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ABSTRACT 
 

Prahlad Jat: Geostatistical Estimation of Water Quality using River and Flow Covariance Models  

 (Under the direction of Marc L. Serre) 

 

 

 Assessing water quality along rivers is vital for watershed management and to protect 

the public health. Monitoring water quality at every river mile is logistically impractical and 

prohibitively expensive. Geostatistical estimation offers a cost effective alternative that can be 

rapidly implemented to statistically model spatially dependent water quality parameters using the 

available monitoring data. Geostatistical modeling requires a covariance model to describe the 

variability and autocorrelation of the water quality along rivers. Three main classes of covariance 

models, namely the Euclidean, river, and flow-weighted covariance models, are commonly used 

in geostatistical water quality estimation. 

In the first study we use a river covariance model to successfully characterize the 

space/time variability of chloride, an emerging contaminant, along rivers in Maryland. This 

method leads to a 24% reduction in mean square estimation error compared to the Euclidean 

method. In the next two studies we use the flow-weighted covariance for the estimation of fecal 

coliform (FC), and Dissolved Organic Carbon (DOC), respectively. Surprisingly, very few 

geostatistical water quality studies have successfully implemented the flow-weighted covariance 

model and improved estimation accuracy. To address this critical gap, we introduce the first 

implementation of a flow weighted covariance model that uses gradual flow, and we then use 

this model in a novel hybrid Euclidean/Gradual-flow covariance model to estimate FC in the 

Haw and Deep rivers in North Carolina, and DOC in three sub-basins in Maryland. Our novel 
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hybrid Euclidean/Gradual-flow covariance model captures variability coming from both 

terrestrial sources and hydrological transport, and it leads to a 12% and 15% reduction in mean 

square error for FC and DOC, respectively, compared to the traditional Euclidean covariance. 

This novel hybrid covariance model is widely applicable to any other study area and to other 

water quality parameters. 
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CHAPTER 1 : INTRODUCTION 

 

1.  Literature review of geostatistical estimation of river water quality  

  Surface water quality is an essential component of the natural environment. 

Characterizing the surface water quality is often a daunting task, but it is an important one in 

verifying whether the observed water quality is suitable for its intended purpose and to meet the 

requirements of Section 305(b) of the Clean Water Act (1972).  Monitoring water quality helps 

to determine trends and patterns in the water affected by the release of contaminants or due to 

other natural and anthropogenic activities. However, high monitoring costs limit 

the implementation of exhaustive water quality monitoring programs and therefore probability-

based water quality surveys are typically needed to do the water quality assessment needed to 

meet the Clean Water Act requirements (Peterson et al., 2006). EPA’s National Water Quality 

Inventory Report 2004 (EPA, 2009) stated that about 44% of streams, 64% of lakes, and 30% of 

estuaries assessed were not clean enough to meet the intended purposes in spite of the progress in 

cleaning up the nation’s water. 

  Geostatistical modeling provides a convenient way to model spatially dependent 

observations. Typically, a geostatistical analysis assumes that nearby measurements are more 

strongly related than measurements observed far apart, as is the concept of the First Law of 

Geography (Tobler, 1970). Implementation of geostatistical models for analyzing spatially 

correlated data is well documented in the literature (Goovaerts, 1997; Heuvelink et al., 2010). In 

the recent past, there have been several studies that were successfully attempted to characterize 

water quality using geostatistical approaches. Many of these studies used traditional linear 
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kriging techniques or other interpolation and regression based methods with an Euclidean 

distance (Rasmussen et al., 2005; Tortorelli and Pickup, 2006; Cressie et al., 2005; Peterson and 

Urquhart, 2006).  

  Water quality is often dynamic and changes rapidly in space and time. Such space-time 

variability of water quality cannot be captured using purely spatial models. In the case of many 

water quality parameters, temporal variability plays a key role in understanding the overall 

impact on a basin-wide system. Hence, recent developments in geostatistics have moved beyond 

the purely spatial approach to include temporal variability as well (Stein 1986, Christakos 1992, 

Bogaert 1996, Kyriakidis and Journel 1999, Fuentes 2004, Kolovos et al. 2004). Space/time 

geostatistical models extend the concept of autocorrelation between nearby sites from the spatial 

dimension into the spatial and temporal dimensions, and they produce more accurate estimates at 

unmonitored space/time locations. 

  The Bayesian Maximum Entropy (BME) framework (Christakos 1990, 2000; Serre et al. 

1998, Serre and Christakos, 1999) is a method of modern spatiotemporal geostatistics.  The BME  

method has been successfully applied to a variety of environmental issues, including air quality 

(Christakos and Serre, 2000; Christakos et al. 2004; Wilson and Serre 2007), and disease 

mapping (Law et al. 2004, 2006).  There have also been several interesting studies that involve 

the BME estimation of water quality (Serre et al. 2004, LoBuglio et al., 2007; Akita et al. 2007, 

Couillette et al., 2008). These studies have demonstrated that more accurate water quality maps 

can be produced using space/time BME than using a purely spatial analysis. For instance, Akita 

et al., (2007) use spatiotemporal methods to assess tetrachloroethene (PCE) in the rivers of New 

Jersey, and reported a 56% improvement in estimation accuracy when compared to a purely 
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spatial approach. This substantial improvement could most likely be due to the irregularity of the 

spatial and temporal sampling of PCE data. 

Traditionally geostatistical water quality studies have used Euclidean distances to 

describe spatial autocorrelation (Rasmussen et al., 2005; Tortorelli and Pickup, 2006; Cressie et 

al., 2005; Peterson and Urquhart, 2006). Many studies have raised questions about the use of an 

Euclidean distance metric in the estimation of water quality along stream networks as it may fail 

to account for stream network topology (Money et al., 2009a). There have been several recent 

studies which proposed to use the river distance, i.e. the shortest distance along the river between 

sites, as an alternative to the Euclidean distance when studying the spatial autocorrelation 

amongst stream monitoring sites. This distance is called the “hydrologic distance” (Peterson et 

al., 2007), “stream distance” (Ver Hoef et al., 2006), “river distance” (Cressie et al., 2006; 

Money, 2009a) in the recent literature. Money et al., (2009b) reported that the use of the river 

distance in modeling the autocorrelation in fecal contamination along the Raritan River in New 

Jersey resulted in lower estimation errors compared to using the Euclidean distance. However, 

simply replacing the Euclidean distance with the hydrologic distance may violate geostatistical 

modelling assumptions and may yield an invalid (i.e., non-positive-definite) model of spatial 

statistical dependence. Ver Hoef et al., (2006) showed that the hydrologic distance with the 

spherical covariance model resulted in negative eigenvalues of the covariance matrix and hence 

the variances can be negative too. First Ver Hoef et al., (2006) and later Money et al., (2009a) 

showed that using the exponential covariance model with the river distance is a valid and 

permissible model.  

 In some mapping studies the river distance alone may not fully incorporate the 

dependency of the covariance function with the stream network topology and flow connectivity. 
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In these situations the river covariance model based solely on river distance may not adequately 

depict the unique spatial autocorrelation of water quality along stream networks (Peterson et al., 

2013). Ver Hoef et al. (2006) showed that models using river distance and flow connectivity may 

be more appropriate than models that only use river distances. In the recent past, there have been 

successful attempts to develop valid spatial covariance models that incorporate both river 

distance and flow connectivity (Ver Hoef et al., 2010). A covariance function that use both river 

distance and flow connectivity was first introduced and derived by Ver Hoef et al. (2006), and 

further investigated by Fouquet and Bernard-Michel (2006), Bernard-Michel and de Fouquet 

(2006), Cressie et al. (2006), Money at al. (2010), and Ver Hoef and Peterson (2010). Their 

obvious advantage is that they incorporate flow connectivity in the model of spatial 

autocorrelation.  

 

2.  Classes of covariance models used to study water quality  

2.1.  Autocorrelation in water quality 

  The underlying spatial and temporal autocorrelation of a space/time random field 

describing a water quality parameter is determined by the characteristics and shape of its 

covariance model. Homogeneous and stationary covariance models describe the dependency 

between water quality measured at two space/time points as a function of the spatial distance and 

time difference between these measurement points. The spatial separation distance between 

observation sites is usually referred to as the spatial “lag”. The spatial component of the 

covariance function provides a tool to quantify how autocorrelation decreases as a function of 

spatial lag. Since the factors driving spatial dependencies in water quality are often difficult or 

impossible to measure directly, the covariance model provides a practical tool to quantify these 
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dependencies along river networks. The covariance value at a zero lag (i.e. for a separation 

distance of zero) is called the covariance ‘sill’, and it is equal to the variance of the space/time 

random field. The covariance generally decreases as the lag increases, and the lag at which the 

covariance drops to 5% of the sill value is called the covariance spatial range.  Hence the 

covariance spatial range indicates how quickly autocorrelation decays with separation distance. 

Practically, observed values are considered to be weakly correlated at separation distances 

exceeding the covariance range. 

  The way we calculate separation distance affects covariance modeling and there are a 

variety of distance measures to consider when dealing with water quality parameters distributed 

along the river network. These various distance metrics give rise to various permissible 

covariance models that can be used to study water quality along river networks. However, three 

main classes of permissible covariance models, namely the Euclidean covariance, river 

covariance, and flow-weighted covariance models, are the most commonly used covariance 

models in water quality studies.  

   Many known and unknown processes operating simultaneously within the river network 

and in its surrounding terrestrial landscape drive the autocorrelation in the water quality 

parameters. The choice of the proper covariance model can be influenced by these processes for 

specific mapping situations. Here we use terrestrial landscape sources and longitudinal 

hydrological transport as two examples of the many processes that can drive the autocorrelation 

in water quality along rivers. Figure1 is a cartoon illustrating how these two processes could give 

rise to autocorrelation described by (a) an Euclidean, (b) a river and (c) a flow covariance model, 

as well as (d) a hybrid Euclidean-flow covariance model. It should be emphasized that since 
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there can be many other processes driving the spatial autocorrelation in water quality, then figure 

1 is just one of many examples that can give rise to each of these covariance models.  

 

 

Figure 1.1:  Schematic representation of how the autocorrelation in terrestrial contamination sources and the 

longitudinal transport distance along rivers can lead to various water quality covariance models: (a) 

contamination source autocorrelated across long Euclidean distances coupled with transport over short 

distances can lead to an Euclidean covariance model, (b) source autocorrelated along long river distances and 

transport over short distances can lead to a river covariance model, (c) point sources autocorrelated over 

short distances and transport along long river distances can lead to a flow covariance model and (d) 

contamination source autocorrelated across long Euclidean distances coupled with transport along long 

distances can lead to nested Euclidean-flow covariance model. For each covariance model the correlation 

between 4 sites (labeled 2 to 5) and site 1 is shown using color darkness. 

   

  In this figure, the strength of the autocorrelation in water quality between a reference 

monitoring site at site 1 and other sites located at sites 2-5 is shown using color darkness. Sites 

shown with the highest color darkness have the highest correlation with site 1, and sites with the 

lowest darkness have the lower correlation with site 1. Details about each covariance model are 

given next.  
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2.2. Euclidean covariance model  

  The Euclidean distance is used as the measure of the separation distance between sites in 

Euclidean covariance models. This traditional metric measuring the straight line distance 

between sites is commonly used in most geostatistical frameworks. This class of covariance 

models adequately describes spatial autocorrelation when water quality parameters are largely 

driven by terrestrial processes over long Euclidean distances, and when transport has little impact 

on the spatial distribution of water quality, as shown in figure 1 (a).  

  Figure 1(a) illustrates that since the Euclidean distance separating site 1 and site 5 is short 

then observations at these two sites are highly autocorrelated, even though they are separated by 

a long distance along the river. Conversely since sites 2, 3 and 4 are at long Euclidean distances 

from site 1, they are therefore weakly correlated with site 1. This could be a case when the 

pollutant sources are distributed over long Euclidean distances across the land and the 

longitudinal transport of the untransformed pollutant is very short. In other words, the Euclidean 

class of covariance models can better express autocorrelation in water quality parameters when 

the pollution source is distributed over long distances across land regardless of the river 

hydrography, and the transport of that water quality parameter is occurring over short distance 

because of lack of travel distance or because the pollutant is not persistent in the water. Hence 

site 5 is highly correlated with site 1 because they share the same pollution source, while sites 2, 

3 and 4 are weakly correlated with site 1 because these sites do not share a pollution source with 

site 1 nor is the contaminant transported from site 1 to these sites in untransformed form.  

  Non-point pollution sources such as atmospheric deposition and large agricultural fields 

are good examples of pollutions sources autocorrelated over the long Euclidean distances. 

Likewise, there are many examples of pollutants experiencing short longitudinal transport 
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distances along rivers. For instance, regardless of the travel distance, pollutants can be 

transformed quickly in the river waters by several natural, physical, and biological processes, 

such as uptake by biotic or aquatic species, degradation, oxidation and reduction, settling etc., 

and as a result these pollutants are transformed before they can be transported over long 

distances. For instance under some environmental conditions the ammonia concentration in river 

waters may have an Euclidean covariance. This can for example happen when the source of 

ammonia are large agricultural fields stretching across parallel river branches, and when the river 

waters provide an environment for quick biological uptake or quick transformation/oxidation 

into other nitrogen forms. 

 

2.3.  River covariance model  

  Euclidean covariance models form a widely used class of permissible covariance models. 

However, many studies raise questions about the use of the Euclidean distance in the estimation 

of water quality along stream networks as it may fail to incorporate stream network topology. 

  The second class of permissible covariance models considered here are river covariance 

models. River covariance models quantify the autocorrelation between two points based on the 

river distance, i.e. the distance along the river reaches connecting the two points. This class of 

covariance models better describes autocorrelation when the river network topology needs to be 

taken into account when quantifying autocorrelation. 

  As shown in figure 1(b), sites 2 and 4 are at short river distances from site 1 and therefore 

they are highly correlated with site 1. Site 5 is at a long river distance from site 1, and therefore it 

is weakly correlated with site 1 even though it is at a short Euclidean distance from it. Site 3 is 

also at a long river distance from site 1 and therefore it is also weakly correlated with site 1. This 
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covariance model only accounts for the river distance between sites, not for flow connectivity. 

For example site 4 is on a parallel branch and therefore not flow connected with site 1. However 

it is highly correlated with site 1 because there is a short river distance when traveling 

downstream from site 1 along the main river reach and then traveling upstream along the side 

branch all the way to site 4. Hence the river covariance model describes autocorrelation 

governed by river distances regardless of flow connectivity. 

  Some processes can lead to a river covariance model. As illustrated in figure 1(b) this can 

happen when the pollution source is autocorrelated along long river distances and there is little 

longitudinal transport of the untransformed pollutant once it reaches the river waters. This can 

happen when the pollution source is distributed along elongated agricultural fields or roads that 

happen to follow the river topography, or if there are source attenuation processes such as green 

buffers that follow the river topography downstream and upstream of connected river reaches. 

For example, chloride from deicing salt applied along roads laid parallel to streams with strong 

buffer capacity can lead to a spatial distribution of chloride stream concertation that can be 

adequately quantified using river covariance models. This example is investigated in objective 1 

of this dissertation. 

  

2.4.  Flow-weighted covariance model  

  The third class of covariance models for water quality parameters are flow-weighted 

covariance models, herein referred to as simply the flow covariance model. Flow-weighted 

covariance models account for both river topology and flow connectivity by incorporating river 

distance and flow in the covariance model. This kind of covariance models are useful to describe 

autocorrelation for persistent pollutants that travel over long downstream distances along rivers, 
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and therefore for which dilution of the pollutant  along a river is an important driver for the 

autocorrelation exhibited by that pollutant. 

  Using the flow covariance model, the covariance value between two points is not only a 

function of the river distance separating these points, but also a factor that is equal to zero if the 

points are not flow connected, or that is equal to the ratio of upstream flow to the downstream 

flow when the points are flow connected. This factor is referred to as the flow ratio. It quantifies 

the proportion of the downstream flow that is coming from the upstream point, which essentially 

accounts for the dilution from side branches.  

  The combined effect of the river distance and flow ratio between points can be seen in 

figure 1(c) depicting correlation between site 1 and sites 2-5 using a flow covariance model. The 

correlation between the site 1 and site 2 is high because they are at a short river distance and 

because the flow ratio is high, since there is little dilution between site 1 and 2, or put in other 

words most of the flow in 2 is coming from 1. However the correlation drops as the downstream 

point moves down past the side branch. For instance the correlation between site 1 and 3 drops 

from high to medium, because of the dilution from the side flow which causes the flow ratio 

between 1 and 3 to drop appreciatively. Finally sites 4 and 5 are on a side branch that is not flow 

connected with site 1; therefore they have a zero correlation with site 1 since none of the flow at 

sites 4 and 5 is coming from site 1. 

  Figure 1(c) depicts an example of source and transport processes that can lead to a flow 

covariance model. In this example the contamination is coming from a point source, meaning 

that the contamination is localized and therefore autocorrelated over a very short distance. On the 

other hand in this example the transport occurs over a very long distance. This generally happens 

when there is sufficient flow to generate long travel distances, and the pollutant is persistent, i.e. 
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it is not removed from the stream water. In that case site 2 is highly correlated with site 1 

because of transport from site 1 to 2. Site 3 has a medium correlation with site 1 because of 

dilution from the side branch, which brings in water with uncorrelated pollution concentration. 

Finally sites 4 and 5 are not correlated with site 1 because they are not flow connected.  

  This class of permissible covariance models is relatively new and has only recently been 

used to describe the autocorrelation in water quality along rivers. Flow covariance models are a 

suitable choice to describe autocorrelation in water quality when autocorrelation is driven by 

longitudinal hydrologic transport of persistent pollutants along rivers. 

 

2.5.  Mixture of Euclidean and flow covariance models  

  The three covariance models described above are suitable in many specific mapping 

situations. Using source and transport as illustrative processes driving the autocorrelation of 

water quality, the Euclidean and river covariance models are suitable when the autocorrelation in 

water quality is driven by autocorrelation in the pollution source but not its transport, and the 

flow covariance model is suitable when autocorrelation is driven by transport but not source. 

However there are other mapping situations that can combine traits from two or more covariance 

models. In this work we will specifically explore the use of a nested Euclidean and flow 

covariance model. Mathematically a nested Euclidean and flow covariance model is simply 

written as the linear combination of an Euclidean covariance model and a flow covariance 

model. The linear weight of each model describes the proportion of variability in water quality 

described by that model. For illustration purposes Figure 1(d) depicts the variability 

corresponding to a nested Euclidean and flow covariance model with an equal weight for the 

Euclidean and flow covariance models. In that case the correlation of sites 2-4 with site 1 is the 
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average of the correlation from the Euclidean model (figure 1a) and flow model (figure 1c). In 

that case sites 2 to 5 are all having a medium correlation with site 1, because they either share the 

same source (site 5) or are within transport distance (sites 2 to 4). 

 The advantage of using a nested Euclidean and flow covariance model is that it widens 

the range of mapping situations that can be adequately modeled. Using source and transport as an 

illustrative example, the Euclidean-flow covariance model adequately describes variability for 

water pollutants for which the contamination occurs across long Euclidean distances, such as 

large agricultural fields or other terrestrial features, and for which transport also occurs over 

somewhat long distances downstream of the contamination source. To our knowledge Euclidean-

flow covariance models have not been used in the past and therefore this work will be the first to 

introduce this model. 

 An example may be the spatial distribution of fecal coliform along some river networks. 

Fecal coliforms are an indicator of fecal contamination. Its source includes grazing and 

agricultural fields that can extend across long Euclidean distances, and its transport may occur 

over intermediate to long distances downstream of the sources when fecal coliforms are present 

in the suspended solid transported at high flow during storm events.  In this case both source and 

transport may occur over intermediate to long distances and therefore the Euclidean-flow 

covariance model may be more suitable then a purely Euclidean or purely flow covariance 

model. This case is explored in objective 2 of this dissertation.  

  Another example may be the spatial distribution of dissolved organic carbon (DOC) 

along rivers. DOC comes from terrestrial sources that may be autocorrelated over long Euclidean 

distances, and DOC may be transported over intermediate distances, and as a result the 
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variability of DOC may adequately be described using an Euclidean-flow covariance model. 

This case is explored in objective 3 of this dissertation. 

 

3.  Some Knowledge gaps in previous water quality studies  

  Several studies have successfully attempted to characterize water quality along rivers 

using geostatistical approaches as these approaches provide a convenient way to model spatially 

dependent water quality observations. Quantifying autocorrelation is a defining feature of 

geostatiscal modeling and the selection of the most appropriate covariance model is of a great 

significance. However, when modeling spatial dependence in river networks, there are many 

mapping situations for which there are significant knowledge gaps in knowing what covariance 

model should be used. 

 Several geostatistical water quality studies have used traditional Euclidean covariance 

models (Rasmussen et al., 2005; Tortorelli and Pickup, 2006; Cressie et al., 2005; Peterson and 

Urquhart, 2006). Euclidean covariance models fail to account for river connectivity and 

topology. More recently, flow covariance models have also been used in water quality 

parameters. Many past studies (Ver Hoef et al., 2006, Cressie et al., 2006, Peterson and 

Urquhart, 2006) explored and compared the Euclidean and flow covariance models to better 

quantify autocorrelation in water quality along river networks. Cressie et al. (2006) and Peterson 

and Urquhart (2006) found that the Euclidean covariance model performed better than the flow 

covariance model. However, these studies did not report results using river covariance models 

(i.e. covariance models based only on river distances but not flow ratio), unlike several other 

studies which successfully used river distances in other river networks (Gardner et al., 2003, 

Ganio et al., 2009, Yang and Jin, 2010, Money et al., 2011, Chen et al., 2012, and Cressie et al., 
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2013). There may be situations where processes distributed along river networks (e.g. runoff 

from roads -a known pollution source, vegetation buffers -a known attenuation process, etc.) are 

important drivers of the water quality autocorrelation along rivers. Therefore, an important 

remaining question is whether the river covariance model better describes autocorrelation in 

water quality along river networks than the Euclidean and the flow covariance models. This 

knowledge gap will be addressed in the first objective of this research by implementing the river 

covariance model and comparing it to the Euclidean and flow covariance models when modeling 

the distribution of Chloride along rivers in Maryland. Another remaining a matter of 

investigation is whether water quality estimation maps obtained using a river covariance model 

lead to an assessment of impairment that is significantly different than that obtained using an 

Euclidean covariance model. This knowledge gap will also be addressed in the first objective of 

this research. 

 Many known and unknown processes such as degradation, biogeochemical processes, 

and hydrological interactions in river networks are very complex. Our understanding of these 

processes over the terrestrial landscape and in stream networks is still limited (McGuire et al., 

2014). Euclidean and river covariance models may be better suited to describe autocorrelation in 

water quality arising from the spatial distribution of the contamination source across the 

terrestrial landscape, whereas flow covariance models may be better suited to describe 

autocorrelation driven by hydrological transport processes. Using a purely Euclidean, purely 

river or purely flow covariance model may fail to fully describe autocorrelation driven 

simultaneously by both terrestrial source and hydrologic transport processes. To the best of our 

knowledge, there are no studies to date that have used a mixture of the Euclidean, river and flow 

covariance models to better describe the autocorrelation in water quality. This is an important 
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knowledge gap to be addressed in order to improve water quality estimation along river networks 

using geostatistical approaches. This knowledge gap will be addressed using a mixture of the 

Euclidean and flow covariance models to study the space/time distribution of fecal coliforms 

along rivers in North Carolina in objective 2, and to study the space/time distribution of DOC 

along rivers in Maryland in objective 3. 

 

4.  Research objectives 

4.1. Research objective 1: Bayesian Maximum Entropy Space/time Estimation of 

Surface Water Chloride in Maryland Using River Distances 

 Headwater streams and rivers are important sources of water for downstream ecosystem 

and human population. These streams comprise the vast majority of the streams and river miles. 

River network based geostatistical modeling approaches can be used to assess the space/time 

variations in headwater streams and rivers. Indeed, each water quality study needs to consider all 

classes of permissible covariance models (Euclidean, river, and flow-weighted), but not always 

the case. There are many known and unknown natural processes driving the autocorrelation in 

water quality parameters. The choice of a covariance model to explain the autocorrelation in 

water quality can be influenced by these processes for specific mapping situations. 

 Widespread contamination of surface water chloride and its effect on the ecosystem 

health are emerging environmental concern. The rate of urban development, changes in road salt 

application practices, and changing climate conditions may drive a variety of spatial and 

temporal patterns in chloride concentrations (Corsi et al., 2015). Accurate estimation of chloride 

is crucial to understand these patterns, to improve our understanding of the extent and nature of 

chloride contamination, and to design effective measures to control the chloride pollution.  
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 Peterson and Urquhart (2006) found that the spatial autocorrelation of dissolved organic 

carbon (DOC) in Maryland is better described using a covariance based on Euclidean distances 

rather than using a flow-weighted river distance covariance. However, their work did not report 

results for a autocorrelation using only river distances unlike several other studies which 

successfully used river distances in other river networks (Gardner et al., 2003, Ganio et al., 2009, 

Yang and Jin, 2010, Money et al., 2011, Chen et al., 2012, and Cressie et al., 2013). Hence, an 

important remaining question is whether the river distance works better than the Euclidean for 

the geostatistical estimation of chloride concentration along rivers in Maryland. We hypothesize 

that processes that are distributed along river networks (e.g. highways -a known source of 

chloride, vegetation buffers -a known attenuation process, etc.), are important drivers of the 

distribution of chloride along rivers and this autocorrelation can be best described using river 

distance. The first objective of this dissertation is therefore to introduce a framework for the 

BME space/time estimation of surface water chloride using river distances in three subbasins 

located in Maryland, and to compare this method with alternate methods using Euclidean 

distances.  

 

4.2.  Research objective 2: Introducing a novel geostatistical approach combining 

Euclidean and flow-weighted covariance models to estimate fecal coliform along the 

Deep and Haw Rivers in North Carolina 

  The complexity of the spatial and temporal patterns in water quality along river networks 

has not been fully investigated. As described earlier, several natural processes may act 

simultaneously and with different intensities, resulting in spatial autocorrelation that is best 

described using a mixture of covariance models. Using a purely Euclidean, purely river or purely 
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flow covariance model may limit the ability to fully describe the variability of many water 

quality parameters. 

 Unlike most conventional water quality parameters, fecal coliform bacteria are living 

organisms. Fecal coliform bacteria can enter rivers through discharge of fecal material in surface 

run-off, combined sewer overflows, and point source discharges. They do not simply mix with 

the water and float downstream, instead they multiply quickly when conditions are favorable for 

growth, or die in large numbers when conditions are unfavorable. Because bacterial 

concentrations are dependent on specific conditions for growth, and these conditions change 

quickly, spatial and temporal patterns of fecal coliform bacteria can be very erratic and hence are 

not easy to model using mechanistic approaches. Geostatistical approaches on the other hand 

provide an ideal framework to statistically model the space/time variability of fecal coliform and 

obtain estimates and associated prediction confidence intervals at any unsampled points along 

the river network. 

 Modeling the space/time variability of fecal coliform requires choosing a covariance 

model that captures well its spatial variability along rivers. The spatial variability of fecal 

coliform is driven by two important factors. One is the source of fecal matter consisting in large 

parts of grazing fields or agricultural fields where manure is spread. These fields may extend 

over large Euclidean distances exceeding local watersheds, and in some instances covering areas 

that extend across watersheds. The covariance model that may best describe this terrestrial 

process is the Euclidean covariance model. The other important factor driving the spatial 

distribution of fecal coliform in the water is hydrological transport along rivers. This occurs 

when fecal coliforms are present in the suspended solid, which can be transported over long 

distances during storm events when flows are high and the water has a high turbidity.  The 
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covariance model that can best describe this process is the flow covariance model. Because both 

processes (terrestrial source and hydrological transport) may act simultaneously, we hypothesize 

that using a mixture of Euclidean and flow covariance models will better characterize the true 

underlying autocorrelation in fecal coliform concentrations than using a purely Euclidean or 

purely flow covariance model. To the best of our knowledge, no previous study has used a 

mixture of Euclidean and flow covariance model to describe the space/time variability of a water 

quality parameter. Therefore, the objective 2 of this dissertation is the introduction of a novel 

geostatistical approach combining the Euclidean and flow-weighted covariance models to 

estimate fecal coliform along the Haw and Deep Rivers in North Carolina.  

 

4.3. Research objective 3: Bayesian Maximum Entropy Space/time Estimation of 

Surface Water Chloride in Maryland Using River Distances 

 Dissolved organic carbon (DOC) is an organic matter that can pass through a filter (0.7 

and 0.22 um). DOC is an important constituent of water quality due to the fact that it plays a 

central role in the dynamics of stream and river ecosystems, affecting processes such as 

metabolism, acidity and nutrient uptake. It forms complexes with trace metals and alters 

bioavailability and longitudinal transport of compounds that are toxic to aquatic organisms. 

 Headwater streams are important sources of water for downstream ecosystems. The 

spatial variability of the concentration of DOC in headwater streams is strongly influenced by the 

production of organic matter across the terrestrial environment. The Euclidean covariance model 

is a suitable choice to describe variability of DOC in the water that results from its production 

across the terrestrial landscape.  For example Peterson and Urquhart (2006) found that the spatial 

autocorrelation in DOC concentrations in Maryland is better described using a covariance based 
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on Euclidean distances rather than using a flow-weighted covariance. On the other hand, DOC 

can be transported over long distance (kilometers) along rivers via stream flow (Worrall, Burt & 

Adamson, 2006; Kaplan et al., 2008) and hence the flow-weighted covariance seems to be an 

equally appropriate model to describe the autocorrelation of DOC. Hence the finding by Peterson 

and Urquhart (2006) that the spatial autocorrelation in DOC is better described using a purely 

Euclidean covariance than using a purely flow-weighted covariance may not tell the full story. It 

is possible that terrestrial sources and hydrological transport act simultaneously on the variability 

of DOC. In that case the finding by Peterson and Urquhart (2006) could be explained if the 

terrestrial sources of DOC is the dominant driver of the autocorrelation of DOC along rivers, or 

if there are few flow connected monitoring sites, because in that case using a purely flow 

covariance limits the ability to estimate DOC along river reaches that are not flow connected to 

any monitoring site. Therefore, the objective 3 of this dissertation is to perform a space/time 

estimation of DOC along rivers in Maryland using a combination of the Euclidean and flow-

weighted covariance models.  
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CHAPTER 2 (PAPER 1): BAYESIAN MAXIMUM ENTROPY SPACE/TIME 

ESTIMATION OF SURFACE WATER CHLORIDE IN MARYLAND USING 

RIVER DISTANCES1 

 

1.  Introduction 

Chloride contamination of rivers and its effect on the ecosystem health is a great 

environmental concern. During the winter snow, roads and sidewalks are treated with deicing 

salts. As the snow melts, more than 50 percent of the chloride in the deicing salt is transported to 

surface waters, leading to widespread effects on water chemistry (Church and Granato, 1996). 

Road salt application practices and a variety of other processes lead to complex spatial and 

temporal patterns in chloride concentrations (Corsi et al., 2015).  

Geostatistical methods provide potential for water quality assessment. Several studies 

have characterized surface water quality using spatial linear kriging methods (Peterson and 

Urquhart, 2006 and Money et al., 2010). However, spatial kriging studies do not account for 

space/time autocorrelation and non-Gaussian ‘soft’ data (interval and censored data etc.). To 

address this issue, the Bayesian Maximum Entropy (BME)(George Christakos, 1990 and 

Christakos and Li, 1998) method is used here to estimate chloride concentration across 

space/time along a river network in Maryland.  

________________________________________ 

1 This chapter previously appeared as an arcticle in the Journal Environmnetal Pollution. The original citation is 

as follows :  ‘‘Jat, P., M.L. Serre. 2016. Bayesian Maximum Entropy space/time estimation of surface water 

chloride in Maryland using river distances. Environ. Pollut. doi:http://dx.doi.org/10.1016/j.envpol.2016.09.020 
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BME is a nonlinear estimation method that rigorously accounts for space/time variability 

and non-Gaussian soft data, and leads to kriging as its linear limiting case (Christakos, 1990, 

Christakos and Li, 1998 and Christakos and Serre, 2000).  

 Peterson and Urquhart (2006) found that in Maryland the spatial autocorrelation of 

dissolved organic carbon (DOC) is better described using a covariance based on Euclidean 

distances rather than using a Weighted Asymmetric Hydrologic Distance (WAHD) covariance 

model, which is calculated based on the river distance (distance measured along the river 

network) and the proportion of flow shared between points (Peterson and Urquhart (2006), 

Money et al., 2009). Therefore, when considering other water quality parameters in Maryland, 

we expect that the Euclidean distance will better describe the spatial autocorrelation. However, 

their work did not report results for a autocorrelation using covariance based only on river 

distances (and not proportion of flow shared between points), unlike several other studies which 

successfully used river distances in other river networks (Gardner et al., 2003, Ganio et al., 2009, 

Yang and Jin, 2010, Money et al., 2011, Chen et al., 2012, and Cressie et al., 2013). Hence, an 

important remaining question is whether the river distance works better than the Euclidean for 

the geostatistical estimation of chloride along rivers in Maryland.  

The objectives of this study are therefore to introduce a framework for the BME 

space/time estimation of surface water chloride using river distances in three subbasins located in 

Maryland, to compare this method with alternate methods using Euclidean distances, to do a 

sensitivity analysis of methods used to deal with censored data, and to perform a space/time 

statistical estimation of chloride concentration along all river miles in our study area using the 

BME method based on river distances.  
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2.  Materials and Methods 

2.1.  Chloride and Hydrography Data  

A total of 390 space/time chloride concentration values were obtained from the Maryland 

Biological Stream Survey (MBSS) dataset from 2005 to 2014 in stream waters located in the 

Gunpowder-Patapsco, Severn, and Patuxent subbasins (figure 1). The concentration values 

ranged from 1.5 mg/l to 3251.2 mg/l, with mean 93.69 mg/l and standard deviation 230.44 mg/l. 

Details on field sampling design, sampling methodology, and lab analysis procedures can be 

found elsewhere (Taylor-rogers, 1997).   

The river network in our study area is described based on flow lines (figure 1) obtained 

from the USGS National Hydrography Data (“USGS Hydrography data,” 2015). The impervious 

surfaces are described based on the National Land Cover Database published by the Multi-

Resolution Land Characteristics Consortium for the conterminous United States. Details about 

the NHD flowlines and impervious surface data are provided in the Supplementary Information 

(SI). 
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Figure 2.1: The Maryland Biological Stream Survey (MBSS) sites in the Gunpowder-Patapsco, Patuxent, and 

Severn subbasins in Maryland. Baltimore, Ellicott, and Columbia are tree major cities in these subbasins.  

 

2.2.  Left-Censored Data  

Left-censored chloride data correspond to data for which the true log-concentration is 

known only to be below a censoring limit (CL) of interest. Censoring data is a common practice 

when measured values are below the detection limit (DL) of an instrument. The BME approach 

has recently been shown to rigorously process left-censored data (Messier et al., 2012). Briefly, 

the maximum-likelihood estimation (MLE) method is used to estimate the mean (𝜇) and 

standard deviation (𝜎) of stream chloride concentrations by finding the 𝜇 and 𝜎 values that 

maximizes the MLE likelihood function (Helsel, 2005 and Messier et al., 2012)  

ℒ(𝑧|𝜇, 𝜎) = {∏ 𝑓𝜇,𝜎(𝑧𝑖)𝑧𝑖|𝑧𝑖≥𝐶𝐿𝑖
} ∗ {∏ 𝐹𝜇,𝜎(𝐶𝐿𝑖)𝑧𝑖|𝑧𝑖≤𝐶𝐿𝑖

} (1) 
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where 𝑓𝜇,𝜎(𝑧𝑖) denotes the normal probability distribution function (PDF) of observed chloride 

log-concentrations, 𝑧𝑖, with population mean (𝜇) and standard deviation (𝜎), and 𝐹𝜇,𝜎(𝐶𝐿𝑖) 

denotes the CDF of the distribution taken at the log of the censoring limit (𝐶𝐿𝑖). The uncertainty 

associated with a left-censored data with CLi is then fully characterized by the Truncated 

Gaussian PDF (TGPDF) obtained by truncating a Gaussian PDF above CLi. The 

TGPDF(𝜇, 𝜎, 𝐶𝐿𝑖) has a mean<𝜇 because of the truncation.  

 

2.3.  Space/time BME Geostatistical Framework for Mapping Analysis  

BME, a space/time geostatistical estimation framework grounded in epistemic principles, 

reduces to the kriging methods as its linear limiting case. BME theory and its numerical 

implementation details are given elsewhere (Christakos, 1990, Serre and Christakos, 1999, 

Christakos and Serre, 2000, and Patrick Bogaert, 2001). Details about the application of BME to 

river networks are given elsewhere (Money et al., 2009).  

Our notation to describe a space/time random field (S/TRF) will consist of denoting a 

single random variable Z in capital letters, its realization, z, in lower case; and vectors in bold 

faces (e.g., z = [z1,..., zn]
T). Let zd be the vector of log-concentrations observed at locations pd, let 

𝑜𝑧(𝒑) be an known offset function (Messier et al., 2015), where 𝒑 = (𝒔, 𝑡), 𝒔 is the space 

coordinate and 𝑡 is time, and let xd = zd -𝑜𝑧(𝒑𝑑) be the vector of offset removed log-

concentrations. The suffix d in pd is used to specify a location where data is available (i.e. a data 

point), whereas p without suffix d specify any location in the study domain. We define X(p) as a 

homogenous/stationary S/TRF with realization xd, and we let 
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𝑍(𝒑) = 𝑋(𝒑) + 𝑜𝑧(𝒑).  (2) 

 

be the S/TRF representing the distribution of stream chloride log-concentrations. 

The total knowledge base K characterizing the S/TRF X(p) can be divided in the general 

knowledge base (G-KB) and the site-specific knowledge base (S-KB). The G-KB describes 

general characteristics of the S/TRF including its mean 𝑚𝑥(𝒑) = 𝐸[𝑋(𝒑)] and covariance 

function 

 

𝑐𝑥(𝒑, 𝒑′) = 𝐸[(𝑋(𝒑) − 𝑚𝑥(𝒑))  (𝑋(𝒑′) − 𝑚𝑥(𝒑′))], (3) 

 

where E[.] is the stochastic expectation operator. The S-KB refers to the sampling data xd, 

including both the hard (above detect) data 𝒙ℎ collected at 𝒑ℎ, and the soft (left-censored) data 

𝒙𝑠 collected at 𝒑𝑠 with an uncertainty expressed in terms of the PDF 𝑓𝑠(𝒙𝒔) (e.g. 

TGPDF(𝜇, 𝜎, 𝐶𝐿𝑖)).  

We briefly describe here the main stages of the BME analysis used to estimate chloride 

log-concentration at unsampled locations 𝒑𝑘 along the river network. At the prior stage, the 𝐺 −

𝐾𝐵 = {𝐸[𝑋(𝒑)], 𝐶𝑋(𝒑, 𝒑′)} is examined to obtain the prior PDF 𝑓𝐺(. ) describing the S/TRF X(p) 

at mapping points of interest. At the integration stage, the prior PDF is updated using Bayesian 

epistemic conditionalization on 𝑆 − 𝐾𝐵 = {𝒙ℎ, 𝑓𝑠(𝒙𝑠), }, leading to the BME posterior PDF 

 

𝑓𝐾(𝑥𝑘) = 𝐴−1 ∫ 𝑑𝒙𝒔𝑓𝐺(𝒙𝒉, 𝒙𝒔, 𝑥𝑘)𝑓𝑆(𝒙𝒔)  (4) 
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where 𝑥𝑘 is a value of Xk=X(pk), 𝑓𝐺(𝒙ℎ, 𝒙𝑠, 𝑥𝑘) is the multivariate Gaussian PDF for (𝒙ℎ, 𝒙𝑠, 𝑥𝑘) 

with mean and variance-covariance given by the G-KB, and 𝐴 =

 ∫ 𝑑𝑥𝑘  ∫ 𝑑𝒙𝒔𝑓𝐺(𝒙𝒉, 𝒙𝒔, 𝑥𝑘)𝑓𝑆(𝒙𝒔)  is a normalization coefficient. At the interpretive stage, the 

relation 𝑍𝑘 = 𝑋𝑘 + 𝑜𝑧(𝒑𝑘) is used together with 𝑓𝐾(𝑥𝑘) to obtain the BME mean and variance 

log-concentration at the estimation points, which are then used to produce maps describing the 

estimated chloride log-concentration and associated estimation uncertainty at space/time 

locations of interest. 

Several approaches exist to calculate an offset function 𝑜𝑍(𝒑). In this work we use the 

approach described in Akita et al. (2007) and Money et al. (2009), where 𝑜𝑍(𝒑) = 𝑜𝑍(𝒔, 𝑡) is the 

sum of a spatial component 𝑜𝑍,𝑠(𝒔) and a temporal component 𝑜𝑍,𝑡(𝑡) that are calculated using 

an exponential kernel smoothing of the time-averaged and spatially averaged data, respectively.  

Specifically, the spatial component at a given location s is given by 

 

𝑜𝑍,𝑠(𝒔) = ∑ 𝑤(𝒔, 𝒔𝑖) 𝑧(𝒔𝑖)̅̅ ̅̅ ̅̅ ̅
𝑖   (5) 

 

where 𝑧(𝒔𝑖)̅̅ ̅̅ ̅̅ ̅ is the time-averaged log-concentration at location 𝒔𝑖, 𝑤(𝒔, 𝒔𝑖) is an exponential 

kernel weight given by  

 

𝑤(𝒔, 𝒔𝑖)=𝐵−1 exp(−3𝑑(𝒔, 𝒔𝑖)/𝑘𝑟),  (6) 
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𝑑(𝒔, 𝒔𝑖) is the distance between s and 𝒔𝑖, kr is the spatial exponential smoothing range, and 𝐵 =

∑ exp(−3𝑑(𝒔, 𝒔𝑖)/𝑘𝑟)𝑖  is a normalization coefficient calculated so that the sum of weights 

equals 1. In the previous water quality studies (Akita et al., 2007 and Money et al., 2009) the 

distance 𝑑(𝒔, 𝒔𝑖) in Eq. (6) is based on an Euclidean metric. In this work we extend past works 

by calculating that distance based on either an Euclidean or a river distance metric, i.e.  

 

𝑑(𝒔, 𝒔′) = (
𝑑𝐸(𝒔, 𝒔′)          Euclidean distance

𝑑𝑅(𝒔, 𝒔′)                 River distance
 

 (7) 

 

To the best of our knowledge, this is the first study implementing an offset calculated 

using a kernel smoothing based on a river metric, hence the river offset presented here is novel. 

Note that the calculation of the temporal component 𝒐𝒁,𝒕(𝒕) is done as described in Akita et al. 

(2007), i.e. by replacing the spatial distance in Eq (6) with the corresponding time difference. As 

shown in the SI, the offset function described here captures well the broad spatial and temporal 

trends in chloride log-concentrations, indicating that this offset function is suitable in this study 

area. 

Alternatively, the offset function can be calculated using a Land Use Regression (LUR) 

as described in Messier et al., (2012), and Reyes and Serre (2014), where the LUR uses land 

imperviousness as a predictor, since it has been found to be a predictor of stream water quality 

degradation (Brabec et al., 2002 and King et al., 2011) 
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The 𝑐𝑥(𝒑, 𝒑′) function describing the covariance of the homogeneous/stationary S/TRF X(p) 

can be expressed as an exponential function of the spatial distance and time difference between 

space/time points p=(s,t) and p’=(s’,t’), i.e.  

𝒄𝒙((𝒔, 𝒕), (𝒔′, 𝒕′)) = 𝒄𝟎 𝐞𝐱𝐩(−𝟑 𝒅(𝒔, 𝒔′)/𝒂𝒓)𝐞𝐱𝐩(−𝟑 |𝒕 − 𝒕′|/𝒂𝒕) (8) 

where 𝒄𝟎 , ar and at are the variance, spatial covariance range, and temporal covariance range, 

respectively, of the S/TRF X(p), and d(s,s’) can again be either the Euclidean or river distance 

(equation 7). In this work we choose an exponential covariance model because it has been shown 

to be permissible for any river networks (Ver Hoef et al., 2006; Peterson and Urquhart, 2006 and 

Money et al., 2009) and to our knowledge no other covariance model has been shown to fulfill 

that same property. 

To quantify the impact of using either the Euclidean or river distance (eq. 7) in the offset 

(eq. 6) and covariance (eq. 8), we implement all combinations of offset and covariance models 

(i.e. Euclidean offset/Euclidean covariance, Euclidean offset/River covariance, River 

offset/Euclidean covariance, and River offset/River covariance models) and we compare their 

mapping accuracy. 

Another alternative for the covariance model is using a WAHD covariance model 

(Peterson and Urquhart, 2006, and Money et al., 2009), however, we excluded it from detailed 

analysis because we found it has a lower mapping accuracy than the Euclidean covariance 

model, which is consistent with what Peterson and Urquhart (2006) found for DOC using the 

MBSS data. 
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2.4.  Comparison of BME using River versus Euclidean Distance 

The DL for our MBSS chloride data is very low (0.01 mg/l), and all 390 measured values 

are above DL. In that case the BME method treats all the data as hard, and no soft data are used. 

In this baseline case the effect of using a river versus Euclidean distance in the BME estimation 

method was assessed by performing a leave-one-out cross-validation (LOOCV) whereby each 

chloride log-concentration value 𝑧𝑗 was removed one at a time, and re-estimated using only the 

remaining data. For a given estimation method (m) that uses either the river or Euclidean 

distance, the overall estimation error was quantified using the Mean Squared Error,  𝑀𝑆𝐸(𝑚) =

1

𝑛
∑ (𝑧𝑗

∗(𝑚)
− 𝑧𝑗)

2
𝑛
𝑗=1 , the consistent estimation error (i.e. the bias) was quantified using the Mean 

Error  𝑀𝐸(𝑚) =
1

𝑛
∑ (𝑧𝑗

∗(𝑚)
− 𝑧𝑗)𝑛

𝑗=1 , and the random error (i.e. lack of precision) was quantified 

using the squared Pearson coefficient, 𝑅2 = 1 − ∑ (𝑧𝑗
∗(𝑚)

− 𝑧𝑗)
2

 𝑛
𝑗=1 /∑ (𝑧𝑗

∗(𝑚)
)

2

 𝑛
𝑗=1 , where 𝑧𝑗

∗(𝑚)
 

is the re-estimation of 𝑧𝑗. This cross validation analysis was used to quantify the gain in mapping 

accuracy when the Euclidean distance is replaced with the river distance in the covariance 

model, and then in the offset model. This results in four baseline approaches (Euclidean 

offset/Euclidean covariance, Euclidean offset/river covariance, river offset/Euclidean covariance, 

and river offset/ river covariance) which are all mathematically permissible regardless of their 

physical meaningfulness. 
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2.5.  Sensitivity Analysis with respect to the Proportion of Left Censored Data 

Methods are needed to deal with situations where there is a large proportion of left 

censored data. This can happen for cost effectiveness purposes when low-cost data is used 

(LoBuglio et al., 2007), or when measuring toxic compounds that are difficult to detect.  

The usual approaches used to deal with left censored data have been to delete them, or to 

fabricate numbers for them (equal to half of the CL, or equal to the CL), which are flawed 

approaches that can introduce a strong bias in mean and standard deviation (Singh and Nocerino, 

2002). 

On the other hand, the BME approach has recently been shown to rigorously process left-

censored data (Messier et al., 2012). However few studies have investigated the loss of accuracy 

associated with left-censored data (Helsel, 2005, and Messier et al., 2012), and this study 

provides a unique opportunity to do that. As stated earlier, all 390 measured values are above the 

DL, which provided us an opportunity to investigate the sensitivity of the loss in mapping 

accuracy with respect to the proportion of censored data. This sensitivity analysis consisted in 

left censoring a proportion of the data, and comparing the cross validation statistics of the 

following three methods:  (a) BME rigorously modeling the censored data using the TGPDF, (b) 

kriging replacing the censored data with half the CL, and (c) kriging replacing the censored data 

with the CL. Comparison of the loss in the mapping accuracy of these three methods revealed 

whether BME (methods a) better handles left-censored data than its kriging limiting cases 

(methods b and c). 

 



31 

 

2.6.  Assessment of Impaired River Miles 

The space/time distribution of chloride is governed by complex natural and physical 

processes. Imperfect knowledge about these complex processes result in a significant uncertainty 

in chloride estimation. Not accounting for estimation uncertainty in impairment assessment may 

lead to a wrong conclusion and hence accounting for uncertainty is considered to be an essential 

aspect of any decision making framework. Our river BME method is a geostatistical approach 

and as such its advantage is that it provides not only concentration estimates but also the 

probability that chloride exceeds a specific regulatory level. Using river BME, we calculated the 

probability that chloride exceeds the EPA guideline level of 230 mg/l along each of the 6018 

river miles in the study area from 2005 to 2014, and we classified a given river reach as impaired 

if the average probability of exceedance of the EPA guideline level along that river reach is 

greater than 90 %, as non-assessed if that probability is between 10% and 90%, and clean if that 

probability is less than 10%. The average probability of exceedance along a river reach is 

calculated as the arithmetic average of the probability of exceedance calculated at equidistant 

points along that river reach. 

 

3.  Results and Discussion 

3.1.  Covariance Models of Offset-Removed Chloride log-Concentrations 

Details about LUR analysis (R=0.6), the three offset models (Euclidean, river and LUR), 

and the weighted least square covariance fitting procedure used to obtain the covariance 

parameters for each offset model are available in the SI. The sill (i.e. variance) and the spatial 

covariance range for the Euclidean offset removed chloride log-concentrations are co = 0.41 (log-

mg/l) 2 and ar = 19 km (across land) for the Euclidean covariance model, and co = 0.41 (log-mg/l) 
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2 and ar = 28 km (along rivers) for the river covariance model. For the river offset removed 

chloride log-concentrations, co = 0.25 (log-mg/l) 2 and ar = 28 km (across land) for the Euclidean 

covariance model, and co = 0.25 (log-mg/l) 2 and ar =36 km (along rivers) for the river covariance 

model. For the LUR offset removed chloride log-concentrations, co = 0.61 (log-mg/l) 2 and ar = 

58 km (across land) for the Euclidean covariance model, and co = 0.61 (log-mg/l) 2 and ar =96 km 

(along rivers) for the river covariance model. The temporal range is at = 12 years for all 

covariance models.  

 

3.2.  Cross-Validation Results Contrasting the Euclidean versus River Covariance 

models 

The cross validation results (Table 1) obtained in the baseline case (where none of the 

390 values are censored) show that using an Euclidean offset (first row of Table 1), space/time 

BME using a river covariance better predicts chloride (R2=0.711) than when using an Euclidean 

covariance (R2=0.638), corresponding to an 11.44% percent change (PC) in R2. This work is the 

first to demonstrate that the river covariance model is better than the Euclidean covariance model 

for chloride estimation in these subbasins. This means that the autocorrelation of chloride is best 

described using distances measured along the river network, which indicates that processes that 

are distributed along river networks (e.g. highways -a known source of chloride, vegetation 

buffers -a known attenuation process, etc.), are important drivers of the distribution of chloride 

along rivers.  
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Table 2.1: Leave-one-out cross-validation statistics obtained using the BME method with different offset and 

covariance models for the estimation of chloride log-concentration (*)  

 Euclidean Covariance  River Covariance  

 𝐌𝐒𝐄  

(log-mg/l) 2 

𝐌𝐄 

(log-mg/l)  

𝐑2 

 

𝐌𝐒𝐄 

(log-mg/l) 2 
 

𝐌𝐄  

(log-mg/l) 

𝐑2 

 

Euclidean Offset 0.343 0.002 0.638 0.264 0.002 0.711 

River Offset 0.224 0.003 0.760 0.194 0.018 0.789 
(*) The Euclidean covariance and river covariance models use the Euclidean and river distance metrics, respectively. 

The Euclidean offset and the river offset use the Euclidean and river distance metrics, respectively; MSE is the mean 

squared error; ME is the mean error; R2 is the squared coefficient of determination between observed and estimated 

values. 

 

3.3.  Cross-Validation Results Contrasting Euclidean versus River Offsets 

Since we conclude in the baseline case that the covariance should be based on the river 

distance rather than the Euclidean distance, then the next question is whether the offset should 

also be calculated based on the river distance rather than the Euclidean distance. To answer that 

question we implemented space/time BME using our novel river offset (second row of Table 1). 

The only difference between the first and second row of table 1 is the introduction of the river 

offset, and by comparing these two rows we find that the river offset consistently outperforms 

the Euclidean offset. For example when using a river covariance (second column of Table 1), 

space/time BME using the river offset better predicts chloride (R2 =0.789) than when using the 

Euclidean offset (R2=0.711), corresponding to a 10.97% PC in R2. Our work is the first to 

introduce the river offset and to demonstrate that it leads to an appreciable improvement over the 

Euclidean offset used in previous works.(Akita et al., 2007, and Money et al., 2011) The 

implication of this finding is that the river network topology should be taken into account for 

both the offset and covariance models. Doing so results in an overall PC in R2 of 23.67 %, which 

considerably improves our ability to accurately predict chloride across space and time. 
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3.4.  Sensitivity Analysis Results with respect to Censoring Limit   

To assess sensitivity analysis of the estimation accuracy of the river BME and kriging 

methods with respect the proportion of censored data, we performed a cross validation analysis 

for 6 different proportions of censored data ranging from 0% (baseline case) to 46.2% of the 

overall data (figure 2). Each censored dataset was generated by selecting a CL, censoring all 

values below the CL and only providing the CL value. River BME rigorously models the 

uncertainty contained in censored data using the TGPDF, while the kriging methods simply treat 

them as data without any uncertainty since these data are replaced with half the CL, or with the 

CL. As expected, the estimation accuracy degrades with increasing proportion of censored data. 

However figure 2 clearly demonstrates that the rate of deterioration in estimation accuracy is 

lower for river BME (method a) than for its kriging linear limiting cases (method b and c). This 

trend can also be seen from the cross validation R2 which indicates that BME improves the R2 by 

a factor of about 2 to 7.5 over kriging (with censored data replaced by half the CL) when the 

proportion of censored data ranges from 13.6% to 46.2% (see SI for more details). Overall these 

results indicate that when a dataset includes censored data, then the BME method used in this 

work is consistently more efficient than the kriging method at extracting the information 

contained in these censored data.  
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Figure 2.2: Cross validation MSE for river BME and its kriging linear limiting cases shown with respect to 

the proportion of censored data. BME (method a) rigorously models the uncertainty in the censored data 

using the TGPDF, while kriging treats them as data with no uncertainty by simply replacing them with half 

of the CL (method b) or by the CL (method c). 

 

3.5.  Cross Validation Results Contrasting the River and LUR Offsets  

The LUR offset is obtained based on the average imperviousness in HUC12 

subwatersheds, which is a weak predictor of chloride in our study area (R=0.6, see SI for more 

details). LUR is an integral part of many water quality models and is an attractive method 

because it takes advantage of seemingly free data (e.g. imperviousness calculated for other 

purposes), but in practice its implementation require dedicated modelers to preprocess these data, 

which can be time consuming for local regulatory agencies. The cross-validation statistics MSE 

increases from 0.194 (log-mg/l) 2 for the river offset BME method to 0.313 (log-mg/l) 2 for the 

LUR offset BME method, and the corresponding R2 drops from 0.789 to 0.660. These cross-

validation statistics indicates that using a LUR offset fails to produce better results than using the 
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river offset presented in this work, however LUR models with river buffers and temporally 

varying imperviousness maps may improve the LUR based approach. 

 

3.6.  Difference in the Maps Produced Using Euclidean versus River BME 

To the best of our knowledge, previous studies have not compared, and quantified, the 

difference in estimated levels obtained using an Euclidean versus river BME methods in that 

situation. To address this question, we provide here a comparison of the Euclidean versus river 

BME maps in area B and area C (figure 1 depicts where areas B and C are located). The purpose 

of this comparison is purely to emphasize the difference in chloride estimates using Euclidean 

versus river BME along unsampled river reaches. These maps are not meant to compare the 

estimation accuracy of the Euclidean and river BME methods at unsampled locations.  

The Euclidean BME and river BME maps for area B are shown in figures 3(a) and 3(b), 

respectively. In that area we are interested in the assessment of Bynum Run, which lacks 

monitoring data, and runs parallel to Winters Run where monitoring data are available. Figures 

3(a) and 3(b) show that in this area major highways (a known source of chloride) are aligned 

along the river network. The river distance between the monitoring stations on Winter Run and 

estimation points on Bynum Run are long, resulting in a low autocorrelation in chloride 

measurements. The situation for the Euclidean BME model is the converse, the estimated values 

along Bynum Run are strongly affected by what’s measured in Winters Run. Figures 3(a) and 

3(b) show this difference in estimated chloride, and reveal that the chloride levels along Bynum 

Run are substantially higher in the Euclidean BME map (figure 3(a)) than in the river BME map 

(figure 3(b)). To quantify this difference, we calculate the number of river miles with estimates 

exceeding two thresholds of interest: 230 mg/l (an ambient water quality criteria for chloride 
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defined by the U.S. EPA (U.S. Environmental Protection Agency. Ambient water quality criteria 

for chloride., 1988)), and 145 mg/l (a concentration level at which declines in survival of 

salamanders have been documented (Stranko et al., 2013)). We find that according to Euclidean 

BME, 14% of Bynum Run river miles North of US 40 exceed 230 mg/l, and 62% of these river 

miles exceed 145 mg/l, whereas none of these river miles exceed either threshold limits 

according to river BME.  

Similarly, the river BME estimates along the Grays and Cranberry Runs (figure 3(d)) are 

low as opposed to the high chloride estimates obtained with Euclidean BME (figure 3(c)). 

According to Euclidean BME, 9% of river miles along the Grays and Cranberry Runs exceed 

230 mg/l, and 52% of these river miles exceed 145 mg/l, while none of these river miles exceed 

either threshold limits according to river BME. 
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 (a) (b) 

   
 (c) (d) 

   
                         (e)                                                                                    (f) 

                               

Figure 2.3: Maps of the BME mean estimate of chloride concentrations in 2014. The maps on the left panels 

are estimated using Euclidean BME, the maps on the right are estimated using river BME. Panel (a), (c) and 

(e) show the Euclidean BME estimate of chloride in area B, area C, and the study domain, respectively. The 

corresponding river BME maps are in the Panels (b), (d) and (g), respectively. The flow lines in panels (a), 

(b), (c), and (d) are highlighted (increased width) for better visual appearances of segments compared for 

estimation accuracy. The width of the flow lines in panels (e) and (f) correspond to their cumulative river 

miles.  
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These results demonstrate that there can be big differences in the estimated chloride 

concentration using Euclidean BME and river BME, which may lead to substantial differences in 

the assessment of whether a river reach is impaired. For example using the Euclidean approach 

one might conclude that Bynum Run and the Grays and Cranberry Runs are in need of remedial 

action, while using the river approach one might conclude that remedial action is less needed and 

added monitoring is desired. The implication of this finding is that using the proper approach 

does matter, and therefore one should use the river BME approach introduced in this work rather 

than the classical Euclidean approach when estimating chloride along unmonitored river miles. 

Another implication of this finding is that using river BME, one will delineate impaired areas 

that are confined along river reaches, as opposed to spread isotropically across land, which may 

be easier to remediate because resources will be targeted to a specific subwatershed, rather than 

spread across multiple subwatersheds.  

 

3.7.  Space/time Patterns in Chloride Contamination    

The rate of urban development, changes in road salt application practices, and changing 

climate conditions may drive a variety of spatial and temporal patterns in chloride concentrations 

(Corsi et al., 2015). Accurate estimation of chloride is crucial to understand these patterns, to 

improve our understanding of the extent and nature of chloride contamination, and to design 

effective measures to control the chloride pollution. A series of chloride concentration maps 

from 2005 to 2014 are constructed using the space/time river BME method introduced in this 

study. The maps obtained for 2014 are shown in figure 3, while maps for other years are in SI. 

These maps provide the first representation of chloride distribution that fully integrates 

information about space/time variability and river network topology. 
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In the study area, the high population density area is made up of Baltimore and 

Columbia-Ellicott cities, which have a high concentration of impervious surfaces and are 

separated by a narrow green buffer along the Patapsco River. Conversely the surrounding area is 

generally green with localized concentrations of impervious surfaces where small towns are 

located.  

Our river BME maps of chloride concentrations reveal that there are two distinct cores of 

chloride contamination corresponding to Baltimore and Columbia-Ellicott cities, which are 

persistently contaminated from 2005 to 2014. This indicates that once an area is contaminated it 

remains contaminated for a long time, which is consistent with what has been reported in 

previous studies (Harte and Trowbridge, 2010 and Perera et al., 2013) These two core areas are 

initially separated by a clean buffer along the Patapsco River. This buffer is revealed by the river 

BME estimation method as it accounts for river network topology. These two core areas are 

expanding outwards at a low rate during 2005-2009, resulting in a narrowing and eventual loss of 

the green buffer separating Baltimore and Columbia-Ellicott cities.  There is a stagnation in 2010 

and 2011, followed by an accelerated rate of outward expansion of the two core areas during 

2012-2014 up until they coalesce in 2014, resulting in significant contamination over the whole 

Baltimore-Columbia--Ellicott urban area. Major factors for this significant urban-wide 

contamination may include increased rate of salt application, as well as the loss of green buffer 

separating Baltimore and Columbia--Ellicott cities. 

Our river BME maps further reveal that at the beginning of the study period (2005) the 

concentration of chloride is low or inexistent in the streams located outside of the Baltimore-

Columbia-Ellicott urban area. However in that area several pockets of high chloride 

concentration emerge in 2005-2009 and remain contaminated till the end of the study period 
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(2014). Each of these pockets can be visually detected using river BME because they are 

confined along distinct river branches, whereas it is more difficult to see them when using an 

Euclidean approach that averages out concentration across river branches. These pockets of 

contamination illustrate the usefulness of river BME to identify such areas so that they can be 

targeted for monitoring.  

 

3.8.  Probabilistic Assessment of Impaired River Miles    

The probabilistic assessment of impaired river miles indicates that there are two 

distinguishable time periods (2005-2009 and 2011-2014) during which the fraction of unassessed 

and impaired river miles increased (figure 4). In the first time period the impaired river miles 

increased from 1.3% in 2005 to 3.5% in 2009, corresponding to a 0.55% rate of increase in 

impaired river miles per year. In second time period, the impaired river miles increased from 

2.3% to 6%, corresponding to a 1.23% rate of increase in impaired river miles per year. These 

results demonstrate that there is a marked acceleration of the impairment of the study area, with a 

greater than two fold increase in the rate at which river miles become impaired. As stated earlier 

mechanisms causing this acceleration of impairment include the loss of buffer along the Patapsco 

River, the coalescence of core impaired areas, and the increased rate of chloride application. The 

implication of this finding is that there is sufficient evidence of increased impairment to justify 

taking strong measures to control chloride applications in these watersheds. 

Interestingly, there is an even stronger acceleration in the unassessed river miles. There is 

a 1.05% and 3.17% rate of increase in unassessed river miles per year during the 2005-2009 and 

2011-2014 periods, respectively. This dramatic acceleration of the rate of increase of unassessed 

river miles indicates that the monitoring effort, which in 2005 was sufficient to differentiate 
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between clean and impaired river miles, is becoming insufficient to fulfill its task, and increased 

monitoring is needed while chloride levels are rising. Hence the overall finding of our work is 

that there is an urgent need for increased monitoring in areas where chloride is unassessed, and 

these unassessed areas can efficiently be identified using the river BME approach.  

 

 

Figure 2.4: Time series of average fraction of river miles in Gunpowder-Patapsco, Patuxent, and Severn 

subbasins in Maryland that are highly likely in non-attainment (the probability of exceedance of the EPA 

guideline (230 mg/l) is greater than 90 %), non-assessed (probability between 10% and 90%), and highly 

likely in attainment (probability less than 10%) from 2005 to 2014. See Supplementary Information for maps 

showing for each year from 2005 to 2014 the spatial distribution of the probability that chloride exceeds 230 

(mg/l).  

 

4.  Conclusions  

This work is making an important methodological contribution for the assessment of 

water quality along rivers. It consists in the introduction of a river kernel smoothing function 

used to capture large distance scale variability in water quality. We find that when combined 

with geostatistical estimation of offset-removed concentrations, the river kernel smoothing is 

more accurate than earlier approaches that used Euclidean kernel smoothing.  
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This is because river kernel smoothing better captures river topology than Euclidean 

kernel smoothing. To our knowledge, this work is the first to perform a mapping analysis using 

the river kernel smoothing described here in a river geostatistical framework, and to demonstrate 

that it substantially improves mapping accuracy over an Euclidean approach. This approach is a 

contribution to the field of river geostatistics, and will be applicable to the estimation a wide 

range of river water quality parameters.  

Another important contribution is our analysis of the mapping efficiency of the BME 

method of modern geostatistics when dealing with dataset with left censored data, as is the case 

when measurements are below the DL. We demonstrate that when a proportion of data is left 

censored, then BME always outperforms its kriging linear limiting case.  This is a widely 

applicable finding of our work because there are many instances where environmental agencies 

have to measure trace level toxic constituents that have concentrations less than the DL of the 

measuring instruments. In such cases we recommend that these agencies use the full non-linear 

and non-Gaussian BME approach rather than arbitrarily setting the left censored data to half the 

CL or to the CL value. 

Turning to the analysis of river chloride in Maryland, we find that there are big 

differences in the estimated chloride concentration using Euclidean BME versus river BME, 

particularly along unmonitored river reaches that run parallel to a river reach with monitoring 

data. We demonstrate that the differences in estimated chloride concentrations lead to substantial 

differences in the assessment of whether a river reach is impaired. Hence, an appropriate 

estimation method is important as estimates change the outcome of regulatory or policy 

decisions and the remediation strategy selected.  
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Using the river BME approach we find that chloride contamination in Maryland is 

characterized by wide contamination throughout Baltimore and Columbia-Ellicott cities, the 

disappearance of a clean buffer separating these two large urban areas, and the emergence of 

multiple localized pockets of contamination in surrounding areas. The number of impaired river 

miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, 

corresponding to a marked acceleration of the rate of impairment that justify taking strong 

measures to control chloride applications in these watersheds. We also find that the number of 

unassessed river miles has increased even more drastically over these periods, indicating the 

need of increased monitoring required as large clean areas become fragmented with pockets with 

persistently high chloride concentration. These unassessed pockets areas can efficiently be 

identified using the river BME approach for optimal sampling design for targeted monitoring. 

Since the river BME approach accounts for river network topology, the areas identified as 

unassessed are confined along specific river reaches, which will make regulatory effort more 

targeted and efficient.  
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CHAPTER 3 (PAPER 2): A NOVEL GEOSTATISTICAL APPROACH 

COMBINING EUCLIDEAN AND GRADUAL-FLOW COVARIANCE 

MODELS TO ESTIMATE FECAL COLIFORM ALONG THE HAW AND 

DEEP RIVERS IN NORTH CAROLINA2 

 

1.  Introduction 

Assessing water quality along rivers is vital for watershed management1 and to protect 

public health. Geostatistical studies estimate river water quality using covariance models that 

characterize the spatial variability in surface waters2 , 3 ,4. Euclidean covariance models are 

successful in describing autocorrelation driven by terrestrial sources using the Euclidean (straight 

line) distance between points.5,6,7,1 River covariance models use the river distance between points 

to account for the river network topology and have also been successful in many studies. 8 ,9,10 

,11,12,13 Flow-weighted covariance models14,15,5,1 referred herein simply as flow covariance 

models, add physical meaningfulness by using both river distance and the ratio of flow between 

points. More specifically in the model introduced in 2006 by Ver Hoef et al. (2006),14 Cressie et 

al.(2006)15, de Fouquet and Bernard-Michel (2006),16 and Bernard-Michel and de Fouquet 

(2006),17 the flow function is constant along any river reach, and it is additive where two reaches 

combine.  We will refer to this as the pipe-flow covariance model. In 2009, Money et al. (2009)10 

introduced a generalization of the flow covariance model that is based on a gradually varying 

flow along each river reach, which we will refer to as the gradual-flow covariance model. 

_______________________________________________________________ 

2 This chapter is under review in the Journal of Environmental Sciences and Technology.  Jat P. and M.L. Serre, 2016. 

A Novel Geostatistical Approach Combining Euclidean and Gradual-Flow Covariance Models to Estimate Fecal 

Coliform along the Haw and Deep Rivers in North Carolina. . (Submitted to ES&T) 
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Surprisingly; very few studies have demonstrated an improvement in estimation accuracy using 

the pipe-flow covariance model14,18, and to the best of our knowledge, no study has implemented 

the gradual-flow model. 

The lack of success in using flow covariance models may have been due to conceptual 

limitations (for example because, for some water quality parameters, both Euclidean distance and 

flow connectivity are important factors), or to implementation challenges (for example in 

obtaining cumulated areas as a proxy for flow, or to calculate a pipe flow approximation of the 

underlying gradual flow). To address these issues we introduce here a novel hybrid 

Euclidean/Gradual-flow covariance model, and we demonstrate its use by performing a 

spatiotemporal estimation of fecal coliform along the Haw and Deep river in North Carolina 

from 2006 to 2010.  

Fecal coliform, the most common microbiological contaminants of surface waters, are 

considered to be indicator organisms for the potential presence of disease-causing organisms that 

pose human health risks19,20 . The EPA has proposed a guideline level of 200 CFU/100ml to limit 

risk of swimming-associated gastrointestinal illness21. Fecal coliform have been reported as 

exceeding the EPA guideline level in many river reaches of the Haw and Deep rivers in North 

Carolina,22 and it is therefore critical to assess fecal coliform in the Haw and Deep rivers to 

better protect public health. 

The distribution of fecal coliform in the Haw and Deep river is driven both by terrestrial 

sources (in areas with a high percentage of impervious surface in the headwater of this river 

system) and hydrological transport downstream of these sources. We therefore hypothesize that 

the hybrid Euclidean/Gradual-flow model will improve the estimation of fecal coliform 

compared to a purely Euclidean, purely river, or purely flow model. Furthermore, we 
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hypothesize that the Euclidean/Gradual-flow covariance model will better capture the effect of 

flow on spatial variability than the Euclidean/Pipe-flow model whenever using a coarse 

representation of the underlying river system. 

 

2.  Materials and Methods 

2.1.  Fecal coliform and hydrography Data  

The fecal coliform concentration data for the Haw and Deep rivers were obtained from an 

existing monitoring network (managed by Cape Fear River Basin Monitoring Coalition) over a 

period of 2006−2010. Over this period there were a total of 69 unique observation sites (figure 

1a) that were sampled for fecal coliform, resulting in 3848 space/time fecal coliform 

measurements ranging from 1 to 12500 CFU/100ml, with mean 723 CFU/100ml and standard 

deviation 2062 CFU/100ml (see table S1in Supplemental Information (SI) for additional 

statistics).  

The Haw river (with a 1,526 square miles watershed area) and the Deep river (with a 

1,441 square miles watershed area) are at the headwaters of the Cape Fear River basin, which is 

the largest watershed basin in North Carolina and discharges into the Atlantic Ocean. The river 

network along the Haw and Deep rivers is described based on stream lines (figure 1a) obtained 

from the USGS National Hydrography Data (“USGS Hydrography data,” 2014, see SI for more 

details). 
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 (a) 

 

 

 (b)  (c) 
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 (d) (e) 

 
 

Figure 3.1: Panel (a) shows a map of the study area depicting the fecal coliform observation sites located in 

the Haw river and the Deep river watersheds. The thick stream lines represent the coarse river network, 

consisting mainly of the river reaches where monitoring sites are located, as well as their downstream 

reaches. The thin river lines show the additional upstream stream lines making up the dense river network. 

Panel (b) shows a fictitious coarse river network and panel (c) shows that its gradual flow along reaches 1 and 

3 is poorly approximated by the corresponding pipe flow. Likewise, the gradual flow along the coarse river 

network shown in panel (d) for area A is poorly approximated by its corresponding pipe flow shown in panel 

(e). In particular the pipe flow along the upstream branches of area A are not able to reproduce well the 

gradual flow in these reaches. 

 

2.2.  Space/time Bayesian Maximum Entropy geostatistical framework  

Our notation will consist in denoting a single random variable Z in capital letters, its 

realization, z, in lower case; and vectors in bold faces (e.g., z = [z1,..., zn]
T). Using this notation 

we represent a space/time random field (S/TRF) as 𝑍(𝒑), where 𝒑 = (𝒓, 𝑡) is a space/time point, 

𝒓 is the spatial coordinate along the river network and 𝑡 is time. We use Bayesian Maximum 

Entropy (BME), a space/time geostatistical estimation framework grounded in epistemic 

principles and its linear limiting case, kriging, to estimate fecal coliform log-concentration along 

rivers.24,25,26,27 

The general BME framework used to estimate water quality at un-sampled location has 

been defined in several recent BME studies.28,13 In brief, let zd be the vector of log-

concentrations observed at locations pd, let 𝑜𝑧 be an known constant offset value29 and let xd = zd 

–𝑜𝑧 be the vector of offset removed log-concentrations. We define X(p) as a 

homogenous/stationary S/TRF with realization xd, and we let 𝑍(𝒑) = 𝑋(𝒑) + 𝑜𝑧.be the S/TRF 
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representing the distribution of fecal coliform log-concentrations. The knowledge base 

characterizing the S/TRF X(p) includes its mean 𝑚𝑥(𝒑) = 𝐸[𝑋(𝒑)], , where E[.] is the stochastic 

expectation operator, its covariance function 𝑐𝑥(𝒑, 𝒑′) = 𝐸[(𝑋(𝒑) − 𝑚𝑥(𝒑))  (𝑋(𝒑′) −

𝑚𝑥(𝒑′))], and the data xd. 

In this work we estimate fecal coliform log concentration at un-sampled locations using 

the space/time ordinary kriging limiting case of BME implemented in the BMElib numerical 

library27 where the mean 𝑚𝑥(𝒑) = 𝑚𝑥 is assumed constant within the local estimation 

neighborhood, and the covariance is the product of its spatial and temporal components, i.e. 

𝑐𝑥(𝒑, 𝒑′)  =  𝑐𝑥((𝒓, 𝑡), (𝒓′, 𝑡′))   =  𝑐𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝒓, 𝒓′)𝑐𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡, 𝑡′). For the temporal component 

we use the stationary exponential model that is a function of time lag, i.e. 𝑐𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡, 𝑡′) =

exp (−3𝜏/𝑎𝑡) where 𝜏 = |𝑡 − 𝑡′| is the time lag and 𝑎𝑡 is the temporal covariance range. 

Choosing a spatial covariance model that is permissible for river networks is more intricate and 

several models are presented next. 

 

2.3.  Euclidean covariance model  

Euclidean covariance models are a function of the Euclidean (or straight-line) distance 

between points, i.e. 𝑐𝐸(𝒓, 𝒓′) = 𝑐1(𝑑𝐸(𝒓, 𝒓′)), where 𝑑𝐸(𝒓, 𝒓′) is the Euclidean distance between 

locations r and r’, and 𝑐1(. ) can be any permissible covariance model for one dimensional fields. 

Euclidean covariance models can adequately describe the autocorrelation in water quality when 

contamination is from terrestrial sources distributed over long Euclidean distances and 

hydrological transport along the river is comparatively negligible.  
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There are many functions 𝑐1(. ) that are permissible in R1, such as the exponential, power, 

Gaussian, spherical, etc. In this work we use the exponential model for its high interpretability, 

for consistency with previous studies, and to facilitate comparison with other models, i.e. we use 

 

𝑐𝐸(𝒓, 𝒓′) = 𝜎2exp (−3 𝑑𝐸(𝒓, 𝒓′)/𝑎𝐸)  (1) 

 

where 𝜎2 is the variance and 𝑎𝐸 is the Euclidean covariance range of the random field.  

 

2.4.  River covariance model  

River covariance models are a function of the river distance 𝑑𝑅(𝒓, 𝒓′) between any two 

locations r and r’, i.e. the distance traveled along the river between these two locations. River 

covariance models incorporate the river network topology in their description of water quality 

autocorrelation, and they are adequate when pollution source is autocorrelated along rivers, such 

as when it is coming from elongated agricultural fields or roads that happen to follow the river 

topography. 

However, simply replacing the Euclidean distance with the river distance in a covariance 

function can lead to a non-permissible covariance model. Therefore, the geostatistical modeling 

assumption of positive-definiteness needs to be assessed to ensure the validity of spatial 

covariance models using the river distance. It has been shown that the exponential covariance 

model using river distances is permissible for river network.14,10 Hence river covariance models 

are of the form  
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𝑐𝑅(𝒓, 𝒓′) = 𝜎2 exp (−3 𝑑𝑅(𝒓, 𝒓′)/𝑎𝑅)  (2) 

 

where 𝜎2 is the variance and 𝑎𝑅 is the river covariance range of the random field.  

 

2.5.  Flow-weighted covariance model using pipe flow 

Flow-weighted covariance models account for both river topology and flow connectivity 

by incorporating river distance and flow in the covariance model. This kind of covariance 

models are useful to describe autocorrelation for persistent pollutants with autocorrelation driven 

by longitudinal transport over long downstream distances along rivers, and therefore for which 

dilution of the pollutant along a river is an important driver for the autocorrelation exhibited by 

that pollutant. 

The flow-weighted covariance model is derived by first defining a spatial random field 

and then calculating its covariance. Let us identify a point r=(s,l,i) on the river network either by 

its Euclidean coordinate s={longitude, latitude}; or by its river coordinate (l,i) consisting of the 

longitudinal coordinate (l) corresponding to the length of the continuous line connecting the river 

outlet to s along the river network (by convention, negative l values represent fictitious locations 

downstream of the outlet), and the reach index (i) uniquely defining the river reach where s is 

located. Ver Hoef et al. (2006)14 and Cressie et al. (2006)15 define the spatial random field 𝑋(𝑙, 𝑖) 

as the moving-average of a white noise random process, while de Fouquet and Bernard-Michel 

(2006)16 and Bernard-Michel and de Fouquet (2006)17 define 𝑋(𝑙, 𝑖) as the sum of uncorrelated 

one dimensional fields along each flow line (see SI for details). In both cases it can be shown 

that the covariance between 𝑋(𝑙, 𝑖) and 𝑋(𝑙′, 𝑖′)  is zero when i and i' are not flow connected, and 
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when i is upstream of i' it is given by 𝑐𝑜𝑣(𝒓, 𝒓′) = √Ω(𝑖(𝒓)) Ω(𝑖′(𝒓′))⁄  𝑐1(𝑑𝑅(𝒓, 𝒓′)), where 

𝑐1(. ) is the class of permissible covariance models in R1, and the flow function Ω(𝑖(𝒓))= Ω(𝑖) is 

constant along the reach i where 𝒓 is located, and additive when two reaches combine (i.e. if two 

reaches i and i’’ combine into a downstream reach i', then Ω(𝑖) + Ω(𝑖′′) = Ω(𝑖′)). We refer to 

this flow as pipe flow since the flow at the river network outlet is the sum of the flows in all inlet 

(leaf) reaches, and we set  𝑐1(. ) equal to the exponential model for interpretability and 

consistency with the other covariance models, so that the pipe-flow covariance model is given by 

 

𝑐𝑃(𝒓, 𝒓′) = 𝜎2√Ω(𝑖(𝒓)) Ω(𝑖′(𝒓′))⁄  exp (−3 𝑑𝑅(𝒓, 𝒓′)/𝑎𝑃)  (3) 

 

where the subscript P emphasizes that pipe flow is used. 

The flow ratio Ω(𝑖) Ω(𝑖′)⁄  is a number between 0 and 1 expressing the proportion of flow 

in reach i' that is coming from its upstream reach i. This flow ratio captures the effect of dilution 

from side river reaches contributing side flow between reaches i and i’. However a limitation of 

this model is that it assumes that no flow is gradually added along a given river reach. In truth 

the flow gradually increases along each river reach, and therefore pipe flows are only an 

approximation of the underlying gradually varying flow. 

Several approaches were proposed to calculate pipe flows. Cressie et al. (2006)15 

proposed calculating the flow using stream order. According to their method, all leaf reaches in 

the river network are set to equal to 1 and then stream orders are added when streams merge at 

confluence nodes. This leads to an additive pipe flow that is easy to calculate; however it does 

not provide an approximation of the underlying gradual flow. Ver Hoef et al. (2006)14 proposed a 
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method based on the reach proportional influence (PI), which they define as the proportion of the 

flow that a given reach contributes at its downstream confluence node. Money et al. (2009)10 

showed that PIs can be used to approximate the underlying gradual flow by setting the pipe flow 

for any reach equal to the multiplication of the PI of that reach and those downstream of it. For 

example in figure 1(b), if reach 3 contributes 50% of the flow at its downstream end, then its PI 

is 0.5, and its pipe flow is half of that in reach 1.  

In this work we will use the Ver Hoef et al. (2006)14 pipe flow because it provides an 

(almost perfect) approximation of the underlying gradual flow when the river network is dense 

enough so that the sum of flows at the leaf reaches is almost equal to the outlet flow. However, it 

has two limitations: (1) the approximation breaks down for coarse river networks such as that 

shown in figure 1(b) where obviously the pipe flow (dashed line in figure 1(c)) is a rather poor 

approximation of the underlying gradual flow (plain line), and (2) perhaps more importantly, the 

calculation of PIs requires some expertise in river topology and flow connectivity, which can be 

a problem when the computer language script used to calculate PIs becomes outdated. Therefore 

we seek an alternative that can truly accommodate gradual flows and is easy to implement. 

 

2.6.  Flow-weighted covariance model using gradual flow 

Money et al. (2009)10 introduced a generalization of the flow-weighted covariance model 

that rigorously accounts for flows that gradually increase along river reaches. They defined ɷ(r) 

as a positive density function characterizing the flow entering the river per unit length along the 

river network. Then, the flow function Ω(r) can simply be obtained by integrating the flow 

density along all river reaches upstream of r, i.e. 
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Ω(𝒓) = ∫ 𝑑𝑙(𝒖) 𝜔(𝒖)
 

𝑢∈𝑈(𝑟)
           (4) 

 

where U(r) is the set of points upstream of r, and l(u) is the longitudinal coordinate of point u. 

The ω(r) is usually nonzero and positive throughout the river network, and as a result the flow 

function Ω(r) gradually increases with r in the direction of flow, as opposed to the pipe flow 

approximation where flow density is zero and the flow along any given river reach remains 

constant.  

Based on the flow density ω(r) and corresponding flow Ω(r) Money et al (2009) 10 define 

the spatial random field X(r) as 

 

𝑋(𝒓) = ∫ 𝑑𝑙(𝒖) √𝜔(𝒖)/Ω(𝒓)
 

𝑢∈𝑈(𝑟)
 𝑊(𝒖) 𝑌(𝑙(𝒓))  (5) 

 

where 𝑊(𝒖) is a white noise process, 𝑌(𝑙(𝒓) is a zero mean random process with covariance 

𝑐1(ℎ), ℎ = |𝑙 − 𝑙′| is the river distance, and 𝑐1(ℎ) can be any permissible covariance function, 

which as noted earlier we set equal to the exponential model. Then the covariance between 𝑋(𝒓) 

and 𝑋(𝒓′)  is zero when i and i' are not flow connected, and when 𝒓 is upstream of 𝒓′ it is given 

by (see SI for details) 

 

𝑐𝐺(𝒓, 𝒓′) = 𝜎2√Ω(𝒓) Ω(𝒓′)⁄  exp (−3 𝑑𝑅(𝒓, 𝒓′)/𝑎𝐺)   (6) 
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where the subscript G emphasizes that the flow ratio Ω(𝒓)/Ω(𝒓′) gradually varies with r and r’. 

This generalization is physically realistic and meaningful because it lets the flow function 

Ω(𝒓) gradually increase along each river reach in the direction of flow. Several gradually 

varying functions can be used for Ω(𝒓), including historical flow, cumulated area, cumulated 

river length, etc. Since our goal is to test a function that gradually varies along river reaches but 

is also easy to implement, we chose to use cumulated river length because this is the easiest 

function to implement (by simply setting ω(r) to 1). If we find that using Eq 6 with Ω(𝒓) equal to 

the cumulated river length improves estimation; then this will be of tremendous benefit to 

practitioners, because this completely eliminates the laborious task of estimating historical flows 

or processing a digital terrain model to calculate cumulated areas that match a user’s river 

network. 

 

2.7.   Hybrid Euclidean-flow covariance model 

The Euclidean covariance model better describes the effect of terrestrial sources 

processes while the flow covariance model better describes the effect of longitudinal 

hydrological transport. When both processes act simultaneously a hybrid Euclidean and flow 

covariance models may be most appropriate. Mathematically, a combination of two permissible 

covariance models is also permissible. Hence in this work we define the hybrid 

Euclidean/gradual-flow covariance model as the linear combination of the Euclidean and 

gradual-flow covariance models, respectively, i.e. 
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𝑐𝐸𝐺(𝒓, 𝒓′) = 𝛼𝐸𝜎2 exp(−3 𝑑𝐸(𝒓, 𝒓′)/𝑎𝐸) +  𝛼𝐺𝜎2√Ω(𝒓) Ω(𝒓′)⁄  exp(−3 𝑑𝑅(𝒓, 𝒓′)/𝑎𝐺)  (7) 

 

where 𝛼𝐸 and 𝛼𝐺  are the proportions of contribution from the Euclidean and gradual-flow 

covariance models, respectively, such that 𝛼𝐸 + 𝛼𝐺 = 1. The same rules are followed to define 

the Euclidean/Pipe-flow covariance model 𝑐𝐸𝑃(𝒓, 𝒓′). 

 

2.8.   Calculating experimental covariance values  

The covariance of the offset removed fecal coliform log-concentration S/TRF 𝑋(𝒓, 𝑡) is 

modeled by first calculating experimental covariance values �̂�𝑋 based on the measurement data 

𝒙𝑑 = [𝑥1, … , 𝑥𝑛 ] of the S/TRF, and then fitting a covariance model to these experimental 

covariance values. In this work the experimental covariance �̂�𝑋 between 𝑋(𝒓, 𝑡) and 𝑋(𝒓′, 𝑡′) is 

potentially of a function of the Euclidean lag 𝑑𝐸(𝒓, 𝒓′), river lag 𝑑𝑅(𝒓, 𝒓′), flow ratio 𝑓 =

Ω(𝒓) Ω(𝒓′)⁄ , and time lag 𝜏 = |𝑡 − 𝑡′|, hence the experimental covariance for a given Euclidean 

lag 𝑑𝐸, river lag 𝑑𝑅, flow ratio 𝑓, and time lag 𝜏 is calculated as 

 

�̂�𝑋(𝑑𝐸 , 𝑑𝑅 , 𝑓, 𝜏) =
1

𝑁(𝑑𝐸,𝑑𝑅,𝑓,𝜏)
∑ 𝑥ℎ𝑒𝑎𝑑,𝑖

𝑁(𝑑𝐸,𝑑𝑅,𝑓,𝜏)
𝑖=1 𝑥𝑡𝑎𝑖𝑙,𝑖 − 𝑚𝑋

2   (8) 

 

where 𝑁(𝑑𝐸 , 𝑑𝑅 , 𝑓, 𝜏) is the number of pairs of values (𝑥ℎ𝑒𝑎𝑑,𝑖𝑥𝑡𝑎𝑖𝑙,𝑖) separated by a Euclidean 

lag 𝑑𝐸, river lag 𝑑𝑅, flow ratio 𝑓 and time lag 𝜏, and 𝑚𝑋 is the mean of the 𝒙𝑑 data.  

The space/time covariance model that we use is space/time separable. We first model its 

temporal component by plotting �̂�𝑋(0,0,0, 𝜏) as a function of the temporal lag 𝜏, and we then do 
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a least-square fitting of the exponential temporal covariance model to obtain the temporal 

covariance range 𝑎𝑡. We can then focus on how the spatial component of the covariance varies 

with Euclidean lag, river lag, and flow ratio, which is the primary focus of this work. To do this 

it is useful to plot �̂�𝑋(𝑑𝐸 , 𝑑𝑅 , 𝑓, 0) as a function of Euclidean lag 𝑑𝐸 for fixed values of the river 

lag and flow ratio, and then as a function the flow ratio f for fixed Euclidean and river lags, in 

order to understand the relative contribution of the Euclidean and flow covariance models to the 

overall spatial variability of the offset removed fecal coliform log-concentration. This type of 

exploratory covariance analysis is, to our knowledge, novel, and widely applicable not only to 

our study but to any other river water quality studies. Finally, we can obtain the parameters of 

any of the candidate spatial covariance model (Euclidean, river, flow and Euclidean/flow) by 

doing a least square fitting of that model with the spatial experimental covariance values. 

 

2.9.  Model performance evaluation and assessment of river miles with high fecal 

coliform  

Model performance is evaluated by conducting a leave-one-out cross-validation 

(LOOCV) for each covariance model, calculating the Mean Square Error (MSE), Mean Error 

(ME) and R2, and selecting the covariance model with the smallest MSE (see SI for details). In 

order to contrast the pipe flow and gradual flow models, this LOOCV is conducted on a coarse 

river network consisting mainly of the river reaches where monitoring sites are located, as well 

as their downstream reaches. 

Assessment of river miles with high fecal coliform is done in two stages. First we 

calculate the BME mean and variance of fecal coliform concentration at equidistant estimation 

points along all river reaches. Second, we assess an estimation point as having high fecal 



63 

 

coliform if the probability that fecal coliform exceeds 200 CFU/100ml is greater than 90%, i.e. 

Prob[FC>200CFU/100ml]>90%.6,13 

 

3.   Results and Discussion 

3.1.  The hybrid Euclidean/Gradual-flow estimates are more accurate than those 

obtained using a purely Euclidean or purely flow-weighted covariance model 

Cross-validation results were obtained for the coarse river network using the Euclidean, 

River, Gradual-flow, Pipe-flow, Euclidean/Gradual-flow, and Euclidean/Pipe-flow covariance 

models (Table 1). The cross validation statistics (MSE, ME and R2) indicate that fecal coliform 

estimates obtained using the Euclidean covariance model are more accurate than estimates 

obtained using the river covariance and flow-weighted covariance models, suggesting that 

terrestrial sources are the dominant factor in the fecal contamination along rivers. 

However, the estimation is improved when using a hybrid Euclidean/Gradual-flow 

covariance consisting 70% of the Euclidean covariance model and 30% of the flow-weighted 

covariance model, as shown by the 12.4% reduction in MSE achieved by the Euclidean/Gradual-

flow model compared to that of the Euclidean model. This indicates that in fact both terrestrial 

source and hydrological transport play an important role in the distribution of fecal 

contamination along rivers, and therefore the best way to incorporate flow in a geostatistical 

estimator is through a hybrid Euclidean/flow model rather than a purely Euclidean or purely 

flow-weighted covariance model. To the best of our knowledge, this is the first case study 

demonstrating improved estimation accuracy using a hybrid Euclidean/Gradual-flow covariance 

model, which is widely applicable to many surface water quality studies. 
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Table3.1: Leave-one-out cross-validation statistics and corresponding covariance parameter values obtained 

using the (E) Euclidean, (R) River, (G) Gradual-flow, (P) Pipe-flow, (EG) Euclidean/Gradual-flow, and (EP) 

Euclidean/Pipe-flow covariance models. All results were obtained based on the coarse river network. For the 

E, R, G and P models, Sill1 and Range1 are the covariance sill (𝝈𝟐) and range (𝒂𝑬, 𝒂𝑹, 𝒂𝑮 and 𝒂𝑷 for the E, R, 

G and P model respectively) obtained through least square fitting. For the EG and EP models Sill1= 𝜶𝑬𝝈𝟐 and 

Range1=𝒂𝑬 are the covariance sill and range of the Euclidean model, and Sill2 and Range2 are the covariance 

sill and range of the flow covariance model (e.g. Sill2= 𝜶𝑮𝝈𝟐 and Range2=𝒂𝑮 for the EG model). For the EG 

and EP models, 𝜶𝑬 and 𝜶𝑮 (or 𝜶𝑷) are obtained by selecting the 𝜶𝑬 that minimizes the cross-validation MSE 

(See SI for more details on covariance modeling). For both the EP and EG models, the 𝜶𝑬=70%. In all 

models, the temporal range is 𝒂𝒕 = 𝟑𝟎 days. 

Covariance type MSE*  ME**  R2 Sill1
*
  Range1

† Sill2
* Range2

† 

Euclidean (E) 1.716 0.007 0.446 2.940 88 -  

River (R) 1.760 0.037 0.434 2.940 155 -  

Gradual-flow (G) 2.243 0.112 0.283 2.940 1554 -  

Pipe-flow (P) 2.185 0.025 0.299 2.940 1554 -  

EG (70%/30%) 1.504 0.018 0.494 2.058 164 0.882 155 

EP (70%/30%) 1.573 0.014 0.477 2.058 162 0.882 155 

 

 * (CFU/100 ml) 2 

** CFU/100 ml 
† (km) 

 

3.2.  When using a coarse river network, the Euclidean/gradual-flow estimates are more 

accurate than the Euclidean/pipe-flow estimates  

The pipe flow was found to be an almost perfect approximation of the gradual flow for 

the dense river network. However, this approximation significantly deteriorates for a coarse river 

network, as seen in area A on figure 1d-e (see SI for additional details), indicating that the pipe 

flow is a poor approximation of the gradual flow for coarse river networks.  

To investigate the effect of this finding, we calculated experimental covariance values for 

various classes of Euclidean lags, river lags, and flow ratios (see SI for details), and we found 

that the increase in covariance with respect to flow ratio is statistically significant (p-value<0.05) 
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when using gradual flow, but this increase is not significant (p-value>0.05) when using pipe 

flow. This finding demonstrates that the gradual-flow covariance model better captures and 

integrates the effect of flow on the spatial variability of fecal coliform along rivers than the pipe-

flow covariance model when a coarse network is used.  

The significant increase in covariance with respect to gradual flow ratio leads to a better 

estimation of fecal coliform concentration using the Euclidean/gradual-flow covariance model 

(MSE=1.504) compared to the Euclidean/pipe-flow covariance model (MSE=1.573). The 

implication of this finding is that gradual flow should be used instead of pipe flow whenever 

estimating fecal coliform along rivers. 

 

3.3.   Fecal coliform concentrations vary over long spatial distances and short time scales  

We calculated fecal coliform along the dense river network for each observation day 

from 2006 to 2010. Maps of the estimates obtained on 12-Jun-2006 using the Euclidean and 

Euclidean/Gradual-flow models are shown in figures 2a and 2b, respectively. Maps and 

animations for other days are shown in SI. As a whole, these maps show that the fecal coliform 

concentrations vary over long spatial distances that cover a significant portion of the study 

domain, but that can change in the matter of a few days, as is apparent in the spatial and temporal 

covariance ranges shown in table 1. This indicates that contamination events are sporadic in 

time, but when they occur they are wide spread across space, and therefore the maps provide an 

effective tool to target areas where measures are needed to protect the public health. 
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 (a)  (b) 

 

 (c) (d) (e) 

   

 (f) (g) (h) 

   
 

Figure 3.2: Maps of fecal coliform estimates (CFU/100ml) obtained on 12-Jun-2006 across the study area are 

shown in panels (a) and (b), those obtained on 25-Feb-2010 over area A are shown in panels (c) and (f), those 

obtained on 05-Jan-2010 over area B are shown in panels (d) and (g), and those obtained on 14-Sep-2007 over 

area C are shown in panels (e) and (h). Estimates obtained using the Euclidean covariance model are shown 

in panels (a), (c), (d) and (e) while those obtained using the Euclidean/Gradual-flow covariance model are 

shown in panels (b), (f), (g), and (h). 
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3.4.  Euclidean/Gradual-flow estimates reveal that fecal contamination is more 

watershed specific and covers more river miles than traditionally thought  

Our novel Euclidean/Gradual-flow map for 12-Jun-2006 (figure 2b) shows that the 

contaminated area is more watershed specific (i.e. contamination stays within a watershed) than 

what is seen in the Euclidean map (figure 2a). The watershed specific nature of contamination is 

physically meaningful due to hydrologic transport, and supported by the monitoring data. Indeed, 

as seen in figures 2a-b, monitoring data in a watershed are likewise values, and differ from those 

in a different watershed (this is also seen for other dates, see SI).  

By accounting for the watershed specific nature of contamination, the Euclidean/Gradual-

flow model reveals that contamination remains autocorrelated over much longer distances 

(covariance ranges aE=164km and aG=155km) than what is estimated based on the Euclidean 

model (aE=88km). This means that the Euclidean/Gradual-flow model is able to capture 

contamination over more river miles within a specific watershed than the Euclidean model is 

able to do. 

 

3.5.  Euclidean/Gradual-flow estimates capture hydrological transport 

The Euclidean/Gradual-flow estimates along Buffalo Creek in area A (figure 2f) are high 

because they are flow connected with 4 high measured values observed upstream of Buffalo 

Creek. This shows that the Euclidean/Gradual-flow model captures the hydrological transport of 

fecal contamination along this river reach, whereas the Euclidean model fails to do so (figure 

2c). Furthermore, the Euclidean/Gradual-flow estimate abruptly changes at the confluence node 

where Buffalo Creek merges with Reedy fork, thereby capturing the effect of dilution past the 
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confluence node. This effect happens at all confluence nodes, and we also show it in areas B 

(figures 2d and 2g) and C (figures 2e and 2h) for demonstration purposes.  

This illustrates how the Euclidean/Gradual-flow model better captures the effect of 

hydrological transport than the Euclidean model, and explains why, given the same monitoring 

data, more river miles will be identified as contaminated by the Euclidean/Gradual-flow model 

than by the Euclidean model. 

 

3.6.  The Euclidean/Gradual-flow model substantially increases sensitivity in the 

detection of fecal impairment 

There are 573 sampling days in 2006-2010, during which at least one sample was 

collected. For each river mile, we counted the number of sampling days assessed as having high 

fecal coliform (i.e. with Prob[FC>200CFU/100ml]>90%). We found that across the study area, 

and more specifically across areas A, B and C located in areas with high percent of impervious 

surface, the number of sampling days assessed as having high fecal coliform was consistently 

greater for the Euclidean/Gradual-flow estimates compared to the Euclidean estimates (figure 3). 

We furthermore assessed a river mile as being impaired if it had more than 60 sampling days 

assessed as having high fecal coliform out of a total of 573 sampling days. We found that 96 

river miles were detected as being impaired according to the Euclidean/Gradual-flow method, 

which is more than twice than the 39 river miles found according to the Euclidean estimate (see 

SI for additional similar results). This demonstrates that the Euclidean/Gradual-flow model more 

than doubles the sensitivity in the detection of fecal impairment in the Haw and Deep rivers, and 

our map reveals that this impairment occurs primarily in the headwaters of the river system 

where a high percentage of surface is impervious. 
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 (a)  (b) 

 

 (c) (d) (e) 

    

 (f) (g) (h) 

    

Figure 3.3 : These maps show, for each river mile, the number of sampling days (out of a total of 573 

sampling days in 2006-2010) assessed as having high fecal coliform (i.e. with 

Prob[FC>200CFU/100ml]>90%).  The study area is shown in panels (a) and (b), area A is shown in panels (c) 

and (f), area B is shown in panels (d) and (g), and area C is shown in panels (e) and (h). Estimates obtained 

using the Euclidean covariance model are shown in panels (a), (c), (d) and (e) while those obtained using the 

Euclidean/Gradual-flow covariance model are shown in panels (b), (f), (g), and (h). 
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3.7.  Concluding remarks and future works 

There have been very few studies that successfully used the flow covariance model.14 1 

This may be for a variety of reasons, including implementation difficulties. Our novel approach 

fills a critical need because it is the first case study to implement the gradual flow covariance 

model, to demonstrate improved estimation accuracy using a hybrid Euclidean/Gradual-flow 

covariance model, and, more critically, it removes several barriers in implementation by (a) 

using cumulated river length as a proxy for flow (which removes the cumbersome processing of 

digital terrain models to calculate cumulated areas), (b) it uses gradual flow (which removes the 

need to calculate a pipe flow approximation), and (c) it performs well regardless of the 

coarseness of the network used to model the river system. 

Using our novel approach, we created the first geostatistical maps of fecal coliform that 

capture variability associated with both terrestrial sources and hydrological transport and that 

increase the number of river miles where fecal impairment is detected in the Haw and Deep 

rivers. These maps provide a critical tool to assess fecal impairment and to take measures to 

protect the public health. 

Future works include the application of our novel model to other river systems and 

pollutants, the investigation of the tradeoffs in using various proxies for flow, and the integration 

of land use and weather variables in the estimation framework. 
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CHAPTER 4 (PAPER 3): SPACE/TIME ESTIMATION OF DISSOLVE 

ORGANIC CARBON ALONG RIVERS IN MARYLAND USING A 

COMBINATION OF EUCLIDEAN AND FLOW-WEIGHTED COVARIANCE 

MODELS3 

 

1.  Introduction 

Dissolved organic carbon (DOC) is operationally defined as organic molecules that pass 

through a filter, most often 0.45 µm. DOC is an important constituent of water quality because it 

affects the physical, chemical, and biological condition of freshwater ecosystems. DOC is a 

significant energy source for aquatic life in stream and river waters (Wetzel et al., 1995). It 

absorbs biologically harmful ultraviolet rays (Williamson et al., 1996). DOC acts as a weak acid 

and binds dissolved substances, such as metals, making them temporarily less bioavailable ( 

Driscoll et al., 1995) (Prusha and Clements, 2004). However, excess DOC can release pesticides 

from particulate agricultural residue matter in suspension (Worrall et al. 1997) and form harmful 

by-products with disinfectants during drinking water treatment processes (Chu et al., 2002). 

Therefore high DOC levels may be harmful and it is important to estimate DOC along all river 

miles to assess where levels may be in exceedance of safe levels. 

The distribution of DOC across a river network is influenced by two major processes. 

First the concentration of DOC is strongly influenced by the terrestrial sources of DOC. Soil, 

groundwater, and dead terrestrial plant material are major sources of DOC (Wetzel et al., 1995, 

___________________________________________________________________ 

3 This chapter is under manuscript preparation for the Journal of Water research. Jat P. and M.L. Serre, 2016. 

Space/Time Estimation of Dissolve Organic Carbon along rivers in Maryland using a Combination of Euclidean and 

Flow-weighted Covariance models. (In preparation: Water Research)  
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and overland flow through wetlands and organic soil layers contributes significant DOC 

concentrations into proximal streams and rivers (Mulholland et al., 2008). This process results in 

a spatial distribution of stream DOC levels that follows the terrestrial landscape. Second, once 

DOC reaches streams it is transported downstream over distances that may be non-negligible. 

Several studies have reported that river DOC concentrations typically increase with increasing 

flow discharges (Hobbie and Likens, 1973). Volk et al. (Volk et al., 2002) found that DOC 

concentration could increase by as much as 3 fold when discharge also increases by 3 fold in a 

small stream. High DOC concentrations at high discharge provide conditions under which 

hydrological transport may occur over some distance downstream of areas where DOC is 

released in the stream waters. Hence the spatial variability of DOC is governed by both terrestrial 

sources and longitudinal transport. 

Estimating DOC concentration along all river miles of the Gunpowder-Patapsco, 

Patuxent, and Severn sub-basins in Maryland is vital to assess impairment of this river system. 

Assessing river impairment is critical in informing watershed management and in taking 

appropriate measures where DOC levels are high. For example it is important for water utilities 

using surface waters to know where and when levels are in excess of the 3mg/L advisory level 

because high DOC may lead to the formation of carcinogenic disinfectants by-products in the 

treated water.  

Monitoring all river miles is not feasible because it is too costly and too time consuming 

for environmental agencies. In practice only limited monitoring data are available, and 

geostatistical methods provide the most cost effective methodological approach to assess all river 

miles based solely on limited monitoring data. The key defining feature of geostatistical methods 

is the covariance model used to describe the variability of surface water quality along the river 
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system. The covariance models that have been successfully used in previous surface water 

quality studies are the Euclidean model (Peterson and Urquhart, 2006),(Akita et al., 

2007),(LoBuglio et al., 2007),(Isaak et al., 2014) and the river covariance model (Gardner et al., 

2003) ,(E. Money et al., 2009),(E. S. Money et al., 2009) ,(Money et al., 2011),(Yang and Jin, 

2010),(Jat and Serre, 2016), which are based on the Euclidean and river distances, respectively. 

However since hydrologic transport is an important factor governing the spatial distribution of 

DOC, it would make sense to use a covariance model that accounts for flow when estimating 

DOC, else important characteristics of the spatial distribution of DOC may be misrepresented. In 

2006 Ver Hoef et al (Ver Hoef et al., 2006) and others (Cressie et al., 2006)) introduced a 

covariance model that uses flow. The introduction of this flow covariance model was a 

breakthrough; however, surprisingly, very few studies have been successful in implementing that 

model and demonstrating an improvement in estimation accuracy (Ver Hoef et al., 2006) 

(Peterson et al., 2006). In fact Peterson and Urquhart (Peterson and Urquhart, 2006) compared 

the Euclidean and the flow covariance models in the estimation of DOC in Maryland, and they 

found the Euclidean model estimates were more accurate than those obtained with the flow 

covariance model. Hence currently the best available method available to assess DOC in our 

study area is the Euclidean model, however this model does not account for hydrological 

transport and therefore lacks physical meaningfulness. 

The goal of this work is to address this critical issue by implementing a spatiotemporal 

geostatistical approach that will incorporate flow in the geostatistical estimation of DOC across 

our study domain over multiple years. To do this we will use the Euclidean/Gradual-flow 

approach recently presented in Jat and Serre (in review), which uses a hybrid covariance model 

that includes both Euclidean distance and flow in the estimation process. Our hypothesis is that 



77 

 

this novel approach will result in maps that are more accurate and physically meaningful than 

past maps. 

 

2.  Materials and Methods 

2.1.  DOC and hydrography data  

A total of 391 space/time TOC concentration values were obtained from the Maryland 

Biological Stream Survey (MBSS) dataset from 2005 to 2014 in stream waters located in the 

Gunpowder-Patapsco, Severn, and Patuxent sub-basins (figure 1). The concentration values 

ranged from 0.192 mg/l to 19.034 mg/l, with mean 1.7272 mg/l and standard deviation 1.7440 

mg/l. The river network in the Gunpowder-Patapsco, Severn, and Patuxent sub-basins is 

described based on stream lines (figure 1) obtained from the USGS National Hydrography Data 

(“USGS Hydrography data,” 2014) 
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Figure 4.1: Map of the study area depicting Maryland Biological Stream Survey (MBSS) monitoring sites in 

the Gunpowder-Patapsco, Patuxent, and Severn sub-basins in Maryland.  

 

2.2.  Space/time Bayesian Maximum Entropy framework 

Estimation of TOC log concentrations is made using the ordinary kriging limiting case of 

the Bayesian Maximum Entropy (BME) method and its BMElib numerical implementation 

(Serre and Christakos, 1999),(Christakos and Serre, 2000),(George Christakos, Patrick Bogaert, 
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2001). We provide here a short description of the implementation of BME to estimate TOC log 

concentrations, and more details is available elsewhere (Messier et al., 2012),(Jat and Serre, 

2016), Jat and Serre (in review). 

As explained in Jat and Serre (in review) we denote a random variable Z in capital letters, 

its realization, z, in lower case; and vectors in bold faces (e.g., z = [z1,..., zn]
T). We denote a 

space/time random field (S/TRF) as 𝑍(𝒑), where 𝒑 = (𝒓, 𝑡) is a space/time point, 𝒓 is the spatial 

coordinate along the river network and 𝑡 is time. Let zd be the vector of log-concentrations 

observed at locations pd, let 𝑜𝑧 be an known constant offset value (Messier et al., 2015) and let xd 

= zd –𝑜𝑧 be the vector of offset removed log-concentrations. We define X(p) as a 

homogenous/stationary S/TRF with realization xd, and we let 𝑍(𝒑) = 𝑋(𝒑) + 𝑜𝑧.be the S/TRF 

representing the distribution of fecal coliform log-concentrations. The knowledge base 

characterizing the S/TRF X(p) includes its mean 𝑚𝑥(𝒑) = 𝐸[𝑋(𝒑)], where E[.] is the stochastic 

expectation operator, its covariance function 𝑐𝑥(𝒑, 𝒑′) = 𝐸[(𝑋(𝒑) − 𝑚𝑥(𝒑))  (𝑋(𝒑′) −

𝑚𝑥(𝒑′))], and the data xd. 

In ordinary kriging the mean 𝑚𝑥(𝒑) = 𝑚𝑥 is assumed constant within the local 

estimation neighborhood. Following Jat and Serre (in review) we select a space/time covariance 

model equal to the product of a purely spatial and purely temporal components, i.e. 𝑐𝑥(𝒑, 𝒑′)  =  

𝑐𝑥((𝒓, 𝑡), (𝒓′, 𝑡′))   =  𝑐𝑠𝑝𝑎𝑡𝑖𝑎𝑙(𝒓, 𝒓′)𝑐𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡, 𝑡′). For the temporal component we use the 

stationary exponential model that is a function of time lag, i.e. 𝑐𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑡, 𝑡′) = exp (−3𝜏/𝑎𝑡) 

where 𝜏 = |𝑡 − 𝑡′| is the time lag and 𝑎𝑡 is the temporal covariance range. The spatial covariance 

model deserves special attention and is described next. 
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2.3.  Spatial covariance model  

In this work we primarily implement the Euclidean, River, Gradual-flow, and the 

Euclidean/Gradual-flow exponential covariance models described in details in Jat and Serre (in 

review).  

In brief, the Euclidean and river covariance models use the Euclidean and river distances, 

respectively, and they are defined as 

𝑐𝐸(𝒓, 𝒓′) = 𝜎2exp (−3 𝑑𝐸(𝒓, 𝒓′)/𝑎𝐸)  (1) 

and 

𝑐𝑅(𝒓, 𝒓′) = 𝜎2 exp (−3 𝑑𝑅(𝒓, 𝒓′)/𝑎𝑅)  (2) 

where 𝑐𝐸(𝒓, 𝒓′) and  𝑐𝑅(𝒓, 𝒓′) are the Euclidean and river covariance models, respectively, 𝜎2 is 

the variance,  𝑑𝐸(𝒓, 𝒓′) and  𝑑𝑅(𝒓, 𝒓′) are the Euclidean and river distances, respectively, and 𝑎𝐸 

is 𝑎𝑅 are the Euclidean and river covariance ranges, respectively.  

The Gradual-flow covariance model (E. S. Money et al., 2009) uses both river distance 

and a flow function Ω(𝒓) that gradually increases in the direction of flow. Following Jat and 

Serre, in review we use the upstream cumulated length as a proxy for the gradual flow because it 

is easy to obtain, which greatly facilitates the implementation of this model by practitioners. The 

Gradual-flow covariance between 𝑋(𝒓) and 𝑋(𝒓′)  is zero when 𝒓 and 𝒓' are not flow connected, 

and when 𝒓 is upstream of 𝒓′ it is given by  

𝑐𝐺(𝒓, 𝒓′) = 𝜎2√Ω(𝒓) Ω(𝒓′)⁄  exp (−3 𝑑𝑅(𝒓, 𝒓′)/𝑎𝐺)   (3) 

where the flow ratio Ω(𝒓)/Ω(𝒓′) quantifies the proportion of the downstream flow that is coming 

from the upstream point, and the Gradual-flow covariance range 𝑎𝐺 is the distance over which 
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TOC is autocorrelated along a reach when the flow ratio is one (i.e. in the absence of dilution 

from tributaries), which is indicative of the distance that TOC travels downstream from a source.  

The hybrid Euclidean/gradual-flow covariance model (Jat and Serre, in review) is the 

linear combination of the Euclidean and gradual-flow covariance models, i.e. 

𝑐𝐸𝐺(𝒓, 𝒓′) = 𝛼𝐸𝜎2 exp(−3 𝑑𝐸(𝒓, 𝒓′)/𝑎𝐸) +  𝛼𝐺𝜎2√Ω(𝒓) Ω(𝒓′)⁄  exp(−3 𝑑𝑅(𝒓, 𝒓′)/𝑎𝐺)  (4) 

where 𝛼𝐸 and 𝛼𝐺  are the proportions of contribution from the Euclidean and gradual-flow 

covariance models, respectively, such that 𝛼𝐸 + 𝛼𝐺 = 1.  

 

2.4.  Calculating experimental covariance values and selecting covariance parameters 

The experimental covariance value �̂�𝑋 between 𝑋(𝒓, 𝑡) and 𝑋(𝒓′, 𝑡′), where 𝒓 and 𝒓' are 

separated by the Euclidean lag 𝑑𝐸(𝒓, 𝒓′), river lag 𝑑𝑅(𝒓, 𝒓′), flow ratio 𝑓 = Ω(𝒓) Ω(𝒓′)⁄ , and 

time lag 𝜏 = |𝑡 − 𝑡′| is calculated using the equation 

�̂�𝑋(𝑑𝐸 , 𝑑𝑅 , 𝑓, 𝜏) =
1

𝑁(𝑑𝐸,𝑑𝑅,𝑓,𝜏)
∑ 𝑥ℎ𝑒𝑎𝑑,𝑖

𝑁(𝑑𝐸,𝑑𝑅,𝑓,𝜏)
𝑖=1 𝑥𝑡𝑎𝑖𝑙,𝑖 − 𝑚𝑋

2 (5) 

where 𝑁(𝑑𝐸 , 𝑑𝑅 , 𝑓, 𝜏) is the number of pairs of offset-removed log-concentration TOC values 

(𝑥ℎ𝑒𝑎𝑑,𝑖𝑥𝑡𝑎𝑖𝑙,𝑖) separated by a Euclidean lag 𝑑𝐸, river lag 𝑑𝑅, flow ratio 𝑓 and time lag 𝜏, and 𝑚𝑋 

is the mean of the offset-removed log-concentration TOC data.  

The parameters (sill and range) of the Euclidean, river, and Gradual-flow spatial 

covariance models are then obtained by doing a least square fitting of these covariance models 

onto experimental covariance values �̂�𝑋(𝑑𝐸 , 𝑑𝑅 , 𝑓, 0) obtained for various values of 𝑑𝐸 , 𝑑𝑅 , and 

𝑓, and a temporal lag 𝜏 equal to zero.  
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In the case of the hybrid Euclidean/Gradual flow spatial covariance model, we fix 𝛼𝐸 to a 

value between 0 and 1, we set 𝛼𝐺  to 1 − 𝛼𝐸, and we then obtain the corresponding sill, Euclidean 

range and Gradual-flow range by least square fitting of the hybrid model onto the experimental  

covariance values �̂�𝑋(𝑑𝐸 , 𝑑𝑅 , 𝑓, 0). We then need to decide what is proper value for 𝛼𝐸. For that 

we simply select the 𝛼𝐸 that results in the lowest mean square error in a leave-one-out cross-

validation. 

Finally the temporal covariance range is obtained by fitting the temporal component of 

the space/time covariance model to experimental covariance values �̂�𝑋(0,0,0, 𝜏) obtained for 

pairs of offset-removed log-concentration TOC values (𝑥ℎ𝑒𝑎𝑑,𝑖𝑥𝑡𝑎𝑖𝑙,𝑖)  that are spatially 

collocated and separated by various termporal lags 𝜏. 

 

2.5.  Accuracy of model estimates and probabilistic assessment of DOC impaired river 

miles 

The accuracy of given estimation model is evaluated by doing a leave-one-out cross-

validation (LOOCV) analysis consisting in removing each DOC measured value, and re-

estimating that values from the remaining data. The model with the lowest Mean Square Error 

(MSE) is the most accurate model. Other useful validation statistics are the Mean Error (ME) 

characterizing consistent bias, and the R2 characterizing precision.  

The most accurate model is used to perform a probabilistic assessment of DOC 

impairment at each river mile along the river system. The ordinary kriging estimate of DOC and 

its corresponding estimation error variance are calculated at equidistant estimation points along 

all river reaches. A given river mile is then identified as impaired if at that river mile the 
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probability that the DOC concentration exceeds 3 mg/l is greater than 90%, and as unassessed if 

that probability is between 0.1 and 0.9 (Akita et al., 2007). 

 

3.  Results and Discussion 

3.1.  The Euclidean model is more accurate than the river and the flow models, 

indicating that terrestrial sources is the primary driver of DOC variability along 

rivers 

The LOOCV statistics (MSE, ME and R2) obtained for the Euclidean (E), River (R), 

Gradual-flow (G) models and tabulated in table 1. These cross-validation results show that the 

DOC estimates obtained using the Euclidean covariance model are more accurate than estimates 

obtained using the purely river covariance or purely flow-weighted covariance model. The 

Euclidean estimates explains approximately 60.7% of space/time variability in DOC 

concentrations whereas the purely river and the purely Gradual-flow estimates explain only 

58.2% and 41.3% that variability, respectively. This finding indicates that terrestrial sources of 

DOC are the primary factor driving the spatial variability of DOC along rivers. This result is in 

agreement with the Peterson et al. (2006)’s finding that the Euclidean covariance model better 

predicts the spatial distribution of DOC along rivers compared to the flow-weighted covariance 

model in a purely spatial analysis for only one year, and extends that result in the context of a 

spatiotemporal analysis conducted over 10 years.  

 

 

 

 

 

 



84 

 

Table 4. 1:  Leave-one-out cross-validation statistics and corresponding covariance parameter values 

obtained using the (E) Euclidean, (R) River, (G) Gradual-flow, (EG) Euclidean/Gradual-flow covariance 

models. For the E, R, and G models, Sill1 and Range1 are the covariance sill (𝝈𝟐) and range (𝒂𝑬, 𝒂𝑹, 𝒂𝑮 for the 

E, R, G model respectively) obtained through least square fitting. For the EG model Sill1= 𝜶𝑬𝝈𝟐 and 

Range1=𝒂𝑬 are the covariance sill and range of the Euclidean model, and Sill2= 𝜶𝑮𝝈𝟐 and Range2=𝒂𝑮 are the 

covariance sill and range of the flow covariance model. For the EG model, 𝜶𝑬 and 𝜶𝑮 are obtained by 

selecting the 𝜶𝑬 that minimizes the cross-validation MSE, resulting in 𝜶𝑬=80% and 𝜶𝑮=20%. In all models, 

the temporal range is 𝒂𝒕 =7 years 

Covariance type MSE* ME** R2 Sill1
* Range1

† Sill2
* Range2

† 

Euclidean (E) 0.273 0.036 0.607 0.677 36.3   

River         (R) 0.289 0.014 0.582 0.677 98.2   

Gradual flow (G) 0.422 -0.001 0.413 0.677 981.8   

EG (80%/20%) 0.226 0.021 0.676 0.542 43.6 0.135 981.8 
 

* (log ml/l) 2 
** (log ml/l) 
† (km) 

 

3.2.  The hybrid Euclidean/Gradual-flow model is the most accurate model, indicating 

that flow plays a role in the distribution of DOC along rivers 

The 𝛼𝐸 value for the Euclidean/Gradual-flow (EG) covariance model was determined by 

setting 𝛼𝐸 to a fixed value chosen from 0 to 1 by increment of 0.05, performing a LOOCV 

analysis to obtain the corresponding MSE, and selecting the 𝛼𝐸 with the smallest MSE. As 

shown in figure 2a the MSE clearly changes with 𝛼𝐸, and the minimum MSE of 0.226(log ml/l)2 

is obtained for αE=80% and αG = 1 − αE =20%.  

The covariance parameter values we obtained for 𝛼𝐸=80% and 𝛼𝐺  =20% are 𝑎𝐸 =

36.3 𝑘𝑚 and 𝑎𝐹 = 981.2 𝑘𝑚 (Table 1), and the corresponding covariance model is shown in 

figure 2b as a function Euclidean lag for a fixed river lag and fixed flow ratios, and in figure 2c 

as a function of flow ratio for fixed Euclidean and river lags.  
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(a) 

 

 

(b)  (c)

                                                                            

Figure 4.2:  (a) Plot of the MSE as a function of 𝜶𝑬, the proportion of the Euclidean component in the hybrid 

Euclidean/Gradual-low covariance model.  Experimental covariance values (markers) and 

Euclidean/Gradual-flow covariance model (lines) shown as a function of (b) Euclidean lag for a fixed river lag 

and fixed flow ratios, and (c) as a function of flow ratio for fixed Euclidean and river lags. 

 

The LOOCV statistics obtained for the Euclidean/Gradual-flow (EG) covariance model 

with αE=80% are added alongside those of the purely E, R and G models in Table 1. These 

cross-validation results demonstrate that the hybrid Euclidean/Gradual-flow estimates are the 

most accurate amongst all models. The hybrid Euclidean/Gradual-flow model explains 67.6% of 

the space/time variability in DOC concentrations as opposed to the 60.7% explained by the 
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Euclidean model. The MSE of the Euclidean/Gradual-flow model is 17% lower than that of the 

Euclidean model. This appreciable decrease in estimation error indicates that in fact both 

terrestrial source and hydrological transport play an important role in the distribution of DOC 

along rivers, and therefore the best way to incorporate flow in a geostatistical estimator is 

through a hybrid Euclidean/flow model rather than a purely Euclidean or purely flow-weighted 

covariance model.  

The implication of this finding is that a hybrid covariance model should be used instead 

of purely Euclidean or purely flow covariance model whenever estimating DOC along rivers. 

 

3.3.  The domain wide variability of DOC is watershed specific 

DOC estimates in 2013 are obtained using the Euclidean (figure 3a) and 

Euclidean/Gradual-flow (figure 3b) models. These estimates show that the areas of high DOC 

concentrations stay within a watershed when using the Euclidean/Flow covariance model as 

opposed to extending across watersheds when the traditional Euclidean covariance model is 

used. The watershed specific nature of DOC concentrations is physically meaningful as 

watershed characteristics such as topography, land use, hydrologic cycles, and many other 

natural processes are similar within a given watershed, and vary across watersheds.  The 

Euclidean/Gradual-flow covariance model better captures the influence of the river network 

topology and  reveals that DOC concentration within watershed remains autocorrelated over 

much longer distances (covariance ranges aE=48km and aG=982km) than what is estimated 

based on the Euclidean model (aE=36km). This means that the Euclidean/Gradual-flow model is 

able to estimate DOC concentrations over more river miles within a specific watershed than the 

Euclidean model is able to do. 
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 (a)  (b) 

   

 (c) (d)  

   



88 

 

 (e)  (f) 

   

Figure 4.3:  Panels (a) and (b) show the maps depicting the spatial distribution of DOC (mg/l) across the 

study domain in 2013 obtained using Euclidean and Euclidean/Gradual-flow models, respectively. Panels (c) 

and (d) are maps of estimates obtained using Euclidean and Euclidean/Flow models, respectively, showing the 

spatial distribution of DOC in 2008 near the confluence of the North and South branches of the Patapsco 

River.  The map depicting the probability that DOC exceeds 3mg/l in 2010 is shown in panel (e), and the 

probabilistic assessment of DOC impairment over the study domain from 2005 to 2014 is shown in panel (f). 

Both panel (e) and (f) were obtained using Euclidean/Gradual-flow covariance model.  

 

3.4.  The fine scale variability of DOC is influenced by hydrological transport along 

individual river reaches and by dilution at confluence points 

There are noticeable differences between the Euclidean (figure 3c) and 

Euclidean/Gradual-flow estimates of DOC in 2008 near the confluence of the North and South 

branches of the Patapsco River. There is a monitoring site on South branch that recorded a high 

DOC concentration in 2008. The Euclidean estimates of DOC are continuously changing 

downstream of that monitoring site along South branch and along the Patapsco River, without 

exhibiting an abrupt change at the confluence of South and North branch, nor at the confluence 

of any tributaries that flow into South branch downstream of the monitoring site. This indicates 

that the Euclidean model is not able to account for the fact that waters in these tributaries are not 

flow connected to the monitoring sites. On the other hand the Euclidean/Gradual-flow estimates 

on South branch exhibit an abrupt change where South branch merges with North branch to form 
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the Patapsco River. An abrupt change in estimated DOC is also seen at the confluence point 

between South branch and each of its tributaries. This is because the monitoring site is not flow 

connected with tributaries that merge with South branch downstream of the monitoring site. As a 

result the concentration estimated in these tributaries are distinct from the concentration 

estimated on South branch. Hence the Euclidean/Gradual-flow model depicts fine scale 

variability of DOC concentration that is governed by hydrologic transport along each river reach, 

and by dilution at confluence nodes. The dilution effect can for example be seen at the 

confluence of South and North branch, where the concentration at the downstream end of South 

branch (1.27 mg/l) is different than that at the downstream end of north branch (0.96 mg/l), 

resulting in a new concentration past the confluence point that is in between those two upstream 

concentrations. These differences in concentrations demonstrate how the Euclidean/Gradual-

flow model accounts for dilution. The Euclidean model estimates values are exactly the same 

directly before and past the confluence point, demonstrating that this model fails to account for 

the dilution that occurs at confluence points.  

The implication of this finding that is the Euclidean/Gradual-flow model provides a fine 

scale representation of the spatial distribution of DOC concentrations that is substantially more 

physically meaningful than that of the Euclidean model. 

 

3.5.  There is a small fraction of impaired river miles but a large fraction of unassessed 

river miles  

The space/time distribution of DOC is governed by complex natural and physical 

processes. Imperfect knowledge about these complex processes may result in a significant 

uncertainty in geostatistical estimation of DOC concentrations, and hence not accounting for 
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estimation uncertainty in impairment assessment may lead to a wrong conclusion.  Using the 

Euclidean/Gradual-flow covariance model we not only obtained DOC estimates but also the 

probability that DOC exceeds a specific threshold level.  Maps of non-attainment probability at 

any threshold level of interest can provide important insight for policy guideline and watershed 

management. 

Figure 3(e) shows the probability that the DOC concentration exceeds the 3 mg/l 

threshold. This map clearly shows that the Patuxent sub-basin is almost entirely unassessed in 

2010, whereas the probability that DOC concentration exceeds the 3 mg/l in the other two sub-

basins is highly unlikely. This indicates that there is sufficient monitoring in these two 

watersheds to assess that the water is below 3 mg/L, but this is not the case in the Patuxent sub-

basin, where more monitoring is needed in order to know whether DOC is below or above the 3 

mg/L threshold level. Hence the probabilistic assessment map for 2010 indicates that a 

substantial fraction of the study area is unassessed. 

In order to determine whether this finding extends to other years, we tabulated for each 

year the fraction of river miles that were assessed as impaired (i.e. assessed as being above 3 

m/L) versus unassessed (figure 3f). We find that while very few river miles are assessed as 

impaired for DOC, there is a large fraction of river miles that are unassessed. The maps of 

unassessed river miles produced by the Euclidean/Gradual-flow therefore provide critical new 

information indicating which river miles require more monitoring in order to determine the 

ecological health of the river system in these areas, and whether utilities using surface waters in 

these areas need to treat water in a way that avoids the formation of carcinogenic disinfectant by 

products. 
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CHAPTER 5: CONCLUSIONS 

 

The primary goal of this work was to implement and test a mixture of river and flow 

covariance models to estimate water quality parameters along river networks. The Bayesian 

Maximum Entropy (BME) method of modern space/time geostatistics was extended to better 

account for the river metric in its mean trend functionality and to better incorporate a mixture of 

Euclidean distance, river distance, and flow connectivity in its covariance functionality. This 

creates a rich set of new flow-based BME functionalities in the BMElib numerical 

implementation of the BME framework. These new functionalities can be used in any surface 

water quality studies, providing practitioners with new tools for the mapping analysis of surface 

water quality that can work on a wide range of river network topology characteristics. These 

tools were useful for the case studies considered in this work; and they are widely applicable and 

generalizable to many other surface water quality studies.  

Three real world case studies were presented, which provides a broad range of 

applications demonstrating the use of the river covariance model as well as a mixture of 

Euclidean/flow covariance models.  For each case study an exhaustive range of covariance 

models were tested, using Euclidean and/or river distances and their combinations, in order to 

assess which model worked best for each case study. It was hypothesized that in the case of a 

pollutant (Chloride) for which the sources are along roads that follow the river network the river 

covariance model would be the best, while for water quality parameters such as fecal coliform 

and DOC where both terrestrial source and hydrological transport are important the best model 
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would be a hybrid Euclidean/flow covariance model. These hypotheses were tested using cross 

validation to see which model results in the most noticeable improvement in estimation accuracy 

compared to the other covariance models. 

The results of the three case studies confirmed our hypotheses, as all three resulted in a 

12% to 24% improvement in estimation accuracy.  This large range of accuracy improvement is 

due to a number of factors including the number and density of monitoring stations, the river 

network resolution and complexity, and the variability and autocorrelation characterizing water 

quality in each case study.  The highest improvement in estimation accuracy was obtained in first 

case study on Chloride, where we observed that a river covariance model improved the cross-

validation R2 by 23.67% compared to an Euclidean covariance model, and where we found that 

river BME maps were significantly different than the Euclidean BME maps, indicating that a 

covariance modeling choice can significantly impact the conclusions drawn from these maps for 

remediation and targeted monitoring. In case study two (fecal coliform) and three (DOC) we 

observed a 12% and a 17% improvement in estimation accuracy when using a hybrid 

Euclidean/flow covariance model compared to a purely Euclidean model, and we again found 

that the maps of water quality obtained with the Euclidean/flow model are significantly different, 

and generate new findings, compared to the maps obtained using an Euclidean model.  Overall 

the BME framework with the newly introduced flow functions was able to significantly improve 

water quality estimation along a variety of river networks and for a host of pollutants.  There are 

limitations, however, to this approach.   First, the covariance functions used in the analysis were 

restricted to the exponential function, which is permissible for any river networks.  However, 

there are a variety of other possible covariance functions that need to be examined for 

permissibility before they can be used in a river and flow covariance functions.  Secondly, soft 
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data or secondary information from physical or water quality models (i.e. Qual2, SWAT) can be 

used to even further improve the estimation accuracy of water quality.  

Future research directions should investigate the tradeoffs in using various proxies for 

flow (i.e. watershed area, actual volumetric flow, cumulative upstream length), and integrate 

land use and weather variables in the estimation framework. The river and flow BME functions 

developed here are general tools that set the stage for a multitude of research regarding 

spatiotemporal trends in water quality along river networks.  It will provide local, state, and 

federal environmental managers a sound modeling framework for better allocating resources, 

targeted monitoring, and informing the public when water quality impairments put the public at 

risk of adverse health impacts.
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APPENDIX A: SUPPLEMENTARY INFORMATION FOR ‘BAYESIAN 

MAXIMUM ENTROPY SPACE/TIME ESTIMATION OF SURFACE WATER                              

CHLORIDE IN MARYLAND USING RIVER DISTANCES’ PAPER 

 

NHD Flowlines in Subbasins  

Our study domain is made up of three of the subbasins defined by the United States 

Geological Services (USGS) using Hydrology Unit Codes (HUC) with 8 digits. These three 

HUC8 subbasins are located in an area that drains to the Chesapeake Bay, and they consist of the 

Gunpowder-Patapsco subbasin, the Severn subbasin and the Patuxent subbasin. The Gunpowder-

Patapsco subbasin area is 98.9% in Maryland and 1.1% in Pennsylvania, whereas the Severn and 

Patuxent subbasins are 100% in Maryland.  

The river hydrographic network is defined based on flow lines obtained from the USGS 

national hydrography dataset (U.S. Geological Survey, National Hydrographic Dataset, 

http://nhd.usgs.gov/data.html). The number of NHD flow lines and size of the subbasins in our 

study domain are reported in table S1.  

 

Table A.S1: Subbasin name, number of NHD flowlines, stream length, and area of the subbasin in our study 

domain (Source: ArcView analysis- 1:24,000 scale NHD hydrography dataset1.) 
 

Subbasin name HUC8 code 

(unitless) 

No. of NHD flow 

lines (unitless) 

Total stream 

length  (mile) 

Area 

(mile 2) 

Gunpowder-

Patapsco 02060003 9342 3002 1417 

Severn 
02060004 2835 1006 369 

Patuxent 
02060006 6321 2010 927 

 

The previous study of dissolve organic carbon (DOC) by Peterson and Urquhart (2006) 

used 3083 stream segments throughout Maryland (12407 mile2), which corresponds to an 

http://nhd.usgs.gov/data.html
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average density of 0.25 stream segment per mile2. This is substantially less than the average of 

6.8 NHD flow lines per mile2 used in our study. This indicates that our work refined the 

resolution of the river network by a factor of about 27. 

 

Impervious Surface Data 

Impervious surfaces are manmade hard areas that are essentially impenetrable to water. 

Urbanization is a key factor of increasing the imperviousness of watersheds as it adds roads, 

rooftops, parking lots, sidewalks etc.  

Percent developed imperviousness layers were retrieved from the National Land Cover 

Database (NLCD 2011) published by the Multi-Resolution Land Characteristics Consortium for 

the conterminous United States, and then they were cropped to our study domain as shown in 

figure S1. These Multi-Resolution Land Characteristics Consortium based percent developed 

imperviousness layers provide the imperviousness (%) for each 30m by 30m pixel in our study 

domain. This fine resolution description of imperviousness was then aggregated to provide the 

impervious percentage for each HUC with 12 digits (HUC12) subwatersheds delineated in figure 

S1. The aggregation was performed using ArcGIS (ArcGIS 10.3 version).  
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Figure A.S1: Figure A.S1: Multi-Resolution Land Characteristics based percent developed imperviousness 

layers in 2011. 

 

Land Use Regression (LUR) Model 

A strong link between percent imperviousness and water quality degradation in a watershed 

has been reported by several studies (James 1965, Klein 1979, Demers and Sage, 1990, Kaushal 

et al., 2005 and Morgan et al., 2007). In the winter, roads and sidewalks are treated with deicing 

salts. As snow melts, imperviousness physically limits the infiltration of melted snow and most 

of the chloride in road deicing salts is directly transported to the surface waters, which strongly 

influences the water chemistry of streams and rivers. 

A land use regression (LUR) model for the linear relationship between subwatershed percent 

imperviousness and chloride log-concentration is developed, which helps elucidate the road salt 

contribution to elevated chloride concentrations across our study domain, as follows:  

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖  + 휀𝑖                                                        (S1) 



100 

 

where Yi is the natural log transform of chloride concentration at point 𝑖,  𝑋𝑖 is the percent 

imperviousness of the HUC12 subwatershed containing point 𝑖, 𝛽1 is its source regression 

coefficient, and εi is an error term.  

Figure S2 shows the regression plot of log-chloride concentrations versus subwatershed 

impervious percentages. We found that the coefficients of regression 𝛽0 and 𝛽1 are equal to 3.2 

(log-mg/l) and 0.074 (log-mg/l) per percent impervious surface. The Pearson correlation 

coefficient (R), a measure of the linear correlation between subwatershed percent imperviousness 

and chloride log-concentrations, is 0.6. 

 

Figure A.S2:  Regression plot of log –chloride versus subwatershed imperviousness percentage  

 

Offset models 

As described in the main paper, three global offset models are considered in this work. 

The first offset model is described in previous studies (Akita et al., 2007, Money et al., 2009, and 
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Money et al., 2011). It consists of the sum of a spatial component (Fig S3a) that is obtained by 

smoothing time averaged chloride log-concentrations using an exponential kernel filter 

calculated using Euclidean distances with a spatial exponential smoothing range kr=75 km 

(across land), and a temporal component (Fig S4) obtained by smoothing spatially averaged log-

concentrations using an exponential kernel filter calculated using time differences with a 

temporal exponential smoothing range kt=5 years. The spatial component exhibits spatial trend 

that varies isotropically across land and across unconnected river branches. 

The second global offset model is similar to the first offset model, with the only 

difference being that its spatial component (Fig S3b) is obtained using an exponential kernel 

filter based on river distances (instead of Euclidean distances) with a spatial exponential 

smoothing range kr=75 km (along rivers). This spatial component exhibits spatial trends that 

varies along the river network (as opposed to across land), and therefore unconnected river 

branches display non similar concentrations. 
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 (a)                                                                         (b) 

     
Figure A.S3:  Spatial component of the global offset calculated using kernel smoothing of time averaged 

chloride concentration measurements using an exponential kernel function based on (a) Euclidean distances 

and (b) river distances. 

    

 

Figure A.S4: Temporal component of the offset, obtained using an exponential kernel smoothing of spatially 

averaged chloride log-concentrations  
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The third global offset model is the LUR estimate (Figure S5) calculated using the linear 

regression line (Figure S2) between log-chloride concentrations and HUC12 subwatershed 

imperviousness percentages obtained from the Multi-Resolution Land Characteristics based 

percent developed imperviousness layers (Figure S1). The LUR offset does not change with 

time.  

 

Figure A.S5: Offset of chloride concentration calculated as the LUR estimate obtained based on a linear 

regression between chloride log-concentrations and HEC12 subwatershed imperviousness percentages.   

 

Weighted Least Square Covariance Fitting Procedure 

We define the random field X(p), where p=( s, t) is the space time coordinate, as a 

spatially homogeneous and temporally stationary space/time random field for which the set of 

offset-removed chloride log-concentrations is one realization. There always exist such a 

space/time random field, and its space/time covariance function will capture the variability of the 

offset-removed log concentrations. In this work we consider three offset models, which each 
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exhibit its own space/time variability, and therefore needs its own Euclidean and river covariance 

models. 

For each offset model we calculate the corresponding offset-removed log concentrations, 

and from those we calculate the experimental covariance value corresponding to pairs of offset-

removed log concentrations measured at points p=(s, t) and p’=(s’,t’) separated by a spatial lag 

r=d(s,s’) and a temporal lag τ = |t−t′| of interest. The spatial distance d(s,s’) is calculated either 

using an Euclidean distance or a river distance.  

Experimental covariance values obtained for various spatial and temporal lags were then 

used to fit an exponential space/time covariance model given by 

𝑐𝑥(𝑟, 𝜏) = 𝑐0 exp (−
3𝑟

ar
 ) exp (−

3𝜏

at
 )       (S2) 

where co is the variance, ar is the spatial covariance range (measured as a straight line for the 

Euclidean covariance model, and along the river for the river covariance model), and at is the 

temporal covariance range.  

The covariance fitting was performed using a weighted least square (WLS) approach that 

finds the covariance parameters 𝜽= (co, ar, at) which minimizes the weighted sum of squares 

given by  

WSS(𝜽) =
1

𝑛
∑ 𝑤𝑖(ĉ(𝒉𝑖) − c(𝒉𝑖; 𝜽))

2𝑛
𝑖=1         (3) 

where  ĉ(𝒉𝑖) is the i-th experimental covariance value calculated for space/time lag hi=(ri ,𝜏𝑖),  

𝑤𝑖 is the weight of space/time lag hi  corresponding in this work to number of pairs of 

observations separated by that lag, and c(𝒉𝑖; 𝜽) denotes the covariance model value calculated 

for space/time lag hi using the parameter value 𝜽. 
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Sensitivity Analysis with Respect to the Proportion of Left Censored Data 

A sensitivity analysis was conducted with respect to proportion of left censored data. This 

analysis consisted in left censoring a proportion of the data, and comparing the cross validation 

mean square error (MSE) and R2 of the following three methods:  (a) BME rigorously modeling 

the censored data using the TGPDF, (b) kriging replacing the censored data with half the CL, and 

(c) kriging replacing the censored data with the CL. Table S2 shows the cross-validation 

statistics obtained in this sensitivity analysis. The MSE value increases and the R2 decreases as 

the proportion of left-censored data increases, indicating a loss in estimation accuracy that was 

expected since more censored data means less information. However Table S2 clearly 

demonstrates that the rate of deterioration in estimation accuracy is lower for river BME (method 

a) than for its kriging linear limiting cases (method b and c), and as a result the BME method 

consistently outperforms the kriging methods. Focusing on the comparison between BME 

(method a) and kriging using half the censoring limit (method b), we see as expected that the R2 

is the same between method a (BME) and method b (kriging) when the proportion of censored 

data is zero (because in that case there is no censored data). When there is 5% of censored data, 

the R2 is 0.412 for kriging and 0.448 for BME, corresponding to a percent change in R2 (PC in 

R2) of 9%. This means that BME improves the R2 by 9% over kriging when 5% of the data is left 

censored. Interestingly, the PC in R2 is 109%, 480%, 658% and 133%, respectively, when the 

proportion of censored data is 13.6%, 25.1%, 32.3% and 46.2%, respectively. This means that 

BME improves the R2 by a factor of about 2 to 7.5 over kriging when the proportion of censored 

data ranges from 13.6% to 46.2%. 
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Table A.S2: Sensitivity analysis of the estimation accuracy of the river BME and kriging methods with 

respect to the proportion of left censored data 
 

 
BME (method 

a) 

Kriging using ½ 

the CL (method 

b) 

Kriging using 

the CL (method 

c) Censoring 

limit (mg/l) 

Proportion of 

censored 

data (%) 

MSE* R2 MSE* R2 MSE* R2 

0 0.0 0.194 0.789 0.194 0.789 0.194 0.789 

 15 5.1 0.550 0.448 0.622 0.412 0.648 0.402 

20 13.6 0.882 0.340 1.344 0.163 1.548 0.113 

25 25.1 1.656 0.174 2.534 0.030 2.811 0.100 

30 32.3 2.291 0.091 3.337 0.012 3.654 0.010 

35 46.2 3.945 0.007 5.314 0.003 5.794 0.007 

* (mg/l) 2 

 

Maps and Movies 

BME Estimate of chloride concentration  

Chloride concentration was estimated along each river mile in our study, and a series of 

concentration maps from 2005 to 2014 were constructed and posted at the following website: 

http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/ 

The estimation was performed using either the river BME or Euclidean BME method, the 

maps of estimated Chloride concentrations are shown either over the study domain or over 

region A, and concentration values are shown using either a continuous colors or bicolor, 

resulting in the following eight sets of maps: 

River BME estimate of chloride concentration 

       Maps and movie shown in continuous color over the study domain 

       Maps and movie shown in continuous color over area A 

http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/RCSH/index.htm
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/RCAH/index.htm
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       Maps and movie shown in bicolor over the study domain 

       Maps and movie shown in bicolor over the area A 

  

Euclidean BME estimate of chloride concentration 

Maps and movie shown in continuous color over the study domain 

       Maps and movie shown in continuous color over area A 

       Maps and movie shown in bicolor over the study domain 

       Maps and movie shown in bicolor over the area A 

  

BME estimate of the probability that chloride exceeds 230 (mg/l) 

A comparison of estimated Chloride concentration with the EPA guideline level of 230 

mg/l was visualized by calculating and mapping the probability that the Chloride concentration is 

above 230 mg/l. Maps showing the spatial distribution of the probability that Chloride exceeds 

230 mg/l along the rivers of our study domain for each year from 2005 to 2014 are posted at the 

following website: http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/ 

The probability that Chloride exceeds 230 mg/l was estimated using either the river BME 

or Euclidean BME method, and the maps of probabilities are shown either over the study domain 

or over region A, resulting in the following four sets of maps: 

 

 

River BME estimate of the probability that chloride exceeds 230 (mg/l) 

       Maps and movie shown over the study domain 

       Maps and movie shown over area A 

http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/RCSB/index.htm
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/RCAB/index.htm
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/ECSH/index.htm
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/ECAH/index.htm
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/ECSB/index.htm
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/ECAB/index.htm
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/RPST/index.htm
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/RPAT/index.htm
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Euclidean BME estimate of the probability that chloride exceeds 230 (mg/l) 

       Maps and movie shown over the study domain 

       Maps and movie shown over area A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/EPST/index.htm
http://www.unc.edu/depts/case/BMElab/studies/PJ_ClMD/EPAT/index.htm
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APPENDIX B: SUPPLEMENTAL INFORMATION FOR ‘A NOVEL 

GEOSTATISTICAL APPROACH COMBINING EUCLIDEAN AND 

GRADUAL-FLOW COVARIANCE MODELS TO ESTIMATE FECAL 

COLIFORM ALONG THE HAW AND DEEP RIVERS IN NORTH 

CAROLINA’ PAPER 

 

Details on the fecal coliform and hydrography data  

The fecal coliform concentration data for the Haw and Deep rivers in North Carolina 

were obtained from the Cape Fear River Basin Monitoring Coalition’s water quality data 

(http://lcfrp.uncw.edu/riverdatabase/). A query of this database was performed in September 11, 

2014, to download all the fecal coliform data in the years 2006−2010, which resulted in a dataset 

with 3869 entries, including 9 missing values. After removing these 9 missing values, snapping 

sampling locations to the nearest point on the river network, and averaging 12 duplicate values, 

the dataset consisted in 3848 space/time fecal coliform concentrations located at 69 unique 

observations sites. Descriptive statistics of these 3848 fecal coliform concentrations observed 

along the Haw and Deep rivers from 2006-2010 are tabulated in table S1.  

 

 

 

 

 

 

 

 

 

 

http://lcfrp.uncw.edu/riverdatabase/
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Table B.S1: Descriptive statistics of fecal coliform concentrations observed along the Haw and Deep rivers in 

North Carolina from 2006-2010 

Parameter Haw river Deep river 

Haw-Deep 

rivers 

Number of fecal coliform observations 2378 1470 3848 

Unique geographical observation sites 39 30 69 

Minimum conc. (CFU/100 ml) 1 2 1 

Maximum conc.  (CFU/100 ml) 12500 12000 12500 

Mean conc. (CFU/100 ml) 633 867 723 

Median conc. (CFU/100 ml) 105 87 100 

Standard deviation (CFU/100 ml) 1839 2373 2062 

 

The river network along the Haw and Deep rivers is described based on flow lines obtained 

from the medium resolution USGS National Hydrography Data (NHD). The medium resolution 

USGS NHD flow lines were obtained on October 11, 2014 by going to the USGS website 

(http://nhd.usgs.gov/), selecting ‘Get Data’  ‘Go to NHD extract by States’  

‘MediumResolution’  ‘Shape’ and selecting the ‘NHD_M_37_North_Carolina_ST.zip’ 

compressed file and extracting the ‘NHDflowline.shp’ shapefile containing the flow lines for all 

the rivers in North Carolina. The USGS defines its medium resolution NHD data as being at the 

scale of 1:100,000, which in our study provides a fine resolution description of all the river 

http://nhd.usgs.gov/
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reaches where observation sites are located (shown in plain line in figure 1a), as well as their 

named upstream reaches (shown in fine lines in figure 1a). 

 

Details on the flow-weighted covariance models using pipe flow 

The pipe flow-weighted covariance model is derived by first defining a spatial random 

field 𝑋(𝑙, 𝑖) and then calculating its covariance. Ver Hoef et al. (2006)1 and Cressie et al. (2006)2 

define 𝑋(𝑙, 𝑖) as the moving-average of a white noise random process, while de Fouquet and 

Bernard-Michel (2006)3 and Bernard-Michel and de Fouquet (2006)4 define 𝑋(𝑙, 𝑖) as the sum of 

uncorrelated one dimensional fields along each flow line. We provide here the mathematical 

expression of 𝑋(𝑙, 𝑖) for these two approaches, and we refer the readers to their papers and to 

Money et al (2009)5 for an in-depth derivation of how the pipe flow covariance model is derived 

from 𝑋(𝑙, 𝑖).  

Let us identify a point r=(s,l,i) on the river network either by its Euclidean coordinate 

s={longitude, latitude}; or by its river coordinate (l,i) consisting of the longitudinal coordinate (l) 

corresponding to the length of the continuous line connecting the river outlet to s along the river 

network, and the reach index (i) uniquely defining the river reach where s is located. Ver Hoef et 

al. (2006)1 and Cressie et al. (2006)2 define the spatial random field 𝑋(𝑙, 𝑖) as  

 

𝑋(𝑙, 𝑖) = ∫ 𝑑𝒖 ∑ √Ω(𝑗) Ω(𝑖)⁄ 𝑔(𝒖 − 𝑙) 𝑊(𝒖, 𝑙)𝑗∈𝑉𝑖(𝒖)
∞

𝑙
  (S1) 

 

where 𝑉𝑖(𝒖) is the set of river is reaches at longitudinal coordinate 𝒖 upstream of reach i, 

𝑔(𝒖 − 𝑙) is a moving average function that lead to a valid covariance function, 𝑊(𝑢, 𝑙) is a 

white noise process with mean zero i.e. 𝐸(𝑊(𝒖, 𝑙)) = 0, Ω(𝑗) Ω(𝑖)⁄  is a real number between 0 
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and 1 expressing the amount of flow shared between reach i and reach j such 

that ∑ Ω(𝑖, 𝑗) = 1𝑗∈𝑉𝑖(𝒖)  , Ω(𝑖) and Ω(𝑗) are flow additive functions that increase in the direction 

of flow (i.e. if two reaches i’ and i’’ combine into a downstream reach i, then according to flow 

additivity  Ω(𝑖′) + Ω(𝑖′′) = Ω(𝑖)). 

On the other hand de Fouquet & Bernard-Michel (2006)3 and  Bernard-Michel and de 

Fouquet (2006)4 define 𝑋(𝑙, 𝑖) as 

 

𝑋(𝑙, 𝑖) = ∑ √Ω(𝑗) Ω(𝑖)⁄   𝑌𝑗(𝑙)𝑗∈𝑉𝑖(∞)   (S2) 

 

where 𝑉𝑖(∞) is the set of flow-connected leaf reaches upstream of reach i, and 𝑌𝑗(𝑙) are 

independent zero mean random processes on R1 i.e. 𝐸[𝑌𝑗(𝑙)]=0 with covariance 

𝑐𝑜𝑣(𝑌𝑖(𝑙), 𝑌𝑖(𝑙′)) = 𝑐1(ℎ), ℎ = |𝑙 − 𝑙′|, 𝑐1(ℎ) may be any permissible covariance function in R1. 

As explained above, the covariance of the spatial random field given in equations S1 or 

S2 is the pipe flow covariance model given in Eq. 3. 

 

Derivation of the flow-weighted covariance model using gradual flow 

As explained in the main paper, Money et al. (2009)5 introduced a generalization of the 

flow-weighted covariance model (Eq. 6) that rigorously accounts for flows that gradually 

increase along river reaches. Here we summarize the derivation of this covariance model. 

As detailed in the main paper, let’s define the flow density ɷ(r) as a positive density 

function and let’s define the flow function Ω(r) as its integral upstream of r, i.e. Ω(𝒓) =

∫ 𝑑𝑙(𝒖) 𝜔(𝒖)
 

𝑢∈𝑈(𝑟)
, where U(r) is the set of points upstream of r, and l(u) is the longitudinal 

coordinate of point u.  
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Money et al. (2009)5 define the SRF 𝑋(𝒓) = ∫ 𝑑𝑙(𝒖) √𝜔(𝒖)/Ω(𝒓)
 

𝑢∈𝑈(𝑟)
 𝑊(𝒖) 𝑌(𝑙(𝒓)), 

where 𝑊(𝒖) is a white noise process, 𝑌(𝑙(𝒓) is a zero mean random process with covariance 

𝑐1(ℎ), ℎ = |𝑙 − 𝑙′| is the river distance, and 𝑐1(ℎ) can be any permissible covariance function. 

When r is upstream of r’, the covariance between 𝑋(𝒓) and 𝑋(𝒓′) is derived using the 

following steps (Money et al., 2009)5 

 

𝑐𝑋(𝒓, 𝒓′) = 𝐸[𝑋(𝒓)𝑋(𝒓′)] 

= ∫ 𝑑𝑙(𝒖) ∫ 𝑑𝑙(𝒖′)
 

𝒖′∈𝑈(𝒓′)

 √
𝜔(𝒖)𝜔(𝒖′)

Ω(𝒓)Ω(𝒓′)

 

𝒖∈𝑈(𝒓)

 𝐸[𝑊(𝒖) 𝑊(𝒖′) 𝑌(𝑙(𝒓)𝑌(𝑙′(𝒓′))] 

= ∫ 𝑑𝑙(𝒖) ∫ 𝑑𝑙(𝒖′)
 

𝒖′∈𝑈(𝒓′)

 √
𝜔(𝒖)𝜔(𝒖′)

Ω(𝒓)Ω(𝒓′)

 

𝒖∈𝑈(𝒓)

 𝛿(𝒖 − 𝒖′)𝑐1(ℎ = |𝑙 − 𝑙′|)  

= ∫ 𝑑𝑙(𝒖) 
𝜔(𝒖)

√Ω(𝒓)Ω(𝒓′)

 

𝒖∈𝑈(𝒓)

 𝑐1(ℎ) 

= √Ω(𝒓) Ω(𝒓′)⁄  𝑐1(ℎ) (S3) 

 

where 𝛿(𝒖 − 𝒖′) is a Dirac function with property ∫ 𝑑𝒖′𝑓(𝒖′) 𝛿(𝒖 − 𝒖′) =  𝑓(𝒖) for 

sufficiently smooth functions 𝑓(𝒖). 

Eq. S3 leads to Eq. 6 when 𝑐1(ℎ)=𝜎2 exp (−3 𝑑𝑅(𝒓, 𝒓′)/𝑎𝐺) . 

 

Leave-One-Out Cross-Validation (LOOCV) statistics  

To assess the accuracy of the BME estimation of fecal coliform using the Euclidean, 

river, flow, and Euclidean/flow covariance models, a leave-one-out cross-validation (LOOCV) 

analysis was performed. Each fecal coliform measured value 𝑧𝑗 was removed one at a time, and 
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re-estimated using only the remaining data. This method was repeated again for each monitoring 

station. 

For a given estimation method (m) that uses any of the covariance models stated above, 

the overall estimation error was quantified using the Mean Squared Error,  𝑀𝑆𝐸(𝑚) =

1

𝑛
∑ (𝑧𝑗

∗(𝑚)
− 𝑧𝑗)

2
𝑛
𝑗=1 , the consistent estimation error (i.e. the bias) was quantified using the Mean 

Error  𝑀𝐸(𝑚) =
1

𝑛
∑ (𝑧𝑗

∗(𝑚)
− 𝑧𝑗)𝑛

𝑗=1 , and the random error (i.e. lack of precision) was quantified 

using the squared Pearson coefficient, 𝑅2 = 1 − ∑ (𝑧𝑗
∗(𝑚)

− 𝑧𝑗)
2

 𝑛
𝑗=1 /∑ (𝑧𝑗

∗(𝑚)
)

2

 𝑛
𝑗=1 , where 𝑧𝑗

∗(𝑚)
 

is the re-estimation of 𝑧𝑗.  

 

Pipe flow is a poor approximation of gradual flow along a coarse river 

network representation of the Haw and Deep rivers 

A dense river network representing river reaches in our Haw and Deep river study area is 

depicted with thin lines in figure 1a. We calculated the gradual and pipe flow along this dense 

river network and found that they are almost perfectly similar, indicating that Ver Hoef et al. 

(2006)1 proportional influence calculation leads to an almost perfect approximation of gradual 

flow if the river network is dense. This dense river network was used for our assessment of water 

quality along all river miles. 

We also restricted the dense river network to a coarse river network consisting mostly of 

the river reaches where monitoring sites are located, as well as their downstream reaches. The 

gradual flow in area A located in the headwaters of the Haw river (figure 1d) is significantly 

different from its pipe flow approximation (figure 1e). The gradual and pipe flows are also 

significantly different in areas B and C (figures not shown). These results show that there can be 
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significant differences between gradual and pipe flows at the headwaters and along long river 

reaches of a coarse river network.   

These results are amongst the first to clearly visualize that pipe flow is a good 

approximation of gradual flow for a dense river network; and that this deteriorates for a coarse 

river network. The implication of this finding is that the estimation accuracy between gradual 

versus pipe flow should be the same for dense river network, but the estimation accuracy 

between gradual versus pipe flow might be different whenever a coarse river network is used. 

 

Modeling the spatial covariance using Euclidean distance, river distance, and 

flow ratio 

Experimental covariance values with a zero temporal lag (𝜏 = 0) are obtained by 

selecting all the pairs (𝑥ℎ𝑒𝑎𝑑,𝑖, 𝑥𝑡𝑎𝑖𝑙,𝑖) of offset removed fecal coliform log concentration 

measurements that were measured at the same time, stratifying them into classes based on 

Euclidean lag 𝑑𝐸  , river lag 𝑑𝑅 , and flow ratio 𝑓, and calculating the experimental covariance for 

each class of pairs using Eq. 8. The experimental covariance values obtained on the coarse river 

network using gradual flow are shown in figures S1(a) and (b), and those obtained using the 

coarse network with pipe flow are shown in figure S1(c). In figure S1(a) the experimental 

covariance values are shown as a function of Euclidean lag on the x-axis and displayed with a 

marker that is based on its flow ratio and with a color that is based on its river lag. As can be 

seen in this figure, the experimental covariance value decreases with Euclidean lag for fixed 

river lag and flow ratio, as indicated by the general downward trend in covariance values along 

the x-axis. Furthermore, the experimental covariance values decrease with decreasing flow ratio, 

as indicated by the fact that the circles are generally above the squares. These experimental 

covariance values provide visual evidence that both the Euclidean lag and flow ratio play an 
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important role in describing the spatial variability of fecal coliform. As a result, the 

Euclidean/gradual flow covariance model (Eq 7) is the most suitable choice for modeling the 

variability of fecal coliform.  

For each possible combination of 𝛼𝐸 and 𝛼𝐺 , for 𝛼𝐸 going from 0 to 1 by increment of 

0.05, we did a least square regression of the Euclidean/gradual flow covariance model onto the 

experimental covariance values to obtain the covariance range parameters 𝑎𝐸 and 𝑎𝐹, and using 

these range parameter values we performed a cross validation analysis. We then selected the 𝛼𝐸 

and 𝛼𝐺  values and associated parameters 𝑎𝐸 and 𝑎𝐹 that minimized the cross-validation MSE. 

The covariance parameter values we obtained are 𝛼𝐸=0.7, 𝛼𝐺 = 0.3, 𝑎𝐸 = 164 𝑘𝑚 and 𝑎𝐹 =

155 𝑘𝑚 (Table 1), and the corresponding covariance model is shown in figure S1(a) as a 

function Euclidean lag for a fixed river lag of 40km and a fixed flow ratio of 0.25 (plain line), 

and for the same river lag but a fixed flow ratio of 0 (dashed line). This model captures the 

decrease in covariance with respect to increasing Euclidean lag and decreasing flow ratio. 

According to this covariance model, the autocorrelation in fecal coliform in stream waters comes 

from terrestrial source contaminating land over distance ranges of approximately 164km, and 

from the subsequent longitudinal transport in suspended solid over distances of up to 

approximately 155km along river reaches where no dilution occurs.  

In order to compare the impact that gradual and pipe flows have on modeling spatial 

variability, we repeated the calculation of experimental covariance values using pipe flow. We 

show side by side how experimental covariance values change with respect to flow ratio when 

gradual flow is used (figure S1(b)) and when pipe flow is used (figure S1(c)). As can be seen 

from these figures, the increase in experimental covariance values with respect to flow ratio is 

better captured when gradual flow is used. To ascertain this finding, we performed a statistical 
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test to quantify whether the increase in covariance with respect to flow ratio is significant for 

three different sets of Euclidean and river lags. We found that the p-value is less than 0.05 for 

each of these sets when gradual flow is used (figure S1(b)), whereas the p-value is greater than 

0.05 for each of these sets when pipe flow is used (figure S1(c)). This finding indicates that when 

using a coarse river network, then the gradual flow covariance model better captures spatial 

variability of fecal coliform than the pipe flow covariance model. 
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 (a)  

 

 (b) (c) 

 
Figure B.S1: Experimental covariance values obtained using gradual flow and shown as a function of (a) 

Euclidean lag for fixed river lags and flow ratios, and (b) as a function of flow ratio for fixed Euclidean and 

river lags. The experimental covariance values obtained with pipe flow are shown in (c) with respect to flow 

ratio.  
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Daily estimates of fecal coliform across the study area 

Maps of fecal coliform estimates obtained using the Euclidean covariance model and 

using the Euclidean/Gradual-flow covariance model are shown in figure S2 for May 08 and May 

09 of 2006. The data on May-09-2006 is watershed specific, with values between distinctly 

different in the Haw river compared to those on the Deep river. The Euclidean/Gradual-flow 

estimates follow the same pattern on both May-09-2006 (when there are data in each watershed) 

as the day prior, May-08-2006. The Euclidean estimates are also watershed specific on May-09-

2006, but fail to be watershed specific on May-08-2006, leading to a substantial difference 

between the Euclidean and the Euclidean/Gradual-flow estimates along the Deep river on May-

08-2006. 
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 (a) (b) 

 

 (c) (d) 

 
 

Figure B.S2: Maps of fecal coliform estimates (CFU/100ml) obtained using the Euclidean covariance on 08-

May-2006 (panel a) and 09-May-2006 (panel c). Estimates obtained using the Euclidean/Gradual-flow 

covariance model are shown in panels (b) and (d). 

 

Maps of fecal coliform estimates obtained using the Euclidean covariance model and 

using the Euclidean/Gradual-flow covariance model are shown in figure S3 for December 28 of 
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2006. These maps show again that the Euclidean/Gradual-flow estimates are watershed specific 

while the Euclidean estimates are not. 

 

 (a) (b)

  
 

Figure B.S3: Maps of fecal coliform estimates (CFU/100ml) obtained on 28-Dec-2006 using the Euclidean 

covariance (panel a) and the Euclidean/Gradual-flow covariance model panel (b). 

 

Movies showing maps of fecal coliform along the Haw and Deep rivers on specific days 

from 2006 to 2010 are available at http://www.unc.edu/depts/case/BMElab/studies/PJ_FC_NC/. 

Specifically movies are available for the following days: 

       Sampling days from Jan-2006 to Jun-2008 

       Sampling days from Jul-2008 to Dec-2010 

       Consecutive days from Aug-31-2009 to Oct-30-2009 

 

Number of impaired river miles 

For each river mile and each sampling day in the 2006-2010 study period, we used the 

Euclidean covariance model versus the Euclidean/Gradual-flow covariance model to calculate 

http://www.unc.edu/depts/case/BMElab/studies/PJ_FC_NC/
http://www.unc.edu/depts/case/BMElab/studies/PJ_FC_NC/FC_HawDeepRivers_Jan2006-Jun2008.gif
http://www.unc.edu/depts/case/BMElab/studies/PJ_FC_NC/FC_HawDeepRivers_Jul2006-Dec2010.gif
http://www.unc.edu/depts/case/BMElab/studies/PJ_FC_NC/FC_HawDeepRivers_Aug31-Oct30_2009.gif
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the probability that fecal coliform concentration exceeds 200 CFU/100ml on that day. A river 

mile was then assessed as impaired if there are more than N days over the 2006-2010 study 

period during which the probability that fecal coliform exceeds 200 CFU/100ml is greater than 

P. Table S2 reports the number of impaired river miles calculated for P=68% and 90%, and for 

N=60days, 90 days and 120 days. The results show that the number of impaired river miles 

estimated using the Euclidean/Gradual-flow covariance model is consistently greater than that 

estimated with the Euclidean covariance model.  

Table B.S2: Number of impaired river miles estimated using the Euclidean covariance model versus the 

Euclidean/Gradual-flow covariance model 

Threshold 

probability of 

impairment, P 

(%) 

Threshold 

number of 

impairment days, 

N  

Number of impaired river miles(*) 

Euclidean 

covariance model  

Euclidean/Gradual-

Flow covariance 

model 

90 60 39 96 

90 90 7 8 

90 120 1 1 

68 60 969 1537 

68 90 196 312 

68 120 64 92 

(*) a river mile is impaired if there are more than N days over the 2006-2010 study period during which the 

probability that fecal coliform exceeds 200 CFU/100ml is greater than P 

 

Furthermore, the increase in impaired river miles is more visible in the headwaters of the 

Haw and Deep rivers, as illustrated in areas A, B and C shown in figure 3. This is supported by 

the maps showing the average of fecal coliform estimates across the 2006-2010 study period 

(figure S4). This map shows that large urban centers, including High Point, Greensboro, 
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Burlington and Durham, are located at the headwaters of the Haw and Deep rivers. These urban 

areas have a large percentage of impervious surface, which increases runoff and fecal 

contamination of rivers in these areas. As a result, these areas are more frequently impaired. As 

fecal coliforms are then transported downstream from these urban areas, they have time to die off 

or to settle down, thereby resulting in the lower average concentrations seen in figure S4 at the 

downstream end of the river network. 

 

 (a) (b)  

 

Figure B.S4: Maps of the fecal coliform estimates averaged across the 2006-2010 study period are shown in 

panel (a) using estimates obtained with Euclidean covariance and in panel (b) using estimates obtained with 

Euclidean/Gradual-flow covariance model. 
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