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ABSTRACT 
 

Johanna R. Jahnke: Madres Sanas, Bebés Sanos: The Intergenerational Effects of Maternal 
Stress in the Galápagos Islands  

(Under the direction of Amanda Thompson) 
 

 
This research utilizes a longitudinal, mixed-methods design to analyze rich narrative 

interviews alongside psychosocial and physiological measures of stress to examine shifts in 

infant development over the course of the peripartum period. This work incorporates the 

understudied roles of the postpartum period, epigenetic regulation in the placenta, and the gut 

microbiome into existing models for infant HPA axis development that have continuously 

reported inconsistent findings. Since the infant HPA axis has consistently been associated with 

metabolic and neurobehavioral disorders in later life, disentangling the mechanisms that 

underpin early HPA axis dysregulation is essential. While other research has examined isolated 

mechanisms linking maternal stress to infant HPA axis dysregulation largely in wealthy, 

biomedical settings, this project investigates how various biological pathways work in tandem to 

shape HPA axis development in the Galápagos, a middle-income, ecological setting.  

First, we find that maternal social support is a marker of distress in women in the 

Galápagos and that the postpartum period can attenuate prenatal insults to infant HPA axis 

development, thus providing support for a continuum of early development and emphasizing the 

importance of early life as a developmental niche. Second, we find that physiological stress 

during pregnancy, measured through maternal HPA axis dysregulation, is associated with lower 

placental HSD11B2 expression, which is associated with an exaggerated cortisol reactivity in 

infants. Further, maternal psychosocial distress during pregnancy was marginally associated with 
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more placental HSD11B2 methylation and significantly associated with less HSD11B2 

expression for the mothers of girls, but not boys. Evolutionarily, these results fit into a disrupted 

adaptive framework, in which the ability to upregulate expression in response to stress 

diminishes as maternal stress becomes chronic. Last, we find that maternal precarity and HPA 

axis dysregulation were associated with an increase in pathogenic bacteria in the infant 

microbiome, including Enterobacteriaceae, Streptococcaceae, and Veillonellaceae, and a 

decrease in protective bacteria, including Bifidobacteriaceae and Lachnospiraceae, as well as a 

decrease in overall microbiota diversity. Together, these findings contribute novel insights into 

early human development trajectories and reinforce the importance of using multidimensional 

measures of “stress” to investigate early environments.  
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CHAPTER 1: INTRODUCTION 
 
1.1 Study Summary  

Globally, chronic diseases cause more deaths than all other causes of mortality combined. 

Low and middle-income countries disproportionately account for these deaths, bearing three 

quarters of the world’s burden (WHO 2015). Research on the developmental origins of health 

and disease (DOHaD) has shown that early life environments, and particularly exposures to 

stress, shape long-term risk for a variety of chronic and metabolic diseases, including obesity, 

cardiovascular disease, hypertension, and diabetes (Barker, 2004; Barker, Osmond, Winter, 

Margetts, & Simmonds, 1989; Wells, 2010) as well as neurobehavioral disorders including mood 

and anxiety disorders, depression (Cryan & Dinan, 2012), attention deficit/hyperactivity (Talge, 

Neal, & Glover, 2007), and post-traumatic stress disorder (Yehuda et al., 2005) in offspring even 

when controlling for adverse birth outcomes.  

The mechanisms by which prenatal maternal psychosocial stress is embodied in maternal 

and infant biology are not yet fully understood. Many animal models have linked prenatal stress 

exposure to HPA axis programming, but research on this relationship in humans has not 

consistently identified a mechanism for the relationship (O’Connor, Bergman, Sarkar, & Glover, 

2012). The majority of the work in this field has focused on increased levels of maternal cortisol 

as the primary mechanism, but research has not fully explored other potential pathways, 

including the role of placental 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2), an enzyme 

that metabolizes cortisol into inactive cortisone (B. E. P. Murphy, Clark, Donald, Pinsky, & 

Vedady, 1974); the role of the gut microbiome, which has been shown to communicate bi-
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directionally with the central nervous system (CNS), and the HPA axis in particular (Cryan & 

Dinan, 2012; Rackers, Thomas, Williamson, Posey, & Kimmel, 2018); and the role of the 

postnatal period more broadly. Since HSD11B2 may buffer the amount of cortisol that reaches 

the developing fetus, it is hypothesized to have protective effects for fetal development 

(Edwards, Benediktsson, Lindsay, & Seckl, 1993). Nonetheless, little remains known about this 

enzyme and what influences its functioning and expression.  

Further, unfavorable shifts in the infant gut microbiome, termed dysbiosis, have been 

associated with the same long-term disease risks as HPA axis dysregulation, namely increased 

risk for metabolic (Goulet, 2015) and neurobehavioral disorders (Cryan & Dinan, 2012), 

suggesting that the gut microbiome could be a candidate for involvement in this pathway. 

Analyzing how these mechanisms work together is critical for understanding the early 

development of an individual's HPA axis and thus their subsequent risk for metabolic disease 

and neurobehavioral disorders later in life.  

This project aims to examine the mechanisms through which peripartum maternal stress 

shapes infant HPA axis development over the continuum of development from the third trimester 

of pregnancy through early infancy. The project employs semi-structured interviews as well as 

surveys on various measures of stress, depression, social experience, and economic status to 

assess maternal psychosocial precarity as well as biological and anthropometric measures to 

assess health and the embodiment of physiological stress for mother-infant dyads over the course 

of the peripartum period. In particular, this research incorporates the under-studied roles of the 

postpartum period, the placenta, and the gut microbiome into this pathway. While other research 

has examined isolated mechanisms linking maternal stress to infant HPA axis dysregulation 

largely in wealthy, biomedical settings, this project investigates how various biological pathways 
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work in tandem to shape HPA axis development in a middle-income, ecological setting. The 

goals of this study are: 

 

Objective 1: To identify which factors contribute to psychosocial stress in peripartum 

women in the Galápagos and to assess how these exposures both during pregnancy and in 

the postpartum shape maternal and infant HPA axis regulation 

 

Objective 2: To assess both the psychosocial and physiological relationships between 

maternal distress during pregnancy and the placental enzyme, HSD11B2, as well as the 

relationship between HSD11B2 and infant HPA axis development. 

 

Objective 3: To analyze the relationships among maternal stress and HPA axis 

dysregulation during the peripartum period, infant gut microbiome composition, and 

infant HPA axis functioning 

 

The Galápagos is an ideal site for this project due to the unique suite of stressors that life 

on the islands poses for residents and its simultaneous rapidly increasing rate of chronic disease, 

particularly obesity (Page, Bentley, & Waldrop, 2013; Waldrop, Page, & Bentley, 2016). 

Further, while Ecuador has recently been classified as a middle-income country, steep 

socioeconomic inequalities nonetheless persist in the Galápagos. Literature on DOHaD arose 

from a desire to understand how health disparities emerge in response to societal circumstances, 

but almost all studies on prenatal psychosocial stress have been conducted in high-income 

countries (Beijers et al. 2014). By following women over the course of approximately three 
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months and utilizing the home as the primary site of investigation, the current study was able to 

build trust with participants and better assess stress within the context that it is experienced. The 

peripartum period offers a particularly important opportunity to understand this process, since 

stress during this time has intergenerational effects on health, perpetuating existing disparities 

(Thayer and Kuzawa 2014; Wells 2010).  

 

1.2 Article 1: Social support over the peripartum period shapes HPA axis development 

Maternal distress during pregnancy has been shown to have long-term effects on infant 

hypothalamic-pituitary-adrenal axis (HPA axis) functioning, but hypotheses about underlying 

physiology and the role of the postpartum environment are poorly specified. We employ a 

biocultural approach to first qualitatively identify low social support as a central and culturally 

salient measure of distress for women in the Galápagos Islands, and then use it as an exposure to 

quantitatively test the effects of three models for infant HPA axis development. We test three 

propositions: 1) a direct effect of maternal social support (separately for pregnancy and the 

postpartum) on infant HPA axis regulation, 2) an additional indirect effect of social support on 

HPA axis regulation through maternal HPA axis regulation (separately for pregnancy and the 

postpartum), and 3) an indirect effect of social support during pregnancy on HPA axis regulation 

through postpartum support.  

Data were collected on San Cristóbal island, Galápagos, in 2018 from 38 mother-infant 

dyads. We confirm our first hypothesis, that during pregnancy and the postpartum, low maternal 

social support is associated with infant HPA axis dysregulation. Our results do not support our 

second hypothesis, since during pregnancy maternal HPA axis functioning was not associated 

with infant HPA axis functioning, and in the postpartum maternal social support was not 
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associated with maternal HPA axis functioning. We confirm our third hypothesis, that 

postpartum support has an indirect effect on the relationship between prenatal support and infant 

HPA axis functioning, suggesting that postpartum experience can attenuate prenatal insults to 

infant development. By incorporating the culturally-salient role of social support during 

pregnancy and the postpartum into a model for infant HPA axis development, this study adds a 

critical component to the literature on the developmental origins of health and disease that will 

elucidate the pathways through which early environments shape development. 

 

1.3 Article 2: Maternal distress influences placental 11b-hydroxysteroid dehydrogenase 

type 2: Psychosocial and physiological pathways 

Background and objectives: Prenatal stress is known to influence fetal hypothalamic-

pituitary-adrenal axis (HPA axis) development. Placental 11β-hydroxysteroid dehydrogenase 

type 2 (HSD11B2) is a central gene in this pathway, but little is known about what influences its 

functioning and expression. We aim to assess how maternal distress influences HSD11B2 

functioning, and how HSD11B2 in turn, is associated with infant HPA axis development.  

Methodology: Data come from 26 mother-infant dyads on the Galápagos Islands. Using adjusted 

linear regression models, we assess the effects of maternal psychosocial (stress and depression 

symptoms) and physiological (HPA axis dysregulation) distress on HSD11B2 methylation and 

expression and then test how these HSD11B2 measures influence infant HPA axis development. 

Results: We find that higher HSD11B2 methylation is associated with lower HSD11B2 

expression (p £ 0.01), and that maternal HPA axis dysregulation during pregnancy is associated 

with lower placental HSD11B2 expression, which is associated with an exaggerated cortisol 

reactivity in infants. Further, sex-specific analyses revealed that maternal depression symptoms 
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are marginally associated with more placental HSD11B2 methylation and significantly associated 

with less HSD11B2 expression for the mothers of girls, but not boys. Conclusions and 

implications: Our results support a disrupted adaptive framework, in which the adaptive ability 

to upregulate HSD11B2 expression in response to acute stress diminishes as maternal stress 

becomes chronic. In this model, chronic stress may exhaust the protective mechanism of 

HSD11B2, leaving the infant vulnerable to high levels of maternal cortisol, which could injure 

the fetal HPA axis and disrupt neurobehavioral and metabolic development in the long-term. By 

incorporating both psychosocial and physiological measures of maternal distress into our model, 

as well as the role of infant HPA axis development in response to placental changes, this study 

adds a critical component to the literature on the fetal programming that will help illustrate the 

biological underpinnings of early life adaptations. 

 

1.4 Article 3: Maternal precarity and HPA axis functioning shape infant gut microbiota 

and HPA axis development in humans 

Background: Early life exposure to adverse environments, and maternal stress in 

particular, has been shown to increase risk for metabolic diseases and neurobehavioral disorders 

later in life. While many studies have examined the hypothalamic-pituitary-adrenal axis (HPA 

axis) as the primary mechanism for these relationships, emerging research on the brain-gut axis 

suggests that the microbiome may be a key piece of this mechanism. We test the relationships 

among maternal precarity and HPA axis dysregulation during the peripartum period, infant gut 

microbiome composition, and infant HPA axis functioning. Methods: Data come from 25 

mother-infant dyads in the Galápagos, Ecuador. Women completed surveys on precarity 

measures (food insecurity, low social support, depression, and stress) and gave salivary cortisol 
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samples during and after pregnancy. Infant salivary cortisol was collected at 3 days postpartum 

and 2 months postpartum, and infant stool was collected at 2 months postpartum. Differences in 

microbial diversity and relative abundance were tested using adjusted linear regression models. 

Results: Measures of maternal precarity and maternal and infant HPA axis functioning were all 

associated with differences microbiome composition. Maternal precarity was associated with 

lower diversity and higher relative abundance of Enterobacteriaceae and Streptococcaceae and a 

lower relative abundance of Bifidobacteriaceae and Lachnospiraceae. These patterns of 

colonization for Enterobacteriaceae and Bifidobacteriaceae mirrored those found in infants with 

HPA axis dysregulation. Maternal HPA axis dysregulation during pregnancy was associated with 

a lower relative abundance of Bacteroidaceae, while the opposite was found for maternal HPA 

axis dysregulation in the postpartum. Maternal HPA axis dysregulation during pregnancy was 

also associated with a greater relative abundance of Veillonellaceae. Conclusions: Overall, 

exposures to precarity and HPA axis dysregulation were associated with an increase in 

pathogenic bacteria, including Enterobacteriaceae, Streptococcaceae, and Veillonellaceae, and a 

decrease in protective bacteria, including Bifidobacteriaceae and Lachnospiraceae, as well as a 

decrease in diversity. 
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CHAPTER 2: THE GALAPAGOS 

 
2.1 Geography and Population  

The Galápagos Islands, located 1000 km off the coast of Ecuador’s mainland, make up 

Ecuador’s archipelago province of over 20 islands (Walsh & Mena, 2016). According to the 

most recent census from 2015, the four populated islands are now home to of 25,000 residents, 

with roughly 15,700 residents on the island of Santa Cruz, 7,100 on San Cristóbal, 2,300 on 

Isabela, and 100 on Floreana (INEC, 2015). While Santa Cruz is the most populated island, San 

Cristóbal holds the provincial seat. The Galápagos does not have an indigenous population, and 

its human population remained minimal before the mid-twentieth century. Since then, the 

creation of the Galápagos National Park in 1959 and the designation of the Galápagos as a 

United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage 

Site in 1978 incited vast population growth, and tourism and migration brought with it economic 

and urban development between the 1960s and 1990s (Hoyman & McCall, 2012; Walsh & 

Mena, 2013). Since 1950, the population has grown quickly, from approximately 1,300 residents 

to today’s approximately 25,000 (INEC, 2015). Figure 2.1 illustrates the population growth from 

1950 to 2015. Recent census data reports that among island residents, 36% were born in the 

Galápagos, 63% immigrated from Ecuador’s mainland, and 1% immigrated from other nations 

(INEC, 2015).   

The Galápagos National Park, which covers ninety-seven percent of the geographic area 

of the Galápagos, attracts over 225,000 tourists every year, and despite efforts to control tourism 

and restrict immigration, the islands’ population continues to grow (Walsh & Mena, 2016). In 
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response to an influx of migration to the Galápagos, the Special Law of the Galápagos, decreed 

in 1998, tightened regulations for immigration and labor markets by more strictly defining 

resident roles (Kerr, Cardenas, & Hendy, 2004). The law defined three groups of residents 

(permanent residents, temporary residents, and tourists) and regulated travel and work protocols 

for each in order to limit population growth, which the government feared could be detrimental 

to the Galápagos’ fragile ecosystem. Through this decree, permanent residents were defined as 

those who had been residents of the islands for five years at any time before 1998 as well as 

people who married permanent residents and those who were born on the Galápagos (Kerr et al., 

2004). Temporary residents were defined as Ecuadorian mainlanders or foreigners whose 

employers granted them temporary work on the islands, which is permitted when the employee 

has skills that cannot be found among the Galapaganean population. Temporary residencies can 

be renewed, and temporary residents may bring their spouses and children during their stay (Kerr 

et al., 2004). The third group, tourists and transients, are allowed short-term stays on the 

Galápagos for only up to 90 days within a one-year period.  

The Special Law, which remains in place today, is meant to protect the Galápagos from 

rapid migration to the islands (particularly within the tourist industry) by providing preferential 

hiring to qualified permanent residents of the Galápagos. However, the law also provides 

generous government subsidies to workers on the Galápagos, so that wages on the islands must 

be at least 75% higher than the minimum wage for any particular job on the mainland (Kerr et 

al., 2004), drawing many Ecuadorian mainlanders to seek employment on the Galápagos, even if 

only temporarily (Waldrop, Sherwood, Ledford, Martinez, & Jahnke, n.d.). In the years since the 

law’s passing, tensions have been growing between Galapaganeans and Ecuadorian mainlanders, 

who are ostensibly taking the jobs of Galapaganeans and whose presence changes the culture and 
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politics of the island. A major piece of this tension springs form the Galapaganeans’ acute 

awareness that the best jobs on the islands require higher education and skilled training, which 

are out of reach for most islanders due to the islands’ limited infrastructure and lack of higher 

education (Waldrop et al., n.d.).   

 

Figure 2.1 Population and rates of growth according to the annual census, adapted from INEC 

Census (INEC, 2015)   

 

 

2.2 The People of the Galápagos 

 Ethnicity. Ethnically, the Galápagos is largely homogenous, as 85% of the population 

identifies as Mestizo, 8% identify as Indigenous, 3% identify as Afro-Ecuadorian, 3% identify as 

White, and 1% identify as Montubio (INEC, 2015).  

 Education. Overall, education on the islands has been improving over the past few 

decades. The literacy rate rose from 97.1% in 2001 to 98.7% in 2015 (INEC, 2015). Nonetheless, 
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illiteracy persists at higher rates among women than men and, generationally, illiteracy is highest 

among residents over 65 years of age (8.9%) and lowest among individuals under 30 years of age 

(0.2%) (INEC, 2015). Despite differences in literacy by sex, in each census year, class 

attendance was higher among women than men, suggesting that literacy rates are better among 

younger generations of women. Overall, class attendance has also been improving over the past 

few decades, as class attendance for people 5 – 24 years old has risen from 64% in 2001, to 76% 

in 2010, to 78% in 2015 (INEC, 2015).  

 Housing. Since the 1990s, the Galápagos has undergone vast structural development, 

primarily in urban areas, doubling its number of households between 2001 and 2015. The census 

recorded the presence of roughly 5,700 households in 2001, 9,100 in 2010, and 12,000 in 2015 

(INEC, 2015). Development is distributed approximately evenly relative to population size 

among Santa Cruz, San Cristóbal, and Isabela. Of the households surveyed in 2015, 44% were 

houses, 43% were apartments, 8% were rooms in a house, and 5% were other forms of housing 

(INEC, 2015). The average number of people living in each house was 3.2 people, while in 

apartments it was 2.8 people, and in rooms in a house it was 2.0 people (INEC, 2015). Houses on 

the Galápagos are most often constructed with concrete (97%), and most homes have tile floors 

(64%), while others have cement or dirt floors (INEC, 2015). Further, construction continues 

throughout the islands today, where many structures remain partially built as families wait to be 

able to afford completing projects and building is halted while permits are under review. 

Employment. When people first settled on the islands, they lived in the highlands and 

worked in agriculture (Quiroga, 2014). After the 1950s, though, residents moved to the lowlands 

to pursue fishing, which became a lucrative career through the export of grouper in the 1960s, 

lobsters in the 1980s, and sea cucumbers in the 1990s (Quiroga, 2014). However, overfishing in 
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the 1990s and the rapid expansion of tourism in recent years has degraded the fisheries industry, 

and many residents have transitioned to other jobs, particularly within the tourism and 

conservation sectors, and the people of the Galápagos have embraced ecotourism as a solution to 

both environmental and economic concerns (Hoyman & McCall, 2012). Today, tourism is the 

backbone of the Galápagos’ economy, and while the fishing industry has faced policy changes to 

meet environmental standards, the fishing industry continues to thrive as well (Hoyman & 

McCall, 2012). 

 

2.3 Challenges in Context 

Residents of the Galápagos face a unique suite of challenges in everyday life due to the 

islands’ isolated geography and protection as a national park. 

Food. For those who live on the islands, agricultural restrictions for the preservation of 

indigenous flora and fauna contribute to the changing social-ecological system by limiting local 

food production and increasing the residents’ reliance on imported food from the mainland to 

sustain the needs of the growing population (Page et al., 2013). The majority of fruits and 

vegetables consumed on the islands are not grown on the islands, but instead must be imported 

by boat or plane. While the government is responsible for food provision on the Galápagos, 

private companies are hired to fill this need, and ships are often delayed for long periods, 

limiting food availability for weeks at a time (Jahnke, Thompson, & Archer, n.d.). When food 

does arrive, residents often report that fruits and vegetables have spoiled, and healthy options are 

limited. Consequently, traditional diets are being replaced by energy-dense foods, and 

particularly processed foods that cannot spoil (Jahnke, Thompson, et al., n.d.), which has 

contributed to the nutrition transition on the Galápagos (Page et al., 2013). In addition to 
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increased prices of food due to importation, the cost of food can be driven up quickly once on a 

small island with limited resources for re-stocking and ample tourists to feed. Consequently, 

residents worry about their ability to purchase healthy foods, and food security remains a major 

concern for residents.    

Water. Water quality too, introduces health risks for residents, as fresh water scarcity 

places a burden on water and wastewater treatment on the islands (Walsh, McCleary, & 

Heumann, 2010). On San Cristóbal, where the present study was conducted, water quality testing 

has documented high levels of Escherichia coli (E. coli) in household tap water (Gerhard, Choi, 

Houck, & Stewart, 2017), and other studies have found common infectious morbidity from 

gastrointestinal, respiratory, and skin infections (Walsh et al., 2010). While San Cristóbal is the 

only island on the Galápagos whose piped water is sourced from fresh water, efforts to improve 

piped water quality are still ongoing. After a new drinking water treatment plant was 

implemented on the island, piped water quality improved through a decrease in both total 

coliforms and E. coli, but even after the implementation of the treatment plant, these pathogens 

have persisted in drinking water at some testing sites (Gerhard et al., 2017). Consequently, 

residents are hesitant to drink the piped water, and many opt to purchase large bottles of water 

for drinking, which is costly and can introduce a host of other water quality concerns, since 

residents frequently store this bulk water open in their homes, exposing it to environmental 

contamination.  

Violence against women. Further, violence against women persists at high rates in the 

Galápagos and in Ecuador more broadly. In Ecuador, 61% of women report experiencing some 

kind of violence against women (INEC, 2011). In the national survey, 54% of women have 

reported experiencing psychological violence, 38% have experienced physical violence, and 26% 
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have experienced sexual violence (INEC, 2011). Of women who have experienced some type of 

violence, 76% report that the perpetrator was their current or ex-partner (INEC, 2011). On the 

Galápagos islands specifically, 55% of women have reported experiencing from some kind of 

violence, and 43% of women have reported being victims of violence in a relationship (INEC, 

2011). According to a national survey, in the Galápagos, 50% of women reported experiencing 

psychological violence, 35% have experienced physical violence, and 23% have experienced 

sexual violence (INEC, 2011), demonstrating comparable rates to those elsewhere in Ecuador. 

Notably, violence against women is a sensitive and often fraught subject, and consequently, these 

data are likely under-reported. 

Social isolation. The geographic isolation of the islands also leaves residents vulnerable 

to social isolation from family and friends on the mainland. Restrictive immigration laws prevent 

large-scale migration to the islands, and travelling to and from the mainland is costly for 

residents even with subsidized airfare provided by the government. Consequently, many 

residents who have married Galapaganeans born on the islands do not often have the chance to 

see their own families that remain on mainland Ecuador, limiting socials support, particularly for 

newcomers. 

 

2.4 Health Care on the Galápagos  

Over the past few decades, Ecuador has undergone a drastic restructuring of its health 

care system, transitioning from primarily private to increasingly public care (De Paepe, Tapia, 

Santacruz, & Unger, 2012; Rasch & Bywater, 2014). Since 2000, the Ministry of Health has 

increased spending on health care, and, in 2008, Ecuador’s former President Rafael Correa 

adopted a new constitution that passed legislation making health care a right and guaranteeing 
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free care to all citizens (Aldulaimi & Mora, 2017; De Paepe et al., 2012). Despite this change, 

Ecuador’s medical system has been and remains fragmented into a combination of public and 

private facilities, which are made up of both non-profit and for-profit institutions (López-

Cevallos & Chi, 2010a). Nonetheless, public health care accounts for the vast majority of health 

facilities in Ecuador (Pan American Health Organization, 2008), and in many rural settings, 

public care is the only option (López-Cevallos & Chi, 2010a). Further, after the adoption of 

Ecuador’s new constitution in 2008, former President Correa entered Ecuador into bilateral 

cooperation agreements on education, health, and social support with Cuba. Through these 

programs, Ecuador has invited over 1,000 Cuban doctors to work throughout Ecuador 

(Anderson, 2015), including in the Galápagos, where the doctors have been met with some 

resistance from the Galapaganean population who preferred Ecuadorian physicians (Jahnke, 

Archer, Thompson, Ocampo, & Bentley, n.d.). Recently though, in November 2019, Ecuador’s 

current president, Lenín Moreno, who was elected in 2017, ended Ecuador’s physician 

agreement with Cuba as a piece of his effort to pull away from his predecessor’s commitment to 

“socialism of the 21st century” (Gámez Torres & Pentón, 2019). His actions both terminated 

existing contracts with Cuban physicians and halted further recruitment of Cuban physicians to 

Ecuador. Nonetheless, over the past decade, amid the major shifts in health care provision, 

Ecuadorians have reported being disappointed in public health care (De Paepe et al., 2012; Rasch 

& Bywater, 2014), which has influenced its utilization and ability to improve health among 

Ecuadorians (Adane, Mengistie, Mulat, Kloos, & Medhin, 2017). 

In 2014, with funding from former President Correa’s new legislation, Ecuador’s 

Ministry of Health built a new hospital in Puerto Baquerizo Moreno, the capital city of the 

Galápagos, located on San Cristóbal Island. This free and public hospital, Hospital Oskar Jandl 
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(HOJ), replaced a smaller, older hospital on the island and is now the only hospital on San 

Cristóbal. Hospital Oskar Jandl contains both a hospital wing and a primary health care wing, 

which provides preventative services including vaccinations, dentistry, and counseling. The only 

other health care center on the island is a small public health clinic in the highlands of El 

Progreso for basic care, and the only other (much smaller) hospital on the Galápagos is on the 

island of Santa Cruz and is also run through Ecuador’s Ministry of Health. Despite the Hospital 

Oskar Jandl’s improved facilities and technologies, in 2016, health care providers at the hospital 

identified underutilization of health care services for both primary care and hospital services as a 

major concern. A qualitative analysis of health seeking behavior found that the community’s 

perceptions that the hospital lacks specialists and is inefficient have deterred residents from 

seeking care at the hospital (Jahnke, Archer, et al., n.d.). Further, residents voiced concerns with 

provider trust and overall health care quality, motivating them to travel to the mainland for care, 

which poses financial burdens on individuals and potentially exacerbates health conditions 

during the waiting and travel time (Jahnke, Archer, et al., n.d.; Page et al., 2013). Despite the 

scarcity of specialists, island residents have been particularly impressed with the prenatal and 

labor and delivery care that they had received at Hospital Oskar Jandl (Jahnke, Archer, et al., 

n.d.), and travel to the mainland for delivery has decreased since the establishment of the new 

hospital. 

Community members are not the only ones who are critical of the interaction between 

hospital staff and residents on the island. Healthcare providers at Hospital Oskar Jandl have 

reported feeling unwelcome by the community, citing their status as outsiders as the primary 

concern, since the majority of doctor and nursing staff at Hospital Oskar Jandl are from the 

mainland of Ecuador or other countries, including Cuba and Puerto Rico (Waldrop et al., n.d.). 



 
 17 

The Special Law of the Galápagos prioritizes the recruitment of Galapaganean residents for 

staffing, but without applicants from qualified locals, positions open up to outsiders; however, 

non-resident staffing limits the terms of service, leading to high turnover at the hospital, which 

hinders residents’ ability to form long-term relationships and develop trust with providers 

(Waldrop et al., n.d.). Further, the law requires that if someone from the community with the 

same qualifications later applies for the job, the non-resident staff must be asked to leave. Thus, 

many Galapaganeans view the presence of outsiders, and thus the hospital and its staff, as 

another means of political control imposed upon them from the continent. Much of their anger, 

though directed at hospital personnel, is rooted in past political injustices and current lack of 

control over many political and conservation-related efforts on the islands (Hoyman & McCall, 

2012; Kerr et al., 2004).   

The constant tension among the Ecuadorian government, the hospital staff, and the 

constituents of the Galápagos make health care provision fraught and complicated on the islands. 

Nonetheless, hospital personnel are hopeful that they can build trust with the community as more 

residents have good experiences with care.  

 

2.5 Maternal and Child Health on the Galápagos  

Overview 

Alongside improvements to healthcare facilities in recent years, the Galápagos has seen 

improvements in health care utilization and health outcomes among women. In 2015, the vast 

majority of women on the Galápagos gave birth in a hospital (97.4%), and the rate of low birth 

weight on the islands (6.4%) is now comparable to that of the national average (6.8%).  Despite 

this, the infant mortality rate on the islands (0.04%) remains higher than the national average 
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(0.013%) (Freire et al., 2015). On average, the fertility rate has been slowly declining over the 

past few decades from 2.3 children in 2001, to 2.2 in 2010 and 2.1 in 2015 (INEC, 2015). 

Nonetheless, the Galápagos still faces challenges to maternal and child health, specifically in 

regard to nutrition and obesity, infections, and overuse of Caesarean section, all of which can be 

detrimental to long-term health. 

 

Nutrition and obesity  

The Galápagos has the highest rate of overweight and obesity of all of Ecuador’s 

provinces, with 12.7% of children under the age of five and 75.9% of adults between the ages of 

10 and 60 qualifying as overweight or obese (Freire et al., 2018). Overweight and obesity put 

women at risk hypertension and gestational diabetes and obesity during pregnancy has been 

associated with for large for gestational age infants, who are more likely to be obese later in life 

(Pan et al., 2019).   

The geographically isolated position of the Galápagos poses challenges not only for the 

availability and diversity of food, but also the cost of food, which can escalate quickly on a small 

island with limited resources. Food availability on the island is hindered by the designation of 

most of the islands as National Park (Walsh & Mena, 2016), which limits agriculture to a small 

area that cannot sustain the needs of the growing population. Consequently, the vast majority of 

fruits and vegetables are not grown on the islands, but instead imported from the mainland by 

boat or plane, adding to market costs of produce. Consequently, residents consume many ultra-

processed and fried foods in the place of healthier, fresh foods (Freire et al., 2018). This 

substitution likely contributes to challenges in fulfilling micronutrient needs on Galápagos, 
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where 16.1 % of children under the age of 5 are anemic, while 6.4% are iron deficient, and 8.4% 

are Vitamin A deficient  (Freire et al., 2014).  

 

Infections 

Both urinary tract infections and sexually transmitted infections are also of concern for 

island residents. The Galápagos has high rates of sexually transmitted diseases (STIs) and 

urinary tract infections (UTIs) (Jahnke, Thompson, et al., n.d.). Previous research has suggested 

that the high incidence of UTIs may be a consequence of bathing or showering in contaminated 

water (Houck et al., 2020; Walsh et al., 2010). These infections are of particular concern during 

pregnancy, since untreated UTIs during pregnancy have been associated with intrauterine growth 

restriction, low birthweight, and preterm delivery (R. Cohen, Gutvirtz, Wainstock, & Sheiner, 

2019). 

 

High rate of Caesarean delivery 

Ecuador’s Caesarean-section (C-Section) rate has been rising far beyond the 10-15% rate  

recommended by the World Health Organization (World Health Organization (WHO), 2015) 

over the past few decades (Jahnke, Houck, Bentley, & Thompson, 2019), and the C-section rate 

on the Galápagos is even higher than that on the mainland, at roughly 58% of all births 

(Thompson, Houck, & Jahnke, 2019). While C-sections can be necessary for the immediate 

health of a woman and her infant, unnecessary C-sections have a higher risk of morbidity and 

mortality for both the mother and the infant (Runmei et al., 2012; Villar et al., 2006), and less 

immediately, C-sections have been linked to a number of inflammatory conditions in childhood 
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and adolescence, including increased allergy and asthma and elevated risk of overweight and 

obesity (Blustein et al., 2013; Cho & Norman, 2013). 

 

Infant growth 

Children under the age of five on the Galápagos have a higher rate of overweight and 

obesity (12.7%) compared to children nationally in Ecuador (8.5%) (Freire et al., 2014). 

Galapagaean children also have a lower rate of underweight (1.2%) than those in Ecuador more 

generally (6.4%) (Freire et al., 2014). Nevertheless, children on the Galápagos have lower rates 

of stunting 10.6% and wasting (0%) than children in the national sample, whose rates of stunting 

are 25.2% and 3.9% respectively (Freire et al., 2014), suggesting that children on the Galápagos 

are more at risk for overnutrition than undernutrition. These differences may be due to the 

consumption of many high-calorie processed foods, but differences in underweight may be due 

in part to nutrient absorption as well, particularly since the rate of diarrhea in children on the 

Galápagos is marginally lower (10.2%) than that for Ecuadorian children in generally (11.8%)  

(Freire et al., 2015). 

 

2.6 Summary  

 Overall, the Galápagos’ geography, policies, and infrastructure have contributed to 

challenges for human health and well-being on the islands. While recent research has reported 

birth outcomes, growth measures, and other indicators of physical health, few studies have 

examined mental health on the islands, and provision of mental health care remains limited. 

Residents’ everyday lives are complicated by food and water insecurity, poverty, limited 

connection to friends and family on the mainland, and access to high quality health care, among 
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other causes of distress. Together, these complex circumstances likely contribute to 

underdiagnosed stress, anxiety, and depression among island residents. 
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CHAPTER 3: STRESS AND THE BODY 

 
3.1 Evolutionary Perspectives: The Developmental Origins of Health and Disease 

The DOHaD hypothesis suggests that early life environments shape long-term disease 

risk. Robust evidence from epidemiological studies has shown associations between early life 

exposures to adverse environments and subsequent cardiovascular and metabolic disease, as well 

as a variety of neurobehavioral disorders (Barker et al., 1989; O’Connor, Heron, Golding, 

Beveridge, & Glover, 2002). In particular, prenatal maternal stress has been associated with 

negative birth outcomes in the forms of preterm birth, low birth weight, intrauterine growth 

restriction (IUGR), and impaired infant development (Copper et al., 1996; Dayan et al., 2002). 

At the same time, evidence from epidemiological studies suggests that these adverse birth 

outcomes are associated with a number of diseases in adulthood including metabolic disease, a 

suite of diseases including cardiovascular disease, hypertension, obesity, and diabetes (Barker, 

2004; Barker et al., 1989); asthma (Mai et al., 2003); behavioral problems (Lagerstrom, 

Universio, Bremme, Eneroth, & Magnusson, 1990); and psychological dysfunctions (Bohnert & 

Breslau, 2008). Further, though many studies have found associations between low birth weight, 

preterm birth, and IUGR and disease in later life, these adverse birth outcomes constitute the 

extremes of fetal response to stressful contexts, while in fact, fetal environment shapes 

development across the range of normal birth weights, and modifications are not restricted to 

those born particularly small or early (Drake et al., 2012; Godfrey, Gluckman, & Hanson, 2010). 

Within an evolutionary framework, some have employed a life history perspective to 

consider the drivers of these shifts in early development. Life history theory uses an adaptive 
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approach to investigate two fundamental evolutionary tradeoffs, that between investment in 

current or future reproduction, and that between the number of offspring and the fitness of 

offspring (Hill, 1993). Primarily focused on energetics and energy allocation (Hill 1993), life 

history theory recognizes that energy can be used for maintenance, growth, storage, and 

reproduction, and life history researchers investigate how humans navigate tradeoffs in energy 

investment in order to maximize reproductive effort (Hill, 1993). Further, reproduction is of 

particular interest within life history theory, since both during gestation and during the first few 

years of life, a child depends on its mother’s energetic capacity. Thus, allocations of maternal 

energy must be made doubly—once within the mother for maintenance, growth and 

reproduction, and once within the child for maintenance, growth and reproduction. In this way, 

the perinatal period could provide insight into the energetic “decision-making” of mothers and 

how the interests and efforts of offspring may shape energy allocation.  

Like life history theory, DOHaD has grown from the study of optimization of energy 

allocation for evolutionary success and can be considered to be a subset of developmental 

plasticity through which an individual modifies its phenotype in response to its environment 

throughout the life course (Gluckman, Hanson, & Beedle, 2007). Phenotypic plasticity, which 

extends from conception to after birth, enables individuals to modify their phenotypes in 

response to their environments in ways that are adaptive beyond their inherited genotypes 

(Gluckman, Cutfield, Hofman, & Hanson, 2005; Wells, 2010). The ability to retain some 

phenotypic plasticity during development has evolutionary benefits, allowing individuals 

flexibility for survival and therefore allowing genes to remain in surviving genomes through 

modification to existing (not just ancestral) environments. While authors agree that early life 
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plasticity is evolutionarily driven, many disagree about the specificities of how these early life 

modifications fit into evolutionary models.  

Further, while much of the literature on DOHaD in utero has focused on the effects of 

energetic and nutritional stress, a growing body of literature has found that the effects of 

maternal psychosocial stress introduce additional burdens on energy expenditure and have long-

term effects on the development of the fetal HPA axis (Nyberg et al., 2012; Pike, 2005; Wells, 

2010). Prenatal psychosocial stress has been associated with dysregulated glucocorticoid 

function, which is known to underlie metabolic disorders (Reynolds et al., 2001), and with 

neurobehavioral disorders in offspring even when controlling for adverse birth outcomes 

including low birth weight and gestational age (Davis, Glynn, Waffarn, & Sandman, 2011; 

O’Connor et al., 2002; O’Donnell et al., 2013). Thus, both energetic and psychosocial stress can 

influence early life phenotypic modification. Physiologically, this makes sense, since it is the 

neuroendocrine system that shapes the physiologic mechanisms that affect changes to life history 

through resource allocation (Finch & Rose, 1995; Worthman & Kuzara, 2005). 

Others suggest that the HPA axis of women experiencing stress during pregnancy may 

send hormonal cues of a stressful environment to the fetus, which can then modify its growth 

accordingly (Pike, 2005). Though these glucocorticoid fluctuations can shape fetal modifications 

throughout the range of normal development, some have suggested that in extreme cases of 

stress, small modifications may be insufficient, and hormonal cues may build, triggering a 

hormonal cascade that causes parturition, allowing the fetus early expulsion, or preterm birth 

(McLean M et al., 1995; Pike, 2005). Though preterm birth is an extreme response to poor 

environmental circumstance, it may be adaptive for both the mother and the infant, allowing the 

mother to limit her own costs in a stressful environment so that she can conserve resources for 
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future reproduction, and allowing a fetus to avoid direct competition for resources (Pike, 2005). 

This hypothesis mirrors life history theory, through which the mother and infant must carefully 

allocate and balance resources. Nonetheless, early parturition is not without trade-offs. Though 

potentially advantageous for survival in the short term, preterm birth, IUGR, and low birth 

weight leave the infant vulnerable to perinatal mortality and permanent changes in organ and 

metabolic functioning (Barker et al., 1989; Hales & Barker, 1992; Pike, 2005). Nonetheless, 

evolutionarily, this model could thrive through natural selection, since it confers an advantage in 

early life, and its detrimental ramifications often do not manifest until after an individual’s 

primary reproductive years.  

Others’ hypotheses suggest that these developmental changes are driven by the 

prioritization of long-term adaptive advantages of early life modifications for offspring, 

suggesting that the development of the fetus is informed by the mother’s external environment. 

Supporters of this model hypothesize through “predictive adaptive responses” (PARs), fetuses 

take cues from their environments and adjust their development, and thus adult phenotype, to be 

better suited for their own predicted future environment (Gluckman et al., 2005, 2007; Godfrey 

et al., 2010). In contrast, Wells (Wells, 2007, 2010) has expressed skepticism that adaptations to 

a mother’s external environment during pregnancy, just a fleeting snapshot of her life history, 

would remain relevant over the life course. He presents another compelling hypothesis for the 

evolutionary advantage of poor fetal growth, proposing that the fetus takes cues not from its 

mother’s external environment, but from its developmental “niche” within the maternal 

metabolism (Wells, 2003). He suggests that maternal metabolism may signal maternal phenotype 

not momentary environment, thereby giving clues about the mother’s (and grandmother’s) life 

experience. Wells argues that this type of cue conveys an entire life history, smoothing out short-
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term perturbations in stress to reflect a reliable sense of postnatal experience that is not derailed 

by anomalies experienced during one pregnancy. While often this theory elaborates on maternal 

metabolism as a buffer, it was developed from work with animal models that demonstrates how 

maternal phenotype buffers offspring from exposure to psychological stressors, in turn buffering 

the offspring’s HPA axis stress response (Hennessy, O’Leary, Hawke, & Wilson, 2002).  

Kuzawa’s hypothesis of intergenerational phenotypic inertia also prioritizes maternal 

physiology as a signal of the external environment over cues from the momentary external 

environment itself (Kuzawa, 2005). This hypothesis, which suggests that the fetus is able to use 

its mother’s metabolism to discern and respond to long-term environmental quality, has been 

proposed as long-term phenotypic adaptation (Kuzawa, 2005). Kuzawa claims that this 

adaptation allows a fetus to adapt to environmental trends that may at once be too gradual to be 

detected through conventional developmental plasticity, which responds to cues from the 

maternal external environment, and also too rapid to be incorporated into the genome through 

natural selection. In this way, the fetus may “predict the future by seeing the past” (Kuzawa, 

2005:13). These evolutionary hypotheses demonstrate the utility of phenotypic plasticity despite 

the fact that phenotypic modifications can lead to detrimental conditions later in life. 

Despite debates on theoretical underpinnings, it is clear that early life modifications pose 

trade-offs over an individual's life course, prioritizing selective organ development for survival 

and evolutionary fitness over the development of other systems, which leaves the individual 

vulnerable to an array of pathologies, particularly those that develop in the post-reproductive 

years, like cardiovascular and metabolic disease (Godfrey et al., 2010; Hales & Barker, 1992). 

Further, many anthropologists agree that changes to biology early in life can be heritable, 

perpetuating disparities intergenerationally and leaving those with poor early environments 
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disproportionately at risk for pathology (Gluckman et al., 2007; Pike, 2005; Thayer & Kuzawa, 

2011, 2014; Wells, 2010). Research on DOHaD has the potential to inform pathways of disease 

development, which could be used to mitigate future health disparities. By incorporating the role 

of the placenta, microbiome, and postnatal environment into research on DOHaD, this work 

provides a more comprehensive approach to understanding the mechanisms behind long-term 

development of disease. Early development constitutes a continuum of systemic alterations from 

the prenatal into the postnatal period. This study recognizes and emphasizes the importance of 

this often-divided period of development. 

 

3.2 What is Stress? 

Models of developmental plasticity often rely on “stress” as an exposure that shapes 

growth and development, but the definition of “stress” itself can be difficult to pinpoint, as it is 

constructed and utilized differently across studies. Nonetheless, Selye’s original definition of 

stress as an acute threat to the homeostasis of an organism (Selye, 1936) remains a useful 

working definition. In this model, the threat may be physical, like energetic stress or an injury, or 

psychological, like the anticipation of a threat, both of which produce a cascade of physiological, 

emotional, and behavioral responses (Moloney, Desbonnet, Clarke, Dinan, & Cryan, 2014).  

Across disciplines, stress has been used to signify aspects of social and cultural environments, 

perception of anxiety or discomfort, as well as behavioral, social, or physical problems 

(McDade, 2002). To address “stress,” this study, like many others in anthropology and across 

disciplines, builds on the conceptual foundations of the “General Adaptation Syndrome” (Selye, 

1936), for which “stress” is a process built by four elements: stressors, responses, consequences, 

and moderators (McDade, 2002; Rudzik, Breakley, & Bribiescas, 2014)  



 
 28 

In this framework, a stressor is the environmental (physical, social, or psychological) 

event or stimulus that alters normal functioning and creates an adaptive challenge and elicits a 

stress response from an individual (Chrousos, 2009; McDade, 2002). Throughout our lives, 

humans, like other organisms, must maintain a dynamic equilibrium, termed homeostasis, to 

survive. Stressors challenge homeostasis, and the stress response is the individual’s attempt to 

restore homeostasis through behavioral or physiological adaptive responses (Chrousos, 2009; 

McEwen, 1998). Thus, stress occurs when homeostasis is threatened or is perceived to be 

threatened (Chrousos, 2009). In humans, basal homeostasis (also termed eustasis) and stress 

responses are controlled by the Central Nervous System (CNS) and peripheral organs and tissues 

and mediated largely through glucocorticoids like cortisol. In the face of a stressor, the body can 

produce either an appropriate response, returning the body to homeostasis, or it may produce an 

inappropriate response (inadequate or excessive), causing cacostasis (also termed allostasis), 

which can have consequences for an individual’s health, particularly if the stressor is prolonged 

(Chrousos, 2009; McDade, 2002; McEwen, 1998). Such consequences may be physical, 

behavioral, or neuropsychiatric changes, including anxiety, depression, and cognitive 

dysfunction (Chrousos, 2009; McEwen, 1998). More specifically, chronic stress causes the 

continual or prolonged activation of the HPA axis, and thus the prolonged secretion of mediators, 

including corticotropin-releasing hormone (CRH), norepinephrine, and cortisol, which activate 

the fear system, causing a variety of conditions including anxiety, depression, and insomnia 

(Chrousos, 2009). The last component of the stress response, moderators are factors that could 

interfere with this pathway. Moderators may be biological, situational, or cultural factors that 

account for differences in vulnerability to stressors, stress responses, and their health 

consequences (McDade, 2002).  
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The stress response, which constitutes the immediate embodiment of the stressor, may be 

operationalized through mental processes, behavioral processes, and physiological processes 

(McDade, 2002). Mental processes are often operationalized through self-report surveys or 

symptom checklists, including self-rated perceived stress scores or symptoms of anxiety or 

depression. Behavioral processes could be operationalized through the analysis of many 

behaviors including of changes in diet, exercise, sleep patterns, smoking, or drinking. Last, 

physiological processes could be operationalized through measuring changes to nervous system 

activity, hormone activity, or cardiovascular function, all of which are shifted as the body 

attempts to re-establish homeostasis (Chrousos, 2009; McDade, 2002). While each of these 

processes provides insights into “stress,” it is important to note that these mental, behavioral, and 

physiological processes are interconnected, making causal pathways difficult to articulate. For 

example, changes in sleep patterns could induce hormonal changes, and changes in self-

perception of stress may alter someone’s sleep patterns.  

While the stress response can be operationalized in various ways, it is important to note 

that stress, and health more broadly, is situated within social, cultural, and political-economic 

contexts (Lock & Kaufert, 2001). Consequently, correctly interpreting reports of stress is 

dependent upon a shared understanding of “stress” cross-culturally (McDade, 2002).  

 

3.3 Intergenerational Stress Transfer and the Hypothalamic Pituitary Adrenal Axis  

The stress system, which includes the Central Nervous System (CNS) and peripheral 

tissue, is responsible for maintaining basal homeostasis as well as managing the stress response 

in order to re-establish homeostasis in the face of a stressor (Chrousos, 2009; McEwen, 

1998)(Chrousos 2009; McEwen 1998). As noted, chronic stress prolongs activation of the HPA 
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axis, thus prolonging the secretion of glucocorticoid mediators, including cortisol, among others 

(Chrousos, 2009). The exposure to stressors during critical periods of development, including the 

perinatal period and infancy, can induce prolonged cacostasis with lasting effects on the brain’s 

stress response, establishing inappropriate basal activity or inappropriate responsiveness of the 

stress system that could last a lifetime (Chrousos, 2009). Inappropriate physiological 

management of stress, which may be established through insult during such critical periods can 

lead to an array of behavioral, physical, and neuropsychiatric conditions, including anxiety, 

depression, cognitive dysfunction, cardiovascular disease, and metabolic disease later in life 

(Chrousos, 2009).  

In the body, the HPA axis plays a central role in regulating hormone systems, 

maintaining health, mobilizing energy stores, bolstering vigilance, and inhibiting inflammatory 

response during times of stress, both energetic and psychosocial (Talge et al., 2007).  

Biologically, stress stimulates the hypothalamus to release CRH, which binds to receptors in the 

anterior pituitary, releasing adrenocorticotropic hormone (ACTH). In turn, ACTH binds to 

receptors on the adrenal cortex, which stimulates the release of cortisol. Once a threshold of 

cortisol is reached, cortisol then downregulates the release of CRH from the hypothalamus, 

acting as a negative feedback loop (Figure 3.1). During pregnancy, the HPA axis takes on the 

additional role of regulating glucocorticoid feedback interactions among the mother, placenta, 

and fetus. As such, the activation of the HPA axis has been proposed to be the primary 

mechanism through which prenatal maternal stress shapes fetal development and subsequent 

long-term disease risk (Pike, 2005; Seckl, 2008). 
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Figure 3.1 The Hypothalamic Pituitary Adrenal Axis 

 

 

While glucocorticoids play an essential role in the development and maturation of fetal 

tissue and metabolism (Drake et al., 2012), high levels of cortisol may alter fetal behavioral, 

immunological, and brain development, including areas of the brain that regulate the fetal HPA 

axis (Beijers, Buitelaar, & de Weerth, 2014). Theorists propose that frequent or prolonged 

maternal stressors activate the maternal HPA axis, increasing the production of cortisol, which 

could reach the infant through transfer across the placenta and/or trigger an increased production 

of placental CRH, thereby stimulating the fetal HPA axis to produce more fetal cortisol (Beijers 

et al., 2014). Increased fetal cortisol, in turn, has permanent effects on the fetal HPA axis, which 

could underlie subsequent long-term disease risk (Chrousos, 2009; Pike, 2005; Seckl, 2008). 

Table 3.1 provides a summary of many studies investigating maternal psychosocial stress and 
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maternal salivary cortisol in pregnant and postpartum women. These studies assess a variety of 

stressors, and provide mixed evidence as to whether chronic stress does indeed shape maternal 

salivary cortisol regulation.  

Nonetheless, studies have found that maternal prenatal stress has significant effects on 

offspring HPA axis functioning as early as infancy (Brennan et al., 2008; Davis et al., 2011; 

Diego et al., 2004; Grant et al., 2009; Thayer & Kuzawa, 2014; Tollenaar, Beijers, Jansen, 

Riksen-Walraven, & De Weerth, 2011) into childhood (Gutteling, De Weerth, & Buitelaar, 2004, 

2005; O’Connor et al., 2005), and through adolescence (Huizink et al., 2008; O’Donnell et al., 

2013). Table 3.2 provides a summary of studies investigating prenatal stress and offspring HPA-

axis functioning through salivary cortisol in humans. These studies suggest that prenatal 

psychosocial stress may lead to prolonged cacostasis through long-term HPA axis dysregulation 

in offspring, posing consequences on other systems that may persist throughout the life course. 

In fact, studies have found that early life changes in HPA axis regulation have long-term effects 

on growth, immune function, cognition, and cardiovascular and reproductive systems 

(Nepomnaschy, Vitzthum, & Flinn, 2009; Nyberg et al., 2012). 

However, results from studies on the associations between prenatal psychosocial stress 

and maternal cortisol, as well as their effects on offspring, are inconsistent, suggesting that other 

mechanisms may play a role in the relationship between prenatal stress and infant HPA axis 

development. The present study explores the role of the HPA axis alongside potential placental, 

postnatal, and microbiome pathways to explain the varied outcomes in the literature.  

While a life history perspective suggests that up-regulation of cortisol may be adaptive in 

response to short-term challenges, chronic activation of the HPA axis strains energy demands, 

challenging energy allocation for the growth of other organs, and subsequently causing immune 
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deficiency, cognitive impairments, inhibited growth, damage to the hippocampus, and 

psychological maladjustment (Flinn & England, 1997; Nyberg et al., 2012). Work on fetal 

programming continues to investigate HPA axis programming as the primary mechanism 

(O’Donnell et al., 2013; Thayer & Kuzawa, 2014, 2015), but recently, other mechanisms have 

been proposed to underlie the relationship between maternal stress and adverse outcomes in 

offspring, including the roles of placental HSD11B2, catecholamines and the sympathoadrenal 

system, the maternal immune system, maternal microbiome microbiota, maternal behaviors, and 

maternal postnatal stress (Beijers et al., 2014).  

 

3.4 Placental Regulation with HSD11B2  

Contradictory results on the relationship between maternal cortisol and infant HPA axis 

development may be due to placental HSD11B2, an enzyme (protein) that buffers the amount of 

cortisol that reaches the fetus by catalyzing the reaction that metabolizes maternal cortisol into 

inert cortisone in the placenta (V. E. Murphy, Smith, Giles, & Clifton, 2006). This conversion is 

hypothesized to provide a protective effect to the fetus, (Edwards et al., 1993), and is illustrated 

in Figure 3.2. 
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Figure 3.2 Placental HSD11B2  

 

 

The amount of HSD11B2 protein present in tissue is described as expression and is 

measured by messenger RNA (mRNA), which is regulated through epigenetic modifications. 

Epigenetic regulators respond to the environment in order to provide individual-level 

modifications by altering the way that deoxyribonucleic acid (DNA) is utilized in the body 

without changing the DNA sequence itself (Martin & Fry, 2018). Epigenetic regulators include 

histone modifications, noncoding RNA expression, and cytosine-phosphate-guanine (CpG) DNA 

methylation (Jablonka & Lamb, 2014, pp. 124–130), the last of which is of particular interest to 

this research. CpG DNA methylation is the process by which a methyl group attaches to a 

cytosine base in CpG islands, regions of the genome with a high density of cytosine and guanine 

bases (Martin & Fry, 2018). If the methylated CpG locus is part of a DNA sequence that codes 

for a protein, methylation of the region will not influence the amino acid sequence itself, but it 

will influence the likelihood that that the protein will be transcribed, and thus expressed 
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(Jablonka & Lamb, 2014, p. 126). Typically, genes in more densely methylated regions are less 

likely to be transcribed (Jablonka & Lamb, 2014, p. 126), which has been found to be the case 

for HSD11B2 (Alikhani-Koopaei, Fouladkou, Frey, & Frey, 2004; Marsit, Maccani, Padbury, & 

Lester, 2012). This research project investigates how maternal distress during pregnancy 

influences both the mRNA expression of placental HSD11B2 and the DNA methylation of its 

promoter region, thus assessing how epigenetic shifts in response to psychosocial exposures 

regulate the body’s ability to produce HSD11B2 and thus protect the fetus from high maternal 

cortisol. 

Expression of HSD11B2 has been shown to vary significantly among individuals 

(Welberg, Seckl, & Holmes, 2000) and to be lower in women who develop pre-eclampsia, have 

IUGR and low birth weight babies, and deliver preterm (O’Donnell, O’Connor, & Glover, 2009; 

Zhao et al., 2014). Low placental HSD11B2 would predispose the fetus to higher levels of 

maternal cortisol, but its relationship to maternal stress and infant HPA axis regulation has not 

been explored extensively in humans.  
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Table 3.3 provides a summary of the studies investigating prenatal maternal stress, 

measurements of HSD11B2, and infant HPA axis regulation, including both animal and human 

models. 

In animal models, it appears that chronic stress and anxiety may diminish the protection 

of HSD11B2. One study found that acute stress up-regulated HSD11B2 activity, but chronic 

stress did not, and in fact, chronic stress hindered the ability of HSD11B2 to up-regulate in the 

face of an acute stressor (Welberg, Thrivikraman, & Plotsky, 2005). Another study found that 

prenatal stress increased the activity of HSD11B2 in low-anxiety rats, but not in high-anxiety 

rats (Lucassen et al., 2009). Other studies have found that higher prenatal stress is associated 

with an increase in methylation of the HSD11B2 gene promoter (Peña, Monk, & Champagne, 

2012) and a decrease in the expression of HSD11B2 (Mairesse et al., 2007; Peña et al., 2012). 

These mechanisms suggest that chronic stress and anxiety decrease HSD11B2 expression and 

activity, and thus cannot protect against high cortisol transfer to the fetus.  

Studies on these relationships in humans are limited and report mixed results. Like 

animal studies, many studies with humans have found that chronic maternal distress (including 

anxiety and/or depression) is associated with greater methylation of the HSD11B2 promoter 

region (Conradt, Lester, Appleton, Armstrong, & Marsit, 2013; Monk et al., 2016) as well as 

lower expression of HSD11B2 (O’Donnell et al., 2012; Seth, Lewis, Saffery, Lappas, & 

Galbally, 2015; Togher et al., 2014).  

Further, other distress exposures have also been associated with these differences. In one 

such study, prenatal life events were associated with a downregulation in expression, though 

only in Caucasian women. In a few studies, though, the opposite effect is observed. One study 

found that women of low socioeconomic status (SES) had lower HSD11B2 methylation 
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(Appleton et al., 2013). However, many studies report that anxiety (Capron, Ramchandani, & 

Glover, 2018) and depression (Capron et al., 2018; Conradt et al., 2013; Reynolds et al., 2015; 

Zhang et al., 2018) were not found to be associated with differences in HSD11B2 measures. 

Nonetheless, overall, the majority of results on this pathway suggest that maternal distress is 

associated with hypermethylation of the HSD11B2 CpG islands, causing transcriptional 

repression of the gene, ultimately downregulating HSD11B2 expression and leaving the infant 

more vulnerable to high levels of maternal cortisol, which could injure the fetal brain and HPA 

axis. Despite its central role as a gatekeeper for cortisol, the placenta remains an understudied 

component of this biological pathway. This research investigates the epigenetic regulation of 

HSD11B2 through both psychosocial and physiological stress pathways. 

 

3.5 The Developmental Niche and Postnatal Environment 

Though often left out of studies on prenatal maternal stress and offspring programming, 

the postnatal maternal environment plays a crucial role in the continued development of an 

infant's HPA axis. To account for individual differences in early development and health within 

the same community, Harkness and Super (Harkness & Super, 1994) proposed the theoretical 

framework of the developmental niche as a tool for analyzing the development of health at a 

more minute level—within the household. The developmental niche proposes that the household 

mediates the relationship between the environment and the child through three key components: 

(1) the child’s physical and social setting, (2) customs of childcare, and (3) the psychology of 

caretakers. Using this model, an analysis of the infant’s postnatal environment is essential for 

understanding early development. 
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 The early postpartum period can be a time of particular maternal stress, which may be 

detrimental to a mother's mental health and caregiving behaviors (Grajeda & Perez-Escamilla, 

2002; Rudzik et al., 2014). In turn, poor maternal mental health and patterns of care during early 

childrearing have each been found to be associated with HPA axis dysregulation in offspring 

later in life (Essex, Klein, Cho, & Kalin, 2002; Gunnar & Donzella, 2002; Tollenaar, Beijers, 

Jansen, Riksen-Walraven, & De Weerth, 2012; Wright, 2007). Postnatal maternal stress may also 

influence the infant directly through cortisol transfer during breastfeeding; Glynn and colleagues 

found that among breastfed infants, high maternal cortisol levels were associated with increased 

fearful temperament (Glynn et al., 2007). Improved postnatal stress may also work in the other 

direction, according to Bergman and colleagues, who found that the relationship between 

prenatal stress and infant health outcomes is moderated by mother-infant attachment, a marker of 

caregiving quality (Bergman, Sarkar, Glover, & O’Connor, 2010). These works suggest that 

postnatal environment is an important component of the mechanism through which the early 

HPA axis develops, and insufficient investigation of postnatal maternal stress may confound 

studies of prenatal stress and offspring development. By incorporating the role of postnatal stress 

into a study of prenatal stress and offspring HPA axis development, this research work adds a 

critical component to the literature on DOHaD that will elucidate the pathways through which 

early environment shapes development. 

 

3.6 The Gut Microbiome 

While HPA axis dysregulation is thought to be the primary mechanism through which 

prenatal maternal stress is linked to metabolic disease and neurobehavioral disorders later in life, 

dysbiosis of the infant gut microbiome has also been associated with risk for metabolic (Goulet, 
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2015) and neurobehavioral disorders (Cryan & Dinan, 2012), suggesting it could be a candidate 

for involvement in this pathway. Recent research has also found that microbiota communicate 

bidirectionally with the central nervous system (CNS) (Mayer, 2011), along the gut-brain axis, 

and thus gut microbiota may also influence and be influenced by brain function and behavior 

(Cryan & Dinan, 2012; Rackers et al., 2018). In other work, microbial composition has been 

linked to psychological disorders including anxiety, stress, autism, and depression (Dinan & 

Cryan, 2017). Recently, the gut microbiome has attracted great interest in the DOHaD literature, 

but its relationship to stress in pregnancy and infant health remains largely under-studied.  

Gut microbiota, including bacteria, viruses, fungi, and other microorganisms, make up 

the diverse microbial communities that colonize the human gut (Rakers et al., 2017). Most 

microbial species develop a symbiotic relationship with their host that promotes healthy 

development, educates the immune system, supports the development of gut function, regulates 

intestinal barrier function, protects against infection, promotes food tolerance, and supports 

central nervous function and the neuroendocrine system including the HPA axis (Goulet, 2015; 

Rackers et al., 2018; Rakers et al., 2017). Generally, the healthy gut maintains a state of 

homeostasis, in which it balances microbial communities, epithelial tissue of the intestine, and 

the immune system (Matamoros, Gras-Leguen, Le Vacon, Potel, & De La Cochetiere, 2013). 

However, environmental disturbances, including changes in the immune system, diet, stress, and 

exposures to xenobiotics (antibiotics and anti-cancer medications), among others, can induce 

unfavorable changes in the composition of gut microbiota, termed dysbiosis (Matamoros et al., 

2013), which has been associated with risk for obesity, metabolic disease, autoimmune disease 

and allergy, and intestinal inflammation (Cho & Norman, 2013; Goulet, 2015) in addition to 

psychological disorders. 
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3.7 Gut Microbiome Development 

Though there is no consensus on an ideal healthy adult microbiome, the majority of 

microbiota in the adult gut is composed of two main phyla: Firmicutes and Bacteroidetes 

(Jandhyala et al., 2015; Tap et al., 2009). Other important phyla, including Actinobacteria, 

Proteobacteria, and Verrucomicrobia are not as well-represented, but nonetheless have important 

effects on health (Everard et al., 2011; Willing et al., 2010). In adults, the ratio of Firmicutes to 

Bacteroidetes remains a key measure of gut health and has been associated with a variety of 

metabolic disorders (DiBaise, Frank, & Mathur, 2012). Studies have also found that in adults, 

high microbial diversity has been associated with relatively more anti-inflammatory bacteria, 

while low microbial diversity has been associated with relatively more pro-inflammatory 

bacteria as well as higher adiposity and inflammation (Jandhyala et al., 2015). 

The infant microbiome is distinct from that of healthy adults, and it is shaped by a variety 

of exposures, maturing over time until it eventually reaches an adult-like profile when a child is 

about three years old (Voreades, Kozil, & Weir, 2014). On the phylum level, the a newborn’s gut 

microbiome predominantly consists of Actinobacteria and Proteobacteria (Dinan & Cryan, 

2017). In the first few days of life, the microbiome transitions to the development of anaerobic 

bacteria such as Bifidobacteria, Clostridia, Bacteroides, and sometimes Ruminococcus 

(Matamoros et al., 2013). However, during early life, the infant gut microbiome is influenced by 

a variety of exposures including the prenatal environment, mode of delivery, antibiotic use, and 

infant feeding (Bäckhed et al., 2015; Goulet, 2015).  

The long-held hypothesis that infants are born sterile (Mackie, Sghir, & Gaskins, 1999) 

has been challenged by recent research that demonstrates that the placenta (Aagaard et al., 2012) 
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and meconium (Jiménez et al., 2008) have microbial DNA, suggesting that the infant may 

encounter bacterial exposures before birth (Walker, Clemente, Peter, & Loos, 2017). The 

prenatal environment, including maternal body composition, diet, and other factors, have been 

associated with changes in the gut microbiome. Studies have found that both maternal body mass 

index (BMI) and consumption of a high-fat diet during pregnancy shape the neonatal gut 

microbiome and increase risk for obesity and metabolic diseases for the infant later in life 

(Friedman, 2018). Maternal obesity has also been associated with an increase in Bifidobacterium 

species as well as higher levels of Staphylococcus and Enterobacteriaceae including E. coli in 

the maternal gut microbiome, though more studies are needed to determine if these changes are 

mirrored in the infant microbiome (Calatayud, Koren, & Collado, 2019). Further, women’s 

adverse childhood experiences have been associated with changes in their gut microbiome during 

pregnancy, such that women with more adverse experiences exhibit a differentially higher 

abundance of Prevotella than women with fewer adverse experiences in childhood (Hantsoo et 

al., 2019). Proponents of the hypothesis that infants are not born sterile suggest that maternal 

microbiota could be transferred to a developing fetus through the bloodstream and placenta 

(Borre et al., 2014), enabling shifts in a woman’s microbiome to be passed to the fetus during 

pregnancy. While the question of newborn sterility remains open, perturbations in a woman’s 

microbiota during pregnancy may, nonetheless, be transferred to the infant during birth. 

Mode of delivery has been shown differentially shape the foundational gut microbiome of 

infants, which may alter energy harvesting and contribute to risk of obesity and overweight 

(Ajslev, Andersen, Gamborg, Sørensen, & Jess, 2011). Mode of delivery introduces bacteria to 

the infant gut through ingestion during birth (Guarner & Malagelada, 2003), such that infants 

born vaginally are exposed to and colonized by their mothers’ vaginal and fecal bacteria, and 



 
 42 

infants born by Caesarean are more often colonized by epithelial bacteria (Bäckhed et al., 2015; 

Dominguez-Bello et al., 2010). Infants born vaginally have been shown to have higher levels of 

Bacteroides species, which are associated with higher gut diversity and increased maturation 

(Stewart et al., 2018). Studies have also shown that infants born by Caesarean have elevated 

levels of Clostridium difficile, a species of gut microflora that has been associated with the 

development of asthma (Van Nimwegen et al., 2011). Notably, the microbiota of Caesarean-

delivered newborns have a low abundance of Bifidobacteria (Biasucci et al., 2010), bacteria that 

has been associated with reduced risk for allergic disease (Björkstén, Sepp, Julge, Voor, & 

Mikelsaar, 2001; Kuitunen, Kukkonen, & Savilahti, 2012) and excessive weight gain (Dogra et 

al., 2015; Kalliomäki, Collado, Salminen, & Isolauri, 2008), and the infant’s microbiome may 

not be colonized by Bifidobacteria until a few months after birth (Biasucci, Benenati, Morelli, 

Bessi, & Boehm, 2008).  

Antibiotic treatment, too, can disturb intestinal microflora with effects lasting years 

(Jakobsson et al., 2010; Jernberg, Löfmark, Edlund, & Jansson, 2007). Antenatal antibiotic 

treatment has been shown to lower colonization of Lactobacillus and Bifidobacteria in the 

human neonate gut (Fouhy et al., 2012). Further, infants born by Caesarean and are more likely 

to be treated with antibiotics around the time of birth than infants delivered vaginally, and thus 

antibiotics may be the root cause of some associations found between Caesarean section and 

changes in the microbiome. 

Infant feeding has been suggested to be the primary factor in the development of the 

infant gut microbiome (Stewart et al., 2018). Various components of breastmilk, including 

antibodies, cytokines, lactoferrin, lysosomes, and oligosaccharides are involved in shaping 

microbial communities (Bertelsen, Jensen, & Ringel-Kulka, 2016), and several studies have 



 
 43 

found that there are distinct differences in infant gut microbiota based on feeding. Generally, 

breastfed infants have higher levels of Bifidobacterium species (Stewart et al., 2018) and have 

higher levels of probiotic taxa including L. johnsonii and L. gasseri, L. paracasei and L. casei, 

and B. longum (Bäckhed et al., 2015). Formula fed infants have higher levels of Clostridium 

difficile, Granulicatella adiacens, Citrobacter spp., Enterobacter cloacae, and Bilophila 

wadsworthia (Bäckhed et al., 2015). Further, the cessation of breastfeeding shifts the infant gut 

composition to a more adult-like state, with a higher abundance of the phylum Firmicutes 

(Stewart et al., 2018) as well as Bacteroides, Bilophila, Roseburia, Clostridium, and 

Anaerostipes (Bäckhed et al., 2015). 

 

3.8 Stress and the Infant Microbiome 

It has been known for some time that stress and consequent HPA axis activity can change 

the composition of gut microbiota throughout the life course and that stress early in life can pose 

long-term consequences on the composition of gut microbiota (Cryan & Dinan, 2012). 

Researchers hypothesize that stress activates the HPA axis and sympathetic system, increasing 

gut permeability and thus increasing the transfer of bacteria and bacterial antigens through the 

epithelial barrier (Cong, Henderson, Graf, McGrath, & Gregory, 2015). This could then activate 

a mucosal immune response that ultimately shifts the composition of the microbiome (Cong et 

al., 2015). 

Research has shown that stress in the early postnatal period can alter the microbial 

composition of the infant gut (O’Mahony et al., 2009), and researchers are now considering that 

prenatal experience may also shape an individual’s developing gut microbiome. Though this is a 
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new field of study, some research has shown that prenatal stress, the maternal gut microbiome, 

and the infant gut microbiome are all connected.  

Studies have found that maternal stress during pregnancy influences maternal vaginal 

microbiota in animal models (Jašarević, Howard, Misic, Beiting, & Bale, 2017; Jašarević, 

Howerton, Howard, & Bale, 2015). In humans, maternal stress has been found to increase the 

risk of both bacterial (Culhane et al., 2001; Nansel et al., 2006) and fungal (Ehrström, Kornfeld, 

Thuresson, & Rylander, 2005) vaginosis, which may alter vaginal microbiota, and women with 

more adverse childhood experiences have been shown to have a differential abundance of some 

taxa (Hantsoo et al., 2019). Table 3.4 summarizes studies that have investigated the effects of 

stress on the maternal vaginal or gut microbiome. Since maternal microbiota are transferred to 

infant during parturition, stress-related perturbations in the maternal microbiome may be 

transferred to the infant, which could have long-term consequences on health (Rakers et al., 

2017).  

In fact, a few recent studies have found that maternal stress during pregnancy shapes the 

infant gut microbiome. Table 3.5 summarizes the studies that have examined perinatal stress and 

the development of the infant gut microbiome in animal and human models. In humans, one 

study found that high maternal stress, measured both by reported stress and by salivary cortisol, 

was strongly associated with infant microbiota composition at 16 weeks after birth (Zijlmans, 

Korpela, Riksen-Walraven, de Vos, & de Weerth, 2015). In this study, infants of stressed 

mothers had lower abundances of Lactobacillus, which exhibits anti-inflammatory properties and 

protects the body from pathogens (Martín et al., 2013), and Bifidobacteria, which has been 

associated with reduced risk for allergic disease (Björkstén et al., 2001), and higher abundances 

of Proteobacterial groups known to contain pathogens (Zijlmans, Korpela, et al., 2015). Overall, 



 
 45 

the colonization pattern of infants of stressed mothers was associated with more reported infant 

gastrointestinal symptoms and allergic reactions (Zijlmans, Korpela, et al., 2015). Currently, this 

is the only study that has reported outcomes of prenatal maternal stress on infant gut microbiota 

in humans.  

Though there are few studies that have examined this relationship in humans, similar 

results have been found in animal models (Walker et al., 2017), where offspring of monkeys 

stressed during pregnancy had significantly lower abundance of Bifidobacteria and Lactobacillus 

at 2 days post-birth (Bailey, Lubach, & Coe, 2004) and offspring of mice stressed during 

pregnancy had a significantly lower abundance of Lactobacillus (Jašarević et al., 2015). In the 

latter study, the abundance of Lactobacillus in the infant gut was positively associated with 

maternal vaginal Lactobacillus.  

While evidence for this pathway is limited, together these data support the recent 

hypothesis that maternal stress during pregnancy shapes the composition of maternal vaginal 

microbiota, which is transferred to the infant. The evidence also suggests that infants born to 

stressed mothers may have a composition of microbiota with a lower abundance of protective 

bacteria and a higher abundance of harmful bacteria. This initial colonization may permanently 

alter the infant’s neurodevelopment through changes to the synthesis of neuroinflammatory 

cytokines, neuromodulators, and neurotransmitters, leaving the individual more susceptible to 

neuropsychiatric disease later in life (Diaz Heijtz, 2016; Jašarević et al., 2015). Further, changes 

to an individual’s foundational gut microbiome may increase risk of metabolic disease, 

autoimmune disease and allergy, and intestinal inflammation (Cho & Norman, 2013; Diaz 

Heijtz, 2016; Goulet, 2015).  
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3.9 Summary 

In this biological model, the early development of the infant HPA axis could be 

influenced by stress and cortisol in mothers, placental HSD11B2 levels and the subsequent 

transfer of cortisol from mother to fetus, the postnatal environment, and microbiota. Studies 

addressing how these mechanisms function together are scarce. Further, many studies on 

maternal stress and offspring HPA axis development have relied on either maternal self-report 

and scales of stress or on physiological markers to measure maternal stress, but few have 

incorporated both measures (O’Connor et al., 2012). This research uses measures of both 

psychosocial and physiological stress to examine how these mechanisms work together to shape 

offspring HPA axis and gut microbiome development. Specifically, the project will analyze the 

role of perinatal maternal stress, the role of placental HSD11B2 expression, and the role of the 

infant gut microbiome to assess early infant development, which has long-term effects on health 

and well-being. 
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Table 3.1 Summary of studies investigating maternal psychosocial stress and maternal salivary cortisol in peripartum women 

Study Sample size Psychosocial stress measure  Results 
PRENATAL    
(van den Heuvel, van 
Assen, Glover, Claes, & 
Van den Bergh, 2018) 

170 Anxiety (SCL-90) 
Depression 

Significant relationship between high anxiety and low cortisol level at 
awakening 

(Gilles et al., 2018) 405  Prenatal maternal stress was associated with altered diurnal cortisol 
pattern (flattened cortisol decline and higher evening cortisol) in 
moms 

(Deligiannidis et al., 
2016) 

44 Anxiety (STAI-S) 
Depression (EPDS) 

No significant relationship between mood disorder and cortisol 

(Simon et al., 2016) 30 Stress Higher levels of stress were associated with a smaller CAR 
(Kane, Dunkel 
Schetter, Glynn, 
Hobel, & Sandman, 
2014) 

448 Anxiety Higher mean levels of anxiety predicted steeper increases in cortisol 
after about 30 weeks of gestation.  

(O’Connor et al., 2014) 101 Mood There was a modest association between depression and elevated 
cortisol (measured by low morning level and diminished diurnal 
decline). Associations with anxiety and trauma were not significant.  

(Field, Diego, Delgado, 
& Medina, 2013) 

92 Depression 
Anxiety 

Both interventions (yoga and social support) decreased depression 
and anxiety and cortisol immediately after intervention, but cortisol 
rose later 

(Peer et al., 2013) 57 Mood,  
Stressful life events,  
Social support (MSPSS) 

Women with high depressive symptoms had higher evening cortisol 
levels than those with low depressive symptoms. No significant 
difference for CAR. 

(Voegtline et al., 2013) 112 Psychological measures Women with more depressive symptoms between 30-32 weeks had 
higher cortisol levels than controls  

(Giesbrecht, Campbell, 
Letourneau, Kooistra, 
& Kaplan, 2012) 

83 Mood Negative mood is associated with CAR 

(Richter et al., 2012) 61 Subclinical depressive 
pathology (M-CIDI) 

Intervention subjects had decreased CAR after 4-8 sessions of a 
manualized cognitive-behavioral group program for pregnant 
women with sub-clinically high stress, depression, and/or anxiety 
symptoms 

(Tsubouchi et al., 
2011) 

69 Depression Women with chronic stress had lower cortisol levels than controls in 
2nd and 3rd trimesters, but not the 1st trimester 
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(Cheng & Pickler, 
2010) 

46 Stress 
Happiness 
Depression 

No significant relationship between depression and cortisol 

(Parcells, 2010) 59 Depression 
Anxiety 
Stress 

No association between SCID diagnosis and cortisol, but cortisol 
significantly differed between women with BDII-II scores greater 
than 12 and less than 12 

(Pluess, Bolten, Pirke, 
& Hellhammer, 2010) 

66 Personality,  
Distress 

High anxiety was associated with low baseline cortisol awakening 
levels in early pregnancy   

(Harville, Savitz, Dole, 
Herring, & Thorp, 
2009) 

1587 Stress (PSS),  
Anxiety (STAI) 
Coping style 
Life events 
Social support (Social Support 
Survey) 
Pregnancy-specific anxiety 

No significant relationship between psychological measures and 
cortisol at r > 0.15 

(Taylor, Glover, Marks, 
& Kammerer, 2009) 

51 total. 
21 depressed,  

30 non-depressed 

Depression Depressed women had a reduced morning CAR compared to 
controls, R2 = 0.34 

(Evans, Myers, & 
Monk, 2008) 

182 Depression (CES-D, PES) Comorbid depression and anxiety were associated with higher 
cortisol (at baseline, anticipation of task, and after task), but 
depressed and anxious cohorts did not differ from the control 

(Kivlighan, DiPietro, 
Costigan, & 
Laudenslager, 2008) 

98 Anxiety (STAI) Higher trait anxiety was associated with a flatter afternoon decline 
for all mothers, and in primiparas, steeper morning declines were 
associated with lower infant birth weight 

(Davis et al., 2007) 247 Depression No significant relationship between depression and cortisol 
(Nierop, Bratsikas, 
Zimmermann, & 
Ehlert, 2006) 

57 Depressive symptoms Greater increase in cortisol levels for group likely to develop 
depression  

(Harris et al., 1996) 130 Depression Depressed women had lower evening cortisol (p < 0.05) 
(Harris et al., 1994) 130 Depression No significant relationship between depression and cortisol 
POSTPARTUM    
(De Rezende et al., 
2016) 

104 Depression (SCID, HDRS, EPDS) Depressed women had significantly lower cortisol at awakening and 
half an hour and 3 hours after awakening. 

(Iliadis et al., 2015) 365 Depressive symptoms (EPDS) Women with an EPDS score greater than 10 had higher evening 
cortisol at 6 weeks postpartum  
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(Shimizu, Nishiumi, 
Okumura, & 
Watanabe, 2015) 

65 Depression (EPDS) 
Health (GHQ) 

No significant relationship between mood and cortisol 

(Groer & Morgan, 
2007)  

200 
(25 depressed,  

175 non-depressed) 

Depression Depressed women had lower salivary cortisol levels than the control 
group 

(Ehlert, Patalla, 
Kirschbaum, 
Piedmont, & 
Hellhammer, 1990) 

70 Postpartum blues Women with postpartum blues had higher cortisol levels in the 
mornings on days when they had symptoms 

(Harris et al., 1989) 147 Depression No significant relationship between mood disorders and cortisol 
(Feksi, Harris, Walker, 
Riad-Fahmy, & 
Newcombe, 1984) 

40 Maternity blues No significant relationship between mood and cortisol 

This table was adapted from the following publications: (Seth, Lewis, & Galbally, 2016; Szpunar & Parry, 2018)  
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Table 3.2 Summary of studies investigating prenatal stress and offspring HPA-axis functioning through salivary cortisol in humans, 
organized by infant age at assessment 

Study Sample 
size 

(dyads) 

Prenatal stress measure Maternal endocrine 
measure 

Offspring age 
at assessment 

Type of stressor if 
cortisol reactivity  

Offspring outcome & Results 

(Davis et al., 2011) 116 Maternal stress, anxiety 
and depression at 5 
points across gestation 
(15, 19, 25, 31, 36+ 
weeks gestational age) 

Prenatal plasma 
cortisol; 
Maternal anxiety, 
depression and stress 
scores not associated 
with maternal cortisol 
at any of the five 
prenatal assessments  

24 hours Heel-prick Salivary cortisol;↑cortisol 
response in infants whose 
mothers have elevated cortisol 
concentrations in late second 
and third trimesters; no 
association between maternal 
stress, anxiety, or depression 
measures and infant cortisol 
response 

(Stroud et al., 
2016) 

153 Prenatal depression, 
Pre-conception 
depression 

None 1 month NICU Network 
Neurobehavioral 
Scale (NNNS) 

Daughters of mothers with 
prenatal MDD had 51% higher 
baseline cortisol and 64% 
higher cortisol stress reactivity 
than controls.  

(Tollenaar et al., 
2011) 

173 General and pregnancy 
related feelings of 
stress and anxiety 
during last trimester 

Salivary cortisol at 37 
weeks; no association 
between stress and 
anxiety and cortisol 

5 weeks, 
8 weeks, 
5 months, 
12 months 

Bathing session; 
vaccination; still-
face procedure; 
maternal 
separation 

Salivary cortisol; ↑cortisol in 
response to bathing in prenatal 
anxiety group; ↓ cortisol 
response to vaccination and 
maternal separation in prenatal 
anxiety group; maternal cortisol 
did not predict infant stress 
reactivity 

(Thayer & Kuzawa, 
2014) 

55 SES  Salivary cortisol at 34-
36 weeks gestation; 
↑evening cortisol in 
women with greater 
material deprivation 

6 weeks Vaccination Salivary cortisol; ↑cortisol 
response for infants of women 
with greater material 
deprivation 

(Thayer & Kuzawa, 
2015) 

55 Discrimination/ 
prenatal stress at 34-36 
weeks gestation  

Salivary cortisol at 34-
36 weeks gestation; 
↑evening cortisol in 

6 weeks Vaccination  Salivary cortisol; ↑cortisol 
response for infants of women 
who report discrimination 
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women who experience 
greater discrimination 

(Thomas, 
Letourneau, 
Campbell, & 
Giesbrecht, 2018) 

243 Adverse Childhood 
Experiences (ACEs),  
Perceived Social 
Support (PSS) 

Salivary cortisol at 6-22 
weeks gestation and 
27-37 weeks gestation 

5-10 months Laboratory 
stressor 

Salivary cortisol; Prenatal 
maternal HPA axis function 
mediated the effects of 
maternal ACEs on infant HPA 
axis reactivity. Prenatal social 
support moderated the 
relationship between ACEs and 
maternal HPA axis regulation 
during pregnancy. Postnatal 
social support moderated the 
relationship between maternal 
HPA axis regulation and infant 
cortisol reactivity.  

(Brennan et al., 
2008) 

189 Peri-partum depressive 
symptoms 

 6 months Noise burst and 
arm restraint 

Salivary cortisol; ↑cortisol 
response in maternal 
depression group 

(Urizar & Muñoz, 
2011) 

86 Maternal mood 
screener  
(CES-D) 

Salivary cortisol at 6 
and 18 months 
postpartum 

6 and 18 
months 

n/a Intervention: Prenatal cognitive 
behavioral stress management 
(CBSM) and comparison group. 
Infants of women in the CBSM 
group had lower cortisol levels 
than infants in the control 
group 

(Grant et al., 2009)  88 Maternal anxiety last 6 
months of pregnancy 

 7 months Still-face 
procedure 

Salivary cortisol; ↑cortisol 
response in maternal anxiety 
group 

(Levendosky et al., 
2016) 

182 Intimate partner 
violence (IPV) 

 1 year Laboratory 
stressor 

Prenatal, but not postnatal IPV 
was associated with infant 
cortisol reactivity (reactors vs. 
non-reactors)  

(Yehuda et al., 
2005) 

38 PTSD symptoms 
resulting from 9/11 
exposure in pregnancy 

Salivary cortisol when 
baby is 1 year; 
↓cortisol in mothers 
with PTSD 

1 year n/a Salivary cortisol; ↓ at waking 
and bedtime in maternal PTSD 
group 
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(O’Connor et al., 
2012)  

125 Prospective longitudinal 
study. No psychosocial 

Amniotic fluid at 17.2 
weeks gestation 
(average) 

17 months Strange 
Separation: 
Separation-
reunion stress 

Salivary cortisol; ↑pre-stress 
cortisol and blunted response 
to stress exposure in infants 
who were exposed to higher 
levels of cortisol in utero 

(De Bruijn, Van 
Bakel, Wijnen, Pop, 
& Van Baar, 2009) 

103 Anxiety > 1 SD above 
mean at 12, 24, or 36 
weeks gestation 

 3-3.5 years Plastic barrier task Salivary cortisol; higher baseline 
in prenatal stress group in girls 
only; no differences in reactivity 

(Gutteling et al., 
2004)  

24 Daily hassles and fear of 
handicapped child at 16 
weeks gestation 

 3-6 years Vaccination Salivary cortisol;↑cortisol 
response in maternal stress 
group 

(Laurent et al., 
2013) 

192 Beck Depression 
Inventory for prenatal 
birth mother and 
postpartum adoptive 
mother and father 

 4.5 years n/a Salivary cortisol morning and 
evening; Prenatal maternal 
depression symptoms were 
associated with lower child 
cortisol (main effect), and 
adoptive parent postpartum 
depression symptoms provided 
interaction effects. 

(Gutteling et al., 
2005)  

29 Fear of handicapped 
child at 16 weeks 
gestation 

 5 years Response to first 
day of school 

Salivary cortisol;↑cortisol level 
on school days and steeper 
diurnal slope on school day in 
maternal stress group 

(O’Connor et al., 
2005) 

74 Anxiety at 18 and 32 
weeks gestation 

 10-11 years n/a Salivary cortisol;↑CAR among 
group with mothers with high 
anxiety at 32 weeks gestation 

(Van Den Bergh, 
Van Calster, Smits, 
Van Huffel, & 
Lagae, 2008) 

58 Anxiety at three points 
in gestation 

 14-15 years n/a Salivary cortisol; flattened 
diurnal rhythm associated with 
↑anxiety in early gestation 

(Huizink et al., 
2008)  

556 Exposure to Chernobyl 
during pregnancy 

 14 years n/a Salivary cortisol;↑cortisol at 
mid-day only in children 
exposed during second 
trimester in pregnancy 

(O’Donnell et al., 
2013)  

889 Anxiety and depression 
at 18 and 32 weeks 
gestation 

 15 years n/a Salivary cortisol; ↓CAR and 
flatter diurnal cortisol slope in 
maternal anxiety and 
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depression group at both 18 
and 32 weeks 

(Entringer, Kumsta, 
Hellhammer, 
Wadhwa, & Wüst, 
2009) 

61 Negative life events in 
pregnancy 

 25 years TSST Salivary cortisol; Pre-TSST 
cortisol concentrations ↓ in 
prenatal stress group but 
cortisol response to TSST↑; no 
differences in diurnal cortisol 
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Table 3.3 Summary of studies investigating prenatal maternal stress, HSD11B2, and infant outcomes, animal and human models 

Authors Sample 
size 

Stress measure Biological stress 
measure 

HSD11B2 Assay Results 

ANIMAL MODELS (RATS) 
(Peña et al., 2012) 12 Chronic restraint None DNA methylation, 

mRNA expression 
Prenatal stress associated with decrease in placental 
HSD11B2 mRNA, and an increase DNA methylation at 
specific CpG sites within the HSD11B2 gene promoter 

(Lucassen et al., 2009)  Exposure to an 
unfamiliar lactating 
resident & restraint 

None Activity Prenatal stress significantly increased placental 
HSD11B2 activity in low anxiety-related behavior rats, 
but not high anxiety-related behavior rats (selectively 
bred) 

(Mairesse et al., 2007) 20 Chronic restraint None mRNA expression, 
Activity 

Prenatal stress was associated with reduced expression 
and activity of placental HSD11B2  

(Welberg et al., 2005) 20 Restraint for chronic, 
anesthesia for acute 

None Activity Acute stress up-regulates HSD11B2 activity by 160%, 
chronic stress did not alter HSD11B2 activity, but it 
diminished the capacity to up-regulate placental 
HSD11B2 by 90%. Suggests up-regulation in the face of 
an acute stressor but that chronic stress may diminish 
protection 

HUMAN MODELS      
(Capron et al., 2018) 83 Anxiety (STAI), 

Depression (EPDS),  
Life events (LEQ) 

None mRNA expression Prenatal anxiety and depression were not associated 
with changes in expression, but prenatal life events 
were associated with downregulation of HSD11B2, but 
only in Caucasians 

(Zhang et al., 2018) 153 Depression (EPDS) None mRNA expression Gene expression was not associated with prenatal or 
postnatal depression, but there was a significant 
interaction between depression and placental HSD11B2 
expression on infant negative affectivity 

(Togher, Treacy, 
O’Keeffe, & Kenny, 
2017) 

121 Stress (PSS),  
Anxiety (STAI),  
Depression (EPDS) 

None mRNA expression High maternal cumulative distress (composite of scores) 
was associated with lower expression of placental 
HSD11B2 mRNA 

(Monk et al., 2016) 61 Mood,  
Stress (PSS) 

Maternal 
salivary cortisol 

DNA methylation High PSS, but not cortisol, was associated more CpG 
methylation of HSD11B2 

(Stroud et al., 2016)  153 Prenatal MDD, 
preconception MDD 

Infant salivary 
cortisol 

DNA methylation HSD11B2 methylation moderated MDD and baseline 
infant cortisol. 1% methylation decreases were 
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response at one 
month 

associated with 9% increased baseline cortisol in infants 
of prenatal MDD moms. 

(Reynolds et al., 2015) 56 Depression (CES-D) None mRNA expression No association between depressive symptoms and 
HSD11B2 expression 

(Seth et al., 2015) 33 Anxiety (STAI), 
Depression (EPDS) 

None mRNA expression Results: negative correlations between HSD11B2 
expression and both the EPDS and STAI 

(Ghaemmaghami, 
Dainese, La Marca, 
Zimmermann, & Ehlert, 
2014) 

34 Acute stress None Activity Amniocentesis (which is associated with increased 
anxiety) is associated with increased placental HSD11B2 
activity 

(Appleton et al., 2013) 444 Socioeconomic 
adversity 

None DNA methylation Infants whose mothers have higher socioeconomic 
adversity have less methylation on the promoter region 
of the placental HSD11B2 gene, particularly for males 

(Conradt et al., 2013) 482 Anxiety, 
Depression (medical 
records) 

None DNA methylation Prenatal anxiety, but not depression, was associated 
with greater methylation of HSD11B2 CpG4 

(O’Donnell et al., 2012) 56 Anxiety (STAI), 
Depression (EPDS) 

None mRNA expression High prenatal Trait anxiety was negatively associated 
with placental HSD11B2 mRNA expression. No sex 
differentiation. High State anxiety were also significant. 
Results were weaker for depression (p=0.13). 
Preliminary analysis on subset suggests parallel for 
enzyme activity.  

(Ponder et al., 2011) 164 Depression,  
Anxiety (self-report) 

None mRNA expression Modest elevation in HSD11B2 mRNA expression in 
depression/anxiety group, but not significant  
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Table 3.4 Summary of studies on stress and maternal vaginal or gut microbiome 

 

Authors Sample size Stress exposure Biological 
stress 
measure 

Results 

ANIMAL MODELS     
(Gur et al., 2017) 15 mice Chronic prenatal stress IL-1b Beta diversity of stool microbiome sample between stressed-

exposed and non-stress-exposed differed significantly on PCoA 
plots.  

(Jašarević et al., 2017) 30 breeding pairs 
of mice 

Chronic prenatal stress None In maternal stool microbiome: Within the Bacteroidetes 
phylum: Stressed mice had more Rikenellaceae and 
Odoribacter, less Bacteroides. Stressed mice also had higher 
relative abundance of Mucispirillum.  
In maternal vaginal microbiome: Stressed mice had lower 
relative abundance of Firmicutes, Bacteroidetes, and 
Lactobacillus and a higher relative abundance of 
Proteobacteria (particularly the genus Helicobacter) 

(Jašarević et al., 2015) 44 mice Chronic prenatal stress None Vaginal lactobacillus abundance was lower in dams exposed to 
stress. Lactobacillus abundance was also lower in the gut 
microbiome of offspring of stressed dams 

HUMAN MODELS     
(Hantsoo et al., 2019) 48 pregnant 

women 
Adverse Childhood 
Experiences (ACE) 
Questionnaire,  
Trier Social Stress Test 

IL-6,  IL-1b, 
hsCRP, 
TNF-a, 
cortisol 

Women reporting two or more ACEs had a larger abundance of 
Prevotella in gut than women with low ACEs.  

(Paul, Boutain, 
Manhart, & Hitti, 2008) 

400 women Stressful life events None Stressful life events are associated with bacterial vaginosis 

(Nansel et al., 2006) 3614 non-pregnant 
women 

Perceived Stress Scale None Psychosocial stress is associated with an increase in bacterial 
vaginosis 

(Ehrström et al., 2005) 70 (35 with 
vulvovaginal 
candida, 35 

without) 

Maternal salivary cortisol Maternal 
salivary 
cortisol 

Morning salivary cortisol rise is blunted in women with 
vulvovaginal candida, suggesting that chronic stress may impair 
immunity and have effects on the vaginal environment 

(Culhane et al., 2001) 454 pregnant 
women at 14 

weeks gestation 

Perceived Stress Scale None Women experiencing moderate and high stress were 
statistically more likely to have bacterial vaginosis 
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Table 3.5 Summary of studies on perinatal stress and infant gut microbiome 

Authors Sample size Stress exposure Biological stress 
measure 

Results 

ANIMAL MODELS     
(Gur et al., 2017) 15 mice Chronic prenatal 

stress 
IL-1b On the phylum level, offspring of stressed mice has higher 

relative abundance of Bacteroidetes and Firmicutes. On the 
family level, Bifidobacteriaceae, Rikenellaceae, and S24-7 were 
significantly higher in the offspring of stressed mice. 

(Jašarević et al., 2017) 30 breeding pairs 
of mice 

Chronic prenatal 
stress 

None Pups who were stress-exposed in utero had lower relative 
abundance of Lactobacillus and Streptococcus  

(Golubeva et al., 2015) 11 rats Restraint stress  Male offspring were assessed at four months of age. Offspring 
of stressed mothers had a lower abundance of Lactobacillus but 
a higher abundance of Oscillibacter, Anaerotruncus, and 
Peptococcus. 

(Jašarević et al., 2015) 44 mice Chronic prenatal 
stress 

None Vaginal Lactobacillus abundance was lower in dams exposed to 
stress. Lactobacillus abundance was also lower in the gut 
microbiome of offspring of stressed dams 

(O’Mahony et al., 2009) 22 rats Maternal 
separation from 2-
12 days 
postpartum 

None DGGE profile of stressed and non-stressed pups differed 
significantly  

(Bailey et al., 2004) 24 rhesus monkeys Acoustical startle 
for pregnant 
monkeys 

Maternal 
plasma cortisol 

Prenatal stress reduced bifidobacteria and lactobacilli in infant 
stool 

(Bailey & Coe, 1999) 20 rhesus monkeys Maternal 
separation 
beginning at 6-9 
months 

Plasma cortisol Decrease in Lactobacilli in separated monkeys 3 days 
postseparation 

HUMAN MODELS     
(Zijlmans, Korpela, et 
al., 2015) 

56 Reported stress 
and salivary 
cortisol 

Maternal 
salivary cortisol 

Infants of mothers with both high reported stress and high 
cortisol concentrations had higher relative abundance of 
Proteobacterial groups and lower relative abundance of lactic 
acid bacteria (Lactobacillus, Lactoccus, Aerococcus) and 
Bifidobacteria 
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CHAPTER 4: STUDY DESIGN, DATA COLLECTION, MEASURES, AND ANALYSIS 

 
4.1 Study Aims 

This project aims to examine the mechanisms through which peripartum maternal stress 

shapes infant HPA axis development and thus subsequent risk for metabolic and neurobehavioral 

disorders later in life. This project has three specific aims:  

 

Aim 1: To identify which factors contribute to psychosocial stress in peripartum women 

in the Galápagos and to assess how these exposures both during pregnancy and in the 

postpartum shape maternal and infant HPA axis regulation 

 

Aim 2: To assess both the psychosocial and physiological relationships between maternal 

stress during pregnancy and the placental enzyme, HSD11B2, as well as the relationship 

between HSD11B2 and infant HPA axis development 

 

Aim 3: To analyze the relationships among maternal stress and HPA axis dysregulation 

during the peripartum period, infant gut microbiome composition, and infant HPA axis 

functioning 

 

In alignment with these aims, this project employs mixed methods, including semi-

structured and structured interviews; surveys for the measurement of stress, depression, social 

support, social status, infant attachment, home environment, and food security; biological 
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measurements including maternal and infant salivary cortisol for the measurement of HPA axis 

regulation, placental HSD11B2 methylation and expression, and infant stool; and anthropometry. 

Each measure is described in detail in this chapter. 

 

4.2 Recruitment and Study Sample 

The dissertation work was conducted over 12 months, from January 2018 through 

December 2018. Participants were recruited from Hospital Oskar Jandl (HOJ) and from the 

community. The study summary used for recruitment is available in APPENDIX A: . Visits with 

participants were conducted once during pregnancy and three times in the postpartum period. 

The prenatal visit was conducted at 34 – 36 weeks (Visit 1). Postpartum visits were conducted 

three days after delivery (Visit 2) (except the placental sample, which was collected at delivery), 

when the infant was one month old (Visit 3), and when the visit was two months old (Visit 4). 

For each mother-infant dyad, I collected semi-structured interviews, surveys, maternal and infant 

saliva samples, a placental sample, anthropometry, and an infant stool sample. A variety of 

validated surveys were used to measure stress, depression, social support from friends and 

family, subjective social status, maternal attachment, home environment, and food security. The 

period of observation for each mother-infant dyad was 12 – 14 weeks (34 – 36 weeks of 

pregnancy to two months postpartum). All visits were conducted in the participants’ homes, 

places of work, the hospital, or the Galápagos Science Center (GSC), according to their 

preference. Each participant had at least one visit in the home, though most had all of their visits 

in the home. Figure 4.1  provides a data collection summary, and 
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 provides a research timeline.  

 

4.3 Ethical Considerations 

All participants provided written informed consent prior to participation under 

appropriate protocols approved by the Institutional Review Boards for the University of North 

Carolina at Chapel Hill (UNC) and Universidad San Francisco de Quito (USFQ). This project 

also received approval by Ecuador’s Ministry of Public Health. Participants understood that they 

could discontinue participation at any time with no penalty. The UNC consent form can be found 

in APPENDIX B: . 

 

4.4 Semi-Structured Interviews 

Data Collection. Semi-structured interviews were utilized at 34 – 36 weeks gestation 

(Visit 1) and one month postpartum (Visit 3). In addition, the prenatal visit included a 

demographic survey that inquired about household size and composition, sociodemographics, 

employment, parity, smoking habits, medications, and other health issues. Perinatal stress and 

mental health are multidimensional concepts shaped by a variety of factors including 

socioeconomic status, ethnicity, social support, health, and discrimination (Rieger & Heaman, 

2016; Thayer & Kuzawa, 2014, 2015). Thus, the semi-structured interviews generated narratives 

of stress and everyday life as they explored issues of stress, health, discrimination, family, 

support networks, joys, and concerns. The semi-structured format leaves questions open-ended, 

so that women could provide their own insights into stressors that may not be captured with 

stress surveys (Bernard, 2006: 212). All semi-structured interviews were audio-recorded.  
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Data Analysis. Semi-structured interviews from Visits 1 and 3, the prenatal visit and the 

one month postpartum visit respectively, were audio-recorded and then translated and transcribed 

directly into English by the interviewer and a second bilingual reviewer familiar with the 

idiosyncrasies of the Ecuadorian Spanish language, according to protocol by Regmi and 

colleagues (Regmi, Naidoo, & Pilkington, 2010). Non-verbal communication was included (eg. 

“[participant laughs]”) according to protocol by McLellan and colleagues (McLellan, MacQueen, 

& Neidig, 2003). The majority of the interviews were transcribed verbatim, but local phrases 

whose verbatim translations are not meaningful were translated into their cultural equivalents. 

Pieces of audio recordings that were difficult to understand were reviewed by the scribes 

together to come to an agreement about the verbiage and meaning, according to Regmi and 

colleagues (Regmi et al., 2010). Utterances that could not be deciphered were marked 

“[inaudible].” 

Transcribed interviews were then and analyzed using the qualitative data analysis 

software package NVivo® (version 12; QSR International; Melbourne, Australia). Each 

transcript was read once and coded for emerging central themes (nodes), generating Codebook 1. 

Then all interviews were re-read and re-coded using the completed Codebook 1 as well as new, 

more refined nodes, generating Codebook 2. Finally, the concurrence of nodes was analyzed to 

generate a node hierarchy both manually and through hierarchy charts and data visualization 

tools available in NVivo®. Some nodes were found to be both independent nodes from 

Codebook 1 as well as sub-nodes of one or more nodes under certain circumstances. Thus, some 

nodes may appear twice in Codebook 2 or both in Codebook 1 and Codebook 2. The progression 

from Codebook 1 to Codebook 2 can be visualized in  
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Table 4.1. Codebooks 1 and 2 were used together to interpret data from interviews. 

 

4.5 Structured Sociodemographic Interview  

Data Collection. In addition to semi-structured interviews about themes of stress and 

depression, we also collected general information on sociodemographic and other health data, 

including those on health and pregnancy, education, geographic history, food security, 

religiosity, neighborhood, and other themes. Gestational age at delivery, mode of delivery, infant 

sex, and pre-pregnancy maternal height and weight were recorded from paperwork distributed to 

the mothers from the hospital. A survey of household assets that was developed for this 

particular setting was used to approximate relative wealth. For this, participants were asked if 

their household owned a particular item and how many. A few items were observed instead of 

asked. The survey of household assets can be found in Appendix C: Household Survey of Assets.  

 

4.6 Stress  

Data Collection. The Perceived Stress Scale (PSS) (S. Cohen, Kamarck, & Mermelstein, 

1983) was used to  assess maternal chronic stress by measuring the degree to which situations are 

perceived as unpredictable, uncontrollable, and burdensome (S. Cohen et al., 1983). The PSS is 

particularly relevant for pregnancy, since it does not operationalize symptoms that occur 

frequently in both pregnancy and during times of stress (such as sleep disturbances) to assess 

chronic stress (Nast, Bolten, Meinlschmidt, & Hellhammer, 2013). We used a Spanish version of 

this scale that has been tested for reliability, validity, and sensitivity (Remor, 2006) in Spanish-

speaking contexts. When analyzed categorically, the PSS is scored from 0 to 40, with scores of 0 



 

 63 

– 13 indicating low stress, scores of 14 – 26 indicating moderate stress, and scores 27 – 40 

indicating high stress. The PSS version used is available in Appendix C: Perceived Stress Scale. 

 

4.7 Depression  

Data Collection. Depression was measured by the Patient Health Questionnaire-8 (PHQ-

8) (Kroenke, Spitzer, & Williams, 2001). We used a Spanish version of the PHQ-8 that has been 

validated (Baader et al., 2012) and tested for reliability (Cassiani-Miranda et al., 2017) in the 

Spanish language. The PHQ-8 is scored from 0 to 24, with a higher score indicating more 

depression symptoms. When analyzed categorically, depression was defined using the CDC’s 

diagnostic cut-point for the PHQ-8, as scores greater than or equal to 10 (Kroenke et al., 

2009).The PHQ-8 version used is available in Appendix C: Patient Health Questionnaire 8. 

 

4.8 Social Support 

Data Collection. Social support was measured by Spanish versions of the Perceived 

Social Support-Family (PSS-Family) scale and the Perceived Social Support-Friends (PSS-

Friends) scale (Procidano & Heller, 1983), both of which have been previously validated in the 

Spanish language and in Latin American contexts (Espinosa, Menotti, Bravo, & Procidano, 

2011). The PSS-Family is scored from 0 to 16, and the PSS-Friends is scored from 0 to 12. The 

PSS-Family is available in Appendix C: Perceived Social Support – Family, and the PSS-Friends 

is available in Appendix C: Perceived Social Support – Friends. 
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4.9 Subjective Social Status 

Data Collection. The MacArthur Subjective Social Status (SSS) (Adler, Epel, 

Castellazzo, & Ickovics, 2000) was used to assess how participants view their place within their 

community. The MacArthur SSS has been validated in Spanish. The MacArthur SSS is available 

in Appendix C: MacArthur SSS. 

 

4.10 Maternal-Infant Attachment 

Data Collection. The Maternal Postnatal Attachment Scale (MPAS) (Condon & 

Corkindale, 1998) was used in Visit 3 and Visit 4 to assess maternal-infant attachment. The 

MPAS uses maternal dispositions toward the infant to measure maternal-infant attachment, 

which may affect maternal behavior toward the infant and thus the infant's stress (Van Bussel, 

Spitz, & Demyttenaere, 2010). The MPAS has been validated for use internationally, and during 

the summer of 2017, I held a focus group to determine any language changes that needed to be 

made for the MPAS. The MPAS is available in Appendix C: Maternal Postnatal Attachment 

Scale. 

 

4.11 Home Environment 

Data Collection. An adapted version of the Infant/Toddler Home Observation for 

Measurement of Environment (HOME) Inventory (Caldwell & Bradley 2003) was used at Visit 

3. The HOME Inventory, which has been validated for use internationally, is designed to 

measure the stimulation and support available to a child in the home environment. The scale was 

adapted so that only questions relevant for infants under ten weeks of age will be used. The 

HOME Inventory relies on investigator observation to answer questions such as “Parent 
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spontaneously vocalizes to the child at least twice” and “Parent keeps child in visual range, looks 

at often” to discern aspects of the home environment are relevant to physical and psychosocial 

well-being. Data for the HOME that could not be observed, such as, "Father provides some care 

daily” or “Family visits relatives or receives visits once a month or so,” were asked verbally. A 

full list of the HOME Inventory questions can be found in Appendix C: Infant/Toddler Home 

Observation for Measurement of Environment.  

 

4.12 Food Security 

Data Collection. Food security was assessed using the Latin American and Caribbean 

Food Security Scale (ELCSA) (Comité Científico de la ELCSA, 2012), with higher scores 

indicating a higher level of food insecurity. On this scale, a score of 0 indicates a food secure 

household, scores from 1 – 5 indicate mild household food insecurity, scores from 6 – 10 

indicate moderate household food insecurity, and scores of 11 – 15 indicate severe household 

food insecurity (Comité Científico de la ELCSA, 2012). 

 

4.13 Salivary Cortisol 

Data Collection. Maternal cortisol was assessed through saliva samples. Salimetrics 

guides were used for maternal saliva collection and storage protocols (Salimetrics & SalivaBio, 

2015). Maternal saliva samples were collected the day after Visits 1, 3, and 4. On each of these 

days, women provided four samples: one immediately upon awakening, one 30 minutes after 

awakening, one 60 minutes after awakening, and one prior to sleep. While previous research has 

often required two consecutive days of saliva collection, recent literature has shown that 

awakening salivary measurements over just one day provide reliable estimates of morning 



 

 66 

cortisol in pregnant women (Vlenterie, Roeleveld, & van Gelder, 2016). Participants were 

instructed not to eat, drink, or brush their teeth in the 30 minutes prior to collecting samples and 

to record start and stop times for saliva collection. Participants were asked to store the samples in 

their own freezers until a study team member could retrieve them the next day. Samples were 

then transported to the GSC where they were frozen at -20° C until analysis. The instructions for 

maternal saliva collection are available in APPENDIX D: . 

Infant salivary cortisol samples were collected when the infant was three days old (Visit 

2) and two months old (Visit 4). Because the age that infants establish a diurnal rhythm in 

cortisol is up for debate (De Weerth, Zijl, & Buitelaar, 2003), many studies of HPA axis function 

in infancy have measured cortisol dysregulation through basal cortisol or stress reactivity, that is, 

in response to a stressor (O’Connor et al., 2012). At three days postpartum, basal cortisol 

samples were collected to capture variation due to the prenatal environment with little postnatal 

influence. At two months postpartum, infant basal cortisol and cortisol reactivity were measured. 

Cortisol reactivity was measured as the difference between salivary cortisol levels before and 20-

25 minutes after a stressor per a previously published infant stress reactivity protocol (Tollenaar 

et al., 2011). Infant basal cortisol is determined from the first of these two samples. In order to 

apply a stressor to the infant to induce a stress reactivity, the research team placed the nude 

(except the diaper) infant on a metal tray for 60 seconds to mimic an infant’s typical discontented 

response to being weighed in the hospital. The method for this stressor was developed by the 

research team and the nurses at HOJ in order to be non-invasive and culturally appropriate. All 

infant saliva samples were collected using Salimetrics Infant Swabs and placed into Salimetrics 

Swab Storage tubes and frozen at -20° C at the GSC until analysis. The instructions for infant 

saliva collection are available in APPENDIX E: . 
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Data Analysis. Saliva samples were thawed and assayed in duplicate for salivary cortisol 

using commercially available ELISA kits (Salimetrics, State College, PA) according to 

Salimetrics protocol (Salimetrics, 2016) at the GSC. Samples were run on a BioTek ELx808TM 

Absorbance Microplate Reader (BioTek Instruments, Inc, Winooski, VT). Difficulties in infant 

saliva collection limited the volume of saliva collected for infants, particularly for very young 

infants. Thus, we only had enough saliva for analysis from 18 infants from Visit 2 (3 days 

postpartum) and 25 infants at Visit 4 (two months postpartum). Inter-assay variability was 8.5%, 

and intra-assay variability was 7.11%. 

 

4.14 HPA Axis Dysregulation 

Maternal and infant HPA axis functioning were measured through salivary cortisol. 

Continuous, log-transformed cortisol concentrations were used to build HPA axis dysregulation 

variables for models.   

Maternal HPA axis regulation was assessed through salivary cortisol at three timepoints: 

34 – 36 weeks of pregnancy, one month postpartum, and two months postpartum. Though the 

level of cortisol rises throughout pregnancy, it maintains its diurnal rhythm, allowing circadian 

regulation in mothers to be assessed throughout pregnancy (Christian, 2012). Cortisol 

dysregulation in mothers was measured in four ways: elevated morning cortisol, elevated 

evening cortisol, a blunted cortisol awakening response at 30 minutes (CAR), and a poor daily 

cortisol decline. A blunted CAR was defined as a small difference in cortisol levels between 

waking and 30 minutes post-waking, and poor daily cortisol decline was defined as a large 

difference between evening cortisol and waking cortisol levels. 
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Cortisol dysregulation in infants was measured through elevated basal cortisol at three 

days old and two months old and a blunted or exaggerated cortisol reactivity at two months old. 

High basal cortisol (Stroud et al., 2016) and blunted (Tollenaar et al., 2011) and exaggerated 

(Davis et al., 2011) cortisol reactivity have been cited as evidence of infant cortisol 

dysregulation. The basal cortisol measure at three days is meant to serve as a proxy for HPA axis 

development in response to prenatal maternal stress alone in order to improve our understanding 

of how the postpartum period can then attenuate this prenatal effect. The measurements at two 

months are meant to reflect HPA axis development as a consequence of both prenatal and 

postpartum programming.   

Infant HPA axis dysregulation serves as our outcome in some analyses, since it has been 

associated with metabolic (Reynolds et al., 2001) and neurobehavioral (Davis et al., 2011; 

O’Connor et al., 2002; O’Donnell et al., 2013) disorders in offspring and is thought to mediate 

the effects of the environment on child development (Thomas, Letourneau, Bryce, Campbell, & 

Giesbrecht, 2017). 

 

4.15 Placental HSD11B2 

Data Collection. Placental samples were collected in collaboration with doctors and 

nurses at Hospital Oskar Jandl. Healthy, intact placentas were collected immediately and 

dissected within 60 minutes of birth. Umbilical cords were removed, and placentas were weighed 

and measured. Maternal decidua was removed, and tissue samples were taken from four 

sampling sites on the fetal side of the placenta. The four sampling sites were selected in each of 

the four quadrants of the placenta that were at least 2 centimeters (cm) from the umbilical cord 

insertion site and at least 3 cm from the placental edge, following protocol by Burton and 
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colleagues (Burton et al., 2014). Samples were cut from each sampling site and pooled into one 

storage tube to control for intra-placental variation. The samples were stored in RNAlater (Life 

Technologies, Grand Island, NY) and stored at -20°C at the hospital. Samples were then sent on 

ice to UNC-Chapel Hill and Duke University for analysis. During sample collection, 

collaborators as HOJ recorded important data about the birth and placenta, including placental 

length, height, and weight, time of birth, time of sample collection, infant birth weight, any 

medications received during the birth, duration of labor, and other observations. The placental 

collection instructions and data sheet is available in APPENDIX F: . 

Placental HSD11B2 expression. The analysis of HSD11B2 expression was conducted at 

the Microbiome Core Facility at the University of North Carolina at Chapel Hill. Total RNA was 

isolated using Qiagen RNeasy Extraction Kit, with the addition of DNaseA digest per the 

manufacturer’s guidelines. Total RNA was quantified and normalized to 50ng/uL prior to the 

synthesis of cDNA. 500ng total RNA was subject to cDNA synthesis via qScript cDNA 

synthesis kit. Expression of HSD11B2 was analyzed using the following primers (Capron et al., 

2018): HSD11B2 forward: CTACTCATGGACACATTCAGCT, reverse: 

TCACTGACTCTGTCTTGAAGC.  

Quantitative PCR was performed on QuantStudio Q6, using BioRad PowerSyber qPCR 

kit. The thermal cycling conditions were as follows: one cycle at 50°C for 20 sec, 95°C for 10 

minutes, followed by 40 cycles of 15 seconds at 95°C, 1 minute at 60°C. Melting curve analysis 

was carried out using the continuous method from the Q6 Software (Applied Biosystems) 

conducted at 60°C, with increments of 1°C for 15 seconds. Data analysis was carried out with 

Q6 Software (Applied Biosystems). The auto threshold and baseline options were used for the 

calculations of cycle threshold (CT) values per well.  
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Placental HSD11B2 methylation. The analysis of HSD11B2 methylation was conducted 

at the Murphy Lab at Duke University. Placental genomic DNA was extracted using the Lysing 

Matrix A from MP Biomedical with the FastPre24 for homogenization, followed by the Solid 

Tissues Protocol from Purgene. DNA samples were sodium bisulfite modified using the EZ 

DNA Methylation™ Kit (Zymo Research, Irvine, CA), and pyrosequencing was performed on 

PCR product amplified from bisulfite-modified DNA based on the region sequenced and 

displaying differential methylation in human placenta from Alikhani-Koopaei and colleagues 

(Alikhani-Koopaei et al., 2004). The extent of methylation at the HSD11B2 promoter region was 

examined with pyrosequencing using the Pyromark Pyrosequencing System (Qiagen Inc.) and 

the following forward and biotinylated reverse primers, Sequence (5’-3’) were used for 

amplification (IDT Inc., Coralville, IA): HSD11B2-F2-AAGTTTTGGAAGGAAAGGGAAGA, 

HSD11B2-R2-[btn] ACAAAACCTACCTAAAACAAAAACTA, HSD11B2-S- GGGGT 

AGAGATTTTAAGAA. 

The region analyzed contains four CpGs sites of interest (Alikhani-Koopaei et al., 2004) 

with reactions performed in duplicate. Sodium bisulfite–modified, fully methylated referent 

positive control and fully unmethylated (whole genome amplified) negative control DNA 

(Qiagen) were examined with each batch. The percent methylation at each CpG site was 

quantified using the PyroMark CpG software, version 1.0.11. (Qiagen). Methylation across each 

of the four HSD11B2 CpG sites was averaged to obtain an overall measure of methylation.  

 

4.16 Infant Stool Sample 

Data Collection. Infant stool samples were collected after Visit 4. For infant stool 

collection, mothers were given detailed oral and written instructions for the collection of the 
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stool sample, as well as a sample collection kit, including gloves, a small plastic spoon, a small 

plastic container. Mothers were asked to collect a small (roughly 400 mg) amount of stool from 

their infant’s diaper and store it in the sealed plastic container in their own freezer until it could 

be collected by the research team later that day. Stool samples were then stored frozen at the 

Galápagos Science Center until they were transported to the Microbiome Core Facility at the 

University of North Carolina at Chapel Hill (UNC) for analysis. The stool sample collection 

instructions and data sheet are available in   
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APPENDIX G: .  

DNA Isolation. Samples were transferred to a 2 mL tube containing 200 mg of ≤106 µm 

glass beads (Sigma, St. Louis, MO) and 0.3 mL of Qiagen ATL buffer (Valencia, CA), 

supplemented with 20 mg/mL lysozyme (Thermo Fisher Scientific, Grand Island, NY). The 

suspension was incubated at 37°C for 1 hour with occasional agitation. Subsequently the 

suspension was supplemented with 600IU of Qiagen proteinase K and incubated at 60°C for 1 

hour. Finally, 0.3 mL of Qiagen AL buffer was added and a final incubation at 70°C for 10 

minutes was carried out. Bead beating was then employed for 3 minutes in a Qiagen TissueLyser 

II at 30Hz. After a brief centrifugation, supernatants were aspirated and transferred to a new tube 

containing 0.3 mL of ethanol. DNA was purified using a standard on-column purification 

method with Qiagen buffers AW1 and AW2 as washing agents, and eluted in 10mM Tris (pH 

8.0).   

16S rRNA Amplicon Sequencing. 12.5 ng of total DNA were amplified using universal 

primers targeting the V4 region of the bacterial 16S rRNA gene (Caporaso et al., 2012; Kozich, 

Westcott, Baxter, Highlander, & Schloss, 2013). Primer sequences contained overhang adapters 

appended to the 5’ end of each primer for compatibility with Illumina sequencing platform. 

Master mixes contained 12.5 ng of total DNA, 0.2 µM of each primer and 2x KAPA HiFi 

HotStart ReadyMix (KAPA Biosystems, Wilmington, MA).  The thermal profile for the 

amplification of each sample had an initial denaturing step at 95°C for 3 minutes, followed by a 

cycling of denaturing of 95°C for 30 seconds, annealing at 55°C for 30 seconds and a 30 second 

extension at 72°C (25 cycles), a 5 minutes extension at 72°C and a final hold at 4°C.  Each 16S 

amplicon was purified using the AMPure XP reagent (Beckman Coulter, Indianapolis, IN). In the 

next step each sample was amplified using a limited cycle PCR program, adding Illumina 
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sequencing adapters and dual-index barcodes (index 1(i7) and index 2(i5)) (Illumina, San Diego, 

CA) to the amplicon target. The thermal profile for the amplification of each sample had an 

initial denaturing step at 95°C for 3 minutes, followed by a denaturing cycle of 95°C for 30 

seconds, annealing at 55°C for 30 seconds and a 30 second extension at 72°C (8 cycles), a 5 

minutes extension at 72°C and a final hold at 4°C.  The final libraries were again purified using 

the AMPure XP reagent (Beckman Coulter), quantified and normalized prior to pooling. The 

DNA library pool was then denatured with NaOH, diluted with hybridization buffer and heat 

denatured before loading on the MiSeq reagent cartridge (Illumina) and on the MiSeq instrument 

(Illumina). Automated cluster generation and paired–end sequencing with dual reads were 

performed according to the manufacturer’s instructions.  

Data Analysis. Sequencing output from the Illumina MiSeq platform were converted to 

fastq format and demultiplexed using Illumina Bcl2Fastq 2.18.0.12. The resulting paired-end 

reads were processed using QIIME 2 2018.11.  Index and linker primer sequences were trimmed 

using the QIIME 2 invocation of cutadapt. The resulting paired-end reads were processed with 

DADA2 through QIIME 2 including merging paired ends, quality filtering, error correction, and 

chimera detection. Amplicon sequencing units from DADA2 were assigned taxonomic 

identifiers with respect to Green Genes release 13_08. Alpha diversity with respect to: Faith PD 

whole tree, Evenness (Shannon) index, and observed species number metrics was estimated 

using QIIME 2 at a rarefaction depth of 5,000 sequences per subsample. Beta diversity estimates 

were calculated within QIIME 2 using weighted and unweighted UniFrac distances as well as 

Bray-Curtis dissimilarity between samples at a subsampling depth of 5,000. Results were 

summarized, visualized through principal coordinate analysis, and significance was estimated as 

implemented in QIIME 2. Before analysis, microbiome data were cleaned for appropriate 
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sequence length and transformed from the 16sRNA gene sequences into operational taxonomic 

units (OTUs) in QIIME 2 (Bolyen et al., 2019). 

 

4.17 Anthropometry 

Data Collection. Infant birth date, weight in grams (g), length (cm), and head 

circumference (cm) were recorded from infant health paperwork distributed to the mothers from 

the hospital. Hospital staff measured weight to the nearest gram and length and head 

circumference to the nearest centimeter. Infant length (cm), weight (kg), arm circumference 

(cm), and waist circumference (cm) and maternal weight (kg) were measured at one month 

postpartum (Visit 3) and two months postpartum (Visit 4) by study staff. Infant length was 

measured to the nearest millimeter (mm) using the Seca® 417 Mobile Pediatric Measuring Board 

(Seca®  Corporation, Hanover NH). Maternal and infant weight were recorded to the nearest 0.1 

kg on a Seca® flat scale. Infant arm and waist circumference were measured with a Seca® 

measuring tape to the nearest mm. The anthropometry measurement form is available in 

APPENDIX H: .  

Data Analysis. Infant growth data was used to calculate length-for-age, weight-for-age, 

and weight-for-length z-scores using the WHO growth standards (De Onis, 2006). 

 

4.18 Study Schedule 

A more detailed description of study visits is provided here: 

Visit 1. Visit 1 was conducted when women were 34 – 36 weeks pregnant. Visits began 

with a sociodemographic survey and the ELCSA followed by the semi-structured interview, all 

administered verbally. Participants then filled out the PSS, PHQ-8, MacArthur SSS, PSS-
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Friends, and PSS-Family on their own. Last, women were given vials and instructions for 

maternal salivary cortisol collection, which they were asked to take the next day. Maternal saliva 

samples were stored in participants’ freezers until the investigator collected the samples two days 

after Visit 1. 

Visit 2.  Visit 2 was completed in two parts. The first part was the placental sample 

collection at the hospital right after the infant’s birth. Placental sample collection was completed 

by the obstetrics and gynecology team at HOJ. The second component of this visit occurred three 

days postpartum, when the investigator visited the homes of the mother-infant dyads to collect a 

single, basal infant saliva sample. 

Visit 3. Visit 3 was conducted when infants were one month old. Visits began with the 

verbal semi-structured interview. Next, participants filled out the PSS, PHQ-8, MacArthur SSS, 

PSS-Friends, PSS-Family, and the MPAS on their own. While participants filled out the surveys, 

the investigator collected data for the abbreviated HOME measurement. Data for the HOME that 

could not be observed were asked verbally. Last, maternal weight and infant anthropometrics, 

including weight, length, arm circumference, and weight circumference were measured and 

recorded. Before leaving, the investigator provided women with the vials and instructions for 

maternal salivary cortisol collection, which they were asked to take the next day. Maternal saliva 

samples were stored in participants’ freezers until the investigator collected the samples two days 

after Visit 3. 

Visit 4. Visit 4 was conducted when infants were two months old. Visits began with the 

baseline infant salivary cortisol sample. Immediately after, infants were disrobed (with the 

exception of the diaper) and placed on the metal tray for 60 seconds to induce a stress response. 

After the 60 seconds, the investigator started a 25-minute timer. When the timer went off, the 
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investigator paused the ongoing activity to take the infant’s second salivary cortisol sample 

(needed to calculate stress reactivity), and then continued the visit. After the stressor was 

administered, the investigator conducted a brief structured interview verbally, and then 

participants filled out the PSS, PHQ-8, MacArthur SSS, PSS-Friends, PSS-Family, and the 

MPAS on their own. Maternal weight and infant anthropometrics, including weight, length, arm 

circumference, and weight circumference were measured and recorded. Before leaving, the 

investigator provided women with the vials and instructions for maternal salivary cortisol 

collection, which they were asked to take the next day. Women also received materials and 

instructions for infant stool sample collection, which they were asked to collect after the infant’s 

next bowel movement. Infant stool and maternal saliva samples were stored in participants’ 

freezers until the investigator collected the samples two days after Visit 4. 
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Table 4.1 Qualitative analysis codebooks  

Codebook 1 Codebook 2 

Anxiety Baby’s well-being Finances 
The birth Housework 

Baby’s well-being Antibiotics Growth 
Colic  

Depression   
Discrimination   

Domestic violence Verbal abuse Machismo 
Physical abuse  

The home 
Baby’s needs Housework 
Confinement/Quarantine  

Husband/Partner Support  
Machismo  

Infant feeding 
Breastfeeding Pain 
Formula Work 
Lactation group  

Family 

Distance from family My mother 
Family tension My sister 
In-laws tension Support 
My father  

Finances   
Food insecurity   

Friends Distance from friends  
No friends  

Galápagos Food insecurity  Teen pregnancy 
Isolation  

Hospital Health care  

Mainland Distance from family Health care 
Distance from friends  

Mother’s physical health Antibiotics Infection 
C-section  

Neighborhood   

Religion Church God 
Community  

Suggestions for improvement   
Work   
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Figure 4.1 Data collection summary 

 

 
  
 
 
 
 
Table 4.2 Study timeline 

Timeline (2018) Activity 
Jan. 1 – Jan. 31 Establish protocols with hospitals, train field assistants 
Feb. 1 – Dec. 10 Recruit and enroll new participants 
Feb. 1 – Dec. 10 Collect qualitative and quantitative data 
Dec. 1 – Dec. 31 Laboratory data analysis 

 
  

Recruitment

Birth / 3 days
Postpartum

2 Months 
Postpartum

34-36 Weeks
Gestation

1 Month
Postpartum

Sociodemographics Survey

Interview

Surveys:

PSS, PHQ-9, PSS friends and 
family, SSS, ELCSA

Biomarkers:

Maternal salivary cortisol

Interview

Surveys:

PSS, PHQ-9, PSS friends and 
family, SSS, MPAS, HOME

Biomarkers:

Maternal salivary cortisol

Anthropometry:

Infant length, weight, arm 
circumference, waist 
circumference

Maternal weight

Placental sample

PSS, PHQ-9, PSS friends 
and family, SSS

Biomarkers:

Infant salivary cortisol

Surveys:

PSS, PHQ-9, PSS friends and 
family, SSS, MPAS

Biomarkers:

Maternal salivary cortisol

Infant salivary cortisol & stool

Anthropometry:

Infant length, weight, arm 
circumference, waist 
circumference

Maternal weight

Visit 1 Visit 2 Visit 3 Visit 4



 

 79 

 
 
 
 

CHAPTER 5: THE FOURTH TRIMESTER MATTERS: PRENATAL AND 
POSTPARTUM SOCIAL SUPPORT PREDICT MATERNAL HPA AXIS 

DEVELOPMENT IN THE GALAPAGOS ISLANDS 
 

5.1 Introduction 

Robust evidence from epidemiological studies has shown associations between early life 

exposures to adverse environments and subsequent cardiovascular and metabolic disease as well 

as a variety of neurobehavioral disorders (Barker et al., 1989; O’Connor et al., 2002). While 

research on this phenomenon, termed the developmental origins of health and disease (DOHaD), 

originally focused on the effects of prenatal energetic and nutritional stress on infant health 

outcomes, a growing body of literature has found that maternal psychosocial distress introduces 

additional burdens that have long-term effects on fetal development, and specifically the 

hypothalamic-pituitary-adrenal axis (HPA axis) (Nyberg et al., 2012; Pike, 2005; Wells, 2010). 

Prenatal psychosocial stress has been associated with dysregulated glucocorticoid function in 

infants (Stroud et al., 2016; Thayer & Kuzawa, 2014, 2015), which is known to underlie 

metabolic (Reynolds et al., 2001) and neurobehavioral disorders in offspring even when 

controlling for adverse birth outcomes including low birth weight and gestational age (Davis et 

al., 2011; O’Connor et al., 2002; O’Donnell et al., 2013). 

The prenatal activation of the HPA axis, which regulates glucocorticoid feedback 

interactions in the mother and the fetus, has been proposed as one mechanism through which 

prenatal maternal stress shapes fetal development and subsequent long-term disease risk (Pike, 

2005; Seckl, 2008). Studies have found that prenatal stress in mothers has significant effects on 

offspring HPA axis regulation as early as infancy (Davis et al., 2011; Thayer & Kuzawa, 2014, 
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2015), into childhood (Gutteling et al., 2004, 2005), and through adolescence (O’Donnell et al., 

2013) and that HPA axis imbalances underlie increased risk for metabolic, cardiovascular, 

immune, reproductive, and cognitive pathology later in life (Lupien, McEwen, Gunnar, & Heim, 

2009; Thayer & Kuzawa, 2014). However, results from studies on the associations between 

prenatal psychosocial stress and biological measures of stress, as well as each of their effects on 

offspring development are inconsistent, suggesting that other mechanisms could play role in 

infant HPA axis development.  

Most studies on maternal stress and subsequent infant development focus on exposures to 

maternal stress during pregnancy alone, while postpartum exposures are often omitted despite 

the fact that infants retain some developmental plasticity through the first few years of life 

(Gluckman et al., 2005). Studies that examine the longitudinal effects of psychosocial exposures 

both during and after pregnancy are even more rare. Using the developmental niche (Harkness & 

Super, 1994) as a framework, we hypothesize that the postpartum maternal environment plays a 

critical role in the continued development of an infant's HPA axis. The developmental niche 

framework proposes that the household mediates the relationship between the environment and 

the child through three key components: (1) the child’s physical and social setting, (2) customs 

of childcare, and (3) the psychology of caretakers (Harkness & Super, 1994). In our analysis we 

consider this model in the justification for including maternal psychosocial distress both during 

pregnancy and in the postpartum into an analysis of infant HPA axis development. 

 The postpartum period can be a particularly stressful time for women, which may be 

detrimental to a mother's mental health and caregiving behaviors (Grajeda & Perez-Escamilla, 

2002; Rudzik et al., 2014). In turn, poor maternal mental health and patterns of care during early 

childrearing have each been found to be associated with HPA axis dysregulation in offspring 
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later in life (Essex et al., 2002; Gunnar & Donzella, 2002; Tollenaar et al., 2012; Wright, 2007). 

It is also possible that postpartum maternal distress may influence the infant directly through 

cortisol transfer during breastfeeding (Hahn-Holbrook, Le, Chung, Davis, & Glynn, 2016). One 

study found that among breastfed infants, high maternal cortisol levels were associated with 

increased fearful temperament (Glynn et al., 2007). Further, studies have found that the 

relationship between prenatal stress and infant health outcomes is moderated by mother-infant 

attachment, a marker of caregiving quality (Bergman et al., 2010). These studies suggest that the 

infant’s postnatal environment is an important component of the mechanism through which the 

young HPA axis develops, and insufficient investigation of postpartum maternal distress may 

account for the inconsistent results from studies of prenatal distress and offspring development. 

By incorporating both pregnancy and postpartum distress into a model for infant HPA axis 

development, we seek to add a critical component to the literature on DOHaD that will elucidate 

the pathways through which early environment shapes development. 

To investigate these understudied mechanisms, we use a biocultural approach first to 

qualitatively identify which factors contribute to maternal distress in the Galápagos Islands, and 

then to quantitatively assess how these factors may contribute to infant HPA axis dysregulation, 

which we assess through maternal and infant salivary cortisol. Essential to our investigation are 

the identification of salient distress exposures beyond stress and depression themselves and the 

inclusion of exposures into the postpartum period. After qualitatively identifying a low level of 

social support to be the central factor in women’s distress, we utilize it as an exposure to test 

three propositions about infant HPA axis development (Figure 5.1).  

1. That maternal social support has a direct effect on infant HPA axis regulation. 
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2. That maternal social support has an additional indirect effect on infant HPA axis 

regulation through maternal HPA axis regulation. 

3. That maternal social support during pregnancy has an additional indirect effect on 

infant HPA axis regulation through postpartum social support. 

Propositions 1 and 2 were modeled separately for prenatal and postpartum exposures.  

 

Figure 5.1 Conceptual model 

 

Proposition 1 is depicted with solid black lines, Proposition 2 is depicted with solid gray lines, and 

Proposition 3 is depicted with dashed gray lines.  

 

5.2 Methods 

Study setting  

This investigation was done on the Galápagos Islands, which are best known for the 

Galápagos National Park and which are home to 30,000 residents (Walsh & Mena, 2016). As 

there is no indigenous population, the islands were only inhabited by humans within the last few 
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hundred years, and the population has grown quickly from approximately 3,500 in 1972 to 

today’s approximately 30,000 (Walsh & Mena, 2016). The archipelago province of Ecuador lies 

1000 km off the coast of the mainland (Walsh & Mena, 2016), leaving its residents both 

geographically and socially isolated. Further, its designation as a national park has restricted 

agriculture, putting pressure on its foodways, so that most food must be imported from the 

mainland to sustain the growing population (Page et al., 2013; Pera, Katz, & Bentley, 2019). 

Geographic isolation is also challenging for the islands’ water systems, as fresh water scarcity 

restricts potable water availability (Walsh et al., 2010).  

In terms of maternal and child health, most women on the Galápagos give birth in a 

hospital (97.4%), but the infant mortality rate on the islands (0.04%) is higher than the national 

average (0.013%) (Freire et al., 2015). Nonetheless, the rate of low birth weight on the islands 

(6.4%) is comparable to that of the national average (6.8%). While children under the age of five 

have a higher overweight and obesity rate (12.7%) than that of the national average (8.5%), these 

children have lower rates of stunting and wasting (Freire et al., 2014). 

 

Study sample 

The data were collected over 12 months, from January through December 2018. 

Participants were recruited either in-person or by phone from Hospital Oskar Jandl (HOJ) on the 

Galápagos’ provincial capital island, San Cristóbal, using purposive sampling (N = 38). HOJ is a 

public hospital, free for all residents, and is the only hospital on the island, allowing the research 

team to screen all pregnant women with up-to-date contact information on the island within the 

recruitment period. Inclusion criteria limited participants to women between the ages of 18 and 

50 years who planned to give birth on the island. Of those contacted who were ineligible, 12 
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planned to give birth on the mainland, four had already moved off the island, and three had 

serious pregnancy complications, and thus were excluded. Of those eligible, only four decided to 

not take part in the study. Visits with participants were conducted once during pregnancy and 

three times in the postpartum period. The prenatal visit was conducted at 34-36 weeks gestation 

(Visit 1 or V1). Postpartum visits were conducted three days after delivery (Visit 2 or V2), one 

month postpartum (Visit 3 or V3), and two months postpartum (Visit 4 or V4). Thus, the period 

of observation for each mother-infant dyad was 14 weeks. Of the original 38 mother-infant 

dyads, 38 participated in the prenatal visit, 27 participated in the 3-day postpartum visit, 28 

participated in the one-month postpartum visit, and 25 participated in the two-month postpartum 

visit. For each mother-infant dyad, the research team collected semi-structured interviews; 

surveys on stress, depression, and social support; maternal saliva samples at 34-36 weeks 

gestation, one month postpartum, and two months postpartum; and infant saliva samples at 3 

days postpartum and two months postpartum. All visits were conducted in the participants’ 

homes, places of work, the hospital, or the Galápagos Science Center (GSC), according to 

participant preference. 

 

Ethical approvals and informed consent  

 All participants provided written informed consent prior to participation under 

appropriate protocols approved by the Institutional Review Boards for the University of North 

Carolina at Chapel Hill and Universidad San Francisco de Quito. This project was also approved 

by Ecuador’s Ministry of Public Health. 
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Measures 

Semi-structured Interview. Semi-structured interviews were utilized at 34-36 weeks 

gestation (Visit 1) and one month postpartum (Visit 3) to investigate the central factors 

contributing to maternal distress in the Galápagos context. Perinatal distress and mental health 

are multidimensional concepts shaped by a variety of factors including socioeconomic status, 

ethnicity, social support, health, and discrimination (Rieger & Heaman, 2016; Thayer & 

Kuzawa, 2014, 2015). The semi-structured interviews generated narratives of distress and 

everyday life as they explored issues of stress, health, discrimination, family, support networks, 

joys, and concerns. The semi-structured format left questions open-ended, so that women could 

provide their own insights into stressors that may not be captured with stress surveys (Bernard, 

2006: 212). All semi-structured interviews were audio-recorded.  

Stress. The Perceived Stress Scale (PSS) (S. Cohen et al., 1983) was used to  assess 

maternal chronic stress by measuring the degree to which situations are perceived as 

unpredictable, uncontrollable, and burdensome (S. Cohen et al., 1983). The PSS is particularly 

relevant for pregnancy, since it does not operationalize symptoms that occur frequently in both 

pregnancy and during times of stress (such as sleep disturbances) to assess chronic stress (Nast et 

al., 2013). We used a Spanish version of this scale that has been tested for reliability, validity, 

and sensitivity (Remor, 2006) in Spanish-speaking contexts. When analyzed categorically, the 

PSS is scored from 0 to 40, with scores of 0 – 13 indicating low stress, scores of 14 – 26 

indicating moderate stress, and scores 27 – 40 indicating high stress. 

Depression. Depression was measured by the Patient Health Questionnaire-8 (PHQ-8) 

(Kroenke et al., 2001). We used a Spanish version of the PHQ-8 that has been validated (Baader 

et al., 2012) and tested for reliability (Cassiani-Miranda et al., 2017) in the Spanish language. 
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The PHQ-8 is scored from 0 to 24, with a higher score indicating more depression symptoms. 

When analyzed categorically, depression was defined using the CDC’s diagnostic cut-point for 

the PHQ-8, as scores greater than or equal to 10 (Kroenke et al., 2009). 

Social Support. Social support was measured by Spanish versions of the Perceived Social 

Support-Family (PSS-Family) scale and the Perceived Social Support-Friends (PSS-Friends) 

scale (Procidano & Heller, 1983), both of which have been previously validated in the Spanish 

language and in Latin American contexts (Espinosa et al., 2011). The PSS-Family is scored from 

0 to 16, and the PSS-Friends is scored from 0 to 12.  

Maternal Salivary Cortisol Collection. Salimetrics guides were used for maternal saliva 

collection and storage protocols (Salimetrics & SalivaBio, 2015). Maternal saliva samples were 

collected at 34-36 weeks of pregnancy (Visit 1), at one month postpartum (Visit 3), and at two 

months postpartum (Visit 4). On each of these occasions, women provided three samples: one 

immediately upon waking, one 30 minutes after waking, and one prior to sleep (evening). 

Participants were instructed not to eat, drink, or brush their teeth in the 30 minutes prior to 

collecting samples and to record start and stop times for saliva collection. Participants stored 

samples in their own freezers until a study team member retrieved them the next day and 

transported them to the GSC where they were frozen at -20° C until analysis. 

Infant Salivary Cortisol Collection. Infant salivary samples were collected when the 

infant was three days old (Visit 2) and two months old (Visit 4). Because the age that infants 

establish a diurnal rhythm in cortisol is up for debate (De Weerth et al., 2003), many studies of 

HPA axis function in infancy have measured cortisol dysregulation through basal cortisol or 

stress reactivity, that is, in response to a stressor (O’Connor et al., 2012). At three days 

postpartum, basal cortisol samples were collected to capture variation due to the prenatal 
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environment with little postnatal influence. At two months postpartum, infant basal cortisol and 

cortisol reactivity were measured. Cortisol reactivity was measured as the difference between 

salivary cortisol levels before and 20-25 minutes after a stressor per a previously published infant 

stress reactivity protocol (Tollenaar et al., 2011). Infant basal cortisol at this visit is determined 

from the first of these two samples. In order to apply a stressor to the infant to induce a stress 

response, the research team placed the diapered infant on a metal tray for 30 seconds to mimic an 

infant’s typical discontented response to being weighed in the hospital. The method for this 

stressor was developed by the research team and the nurses at HOJ in order to be non-invasive 

and culturally appropriate. All infant saliva samples were collected using Salimetrics Infant 

Swabs and placed into Salimetrics Swab Storage tubes and frozen at -20° C until analysis.  

Covariates. In addition to these data, we used a sociodemographic survey at Visit 1 that 

inquired about general sociodemographics, household size and composition, employment, parity, 

health behaviors, medications, education, geographic history, food security, religiosity, 

neighborhood, and other themes. Food security was assessed using the Latin American and 

Caribbean Food Security Scale (ELCSA) (Comité Científico de la ELCSA, 2012). 

Qualitative analysis 

Semi-structured interviews from Visits 1 and 3, the prenatal visit and the one month 

postpartum visit respectively, were audio-recorded and then translated and transcribed directly 

into English by the interviewer and a second bilingual reviewer familiar with the idiosyncrasies 

of the Ecuadorian Spanish language, according to protocol by Regmi et al. (Regmi et al., 2010). 

Non-verbal communication was included (eg. “[participant laughs]”) following protocol by 

McLellan and colleagues (McLellan et al., 2003). The majority of the interviews were 

transcribed verbatim, but local phrases whose verbatim translations are not meaningful were 
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translated into their cultural equivalents. Pieces of audio recordings that were difficult to 

understand were reviewed by the scribes together to come to an agreement about the verbiage 

and meaning, following Regmi and colleagues (Regmi et al., 2010). Utterances that could not be 

deciphered were marked “[inaudible].”  

Transcribed interviews were then and analyzed using the qualitative data analysis 

software package NVivo® (version 12; QSR International; Melbourne, Australia). Each 

transcript was read once and coded for emerging central themes (nodes), generating Codebook 1. 

Then all interviews were re-read and re-coded using the completed Codebook 1 as well as new, 

more finely tuned nodes, generating Codebook 2. Finally, the concurrence of nodes was analyzed 

for a node hierarchy both manually and through hierarchy charts and data visualization tools 

available in NVivo®. Codebooks 1 and 2 were used together to interpret data from interviews. 

 

Laboratory analysis 

Saliva samples were thawed and assayed in duplicate for salivary cortisol using 

commercially available ELISA kits (Salimetrics, State College, PA) according to Salimetrics 

protocol (Salimetrics, 2016) at the GSC. Difficulties in infant saliva collection limited the 

volume of saliva collected for infants, particularly for very young infants. Thus, we only had 

enough saliva for analysis from 18 infants from Visit 2 (3 days postpartum) and 25 infants at 

Visit 4 (two months postpartum). Inter-assay variability was 8.5%, and intra-assay variability 

was 7.11%. 
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HPA axis dysregulation  

Maternal and infant HPA axis functioning were measured through salivary cortisol. 

Continuous, log-transformed cortisol concentrations were used to build HPA axis dysregulation 

variables for models.   

Maternal HPA axis regulation was assessed through salivary cortisol at three timepoints: 

34-36 weeks of pregnancy, one month postpartum, and two months postpartum. Cortisol 

dysregulation in mothers was measured in four ways: elevated morning cortisol, elevated 

evening cortisol, a blunted cortisol awakening response at 30 minutes (CAR), and a poor daily 

cortisol decline. A blunted CAR was defined as a small difference in cortisol levels between 

waking and 30 minutes post-waking, and poor daily cortisol decline was defined as a large 

difference between evening cortisol and waking cortisol levels. 

Cortisol dysregulation in infants was measured through elevated basal cortisol at three 

days old and two months old and a blunted or exaggerated cortisol reactivity at two months old. 

High basal cortisol (Stroud et al., 2016) and blunted (Tollenaar et al., 2011) and exaggerated 

(Davis et al., 2011) cortisol reactivity have all been cited as evidence of infant cortisol 

dysregulation. The basal cortisol measure at three days is meant to serve as a proxy for HPA axis 

development in response to prenatal maternal stress alone in order to improve our understanding 

of how the postpartum period can then attenuate this prenatal effect. The measurements at two 

months are meant to reflect HPA axis development as a consequence of both prenatal and 

postnatal programming.   

 Infant HPA axis dysregulation serves as our outcome, since it has been associated with 

metabolic (Reynolds et al., 2001) and neurobehavioral (Davis et al., 2011; O’Connor et al., 2002; 
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O’Donnell et al., 2013) disorders in offspring and is thought to mediate the effects of the 

environment on child development (Thomas et al., 2017). 

Analytic approach  

All statistical analyses were performed using Stata Version 13.1 (StataCorp, College 

Station, TX). First, we present descriptive sociodemographic and health data for women and 

their infants, followed by descriptive data on distress variables including stress, depression, and 

social support, the last of which was determined to be the central factor contributing to women’s 

distress and well-being through qualitative analysis. Next, we present bivariate associations 

between sociodemographic characteristics and distress data at each visit. Bivariate analyses were 

completed using Fisher’s Exact, t-tests, one-way analysis of variance with a Bonferroni 

correction, and Pearson’s r as appropriate. In bivariate tests, age, years married, parity, years 

living on Galápagos, food security, stress, depression, and friend and family social support were 

analyzed continuously.  

To test Proposition 1 (Figure 5.2a), the direct effect of maternal social support on infant 

HPA axis regulation, we ran bivariate associations in which both social support and HPA axis 

dysregulation measures were analyzed continuously. We ran this test independently for prenatal 

social support and postpartum social support. Proposition 2 (Figure 5.2b), that maternal social 

support has an indirect effect on infant HPA axis regulation through maternal HPA axis 

regulation, was tested with path analysis using linear regression models. These paths were tested 

independently for prenatal and postpartum exposures, such that we examined the indirect effect 

of prenatal social support on infant HPA axis development through prenatal maternal HPA axis 

regulation, and we separately examined the indirect effect of postpartum social support on infant 

HPA axis development through postpartum maternal HPA axis regulation. Postpartum models 



 

 91 

that examined Visit 3 social support only used Visit 3 maternal cortisol to measure HPA axis 

dysregulation, and models that examined Visit 4 social support only used Visit 4 maternal 

cortisol to measure HPA axis dysregulation. Proposition 3 (Figure 5.2c), that prenatal maternal 

social support has an indirect effect on infant HPA axis regulation through postpartum maternal 

social support, was also tested with path analysis using linear regression models. All three 

propositions were analyzed with social support and HPA axis dysregulation as continuous 

variables. Social support was examined both through support from family and support from 

friends.    

 

Figure 5.2 Research propositions 

     

                         a         b              c  

 

5.3 Results 

Demographic characteristics 

 Sample characteristics are presented in Table 5.1. At enrollment, the mean age of women 

was 27.9 (SD = 6.15), and 50% of women had been married for less than five years. Most 

women had a high school education (65.8%), and almost half (47.4%) were pregnant for the first 

time. Approximately one third of the sample had been living on the Galápagos for fewer than 

five years, while roughly a quarter of the sample had lived on the islands for over 20 years. 
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Nearly half (47.4%) of the population scored as having some degree of food insecurity within the 

past three months. On average, women were 38 weeks pregnant when they gave birth, and only 2 

infants were born preterm (born at <37 weeks of gestation). The mean infant birth weight was 

3382 grams, and only one infant in the study was low birth weight (<2500 grams). Just over half 

of infants were born by Caesarean, and 62.5% of infants were male. Ethnicity was largely 

homogenous (92% Mestizo).  

 

Qualitative results 

Qualitative analysis of interviews suggested that maternal loneliness, confinement to the 

home, and machismo are critical components contributing to the distress of pregnant and 

postpartum women on San Cristóbal island. Women often discussed their loneliness as stemming 

from distance from their families, many of which remain on mainland Ecuador. Our 

sociodemographic data demonstrated that many participants (47%) had moved to the Galápagos 

without their own families and married men from the islands, and of them, 32% had moved to 

the islands specifically for marriage, even joking that women’s path to the Galápagos is “always 

the same story.” However, due to the National Park’s strict immigration laws and the expense of 

travel, women’s families remain on the mainland and typically do not often have the opportunity 

to visit. Participants often discussed missing their own families or only confiding in their own 

family over the phone if they did not feel comfortable with their in-laws. Others reported keeping 

their problems to themselves, so they would not worry family that lives far away. 

 Further, women’s loneliness is compounded by their limited interaction with the 

community, even before their pregnancies and the births of their infants. Many of the participants 

expressed feeling closed off from the community and not having many friends. When asked 
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about who they trust with their problems, women repeatedly suggested that they resolve them on 

their own or with their immediate family. When asked about their friends, women mostly 

reported that they had “none,” “almost no one,” and “almost none at all.” Women new to the 

islands had a particularly difficult time forging close friendships as outsiders new to such a 

close-knit community. One woman explained: 

 
“Here the people are very closed. Except to the tourists and to other Galapagueños. They 
don’t like the people who live on the mainland…They don’t like it. They want the islands 
only for them. So, they discriminate against the people from the mainland. It's a political 
thing too.” 

 

Forging relationships with others on the island proved even more difficult during 

pregnancy and the postpartum. While 37% of participants were already full-time homemakers, 

participants who had previously worked outside the home often reported leaving their jobs when 

they found out they were pregnant. When asked if they feel connected to others in the 

community, many participants responded that they do not because they hardly ever leave their 

homes. When we asked one pregnant participant about how she feels compared to other women 

on the island, she said: 

 
“I don’t know because I never leave the house, but when I leave the house I see happy 
women.” 
 

 
 Further, the custom for a mother and her new baby to stay inside the home for forty days 

after the infant is born can be socially isolating for new mothers. Women reported that this 

custom is meant to ensure the young baby’s safety by keeping it away from dangerous exposures 

of the outdoors, like extreme temperatures, the sun, and mosquitoes, among others. In their 
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narratives, it became clear that many women found this period of confinement and isolation to be 

distressing and lonely. Women said: 

 

“That’s what is stressing me out a little, because I want to go and I want to do so many 
things but I can’t…My husband tells me to be patient and I can go back [to work] when 
the baby is four months old because right now she is too little.” 
 
“I spend time alone and that stresses me out because, shoot, I don't have support in that 
regard in the same way [as my sister on the mainland].” 
 
“[The doctors said] just the first month, keep the baby in the house and then you can 
walk with him and all of that. But do not go to the beach. Because first the winter is 
starting, and maybe the baby can get sick. So, it’s all for the baby. And I think sometimes, 
‘Oh my god, what did I do, I am so tired, it is too hard.’ I am like, ‘Oh my god, what have 
we done with our lives?’” 
 
“I used to go to the beach. Now I can't with him. The doctors told me that I can’t go to 
the beach until he is 3 months old. He can feel the sun from in here, but he can’t go 
outside.” 

 

Another woman, who suggested that her confinement was causing her to feel depressed, 

reflected on the opportunity she had to leave the house because her own family was there to 

provide childcare for a day. 

 
“A week ago, I was starting to be in depression. I was feeling so sad, I was taking care of 
my food and all of that, and I was doing a lot and I wanted to cry and I didn’t want to 
touch the baby. And I told my husband, ‘You have to take care of him. I don’t want to 
touch him’… So I talked with my mom and my sister and they told me, ‘Listen, you’re not 
feeling good, you’re not doing well, you have to get outside of the house, even just one 
day, come here and I will help you with the baby’ … Getting outside was good. I couldn't 
sleep, but it was good because I got outside of all of this, the house. So today I woke up 
more animated so I started to clean and I started to do everything. Today I started to feel 
better.” 

 
 

Last, strong machista sentiments were felt by many women who were stressed and 

overwhelmed by the amount of work they were expected to do around the house, often when 
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their partners did not contribute to household or childcare labor. Women frequently reported 

being stressed not only about their own health and that of their new babies, but also about 

keeping track of their older children’s schoolwork, cooking for the family, doing housework, and 

managing their partners. Women said: 

 

“For the great majority it’s the husband that is causing the stress. Here it is like that 
because the men here are really machista. It’s like every weekend. Men that don’t drink 
are rare. The great majority here… they leave [their wives] alone with the kids, and they 
don't have support, and that causes stress. That’s the main thing. The women need to do 
practically everything.” 

 

Another participant, when asked about household labor, suggested at first that women 

have help because the husbands are around, but continued on to say that despite a husband’s 

presence, he does not necessarily contribute to the home. She said: 

 
“They have support, but for example, someone might have a husband here but the 
husband prefers to go out and play soccer.” 
 

 
On the whole, the qualitative analysis provided the critical insight that social support was 

an important predictor of women’s well-being on the Galápagos in many ways. All the central 

themes, including geographic isolation from family, inability to forge friendships, confinement to 

the home, and the machismo culture, resulted in loneliness and limited social support for 

pregnant and postpartum women. Based on these results, we used social support as a 

contextually salient variable for distress in our models of HPA axis development.  
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Maternal distress: social support, stress, and depression  

Informed by our qualitative analysis, we examined maternal social support as our primary 

distress exposure alongside stress and depression. Table 5.2 shows the rates of each of these 

variables throughout the study period. Generally, support from family was slightly higher in the 

postpartum, and support from friends was lowest at one month postpartum. Notably, more 

women experienced high stress during the postpartum period than during pregnancy. Rates of 

depression were highest at one month postpartum but lowest at two months postpartum.  

Next, we tested bivariate associations between sociodemographic characteristics and the 

distress variables at each time period as well as associations of distress co-occurrences (Table 

5.3). All variables were analyzed continuously. Among the distress factors, low support during 

pregnancy, both from family and from friends, was often associated with low support in the 

postpartum as well. Low friend support during pregnancy was also associated with depression at 

that time, and low family support at two months postpartum was also associated with high stress 

at that time. In addition, prenatal stress was independently associated with postpartum stress at 

each time point and often with higher prenatal depression scores during pregnancy and the 

postpartum. High depression scores during pregnancy were independently associated with higher 

stress during and after pregnancy and higher depression scores in the postpartum.  

  

Modeled results  

Proposition 1: Does maternal social support have a direct effect on infant HPA axis regulation? 

 Bivariate associations between maternal distress variables and measures of maternal and 

infant HPA axis dysregulation are shown in Table 5.4. During pregnancy (Visit 1), low family 

support was significantly associated with higher infant basal cortisol at two months of age (Visit 



 

 97 

4), and low friend support was associated with higher infant basal cortisol at 3 days postpartum 

(Visit 2) but not two months postpartum.  

In the postpartum, low family support at one month postpartum (Visit 3) and at two 

months postpartum were independently associated with higher infant basal cortisol at two 

months postpartum. None of the social support exposures were significantly associated with 

differences in infant cortisol reactivity.  

 

Proposition 2: Does maternal social support have an additional indirect effect on infant HPA 

axis regulation through maternal HPA axis regulation? 

During pregnancy, low family support and low friend support were each independently 

associated with higher maternal morning cortisol and a blunted maternal CAR during pregnancy, 

indicating that low social support may dysregulate the maternal HPA axis. We then tested 

associations between prenatal maternal HPA axis dysregulation and infant HPA axis 

dysregulation to assess how cortisol dysregulation might be transferred biologically during 

pregnancy. Results for all associations between maternal and infant HPA axis regulation 

measures are shown in Table 5.5. No significant associations (p £ 0.05) were found between 

maternal HPA axis dysregulation during pregnancy and infant HPA axis dysregulation.  

In the postpartum period, no measure of social support was significantly associated with 

any measure of maternal HPA axis dysregulation. Nonetheless, we tested associations between 

postpartum maternal HPA axis dysregulation and infant HPA axis dysregulation. Results showed 

that elevated maternal evening cortisol at one month postpartum was independently associated 

with elevated infant basal cortisol and with a blunted infant cortisol reactivity at two months. 

Further, maternal cortisol decline at one month postpartum was also associated with a blunted 
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cortisol reactivity. These results provide evidence that maternal HPA axis dysregulation at one 

month postpartum is associated with infant HPA axis dysregulation.  

To ensure that the correlations between maternal and infant HPA axis regulation were not 

merely a consequence of the fact that they are both caused by maternal support, we used linear 

regression models to assess whether maternal HPA axis regulation was associated with infant 

HPA axis regulation while controlling for postpartum social support. Results showed that these 

relationships remained significant in the following four models: 1) Elevated maternal evening 

cortisol at one month postpartum was associated with infant basal cortisol at two months 

postpartum while controlling for family support (R2 = 0.40, p £ 0.01), 2) Elevated maternal 

evening cortisol at one month postpartum was associated with infant cortisol reactivity at two 

months postpartum while controlling for family support (R2 = 0.30, p = 0.03), 3) Elevated 

maternal evening cortisol at one month postpartum was associated with infant basal cortisol at 

two months postpartum while controlling for friend support (R2 = 0.26, p = 0.05), 4) Elevated 

maternal evening cortisol at one month postpartum was associated with infant cortisol reactivity 

at two months postpartum while controlling for friend support (R2 = 0.33, p = 0.02). A summary 

of significant results from proposition modeling is shown in Table 5.6. 

Results from these analyses do not support the proposition that maternal social support 

has an indirect effect on infant HPA axis regulation through maternal HPA axis regulation during 

the pregnancy or the postpartum. The indirect effect during pregnancy was not supported 

because no significant associations were found between maternal HPA axis dysregulation during 

pregnancy and infant HPA axis dysregulation. The indirect effect in the postpartum was not 

supported because no significant associations were found between postpartum social support and 

maternal HPA axis dysregulation.  
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Proposition 3: Does maternal social support during pregnancy have an additional indirect effect 

on infant HPA axis regulation through postpartum social support? 

First, bivariate analyses demonstrated that low maternal family support during pregnancy 

was associated with low family support at both postpartum time points and with low friend 

support at both postpartum time points. Low friend support during pregnancy was associated 

with low friend support at both postpartum time points. Previous tests from Proposition 1 

showed that low family support at one month postpartum and at two months postpartum were 

independently correlated with higher infant basal cortisol at two months postpartum. Postpartum 

friend support was not associated with infant HPA axis measures. 

To ensure that the association between postpartum support and infant HPA axis 

regulation was not a consequence of the fact that they are both caused by maternal support 

during pregnancy, we tested relevant models using linear regression to examine whether 

postpartum social support was associated with infant HPA axis regulation while controlling for 

social support during pregnancy. Results showed that association remained significant for the 

association between family postpartum support at one month and infant HPA axis dysregulation 

(R2 = 0.26, p=0.04), but not for family postpartum support at two months and infant HPA axis 

dysregulation (R2 = 0.22, p=0.06).  

These analyses indicate that in some cases, postpartum family support has a significant 

indirect effect on the relationship between family social support during pregnancy and infant 

HPA axis dysregulation.  
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5.4 Discussion 

In the present study, we used qualitative methods to identify social support as a 

contextually salient measure of distress for pregnant and postpartum women on the Galápagos 

Islands. Using a DOHaD and developmental niche framework, we then built conceptual models 

to examine how specifically maternal social support influenced maternal and infant biology both 

during and after pregnancy. Results demonstrate that maternal social support both during and 

after pregnancy is associated with infant HPA axis regulation (Proposition 1), and that 

postpartum social support has an additional indirect effect on the relationship between prenatal 

social support and infant HPA axis development (Proposition 3), suggesting that the HPA axis 

retains plasticity through the first few months of life. Nonetheless, the data did not support our 

hypothesis that maternal HPA axis regulation has an indirect effect on relationship between 

maternal social support and infant HPA axis regulation during pregnancy or in the postpartum 

(Proposition 2).  

 

Maternal social support 

  Through recurrent themes of participants’ distance from their families, inability to forge 

local friendships, confinement to the home, and the culture of machismo, our qualitative analyses 

informed the identification of social support as a central, context-specific driver of maternal 

mental health and well-being on the Galápagos Islands, a region isolated both geographically and 

socially from the rest of Ecuador. Social support is also a salient distress exposure conceptually, 

as many studies have found that social support buffers the HPA axis against insult from other 

maternal distress factors (Hostinar, Sullivan, & Gunnar, 2014). 
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Social support and infant HPA axis  

 Here, informed by our qualitative analyses, we expanded our understanding of distress 

beyond traditional measures of stress and depression by using low social support as the central 

distress exposure. Evidence provided support for Proposition 1, that low maternal social support 

was associated with infant HPA axis dysregulation independently during pregnancy and during 

the postpartum. Notably, neither stress nor depression scores were associated with infant HPA 

axis function, which lends support to our hypothesis that social support itself is a salient measure 

of maternal distress and does not merely moderate the effects of other distress exposures, as 

many other studies have shown (Hostinar et al., 2014; Jewell, Luecken, Gress-Smith, Crnic, & 

Gonzales, 2015; Thomas et al., 2018). Our results suggest that limited social support may 

dysregulate the infant HPA axis by chronically elevating infant basal cortisol but not by 

influencing the stress response. Maternal family support had more persistent effects on infant 

basal cortisol than friend support, which was not associated with infant basal cortisol by two 

months postpartum. Few other studies have examined the direct effects of social support on 

infant HPA axis functioning, but one recent study found that partner support during pregnancy is 

associated with lower infant cortisol reactivity through maternal depression (Thomas et al., 

2017). More broadly, prenatal social support has been associated with higher birth weight 

(Feldman, Dunkel-Schetter, Sandman, & Wadhwa, 2000) and a positive effect on infant 

temperament (Stapleton et al., 2012).  

Other studies have found that a variety of distress exposures during pregnancy may 

influence infant HPA axis dysregulation. For example, in one study, the infants of women with 

PTSD had lower cortisol at waking and bedtime (Yehuda et al., 2005), and studies have found an 

elevated cortisol response in infants whose mothers experience: material deprivation (Thayer & 
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Kuzawa, 2014), discrimination (Thayer & Kuzawa, 2015), depression (Brennan et al., 2008), and 

anxiety (Grant et al., 2009). In the postpartum, parental depression symptoms have been 

associated with decreased child cortisol (Laurent et al., 2013). 

 

The indirect effect of maternal HPA axis regulation  

Our models did not support Proposition 2, that maternal HPA axis regulation mediated 

the relationship between maternal social support and infant HPA axis function. Nonetheless, 

Thomas and colleagues did find support for this mediation (Thomas et al., 2018). In our 

analyses, the pregnancy model was rejected because no significant associations were found 

between maternal HPA axis dysregulation during pregnancy and infant HPA axis dysregulation. 

Other studies have found significant relationships between these variables, including associations 

between maternal elevated prenatal cortisol and blunted cortisol reactivity (O’Connor et al., 

2012; Tollenaar et al., 2011), exaggerated cortisol reactivity (Davis et al., 2011; Gutteling et al., 

2004; Tollenaar et al., 2011), and high basal cortisol (O’Connor et al., 2012). One study found an 

association between maternal CAR during pregnancy and blunted infant cortisol reactivity 

(Nazzari et al., 2019). Further, our analyses and others’ (Harville et al., 2009) found that social 

support was associated with maternal HPA axis functioning during pregnancy, and many others 

have found similar associations between prenatal distress measures and dysregulated maternal 

cortisol (Diego et al., 2004; Thayer & Kuzawa, 2014, 2015; van den Heuvel et al., 2018). 

Together, these mixed results suggest that future research should continue to investigate this 

mediation pathway. 

We did not find support for our postpartum model, because we did not find significant 

associations between postpartum social support and maternal HPA axis dysregulation. Jewell and 
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colleagues did find an association between low family support and high maternal cortisol in the 

postpartum (Jewell et al., 2015), but research on the association between other distress measures 

and HPA axis functioning in the postpartum is mixed. Some studies have found an association 

between postpartum blues or depression and maternal HPA axis functioning (Ehlert et al., 1990; 

Groer & Morgan, 2007; Parry et al., 2003; Taylor et al., 2009), while others have not (Shimizu et 

al., 2015), suggesting that more work on this question should be done to understand the 

biological underpinnings of postpartum distress. 

Notably, though, the present study did find a significant association between postpartum 

maternal HPA axis regulation and infant HPA axis functioning, indicating the importance of 

untangling the biological mechanisms behind maternal HPA axis function. This association may 

be the result of maternal parenting behaviors, or more directly, a product of cortisol transfer 

through breastmilk (Glynn et al., 2007; Rudzik et al., 2014). 

 

Postpartum social support as a mediator 

Our analysis did lend support to our third proposition, that postpartum social support is a 

partial mediator for the relationship between prenatal social support and infant HPA axis 

development, suggesting that postpartum experience can attenuate prenatal insults to infant 

development. Few studies on the relationship between prenatal distress and infant HPA axis 

development have measured postpartum distress. Of those that have, one study found that despite 

an increase in offspring basal cortisol in response to both prenatal and postpartum depression, 

newborn physiology was more dependent on prenatal depression (Diego et al., 2004). Studies on 

other infant outcomes have found that postnatal mother-child relationship, which is likely shaped 
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by maternal psychosocial stress, mediated the relationship between prenatal cortisol and infant 

health outcomes (Bergman et al., 2010).  

These results, and our own findings, demonstrate the importance of the postpartum period 

for infant development, and specifically the importance social support. Further, these results give 

support to theoretical model for the developmental niche, which proposes that the child’s social 

setting, customs of childcare, and psychology of caretakers are all critically important for early 

development (Harkness & Super, 1994). Notably, each of these factors are likely influenced by a 

mother’s social support, which may protect her health through two physiological mechanisms. 

First, emotional social support may increase a woman’s confidence in her ability to cope with 

stressors, allowing her to respond in a more biologically well-regulated way, and thus avoiding 

chronic stress (Jewell et al., 2015; Uchino, 2006). Second, physical social support may grant 

women trusted allies with whom they can leave their child to regroup, sleep, or just get out of the 

house, as demonstrated through our qualitative analysis. Maternal social support can also be 

protective for infant development since cortisol may be passed from mother to child through 

breastmilk (Glynn et al., 2007) and women with more social support may have differences in 

parenting behaviors and infant attachment (Spieker & Bensley, 1994).  

 

Strengths and limitations 

 This study utilizes a longitudinal, mixed-methods design to analyze rich narrative 

interviews in order to identify the complex factors that are most important to the well-being of 

pregnant and postpartum women in the Galápagos. Using a truly biocultural design, this study 

uses qualitative results to build quantitative models and better understand how maternal 

experience is embodied in mothers and infants in this context. Further, this is one of the first 
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studies to address the experience of peripartum distress and its effects on infant development in a 

middle-income country. While many studies have investigated either prenatal or postpartum 

distress and development, this work is one of the few to integrate the pre- and postpartum period 

into a continuum of development. 

 Nonetheless, this work is not without limitations. The study’s small sample size limits its 

statistical power, but we estimate that we captured more than 50% of births on the island in 2018 

based on annual birth rates. Second, some participants were lost to follow-up, primarily due to 

participant travel to the mainland to visit family. We also faced challenges collecting a sufficient 

amount of infant saliva for analysis, particularly at 3 days postpartum, when infants are not 

producing much saliva. These challenges limit our statistical power and the generalizability of 

results. Nonetheless, this study does detect clear and significant relationships between social 

support and HPA axis function, and thus it may serve as foundational exploratory research for 

larger projects that seek to investigate the relationships assessed here. More integrative research 

is needed to investigate how specifically maternal social support and the postpartum period 

continue to shape infant HPA axis development after birth. 

 

5.5 Conclusions 

 Overall, we find that maternal social support both during and after pregnancy is 

associated with infant HPA axis regulation, and that postpartum social support has an additional 

indirect effect on the relationship between prenatal social support and infant HPA axis 

development. These results suggest that the young HPA axis retains plasticity through the first 

few months of life, and that postnatal experience can attenuate prenatal insults to infant 

development. This understudied pathway is particularly important for informing interventions on 
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maternal well-being and early infant HPA axis development, which has long-term consequences 

on cardiometabolic and neurobehavioral systems (Davis et al., 2011; O’Connor et al., 2002; 

O’Donnell et al., 2013). Nonetheless, our results did not support our hypothesis that maternal 

HPA axis regulation has an indirect effect on the relationship between maternal social support 

and infant HPA axis regulation during pregnancy or in the postpartum, suggesting that the 

mechanism for this relationship may be due more to shifts in mothers’ parenting behavior and 

less to the transfer of cortisol biologically. By incorporating the culturally-relevant role of social 

support during both pregnancy and the postpartum into a model for infant HPA axis 

development, this study adds a critical component to the literature on the developmental origins 

of health and disease that will elucidate the pathways through which early environment shapes 

development.  
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Table 5.1 Sociodemographics and infant characteristics 

Demographic Characteristics  
Age, mean (SD) 27.89 (6.15) 
Married 89.5% 
   Years married  
       0 – 2  23.5% 
       3 – 5  26.5% 
       6 – 9  32.4% 
      10 – 15  17.7% 
Highest education  
      Completed high school 65.8% 
      Completed college  26.3% 
Primipara 47.4% 
Parity before birth, mean (SD) 0.76 (0.85) 
Born and raised on Galápagos 36.8% 
Years living on Galápagos  
      0 – 4.9 years 31.6% 
      5 – 9.9 years  10.5% 
      10 – 14.9 years 21.1% 
      15 – 19.9 years 10.5% 
      ³ 20 years 26.3% 
Food security  
    Secure 52.6% 
    Mild food insecurity 36.9% 
    Moderate food insecurity 7.9% 
    High food insecurity 2.6% 
  
Pregnancy and Infant Characteristics  
Weeks pregnant at delivery, mean (SD) 38.33 (1.32) 
Infant birth weight (g), mean, (SD) 3382.59 (366.61) 
Caesarean delivery 51.7% 
Male offspring 62.5% 
Weight-for-length z-score at 2 months pp 0.31 (1.74) 
Length-for-age z-score at 2 months pp 0.17 (1.06) 
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Table 5.2 Distress throughout the peripartum period 

 Visit 1 
(N = 38) 

Visit 3 
(N = 28) 

Visit 4 
(N = 25) 

Family support, mean (SD) 13.11 (2.99) 13.37 (3.16) 13.20 (3.16) 
Friend support, mean (SD) 8.16 (2.90) 7.33 (2.95) 8.32 (2.69) 
Depression 26.3% 28.6% 16.0% 
Stress    
    Low 34.2% 36.8% 42.1% 
    Moderate 65.8% 36.8% 21.1% 
    High 0% 26.3% 36.8% 

V1, V3, and V4 refer to Visits 1, 3, and 4, and reflect data from the visits at 34-36 of weeks gestation, one 
month postpartum and two months postpartum respectively 



 

 

Table 5.3 Predictors of social support, stress, and depression, represented as correlation coefficients (r) 

Characteristic  Stress Depression Family Support Friend Support 
  V1 V3 V4 V1 V3 V4 V1 V3 V4 V1 V3 V4 
Demographics              
Age   0.24 0.06 0 -0.09 -0.08 0.09 -0.04 0.12 0.01 0.18 0.32 0 
Years married   -0.02 0.28   0.04 -0.03 0.11 0.37 -0.05 0.28 0.23 -0.06 -0.01 -0.18 
Education  0.17 0.12 -0.12 -0.14 0.05 -0.09 0.12 0.15 0.01 0.12 0.11 0.09 
Parity   -0.07 0.17 0.03 0.19 0.07 0.14 -0.27 -0.25 -0.23 -0.18 0.07 -0.15 
Years living on Galápagos  -0.13 0.13 -0.03 -0.28 -0.16 -0.06 -0.13 0.19 0.14 -0.05 0.21 -0.01 
Food Insecurity  0.29 0.51* 0.41* 0.40* 0.33 0.58* -0.22 -0.08 -0.11 -0.18 -0.01 0.06 
              
Distress Surveys              
Stress V1   0.43* 0.55* 0.40* 0.35 0.35 -0.14 -0.09 -0.22 -0.15 -0.01 -0.10 

V3    0.53* 0.32 0.73* 0.58* 0.06 -0.04 -0.16 -0.07 -0.15 -0.21 
V4     0.65* 0.43* 0.63* -0.26 -0.32 -0.41* -0.05 -0.33 -0.28 

Depression V1      0.51* 0.63* -0.27 -0.34 -0.38* -0.40* -0.34 -0.29 
V3       0.71* -0.04 -0.12 -0.25 -0.31 -0.28 -0.31 
V4        0.10 0.05 -0.06 -0.07 -0.17 -0.20 

Family support V1         0.82* 0.82* 0.53* 0.46* 0.52* 
V3          0.94* 0.24 0.40* 0.34 
V4           0.15 0.33 0.37 

Friend support V1            0.79* 0.80* 
V3             0.86* 
V4              

* Indicates p £  0.05 
V1, V3, and V4 refer to Visits 1, 3, and 4, and reflect data from the visits at 34-36 of weeks gestation, one month postpartum and two months 
postpartum respectively 
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Table 5.4 Bivariate associations between distress and HPA axis dysregulation in mothers and infants, represented as correlation 
coefficients (r) 

  Maternal morning 
cortisol 

Maternal evening cortisol Maternal cortisol 
awakening response 

(CAR) 

Maternal cortisol decline  Infant basal 
cortisol 

Infant 
cortisol 

response 
  V1 V3 V4 V1 V3 V4 V1 V3 V4 V1 V3 V4 V2 V4 V4 
Family support V1  -0.36* -0.09 -0.26 -0.22 -0.32 -0.23 0.34* -0.02 0.11 0.10 -0.21 -0.01 0.02 -0.42* 0.35 
 V3   0.02 -0.14  -0.30 -0.02  -0.03 0.03  -0.28 0.10  -0.51* 0.18 
 V4    -0.13   -0.06   0.03   0.06  -0.47* 0.18 
Friend support V1  -0.38* 0.29 -0.06 -0.14 -0.20 -0.26 0.46* -0.04 0.13 0.18 -0.38* -0.23 -0.45* -0.11 0.25 
 V3   0.37 0.04  -0.02 0.08  -0.19 0.18  -0.28 0.03  -0.12 0 
 V4    0.09   -0.13   0.28   -0.20  -0.25 0.20 
Stress V1  0.08 -0.03 -0.03 -0.13 0.34 0.17 -0.04 -0.07 0.25 -0.16 0.32 0.17 -0.10 0.19 -0.20 

V3   -0.11 -0.19  0.09 0.07  0.23 0.15  0.16 0.21  -0.26 0.40 
V4    -0.23   0.06   0.13   0.25  0.30 0.01 

Depression V1  0.27 0.15 -0.29 0.14 0.30 0.18 -0.36* -0.24 0.20 -0.09 0.16 0.39 0.07 0.18 0.01 
V3   -0.34 -0.38  0.12 -0.03  0.26 0.08  0.35 0.27  -0.18 0.15 
V4    -0.44*   -0.03   0.10   0.32  -0.14 0.15 

* Indicates p £  0.05 
V1, V2, V3, and V4 refer to Visits 1, 2, 3, and 4, and reflect data from the visits at 34-36-weeks of gestation, 3 days postpartum, one month 
postpartum, and two months postpartum respectively 
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Table 5.5 Bivariate associations between maternal and infant HPA axis dysregulation, represented as correlation coefficients (r) 

 Infant basal 
cortisol 

Infant cortisol 
response 

V2 V4 V4 
Morning cortisol V1  0.43 0.13 -0.07 

V3  -0.13 0.24 -0.16 
V4  -0.25 0.22 -0.25 

Evening cortisol V1  -0.04 0.28 -0.02 
V3  0.11 0.51* -0.55* 
V4 0.22 0.17 -0.18 

CAR  V1  -0.39 -0.18 0.16 
V3 -0.11 0.11 -0.11 
V4 0.07 -0.24 0.28 

Cortisol decline V1  -0.40 0.13 0.04 
V3 0.21 0.33 -0.42* 
V4 0.39 0.02 -0.01 

* Indicates p £  0.05 
V1, V2, V3, and V4 refer to Visits 1, 2, 3, and 4, and reflect data from the visits at 34-36 weeks of gestation, 3 days postpartum, one month 
postpartum, and two months postpartum respectively 
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Table 5.6 Significant associations in propositions models 

Proposition 1 
Social Support  Infant HPA Axis Dysregulation Coeff. (r) p-value 
¯ V1 Family ­ V4 Basal cortisol -0.42 0.04 
¯ V1 Friend ­ V2 Basal cortisol -0.45 0.05 
¯ V3 Family ­ V4 Basal cortisol -0.51 0.01 
¯ V4 Family ­ V4 Basal cortisol -0.47 0.02 

Proposition 2 
Social Support Maternal HPA Axis Dysregulation Coeff. (r) p-value 
¯ V1 Family ­ V1 morning cortisol -0.36 0.04 
¯ V1 Family ¯ CAR 0.38 0.05 
¯ V1 Friend ­ V1 morning cortisol -0.38 0.03 
¯ V1 Friend ¯ CAR 0.46 £ 0.01 
Maternal HPA Axis Dysregulation Infant HPA Axis Dysregulation   
­ V3 Evening cortisol ­ V4 Basal cortisol 0.51 0.01 
­ V3 Evening cortisol ¯ V4 Reactivity -0.55 £ 0.01 
­ V3 Cortisol decline ¯ V4 Reactivity -0.42 0.05 
Maternal HPA Axis Dysregulation Infant HPA Axis Dysregulation Coeff. (adj R2)  
1­ V3 Evening cortisol ­ V4 Basal cortisol 0.40 £ 0.01 
1­ V3 Evening cortisol ¯ V4 Reactivity 0.30 0.03 
2­ V3 Evening cortisol ­ V4 Basal cortisol 0.26 0.05 
2­ V3 Evening cortisol ¯ V4 Reactivity 0.33 0.02 

Proposition 3 
Prenatal Support Postpartum Support Coeff. (r) p-value 
¯ V1 Family ¯ V3 Family  0.82 £ 0.01 
¯ V1 Family ¯ V4 Family 0.82 £ 0.01 
¯ V1 Family ¯ V3 Friend 0.46 0.02 
¯ V1 Family ¯ V4 Friend 0.52 £ 0.01 
¯ V1 Friend ¯ V3 Friend 0.79 £ 0.01 
¯ V1 Friend ¯ V4 Friend 0.80 £ 0.01 
Postpartum Support Infant HPA Axis Dysregulation   
¯ V3 Family ­ V4 Basal cortisol -0.51 0.01 
¯ V4 Family ­ V4 Basal cortisol -0.47 0.02 
Postpartum Support Infant HPA Axis Dysregulation Coeff. (adj R2)  
3¯ V3 Family ­ V4 Basal cortisol 0.26 0.04 

Associations presented here are bivariate unless otherwise indicated with superscripts 1, 2, and 3. 
1 Controlling for family support at V3, 2 Controlling for friend support at V3, 3 Controlling for family 
support at V1 
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CHAPTER 6: MATERNAL STRESS DURING PREGNANCY IS ASSOCIATED WITH 
PLACENTAL 11β-HYDROXYSTEROID DEHYDROGENASE TYPE 2 

METHYLATION AND EXPRESSION IN HUMANS: PSYCHOSOCIAL AND 
PHYSIOLOGICAL PATHWAYS 

 
 
6.1 Introduction  

 The developmental origins hypothesis suggests that early life environments can shape 

long-term disease risk (Gluckman et al., 2005). A growing body of literature supportive of this 

hypothesis has found that maternal stress during pregnancy, including stress, anxiety, depression, 

and other factors, have been associated with long-term effects on metabolic functioning and 

neurobehavioral disorders in offspring (Reynolds, 2013). Specifically, prenatal stressors have 

been associated with increased risk for schizophrenia (Khashan et al., 2008), autism, ADHD 

(Ronald, Happé, Dworzynski, Bolton, & Plomin, 2010), and impaired cognitive development 

(King & Laplante, 2005). Despite strong epidemiological evidence for these associations, the 

underlying biological mechanisms remain unclear.  

The activation of the hypothalamic-pituitary-adrenal axis (HPA axis), which regulates 

glucocorticoid feedback interactions among the mother, placenta, and fetus during pregnancy, 

has been proposed to be the primary mechanism through which prenatal maternal stress shapes 

fetal development and subsequent long-term disease risk (Pike, 2005; Seckl, 2008). While 

glucocorticoids play an essential role in fetal development (Drake et al., 2012), high levels of 

cortisol may alter fetal behavioral, immunological, and neurological development, including 

areas of the brain that regulate the fetal HPA axis (Beijers et al., 2014). Theorists propose that 

frequent or prolonged maternal stressors activate the maternal HPA axis, increasing the 



 

 114 

production of cortisol, which could be transferred to the infant through the placenta and/or 

trigger an increased production of placental corticotropin-releasing hormone (CRH), thereby 

stimulating the fetal HPA axis to produce more fetal cortisol (Beijers et al., 2014). Increased fetal 

cortisol, in turn, has permanent effects on fetal HPA axis development, which could underlie 

subsequent long-term disease risk (Chrousos, 2009; Pike, 2005; Seckl, 2008). However, results 

from studies on prenatal maternal distress and offspring development have demonstrated mixed 

results, suggesting that other mechanisms may play a role in the relationship between prenatal 

stress and infant HPA axis development. 

One such mechanism may be that of the placental enzyme, 11β-hydroxysteroid 

dehydrogenase type 2 (HSD11B2), which buffers the level of cortisol that reaches the fetus by 

catalyzing a reaction that converts active cortisol to inert cortisone in the placenta (V. E. Murphy 

et al., 2006). In this way, HSD11B2 is hypothesized to have protective effects for the fetus by 

minimizing glucocorticoid exposure (Edwards et al., 1993). Recently, researchers have begun to 

utilize both animal and human models to investigate the relationship between maternal stress and 

various measures of HSD11B2, hypothesizing that maternal distress itself may up-regulate the 

enzyme as an adaptive, protective measure for the fetus or down-regulate the enzyme due to 

energetic or other limitations. Nonetheless, studies have reported mixed results, and often sex-

specific results, but little remains known about this enzyme and what influences its functioning 

and expression.  

In the present study, we assess how prenatal distress influences the methylation and 

expression of placental HSD11B2 and how these differences shape infant HPA axis 

development. Our conceptual model is shown in Figure 1. Specifically, we investigate: Path A) 

how prenatal maternal psychosocial distress, measured through stress and depression symptoms, 
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influences placental HSD11B2; Path B) how prenatal maternal physiological distress, measured 

through maternal cortisol regulation, influences HSD11B2; and Path C) how differences in 

HSD11B2 are associated with infant cortisol regulation. Analyses were run independently for 

placental DNA methylation of the HSD11B2 gene and mRNA expression of HSD11B2 on each 

path. 

 

Figure 6.1 Conceptual model 

 

 

 

6.2 Methods 

Participants 

 The data were collected over 12 months in 2018 on the Galápagos Islands, where limited 

infrastructure and geographic isolation contribute to daily distress for residents. Participants were 

recruited from Hospital Oskar Jandl (HOJ), a public hospital on the Galápagos’ provincial capital 

island San Cristóbal, using purposive sampling (N = 26). HOJ is free for all residents and is the 

only hospital on the island, allowing the research team to screen all pregnant women on the 

island within the recruitment period. Inclusion criteria included women between the ages of 18 

and 50 years who planned to give birth on the island. Visits with participants were conducted 
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once during pregnancy, at 34 – 36 weeks gestation, and once in the postpartum, when the infant 

was two months old. For each mother-infant dyad, the research team collected surveys on stress 

and depression symptoms, placental samples, and maternal and infant saliva samples. All visits 

were conducted in the participants’ homes, places of work, the hospital, or the Galápagos 

Science Center (GSC). All participants provided written informed consent prior to participation 

under appropriate protocols approved by the Institutional Review Boards for the University of 

North Carolina at Chapel Hill (UNC-Chapel Hill) and Universidad San Francisco de Quito. This 

project was also approved by Ecuador’s Ministry of Public Health. 

 

Maternal stress and depression 

Stress. The Perceived Stress Scale (PSS) (S. Cohen et al., 1983) was used to  assess 

maternal chronic stress by measuring the degree to which situations are perceived as 

unpredictable, uncontrollable, and burdensome (S. Cohen et al., 1983). The PSS is particularly 

relevant for pregnancy, since it does not operationalize symptoms that occur frequently in both 

pregnancy and during times of stress (such as sleep disturbances) to assess chronic stress (Nast et 

al., 2013). We used a Spanish version of this scale that has been tested for reliability, validity, 

and sensitivity (Remor, 2006) in Spanish-speaking contexts. When analyzed categorically, the 

PSS is scored from 0 to 40, with scores of 0 – 13 indicating low stress, scores of 14 – 26 

indicating moderate stress, and scores 27 – 40 indicating high stress. In adjusted regression 

models, stress is analyzed continuously. 

Depression. Depression symptoms were measured by the Patient Health Questionnaire-8 

(PHQ-8) (Kroenke et al., 2001). We used a Spanish version of the PHQ-8 that has been validated 

(Baader et al., 2012) and tested for reliability (Cassiani-Miranda et al., 2017) in the Spanish 
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language. The PHQ-8 is scored from 0 to 24, with a higher score indicating more depression 

symptoms. When analyzed categorically, depression was defined using the CDC’s diagnostic 

cut-point for the PHQ-8, as scores greater than or equal to 10 (Kroenke et al., 2009). In adjusted 

regression models, depression symptoms are analyzed both continuously and categorically 

(depressed vs. not depressed). 

 

Maternal salivary cortisol 

Salimetrics guides were used for maternal saliva collection and storage protocols 

(Salimetrics & SalivaBio, 2015). Maternal saliva samples were collected at 34 – 36 weeks of 

pregnancy. Over the course of one day, women provided three samples: one immediately upon 

awakening, one 30 minutes after awakening, and one prior to sleep. Participants were instructed 

not to eat, drink, or brush their teeth in the 30 minutes prior to collecting samples and to record 

start and stop times for saliva collection. Participants stored samples in their own freezers until a 

study team member retrieved them the next day and transported them to the Galápagos Science 

Center (GSC) where they were frozen at -20° C until analysis. 

Cortisol dysregulation in mothers was measured in four ways: elevated morning cortisol, 

a blunted cortisol awakening response (CAR) at 30 minutes after waking, elevated evening 

cortisol, and a poor daily cortisol decline. A blunted CAR was defined as a small difference in 

cortisol levels between waking and 30 minutes post-waking, and poor daily cortisol decline was 

defined as a large difference between evening cortisol and waking cortisol levels. 
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Infant salivary cortisol 

Infant cortisol was measured when the infant was two months old. At this visit, a saliva 

sample was collected before and 20-25 minutes after a stressor per a previously published infant 

stress reactivity protocol (Tollenaar et al., 2011). In our analyses, baseline cortisol is the first of 

these measures, and cortisol reactivity is the difference between these two measures. All infant 

saliva samples were collected using Salimetrics Infant Swabs and placed into Salimetrics Swab 

Storage tubes and frozen at -20° C until analysis.  

Cortisol dysregulation in infants was measured as elevated baseline cortisol and as a 

blunted or exaggerated cortisol reactivity at two months old. High baseline cortisol (Stroud et al., 

2016) and blunted (Tollenaar et al., 2011) and exaggerated (Davis et al., 2011) cortisol reactivity 

have all been cited as evidence of infant cortisol dysregulation (see Chapter 5). 

 

Demographic and obstetric characteristics 

 Maternal demographics and health history were collected at the initial visit, and obstetric 

and infant characteristics including gestational age, infant sex, infant birth weight, mode of 

delivery, and placental weight were recorded by hospital staff at HOJ during the birth.  

 

Placental collection 

Placental samples were collected in collaboration with doctors and nurses at Hospital 

Oskar Jandl. Healthy, intact placentas were collected immediately and dissected within one hour 

of birth. Umbilical cords were removed, and placentas were weighed and measured. Maternal 

decidua was removed, and tissue samples were taken from four sampling sites on the fetal side of 

the placenta. The four sampling sites were selected in each of the four quadrants of the placenta 



 

 119 

that were at least 2 cm from the umbilical cord insertion site and at least 3 cm from the placental 

edge, following protocol by Burton and colleagues (Burton et al., 2014). Samples were cut from 

each sampling site and pooled into one storage tube to control for intra-placental variation. The 

samples were stored in RNAlater (Life Technologies, Grand Island, NY) and stored at -20°C at 

the hospital. Samples were then sent on ice to UNC-Chapel Hill and Duke University for 

analysis. 

 

DNA Methylation analysis 

The analysis of HSD11B2 methylation was conducted at the Murphy Lab at Duke 

University. Placental genomic DNA was extracted using the Lysing Matrix A from MP 

Biomedical with the FastPre24 for homogenization, followed by the Solid Tissues Protocol from 

Purgene. DNA samples were sodium bisulfite modified using the EZ DNA Methylation™ Kit 

(Zymo Research, Irvine, CA), and pyrosequencing was performed on PCR product amplified 

from bisulfite-modified DNA based on the region sequenced and displaying differential 

methylation in human placenta from Alikhani-Koopaei and colleagues (Alikhani-Koopaei et al., 

2004). The extent of methylation at the HSD11B2 promoter region was examined with 

pyrosequencing using the Pyromark Pyrosequencing System (Qiagen Inc.) using the following 

forward and biotinylated reverse primers for amplificiation, Sequence (5’-3’) (IDT Inc., 

Coralville, IA): HSD11B2-F2-AAGTTTTGGAAGGAAAGGGAAGA, HSD11B2-R2-[btn] 

ACAAAACCTACCTAAAACAAAAACTA, HSD11B2-S- GGGGTAGAGATTTTAA GAA. 

The region analyzed contains four CpGs sites of interest (Alikhani-Koopaei et al., 2004) 

with reactions performed in duplicate. Sodium bisulfite–modified, fully methylated referent 

positive control and fully unmethylated (whole genome amplified) negative control DNA 
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(Qiagen) were examined with each batch. The percent methylation at each CpG site was 

quantified using the PyroMark CpG software, version 1.0.11. (Qiagen). Methylation across each 

of the four HSD11B2 CpG sites was averaged to obtain an overall measure of methylation. 

HSD11B2 methylation was treated as a continuous variable in analyses. 

 

mRNA gene expression analysis 

The analysis of HSD11B2 expression was conducted at the Microbiome Core Facility at 

the University of North Carolina at Chapel Hill. Total RNA was isolated using Qiagen RNeasy 

Extraction Kit, with the addition of DNaseA digest per the manufacturer’s guidelines. Total 

RNA was quantified and normalized to 50ng/ul prior to the synthesis of cDNA. 500 ng total 

RNA was subject to cDNA synthesis via qScript cDNA synthesis kit. Expression of HSD11B2 

was analyzed using the following primers (Capron et al., 2018): HSD11B2 forward: 

CTACTCATGGACACATTCAGCT, reverse: TCACTGACTCTGTCTTGAAGC.  

Quantitative PCR was performed on QuantStudio Q6, using BioRad PowerSyber qPCR 

kit. The thermal cycling conditions were as follows: one cycle at 50°C for 20 sec, 95°C for 10 

minutes, followed by 40 cycles of 15 seconds at 95°C, 1 minute at 60°C. Melting curve analysis 

was carried out using the continuous method from the Q6 Software (Applied Biosystems) 

conducted at 60°C, with increments of 1°C for 15 seconds. Data analysis was carried out with 

Q6 Software (Applied Biosystems). The auto threshold and baseline options were used for the 

calculations of cycle threshold (CT) values per well. Gene expression within placental tissue was 

calculated using DCT to correct for internal variation between the placentae by adjusting for a 

well-regulated and stable housekeeping gene, RPL19.  In order to ease interpretation of models, 
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DCT scores have been inverted [x(-1)], so that a higher DCT value indicates higher HSD11B2 

gene expression. HSD11B2 expression was treated as a continuous variable in analyses. 

 

Statistical analysis 

Stress and depression scores were normally distributed. Neither placental HSD11B2 

methylation nor expression were normally distributed, so non-parametric tests, including 

Spearman’s correlation and Mann-Whitney U tests, were used for preliminary analyses of these 

data. Statistical analyses were conducted using Stata version Stata/MP 16.0 (StataCorp, College 

Station, TX). 

First, we assessed the relationship between placental HSD11B2 methylation and 

expression using linear regression with robust standard errors to account for concerns about 

normality in expression. We then tested associations on each pathway using adjusted linear 

regression models with robust standard errors. All paths were first assessed for HSD11B2 

methylation. A second round of analyses was then done for HSD11B2 expression. Analyses 

were adjusted for each pathway individually. Covariates were selected as they were significantly 

associated with either the predictor or the outcome variables at p <0.10 on each pathway. We 

assessed gestational age, maternal age, birth weight, placental weight, infant sex as potential 

covariates for all paths. Ultimately, in Paths A and B, models for DNA methylation were 

adjusted for infant sex, which was associated with DNA methylation (p = 0.04), and models for 

mRNA expression were unadjusted. On Path C, models for both DNA methylation and mRNA 

expression were adjusted for gestational age, which was marginally associated with infant 

cortisol response (p = 0.07), and infant sex. Sex-specific associations were assessed via 

stratification of adjusted linear regression models. 



 

 122 

 

6.3 Results 

Sample characteristics 

Maternal, infant, and placental characteristics are detailed in Table 1. Participants ranged 

in age from 18 to 39 years, and the vast majority (92%) identified as ethnically Mestizo. The 

majority of women were married (87.5%), and 20.8% had completed college. On psychosocial 

distress measures, 29.2% of the women in the study scored as depressed on the PHQ-8, and 

58.3% scored as moderately or highly stressed on the PSS. The average gestational age was 38.4 

weeks, and 58.3% of infants were born by Caesarean. Just over half of the infants (54%) were 

male, and the average birth weight was 3380 grams.  

 

Placental HSD11B2 characteristics 

Quantitative bisulfite sequencing was used to determine methylation of a CpG island 

region in the promoter of the HSD11B2 gene. The average methylation across the four CpG loci 

was 11.7%. In order to assess the functional signfiicance of variation of methylation, we also 

quantified HSD11B2 gene expression using PCR. High DNA % methylation was significantly 

associated with lower mRNA gene expression (β = -0.16, p £ 0.01) (Figure 2).  

 

Maternal distress and HSD11B2 outcomes 

 The results of all adjusted linear regression models for our conceptual model are shown 

in Table 2. In our analyses, neither maternal stress nor depression symptoms were significantly 

associated with differences in HSD11B2 methylation or gene expression.  
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 While maternal cortisol dysregulation during pregnancy was not associated with 

differences in HSD11B2 methylation, two measures of maternal cortisol dysregulation were 

associated with HSD11B2 expression. High maternal morning cortisol (β = -0.98, p = 0.01) and a 

blunted maternal CAR (β = 0.82, p = 0.05), which indicates an individual’s inability to properly 

cortisol, were associated with lower mRNA expression of HSD11B2. These associations are 

shown in Figure 3. Neither evening cortisol nor daily cortisol decline were associated with 

differences in HSD11B2 methylation or expression.  

 

HSD11B2 exposures and infant cortisol 

DNA methylation was not associated with either measure of infant cortisol regulation, 

but lower mRNA expression of HSD11B2 was associated with a higher cortisol reactivity (β = -

0.32 p = 0.04) (Figure 4), but not with higher baseline cortisol when infants were two months 

old.  

 

Sex-specific associations 

Infant sex was associated with differences in placental HSD11B2 methylation (p = 0.04), 

but not expression. In girls, the average percent methylation of the HSD11B2 gene in the 

placenta was 14.2%, and in boys it was 9.5%. Due to these results, and others’ findings of 

sexually dimorphic responses to glucocorticoids in the fetus and the placenta (Clifton, 2010; 

Gabory, Roseboom, Moore, Moore, & Junien, 2013), we stratified our models by infant sex to 

examine these pathways. While maternal depression symptoms were not associated with 

differences in methylation or expression of HSD11B2 with the whole sample, we did observe 

associations in sex-specific models. When the sample was limited to just girls, maternal 
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depression symptoms were marginally associated with higher methylation of the HSD11B2 gene 

(β = 6.74, p = 0.06) and it was significantly associated with lower HSD11B2 expression (β = -

1.74, p = 0.01). These differences were not observed in the boys sample, where depression 

symptoms were neither associated with methylation (β = -2.4, p = 0.15) nor expression (β = 0.19, 

p = 0.76). No other paths demonstrated significant differences in stratified models. 

 

6.4 Discussion 

To our knowledge, this is the first study in humans to examine the effects of maternal 

distress on both HSD11B2 methylation and expression as well as offspring HPA axis 

development. This study aimed to assess how maternal psychosocial and physiological distress 

(measured through cortisol) influence epigenetic regulation of the HSD11B2 gene in the 

placenta, and how these differences then can shape HPA axis regulation in infants, which has 

long-term consequences for health (Chrousos, 2009; Pike, 2005; Seckl, 2008). Our results show 

an inverse association between DNA methylation of the HSD11B2 gene promoter region and 

HSD11B2 gene expression in the placenta. Further, results show that maternal HPA axis 

dysregulation during pregnancy is associated with lower expression of HSD11B2 in the placenta, 

which in turn, is associated with an exaggerated cortisol reactivity in infants. Sex-specific 

analyses revealed that maternal depression symptoms during pregnancy is associated with lower 

HSD11B2 gene expression for the mothers of girls, but not boys. Nonetheless, we did not 

observe differences in HSD11B2 measures by maternal psychosocial stress or depression 

symptoms during pregnancy in the full sample, nor did we observe differences in HSD11B2 

measures by other measures of maternal HPA axis dysregulation, including evening cortisol and 

daily cortisol decline.  
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Maternal distress and HSD11B2 measures 

Our finding that that higher placental HSD11B2 methylation is associated with lower 

HSD11B2 expression is consistent with the results from other studies on this relationship 

(Alikhani-Koopaei et al., 2004; Marsit et al., 2012). In the full sample, we did not observe 

differences in placental HSD11B2 methylation or HSD11B2 expression based on psychosocial 

indicators of distress (stress and depression symptoms). Nonetheless, we did observe 

associations between maternal physiological distress and HSD11B2 expression. Two 

measurements of HPA axis dysregulation in particular, high morning cortisol and a low (blunted) 

cortisol awakening response, were each associated with lower HSD11B2 expression. Further, in 

sex-specific analyses, prenatal maternal depression symptoms were marginally associated with 

higher HSD11B2 methylation and significantly lower HSD11B2 expression for girls, but not for 

boys.  

While these results are seemingly contradictory to an adaptive framework, where 

maternal distress would decrease HSD11B2 methylation thus increasing HSD11B2 expression to 

provide a protective effect to the infant in times adversity, our results are consistent with findings 

from many other studies and may fit into a broader physiological model where adaptive 

responses become disrupted through overuse. Animal models have found that chronic stress and 

anxiety may diminish the protection of placental HSD11B2. One study found that prenatal stress 

increased the activity of HSD11B2 in low-anxiety rats, but not in high-anxiety rats (Lucassen et 

al., 2009), while another study found that while acute maternal stress up-regulated HSD11B2 

activity, chronic stress diminished the capacity of placental HSD11B2 to up-regulate in the face 

of an acute stressor (Welberg et al., 2005). Other studies on chronic prenatal stress in rats have 
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found that chronic restraint is associated with lower placental HSD11B2 expression (Mairesse et 

al., 2007; Peña et al., 2012) as well as increased methylation of specific CpG sites of the 

HSD11B2 gene promoter (Peña et al., 2012).  

Studies on this pathway in humans report mixed findings. Like in animal studies, many 

studies in humans have found that chronic maternal distress (including anxiety and/or 

depression) is associated with greater methylation of the HSD11B2 promoter region (Conradt et 

al., 2013; Monk et al., 2016) as well as lower expression of HSD11B2 (O’Donnell et al., 2012; 

Seth et al., 2015; Togher et al., 2014). Other distress exposures have also been associated with 

these differences. In one study, prenatal life events were associated with a downregulation in 

HSD11B2 expression, though only in Caucasian women (Capron et al., 2018). In a few studies, 

though, the opposite effect is observed. One study found that women of low socioeconomic 

status (SES) had lower HSD11B2 methylation (Appleton et al., 2013), which would promote 

HSD11B2 expression. Nonetheless, some studies report no differences in placental HSD11B2 

measures based on anxiety (Capron et al., 2018), depression (Capron et al., 2018; Conradt et al., 

2013; Reynolds et al., 2015; Zhang et al., 2018), or prenatal natural disasters (St-Pierre et al., 

2018). While results are mixed, findings from animal and human models most often suggest that 

in healthy, low-stress individuals, the placenta increases HSD11B2 expression in the face of 

distress, protecting the fetus from excess cortisol, but that in chronically-stressed individuals, this 

protection may diminish, exposing the infant to high levels of cortisol that have long-term 

consequences for neurological development (Welberg et al., 2005).  
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HSD11B2 measures and infant cortisol 

Our analyses of the effects of HSD11B2 measures on infant cortisol found that lower 

HSD11B2 expression is associated with an higher cortisol reactivity in infants, which has been 

cited as evidence of infant HPA axis dysregulation (Davis et al., 2011). Nonetheless, we do not 

observe differences in baseline cortisol when infants are two months old. While this result may 

indicate that HSD11B2 expression does not have an effect on infant baseline cortisol, it is also 

possible that postpartum exposures have attenuated prenatal insults to HPA axis development 

(see Chapter 5). Other studies have reported mixed results along this pathway. One study found 

that HSD11B2 methylation moderated the relationship between prenatal depression and infant 

baseline cortisol at one month postpartum, such that a 1% decrease in methylation was 

associated with a 9% increase in baseline cortisol in infants whose mothers were depressed 

during pregnancy (Stroud et al., 2016).  

Few studies in humans have assessed the relationship between placental HSD11B2 

measures and infant cortisol, but many have assessed the relationship between HSD11B2 

measures and neurobehavioral outcomes in infants. One such study, which used factor analysis, 

found that high scores of the factor characterized by HSD11B2 methylation reduced the risk that 

infants were characterized into a reactive, poorly regulated neurobehavioral profile (Paquette et 

al., 2015). Another study found that higher maternal depression scores during pregnancy were 

significantly associated with higher levels of negative affectivity among infants with low 

placental HSD11B2 expression, but not among infants with high HSD11B2 expression (Zhang et 

al., 2018). Our results fit into these frameworks, where higher levels of placental HSD11B2 

methylation and lower levels of HSD11B2 expression may contribute to neurological changes in 

infants.  
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Sex-specific placental HSD11B2 measures 

Our sex-specific findings reveal that on average, the placentas of girls had significantly 

more HSD11B2 methylation than those of boys. Further, maternal depression symptoms were 

marginally associated with higher HSD11B2 methylation and significantly associated with lower 

HSD11B2 expression in the placentas of girls, but not of boys. These results are consistent with 

others’ findings that infant sex is often associated with differences in placental function and 

physiology (Burton et al., 2014). Further, our finding that girls have lower HSD11B2 expression 

than boys aligns with the general finding that girls are typically more susceptible to insults to the 

HPA axis in early life (Carpenter, Grecian, & Reynolds, 2017), since higher HSD11B2 

expression could provide a protective effect against excess maternal cortisol. Though not all 

studies find sex differences in placental measures (Demendi et al., 2012), a few others have 

observed similar findings. One study found that among small for gestational age infants, the 

placentas of girls exhibit lower HSD11B2 activity than those of boys (Mericq et al., 2009), and 

another found that among placentas of women with untreated asthma, those of girls exhibit lower 

HSD11B2 activity than those of boys (V. E. Murphy, Gibson, Giles, & Zakar, 2003). While the 

mechanisms behind sex differences in fetal programming remain unknown, others have 

suggested that these differences in early life may be the consequence of a “viability-vulnerability 

tradeoff” (Sandman, Glynn, & Davis, 2013), in which males do not adjust to early life adversity, 

and thus only the most fit survive, while females modify their growth in response to adversity, 

improving their viability but increasing their vulnerability to the deleterious effects of these 

adjustments later in life  (Sandman et al., 2013). 
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Strengths and limitations 

This is the first study to examine how both HSD11B2 methylation and expression in the 

placenta respond to maternal distress and shape infant cortisol. This study significantly adds to 

the literature on prenatal stress and HSD11B2 functioning by expanding the scope of maternal 

stress to include both psychosocial and physiological measures of distress, offering a more 

refined understanding of the biological underpinnings behind these relationships. Further, after 

Stroud and colleagues (Stroud et al., 2016), this is only the second study to examine how 

differences in HSD11B2 measures shape infant HPA axis regulation in humans. Last, while the 

majority of studies on HSD11B2 methylation and expression have focused on Caucasian 

populations, our study examines these pathways with a majority Mestizo population from 

Ecuador. This distinction is especially important since others have found differences in 

HSD11B2 measures based on ethnicity (Capron et al., 2018). 

Despite these strengths, this study has a few limitations that should be noted. First, we are 

limited by our small sample size, which decreases our statistical power. Further, while we assess 

the epigenetic profile and expression of HSD11B2, which plays a central role in the conversion 

of cortisol to cortisone, we do not test methylation or expression of NRC31, a glucocorticoid 

receptor in the placenta that may be an upstream regulator placental HSD11B2 (Capron et al., 

2018). Further studies should assess this gene alongside HSD11B2 in order to better understand 

how epigenetic changes in the placenta shape infant HPA axis regulation. Despite these 

limitations, our study shows clear and significant relationships between maternal distress, 

HSD11B2 regulation, and infant HPA axis development, contributing to evolutionary theories of 

early life adaptation and serving as foundational exploratory research on the understudied 

placental influence on fetal programming. 
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6.5 Conclusions 

 Our findings indicate that maternal physiological distress during pregnancy, measured 

through HPA axis dysregulation, is associated with lower placental HSD11B2 expression, which 

in turn, is associated with an exaggerated cortisol reactivity in infants. In addition, sex-specific 

analyses revealed that maternal psychosocial distress during pregnancy, measured through 

depression symptoms, is marginally associated with more placental HSD11B2 methylation and 

significantly associated with less HSD11B2 expression for the mothers of girls, but not boys. 

Together with others’ findings, our results support a disrupted adaptive framework, in which the 

adaptive ability to upregulate HSD11B2 expression in response to acute stress diminishes as 

maternal stress becomes chronic. In these cases, chronic stress, and potentially the overuse of 

this biological mechanism, can cause the hypermethylation of HSD11B2 and thus transcriptional 

repression of the gene, which downregulates HSD11B2 expression, leaving the infant vulnerable 

to high levels of maternal cortisol. In turn, overexposure to maternal cortisol injures the fetal 

brain and HPA axis (O’Donnell & Meaney, 2017), which could permanently alter the infant’s 

neurobehavioral and metabolic pathways (Reynolds, 2013). As results from some similar studies 

has been inconsistent, further research on these important pathways are necessary to better 

understand the protective role of HSD11B2 in infant development.  
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Table 6.1 Characteristics of the study sample 

 
 
 

 
 
 
 
 
 
 
 
 

Maternal Characteristics Mean (SD)/range or no. (%) 
Age (years) 29.2 (5.9) / 18 – 39  
Ethnicity  
     Mestizo 22 (91.7%) 
     Indigenous 1 (4.2%) 
     Afro-Ecuadorian 1 (4.2%) 
Parity  0.92 (0.78)/ 0 – 2 
Married 21 (87.5%) 
Education   
      Less than high school 3 (12.5%) 
      Completed high school 16 (66.7%) 
      Completed college  5 (20.8%) 
Born and raised on Galápagos 9 (37.5%) 
Food security  
     Secure 13 (54.2%) 
     Mild food insecurity 8 (33.3%) 
     Moderate – High food insecurity 3 (12.5% 
Depressed (PHQ-8) 7 (29.2%) 
Moderate – High stress (PSS) 15 (62.5%) 
  
Obstetric and Infant Characteristics   
Gestational age at delivery (weeks)  38.4 (1.2) / 36 – 41  
Caesarean delivery 14 (58.3%) 
APGAR 5 min 9 (0) / 9 – 9  
Male offspring  13 (54%) 
Infant birth weight (g)  3380 (383.8) / 2465 – 3900  
  
Placental Characteristics  
Placental weight (g) 530.8 (101.5) / 398 – 896  
% methylation, average all HSD11B2   CpG sites  11.7 (4.9) 
      CpG1, % methylated 7.9 (3.6) 
      CpG2, % methylated 17.6 (7.0) 
      CpG3, % methylated 7.8 (3.7) 
      CpG4, % methylated 13.4 (5.4) 
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Figure 6.2 Placental HSD11B2 methylation predicts HSD11B2 expression 
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Table 6.2 Adjusted regression analyses for paths in conceptual model 

 Exposure Outcome Model 
p-value 

DNA Methylation Model 
p-value 

mRNA Expression 

Path A Stress  HSD11B2 0.06 β = -2.1 , p = 0.31 0.77 β = 0.01 , p = 0.77 
 Depression, continuous HSD11B2 0.06 β = 0.15 , p = 0.41 0.13 β = -0.07, p = 0.13 
 Depression, categorical HSD11B2 0.06 β = 2.40, p = 0.32 0.09 β = -0.92, p = 0.09 
Path B Maternal morning cortisol HSD11B2 0.09 β = 1.38 , p = 0.37 0.01* β = -0.98, p = 0.01* 
 Maternal CAR HSD11B2 0.11 β = 0.15 , p = 0.94 0.05* β = 0.82, p = 0.05* 
 Maternal evening cortisol HSD11B2 0.07 β = -0.67, p = 0.77 0.78 β = -0.13, p = 0.78 
 Maternal daily cortisol decline HSD11B2 0.05* β =-1.07, p = 0.29 0.18 β = 0.44, p = 0.18 
Path C HSD11B2 Infant baseline cortisol  0.25 β = 0.00 , p =0.97 0.04* β = 0.18 , p = 0.18 
 HSD11B2 Infant cortisol reactivity 0.28 β = 0.03 , p = 0.54 0.05* β = -0.32, p = 0.04* 

For DNA methylation, Path A and Path B were adjusted for infant sex. Path C was adjusted for gestational age and infant sex. 
For mRNA expression, Path A and Path B were unadjusted. Path C was adjusted for gestational age and infant sex. 
*Indicates a p-value of £0.05 
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Figure 6.3 Maternal cortisol regulation is associated with differences in placental HSD11B2 expression 

 
 
 
 
  

-2

-1.5

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

M
or

ni
ng

 co
rt

iso
l

HSD11B2 expression
-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Co
rt

iso
l a

w
ak

en
in

g 
re

sp
on

se

HSD11B2 expression

β = -0.98
p = 0.01

β = 0.82
p = 0.05

a) Maternal morning cortisol b) Maternal cortisol awakening response



 

 135 

Figure 6.4 Placental HSD11B2 expression is associated with infant cortisol regulation  
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CHAPTER 7: MATERNAL PRECARITY AND HPA AXIS FUNCTIONING SHAPE 
INFANT GUT MICROBIOTA AND HPA AXIS DEVELOPMENT IN HUMANS 

 

7.1 Introduction  

Important both developmentally and evolutionarily, growth within the first 1000 days, the 

period from conception through the second year of life, constitutes a sensitive period during 

which an individual's phenotype is plastic. Research on the developmental origins of health and 

disease (DOHaD) has shown that stress experienced in utero and in early life shapes long-term 

risk for metabolic diseases, including obesity, cardiovascular disease, and diabetes (Wells, 2010) 

as well as neurobehavioral disorders in offspring even when controlling for adverse birth 

outcomes (Cryan & Dinan, 2012; O’Mahony et al., 2009).  

Nonetheless, the mechanisms by which perinatal stress is embodied within mother-infant 

dyads are not yet fully understood, and studies have used various measures of maternal precarity 

(stress, depression, socioeconomic status, etc.) to assess this question. Many animal models have 

primarily linked prenatal stress exposure to hypothalamic-pituitary-adrenal axis (HPA axis) 

dysregulation (Thayer & Kuzawa, 2014), but studies with humans have not consistently 

identified a mechanism for the relationship, and research has not fully explored other pathways 

for these changes in development, including the role of the gut microbiome. Further, unfavorable 

shifts in the infant gut microbiome, termed dysbiosis, have been associated with the same long-

term disease risks as HPA axis dysregulation, namely increased risk for metabolic (Goulet, 2015) 

and neurobehavioral disorders (Cryan & Dinan, 2012), suggesting that the gut microbiome could 

be a candidate for involvement in this pathway.  
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Most microbial species develop a symbiotic relationship with their host that promotes 

healthy development, educates the immune system, supports the development of gut function, 

regulates intestinal barrier function, protects against infection, promotes food tolerance, and 

supports central nervous function and the neuroendocrine system including the HPA axis 

(Goulet, 2015; Rackers et al., 2018; Rakers et al., 2017). Generally, the healthy gut maintains a 

state of homeostasis, in which it balances microbial communities, epithelial tissue of the 

intestine, and the immune system (Matamoros et al., 2013). However, environmental 

disturbances, including changes in the immune system, diet, stress, and exposures to xenobiotics 

(antibiotics and anti-cancer medications), among other exposures, can induce dysbiosis 

(Matamoros et al., 2013), which has been associated with risk for obesity, metabolic disease, 

autoimmune disease and allergy, and intestinal inflammation (Cho & Norman, 2013; Goulet, 

2015).  

Further, recent research has shown that microbiota communicate bidirectionally with the 

central nervous system (CNS) (Mayer, 2011) and thus gut microbiota may both influence and be 

influenced by brain function (Cryan & Dinan, 2012; Rackers et al., 2018). The HPA axis, in 

particular, has been at the center of much of this work, and studies have found that differences in 

HPA axis function are associated with differences in gut microbiome composition (Foster & 

McVey Neufeld, 2013). In particular, studies have found that germ-free mice (those with no 

commensal microbiota) have a higher stress response than house-specific pathogen-free mice 

(Sudo et al., 2004), and that pre-treating rats with probiotics reduces hyper-reactivity of the HPA 

axis (Ait-Belgnaoui et al., 2012). Other research on this pathway has found that psychological 

disorders that influence the HPA axis, including anxiety, stress, autism, and depression, are 

associated with differences in gut microbiome composition (Dinan & Cryan, 2017).  
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The peripartum period offers a unique opportunity to assess how maternal stress may be 

embodied in offspring through the microbiome, conferring microbiome dysbiosis with long-term 

health consequences intergenerationally. During pregnancy, maternal stress has been shown to 

alter maternal vaginal (Jašarević et al., 2017, 2015) and gut microbiota (Gur et al., 2017; Hantsoo 

et al., 2019), and stress-induced changes to maternal microbiota could be transferred to offspring 

in utero, during parturition, or both. The long-held hypothesis that infants are born sterile 

(Mackie et al., 1999) has been challenged by recent research that demonstrates that the placenta 

(Aagaard et al., 2012) and meconium (Jiménez et al., 2008) contain fragments of bacterial DNA, 

suggesting that infants may encounter bacterial exposures before birth (Walker et al., 2017). 

Proponents of this hypothesis suggest that maternal microbiota can be transferred to a developing 

fetus through the bloodstream and placenta (Borre et al., 2014), enabling shifts in a woman’s 

microbiome to be passed to the fetus during pregnancy.  

While the question of newborn sterility remains open, perturbations in a woman’s 

microbiota during pregnancy may, nonetheless, be transferred vertically to the infant during 

parturition, and thus serve as foundational microbial communities (Jašarević et al., 2017, 2015; 

Rakers et al., 2017). Research on these pathways has found evidence that maternal stress during 

pregnancy influences offspring microbiome composition in both animal (Gur et al., 2017; 

Jašarević et al., 2017) and human models (Zijlmans, Korpela, et al., 2015). 

Infant stress in the postpartum period has also been associated with differences in infant 

gut microbiome development. Early life stress has been found to influence the composition of 

bacterial microbiota in rhesus monkeys (Bailey & Coe, 1999) and have long-term effects on the 

gut microbiota of rats (O’Mahony et al., 2009). Further, postpartum maternal stress may 

influence infant stress, and thus infant microbiome composition through a variety of pathways. 
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First, postpartum maternal stress can compromise a mother's mental health and caregiving 

behaviors (Grajeda & Perez-Escamilla, 2002; Rudzik et al., 2014), which have each been found 

to be associated with HPA axis dysregulation in offspring (Essex et al., 2002; Gunnar & 

Donzella, 2002; Tollenaar et al., 2012; Wright, 2007). Second, high postpartum maternal cortisol 

(Glynn et al., 2007; Hahn-Holbrook et al., 2016) and microbial shifts (Moossavi et al., 2019) 

could be transferred to the infant during breastfeeding (Moossavi et al., 2019). In addition to 

shaping the infant HPA axis, which communicates with the infant’s microbiome, postpartum 

maternal stress could shape an infant’s physical environment, which has been shown to influence 

the gut microbiome (Borre et al., 2014). These studies demonstrate how stress during the 

peripartum period can have significant and long-term effects on the development of the gut 

microbiome, but few studies have directly addressed these questions in humans. 

In the present study, we examine the relationships among measures of maternal well-

being during and after pregnancy and the development of the infant gut microbiome in humans. 

Specifically, we ask: a) Does peripartum maternal precarity, measured through food insecurity, 

depression symptoms, stress, and low social support, shape differences in infant gut microbiota 

diversity and predominant taxa? b) Does peripartum maternal HPA axis dysregulation influence 

infant gut microbiota diversity and taxa? And, c) Are differences in infant gut microbiome 

composition associated with differences in infant HPA axis regulation? Our conceptual model is 

shown in Figure 7.1. The relationship between maternal precarity and infant cortisol and the 

relationship between maternal cortisol and infant cortisol have been examined previously 

(Chapter 5). 
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Figure 7.1 Conceptual model  

 

Pathways on solid lines will be tested in this chapter. Pathways with dotted lines have been assessed in 

Chapter 5. 

 

7.2 Materials and Methods 

Setting and sample 

 The data were collected over 12 months from January through December 2018. 

Participants were recruited from a public hospital on the Galápagos’ San Cristóbal island using 

purposive sampling (N = 25). The hospital is free for all residents and is the only hospital on the 

island, allowing the research team to screen all pregnant women in the community within the 

recruitment period. Inclusion criteria required that women be between the ages of 18 and 50 

years old and plan to give birth on the island. Visits with participants were conducted once 

during pregnancy and three times in the postpartum period. The prenatal visit was conducted at 

34-36 weeks. Postpartum visits were conducted at three days postpartum, one month postpartum, 

and two months postpartum. For each mother-infant dyad, the research team collected semi-

structured interviews; surveys on stress, depression, social support, and food insecurity; maternal 

and infant saliva samples; and infant stool samples at 2 months of age. All visits were conducted 

in the participants’ homes, places of work, the hospital, or the Galápagos Science Center (GSC). 

All participants provided written informed consent prior to participation under appropriate 

Maternal precarity 

Maternal 
HPA axis dysregulation 

Infant 
HPA axis dysregulation 

Infant gut microbiome
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protocols approved by the Institutional Review Boards for the University of North Carolina at 

Chapel Hill and Universidad San Francisco de Quito. This project was also approved by 

Ecuador’s Ministry of Public Health. 

Measures 

Infant stool collection. Infant stool samples were collected when the infant was two 

months old. The mean (SD) infant age at stool collection was 59.8 (5.2) days. For infant stool 

collection, mothers were given detailed oral and written instructions for the collection of the 

stool sample, as well as a sample collection kit, including gloves, a small plastic spoon, a small 

plastic container. Mothers were asked to collect a small (roughly 400 mg) amount of stool from 

their infant’s diaper and store it in the sealed plastic container in their own freezer until it could 

be collected by the research team later that day. Stool samples were then stored frozen at the 

Galápagos Science Center until they were transported to the Microbiome Core Facility at the 

University of North Carolina at Chapel Hill (UNC) for analysis. 

Various measures of maternal precarity were taken during and after pregnancy. In this 

analysis, we included measures of food insecurity, stress, depression, and low social support as 

maternal precarity exposures. Scores on each of the surveys were analyzed categorically for ease 

of analysis with microbiome data.  

Food insecurity. Food insecurity was assessed using the Latin American and Caribbean 

Food Security Scale (ELCSA) (Comité Científico de la ELCSA, 2012), with higher scores 

indicating a higher level of food insecurity. On this scale, a score of 0 indicates a food secure 

household, scores from 1 – 5 indicate mild household food insecurity, scores from 6 – 10 

indicate moderate household food insecurity, and scores of 11 – 15 indicate severe household 

food insecurity (Comité Científico de la ELCSA, 2012). In our analyses, we grouped food secure 
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and low food insecurity into one category, which will be referred to as “food secure” (88% of 

sample) and we grouped moderate and high food insecurity into another category that will be 

referred to as “food insecure” (12% of sample). 

Stress. The Perceived Stress Scale (PSS) (S. Cohen et al., 1983) was used to assess 

maternal chronic stress by measuring the degree to which situations are perceived as 

unpredictable, uncontrollable, and burdensome (S. Cohen et al., 1983). We used a Spanish 

version of this scale that has been tested for reliability, validity, and sensitivity in Spanish-

speaking contexts (Remor, 2006). The PSS is scored from 0 to 40, with scores of 0 – 13 

indicating low stress, scores of 14 – 26 indicating moderate stress, and scores 27 – 40 indicating 

high stress. For this analysis, scores were dichotomized so that scores of 0 – 13 will be referred 

to as “low stress” and scores of 14 – 40 will be referred to as “high stress.” 

Depression. Depression was measured by the Patient Health Questionnaire-8 (PHQ-8) 

(Kroenke et al., 2001). We used a Spanish version of the PHQ-8 that has been validated (Baader 

et al., 2012) and tested for reliability (Cassiani-Miranda et al., 2017) in the Spanish language. 

The PHQ-8 is scored from 0 to 24, with a higher score indicating more depression symptoms. 

When analyzed categorically, depression was defined using the CDC’s diagnostic cut-point for 

the PHQ-8, as scores greater than or equal to 10 (Kroenke et al., 2009). 

Social support. Social support was measured by Spanish versions of the Perceived Social 

Support-Family (PSS-Family) scale and the Perceived Social Support-Friends (PSS-Friends) 

scale (Procidano & Heller, 1983), both of which have been previously validated in the Spanish 

language and in Latin American contexts (Espinosa et al., 2011). The PSS-Family is scored from 

0 to 16, and the PSS-Friends is scored from 0 to 12, with higher scores indicating a higher level 
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of support. Support questionnaires were dichotomized into low support and high support based 

on the distribution of the data. 

Salivary cortisol. Salimetrics guides were used for maternal and infant saliva collection 

and storage protocols (Salimetrics & SalivaBio, 2015). Maternal saliva samples were collected at 

34-36 weeks of pregnancy and at one month postpartum. On both of these occasions, women 

provided three samples: one immediately upon waking (sample 1), one 30 minutes after waking 

(sample 2), and one prior to sleep (sample 3). Women stored their samples in their freezers until 

they were collected by the study team the following day. Saliva samples were then stored at -20° 

C until analysis. Infant salivary samples were collected when the infant was three days old and 

two months old. At three days old, basal cortisol samples were collected to capture variation due 

to the prenatal environment with little postnatal influence. At two months of age, infant basal 

cortisol and cortisol reactivity were measured. Cortisol reactivity was measured as the difference 

between salivary cortisol levels before and 20-25 minutes after a stressor per a previously 

published infant stress reactivity protocol (Tollenaar et al., 2011). All infant saliva samples were 

collected using Salimetrics Infant Swabs and placed into Salimetrics Swab Storage tubes and 

frozen at -20° C until analysis.  

HPA axis dysregulation. Maternal HPA axis dysregulation was assessed through morning 

cortisol and through cortisol awakening response (CAR), the difference between the cortisol 

concentrations of sample 2 and sample 1. In our analyses, high morning cortisol and a blunted 

(low) CAR were considered to be measures of maternal HPA axis dysregulation. Cortisol 

dysregulation in infants was measured through elevated basal cortisol at three days old and two 

months old and a blunted or exaggerated cortisol reactivity at two months old. High basal 

cortisol (Stroud et al., 2016) and blunted (Tollenaar et al., 2011) and exaggerated (Davis et al., 
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2011) cortisol reactivity have been cited as evidence of infant cortisol dysregulation (see Chapter 

5). 

Covariates. In addition to the scales, saliva samples, and stool samples, we used a 

sociodemographic survey at baseline that inquired about general sociodemographics, household 

size and composition, employment, parity, health behaviors, medications, education, geographic 

history, and other themes. Data on obstetric and infant characteristics were collected at 

postpartum visits.  

 

Laboratory analysis  

DNA isolation. Samples were transferred to a 2 mL tube containing 200 mg of ≤106 µm 

glass beads (Sigma, St. Louis, MO) and 0.3 mL of Qiagen ATL buffer (Valencia, CA), 

supplemented with 20 mg/mL lysozyme (Thermo Fisher Scientific, Grand Island, NY). The 

suspension was incubated at 37°C for 1 h with occasional agitation. Subsequently the suspension 

was supplemented with 600IU of Qiagen proteinase K and incubated at 60°C for 1 h. Finally, 0.3 

mL of Qiagen AL buffer was added and a final incubation at 70°C for 10 minutes was carried 

out. Bead beating was then employed for 3 minutes in a Qiagen TissueLyser II at 30Hz. After a 

brief centrifugation, supernatants were aspirated and transferred to a new tube containing 0.3 mL 

of ethanol. DNA was purified using a standard on-column purification method with Qiagen 

buffers AW1 and AW2 as washing agents, and eluted in 10mM Tris (pH 8.0).   

16S rRNA amplicon sequencing. 12.5 ng of total DNA were amplified using universal 

primers targeting the V4 region of the bacterial 16S rRNA gene (Caporaso et al., 2012; Kozich et 

al., 2013). Primer sequences contained overhang adapters appended to the 5’ end of each primer 

for compatibility with Illumina sequencing platform. 
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Master mixes contained 12.5 ng of total DNA, 0.2 µM of each primer and 2x KAPA HiFi 

HotStart ReadyMix (KAPA Biosystems, Wilmington, MA).  The thermal profile for the 

amplification of each sample had an initial denaturing step at 95°C for 3 minutes, followed by a 

cycling of denaturing of 95°C for 30 seconds, annealing at 55°C for 30 seconds and a 30 second 

extension at 72°C (25 cycles), a 5 minutes extension at 72°C and a final hold at 4°C.  Each 16S 

amplicon was purified using the AMPure XP reagent (Beckman Coulter, Indianapolis, IN). In the 

next step each sample was amplified using a limited cycle PCR program, adding Illumina 

sequencing adapters and dual-index barcodes (index 1(i7) and index 2(i5)) (Illumina, San Diego, 

CA) to the amplicon target. The thermal profile for the amplification of each sample had an 

initial denaturing step at 95°C for 3 minutes, followed by a denaturing cycle of 95°C for 30 

seconds, annealing at 55°C for 30 seconds and a 30 second extension at 72°C (8 cycles), a 5 

minutes extension at 72°C and a final hold at 4°C.  The final libraries were again purified using 

the AMPure XP reagent (Beckman Coulter), quantified and normalized prior to pooling. The 

DNA library pool was then denatured with NaOH, diluted with hybridization buffer and heat 

denatured before loading on the MiSeq reagent cartridge (Illumina) and on the MiSeq instrument 

(Illumina). Automated cluster generation and paired–end sequencing with dual reads were 

performed according to the manufacturer’s instructions.  

 Salivary cortisol. Saliva samples were thawed and assayed in duplicate for salivary 

cortisol using commercially available enzyme-linked immunosorbent assay (ELISA) kits 

(Salimetrics, State College, PA) according to Salimetrics protocol (Salimetrics, 2016). Cortisol 

concentrations were log-transformed prior to analysis.  
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Statistical analysis 

Sequencing output from the Illumina MiSeq platform were converted to fastq format and 

demultiplexed using Illumina Bcl2Fastq 2.18.0.12. The resulting paired-end reads were 

processed using QIIME 2 2018.11.  Index and linker primer sequences were trimmed using the 

QIIME 2 invocation of cutadapt. The resulting paired-end reads were processed with DADA2 

through QIIME 2 including merging paired ends, quality filtering, error correction, and chimera 

detection. 

Amplicon sequencing units from DADA2 were assigned taxonomic identifiers with 

respect to Green Genes release 13_08. Alpha diversity with was measured with respect to Faith 

PD whole tree, Evenness (Shannon) index, and observed species number metrics and it was 

estimated using QIIME 2 at a rarefaction depth of 5,000 sequences per subsample. Beta diversity 

estimates were calculated within QIIME 2 using weighted UniFrac distances as well as Bray-

Curtis dissimilarity between samples at a subsampling depth of 5,000.  

Before analysis, microbiome data were cleaned for appropriate sequence length and 

transformed from the 16sRNA gene sequences into operational taxonomic units (OTUs) in 

QIIME 2 (Bolyen et al., 2019). Then, to examine each proposed pathway, we tested differences 

in alpha and beta diversity as well as differences in relative abundance of taxa. 

First, we assessed the samples for richness and diversity at the taxonomic levels of 

interest (phyla and family) within QIIME2. Mann-Whitney U-tests were used to assess 

differences in alpha diversity (measured by Shannon Entropy) based on precarity and cortisol 

measures. Beta diversity was measured in two ways: weighted UniFrac distances and Bray-

Curtis dissimilarity. Principal Coordinates Analysis (PCoA) of weighted UniFrac distances 
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matrices was used to determine clustering between two groups (eg. not depressed vs. depressed). 

Both measures of beta diversity were computed from the sequence data within QIIME2. 

Next, to examine the taxa distribution for the entire sample, we calculated relative 

abundances of bacteria within each taxon. Taxa that constituted less than 1% average relative 

abundance of the samples were excluded. Next, we conducted taxon-specific analysis to test for 

relationships between maternal precarity exposures and patterns of colonization using non-

parametric Mann-Whitney U-tests, since relative abundances of taxa were not normally 

distributed. The same was done for relationships between maternal cortisol and patterns of 

colonization as well as infant cortisol and patterns of colonization. Finally, adjusted linear 

regression models with robust standard errors were conducted to test for significant differences 

between phylum and family groups controlling for mode of delivery, infant feeding, and pre- or 

postpartum exposure to the exposure of interest in the model. For example, the model assessing 

the effects of friend support during pregnancy on relative abundance of taxa was adjusted for 

mode of delivery, infant feeding, and postpartum friend support, and the model assessing the 

effects of postpartum depression on relative abundance of taxa was adjusted for mode of 

delivery, infant feeding, and depression during pregnancy, etc. Infant feeding was a dichotomous 

variable defined by either exclusive breastfeeding or ever having been fed formula at 2 months 

of age. These controls were selected based on their persistent association with gut microbiome 

differentiation in the literature (Bäckhed et al., 2015; Dominguez-Bello et al., 2010; Stewart et 

al., 2018). Additional analyses using the same covariates were run for selected exposures at the 

genus level. All regression analyses were conducted using Stata 16.  
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7.3 Results 

Precarity and cortisol descriptive data 

In this sample, 12% (n = 3) of women were food insecure (Table 7.1). The majority of 

women experienced high stress during pregnancy (60%), but the experience of high stress 

decreased over time in the postpartum, so that by 2 months postpartum only 36% of women 

reported experiencing high stress. The rate of depression peaked at 1 month postpartum (29.2%), 

and decreased to only 16% by 2 months postpartum. While the rates of both low family and low 

friend support were least common in during pregnancy, each at 36%, low family support was 

most common at 1 month postpartum (46%), and low friend support was most common at 2 

months postpartum (48%). 

Over half (56%) of the infants in the sample were born by Caesarean section, and 36% 

had received formula by 2 months postpartum. Infants born by Caesarean had significantly 

different beta diversity than infants born vaginally on measures of weighted UniFrac distances 

and Bray Curtis dissimilarity. Infants born by Caesarean also had a significantly higher 

abundance of Bacteroidetes at the phylum level and Lachnospiraceae and Enterobacteriaceae at 

the family level and a lower abundance of Bacteroidetes at the phylum level and 

Coriobacteriaceae and Bacteroidaceae at the family level than infants born vaginally. Infants 

who had ever received formula by 2 months postpartum did not exhibit differences in diversity, 

but did have a marginally higher abundance of Veillonellaceae (p = 0.07) than those who were 

exclusively breastfed. Mode of delivery and formula feeding were not associated with one 

another, and both of these measures were included as covariates in regression analyses. Cutoffs 

for high and low cortisol concentrations were based on the distributions of each variable, so that 

roughly half of the participants had high and half had low cortisol measures. 
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Alpha diversity  

In the postpartum, maternal depression (p = 0.04), stress (p = 0.01), and high morning 

cortisol (p = 0.04) were all significantly associated with a lower alpha diversity measured by 

Shannon Entropy in infant stool at 2 months of age (Figure 7.2). Pre-partum measures of 

depression, stress, and maternal cortisol were not associated with differences in alpha diversity in 

infant stool at 2 months of age. Social support and food security in the peripartum period were 

also not associated with differences in alpha diversity in infant stool. Shannon Entropy was not 

associated with either mode of delivery or infant feeding at p £ 0.05. 

 

Beta diversity with PCoA plots 

 When weighted UniFrac distances and Bray-Curtis dissimilarities were plotted on PCoA 

plots, samples from infants whose mothers were depressed at two months postpartum clustered 

separately from samples of infants whose mothers were not depressed at two months postpartum 

(Figure 7.3). These differences were statistically significant for both weighted UniFrac distance 

(p = 0.03) and Bray-Curtis dissimilarity (p < 0.01). Measures of beta diversity in infant stool 

were not significantly different for any other precarity measures or for maternal depression 

experienced during pregnancy. Analyses of differences in beta diversity for maternal cortisol 

measures revealed that samples from infants whose mothers had a low postpartum CAR plotted 

separately from samples of infants whose mothers had a high CAR on PCoA plots of weighted 

UniFrac distances (p = 0.02), but not of Bray-Curtis dissimilarity (p = 0.31). No other measures 

of maternal cortisol were associated with significantly different beta diversity in infant stool 

samples taken at 2 months of age. Last, when we tested differences in beta diversity of the infant 
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gut microbiome based on infant cortisol, only basal infant cortisol at 3 days old was significantly 

associated with differences for weighted UniFrac distance (p = 0.02) and Bray-Curtis 

dissimilarity (p = 0.03). 

 

Relative abundance of predominant taxa 

 Four phyla, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria accounted for 

99.9% of the average total composition of infant gut microbiota (Table 7.2). Twelve families, 

each of whose average relative abundance was >1%, accounted for 94.7% of the average total 

composition of infant gut microbiota at the family level.  

Mann-Whitney U tests and adjusted regression models were run for precarity and cortisol 

exposures with each of these phyla and families. Mann-Whitney U-tests that were significantly 

associated (p £ 0.05) with differences in abundance are shown in Table 7.3, and adjusted 

regression models that were significantly associated with differences in taxa abundance are 

shown in Table 7.4. Relative abundance plots for maternal precarity measures are shown in 

Figure 7.4, and relative abundance plots for maternal and infant cortisol measures are shown in 

Figure 7.5. 

 Of the measures of maternal precarity, food insecurity, low friend support during 

pregnancy, and postpartum depression were significantly associated with differences in taxa 

abundance in infant stool in adjusted models. Food insecurity was associated with a higher 

relative abundance of Proteobacteria (p = 0.05), specifically Enterobacteriaceae (p = 0.05), and a 

lower relative abundance of Lachnospiraceae (p = 0.01). Low friend support during pregnancy 

was associated with a higher relative abundance of Proteobacteria (p = 0.01), specifically 

Enterobacteriaceae (p < 0.01). Postpartum depression was associated with a lower relative 



 

 151 

abundance of Actinobacteria (p = 0.04), specifically Bifidobacteriaceae (p = 0.04). It was also 

associated with a lower abundance of Lachnospiraceae (p = 0.01) and a higher relative 

abundance of Streptococcaceae (p = 0.01). Adjusting for the same covariates, postpartum 

depression was associated with lower relative abundance of the genus Bifidobacteria in 

particular, (b = -29.06, p = 0.04). Stress and family support were not associated with differences 

in taxa.  

 In adjusted models, maternal cortisol concentrations were associated with differences in 

taxa both during and after pregnancy. Notably, maternal CAR during and after pregnancy were 

each associated with differences in Bacteroidetes, and particularly the family Bacteroidaceae, 

but in different directions. A low maternal CAR during pregnancy was associated with a lower 

abundance of Bacteroidetes (p = 0.03) and Bacteroidaceae (p = 0.01), and a low maternal CAR 

in the postpartum was associated with a higher abundance of these taxa (p < 0.01 for each) as 

well as a higher abundance of Veillonellaceae (p = 0.01). In models at the genus level, which 

adjusted for the same covariates, low CAR during pregnancy was associated with lower 

abundance of Bacteroides at the genus level (b = 27.88, p < 0.01), and a low CAR in the 

postpartum was associated with a higher abundance of Bacteroides (b = -21.37, p < 0.01). 

Maternal morning cortisol during pregnancy was not associated with differences in infant gut 

taxa, but high postpartum morning cortisol was associated with a greater abundance of 

Bacteroidetes (p = 0.03), Bacteroidaceae (p = 0.01), and Bacteroides (p = 0.01). 

 Infant cortisol concentrations at three days postpartum, but not two months postpartum, 

were associated with differences in infant gut taxa in adjusted models. High infant basal cortisol 

at three days postpartum was associated with a lower abundance of Actinobacteria (p < 0.01), 
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and specifically Bifidobacteriaceae (p < 0.01), and a higher abundance of Proteobacteria (p = 

0.03), particularly Enterobacteriaceae (p = 0.04). 

 

7.4 Discussion 

In this study, we examined how multiple facets of women’s precarity and HPA axis 

functioning in the peripartum period contribute to the development of their infants’ gut 

microbiome communities and associated HPA axis functioning. We found support for all three of 

our proposed pathways, suggesting that: 1) maternal peripartum precarity does shape differences 

in infant gut microbiota diversity and taxa abundance, 2) peripartum maternal HPA axis 

functioning also influences the development of the infant gut, and 3) differences in relative 

abundance of taxa in the infant gut are associated with differences in infant HPA axis 

functioning. Together, these findings provide support for the intergenerational transmission of 

stress from mother to infant and for communication between the gut and the brain through the 

HPA axis. 

Our results show support for our first proposed pathway, that maternal precarity during 

and after pregnancy shapes differences in infant gut microbiota diversity and predominant taxa. 

Overall, women’s experiences of precarity during the peripartum period primed their infants to 

be colonized less diverse microbiota, and more pathogenic and less protective bacteria on the 

whole. Prenatal exposures to precarity, including food insecurity and low social support, were 

associated with higher relative abundance of Proteobacteria, and specifically, a higher relative 

abundance of Enterobacteriaceae, and a lower relative abundance of Lachnospiraceae.  

Prenatal exposures to precarity were associated with a higher relative abundance of 

Proteobacteria, a phylum which is known to contain pathogens (Zijlmans, Korpela, et al., 2015), 
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in infant stool. Within the Proteobacteria phylum, these infants had a higher relative abundance 

of Enterobacteriaceae, a family of bacteria that includes the pathogenic Escherichia and 

Enterobacter, and specifically Escherichia coli and Salmonella (Zijlmans, Korpela, et al., 2015). 

Further, Enterobacteriaceae are known to produce lipopolysaccharides (LPS), endotoxins that 

stimulate the HPA axis (Black, 2002) and have been associated with inflammation in a variety of 

metabolic diseases (Cani, Osto, Geurts, & Everard, 2012). A high relative abundance of 

Enterobacteriaceae in early infancy has been associated with risk for allergy and eczema 

(Gosalbes et al., 2013). Prenatal precarity was also associated with a lower abundance of 

Lachnospiraceae, a family of bacteria that promote gut health and have been shown to be 

protective against obesity and insulin resistance in mice (Truax et al., 2018) and decrease risk for 

heart failure in humans (Kummen et al., 2018). In contrast to other studies that have examined 

this pathway, we did not find that offspring exposed prenatally to maternal precarity have lower 

abundances of Lactobacillus and Bifidobacteria. One study found these associations in humans 

(Zijlmans, Riksen-Walraven, & de Weerth, 2015), while others have found similar results in 

animal models (Walker et al., 2017), where offspring of monkeys stressed during pregnancy had 

significantly lower abundance of Bifidobacteria and Lactobacillus at two days after birth (Bailey 

et al., 2004) and offspring of mice stressed during pregnancy had a significantly lower 

abundance of Lactobacillus (Jašarević et al., 2015). 

Nonetheless, we did observe that postpartum maternal precarity measures were 

associated with a lower relative abundance Bifidobacteria, as well as a lower abundance of 

Lachnospiraceae and Streptococcaceae in infant stool. This abatement in Bifidobacteria in 

response to precarity is of particular interest since Bifidobacteria are anaerobic, anti-

inflammatory bacteria known to be one of the cornerstones of a healthy infant gut microbiome 
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(Fallani et al., 2010). A high abundance of Bifidobacteria has been associated with reduced risk 

for allergic disease (Björkstén et al., 2001; Kuitunen et al., 2012) and excessive weight gain 

(Dogra et al., 2015; Kalliomäki et al., 2008), and a low abundance has been associated with 

increased crying in infants (De Weerth, Fuentes, Puylaert, & De Vos, 2013). The observed 

difference in Bifidobacteria abundance in our study is consistent with other literature that has 

found that Bifidobacteria is sensitive to environmental perturbations (Zijlmans, Korpela, et al., 

2015), including preterm birth (Normann, Fahlén, Engstrand, & Lilja, 2013), antibiotic exposure 

(Fouhy et al., 2012), and Caesarean section (Biasucci et al., 2010), which have all been 

associated with a lower abundance of Bifidobacteria in the infant gut. Further, in addition to a 

lower abundance of Lachnospiraceae, whose benefits are discussed above, postpartum precarity 

was associated with a higher relative abundance of Streptococcaceae, whose genus 

Streptococcus has been associated with higher waist circumference (Fei et al., 2019), 

cardiometabolic diseases (Jackson et al., 2016), and inflammatory diseases (Echchannaoui et al., 

2002). In general, maternal peripartum precarity was associated with a lower abundance of 

protective bacteria including Bifidobacteria and Lachnospiraceae, and a higher abundance of 

pathogenic bacteria, including Enterobacteriaceae and Streptococcaceae, in infant stool. 

Together, these results suggest that infants born to women who experienced precarity in the 

peripartum period are at a higher risk for adverse long-term health outcomes, including allergy, 

overweight, and cardiometabolic and inflammatory diseases.  

Our analyses demonstrate mixed results for our second pathway, which assessed whether 

peripartum maternal cortisol influences infant gut microbiota composition. Our results 

demonstrate contradictory microbial colonization patterns between maternal cortisol 

dysregulation during pregnancy and in the postpartum. Specifically, a low maternal CAR (an 
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indicator of HPA axis dysregulation) during pregnancy was associated with a lower abundance 

of Bacteroidetes, and specifically the Bacteroides genus, while a low maternal CAR in the 

postpartum was associated with a higher abundance of these taxa. This difference in colonization 

based on the timing of maternal HPA axis dysregulation is likely due to the mechanism of 

colonization. Prenatal stress (measured through a low CAR) may have decreased Bacteroidetes 

in the mother’s own microbiota, which the infant was exposed to in utero and during birth, while 

postpartum maternal stress may have shaped infant biology through physical environmental 

exposures, breastfeeding, or parenting behaviors. Other work has found that Bacteroidaceae 

(Thompson et al., 2019) and Bacteroides (Biasucci et al., 2010) are higher in infants born 

vaginally and those who are formula-fed. Low maternal CAR in the postpartum was also 

associated with a higher abundance of Veillonellaceae, which has been associated with more 

cardiometabolic risk factors in adults (Fei et al., 2019). 

Last, our results demonstrate support for our third pathway, which analyzed whether 

infant gut microbiota composition was associated with differences in infant cortisol in the 

postpartum. Notably, our results showed that shifts in microbiota colonization in response to 

infant HPA axis dysregulation mirror major microbial shifts associated with maternal precarity, 

including a lower abundance of Actinobacteria, specifically Bifidobacteriaceae, and a higher 

abundance of Proteobacteria, specifically Enterobacteriaceae. Other research has also found that 

Bifidobacteria are intricately involved with the HPA axis. One study found that the 

reconstitution of Bifidobacteria decreased stress responses in mice (Sudo et al., 2004). Further, 

this association is of particular interest since prenatal exposure to maternal stress has often been 

associated with a lower abundance of Bifidobacteria in the infant gut (Bailey et al., 2004; 

Zijlmans, Korpela, et al., 2015). Together, this evidence, along with our own results, suggests 



 

 156 

that maternal stress may influence infant HPA axis activity through microbial agents, though 

research is limited.  

Beyond differences in taxa abundances, we found that in the postpartum, two measures of 

maternal precarity (depression and stress) and one measure of maternal HPA axis dysregulation 

(high morning cortisol) were associated with significantly lower alpha diversity. Studies have 

found that in adults, high microbial diversity has been associated with relatively more anti-

inflammatory bacteria, while low microbial diversity has been associated with relatively more 

pro-inflammatory bacteria as well as higher adiposity and inflammation (Jandhyala et al., 2015), 

suggesting that these stress-related differences in microbial diversity may lay the foundation for 

unfavorable consequences in the long-term. Notably, we did not observe differences in alpha 

diversity for any maternal precarity or HPA axis dysregulation exposure during pregnancy. Since 

alpha diversity continues to develop throughout infancy (Bäckhed et al., 2015), this observation 

could be a consequence of postpartum exposures on infant gut microbiome development.  

Despite the fact that we found support for some measures in each of our proposed 

pathways, other measures within each pathway were not significantly associated with differences 

in gut microbiome development, demonstrating the complexity of measuring stress. Notably, 

maternal “stress” itself, measured on the PSS, was not associated with any differences in taxa 

abundance either during or after pregnancy, though postpartum stress was associated with lower 

alpha diversity. Our results are in contrast to other work that has found that infants of mothers 

with high reported stress have a higher relative abundance of Proteobacterial groups and a lower 

relative abundance Bifidobacteria (Zijlmans, Korpela, et al., 2015). Our results may be due to the 

fact that we used the PSS to measure stress, while other studies have utilized measures of stress 

and anxiety to indicate stress. Nonetheless our analyses show similar results borne out through 
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other measures of maternal precarity, including maternal food insecurity, low social support, and 

depression.  

Our results demonstrate the importance of using a multi-faceted approach to interrogate 

these complex biological pathways. By using four measures of maternal precarity, food 

insecurity, low social support, depression, and stress, we were able to examine women’s 

experiences more fully. Further, many differences in microbiota composition were consistent 

across measures of precarity, suggesting an internal consistency among measures. For example, 

both postpartum stress and depression were associated with lower alpha diversity, and food 

insecurity, low friend support, and depression were all associated with lower Bifidobacteriaceae 

and higher Enterobacteriaceae (though not always at a significance of p < 0.05). Notably, this 

same pattern of colonization was observed in infants whose HPA axis was dysregulated, lending 

support for hypotheses regarding communication between of the brain and the gut and 

reinforcing the importance of examining these intertwined pathways with a variety of both 

psychosocial and biological measures. To our knowledge, this is only the second study to assess 

the effects of maternal prenatal stress on infant gut microbiome development and associated 

HPA axis function in humans, and it is the first study to include both prenatal and postnatal stress 

in these models. Despite the fact that postnatal environments are known to contribute to infant 

gut composition (Bäckhed et al., 2015; Thompson et al., 2019), many studies on early gut 

development focus only on prenatal stress exposures. A few studies with animal models have 

tested the effects of infant postnatal stress on gut microbiome development (Bailey & Coe, 1999; 

O’Mahony et al., 2009), but to our knowledge, none of have tested this relationship in humans, 

which may be due to methodological limitations of examining stress in infants. Nonetheless, in 

the present study, we use both maternal precarity and HPA axis function measures that could 
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affect infant stress as well as measures of infant HPA functioning to examine infant stress in the 

postnatal period. Our results lend support to the intergenerational transmission of stress through 

the microbiome in the peripartum period in humans. 

Nonetheless, these results have several important limitations. First, our sample size (n = 

25) allows us to test associations between variables, but not causation. Specifically, while 

pathways between infant gut microbiome composition and infant HPA axis functioning are 

evident, our analysis cannot distinguish directionality. Further, the pathways in our models 

would be elucidated more clearly with a measurement of maternal gut or vaginal microbiome 

composition, which we did not have in this study. Despite these limitations, significant and 

persistent differences in infant gut microbiota composition are associated with measures of 

maternal precarity, and this work lays a foundation for further testing of these pathways in 

human models. Last, the limitations of two covariates, mode of delivery and infant feeding are 

important to consider. First, mode of delivery included the categories of vaginal birth or 

Caesarean section, but we did not have data for membrane rupture, which could limit our 

understanding of which bacteria infants exposed to during birth. Second, infant feeding was split 

into two categories, “exclusive breastfeeding” and “ever received formula.” While formula 

feeding does induce important differences to the infant gut microbiome (Stewart et al., 2018), we 

did not have data on how often infants in the “ever formula” category were formula fed, and 

therefore we could not assess dose effects. Nonetheless, other work has suggested that infants 

who have ever received formula do have significant differences in their gut microbiome 

compositions than infants who are exclusively breastfed (Ho et al., 2018; Thompson, 

Monteagudo-Mera, Cadenas, Lampl, & Azcarate-Peril, 2015), suggesting that this distinction is 

important.  
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7.5 Conclusions 

Overall, we find that exposures to maternal precarity and HPA axis dysregulation are 

associated with an increase in pathogenic bacteria, including Enterobacteriaceae, 

Streptococcaceae, and Veillonellaceae, and a decrease in protective bacteria, including 

Bifidobacteriaceae, Lachnospiraceae, as well as a decrease in diversity. This initial colonization 

may permanently alter the infant’s neurodevelopment through changes to the synthesis of 

neuroinflammatory cytokines, neuromodulators, neurotransmitters, and the HPA axis, leaving 

the individual more susceptible to neuropsychiatric disease later in life (Diaz Heijtz, 2016; 

Jašarević et al., 2015). Further, unfavorable changes to an individual’s foundational gut 

microbiome may increase risk of metabolic disease, autoimmune disease and allergy, and 

intestinal inflammation (Cho & Norman, 2013; Diaz Heijtz, 2016; Goulet, 2015). Our results 

suggest that maternal stress is an important driver of early infant gut microbiome composition, 

and that patterns of infant gut colonization may cause or respond to differences in infant HPA 

axis development. Further research is needed to further elucidate the relationships among these 

important pathways.   
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Table 7.1 Maternal and infant characteristics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

a Measures taken when the infant was 2 months old 
 
 
  

Maternal Characteristics Mean (SD) or no. (%) 
Age (years)  27.9 (5.9)   
Parity   0.96 (0.89)  
Married  22 (88%)  
Education     
      Less than high school  3 (12%)  
      Completed high school  16 (64%)  
      Completed college   6 (24%)  
Born on Galápagos  9 (36%)  
    
Obstetric Data    
Gestational age (weeks)   38.3 (1.4)   
Caesarean delivery  14 (56%)  
    
Infant Characteristics    
Male offspring   15 (60%)  
Infant birth weight (g)   3346.4 (370.7)   
Formula feeding a  9 (36%)  
    
Precarity Measures Pre-

partum 
Postpartum,  

1 month 
Postpartum, 

2 months 
Food Insecure 12.0% -- -- 
High stress 60.0% 50.0% 36.0% 
High depression 24.0% 29.2% 16.0% 
Low family support 36.0% 46.0% 40.0% 
Low friend support 36.0% 38.0% 48.0% 
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Figure 7.2 High postpartum maternal depression, stress, and morning cortisol concentration 
significantly decrease Shannon’s Entropy in infant stool 
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Figure 7.3 Stool sample sequences from infants cluster separately by maternal postpartum 
depression, maternal postpartum cortisol awakening response, and infant cortisol on a Principal 
Coordinates Analysis (PCoA) 
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Table 7.2 Average infant gut microbiota composition at the phylum and family levels 

 
 
 
 
  
 

Phylum % abundance Family % abundance 
Actinobacteria 30.8% Bifidobacteriaceae 27.8% 
  Coriobacteriaceae 2.0% 
Bacteroidetes 13.6% Bacteroidaceae 11.6% 
Firmicutes 32.1% Enterococcaceae 2.4% 
  Lactobacillaceae 2.9% 
  Streptococcaceae 4.0% 
  Clostridiaceae 5.2% 
  Lachnospiraceae 4.4% 
  Peptostreptococcaceae 4.3% 
  Veillonellaceae 1.1% 
  Erysipelotrichaceae 6.0% 
Proteobacteria 23.4% Enterobacteriaceae 23.0% 
Other 0.1% Other 5.3% 
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Table 7.3 Maternal precarity and maternal and infant HPA axis dysregulation are associated with 
differences in taxa abundance in bivariate analyses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table shows all significant results for precarity measures and relative abundance of phylum and family 
taxa at p £ 0.05 
  

Exposure Outcome p-
value 

Maternal Precarity   
Phylum   
Food Insecurity, pregnancy Proteobacteria 0.02 
Family support, 1 month postpartum Proteobacteria 0.05 
Depression, 1 month postpartum Proteobacteria 0.04 
Depression, 2 months postpartum Actinobacteria 0.01 
Family   
Food Insecurity, pregnancy Enterobacteriaceae 0.02 
Family support, pregnancy Coriobacteriaceae 0.04 
Family support, 2 months postpartum Enterococcaceae 0.04 
Friend support, pregnancy Streptococcaceae 0.02 
Friend support, pregnancy Lachnospiraceae 0.05 
Friend support, 1 month postpartum Coriobacteriaceae 0.02 
Stress, pregnancy Clostridiaceae 0.02 
Stress, 2 months postpartum Clostridiaceae <0.01 
Depression, 1 month postpartum Streptococcaceae 0.01 
Depression, 1 month postpartum Enterobacteriaceae 0.05 
Depression, 2 months postpartum Bifidobacteriaceae 0.01 

HPA Axis Dysregulation   
Phylum   
Maternal CAR, postpartum Bacteroidetes 0.02 
Infant basal cortisol Actinobacteria 0.01 
Family   
Maternal CAR, pregnancy Streptococcaceae 0.02 
Maternal CAR, postpartum Veillonellaceae 0.04 
Maternal morning cortisol, pregnancy Erysipelotrichaceae 0.01 
Maternal morning cortisol, postpartum Peptostreptococcaceae 0.05 
Infant basal cortisol Bifidobacteriaceae 0.01 
Infant basal cortisol Streptococcaceae 0.03 
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Table 7.4 Maternal precarity and maternal and infant HPA axis dysregulation are associated with 
differences in taxa abundance in adjusted models 

Exposure Outcome Model 
p-value 

Variable 
b 

Variable 
p-value 

Maternal Precarity     
Phylum     
­ Food Insecurity, pregnancy ­ Proteobacteria 0.02 33.67 0.05 
¯ Friend support, pregnancy ­ Proteobacteria 0.02 -29.02 0.01 
­ Depression, 2 months postpartum ¯ Actinobacteria <0.01 -31.20 0.04 
Family     
­ Food Insecurity, pregnancy ­ Enterobacteriaceae 0.02 33.63 0.05 
­ Food Insecurity, pregnancy ¯ Lachnospiraceae 0.03 -6.63 0.01 
¯ Friend support, pregnancy ­ Enterobacteriaceae 0.02 -28.97 <0.01 
­ Depression, 1 month postpartum ­ Streptococcaceae <0.01 3.53 0.01 
­ Depression, 2 months postpartum ¯ Bifidobacteriaceae <0.01 -29.16 0.04 
­ Depression, 2 months postpartum ¯ Lachnospiraceae <0.01 -7.21 0.01 

HPA Axis Dysregulation     
Phylum     
¯ Maternal CAR, pregnancy ¯ Bacteroidetes <0.01 22.32 0.03 
¯ Maternal CAR, postpartum ­ Bacteroidetes <0.01 -23.05 <0.01 
­ Maternal morning cortisol, postpartum ­ Bacteroidetes 0.01 24.76 0.03 
­ Infant basal cortisol ¯ Actinobacteria <0.01 -35.69 <0.01 
­ Infant basal cortisol ­ Proteobacteria 0.04 26.29 0.03 
Family     
¯ Maternal CAR, pregnancy ¯ Bacteroidaceae 0.01 24.65 0.01 
¯ Maternal CAR, postpartum ­ Bacteroidaceae <0.01 -21.37 <0.01 
¯ Maternal CAR, postpartum ­ Veillonellaceae <0.01 -1.39 0.01 
­ Maternal morning cortisol, postpartum ­ Bacteroidaceae <0.01 27.79 0.01 
­ Infant basal cortisol ¯ Bifidobacteriaceae <0.01 -34.65 <0.01 
­ Infant basal cortisol ­ Enterobacteriaceae 0.04 26.15 0.04 

 
Table shows all significant results for precarity measures and relative abundance of phylum and family 
taxa at p £ 0.05 
 
All models control for mode of delivery and infant feeding. Pre-partum models control for postpartum 
precarity measures. Postpartum models control for pre-partum precarity measures.  
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Figure 7.4 Food security, social support, and postpartum depression contribute to differential 
relative abundance of the phylum and family taxonomic level in infant stool 

 
 
*Indicates a significant difference in relative abundance of taxa while controlling for mode of delivery, 
infant feeding, and pre- or postpartum exposure to the same precarity measure. 
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Figure 7.5 Maternal and infant cortisol are associated with differential relative abundance of the 
phylum and family taxonomic level in infant stool 

 
*Indicates a significant difference in relative abundance of taxa while controlling for mode of delivery, 
infant feeding, and pre- or postpartum exposure the relevant cortisol measure  
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CHAPTER 8: THE EMBODIMENT OF STRESS IN THE GALAPAGOS: 
CONCLUSIONS AND IMPLICATIONS 

 
 

8.1 Summary and Significance of Research Findings 

This project investigates the mechanisms through which both psychosocial and 

physiological maternal stress contribute to shifts in infant development over the course of the 

peripartum period. In particular, this research incorporates the understudied roles of the 

postpartum period, epigenetic regulation in the placenta, and the gut microbiome into existing 

models for infant HPA axis development that have continuously reported inconsistent findings. 

Since the infant HPA axis has consistently been associated with metabolic (Reynolds et al., 

2001) and neurobehavioral (Davis et al., 2011; O’Connor et al., 2002; O’Donnell et al., 2013) 

disorders in later life, disentangling the mechanisms that underpin early HPA axis dysregulation 

is essential. The results of each specific aim are below. 

 This project’s first aim, to identify which factors contribute to psychosocial stress in 

peripartum women in the Galápagos and to assess how these exposures shape maternal and 

infant HPA axis regulation, is addressed in Chapter 5. Previous research has shown that maternal 

distress during pregnancy is associated with long-term effects on infant HPA axis regulation, but 

the underlying physiology and the role of the postpartum period are not well understood. In this 

chapter, we used a biocultural approach to first qualitatively identify a central and culturally 

relevant source of distress for women on the Galápagos Islands (low social support), and then 

use it as an exposure to quantitatively test its effect on maternal and infant HPA axis 

development. We tested three propositions: 1) a direct effect of maternal social support 
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(separately for pregnancy and the postpartum) on infant HPA axis regulation, 2) an additional 

indirect effect of social support on HPA axis regulation through maternal HPA axis regulation 

(separately for pregnancy and the postpartum), and 3) an indirect effect of social support during 

pregnancy on HPA axis regulation through postpartum support. Through our analysis, we 

confirm our first hypothesis, that during pregnancy and the postpartum, low social support is 

associated with infant HPA axis dysregulation. Our results do not support our second hypothesis 

that maternal HPA axis regulation has an indirect effect on relationship between maternal social 

support and infant HPA axis regulation during pregnancy or in the postpartum. We confirm our 

third hypothesis, that postpartum support has an indirect effect on the relationship between 

prenatal support and infant HPA axis functioning, suggesting that postpartum experience can 

attenuate prenatal insults to infant development. By incorporating the culturally-salient role of 

social support during pregnancy and the postpartum into a model for infant HPA axis 

development, this study adds a critical component to the literature on the developmental origins 

of health and disease that will elucidate the pathways through which early environments shape 

development. Further, this study is one of the first to investigate the longitudinal influence of 

maternal distress throughout the peripartum period on infant HPA axis development, and its 

primary result, that the postpartum period continues to influence infant HPA axis functioning, 

can be used to develop programming that emphasizes continual, pre- and postpartum mental 

health support for women. 

This project’s second aim, to assess both the psychosocial and physiological 

relationships between maternal distress during pregnancy and the placental enzyme, HSD11B2, 

as well as the relationship between HSD11B2 and infant HPA axis development, was assessed in 

Chapter 6. The placental enzyme, HSD11B2, catalyzes the metabolism of cortisol to inert 
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cortisone in the placenta, and thus is a central component of the pathway through which maternal 

cortisol reaches a developing fetus. Nonetheless, little is known about what influences this 

enzyme’s functioning and expression. Using adjusted linear regression models, we assessed the 

effects of maternal psychosocial (stress and depression) and physiological (HPA axis 

dysregulation) distress on HSD11B2 methylation and expression and then tested how these 

measures influence infant HPA axis development. Our results show that that higher HSD11B2 

methylation is associated with lower HSD11B2 expression, and that maternal HPA axis 

dysregulation during pregnancy is associated with lower placental HSD11B2 expression, which 

is associated with an exaggerated cortisol reactivity in infants. Sex-specific analyses found that 

maternal depression was marginally associated with more placental HSD11B2 methylation and 

significantly associated with less HSD11B2 expression for the mothers of girls, but not boys. 

Our results support a disrupted adaptive framework, in which the ability to upregulate HSD11B2 

expression in response to acute stress diminishes as maternal stress becomes chronic. In this 

model, it is possible that chronic stress exhausts the protective mechanism of HSD11B2, leaving 

the infant vulnerable to high levels of maternal cortisol, which could injure the fetal HPA axis 

and disrupt neurobehavioral and metabolic development. By incorporating both psychosocial and 

physiological measures of maternal distress into our model, as well as the role of infant HPA 

axis development in response to placental changes, this study adds a critical component to the 

literature on the fetal programming that will help illustrate the biological underpinnings of early 

life adaptations.  

This project’s third aim, to analyze the relationships among maternal stress and HPA 

axis dysregulation during the peripartum period, infant gut microbiome composition, and infant 

HPA axis functioning, was addressed in Chapter 7. While many studies have examined the HPA 
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axis as the primary mechanism for the relationship between maternal stress and metabolic 

diseases and neurobehavioral disorders in offspring, recent research on the brain-gut axis 

suggests that the microbiome may play an important role in this pathway. In this chapter, we 

examined food insecurity, low social support, depression, and stress as measures of precarity that 

may contribute to physiological changes. Measures of maternal precarity and maternal and infant 

HPA axis functioning were all associated with differences microbiome composition. Maternal 

precarity was associated with lower diversity and higher relative abundance of 

Enterobacteriaceae and Streptococcaceae and a lower relative abundance of Bifidobacteriaceae 

and Lachnospiraceae. These patterns of colonization for Enterobacteriaceae and 

Bifidobacteriaceae mirrored those found in infants with HPA axis dysregulation. Maternal HPA 

axis dysregulation during pregnancy was associated with a lower relative abundance of 

Bacteroidaceae, while the opposite was found for maternal HPA axis dysregulation in the 

postpartum. Maternal HPA axis dysregulation during pregnancy was also associated with a 

greater relative abundance of Veillonellaceae. Overall, exposures to precarity and HPA axis 

dysregulation were associated with an increase in pathogenic bacteria, including 

Enterobacteriaceae, Streptococcaceae, and Veillonellaceae, and a decrease in protective 

bacteria, including Bifidobacteriaceae and Lachnospiraceae, as well as a decrease in overall 

microbiota diversity. Our results suggest that the gut microbiome is intricately intertwined with 

both maternal stress and infant HPA axis development and that the gut microbiome likely plays 

an important role in the relationship between peripartum maternal stress and long-term shifts in 

infant development.  
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8.2 Implications for Maternal and Child Health in the Galápagos 

 This research demonstrates the intergenerational effects of maternal stress, depression, 

food insecurity, and low social support on infant development. While the results of this work 

have implications for the mechanisms underpinning the intergenerational inheritance of stress, 

they also have implications for the people of the Galápagos Islands. The Galápagos Islands were 

selected as the setting for this research in part for their uniquely stressful environment. 

Unbeknownst to most visitors of the islands, everyday life for residents poses a variety of 

geographic, political, and infrastructural challenges. Food and water insecurity contribute to 

detrimental health consequences and economic hardship, strict migration policies limit 

connections with friends and family on the mainland, inaccessibility of trusted health care 

exacerbates existing health conditions, and steep socioeconomic inequalities hinder access to 

everyday needs in the islands’ tourist economy. Together, these factors also impair overall well-

being and contribute to mental health concerns including stress, anxiety, and depression, which 

have not been adequately addressed by the healthcare system on the island.  

 Interviews with participants revealed that although there is one psychologist appointed at 

HOJ, he has not been able to help with participants’ concerns about their well-being, and 

particularly, their concerns about depression. Even participants who had a history of depression 

(diagnosed on the mainland), did not feel comfortable discussing these concerns with the 

psychologist on the island, which could stem from a variety of factors. First, as discussed in 

Chapter 2, residents are still building trust with the new, government-built hospital (HOJ), and 

many are skeptical of the quality of physicians. Second, since clinical appointments for health 

care providers on the islands are contracted for only a few years at a time, the community has not 

had the opportunity to build trust with most providers, making intimate conversations about 
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mental health and depression difficult. In the same vein, in interviews, participants often 

discussed their hesitance to confide in anyone outside their own families due to the proclivity for 

gossip on the small island of only 7,000 people. In interviews, health care providers at HOJ have 

also suggested that doctor-patient confidentiality is not always upheld, which prevents patients 

from receiving the care they may need. 

 In providing evidence for how domains of distress are embodied in the health of women 

and their children, this research emphasizes the importance of addressing mental health burdens 

for residents of the Galápagos. Building psychological service capacity at HOJ will be integral to 

this process, but within the hospital, best practices guidelines for doctor-patient confidentiality 

will need to be developed and followed for these psychological services to be effective. This in 

itself will require a cultural shift in the hospital, which will take time. Further, this research 

provides evidence that infant HPA axis development continues after birth and that postpartum 

relief from distress can ameliorate some of the consequences of prenatal adversity. This finding 

may be used to develop programs for maternal and child health on the islands. Last, as many 

women discussed experiencing a lack of social support, programs may consider implementing 

partner or group work, so that women have the opportunity to develop strong relationships with 

their partners or with other women on the island, which could improve their own well-being as 

well as the health of their children. Including fathers in infant development workshops would 

also ameliorate some of the tensions expressed by women regarding machismo on the island and 

provide caregivers with the knowledge and resources they need to work together in childrearing.  

 

8.3 Overall Strengths and Limitations  

This research utilizes a longitudinal, mixed-methods design to analyze rich narrative 
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interviews alongside psychosocial and physiological measures of stress to examine how stress 

contributes to the health and well-being of mothers and their children on the Galápagos Islands. 

This project incorporates three under-studied concepts, the postpartum period, the role of the 

placenta, and communication with the gut microbiome, into the traditional study of maternal 

stress and infant HPA axis development. Further, this work uses anthropological and 

evolutionary theories to situate these results within anthropology and epidemiology. 

One key strength of this research its multi-faceted approach used to interrogate the 

concept of psychosocial stress. In Chapter 5, low social support is identified as a central and 

culturally-relevant distress exposure through the qualitative analysis of interview data. In 

Chapter 6, stress and depression are used to examine psychosocial stress, and in Chapter 7, food 

insecurity, low social support, depression, and stress, were each used as a measure of precarity to 

investigate differences in microbiome development. Examining stress in this multidimensional 

way provides a deeper understanding of an individual’s well-being that moves beyond traditional 

measures of “stress.” Using varied measures of psychosocial distress also defines finely 

articulated concepts, which can be intervened upon in different ways. 

This study’s longitudinal design is another key strength. Mother-infant dyads were 

enrolled in the study for approximately three months, during which time they each participated in 

four visits. This design allowed for the collection of maternal psychosocial and physiological 

(salivary cortisol) stress data from one prenatal and two postpartum time points. This data was 

essential to demonstrating the importance of the postpartum period in shifting infant HPA axis 

development (Chapter 5). Further, the longitudinal design was also central to the foundational 

model used throughout each chapter, as it assesses how experiences in pregnancy and the 

postpartum shape infant development. 
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More broadly, this project provides novel evidence for various biological pathways in 

humans. The role of both placental HSD11B2 and the gut microbiome are only recently being 

considered as mechanisms involved in the intergenerational transfer of stress. Consequently, 

Chapter 6 constitutes the first study to assess how placental HSD11B2 methylation and 

expression respond to maternal distress and shape infant cortisol in humans. After Stroud and 

colleagues (Stroud et al., 2016), this is only the second study to examine how differences in 

HSD11B2 measures shape infant HPA axis regulation in humans. Further, to my knowledge, 

Chapter 7 is only the second study to examine the effects of maternal prenatal stress on infant gut 

microbiome development and associated HPA axis function in humans and is the first study to 

include both prenatal and postnatal stress in these models. 

Last, while the majority of studies on intergenerational inheritance of stress have been 

conducted with Caucasian populations in high-income countries (particularly the United States 

and Europe), this is one of the first studies to assess these relationships in a primarily Mestizo 

population in South America. This distinction is particularly important for Chapter 6, since 

recent work has found differences in HSD11B2 measures based on ethnicity (Capron et al., 

2018).  

Despite these strengths, this research is not without limitations. The study’s small sample 

size limits its statistical power, but overall, we estimate that we were enrolled over half of all 

births on San Cristóbal in 2018 based on annual birth rates. Second, some participants were lost 

to follow-up, primarily due to participant travel to the mainland to visit family. We also faced 

challenges collecting a sufficient amount of infant saliva for analysis, particularly at 3 days 

postpartum, when infants do not produce much saliva. These challenges limit our statistical 

power and the generalizability of results. Nonetheless, our studies do detect clear, consistent, and 
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significant relationships between measures of distress and our outcomes, and as novel 

contributions to biological pathways in humans, these studies may serve as foundational 

exploratory research for larger projects. 

 

8.4 Directions for Future Research  

 Future research should examine these pathways on a larger scale, particularly in non-

Caucasian populations in low- and middle-income contexts. In regard to the role of the 

continuum of early development in particular, future research should assess how maternal mental 

health interventions during the peripartum period influence shifts in maternal and infant 

physiology. This research could inform evolutionary theory by providing evidence for the 

adaptive mechanisms behind early life modifications to development. For example, this work 

may be able provide evidence for either predictive adaptive responses, through which fetuses 

adjust their development according to their mother’s current environment (Gluckman et al., 

2005, 2007; Godfrey et al., 2010), and others’ hypotheses that early life shifts in development 

respond to cues from maternal physiology, which has built up over her lifetime (Kuzawa, 2005; 

Wells, 2007, 2010). This work would also be useful in developing interventional mental health 

programs during this important period of growth and development for both mother and infant. 

Future research on the HSD11B2 pathway should incorporate a variety of epigenetic 

measures. For example, several studies have found that another protein, NRC31, serves as a 

placental glucocorticoid receptor that may be an upstream regulator placental HSD11B2 (Capron 

et al., 2018). Assessing how this protein, and others, are influenced by epigenetic changes will be 

essential to building a better understanding of placental physiology, which has been largely 

understudied.   
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 Further research on the gut microbiome’s role in this pathway should incorporate 

maternal vaginal and gut microbiome measures in order to articulate biological pathways more 

clearly. Other research should investigate the utility of vaginal seeding, the process through 

which a swab is used to transfer maternal vaginal fluids to the mouth, nose, or skin of the infant 

in order to transfer maternal bacteria to an infant. While this practice is currently being 

investigated (but not recommended) for infants born by Caesarean, its central principle could 

also be used in other contexts, like priming an infant with more beneficial and less pathogenic 

bacteria if its mother’s microbiota suggest that dysbiosis. More research is needed in this area to 

determine intervention protocols for the gut microbiome. 

 

8.5 Conclusions 

 This dissertation aimed to better understand the complex psychosocial and physiological 

pathways through which stress is embodied in women and their infants on the Galápagos Islands. 

This work employed both biocultural and evolutionary models to investigate these pathways and 

incorporated three under-studied concepts into traditional frameworks for intergenerational stress 

transfer: the role of the postpartum period, the role of the placenta, and the role of the gut 

microbiome.  

The results contribute novel findings to human research on DOHaD. First, we find that 

the postpartum period can attenuate prenatal insults to infant HPA axis development, thus 

providing support for a continuum of early development and emphasizing the importance of 

early life as a developmental niche in which a child’s physical and social setting, customs of 

childcare, and psychology of caretakers can affect infant health and development. Second, we 

find that physiological stress during pregnancy, measured through maternal HPA axis 
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dysregulation, is associated with lower placental HSD11B2 expression, which is associated with 

an exaggerated cortisol reactivity in infants. Further, maternal psychosocial distress during 

pregnancy, measured through depression was marginally associated with more placental 

HSD11B2 methylation and significantly associated with less HSD11B2 expression for the 

mothers of girls, but not boys. Evolutionarily, these results fit into a disrupted adaptive 

framework, in which the ability to upregulate HSD11B2 expression in response to acute stress 

diminishes as maternal stress becomes chronic. In this framework, which is supported by 

previous research with animal models, it is possible that chronic stress exhausts the protective 

mechanism of HSD11B2, leaving the infant vulnerable to high levels of maternal cortisol, which 

could injure the fetal HPA axis and disrupt neurobehavioral and metabolic development. 

Notably, this is the first study to assess how placental HSD11B2 methylation and expression 

respond to maternal distress and shape infant cortisol in humans. Last, in our microbiome 

pathway, we find that maternal precarity and HPA axis dysregulation were associated with an 

increase in pathogenic bacteria, including Enterobacteriaceae, Streptococcaceae, and 

Veillonellaceae, and a decrease in protective bacteria, including Bifidobacteriaceae and 

Lachnospiraceae, as well as a decrease in overall microbiota diversity. These results suggest that 

the gut microbiome likely plays an important role in the relationship between peripartum 

maternal stress and long-term shifts in infant development. This is the second study to assess the 

effects of maternal prenatal stress on infant gut microbiome development and HPA axis function 

in humans, and it is the first study to include both prenatal and postnatal stress in these models. 

Overall, these findings contribute novel insights into early life development trajectories and 

reinforce the importance of using multidimensional measures of “stress” to investigate early 
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adverse environments. Results from this work can be used to inform both maternal mental health 

and early infant development interventions. 
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APPENDIX A: RECRUITMENT STUDY SUMMARY 
 

Esquema del Estudio 
Estudio: Madres sanas, bebés sanos 

Investigador: Hannah Jahnke, [phone number redacted], hjahnke@live.unc.edu 
 

Visita 1: 
• ¿Cuándo?: Esta visita se realizará cuando tenga entre 34 y 36 semanas de embarazo. 
• ¿Dónde?: Esta visita se realizará en su casa o en cualquier otro lugar que elija. 
• ¿Cuánto tiempo?: Durará aproximadamente una hora. 
• ¿Qué?: Consistirá en: 

o Cuestionarios 
o Muestra de saliva de la mamá 
o Muestra de cabello de mamá (solo si usted está de acuerdo) 

 
Visita 2: 

• ¿Cuándo?: Se realizará en la primera semana después del nacimiento de su bebé. 
• ¿Dónde?: Esta visita se realizará en su casa o en cualquier otro lugar que elija. 
• ¿Cuánto tiempo?: Durará aproximadamente diez minutos. 
• ¿Qué?: Consistirá en: 

o Muestra de saliva del bebé 
 
Visita 3: 

• ¿Cuándo?: Esta visita se realizará cuando tenga aproximadamente 4 semanas. 
• ¿Dónde?: Esta visita se realizará en su casa o en cualquier otro lugar que elija. 
• ¿Cuánto tiempo?: Durará aproximadamente una hora. 
• ¿Qué?: Consistirá en: 

o Cuestionarios 
o Muestra de saliva de la mamá 
o Del bebé: medidas  

 
Visita 4: 

• ¿Cuándo?: Esta visita se realizará cuando tenga aproximadamente 8 semanas. 
• ¿Dónde?: Esta visita se realizará en su casa o en cualquier otro lugar que elija. 
• ¿Cuánto tiempo?: Durará aproximadamente una hora. 
• ¿Qué?: Consistirá en: 

o Cuestionarios 
o Muestra de saliva de la mamá 
o Muestra de cabello de mamá (solo si usted está de acuerdo) 
o Del bebé: Muestra de saliva, muestra de heces, y medidas  
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APPENDIX B: INFORMED CONSENT DOCUMENTS 
 
Universidad Carolina del Norte en Chapel Hill   
Consentimiento de los adultos y el permiso de los padres para que un menor participe en 
un estudio de investigación 
 
Fecha de la versión del formulario de consentimiento: 11/13/17 
Nº de estudio del IRB 17-0272 
Título del estudio: Efectos intergeneracionales del estrés materno en las islas Galápagos  
Investigador principal: Hannah Jahnke 
Departamento de la UNC-Chapel Hill: Antropología  
Número telefónico de la UNC-Chapel Hill: +1-508-397-9329 
Dirección de correo electrónico: hjahnke@live.unc.edu  
Asesor facultativo: Amanda Thompson 
Número telefónico de asesor facultativo: (919) 843-2060 
 
Origen del financiamiento: National Science Foundation 
_________________________________________________________________ 
 
¿Cuáles son algunas de las cuestiones generales que usted debe saber sobre los estudios de 
investigación? 
Se le pedirá su consentimiento para participar en el estudio de investigación. Al dar su 
aprobación o consentimiento significa que usted aprueba o da el permiso para participar. La 
participación en este estudio es voluntaria. Si no desea participar o dar permiso para que su hijo 
participe, usted no tiene que hacerlo, y usted y su niño no será incluido en el estudio. Usted y su 
hijo puede dejar de participar en cualquier momento, por cualquier razón, sin ninguna penalidad. 
 
Los estudios de investigación han sido diseñados para obtener información nueva. Es posible que 
esta nueva información ayude a las personas en el futuro. Pueda que no reciba ningún beneficio 
directo de la participación en este estudio de investigación. También puede haber riesgos 
asociados con la participación en estudios de investigación. 
 
Los detalles de este estudio se discuten a continuación. Es importante que usted entienda esta 
información para que pueda tomar una decisión informada sobre la participación en este estudio 
de investigación. Se le dará una copia de este formulario de consentimiento. Usted debe 
preguntar a los investigadores mencionados anteriormente, o a los miembros del personal que los 
asisten, cualquier pregunta que tenga acerca de este estudio en cualquier momento. 
 
 
¿Cuál es el objetivo de este estudio?  
El propósito del estudio es comprender mejor los factores que influyen en el estrés materno 
durante y después del embarazo en las Islas Galápagos y cómo este estrés da forma a la salud 
infantil. Para evaluar la salud materna e infantil, este estudio analizará los niveles de hormonas 
maternas e infantiles, una enzima placentaria y la salud intestinal del bebé. 
Hay hormonas que regulan el estrés en nuestros cuerpos. Cuando el estrés es demasiado alto, los 
niveles de estas hormonas del estrés pueden aumentar, lo que puede conducir a otros problemas 
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de salud. El alto estrés materno durante y después del embarazo puede aumentar los niveles de 
estrés en el bebé en desarrollo de la madre. Se tomarán muestras de saliva una vez durante el 
embarazo y dos veces después del embarazo. También se le extraerá una pequeña muestra de su 
cabello una vez durante su embarazo y una vez después. También se recolectarán muestras de 
saliva de su hijo en la primera semana de su vida y antes y después de un pinchón del talón 
cuando su hijo tiene ocho semanas de edad. Las muestras de saliva y pelo se llevarán al Centro 
de Ciencias de Galápagos y se analizarán para determinar los niveles de estrés. 
 
También hay una enzima en la placenta que regula las hormonas del estrés durante el embarazo. 
Se tomará una pequeña muestra de la placenta después del nacimiento del niño. La muestra se 
examinará en USFQ para medir los niveles de esta enzima. 
 
Existen bacterias beneficiosas en los intestinos que ayudan a digerir los alimentos. Ellos son 
responsables de mantener intestinos sanos. Se recogerá una pequeña muestra de heces de su hijo 
cuando tengan ocho semanas. La muestra se llevará a la Universidad de Carolina del Norte para 
determinar si los intestinos están sanos mediante el examen de bacterias beneficiosas. 
 
Se le harán preguntas sobre su salud general y la salud de su hijo. También se le harán preguntas 
sobre su estrés durante y después del embarazo y sobre su interacción con su hijo después de que 
nazca. También mediremos su altura y peso. Se le pedirá permiso para que su hijo participe en 
este estudio porque usted es la madre o el cuidador del niño. 
 
Le solicitan que participe en el estudio porque está embarazada y vive en las Islas Galápagos. 
 
 
¿Existe algún motivo por el que usted no deba participar en este estudio? 
Usted no debe dar permiso si usted no quiere que su hijo menor de 1 año participe. Usted puede 
negarse a dejarlos participar si no quiere que ellos participen. 
 
 
¿Cuántas personas participarán en este estudio? 
Si usted participa y decide permitir que su hijo participe en este estudio, usted y su niño será uno 
de los aproximadamente 100 niños y 100 madres en este estudio de investigación. 
 
 
¿Cuánto tiempo participará en este estudio?  
Usted y su hijo serán contactados aproximadamente ocho veces en aproximadamente cuatro 
meses. Te visitaremos una vez durante tu embarazo y tres veces después de haber dado a luz. 
Todas las visitas durarán aproximadamente una hora con la excepción de la segunda visita, que 
solo tomará unos diez minutos. Recibirá recordatorios de llamadas telefónicas antes de cada 
visita. Las muestras de saliva, cabello, placenta y heces recolectadas a lo largo del estudio serán 
almacenadas y analizadas dentro de dos años. 
 
¿Qué ocurrirá si participa en este estudio? 
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Durante cuatro meses, se le visitará cuatro veces, una durante su embarazo y tres veces después 
del nacimiento. Todas las visitas ocurrirán en su casa. La visita prenatal ocurrirá cuando tenga 
34-36 semanas de embarazo. En la visita prenatal, será entrevistado, responderá cuestionarios 
sobre estrés, ansiedad y depresión, y proporcionará muestras de saliva y una pequeña muestra de 
cabello. En la Visita 1, se le darán instrucciones detalladas y materiales de recolección para 
proporcionar una muestra de saliva después de las visitas. Después de las visitas 1, 3 y 4, 
volveremos más tarde en la semana para recoger su muestra de saliva. 
 
La visita 2 estará una semana después del nacimiento, cuando el personal del estudio la visitará 
para recolectar una muestra de saliva de su bebé. La visita 3 ocurrirá cuando su hijo tenga cuatro 
semanas y estará en su casa o en su ubicación preferida, donde será entrevistado, responderá 
preguntas sobre el estrés, la ansiedad, la depresión y la interacción con su bebé y le brindará una 
muestra de saliva. La visita 3 ocurrirá cuando su hijo tenga cuatro semanas y estará en su casa o 
en su ubicación preferida y procederá de la misma manera que en la Visita 3, pero también 
incluirá muestras de saliva de su hijo antes y después de un pinchazo en el talón. El pinchazo en 
el talón servirá para proporcionar niveles de hierro para evaluar la anemia en los bebés y servirá 
como un estrés para que se pueda evaluar la reactividad del cortisol salival. El pinchazo en el 
talón se realizará con un microlanceta desechable y estéril, del mismo tipo que se usa de manera 
rutinaria en las visitas de detección neonatal. Además, en la Visita 4, recogeremos una segunda 
muestra pequeña de su pelo y una muestra de materia fecal de su bebé. Cada visita durará 
aproximadamente una hora, con la excepción de la Visita 2, que tomará aproximadamente diez 
minutos. Se realizarán recordatorios antes de cada visita de seguimiento. 
 
El personal del estudio recogerá sus muestras de placenta del hospital con su permiso. Las 
muestras de saliva y placenta se analizarán en el Centro de Ciencias de Galápagos y los 
laboratorios de la USFQ dentro de dos años. Las muestras de pelo y heces se analizarán en UNC-
Chapel Hill dentro de dos años. Las muestras no se analizarán para el análisis de infecciones, 
enfermedades o genética específicas. No recibirás estos resultados. 
 
Puede optar por no responder una pregunta durante las entrevistas por cualquier motivo. Puede 
optar por abandonar el estudio en cualquier momento sin penalización. 
 
 
¿Cuáles son los posibles beneficios por participar en este estudio? 
 
La investigación está diseñada para beneficiar a la sociedad mediante la obtención de nuevos 
conocimientos. Es posible que no se beneficie personalmente por su participación en este estudio 
de investigación. 
 
 
¿Cuáles son los posibles riesgos o molestias que implica la participación en este estudio? 
Aunque es raro, hablando acerca de su salud y la salud de sus hijos puede causar cierta angustia 
emocional para la madre (o cuidador). Por lo tanto, estas preguntas se pedirán con compasión y 
comprensión. Si el investigador ve evidencia de angustia emocional, la madre se le dará tiempo 
para recomponerse y se preguntará si le gustaría continuar o saltar a otras cuestiones menos 
angustiantes. 
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¿De qué manera se protegerá su privacidad? 
En este estudio se protegerá la privacidad y la confidencialidad de los participantes. Los 
participantes no serán identificados en los informes o publicaciones sobre este estudio. Los 
nombres serán codificados usando un sistema numérico. La información obtenida a partir del 
cuestionario y las muestras se almacenarán en un fichero automatizado en la oficina del 
investigador. 
 
Los participantes no serán identificados en informes o publicaciones sobre este estudio. Aunque 
se realizarán todos los esfuerzos por conservar los registros de investigación en forma privada, 
podrá ocurrir que la ley federal o estatal exija que tales registros, incluida la información 
personal, sean revelados. Esto es muy poco probable, pero si alguna vez se pide que sean 
revelados, UNC-Chapel Hill tomará las medidas permitidas por ley para proteger la privacidad 
de la información personal. En algunos casos, su información reunida en este estudio de 
investigación podría ser examinada por representantes de la Universidad, patrocinadores de la 
investigación u organismos gubernamentales con fines tales como el control de calidad o la 
seguridad. 
 
Las grabaciones de audio se almacenarán como archivos protegidos con contraseña. Después de 
la transcripción, los archivos de audio serán destruidos. Los participantes que no deseen ser 
grabados pueden solicitar que se apaguen las grabaciones de audio.  
 
Compruebe la línea que mejor se adapte a su elección: 
 
 
_____ Está bien grabarme durante la investigación 
 
_____ No está bien grabarme durante la investigación 
 
 
¿Recibirá algo por participar en este estudio? 
Usted no recibirá nada por participar en este estudio. 
 
 
¿Le costará algo la participación en este estudio? 
No existirá ningún costo por participar en este estudio. 
 
 
¿Qué sucede si desea formular preguntas sobre este estudio? 
Tiene el derecho de preguntar, y que le respondan, cualquier duda que tenga acerca de esta 
investigación. Si tienen preguntas o inquietudes, deben ponerse en contacto con los 
investigadores mencionados en la primera página de este formulario. 
 
 
¿Qué sucede si usted desea formular preguntas sobre sus derechos como participante de 
una investigación? 
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Toda investigación realizada con voluntarios humanos es examinada por un comité que trabaja 
para proteger sus derechos y su bienestar. Si tiene preguntas o inquietudes acerca de sus derechos 
como sujeto de una investigación, puede ponerse en contacto, de manera anónima si lo desea, 
con el Institutional Review Board de Universidad de Carolina del Norte (Comité de revisión 
institucional, IRB por sus siglas en inglés) al 1+919-966-3113 o por correo electrónico a 
IRB_subjects@unc.edu o puede contactar al Dr. William F. Waters, Presidente del Comité de 
Bioética de la USFQ, al siguiente correo electrónico: comitebioetica@usfq.edu.ec. 
 
 
 
Acuerdo del participante:  
 
He leído la información proporcionada más arriba. He realizado todas las preguntas que tengo en 
este momento. Yo voluntariamente estoy de acuerdo para mí y por mi hijo (o pupilo legal) , 
_______________________ , a participar en este estudio de investigación. 
 
 
 
 
_________________________________________    _________________ 
Firma de la madre del niño participante     Fecha   
 
_________________________________________ 
Nombre de la madre 
 
 
 
_________________________________________    _________________ 
Firma de la madre para participar      Fecha   
 
_________________________________________ 
Nombre de la madre 
 
 
_________________________________________   _________________ 
Firma de la persona que obtiene el consentimiento   Fecha   
 
_________________________________________ 
Nombre de la persona que obtiene el consentimiento en imprenta 
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APPENDIX C: SURVEYS AND SCALES 
 
Household Survey of Assets 
 
¿Tiene su hogar alguno de los siguientes elementos? 
 

Posesión Cantidad Notas 
Electricidad   
Panel Solar   
Internet   
Wifi   
Aire acondicionado   
Coche/Carro   
Moto   
Bicicleta   
Televisión   
Computadora   
Teléfono tipo de iPhone/Android   
Teléfono móvil no “smart”/antiguo   
Cocina eléctrica   
Cocina de gas   
Licuadora   
Microonda   
Refrigeradora   
Horno   
Ducha   
Baño   
Lavadora   
Secadora   
Lancha   
Empleada doméstica    

 
By Observation: 

1. What is the material used for the floors? ________ 
2. Is the furniture primarily wooden or plastic? ______________ 
3. Matching wooden living room set? ________       
4. Matching wooden dining room set? ___________         
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Perceived Stress Scale 
Escala de Estrés Percibido 

Las siguientes preguntas se refieren a sus sentimientos y pensamientos durante EL ÚLTIMO 
MES. En cada pregunta, se le pedirá. Aunque algunas de las preguntas son similares, hay 
pequeñas diferencias entre ellas y debe tratar cada una como una pregunta separada. El mejor 
enfoque es responder con bastante rapidez. Es decir, no trate de contar el número exacto de veces 
que se sintió de una manera particular, pero dígame la respuesta que en general parece la mejor.  
Por cada afirmación, por favor dígame si usted ha tenido estos pensamientos o sentimientos: 
nunca, casi nunca, de vez en cuando, a menudo, o muy a menudo. (Lea todas las opciones de 
respuesta cada vez) 
 Nunca Casi 

nunca 
De vez 

en 
cuando 

A 
menudo 

Muy a 
menudo 

1. En el último mes, ¿con qué frecuencia ha estado 
afectado por algo que ha ocurrido 
inesperadamente? 

0 1 2 3 4 

2. En el último mes, ¿con qué frecuencia se ha 
sentido incapaz de controlar las cosas importantes 
en su vida? 

0 1 2 3 4 

3. En el último mes, ¿con qué frecuencia se ha 
sentido nervioso o estresado? 

0 1 2 3 4 

4. En el último mes, ¿con qué frecuencia ha estado 
seguro sobre su capacidad para manejar sus 
problemas personales? 

0 1 2 3 4 

5. En el último mes, ¿con qué frecuencia ha 
sentido que las cosas le van bien? 

0 1 2 3 4 

6. En el último mes, ¿con qué frecuencia ha 
sentido que no podía afrontar todas las cosas que 
tenía que hacer? 

0 1 2 3 4 

7. En el último mes, ¿con qué frecuencia ha podido 
controlar las dificultades de su vida? 

0 1 2 3 4 

8. En el ultimo mes, ¿con que frecuencia se ha 
sentido que tenia todo bajo control? 

0 1 2 3 4 

9. En el último mes, ¿con qué frecuencia ha estado 
enfadado porque las cosas que le han ocurrido 
estaban fuera de su control? 

0 1 2 3 4 

10. En el último mes, ¿con qué frecuencia ha 
sentido que las dificultades se acumulan tanto que 
no puede superarlas? 

0 1 2 3 4 
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Patient Health Questionnaire 8 
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Perceived Social Support – Family 

 
Perceived Social Support – Friends  
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MacArthur SSS 
 
Piense en esto escalera como una representación de las personas en sus comunidades.  
Las personas definen la comunidad de diferentes maneras; por favor defínalo de la forma que sea 
más significativa para usted. En la parte superior de la escalera están las personas que tienen la 
posición más alta en su comunidad. En la parte inferior están las personas que tienen la posición 
más baja en su comunidad.  
¿Dónde se colocaría usted en esta escalera?  
Coloque una "X" grande en el escalón donde cree que se encuentra en este momento de su vida, 
en relación con otra gente en su comunidad. 
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Maternal Postnatal Attachment Scale 
 

Escala de Apego Maternal Postparto 
Estas preguntas tratan acerca de los pensamientos y sentimientos que usted tiene acerca de su 
bebé. Por favor, elija una sola opción en cada pregunta. 
 

1. Cuando estoy cuidando al bebé, me siento fastidiada o molesta: 
a. Muy Frecuentemente 
b. Frecuentemente 
c. Ocasionalmente 
d. Muy rara vez 
e. Nunca 

 
2. Cuando estoy cuidando al bebé, siento que se está portando mal a propósito o que lo hace 

por molestarme: 
a. Muy Frecuentemente 
b. Frecuentemente 
c. Ocasionalmente 
d. Muy rara vez 
e. Nunca 

 
3.  En las dos últimas semanas, puedo describir mis sentimientos hacia el bebé como: 

a. Desapego 
b. No tengo sentimientos fuertes hacia el bebé 
c. Algo de cariño 
d. Cariño fuerte 
e. Muchísimo cariño 

 
4. Al pensar en el nivel de involucramiento con el bebé: 

a. Me siento muy culpable de no estar más involucrada 
b. Me siento culpable de no estar más involucrada 
c. Me siento un poco culpable de no estar involucrada 
d. No tengo sentimientos de culpa con relación a este aspecto 

 
5.  Cuando yo interactúo con el bebé me siento: 

a. Muy incompetente e insegura 
b. Algo incompetente e insegura 
c. Medianamente competente y segura 
d. Muy competente y segura 

 
6. Cuando estoy con el bebé me siento tensa y angustiada: 

a. Muy Frecuentemente 
b. Frecuentemente 
c. Ocasionalmente 
d. Casi nunca 
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7. Cuando estoy con el bebé y hay otras personas conmigo, yo me siento orgullosa del bebé: 
a. Muy Frecuentemente 
b. Frecuentemente 
c. Ocasionalmente 
d. Casi nunca 

 
8. Intento relacionarme lo más que pueda al JUGAR con el bebé: 

a. Esta afirmación es verdadera 
b. Esta afirmación es falsa 

 
9. Cuando tengo que dejar al bebé: 

a. Normalmente me siento triste (o siento que es difícil dejarlo) 
b. A veces me siento triste (o a veces siento que es difícil dejarlo) 
c. Siento al mismo tiempo tristeza y alivio 
d. A veces me siento aliviada (y se me hace fácil dejarlo) 
e. Normalmente me siento aliviada (y se me hace fácil dejarlo) 

 
10. Cuando estoy con el bebé: 

a. Siempre estoy alegre/ siento satisfacción 
b. Frecuentemente estoy alegre/ siento satisfacción 
c. Ocasionalmente estoy alegre / siento satisfacción 
d. Muy rara vez estoy alegre /siento satisfacción 

 
11. Cuando no estoy con el bebé, me encuentro pensando en el bebé: 

a. Casi todo el tiempo 
b. Muy frecuentemente 
c. Frecuentemente 
d. Ocasionalmente 
e. Nunca 

 
12. Cuando estoy con el bebé: 

a. Normalmente trato de alargar el tiempo que paso con él/ella 
b. Normalmente trato de acortar el tiempo que paso con él/ella 

 
13. Luego de haber estado separada del bebé por un rato, al saber que va a estar de nuevo con 

él/ella, yo me siento: 
a. Emocionada con la idea 
b. Medianamente emocionada 
c. Un poco emocionada 
d. No siento nada 
e. Me siento angustiada/nerviosa/no me siento bien 

 
14. Ahora, cuando pienso en el bebé: 

a. Pienso que sin lugar a dudas es mi bebé 
b. Me cuesta darme cuenta que es mi bebé 
c. No pienso en él como mi bebé 



 

 193 

 
15. Al pensar en las cosas que he tenido que dejar de lado por el bebé : 

a. Me siento realmente frustrada 
b. Me siento medianamente frustrada 
c. Me siento algo frustrada 
d. No me siento frustrada 

 
16. En los últimos tres meses, siento que no he tenido tiempo para mí o para hacer las cosas 

que me interesan: 
a. Casi todo el tiempo 
b. Muy frecuentemente 
c. Ocasionalmente 
d. Nunca 

 
17. Hacerme cargo de este bebé es una responsabilidad demasiado grande. Pienso que esta 

afirmación es: 
a. Realmente cierta 
b. Más o menos cierta 
c. Algo cierta 
d. Para nada cierta 

 
18. Confío en que sé identificar lo que el bebé necesita: 

a. Casi nunca 
b. A veces 
c. Muchas veces 
d. Casi todo el tiempo 

 
19. Normalmente cuando estoy con el bebé: 

a. Me siento muy impaciente 
b. Me siento algo impaciente 
c. Me siento medianamente paciente 
d. Me siento realmente paciente 
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Infant/Toddler Home Observation for Measurement of Environment 
 
Note: Questions in grayed out boxes were deemed inappropriate for infants under 10 weeks of 
age and thus were excluded. 

HOME Inventory 
1. Parent permit child to engage in “messy” play.  

 
 

2. Parent spontaneously vocalizes to the child at least twice. NO        YES 

3. Parent responds verbally to the child’s vocalizations or verbalizations.  
 

NO        YES  

4. Parent tells child name of object or person during visit.  
 

NO        YES  

5. Parent’s speech is distinct, clear, and audible.  
 

NO        YES 

6. Parent initiate verbal interchanges with visitor.  
 

NO        YES 

7. Parent converses freely and easily.  
 

NO        YES 

8. Parent spontaneously praises child at least twice.  
 

NO        YES 

9. Parent’s voice conveys positive feelings towards child.  
 

NO        YES 

10. Parent caresses or kisses child at least once.  
 

NO        YES 

11. Parent responds positively to praise of child offered by visitor.  
 

NO        YES 

 
12. No more than one instance of physical punishment during past week.  

 
 
 

13. Family has a pet.  
 

NO        YES 

14. Parent does not shout at child.  
 

NO        YES 

15. Parent does not express overt annoyance with or hostility to child.  
 

NO        YES 

16. Parent neither slaps nor spanks child during visit.  
  

NO        YES 

17. Parent does not scold or criticize child during visit.  
 

NO        YES 

18. Parent does not interfere with or restrict child more than three times 
during visit.  

 

NO        YES 

19. At least 3-4 books are present and visible.  
 

NO        YES 

20. Child care, if used, is provided by one of three regular substitutes.  
 

NO        YES 

21. Child is taken to grocery store at least once a week.  
 

 

22. Child gets out of house at least four times a week.  
 

NO        YES 
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23. Child is taken regularly to doctor’s office or clinic.  
 

NO        YES 

24. Child has a special place for toys and treasures.  
 

 
 

25. Child’s play environment is safe.  NO        YES 

 
26. Muscle activity toys or equipment.  

 
 

27. Push or pull toys.  
 

 

28. Stroller or walker, kiddie car, scooter, or tricycle 
 

NO        YES 

29. Cuddly toys or role- playing toys.  
 

NO        YES 

30. Learning facilitators-mobile, table, and chair, high chair, play pen.  
 

NO        YES 

31. Simple hand-eye coordination toys.  
 

 

 
 

32. Complex hand-eye coordination toys.  
 

 
 

33. Toys for literature and music.  
 

 
 

34. Parent provides toys for child to play with during visit.  
 

 
 

 
35. Parent talks to child while doing household work.  

 
NO        YES 
 

36. Parent consciously encourages developmental advance.  
 

 
 

37. Parent invests maturing toys with value via personal attention.  
 

 
 

38. Parent structures child’s play period.  
 

 
 

39. Parent provides toys that challenge child to develop new skills.  
 

 
 

40. Parent keeps child in visual range, looks at often.  
 

NO        YES 

 
41. Father provides some care daily.  NO        YES 

42. Parent reads stories to child at least three times weekly.  
 

 
 

43. Child eats at least one meal a day with mother and father.  
 

 
 

44. Family visits relatives or receives visits once a month or so.  NO        YES 
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APPENDIX D: MATERNAL SALIVA COLLECTION INSTRUCTIONS 
 
 
Instrucciones de la colección de Saliva: 
Le pedimos que por favor recoja una muestra de saliva cuatro veces en durante un día. Consulte 
las siguientes instrucciones o contacte a las investigadoras si usted tiene alguna pregunta. Por 
favor, tome las muestras en los siguientes horarios:  
 

Muestra 1: Inmediatamente cuando usted se despierta 
Muestra 2: 30 minutos después del despertar  
Muestra 3: 60 minutos después del despertar  
Muestra 4: Justo antes de cepillarse los dientes y dormirse 
 

Colección: 
1. Por favor, no coma, beba ni cepille los dientes durante 30 minutos antes de recoger la 

saliva. 
2. Retire una pajita y un tubo de la bolsa de plástico con la etiqueta “tubos no utilizados.” 
3. Permita que la saliva se acumule en su boca (si usted necesita ayuda, ¡imagine comer su 

delicia favorita!) 
4. Inclina la cabeza hacia adelante y babea por la paja y dentro del tubo. Mientras que 

algunas burbujas o espuma son normales, no fuerce la saliva en el tubo: simplemente 
déjese babear, como se muestra en la imagen a continuación. 

5. Continúe hasta que el tubo esté al menos 1/2 lleno. 
6. Cierre la tapa en el tubo y coloque el tubo tapado en la bolsa de plástico etiquetada como 

“viales llenos.” Deseche la paja. 
7. Coloque la bolsa de “tubos llenos” en su congelador. Si usted no tiene acceso a un 

congelador, también puede colocar muestras en el refrigerador. 
8. Por favor, recoja las muestras usando los tubos etiquetados en el orden en que 

proporciona las muestras.  
9. Complete la hoja a continuación a medida que se recoge cada muestra.  
10. Cuando se hayan recolectado las cuatro muestras, la bolsa etiquetada como “tubos llenos” 

debe tener cuatro tubos llenos y la bolsa “tubos no utilizados” debe estar vacía. Continúe 
almacenando la bolsa de “tubos llenos” en el congelador o refrigerador hasta que se reúna 
con la investigadora. 
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Section A: Identification 
1 Mother Case ID____________ 
2 Child Case ID_____________ 
3 Interview date____________________ 
4 Location_________________ 
5 Visit #___________________ 

 
 
 
Seguimiento de la colección Saliva: 
Por favor, complete esta tabla a medida que proporciona muestras: 
 
Número 
del tubo 

Fecha  
(DD/MM/YY) 

Tiempo 
iniciado 

Tiempo 
terminado 

¿Cómo se siente ahora? 
 

1  
 

   

2  
 

   

3  
 

   

4  
 

   

 
 
Nota: los números de los viales deben corresponderse con los siguientes tiempos de recopilación: 

Muestra 1: Inmediatamente cuando se despierta 
Muestra 2: 30 minutos después del despertar  
Muestra 3: 60 minutos después del despertar  
Muestra 4: Justo antes de cepillarse los dientes y dormirse 

 
 
Por favor responda las siguientes preguntas sobre su día: 

1. ¿Como durmió anoche? ______________________ 
 

2. ¿Pasó algo inusual hoy? Si es así, ¿a qué hora? 
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APPENDIX E: INFANT SALIVA SAMPLE COLLECTION 

Instructions for Use  
(Instructions taken directly from Salimetrics Saliva Collection and Handling Advice) 
 

1. For the SCS (SalivaBio Child Swab) or SIS (SalivaBio Infant Swab), peel open the outer 
package and remove the device. 

2. Securely hold one end of the device and try to place the other end under the child’s 
tongue. With infants it may only be possible to collect pooling saliva (often at the corners 
of the mouth or under the tongue). You can try to collect for the full 60-90 seconds at 
once by resting the swab inside the mouth, or collect in intervals by re-introducing the 
swab into the mouth as needed until the lower third of the swab is saturated (60-90 
seconds total). 

3. Place the saturated SIS or SCS into the Swab Storage Tube for recovery by 
centrifugation, or use a 3-5 mL syringe for immediate compression. 
 

The compression method allows the researcher to determine if sufficient saliva has been 
collected on the first attempt, and the procedure can be repeated if necessary. Some researchers 
prefer to cut free the saturated portion of the swab before placing it in the centrifuge tube or 
syringe. 
 
If the swab is used to collect samples for analytes that are affected by saliva flow, however, we 
advise placing the entire swab into the tube or syringe, in order to estimate saliva flow rates, as 
described above under Effects of Mouth Location and Flow Rate on Salivary Analytes. The 
entire swab may be placed in the Swab Storage Tube by inserting the saturated end first, 
followed by doubling over the dry end into the opening, and finally using the cap or plunger to 
push the entire swab into the interior space. 
 

 
 
 
SCS/SIS Cautions:  

• These devices are packaged clean, not sterile. 
• Adult assistance and supervision is required during use.  
• Inspect device for tears or imperfections. DO NOT USE if cuts or tears are present.  
• When not used as directed these devices may represent a choking hazard for children.  
• Store out of reach of children. These devices are not toys and are intended for collection 

of saliva. 
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Section A: Identification 
6 Mother Case ID____________ 
7 Child Case ID_____________ 
8 Interview date_____________ 
9 Location_________________ 
10 Visit #___________________ 

 
 
Saliva Collection Tracking: 
Please fill in this table as you provide samples:  
 

Vial 
Number 

Time started Time finished 

1   
2   

 
 
Time of stressor: _______________ 
 
 
 
Did mother feed baby after stress? If yes, how? 
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APPENDIX F: PLACENTAL SAMPLE COLLECTION INSTRUCTIONS 
 
Las muestras de placenta se deben recolectar dentro de una hora después del alumbramiento de 
la placenta. Por favor, siga las siguientes instrucciones: 
1. Registre la información en "Recolección de datos" abajo. 
2. La placenta debe estar fresca antes de la recolección del tejido y no debe tratarse con 

conservantes o reactivos (por ejemplo, formalina o etanol). 
3. Mida la placenta desde los aspectos coriónicos y basales con la regla provista. 
4. Retire las membranas amnióticas, tanto como sea posible (idealmente 2 cm de ancho) desde 

el sitio de su ruptura hasta el margen placentario. 
5. Corte el cordón umbilical hasta un centímetro de su origen y asegure que quede atado. 
6. Tome el peso de la placenta, utilizando la balanza específica para ello. 
7. Coloque la placenta con la membrana basal en la parte superior, e identifique 4 sitios para 

muestreo, que se encuentren al menos a 2 cm del sitio de inserción del cordón umbilical y al 
menos a 3 cm del borde de la placenta (ver la figura). En cada sitio, quite la membrana basal 
cortando con el bisturí provisto. Luego, en cada sitio, use el sacabocados (punch) para 
obtener dos muestras del tejido velloso expuesto, evitando cualquier área de evidente 
patología. Por favor usa solo un sacabocados (punch) por cada madre. 

 
8. Inmediatamente, con la pinza provista, ponga las cuatro muestras de cada sitio en el vial 

criogénico A (que contiene RNAlater), y ponga las otras cuatro muestras (uno de cada sita) 
en el vial criogénico B (que contiene RNAlater).  

9. Rotule tanto el vial A como B con la identificación de la madre. 
10. Guarde los viales criogénicos A y B en refrigeración (4°C) durante 72 horas (3 días). Luego 

de las 72 horas, se debe llevar los dos viales criogénicos a congelación a -20°C. 
11. El investigador principal o su ayudante va a venir al hospital cada semana para recolectar las 

muestras de placenta. 
 

Recolección de los datos 
Identificador de caso  Peso del recién nacido  
Fecha  APGAR 5 min  
Peso de la placenta  Duración de la labor  
Tamaño de la placenta (cm) x Medicación recibida  
Hora de expulsión de placenta  Otras observaciones  
Hora de toma de las muestras  Responsable  

 
  

Placenta

Schematic representation of placental sampling (adapted from Burton et al. 2012)

1 2

3 4

A B
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APPENDIX G: STOOL SAMPLE INSTRUCTIONS  
 
Section A: Identification 

1. Mother Case ID____________ 
2. Child Case ID_____________ 
3. Interview date_____________ 
4. Location_________________ 
5. Visit #___________________ 

 
 
Muestra de heces 
Fecal Sample 
Ahora le voy a dar instrucciones para recoger una muestra de heces de su hijo. Por favor, recoja 
la muestra antes de la segunda visita, una semana a partir de hoy. La muestra será llevada a la 
Universidad de Carolina del Norte para determinar si el intestino está sano mediante el examen 
de los productos de las bacterias beneficiosas. Después de que se ha completado la prueba, la 
muestra será destruida y desechada. Usted no recibirá estos resultados.  
 
Now I am going to give you instructions to collect a sample fecal sample from you child. Please 
collect the sample before the second visit, one week from today. The sample will be taken to the 
University of North Carolina to determine if the gut is healthy by examining beneficial bacteria 
products. After the test is completed the sample will be destroyed and discarded. You will not 
receive these results. 
 
 
Suministros Supplies: 
3 hojas de plástico, 3 sheets of plastic  
Guantes, gloves 
Pequeña cuchara de plástico, small plastic spoon 
Recipiente cerrado con líquido preservativo, sealed container with liquid preservative  
Bolsa de plástico cerrada, plastic sealed bag 
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APPENDIX H: INFANT ANTHROPOMETRY 
 
 
Section A: Identification 

1. Mother Case ID____________ 
2. Child Case ID_____________ 
3. Interview date_____________ 
4. Location_________________ 
5. Visit #___________________ 

 
 

1. A - F 
 

a. Edad:  
 
 

b. Talla (cm): 

c. Peso (kg): 
 
 

d. Circunferencia de cinturón (cm): 

e. Pliegue de piel del brazo (mm): 
 
 

f. Circunferencia de brazo (cm): 

 
 

2. ¿En las últimas dos semanas, su hijo(a) ha estado enfermo? Si es así, complete la tabla.  
 

Enfermedad: Nombre y síntomas Fecha de inicio Duración Tratamiento 
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