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Abstract 
 

Rebecca A. S. Ruf:  Tyrosine and the Oxidative Aggregation of α-Synuclein 
(Under the direction of Professor Gary J. Pielak, Ph.D.) 

 
Oxidative stress and aggregation of the protein α-synuclein are thought to be key 

factors in Parkinson’s disease.  Previous work shows that cytochrome c plus 

H2O2 causes tyrosine-dependent in vitro peroxidative aggregation of proteins, 

including α-synuclein.  Herein, I detail a method for monitoring α-synuclein and 

cytochrome c in a variety of experiments.  Using this system, I examine the role 

of each of α-synuclein’s four tyrosine residues and how the protein’s 

conformation affects covalent oxidative aggregation.  When α-synuclein adopts a 

collapsed conformation, tyrosine 39 is essential for wild-type-like covalent 

aggregation.  This lone N-terminal tyrosine, however, is not required for wild 

type-like covalent aggregation in the presence of a denaturant or when α-

synuclein is present in non-covalent fibrils.  I also show that pre-formed oxidative 

aggregates are not incorporated into non-covalent fibrils.  These data provide 

insight as to how dityrosine may be formed in Lewy bodies seen in Parkinson’s 

disease.  Additionally, I detail the progress made toward studying the toxicity of 

α-synuclein aggregates using neuronal microinjection. 
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Chapter 1 Introduction 

  Parkinson’s disease, the second most common neurodegenerative 

disorder (1), affects over 1.5 million people in the United States, with over 60,000 

new diagnoses each year (2). Parkinson’s disease manifests itself in three ways: 

parkinsonism, death of dopaminergic (DAergic) neurons with a resulting 

decrease in dopamine levels, and the formation of Lewy bodies (3). 

Parkinsonism is a syndrome that encompasses physical symptoms such as 

bradykinesia (slowed movement), tremor, rigidity, and postural instability.  These 

symptoms arise after the death of 60% - 70% of the DAergic cells in the 

substantia nigra pars compacta (4), which causes an 80% drop in dopamine 

levels.  Lewy bodies are protein inclusions in the remaining neurons.  These 

inclusions have many components, including cytoskeletal proteins such as 

tubulin (5) and microtubule-associated protein-2 (6), lipids, neurofilaments (7), 

and cytochrome c (8).  The main component of Lewy bodies is α-synuclein (9), 

much of which is covalently cross-linked.  The disease has three main causes: 

environmental, genetic, and idiopathic (also known as age-related). 

1.1 Causes of Parkinson’s disease 

 1.1.1 Environmental  

  In 1983, the first chemical agent to cause permanent parkinsonism in 

humans was identified (10).  1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
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 (MPTP) is a byproduct of the incorrect synthesis of 1-methyl-4-phenyl-4-

propionoxy-piperidine (MPPP), an opioid similar to morphine (Figure 1.1).  MPTP 

readily crosses the blood brain barrier (11), where it is oxidized to 1-methyl-4-

phenylpyridinium (MPP+, Figure 1.1) by monoamine oxidase B (12).  MPP+ then 

enters DAergic cells via the dopamine transporter, where it is trafficked to the 

mitochondria and inhibits complex I of the electron transport chain (13).  This 

inhibition causes the generation of reactive oxygen species (ROS) such as 

superoxide (O2
-).  To date, MPTP is the only chemical agent that reproduces the 

three hallmarks of Parkinson’s disease in animal models (14-16) and causes 

permanent parkinsonism in humans. 

  Paraquat, a herbicide, has a structure similar to MPP+ (Figure 1.2), and 

has therefore been investigated as a possible parkinsonian toxin.  Paraquat 

mimics many of the symptoms of Parkinson’s in animal models through complex 

I (17) and complex III (18) inhibition.  When complex III is inhibited, it can leak 

excess electrons to oxygen, resulting in the generation of O2
- (19).  Paraquat is 

an especially potent ROS generator because it undergoes redox cycling using 

various enzymes in the cell (including complex I and complex III) to generate O2
- 

and regenerate the paraquat molecule (Figure 1.2).  While no confirmed cases of 

paraquat-induced Parkinson’s disease have been reported, epidemiological 

evidence suggests a higher likelihood of the disease in individuals exposed to 

paraquat in agricultural settings (20, 21). 

  Several other pesticides (Figure 1.3) have also been used to replicate 

Parkinson’s in animal models, although none of them reproduce all three of the 



3 
 

hallmarks seen in humans.  The insecticide rotenone elucidates symptoms via 

complex I inhibition (22), but due to its short half life in soil and water (23) and the 

efficiency which the liver breaks it down (14), it is unlikely to cause parkinsonism 

in humans.  Dieldrin, an insecticide, inhibits complex III (24), causing the 

generation of O2
- and cytochrome c release (25).  No causal relationship has 

been demonstrated in humans, but postmortem brain samples of Parkinson’s 

disease sufferers show an elevated level of dieldrin compared to cohort samples 

(26).  The fungicide maneb, however, has been shown to cause permanent 

parkinsonism in humans (27) by complex III inhibition (28). 

  Regardless of the symptoms they induce in animals or humans, all five of 

these chemical agents work by inhibition of electron transfer in the mitochondria 

and the generation of ROS, and their properties are summarized in Table 1.1. 

 1.1.2 Genetic  

  While only 5-10% of Parkinson’s disease sufferers have a monogenic form 

of the disease (29), genetic causes have been the most widely studied because 

they can offer simple insight into the mechanisms of this complicated disease.  

To date, eleven genes have been identified which, through Mendelian inheritance 

or spontaneous mutation, either cause Parkinson’s disease or increase disease 

susceptibility (Table 1.2). 

  α-Synuclein was the first such gene identified, yet its cellular function 

remains unclear.  It appears to regulate dopamine homeostasis by trafficking the 

dopamine transporter away from the cell surface (30) using the microtubule 

network (31).  α-Synuclein’s most striking characteristic, in vivo and in vitro, is its 
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propensity to aggregate (32).  This aggregation propensity is most affected by 

protein concentration and conformation.  Duplications or triplications of the gene 

cause earlier onset and increased severity of symptoms in a dose-dependent 

manner (33-35), and mutations in α-synuclein’s promoter region are a risk factor 

for the idiopathic disease.  The three identified point mutations, A30P, A53T, and 

E46K, all increase the propensity of the affected protein to aggregate in vitro (36, 

37), and impair the proteasome system in vivo (38).  Additionally, post-

translational modifications of the C-terminus of α-synuclein, such as oxidation or 

phosphorylation, disrupt the protein’s conformation and lead to increased 

aggregation (39, 40). 

  Five other Parkinson’s disease-associated proteins are involved in protein 

degradation.  Ubiquitin carboxyl-terminal hydrolase L1, UCH-L1, is a ubiquitin 

hydrolase and E3 ligase which plays a dual role in Parkinson’s.  The I93M 

mutation causes autosomal-dominant late-onset Parkinson’s (41) by increasing 

ligase function, which decreases the pool of ubiquitin by causing an accumulation 

of ubiquitinated α-synuclein (42).  Conversely, the S18Y mutation has normal 

hydrolase function but decreased ligase function (42).  This mutation facilitates 

protein degradation and ubiquitin recycling, which protects against Parkinson’s.  

Parkin is another E3 ligase involved in Parkinson’s disease, in which mutations 

confer a loss of ligase function (43-45) causing autosomal-recessive juvenile and 

early-onset Parkinson’s disease (44).  Multiple protein targets of parkin have 

been identified, including the cytoskeletal proteins α- and β-tubulin (46), which 

are found in Lewy bodies, and the dopamine transporter (47).  Interestingly, 
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parkin interacts with a glycosylated form of α-synuclein (48) and can ameliorate 

the cytotoxic effects of α-synuclein overexpression (49, 50).  Parkin can also 

deactivate synphilin-1 (51), which interacts with α-synuclein to promote protein 

inclusion formation.  The inheritable R621C mutation of synphilin-1 does not 

disrupt its interaction with parkin or α-synuclein, but leads to a decrease in 

inclusion formation (52).  Two other Parkinson’s-associated proteins are also 

involved in lysosomal protein degradation.  Atp13A2’s normal cellular function is 

unclear, but in autosomal-recessive juvenile and early-onset Parkinson’s disease 

(53, 54) it is degraded by the proteasome system instead of being inserted into 

the lysosomal membrane where it normally functions (55).  Mutations in β-

glucocerebrosidase, a lysosomal glucose metabolism protein, cause the 

lysosomal storage disorder Gaucher’s (56) disease, and confer a susceptibility to 

Parkinson’s disease (57, 58) through an unknown mechanism. 

  Similar to chemical causes of Parkinson’s, mitochondrial function and 

oxidative stress play a role in genetic causes as well.  PTEN induced putative 

kinase 1, pink1, is a mitochondrial kinase that acts on several protein targets.  

Mutations in pink1 cause autosomal-recessive early-onset Parkinson’s disease 

(59).  Inactivation of pink1 in vivo causes oxidative stress-induced apoptosis (60) 

and pink1 mutations cause respiratory chain malfunctions in patients with 

Parkinson’s (61).  Pink1 can phosphorylate parkin, which is then trafficked to the 

mitochondria, where it induces oxidative stress (62, 63) and causes 

mitochondrial dysfunction.  The mitochondrial serine protease omi is also a 

phosphorylation target of pink1 (64), and this phosphorylation increases omi’s 
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proteolytic activity (64).  Insufficient evidence exists to suggest that the G399S 

and A141S omi mutations are associated with Parkinson’s disease in humans 

(65, 66), but these mutations, and omi deletion, cause parkinsonism in mouse 

models (67, 68).  While the link between dj-1 mutation and autosomal-recessive 

early-onset Parkinson’s disease (69) has been established, its function is less 

clear.  It is most likely involved in oxidative stress protection because it sustains 

mitochondrial complex I in vitro (70) and dj-1 null mice are more sensitive to 

MPTP-induced parkinsonism (71). 

  The least-understood class of Parkinson’s disease-associated proteins is 

those involved in cytoskeletal maintenance.  Tau is the major neuronal 

microtubule-associated protein and binds tubulin to promote assembly of the 

cytoskeleton (72).  In Alzheimer’s pathology, hyper-phosphorylation causes tau 

to aggregate into filaments (73-76), the concentration of which is directly 

proportional to the severity of dementia (77).  Hyper-phosphorylated tau cannot 

bind tubulin (78) and disrupts microtubules (79, 80).  Recently, genomic 

screening has revealed single nucleotide polymorphisms [all of which are linked 

to the H1 haplotype (81)] associated with a higher Parkinson’s disease risk (82).  

This association implies some common links between the two neurodegenerative 

disorders.  Mutations in leucine-rich repeat kinase 2, LRRK2, are the most 

frequent genetic cause of Parkinson’s disease, accounting for 3.6% of sporadic 

cases (83) and 10% of familial cases (84).  Its cellular function is unknown, but 

the protein has numerous domains (85) in addition to a kinase domain, including 

a WD40 repeat (coordinates multi-protein complexes), a Ras/GTPase domain 
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(cytoskeleton rearrangement), and a leucine-rich repeat domain.  Because it is 

abundantly expressed throughout the central nervous system (86), LRRK2 most 

likely performs a basic cellular function, possibly cytoskeletal remodeling using 

the GTPase domain.  Conversely, the kinase domain appears to be most 

important in Parkinson’s because some mutations confer a toxic increase of 

kinase function in vitro (87).  Interestingly, for the G2019S mutation, disease 

penetrance increases from 17% at age 50 to 85% at age 70 (88).  This increase 

suggests that LRRK2 mutations are not a direct cause of Parkinson’s, but 

interact with other age-related cellular processes to confer an increased risk of 

disease. 

 1.1.3 Age-Related  

  Age is the most common risk factor in Parkinson’s disease (89).  As seen 

in Figure 1.4, the rate of incidence increases exponentially starting at age 50 

(90).  Interestingly, advancing age not only increases the risk of developing the 

disease, but also increases the rate of disease progression.  An older age of 

onset has been correlated to a faster rate of progression for cognitive (91), motor 

(92, 93), and gait and postural (94) symptoms.  These data indicate a synergy 

between Parkinson’s disease and the normal aging process. 

  While the aging process occurs in every living organism, the mechanisms 

that lead to aging are not fully understood.  Possible sources include 

mitochondrial mutations (95), chromosomal damage through shortened 

telomeres (96), inappropriate cross-linking of proteins and other cellular 

components (97), and a disruption of cellular signaling leading to senescence 
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(98).  Oxidative stress is most likely an underlying cause in all these 

mechanisms, leading to the “oxidative stress theory” of aging (99), which posits 

that an increased burden of ROS leads to changes in cellular function and, 

ultimately, death. 

 

  There are many causes of Parkinson’s disease which may act alone or in 

concert.  Whether induced by chemical agents, genetic factors, or general 

aspects of aging, increased oxidative stress plays a key role in the disease. 

1.2 α-Synuclein 

  α-Synuclein is a 140-amino acid, intrinsically disordered protein (100) with 

three distinct regions (Figure 1.5A).  The N-terminal region is positively charged, 

the hydrophobic core (also known as the non-amyloid component) comprises 

residues 61-90, and the C-terminal region is negatively charged.  α-Synuclein 

also has four unevenly distributed tyrosine residues, one (Y39) near the N-

terminus and three (Y125, Y133, and Y136) near the C-terminus.  Although 

disordered, the protein adopts a compact state (26-29) wherein the charged 

termini collapse around the hydrophobic core (Figure 1.5B).  Multiple factors are 

involved in the mechanism of Parkinson’s disease, but both non-covalent and 

covalent aggregation of α-synuclein are thought to play a key role (101). 

1.2.1 Lewy Bodies 

Lewy bodies in the substantia nigra are one of the hallmarks of 

Parkinson’s disease and they form due to the aggregation of α-synuclein.  The 

pathway of Lewy body formation is: 
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α-synuclein  monomer  → oligomer/protofibril → amyloid fibril → Lewy body 

Some evidence suggests that Lewy bodies are toxic to neurons, either by 

up-regulating apoptotic factors (102) or impairing the ubiquitin-proteasome 

system (103), or simply by providing a physical barrier to normal cell trafficking.  

However, the bulk of the biochemical evidence suggests that it is actually an 

intermediate species, specifically the annular or ring-shaped form of the 

protofibril, which is most toxic to neurons.  Two of the α-synuclein mutations 

associated with Parkinson’s disease, A30P and A53T, both promote the 

conversion of monomer to protofibril, and A30P also disfavors the conversion of 

protofibril to fibril (104).  Protofibrils can take on an annular conformation, 

especially when associated with lipid vesicles (105) or brain-derived membranes 

(106).  Annular protofibrils can permeate membranes, both α-synuclein 

associated with lipid vesicles (105) and the Alzheimer’s protein Aβ associated 

with PC12 cells (107).  Pre-fibrillar amyloid aggregates of proteins not associated 

with any known disease are also toxic to cultured cells (108), suggesting that the 

intermediate protofibril form is a generic cell toxin. 

While the main component of Lewy bodies is non-covalently-aggregated 

α-synuclein, covalent aggregation may also play a role in Lewy body 

development.  Nitrotyrosine, a sign of nitrative stress, has been identified as a 

component of Lewy bodies (109).  The oxidative stress marker dityrosine has 

also been detected in brain hydrolysates of murine models of Parkinson’s 

disease (110).  Understanding the process of Lewy body formation and the 
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interplay between non-covalent and covalent aggregation in that process is one 

of the keys to understanding Parkinson’s disease. 

 1.2.2 Non-covalent Aggregation 

  The α-synuclein fibrils observed in patients with Parkinson’s are linear rods, 

5-10 nm in diameter, much like those seen in other amyloid diseases (111).  The 

fibrils comprise insoluble cross-β-sheets, and their growth in vitro exhibits a 

sigmoidal time dependence (112) as seen in Figure 1.6.  Prior to fibril growth 

there is a lag, the length of which depends on factors such as protein 

concentration and pH (113). This lag phase also indicates that the formation of 

fibrils is a nucleation-dependant process (114, 115). Kinetic analysis of fibril 

formation reveals that the required nucleus is only a single α-synuclein molecule 

(111), meaning that the natively disordered monomer must undergo a folding 

event before being converted into protofibrils. Following the lag is a period of 

elongation in which fibril concentration increases exponentially and plateaus 

(111). Fibril growth can be monitored by using thioflavin-T, which experiences a 

shift in its excitation spectrum when bound to β-sheets in fibrils, allowing it to be 

selectively excited at 442 nm (116). 

 1.2.3 Covalent Aggregation 

  Oxidative stress and α-synuclein play some role in Parkinson’s disease.  

Fenton-chemistry based oxidation systems (i.e., a transition metal plus H2O2) 

have been used extensively in vitro in attempts to reproduce in vivo covalent 

aggregation of α-synuclein.  This mechanism was initially supported by the 

observation that metals accelerate the fibrillization of α-synuclein (117), but these 
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systems are not accurate mimics (118, 119).  For instance, although dityrosine 

(tyrosines with a covalent bond between the 3/5 carbon atoms) is observed in the 

MPTP Parkinson’s disease model, the covalent aggregation induced by several 

Fenton chemistry systems is tyrosine-independent (119).  In fact, the HO  

generated by Cu2+ plus H2O2 impedes dityrosine formation in the Alzheimer’s 

disease protein, Aβ (118).   

  The cytochrome c/H2O2 oxidation system (120), referred to here as the 

peroxidative system, is another model based on possible cellular mechanisms.  

In times of oxidative stress, ROS are produced in the mitochondria.  Cytochrome 

c and ROS can leak into the cytosol (121), possibly aided by pores in the 

mitochondrial membrane formed by α-synuclein (122).  This system is a better 

model for α-synuclein covalent aggregation for two reasons.  First, the 

peroxidative system causes tyrosine-dependent covalent aggregation of α-

synuclein (123), similar to the dityrosine seen in murine models of Parkinson’s 

disease. Second, the peroxidative system causes the direct transfer of a free 

radical from cytochrome c to the acceptor protein (124, 125) without a HO  

intermediate.   

 

  Studies of environmental, genetic, and age-related causes of Parkinson’s 

disease reveal that both the process of oxidative stress and the aggregation of α-

synuclein play key roles in the pathogenesis of the disease.  As demonstrated 

above, much research has been done on each of these processes separately, 

but little is known about their interaction in Parkinson’s disease.  My research has 
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sought to address this disparity by answering two questions.  What is the role of 

each of α-synuclein’s tyrosines in the process of oxidative aggregation, and at 

what stage in the non-covalent aggregation process are covalent aggregates 

formed?  
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1.3 Figures and Tables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 Structures of MPTP, MPP+, and MPPP 
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Figure 1.2 Paraquat redox cycle. 
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Figure 1.3 Structures of rotenone, dieldrin, and maneb 
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Chemical parkinsonism/ 
Motor defects 

DAergic cell 
death/ [DA] 
decrease 

α-syn 
aggregation/ 

LB-like 
protein 

aggregates 

Mechanism of 
action 

Known 
damage to 

humans 

MPTP 
All 

parkinsonism 
symptoms (14) 

In vivo cell 
death and 

[DA] decrease 
(15) 

None observed 
(15), except in 
older monkeys 

(16) 

Mitochondrial 
complex I 

inhibition (11) 

Permanent 
parkinsonism 

(10) 

Paraquat Locomotor 
deficits (126) 

In vitro cell 
death (65-67) 

α-syn positive 
LB-like 

aggregates 
(127) 

Mitochondrial 
complex I (17) 
and complex 

III (18) 
inhibition,  
O2

- (19) 

Epidemiological 
evidence  
(20, 21) 

Rotenone 
Bradykinesia 
and rigidity 

(128) 

In vivo cell 
death (129, 

130) 

α-syn positive 
LB-like 

aggregates 
(73, 75) 

Mitochondrial 
complex I 

inhibition (22) 

Low probability 
(14) 

Dieldrin Not studied In vitro cell 
death (131) 

α-syn 
fibrillization and 

aggregation 
(132, 133) 

Mitochondrial 
complex III 

inhibition (24),  
O2

- and 
cytochrome c 
release (25) 

Increased levels 
in PD patients  

(26) 

Maneb Locomotor 
deficits (134) 

In vivo cell 
death (134) Not studied 

Mitochondrial 
complex III 

inhibition (28) 

Permanent 
parkinsonism 

(27) 

 

Table 1.1 Chemicals that cause parkinsonism   
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locus gene protein function inheritance onset 

PARK1/ 
PARK4 SNCA α-synuclein 

synaptic 
dopamine 

vesicle 
homeostasis 

AD early 

PARK5 UCH-L1 ubiquitin carboxyl-
terminal hydrolase L1 

ubiquitin 
hydrolase/ 
E3 ligase 

AD late 

PARK2 Parkin parkin ubiquitin E3 
ligase AR 

juvenile 
and 
early 

n. a. SNCAIP synphillin-1 interacts with 
α-synuclein   AD late 

PARK9 ATP13A2 atp13A2 lysosomal 
function AR 

juvenile 
and 
early 

n. a. GBA β- glucocerebrosidase 
lysosomal 
glucose 

metabolism 
u. k. u. k. 

PARK6 PINK1 PTEN induced putative 
kinase 1 

mitochondrial 
kinase AR early 

PARK13 Omi/HtrA2 omi or htrA2 
mitochondrial 

serine 
protease 

AD u.k. 

PARK7 DJ-1 dj-1 
oxidative 

stress 
protection 

AR early 

n. a. TAU tau microtubule 
assembly u. k. u. k. 

PARK8 LRRK2 leucine-rich repeat 
kinase 2/ dardarin 

kinase/ 
cytoskeletal 
regulation 

AD late 

 

Table 1.2 Genetic causes of Parkinson’s disease.  

AD = autosomal-dominant, AR = autosomal-recessive, n. a. = not applicable, 

u. k. = unknown 
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Figure 1.4 Incidence rate of Parkinson’s disease in Olmsted County, 
Minnesota from 1976-1990.  Data taken from (90). 
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Figure 1.5 α-Synuclein structure and conformation.  A schematic 
representation of α-synuclein’s primary structure showing relevant regions, net 
charges, and position numbers (A), and a cartoon of its collapsed conformation 
(B). The positions of the tyrosine residues are indicated in green. 
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Figure 1.6 Representation of amyloid fibril growth. 
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Chapter 2 Gene Construction and Protein Expression, 

Purification, and Fluorescent Labeling of Wild-Type and 

Variant Recombinant Human α-Synuclein and 

Cytochrome c 

Reproduced in part with permission from Biochemistry. Copyright 2008 American 

Chemical Society 

2.1 Introduction 

Western blot antibody staining has traditionally been used to detect α-

synuclein covalent aggregation (1-4). This technique, however, has several 

limitations.  First, proteins must be transferred from the poly-acrylamide gel into a 

nitrocellulose or polyvinylidene fluoride membrane.  Because the α-synuclein 

aggregation reaction encompasses protein species from 12 to over 200 kDa, 

different transfer conditions must be used for different areas of the gel.  This 

situation often leads to inconsistencies in the appearance of the protein bands in 

the two halves of the transfer.  Second, the primary antibodies may not recognize 

all covalently aggregated species with the same sensitivity, leading to a 

disconnection between the intensity and the amount of protein aggregate in each 

band.  Last, both α-synuclein and cytochrome c are used in the covalent 

aggregation reaction and both proteins be monitored.  Since antibody staining
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does not allow simultaneous visualization of the two proteins, the membrane 

must be probed for α-synuclein, stripped, and re-probed for cytochrome c.  This 

process can take up to four days.  To overcome these obstacles, I developed a 

method for fluorescently labeling each protein before the covalent aggregation 

process.  This allows both proteins to be visualized in the polyacrylamide gel, 

maintains the correlation between band intensity and amount of protein, and 

facilitates the completion of multiple experiments within a single day. 

2.2 Materials and Methods 

2.2.1 Preparation of Mutant Recombinant Human α-Synucleins and 

Cytochrome c 

The wild-type α-synuclein (5), human cytochrome c (6) and the no-tyrosine 

α-synuclein mutant (1) were used as described. Twenty-five additional human α-

synuclein mutants in the pT7-7 vector were created by using a site-directed 

mutagenesis kit (QuickChange, Stratagene, La Jolla, CA).  Mutants with one, 

two, or three tyrosine codons converted to phenylalanine codons were created 

with the following forward primers from the Nucleic Acid Core Facility in the UNC 

Lineberger Cancer Center (nucleotide changes are underlined): 

Y39F unknown 

Y125F 5’ CCTGACAATGAGGCTTTTGAAATGCCTTCTGAG 3’ 

Y133F 5’ CTTCTGAGGAAGGGTTTCAAGACTACGAACC 3’ 

Y136F 5’ GCCTTCTGAGGAAGGGTACCAAGACTTCGAACCTG 

AAGCCTAAC 3’ 

Y133F,Y136F 5’ CTTCTGAGGAAGGGTTTCAAGACTTCGAACC 3’ 
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Valine-to-cysteine mutations were introduced in the wild-type α-synuclein 

construct, the tyrosine-combination mutants, and the wild-type human 

cytochrome c construct for labeling purposes.  Using the following forward 

primers, all α-synucleins had valine 3 mutated to cysteine, and an additional wild-

type construct was generated with valine 66 mutated to cysteine: 

V3C 5’ GGAGATATACATATGGATTGCTTCATGAAAGGACTTTCAA 3’ 

V66C 5’ CAAAGAGCAAGTGACAAATTGCGGAGGAGCAGTGGTGACG 3’ 

Using the following forward primer, the wild-type human cytochrome c construct 

had lysine 39 mutated to cysteine: 

K39C 5' CTGTTCGGCCGCTGCACGGGCCAGGC 3' 

All nucleotide sequences were confirmed by the UNC Automated DNA 

Sequencing Facility.  

2.2.2 Growth, Purification, and Storage of Wild-Type and Variant 

Recombinant Human α-Synucleins and Cytochromes c 

Wild-type and mutant α-synucleins were transformed into BL21 E. coli 

(Invitrogen, Carlsbad, CA).  A single colony was used to inoculate 20 mL of Miller 

Luria Broth (Fisher Scientific, Fair Lawn, NJ) supplemented with 100 mg L-1 

ampicillin (LBamp), and the resulting culture was grown at 37 C with shaking 

overnight.  The overnight culture was used to inoculate an additional 1L of LBamp, 

which was then grown at 37 C with shaking until it reached an optical densityat 

600 nm (O.D.600) of 0.6-0.8.  The culture was then induced with isopropyl β-D-1-
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thiogalactopyranoside (IPTG) to a final concentration of 1 mM.  After 4 h, the 

cells were harvested via centrifugation at 4,500 g for 30 min and stored at -20 C. 

The cells were resuspended in 20 mL of lysis buffer per liter of culture (20-

mM Tris, pH 8.0; 1-mM ethylenediamine-tetraacetic acid [EDTA]; 1-mM phenyl-

methylsulphonyl fluoride [PMSF, Pierce, Rockford, IL]; 1-mM dithiothreitol [DTT, 

only for V3C or V66C variants]).  After sonication (Sonic Dismemberator, Fisher 

Scientific, Fair Lawn, NJ) for 5 min at a 70% duty cycle, the cells were boiled for 

30 min then centrifuged at 20,200 g for 30 min.  For the V3C or V66C variants, 

the resulting supernatant was supplemented with DTT to a final concentration of 

1M.  All variants were subjected to a 10 g L-1 streptomycin sulfate cut to 

precipitate nucleic acids then centrifuged at 20,200 g for 30 min. The resulting 

supernatant was subjected to a 361 g L-1 (NH4)2SO4 cut to precipitate α-

synuclein then centrifuged at 20,200 g for 30 min.  The protein pellet was 

resuspended in 20 mL of buffer (20-mM Tris, pH 8.0, 1-mM DTT [only for V3C or 

V66C variants]) and dialyzed (SnakeSkin, 10,000 MWCO, Pierce) into 2 L of the 

same buffer at 4 C overnight.  The protein was further purified via 

chromatography using a HiLoad 16/10 Q Sepharose High Performance column 

(GE Healthcare, Uppsala, Sweden) in dialysis buffer with a linear gradient from 

0-M to 1-M NaCl.  Fractions containing pure α-synuclein (as determined by 

Coomassie-stained sodium dodecyl sulfate polyacrylamide gel electrophoresis 

[SDS-PAGE]) were combined and dialyzed (SnakeSkin, 10,000 MWCO) into 

water at 4 C overnight.  The protein concentration was determined with the 

Lowry method (7) (Modified Lowry Protein Assay Kit, Pierce) with human 
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recombinant cytochrome c (6) as a standard. After purification, proteins were 

aliquoted and lyophilized for storage at -80 C. 

Wild-type and mutant cytochromes c were transformed into BL21 E. coli.  

A single colony was used to inoculate 50 mL of terrific broth (12 g L-1tryptone, 24 

g L-1 yeast extract, 5% glycerol, 12.6 g L-1 KH2PO4, 2.3 g L-1 K2HPO4) 

supplemented with 100 mg L-1 ampicillin (TBamp).  The resulting culture was 

grown at 37 C with shaking overnight.  The overnight culture was used to 

inoculate an additional 1L of TBamp, which was then grown at 37 C with shaking 

for 24 - 48 h. The cells were harvested via centrifugation at 4,500 g. 

The cells were resuspended in 20 mL of lysis buffer per liter of culture (20-

mM NaH2PO4, pH 7.4; 1-mM EDTA; 1-mM PMSF; 1-mM DTT [K39C variant 

only]).  After four rounds of sonication for 5 min at a 50% duty cycle, the cells 

were centrifuged at 20,200 g for 30 min.  The resulting supernatant was 

subjected to a 10 g L-1 streptomycin sulfate cut to precipitate nucleic acids then 

centrifuged at 20,200 g for 30 min. The resulting supernatant was subjected to a 

350 g L-1 (NH4)2SO4 cut to precipitate unwanted proteins then centrifuged at 

20,200 g for 30 min.  The cytochrome c supernatant was dialyzed (SnakeSkin, 

10,000 MWCO) into 10 L of water (with 1-mM DTT for K39C variant) at 4 C 

overnight.  The protein was further purified via chromatography using a HiLoad 

16/10 SP Sepharose High Performance column (GE Healthcare) in buffer (20-

mM NaH2PO4, pH 7.4; 1-mM DTT [K39C variant only]) with at linear gradient 

from 0-M to 1-M NaCl.  Fractions containing pure cytochrome c (as determined 

by Coomassie-stained SDS-PAGE) were combined and dialyzed (SnakeSkin, 
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10,000 MWCO) into water at 4 C overnight.  Protein concentration was 

determined from the absorbance at 410 nm by using a molar extinction 

coefficient of 106.1 mM-1 cm-1(8). After purification, proteins were aliquoted and 

lyophilized for storage at -80 C. 

2.2.3 Alexa Fluor Labeling of Wild-Type and Variant Recombinant 

Human α-Synucleins and Cytochrome c 

Sixty nmol of V3C or V66C α-synuclein were reacted with 300 nmol of 

Alexa Fluor 633 C5 maleimide (Invitrogen) in 20-mM Tris, pH 7.5 for 2 h at room 

temperature and then at 4 C for 18-66 h.  Unreacted cysteines were blocked with 

3 mmol of iodoacetamide (IAA).  Unreacted dye was removed with a two-step 

chromatography process.  First, the bulk of the free dye was removed using a 

HiTrap desalting column (GE Healthcare) in 20-mM phosphate buffer, pH 7.4, 

containing 150-mM NaCl and 15% v/v acetonitrile.  A subsequent, more rigorous, 

purification was performed by using a Superdex200 10/300 column (GE 

Healthcare) in the same buffer.  Fractions with no remaining unreacted dye as 

determined by SDS-PAGE were dialyzed (7000 MWCO cassette, Pierce) into 

water, aliquoted and lyophilized for storage at -80 C.  

The K39C variant of cytochrome c was labeled by using Alexa Fluor 488 

C5 maleimide (Invitrogen) and purified in the same way, except that the second 

chromatography step was not required. 

2.2.4 Fibril Growth 

  α-Synuclein (200- M of the pure or a 9:1 mole:mole mixture of pure and 

Alexa Fluor 633 labeled protein) in 20-mM phosphate buffer (pH 7.4), 150-mM 
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NaCl, and 1-mM EDTA was shaken at 37°C and 225 rpm for 48 h.  Fibril growth 

was quantified via thioflavin-T fluorescence in a 96-well plate using the VersaDoc 

MP imager.  Fibrils were separated from α-synuclein monomers and smaller 

aggregates by centrifugation at 17,000 g for 10 min.  Total protein concentration 

of the resulting supernatant was determined via the Lowry method.  The amount 

of Alexa Fluor 633 was determined via absorbance at 655 nm using a molar 

extinction coefficient of 72,000 M-1cm-1 (9). 

2.3 Results and Discussion 

2.3.1 Purification of α-Synuclein Labeled with Alexa Fluor Requires a 

Multi-Step Approach. 

  Initial attempts at removing free Alexa Fluor from the reaction mixture 

using dialysis, as suggested by the manufacturer, resulted in calculated labeling 

ratios of greater than 100%.  To determine if the excess Alexa Fluor was 

attaching to α-synuclein in a covalent or non-covalent manner, MALDI/MS was 

employed.  This technique was chosen because it can detect Alexa Fluor that is 

covalently attached to α-synuclein, and gives an estimate of the extent of labeling 

by comparing the peak intensities of the unlabeled and labeled protein.  As 

shown in Figure 2.1, only one Alexa Fluor molecule is covalently attached to 

each α-synuclein, and not all of the -synuclein molecules are labeled with dye.  

This indicated that the excess Alexa Fluor was binding to the α-synuclein in a 

non-covalent manner.  Although the manufacturer does not provide the structure 

of Alexa Fluor 633, as seen by the structure of Alexa Fluor 488 (Figure 2.2), all of 

the Alexa Fluor dyes share a similar head-group that contains both aromatic and 
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charged regions.  Since α-synuclein has hydrophobic and charged regions that 

are not protected by secondary structure, it is likely that the dye associates with 

the protein via hydrophobic interactions, electrostatic interactions, or both.  To 

overcome these interactions, the buffer for chromatographic purification was 

changed from water to phosphate-buffered saline with 15% acetonitrile.  Also, 

because such a large excess of dye is required to produce a significant degree of 

labeling, an additional gel-filtration step was added after desalting.  These 

changes yielded a labeling efficiency of 45.0% for the WT:V66C variant (Table 

2.1), which agrees with the calculated ratio from the MS peak intensity data of 

50%.  While labeling efficiencies vary greatly between the variants, the 

differences reflect the batch in which the protein was labeled, not any inherent 

differences in the variants.  Because the labeled protein only made up 

approximately 10% of the total α-synuclein, labeling efficiencies over 10% were 

deemed acceptable for further use. 

2.3.2 Position of Alexa Fluor 633 on α-Synuclein does Not Affect α-

Synuclein Behavior. 

 Wild-type α-synuclein was created with Alexa Fluor attached at either 

cysteine 3 or cysteine 66 to ensure that the position of the Alexa Fluor dye did 

not affect the behavior of the protein in oxidative aggregation reactions (see 

Chapter 3).  These sites were chosen because they are in highly dynamic 

regions of the protein (10) (which decreases the possibility that labeling might 

disrupt native conformation).  As seen in Figure 2.4, regardless of Alexa Fluor 

position, both cytochrome c and H2O2 are required for tyrosine-dependant α-
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synuclein aggregation, and both α-synuclein variants exhibit the same 

aggregation pattern.   

Since position 66 is in the core needed for fibril formation (11), position 3 

was chosen for all subsequent studies.  As seen in Figure 2.5, the fibril pellet of 

unlabeled α-synuclein is white, and the fibril pellet of Alexa Fluor 633 labeled α-

synuclein is blue, indicating that the labeled protein is capable of achieving the 

conformation needed for fibril formation.  Additionally, the unlabeled:labeled ratio 

of protein that was not incorporated into the fibrils was 9:1, the same as the initial 

ratio.  These observations indicate that the Alexa Fluor labeled protein is neither 

preferentially included nor excluded from the fibrils, compared to the unlabeled 

protein. 

2.3.3 Alexa Fluor 488 Only Labels Cytochrome c at the Added Cys39, 

Not at the Endogenous Cys14 or Cys17. 

  Human cytochrome c contains two endogenous cysteine residues at 

positions 14 and 17, which are covalently attached to the heme.  An additional 

cysteine was introduced at position 39 to facilitate Alexa Fluor binding.  This site 

was chosen because the analogous site in yeast cytochrome c has been used 

successfully to label the protein with exogenous molecules without affecting the 

structure or function of the protein (12).  To confirm that the Alexa Fluor reacted 

exclusively with cysteine 39, MALDI/MS was employed following tryptic digestion 

of the protein.  As seen in Figure 2.6, the cysteine-containing fragments 

(residues 14-22 and 39-55) are visible in the unlabeled protein sample.  As 

expected, the 39-55 fragment is barely detectable in the labeled protein sample, 
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while a peak corresponding to the 39-55 fragment bound with Alexa Fluor 488 is 

visible.  Also, no peak is detected for the mass of the 14-22 fragment bound to 

Alexa Fluor 488. 

2.4 Conclusions 

Labeling proteins with Alexa Fluor maleimide dye is an excellent way to 

monitor proteins in a variety of biological and biochemical experiments.  Since 

cysteine is the second-to-least often used amino acid in proteins (13), it is 

possible to singly-label a wide range of proteins, either using an endogenous 

cysteine or by introducing one via site-directed mutagenesis.  The dyes come in 

a range of colors, allowing the simultaneous monitoring of several proteins in a 

single setting.  Although labeling efficiencies depend on reaction conditions, 

adjustment of reaction parameters and the specific dye used can provide labeling 

efficiencies over 80%, which are sufficient for most biological and biochemical 

experiments.  Lastly, a single sample of dye-labeled protein can be analyzed with 

multiple techniques or used in multiple types of experiments, which can greatly 

accelerate method development and data acquisition.  
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2.5 Figures and Tables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 MALDI/MS of α-synuclein with or without Alexa Fluor 633 label. 
Panel A: WT:V66C.  The mass peak of the unmodified protein is indicated.  
Panel B: WT:V66C labeled with Alexa Fluor 633.  Mass shifts representing the 
binding of iodoacetamide (+~180) or Alexa Fluor 633 (+~1100) to the protein are 
indicated.  Panel C: Y133F:V3C. The mass peak of the unmodified protein is 
indicated.  Panel D: Y133F:V3C labeled with Alexa Fluor 633.  Mass shifts 
representing the binding of iodoacetamide (+~180) or Alexa Fluor 633 (+~1100) 
to the protein are indicated. 
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Figure 2.2 Structure of Alexa Fluor 488 C5 maleimide. 
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Table 2.1 Labeling efficiencies of α-synuclein with Alexa Fluor 633.  
Efficiencies were calculated by dividing total Alexa Fluor concentration (as 
determined by absorbance at 655 nm, using a molar extinction coefficient of 
72,000 M-1cm-1) by total α-synuclein concentration (as determined by the Lowry 
method, see Materials and Methods). 
  

Variant Labeling Efficiency 
WT:V3C 56.3% 

WT:V66C 45.0% 
Y39F 39.4% 

Y125F 36.1% 
Y133F 31.4% 
Y136F 37.3% 

39/125 only 13.4% 
39/133 only 13.9% 
39/136 only 11.6% 

39 only 98.6% 
125 only 58.5% 
133 only 88.7% 
136 only 87.3% 

noY ~50% 
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Figure 2.3 Position of Alexa Fluor tag does not affect covalent aggregation.  
Panel A: Cytochrome c was incubated with H2O2 to form a molecular weight 
marker.  Panel B:Wild-type α-synuclein, with the Alexa Fluor label at position 3 
(V3C, lanes 1-4), or at position 66 (V66C, lanes 5-8) were combined with various 
combinations of cytochrome c and H2O2 for 90 min., separated on a 10-20% 
gradient polyacrylamide gel, and visualized by fluorescence (green, α-synuclein; 
red, cytochrome c). 
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Figure 2.4 Alexa Fluor 633 labeled α-synuclein is capable of forming fibrils.  
Left Tube: fibrils grown from only unlabeled WT α-synuclein.  Right Tube: Fibrils 
grown from 90% unlabeled WT α-synuclein and 10% WT:V3C α-synuclein 
labeled with Alexa Fluor 633 
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Figure 2.5 MALDI/MS of cytochrome c with or without Alexa Fluor 488 label.  
Top Panel: K39C cytochrome c.  Both cysteine-containing tryptic peptides are 
identifiable, but no masses corresponding to Alexa Fluor-bound peptides are 
detected.  Bottom Panel: K39C cytochrome c labeled with Alexa Fluor 488.  
Alexa Fluor 488 is only found bound to the correct peptide (39-55 fragment). 

[14-22]                  [39-55]  [14-22]+AF488          [39-55]+AF488 

[14-22]                  [39-55]  [14-22]+AF488          [39-55]+AF488 

1100 1200 1300 1400 1500 1800 1900 2000 2100 2200 m/z 
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Chapter 3 α-Synuclein Conformation Affects its 

Tyrosine-Dependent Oxidative Aggregation 

Reproduced in part with permission from Biochemistry. Copyright 2008 American 

Chemical Society 

3.1 Introduction 

  As discussed in Chapter 1, oxidative stress and the aggregation of α-

synuclein are critical components of Parkinson’s disease.  To study the interplay 

between these two processes, it is essential to choose the proper oxidation 

system.  It must produce tyrosine-dependant covalent aggregation of α-synuclein 

and include components that could come in contact with α-synuclein in cells.  

Based on these criteria, I have chosen the cytochrome c/H2O2, also called the 

peroxidative, system.  Our lab has previously shown that the peroxidative system 

causes tyrosine-dependent covalent aggregation of α-synuclein (1), and in times 

of oxidative stress is it possible that cytochrome c and H2O2 can leak into the 

cytosol (2) aided by pores in the mitochondrial membrane formed by α-synuclein 

(3).  To monitor the behavior of α-synuclein in the peroxidative system, I have 

developed a method of fluorescently labeling and purifying α-synuclein and the 

labeled cytochrome c, which allows simultaneous monitoring of both proteins. 

  Here, I shed light on the process of both peroxidative and non-covalent 

aggregation of α-synuclein and how these forms of aggregation may be related.
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Specifically, I address the role of each tyrosine residue and show how the 

protein’s conformation affects covalent aggregation. 

3.2 Materials and Methods 

 3.2.1 Covalent Aggregation Assays 

  α-Synuclein (100 µM, 9:1 unlabeled:Alexa Fluor labeled for wild-type), 

cytochrome c (10 µM, 1:3 unlabeled:Alexa Fluor labeled) and H2O2 (10 mM) were 

reacted in phosphate-buffered saline (PBS: 20-mM Na2HPO4, pH 7.4, 150-mM 

NaCl) at 37°C for 90 min.  To compensate for the varying Alexa Fluor labeling 

efficiencies of α-synuclein variants, the amount of labeled α-synuclein was 

adjusted so that each variant had the same total fluorescence as the wild-type 

control sample.  Control experiments show that this adjustment does not affect 

the conclusions. For the cytochrome c control reaction, 100-µM cytochrome c 

(100% Alexa Fluor labeled) and 10-mM H2O2 were reacted under the same 

conditions as above. Samples were resolved by electrophoresis on 10-20% 

gradient sodium dodecyl sulfate (SDS) polyacrylamide gels (PAG) (Criterion, 

BioRad) for 75 min at 200 V.  Gels were analyzed for fluorescence with a 

VersaDoc MP imager (BioRad) and for total protein content with Coomassie Blue 

staining. 

 3.2.2 Fibril Formation 

  α-Synuclein (200 µM) in PBS with 1-mM EDTA was shaken at 37°C and 

225 rpm for 48 h.  Fibril growth was quantified via thioflavin-T fluorescence in a 

96-well plate by using the VersaDoc MP imager.  Cytochrome c (final 

concentration 20 µM) and H2O2 (final concentration 20 mM) were added to the 
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reaction either at the beginning or at the end of the shaking period.  Fibrils were 

separated from α-synuclein monomers and smaller aggregates by centrifugation 

at 1.7 x 104 g for 10 min.  Fibrils (pellet) and small aggregates (supernatant) were 

treated with SDS and boiled for 10 min before being analyzed by SDS-PAGE as 

described above. 

3.3 Results 

 3.3.1 Alexa Fluor Labeling and Tyrosine-Dependent α-Synuclein 

Covalent Aggregation. 

  The wild-type protein and the variant containing no tyrosines were 

combined with cytochrome c and H2O2. Figure 3.1A shows the results of the 

reaction between cytochrome c and H2O2 as a standard.  As shown in Figure 

3.1B, cytochrome c and H2O2, as well as the tyrosines in α-synuclein, are 

required for oxidative aggregation.  This result agrees with our previous work, 

which used Coomassie Blue and anti-α-synuclein antibody detection (1).  In all 

peroxidative aggregation reactions, a population of α-synuclein monomer is left 

unreacted, even after exposure to additional cytochrome c and H2O2.  This result 

indicates that some portion of the α-synuclein is rendered incapable of covalent 

aggregation after exposure to cytochrome c and H2O2.  This effect has also been 

seen when human neuroglobin is exposed to peroxide (4).  Alexa Fluor labels on 

α-synuclein and cytochrome c allow facile detection of peroxidative covalent 

aggregation of α-synuclein. 

 3.2.2 Reactivity of the Tyrosines in α-Synuclein to Covalent 

Aggregation. 
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  To examine the chemical reactivity of each tyrosine, four variants, each 

containing only one tyrosine, were reacted with cytochrome c and H2O2.  Our 

conditions do not promote non-covalent aggregation of α-synuclein. Figure 3.2A 

shows the reaction between cytochrome c and H2O2 as a standard.  Figure 3.2B 

shows the differing ability of each tyrosine to form inter-molecular dityrosine 

bonds.  Tyrosines 133 and 136 are the most reactive, as shown by distinct dimer 

formation and little α-synuclein degradation. Streaking of the α-synuclein 

because of random backbone cleavage and large amounts of degraded α-

synuclein indicate that tyrosine 125 is less able to accept a radical from 

cytochrome c.  Lack of α-synuclein dimer and large amounts of degradation 

indicate that tyrosine 39 is the least reactive. Tyrosine 39 is so unreactive that it 

does not form an intact heterodimer with cytochrome c as seen in the other 

variants.  Instead, some of the free radicals generated cause degradation of the 

heterodimer.  In summary, the chemical reactivities of the tyrosines in α-

synuclein to form dityrosines increase in the following order: 39, 125, 133/136. 

 3.2.3 Tyrosine 39 is Essential for Wild-Type-Like Covalent Aggregation 

of Native α-Synuclein. 

  To determine how each tyrosine contributes to covalent aggregation, 

seven variants, each containing two or three tyrosines, were reacted with 

cytochrome c and H2O2.  The conditions used do not promote non-covalent 

aggregation of α-synuclein. Figure 3.3A shows the reaction between cytochrome 

c and H2O2 as a standard.  Figure 3.3B shows the participation of each tyrosine 

in oxidative aggregation.  When tyrosine 125, 133, or 136 is removed (Figure 
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3.3B, lanes 3-5), covalently aggregated species are populated in the same 

manner as for the wild-type protein (lane 1).  When the least reactive tyrosine, 

tyrosine 39, is removed (Figure 3.3B, lane 2), even-numbered aggregates (dimer, 

tetramer, and perhaps hexamer and octamer) are favored over the trimer.  In 

general, more uniform covalent aggregate populations are observed when α-

synuclein has at least one tyrosine at each end.  This observation is supported 

by the data in Figure 3.3C, where variants with tyrosine 39 and one other 

tyrosine are examined. 

 3.2.4 Changes in Covalent Aggregation Induced by a Denaturant. 

  If α-synuclein were totally disordered, one would expect that wild-type-like 

covalent aggregation could be achieved if any two tyrosines are present.  

However, as shown in Figure 3.3, tyrosine 39 is essential for wild-type-like 

covalent aggregation.  To determine if protein conformation was the basis of this 

observation, wild-type α-synuclein or the variant with tyrosine 39 removed were 

reacted with cytochrome c and H2O2 in the presence and absence of the 

denaturant, guanidine hydrochloride (300 mM).  A control experiment (not 

shown) illustrates that 300 mM guanidine hydrochloride does not affect radical 

formation as assessed by the bands formed in cytochrome c covalent 

aggregation with and without guanidine hydrochloride.  Coomassie Blue staining 

was used because guanidine hydrochloride interferes with Alexa Fluor 

fluorescence. In the presence of guanidine hydrochloride (Figure 3.4B-C, lane 2), 

large covalent aggregates are more heavily favored for both wild-type and Y39F 

α-synuclein compared to the reaction in the absence of guanidine hydrochloride 
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(Figure 3.4B-C, lane 1). In agreement with NMR-based experiments, these data 

show that α-synuclein must have some structure that can be destroyed by a 

denaturant (5). 

 3.2.5 Fibril Formation and Oxidative Aggregation. 

  To determine if covalent aggregation affects the conformation required for 

non-covalent fibril formation, fibrils were grown from the wild-type protein.  

Coomassie Blue staining was used because the fibril growth conditions interfere 

with Alexa Fluor fluorescence. As a control, either cytochrome c or H2O2 were 

added either at the start or end of fibril growth.  In each of these conditions, no 

covalent aggregates were detected in the supernatant or in the fibrils (data not 

shown).  Figure 3.5B shows the effects of exposing the fibrillization reaction to 

cytochrome c and H2O2 at the beginning or at the end of fibril growth. When 

peroxidation is introduced after 24 h of fibril growth (lanes 3 and 4), the covalent 

aggregates are observed in both the supernatant and the fibrils, and a large fibril 

pellet is observed.  When peroxidation is introduced early, almost no fibrils are 

formed (as indicated by a miniscule pellet) and there is nearly a complete 

absence of covalent aggregates (lane 2).  Instead, nearly all of the covalent 

aggregates are found in the supernatant (lane 1).  Similar results are obtained for 

the variant containing only the tyrosine 39 to phenylalanine mutation (although 

the yield of fibrils is lower).  

3.4 Discussion 

  The present studies examine the role of α-synuclein conformation in its 

peroxidative aggregation. The conformations of this intrinsically disordered 
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protein have been characterized by  NMR, and the shape shown in Figure 1B is 

just one of an ensemble of collapsed conformations adopted by α-synuclein (5).  

While the protein does not have a rigid secondary structure, these conformations 

have similar characteristics, namely that the charged termini collapse onto the 

hydrophobic core.  In each conformation, the region surrounding tyrosine 39 

abuts the core and C-teminus.  This contact keeps tyrosine 39 partially protected 

from the solvent, which accounts for its low reactivity (Figure 3.2).  NMR-detected 

amide-proton exchange experiments also show that tyrosine 39 is protected from 

the solvent, as indicated by its low exchange rate (6). In each conformation, the 

region surrounding tyrosine 125 contacts three other regions (residues 11-13, 30-

75, and 78-99) (7).  Tyrosine 125 is in a region of increased rigidity compared to 

the rest of the protein (5, 7, 8), although the C-terminus as a whole is 

comparatively mobile.  This synergy of rigidity and flexibility accounts for the 

decreased reactivity of tyrosine 125 compared to tyrosines 133 and 136, and its 

increased reactivity compared to tyrosine 39 (Figure 3.2). 

  The collapsed conformation of α-synuclein explains why at least one 

tyrosine on each end of the protein is required to maintain a distribution of 

covalent aggregates similar to that observed for the wild-type protein (Figure 7A).  

When C-terminal tyrosines from two α-synuclein monomers react, the collapsed 

conformation sterically hinders the two remaining C-terminal tyrosines from 

reacting (Figure 3.6B and 3.6C).  Without a tyrosine near the N-terminus, i.e. 

tyrosine 39, dimers are favored (Figure 3.6B), but once a sufficient population of 

dimers accumulates, they tend to form tetramers, hexamers, and higher-order 
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even-numbered aggregates (Figure 3.6C). The lower reactivities of tyrosines 39 

and 125 (Figure 3.2) explain why variants with only these tyrosines (Figure 3.3C, 

lane 1) tend to form fewer higher-order covalent aggregates.  When α-synuclein 

is denatured with guanidine hydrochloride, an N-terminal tyrosine is no longer 

needed for wild-type-like covalent aggregation (Figure 3.6D) because the three 

C-terminal tyrosines are more accessible.  

  α-Synuclein must undergo a folding event to form an aggregation nucleus 

(9) before forming fibrils (Figure 3.6E).  Covalently cross-linking the protein’s 

tyrosines prevents it from folding properly, so that, as shown in Figure 3.5, 

covalent aggregates are not incorporated into fibrils.  In addition, when oxidation 

is introduced at the start of the fibrillization process, little to no fibril growth is 

observed because the concentration of monomer is too low to allow fibrillization 

in the time frame of the experiment.  Once fibrils have assembled (Figure 3.6E), 

however, the termini are stacked (10) so that the tyrosines are solvent-exposed 

and accessible for oxidative cross-linking.  While tyrosine 39 is essential for fibril 

formation (11), an N-terminal tyrosine is not required for covalent aggregation 

within fibrils. This observation is similar to that which is observed when the 

protein is denatured by guanidine hydrochloride. In summary, my data indicate 

that both covalent and non-covalent aggregation of α-synuclein depend on its 

conformation and suggest that covalent aggregation occurs in Lewy bodies after 

the formation of fibrils 
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3.5 Figures and Tables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Alexa Fluor labeling detects peroxidative aggregation. 
Panel A: Cytochrome c was incubated with and without H2O2.  Panel B: α-
Synuclein , either the wild-type protein with the Alexa Fluor label at position 3 
(WT, lanes 1-4), or a no tyrosine variant with the Alexa Fluor label at position 3 
(noY, lanes 5-8) were combined with various combinations of cytochrome c and 
H2O2 for 90 min., separated on a 10-20% gradient polyacrylamide gel, and 
visualized by fluorescence (green, α-synuclein; red, cytochrome c).   
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Figure 3.2 Every tyrosine in α-synuclein is reactive, but to varying extents. 
Panel A: Cytochrome c was incubated with H2O2.  Panel B: The wild-type 
protein (WT) and single tyrosine-containing variants of α-synuclein  were reacted 
with cytochrome c and H2O2 for 90 minutes, and treated as described in the 
caption to Figure 2. 
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Figure 3.3 At least one tyrosine on each end is required for wild-type-like 
covalent aggregation of collapsed α-synuclein.  Panel A: Cytochrome c was 
incubated with H2O2.  Panel B: The wild-type protein and variants containing 
three tyrosines or Panel C: two tyrosines were reacted with cytochrome c and 
H2O2 for 90 minutes, and treated as described in the caption to Figure 2.  Legend 
at top indicates which tyrosines are present in each variant. α-Synuclein  
aggregate species are indicated on the right. 
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Figure 3.4 Tyrosine 39 is not required for full aggregation of denatured α-
synuclein.  Panel A: Molecular weight marker.  Panel B: The wild-type protein 
(WT) and Panel C: the variant with tyrosine 39 removed (Y39F) were reacted 
with cytochrome c and H2O2 in the presence (lanes 2) or absence (lanes 1) of 
guanidine hydrochloride. Samples were separated on a 10-20% gradient 
polyacrylamide gel, and visualized by Coomassie Blue staining. 
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Figure 3.5 Oxidative aggregation interferes with fibril formation.  Panel A: 
Molecular weight marker.  Panel B: The wild-type protein was reacted with 
cytochrome c and H2O2 before (lanes 1 and 2) or after (lanes 3 and 4) fibril 
formation.  Fibrils were isolated by centrifugation. Fibrils (lanes 2 and 4) and the 
supernatant (lanes 1 and 3) were boiled with SDS, separated on 10-20% 
gradient polyacrylamide gels, and visualized with Coomassie Blue. 
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Figure 3.6 α-Synuclein conformation and covalent aggregation.  Panel A: 
When α-synuclein adopts a collapsed conformation, various covalently 
aggregated species are more equally populated when at least one tyrosine is 
present on each end of the protein . Panels B and C: Even-numbered 
aggregates are favored when tyrosine 39 is removed.  Panel D: When α-
synuclein is completely disordered, the largest aggregate species are favored, 
even if tyrosine 39 is removed.  Panel E: Covalent α-synuclein aggregates are 
unable to fold into the beta-sheet aggregation nucleus, but once the folded 
monomers have assembled into protofibrils, the termini are stacked, allowing 
covalent aggregation of any of the tyrosines.  

A 

B C 

D E 
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Chapter 4 Progress Towards Neuronal Microinjection 

of Aggregated α-Synuclein 

4.1 Introduction 

  As described in Chapter 1, the aggregation of α-synuclein is a critical but 

poorly understood process in Parkinson’s disease.  Currently it is not known 

which aggregated form is most toxic in vivo, but in vitro evidence points towards 

the protofibril, particularly the annular or ring-shaped form (1).  Some studies 

have shown that α-synuclein aggregates are toxic to cells, but these studies are 

insufficient for several reasons (2-4).  In all experiments, cells were made to 

express α-synuclein by transfection, in which the level of protein expression is 

not controlled.  This process does not lend itself to quantitative analysis of 

aggregate toxicity because a controlled amount of aggregate cannot be 

introduced to the cells.  Also, these experiments exposed the cells to a mixture of 

aggregate species, not specific aggregates.  Furthermore, these experiments did 

not address the question of whether oxidative stress is a cause of aggregation, a 

product of aggregation, or both. 

Neuronal microinjection is an ideal technique to combat these problems 

(5).  Briefly, specific neurons are harvested from neonatal mice and cultured on 

adherent plates.  Protein samples are injected into individual cells and cell
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viability is measured as a function of time.  The components of the culture media 

and/or injection sample can be modified as required to mimic cellular processes 

such as oxidative stress or dopamine processing.  Overall, neuronal 

microinjection allows measurements of the concentration-dependant toxicity of 

individual aggregate species under a variety of cellular conditions.   

When beginning a new protocol, especially one that involves animals, it is 

imperative that all controls and procedures be established before data collection 

begins.  To that end, this chapter details the progress toward sample preparation 

and oxidative stress induction and detection. 

4.2 Sample Preparation 

 4.2.1 Cell Adherence 

  Neuronal microinjection is usually conducted with cells adhered to a 35-

mm plastic culture dish with collagen.  Glass-bottomed culture dishes are 

required because quantitative fluorescence analysis is needed to measure 

oxidative stress in the cells.  Three types of plates were tested: freshly collagen-

coated, collagen-coated by the manufacture (MatTek, Ashland, Massachusetts), 

and freshly lysine-coated.  Superior cervical ganglion neurons only adhere to the 

freshly collagen-coated plates.  Also, if freshly-coated plates are stored for more 

than a few hours, even at 4°C, neurons no longer adhere to them.   

  Interestingly, even though cells adhere to freshly collagen-coated plates, 

the collagen itself does not adhere well to the glass of the plate.  Typically, the 

collagen is applied to the plate via a disposable dropper pipette, which does not 

allow consistent deposition.  Also, the glass-bottomed plates have a smaller area 
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than the plastic plates, so one drop of collagen makes a thicker layer on glass 

that may not dry evenly, leading to poor adherence.  In addition, it is critical that 

the collagen layers are uniform so that the cells adhere in the horizontal plane for 

imaging.  To address these issues, the collagen was applied in two layers using 

volumes of either of either 50 or 25 µL.  The plates were allowed to air-dry for at 

least 2 hours between applications.  The 50-µL application is too thick to adhere 

properly to the glass, but the 25-µL application adheres well.  Although the two-

layer application increases adherence of the collagen layer, it also causes 

uneven collagen that disrupts cell adhesion.  In the end, one 25-µL collagen 

layer, carefully spread with a glass stir rod on a glass-bottom culture dish, 

provides the best combination of collagen adhesion, collagen uniformity, and cell 

adhesion. 

 4.2.2 Growth Medium 

  Initially, cells were grown in AM50 medium [minimum essential medium 

(MEM) without phenol red (Gibco, Invitrogen) supplemented with 10% fetal 

bovine serum, 2-µM uridine (Sigma, St. Louis, Missouri), 2-µM fluorodeoxyuridine 

(Sigma), 100 µg/mL penicillin (Gibco), 100 µg/mL streptomycin (Gibco), and 50 

ng/mL murine nerve growth factor 7S (Promega, Madison, Wisconsin)].  This 

medium contains no antioxidants, and therefore the cells are susceptible to 

oxidative stress, especially when being transported between labs.  To correct 

this, the AM50 growth medium was supplemented with 50-µM α-tocopherol 

(vitamin E), which has been shown to protect neurons against oxidative stress 

(6). 
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Oxidative stress induction and detection are discussed in more detail later, 

but briefly, the cells are grown in the test medium for 4-7 days, and then washed 

thoroughly with MEM.  Oxidative stress is induced in the positive control plates, 

which are washed again with MEM before oxidative stress detection.  As seen in 

Figure 4.1, the addition of vitamin E gives mixed results on measuring oxidative 

stress.  In AM50 medium, the variance between samples of the same type is 

small (0-0.8%), the variance within one sample is small (0-2.5%), and the values 

of the negative control (0%) and positive control (6.0-6.8%) are statistically 

different.  However, the difference between the positive and negative controls is 

small.  Conversely, in medium supplemented with vitamin E, the variance 

between samples of the same type is large (9%), the variance within one sample 

is large (1.8-13.3%), and the values of the negative control (1.8%) and positive 

control (3.9-12.9%) are statistically the same.  This large variance may be due to 

vitamin E’s high hydrophobicity; it may not dissolve fully in the AM50 medium, 

causing cells to receive varying amounts of the antioxidant.  However, several 

hydrophilic antioxidants, including ascorbic acid (vitamin C), phenol red, and 

trolox (a water-soluble form of vitamin E), may prove effective in preventing 

oxidative stress during the growth of the neurons and thereby allow a greater 

response to induced oxidative stress in the positive controls. 

4.2.3 Alexa Fluor Labeling of α-Synuclein 

 As discussed in Chapter 2, Alexa Fluor labeling of α-synuclein is an 

efficient method for fluorescently tagging the protein.  In this experimental design, 

there are several parameters to consider when choosing the specific Alexa Fluor 
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dye.  The three fluorescent microscopes used for microinjection, cell counting, 

and oxidative stress measurement/cell imaging all have the standard blue, green, 

and red filter sets, albeit they have a slightly different range on each microscope.  

As described in more detail below, the blue channel is used for Hoechst dye (a 

DNA marker) and the green for 5-(and-6)- carboxy-2′,7′-dichlorodihydro-

fluorescein diacetate (an oxidative stress fluorogenic marker), leaving the red 

channel for Alexa Fluor.  Of the Alexa Fluor maleimides, two (Alexa Fluor 555 

and Alexa Fluor 568) are compatible with the red channel.  Both dyes label α-

synuclein to an acceptable degree (~90% for Alexa Fluor 555 and ~75% for 

Alexa Fluor 568).  Alexa Fluor 568 was ultimately chosen for its higher 

fluorescence intensity on the cell counting microscope because cell counting is 

done by eye. 

4.3 Oxidative Stress Induction and Detection 

4.3.1 Inducing Oxidative Stress for Positive Control 

  Tert-butyl-hydroperoxide (TBHP) was used as a positive control for 

oxidative stress-induction.  I noticed a decrease in the number of oxidative 

stress-positive cells in the positive control plates with time.  To determine if the 

age or concentration of TBHP was a factor in the decrease, I compared the 

original sample (approximately 6 months old) with a newly prepared 100 mM-

stock solution, both diluted to a working solution at the original concentration 

(100 μM) and a higher concentration (200 μM).  As seen in Figure 4.2, both the 

age of the stock solution and the concentration of the working solution play a role 

in the amount of oxidative stress induced.  The older TBHP sample induced 
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oxidative stress in only 0.4-1.1% of the cells, compared to 1.6-3.1% using the 

freshly prepared sample and 9.0-9.8% at the higher concentration.  This same 

sample was used 25 days later (the AM50 data in Figure 4.2) and only induced 

oxidative stress in 6.0-6.8% of the cells.  These observations indicate that TBHP 

has a short shelf life.  A fresh stock solution must be prepared for every 

experiment the stock should not be frozen (7). 

 4.3.2 Fluorogenic Oxidative Stress Marker Selection 

  Dozens of fluorogenic markers that detect various forms of oxidative 

stress are commercially available.  For the purposes of these experiments, the 

marker must possess the following criteria: 1) detect oxidative stress in living 

cells, 2) emit fluorescence detectable with the filter sets on the available 

microscopes, 3) have a proportional response to the amount of oxidative stress 

and 4) ,ideally, detect a wide range of reactive oxygen species.  Based on the 

first parameter, six markers were chosen for study. 

  As seen in Table 4.1, diphenyl-1-pyrenylphosphine fails criterion 2 

because no fluorescence was detected in the negative control cells, the positive 

control cells, or the background.  MitoTracker, reduced MitoTracker, 

RedoxSensor Red, and Amplex Red all fail criterion 3 because the positive and 

negative controls have approximately the same number of oxidative stress-

positive cells.  Ultimately, Image-iT [5- (and 6-) carboxy-2′,7′-dichlorodihydro-

fluorescein diacetate] was chosen because it possesses all of the necessary 

criteria. 

 4.3.3 Staining Procedure 
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To measure oxidative stress in the cells, the cells must be transported 

from the growth lab to the imaging lab, an approximately 15-min walk across 

campus.  Initially, the cells were transported in a commercially prepared 

hibernation medium (Hibernate E, Brain Bits, Springfield, Illinois) to preserve 

them in the ambient CO2 conditions.  The cells were stained with Image-iT and 

Hoechst dye at the imaging lab.  They were then washed with MEM before 

imaging with an inverted fluorescence microscope (DMIRB, Leica, Wetzlar, 

Germany) fitted with an OrcaER camera (Hamamatsu, Sewickley, Pennsylvania) 

and SimplePCI software (Hamamatsu).  Although a quantitative analysis could 

not be performed due to a lack of background correction, a qualitative analysis 

confirmed the prior assessment that TBHP induces Image-iT detectable oxidative 

stress (Figure 4.3). 

Staining the cells at the imaging facility is difficult due to lack of proper 

equipment and space.  Also, the phenol red present in the hibernation medium 

may counteract the induced oxidative stress.  For the second test, the cells were 

stained in the growth lab with Image-iT diluted in MEM, transported to the 

imaging lab in the same medium, then washed and imaged as described above, 

with the addition of the proper background correction controls.  Surprisingly, the 

negative controls showed a high level of stress and the positive controls a low 

level (Figure 4.4).  It is unclear whether exposure to low CO2 levels during 

transport or the staining procedure itself is responsible for this effect.   

For the final experiment, half of the cells were stained in the growth lab 

with Image-iT diluted in hibernation medium lacking phenol red and half were 
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transported to the imaging lab in hibernation medium lacking phenol red and then 

stained.  Then all cells were washed and imaged as described above.  As shown 

in Figure 4.5, transportation in hibernation medium lacking phenol red followed 

by staining with Image-iT at the imaging facility results in a low response in the 

negative control and a high response in the positive control.  These staining 

procedures were used for all subsequent experiments, including the data shown 

in Figures 4.1 and 4.2. 

4.4 Conclusions 

  Now that the parameters have been established for growing neurons, 

labeling α-synuclein, and inducing and measuring oxidative stress within cells, 

the final parameter to set is the production and isolation of α-synuclein aggregate 

species.  As shown in Chapters 2 and 3, I have already established a procedure 

for growing and purifying the fibril form.  Fortunately, many procedures to 

produce both spherical and annular protofibrils have been described in the 

literature (8-11).  I am confident that once a procedure for generating aggregates 

has been established, neuronal microinjection will prove to be a powerful tool to 

determine the toxicity of α-synuclein aggregates and what role oxidative stress 

plays in that process. 
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4.5 Figures and Tables 
 

 

Figure 4.1 Vitamin E-supplemented growth media modulates neuronal 
response to oxidative stress.  Superiour cervical ganglion cells were grown in 
AM50 media with or without 50-μM vitamin E for 4 days.  The cells were washed 
with MEM and the positive control cells were stressed with 200-μM TBHP in 
MEM for 180 min.  Cells were washed with MEM, transported in hibernation 
medium without phenol red, and stained with Image-iT.  While the vitamin E 
facilitates a difference between the negative and positive controls, it also causes 
a high variance between samples. Error bars represent the standard deviation of 
nine images collected per sample.  An average of 230 cells were counted per 
image.  (Blue bars, negative control; Red bars, positive control; light and dark are 
different plates of the same type) 
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Figure 4.2 Age of stock solution and concentration of working solution 
affect the ability of TBHP to induce oxidative stress.  Cells were stressed 
with either old (6 months) TBHP stock at 100 μM working concentration, fresh 
TBHP stock at 100 μM working concentration, or fresh TBHP stock at 200 μM 
working concentration.  The cells were washed with MEM, transported in 
hibernation medium without phenol red, and stained with Image-iT.  Fresh TBHP 
and increased TBHP concentration both improve the effectiveness of TBHP at 
inducing oxidative stress.Error bars represent the standard deviation of three 
images collected per sample.  An average of 70 cells were counted per image.  
Light and dark bars are different plates of the same type. 
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Table 4.1 Fluorogenic markers to detect oxidative stress. 
ROS, reactive oxygen species; Cells, amount of fluorescence detected in cells; 
Background, amount of fluorescence detected outside of cells 
 
  

Trade 
Name Structure Detects Negative 

Control 
Positive 
Control 

Image-iT 

 

ROS 

Cells: low 

Background: 
moderate 

Cells: high 

Background: 
moderate 

Mito 
Tracker 

 

ROS 

Cells: 
moderate 

Background: 
moderate 

Cells: 
moderate 

Background: 
moderate 

Reduced 
Mito 

Tracker 

 

ROS 

Cells: 
moderate 

Background: 
high 

Cells: 
moderate 

Background: 
high 

diphenyl-
1-pyrenyl-
phosphine 

 

H2O2 

Cells: none 

Background: 
none 

Cells: none 

Background: 
none 

Redox 
Sensor 

Red 

 

ROS 

Cells: 
moderate 

Background: 
moderate 

Cells: 
moderate 

Background: 
moderate 

Amplex 
Red 

 
H2O2 

Cells: none 

Background: 
high 

Cells: none 

Background: 
high 
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Figure 4.3 TBHP causes increased oxidative stress in cells. 
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Figure 4.4 Transporting cells in staining solution reverses the expected 
results.  Positive control cells were stressed with 200-μM TBHP in MEM for 180 
minutes.  All cells were washed with MEM, stained with Image-iT diluted in MEM, 
and transported to imaging lab.  The negative controls show a high level of stress 
and the positive controls a low level, which contradicts what is expected.  An 
average of 200 cells were counted per image.  (Blue bars, negative control; Red 
bars, positive control; light and dark are different plates of the same type) 

  

14.9

1.3

8.2

2.2

0

2

4

6

8

10

12

14

16

Negative Positive

%
 o

xi
da

tiv
e 

st
re

ss
-p

os
iti

ve
 c

el
ls



84 
 

 
Figure 4.5 Transport in hibernation media and staining immediately prior to 
imaging are crucial for proper oxidative stress detection.  Cells were either 
stained in the growth lab with Image-iT diluted in hibernation medium lacking 
phenol red (Growth Lab) or transported to the imaging lab in hibernation medium 
lacking phenol red and then stained (Imaging Lab).  Staining after transport is 
essential for accurate oxidative stress detection. Error bars represent the 
standard deviation of three images collected per sample.  An average of 154 
cells were counted per image.  (Blue bars, negative control; Red bars, positive 
control; light and dark are different plates of the same type) 
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