
Spin-Correlation Coefficients and Phase-Shift Analysis for
p+3He Elastic Scattering

Timothy Vaughn Daniels

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Physics and Astronomy.

Chapel Hill
2009

Approved by:

T. B. Clegg, Advisor

H. J. Karwowski, Reader

W. Tornow, Reader

Y. Wu, Reader

E. J. Ludwig, Reader

C. R. Brune , Reader



c○ 2009

Timothy Vaughn Daniels

ALL RIGHTS RESERVED

ii



Abstract

TIMOTHY VAUGHN DANIELS: Spin-Correlation Coefficients and Phase-Shift
Analysis for p+3He Elastic Scattering.
(Under the direction of T. B. Clegg.)

A new spin-exchange optical pumping polarized 3He target has been used to measure

angular distributions of A0y, Ayy, and Axx for p+3He elastic scattering at proton energies of

2.28, 2.77, 3.15, 4.02, and 5.54 MeV. The new data, along with previous cross-section and

beam analyzing power measurements were included in a global phase-shift analysis of data

below 12 MeV. The additional data resolved the ambiguity in that analysis, and a unique

set of energy-dependent phase-shifts was obtained. These phase-shifts, as well as the data

themselves, were compared to theoretical calculations using realistic nuclear potential models

that accurately reproduce NN scattering data. These calculations underpredicted A0y, in

addition to the previously-observed underprediction of Ay0 known as the “Ay puzzle”. The

spin-correlation coefficients were found to be better reproduced. There was good agreement

for the S-wave phase-shifts, while the P-wave phases showed small discrepancies, especially

for 3P2 and 3P0, and different discrepancies were observed for different interaction models.
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1 Introduction

According to our modern understanding, protons and neutrons interact through the strong

nuclear force to form atomic nuclei. The exact form of the interaction between the “nucleons”

has been sought since the proposal of this picture of the nucleus, which in fact predates

both the discovery of the neutron and the development of the Standard Model [Bro96]. We

now believe that nucleons are composed of quarks and gluons, which interact according to

Quantum Chromodynamics (QCD). The force between nucleons should be derivable from

this underlying physics in much the same way that molecular forces can be derived from

the electromagnetic interaction of atomic electrons. The difficulty of solving QCD in the

non-perturbative nuclear regime, however, has prevented that derivation.

A model of the nucleon-nucleon interaction would, in principle, allow one to understand

nuclear systems in terms of their constituent nucleons. Such an ab initio approach requires

both a workable model of the interaction and computational techniques to solve it for a

system of multiple nucleons. Because the interaction has not been derived from QCD, physi-

cists have developed various phenomenological models. These models start from the general

experimentally-deduced description of the nuclear force, which is described in many nuclear

physics textbooks, such as [Ros48, Kap62, Kra88]. The meson exchange model, first proposed

by Yukawa in 1935 [Yuk35], accounts for many of the observed features, including finite range,

saturation, and spin-dependence. More phenomenological terms are included to describe the

short-range repulsion as well as more subtle effects such as charge symmetry breaking. As

a result, the models have free parameters which must be adjusted to reproduce experimen-

tal data. Several models now exist which accurately describe the extensive NN scattering

database [Car98].

According to the ab initio approach, these “realistic” models should also be able to de-

scribe more complicated nuclear systems. Several methods now exist to apply these models to

the three-nucleon (3N) and four-nucleon (4N) systems, and a wide variety of bound state and

scattering observables have been calculated [Car98]. Calculations of the 3H and 3He binding



energies find that a three-nucleon force (3NF) must be added to the potential models in order

to reproduce the experimental values [Nog02, Nog03]. The models generally reproduce p+d

and n+d scattering data well. There are a few significant exceptions to this success, includ-

ing the “Ay puzzle”, in which the nucleon and deuteron vector analyzing powers for elastic

scattering at low energy are under predicted [Glö96].

In the 4N system, the alpha-particle binding energy is well reproduced without additional

interactions beyond the 3NF [Wir00, Nog02, Viv05b], but an even stronger Ay puzzle has

been firmly established for p+3He elastic scattering [Fis06]. Despite this and some other

discrepancies, observables in many 4N reactions are well reproduced [Del07a, Del07b, Del07c].

For heavier systems, bound-state properties have been calculated up to A=12 [Nav03, Pie04],

as well as n+4He elastic scattering phase-shifts [Car07].

The four-nucleon system provides a more difficult challenge to nuclear interaction models

than either the 2N or 3N systems, and has been characterized as a “theoretical laboratory”

for studying those models [Laz05]. It is more tightly bound than the latter two systems,

which should amplify the importance of both the more phenomenological short-range parts

of interaction models and 3NF. It is also the lightest nuclear system to exhibit such typical

“nuclear” properties as resonances and thresholds [Til92], which makes its accurate description

an important milestone for ab initio nuclear physics. Finally, calculating the interaction

between four nucleons uses 3NF in higher isospin channels than have so far been available.

The work described in this thesis is aimed at clarifying the comparison of theory and

experiment in p+3He elastic scattering at the low energies relevant to the Ay puzzle. A

unique set of experimental phase-shifts and mixing parameters for the system would allow

a systematic comparison to theoretical models and perhaps establish which partial waves

are to blame for the disagreement. Phase-shift analyses, in which these parameters are fit

to measured angular distributions of scattering observables, have been attempted since the

first measurements were made in 1954, but have historically been hampered by the lack of

double-polarized observables.

The global data-set for p+3He elastic scattering below 12 MeV proton energy is sum-

marized in Table 1.1. The first measurements were angular distributions of differential

cross-section by Famularo in 1954 [Fam54]. A few other cross-section measurements were

made in the following several years [Swe55, Lov56, Bro60, Art60] and phase-shift analy-

ses [Low54, Fra55] of available data indicated that no spin-dependence was necessary to

reproduce those data. In the 1960’s, systematic measurements of precision cross sections

became available [Tom62, Cle64, McD64, Tom65, Kav66, Dri66], as well as Ay0 obtained

from double-scattering experiments [Ros60, McD64, Dri66]. Spin-dependent analyses were

attempted [Tom62, Cle64, Tom65, Dri67] but wide solution bands were still possible. In the

late ’60s, polarized proton beams and polarized 3He targets were developed, so that high-

quality Ay0 [Mor69, Det79] as well as A0y [McS70, May73, Bly75, Sza78b], spin-correlation

2



coefficients [McS69, May73], and spin-transfer coefficients [Wei78], as well as cross-sections

and Ay0 below 1MeV [Ber80] became available. Phase shift analyses [McS69, Mor69, Bos72,

Bly75, Sza78a, Ber80, Bel85] including these data were better constrained, but the solutions

were generally not unique.

The situation improved substantially in 1993, when Alley and Knutson published an

energy-dependent, global analysis which included their measurements of Ay0, A0y, and Ayy

at 4, 5.54, 7, 8.5, and 10 MeV, as well as Axx, Axz, Azx, and Azz at 5.54 MeV [All93a].

This dramatic increase in the available spin-correlation data enabled subsequent analyses

[All93b, Yos00] to obtain unique solutions. However, a later reanalysis that included the Berg

cross-section and analyzing power measurements below 1 MeV, as well as Ay0 measurements

between 1 and 2 MeV, found two distinct solutions [Geo03]. The observables most sensitive

to the difference between those solutions are spin-correlation coefficients below 4 MeV. That

is not surprising, since no such measurements are present in the database.

The first theoretical calculation for the p+3He elastic scattering observables was by Swan

in 1953 [Swa53], who obtained scattering phase-shifts from simple interaction models using

variational methods. The first scattering calculation using a realistic model for the system

was of the triplet scattering length by Carlson et al. in 1991 [Car91], who used a variational

approach with the AV14+URVII potential. That work was motivated in part by the fact that

the triplet scattering length is an important input parameter in calculations of the weak p-
3He capture rate, which is the reaction that produces the highest-energy solar neutrinos. The

singlet and triplet scattering lengths were calculated in 2000 by both Filikhin and Yakovlev

[Fil00], who used a cluster reduction method to solve the Fadeev-Yakubovski equations with

the Malfet-TjonI-III potential. The scattering lengths were also calculated by the Pisa group,

Viviani, Rosati, and Kievski [Viv98], who used the Correlated Hyperspherical Harmonics

with the Kohn variational principle to solve the Schrodinger equation with the AV14 and

AV18 potentials with a variety of 3N interactions. These three calculations, summarized in

Table 1.2, disagree with one another, which implies that experimental values for the scattering

lengths might distinguish between them.

Scattering lengths for the system can be obtained from experimental phase shifts by

extrapolating a parameterization of the energy dependence of the appropriate phase shift

to zero energy, and the three available values are summarized in Table 1.3. Tegner and

Bargholtz [Teg83] fit an effective range expansion to the 3S1 phase shifts of [Tom65] and

[Ber80] to obtain the triplet scattering length. The energy dependent phase-shift analyses

of [All93b] and [Geo03] determine scattering lengths explicitly as search parameters. The

scattering lengths from the two solutions of [Geo03] disagree with each other as well as with

those from [All93b], which in turn disagree with [Teg83].

Today, several realistic calculations of scattering observables for the system are also avail-

able. The Pisa group published the first such calculations in 2001 [Viv01], extending their

3



Table 1.1: Global data set. See section 6.4 for a discussion of [Geo03] data groups.
Reference Ep Observable PSA? in [Geo03]? (group)
[Fam54] 1.01-3.53 σ n y (5)
[Low54] 1.01-3.53 - y -
[Swe55] 4.96, 8.6 σ n n
[Fra55] 1.0-3.5 - y -
[Lov56] 9.75 σ n y (14)
[Bro60] 6.5, 8.3 σ n y (13)
[Art60] 4.96, 8.6 σ n n
[Ros60] 10 Ay0 n n
[Tom62] 2.0-4.8 σ y n
[Cle64] 4.55-11.48 σ y y (11)

[McD64] 4.05-12.79 σ, Ay0 n y (9,10)
[Tom65] 1-11.5 - n -
[Kav66] 0.125-2.0 σ (excitation) n n
[Dri66] 3.38-4.46 Ay0 y excluded
[Mor69] 4.0-10.8 Ay0 y y (12)
[McS69] 8.8 Axz y y (4)
[McS70] 3.86-10.94 A0y y y (4)
[Bos72] 4-10.77 - y -
[May73] 6.80,8.82 Ay0, A0y, Axx, Ayy ? y (3)
[Bly75] 10.5 A0y y y (8)
[Sza78b] 2.3-8.8 A0y y y (7)
[Sza78a] 13.6 - y -
[Wei78] 6.82, 8.82, 10.7 Kxx,Kyy,Kxz n n
[Det79] 1.75-4.5 Ay0 R? y (6)
[Ber80] 0.3-1.0 σ, A0y y y (16,17)
[Bel85] 0-10 - y -
[Geo06] 12.4 A0y n y (15)
[All93a] 4-10 Ay0,A0y,Ayy n y (1,2)
[All93a] 5.54 Axx,Axz,Azx,Azz n y (1)
[All93b] 0-12 - y -
[Yos00] 4-20 - y -
[Viv01] 1.60,2.25 A0y n y (18)
[Geo03] 0-12 - y -
[Fis06] 1-4 σ, A0y y -

Table 1.2: Theoretical scattering lengths
Reference as (fm) at (fm)
[Viv98] 11.5 9.13
[Fil00] 8.2 7.7
[Car91] 10.1±0.5

4



Table 1.3: Experimental scattering lengths
Reference as (fm) at (fm)
[Teg83] 10.2±1.4
[All93b] 10.8±2.6 8.1±0.5

[Geo03] Soln. 1 15.1±0.8 7.9±0.2
[Geo03] Soln. 2 7.2±0.8 10.4±0.4

earlier zero-energy calculations. Updated calculations are given in [Fis06]. Pfitzinger and col-

laborators [Pfi01] used the Resonating Group Model (RGM) with the AV18, AV8, URIX, and

TRA potentials, and compared their results to an updated R-matrix analysis of T=1 data in

the four-nucleon system. Most recently, the Lisbon group, Fonseca and Deltuva, has solved

the Alt-Grassberger-Sandhas (AGS) equations [Alt67] in momentum space for a variety of

modern potentials, including one derived from effective field theory [Del07b]. Quaglioni and

Navratil [Qua08] have developed a hybrid method that combines the RGM with the “no core

shell model” (NCSM).

These calculations generally compare well with measured angular distributions of cross-

section, but underpredict the beam analyzing power by as much as 40%, and the target ana-

lyzing power to a lesser extent. Calculations of the Pisa group [Viv05a] are shown with mea-

surements from [Fis06] and [All93a] at 4 MeV proton energy in Figure 1.1. Spin-correlation

coefficients agree within the large experimental uncertainties. This Ay puzzle is discussed by

the various authors in terms of the P-wave phase shifts. In [Fis06], the authors report that

Ay is strongly influenced by the combination 3P2-
1
2(3P1+3P0), the calculated value of which

is smaller than would be necessary to reproduce the experiment data.

In order to clarify the comparison with theoretical calculations by better constraining

the experimental phase-shift analysis, we have measured angular distributions of the spin-

correlation coefficients Axx and Ayy for p+3He elastic scattering at 4 energies between 2.25

and 5.54 MeV. The measurements used a new polarized 3He target specifically designed for use

in low-energy charged particle scattering. The remainder of the thesis describes the project

in detail. Relevant theoretical calculations are discussed in Chapter 2, while the polarized

target is described in Chapter 3. The experimental observables are defined in Chapter 4, while

the experiment and analysis are described in Chapter 5. Chapter 6 describes the phase-shift

analysis. The results are discussed in Chapter 7 and conclusions are laid out in Chapter 8.
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Figure 1.1: Observables for p+3He elastic scattering at 4 MeV. The data are from [Fis06]
and [All93a], while the theoretical calculations are from the Pisa group [Viv05a] and use the
AV18 potential with and without the URIX three-nucleon force.
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2 Theory

2.1 Interaction Models

Two commonly-used models for the force between nucleons are AV18 [Wir95] and CD-

Bonn [Mac01]. Both models use one-pion exchange to describe the long-range part of the

force, and both include electromagnetic interactions. While the intermediate and short-

range physics terms in both models are phenomenological and have about 40 free parameters

adjusted to fit experimental data, the two differ in style. The terms in the AV18 potential

are written in configuration space and are each of a different functional form with respect to

the relevant variables, including position and spin. In this way, each term serves to include a

particular feature, such as spin-orbit dependence or charge-independence breaking, into the

model. In contrast, the terms of the CD-Bonn potential, written in terms of momentum, each

correspond to the exchange of a different meson. A phenomenological σ meson is included to

account for the two-meson exchange that is important at small distances, and it is primarily

the coupling constants and masses of the σ mesons for each partial wave that are fit to data.

The former model is therefore more explicitly phenomenological than the latter, but the two

are fit to nucleon-nucleon scattering data and measured deuteron properties with similar

accuracy.

As discussed in the Introduction, three-nucleon forces are required to reproduce 3H and
3He binding energies. The URIX model [Car83], used in [Fis06], is based on two-pion ex-

change and is written in configuration space. It contains two terms, each of which contains

a parameter that is fit to experimental data. The first term describes two-pion exchange

through an intermediate delta excitation, and is fit to the 3H and 4He binding energies. The

second is more phenomenological and is fit to the equilibrium density of nuclear matter.

Other models have been developed by modifying the NN potentials described above to

reproduce 3N properties directly. Deltuva and coworkers [Del03] have modified the CD-Bonn

potential to couple nucleons explicitly to delta excitations through meson exchange. The



parameters of the σ mesons’ coupling to the delta in each partial wave were adjusted to

reproduce the Nijmegan NN database. This fit included the readjustment of some of the

original nucleon-nucleon parameters. This “CD-Bonn + ∆” potential therefore includes a

three-nucleon interaction without actually being fit to any 3N data, and still underbinds 3H

and 3He, though to a lesser degree than CD-Bonn.

Doleschall and collaborators, in an attempt to exploit the connection between three-

nucleon forces and non-local interactions described in [Pol90], have developed so-called “In-

side non-local, outside Yukawa” (INOY) potentials. These potentials consist of a purely

phenomenological non-local interaction at small distances (within about 3 fm) that smoothly

connects to the AV18 potential at larger distances. In its most realistic form [Dol03], the non-

locality is restricted to S and D waves and its parameters are fit to the Nijmegan NN database,

deuteron properties, and the 3He binding energy. The more recent INOY04 [Dol04] and ISuj

[Dol08] models include modified P-wave interactions which better describe nucleon-deuteron

scattering below 10 MeV, including Ay.

A different approach to constructing nuclear potential models is chiral pertubation theory

(χPT). This approach, first used by Weinberg [Wei90], starts with the most general La-

grangian consistent with the approximate chiral symmetry of the underlying theory of QCD

at low energy. Though interaction models developed in this way contain an infinite number of

terms, Weinberg showed that they can be ordered in powers of the ratio of the momentum to

the chiral-symmetry breaking scale. Actual potential models, therefore, contain a finite num-

ber of terms up to a given order. These terms are associated with either contact interactions

or with pion exchange, and the contact terms contain constants which must be fit to NN data.

A nucleon-nucleon potential at next-to-next-to-next-to leading order, (N3LO), containing 29

parameters has been constructed by Entem and Macleidt [Ent03]. Terms involving three or

more nucleons emerge from the chiral Lagrangian just as NN terms do, so that chiral 3NF’s

can be constructed. For example, Navratil [Nav07] discusses the chiral 3NF at N2LO.

2.2 Methods

Several methods now exist to calculate p+3He elastic scattering using realistic potential

models. The Resonating Group Method (RGM), introduced into nuclear physics by Wheeler

[Whe37a, Whe37b] to calculate light nuclear systems with simple NN interaction models, was

used in the first p+3He calculation [Swa53]. The method groups the nucleons into clusters and

separately considers the inter-cluster interactions and the description of the clusters them-

selves. Several calculations using the RGM with the interactions between clusters derived from

realistic models have been published [Pfi01, Rei03, Ara08]. In all these calculations, however,

the description of the clusters is approximate and is accomplished with harmonic-oscillator

(Gaussian) wave-functions whose parameters are determined variationally by minimizing the
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overall ground-state energy.

Navratil and Quaglioni [Qua08, Qua09] have developed a hybrid method which combines

the ability of the RGM to calculate scattering observables with the accurate use of realistic

NN interactions in the No-Core Shell Model (NCSM) to describe the clusters. The interaction

between clusters is calculated by considering the interaction of each nucleon in the first cluster

with each nucleon of the second through a realistic model. The NCSM uses an average

potential derived from the underlying NN interaction in a harmonic oscillator basis. The

NCSM results converge to those of an exact calculation provided that enough basis states

are used. These calculations are limited both in the cluster excitations and the number of

clusters considered, which means that even virtual break-up of the 3He is not included. This,

in turn, may reduce their accuracy.

In contrast to the RGM, two other methods have been developed which explicitly consider

all possible interactions between nucleons without regard to clusters. The Pisa group has used

the method of Hyperspherical Harmonics (HH) to calculate 3- and 4-nucleon bound-state and

scattering observables [Fis06] with realistic potential models. The wave function is divided

into two terms, one of which describes the p+3He system asymptotically while the other

describes the system of four nucleons in the interaction region. The former can be written in

terms of the S-matrix, which contains the phase-shifts and mixing parameters as described

in Chapter 6, through a partial-wave expansion:

ΨLSJπJz
A =

∑

L′S′

[

δLL′ δSS′Ω−
LSJJz

− SJ
LS,L′S′ (q)Ω+

L′S′JJz

]

, (2.1)

where Ω− is an incoming spherical wave with relative angular momentum L and total spin S,

and Ω+ is an outgoing spherical wave with L
′

and S
′

.

The “core” wave function, on the other hand, is expanded in the HH basis. This basis is

derived from a set of Jacobi coordinates for the system, a suitable choice for which are, as

shown in Figure 2.1:

&x1p =

√

3

2

(

&rm −
&ri + &rj + &rk

3

)

,

&x2p =

√

4

3

(

&rk −
&ri + &rj

2

)

, (2.2)

&x3p = &rj − &ri,

where the vectors &r are the locations of the nucleons i, j, k, and m, and the subscript p refers

to a given permutation of the particles.

The hyperspherical coordinates are constructed from the Jacobi coordinates, and consist
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Figure 2.1: Jacobi vectors for four-nucleon calculations. Figure adapted from [Fis03].

of a hyperradius:

ρ =
√

x2
1p + x2

2p + x2
3p,

(2.3)

hyperangles:

cosφ2p =
x2p

√

x2
1p + x2

2p

, (2.4)

cosφ3p =
x3p

√

x2
1p + x2

2p + x2
3p

,

as well as the polar angles for each Jacobi vector.

In these coordinates, the kinetic energy operator depends on the hyperradius in one term

and on the angular variables, collectively referred to as Ω, in another. The core wavefunction is

expanded in the eigenfunctions Yα (Ω) of the angular term, called the hyperspherical harmonic

functions:

ΨLSJπJz
C =

∑

α

12
∑

p=1

uα (ρ)SpαTpαYα (Ωp) , (2.5)

where Sα and Tα are the spin and isospin functions, respectively. The coefficients uα (ρ) of the

expansion carry the hyperradial dependence. The scattering results are obtained by applying
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the Kohn variational principle [Koh48] to the complete wavefunction, in which a functional

of the Hamiltonian is made stationary with respect to variation of the both the asymptotic

scattering-matrix elements and the internal hyperradial coefficients.

The Lisbon group [Del07b, Del08] in contrast, solves the Alt-Grassberger-Sandhas (AGS)

[Alt67] equations in momentum space. The method is based on transition operators U , such

as

U |φ〉 = V |ψ〉 , (2.6)

where V is the interaction potential, |φ〉 is an asymptotic free-particle state, and |ψ〉 is the

full wave function. Configurations of the four nucleons are considered where: (1) one nucleon

is free and the other three bound, and (2) where two pairs are separately bound, and the

transitions from the former configuration in the incoming channel to either configuration in

the outgoing channel are considered. Each transition has its own operator satisfying the the

AGS equations. The scattering observables are extracted from the 4-body transition matrix

T , which is obtained from the four-body transition operator through numerical integration of

the momentum-space integrals:

〈&p
′

|T |&p〉 = 〈φf |U |φi〉 . (2.7)

The inclusion of the long-range Coulomb interaction is difficult in this scheme and is

accomplished by including a screening factor that removes the interaction beyond a radius R.

The final results are obtained with R large enough to ensure convergence. Larger R values

are required for lower energies, so that these calculations have only been performed above 2

MeV proton energy.
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3 Polarized Target

A new spin-exchange optical pumping (SEOP) spin-polarized 3He target, described in

detail in [Kat05], was developed for this work. Previous polarized 3He targets used in low

energy charged particle scattering experiments (e.g. protons below 10 MeV) [Roh68, Bak69,

Har71, Lee71, Mil89, All93a], have used metastability-exchange optical pumping (MEOP)

[Col63], which operates at about 2 mbar 3He pressure. With SEOP [Wal97], in contrast, one

operates at a 3He pressure of 1-8 bar. Since thicker targets are advantageous for scattering

experiments, many polarized 3He targets today use SEOP in, for example, high-energy elec-

tron [Ant96] and gamma-ray [Kra07] experiments. The low-energy proton beams used in our

experiment, however, required that thin foils be used to contain the gaseous 3He. This limited

gas pressure to 1 bar, and precludes optical pumping of the actual target. This constraint

was accommodated in our target, shown in Figure 3.1, by performing the optical pumping

in an external polarizer at 8 bar and dispensing 1 bar at a time of polarized 3He into the

scattering target.

3.1 Scattering Target

The design of the target cell used to hold polarized 3He during scattering measurement

required significant care to minimize the various depolarization mechanisms [Wal97]. In gen-

eral, magnetic materials must be avoided, since the presence of inhomogeneous magnetic fields

would depolarize the gas. Depolarizing surface interactions, which are not well understood,

further limit the choice of materials which come into contact with polarized gas. The target

cells used in the experiment, one of which is shown in Figure 3.2, were 5.08 cm diameter

Pyrex1 bulbs. Windows were cut along each cell’s mid-plane to allow the low-energy charged

particles to emerge. Thin foils were epoxied over the windows to contain the gas. Kapton2

foil and Torr Seal 3 epoxy were selected based on their emprirically-determined compatibility

1Corning Inc.
2Free samples provided by DuPont, http://www.dupont.com/kapton
3Varian Inc., http://www.varianinc.com



Figure 3.1: Overview of the polarized target. The scattering chamber containing the sine-
theta coil and target cell is on the right-hand side, with the beam coming in from the top of
the picture toward the bottom-right. On the left is the polarizer, where optical pumping was
performed, on a cart next to the chamber. The two are connected by a PFA fill-tube.

with 3He polarization.

Despite optimization for maintaining 3He polarization, the polarization P of gas in any

container will decay over time t according to [Dri05]:

P (t) = P0e
−t/T1, (3.1)

where P0 is the initial polarization and the decay constant T1 is called the “spin-down” time.

The effect of optimizing the cell construction was to lengthen T1 as much as possible, and the

spin-down time of the cells used in the experiment was about 2 hours. The T1 for target cells

or optical pumping cells, discussed below, could be determined simply by making repeated

target polarization measurements as a function of time and fitting Equation 3.1 to the data.

A target cell example is shown in Figure 5.9.

As discussed in Chapter 5, target cells would eventually begin to leak through either the

foil or the epoxy during the experiment. Further use required that the foil and epoxy be

removed and new foils epoxied onto the cell. For a metal gas cell, the routine removal of foil

and epoxy might be accomplished through the use of a pocket knife, bead-blaster, propane

torch, or some combination thereof. This methods are inappropriate for use on a glass cell,

and might leave residues which could deteriorate the T1 of the cell. In this work, target cells

were prepared for re-gluing by being baked to 538 C in a glassware oven, which is just below

the annealing temperature for Pyrex. Afterward, the Kapton and Torr-seal were easily pulled
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Figure 3.2: Pyrex target cell with Kapton windows. Part of the NMR coil used for mea-
suring the target polarization is visible between the cell and its Delrin holder. Figure by T.
Katabuchi.

off the cell, which was then placed in a sonic cleaner with a solution of Citronox4 and distilled

water.

A uniform magnetic holding field is necessary to define the quantization axis for a sample

of polarized 3He gas. A Helmholtz coil pair, commonly used to provide uniform magnetic

fields, failed to provide the necessary uniformity for this project because of steel structures5

near the scattering chamber. A “sin-theta” coil, shown in Figure 3.3 was therefore developed,

which was easily shielded with mu-metal because of its compact design, to provide a field

of 0.7 mT with a fractional gradient of 10−3/cm. This device, 30 cm long and 7.5 cm in

diameter, contained the target cell and actually fit inside the scattering chamber. It consisted

of copper rods pressed onto a hollow cylindrical Delrin form, and each rod carried an electric

current proportional to the sine of the angle between that rod and a point on the cylinder

as viewed from one of its ends, as illustrated in Figure 3.4. Each current was hardware-

regulated to within about 0.1% of its programmed value to maintain uniformity. A mu-metal

shield around the outside of the coil prevented non-uniform external fields from reaching

the interior. The rod currents were controlled by the polarized target computer through

National Instruments LabVIEW FieldPoint modules. This approach allowed the magnetic

field direction to be conveniently reversed by stepping through an automated sequence of

intermediate field orientations. Similarly, the target spins could be aligned easily along either

x or y axes transverse to the beam as necessary for measurements of Ayy and Axx, respectively.

The target polarization was measured using pulsed nuclear magnetic resonance (NMR)

as described in [Kat05]. A current pulse through a small coil of wire placed against the

4Alconox, Inc. 30 Glenn St. White Plains NY, 10603
5beam-stands and reinforcing rods
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Figure 3.3: The sine-theta coil, shown with a target cell installed. Figure by T. Katabuchi.

cell beam-exit window caused 3He spins to precess coherently around the magnetic holding

field, provided the pulse was at the Larmour frequency determined by the magnitude of the

field. The induced voltage from the coherent precession was detected in the coil, and was

proportional to both the 3He polarization and the cell pressure. The pressure-corrected signal,

therefore, provided a relative polarization measurement which was calibrated by a separate

scattering experiment as described in Chapter 5. Similar, though uncalibrated, measurements

were made on the optical pumping cells described below.

3.2 Optical Pumping

In optical pumping, circularly polarized light is used to pump atoms placed in an external

magnetic field into a particular hyperfine state, as illustrated in Figure 3.5. The wavelength

of the light is tuned to the desired atomic transition, but its polarization only allows it to

excite transitions to magnetic substates that differ from the ground state by 1 h̄. The excited

atoms decay by collisions with N2 buffer gas to both ground hyperfine states. The fact that

atoms are only pumped out of one ground hyperfine state means that more and more atoms

collect in the other, thus creating polarization.

This technique has been exploited to produce nuclear spin-polarization in samples of noble

gases since an optically pumped atomic polarization can transfer to nuclear polarization via

spin-exchange collisions. MEOP systems optically pump metastable atoms excited by a weak

RF discharge, while SEOP optically pump an admixture of alkali metal. In a typical SEOP
3He polarizing system, a glass cell is filled with a mixture of 3He, N2, and Rb and placed in
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Figure 3.4: Schematic view of the sine-theta coil send end-on. The current in each rod is
proportional to the sine of the angle from the intended magnetic field direction. Figure by T.
Katabuchi.

the uniform magnetic field of a pair of Helmholtz coils. Circularly polarized laser light at 795

nm illuminates the cell and performs the optical pumping while the cell temperature is kept

high enough to ensure sufficient Rb in the vapor phase.

In practice, the accumulation of 3He polarization p takes hours and saturates below unity

according to:

p (t) = A
(

1 − e(−t/τ)
)

, (3.2)

where t is time, A is the saturation polarization, and τ is the “spin-up” time for the system.

These limitations result from both the inherently small size of the spin-exchange cross-section

and the environmentally dependent loss of accumulated 3He polarization. Depolarization

mechanisms include the surface and magnetic gradient interactions discussed above, as well

as dipole-dipole interactions between 3He nuclei and spin-destruction collisions between Rb

and 3He [Wal97]. The typical parameters of 8 atm cell pressure and 180 C temperature

reflect a balance between increasing the efficiency of optical pumping and minimizing these

depolarization mechanisms [Dri05].

3.3 Optical Pumping Cells

The optical pumping cells used in the experiment were spherical bulbs 7.62 cm in diame-

ter, as shown in Figure 3.6 and were made of either Ge-180 or Pyrex glass. A pnumatically-

actuated anodized aluminum valve, specially ordered from Swagelok6 by Amersham Health,

sealed each cell, with a several-inch capillary between the valve and cell to minimize depolar-

6http://www.swagelok.com
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5S1/2

m = −1/2 m = +1/2

5P1/2

Figure 3.5: Atomic levels in Rb relevant to optical pumping. Circularly polarized light tuned
to the D1 (5S1/2 to 5P1/2) transition excites electrons from only one magnetic substate.
The excited electrons decay to either substate through collisions with N2 buffer gas, but the
population in the “pumped” state is depleted over time, producing polarization.

Figure 3.6: An optical pumping cell. Photo by A. Couture.

ization. The sharp bend in the capillary was made necessary by the tight constraints inside

the polarizer solenoid.

The optical pumping cells were loaded with either Rb or a mixture of Rb and K. Though

the intended Rb/K ratio was 1:10, the cells used in the experiment actually contained an

estimated 1:2 mix [Cou06]. The admixture of K into the “hybrid” or “mixed-metal” cells de-

creased the “spin-up” time necessary for the 3He polarization to saturate by taking advantage

of K’s larger cross-section for spin-exchange with 3He [Bab03]. Thus, Rb is optically pumped

and spin-exchanges with K, which in turn spin-exchanges with 3He. Rb is retained in this

scheme because there are readily available lasers with output at its 795 nm D1 line, and it

has reasonable separation of its D1 and D2 lines [Cou06]. Figure 3.7 shows a spin-up curve

for a Rb and a Rb/K cell. In practice, the time spent repolarizing gas during an experiment

was about 24 hours for a Rb cell and about 12 hours for a mixed-metal cell.
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Figure 3.8: Alex Couture, whose shoulder is visible in the upper left, filling optical pumping
cells with alkali metal. The cells are shown with the bakeout oven lowered so that the torch
can be used to move (“chase”) the metal down the glass tubes from a retort located out of
the picture on the left. The manifold used for evacuation and purging with N2 is visible in
the background toward the right. Photo by A. Couture.

The original pumping cell was prepared by Amersham Health7, and was used for data-

taking until it was accidentally destroyed after Rb blocked its capillary. Replacement cells

were loaded [Cou06] with alkali in a system designed to allow the cells, which were attached

to a glass manifold, to be baked at 400 C for several days while they were evacuated to 10−8

Torr. A turbo-pump backed by a diaphragm pump was used in order to eliminate the risk of

introducing hydrocarbons. The alkali metal ampules were introduced into the manifold before

pumping, and during the bakeout were “distilled” by heating with an oxygen-methane torch.

After the bake-out was complete, the alkali were “chased” with the torch into the pumping

cells, as shown in Figure 3.8

The optical cell performances are summarized in Table 3.1. Several of the cells were

unusable because of very short T1 times or because they wouldn’t fit into the oven. None of

the replacement cells quite matched the T1 and saturation polarization of the original, and

many of their performances degraded over time. Sadly, two of the usable cells were damaged

when the oven temperature control failed, while another was destroyed by a malfunction of

the computer valve-control. The mixed-metal cells had generally shorter T1 times than the

Rb cells.

Interestingly, one cell’s T1 and polarization depended on how it was oriented in the sole-

niod. This apparent magnetization could be “degaussed” by connecting the solenoid to AC

power through a variac and increasing and decreasing the current. Similar phenomena were

reported for Pyrex cells in [Jac01], and were attributed to magnetic domains in the glass.

72500 Meridian Parkway, Suite 150 Durham, NC 27713
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Table 3.1: Performance and fate of the optical pumping cells used in this work. The amount
of information on each cell varies, since those cells with a poor T1 time were never installed
on the polarizer, while others would not physically fit into the solenoid. Some cells were
accidentally destroyed, while the valves of some poorly performing cells were deliberately
removed for use on new pumping cells.

Cell Date Glass Alkali Relative T1 Fate
Filled Polarization (mV) (hrs.)

Original GE-180 Rb 3200 36 Blockage Accident
Big Rb 7/05 Pyrex Rb ? 6.4 Destroyed for valve

Little Rb (2C) 7/05 Pyrex Rb 1800-2200 15 Oven failure
? 4/06 GE-180 Rb ? 33, 14 Valve board failure

1A 4/06 Pyrex Rb 1200-3500 26 Oven failure, extant
3E 10/06 Pyrex Rb/K ? 3 Extant
4P 10/06 Pyrex Rb/K ? 5 Destroyed for valve
5P 10/06 GE-180 Rb/K ? ? Destroyed for valve
6C 10/06 GE-180 Rb/K 3700 15 Destroyed on install
7Q 2/07 GE-180 Rb/K ? ? Destroyed on install
8C 2/07 GE-180 Rb/K 1800, 1300 6 RTD failure, extant
9Q 3/07 GE-180 Rb/K 1700, 1000 33, 25 Extant
10P 3/07 GE-180 Rb/K ? 20 Destroyed on install

3.4 Polarizer

When actually used for data-taking, an optical pumping cell was placed in a gypsum

oven, with the capillary and valve emerging from the side to connect to the gas-handling

manifold. About 60 W of laser light from an Optopower8 system of diode arrays tuned

to the Rb D1 absorption line was fiber-optically coupled to the polarizer. The unpolarized

light emerging from the fiber-optic was split into separate linear polarization states, each of

which was circularly polarized with quarter-wave plates before passing down into the oven.

The oven temperature was computer regulated by blowing laboratory compressed air into

it whenever the temperature, measured with an RTD, exceeded a setpoint. The oven was

located inside a mu-metal shielded solenoid, 29.4 cm in diameter and about 1m in height, to

provide the 0.7 mT magnetic field. This location imposed strict constraints on the dimensions

of the pumping cells, and care was required to accomodate the oven, with its electrical and

air-cooling connections, as well as the gas-handling apparatus described below, inside the

solenoid. A schematic of the polarizer is shown in Figure 3.9.

Gas-handling systems, including pnumatically-actuated valves operated by the target com-

puter using LabVIEW, were used to perform a variety of tasks including charging the optical

pumping cells with unpolarized 3He, dispensing 1 atm of polaried gas to the target cell, re-

8Formerly of 3321 E. Global Loop Tuscon, AZ 85706
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claiming depolarized gas from the target cell, and purifing reclaimed 3He in preparation for

recharging the pumping cell. The pumping cell was filled with 8 bar of unpolarized 3He

mixed with about 50 Torr of N2 using a rubber membrane stretched across the middle of

a sphererical plastic cavity. The diaphragm could be “inhaled” or “exhaled” by alternately

connecting high-pressure N2 or a mechanical pump to the lower cavity portion. About 2 bar

of gas in the upper cavity portion in the inhaled position would be compressed to 8 bar in

the exhaled position. An aluminum manifold connected this “balloon pump” to the pumping

cell. Polarized gas was dispensed to the target cell by first equalizing pressure between the

pumping cell and that manifold, and then equalizing pressure between the manifold and the

target cell, which was connected by a perfluoroalkoxy (PFA)9 fill tube. An external manifold

which included a oxygen getter, a liquid-nitrogen trap, and an oil-less diagphram pump was

used to remove impurities from gas reclaimed from the target. The entire system had to be

leak-tight, since the presence of paramagnetic O2 was poisonous to the 3He polarization.

3.5 Narrowed Laser

Some fraction of the broadband laser light used for optical pumping is wasted by being

outside the range of wavelengths where absorption by Rb occurs, as shown in Figure 3.10.

Thus, concentrating laser power into a smaller bandwidth would put more power into the

actual absorption. Motivated by the promising results of [Cha03], a frequency-narrowed laser

system was developed as an alternative to the broadband laser for optical pumping [Arn06].

A nominally 50 W Quintessence10 diode bar array was placed in an external Littrow cavity

[Dua95], in which the first-order diffracted light from a diffraction grating is used for feedback.

The grating used in this work had 2400 lines/mm. A system of lenses and mirrors, together

with the laser and diffraction grating, was mounted on a standard optical table which fit on

top of the optical polarizer to direct narrowed light onto the pumping cell. Narrowed light

output was typically 0.3 nm FWHM and 30 W. The frequency of the narrowed light was tuned

to 795 nm by controlling the temperature of the water-cooled diode array and by adjusting

the orientation of the diffraction grating.

The resulting 3He polarization was typically comparable to, though somewhat smaller

than, that achieved with the broadband laser. In practice, the optics table, which was mag-

netic, had to be removed from the polarizer for dispensing polarized gas to the target, and

using the 30 W narrowed laser instead of the 60 W broadband laser required the use of a

“hot-watt” resistive heater to keep the oven in the temperature range of 180-220 C necessary

for optical pumping. Given the somewhat inferior performance of this system, together with

the inconveniences of its use, the broadband laser was used for the majority of data-taking.

9Obtained from Whitey Co. 318 Bishop Rd. Highland Heights, OH 44143
10http://www.qpclasers.com
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Figure 3.9: Schematic of the polarizer, not to scale. Computer-controlled valves were used
to dispense polarized 3He from the pumping cell (OPC) inside the solenoid to the target cell
(TC) through an intermediate manifold. A “balloon pump” (DP1) was used to compress
unpolarized 3He to 8 atm when loaded into OPC. A diaphragm pump (DP2) was used to
move depolarized 3He from TC to storage bottles (SB), as well as to cycle reclaimed gas
through a charcoal trap and purifier to remove impurities. Figure by T. Katabuchi.
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Figure 3.10: The output of the narrowed laser is plotted as a function of wavelength as
determined by a high-resolution spectrometer. For comparison, the spectrum of light from
the broadband system is shown after traversing the cell during optical pumping. All the
power in this latter plot is wasted in the sense that it is outside of the Rb absorption, which
is evident as the “dip”. In contrast, the power from the narrowed laser is concentrated in a
range a wavelengths comparable to the absorption, so that very little narrowed light would
be wasted. Figure adapted from [Arn06].
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3.6 Performance Summary

The UNC polarized 3He was, in contrast to previous polarized targets for low-energy

charged-particle scattering, a high-pressure (1 bar) target whose polarization could be clearly

determined. The polarization of the gas dispensed to the target cell varied from 30% using

the original optical pumping cell to as low as 10% using various replacement cells, including

mixed-metal ones. Unlike systems polarized by continuous optical pumping, the target’s

“duty cycle” included time, which was about 24 hours when Rb cells were used and about

12 hours for mixed-metal cells, to polarize new gas. This was generally necessary after 2

or 3 days of data-taking. As described in the remainder of this thesis, the target was used

successfully to measure p + 3He spin-correlation coefficients between 2 and 6 MeV.

Successful use of the target required the simultaneous operation of its many components,

so that significant time during the experiment was lost to system failures. The frequent, and

mostly beam-induced, failure of the target cell foil or epoxy was the largest culprit, since a

separate alpha-scattering experiment had to be mounted for each recalibration, as discussed

in Chapter 5. Failure of the various aspects of the computer control, including DAQ cards and

Fieldpoint modules, as well as leaks in the various gas-handling connections, also contributed.

The compact, enclosed design of the polarizer was convenient for use in the target room,

since no further precautions were necessary against the Class 4 laser. Efforts to replace

the optical pumping cell, however, were hampered by the need to lift out of the solenoid

and partially disassemble the polarizer systems. This was a laborious procedure involving

significant wear on the components. Even such mundane tasks as ensuring that the pumping

cell was fully illuminated by laser light during optical pumping were difficult. In short,

significant “tinkering” was necessary on a system that was not designed to be easily modified.
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4 Observables

This chapter describes the measurement of angular distributions of the beam and target

analyzing powers, Ay0 and A0y, and spin-correlation coefficients Ayy and Axx for protons

elastically scattered from 3He at 5 proton energies between 2 and 6 MeV. These observables

determine how the scattering at a given energy and angle depends on the spins of the beam

and target. The precise definition of the observables and the methods used to measure them

are discussed in detail.

4.1 Spin-1
2 Formalism

4.1.1 One Particle

The spin state of a spin-1
2 particle can be described by a two-component spinor

χ =

(

a

b

)

, (4.1)

where a and b represent the probability of the projection along a given axis being measured

as “up” or “down”, respectively [Ohl72]. The expectation value for a given observable, rep-

resented by operator Ω, is obtained from the spinor,

〈Ω〉 = χ†Ωχ. (4.2)

We can also use a density matrix to describe the spin state,

ρ = χχ† =

(

|a|2 ab∗

a∗b |b|2

)

. (4.3)

This makes the expectation value of an operator Ω

〈Ω〉 = TrρΩ. (4.4)



The density matrix formalism has the advantage of immediately including the description

of an ensemble of particles, since a density matrix for the ensemble can easily be constructed,

ρ =

(

∑

|a|2
∑

ab∗
∑

a∗b
∑

|b|2

)

. (4.5)

The ensemble average of an operator Ω is likewise given by

〈Ω〉 = TrρΩ, (4.6)

and the total number of particles is given by

I = Trρ. (4.7)

The polarization of the ensemble with respect to a given axis is given by the ensemble

average of that component of the spin

Pi = Trρσi. (4.8)

Polarization varies between -1, when all particles are spin “down”, to +1, when all are spin

“up”. A value of 0 indicates equal numbers of up and down.

For later use, the density matrix can be expanded in the basis of the Pauli spin matrices

ρ =
1

2

3
∑

j=0

pjσj, (4.9)

where p0σ0 is defined as the identity matrix.

4.1.2 Two Particles

In the usual spin-coupling scheme, the state of the combined system of two particles can

be described in either the basis of the projections of the individual spins or the basis of the

total spin and its projection. The density matrix formed from a spinor in the former basis is

the same as that obtained from the direct product of the density matrices for the beam and

target, and is the one used in the following. Using the expansion 4.9:

ρ =
1

4

3
∑

j,k=0

pjp
T
k σj ⊗ σT

k . (4.10)

The beam and target polarizations are obtained from the expectation values of the operators

σj ⊗ 1 and 1 ⊗ σT
k , respectively, where 1 is the identity matrix.
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4.2 Observables

The asymptotic wave-function for the elastic scattering of particles with spin is [Got66]:

ψ ∼
(

ei$k·$r +
eikr

r
M(E, θ,φ)

)

χ = ψinc + ψscatt, (4.11)

where

ψinc = ei$k·$rχ

is the incoming plane wave describing the incoming beam and

ψscatt =
eikr

r
M(E, θ,φ)χ

is the outgoing spherical wave that describes the outgoing particles. Both the overall magni-

tude and anisotropy with respect to angles θ and φ of this spherical wave are described by

the matrix M.

The fundamental observable for a scattering experiment is the cross-section, which is

defined as the ratio of the number of particles scattered into a given element of solid angle to

the number of incident particles per area. In terms of particle flux &j:

dσ

dΩ
=

&jscatt · d &A

jinc
=

&jscatt · r2dΩr̂

jinc

Using 4.11 and ignoring interference between ψinc and ψscatt, we obtain:

dσ

dΩ
(χi → χf ) = |Mfi|2 , (4.12)

where dσ
dΩ (χi → χf ) is the cross-section for the transition between particular initial and final

states χi and χf , respectively. The scattering matrix elements, which are functions of energy

and angle, therefore contain all the available information about the scattering. For the scat-

tering of spin-1/2 particles from spin-1/2 particles, as in p + 3He elastic scattering is, χ is a

four-component spinor and M is a 4 x 4 matrix.

Equation 4.12 suggests an experiment in which the beam and target are prepared in

some polarization state, and then, after the scattering, the final polarization state is fully

determined. From an experimental point of view, the latter step requires a second scattering

from a known analyzer for both particles, and multiple scattering experiments suffer from

low count rates. Fortunately, it is sufficient to determine only the scattered flux when using

a polarized beam and target, provided that one can do so for several different inital states.

This “spin-correlation” experiment is the type performed for this thesis 1.

1A different set of experiments, called “spin-transfer” experiments, are also sufficient to determine the
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The differential cross-section for such an experiment is the cross-section for scattering into

any final state, and is given by the sum of the cross-sections for transition from each available

initial state weighted by the fraction of the ensemble in that initial state:

dσ

dΩ
=
∑

i,f

|Mfi|2 ρii,

or, more generally,
dσ

dΩ
= TrMρM †, (4.13)

where ρ is the initial density matrix. Using 4.10, we can see how the scattered yield depends

on each combination of each component of beam and target spin,

dσ

dΩ
=

dσ0

dΩ
(θ)

∑

pjp
T
k TrMσj ⊗ σT

k M †

TrMM †
,

where the T superscript refers to the target. The coefficients that control that dependence

are

Ajk(θ) =
TrMσj ⊗ σT

k M †

TrMM †
, (4.14)

so that the cross-section can be rewritten

dσ

dΩ
=

dσ0

dΩ
(θ)

∑

pjp
T
k Ajk(θ), (4.15)

where σ0 is the unpolarized cross-section.

This expression must be referred to a specific coordinate system in order to fix the meaning

of the observables Ajk. The Madison Convention [Bar71] establishes the coordinate system

for polarized scattering experiements. The z axis is along the incoming beam direction, the y

axis is in the direction of the incoming beam direction crossed with the direction of scattering,

and the x axis is in the direction which makes the system right-handed2. The constraints

of time-reversal invariance, parity conservation, and rotational invariance make many of the

coefficients identically zero, reducing the expression to

I = I0(1 ± pyAy0 ± pT
y A0y + pxp

T
x Axx ± pzp

T
x Azx + pyp

T
y Ayy + pzp

T
z Azz ± pxpT

z Axz). (4.16)

The ± refers to scattering to the left or right of the beam, respectively, as necessary to preserve

invariance under rotation about the z axis.

scattering elements. In spin-transfer experiments, an unpolarized beam is scattered from an unpolarized
target, and the resulting polarization for one of the scattered particles is measured. This type of experiment
suffers from requiring two scatterings, as described above.

2This coordinate system has the curious property of having its x and y axes point in different directions for
particles which scatter to the left or right of the beam. The y axis, for instance, points “up” in the laboratory
when particles are scattered to the left of the beam, while it points “down” when the scattering is to the right.
In this way, left/right scattering is explicitly equated with “flipping” the spin directions.
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4.3 Detector Yields

The number of particles detected by a detector at a scattering angle θ from a beam incident

on a gas cell target is proportional to the cross-section,

N = εbpGI. (4.17)

The experimental factors are b, the number of incident beam particles, p, the target pres-

sure, the detector efficiency ε which describes what fraction of particles entering the detector

are actually detected, and the detector “G-factor” [Sil59]. The G-factor describes both the

geometrical effects of the detector collimation and the size of the target.

The detector yield as a function of arbitrary spin orientations is therefore

N = εGbpI0(1±pyAy0±pT
y A0y +pxp

T
x Axx±pzp

T
x Azx+pyp

T
y Ayy +pzp

T
z Azz±pxpT

z Axz). (4.18)

For left and right detectors, the yields for different combinations of the beam and target

spin orientations as a function of the average polarizations are

L ↑↑ = εLGLb↑↑p↑↑I0(1 + pyAy0 + pT
y A0y + pyp

T
y Ayy)

L ↑↓ = εLGLb↑↓p↑↓I0(1 + pyAy0 − pT
y A0y − pyp

T
y Ayy)

L ↓↑ = εLGLb↓↑p↓↑I0(1 − pyAy0 + pT
y A0y − pyp

T
y Ayy)

L ↓↓ = εLGLb↓↓p↓↓I0(1 − pyAy0 − pT
y A0y + pyp

T
y Ayy)

R ↑↑ = εRGRb↑↑p↑↑I0(1 − pyAy0 − pT
y A0y + pyp

T
y Ayy)

R ↑↓ = εRGRb↑↓p↑↓I0(1 − pyAy0 + pT
y A0y − pyp

T
y Ayy)

R ↓↑ = εRGRb↓↑p↓↑I0(1 + pyAy0 − pT
y A0y − pyp

T
y Ayy)

R ↓↓ = εRGRb↓↓p↓↓I0(1 + pyAy0 + pT
y A0y + pyp

T
y Ayy),

Using these yields, we form the following cross-ratios:

X1 =

√

(

L′ ↑↑ +L′ ↑↓
L′ ↓↑ +L′ ↓↓

)(

R′ ↓↑ +R′ ↓↓
R′ ↑↑ +R′ ↑↓

)

=
1 + pyAy0

1 − pyAy0

X2 =

√

(

L′ ↑↑ +L′ ↓↑
L′ ↑↓ +L′ ↓↓

)(

R′ ↑↓ +R′ ↓↓
R′ ↑↑ +R′ ↓↑

)

=
1 + pT

y A0y

1 − pT
y A0y

X3 =

√

(

L′ ↑↑ +L′ ↓↓
L′ ↑↓ +L′ ↓↑

)(

R′ ↑↑ +R′ ↓↓
R′ ↑↓ +R′ ↓↑

)

=
1 + pyp

T
y Ayy

1 − pypT
y Ayy

,

31



where the primes indicate that we have normalized the yields to the appropriate b and p.

The observables are therefore

Ay0 =
1

py

(

X1 − 1

X1 + 1

)

(4.19)

A0y =
1

pT
y

(

X2 − 1

X2 + 1

)

(4.20)

Ayy =
1

pypT
y

(

X3 − 1

X3 + 1

)

. (4.21)

Similarly, when the beam and target spins are aligned along the x-axis,

Axx =
1

pxpT
x

X3 − 1

X3 + 1
. (4.22)

If either the beam or target is unpolarized, only one analyzing power will be non-zero,

and the expression 4.19 reduces to the usual cross-ratio expression for analyzing powers,

Ay =

√

L′↑R′↓
L′↓R↑ − 1

√

L′↑R′↓
L′↓R′↑ + 1

. (4.23)

The same is true for the scattering of spin-1/2 particles from spin-0 particles.
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5 Data Collection and Analysis

Spin-correlation coefficients for p+3He scattering were measured according to equations

4.19 through 4.22 using a polarized beam and target. To better understand systematic effects,

additional measurements were made of both unpolarized target instrumental asymmetries

with either polarized or unpolarized proton beams and the observable A0y with an unpo-

larized proton beam. Several other scattering experiments were made in support of these

measurements. Briefly, a target cell calibration point was found by the location of an ab-

solute minimum in α+3He scattering, frequent target cell calibrations were made using that

scattering, the Wein filter spin-precession of the polarized beam was calibrated by maximiz-

ing the p+4He asymmetry, and beam polarization was measured with that scattering during

data-taking. The performance and analysis of all these measurements are described in detail

in this chapter.

5.1 Experimental Set-Up

The measurements were performed using the Triangle Universities Nuclear Laboratory

(TUNL) tandem accelerator. Accelerated beams were directed by an analyzing magnet down

the 52° beam line to the 62cm scattering chamber, where the Pyrex target cell was installed

inside the sin-theta coil as described in the Chapter 3. The chamber set-up is illustrated in

Figure 5.1. Beam intensity on the target cell was intially limited to 100nA to avoid damaging

the Kapton entrance foils. Experience with failure of the epoxy, especially on the beam exit

foils, prompted us to further limit the intensity to 50nA. Even with this reduction, cells lasted

no more than a few days.

Proton beam measurements were taken at 5 energies below 6 MeV which overlap the data

of both [Fis06] and [All93a]. Analyzing magnet settings were determined according to the

calibration of [Fis03], and the uncertainty in the beam energy was calculated by propagating

the calibration uncertainty through equation B.1 of [Fis03]. Energy loss in the Kapton foils

and 3He gas was modeled with TRIM [Zie85], and the results are summarized in Table 5.1.



Polarimeter Cell

Beam

Faraday Cup

Target Cell

Sin−Theta Coil

Detectors

Figure 5.1: Diagram of Chamber Setup. The polarimeter chamber could be configured with
the detectors either horizontal, as shown, or vertical. The polarimeter cell was removed from
the beam during data-taking to allow beam to reach the target chamber.

The beam energy was set high enough to offset energy loss, so that the proton energy at the

cell’s center was as desired. The bombarding energies for data taken with different thickness

entrance foils were slightly different, and the average value, weighted by the error-bars ac-

cording to Equation 5.25, was adopted. The uncertainty in the TRIM stopping powers was

estimated by comparison with experimental stopping powers [Sri08], as summarized in Table

5.2. A precision of 10% was assigned to cases where no data were present in the relevant

energy range.

Polarized beam and target spins were reversed frequently. The beam spin was reversed

during data-taking at either 1 or 10 Hz in the sequence +–+-++-, where “+” means “spin-up”

and “-” means “spin-down”. The target spin was reversed less frequently, since it required

a few seconds to reverse the target’s magnetic field. Polarized target data was collected in

the following sequence: the data were collected for about 2.5 minutes with the target spin in

one orientation, an NMR measurement was taken, then the spin was flipped, another NMR

was taken, and data collection then proceeded with the spin in the second orientation. The

target polarization decayed with a 2-3 hour time constant, so this process was stopped when

the gas was judged to be too depolarized, generally after about an hour. At that time the

gas was exhausted from the target, the target was flushed with research-grade N2, and new

polarized gas, called a “shot”, was dispensed to the target cell.

Scattered particles emerging from the target were detected by four pairs of Si detectors (a

mix of surface-barrier and ion-implanted), which could be rotated to the desired angle. The

available angles were restricted by the windows in the sin-theta coil’s mu-metal shield to 20°

increments between 30 and 150°. The shield could be moved axially so that the “intermediate”

angles offset by 10° were available. The detectors were placed in Al holders and each one had

two brass collimators spaced 5cm from each other in an Al “snout”, which restricted the

range of scattering angle visible to the detector to 1.5°. Detectors were as close as possible to
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Table 5.1: Calculation of target cell bombarding energies for beam which passes first through
a Kapton entrance foil and then through the target He gas. The energy at the center of the
cell is reported as the bombarding energy. Slightly different bombarding energies which result
from the variety of foil thicknesses are averaged together.

Incoming Kapton Entrance Energy After Energy at Average
Beam Energy Foil Thickness Entrance Foil Cell Center Energy

(MeV) (µm) (MeV) (MeV) (MeV)
5.77±0.04 25.4 5.54±0.04 5.51±0.04

5.54±0.03
5.66±0.04 7.62 5.59±0.04 5.56±0.04
4.15±0.03 7.62 4.06±0.03 4.02±0.03 4.02±0.03
3.54±0.03 25.4 3.19±0.03 3.15±0.03

3.15±0.02
3.31±0.03 7.62 3.20±0.02 3.16±0.02
3.13±0.03 17.8 2.86±0.03 2.81±0.03

2.77±0.02
3.13±0.03 25.4 2.75±0.03 2.70±0.03
2.75±0.02 25.4 2.33±0.03 2.27±0.03

2.28±0.02
2.48±0.02 7.62 2.34±0.02 2.29±0.02

Table 5.2: Estimated precision for TRIM stopping powers
Ion Kapton Havar He

proton 7% 5% 3%
α 10% 10% 4%

the target without the 30° snout’s touching the sin-theta coil. The distance from the center

of the target cell to the front collimators was about 10.2 cm. Beam current on target was

measured by a Faraday cup located about 0.5 m behind the target cell, which was suppressed

to -100V. Charge went to ground through a current integrator, which produced the beam

current integration (BCI) scaler used as a measure of the relative number of beam particles

in each spin state.

Signals from each detector were processed and read into a MicroVAX II1 computer running

XSYS, as described in [Fis03]. As in that work, spin-routing bits at the ADC interface were

used to route data to different data-areas for different spin-states. The use of a polarized

target as well as a polarized beam, however, required allocating more data areas, installing

an extra scaler module, and modifying the EVL detector sorting codes. Our use of 8 detectors

with 6 ADC modules required using two modules for two pairs of detectors, so that the left

and right detectors in the first and fourth detector pairs were each routed through a different

module, but the left and right detectors for the second and third pairs went through the same

module. A logic module was designed and constructed to sort scalers, which in XSYS is done

by enabling and disabling the hardware scaler modules as appropriate. A diagram of the

1Digital Equipment Corporation, circa 1985
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Figure 5.2: Diagram of spin-flip electronics. The scheme is that of [Gei98] with an added
signal describing the target spin state.

spin-sorting electronics is given in Figure 5.2.

5.2 Spectra

Spectra obtained from the Si detectors represent histograms of the number of detected

particles vs. energy. Typical spectra are shown in Figures 5.3-5.5. The existence of well-

defined peaks results from the kinematic determination of the energy of a scattered particle

by its mass, its incoming energy, the mass of the target, and the angle of scattering. Knowledge

of these factors allows peaks to be identified. The finite width of the peaks is primarily the

result of energy straggling in the target. This also causes peak asymmetry, since more energy

is lost to straggling by lower-energy particles. The peaks also have a long low-energy tail

which arises from scattering on the snout slits.

5.2.1 Peak Sums

The number of particles scattered into the detector, then, is determined by the number of

counts in the corresponding spectral peak. This was simply accomplished in the many cases

like Figure 5.3 by summing the value of all channels within an analysis “gate” set around the
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Figure 5.3: 3He(p,p)3He spectrum taken at 5.54 Mev and 90°. The upper plot shows the
summed spectra from all combinations of beam and target spin “up” and “down” over the
entire detector energy range. Individual spin states, as well as the summed spectrum, are
shown in the lower plot for the 3He peak.
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Figure 5.4: 3He(α,α)3He spectrum at 15.44 MeV and 45°. Individual target spin-states are
shown with the summed spectrum
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Figure 5.5: 4He(p,p)4He spectrum taken at 5.54 Mev and 110° in the polarimeter. Individual
beam spin states, as well as the summed spectrum, are shown.
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peak. Gate sums, scalers, and gate limits were exported from XSYS in text files, which were

read into a ROOT script. All further analysis was performed by this script.

Scattering is a random process, so that peak yields are governed by Poisson statistics. The

uncertainty in peak area is therefore the square-root of the number of counts. Uncertainties

in calculated quantities are determined from uncertainties in peak areas using the standard

propagation of error formula [Bev92]. The uncertainty of a function f of n independent

quantities ai is

σf =

√

√

√

√

n
∑

i=0

(

∂f

∂ai
σi

)2

+ 2
n
∑

i

n
∑

j>i

σ2
ij

∂f

∂ai

∂f

∂aj
(5.1)

where the σ2
i are the variances in the ai and the σ2

ij are the covariances between them. The

random scattering process insures that there are no correlations between peak yields, so the

second term under the radical was often assumed to be zero for this work. When a fitted

function was used during analysis, however, correlations between fit parameters were obtained

from the error matrix and used in the error propagation.

5.2.2 Background

Two types of background had to be subtracted from the number of counts obtained from

summing gates. The first was a flat background, which happened either when a pulser was set

below the highest energy peak in the spectrum or when protons scattered from the polarimeter

cell itself in addition to the 4He gas, as in Figure 5.6. The number of background counts, NA,

inside a gate A of width wA set around the peak was estimated from the number of counts

NB in a gate B of width wB set to one side of the peak.

NA = NB
wA

wB
(5.2)

σNA
=
√

NB
wA

wB
(5.3)

Sometimes two background gates were used, one on either side of the peak. When both gates

were used, the sums were averaged.

The second type of background occurred when the 3He and 4He peaks overlapped in

chamber spectra at 30° and 40°. The 4He gas was sometimes added to the cell to measure

beam polarization. Two Gaussian peaks modified to mimic energy-loss were fit to these

spectra, as in Figure 5.7.

The functional form for a single Gaussian peak with energy loss as a function of channel

number x was

y = Ae−
1

2
((x+∆x(x)−x0)/σ)2 , (5.4)
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on the polarimeter cell. This background was present occasionally, and the spectrum shown
has the largest ratio of background to peak height. The background around the peak was
estimated using the higher-energy gate as described in the text.
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Figure 5.7: 3He(p,p)3He spectrum taken at 2.28 Mev and 40°. The 4He peak is at higher
energy than the 3He peak. The fit is described in the text.
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where A, x0, and σ were the usual amplitude, mean, and width, respectively. Here ∆x(x)

represented the amount of energy lost by the particles, and was parameterized crudely as a

linear function

∆ (x) = c (mx + b) . (5.5)

This dependence of energy loss on the energy meant that not only was the mean of the peak

affected by energy loss, but the shape also, since the higher energy part of the peak lost less

energy than the lower energy part. The parameters m and b were fit to TRIM data and found

to be m = -3.44x10−6m−1 and b = 25.5x10−6 kev/m in the relevant energy range. The overall

length scale c (in meters) was adjusted for energy loss during actual fitting. The integral over

all x of the peak function is [Spi92]

I =

√
2πAσ

1 − 3.44c
, (5.6)

with uncertainty

σI = I

√

(σA

A

)2
+
(σσ

σ

)2
+

(

−3.44σc

1 − 3.44c

)2

. (5.7)

In practice, including the effect of energy loss was not always necessary to obtain a good fit,

so that in those cases the fitted value of c was consistent with 0.

A slit scattering tail was added to each peak. The tail was assumed to be linear, except

that the probability of a particle’s being scattered out of the peak and into a given tail channel

was assumed to be proportional to the fraction of the peak area at higher channels,

tail = P (x) ∗ (mtx + bt) =

(

∫ +∞
x f(x) dx
∫ +∞
−∞ f(x) dx

)

∗ (mtx + bt)

=

(

erf

(

x0 − x − ∆x (x)√
2σ

)

+ 1

)

∗ (mtx + bt) , (5.8)

where erf() is the error function. Effectively, this meant that the tail was a linear function

that went smoothly to zero under the peak.

The function actually used to fit was a combination of 2 Gaussians with energy loss and

with tails. For consistency, ∆x(x) was assumed to be the same for both peaks. Since the tail

of the 4He peak wasn’t visible by itself, it was assumed to have the same mt and bt as the
3He tail, but an amplitude equal to the ratio of the peak amplitudes multiplied by the 3He

tail amplitude. The full function was therefore the sum of the following four functions:

peak1 = A1e
− 1

2
((x+∆x(x)−x01)/σ1)

2

, (5.9)
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tail1 =

(

erf

(

x01
− x − ∆x(x)√

2σ1

)

+ 1

)

∗ (mtx + bt) , (5.10)

peak2 = A2e
− 1

2
((x+∆x(x)−x02)/σ2)

2

, (5.11)

tail2 =
A2

A2

(

erf

(

x02
− x − ∆x(x)√

2σ2

)

+ 1

)

∗ (mtx + bt) . (5.12)

5.2.3 Dead Time

The number of counts in a spectral peak is related to the number of particles actually

scattered into the detector, but is not identical with it, since the data-acquisition system is

sometimes “busy” when the detector produces a signal. This “dead-time”, produced primarily

by the length of time required by the ADC to digitize the signal, means that there are fewer

counts in the spectrum than there were protons scattered into the detector. To obtain the

latter, the former must be corrected by the fraction of time the data-acquisition system (DAQ)

was busy. We obtained this dead-time correction (dtc) by adding a pulser signal to the data

at the pre-amp, while from the same module sending a scaler to the DAQ. The dtc was taken

to be the ratio of the number of pulser scaler counts npul, which did not go through the ADC

to the number of the pulser signals Npul, which did,

dtc =
npul

Npul
. (5.13)

The uncertainty of the dead-time correction was calculated by assuming that the number of

missing pulser signals, npul - Npul, was randomly distributed,

σdtc = dtc
σNpul

Npul
= dtc

√

npul − Npul

Npul
. (5.14)

We then took the number of particles scattered into the detector to be the number of peak

counts times this correction factor, and propagate the uncertainty accordingly. Typical dead-

time corrections were less then 1%, and were less than 10% in all cases. Two of the detector

pairs share a single ADC, so that separate dead-time corrections were not possible for both

detectors in those pairs. Since the ADC itself was assumed to be the primary source of

dead-time, the correction from one detector was applied to both.
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5.3 Asymmetries

Once the relative number of particles scattered in each spin state has been found, the

asymmetries for each run can be calculated according to equations 4.19-4.22. Each asymmetry

is of the form

Asym =
x − 1

x + 1
, (5.15)

where

x =

√

S1S2

S3S4
. (5.16)

The uncertainty in the asymmetry is therefore

σAsym =
x

(x + 1)2

√

√

√

√

4
∑

i=1

(

σSi

Si

)2

. (5.17)

Each of the factors Si is the sum of the BCI-normalized yields in two spin-states, e.g.

Si =
N1

b1
+

N2

b2
, (5.18)

with uncertainty

σS =

√

(

σN1

b1

)2

+

(

σN2

b2

)2

. (5.19)

The detector yields N and their uncertainties σn were discussed above. Since the target

cell pressure was assumed constant over the length of a run, the yields were only explicitly

normalized to target pressure in the case where different target spin states were measured

with different shots of polarized gas.

5.4 Polarized Beam Preparation

The polarized beam was produced by the TUNL Atomic Beam Polarized Ion Source

[Cle95]. The ABPIS produces a polarized beam whose quantization axis is parallel to the beam

direction. A Wein filter, which makes crossed electric and magnetic fields, produces other spin

orientations as desired. Essentially, the filter’s dipole magetic field precesses beam spins to the

new orientation as they pass through it, and the amount of precession is determined by the

strength of the field. The dipole electric field corrects for the &v× &B beam steering introduced

by the magnetic field.
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A calibration of the Wein filter’s precession was performed just prior to the beginning of

the main data-taking, in which the magnetic field setting corresponding to the maximum y-

component of the beam spin was determined. The calibration was performed by measuring the

p+4He scattering asymmetry for various Wein filter settings. The asymmetry was measured

at a lab bombarding energy of 5.51 ± 0.04 MeV and a lab scattering angle of 120°, where the

analyzing power is known to be large[Sch71].

Figure 5.8 shows the p+4He scattering asymmetry, proportional to the beam polarization,

vs. Wein filter magnetic field strength. The error bar includes a 2% uncertainty as an estimate

of the stability of the overall polarization at the source, which was added in quadrature with

the statistical uncertainties. A sine function,

f(x) = a sin (bx + c), (5.20)

fit to the data was used to determine the magnetic field value corresponding to maximum

polarization, which occurs when the sine argument equals 90°:

xmax =
1

b

(π

2
− c

)

. (5.21)

The uncertainty, according to Equation 5.1, is

σxmax =
1

b

√

(π

2
∗

σb

b

)2
+ σ2

c . (5.22)

The result was 405.8 ± 1.7 G.

5.5 Measurement of Beam Polarization

Beam polarization measurements were made with p+4He elastic scattering in either the

target cell or in an Al polarimeter chamber installed upstream of the target chamber. De-

tectors in the latter could be mounted in the horizontal or vertical scattering planes, so that

either polarization component could be measured. The detectors were mounted at 110° in

holders which held brass collimators with circular aperatures in a snout. Havar foils, either

6.35 or 2.54 µm thick, were epoxied with Armstrong A-12 epoxy to a 2.54 cm diameter target

cell to contain the 4He gas. The cell could be moved several centimeters inside the cham-

ber from the outside, allowing it to be inserted periodically into the beam for polarization

measurements and removed to allow beam to pass unobstructed to the scattering chamber.

Proton bombarding energies in the polarimeter were somewhat different than in the target

cell, and are tabulated in Table 5.3.

The p+4He asymmetries were divided by Ay to obtain the beam polarization. Phase-

shifts obtained from smooth curves fit to the published values of [Sch71] were used in a
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Figure 5.8: Wein Filter Calibration

Table 5.3: Polarimeter cell bombarding energies
Incoming Havar Entrance Energy After Energy at

Beam Energy Foil Thickness Entrance Foil Cell Center
(MeV) (µm) (MeV) (MeV)

5.77±0.04 6.35 5.55±0.04 5.52±0.04
5.66±0.04 2.54 5.57±0.04 5.54±0.04
4.15±0.03 2.54 4.04±0.03 4.00±0.03
3.54±0.03 6.35 3.23±0.03 3.19±0.03
3.31±0.03 2.54 3.18±0.02 3.13±0.02
2.75±0.02 6.35 2.39±0.03 2.33±0.03
2.48±0.02 2.54 2.32±0.02 2.27±0.02
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Table 5.4: Polarimeter cell analyzing powers
Bombarding

Energy Ay

(MeV)
5.54±0.04 0.956±0.016
5.52±0.04 0.956±0.016
3.19±0.03 0.863±0.018
2.33±0.03 0.650±0.021

spin1
2-on-spin0 phase-shift code [Pri03] to obtain Ay at the energies listed in Table 5.4.

For much of the spin-correlation data taken in 2007, however, the beam polarization was

unstable, so that periodic monitoring would not necessarily determine the average polariza-

tion. It was therefore decided to determine the polarization along the y-axis by normalizing

our relative Ay0 measurements to those of [Fis03] or [All93a]. Each point in a relative Ay0

angle set was divided by a value linearly interpolated from [Fis03] or [All93a] at the same en-

ergy, and the polarization was taken to be the average of these ratios. An uncertainty of 0.02

was assigned to the polarization and added in quadrature with our statistical uncertainties.

No published data was available at 2.7 MeV, so smooth curves were fit through the existing

distributions at each angle vs. energy and evaluated at 2.7 MeV. The normalization then

proceeded as above.

The procedure was extended to Axx for some distributions by “tipping” the spin 20° out

of the plane with the Wein filter during data taking and applying the above analysis to the

y-component. The x-component was obtained by multiplying the y-component by the ratio

of the two components, which was calculated according to Equation A.1. Other Axx data

relied on polarimeter measurements.

5.6 Measurement of Target Polarization

As discussed in Chapter 3, pulsed NMR was used to give a relative measure of the target

polarization. The NMR measurements for each “shot” of polarized gas were normalized by

the partial 3He pressure in the target cell. The uncertainty for those N measurements y(t)

was taken to be the average deviation,

σNMR =

√

(yi − f(ti))
2

N − 2
(5.23)

of the points from an exponential fit,

f(t) = Ae−
t
τ , (5.24)
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Figure 5.9: Relative target polarization vs. time for one “shot” of polarized gas

An example fit is shown in Figure 5.9. Those occasional runs whose NMR measurements

failed were assigned values from the fit. To obtain target polarizations, the relative NMR

measurements were divided by the target cell calibration constant, discussed below, and the

uncertainty was propagated accordingly.

The calibration factor relating the relative pressure-normalized NMR reading to the target

polarization was determined each time a target cell was glued with new foils and remounted

in a target holder. Since the entrance and exit foils failed frequently, this procedure was

performed a number of times2. As described in [Kat05], the calibration constants were deter-

mined by measuring the asymmetry of alpha particles, provided by the TUNL helium source,

scattered from the polarized target at 45°, where we confirmed that the analyzing power is

near an absolute minimum value of -1, as described below. This asymmetry, therefore, was

a direct measure of the target polarization. The bombarding energies are listed in Table

5.5. During calibrations, relative NMR measurements of the target polarization were made

together with measurements of the alpha asymmetry. The polarization of the target decayed

during calibrations, so that each calibration spanned a range of target polarization values.

The target asymmetries were plotted as a function of pressure-normalized target NMR,

and the calibration factor was extracted as the slope from a linear fit to the plot, as shown

in Figure 5.10. Typical statistical uncertainties for calibration measurements were about 2%,

228 calibrations were actually analyzed, though some other unsuccessful attempts were made. These usually
ended when the cell began to leak. The necessity of using an additional beam source for these calibrations,
and one which often required maintenance, was one of the more painful aspects of the experiment.
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Table 5.5: Bombarding energies for target cell calibrations
Incoming Kapton Entrance Energy After Energy at

Beam Energy Foil Thickness Entrance Foil Cell Center
(MeV) (µm) (MeV) (MeV)

16.82±0.12 25.4 15.60±0.14 15.44±0.14
16.82±0.12 17.8 15.97±0.13 15.82±0.13
16.15±0.11 7.62 15.78±0.11 15.62±0.15
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Figure 5.10: Determination of target nmr calibration constant.

and the variation of different calibrations was about 10%.

5.7 Location of Calibration Point

Our determination of the calibration point in α + 3He elastic scattering followed the

prediction of [Pla71] of an Ay = -1 point near 15.33 MeV 3He lab energy and 47° 3He lab

scattering angle. The authors cautioned that their prediction for the location of the minimum,

based on the phase-shifts of [Har70], was only approximate. Since absolute measurements of

the analyzing power were impossible without a calibrated target cell, relative measurements

of α+3He Ay as a function of angle and energy near that location were used to determine a

local minimum, and a value of -1 was assigned to that point. The energies used are in Table

5.6.

Figure 5.11 shows our relative measurements of α+3He Ay at 15.44 MeV. The observ-
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Table 5.6: Bombarding energies for α+3He Ay minimum
Incoming Kapton Entrance Energy After Energy at

Beam Energy Foil Thickness Entrance Foil Cell Center
(MeV) (µm) (MeV) (MeV)

15.51±0.11 25.4 14.21±0.14 14.04±0.14
16.17±0.11 25.4 14.92±0.14 14.74±0.14
16.82±0.12 25.4 15.60±0.14 15.44±0.14
17.40±0.12 25.4 16.22±0.14 16.06±0.14
18.22±0.13 25.4 17.08±0.15 16.92±0.15
18.64±0.13 25.4 17.52±0.15 17.37±0.15
19.40±0.14 25.4 18.31±0.15 18.17±0.15

able was calculated according to Equation 4.19, except that the relative NMR measurements

of target polarization were used without applying the target cell calibration constant. Re-

peated angles were averaged together, weighted by their error bars. The weighted mean of N

measurements yi with uncertainties σi is [Leo94]

µ =
N
∑

i=0

yi

σ2
i

/

N
∑

i=0

1

σ2
i

, (5.25)

with uncertainty

σµ =

√

√

√

√

(

N
∑

i=0

1

σ2
i

)−1

. (5.26)

A fourth-order polynomial was fit to the data and the minimum angle determined to be 46.64

± 0.22°. Measurements of Ay vs energy are shown in Figure 5.12. The present measurements

agree with the prediction of [Har70] of a very shallow minimum, but did not extend to low

enough energy to constrain a fit.

Our calibrations were performed at 45° and between 15.44 and 15.82 MeV. We assign

a value of Ay for the calibrations relative to the minimum, and assume the value at the

minimum is -1. This was straightforward with respect to angle, where we use values from the

fit, obtaining
f(45)

f(46.64)
= 0.993 ± 0.008. (5.27)

With respect to energy, however, there was no fit, but the value during any of the calibrations

must be within 3% (the precision of the data in that region) of the minimum. The value

assigned to Ay for calibrations was therefore -0.99+0.01-0.03.
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Figure 5.11: 4He + 3He Ay measurements with respect to angle. The present relative data
are shown normalized so that minimum of the fitted curve, described in the text, is equal to
-1. A data point from [Har70] is also shown, as well as results from their phase-shift analysis
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analysis of [Har70] are shown along with data from that work at 54°.
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5.8 Spin-Correlation Coefficients

Spin-correlation coefficients were measured simultaneously by four pairs of movable de-

tectors, with the target and spin-correlation asymmetries for each run divided by the cor-

responding target polarization. Asymmetries from repeated runs with the detectors in the

same position were averaged together according to Equation 5.25 into four-point angle-sets.

This procedure was modified for those data taken without flipping the target spin during each

run. An average target polarization was calculated for each polarized gas shot, and the total

number of counts for each spin-state for the shot was divided by the 3He partial pressure.

Asymmetries were then calculated using one shot with each spin orientation and the average

target polarization of the two shots.

Angle sets at the same energy were combined into angular distributions by averaging

together asymmetries at common angles. Angular distributions for Ay0, Ayy, and Axx were

divided by the beam polarization as described above. Finally, angular distributions of the

same observable at the same energy from different experimental runs were averaged together.

The results are presented in the next chapter.

5.9 Steering Effect

An unexpected systematic error was discovered during data-taking. Figure 5.13 shows

observables extracted from data taken while the target was unpolarized, when the asymmetries

corresponding to the target analyzing power and spin-correlation coefficients should be zero.

While this was true for A0y calculated with the sine-theta coil’s magnetic field turned off,

non-zero asymmetries were obtained with the field on. The asymmetries for Ayy, on the other

hand, were consistent with zero even with the field on.

The target magnetic field is believed to cause this effect by steering the incoming and

scattered protons through the Lorentz force, as sketched in Figure 5.14. This steering can

produce scattering asymmetries in at least two ways. First, it changes the solid angle sub-

tended by the detectors about the scattering center by changing the location of that center.

Thus, for a given orientation of the magnetic field, one detector of a left/right pair will be

closer to the scattering and therefore detect more particles than it would without magnetic

steering, while the other will be further away and see fewer. When the field orientation is

reversed, the particles are steered in the opposite direction, and relationship between detector

yields reverses. Thus, the steering introduces a systematic effect into scattering asymmetries

which is not cancelled by reversing the target spin as other systematic effects are [Ohl72].

The magnetic steering also affects the measurement of scattering asymmetries by changing

the effective scattering angle of the detectors, as illustrated in Figure 5.15. With the magnetic
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Figure 5.13: Instrumental effect. The upper panel shows asymmetries taken at 2.25 MeV for
A0y calculated according to Equation 4.19, except that the target is unpolarized. Asymmetries
taken with the sine-theta coil magnetic field both on and off are shown. The lower panel shows
asymmetries for Ayy with the field on. Note the difference in vertical scales for the two panels.
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Figure 5.14: Steering of the incoming proton beam and scattered particles by the sine-theta
coil magnetic field. The target cell and detectors are shown from above. The beam is incident
from the left on the gas cell along the dotted line, but deflected as shown by the magnetic
field, which is oriented out of the page. Similarly, the scattered particles travel along curved
paths to the detectors. The figure is not to scale, and the size of the effect is exaggerated for
clarity.

52



Beam Axis

R

L

α

β

β

θ

Figure 5.15: Deflection of the incoming beam and scattered particles through angles α and
β, respectively, by the sine-theta coil magnetic field.

field oriented “up”, the scattering angle of particles reaching the left detector is:

θ′L = θ + α + β, (5.28)

where θ is the detector angle, α is the deflection of the incoming beam, and β is the deflection

of the scattered particles. Similarly, the scattering angle for particles reaching the right

detector is:

θ′R = θ − α − β. (5.29)

This change in scattering angle produces an instrumental asymmetry through the angular

dependence of the differential cross-section, a distribution of which is shown in Figure 5.16.

Since the left and right detectors are effectively at different angles, they will have different

yields. Once again, the situation reverses with the target magnetic field, so that this effect is

not canceled in a cross-ratio calculation of the observable.

The result of a simple calculation of these two effects at 2.25 MeV is shown in Figure

5.17, along with the measured instrumental asymmetry. Though the largest deflection angle

calculated was 0.1°, the resulting asymmetries are large enough to interfere with polarized

target measurements. For example, the measurement of an observable equal to 0.1 with 20%

target polarization would yield an asymmetry of 0.02. The instrumental effect was measured

to be largest at the lowest beam energy of 2.25 MeV, where the particles would be most

deflected by the magnetic field. The calculation neglects the finite size of the beam and
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Figure 5.16: Angular distribution for Ay0 [Fis06] for p+3He elastic scattering at 2.25 MeV.
The dependence is very strong at forward angles.

target, and simply determines the energy loss, modeled in TRIM, and magnetic steering of

incoming and scattered protons in small steps as they proceed through the magnetic field.

The calculation reproduces the general size and forward-angle trend of the effect, but not

in sufficient detail to be used to correct the data. An initial attempt to model the effect in

GEANT4 was abandoned because of the length of time that would have been required to

obtain sufficiently accurate results.

Instead, measurements of the effect like those in Figure 5.17 are subtracted from polarized

target asymmetries. The effect was measured both directly, on the target with unpolarized

gas, and indirectly, from extrapolating polarized target asymmetries to zero polarization.

This indirect approach is illustrated in Figure 5.18. Since the target polarization degrades

during measurements, data are collected at a range of polarization values. The instrumental

asymmetry is extracted as the y-intercept of a linear fit to asymmetry vs. polarization.

Direct and indirect measurements were averaged together to obtain the measurements used

to correct the polarized data. Since no non-zero effect was observed for spin-correlation data,

the correction was only applied to A0y.

An example of the correction is shown in Figure 5.19 for A0y at 2.25 MeV. The uncorrected

points are extracted from the raw data according to Equation 4.19. The corrected points are

obtained by subtracting from the uncorrected points the measured instrumental asymmetries

shown in Figure 5.17, divided by the average target polarization of the uncorrected points.
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Figure 5.18: Target asymmetries measured during one “shot” of polarized gas, plotted as a
function of polarization. The y-intercept, p0, of the fitted line, which would be consistent
with zero in the absence of an instrumental effect, is an indirect measurement of that effect.
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Thus, these corrections obtained are very large. The uncertainty of the uncorrected points and

the instrumental asymmetries are propagated through this calculation according to Equation

5.1.
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6 Phase-Shift Analysis

A phase-shift analysis of the global p+3He elastic scattering database below Ep= 12MeV

was performed. This analysis was a repetition of the [Geo03] analysis, the database for which

is listed in Table 1.1, with the addition of the dσ
dΩ and Ay0 measurements of [Fis06] and the

new A0y, Ayy, and Axx measurements made for this work. These additional data all fell

between 1.0 and 5.54 MeV. The search routine used in [Geo03] was provided by Elizabeth

George [Geo06].

6.1 Calculation of Observables

In a phase-shift analysis, the scattering amplitude is expanded in powers of orbital angu-

lar momentum, and the coefficients of that expansion are determined by fitting observables

calculated from the scattering amplitude to data. This is useful because, especially at low

energies, only a few angular-momentum states are usually necessary, so that a small number

of experimental parameters can be used to describe all the scattering observables. For spin-

polarized scattering, the scattering matrix fills the role of the usual scattering amplitude, and

its elements are expanded in partial waves for the analysis. As we will see, the fact that the

nuclear Hamiltonian preserves only the total angular momentum j and parity π, and not the

initial spins or relative angular momentum, complicates the expansion.

Equation 4.14 provides the connection between the scattering matrix elements and the

scattering observables. A parameterization of the scattering matrix by LaFrance and Win-

ternitz [Fra80] in terms of the Pauli spin matrices is used. The parameterization is

M
(

&k′ ,&k
)

=
1

2

[

(a + b) + (a − b) ( &σ1 · n̂) ( &σ2 · n̂) + (c + d) ( &σ1 · m̂) ( &σ2 · m̂)

+ (c − d)
(

&σ1 · l̂
)(

&σ2 · l̂
)

+ e ( &σ1 + &σ2) · n̂ + f ( &σ1 − &σ2) · n̂

]

, (6.1)



where the complex amplitudes a through f are functions of energy and angle. The unit

vectors l̂, m̂, and n̂ are defined according to

l̂ =
&k′ + &k

|&k′ + &k|
, m̂ =

&k′ − &k

|&k′ − &k|
, and n̂ =

&k′ × &k

|&k′ × &k|
. (6.2)

The 4×4 matricies &σ1 and &σ2 describe the spin of the proton and 3He nucleus, respectively.

The are formed from the usual 2×2 Pauli matricies &σ (2):

&σ1 = &σ1 (2) ⊗ 1 and &σ2 = 1 ⊗ &σ2 (2) . (6.3)

The observables can be expressed in terms of the six complex amplitudes by combining Equa-

tions 4.14 and 6.1:

dσ0

dΩ
=

1

2

(

|a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2
)

(6.4a)

dσ0

dΩ
Ay0 = Re (a ∗ e + b ∗ f) (6.4b)

dσ0

dΩ
A0y = Re (a ∗ e − b ∗ f) (6.4c)

dσ0

dΩ
Ayy =

1

2

(

|a|2 − |b|2 − |c|2 + |d|2 + |e|2 − |f |2
)

(6.4d)

dσ0

dΩ
Axz = −Re (a ∗ d) sin θ + Im (c ∗ f) − Im (d ∗ e) cos θ (6.4e)

dσ0

dΩ
Azx = −Re (a ∗ d) sin θ − Im (c ∗ f) − Im (d ∗ e) cos θ (6.4f)

dσ0

dΩ
Axx = Re (a ∗ d) cos θ + Re (b ∗ c) − Im (d ∗ e) sin θ (6.4g)

dσ0

dΩ
Azz = −Re (a ∗ d) cos θ + Re (b ∗ c) + Im (d ∗ e) sin θ (6.4h)

The coefficents are expressed in terms of the scattering matrix elements by solving Equation

6.1:

a =
1

2
(M1010 + M1111 − M1−111) (6.5a)

b =
1

2
(M1010 + M1111 − M1−111) (6.5b)

c =
1

2
(−M0000 + M1111 + M1−111) (6.5c)

d =
−1√
2 sin θ

(M1110 + M1011) (6.5d)

e =
i√
2

(M1110 − M1011) (6.5e)
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f = −i
√

2 (M1100) (6.5f)

In this way, the parameterization of Eq. 6.1 provides a convenient bridge between the exper-

imental observables and scattering matrix elements via the scattering amplitudes.

In Equations 6.5, the scattering matrix elements are expressed in the basis of the coupled

spin s of the two particles and its projection sz. This may seem unnatural, since the beam

and target particles have been prepared in definite states of their individual projections, but

the fact that the total angular momentum is the conserved quantity in the scattering makes

the coupled spin representation preferable.

6.2 Partial-Wave Expansion

In preparation for the partial-wave expansion, the Coulomb scattering amplitude C (θ),

which preserves the entrance channel spins, is separated from the term containing nuclear

physics information that mixes spins:

Msszs′s′z
=

i
√

π

k

[

iC (θ) δss′δszs′z
+ Bsszs′s′z

]

, (6.6)

where s
′

is the coupled outgoing spin and s
′

z is its projection. The c.m. wave number k is

given by

k =
µν

h̄
, (6.7)

where µ is the reduced mass and ν is the relative velocity between the two particles. The

Coulomb scattering amplitude can be calculated directly:

C (θ) =
η

4π
csc2

(

θ

2

)

eiη ln csc2 ( θ
2
), (6.8)

where η is the Coulomb penetration factor,

η =
Z1Z2e

2

h̄ν
. (6.9)

The charges of the beam and target particles are Z1e and Z2e, respectively.

The matrix B is expanded in partial waves:

Bsszs′s′z
=
∑

ll′j

√
2l + 1〈slsz0|jsz〉〈s

′

l
′

s
′

zsz − s
′

z|jsz〉i|l−l
′

|U j
l′s′ ,ls

Y
sz−s

′

z

l′
(θ, 0) , (6.10)

where the sum is carried out over not only the initial angular momentum l, as it would be

for scattering for a spherically symmetric potential, but also over the outgoing values l
′

that
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share the same jπ, as discussed in Appendix B. The terms 〈slsz0|jsz〉 and 〈s′

l
′

s
′

zsz − s
′

z|jsz〉
are Clebsch-Gordan coefficients and the Y

sz−s
′

z

l′
(θ, 0) are the spherical harmonics. The matrix

U contains the phase-shifts, and is given by:

U j
l′s′ ,ls

= ei(αl+α
l
′ )
(

δl,l′ δs,s′ − Sj
l′s′ ,ls

)

, (6.11)

where the αl are the modified Coulomb phase-shifts,

αl =
l

∑

s=1

arctan
(η

s

)

, (6.12)

and α0 = 0.

The S-matrix contains the nuclear phase-shifts, and is in that sense the heart of the

expansion. It is a 4x4 matrix connecting incoming and outgoing orbital angular momenta

that couple to a given value of total angular momentum, as listed in Appendix B. The nuclear

interaction must preserve parity, however, so the S-matrix doesn’t connect states for which

|l − l
′ | is odd. This means that the S-matrix breaks down into two 2x2 submatrices, as

discussed in [All92]. These submatrices are parameterized according to the convention of

Blatt and Biedenharn [Bla52]:

S =

(

cos2 (ε)e2iδ1 + sin2 (ε)e2iδ2 1
2 sin 2ε

[

e2iδ1 − e2iδ2

]

1
2 sin 2ε

[

e2iδ1 − e2iδ2

]

cos2 (ε)e2iδ2 + sin2 (ε)e2iδ1

)

, (6.13)

where δ1 and δ2 are the “eigenphase-shifts”, which would resolve into the usual phase-shifts

in absence of mixing, which is described by ε. The freedom to choose which eigenphase-shift

will be δ1 leaves the sign of the mixing parameter undetermined. The eigenphase-shift δ1 is

therefore chosen to be the parameter with a smaller value of either l or s.

6.3 Effective Range Expansion

This analysis included data from proton energies between 1 and 12 MeV. While many

previous phase-shift analyses have been conducted at individual energies and smooth curves

fit through the results, this analysis follows [All93b] and is conducted in an energy-dependent

way, so that all data are fit at once. This requires a parameterization of the energy dependence

of the phase-shifts. The following “effective range expansion”, or expansion in k2 is used:

C2
l k2l+1

[

cot δj
ls +

2ηH (η)

C2
0 (η)

]

=
∑

n=0

ajls
n k2n, (6.14)
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where

C2
0 (η) =

2πη

e2πη − 1
, (6.15)

C2
l (η) = C2

l−1 (η)

(

1 +
η2

l2

)

, and (6.16)

H (η) = η2
∞
∑

s=1

1

s (s2 + η2)
− ln η − γ. (6.17)

The parameter γ is Euler’s constant (0.577216). The mixing parameters are expanded ac-

cording to:

tan ε (jπ) =
∑

i=1

aj
ik

2i (6.18)

Alley and Knutson [All93b] point out that neither of these expansions is stictly correct

for use in p+3He elastic scattering, but are merely convenient forms for parameterizing the

energy dependence. Equation 6.18 does not include Coulomb effects, and has nowhere been

proven accurate, while Equation 6.14 has long been established for scattering, but only in the

absence of angular-momentum mixing.

6.4 Procedure

We have therefore linked the experimental observables to the effective range parameters

through a chain of intermediate quantities, so that any given set of parameter values may be

used to calculate corresponding angular distributions of observables. The actual phase-shift

analysis consists of finding the set of parameters which best reproduces the experimental

measurements. The number of parameters used was kept to a minimum to reduce both the

ambiguity between parameters and the overall size of the parameters space to be searched.

The phase-shifts and mixing parameters actually used were 1S0, 3S1, 1P0, 3P2, 3P1, 3P0,
3Dj , 3Fj , ε (1−), ε (1+), and ε (2−). The triplet D phase-shifts were consolidated into a single

parameter, since the possible splitting between them was small. The same was done for the

triplet F parameters. Three effective range parameters were used to parameterize the energy-

dependence of each phase-shift and mixing parameter, so that a total of 36 parameters were

fit to the database.

The database was broken into groups of measurements thought to have common normal-

izations. For each group, labeled with index k, the χ2 was calculated according to

χ2
k =

∑

i

[

(

νkfki − yki

dyki

)2

+

(

νk − ν0

dνk

)2
]

, (6.19)

where the fki are the values calculated from effective range parameters and the yki ± dyki

are the experimental measurements. The scale factor for the measurements of group k is νk.
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The experimenter’s estimate of the normalization is ν0, which is always taken to be 1, with

uncertainty dνk.

A FORTRAN computer program, provided by Elizabeth George, was used to perform the

parameter search. The minimization package MINUIT was used to vary the effective range

parameters in order to minimize the overall χ2:

χ2 =
21
∑

k=1

χ2
k. (6.20)

The search routine did not adjust the νk as an additional search parameter. Rather, at every

step in the parameter search, each νk was analytically adjusted to minimize χ2
k:

νk =

∑

i
ykifki

(dyli)
2 + ν

dv2
k

∑

i

(

fki
dyki

)2
+ 1

dv2
k

. (6.21)

Parameter searches were performed on the databases of [All93b] and [Geo03]. The two

[Geo03] solutions were reproduced, while the result using the [All93b] database were slightly

different from those in Alley’s thesis. These three solutions were used as starting points for

searches to the full database.

Initial searches of the full database resulted in multiple solutions which had χ2-per-datum

between 2 and 3 for the new data, both the present results and those of [Fis06], added to the

global database for this analysis. Those solutions were discontinuous in one or more of the
1D2, 3Dj , and 3Fj phase-shifts. Removing either the [Fis06] cross-section, [Fis06] analyzing

power, or present spin-correlation data did not improve the fit to the remaining data. The fit

was improved by removing from the analysis 14 of the approximately 300 new points which

had χ2 contributions of more than 10, as detailed in Table 6.1. About half of these points

seemed simply to be outliers, while the other half were associated with systematic problems.

These included some forward angle A0y points which had been corrected for magnetic steering.

Another apparent systematic problem was found for Ay0 data at 1.60 MeV, shown in Figure

6.1, for which the four-most-forward angle points disagreed with the phase-shift analysis and

were rejected. The resulting χ2-per-datum for the new data was about 1.5 after removing all

these points. The effect of their removal on the phase-shifts was generally negligible, and in

all cases within the range of systematic error indicated by the single-energy analyses described

below.

A single, continuous solution was obtained by fixing the 3Fj phase-shift at the value

obtained from the [All93b] database. This procedure is reasonable, since the F-wave param-

eters should be most sensitive to the higher-energy data, while the additions to the [All93b]

database present in the total database are at energies between 1 and 6 MeV. The results are

shown in Table 6.2.
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Table 6.1: Points dropped from the phase-shift analysis
Observable Proton Energy (MeV) C.M. Angles (°)

dσ
dΩ 4.00 49.9
Ay0 1.60 39.6, 46.1, 52.4, and 58.7
Ay0 2.25 33.1
Ay0 3.13 52.4, 136.8
Ay0 4.00 166.6
A0y 3.15 39.6, 52.4
A0y 4.02 39.6, 52.4
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Figure 6.1: Measurements of Ay0 at 1.60 MeV [Fis06] shown together with the phase-shift
solution. The four most forward-angle points were dropped from the analysis.
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Table 6.2: Best-fit effective-range parameters
Phase a1×10−2 a2×10−1 a3

1S0 −9.0 ± 0.3 7.3 ± 0.5 1.32 ± 0.19
3S1 −11.02 ± 0.13 7.6 ± 0.2 −0.14 ± 0.06
1P1 5.74 ± 0.19 −2.4 ± 0.3 4.30 ± 0.15
3P2 2.108 ± 0.018 1.60 ± 0.03 0.358 ± 0.014
3P1 1.60 ± 0.03 2.08 ± 0.06 0.59 ± 0.03
3P0 8.8 ± 0.2 −1.1 ± 0.2 2.20 ± 0.09
1D2 −31 ± 7 34 ± 7 −12.9 ± 1.8
3Dj −0.01 ± 0.23 −3.6 ± 1.0 7.1 ± 0.5
3Fj 2.29 39.6 -6.49

ε (1+) −12 ± 7 42 ± 8 −12.6 ± 1.9
ε (1−) −415 ± 10 223 ± 8 −39.0 ± 1.9
ε (2−) 4 ± 12 21 ± 11 −9 ± 3

In order to gauge the effects of systematic errors, single-energy analyses were performed

at energies where new spin-correlation and new or existing cross-section measurements were

available, at nominal proton energies of 2.25, 3.13, 4.00, and 5.54 MeV. All measurements

within 100 keV of the nominal energies were included. The same program was used for these

single-energy fits as for the energy-dependent work, except that the phase-shifts were searched

directly, instead of through the effective range parameters. The results are presented in Table

6.3. Phase-shifts and mixing parameters calculated from the global effective-range parameters

at the same energies are shown in Table 6.4.
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Table 6.3: Single-energy phase-shift results
Phase 2.25 MeV 3.13 MeV 4.00 MeV 5.54 MeV

1S0 −37.5 ± 1.0 −45.9 ± 0.7 −56.1 ± 1.1 −68.4 ± 0.7
3S1 −33.8 ± 0.5 −43.4 ± 0.3 −48.9 ± 0.3 −58.3 ± 0.3
1P1 10.2 ± 0.5 13.4 ± 0.4 16.2 ± 0.4 20.4 ± 0.5
3P2 15.9 ± 0.2 26.4 ± 0.3 38.0 ± 0.2 51.6 ± 0.3
3P1 13.7 ± 1.2 25.0 ± 0.4 34.8 ± 0.3 45.0 ± 0.4
3P0 11 ± 3 10.5 ± 0.5 15.1 ± 0.4 20.8 ± 0.3
1D2 −1.0 ± 0.4 −0.6 ± 0.3 −2.2 ± 0.4 −3.2 ± 0.3
3Dj −0.34 ± 0.16 −0.71 ± 0.16 −1.08 ± 0.09 1.55 ± 0.09
3Fj −0.03 ± 0.13 0.11 ± 0.11 −0.04 ± 0.07 −0.01 ± 0.07

ε (1+) 0.4 ± 0.4 0.2 ± 0.3 0.8 ± 0.5 1.7 ± 0.2
ε (1−) −30 ± 20 −13.6 ± 0.8 −11.8 ± 0.5 −12.4 ± 0.5
ε (2−) −0.5 ± 1.0 0.7 ± 0.4 1.7 ± 0.7 1.4 ± 0.2

Table 6.4: Global phase-shift results
Phase 2.25 MeV 3.13 MeV 4.00 MeV 5.54 MeV

1S0 −38.6 ± 0.2 −47.9 ± 0.2 −55.7 ± 0.3 −67.4 ± 0.4
3S1 −34.56 ± 0.09 −42.8 ± 0.09 −49.41 ± 0.10 −58.55 ± 0.12
1P1 8.22 ± 0.11 13.45 ± 0.14 17.56 ± 0.16 21.44 ± 0.18
3P2 16.57 ± 0.05 27.53 ± 0.07 37.71 ± 0.09 51.43 ± 0.12
3P1 17.41 ± 0.08 26.94 ± 0.11 34.98 ± 0.12 45.14 ± 0.15
3P0 5.22 ± 0.11 9.36 ± 0.14 13.82 ± 0.14 21.08 ± 0.18
1D2 −0.17 ± 0.04 −0.55 ± 0.11 −1.29 ± 0.19 −3.09 ± 0.19
3Dj −0.55 ± 0.03 −0.83 ± 0.04 −1.09 ± 0.04 1.51 ± 0.04
3Fj 0.007 0.018 0.039 0.11

ε (1+) 0.29 ± 0.12 0.68 ± 0.12 1.13 ± 0.09 1.91 ± 0.06
ε (1−) −10.171 ± 0.009 −12.194 ± 0.017 −13.42 ± 0.03 −14.26 ± 0.05
ε (2−) 0.47 ± 0.12 0.75 ± 0.12 1.02 ± 0.12 1.35 ± 0.14
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7 Results

7.1 Observables

The new measurements of A0y, Ayy, and Axx made for this thesis are shown in Figures

7.1-7.5. Each plot also includes a curve calculated from the best-fit effective range parameters

of the global phase-shift analysis (PSA), as well as the measurements of [Sza78b] and [All93a]

where available. The overall agreement with the previous measurements is good, with the

most forward-angle Ayy points of [All93a] at 5.54 Mev being the only exception, and the

present results have smaller error-bars. The new measurements are well-fit by the phase-shift

analysis, except for the two most forward-angle A0y points at 3.15 and 4.02 MeV. The forward-

angle target analyzing-power points required the largest correction for magnetic steering, so

the disagreement with the PSA may indicate that the correction to those points was not

sufficiently accurate. These points, which were not included in the final phase-shift analysis,

are plotted as “Outliers”.

Example comparisons of the new measurements and previous measurements of Ay0 with

the theoretical calculations of the Lisbon [Del07b, Del08] and Pisa [Viv05a] are shown in

Figures 7.6-7.8. The numerical results were obtained from the authors. These calculations,

discussed in the Chapter 2, are “microscopic” calculations using realistic nucleon-nucleon

potential models. All calculations underpredict Ay0 substantially. The Lisbon calculation of

the ISuj model comes closest to the experimental values, as shown at 5.54 MeV in Figure 7.8,

which may be expected since that model was adjusted to reproduce low-energy N-d scattering.

The other NN models used by the Lisbon group, some of which are shown in Figure 7.7 at 3.13

MeV, give roughly the same result. The Pisa results for AV18 are similar but not identical to

those from Lisbon, with Lisbon results closer to the data. The addition of the URIX 3NF to

the Pisa AV18 calculation produces little or no improvement, while the Lisbon CD-Bonn + ∆

calculation at 5.54 MeV is actually further from the data than the result with only CD-Bonn.

The overall situation for A0y is much the same, except that the typical underprediction



is a smaller fraction of the observable and the ISuj result actually reproduces the data. The

same is true for the AV18+URIX result, in contrast to the Pisa calculation shown in [Fis06].

The spin-correlation coefficients, in contrast, are better described by the calculations, though

there is a forward-angle underprediction. The results of each theoretical group show little

sensitivity to the choice of model, but the two groups obtain substantial differences for the

common potential AV18.
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Figure 7.1: Present measurements at 2.28 MeV, together with the global PSA fit. The A0y measurements of [Sza78b] are also shown.
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Figure 7.2: Present measurements at 2.77 MeV, together with the global PSA fit.
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Figure 7.3: Present measurements at 3.15 MeV, together with the global PSA fit. The A0y measurements of [Sza78b] are also shown.
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Figure 7.4: Present measurements at 4.02 MeV, together with the global PSA fit. The A0y measurements of [All93a] are also shown.
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Figure 7.5: Present measurements at 5.54 MeV, together with the global PSA fit. The A0y measurements of [All93a] are also shown.
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Figure 7.6: Present measurements, along with Ay0 [Fis06], are shown with the Lisbon calculation using AV18 and the Pisa results
using AV18 and AV18+URIX at 3.15 MeV.
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Figure 7.7: Present measurements, along with Ay0 [Fis06], are shown with the calculations of [Del07b] using different NN models at
3.15 MeV.
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Figure 7.8: Present measurements, along with Ay0 [All93a], are shown with the calculations of [Del07b] using different NN models
at 5.54 MeV. The calculation using CD-Bonn + ∆ (“cdb+d”) includes three-nucleons forces.
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7.2 Phase-Shifts

The phase-shifts and mixing parameters derived from the best-fit effective range parame-

ters are shown vs. proton lab energy in Figures 7.9-7.12, together with the results of [Geo03]

and [All93b]. The single-energy analyses performed for this work are also plotted, along with

the results of single-energy analyses carried out in [All92] at 7.03, 8.52, and 10.01 MeV, and

deviations of those points from the energy-dependent global curve are an indication of sys-

tematic errors in the data at those energies. The agreement between all results for 3S1, 3P1,

and 3P2 is very good, indicating that those parameters are well-established experimentally.

For 1S0, 1P1, and 3P0, on the other hand, there is significant scatter of the single-energy

results about the global result, as well as differences between the two previous analyses with

the present one. The addition of the [Ber80] cross-section and proton-analyzing power mea-

surements between 0.1 and 1 MeV to the [Geo03] analysis produces two solutions which differ

most for the S-waves below 6 MeV. The present analysis, which includes the [Fis06] cross-

sections and proton analyzing powers between 1 and 4 MeV, as well as new spin-correlation

coefficients measured between 2 and 6 MeV, restores a single solution which favors the [All93b]

S-waves and the [Geo03] P-waves.

In the higher partial waves, 1D2 shows the greatest sensitivity to systematic errors, while
3Dj seems well-established. For the global analysis, the 3Fj parameter was fixed at values

obtained from searching the [All93b] database, but agrees well with the single-energy searches

where it was a free parameter. The ε (1+) and ε (2+) mixing parameters were no larger than

a few degrees in all analyses. The ε (1−) mixing parameter, which mixes singlet and triplet P-

waves, differs slightly between the various analyses, and shows appreciable deviations between

the single-energy and global fits.
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Figure 7.9: The energy-dependent S-wave phase-shift results (“Global”) shown with the single-energy solutions. Deviations between
the two are a measure of systematic uncertainty. The previous solutions of [All93b] and [Geo03] are also shown.

78



 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12

1 P 1
 (D

eg
re

es
)

Proton Energy (MeV)

Global
Single Energy

Alley
George1
George2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2  4  6  8  10  12

3 P 0
 (D

eg
re

es
)

Proton Energy (MeV)

Global
Single Energy

Alley
George1
George2

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10  12

3 P 1
 (D

eg
re

es
)

Proton Energy (MeV)

Global
Single

Alley
George1
George2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  2  4  6  8  10  12

3 P 2
 (D

eg
re

es
)

Proton Energy (MeV)

Global
Single

Alley
George1
George2

Figure 7.10: The same plots as Figure 7.9, but for P-wave phase-shifts.
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Figure 7.11: The same plots as Figure 7.9, but for D- and F-wave phase-shifts.
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Figure 7.12: The same plots as Figure 7.9, but for the mixing parameters
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7.2.1 Comparison with Theory

The comparison to the phase-shift results of the Lisbon [Del07b, Del08] and Pisa [Fis06,

Viv08] groups is shown in Figures 7.13 - 7.17. The S-wave phase-shift agreement is good,

although the theoretical singlet phase-shift calculated using only NN models is slightly more

negative than the present experimental result. A similar, though larger, discrepancy was

observed [Tor02] for p+d elastic scattering, which was linked to the underprediction of three-

nucleon binding energies. A similar connection is observed here, since the p+3He calculation

from the Pisa group which includes the URIX three-nucleon force and reproduces the 3- and

4- nucleon binding energies more accurately reproduces 1S0.

There are larger disagreements for the P-wave phase-shifts, however. In general, 1P1 and
3P0 are overpredicted and 3P1 and 3P2 are underpredicted. Interestingly, those calculations

which agree well with one of those pairs of phase-shifts disagree with the other. For example,

the AV18 calculations do well with 3P1 and 3P2 but poorly with 1P1 and 3P0. The addition

of the URIX three-nucleon force in the Pisa calculations improves the description of the latter

pair of parameters at the cost of worsening the description of the former. This inability of

any one calculation to correctly reproduce all the P-wave phase-shifts parallels their common

failure to describe Ay0. The underprediction of Ay0 in p+d elastic scattering was also linked

to small P-wave discrepancies [Tor02, Woo02].

The proton analyzing power depends strongly on the triplet P-wave splitting, especially

the combination δ = 3P1 - (3P1 + 3P0)/2 [Fis06]. That combination is plotted in Figure 7.18

both for the present global analysis and for the Pisa and Lisbon theoretical results, and all

calculations produce insufficient splitting. The differences in accuracy between calculations

of this splitting mirror the differences in their ability to predict Ay0.

The D- and F-wave parameters, which are small, are reasonably well described by both

sets of calculations, though it is interesting to note that the Pisa group’s AV18 3Dj results lie

closer to those of this work than the Lisbon results using the same potential. The theoretical

mixing-parameter results shown in Figure 7.17 have been multiplied by a minus sign in order

to obtain approximate agreement for ε (1−). This may reflect the ambiguity in the Blatt-

Biedenharn parameterization discussed in Chapter 6. The trend of ε (1−), which mixes 1P1

and 3P1 states, with respect to energy is not reproduced by either theoretical group, though

initial results from forthcoming Pisa calculations seem to have better agreement [Viv09].

Our results are also shown in Figure 7.19 with selected calculations of [Ara08] and [Qua08].

Approximate agreement is found for the S-waves and ε (1−) over the whole energy range, and

below about 2 MeV for the P-waves. The two calculations are roughly comparable in accuracy

with respect to the new experimental results. It appears that the inclusion of the break-up

channel and the use of multiple cluster states in [Ara08] offsets the use of a less realistic

(G3RS) NN potential [Tam68] and simple cluster wave-functions. The agreement for the

P-waves of both RGM calculations deteriorates at higher energy as other channels open and
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higher cluster excitations become important [Qua08].
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Figure 7.13: Comparison with theoretical S-wave phase-shifts.
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Figure 7.14: Comparison of P-wave phase-shifts with Lisbon NN calculations.
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Figure 7.15: Comparison of P-wave phase shifts with Lisbon and Pisa [Viv08] results with and without three-nucleon forces.
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Figure 7.16: Comparison with theoretical D-wave phase-shifts.
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Figure 7.17: Comparison with theoretical 3F2 and mixing parameters
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Figure 7.18: Triplet P-wave splitting.
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Figure 7.19: The RGM calculations of [Qua08] (“n”) using the N3LO model and of [Ara08] are compared with the new experimental
results. The AGS result from [Del07b] using N3LO (“d-n”) is also shown.
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Table 7.1: Theoretical scattering lengths
Reference as (fm) at (fm)
[Viv98] 11.5 9.13
[Fil00] 8.2 7.7
[Car91] 10.1±0.5

Table 7.2: Experimental scattering lengths
Reference as (fm) at (fm)
[Teg83] 10.2±1.4
[All93b] 10.8±2.6 8.1±0.5

[Geo03] Soln. 1 15.1±0.8 7.9±0.2
[Geo03] Soln. 2 7.2±0.8 10.4±0.4

[Lev07] 10.63±0.52 8.88±0.48
This work 11.1±0.4 9.07±0.11

7.3 Scattering Lengths

Our results for the singlet and triplet scattering lengths are shown in Table 7.2, along with

the results of the previous experimental studies and theoretical calculations mentioned in the

Introduction. Our results lie between the solutions of [Geo03], with a substantial increase

in precision over those of [All93b]. These new values distinguish quite clearly between the

available theoretical calculations, being in excellent agreement with [Viv98] and disagreeing

with the others. This is perhaps not surprising, since that calculation uses the method with

the least approximation and the most recent potential model.

The [Lev07] results were obtained by relating the p+3He scattering lengths and effective

range parameters to those for neutron-triton (n+T) elastic scattering through a simple inter-

action model. The n+T scattering lengths used in that analysis were subject to systematic

uncertainties, and the effective range parameters were determined from theoretical calcula-

tions. The agreement of the p+3He results with the ones obtained in this work presents the

possibility of inverting the [Lev07] analysis to obtain more precise n+T scattering lengths, as

well as effective ranges which are less model-dependent.
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8 Conclusions

The new measurements of A0y, Ayy, and Axx for p+3He elastic scattering at proton

energies of 2.28, 2.77, 3.15, 4.02, and 5.54 MeV provide an increase in precision over existing

measurements, such as those of [All93a] and [Sza78b]. They also include the only spin-

correlation data for the system below 4 MeV. The new measurements were made with a new

spin-exchange optical pumping polarized 3He polarized target [Kat05], in which 3He gas was

polarized in an external system at a pressure of 8 bar and dispensed to the scattering target

at a pressure of 1 bar. This relatively high target pressure was an important advantage over

previous polarized 3He targets, which were polarized using metastability-exchange optical

pumping and operated at a pressure of a few mbar. A further advantage was that the

calibration for measurements of the new target’s polarization using a separate alpha-scattering

experiment, while time-consuming, was simpler and less prone to systematic error than the

optical methods used to calibrate previous targets [All93a].

The use of the new target also introduced new challenges. The batch-fill design required

that new polarized gas be dispensed to the target every few hours during an experiment,

and the optical pumping cell had to be recharged and optically pumped for about a day

once the polarized gas was exhausted. Also, the maximum 3He polarization for much of

the experiment was 20-25%, which was a significant reduction from its initial value of 30%.

This reduced polarization persisted despite efforts at improved optical pumping cells [Cou06]

and frequencey-narrowed optical pumping [Arn06]. The development of Rb/K hybrid optical

pumping cells, however, substantially reduced the amount of time necessary to repolarize

the 3He gas. Unexpectedly, the A0y measurements required correction for a systematic effect

caused by magnetic steering of the low-energy protons detected in the experiment. The correc-

tion was obtained from a combination of unpolarized target measurements and extrapolation

of measured asymmetries to zero target polarization.

The new measurements, along with measurements of dσ
dΩ and Ay0 [Fis06], were included

in a repetition of the global phase-shift analysis of [Geo03]. These added data, especially the



spin-correlation measurements below 4 MeV, resolved the ambiguity of that analysis, and a

single energy-dependent phase-shift solution was obtained. This fit resulted in a χ2-per-datum

of 2-3 for the added data, compared to about 1 for the remainder of the dataset. Dropping

about 10 points from the more than 300 added ones improved the χ2-per-datum to between

1 and 2 for those measurements. This extraction of unique experimental phase-shifts is the

most definitive advance resulting from this work.

The addition of the new data initially produced multiple solutions for the 1D2, 3Dj , and
3Fj partial waves which were discontinuous with respect to energy, generally at energies below

the lowest-energy measurements of [Ber80] at 300 keV. A single, continuous solution was

obtained by fixing the 3Fj phase-shift at the values of [All93b]. The discontinuity may simply

have been the result extrapolating the convenient parameterization of the phase-shift energy-

dependence beyond the range of available data. There was also some evidence of systematic

disagreements among the lowest-energy data, since the [Ber80] Ay0 data were renormalized by

about 10% when the analysis included the [Fis06] data. The effect of systematic error was also

evident from the deviation of single-energy results from the global fit for some phase-shifts,

which were plotted in Figures 7.9-7.12.

The new results for observables and phase-shifts, along with the [Fis06] Ay0 results, were

compared with theoretical calculations from [Del07b], [Del08], [Viv05a], [Viv08], [Qua08], and

[Ara08]. The microscopic calculations from the Lisbon and Pisa groups were substantially

closer the the present results than the RGM calculations, even those which used realistic NN

models. The Lisbon results showed that several realistic NN potential models qualitatively

reproduce the low-energy spin-correlation coefficients within 2-3 sigma of the experimental

results. The beam analyzing power, of course, was substantially underpredicted, as was the

target analyzing power to a lesser extent. The NN model ISuj, the parameters for which were

adjusted from their best-fit values to the NN database to reproduce N+d phase-shifts, was

closer to the Ay0 and A0y data, but must be considered less realistic than the other models.

The addition of the URIX 3NF improves the Pisa calculation, and in fact reproduces A0y, but

the use of the CD-Bonn + ∆ potential degrades the agreement with the Lisbon calculations.

A serious disagreement between the two groups for low-energy spin-correlation coefficients

using AV18 was observed.

The phase-shift comparison revealed good agreement for the S-wave phase-shifts between

Lisbon and Pisa theoretical groups and all realistic models, while discrepancies were observed

in the P-waves, especially 3P0 and 3P2. This was not surprising, since Ay0 was known to

depend sensitively on the triplet P-wave splitting [Fis06]. It was interesting to see that differ-

ent models deviated from the new experimental results in different ways. Some calculations

reproduced 1P1 and 3P0, while others reproduced 3P1 and 3P2, but none reproduced all four.

The higher waves and mixing parameters, which, except for ε (1−) were small in comparison

to the S- and P-waves, were approximately reproduced by theory, though the Pisa AV18
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calculations for 3Dj were closer to the experimental result than the corresponding Lisbon

calculation. More significant disagreement was observed for ε (1−), though forthcoming Pisa

calculations [Viv08] may better describe that parameter.

This work has established that the discrepancy between theory and experiment for Ay0 in

p+3He elastic scattering results from small errors in the P-wave phase-shifts, as predicted in

[Fis06]. The same connection was observed [Tor02, Woo02] for p+d elastic scattering, though

the discrepancies were smaller in that system. More generally, the experimental phase-shift

results constitute, within their error-bars, a complete description of p+3He scattering below

12 MeV. Such experimental information should be useful in evaluating attempts to solve

the Ay puzzle. For instance, calculations using three-nucleon forces up to N2LO in chiral

perturbation theory are in progress [Viv08]. It is hoped that systematic chiral approach will

be more accurate than the ad hoc models considered here.
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A Beam Spin Precession

The Wein filter on the TUNL polarized source precesses the beam spin about its dipole

magnetic field. The filter itself can be rotated about the beam axis, so the two rotations

can combine to produce any arbitrary spin orientation. Further precession of the beam spin,

however, occurs after the Wein filter in the bending magnets before and after the accelerator,

which precess the spins about an axis perpendicular to the lab floor. The net spin precession

for beam tuned down the 52° beam line is 206.8°[Cle03]. The Wein filter setting, therefore,

must be adjusted to account for this precession.

The spin orientation on target can be calculated by considering 4 rotations acting on a

vector of the spin components,

V ′ = R4R3R2R1 ∗ V.

In what follows, the z axis is along the beam direction at the source, the y-axis is perpendicular

to the lab floor, and the x-axis is parallel to the lab floor pointing to the right looking upstream

at the source. The rotations are:

R1 : Rotation about the z-axis to align the x-axis with the Wein filter’s magnetic field.

R2 : Wein filter precession: Rotation about the x-axis.

R3 : Rotation about the z-axis to make the y-axis vertical.

R4 : Bending magnet precession: Rotation about the yaxis.

In detail:







px

py

pz
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cos ξ 0 sin ξ

0 1 0

− sin ξ 0 cos ξ













cos δ − sin δ 0

sin δ cos δ 0

0 0 1













1 0 0
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cos δ sin δ 0

− sin δ cos δ 0

0 0 1













0

0

1
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− cos ξ sin δ sin ε + sin ξ cos ε

cos δ sin ε

sin ξ sin δ sin ε + cos ξ cos ε






(A.1)
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The angle ξ was 206.8°, as discussed above. Settings for δ and ε for spin along the y-axis

were 0° and 90°, respectively, while they were -90° and -63.2° for spin along the x-axis.
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B Angular Momentum Coupling

This appendix aims to clarify the relationship between the incoming and outgoing angular

momentum states in the presence of mixing. Two spin-1/2 particles can couple to a total

spin of either 1 or 0. A spin-1 system has three projections, and is referred to as a triplet

state, whereas a spin-0 state has only one projection and is called a singlet state. Table B.1

illustrates the coupling of total spin s to the first three relative angular momentum states l

to give the total angular momentum j. The parity π of the system is equal to (−1)l. Each

state is also labeled in spectroscopic notation.

Table B.1: Angular momentum coupling
l s jπ 2s+1Lj

0 0 0+ 1S0

0 1 1+ 3S1

1 0 1− 1P1

1 1 2−, 1−, 0− 3P2, 3P1, 3P0

2 0 2+ 1D2

2 1 3+, 2+, 1+ 3D3, 3D2, 3D1

3 0 3− 1F3

3 1 4−, 3−, 2− 3F4, 3F3, 2F2

The scattering matrix connects states with the same jπ. Table B.2 lists the states mixed

up to 3−. Except for j=0, the partial waves are connected in pairs.

Table B.2: Mixing between orbital angular momentum states
jπ States
0+ 1S0

0− 3P0

1+ 3S1, 3D1

1− 1P1, 3P1

2+ 1D2, 3D2

2− 3P2, 3F2

3+ 3D3, 3G3

3− 1F3, 3F3
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C Data Tables

Table C.1: Data at 2.28 MeV
θcm A0y ± Ayy ± Axx ±

39.59 0.015 0.003 -0.048 0.006
52.37 0.020 0.004 -0.052 0.009
64.79 0.029 0.003 -0.027 0.005 -0.0419 0.0073
76.78 0.034 0.005 -0.023 0.012
88.25 0.034 0.003 -0.010 0.006 -0.0295 0.0067
99.16 0.027 0.006 -0.011 0.014
109.47 0.027 0.003 0.006 0.006 0.0041 0.0070
119.16 0.020 0.006 0.020 0.014
128.25 0.016 0.006 0.024 0.009

Table C.2: Data at 2.77 MeV
θcm A0y ± Ayy ±

64.79 0.042 0.018 0.008 0.004
88.25 0.057 0.012 0.009 0.004
109.47 0.045 0.007 0.011 0.003
128.25 0.030 0.009 0.038 0.004
144.79 0.029 0.014 0.048 0.006
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Table C.3: Data at 3.15 MeV
θcm A0y ± Ayy ± Axx ±

39.59 0.021 0.004 0.034 0.006
52.37 0.033 0.005 0.054 0.007
64.79 0.062 0.004 0.034 0.007 0.038 0.009
76.78 0.070 0.009 0.020 0.014
88.25 0.080 0.004 -0.002 0.008 0.0160 0.013
99.16 0.073 0.007 0.017 0.010
109.47 0.066 0.004 0.027 0.007 0.010 0.009
119.16 0.062 0.008 0.034 0.012
128.25 0.039 0.005 0.036 0.009 0.051 0.012
136.78 0.026 0.007 0.061 0.011
144.79 0.020 0.005 0.064 0.009 0.056 0.011
152.37 0.015 0.007 0.057 0.009
159.59 0.001 0.007 0.073 0.010 0.052 0.012

Table C.4: Data at 4.02 MeV
θcm A0y ± Ayy ±

39.59 0.022 0.003 0.138 0.007
52.37 0.022 0.002 0.113 0.006
64.79 0.049 0.003 0.109 0.008
76.78 0.071 0.003 0.069 0.009
88.25 0.099 0.006 0.030 0.012
99.16 0.116 0.005 0.027 0.009
109.47 0.108 0.004 0.037 0.009
119.16 0.086 0.003 0.064 0.008
128.25 0.065 0.004 0.070 0.010
136.78 0.054 0.005 0.076 0.011
144.79 0.044 0.004 0.097 0.009
152.37 0.026 0.004 0.085 0.009
159.59 0.017 0.003 0.086 0.008
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Table C.5: Data at 5.54 MeV
θcm A0y ± Ayy ± Axx ±

39.59 -0.007 0.008 0.183 0.005 0.151 0.007
52.37 -0.010 0.006 0.168 0.005
64.79 -0.006 0.005 0.151 0.005 0.089 0.007
76.78 0.006 0.006 0.115 0.007
88.25 0.069 0.004 0.079 0.007 0.0401 0.012
99.16 0.133 0.009 0.040 0.009
109.47 0.171 0.008 0.049 0.007 0.025 0.010
119.16 0.137 0.011 0.074 0.009
128.25 0.108 0.010 0.078 0.008 0.031 0.012
136.78 0.073 0.014 0.080 0.012
144.79 0.068 0.014 0.094 0.008 0.077 0.010
152.37 0.051 0.016 0.091 0.013
159.59 0.030 0.016 0.075 0.007 0.098 0.008
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