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ABSTRACT

Paul Cornwell: A symplectic view of stability for traveling waves in
activator-inhibitor systems

(Under the direction of Christopher K.R.T. Jones)

This thesis concerns the stability of traveling pulses for reaction-diffusion equations of skew-

gradient (a.k.a activator-inhibitor) type. The centerpiece of this investigation is a homotopy invariant

called the Maslov index which is assigned to curves of Lagrangian planes. The Maslov index has

been used in recent years to count positive eigenvalues for self-adjoint Schrödinger operators. Such

operators arise, for instance, from linearizing a gradient reaction-diffusion equation about a steady

state. In that case, positive eigenvalues correspond to unstable modes.

In this work, we focus on two aspects of the Maslov index as a tool in the stability analysis

of nonlinear waves. First, we show why and how the Maslov index is useful for traveling pulses

in skew-gradient systems, for which the associated linear operator is not self-adjoint. This leads

naturally to a discussion of the famous Evans function, the classic eigenvalue-hunting tool for steady

states of semilinear parabolic equations. A major component of this work is unifying the Evans

function theory with that of the Maslov index.

Second, we address the issue of calculating the Maslov index, which is intimately tied to its

utility. The key insight is that the relevant curve of Lagrangian planes is everywhere tangent to an

invariant manifold for the traveling wave ODE. The Maslov index is then encoded in the twisting

of this manifold as the wave moves through phase space. We carry out the calculation for fast

traveling pulses in a doubly-diffusive FitzHugh-Nagumo system. The calculation is made possible by

the timescale separation of this system, which allows us to track the invariant manifold of interest

using techniques from geometric singular perturbation theory. Combining the calculation with the

stability framework established in the first part, we conclude that the pulses are stable.
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CHAPTER 1

Introduction

When modeling a physical system, a critical concern is whether a distinguished state is stable

to perturbations in initial conditions. Indeed, this determines whether the state–which is usually

described as the solution to a differential equation–is physically realizable or not. This dissertation

concerns the use of dynamical systems techniques to determine the stability of traveling waves for

reaction-diffusion equations. Traveling waves are solutions of evolutionary PDE which move at a

constant speed c while maintaining their shape. They are ubiquitous in applications, as they often

model the transmission of information in one direction. Examples abound in mathematical biology

[65], chemical reactions (e.g. flame fronts in combustion) [80], nonlinear optics [1], conservation laws

in gas dynamics [35, 74], fluid dynamics [43], and more.

As we will see below, the stability analysis of a traveling wave leads to an eigenvalue problem

for an unbounded operator acting on a function space. We will show how the Maslov index of

symplectic geometry can be used to detect unstable eigenvalues for this operator. The Maslov index

of a traveling wave is determined by the twisting of an invariant manifold (containing the wave) of

the traveling wave ODE. It therefore gives an intrinsic criterion for the (in)stability of the wave in

question. Such a result is the paragon of stability analysis, as it gives structural reasons for why

some states are stable (i.e. observable) and others are not.

The Maslov index has been used extensively in recent years to study the spectra of self-adjoint

Schrödinger operators, including those obtained by linearizing reaction-diffusion equations about

distinguished steady states [4, 7, 16, 18, 26, 30, 41, 42, 47, 48, 49]. This project was born out of

the need to address two major issues plaguing the application of the Maslov index in the stability

analysis of nonlinear waves. First, the existing theory deals primarily with self-adjoint operators.

In the context of reaction-diffusion equations, this necessitates that the nonlinearity be a gradient.

This is an undesirable condition, since gradient reaction-diffusion equations do not exhibit much of

the interesting behavior (such as pattern formation) that makes these equations important to the
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scientific community. Second, actual calculations of the Maslov index remain elusive. Obviously,

the ability to calculate the index is intimately tied to its utility. In this thesis, we will develop

a geometric technique for calculating the Maslov index in singularly perturbed reaction-diffusion

equations.

1.1 Reaction-diffusion equations: a dynamics approach to stability

We study reaction-diffusion equations of the form

ut = Duxx + f(u), u ∈ Rn, x ∈ R, (1.1)

where D is a positive, diagonal matrix of diffusion coefficients. A traveling wave û(z) is a solution

to (1.1) of one variable z = x − ct which decays exponentially to end states u± as z → ±∞. If

u+ = u−, then û is called a pulse. Otherwise, û is called a front. Note that a necessary condition

for the existence of a traveling front or pulse is f(u±) = 0. In this thesis, we will focus on pulses.

Without loss of generality, we take u+ = u− = 0. It is convenient to study traveling waves by

rewriting (1.1) in a moving frame, using the chain rule:

ut = Duzz + cuz + f(u). (1.2)

The traveling wave û can now be viewed as a “fixed point” of (1.2), and the right-hand side of (1.2)

as a “vector field” on some function space. It is known [39] that the operator Duzz + cuz generates

an analytic semigroup on the Banach space (with sup norm)

BU(R,Rn) = {u : R→ Rn : u is bounded and uniformly continuous}, (1.3)

and hence the Cauchy problem (1.2) with initial condition u(z, 0) = u0(z) can be solved for small t

via the variation of constants formula. We are thus justified in taking the view that (1.2) defines a

flow on BU(R,Rn).

Both the definition of stability and the strategy for assessing it push the analogy with fixed

points of vector fields further, so it is worth devoting some time to understanding the simpler case.

To that end, suppose that

x′(t) = F (x) (1.4)
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defines a vector field on some open set U ⊆ Rn, and let F (p) = 0 for some point p. We say that p is

stable if trajectories of (1.4) through points sufficiently close to p stay close to p for all time. If, in

addition, there is a neighborhood V of p such that the trajectory through any point in V approaches

p as t→∞, then p is called asymptotically stable (or attracting). The stability properties of p are

obtained by linearizing (1.4) about p to obtain a constant coefficient, linear system

y′(t) = DF (p)y(t). (1.5)

DF (p) is an n× n matrix, so it has n complex eigenvalues, counting multiplicity. Now partition

the spectrum σ(DF (p)) of DF (p) into three sets σ−, σ0, and σ+, consisting of the eigenvalues of

DF (p) of negative, zero, and positive real part respectively. To each of these sets one can associate

a subspace of all generalized eigenvectors for the constituent eigenvalues. We call these the stable,

center, and unstable subspaces respectively and denote them V s(p), V c(p), and V u(p). The solution

operator for (1.5) is given by exp(DF (p)t), so it is clear that each of V s/c/u(p) is invariant under

the flow of (1.5).

It can be shown (e.g. [20]) using Gronwall’s inequality and Taylor’s theorem that p is asymptoti-

cally stable if σ(DF (p)) = σ−. More generally, each subspace defined above is tangent at p to a

local invariant manifold for (1.4). The local stable and unstable manifolds, W s
loc(p) and W u

loc(p), are

defined as follows in a neighborhood N ⊂ U of p:

W s
loc(p) = {y ∈ N : y · t ∈ N for all t ≥ 0, and lim

t→∞
y · t = p}

W u
loc(p) = {y ∈ N : y · t ∈ N for all t ≤ 0, and lim

t→−∞
y · t = p}

. (1.6)

Here, · refers to the action of the flow of (1.4). It is standard (e.g. [20, 36]) that W s
loc(p) (W u

loc(p)) is

positively (negatively) invariant, invariant relative to the neighborhood N , and unique. Furthermore,

these manifolds are as smooth as the function F . If σ0 6= {}, then there is also a (non-unique)

local center manifold which is tangent to V c(p) at p. The dynamics on the center manifold can be

more complicated than on its stable and unstable counterparts. All of the invariant manifolds just

described can be iterated in forward and backwards time to generate global versions, W s(p), W u(p),

and W c(p). The global versions are not necessarily embedded manifolds [36, §1.4], but this detail is
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not important for our purposes. We now define stability of the traveling wave û.

Definition 1.1. The traveling wave û(z) is asymptotically stable relative to (1.2) if there is a

neighborhood V ⊂ BU(R,Rn) of û(z) such that if u(z, t) solves (1.2) with u(z, 0) ∈ V , then

||û(z + k)− u(z, t)||∞ → 0

as t→∞ for some k ∈ R.

The inclusion of the phase shift k is necessary due to the translation invariance of (1.2); any

translate of û is also a traveling pulse solution. As with fixed points, the strategy for proving that û

is stable is to linearize (1.2) about this solution. This time, linearizing leads not to a matrix, but to

an operator

L := D∂2
z + c∂z + f ′(û) (1.7)

acting on BU(R,Rn). As expected, the goal is to determine the spectrum σ(L) of L. This set

consists of two parts. First, there is the set σn(L) of isolated eigenvalues of L of finite multiplicity.

The rest of σ(L) is called the essential spectrum, σess(L) = σ(L) \ σn(L). By differentiating the

traveling wave equation

0 = Dûzz + cûz + f(û) (1.8)

with respect to z, one sees immediately that Lû′(z) = 0. Since û and its derivatives decay

exponentially as z → ±∞, we see that 0 ∈ σn(L) with eigenfunction û′(z). Thus the situation is

already more complicated than for fixed points due to the presence of a center direction (corresponding

to the translation invariance). Moreover, σ(L) is an infinite set, so in principle it could accumulate

near the imaginary axis. The existence of a spectral gap for matrices is implicitly used when proving

the invariant manifold theorems referenced above, so it is important to check that such a gap exists

for σ(L) as well. Taking these concerns into consideration, we have the following theorem.

Theorem 1.1.1. Suppose that the operator L in (1.7) satisfies

1. There exists β < 0 such that σ(L) \ {0} ⊂ {λ ∈ C : Reλ < β}.

2. 0 is a simple eigenvalue.
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Then û is stable in the sense of Definition 1.1.

This theorem can be proved by constructing appropriate invariant manifolds in BU(R,Rn).

More precisely, assuming the above hypotheses on σ(L), the wave û(z) and its translates form a

center manifold, which is itself an attractor. For the details, the reader is referred to [6, 39].

We close this section by pointing out that the existence of a traveling wave can often be proved

using dynamical systems techniques. By introducing the variable v = uz, the traveling wave ODE

(1.8) becomes a first order system

 u

v


z

=

 v

D−1(−cv − f(u))

 . (1.9)

The end state 0 = (0, 0) ∈ R2n is now a fixed point for this system (or (u±, 0) more generally). The

traveling wave corresponds to a homoclinic orbit ϕ(z) = (û(z), ûz(z)) for (1.9), which means that it

approaches (0, 0) exponentially quickly as z → ±∞. One important fact about ϕ(z) is that it lies in

the intersection W s(0) ∩W u(0) of stable and unstable manifolds for the rest state. The definition

we will use for the Maslov index of the traveling wave is actually applicable to homoclinic orbits in

general. The calculation of the index will rely heavily on the fact that the wave is contained in the

unstable manifold W u(0).

1.2 Short primer on symplectic linear algebra

The Maslov index has its roots in symplectic geometry, so we now take some time to discuss

the basics of that field. For more background, the reader is referred to [27, 38, 62]. Let V be a

2n-dimensional real vector space with basis {ei}2ni=1. Let 〈·, ·〉 denote an inner product on V. A

linear map J : V→ V is called a complex structure if it satisfies

J2 = −I2n

JT = −J
, (1.10)

where I2n is the identity on V. Note that the first condition implies that J is invertible. We remark

as well that the second condition in (1.10) is not typically included in the definition of a complex

structure, but it is necessary here since we wish to work with a fixed inner product. We next
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introduce the bilinear form

ω(a, b) := 〈a, Jb〉. (1.11)

It follows immediately from (1.10) and (1.11) that ω is skew-symmetric, nondegenerate, and bilinear.

It is therefore a symplectic form. Now let W ⊂ V be a fixed subspace. Define the symplectic

complement of W to be

Wω = {u ∈ V : ω(u,w) = 0 for all w ∈W}. (1.12)

We say that the subspace W is:

1. symplectic if W ∩Wω = {0}.

2. isotropic if W ⊆Wω.

3. coisotropic if Wω ⊆W .

4. Lagrangian if Wω = W .

Observe that a Lagrangian subspace W must be n-dimensional, since ω is nondegenerate (and thus

dimW = dimWω). It follows that the set Λ(n) of Lagrangian planes is contained in Grn(V), the

Grassmannian of n-dimensional subspaces of V. In [4, §1], it is explained how Λ(n) can be realized

as a homogeneous space Λ(n) = U(n)/O(n), where U(n), O(n) ⊂ GL(n,C) are the unitary and

orthogonal groups respectively. This proves that Λ(n) is actually a closed submanifold of Grn(V) of

dimension n2 − n(n− 1)/2 = n(n+ 1)/2. Moreover, considering a long exact sequence of homotopy

groups for the above fiber bundle proves that π1(Λ(n)) = Z for all n ∈ N [4, §1.3].

The fundamental group of Λ(n) is the critical piece of topological information for our purposes.

It suggests that one can define an integer index for curves in this space. This index is the Maslov

index, which will be discussed in Chapter 3.

1.3 Intuition from the scalar case: Sturm-Liouville theory

The intuition for the mathematical techniques used in this thesis comes from Sturm-Liouville

theory, which applies to the eigenvalue problem for steady states of (1.1) with n = 1. For simplicity,
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consider the stability of a time-independent solution û(x) to the scalar equation

ut = uxx + f(u) (1.13)

on the interval [0, 1], subject to Dirichlet boundary conditions

û(0) = û(1) = 0. (1.14)

The stability of û is again determined by the spectrum of the operator L defined in (1.7), which

this time acts on H2([0, 1]) ∩H1
0 ([0, 1]). The following result can be found in a number of sources,

for example [53, 76].

Theorem 1.3.1. The eigenvalues of L are real and simple and can be enumerated in a strictly

descending order

λ0 > λ1 > λ2 > . . . , lim
n→∞

λn = −∞. (1.15)

Furthermore, any eigenvector pj corresponding to λj has exactly j zeros in the open interval (0, 1).

Dynamical systems offers a nice, geometric proof of this theorem. The first step is to convert

the eigenvalue equation Lp = λp to a first-order system, which is done by introducing the variable

q = px:  p

q


x

=

 0 1

λ− f ′(û) 0


 p

q

 . (1.16)

By uniqueness of solutions to ODE, no nontrivial solution to (1.16) can pass through (0, 0).

Consequently, the solution operator of (1.16) induces an action on RP 1 = S1. For any λ ∈ R, one

can therefore check for an eigenvalue by flowing the subspace corresponding to the Dirichlet data at

x = 0 (i.e. θ = π/2) along the circle to check if it ends at (2k + 1)π/2 at x = 1.

The key to proving the above theorem is that this angle function is monotone in λ. In other

words, as λ decreases, the solutions (p, px)(λ, 0) to (1.16) satisfying (p, px)(λ, 0) ∈ {0} × R wind

more and more around the origin as x evolves from 0 to 1. Such an oscillation theorem is at the

heart of the Maslov index analysis, except that the winding is occurring in a larger manifold. In

fact, the Maslov index can be used to prove the above theorem in the scalar case. The issue of
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monotonicity in λ is more subtle for systems, and we will see that it is something that distinguishes

the analysis of this thesis from previous studies involving the Maslov index.

The reader will recall that λ = 0 is an eigenvalue for the operator obtained by linearizing about

a pulse solution, and the derivative of the solution is a corresponding eigenfunction. This will not

be the case for the Dirichlet problem above, since (ûx, ûxx) does not satisfy the same boundary

conditions. However, the Sturm Oscillation and Comparison theorems [76] imply that the number

of zeros of ûx is within one of the number of zeros of any solution to (1.16) satisfying p(0) = 0.

Furthermore, the zeros of û and ûx are intertwined, which follows from the Mean Value Theorem

and a phase plane analysis for the steady state ODE

0 = uxx + f(u). (1.17)

We therefore obtain the following corollary to Theorem 1.3.1.

Corollary 1.3.1. If û(x) has n zeros in the interval [0, 1], then there are n− 1 or n− 2 positive

eigenvalues of L. In particular, if û(x) has an interior zero, then it must be unstable.

Thus we can obtain spectral information (the number of unstable eigenvalues) from a qualitative

property of the solution (the number of zeros). The beauty of the Maslov index analysis is that we

will be able to generalize this result to systems of equations. Instead of counting zeros, the number

of unstable eigenvalues will be encoded in the number of twists made by an invariant manifold of

the traveling wave ODE.

1.4 Activator-inhibitor systems and Turing patterns

The previous section contained the mathematical motivation for this thesis. In this section, we

describe the physical motivation which spurs us to consider skew-gradient (or activator-inhibitor)

systems. In his lone published work in biology [78], A.M. Turing described a simple mechanism for

pattern formation in biological/chemical systems. Counter-intuitively, the interplay of diffusion and

a stable reaction can destabilize a uniform state, which spurs the growth of periodic patterns of

certain wavelengths.

In the context of a chemical reaction modeled by (1.1) (assuming n = 2 for simplicity), the
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uniform state corresponds to a stable fixed point u∗ for the kinetics equation

ut = f(u). (1.18)

Using a simple linear stability analysis, Turing showed how the presence of diffusion (which is

typically thought to having a stabilizing effect) can cause this state to become unstable and lead to

pattern formation. However, such patterns require that the elements of D–called the diffusivities–are

vastly different from each other. Although reaction-diffusion models for chemical interactions are

oversimplifying, Turing’s discovery has been very influential in mathematical biology [65].

A particularly interesting theme of the research into Turing patterns has been the difficulty of

observing or producing them in experiment. This was not done successfully until several decades

after Turing’s original paper was published [14, 58]. One possible explanation for this is the difficulty

of finding two reagents whose diffusivities are sufficiently different as to support diffusion-driven

instability. This seems to provide evidence in favor of the conjecture that any spatially periodic

patterns must be unstable (hence unobservable) if the diffusivities of the chemicals involved are the

same or similar.

So what does this have to do with the Maslov index? The Maslov index has been used to study

the spectra of self-adjoint operators. In order for L in (1.7) to be self-adjoint, the nonlinearity f

must be a gradient. This condition, however, is known to be incompatible with the conditions for

a Turing instability. In the case n = 2, this is easy to see, since Turing’s condition requires that

the off-diagonal terms in f ′(u∗) have opposite signs [65]. Systems that are susceptible to Turing

bifurcations are called activator-inhibitor, meaning that the presence of one species stimulates the

growth of both, whereas the presence of the other impedes the growth of both species.

In this thesis, we study a broader class of equations called skew-gradient [83, 84], which will

encompass many activator-inhibitor systems. More precisely, we study systems of the form

ut = uxx +QSf(u), u ∈ Rn, (1.19)

where f(u) = ∇F (u) is a gradient, S is positive and diagonal, and Q is diagonal with entries of ±1.

Some aspects of the analysis will be restricted to the critical case n = 2 studied by Turing. However,

9



it is clear that most of the results contained herein are valid in any dimension. As stated above, we

study traveling pulses (as opposed to spatially periodic patterns) in this work. We suggest some

further directions concerning periodic solutions at the end of the dissertation.

1.5 Overview of dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we set up the eigenvalue

problem and identify the symplectic structure that underlies the rest of the analysis. In Chapter

3, we discuss the various formulations of the Maslov index that we will use and define the Maslov

index of the traveling wave. In Chapter 4, we discuss the symplectic Evans function D(λ) and

prove that the parity of the Maslov index determines (in part) the sign of D′(0). In Chapter 5,

we prove the existence of fast traveling pulses and fronts for a doubly diffusive FitzHugh-Nagumo

system using geometric singular perturbation theory. In Chapter 6, we show how the Maslov index

can be used to prove that the aforementioned waves are stable. Additionally, we prove a more

general result that the Maslov index gives a lower bound on the Morse index for traveling waves of

skew-gradient systems. In Chapter 7, we describe a method for calculating the Maslov index in

singularly perturbed systems. We apply this method to the FitzHugh-Nagumo system and prove

that the traveling waves of Chapter 5 are nonlinearly stable. Finally, in Chapter 8 we summarize

our results and discuss possible future directions.
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CHAPTER 2

Framework for stability

In this chapter, we set up the eigenvalue problem for the most general equations studied in this

thesis, namely skew-gradient systems (1.19). We point out that all results obtained in this chapter

apply both to the FitzHugh-Nagumo and to the two-component activator-inhibitor systems studied

later. Although this thesis focuses on the stability of pulses, the Maslov index can be used to study

eigenvalue problems with different boundary conditions as well.

Assume that (1.19) possesses a traveling wave solution û(z), which decays exponentially to 0 as

z → ±∞. As mentioned in the previous chapter, this implies that QSf(0) = f(0) = 0. In light of

the discussion of Turing patterns, we make the additional assumption that

there exists β < 0 such that the n eigenvalues νi of QSf ′(0) satisfy Re νi < β. (2.1)

In other words, we assume that 0 is a stable equilibrium of the associated kinetics equation. Without

loss of generality, we take

c < 0, (2.2)

which means that the wave moves to the left. We stress that the goal is to understand the spectrum

of the operator

L := ∂2
z + c∂z +QSf ′(û(z)), (2.3)

acting on BU(R,Rn).

For skew-gradient systems, we will convert the traveling wave ODE (1.9) to a first-order system

by setting uz = Sv, which gives

 u

v


z

=

 Sv

−cv −Qf(u)

 . (2.4)
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2.1 Eigenvalue equation and essential spectrum

In this section, we state the definitions pertinent to the spectrum of the operator L. First, we

say that λ ∈ C is an eigenvalue for L if there exists a solution p ∈ BU(R,Cn) to the equation

Lp = λp. (2.5)

The set of isolated eigenvalues of L of finite multiplicity is denoted σn(L). Note the importance of

the boundary conditions for determining eigenvalues. For any value of λ, the eigenvalue equation

(2.5) can always be solved for a fixed initial condition. However, a generic solution will blow up

at both ∞ and −∞, so not every λ ∈ C is an eigenvalue. This motivates the strategy of tracking

boundary data for potential eigenfunctions, which is really the crux of the approach that we will

take to hunt for eigenvalues. Now, comparing with (2.3), setting pz = Sq converts (2.5) to the first

order system  p

q


′

=

 0 S

λS−1 −Qf ′(û) −cI


 p

q

 . (2.6)

It is common to abbreviate (2.6) as

Y ′(z) = A(λ, z)Y (z), (2.7)

with Y ∈ C2n and A(λ, z) ∈Mn(C2n). Assumption (2.1) guarantees that û approaches 0 exponen-

tially, and thus there is a well-defined matrix

A∞(λ) = lim
z→±∞

A(λ, z), (2.8)

and this limit is also achieved exponentially quickly. The eigenvalues of L comprise only part of the

spectrum; the rest is the essential spectrum σess(L). For operators of the form (2.3), it is known

(Lemma 3.1.10 of [53]) that the essential spectrum is given by

σess(L) = {λ ∈ C : A∞(λ) has an eigenvalue µ ∈ iR}. (2.9)
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This characterization is unsurprising, since (2.6) is a relatively compact perturbation of the au-

tonomous equation

Y ′(z) = A∞(λ)Y (z). (2.10)

The dynamics of the latter equation are easy to describe provided that A∞(λ) has no eigenvalues of

zero real part; they are characterized by exponential growth or decay of solutions at both ±∞. The

characterization (2.9) then follows from Weyl’s essential spectrum theorem, cf. [53, Theorem 2.2.6].

We claim that σess(L) is contained in the half-plane

H = {λ ∈ C : Reλ < β}. (2.11)

Indeed, a simple calculation using (2.6) shows that the eigenvalues of A∞(λ) are given by

µj(λ) =
1

2

(
−c±

√
c2 + 4(λ− νi)

)
, (2.12)

with νi from (2.1). We need to show that A∞(λ) has no purely imaginary eigenvalues if Reλ ≥ β,

which is clearly equivalent to showing that Re
√
c2 + 4(λ− νi) 6= −c for such λ. The formula

Re
√
a+ bi =

1√
2

√√
a2 + b2 + a (2.13)

and the fact that Re (c2 + 4(λ− νi)) > 0 from (2.1) together imply that

Re
√
c2 + 4(λ− νi) ≥

√
Re(c2 + 4(λ− νi)) >

√
c2 = −c, (2.14)

as desired. This calculation actually proves that A∞(λ) has exactly n eigenvalues of positive real

part and n eigenvalues of negative real part for λ ∈ (C \ H). We label these µi(λ) in order of

increasing real part and observe that

Reµ1(λ) ≤ · · · ≤ Reµn(λ) < 0 < −c < Reµn+1(λ) ≤ · · · ≤ Reµ2n(λ). (2.15)
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Furthermore, one sees from (2.12) that for each 1 ≤ i ≤ n we have

µi(λ) + µi+n(λ) = −c. (2.16)

Having shown that the essential spectrum is bounded away from iR in the left half-plane, Theorem

1.1.1 asserts that we can focus on unstable eigenvalues of L.

2.2 Stable and unstable bundles

Away from σess(L), the dynamics of (2.6) are dominated by (2.10) and are thus easy to understand.

In the jargon, for λ ∈ C \H, we say that (2.6) admits exponential dichotomies [67, 68] on R+ and

R− with the same Morse indices. These are projections which allow us to extract solutions to (2.6)

which decay in backward and/or forward time. See [71, §3.2-3.3] for more details. We thus define

the stable and unstable bundles

Es(λ, z) = {ξ(z) ∈ C2n : ξ solves (2.6) and ξ → 0 as z →∞}

Eu(λ, z) = {ξ(z) ∈ C2n : ξ solves (2.6) and ξ → 0 as z → −∞}
. (2.17)

Observe first that these are linear spaces, as they consist of solutions to (2.6). Also, the dimensions of

these spaces match the dimensions of the corresponding stable and unstable subspaces for A∞(λ). In

light of the preceding discussion, it then follows from (2.1) that Es/u(λ, z) are each n-dimensional for

λ /∈ H. The theory of exponential dichotomies implies that the decay of the solutions in Es/u(λ, z)

is exponential. Consequently, the growth of any unbounded solution is exponential as well.

The smoothness of solutions to (2.6) in z follows from basic ODE theory. It is also true, albeit

less obvious, that these spaces vary analytically in λ. The difficult part of that proof rests on work

of Kato [54, II.4.2], who showed that the stable and unstable subspaces for A∞(λ) (as well as bases

thereof) can be chosen in an analytic fashion. Since these spaces will play an important role later,

we assign them the notation S(λ) and U(λ). The analyticity is key for utilizing the Evans function

in the next section.

The stable and unstable bundles can also be defined in a geometric way, à la [2, §3]. Since A(λ, z)

has an exponentially quickly-attained limit for all λ ∈ C, equation (2.6) can be “compactified” by

the introduction of the variable

ξ =
e2κz − 1

e2κz + 1
. (2.18)
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The (unimportant) constant κ depends on the spectral gap for the eigenvalues of QSf ′(0). This

change of variables allows us to treat (2.6) as an autonomous equation on C2n+1, where ξ increases

between −1 and 1. The planes ξ = ±1 are invariant, as these correspond to the asymptotic states

z → ±∞. One can then show that Eu(λ, z) is the unstable manifold of the point (Y, ξ) = (0,−1), and

Es(λ, z) is the stable manifold of the point (Y, ξ) = (0,+1). For the details on the compactification,

we refer the reader to [2]. One byproduct of this construction is that any solution in Es(λ, z) (resp.

Eu(λ, z)) must be asymptotically tangent to S(λ) (resp. U(λ)) as z →∞ (resp. z → −∞).

Using the stable and unstable bundles, we have the following characterization of an eigenvalue:

λ ∈ σ(L) ∩ (C \H) ⇐⇒ Es(λ, z) ∩ Eu(λ, z) 6= {0} for some (and hence all) z ∈ R. (2.19)

Intersections between the bundles can be detected using the Evans function, which will be defined

in the next section. In order to define the Evans function, we will first need to develop a means for

tracking the evolution of the stable and unstable bundles. This will be accomplished through the

use of Plücker coordinates.

We close this section with a comment on terminology. The word “bundle” is used above because

Es/u(λ, z) are used in [2] to define complex vector bundles over a topological sphere defined by

the parameters λ and z. Although we adopt the terminology, our perspective will typically be to

consider Es/u(λ, z) instead as two-parameter curves in the Grassmannian Grn(V), with V = R2n

or C2n. It will be clear from context whether Es/u(λ, z) refers to a point in a Grassmannian or a

vector subspace.

2.3 Plücker coordinates and the induced equation on exterior powers

It follows from basic ODE theory that (2.6) induces a flow on Grassmannians of all orders, but

it is not obvious how to write down this flow. To bridge the gap from linear differential equations

to Grassmannians, a useful tool is the Plücker embedding, which allows one to realize points in

Grassmannians as elements of the exterior algebra of C2n (or R2n). It is then easy to write down

the equation induced on exterior powers of Cn by (2.6).

We will begin with the latter task. System (2.6) induces an equation

Z ′ = A(n)(λ, z)Z, (2.20)
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on
∧nC2n. Explicitly, A(n)(λ, z) is the unique endomorphism of

∧nC2n satisfying

A(n)(λ, z)(Y1 ∧ · · · ∧ Yn) = A(λ, z)Y1 ∧ · · · ∧ Yn + · · ·+ Y1 ∧ · · · ∧A(λ, z)Yn (2.21)

for any Yi ∈ C2n. It follows that if Yi are solutions to (2.6), then Y1 ∧ · · · ∧ Yn is a solution to (2.20).

The eigenvalues of the matrix A
(n)
∞ (λ) = lim

z→±∞
A(n)(λ, z) are the sums of n-tuples of eigenvalues of

A∞(λ), so for any λ /∈ H we have a simple eigenvalue of largest (positive) real part and a simple

eigenvalue of least (negative) real part. We next choose corresponding eigenvectors ζu(λ) ∈
∧nC2n

and ζs(λ) ∈
∧nC2n. Since these vectors span one-dimensional subspaces of

∧nC2n, we can therefore

find solutions Ẽs(λ, z) and Ẽu(λ, z) to (2.20) satisfying

lim
z→∞

Ẽs(λ, z) = 0

lim
z→−∞

Ẽu(λ, z) = 0

. (2.22)

Moreover, these multi-vectors are unique up to a scalar multiple, and they approach ζs(λ) and ζu(λ)

respectively in the appropriate limits.

We claim that the multi-vectors Ẽs/u(λ, z) encode the corresponding subspaces Es/u(λ, z).

The way to see this is via the Plücker embedding [37, 79]. Let V = C2n or R2n with basis {ei}.

This choice induces a basis {ei1 ∧ · · · ∧ ein} of
∧nV, which is indexed over all combinations

(
2n
n

)
.

(It is combinations and not permutations because the wedge product is alternating.) For any

W = sp{w1, . . . , wn} ⊂ V, we then have a map j̃ : Grn(V)→
∧nV defined by

j̃(W ) = w1 ∧ · · · ∧ wn. (2.23)

For this map to be well-defined, it would have to be independent of the choice of basis of W . In

fact, it is not, because changing the basis of W changes the n-vector j(W ) by a nonzero multiple

[79]. However, by projectivizing we can obtain a well-defined map

j : Grn(V)→ P

(
n∧
V

)

W = sp{w1, . . . , wn} 7→ [w1 ∧ · · · ∧ wn].

(2.24)
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The Plücker embedding thus provides a means for realizing vector spaces as elements of the exterior

algebra. To see that j(Es/u(λ, z)) = [Ẽs/u(λ, z)], one simply has to pick bases of each bundle for

a given λ and then use (2.21) and (2.17). Note that we are not claiming that these bases can be

chosen in an analytic way, which indeed they cannot in general [35].

We are now prepared to discuss the Evans function. However, before doing so, we dig a little

deeper into the Plücker embedding in the special case n = 2, V = R4. We focus on this case because

this is the setting of the Maslov index calculation which comprises a large portion of this dissertation.

In this case, there are 6 =
(

4
2

)
basis vectors for

∧2 R4. Let W = sp{u, v}, with u = (u1, u2, u3, u4)

and v = (v1, v2, v3, v4). By mapping W into P
(∧2 R4

)
via j, we obtain the Plücker coordinates

(p12, p13, p14, p23, p24, p34) of W . Using the definition of the wedge product, one checks that

pij =

∣∣∣∣∣∣∣
ui vi

uj vj

∣∣∣∣∣∣∣ . (2.25)

As the name “Plücker embedding” suggests, the map j is injective for spaces of any dimension.

However, it is not surjective. Given a form α ∈
∧k V, we have that [α] is in the image of j if and

only if α ∧ α = 0. From the perspective of algebraic geometry, the case k = 2, n = 4 is interesting

because this wedge condition reduces to the single Grassmannian condition

p12p34 − p13p24 + p14p23 = 0. (2.26)

Using the Plücker coordinates, it is possible to write down a matrix for the derivation (2.20). In

particular, one can calculate directly that d
dz (p12p34 − p13p24 + p14p23) = 0, meaning that the set of

bivectors which correspond to two-dimensional subspaces of R4 is invariant. This is to be expected,

since (2.6) respects linear independence of solutions. We will forgo writing down the matrix for the

equation on Plücker coordinates until we specialize to the FitzHugh-Nagumo system.

2.4 The Evans function

In this section we develop the Evans function [2, 29, 53, 71], which is the paradigmatic eigenvalue-

hunting tool for traveling waves of semilinear parabolic PDE. The idea is to use the criteria (2.19)
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for λ ∈ C \H to be an eigenvalue of L. Suppose that we could find bases

Es(λ, z) = sp{u1(λ, z), . . . , un(λ, z)}, Eu(λ, z) = sp{un+1(λ, z), . . . , u2n(λ, z)} (2.27)

of the stable and unstable bundles. A natural way to check for an intersection Es(λ, z) ∩ Eu(λ, z)

would then be to evaluate

det [u1, . . . , u2n] . (2.28)

Values of λ for which this determinant vanishes would then correspond to eigenvalues of L. However,

the issue of finding analytically varying bases of the stable and unstable bundles is subtle, so it is

preferable to use the exterior algebra framework developed in the previous section. Notice that

Ẽs(λ, z) ∧ Ẽu(λ, z) ∈
∧2nC2n, which is one dimensional. Furthermore, by the definition of the

wedge product [79, §8.4], we see that

Es(λ, z) ∩ Eu(λ, z) 6= {0} ⇐⇒ Ẽs(λ, z) ∧ Ẽu(λ, z) = 0. (2.29)

Since the Ẽs/u(λ, z) were chosen analytically in λ, the wedge product will be analytic as well. To

remove the dependence on z, we use the fact that Ẽs(λ, z) ∧ Ẽu(λ, z) solves

W ′(z) = Trace(A(λ, z))W (z), (2.30)

which is the equation induced by (2.6) on
∧2nC2n [2, §4.C]. Since Trace(A(λ, z)) = −nc, it follows

that

D̃(λ) := enczẼs(λ, z) ∧ Ẽu(λ, z) (2.31)

is independent of z. This is the Evans function, as defined in [2]. Mostly for notational convenience,

we prefer to work with a complex-valued function, as opposed to D̃(λ), which takes values in∧2nC2n. To that end, observe that
∧2nC2n is spanned by vol∗ := e1 ∧ · · · ∧ e2n, the basis element

induced by the chosen basis of C2n.

Definition 2.1. The Evans function D(λ) is defined by

D(λ)vol∗ = enczẼs(λ, z) ∧ Ẽu(λ, z). (2.32)
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It can be shown that D(λ) has the following properties:

1. D(λ) is analytic on an open domain containing C \H.

2. D(λ) ∈ R if λ ∈ R.

3. D(λ) = 0 if and only if λ ∈ σ(L). Furthermore, the algebraic multiplicity of λ as an eigenvalue

of L is equal to the order of λ as a root of D.

Most of these properties follow immediately from the construction of the Evans function. Only

the last part–namely that the algebraic multiplicity of λ as an eigenvalue is equal to its order as

a root–is difficult. This is proved in [2, §6]. For good overviews of the Evans function and its

properties, the reader can also consult [71, §4.1] or [53, §9.1-9.3].

2.5 Symplectic structure of the eigenvalue equation

To this point, none of the material in this chapter has relied on the special structure of skew-

gradient systems. In this section, we will show that the eigenvalue equations for skew-gradient

systems have an underlying symplectic structure. We will develop this without any reference to a

Hamiltonian, which one would have to work harder to unmask.

Consider (2.6) for real λ > β. Note that Es/u(λ, z) are real vector spaces in this case, since

they consist of solutions to an ODE with real coefficients. To identify the symplectic structure, we

introduce the matrix

J =

 0 Q

−Q 0

 . (2.33)

Since Q2 = I and Q∗ = Q, it is clear that J satisfies the conditions (1.10) for being a complex

structure. As in Chapter 1, the bilinear form

ω(a, b) := 〈a, Jb〉. (2.34)

is therefore symplectic. The following theorem underpins all of the analysis of this thesis.

Theorem 2.5.1. Let Y1, Y2 be any two solutions of (2.6) for fixed λ ∈ R. Then

d

dz
ω(Y1, Y2) = −c ω(Y1, Y2). (2.35)
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In particular, if ω(Y1(z0), Y2(z0)) = 0 for some z0 ∈ R, then ω(Y1, Y2) ≡ 0. More generally, the

symplectic form

Ω := eczω (2.36)

is constant in z on any two solutions of (2.6).

Proof. A direct computation gives that

d

dz
ω(Y1, Y2) = ω(Y1, A(λ, z)Y2) + ω(A(λ, z)Y1, Y2)

= 〈Y1, JA(λ, z)Y2〉+ 〈A(λ, z)Y1, JY2〉

= 〈Y1,
[
JA+ATJ

]
Y2〉.

(2.37)

In light of (2.34), we therefore need to show that

JA+ATJ = −cJ. (2.38)

Recalling that S and Q are diagonal and that (f ′(û))T = F ′′(û)T = F ′′(û) = f ′(û), we compute

JA+ATJ =

 λQS−1 − f ′(û) −cQ

0 −QS

+

 −λS−1Q+ f ′(û) 0

cQ SQ


= −c

 0 Q

−Q 0

 = −cJ.

(2.39)

For the second part, we see that

d

dz
Ω(Y1, Y2) = ecz

(
cω(Y1, Y2) +

d

dz
ω(Y1, Y2)

)
= 0. (2.40)

For fixed λ ∈ R, we have mentioned the standard result that (2.6) induces a flow on Grk(R2n)

for any k. The following is then a consequence of the preceding theorem.

Corollary 2.5.1. The set of ω-Lagrangian planes Λ(n) is an invariant manifold for the equation

induced by (2.6) on Grn(R2n).
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As explained above, eigenvalues are found by looking for intersections of the sets Es/u(λ, z). To

make use of Corollary 2.5.1, it is therefore critical that the stable and unstable bundles are actually

Lagrangian subspaces. We show now that this is indeed the case.

Theorem 2.5.2. For all λ ∈ R ∩ (C \ H) and z ∈ R, the subspaces Eu(λ, z) and Es(λ, z) are

Lagrangian.

Proof. First, it is clear that ω and Ω define the same set of Lagrangian planes. By Theorem 2.5.1,

we just need to show that Ω(Y1, Y2) = 0 for some value of z, given Y1, Y2 ∈ Es/u(λ, z). We begin

with Es(λ, z). By definition, Y1, Y2 ∈ Es(λ, z) decay to 0 as z →∞. Since c < 0, it is easy to see

that

Ω(Y1, Y2) = lim
z→∞

eczω(Y1, Y2) = 0. (2.41)

Now consider Y1, Y2 ∈ Eu(λ, z). The decay of these solutions at −∞ will be faster than e−cz, by

(2.15) and Theorem 3.1 of [71]. It follows that

Ω(Y1, Y2) = lim
z→−∞

eczω(Y1, Y2) = lim
z→−∞

ω(eczY1, Y2) = 0. (2.42)

This completes the proof.

The upshot of this section is that the stable and unstable bundles define two-parameter curves

of Lagrangian planes. To exploit this fact, we will consider the Maslov index associated to the

unstable bundle. The Maslov index and its properties are the subject of the next chapter.

21



CHAPTER 3

The Maslov index

Recall from Chapter 1 that the fundamental group of Λ(n) is infinite cyclic for all n ∈ N. The

homotopy class of a loop in this space is therefore like a winding number. Intuitively, the duality

between winding numbers and intersection numbers should allow us to identify the homotopy class

of a loop as an intersection count with a codimension one set in Λ(n). This is indeed the case,

as was shown by Arnol’d [4]. In fact, Arnol’d extended this definition to non-closed curves under

certain assumptions. These assumptions were relaxed considerably in [70], and the intersection

number discussed therein is the Maslov index that we will employ. We remark that the application

of the Maslov index described in this thesis goes back to the work of Maslov [61] and the seminal

papers of Arnol’d [4, 5].

We will develop the Maslov index in steps. In the next section, we define it abstractly for a

curve of Lagrangian planes and a fixed reference plane. Next, we discuss the Maslov index for a pair

of curves. Finally, we specialize to the nonlinear wave setting and define the Maslov index of the

homoclinic orbit. In each case, the important construction is that of the crossing form [70], which

assigns an integer to each intersection point determining its contribution to the Maslov index.

3.1 Maslov index of a path of Lagrangian planes

To start, fix a Lagrangian plane V ∈ Λ(n) and define the train of V to be

Σ(V ) = {V ′ ∈ Λ(n) : V ∩ V ′ 6= {0}}. (3.1)

There is a natural partition of this set into submanifolds of Λ(n) given by

Σ(V ) =

n⋃
k=1

Σk(V ), Σk(V ) = {V ′ ∈ Λ(n) : dim(V ∩ V ′) = k}. (3.2)

In particular, the set Σ1(V ) is dense in Σ(V ), and it is a two-sided, codimension one submanifold

of Λ(n) (cf. [70, §2]). In [4], the Maslov index of a loop α is defined as the number of signed
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intersections of α with Σ1(V ). A homotopy argument is used to ensure that all intersections

with Σ(V ) are actually with Σ1(V ), and hence this definition makes sense. More generally, for a

curve γ : [a, b] → Λ(n), it is shown ([4, §2.2]) that the same index is well-defined, provided that

γ(a), γ(b) /∈ Σ(V ) and that all intersections with Σ(V ) are one-dimensional and transverse. Both

the assumptions of transversality at the endpoints and of only one-dimensional crossings were

dispensed of in [70]. The key was to make robust the notion of intersections with Σ(V ), which was

accomplished through the introduction of the “crossing form.”

Now let γ : [a, b]→ Λ(n) be a smooth curve. The tangent space to Λ(n) at any point γ(t) can

be identified with the space of quadratic forms on γ(t), cf. [27, §1.6]. This allows one to define

a quadratic form that determines whether γ(t) is transverse to Σ(V ) at a given intersection; this

quadratic form is the crossing form. Specifically, suppose that γ(t∗) ∈ Σ(V ) for some t∗ ∈ [a, b].

It can be checked from (2.34) that the plane J · γ(t∗) is orthogonal to γ(t∗), with J as in (2.33).

Furthermore, any other Lagrangian plane W transverse to J · γ(t∗) can be written uniquely as the

graph of a linear operator BW : γ(t∗) → J · γ(t∗) [27]. This includes γ(t) for |t − t∗| < δ � 1.

Writing Bγ(t) = B(t), it follows that the curve v +B(t)v ∈ γ(t) for all v ∈ γ(t∗). The crossing form

is then defined by

Γ(γ, V, t∗)(v) =
d

dt
ω(v,B(t)v)|t=t∗ . (3.3)

The form is defined on the intersection γ(t∗) ∩ V . It is shown in Theorem 1.1 of [70] that this

definition is independent of the choice J · γ(t∗); any other Lagrangian complement of γ(t∗) would

produce the same crossing form. The crossing form is quadratic, so it has a well-defined signature.

For a quadratic form Q, we use the notation sign(Q) for its signature. We also write n+(Q) and

n−(Q) for the positive and negative indices of inertia of Q (see [79, p. 187]), so that

sign(Q) = n+(Q)− n−(Q). (3.4)

Roughly speaking, sign(Γ(γ, V, t∗)) gives the dimension and the direction of the intersection γ(t∗)∩V .

Reminiscent of Morse theory, a value t∗ such that γ(t∗) ∩ V 6= {0} is called a conjugate point or

crossing. A crossing is called regular if the associated form Γ is nondegenerate. For a curve with

only regular crossings, one can define the Maslov index as follows.
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Definition 3.1. Let γ : [a, b]→ Λ(n) and V ∈ Λ(n) such that γ(t) has only regular crossings with

the train of V . The Maslov index is then given by

µ(γ, V ) = −n−(Γ(γ, V, a)) +
∑

t∗∈(a,b)

sign Γ(γ, V, t∗) + n+(Γ(γ, V, b)), (3.5)

where the sum is taken over all interior conjugate points.

Remark 3.1. The reader will notice that the Maslov index defined in [70] has a different endpoint

convention than Definition 3.1. Instead, they take (1/2)sign(Γ) as the contribution at both a and b.

This is merely convention, provided that one is careful to make sure that the additivity property (see

Proposition 3.1.1 below) holds. Our convention follows [23, 41] to ensure that the Maslov index is

always an integer.

The crucial fact about the Maslov index is that it is a homotopy invariant. In [70, §2], it is

shown that it enjoys several other properties, a few of which we list in the following proposition.

Proposition 3.1.1. Let γ : [a, b]→ Λ(n) be a curve with only regular crossings with the train of a

Lagrangian plane V . Then

(i) (Additivity by concatenation) For any c ∈ (a, b), µ(γ, V ) = µ(γ|[a,c], V ) + µ(γ|[c,b], V ).

(ii) (Homotopy invariance) Two paths γ1,2 : [a, b] → Λ(n) with γ1(a) = γ2(a) and γ1(b) = γ2(b)

are homotopic with fixed endpoints if and only if µ(γ1, V ) = µ(γ2, V ).

(iii) If dim(γ(t) ∩ V ) = constant, then µ(γ, V ) = 0.

3.2 Maslov index of a pair of curves

In the previous section, we considered one curve of Lagrangian planes and showed how to count

intersections with a fixed reference plane. Alternatively, one could consider two curves of Lagrangian

planes and count how many times they intersect each other. This theory is also developed in [70];

see §3. Let γ1,2 : [a, b] → Λ(n) be two curves of Lagrangian planes with a common domain. As

before, we say that t∗ is a conjugate point if γ1(t∗) ∩ γ2(t∗) 6= {0}. At such a point, define the

relative crossing form

Γ(γ1, γ2, t
∗) = Γ(γ1, γ2(t∗), t∗)− Γ(γ2, γ1(t∗), t∗) (3.6)
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on the intersection γ1(t∗)∩γ2(t∗). For clarity, we emphasize that the right-hand side of (3.6) consists

of two crossing forms: the first considers γ1(t) as varying and γ(t∗) as fixed; the second treats γ2(t)

as moving and γ1(t∗) as fixed. One then applies (3.3) to calculate each of the two forms. Again, the

crossing t∗ is called regular if Γ in (3.6) is nondegenerate.

For a pair of curves with only regular crossings, one can define the relative Maslov index by

µ(γ1, γ2) = −n−(Γ(γ1, γ2, a)) +
∑

t∗∈(a,b)

sign Γ(γ1, γ2, t
∗) + n+(Γ(γ1, γ2, b)), (3.7)

where the sum is taken over interior intersections of γ1 and γ2. We point out now that it is easy to

show that regular crossings are isolated, so that both the sums in (3.5) and (3.7) are finite. Also, it

is clear that (3.7) coincides with (3.5) in the case where γ2 = constant. Accordingly, most of the

properties of the Maslov index in [70, §2] carry over to the two-curve case without much trouble.

However, in moving from paths to pairs of curves, one must be careful about the homotopy axiom.

The following is proved in Corollary 3.3 of [70].

Proposition 3.2.1. Let γ1 and γ2 be curves of Lagrangian planes with common domain [a, b].

If γ1(a) ∩ γ2(a) = γ1(b) ∩ γ2(b) = {0}, then µ(γ1, γ2) is a homotopy invariant, provided that the

homotopy respects the stated condition on the endpoints.

3.3 Maslov index of the traveling wave

We are now ready to specialize to the problem at hand and define the Maslov index of the

traveling wave. The definition below is due to Chen and Hu [18]. To motivate things, recall from

Theorem 1.3.1 that the number of unstable modes for the Sturm-Liouville operator is determined by

the number of zeros of the steady state whose stability is being analyzed (or, to be more precise, the

number of critical points it has). The key to making that connection is the fact that the derivative

of the steady state solves the eigenvalue problem (ignoring boundary conditions) when λ = 0. This

is neither a coincidence, nor a feature unique to the scalar case. In general, one sees that (2.6) with

λ = 0 is the variational equation for the traveling wave ODE

 u

v


z

=

 Sv

−cv −Qf(u)

 . (3.8)
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(This system is obtained by setting uz = v and writing the steady-state equation for (1.19) as a

first-order system.)

We will say more about the importance of the nonlinear problem later. For now, it suffices to

say that the Maslov index of interest should be with λ = 0 fixed, since the eigenvalue problem in

that case is related to the wave itself (i.e. not dependent on the spectral parameter). To nail down

the curve and reference plane, remember the “shooting approach” to the Sturm theorem, wherein

the subspace satisfying the left boundary data is flowed forward in time (x). Counting zeros of the

derivative corresponds to counting crossings with the reference plane {0} × R, which can also be

thought of as the space of boundary data for the right endpoint. This suggests that the curve of

interest should be the unstable bundle Eu(0, z), and the reference plane should be V s(0) = S(0),

the stable subspace of A∞(0), which corresponds to the right boundary data.

For technical reasons, this choice of curve and reference plane are untenable. Indeed, the domain

of the curve Eu(0, z) is R, in contrast to the Dirichlet problem in which it was a compact interval.

It is therefore possible to have an infinite number of conjugate points, and hence an infinite Maslov

index. Moreover, we already know that the derivative of the wave ϕ′(z) = (û′, Sû′′) ∈ Es(0, z) for all

z, since it is bounded as z →∞. This implies that there will be a conjugate point at z = +∞. Even

worse, since this conjugate point is reached in infinite time, the crossing form will vanish in the limit,

thus the contribution to the Maslov index will be impossible to determine. To remedy this, Chen

and Hu [18, §1] instead pulled back V s(0) slightly along ϕ and used Es(0, τ), τ � 1 as a reference

plane. The domain of the curve is truncated as well to (−∞, τ ], which forces a conjugate point at

the right end point; ϕ′ (at least) is in the intersection Eu(0, τ) ∩ Es(0, τ). The only requirement on

τ is that

V u(0) ∩ Es(0, z) = {0} for all z ≥ τ. (3.9)

One then arrives at the following definition.

Definition 3.2. Let τ satisfy (3.9). The Maslov index of ϕ is given by

Maslov(ϕ) :=
∑

z∗∈(−∞,τ)

sign Γ(Eu, Es(0, τ), z∗) + n+(Γ(Eu, Es(0, τ), τ)), (3.10)

where the sum is taken over all interior crossings of Eu(0, z) with Σ, the train of Es(0, τ).
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For the Maslov index to be well-defined, it must be independent of τ . It is perhaps surprising

that this would be the case. Indeed, it is quite possible that conjugate points would be added or

erased by moving τ , which has the effect of shortening/lengthening the curve Eu(0, z). However,

the Maslov index counts signed intersections, so while extra conjugate points may appear, they

would have to do so in a way so that the signed count does not change.

To prove that this definition makes sense, let τ ′ > τ0 ≥ τ satisfy (3.9). As z → −∞, we know

that Eu(0, z) → U(0) = V u(0), the unstable subspace of A∞(0). Now, consider a trapezoid in

zτ -space bounded by the following four curve segments:

γ1 = {(z, τ) : −∞ ≤ z ≤ τ0, τ = τ0}

γ2 = {(z, τ) : z = τ, τ0 ≤ z ≤ τ ′}

γ3 = {(z, τ) : −∞ ≤ z ≤ τ ′, τ = τ ′}

γ4 = {(z, τ) : z = −∞, τ0 ≤ τ ≤ τ ′}

. (3.11)

(Note that we include the point at −∞ because Eu(0, z) is well-behaved in that limit.) Call

the boundary curve of the trapezoid γ, equipped with a counter-clockwise orientation. Map this

trapezoid into Λ(n)× Λ(n) via the assignment

(z, τ) 7→ (Eu(0, z), Es(0, τ)). (3.12)

It is clear that the trapezoid can be continuously shrunk down to the vertex where γ1 and γ4 meet.

It then follows from Proposition 3.2.1 that the Maslov index of the pair of curves given by the

image of γ is zero, since Eu(0,−∞) = V u(0), which is transverse to Es(0, τ) for τ0 ≤ τ ≤ τ ′, by

(3.9). From (3.7) and Definition 3.2, it is clear that the Maslov indices of the edges corresponding

to γ1 and γ3 are Maslov(ϕ) for τ = τ0 and τ = τ ′ respectively (assuming z increases in each case).

Furthermore, since dim(Eu(0, z) ∩Es(0, z)) is constant in z, the Maslov index corresponding to the

edges γ2 and γ4 are both zero, by Proposition 3.1.1(iii). It then follows from Proposition 3.1.1(i)

that the two edges corresponding to Maslov(ϕ) have opposite Maslov indices, which completes the

proof, since the orientation is reversed for τ = τ ′.

We now know that Maslov(ϕ) is well-defined and independent of τ (provided τ is large enough).
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This will be very valuable later, as we will need to refine the value τ several times in the Maslov

Box argument. Although we will consider several curves in this thesis, any mention of the Maslov

index will always mean Maslov(ϕ).

3.4 The crossing form in z

To use Definition 3.1, we will need to know how to compute the crossing form. This is the

content of the following theorem, which is found in [23, §5].

Theorem 3.4.1. Fix τ as in (3.9). Let z∗ be a conjugate time for the curve Eu(0, z) with respect

to the reference plane Es(0, τ). Then for ξ ∈ Eu(0, z∗) ∩ Es(0, τ), the crossing form is given by

Γ(Eu(0, ·), Es(0, τ), z∗)(ξ) = ω(ξ, A(0, z∗)ξ). (3.13)

Proof. Take W ∈ Λ(n) such that Eu(0, z∗)⊕W = R2n. As above, any other Lagrangian subspace

transverse to W can be written uniquely as the graph of a linear operator B : Eu(0, z∗)→W . In

particular, for |z − z∗| < δ � 1,

Eu(0, z) = {v + ψ(z)v : v ∈ Eu(0, z∗)} (3.14)

with ψ(z) : Eu(0, z∗)→W smooth in z. For any ξ ∈ Eu(0, z∗)∩Es(0, τ), we therefore have a curve

w(z) ∈ W defined by ξ + w(z) ∈ Eu(0, z), or, equivalently, w(z) = ψ(z)ξ. Furthermore, we have

ψ(z∗) = 0. It is shown in [70, p. 3] that the form

Q(ξ) =
d

dz

∣∣
z=z∗

ω(ξ, w(z)) (3.15)

is independent of the choice of W and defines the crossing form. To show that (3.13) holds, it will be

helpful to consider the evolution operator Φ(ζ, z) for (2.6) with λ = 0. Φ satisfies Φ(ζ, ζ) = Id and

Φ(z∗, z) · Eu(0, z∗) = Eu(0, z). (Here, · refers to the induced action of Φ(z∗, z) on an n-dimensional

subspace.) Notice that (3.14) defines a curve γ(z) ∈ Eu(0, z∗) by the formula

ξ + ψ(z)ξ = Φ(z∗, z)γ(z). (3.16)
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From above, γ(z∗) = ξ. We are now ready to compute:

d

dz

∣∣
z=z∗

ω(ξ, w(z)) =
d

dz

∣∣
z=z∗

ω(ξ,Φ(z∗, z)γ(z)− ξ)

=
d

dz

∣∣
z=z∗

ω (ξ,Φ(z∗, z)γ(z))

= ω (ξ, A(0, z∗)γ(z∗)) + ω
(
ξ, γ′(z∗)

)
= ω (ξ, A(0, z∗)ξ) + lim

z→z∗
1

z − z∗
ω (ξ, γ(z)− γ(z∗))

= ω (ξ, A(0, z∗)ξ) .

(3.17)

The last equality follows since γ(z) ∈ Eu(z∗) for all z, which is a Lagrangian plane containing ξ.

This completes the proof.

Notice that the same proof goes through mutatis mutandis for λ 6= 0. Since we will later consider

the unstable bundle for λ ≥ 0, we record the crossing form for such curves here.

Theorem 3.4.2. Consider the curve z 7→ Eu(λ, z), for fixed λ. Assume that for a reference plane

V , there exists a value z = z∗ such that Eu(λ, z∗) ∩ V 6= {0}. Then the crossing form for Eu(λ, ·)

with respect to V is given by

Γ(Eu(λ, ·), V, z∗)(ζ) = ω(ζ,A(λ, z∗)ζ), (3.18)

restricted to the intersection Eu(λ, z∗) ∩ V .
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CHAPTER 4

Stability index for two-component activator inhibitor systems

The goal of this chapter is to prove the main result of [23], which shows how the Maslov index can

be used to determine the sign of the derivative of the Evans function at λ = 0. Although this result

will hold for general skew-gradient systems, we will focus on a two-component activator-inhibitor

system

ut = uxx + f(u)− σv

vt = vxx + g(v) + αu,

(4.1)

where f, g ∈ C2(R), and α, σ > 0 are real constants. As before we assume that (4.1) possesses a

traveling wave ϕ = (û, v̂), which has speed c < 0 and approaches (0, 0) as z → ±∞. In an abuse of

notation, we will use ϕ for both the wave ϕ = (û, v̂), and for the corresponding homoclinic orbit

ϕ = (û, v̂, û′/σ, v̂′/α) in the traveling wave ODE



u

v

w

y


z

=



σw

αy

−cw − f(u)
σ + v

−cy − u− g(v)
α


. (4.2)

Calling the nonlinearity in (4.1) F (U), assumption (2.1) this time takes the form

Trace(DF (0)) = f ′(0) + g′(0) < 0

Det(DF (0)) = f ′(0)g′(0) + σα > 0.

(4.3)
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The eigenvalue equation for the linearization about the wave is given by



p

q

r

s


z

=



0 0 σ 0

0 0 0 α

λ
σ −

f ′(û)
σ 1 −c 0

−1 λ
α −

g′(v̂)
α 0 −c





p

q

r

s


. (4.4)

We again abbreviate this system Y ′(z) = A(λ, z)Y (z), with asymptotic matrix A∞(λ). In this

section, we make a few additional assumptions about ϕ.

(A1) The tails of ϕ are monotone, as opposed to oscillatory. From (2.12) and (4.3), we see that this

is equivalent to assuming that ν1 and ν2 are real. Additionally, we assume that ν1 and ν2 are

simple and thus satisfy

ν1 < ν2 < 0. (4.5)

(A2) Assumption (A1) guarantees that the eigenvalues µi(0) of A∞(0) satisfy

µ1(0) < µ2(0) < 0 < µ3(0) < µ4(0), (4.6)

so that the leading eigenvalues µ2(0) and µ3(0) are real and simple. We assume that the

exponential decay rate of ϕ (as a homoclinic orbit) is given by µ2(0) in forwards time and by

µ3(0) in backwards time. This assumption is generic, c.f. [40, §2.1].

(A3) ϕ is transversely constructed. This means that (ϕ(z), c) ∈ R5 is given by the transverse

intersection of the center-unstable and center-stable manifolds of the fixed point (0, 0, 0, 0, c)

for (4.2) with the equation c′ = 0 appended.

Assumptions (A1) and (A2) are mostly for notational convenience. Our results could be obtained in

the case where the eigenvalues are complex or if the wave is in a so-called orbit-flip configuration [40].

However, some of the results use the decay properties of the wave, so the arguments would require a

different presentation. On the other hand, if ν1 = ν2, then µ1(0) = µ2(0) and µ3(0) = µ4(0). Having

eigenvalues of multiplicity greater than one causes trouble for analytically picking bases of Es/u(λ, z)

[11], so we assume that is not the case. Vis-à-vis σ and α, having ν1 6= ν2 is clearly generic. Finally,
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assumption (A3) is known to be equivalent to the simplicity of the translation eigenvalue λ = 0

[3, pp. 57-60]. Since we wish to use the Maslov index to say something about signD′(0), this is a

natural assumption to make.

4.1 Evans function parity argument

Before jumping into the details of the argument, it is worthwhile first to discuss why one would

care about the sign of D′(0). Due to translation invariance, it will always be the case (at least for

autonomous systems) that λ = 0 is an eigenvalue with eigenfunction ϕ′(z). Recall from Chapter

2 that the Evans function is real-valued for λ ∈ R. The sign of D(λ) for real λ � 1 can also be

determined easily, using the fact that (4.4) is essentially autonomous for large enough λ. Typically,

D(λ) is constructed so that D(λ) > 0 for λ� 1. It follows that if D′(0) < 0, then L must have a

positive eigenvalue. Likewise, if D′(0) > 0 and other information is known about σ(L), then it is

sometimes possible to conclude stability. This parity argument has been used many times in the

stability analysis of nonlinear waves, e.g. [3, 9, 10, 35, 44, 52, 66, 69, 81].

We will close this section by fixing the sign of D(λ), λ� 1 for (4.4). First, it follows from (A1)

and (2.12) that for all λ > β, the eigenvalues of A∞(λ) satisfy

µ1(λ) < µ2(λ) < 0 < −c < µ3(λ) < µ4(λ). (4.7)

As in §2.3, we can find ζs/u(λ) ∈
∧2 R4 and Ẽs/u(λ, z) ∈

∧2 R4 such that

e−(µ1(λ)+µ2(λ))zẼs(λ, z)→ ζs(λ) as z →∞

e−(µ3(λ)+µ4(λ))zẼu(λ, z)→ ζu(λ) as z → −∞.
(4.8)

Again, Ẽs(λ, z) and Ẽu(λ, z) are the only solutions of the equation induced by (4.4) on
∧2 R4

which are bounded as z → ∞ and as z → −∞ respectively. Since ζs/u(λ) correspond to the

(non-intersecting) stable and unstable subspaces of A∞(λ), the quantity ζs(λ) ∧ ζu(λ) will be a

nonzero multiple of the volume element vol∗ on R4. We can fix the orientation by choosing multiples

of ζs/u(0) such that

ζs(0) ∧ ζu(0) = ρ vol∗, ρ > 0. (4.9)

32



Under this assumption, it is known (c.f. Lemma 4.2 of [84] and Lemma 4.2 of [3]) that

D(λ) > 0 for λ� 1. (4.10)

4.2 The symplectic Evans function

In this section, we show how to exploit the symplectic structure of (4.4) by rewriting D(λ) in

terms of the symplectic form Ω. To do so, we will need bases for the stable and unstable subspaces.

Since the eigenvalues µi(λ) are all real and simple for λ > β, it is well known (e.g. [69, p. 56]) that

there exist solutions ui(λ, z) to (4.4) satisfying

lim
z→∞

e−µi(λ)zui(λ, z) = ηi(λ), i = 1, 2

lim
z→−∞

e−µi(λ)zui(λ, z) = ηi(λ), i = 3, 4,

(4.11)

where ηi(λ) is a nonzero eigenvector of A∞(λ) corresponding to eigenvalue µi(λ). Furthermore, the

ui are analytic in λ, and the limits are achieved uniformly on compact subsets of (β,∞). By (2.21),

(2.22), and (4.11), it must be the case that

u1(λ, z) ∧ u2(λ, z) = Ẽs(λ, z)

u3(λ, z) ∧ u4(λ, z) = Ẽu(λ, z)

, (4.12)

and hence that

η1(λ) ∧ η2(λ) ∧ η3(λ) ∧ η4(λ) = K ζs(λ) ∧ ζu(λ), (4.13)

for some K 6= 0. By (A2), we can take

ϕ′(z) = u2(0, z) = u3(0, z), (4.14)

since ϕ′ ∈ Es(0, z) ∩ Eu(0, z). By rescaling u1/4(λ, z) if necessary, we can take K = 1 in (4.13).

Using Definition 2.1, we therefore have

D(λ)vol∗ = e2czẼs(λ, z) ∧ Ẽu(λ, z)

= e2cz det [u1(λ, z), u2(λ, z), u3(λ, z), u4(λ, z)] vol∗
. (4.15)
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We are now ready to bring in the symplectic form. This idea was pioneered in [9, 10] for systems

of Hamiltonian PDEs with a multi-symplectic structure, and the following formula first appeared in

[15]. The slight difference in our formula and that of Chardard-Bridges’ is due to the fact that the

symplectic form is different in activator-inhibitor systems.

Theorem 4.2.1. Let a1, a2, b1, b2 ∈ R4. Then

det[a1, a2, b1, b2] = −det

 ω(a1, b1) ω(a1, b2)

ω(a2, b1) ω(a2, b2)

+ ω(a1, a2)ω(b1, b2). (4.16)

This formula is proved for arbitrary (even) dimension in [15] using the Leibniz formula for

determinants. However, in this low-dimensional case it is easy enough to verify using brute force.

Notice that the second term in (4.16) disappears if either sp{a1, a2} or sp{b1, b2} is a Lagrangian

plane. Combining (4.15) and (4.16), we arrive at the symplectic Evans function.

Corollary 4.2.1. The symplectic Evans function is

D(λ) = −e2cz det

 ω(u1, u3) ω(u1, u4)

ω(u2, u3) ω(u2, u4)

 . (4.17)

In this form, it is easy to see the z−independence of D. Distributing one copy of ecz to each

row of the matrix in (4.17), one can replace eczω with Ω in each entry and consult Theorem 2.5.1.

Let us now consider the case λ = 0. First, due to translation invariance, the derivative of the

traveling wave ϕ′(z) is a zero-eigenfunction for L, hence D(0) should be zero. Indeed, from Theorem

2.5.2 and (4.14), it follows that each entry of the matrix in (4.17) is zero, with the possible exception

of ω(u1, u4). Thus D(0) = 0, as expected. Corollary 4.2.1 can also be used to show that D′(0) = 0

if the stable and unstable bundles have a two-dimensional intersection (i.e. they are tangent to each

other). In this case, the matrix in (4.17) is the zero matrix for λ = 0, and an application of the

product rule shows that D′(0) = 0.

The main result of this paper involves D′(0), so we start by calculating this using Jacobi’s

formula. The second part of this calculation is inspired by the proof of Theorem 1.11 in [69], and

similar calculations are carried out in [10].
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Lemma 4.2.1. The quantity D′(0) is given by

D′(0) = Ω(u1, u4)

∞∫
−∞

ecz
(

(û′)2

σ
− (v̂′)2

α

)
dz. (4.18)

Before giving the proof, a few comments are in order. First, the fact that the wave is transversely

constructed implies that both terms in the product in (4.18) are nonzero. The term Ω(u1, u4)–named

the Lazutkin-Treschev invariant in [15]–carries information about the intersection of the stable

and unstable manifolds; if it were zero, then Eu(0, z) and Es(0, z) would have a two-dimensional

intersection [15, pp. 84-85]. The integral, on the other hand, is solely dependent on the wave itself.

In [21] it is shown that this encodes the deficiency of the eigenvalue. More precisely, it vanishes

if and only if the algebraic multiplicity of 0 as an eigenvalue of L is greater than the geometric

multiplicity. While the integral is calculable if the wave is known, the Lazutkin-Treschev invariant

is more difficult to determine. Indeed the decay rates of the ui and the z−independence of Ω can be

used to show that e−µ4(0)zu4(0, z) converges to a multiple of η4(0) in forward time. However, the

orientation of this vector (i.e. whether that multiple is positive or negative) is difficult to ascertain,

and it is what determines the sign of D′(0). We will see that the Maslov index can be used to

circumvent this difficulty. Now for the proof of the Lemma.

Proof. Denote by Σ(λ, z) the matrix in (4.17), and let Σ(λ, z)# be its adjugate (i.e. the transpose

of its cofactor matrix). By the Jacobi formula [60, §8.3], we have

D′(0) = −e2cz Trace(Σ#Σλ)|λ=0.

= −Trace


 Ω(u2, u4) −Ω(u1, u4)

−Ω(u2, u3) Ω(u1, u3)


 ∂λΩ(u1, u2) ∂λΩ(u1, u4)

∂λΩ(u2, u3) ∂λΩ(u2, u4)


∣∣λ=0

= −Trace


 0 −Ω(u1, u4)

0 0


 ∂λΩ(u1, u2) ∂λΩ(u1, u4)

∂λΩ(u2, u3) ∂λΩ(u2, u4)


∣∣λ=0

= Ω(u1, u4)∂λΩ(u2, u3)|λ=0.

(4.19)

The vanishing terms in the third equality are due to the fact that u2 = u3 = ϕ′ when λ = 0,

and Eu/s(0, z) are both Lagrangian planes for all z. It remains to calculate ∂λΩ(u2, u3). Since
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µ2(λ) + µ3(λ) ≡ −c, we can write Ω(u2, u3) = ω(U, V ), where U = e−µ2(λ)zu2 and V = e−µ3(λ)zu3,

from which it follows that ω(U, V ) is z−independent, and ∂λ Ω(u2, u3) = ∂λ ω(U, V ). Furthermore,

U and V satisfy the equations

Uz = (A(λ, z)− µ2(λ))U

Vz = (A(λ, z)− µ3(λ))V.

(4.20)

Taking derivatives in λ, we have that

Uλz = (A(λ, z)− µ2(λ))Uλ + (Aλ − µ′2(λ))U

Vλz = (A(λ, z)− µ3(λ))Vλ + (Aλ − µ′3(λ))V,

(4.21)

where

Aλ =



0 0 0 0

0 0 0 0

1
σ 0 0 0

0 1
α 0 0


(4.22)

is independent of z. Finally, since ∂z ω(U, V ) = 0, ∂z∂λ ω(U, V ) = 0 as well, so

∂z ω(Uλ, V ) = −∂z ω(U, Vλ). (4.23)

Using (4.21) and (4.20), we calculate that

∂z ω(Uλ, V ) = ω
(
A(λ, z)Uλ − µ2(λ)Uλ +AλU − µ′2(λ)U, V

)
+ ω(Uλ, (A(λ, z)− µ3(λ))V )

= −c ω(Uλ, V )− (µ2(λ) + µ3(λ))ω(Uλ, V ) + ω(AλU, V )− µ′2(λ)ω(U, V )

= ω(AλU, V )− µ′2(λ)ω(U, V ).

(4.24)

In the second equality, we used (2.38) to conclude that

ω(A(λ, z)v1, v2) + ω(v1, A(λ, z)v2) = −c ω(v1, v2) (4.25)

for any z, λ and any vectors vi ∈ R4. This yields the third equality in conjunction with the
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identity µ2(λ) + µ3(λ) ≡ −c. If we evaluate this expression at λ = 0, whence U = e−µ2(0)zϕ′(z),

V = e−µ3(0)zϕ′(z), and ω(U, V ) = Ω(ϕ′, ϕ′) = 0, we end up with

∂z ω(Uλ, V )(0, z) = eczω(Aλϕ
′, ϕ′) = −ecz

(
(û′)2

σ
− (v̂′)2

α

)
. (4.26)

To complete the proof, we use the Fundamental Theorem of Calculus and (4.23), à la [69]. For any

large R,S > 0, we have

ω(Uλ, V )(0, 0) = ω(Uλ, V )(0, R) +

R∫
0

ecz
(

(û′)2

σ
− (v̂′)2

α

)
dz

ω(U, Vλ)(0, 0) = ω(U, Vλ)(0,−S) +

0∫
−S

ecz
(

(û′)2

σ
− (v̂′)2

α

)
dz

. (4.27)

Adding these equations and taking R,S →∞ gives the desired result, provided that the boundary

terms vanish in the limit. Since the limits in (4.11) are achieved uniformly on compact subsets of

(−β,∞), we know that the limits

lim
z→−∞

Uλ(λ, z)

lim
z→∞

Vλ(λ, z)

(4.28)

exist. Furthermore, for λ = 0, it is clear that V = e−µ3(0)zϕ′ → 0 as z → ∞ and that U =

e−µ2(0)z → 0 as z → −∞, so the boundary terms vanish by the linearity of ω, giving the result.

4.3 The detection form and main result

In this section, we prove the following theorem, which is the core result of [23].

Theorem 4.3.1. Define Maslov(ϕ) for ϕ = (û(z), v̂(z)) as in Definition 3.1. Then

(−1)Maslov(ϕ) = sign Ω(u1(0, z), u4(0, z)). (4.29)

Comparing with Lemma 4.2.1, one could then use Maslov(ϕ) to determine D′(0), if the sign

of the Melnikov integral in (4.18) were known. In principle, this should not be a problem, since

proving the existence of the wave is prior to proving its stability. We point out that this result is

the analog of the result proved in [15] for Hamiltonian systems. The strategy in that work was to

37



use a definition of the Maslov index due to Souriau [75], in which the index is defined for elements

in the universal cover of U(n). By contrast, our proof is more elementary and works directly with

the crossing form (3.18).

The reader will recall that Maslov(ϕ) is determined by the curve Eu(0, z), defined for z ∈ (−∞, τ ],

and the reference plane Es(0, τ). We will prove Theorem 4.3.1 through a close examination of the

conjugate point z = τ . Indeed, z = τ is a conjugate point because

Eu(0, τ) ∩ Es(0, τ) = sp{ϕ′(τ)}. (4.30)

In other words, this conjugate point encodes the translation invariance. It is therefore not surprising

that it should be the distinguished z-value used to connect the Maslov index and Evans function.

Now, to calculate the Maslov index, we must have a way of finding the other conjugate points. This

is accomplished through the introduction of the detection form π ∈
(∧2 R4

)∗
, defined by

π(w1 ∧ w2) = det
[
e−µ1(0)τu1(0, τ), e−µ2(0)τu2(0, τ), w1, w2

]
. (4.31)

π is called the detection form because it is 0 precisely when the plane W = sp{w1, w2} intersects

Es(0, τ) non-trivially. Thus it detects conjugate points for a curve of Lagrangian planes. This form

is traditionally called the dual to the characterizing two-vector w1 ∧ w2 for W , see [24, pp. 97-98].

We next define a function β : R→ R, which evaluates π on Eu(0, z). Explicitly, we have

β(z) = e−(µ1+µ2)τ−(µ3+µ4)z det[u1(τ), u2(τ), u3(z), u4(z)]. (4.32)

(This is unrelated to the β giving the spectral gap for F ′(0)–for the rest of this section β refers to

the function defined above.) We henceforth suppress the dependence of ui, µi on λ, since we take

λ = 0 for this calculation. For brevity, we also set M(z) = −(µ1 + µ2)τ − (µ3 + µ4)z. Recall that

u2 = u3 = ϕ′ for λ = 0, so we see immediately that β(τ) = 0, since columns two and three are both

ϕ′(τ).
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Now, we can use (4.16) to rewrite β as

β(z) = −eM(z) det

 ω(u1(τ), u3(z)) ω(u1(τ), u4(z))

ω(u2(τ), u3(z)) ω(u2(τ), u4(z))

 . (4.33)

The next ingredient is β′(τ), whose sign we claim will help determine the sign of D′(0). Since

β(τ) = 0, we see that

β′(τ) = −eM(τ) d

dz
[ω(u1(τ), u3(z))ω(u2(τ), u4(z))− ω(u1(τ), u4(z))ω(u2(τ), u3(z))]

∣∣
z=τ

. (4.34)

Before jumping into the product rule expansion, recall that u2(τ) = u3(τ) = ϕ′(τ), and hence

sp{ui(τ), uj(τ)} is Lagrangian for (i, j) = (1, 2), (1, 3), (2, 4), (3, 4), with ω(u2, u3) = 0 as well. It

follows that the only surviving term is −ω(u1(τ), u4(τ))ω(u2(τ), u′3(τ)). Since M(τ) = −(µ1 + µ2 +

µ3 + µ4)τ = 2cτ , we conclude that

β′(τ) = Ω(u1, u4)Ω
(
ϕ′(τ), ϕ′′(τ)

)
. (4.35)

The relation to (4.18) is now apparent. Noticing that ϕ′′ = A(0, z)ϕ′, the second term in (4.35) is

the crossing form for the conjugate point z = τ , scaled by a positive factor ecτ . We will show that

the sign of Ω(u1, u4) can be determined from the Maslov index, regardless of the sign of the crossing

at z = τ . The tie that binds the two is β(z). First, from (4.32) we can see that β is asymptotically

constant as z → −∞. Indeed, if τ is large enough, then (4.9) and (4.13) imply that

lim
z→−∞

β(z) ≈ det [η1, η2, η3, η4] = ρ > 0. (4.36)

Thus β(z) > 0 for large, negative z, provided τ is large enough. By definition, zeros of β correspond

to conjugate points for the curve Eu(0, z). Heuristically, the sign of β′(τ) is positive if there are an

odd number of conjugate points (excluding τ) and negative if there are an even number of conjugate

points. (See Figure 4.1 below.) Since the Maslov index, roughly speaking, counts the number of

conjugate points, its parity should therefore determine the sign of β′(τ).

To make the preceding precise, we must know a few things about zeros of β and the Maslov
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Figure 4.1: Graph of β(z): sign of β′(τ) depends on whether there were an odd (dashed green) or
even (solid red) number of prior crossings.

index. First, since an intersection of Eu(0, z) with Es(0, τ) can be one- or two-dimensional, the

contribution to the Maslov index at any (interior) conjugate point is −2,−1, 0, 1, or 2. Since the

parity of the index is unchanged if the contribution is even, we need β to cross through the z−axis

if and only if the crossing is one-dimensional. Obviously, we also need β to have finitely many zeros

for this to make sense. The latter is true if we assume that there are only regular crossings, which is

an assumption needed to define the Maslov index for non-loops in the first place; see [70, §2]. It

turns out that the assumption of regularity is also sufficient for the former. This is the content of

the next two lemmas.

Lemma 4.3.1. If z∗ is a conjugate point such that the intersection Eu(0, z∗) ∩ Es(0, τ) = sp{ξ} is

one-dimensional, then the crossing is regular if and only if β′(z∗) 6= 0.

Proof. Let ξ = β1u1(τ) + β2u2(τ) be a vector in the intersection. Let ν be a second basis vector for

Eu(0, z∗). As noted in [15, §4], ω(ui(τ), ν) 6= 0 (i = 1, 2), else we would have ν ∈ Es(0, z∗), violating

the assumption that the intersection is one-dimensional. Changing to the basis {ξ, ν} of Eu(0, z∗)
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would introduce a nonzero multiple in the expression for β(τ), which we call B. It follows that

β′(z∗) = BeM(z∗) {det[u1(τ), u2(τ), A(0, z∗)ξ, ν] + det[u1(τ), u2(τ), ξ, A(0, z∗)ν]}

= BeM(z∗) det[u1(τ), u2(τ), A(0, z∗)ξ, ν]

= −BeM(z∗) det

 ω(u1(τ), A(0, z∗)ξ) ω(u1(τ), ν)

ω(u2(τ), A(0, z∗)ξ) ω(u2(τ), ν)

 .
(4.37)

Since sp{ξ, ν} is a Lagrangian plane, we have

0 = ω(ξ, ν) = β1ω(u1(τ), ν) + β2ω(u2(τ), ν). (4.38)

Without loss of generality, we can assume β2 6= 0, and hence ω(u2(τ), ν) = −β1

β2
ω(u1(τ), ν).

Returning to (4.37), we see that

β′(z∗) = −BeM(z∗)

{
−β1

β2
ω(u1(τ), A(0, z∗)ξ)ω(u1(τ), ν)− ω(u2(τ), A(0, z∗)ξ)ω(u1(τ), ν)

}
=
B

β2
eM(z∗)ω(u1(τ), ν)ω(β1u1(τ) + β2u2(τ), A(0, z∗)ξ)

=
B

β2
ω(u1(τ), ν)eM(z∗)ω(ξ, A(0, z∗)ξ).

(4.39)

Comparing with (3.13), it is now clear that the crossing is regular if and only if β′(z∗) 6= 0.

Lemma 4.3.2. If z∗ is a conjugate point such that the intersection Eu(0, z∗) ∩ Es(0, τ) is two-

dimensional, then the following are true:

1. β′(z∗) = 0.

2. β′′(z∗) 6= 0 ⇐⇒ the crossing at τ is regular.

Proof. Immediately we see that

β′(z∗) = eM(z∗) {det[u1(τ), u2(τ), A(0, z∗)u3(z∗), u4(z∗)] + det[u1(τ), u2(τ), u3(z∗), A(0, z∗)u4(z∗)]}

= 0,

(4.40)

since there is linear dependence in the first, second and fourth (resp. first, second and third) columns
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in the matrix on the left (resp. right). In a similar way, the second derivative is seen to be

β′′(z∗) = 2eM(z∗) det[u1(τ), u2(τ), A(0, z∗)u3(z∗), A(0, z∗)u4(z∗)]. (4.41)

Next, since the crossing is two-dimensional, we have sp{u1(τ), u2(τ)} = sp{u3(z∗), u4(z∗)}, so by

some change of basis in the first two columns of (4.41), we end up with

β′′(z∗) = 2BeM(z∗) det [u3(z∗), u4(z∗), A(0, z∗)u3(z∗), A(0, z∗)u4(z∗)]

= −2BeM(z∗) det

 ω(u3(z∗), A(0, z∗)u3(z∗)) ω(u3(z∗), A(0, z∗)u4(z∗))

ω(u4(z∗), A(0, z∗)u3(z∗)) ω(u4(z∗), A(0, z∗)u4(z∗))

 , (4.42)

using (4.16). The symplectic version of the matrix in (4.42) is exactly the matrix of the crossing

form Γ in the basis {u3(z∗), u4(z∗)} for Es(0, τ)∩Eu(0, z∗). To say that the crossing is regular then

is to say that this matrix does not have zero as an eigenvalue. Since the determinant of this matrix

is the product of the eigenvalues, the Lemma follows.

These lemmas allow us to conclude the following: consider the curve γ(z), which is Eu(0, z)

restricted to an interval (−∞, τ − ε) containing all conjugate points prior to τ . Then

µ(γ,Es(0, τ)) is even ⇐⇒ β′(τ) < 0. (4.43)

In other words, since β(τ) = 0, the direction in which β(z) crosses through 0 at τ is completely

determined by how many times β(z) passed through the z−axis prior to τ .

To calculate Maslov(ϕ), one would need to know the direction of the final crossing, i.e. the sign of

ω(ϕ′(τ), ϕ′′(τ)). However, this is not needed to prove Theorem 4.3.1. First, assume that Maslov(ϕ)

is even. There are now two possibilities regarding the final crossing at z = τ . If ω(ϕ′(τ), ϕ′′(τ)) > 0,

then this crossing contributes +1 to the index, which means that there were an odd number of

weighted crossings prior to τ : odd +1 = even. (In the above notation, µ(γ,Es(0, τ)) is odd.) Thus

β′(τ) > 0, from which we conclude that Ω(u1, u4) > 0, using (4.35).

On the other hand, if ω(ϕ′(τ), ϕ′′(τ)) < 0, then there must be an even number of weighted

crossings prior to τ , since the last crossing contributes 0 to the count (being a negative crossing).

42



This implies that β′(τ) < 0. Again using (4.35), we see that Ω(u1, u4) > 0, showing that its sign does

not depend on the direction of the final crossing. An analogous argument shows that Ω(u1, u4) < 0

if and only if Maslov(ϕ) is odd. This completes the proof of Theorem 4.3.1.
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CHAPTER 5

Existence of fast traveling waves for a FitzHugh-Nagumo system

In this section, we take a break from the Maslov index and begin our close examination of the

doubly-diffusive FitzHugh-Nagumo system

ut = uxx + f(u)− v

vt = vxx + ε(u− γv).

(5.1)

Here, u, v ∈ R, and x, t ∈ R are space and time respectively. The function f is the “bistable”

nonlinearity f(u) = u(1− u)(u− a), where 0 < a < 1/2 is constant. We take ε > 0 to be very small,

making this a singular perturbation problem. We also choose γ > 0 small enough so that (0, 0) is

the only fixed point of the associated kinetics equation

 u

v


t

=

 f(u)− v

ε(u− γv)

 . (5.2)

We call (5.1) the “doubly-diffusive” FitzHugh-Nagumo equation because most of the research into

(5.1) considers the case where v does not diffuse or the diffusion coefficient is a small parameter, e.g.

[2, 12, 33, 51, 44, 66, 81, 82]. For the case of equal or similar diffusivities, standing waves (i.e. those

with c = 0) were shown to exist and be stable in [19]. Using variational techniques, traveling waves

were shown to exist for (5.1) in [17]. Notably, the issue of the stability of these waves remained

open. We will prove that the waves are stable in Chapter 7.

The goal of this chapter is to give another existence proof for the fast traveling waves of (5.1)

using geometric singular perturbation theory. The value in this proof is that the construction of the

pulse provides the means for assessing its stability using the Maslov index. Along the way, we will

also prove that (5.1) possesses fast traveling fronts in different parameter regimes. We could use the

techniques in this thesis to prove that those fronts are also stable, but we will not pursue that here.
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We begin by giving a short overview of geometric singular perturbation theory.

5.1 Overview of geometric singular perturbation theory

Geometric singular perturbation theory (GSP) concerns the dynamics of vector fields with

multiple timescales. The basic equations are of the form

x′ = f(x, y, ε)

y′ = εg(x, y, ε)

, (5.3)

where ′ = d
dt , x ∈ Rn, y ∈ Rl, and ε > 0 is a small parameter. The geometric theory of such equations

is due to Fenichel [31, 32], and good introductions to the topic can be found in [46, 56]. By setting

τ = εt and ˙ = d
dτ , one can rewrite (5.1) on the slow timescale as

εẋ = f(x, y, ε)

ẏ = g(x, y, ε)

. (5.4)

As long as ε 6= 0, these systems are equivalent. However, the limits ε→ 0 in (5.3) and in (5.4) yield

very different systems. The former is the n-dimensional system

x′ = f(x, y, 0)

y′ = 0

, (5.5)

in which y plays the role of a parameter. The latter limit leads to the differential-algebraic system

0 = f(x, y, 0)

ẏ = g(x, y, 0).

(5.6)

In this system, y is the dynamic variable, and x is a slave to these variables, as it must be ensured

that the algebraic condition holds. Broadly speaking, the goal of geometric singular perturbation

theory is to reconcile these two reduced systems for ε > 0 but small. It is important to note that

this is not a dimension reduction, such as one would obtain by considering radial solutions of a PDE.

Whereas a dimension reduction necessarily sacrifices interesting behavior, GSP allows us to study

lower dimensional problems in order to uncover genuinely high-dimensional (i.e. n+ l) phenomenon.
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To set some terminology, it is common to call (5.5) the layer problem and (5.6) the slow or reduced

problem.

Intuitively, the dynamics of (5.3) should be dominated by (5.5) when f(x, y, ε) = O(1). It follows

that the set

M0 = {(x, y) ∈ Rn+l : f(x, y, 0) = 0} (5.7)

should play an important role in the analysis. This is indeed the case, and we call M0 the critical

manifold. The use of the term “manifold” will be justified below. Notice the role of the set

f(x, y, 0) = 0 for the fast and slow subsystems. For (5.5) with ε = 0, M0 is the set of critical points,

so the dynamics on this set are trivial. For (5.6), this is the algebraic condition that must hold for

the equation to be well-defined.

It is instructive to think of the layer problem as equilibrating to a point on M0, at which point

the slow flow takes over. In order to make this rigorous, one makes the technical assumption that

detDxf(x̂, ŷ, 0) 6= 0 (5.8)

at any point (x̂, ŷ) ∈M0. This condition–called normal hyperbolicity–ensures that critical points of

the layer problem are hyperbolic. Assuming that f is sufficiently smooth, one sees from the Implicit

Function Theorem that M0 is locally an l-dimensional manifold near points at which (5.8) holds.

(Thus we call M0 the critical manifold.) The Implicit Function Theorem also implies that M0 can

(locally) be expressed as the graph of a function of the slow variables.

Although much of the current interest in geometric singular perturbation theory concerns systems

in which normal hyperbolicity breaks down, for the FitzHugh-Nagumo equation it will be sufficient

to study the normally hyperbolic case. For the rest of this section, we therefore make the following

assumptions.

(H1) The critical manifold M0 is a compact manifold (possibly with boundary) which is normally

hyperbolic relative to (5.5).

(H2) M0 is given as the graph of a smooth function x = h0(y) for y in some set K. K is a compact,

simply connected domain whose boundary is an (l − 1)-dimensional smooth submanifold.

As a remark, it is quite often the case that the entire set of points defined by (5.7) does not satisfy
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(H1) - (H2). Instead, one might consider a compact subset of M0 on which these assumptions hold.

We will still refer to this subset as the critical manifold; this should not be a source of confusion.

We say that a set M is locally invariant under the flow of (5.3) if it has a neighborhood V

such that no trajectory can leave M without also leaving V . The qualifier “local” allows for the

possibility that trajectories escape through the boundary of the set, which indeed is the source of

much interesting behavior in singularly perturbed systems. The following theorem is due to Fenichel

[31].

Theorem 5.1.1 (Fenichel’s First Theorem). If ε > 0 is sufficiently small, then there exists a

manifold Mε that lies within O(ε) of M0 and is diffeomorphic to M0. Moreover it is locally invariant

under the flow of (5.3). Under (H1) - (H2), we can write

Mε = {(x, y) : x = hε(y)}, (5.9)

with lim
h→∞

hε(y) = h0(y).

Mε is called the slow manifold, in light of the fact that the dynamics on it occur on the slow

timescale. Mε behaves like a center manifold, so it consequently shares some of the same properties.

Most notably, Mε is generally not unique. It is also Cr, including in ε, for any r < +∞. The local

invariance of Mε and the fact that it is parametrized by y make it easy to write down the equation

on the slow manifold. Explicitly, it is given by

y′ = εg(hε(y), y, ε). (5.10)

The advantage of this formulation is that the ε → 0 limit on the slow timescale is now regular,

giving a flow

ẏ = g(h0(y), y, 0) (5.11)

on M0. One can see that (5.11) gives the leading order approximation to the flow on Mε, a fact that

will get used heavily in this thesis. It is clear that Fenichel’s result is quite powerful, especially in

the case where l = 1 or l = 2, whence the slow dynamics are easy to understand. For applications

of Fenichel’s First Theorem to proving the existence of traveling waves, the interested reader can
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consult [46, §1.3-1.5].

What Fenichel’s First Theorem does not tell us is how the fast and slow dynamics interact with

each other. The key to understanding how this happens is to recall that M0 defines the set of

critical points for (5.5). As such, each point in M0 has attendant stable and unstable manifolds.

Taking the union over points in M0, one obtains stable and unstable manifolds of M0. Since M0

is normally hyperbolic and compact, Dxf(x̂, ŷ, 0) has eigenvalues with real part bounded away

from the imaginary axis. Consequently, the dimensions of the stable and unstable subspaces are

constant over all of M0. Let m be the dimension of the stable subspace at each point and k the

dimension of the unstable subspace. Thus m+ k = n. It is clear then that dimW s(M0) = m+ l,

and dimW u(M0) = k + l. Conveniently, these stable and unstable manifolds survive under the

perturbation supplied by ε.

Theorem 5.1.2 (Fenichel’s Second Theorem). If ε > 0 is sufficiently small, then there exist

manifolds W s(Mε) and W u(Mε) that lie within O(ε) of, and are diffeomorphic to, W s(M0) and

W u(M0) respectively. Moreover they are each locally invariant under the flow of (5.3) and Cr for

any r < +∞.

The points on Mε are typically not fixed points, so we should justify the use of the term

(un)stable manifold. This is done by characterizing the rate at which solutions are attracted to or

repelled from Mε. As with the standard invariant manifold theorems, one picks out a decay rate

based on the spectral gap given by the eigenvalues of the linearization about the fixed points in Mε.

Hypotheses (H1)-(H2) guarantee that this can be done in a uniform manner. One must be careful,

however, with the local invariance of Mε.

Theorem 5.1.3 (Decay estimates for (un)stable manifolds of Mε). There exists a neighborhood D

of Mε and constants κs > 0 and αs < 0 so that if v ∈W s(Mε) and v · [0, t] ⊂ D with t > 0, then

d(v · t,Mε) ≤ κseαst. (5.12)

Likewise, there are κu > 0 and αu > 0 so that if v ∈W u(Mε) and v · [0, t] ⊂ D with t < 0, then

d(v · t,Mε) ≤ κueαut. (5.13)
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There is one final fact about W s/u(Mε) that will aid with the calculation of the Maslov index

later on. For ε = 0, we have the nice picture of W s/u(Mε) being built by taking the union of the

individual stable and unstable manifolds over all points in M0. At first glance, it seems impossible

that this fiber structure would persist for ε 6= 0, since the same points are not equilibria for ε 6= 0.

However, it turns out that the notion of fibering (or foliation) can be retained. To state the theorem

properly, we define the forward evolution of a set A ⊂ D restricted to D to be

A ·D t = {x · t : x ∈ A and x · [0, t] ⊂ D}. (5.14)

As before, we have to include the caveat that trajectories can leave the neighborhood D of Mε, at

which point any estimates obtained from Theorem 5.1.3 no longer apply. We now have the following

result, describing the phenomenon of “Fenichel Fibering.”

Theorem 5.1.4 (Fenichel’s Third Theorem). Let vε ∈ Mε smoothly approach a point v0 ∈ M0.

Then there is an m-dimensional manifold

W s(vε) ⊂W s(Mε) (5.15)

and an l-dimensional manifold

W u(vε) ⊂W u(Mε), (5.16)

lying within O(ε) of, and diffeomorphic to, W s(v0) and W u(v0) respectively. Moreover, they are Cr

(including in v and ε) for any r < +∞. The family {W s(vε) : vε ∈ Mε} is invariant in the sense

that

W s(vε) ·D t ⊂W s(vε · t), (5.17)

if vε · s ∈ D for all s ∈ [0, t]. Likewise the family {W u(vε) : vε ∈Mε} is invariant in the sense that

W u(vε) ·D t ⊂W s(vε · t), (5.18)

if vε · s ∈ D for all s ∈ [t, 0].

All three of Fenichel’s theorems are proved by making a change of coordinates to accentuate the
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stable and unstable directions. The most simplified version of the equations–dubbed the Fenichel

coordinates in [50]–will be used in this chapter to prove the existence of the fast traveling pulses. In

particular, they will be used to state the Exchange Lemma [46, 50, 77], which allows one to track

the passage of an invariant manifold as it passes by Mε. Instead of stating the abstract form of the

Fenichel coordinates here, we will simply apply them directly to the FitzHugh-Nagumo example as

the need arises.

5.2 Singular solution for FitzHugh-Nagumo pulses

In this section, we identify the fast-slow structure of the FitzHugh-Nagumo traveling wave ODE

and describe the singular solution off which the fast pulses perturb. We begin with the traveling

wave ODE, which is written as first-order system by setting uz = w and vz = εy:

Uz =



u

v

w

y


z

=



w

εy

−cw − f(u) + v

−cy + γv − u


= F (U). (5.19)

This is a fast-slow system with three fast variables (u,w, y) and one slow variable v. The traveling

pulses will be constructed as homoclinic orbits to 0. We will also make use of the linearization of

(5.19) around various points, which is given by



p

q

r

s



′

=



0 0 1 0

0 0 0 ε

−f ′(u) 1 −c 0

−1 γ 0 −c





p

q

r

s


. (5.20)

Using the fact that f ′(0) = −a, a routine calculation gives that the eigenvalues of the linearization

of (5.2) at (0, 0) are

η1 =
1

2
{−(a+ εγ)−

√
(a− εγ)2 − 4ε}

η2 =
1

2
{−(a+ εγ) +

√
(a− εγ)2 − 4ε}

, (5.21)

which are clearly real, distinct, and negative for ε > 0 sufficiently small. It follows that (A1) - (A2)

from Chapter 4 hold, and hence we have real, distinct eigenvalues µi(0) for the linearization about 0
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in (5.19). These eigenvalues satisfy

µ1(0) < µ2(0) < 0 < −c < µ3(0) < µ4(0)

µ1(0) + µ4(0) = µ2(0) + µ3(0) = −c,
(5.22)

cf. (4.7). Explicitly, one can use (2.12) to compute that the eigenvalues are given by

µ1(0) = − c
2
− 1

2

√
c2 + 2(γε+ a) + 2

√
(γε− a)2 − 4ε

µ2(0) = − c
2
− 1

2

√
c2 + 2(γε+ a)− 2

√
(γε− a)2 − 4ε

µ3(0) = − c
2

+
1

2

√
c2 + 2(γε+ a)− 2

√
(γε− a)2 − 4ε

µ4(0) = − c
2

+
1

2

√
c2 + 2(γε+ a) + 2

√
(γε− a)2 − 4ε

. (5.23)

We therefore have two-dimensional stable and unstable manifolds, W s(0) and W u(0). Denote by

V s/u(0) the associated tangent spaces at 0.

The goal is to construct ϕ by showing that the stable and unstable manifolds intersect. Ideally,

this would be accomplished by showing that the intersection exists when ε = 0, and then perturbing

to the case ε > 0. However, we would need W u(0) and W s(0) to intersect transversely when

ε = 0 to make this argument, as this would ensure that the intersection is not broken when ε is

“turned on.” This is inevitably not the case, since two two-dimensional submanifolds of R4 cannot

intersect transversely in a one-dimensional set. To remedy this, we append the equation c′ = 0

to (5.19) to obtain three-dimensional center-stable and center-unstable manifolds, W cs(0) and

W cu(0). The phase space is now R5, and it follows from [57, p. 144] that the transverse intersection

W cu(0) tW cs(0) is one-dimensional. Thus if we can prove that this transverse intersection exists

when ε = 0, it would follow that it persists to the case ε > 0, proving the existence of the wave.

Ironically, it will be necessary to use information from the perturbed system to conclude that the

transverse intersection exists when ε = 0. The technical tool that makes this connection is the

Exchange Lemma, which will be discussed in §5.4.
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Setting ε = 0 in (5.19), one arrives at the layer problem


u

w

y


′

=


w

−cw + v − f(u)

−cy + γv − u

 . (5.24)

Comparing with (5.7), the one-dimensional critical manifold is given by

M0 = {(u, v, w, y) : v = f(u), w = 0, y =
1

c
(γv − u)}, (5.25)

which is easily seen to be normally hyperbolic as long as f ′(u) 6= 0. We define ζ = εz to be the slow

timescale to avoid confusion later with the variable τ . Denoting ˙ = d
dζ , one sees that the flow on M0

is given by

v̇ = y =
1

c
(γv − f−1(v)). (5.26)

By f−1, we mean the inverse of f restricted to one of three segments of the cubic v = f(u), partitioned

by the two zeros of f ′(u). Of particular interest are the two outer branches corresponding to the

intervals on which f(u) is strictly decreasing. We use the notation ML
0 and MR

0 for the left and

right branches respectively.

We are now ready to describe the singular orbit. It will be composed of two slow trajectories–one

on each of M
L/R
0 –which are connected by two heteroclinic orbits between the branches. The reader

will notice that the waves are very similar to those constructed for the version of (5.1) without

diffusion on v; see [44, 51]. In fact, with the y variable tacit, the pictures in (u, v, w)-space are

identical (albeit with different labels). A picture of the singular orbit is given in Figure 5.2 below.

We will call the equation studied in [44, 51] the ‘3D system,’ in reference to the dimension of phase

space for the traveling wave equation.

We begin by describing the heteroclinic connection from ML
0 to MR

0 , called the fast front or

first fast jump. Notice that the equations for u and w decouple from y, so the projection of any
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solution of (5.24) onto the uw−plane will be (part of) a solution to

 u

w


′

=

 w

−cw + v − f(u)

 . (5.27)

This system is considered in the construction of traveling waves for the 3D system. It is shown in

[63] that for v = 0 and

c = c∗ :=
√

2(a− 1/2) < 0, (5.28)

there exists a heteroclinic orbit connecting the fixed point (0, 0) with the fixed point (1, 0). The

explicit solution is given by

u(z) =
1(

1 + e−
√
2
2
z
) , (5.29)

which in turn determines w. One can solve for w as a function of u to get the profile in phase space.

It is easy to verify that

w(u) =

√
2

2
u(1− u), 0 ≤ u ≤ 1 (5.30)

is the profile of the fast jump, together with the fixed points.

To show that the corresponding connection exists for (5.24), consider the linearization of (5.24)

about 0: 
δu

δw

δy


′

=


0 1 0

a −c∗ 0

−1 0 −c∗




δu

δw

δy

 . (5.31)

The eigenvalues of the matrix in (5.31) are

µ1(0) = −a
√

2, µ3(0) = −c∗, and µ4(0) =

√
2

2
, (5.32)

which one would also obtain by substituting ε = 0 and c =
√

2(a− 1/2) in (5.23). We therefore have

a two-dimensional unstable manifold, and we wish to find an intersection with the stable manifold

of p = (1, 0,−1/c∗). As noted above, the y direction is invariant–one can see from (5.31) that

[0, 0, 1]T is the −c−eigenvector–so the unstable manifold is actually a cylinder over the heteroclinic

connection for (5.27). To avoid confusion with the unstable manifold for (5.19), we will call this set
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W u(0f ), where the subscript indicates that this is the origin for the fast subsystem (5.24).

If we now linearize about the landing point p, we obtain


δu

δw

δy


′

=


0 1 0

1− a −c∗ 0

−1 0 −c∗




δu

δw

δy

 , (5.33)

which still has two unstable and one stable eigenvalues given by

µ1(p) = −
√

2

2
, µ3(p) = −c, and µ4(p) =

√
2(1− a). (5.34)

In particular, the δy direction is still invariant and unstable. Now, any trajectory in the cylinder

W u(0f ) (for 0 < u < 1) must approach the invariant line {(u,w, y) : u = 1, w = 0} in forward time.

Since this line moves points away from the equilibrium p, there will be some points in W u(0f ) for

which y → +∞ and others for which y → −∞. A shooting argument in the cylinder therefore

produces an orbit that is bounded, which can only approach p. This orbit coincides with the

one-dimensional stable manifold of p.

Figure 5.1: Unstable manifold W u(0f ) near the fast front with v suppressed. The red curve is the
fast jump.

Before moving to the slow flow, we point out one important fact about the fast jump. Since

u(z) and w(z) are also solutions of the 3D system, they must decay to 0 as z → −∞ like eµ4(0)z,

since µ4(0) is the only unstable eigenvalue for the linearization of (5.27) at 0. On the other hand, y
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satisfies

y′ = −c∗y − u, (5.35)

which can be solved explicitly as

y(z) = Ke−c
∗z − e−c∗z

z∫
−∞

ec
∗su(s) ds. (5.36)

The constant

K =

∞∫
−∞

ec
∗zu(z) dz =

2π√
2 sin (π(1− 2a))

(5.37)

is uniquely determined by the requirement that y is bounded at ±∞. It is then clear that

lim
z→−∞

ec
∗zy(z) = K 6= 0. (5.38)

In other words, u and w decay more quickly than y in backwards time, so the traveling front is

asymptotically tangent to the y−axis. This verifies assumption (A3) from the previous chapter, at

least in reverse time.

Having established the existence of a connection between the left and right branches of M0, the

next step is to follow the slow flow up MR
0 . We rescale the independent variable as ζ = εz and again

set ε = 0, to arrive at the reduced problem

v̇ = y,

(̇
=

d

dζ

)
(5.39)

which is restricted to the critical manifold M0. Since y = −1/c∗ > 0 at the landing point, v will

increase and move up the graph of the cubic f . Eventually it will reach a point v∗, for which (5.27)

with v = v∗ and c = c∗ has a heteroclinic connection back to ML
0 . Using symmetries of the cubic, it

can be shown that

v∗ = f(2/3(a+ 1)) := f(u∗). (5.40)

(See [12, §3.1] for more details.) We call the point q := (u∗, v∗, 0, 1/c∗(γv∗ − u∗)) the jump-off point

for MR
0 . The same shooting argument used for the front proves that the back exists for (5.24) as

well. Finally, upon landing on ML
0 at the point u = 2/3(a − 1/2), the slow flow carries us back
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down to 0, which is a fixed point for both the slow and fast systems.

Figure 5.2: Picture of singular orbit, with y suppressed. This orbit is identical to the singular orbit
for the ‘3D system.’ See [51].

5.3 Transversality along the front

The mere existence of the singular orbit is not enough to guarantee that a nearby homoclinic

orbit will exist for ε > 0. The pulse will ultimately be constructed as the transverse intersection

of center-stable and center-unstable manifolds. To prove that such an intersection exists, we will

appeal to the Exchange Lemma [46, 50, 77], which describes the passage of a shooting manifold near

MR
ε . One of the assumptions of the Exchange Lemma is that the shooting manifold transversely

intersects W s(MR
0 ) along the fast jump. This section is dedicated to proving that this first transverse

intersection exists.

For the rest of this section, any references to (5.19) or its linearization (5.20) assume that

the extra equation for c′ is included. Since c is a center direction, the fixed point 0 will have a

three-dimensional center-unstable manifold W cu
ε (0) and a three-dimensional center-stable manifold

W cs
ε (0), whose transverse intersection would be one-dimensional. Notice that the latter is still

three-dimensional in the limit ε = 0, since the second stable direction becomes a center direction.

We include the subscript ε to emphasize the dependence of these manifolds on ε.

After appending the equation c′ = 0, the critical manifold is now two-dimensional, parameterized

by v and c. If we think of the critical manifold as being the graph of a function H(v, c), it is clear
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that its tangent space at a generic point P is given by

TPM
R/L
0 = sp {∂vH, ∂cH} = sp





1/f ′(u)

1

0

(1/c)(γ − 1/f ′(u))

0


,



0

0

0

(−1/c2)(γv − u)

1




. (5.41)

To highest order, the flow on M
L/R
ε for ε small or 0 will clearly be tangent to ∂vH, since c is a

parameter. This will be important later when we need to select a slow direction. For the sake of

completeness, the flow on the critical manifold is now given by

˙ v

c

 =

 1
c (γv − f

−1(v))

0

 . (5.42)

Now, recall that W cu(0) and W s(MR
0 ) intersect along the fast jump, which we call

qf (z) = (u(z), 0, w(z), y(z), c∗). (5.43)

To prove that this intersection is transverse, it suffices to check any one point along the orbit. A

convenient place to check is very close to the landing point p = (1, 0, 0,−1/c∗, c∗). We can therefore

take Tqf (z)W
s(MR

0 ) to be arbitrarily close to TpW
cs(p). This space is spanned by three vectors: the

strong stable direction (which is the direction of the orbit), and the vectors ∂vH and ∂cH, evaluated

at p. Tqf (z)W
cu(0), on the other hand, is spanned by q′f (z), the invariant y direction, and one more

vector, which gives the change in W cu(0) as c varies. To find this vector pick any point qf (z0) on

the fast jump. Since c is a parameter (i.e. there is no flow in this direction), we can find a tangent

vector Y0 ∈ Tqf (z0)W
cu(0) of the form

Y0 = (∗, ∗, ∗, ∗, 1). (5.44)

We can then pick a curve α(c) : (c∗ − δ, c∗ + δ)→W cu(0) such that α′(c∗) = Y0 and α(c∗) = qf (z0).

By flowing the points on α(c) backwards in z, we obtain a one-parameter family of curves Γ(z, c) in
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W cu(0). By construction, this family satisfies

∂cΓ(z, c)|c=c∗ ∈ Tqf (z)W
cu(0) (5.45)

for all z ∈ R. Of interest then is the direction of the vector ∂cΓ(z, c)|c=c∗ as z → ∞ (i.e. as the

jump approaches p). This is ascertained by observing that ∂cΓ|c=c∗ satisfies the variational equation

for (5.19) along qf (z) with ε = 0. Indeed, using the equality of mixed partials, we have

∂z (∂cΓ(z, c)) |c=c∗ = DF (Γ(z, c)) · ∂cΓ(z, c)|c=c∗ = DF (qf (z)) · (∂cΓ(z, c)) |c=c∗ . (5.46)

Using the notation ∂cΓ(z, c)|c=c∗ = (uc(z), 0, wc(z), yc(z), 1), it follows that W cu(0) t W s(MR
0 ) if

and only if

det



u′(z) uc(z) 0 1
a−1 0

0 0 0 1 0

w′(z) wc(z) 0 0 0

y′(z) yc(z) 1 1
c∗

(
γ − 1

a−1

)
(1/c∗)2

0 1 0 0 1


= u′(z)wc(z)− w′(z)uc(z) 6= 0 (5.47)

for z � 1. We are now prepared to prove transversality.

Lemma 5.3.1. The invariant manifolds W cu
0 (0) and W s(MR

0 ) intersect transversely along the fast

jump qf (z).

Proof. Following the preceding discussion, the task is to show that u′(z)wc(z)− w′(z)uc(z) 6= 0 as

qf (z) approaches the landing point p. Confirming this is a Melnikov-type calculation, which we

verify using differential forms (cf. [46, §4.3-4.5] or [51]). Indeed this is natural, since the quantity of

interest is (du ∧ dw) applied to the first two columns of the matrix in (5.47). In other words, it

is one of the six Plücker coordinates (see §2.3) for the plane spanned by q′f (z) and ∂cΓ(z, c). This

quantity can be tracked by using the equation induced on
∧2 R4 by the variational equation for

(5.19) along the fast jump (with ε = 0). See [23, §3] for more detail. Using differential form notation,
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we compute

(du ∧ dw)′ = du′ ∧ dw + du ∧ dw′

= dw ∧ dw + du ∧ (−f ′(u) du− c∗dw − w dc)

= −c∗du ∧ dw − w du ∧ dc.

(5.48)

Here, the derivative refers to how the quantity du∧dw changes when applied to two vectors evolving

under (5.20) with ε = 0. For notational convenience, we set

α(z) := du ∧ dw(q′f (z), ∂cΓ(z, c)|c=c∗). (5.49)

Observing that du ∧ dc(q′f (z), ∂cΓ(z, c)|c=c∗) = u′(z) = w(z), we can apply an integrating factor to

(5.48) to get

∂z

(
ec
∗zα
)

= −w2ec
∗z. (5.50)

Since w → 0 faster than e−c
∗z as z → −∞, this equation can be integrated to obtain

α(z) = −e−c∗z
∫ z

−∞
ec
∗sw2 ds, (5.51)

from which it is clear that

lim
z→∞

ec
∗zα = L < 0. (5.52)

The factor ec
∗z ensures that the vectors q′f (z) and ∂cΓ(z, c)|c=c∗ stay bounded and nonzero in the

limit. The Lemma then follows, since it is the direction of these vectors (and not the magnitude)

that is of interest.

Notice that γ played no roll in the result of this subsection. Accordingly, the following is a

byproduct of the proof of the Lemma.

Corollary 5.3.1. Assume that γ > 0 is large enough so that u = γf(u) has three solutions ui

satisfying 0 = u1 < u2 < u3. Then for ε > 0 sufficiently small, (5.19) possesses a heteroclinic orbit

connecting the fixed points (0, 0, 0, 0) and Q := (u3, u3/γ, 0, 0) for c = c∗ +O(ε). The heteroclinic

orbit corresponds to a traveling front solution for (5.1) and is locally unique.

Proof. It is clear that (5.19) has three fixed points for the prescribed values of γ, and that Q ∈MR
0
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for ε = 0. A heteroclinic connection exists between the two points if the unstable manifold of 0

intersects the stable manifold of Q. From Fenichel theory [32], the limit as ε→ 0 of W cs
ε (Q) is exactly

W s(MR
0 ), which we just proved intersects W cu(0) transversely. The transverse intersection perturbs

to the case ε > 0, and the orbit in question is given by the intersection. The local uniqueness and

dependence of the speed c on ε are a consequence of the Implicit Function Theorem.

We remark that the framework of [21] and the calculation in Chapter 7 can be adapted to show

that the traveling front just obtained is stable in the sense of Definition 1.1. However, we will not

pursue that further here.

5.4 Exchange Lemma and completion of the construction

Armed with an understanding of W cu(0) as it moves along the front, we now turn our attention

to the passage near the slow manifold MR
ε and the back. As explained in §5.2, specifically (5.40),

the Nagumo back is a heteroclinic connection between the jump-off point

q = (u∗, v∗, 0, (1/c∗)(γv∗ − u∗), c∗) ∈MR
0 (5.53)

and the point

q̂ = (u∗ − 1, v∗, 0, (1/c∗)(γv∗ − u∗ + 1), c∗) (5.54)

on ML
0 . In uw−space, the equations take the form

ub(z) = u∗ − uf (z), wb(z) = −wf (z), (5.55)

where uf , wf are the components of the front. The important facts for this section are that ub is

monotonically decreasing, and wb decreases to a minimum and then increases from there. Now

we focus on the first slow piece connecting the fast jumps, which involves an application of the

Exchange Lemma.

To state and use the Exchange Lemma, we first rewrite the traveling wave equations (5.19) in

Fenichel coordinates, see [46, 50] for more details. In a neighborhood B of the slow manifold MR
ε ,
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we can change coordinates so that (5.19) takes the form

a′ = Λ(a,b,y, ε)a

b′ = Γ(a,b,y, ε)b

y′ = ε (U +G(a,b,y, ε)) ,

(5.56)

with a ∈ R2,b ∈ R,y = (y1, y2) ∈ R2, and U = (1, 0). The region B can be taken to be of the form

B = {(a,b,y) : |a| < δ, |b| < δ,y ∈ K}, (5.57)

where δ is small and K is a compact set containing the landing point p and jump-off point q in

its interior. On account of normal hyperbolicity of MR
0 , we know that for sufficiently small δ

the eigenvalues of Λ(0, 0,y, 0) are real, positive, and uniformly bounded away from 0. Likewise,

Γ(0, 0,y, 0) < Cδ < 0. The function G in (5.56) is bilinear in a,b due to the fact that the sets a = 0

and b = 0 are invariant. The special form of the y component is obtained by rectifying the flow on

the slow manifold. It is clear that for this problem U is the “straightened out” graph of the cubic

for fixed c–that is, the flow is in the direction ∂vH–since there is no change in c in the trajectory

through any point.

The (C1) Exchange Lemma describes the configuration of a manifold of trajectories that spends

a long time near MR
ε before leaving the neighborhood B. The manifold of interest in our case is

W cu
ε (0), which the reader will recall is three-dimensional. (The subscript serves to emphasize the

ε-dependence.) The following statement of the Exchange Lemma is specialized to the setting of

(5.19). For the general statement and proof, the reader is directed to [50], or [56] for a sketch.

Theorem 5.4.1 (“Exchange Lemma” of [50]). Assume that W cu
0 (0) tW s(MR

0 ). Let J be a compact

segment of the trajectory through p for the limiting slow flow (5.42) that contains q. Then

1. For any r0 ∈ W u
0 (J) ∩ ∂B, there exists qε ∈ W cu

ε (0) ∩ ∂B and a time Tε > 0 such that

qε · Tε ∈ ∂B and |qε · Tε − r0| = O(ε). Furthermore, Tε = O(ε−1).

2. Let q̄ ∈ W cu
ε (0) ∩ {|a| = δ} be the exit point of a trajectory through q ∈ W cu

ε (0) ∩ {|b| = δ}

that spends time T = O(ε−1) in B. Let V ⊂W cu
ε (0) be a neighborhood of q. Then the image
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of V under the time T map is O(ε)-close in C1 norm to W c(J) in a neighborhood of q̄.

The first part of the theorem says that we can find points in W cu
ε (0) near p that pass by the

slow manifold and then exit the neighborhood B as close to the Nagumo back as we would like.

The second part says that for such points, upon exiting the neighborhood B, the shooting manifold

W cu
ε (0) will be very close to the manifold W u(J). The fact that W cu(0) is crushed against an

unstable manifold is to be expected, cf. [25, 72]. The strength of the Exchange Lemma lies in telling

us which slow direction is picked out. (Recall that W u(MR
ε ) is four-dimensional with the c equation

appended, so there is only room for one of the two slow directions.) The result is that the dominant

slow direction is that of the trajectory connecting the landing point and jump-off point. On the

level of tangent planes, we have

Tq̄W
cu
ε (0) ≈ TqW u(q)⊕ sp{∂vH(q)}. (5.58)

To complete the construction of the pulse, the final ingredient we need is that W u
0 (J) intersects

W s(ML
0 ) transversely along the back. Indeed, the latter is the ε→ 0 limit of W cs

ε (0). If W s(ML
0 ) t

W u
0 (J), then also W s(ML

ε ) tW cu
ε (0), since W cu

ε (0) is O(ε) close to W u
0 (J) by the Exchange Lemma.

This is precisely what we need to show–that there is a (one-dimensional) transverse intersection

between W cu
ε (0) and W cs

ε (0) for ε > 0 small. Since c′ = 0, the trajectory lying in the intersection

therefore represents a homoclinic orbit to 0 for (5.19) with fixed ε. The required transversality along

the back is recorded in the following lemma.

Lemma 5.4.1. The invariant manifolds W u(J) and W s(MR
0 ) intersect transversely along the

second fast jump qb(z).

The proof is identical to that of Lemma 5.3.1, so we omit the details. The reader is invited to

check that it suffices to show that

lim
z→∞

ec
∗zdu ∧ dw(q′b(z), ∂vqb(z)) < 0, (5.59)

where ∂vqb(z)–akin to ∂cΓ(z, c)|c=c∗ from the front–gives the change in the orbit qb(z) as v varies

and is the unknown tangent direction to W u(MR
0 ). The inequality (5.59) is confirmed using the
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Melnikov integral

lim
z→∞

ec
∗zdu ∧ dw(q′b(z), ∂vqb(z)) =

∫ ∞
−∞

ec
∗zwb(z) dz. (5.60)

As a remark, both transversality conditions are identical to those needed to construct the pulse for

the 3D system (see [51] and [55]). The reason for this is that the extra (invariant) y direction is

unstable, so it will not be duplicated in the tangent space to W s(M
R/L
0 ) at the respective landing

points. This is readily seen from the matrix in (5.47).

Putting together Lemmas 5.3.1 and 5.4.1 with Theorem 5.4.1, we can conclude the main result

of this section.

Theorem 5.4.2. For ε > 0 sufficiently small, equation (5.19) possesses an orbit ϕε homoclinic to 0

for a wave speed c(ε) = c∗ +O(ε). Furthermore, ϕε is O(ε) close to the singular orbit consisting of

two alternating fast and slow segments. Finally, the orbit is locally unique.

Proof. We have already explained how the results of this section generate a transverse intersection

of W cs
ε (0) and W cu

ε (0). The closeness to the singular orbit and the local uniqueness both follow

from the Implicit Function Theorem, which is used to continue the transverse intersection to the

ε 6= 0 case.
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CHAPTER 6

The Maslov Box

We now return to the issue of using the Maslov index to understand the unstable spectrum of

the operator L, defined by (2.3). We will work primarily with the eigenvalue equation written as

a first-order system, as in (2.6). In this chapter, we will prove the main results of [21]. First, for

general skew gradient systems (1.19), we prove that the Maslov index gives a lower bound on the

number of unstable eigenvalues of L. The proof–given in §6.1–uses an adaptation of the “Maslov

Box” argument of [41]. Next, in §6.2, we focus specifically on the FitzHugh-Nagumo equation (5.1)

and prove that the Maslov index gives an exact count of all unstable eigenvalues in that case. In

§6.3, we discuss an important connection with the Evans function, which is used to prove that the

geometric and algebraic multiplicities of any unstable eigenvalues coincide.

6.1 The Maslov Box

We will see in this section that the set of positive, real eigenvalues of L is bounded above. Since

the spectrum of L in C \H–recall (2.11)–consists of isolated eigenvalues of finite multiplicity (cf. [2,

p. 172]), it follows that the quantity

Mor(L) := the number of real, nonnegative eigenvalues of L counting algebraic multiplicity

is well defined. We use the notation Mor(L) to emphasize that λ = 0 is included in the count. Later

we will use Mor(L) for the count of strictly positive (i.e. unstable) eigenvalues. The rest of this

section is dedicated to proving

Theorem 6.1.1.

|Maslov(ϕ)| ≤ Mor(L). (6.1)

The strategy of the proof is to consider a contractible loop in Λ(n)× Λ(n) (the “Maslov box”)

consisting of four different curve segments. Since the total Maslov index must be zero, Proposition

3.1.1(i) guarantees that the sum of the constituent Maslov indices is zero. Two of these segments
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have Maslov index zero, one of them is Maslov(ϕ), and the final segment is bounded above by

Mor(L). This strategy has its roots in [41, 42, 47]. In particular, [41] coined the term “Maslov box,”

and that paper encounters many of the same difficulties that arise when considering homoclinic

orbits (i.e. curves on infinite intervals). The difference between this paper and [41] is that the

latter considered gradient reaction-diffusion equations. In that case, the linearized operator L is

self-adjoint, and the Maslov index is computed using spectral flow of unitary matrices.

We remind the reader that Es(λ, z) and Eu(λ, z)–the stable and unstable bundles–each define

two-parameter curves in Λ(n) for real λ > β. We will also reuse the notation S(λ), U(λ) for the

stable and unstable subspaces of A∞(λ). In the case λ = 0–whence (2.6) gives the variational

equation for the traveling wave ODE (2.4)–we have U(0) = V u(0) and S(0) = V s(0). It follows

from Lemma 3.2 of [2] that

lim
z→−∞

Eu(λ, z) = U(λ)

lim
z→∞

Es(λ, z) = S(λ).

(6.2)

In light of Theorem 2.5.2, this actually proves that

S(λ), U(λ) ∈ Λ(n), (6.3)

since Λ(n) is a closed submanifold of Grn(R2n). In what follows, it will be important to know what

happens to Eu(λ, z) as z →∞. First, if λ ∈ σ(L), then Eu(λ, z)∩Es(λ, z) 6= {0}, so it must be the

case that

lim
z→∞

Eu(λ, z) ∈ Σ(S(λ)), (6.4)

the train of S(λ). On the other hand, if λ /∈ σ(L), then any solution of (2.6) is unbounded at +∞,

and it is proved in Lemma 3.7 of [2] that

lim
z→∞

Eu(λ, z) = U(λ). (6.5)

There are a few facts to be gleaned from this observation. First, if λ /∈ σ(L), then z 7→ Eu(λ, z)

(with domain R) forms a loop in Λ(n), in which case the Maslov index is independent of the choice

of reference plane [4, §1.5]. This fact was used in [45], which is the first appearance of the Maslov
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index for solitary waves (known to the author). Also, it follows from (6.4) and (6.5) that

lim
z→∞

Eu(λ, z) (6.6)

is discontinuous in λ at each eigenvalue of L. Indeed, U(λ) is bounded away from Σ(S(λ)), since

R2n = S(λ) ⊕ U(λ). This is the motivation for using the cutoff x∞ (or τ in this paper) for the

unstable bundle in [41], since the homotopy argument requires a continuous curve. We also have

the additional motivation for the cutoff of using Maslov(ϕ) explicitly.

Proposition 2.2 of [2] guarantees that one can draw a simple, closed curve in C containing

σ(L) ∩ (C \H) in its interior. An obvious consequence of this is that the real, unstable spectrum of

L is bounded above by a constant M . We will make use of the following, slightly stronger fact.

Lemma 6.1.1. There exists λmax > M such that, for all z ∈ R,

Eu(λmax, z) ∩ S(λmax) = {0}. (6.7)

Proof. The intuition for this lemma is that (2.6) is essentially autonomous for large λ, and thus

U(λ) (which is an attracting fixed point for the autonomous system) is not able to drift far enough

away to intersect the train of S(λ). Similar arguments are used in [2, §5.B] and [35, §2.2]. We

remark that the proof of the corresponding proposition in [41] relies on monotonicity that is not

present here, so some adjustments must be made. To make the above rigorous, we introduce the

scalings y =
√
λz, p̃ = p, and q̃ = (λ)−1/2q, which transform (2.6) to

d

dy

 p̃

q̃

 =

 0 S

S−1 −Qf ′(û(z))/λ − c√
λ
I


 p̃

q̃

 . (6.8)

(Note that the ′ in f ′(û) came from the linearization of the traveling wave PDE and is unaffected by

the current change of variables.) The scaled equation (6.8) has a corresponding asymptotic system

d

dy

 p̃

q̃

 =

 0 S

S−1 −Qf ′(û(0))/λ − c√
λ
I


 p̃

q̃

 . (6.9)
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We call the stable and unstable subspaces of the matrix in (6.9) S̃(λ) and Ũ(λ) respectively. Likewise,

we use Ẽu(λ, y) for the unstable bundle of (6.8). For fixed λ, it is clear that

Eu(λ, z∗) ∩ S(λ) = {0} ⇐⇒ Ẽu(λ,
√
λz∗) ∩ S̃ = {0}, (6.10)

since rescaling the independent variable does not change the eigenvectors of the asymptotic matrix,

and the change in the dependent variables is linear. It therefore suffices to show that for large

enough λ, Ẽu(λ, y) is disjoint from S̃(λ). Taking the limit λ→∞, we arrive at the system

d

dy

 p̃

q̃

 =

 0 S

S−1 0


 p̃

q̃

 , (6.11)

which has stable and unstable subspaces

S̃ = sp{(a,−S−1a)T : a ∈ Rn}, Ũ = sp{(a, S−1a)T : a ∈ Rn}. (6.12)

Now, system (6.8) is a perturbation of (6.9), and both equations induce flows on Grn(R2n). In

the latter system, Ũ(λ) is an attracting fixed point, as is observed in the proof of Lemma 3.7 in [2].

We can therefore find a small ball B around Ũ(λ) in Λ(n) on the boundary of which the vector field

points inward. For large enough λ, the perturbation supplied by the non-autonomous part of (6.8)

is negligible, so B will still be positively invariant for (6.8). Furthermore, since S̃(λ) and Ũ(λ) are

still transverse in the limit λ→∞, the radius of the ball can be taken small enough to be disjoint

from Σ(S̃(λ)), independently of λ. Finally, since any λ > M is not an eigenvalue of L, the curve

y 7→ Ẽu(λ, y) will both emanate from and return to U(λ). It will therefore be trapped in the ball B,

and hence there will be no intersections with S̃(λ).

Now fix the value λmax guaranteed by the preceding lemma. The immediate goal is to set, once

and for all, the value τ appearing in Definition 3.2. Since Es(λmax, z) → S(λmax) as z → ∞, it

follows from Lemma 6.1.1 that we can find a value z = τmax such that

Eu(λmax, z) ∩ Es(λmax, ζ) = {0}, for all z ∈ R and for all ζ ≥ τmax. (6.13)

67



Similarly, for each λ ∈ [0, λmax] we can find τλ and an open interval Iλ containing λ such that

U(λ) ∩ Es(λ, z) = {0}, for all z ≥ τλ, λ ∈ Iλ. (6.14)

(For λ = λmax, the value τmax defined above works just fine.) Extracting a finite subcover ∪Nk=1Iλk

of [0, λmax], we set

τ = max{τλ1 , . . . , τλk}. (6.15)

The preceding can be summarized in the following proposition.

Proposition 6.1.1. With τ given by (6.15), the following are true.

(i) Eu(λmax, z) ∩ Es(λmax, τ) = {0} for all z ∈ (−∞, τ ].

(ii) U(λ) ∩ Es(λ, τ) = {0} for all λ ∈ [0, λmax].

Now consider the rectangle

Q = [0, λmax]× [−∞, τ ]. (6.16)

Q is mapped into Λ(n)× Λ(n) by the function

G(λ, z) = (Eu(λ, z), Es(λ, τ)), (6.17)

where G(λ,−∞) is defined to be (U(λ), Es(λ, τ)). Notice that G is continuous, see [2, §3]. Since Q

is contractible, the image G(Q) ⊂ Λ(n)× Λ(n) is contractible as well. Let F : Q× [0, 1] → Q be

a deformation retract [64, p. 361] of Q onto the point (0,−∞). Composing F and G then gives

a deformation retract of G(Q) onto G(0,−∞) = (U(0), Es(0, τ)). In particular, we see that the

image of the boundary ∂Q (with a counterclockwise orientation) under G is homotopic with fixed

endpoints to the constant path (U(0), Es(0, τ)). We will call this (closed) boundary curve α. Since

U(0) ∩ Es(0, τ) = {0} by Proposition 6.1.1(ii), we see that Proposition 3.2.1 applies, so

µ(α) = µ(U(0), Es(0, τ)) = 0. (6.18)

The Maslov index in this case is for pairs of Lagrangian planes, since α ⊂ Λ(n) × Λ(n). We can
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describe the loop α as the concatenation of four curve segments. (See Figure 6.1 below.) Define:

α1 = (Eu(0, z), Es(0, τ)), z ∈ [−∞, τ ]

α2 = (Eu(λ, τ), Es(λ, τ)), λ ∈ [0, λmax]

α3 = (Eu(λmax,−z), Es(λmax, τ)), z ∈ [−τ,∞]

α4 = (U(λmax − λ), Es(λmax − λ, τ)), λ ∈ [0, λmax].

(6.19)

Using the notation of [64], page 326, it is clear that α = α1 ∗ α2 ∗ α3 ∗ α4. As explained above,

µ(α) = 0, since G(Q) is contractible. Proposition 3.1.1(i) then asserts that

0 = µ(α) = µ(α1) + µ(α2) + µ(α3) + µ(α4). (6.20)

It is a direct consequence of Proposition 6.1.1(i) that µ(α3) = 0, since there are no conjugate points.

Likewise, Proposition 6.1.1(ii) says that µ(α4) = 0. Comparing (6.19) with Definition 3.2, we see

that

µ(α1) = Maslov(ϕ). (6.21)

Taken together with (6.20), these observations show that

|Maslov(ϕ)| = |µ(α2)|. (6.22)

To prove Theorem 6.1.1, it therefore suffices to show that

|µ(α2)| ≤ Mor(L). (6.23)

Remark 6.1. Notice in Figure 6.1 the conjugate point in the upper left corner. This crossing

corresponds to the translation invariance of (1.2) (i.e. Eu(0, τ)∩Es(0, τ) 6= {0}). The contributions

of this crossing to µ(α1) and µ(α2) can be determined using (3.7).
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Figure 6.1: “Maslov Box”: Domain in λz-plane

Suppose that λ∗ is a conjugate point for α2. By definition, this means that

Eu(λ∗, τ) ∩ Es(λ∗, τ) 6= {0}. (6.24)

But this is precisely the condition that λ be an eigenvalue of L. Furthermore, the dimension of the

intersection in (6.24) captures the geometric multiplicity of λ∗ as an eigenvalue. By the triangle

inequality, we therefore have

|µ(α2)| ≤
∑

λ∗∈[0,λmax]

dim(Eu(λ∗, τ) ∩ Es(λ∗, τ)), (6.25)

where the sum is taken over all conjugate points. Since [0, λmax] contains all possible real, nonnegative

eigenvalues of L, and the geometric multiplicity of an eigenvalue is no greater than its algebraic

multiplicity, we see that |µ(α2)| ≤ Mor(L), proving Theorem 6.1.1.

6.2 Counting unstable eigenvalues for the FitzHugh-Nagumo system

There are two reasons that the inequality in Theorem 6.1.1 cannot be improved to equality in

general. First, the Maslov index counts signed intersections, so that two different eigenvalues of L

might offset in the calculation of µ(α2) if the crossing forms have different signatures. Second, a given

eigenvalue might be deficient (i.e. have lesser geometric than algebraic multiplicity). In the next

few sections, we show that neither of these potential pitfalls occurs for the FitzHugh-Nagumo fast
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pulses. Additionally, we prove that any unstable spectrum must be real and that λ = 0 contributes

0 to µ(α2), so that the Maslov index actually counts the total number of unstable eigenvalues. For

this section, the notation f(u) refers to the cubic nonlinearity for the FitzHugh-Nagumo equation

(5.1), and not the generic nonlinearity in (1.19).

Recall that the fast traveling pulses (whose existence was proved in Theorem 5.4.2) can be

represented as homoclinic orbits ϕε(z) = (û(z), v̂(z), û′(z), v′(z)/ε) of (5.19). The stability of the

waves is determined by the spectrum of

Lε = ∂2
z + c∂z +

 f ′(û) −1

ε −εγ

 , (6.26)

acting on BU(R,R2). The subscript ε serves both to remind the reader that the operator is

ε-dependent and to distinguish results that are general for (1.19) from those that are specific to

(5.1). As before, we will study the eigenvalue problem as a first-order system



p

q

r

s


z

=



0 0 1 0

0 0 0 ε

λ− f ′(û) 1 −c 0

−1 λ
ε + γ 0 −c





p

q

r

s


, (6.27)

which we abbreviate

Y ′(z) = A(λ, z)Y (z). (6.28)

The results from Chapter 2 about the essential spectrum are still valid, but the spectral gap will

depend on ε. This is not a problem, since ε will be fixed in the stability analysis. However, a few of

the results to follow need ε to be “sufficiently small.” For completeness, we record the following

lemma on σess(Lε).

Lemma 6.2.1. For each ε > 0 sufficiently small, there exists βε < 0 such that

σess(Lε) ⊂ Hε := {λ ∈ C : Reλ < βε}. (6.29)

It then follows from (2.12) and (5.21) that for all real λ ≥ βε, the eigenvalues µi(λ) of A∞(λ)
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are real and satisfy

µ1(λ) < µ2(λ) < 0 < −c < µ3(λ) < µ4(λ)

µ1(λ) + µ4(λ) = µ2(λ) + µ3(λ) = −c.
(6.30)

The benefit of having simple eigenvalues is that we can give analytically varying bases of Es(λ, z)

and Eu(λ, z) that separate solutions with different growth rates, cf. §4.2. This will be important in

§6.3 when we revisit the symplectic Evans function.

We now proceed to show that any unstable eigenvalues of Lε must be real. After that, we

address the issue of direction of crossings by deriving the λ crossing form and showing that it is

positive definite at all conjugate points. Finally, in §6.3 we show that the algebraic and geometric

multiplicities of any unstable eigenvalues of Lε are the same. This will prove:

Theorem 6.2.1.

Maslov(ϕ) = Mor(Lε) = |σ(Lε) ∩ {λ ∈ C : Reλ > 0}|. (6.31)

6.2.1 Realness of σ(Lε)

The analysis of Lε is complicated by the presence of the ∂z term in (6.26). We can sidestep this

difficulty by considering instead the operator

Lc := ecz/2Lεe
−cz/2, (6.32)

as is done in [8, 41]. It is a routine calculation to see that for (p, q)T ∈ BU(R,C2), we have

Lc

 p

q

 =

 pzz +
(
f ′(û)− c2

4

)
p− q

qzz + εp−
(
c2

4 + εγ
)
q

 . (6.33)

Furthermore, if LεP = λP , then Lc(e
cz/2P ) = λecz/2P . This proves that the eigenvalues of Lε and

Lc are the same, provided that ecz/2P is bounded for a given eigenvector P of Lε. This is clearly the

case as z →∞ since c < 0. For the other tail, let λ ∈ C \Hε be an eigenvalue of Lε with associated

eigenvector P . Since A∞(λ) is hyperbolic with simple eigenvalues, P must decay at least as fast as

eµ3(λ)z as z → −∞. It follows that ecz/2P is bounded at −∞ if

c

2
+ µ3(λ) > 0. (6.34)
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This is indeed the case, by (6.30). (For complex λ, the same inequality holds with µi(λ) replaced by

Reµi(λ).) We therefore consider the eigenvalue problem

LcP = λP. (6.35)

Making the change of variables q̃ = 1√
ε
q, we can rewrite (6.35) as (dropping the tildes)

 ∂2
z +

(
f ′(û)− c2

4

)
−
√
ε

√
ε ∂2

z −
(
c2

4 + εγ
)

 p

q

 = λ

 p

q

 . (6.36)

Lc is now seen to be of the form

Lc =

 Lp −
√
ε

√
ε Lq

 , (6.37)

where Lp/q are symmetric operators on H1(R). Since any eigenfunction of Lc in BU(R,C2) is

exponentially decaying (provided λ ∈ C \Hε) and smooth (by elliptic regularity), we are free to

consider the spectrum of Lc as an operator on the Hilbert space H1(R,C2) instead. This also implies

that Lp/q are self-adjoint on some domain D ⊂ H1(R) containing any relevant solutions. The payoff

of studying Lc instead of Lε is the following result, a general version of which was proved in Lemma

4.1 of [19]. We reproduce the proof here for convenience of the reader.

Lemma 6.2.2. For ε > 0 sufficiently small, if λ ∈ σn(Lc) ∩ (C \Hε) and Reλ ≥ − c2

8 , then λ ∈ R.

Consequently, the same is true for Lε.

Proof. Let λ = a+bi be an eigenvalue for Lc with corresponding eigenvector (p, q)T . Assume further

that a ≥ −c2/8. Notice that the second equation in (6.36) can be solved for q, since Lq + c2/8 is

negative definite (and hence λ /∈ σ(Lq)). Explicitly, we have

q = −
√
ε (Lq − a− bi)−1 p. (6.38)

Next, substitute this expression into the first equation of (6.36) to obtain

Lpp+ ε(Lq − a− bi)−1p = (a+ bi)p. (6.39)
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Taking the H1 pairing 〈·, ·〉 with p in (6.39) yields

〈Lpp, p〉+ ε〈(Lq − a− bi)−1p, p〉 = (a+ bi)〈p, p〉. (6.40)

Recalling that Lp is self-adjoint on D, we extract the imaginary parts of (6.40):

ε Im〈(Lq − a− bi)−1 p, p〉 = b〈p, p〉. (6.41)

The operator inverse in (6.41) can be decomposed into (self-adjoint) real and imaginary parts as

follows:

(Lq − a− bi)−1 =
(
(Lq − a)2 + b2

)−1
(Lq − a) + ib

(
(Lq − a)2 + b2

)−1
. (6.42)

Combining (6.41) and (6.42), we arrive at

b〈
[
ε
(
(Lq − a)2 + b2

)−1 − I
]
p, p〉 = 0, (6.43)

where I denotes the identity operator. For operators on H1(C,C2) we write A < B if (B −A) is

positive definite. Since Lq − a < 0 (independently of ε) it follows from the inequality

(
(Lq − a)2 + b2

)−1
< (Lq − a)−2 (6.44)

and the fact that (Lq − a)−2 is bounded that

ε
(
(Lq − a)2 + b2

)−1 − I < 0 (6.45)

for ε small enough. In conjunction with (6.43), this implies that b = 0, as desired.

6.2.2 The crossing form in λ

Recall that conjugate points along α2 correspond to eigenvalues of Lε. We will show below

that the crossing form (in λ) is positive definite at all such crossings. This is the most significant

difference between skew-gradient systems and the gradient systems considered in [41], since the

crossing form is always positive definite in the latter case (cf. §4.1 and §5.5). Conversely, we rely

on the smallness of ε to get monotonicity of the crossings for Lε in (6.26). We stress that the λ
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crossing form developed in this section would be the same for general systems (1.19). We focus on

Lε only because we are able to prove that the form is positive definite in this case.

To derive the λ crossing form, we first take a closer look at the z crossing form from Theorem

3.4.2. Suppose that z∗ is a conjugate point for α1, and that ξ ∈ Eu(0, z∗) ∩Es(0, τ). By virtue of

being in Eu(0, z∗), we know that there exists a solution u(z) of (6.27) such that u(z) ∈ Eu(0, z) and

u(z∗) = ξ. It follows that (3.18) can be rewritten

Γ(Eu(0, ·), Es(0, τ), z∗)(ξ) = ω(ξ, A(0, z∗)ξ) = ω(u(z), ∂zu(z))|z=z∗ . (6.46)

In other words, the crossing form simplifies when evaluated on a vector that is part of a solution to

a differential equation.

Now suppose that λ = λ∗ is a conjugate point for α2, with ξ ∈ Eu(λ∗, τ) ∩ Es(λ∗, τ). From

(3.6), we know that we must evaluate two crossing forms–one where the curve Es(λ, τ) is frozen

at λ = λ∗ and one where Eu(λ, τ) is frozen at λ = λ∗. To simplify the calculations, we will work

with Ω instead of ω. Since one of these forms is just a scaled version of the other, it is clear

that the signatures are the same, and hence the Maslov indices are as well. First consider the

curve λ 7→ Eu(λ, τ) and reference plane Es(λ∗, τ). As in Chapter 3, we can write Eu(λ, τ) for

|λ− λ∗| small as the graph of an operator Bλ : Eu(λ∗, τ)→ J ·Eu(λ∗, τ). This, in turn, generates a

smooth curve γ(λ) = (ξ +Bλξ) ∈ Eu(λ, τ) with γ(λ∗) = ξ. By flowing backwards in z, we obtain

a one-parameter family u(λ, z) of solutions to (6.27) in Eu(λ, τ), with u(λ∗, τ) = ξ. Applying the

argument of Theorem 3.4.1–specifically (3.17)–with λ as the varying parameter, we see that

Γ(Eu(·, τ), Es(λ∗, τ), λ∗)(ξ) = Ω(u(λ, z), ∂λu(λ, z))|λ=λ∗,z=τ . (6.47)

The case where Es(λ, τ) varies and Eu(λ∗, τ) is fixed is identical. We can generate a smooth family

of solutions v(λ, z) ∈ Es(λ, z) with v(λ∗, τ) = ξ. This half of the crossing form is then given by

Γ(Es(·, τ), Eu(λ∗, τ), λ∗)(ξ) = Ω(v(λ, z), ∂λv(λ, z))|λ=λ∗,z=τ . (6.48)
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By uniqueness of solutions, we importantly have

u(λ∗, z) = v(λ∗, z) := P (z), (6.49)

which is a λ∗-eigenvector of Lε. Putting together (3.6), (6.47), and (6.48), it follows that

Γ(Eu(·, τ), Es(·, τ), λ∗)(ξ) = {Ω(u(λ, z), ∂λu(λ, z))− Ω(v(λ, z), ∂λv(λ, z))}|λ=λ∗,z=τ

= {Ω(u(λ, z), ∂λu(λ, z)) + Ω(∂λv(λ, z), v(λ, z))}|λ=λ∗,z=τ

= ∂λΩ(v(λ, z), u(λ, z))|λ=λ∗,z=τ ,

(6.50)

where the last equality follows from (6.49).

The expression obtained in (6.50) will be useful in the next section when we relate the crossing

form to the Evans function. For now, we compute (6.47) and (6.48) directly. For (6.47), we use the

equality of mixed partials and the fact that u solves (6.27) to obtain

(∂λu(λ, z))z = A(λ, z)∂λu(λ, z) +Aλu(λ, z), (6.51)

where

Aλ := ∂λA(λ, z) =



0 0 0 0

0 0 0 0

1 0 0 0

0 ε−1 0 0


. (6.52)

Next, apply ω(u(λ, z), ·) to (6.51) to see that

ω(u(λ, z), Aλu(λ, z)) = ω(u(λ, z), (∂λu(λ, z))z)− ω(u(λ, z), A(λ, z)∂λu(λ, z))

= ω(u(λ, z), (∂λu(λ, z))z) + ω(A(λ, z)u(λ, z), ∂λu(λ, z)) + cω(u(λ, z), ∂λu(λ, z))

= ∂zω(u(λ, z), ∂λu(λ, z)) + cω(u(λ, z), ∂λu(λ, z)).

(6.53)

The second equality follows from the proof of Theorem 2.5.1, specifically (2.38).
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Applying an integrating factor and using (2.36) and (2.19) then shows that

Γ(Eu(·, τ), Es(λ∗, τ), λ∗)(ξ) = Ω(u, ∂λu)(λ∗, τ)

=

τ∫
−∞

∂zΩ(u(λ, z), ∂λu(λ, z))|λ=λ∗ dz =

τ∫
−∞

eczω(P,AλP ) dz.
(6.54)

The preceding calculation makes use of the fact that u(λ, z) ∈ Eu(λ, z), and hence it decays faster

than ecz as z → −∞, by (6.30). The calculation of the crossing form for the stable bundle using

the solutions v(λ, z) is identical until the last step. Indeed, those solutions decay at +∞, so an

application of the Fundamental Theorem gives

Γ(Es(·, τ), Eu(λ∗, τ), λ∗)(ξ) = Ω(v, ∂λv)(λ∗, τ)

= −
∞∫
τ

∂zΩ(v, ∂λv)(λ∗, z) dz = −
∞∫
τ

eczω(P,AλP ) dz.
(6.55)

Combining (3.6), (6.54), and (6.55), we obtain the following.

Lemma 6.2.3. The relative crossing form (in λ) for the curves λ 7→ (Eu(λ, τ), Es(λ, τ)) at a

conjugate point λ = λ∗ is given by

Γ(Eu(·, τ), Es(·, τ), λ∗)(ξ) =

∫ ∞
−∞

ecz ω(P,AλP ) dz, (6.56)

where P ∈ Eu(λ∗, z) ∩ Es(λ∗, z) is the λ∗-eigenfunction of Lε satisfying P (τ) = ξ.

6.2.3 Monotonicity of λ-crossings

Writing P := (p, q, pz, qz/ε), it is straightforward to calculate from (2.34) that

ω(P,AλP ) = p2 − q2

ε
. (6.57)

The following theorem shows that Γ is positive definite for each conjugate point of α2, which proves

that Maslov(ϕ) equals the sum of the geometric multiplicities of all unstable eigenvalues of Lε.

Theorem 6.2.2. Let λ ∈ σ(Lε) ∩ (R+ ∪ {0}) with corresponding eigenvector P = (p, q)T . Suppose
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further that 0 < ε < c4

16 . Then
∞∫
−∞

ecz
(
p2 − q2

ε

)
dz > 0. (6.58)

In other words, the crossing form (6.50) is positive definite for all λ ∈ [0, λmax].

The proof of this theorem uses the following Poincaré-type inequality.

Lemma 6.2.4. Suppose h ∈ H1(R) satisfies

∞∫
−∞

ecz
(
h2 + (hz)

2
)
dz <∞. (6.59)

Then for all R ∈ R (including R =∞), we have

c2

4

R∫
−∞

eczh2 dz ≤
R∫

−∞

ecz(hz)
2 dz. (6.60)

The proof of this inequality is a simple estimate using the fact that (6.59) defines a norm on an

exponentially weighted Sobolev space. For more details, we refer the reader to Lemma 4.1 of [59],

the source of this result.

Proof of Theorem 6.2.2. Written as a system, the eigenvalue equation LεP = λP is

pzz + cpz + (f ′(û)− λ)p− q = 0

qzz + cqz + εp− (εγ + λ)q = 0.

(6.61)

Now, multiply the second equation in (6.61) by eczq to obtain

(eczqz)z q − (εγ + λ)eczq2 = −eczεpq. (6.62)

Since p, q and their derivatives all decay exponentially in both tails, we can integrate (6.62) to

obtain (after an integration by parts)

∞∫
−∞

ecz(qz)
2 dz + (εγ + λ)

∞∫
−∞

eczq2 dz = ε

∞∫
−∞

eczpq dz. (6.63)

78



It then follows from (6.60), (6.63), and the Cauchy-Schwarz inequality that

c2

4ε

∞∫
−∞

eczq2 dz ≤ 1

ε

∞∫
−∞

ecz(qz)
2 dz

<

∞∫
−∞

pq dz ≤

 ∞∫
−∞

eczp2 dz

1/2 ∞∫
−∞

eczq2 dz

1/2

.

(6.64)

Dividing the first and last terms in the inequality by ||q||1,c (the ecz-weighted L2 norm) and squaring

yields

c4

16ε

∞∫
−∞

ecz
q2

ε
dz <

∞∫
−∞

eczp2 dz, (6.65)

and the result now follows.

Remark 6.2. The proof of the preceding theorem uses estimates that are very similar to calculations

in [17]. However, the objectives of the calculations are very different. In [17], the goal is to establish

the existence of a traveling wave using variational techniques. By contrast, we are considering the

stability issue, in particular the monotonicity of the crossing form as λ varies.

To close this section, observe that Theorem 6.2.2 applies to λ = 0. It then follows from (3.7)

that this conjugate point contributes 0 to µ(α2), as it is a left endpoint crossing. This proves that

Maslov(ϕ) only counts unstable eigenvalues for Lε, which is implied in the statement of Theorem

6.2.1.

6.3 Multiplicity of eigenvalues: return of the Evans function

There is one remaining loose end to tie up if we want the Maslov index to give a complete picture

of the unstable spectrum of Lε, namely, the multiplicity of eigenvalues. In general, for λ ∈ σn(L),

the geometric multiplicity of λ is given by dim ker(L− λI). For λ ∈ C \Hε ∩ σn(Lε), this number is

bounded above by two (or n, in the general setting of (1.19)), since Eu(λ, z) and Es(λ, z) are only

two-dimensional. Since dim ker(L− λI) = dim(Eu(λ, z) ∩ Es(λ, z)), it is clear from (6.19) that the

dimension of a crossing for α2 gives the geometric multiplicity of λ.

The algebraic multiplicity of λ, on the other hand, is trickier. It is given by dim ker(L− λI)α,

where α is the ascent of λ, i.e. the smallest α for which dim ker(L − λI)α = dim ker(L − λI)a+1.

See [2, §6.D] for more details. There is nothing obvious about the Maslov index that addresses the
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algebraic multiplicity of an eigenvalue. In [41], self-adjoint operators are studied, and this issue is

moot, since the two multiplicities coincide. However, for our purposes it is not obvious that the two

multiplicities are the same.

One tool that demonstrably gives information about the algebraic multiplicity of eigenvalues

is the Evans function. In [2, §6] it is proved that the order of λ ∈ C as a root of D(λ) is equal

to its algebraic multiplicity as an eigenvalue of Lε. We will use this fact to give a new, geometric

interpretation of algebraic multiplicity in terms of the Maslov index. We remind the reader that

we have spanning solutions ui(λ, z), i = 1 . . . 4 satisfying (4.11), on account of the simplicity of

the eigenvalues of A∞(λ). Furthermore, the Evans function is given by one of the two equivalent

formulations (4.15) or (4.17). The following theorem is the main result of this section.

Theorem 6.3.1. Let λ∗ ∈ σn(Lε) ∩ (C \Hε). Then the geometric and algebraic multiplicities of λ∗

are equal. This is equivalent to λ = λ∗ being a regular conjugate point of α2.

Proof. We prove this separately for λ with geometric multiplicity one and two. Recall that a crossing

is regular if the associated crossing form (6.50) is nondegenerate. First, suppose that λ∗ is an

eigenvalue of Lε with geometric multiplicity one. The goal is to show that D′(λ∗) 6= 0. Let P (z) be

a corresponding eigenfunction. We can perform a change of basis near λ = λ∗ so that

Es(λ, z) = sp{U(λ, z), as(λ, z)}

Eu(λ, z) = sp{V (λ, z), au(λ, z)}
, (6.66)

with U(λ∗, z) = V (λ∗, z) = P (z). Doing so changes D(λ) by multiplication with a nonzero analytic

function C(λ) (§4.1 of [71]). Since D(λ∗) = 0, we have

d

dλ
[D(λ)C(λ)] |λ=λ∗ = D′(λ∗)C(λ∗), (6.67)

so making this change of basis does not affect whether or not the derivative of D at λ∗ vanishes.

Comparing with (4.16), it therefore suffices to consider D̃′(λ∗), with

D̃(λ) = −det

 Ω(U(λ, z), V (λ, z)) Ω(U(λ, z), au(λ, z))

Ω(as(λ, z), V (λ, z)) Ω(as(λ, z), au(λ, z))

 . (6.68)
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We compute D̃′(λ∗) as in (4.19) to obtain

D̃′(λ∗) = Ω(as(λ, z), au(λ, z)) ∂λΩ(U(λ, z), V (λ, z))|λ=λ∗,z=τ . (6.69)

Define ξ = P (τ). Comparing with (6.50), we see that

∂λΩ(U(λ, z), V (λ, z))|λ=λ∗,z=τ = −Γ(Eu(·, τ), Es(·, τ), λ∗)(ξ), (6.70)

which is nonzero, since λ∗ is a regular crossing by Theorem 6.2.2. It would follow that D′(λ∗) 6= 0,

and hence that λ∗ is a simple eigenvalue of Lε, if Ω(as(λ
∗, z), au(λ∗, z)) 6= 0. It turns out that this

is equivalent to λ∗ having geometric multiplicity one. Indeed, if Ω(as(λ
∗, z), au(λ∗, z)) = 0, then

sp{as(λ∗, z), au(λ∗, z)} is a Lagrangian plane. A simple dimension-counting argument (cf. [15, p.

85]) then implies that

Es(λ∗, z) = sp{U, as} = sp{V, au} = Eu(λ∗, z). (6.71)

We now turn to the case where λ∗ is a two-dimensional crossing, meaning that

dim(Eu(λ∗, z) ∩ Es(λ∗, z)) = 2. (6.72)

By making another change of basis if necessary, we are free to assume that

u1(λ∗, z) = u4(λ∗, z)

u2(λ∗, z) = u3(λ∗, z)

. (6.73)

We then set ξ1 = u1(λ∗, τ) and ξ2 = u2(λ∗, τ). Since the algebraic multiplicity of λ∗ is no less than

its geometric multiplicity, we know a priori that D′(λ∗) = 0. This is easily verified by applying

the product rule to (2.1), which is the zero matrix for λ = λ∗. What we need to verify is that

D′′(λ∗) 6= 0, and that this is equivalent to the regularity of the crossing form. To see this, we use

(2.1) to write out

D(λ) = Ω(u1(λ, z), u4(λ, z))Ω(u2(λ, z), u3(λ, z))−Ω(u1(λ, z), u3(λ, z))Ω(u2(λ, z), u4(λ, z)). (6.74)
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Evaluating at λ = λ∗, each of the four terms in (6.74) is zero, using (6.73) and the fact that

Eu/s(λ, z) are Lagrangian planes. As mentioned above, we can see from (6.74) that D′(λ∗) = 0,

since the derivative produces a series of four terms, each of which is a product with a factor of zero.

Computing D′′(λ∗) from the general Leibniz rule, we see that the only surviving terms are those for

which each factor in (6.74) is differentiated once. Explicitly, we compute that

D′′(λ∗) =2 {∂λΩ(u1(λ, z), u4(λ, z))∂λΩ(u2(λ, z), u3(λ, z))

−∂λΩ(u1(λ, z), u3(λ, z))∂λΩ(u2(λ, z), u4(λ, z))} |λ=λ∗,z=τ

= −2 det

 ∂λΩ(u1(λ, z), u3(λ, z)) ∂λΩ(u1(λ, z), u4(λ, z))

∂λΩ(u2(λ, z), u3(λ, z)) ∂λΩ(u2(λ, z), u4(λ, z))

 |λ=λ∗,z=τ

= 2 det

 ∂λΩ(u1(λ, z), u4(λ, z)) ∂λΩ(u1(λ, z), u3(λ, z))

∂λΩ(u2(λ, z), u4(λ, z)) ∂λΩ(u2(λ, z), u3(λ, z))

 |λ=λ∗,z=τ .

(6.75)

We see from (6.73) that the last matrix (obtained by switching columns and taking a transpose in the

previous line) is exactly the matrix of the crossing form Γ in (6.50). To say that Γ is nondegenerate

means that the determinant in (6.75) is nonzero, hence D′′(λ∗) 6= 0, as desired.

Remark 6.3. Although we phrased the preceding theorem for the operator Lε, it is clear that the

proof generalizes to L in (2.3). At an n-dimensional crossing λ∗, the first (n−1) derivatives of D(λ)

are forced to vanish. The nth derivative will then contain a factor corresponding to the λ-crossing

form Γ. The number of zeros of Γ in the normal form [79, p. 186] then gives the discrepancy

between the algebraic and geometric multiplicities of λ∗ as an eigenvalue of L.

Although algebraic versus geometric multiplicity seems like a picayune detail, it is actually critical

in the case λ = 0, as we see from Theorem 1.1.1. It is possible that Eu(0, z) ∩ Es(0, z) = sp{ϕ′(z)}

is one-dimensional, but that λ = 0 is still not a simple eigenvalue. In [3, pp. 57-60], it is shown that

λ = 0 is simple if and only if the wave is transversely constructed, in the sense of (A3), cf. Chapter

4. Thus the geometric interpretation of simplicity is that two manifolds intersect transversely in

augmented phase space.

By contrast, the understanding of simplicity afforded by the symplectic structure requires no
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variation in c. Instead, we see that λ = 0 (or any other eigenvalue) is simple if the curve λ 7→ Eu(λ, τ)

transversely intersects the train of Es(0, τ) for all sufficiently large τ . To see this, notice that

Theorem 6.3.1 proves that the eigenvalue is simple if and only if the relative crossing form (6.50) is

regular. But if the integral (6.56) is nonzero, then so will be the integral in (6.47) for τ large enough.

Alternatively, for an eigenvalue λ∗ with geometric multiplicity one, being simple is equivalent to the

curves λ 7→ Eu(λ, τ), Es(λ, τ) intersecting non-tangentially at λ = λ∗.
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CHAPTER 7

Calculation of the Maslov index

In this chapter, we carry out the calculation of the Maslov index for the FitzHugh-Nagumo fast

pulses. This calculation is the centerpiece of [22]; in conjunction with Theorem 6.2.1 proved in the

preceding chapter, it allows us to conclude that the fast traveling pulses obtained in Theorem 5.4.2

are stable:

Theorem 7.0.1. For 0 < ε < c4/16, the traveling waves ϕε(z) guaranteed to exist by Theorem 5.4.2

are stable in the sense of Definition 1.1.

Recall that Maslov(ϕ) is calculated by following the curve Eu(0, z) from z = −∞ to z = τ .

Solving (6.27) directly (thus determining the curve of interest) is a tall order, since that equation

is nonautonomous and dependent on ε. Instead, we will use the fact that, for λ = 0, (6.27) is the

variational equation for (5.19) along the traveling wave ϕ(z). Consequently, we have the following

(general) theorem.

Theorem 7.0.2. For all z ∈ R, the unstable bundle Eu(0, z) is the tangent space to W u(0) at ϕ(z).

Likewise, the stable bundle Es(0, z) is everywhere along ϕ(z) tangent to W s(0).

This fact is well-known (e.g. [3, p. 73] and [84, p. 196]) and true for traveling waves in general

systems (1.1), as long as the end state of the wave is a hyperbolic fixed point of the traveling wave

ODE. Finding a proof in the literature is difficult, so we offer one here.

Proof. We will prove this statement for the unstable bundle, as the other case is identical. Since

Eu(0, z) and Tϕ(z)W
u(0) are both two-dimensional vector spaces, it suffices to show that

Tϕ(z0)W
u(0) ⊆ Eu(0, z0) (7.1)

for any z0 ∈ R. To that end, take v ∈ Tϕ(z0)W
u(0). By definition, this means we can find a

smooth curve α : (−δ, δ)→ W u(0) such that α(0) = ϕ(z0) and α′(0) = v. We already know that
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ϕ′(z) ∈ Eu(0, z), so assume that α is transverse to ϕ. For each s ∈ (−δ, δ), we can consider the

trajectory α(s) · (−∞, 0] through α(s). This generates a one-parameter family of orbits ϕs(z), with

ϕ0(z) = ϕ(z) for all z ≤ z0. (Thus the family is parametrized so that ϕs(z0) = α(s).) It is clear that

v = ∂sϕs(z0)|s=0. (7.2)

We claim that the solution to the variational equation (6.27), λ = 0, along ϕ(z) with initial condition

v at z = z0 is given by ∂sϕs(z)|s=0. It then follows that v ∈ Eu(0, z0), since ∂sϕs(z)|s=0 converges

to 0 exponentially as z → −∞. (This is because ϕs(z) → 0 uniformly in s by virtue of being in

W u(0).) To prove the claim, we have

∂z∂s(ϕs(z)) = ∂sF (ϕs(z)) = DF (ϕs(z))∂sϕs(z). (7.3)

Evaluating at s = 0 shows that the derivative with respect to the parameter s satisfies the variational

equation. Evaluating at z = z0 shows that the initial condition is v.

The preceding theorem says that Maslov(ϕ) is equal to the number of twists that W u(0) makes

as ϕ(z) moves through phase space. On the one hand, this is our motivation for studying the

Maslov index, as it relates spectral information to structural properties of the wave (or, more

precisely, an invariant manifold containing the wave), à la Sturm-Liouville theory. On the other

hand, this provides a means to the end of calculating the Maslov index if, for some reason, more

information is known about the nonlinear problem (5.19) than the linear problem (6.27). Such is

the case for singularly perturbed systems, for which Fenichel theory and subsequent developments

provide a means for tracking invariant manifolds throughout phase space. By contrast, the timescale

separation makes the eigenvalue problem itself no more or less tractable.

7.1 Plücker coordinates revisited

The calculation in this chapter will use the detection form of §4.3 to identify conjugate points.

Most of the calculations will be done in Plücker coordinates, so it will be helpful to see how the

two concepts are related. Let V = sp{v1, v2},W = sp{w1, w2} ∈ Λ(2) be Lagrangian planes with
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Plücker coordinates (pij) and (qij) respectively. Then

W ∩ V 6= {0} ⇐⇒ det[v1, v2, w1, w2] = 0

= p12q34 − p13q24 + p14q23 + p23q14 − p24q13 + p34q12,

(7.4)

using (2.25) and cofactor expansion to compute the determinant. If instead W = W (z) is a curve of

subspaces, then the right-hand side of (7.4) becomes a function of z, which is exactly β(z) from

(4.32).

In general, using the function β directly is difficult, because it is only defined up to nonzero

multiples. Thus, arguments asserting the existence of a conjugate point based on a change in sign

are difficult. However, we will see later that such arguments can often be applied if the underlying

equation determining the curve W (z) is relatively simple.

7.2 Phase portrait of flow induced on Λ(2) by a constant coefficient system

In §7.5 and §7.7, we will rely on properties of the dynamics induced on Λ(2) by a linear, constant

coefficient system. The phase portrait of such systems is described completely in [73] and is of

interest in control theory. In this section we catalog the relevant results for this work, tailored to

the linearization of the traveling wave ODE (5.19) at any point on M
R/L
0 . The reader should be

aware that the presentation in [73] assumes that the flow on Λ(n) is given by the action of a 2n× 2n

symplectic matrix on Lagrangian subspaces. This is not the case here, since the solution operator

for (5.20) is not symplectic. However, this does not change the geometry of the flow on Λ(2), which

is an invariant manifold of the system on Gr2(R4). It is therefore clear that the following facts

remain true, although the assumptions of the corresponding theorems in [73] sometimes require

modification.

To fix some notation, first recall that there are three “corners” at which transitions from fast-

to-slow dynamics (or vice-versa) occur: p = (1, 0, 0,−1/c∗), q = (u∗, v∗, 0, (1/c∗)(γv∗ − u∗)), and

q̂ = (u∗ − 1, v∗, 0, (1/c∗)(γv∗ − u∗ + 1)). With a calculation similar to (5.23), one finds that there

are four eigenvalues for the linearization at each point, which satisfy (when ε = 0)

µ1 < µ2 = 0 < µ3 = −c < µ4. (7.5)

µ1 and µ4 depend on u, but their sum is always equal to −c. For fixed u, the linearized system
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(5.20) is of the form

Y ′(z) = BY (z), (7.6)

which has solution operator exp(Bz) ∈ GL4(R). For each eigenvalue µi, assign a nonzero eigenvector

ηi. Since eigenspaces of B are invariant under the action of exp(Bz), we see that the equation

induced on Gr2(R4) by (7.6) has six fixed points

Xij = sp{ηi, ηj}, {i, j} ∈
(
{1, 2, 3, 4}

2

)
. (7.7)

Of these, X12, X13, X24 and X34 are Lagrangian planes, making them the points of interest. The

following theorem holds for the flow on Λ(2) induced by the constant coefficient system (7.6) based

at each corner point mentioned above. Recall that dim Λ(2) = 3. We refer the reader to [73] for

proofs.

Theorem 7.2.1 (Shayman [73]). For the equation induced by (7.6) on Λ(2), the following are true:

1. Each fixed point for (7.6) is hyperbolic. We have

dimW u(X12) = dimW s(X34) = 3

dimW u(X13) = dimW s(X24) = 2

dimW u(X24) = dimW s(X13) = 1.

(7.8)

Furthermore, each of W u(X12) and W s(X34) is open and dense in Λ(2).

2. Λ(n) =
⋃
W u(Xij) =

⋃
W s(Xij), due to the fact that Λ(2) is compact.

3. Each W u/s(Xij) is a Schubert cell. In particular, it is diffeomorphic to Rd, where d is the

dimension of the invariant manifold.

4. For any i, j, i′, j′, either W u(Xij) ∩W s(Xi′j′) = φ or W u(Xij) tW s(Xi′j′).

Remark 7.1. It is also true that the vector field on Λ(2) induced by (7.6) is Morse-Smale.

7.3 Calculation using geometric singular perturbation theory

Our strategy will be to use elements from the construction of ϕ(z) to follow W u(0) along the

different fast and slow segments. Notice that there are seven–not four–pieces that we must consider,
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since the singular orbit in Λ(2) corresponding to Tϕ(z)W
u(0) has jump discontinuities at the corners.

This is because the orientation of the unstable manifold is different upon entering a neighborhood

of M
L/R
ε than it is along the slow pieces. In fact, the analysis of the corners is the most challenging

aspect of the calculation. We will then use the additivity property from Proposition 3.1.1 to calculate

the index.

By Theorem 7.0.2, Es(0, z) is tangent to W s(0) everywhere along ϕ(z). It follows that the

reference plane Es(0, τ) is given by Tϕ(τ)W
s(0), where ϕ(τ) is as close as we like to returning to

0. By Fenichel theory, this subspace is spanned (to leading order) by the tangent vector to ML
ε

and the stable eigenvector of the same point on the critical manifold. We label the components

of this point ϕ(τ) = (uτ , vτ , wτ , yτ ). Throughout the calculation, we will make heavy use of the

robustness of transverse intersections. More precisely, the train of Es(0, τ) is a codimension one

subset of Λ(2). If the curve Eu(0, z) crosses it transversely for some value z = z∗, then the crossing

would persist for sufficiently small perturbations of either the curve or the reference plane. We are

therefore justified in taking the leading order approximations of both Eu(0, z) and Es(0, τ). This

allows us to search for intersections on the fast and slow timescales with ε = 0, which is significantly

easier. In particular, we can use the singular value c = c∗ throughout. We drop the ∗ for the rest of

the section.

As mentioned above, the most difficult part of the analysis is determining what happens to Λ(2)

near the corners. To figure out how the gaps between the entry and exit points in Λ(2) are bridged,

we will analyze the flow induced on Λ(2) by the constant coefficient systems obtained by linearizing

(5.19) at the corners. We will rely on the results of §7.2 to understand this flow. We will also make

heavy use of the Plücker coordinates in this chapter, so it will be helpful for the reader to refer back

to §2.3 and §7.1. For convenience of the reader, we separate the rest of this chapter into sections

wherein each piece of the wave is considered separately.

7.4 First fast jump

As explained in §5.2, we have a very clear picture of the unstable bundle (i.e. of Tϕ(z)W
u(0))

along the fast front; at each point along the orbit, it is O(ε) close to W u(0f ), the unstable manifold

for 0 in (5.24). The latter is just a cylinder over the Nagumo front, so its tangent space at any

point along the jump is known. In anticipation of computing the crossing form, we include the δv

component, even though it will be 0 for both basis vectors. We can differentiate (5.30) with respect
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to u to determine one vector tangent to W u(0), and the other is given by the invariant y direction.

We therefore have

Tϕ(z)W
u(0) ≈ sp





1

0
√

2/2− u
√

2

0


,



0

0

0

1




. (7.9)

To detect conjugate points, we need a working basis for Es(0, τ). In light of the discussion in §7.1,

one basis vector is found by differentiating the equation defining M0 in (5.25) with respect to v.

The other is computed by finding the stable eigenvector for the linearization of (5.24) around ϕ(τ)

with ε = 0. It is then a calculation to see that

Es(0, τ) ≈ sp





1

f ′(uτ )

0

1
c (γf

′(uτ )− 1)


,



f ′(uτ )

0

f ′(uτ )µ1(uτ )

µ1(uτ )




, (7.10)

where µ1(uτ ) is the stable eigenvalue for the linearization of (5.24) about ϕ(τ). (Notice that the

eigenvalues and eigenvectors for points in ML
0 can be written as a function of u.) We use ≈ to

remind the reader that this the leading order (in ε) approximation to Es(0, τ). Although we could

use (7.10) directly to find conjugate points, the calculation would be tedious due to the way µ1(uτ )

depends on u. Instead, we claim that the Maslov index contribution is the same if we instead look

for intersections with the train of

V s(0) = sp





1

−a

0

1
c (1 + γa)


,



1

0

−a
√

2
√

2




, (7.11)

which one obtains by substituting u = 0 in (7.10) and using (5.28) and (5.32). Indeed, we know that

uτ → 0 as τ →∞, so that Σ(Es(0, τ)) will be very close to Σ(V s(0)) as long as τ is large enough.

Thus, as long any crossings of Eu(0, z) with V s(0) are one-dimensional and transverse, then Eu(0, z)
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would have to cross Es(0, τ) nearby and in the same direction.

Using this new reference plane, we see from (7.9) and (7.11) that an intersection occurs if and

only if

u = a+
1

2
. (7.12)

Since u increases monotonically along the fast jump from 0 to 1, it follows that there is a unique

conjugate point, and the intersection is spanned by ξ := [1, 0,−a
√

2,
√

2]T . To determine the

direction of the crossing, we evaluate Γ from (3.13) on this vector. We call the conjugate point z∗

and use (2.34) to compute:

ω(ξ, A(0, z∗)ξ) = 〈ξ, JA(0, z∗)ξ〉 = −f ′(u) + ca
√

2− 2a2

= −f ′
(

1

2
+ a

)
+ ca
√

2− 2a2

= a2 − 1

4
< 0.

(7.13)

This shows that the crossing is negative, and we conclude that the contribution to Maslov(ϕ) is −1

along the fast front.

7.5 First corner

Near the first landing point p = (1, 0, 0,−1/c), the shooting manifold will undergo an abrupt

reorientation. As the front approaches p, the tangent space to the shooting manifold will be spanned

(approximately) by the stable eigenvector of the fixed point (1, 0,−1/c) for the fast subsystem

and the invariant y direction, as in the previous section. Combining (5.34) with the observation

f ′(1) = a− 1 and a calculation analogous to (7.10), we see that

TpinW
u(0) ≈ sp{η1(p), η3(p)} = sp





a− 1

0

(1− a)
√

2
2

−
√

2
2


,



0

0

0

1




. (7.14)

The subscript “in” on p refers to the fact that this is the tangent space to W u(0) upon entrance

into a neighborhood of p, as opposed to the trip away from p, up the slow manifold. The notation

ηi(p) indicates that the corresponding vector is an eigenvector for (5.33) with eigenvalue µi(p).
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The next task is to determine the configuration of W u(0) as it moves up the slow manifold MR
ε .

For this part of the journey, the derivative of the wave is given (to leading order) by the tangent

vector to MR
ε . At p, this corresponds to the 0-eigenvector

η2(p) =



1

a− 1

0

1
c (γ(a− 1)− 1)


. (7.15)

It is less obvious which is the second direction picked out. Deng’s Lemma [25, 72] asserts that W u(0)

will be crushed against W u(MR
ε ), the unstable manifold of the right slow manifold. However, there

are two unstable directions for each point on the critical manifold, and it is unclear which of these

is picked out. (Since the approach to p was in the weak unstable direction, it is not unreasonable to

think that this direction would persist.) Thankfully, the symplectic structure is able to break the tie.

We know from Theorem 2.5.2 that Tϕ(z)W
u(0) is a Lagrangian subspace of R4. Since Λ(2) is closed

in Gr2(R4), the symplectic form ω must vanish on the leading order approximation to Tϕ(z)W
u(0)

as well. A direct computation shows that

ω(η2(p), η3(p)) = 1− a 6= 0, (7.16)

so it must be that

TpoutW
u(0) ≈ sp{η2(p), η4(p)} = sp





1

a− 1

0

1
c (γ(a− 1)− 1)


,



1

0
√

2(1− a)

−
√

2




. (7.17)

Again, the vector η4(p) is obtained by using the formula for a generic eigenvector from (7.10) in

conjunction with (5.34). For the rest of this section, we will write ηi instead of ηi(p). The goal is

to show that there are no conjugate points during the transition from pin to pout. Although this

appears to be an ε 6= 0 consideration, it is actually understood by analyzing the constant coefficient

linear system obtained by setting u ≡ 1 in (5.20) with ε = 0. Indeed, by taking ε very small, we can
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ensure that W u(0) is as close to p as desired while still maintaining (approximately) the shape of

the cylinder. Similarly, since the traveling wave is C1 O(ε)-close to the singular object, the slow

(i.e. tangent) direction is picked up arbitrarily close to p on MR
ε . The second tangent vector is

a solution to the linearized equation (6.27) with initial condition close to η3, which is already an

unstable direction. It follows that this direction must remain close to the unstable subspace of p,

since the wave itself stays arbitrarily close to p during the transition, and the unstable subspace

of (5.24) at p is invariant. The above discussion of the symplectic structure then implies that this

solution must be bumped to η4, the strong unstable direction, during this transition.

Setting Xij = sp{η1, ηj} (cf. §7.2), we therefore must solve a pseudo-boundary value problem to

connect the points TpinW
u(0) = X13 and TpoutW

u(0) = X24 in Λ(2) for the equation induced by



p

q

r

s



′

=



0 0 1 0

0 0 0 0

1− a 1 −c 0

−1 γ 0 −c





p

q

r

s


, (7.18)

which is (5.20) evaluated at û = 1. These two points are both equilibria for said equation, since

the eigenspaces of the matrix in (7.18) are invariant. It follows that the desired connection must

be a heteroclinic orbit. It is explained in §7.2 that W u(X13) ∩W s(X24) is one-dimensional, so it

suffices to find a single point in each distinct orbit to describe the intersection completely. The

Schubert cell description of W s/u(Xij) makes it easy to see that there are two distinct heteroclinic

connections from X13 to X24. These orbits–call them γ±–pass through the points

W± = sp{η1 ± η2, η3 ± kη4}. (7.19)

The constant

k = −ω(η2, η3)

ω(η1, η4)
=

√
2

3− 2a
> 0 (7.20)

is needed to ensure that the planes W± are Lagrangian. This restriction is very beneficial; were we

looking for the same connections in the full Grassmannian, then there would be a two-dimensional

set of orbits indexed by k(6= 0). Now, to prove that there is no contribution to the Maslov index
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near the corner, it suffices to show that the trajectory through W± is disjoint from Σ(V s(0)). Since

the “boundary data” for this equation are given in terms of the basis of eigenvectors at u = 1, the

easiest way to describe the solution is to use this basis for the Plücker coordinates as well. The

drawback is that the reference plane V s(0) must be rewritten in terms of this new basis, which can

be done with the help of Maple:

V s(0) = sp {ν1, ν2} ,

ν1 = −2η1 + 2c(2a− 3)η3 + (2a− 1)(a− 1)η4

ν2 = 2(2a− 1)η1 + a(3− 2a)η2 +
(2a− 1)(2a− 3)

−c
η3 + (1− 2a)η4.

(7.21)

The heteroclinic orbit in Λ(2) through W± is the projectivized version of the solution to the

equation induced by (7.18) on
∧2(R4) with initial condition

W̃± = (η1 ± η2) ∧ (η3 ± kη4) = (0, 1,±k,±1, k, 0). (7.22)

The ordered 6-tuple in (7.22) gives the Plücker coordinates of W± in the new basis. Using (2.21),

we can now give the explicit solution through this point, since the ηi are eigenvectors for the matrix

in (7.18):

γ±(z) = (0, e(µ1+µ3)z,±ke(µ1+µ4)z,±e(µ2+µ3)z, ke(µ2+µ4)z, 0). (7.23)

Since these coordinates are projective, we can divide by e−cz = e(µ1+µ4)z = e(µ2+µ3)z to obtain a

more tractable representation of the same planes,

γ̃±(z) = (0, e−
√
2

2
z,±k,±1, ke

√
2

2
z, 0). (7.24)

We claim that it suffices to show that γ̃+ does not cross Σ(V s(0)). Indeed, consider the concatenated

curve γ0 := γ̃+ ∗ −γ̃−, which is a loop in Λ(2). It is known that the Maslov index of a loop

does not depend on the choice of reference plane, since the Maslov index can be interpreted as

an element in the cohomology group H1(Λ(2),Z) [4, 5, 26]. Taking the reference plane to be

V = sp{η3, η4} = (0, 0, 0, 0, 0, 1), it follows from (7.4) that crossings are given by the equation

p12 = 0. For γ0(z), p12 ≡ 0, so γ0(z) is entirely contained in Σ(V ). However, the plane V itself is
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not in the image of γ0, which means that dim(γ0(z) ∩ V ) ≡ 1. It then follows from Proposition

3.1.1(iii) that the Maslov index of γ0 is 0. Since the Maslov index is additive by concatenation, it

follows that the Maslov indices of γ+ and γ− with respect to any reference plane are opposite of

each other. We now show that γ+ has no crossings with Σ(V s(0)), which proves that there is no

contribution to the Maslov index at this corner, regardless of which path is taken.

Let (pij) be the Plücker coordinates of V s(0). From (7.4), we see that z∗ is a conjugate time if

and only if

0 = −e−z∗
√

2/2p24 + kp23 + p14 − kez
∗√2/2p13. (7.25)

To prove that the expression in (7.25) never vanishes, we first calculate using (7.21) and (2.25) that

− p24 = a(1− 2a)(3− 2a)(1− a) > 0

kp23 = p14 = −2a(1− 2a)(3− 2a) < 0

− kp13 = 16a(1− a) > 0.

(7.26)

As a function of z, the right-hand side of (7.25) can therefore be written as

h(z) := Ae−z
√

2/2 −B + Cez
√

2/2, (7.27)

with A,B,C > 0. It is clear that h(z) > 0 for |z| sufficiently large. Furthermore, h has a single

local minimum at z = ln(A/C)/
√

2, at which point h(z) = 2
√
AC −B. To show that there are no

conjugate points for γ+, it therefore suffices to show that 2
√
AC −B > 0. We compute

2
√
AC −B = 8a(1− a)

√
(1− 2a)(3− 2a)− 4a(1− 2a)(3− 2a)

= 4a
(

2(1− a)
√

(1− 2a)(3− 2a)− (1− 2a)(3− 2a)
)

= 4a
√

(1− 2a)(3− 2a)
(√

4(1− a)2 −
√

(1− 2a)(3− 2a)
)

= 4a
√

(1− 2a)(3− 2a)

(
1√

4(1− a)2 +
√

(1− 2a)(3− 2a)

)
> 0,

(7.28)

as desired. This proves that the connecting orbit γ+ from X13 to X24 has no conjugate points, and

by the argument above the same is true of γ−. We thus see that there is no contribution to the

Maslov index in the corner near p.
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7.6 Passage near MR
ε

We now consider the tangent space to W u(0) as it moves by MR
ε . Since MR

0 is one-dimensional,

it will be helpful to think of the curve TϕW
u(0) as being parametrized by v (and sometimes u). As

noted in previous sections, ϕ′(z) ∈ Eu(0, z) is tangent to leading order to Tϕ(z)MR
ε for this part of

the journey. Due to its being crushed against W u(MR
ε ), the other vector spanning TϕW

u(0) will be

in an unstable direction, which must be η4 = η4(v) by the symplectic considerations. As was the

case for the fast jumps, we are free to take ε = 0 due to the robustness of transverse crossings. This

time, the limit ε→ 0 is the singular limit on the slow timescale. At any point P = (u, v, 0, y) on

MR
0 , the shooting manifold therefore has tangent space

TPW
u(0) = sp





1

f ′(u)

0

1
c (γf

′(u)− 1)


,



f ′(u)

0

f ′(u)µ4(u)

µ4(u)




. (7.29)

In this section, we must be more careful about the reference plane. The cubic is symmetric about

its inflection point, meaning that

f ′(1/3(a+ 1) + u) = f ′(1/3(a+ 1)− u). (7.30)

In particular, this implies that f ′(0) = f ′(u∗), and hence the linearization of (5.24) at the two

jump-off points 0 and q has the same set of eigenvectors and eigenvalues. This is problematic, since

ϕ′(z) approaches q in the direction η2(q), which we now see is in the subspace V s(0). Moreover, we

cannot use any perturbation arguments at this point, since there is another non-smooth (in the

limit) reorientation at q to prepare for the jump back to ML
0 . To sidestep this issue, we simply use

the reference plane (7.10), with τ chosen so that ϕ(τ) is on the slow manifold ML
0 , but not at 0 or

the landing point q̂. We will see that this slides the conjugate point down MR
ε to a point safely
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away from either corner. Now, it is clear that a crossing occurs at a point (u, v, w, y) if and only if

det



f ′(uτ ) 1 1 f ′(u)

0 f ′(uτ ) f ′(u) 0

f ′(uτ )µ1(uτ ) 0 0 f ′(u)µ4(u)

µ1(uτ ) 1
c (γf

′(uτ )− 1) 1
c (γf

′(u)− 1) µ4(u)


= 0. (7.31)

For sure, the expression in (7.31) vanishes at least once. Indeed, u ranges from 1 to u∗ = 2/3(a+ 1)

on MR
0 , so since 2/3(a − 1/2) < uτ < 0, it follows from (7.30) that u must attain the unique

value u∗ such that f ′(u∗) = f ′(uτ ). At this point (call it ϕ(z∗)), ϕ
′(z∗) = Tϕ(z∗)M

R
0 is parallel to

η2(uτ ) ∈ Eu(0, τ), which means that z∗ is a conjugate point. At any other point on MR
0 , a tedious

(but routine) calculation of the determinant in (7.31) reveals that it does not vanish, hence there

are no other other conjugate points on this segment.

To calculate the contribution to the Maslov index, we need the dimension and direction of the

single crossing, which occurs at the point P∗ := ϕ(z∗) = (u∗, v∗, w∗, y∗) and time z = z∗. Since

f ′(uτ ) = f ′(u∗) but µ1(uτ ) 6= µ4(u∗), it is clear from (7.31) that the intersection Es(0, τ)∩TP∗W u(0)

is one-dimensional, spanned by η2(uτ ) = η2(u∗), the velocity of ϕ. For the direction of the crossing,

observe that (3.13) evaluated on the velocity ϕ′ at a conjugate time z∗ can be rewritten

ω(ϕ′,
d

dz
ϕ′)|z=z∗ = εω(ϕ′,

d

dζ
ϕ′)|ζ=εz∗ . (7.32)

Since we only care about the sign of this expression, we can ignore the ε in front. Furthermore,

ϕ′ ≈ η2(v) along MR
ε , and v increases as ζ increases for the reduced flow, so it follows that

sign Γ(Eu, Es(0, τ); z∗)(ϕ
′(z∗)) = signω(η2(v), ∂vη2(v))|v=v∗ =

g′′(v∗)

c
> 0. (7.33)

In the above calculation, g = f−1, so g′′(v∗) = −f ′′(u∗)/(f ′(u∗))3 < 0. This shows that the crossing

near the slow manifold contributes +1 to the Maslov index, so it offsets the crossing in the opposite

direction along the fast jump.
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7.7 Second corner

As the slow flow carries ϕ(z) up MR
ε , it approaches the jump-off point q, which is the scene

of another abrupt reorientation of W u(0). At the bottom right corner, we saw that there was no

contribution to the Maslov index, irrespective of which of the two possible paths Tϕ(z)W
u(0) took

to get to its starting position for the slow flow. Unfortunately, we will not be so lucky at the right

jump-off point.

First, let us determine the correct “boundary conditions” for the corner problem. From the

previous section, we know that Tϕ(z)W
u(0) will be O(ε) close to X24 as ϕ(z) approaches q. In

this section, the notation Xij refers to the plane sp{ηi(q), ηj(q)} spanned by eigenvectors of the

linearization (5.20) evaluated at q, for which u = u∗ and f ′(u∗) = −a. The exit position of ϕ along

the back can be determined by using the singular solution; as was the case for the front, the wave

will be launched from q in the weak unstable direction, η3(u∗). We argue that the second direction

present is the most unstable eigenvector η4(u∗). Indeed, the tangent vectors to W u(0) solve (6.27),

which is essentially autonomous in the neighborhood of q. We know that the initial condition will be

O(ε) close to η4, and therefore this direction must dominate near the corner, since it is the direction

of most rapid growth for the autonomous system. It follows that we are searching for a heteroclinic

connection from X24 to X34.

From §7.2, we know that W u(X24) is one-dimensional and X34 is a global attractor, so the only

way to move from one point to the other in Λ(2) is to exchange η2 for η3 in the basis for Tϕ(z)W
u(0).

There are again two orbits that make this connection, γ+ through sp{η2 + η3, η4} and γ− through

sp{η2 − η3, η4}. As before, it is easy to find the solutions for the equation induced on Λ(2) by the

constant coefficient system



p

q

r

s



′

=



0 0 1 0

0 0 0 0

a 1 −c 0

−1 γ 0 −c





p

q

r

s


(7.34)

pinned at the corner q. In Plücker coordinates, these two paths are

γ±(z) = (0, 0, 0, 0, 1,±e(µ3−µ2)z). (7.35)
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This time the concatenated path γ0 = γ+ ∗ −γ− has Maslov index 1. Indeed, one can reparametrize

γ0 to see that it has the same homotopy class as

γ̃0 =


(0, 0, 0, 0, 1− t, t) t ∈ [0, 1]

(0, 0, 0, 0, t− 1, 2− t) t ∈ [1, 2].

(7.36)

(This is a loop since the coordinates are homogeneous.) We are now free to use any reference plane

to compute the Maslov index, so we choose the convenient subspace V = sp{η1, η3}. By (7.4), the

train of V is given by p24 = 0, so one sees that there is a unique conjugate point for γ̃0 at t = 1, with

η3 spanning the intersection. It is not difficult to see that this crossing is regular, so it contributes

±1 to the Maslov index. (The sign is not important.) This is the only crossing, so by homotopy

invariance of the Maslov index, Proposition 3.1.1(ii), it follows that the Maslov index of γ0 is ±1.

Thus the Maslov indicies of γ+ and γ−–which are integers summing to ±1–must be different.

X
13

X
24

Λ(2)

Σγ
+

γ
-

F1

S1

(a) Corner near p

X
24

X
34

Λ(2)

Σ

γ
-

γ
+

S1

F2

(b) Corner near q

Figure 7.1: Schematic of corners where transitions occur between fast and slow dynamics.

We actually make the stronger claim that one of the indices is 0 and the other is ±1. To see

this, recall from (4.32) that we detect crossings by evaluating a fixed one-form on (7.35). Doing so

yields a monotone function in z, which can have only 0 or 1 zeros. It therefore suffices to check the

sign of this one-form at the endpoints (i.e. |z| � 1) of the correct curve. Before doing so, we must

determine which of γ+ and γ− is traversed to connect the two states.

The scalings of η2 and η3 are important for distinguishing the paths γ+(z) and γ−(z), so we fix
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the basis vectors

η2 =



−1/a

1

0

1
c

(
γ + 1

a

)


, η3 =



0

0

0

1


, η4 =



−a

0

−a
√

2
2

√
2

2


. (7.37)

As explained above, one tangent direction to the shooting manifold is η4, which will not move in

the limit, since it is an eigenvector of (7.34). It is therefore evident that the trajectory in Λ(2) is

driven by the change in the velocity ϕ′. To see which of the paths γ± is taken, we must know the

sign of the multiple of η2 (resp. η3) that ϕ′ is upon entrance to (resp. exit from) a neighborhood of

q. The entrance is clear from the slow flow (5.26); to leading order, v is increasing, u is decreasing,

w ≈ 0 and y is decreasing, hence ϕ′ is a positive multiple of η2, comparing with (7.37).

To see the orientation at exit, set ỹ = y − 1
c (γv∗ − u∗). Along the back, y goes from 1

c (γv∗ − u∗)

at q ∈MR
0 to 1

c (γv
∗ − (u∗ − 1)) at q̂ ∈ML

0 , so ỹ goes from 0 to −1/c. Furthermore, we compute

that ỹ satisfies

ỹ′ = −y′ = cy − γv∗ + u = −cỹ − (u∗ − u) = −cỹ − uf , (7.38)

where uf is the equation for u on the front, as in (5.29). This is the same equation and boundary

conditions satisfied by y along the front, so we have

ỹ(z) = Ke−cz − e−cz
z∫

−∞

ecsuf (s) ds, (7.39)

where K is given by (5.37). Notice that K is positive, so

lim
z→−∞

eczy′(z) = − lim
z→−∞

ecz ỹ′(z) = cK < 0, (7.40)

using (7.39). As along the front, u and w still decay faster than y at −∞, so it follows that ϕ′ leaves

q along the back in the direction cKη3. This proves that the connecting orbit in Λ(2) from X24 to

X34 is γ−.

To determine the contribution to the Maslov index, it therefore suffices to compare the signs of

det [Es(0, τ), η2, η4] and det [Es(0, τ),−η3, η4] . Representing Es(0, τ) in the basis (7.10), a calculation
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gives that

det [Es(0, τ), η2, η4] =
δ(δa
√

2 + 2Qa2 − δµ1(uτ ))

−2ac
, (7.41)

where δ = −f ′(uτ ) − a > 0 and Q =
√

2/2 − µ1(uτ ) > 0. The introduction of these variables

simplifies the calculation because f ′(uτ ) approaches −a from above as uτ → 0. It is thus clear that

the determinant in (7.41) is positive. Similarly, we compute that

det [Es(0, τ),−η3, η4] =
(f ′(uτ ))2a(

√
2− 2µ1(uτ ))

2
> 0. (7.42)

Since the detection form is monotone in z on γ−(z), the fact that it has no changes in sign implies

that it has no zeros, and therefore there are no conjugate points near q. To recap, the cumulative

Maslov index as we enter the back is 0: −1 from the front +1 near the right slow manifold.

7.8 Second fast jump

The analysis of the back is nearly identical to that of the front, so we will skip many of the

details. Along the back, W u(0) is O(ε) close to W u(q), the cylinder over the Nagumo back. As a

remark, the full power of the Exchange Lemma is not needed to see this; we are not carrying any

extra center/slow directions in the Maslov index calculation. We are once again free to consider

intersections of Tqb(z)W
u(q) with the train of V s(0), since V s(0) is transverse to the tangent space

to the cylinder near q and q̂. Recycling the notation uf (z) from the front, we have ub = u∗ − uf ,

hence wb = −wf . We can again solve for w as a function of u to obtain

w(u) = −
√

2

2
(u∗ − u)(1− (u∗ − u)), (7.43)

where now u ranges from u∗ to u∗ − 1. This yields the basis

sp





1

0
√

2
2 −

√
2(u∗ − u)

0


,



0

0

0

1




(7.44)

of Tqb(z)W
u(q). Comparing with (7.11), we see that there is a unique conjugate point, which is

the value z∗ such that (u∗ − u) =
1

2
+ a. The intersection V s(0) ∩ Tqb(z)W

u(q) is again spanned by
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ξ = {1, 0,−a
√

2,
√

2}. Since f ′(u∗ − 1/2− a) = f ′(1/2 + a) by (7.30), the crossing form calculation

is identical to (7.13). Explicitly, we have

ω(ξ, A(0, z∗)ξ) = −f ′
(
u∗ −

(
1

2
+ a

))
+ ca
√

2− 2a2

= −f ′
(

1

2
+ a

)
+ ca
√

2− 2a2

= a2 − 1

4
< 0.

(7.45)

Thus the Maslov index of the second fast jump is −1.

7.9 Final corner, passage near ML
ε , and return to equilibrium

The analysis of the corner q̂ is identical to that of p. First, the symmetry of f ensures that the

set of eigenvectors and eigenvalues for the system (5.20) evaluated at p and at q̂ are the same when

ε = 0. Also, the tangent space of W u(0) is O(ε) close to X13 upon entrance into a neighborhood of

both points. Finally, Deng’s Lemma and the already-proved existence of the wave necessitate that

TpoutW
u(0) and Tq̂outW

u(0) are both O(ε) close to X24. Since there are only two possible paths of

(Lagrangian) planes connecting X13 and X24–neither of which has any conjugate points–there is

no need to investigate the corner q̂ further. We therefore turn our attention to the slow return to

equilibrium.

As for MR
ε , we expect one conjugate point for the final slow piece. This one is actually easier to

find; by definition of Maslov(ϕ), there is a conjugate point at z = τ , for which value of z we have

sp{ϕ′(τ)} = Eu(0, τ) ∩ Es(0, τ). (7.46)

The fact that ϕ is transversely constructed implies that the intersection is only one-dimensional.

In terms of the singular orbit, we see that the intersection is spanned by the tangent vector to

Tϕ(τ)M
L
ε . The non-existence of any other conjugate points is identical to §7.5; one simply shows

that the determinant which detects conjugate points does not vanish unless u = uτ .

The signature of the crossing form is also computed as in §7.5. This time, we have

sign Γ(Eu(0, ·), Es(0, τ); τ)(ϕ′(τ)) = −signω (η2(v), ∂vη2(v)) |v=vτ , (7.47)
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since v decreases as ζ = εz increases on ML
0 . Once again defining g(v) = f−1(v)–this time on the

left branch of M0–one computes from (2.34) that

ω (η2(v), ∂vη2(v)) |v=vτ =
g′′(v)

c
< 0, (7.48)

where g′′(v) = −f ′′(uτ )/(f ′(uτ ))3 > 0. Hence the crossing is positive, as it was for the conjugate

point on MR
ε . Since this crossing occurs at the right endpoint of the curve Eu(0, z), the contribution

to the Maslov index is +1, by Definition 3.1.

7.10 Concluding remarks

For those keeping score at home, it follows from Proposition 3.1.1(i) that:

Theorem 7.10.1.

Maslov(ϕ) = −1 + 1− 1 + 1 = 0. (7.49)

In conjunction with Theorem 6.2.1, this proves Theorem 7.0.1, i.e. that the fast traveling pulses

for the FitzHugh-Nagumo system are (nonlinearly) stable. Although the profiles and speeds of the

waves in (5.1) and those for the same equation without diffusion on v are very similar, we point

out that the stability proofs are entirely different and independent of each other. In [44, 81], the

stability result is obtained by showing that the eigenvalues of the linearized operator are close to

those for the reduced systems corresponding to the fast front and back. Conversely, the eigenvalue

problem for L in (6.26) is analyzed entirely as an operator on BU(R,R2). Thus the smallness of ε

in each setting appears in different ways. In Chapter 6, it is used to achieve monotonicity for the

Maslov index in the spectral parameter, as well as to prove that the unstable spectrum of L must

be real. Most notably, the small parameter allowed us to calculate Maslov(ϕ) in this chapter using

geometric singular perturbation theory.
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CHAPTER 8

Summary of results and future directions

In this thesis, we obtained several results related to the existence and stability of traveling

pulses for three variations of reaction-diffusion equations. The broadest equations studied were

skew-gradient systems (1.19) with arbitrarily many components. We also studied a subset of (1.19)

consisting of two-component activator-inhibitor-systems (4.1). Finally, we studied the doubly-

diffusive FitzHugh-Nagumo equation (5.1), which is a singularly-perturbed example of (4.1). The

overarching goal of the thesis was to develop the Maslov index as a powerful tool in the stability

analysis of traveling pulses in skew-gradient systems.

The main results are as follows. For two-component activator inhibitor systems, we proved

an analog of a result of Chardard & Bridges [15] that the parity of the Maslov index determines

the sign of the derivative of the Evans function at λ = 0 (§4.3). Our proof is quite different from

(and more elementary than) that of [15]. For general skew-gradient systems, we proved that the

Maslov index gives a lower bound on the number of unstable eigenvalues for the linearization about

a traveling pulse (§6.1). Additionally, we provide a blueprint for the obstacles that arise in trying to

make the inequality into equality when dealing with non-self-adjoint operators (§6.2).

For the FitzHugh-Nagumo system, we proved the existence of traveling fronts (§5.3) and pulses

(§5.4) using geometric singular perturbation theory. The existence of the fronts was not previously

known. The existence of the pulses was known [17], but our proof provides a more detailed

description of the pulses, as well as the means for proving stability. We also proved that the Maslov

index gives an exact count of all unstable eigenvalues by addressing the issues identified in §6.2.

This involved a careful consideration of multiplicity of eigenvalues, which brought in the Evans

function again and led to a new understanding of the relationship between the Evans function

(particularly its derivatives) and the Maslov index (§6.3). Finally, we proved that the traveling

pulses are stable (§7.10) by developing a novel way of calculating the Maslov index using geometric

singular perturbation to tack invariant manifolds through phase space. To our knowledge, this is

103



the first instance in which a complete calculation of the Maslov index has been used to prove the

stability of a soliton.

8.1 Future directions

Regarding the use of the Maslov index in stability problems, this thesis addressed two different

types of problems. First, it broadened the applicability of the Maslov index by using it to analyze

the stability of nonlinear waves in a larger class of systems. Second, it addressed the critical issue

of calculating the index. Below we describe several possible new directions under both of these

headings.

8.1.1 (In)stability of patterns via the Maslov index

In §1.4, we explained that much of the motivation for studying skew-gradient systems is that

gradient systems do not support Turing bifurcations, whose role we want to understand in pattern

formation. Armed with an understanding of the challenges of skew-gradient systems from this work,

a natural next step is to use the Maslov index to study spatially periodic structures directly. The

idea is that any patterns that exist when D ≈ I should be unstable. My approach to this problem

will begin with the work of Gardner [34], who showed how the Evans function can be used to locate

unstable spectrum for the linearization about a periodic wave train. The idea is to recast the

problem as an eigenvalue problem involving the Floquet spectrum. It is then shown in [47, 48] how

the Maslov index can be used to count unstable eigenvalues for self-adjoint Schrödinger operators

with θ-periodic boundary conditions, which can easily be related to Gardner’s formulation. My

plan is to generalize the result of [47] to skew-gradient systems (for which L is not self-adjoint) and

give a lower bound on the Morse index in the same way that [21] adapts the Maslov Box of [41]

for traveling pulses. Since the objective is to use the Maslov index as an instability index for the

patterns of interest, having an inequality involving the Maslov index is of tremendous value.

8.1.2 Generalized Maslov index

To elucidate the relationship between diffusivities and stability, it is desirable to consider systems

that do exhibit patterns emerging from Turing bifurcations, such as the Gray-Scott and Gierer-

Meinhardt models. These are not skew-gradient systems due to their respective nonlinearities. As

such, there is not a symplectic structure preserved by the eigenvalue equations. In ongoing work

with Graham Cox, Chris Jones, Robert Marangell, and Yuri Latushkin, we are developing an integer
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index that can be applied to analyze these models. We have identified a very large (i.e. open and

dense) subset M ⊂ Grn(R2n) which deformation retracts onto the Lagrangian Grassmannian Λ(n).

Since M and Λ(n) consequently have the same topology, we will be able to associate an integer

index (the “generalized Maslov index”) to any loop in M . The next step is to understand how

this integer is related to the dynamics of the eigenvalue equation obtained by linearizing about a

pattern. This will involve developing an intersection-based theory of the generalized Maslov index

(cf. [4, 70]), as it is intersections of curves in the Grassmannian which encode unstable eigenvalues.

8.1.3 Understanding instability in skew-gradient systems

Generic standing pulses in gradient reaction-diffusion equations were recently shown to be

unstable using the Maslov index [7]. The idea of the proof is to use the reversibility of the standing

wave ODE to assert the existence of a conjugate point. Since the crossing form is monotone in z

for gradient systems, this proves that the Maslov index is greater than zero, hence so is the Morse

index. It would be interesting to pursue similar results for skew-gradient systems. This is a highly

non-trivial problem for traveling waves in general, since the steady state equation does not possess

the same symmetry. However, there is a more insidious issue for skew-gradient systems, which is

that the Maslov index is generally not monotone in z. For example, the calculation in Chapter

7–see Theorem 7.10.1–shows that there are four conjugate points, but there are two each in the

positive and negative directions, which offset to give an index of 0. Thus the instability of the

wave cannot be inferred (a priori) from the mere existence of a conjugate point. I will investigate

how the reversibility symmetry for standing waves in skew-gradient systems can be utilized to say

something about the existence of unstable eigenvalues. I expect that the crossing form will reflect

the symmetry and that it will be key to obtaining instability results.

8.1.4 Calculations in singularly perturbed systems with fold points

Chapter 7 offers a framework for calculating the Maslov index for singularly perturbed PDE.

For the fast waves in (5.1), the slow manifold is normally hyperbolic, so Fenichel theory applies.

However, it is important for many applications (especially to climate modeling) to understand

regimes in which normal hyperbolicity breaks down at so-called fold points. The state-of-the-art tool

for analyzing dynamics near fold points is called the “blow-up” method [28]. The corner analysis

of §7.5 and §7.7 in this work is actually reminiscent of the blow-up technique, in that the focus is

on a single point on M0. It would be worthwhile to see if similar calculations work for waves that
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pass through fold points. One example could be provided by multi-pulses in the FitzHugh-Nagumo

equation, which are known to exist in the 3D system [13, 12]. The existence of these pulses is proved

using the blow-up method, which should be applicable when v is allowed to diffuse as well. Another

possible example is slow pulses (i.e. speed c = O(ε)) for (5.1).
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