements of surface water heights 

when using an airborne radar, AirSWOT provides a compelling alternative to in situ observations 

for measuring river dynamics, thereby opening up exciting new avenues for local and regional 

scale hydrologic studies. AirSWOT’s slope measurements are particularly revolutionary due to 
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their high accuracy and spatial density compared to available satellite sensors and in situ 

measurements. In situ gauge stations provide extremely accurate river height measurements, but 

are not ideal for estimating slope variability due to their poor spatial coverage. Additionally, 

studies have used nadir altimeter data to estimate river slopes, however, altimeter measurements 

suffer from poor spatial resolutions and large height uncertainties resulting in slopes that are less 

precise compared to AirSWOT [O’Loughlin et al., 2013; Garambois et al., 2016]. Especially 

when combined with existing ground measurements, AirSWOT observations can enhance our 

representation of hydraulic behaviors and knowledge of streamflow regimes along entire river 

networks [Domeneghetti et al., 2014; Altenau et al., 2017a]. Multi-temporal AirSWOT 

measurements can be used to quantify water partitioning and hydraulics in complex 

environments, such as deltas and braided rivers, which are often difficult to access and onerous 

to install in situ instrument networks [Bridge, 1993; Pavelsky et al., 2014].  Furthermore, 

AirSWOT observations can be combined with optical sensors to analyze how spatiotemporal 

variability in water heights and slopes relate to sediment and nutrient delivery along entire river 

reaches [Pavelsky and Smith, 2009; Long and Pavelsky, 2013; Tejedor et al., 2017; Wollheim et 

al., 2017]. Finally, measurements of river heights and slopes from AirSWOT can be used for 

calibration, validation, and assimilation into local and regional-scale flood models to improve 

their performance by providing similar, and often superior, accuracies and better spatiotemporal 

coverage than existing airborne and satellite sensors [Domeneghetti et al., 2014].  
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Figure 3.8: AirSWOT height (a) and slope (b) differences versus discharge difference. Colored 
dots represent different pressure transducer (PT) locations. 

 In addition to validating AirSWOT’s direct measurements of height and slope, we test the 

effectiveness of AirSWOT observations for approximating discharge. To do so, we use 

Manning’s equation to calculate and compare discharge estimates using both the pressure 

transducer and AirSWOT measurements of river height and slope. Our analysis demonstrates 

AirSWOT measurements contribute marginal differences when estimating discharge compared 
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to in situ measurements. On average, AirSWOT discharge estimates are within 15.3% of the 

estimates attained using the pressure transducers and 42% of the time AirSWOT discharge 

measurements fall within the pressure transducer discharge uncertainty (Table 3.3). For the 

Tanana River, AirSWOT height differences dominate the observed discharge differences, with 

slope differences showing little effect (Figure 3.8). This result is likely due, in part, to the limited 

slope variations occurring throughout the Tanana River during our field campaign. More work 

analyzing how AirSWOT slope errors affect discharge estimates is needed during more extreme 

hydrologic events and along rivers with more slope variability over time. Because development 

of AirSWOT processing methods is ongoing, AirSWOT height errors and biases are likely to 

decrease in the future, along with a corresponding decrease in discharge errors. When combined 

with sophisticated algorithms, and appropriate parameters, AirSWOT measurements can be used 

to estimate discharge fluctuations along inaccessible and unmonitored river networks that are 

smaller than what current and future satellite missions can observe [King et al., 2018].  
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