
NOVEL INTEGRATION IN TIME METHODS VIA DEFERRED
CORRECTION FORMULATIONS AND SPACE-TIME

PARALLELIZATION

Namdi Brandon

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Mathematics in the College of Arts and Sciences.

Chapel Hill
2015

Approved by:

Jingfang Huang

David Adalsteinsson

Gregory Forest

Laura Miller

Jan Prins

c© 2015
Namdi Brandon

ALL RIGHTS RESERVED

ii

ABSTRACT

Namdi Brandon: Novel Integration in Time Methods via Deferred
Correction Formulations and Space-Time Parallelization

(Under the direction of Jingfang Huang)

A major avenue of research in numerical analysis is creating algorithms in order to decrease the

amount of computational time in numerical simulations while maintaining high accuracy. Notably

when modeling PDE systems, much effort has been focused in creating methods that undergo

the spatial calculations very quickly and accurately. Even with these results, simulations may

still take too long, limiting the robustness of a numerical model. Hence, a new research direction

is to create methods that decrease runtime by focusing on the temporal direction. The subject

of this dissertation is the development of algorithms that decrease runtime by taking acount of

temporal properties, and when possible coupling both temporal spatial properties, of time-dependent

differential equations.

iii

To Anastasia Gage and Dominique Meekers

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank my adviser, Jingfang Huang, for his support and wisdom over

these years. I also would like to thank my committee members David Adalsteinsson, Gregory Forest,

Laura Miller, and Jan Prins. I would also like to thank Michael Minion and Matthew Emmett for

their help and patience in helping me with the beginning of my research. I would like to thank the

NSF for providing me financial support during my studies.

I would like to sincerely thank all of my friends that I made during this program. Without their

support at work or at play, I could not have made it.

In addition, I would like to extend my gratitude to UNC Chapel Hill and all other schools I have

attended for giving me an opportunity to attain an excellent education. And lastly, I would like to

thank Anastasia Gage and Dominique Meekers for raising me in an environment that emphasized

the value of knowledge.

v

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xii

INTRODUCTION . 1

0.1 The State of Computing . 1

0.2 Overview of Numerical Methods . 1

0.3 Stiff Ordinary Differential Equations . 2

0.4 Overview of Dissertation . 3

CHAPTER 1: FAST MULTIPOLE METHOD . 5

1.1 Poisson Equation . 5

1.1.1 Green’s Function . 6

1.1.2 Coulomb Potential . 7

1.2 Multipole and Local Expansions . 8

1.2.1 Multipole Expansion . 9

1.2.2 Local Expansion . 11

1.3 The O(N) Algorithm . 12

1.3.1 Translation of the Multipole Expansion . 13

1.3.2 Conversion to a Local Expansion . 14

1.3.3 Translation of the Local Expansion . 14

1.3.4 The Algorithm Outline . 15

1.4 Multirate FMM . 15

1.4.1 Numerical Evidence . 16

vi

CHAPTER 2: DEFERRED CORRECTION METHODS 19

2.1 Collocation Formulations and Properties . 20

2.1.1 Gauss Collocation Method . 21

2.1.2 Different Collocation Formulations . 23

2.2 Deferred Correction Methods and Properties . 26

2.2.1 Backward Euler Preconditioned SDC for yp-Gauss Collocation Formulation . 26

2.2.2 Backward Euler Preconditioned SDC for integral-Gauss Collocation Formulation 28

2.2.3 Understanding Deferred Correction Iterations 30

2.2.4 Properties of Deferred Correction Iterations 34

2.2.5 Different Deferred Correction Methods . 42

2.2.6 Integral Formulation, yp-formulation, and Convergence 51

2.3 Algorithm Design Guidelines and Numerical Experiments 52

2.3.1 Optimal Collocation Formulation . 53

2.3.2 Techniques for Convergence Procedure . 54

2.4 Mapping Between Different Node Points . 59

CHAPTER 3: A NEW JACOBIAN-FREE NEWTON-KRYLOV METHOD . . 61

3.1 Krylov Methods . 61

3.1.1 GMRES . 61

3.1.2 Inexact GMRES . 62

3.2 General JFNK Methods . 65

3.3 Modified JFNK Method . 67

3.3.1 Deferred Correction Methods . 67

3.3.2 Properties . 68

3.3.3 The Krylov Subspace . 69

3.3.4 Newton’s Method . 69

3.4 Algorithm Design . 73

3.5 Numerical Experiments . 75

3.5.1 Cosine Problem . 76

3.5.2 Linear Multimode Problem . 77

vii

3.5.3 Nonlinear Multimode Problem . 78

3.5.4 Van der Pol Oscillator . 79

CHAPTER 4: PARALLEL FULL APPROXIMATION SCHEME IN SPACE AND
TIME . 82

4.1 Temporal Methods . 82

4.1.1 Spectral Deferred Corrections . 82

4.1.2 Parareal . 83

4.1.3 Full Approximation Scheme . 86

4.1.4 Parallel Full Approximation Scheme in Space and Time 87

4.2 Spatial Methods . 89

4.2.1 Grid Systems . 90

4.2.2 Gridless Systems . 90

CHAPTER 5: A PFASSTER APPLICATION: GEOCHEMICAL PROBLEM . . 91

5.1 Formulation . 91

5.2 PFASST Simulation . 94

5.2.1 Results . 95

CHAPTER 6: A PFASSTER APPLICATION: N-BODY SOLVER 98

6.1 PFASST Simulation . 98

6.1.1 Temporal Coarsening . 99

6.1.2 Multirate Fast Multipole Method . 99

6.1.3 Step size . 100

6.1.4 Spatial Coarsening . 101

6.2 Numerical Results . 102

6.2.1 Numerical Setup . 102

6.2.2 Results . 103

6.2.3 The Residual Equation . 107

6.2.4 Gravitational Forces . 110

6.3 Speedup . 112

6.4 Conclusion . 113

viii

CHAPTER 7: FUTURE WORK . 115

APPENDIX A: PROOFS OF THEOREMS . 117

A.1 Proof of Theorem 2.2.3. 117

A.2 Proof of Theorem 2.2.4. 117

REFERENCES . 120

ix

LIST OF FIGURES

1.1 Results of the multirate test . 17

2.1 Accuracy in x1 for different step sizes using (a) traditional BDF methods, orders 2,
3, 4 (from [1]) and (b) Gauss collocation methods using 3, 4, 5 Gaussian nodes. . . . 23

2.2 Contour of ρ(C(λ∆t)) for p = 4 for SDC, λ∆t = x+ iy. 35

2.3 Contour of ρ(C(λ∆t)) for p = 10 for SDC, λ∆t = x+ iy. 35

2.4 Distributions of correction matrix eigenvalues for p = 10 and p = 40, stiff case, SDC. 37

2.5 Modulus of the (a) largest and (b) second largest eigenvalues for different numbers of
nodes, SDC vs. Picard for the Gauss collocation formulation 37

2.6 Eigenvalue distributions of SDC and Picard iterations for (a) 10 nodes and (b) 20
nodes . 38

2.7 S − S̃: Real (o) and imaginary (+) components of each eigenvector at the collocation
points, non-stiff case, p = 15, SDC. 39

2.8 S: Real (o) and imaginary (+) components of each eigenvector at the collocation
points, non-stiff case, p = 15, Picard iteration . 39

2.9 How errors decay after each SDC or Picard iteration. 40

2.10 Real (o) and imaginary (+) components of each eigenvector at the collocation points,
stiff case, p = 15, backward Euler preconditioned Gauss collocation formulation. . . . 41

2.11 Contour of ρ(C) for p = 4 for SDC-Radau, λ∆t = x+ iy. 43

2.12 Contour of ρ(C) for p = 10 for SDC-Radau, λ∆t = x+ iy. 44

2.13 Contour of ρ(C) for p = 4, SDC-Lobatto methods, λ∆t = x+ iy. 45

2.14 Contour of ρ(C) for p = 10, SDC-Lobatto methods, λ∆t = x+ iy. 46

2.15 Contour of ρ(C) for p = 4 for InDC-yp, λ∆t = x+ iy. 47

2.16 Contour of ρ(C) for p = 5 for InDC-yp, λ∆t = x+ iy. 48

2.17 Contour of ρ(C) for p = 10 for InDC-yp, λ∆t = x+ iy. 49

2.18 Spectral Radius ρ(S − S̃) for different numbers of nodes, SDC-Lobatto and SDC-
Lobatto-T. 50

2.19 Convergence rate for backward Euler preconditioned Gauss (a) and uniform (b)
collocation formulations for different stiffness parameters λ. 59

3.1 Cosine problem. (a): the magnitude of the deferred correction ‖δ̃‖‖ỹ‖ . (b): the relative
error of the final iteration vs. the collocation formulation 76

3.2 Linear multimode problem. (a): the magnitude of the deferred correction ‖δ̃‖‖ỹ‖ . (b):

x

the relative error of the final iteration vs. the collocation formulation 78

3.3 Nonlinear multimode problem. (a): the magnitude of the deferred correction ‖δ̃‖
‖ỹ‖ .

(b): the relative error of the final iteration vs. exact solution 79

3.4 Van der Pol oscillator. (a): the magnitude of the deferred correction ‖δ̃‖‖ỹ‖ . (b): the
relative error of the final iteration vs. the collocation formulation 80

5.1 Relative error of L∞(c) per iteration over time using SDC 95

5.2 Relative error per iterations for each ci at tfinal . 96

5.3 Relative error of L∞(c) per iteration over time, PFASST 96

5.4 Relative error per iterations for each ci at tfinal . 97

6.1 Multirate test for electrostatic case . 101

6.2 Absolute error of velocity per iteration compared to the reference solution. Coarse-
level FMM precision is ε1 = 0.5× 10−9 . 104

6.3 Absolute error of velocity per iteration compared to the reference solution. Coarse-
level FMM precision is ε1 = 0.5× 10−6 . 105

6.4 Absolute error of velocity per iteration compared to the reference solution. Coarse-
level FMM precision is ε1 = 0.5× 10−2 . 105

6.5 Relative error of velocity per iteration to V
[k]
fmm0 with coarse-level FMM precision

ε1 = 0.5× 10−2 . 105

6.6 Relative error of velocity per iteration to V
[k]
fmm0 with coarse-level FMM precision

ε1 = 0.5× 10−6 . 106

6.7 Relative error of velocity per iteration to V
[k]
fmm0 with coarse-level FMM precision

ε1 = 0.5× 10−9 . 106

6.8 Multirate test for gravitational case . 110

6.9 Absolute error of velocity per iteration compared to the reference solution. Coarse-
level FMM precision is ε1 = 0.5× 10−9 . 111

6.10 Absolute error of velocity per iteration compared to the reference solution. Coarse-
level FMM precision is ε1 = 0.5× 10−2 . 111

xi

LIST OF TABLES

2.1 ρ(Cs) for different numbers of Gaussian nodes, stiff case, SDC. 36

2.2 ρ(C) for different numbers of nodes, SDC-Radau. 42

2.3 ρ(C) for different numbers of nodes, SDC-Lobatto methods. 45

2.4 ρ(C) of SDC-Lobatto-T, strongly stiff limit case. 48

2.5 Errors from Gauss and uniform collocation formulations for different numbers of nodes. 53

2.6 Errors and Orders of the backward Euler and trapezoidal rule preconditioned deferred
correction iterations for different collocation formulations, non-stiff case. 55

2.7 Errors and orders of the backward Euler preconditioned deferred correction iterations
for different collocation formulations, stiff case. 58

3.1 The number of H(ỹ) needed to converge. 80

3.2 The relative correction log10

(
‖δ̃‖
‖ỹ‖

)
of the converged solution. 80

5.1 Timing results for SDC and PFASST . 97

6.1 Runtime for various FMM precisions . 101

6.2 Serial SDC, 6 iterations . 112

6.3 PFASST, 7 iterations . 112

6.4 PFASST, 7 iterations . 112

xii

INTRODUCTION

0.1 The State of Computing

In 1965, the co-founder of Intel, Gordon Moore, predicted that the transistor density of semi-

conductor chips, hence the CPU speed, would double roughly every 1.5 years. This prediction has

become known as Moore’s law ; and from 1965 to about 2002, Moore’s law was upheld [45]. However,

as the transistor density increased, the power density of the chip increased causing greater levels of

heat on the chip. Technology has reached a point where the speed of processors cannot increase

much further due to this limitation. Hence in 2005, a paradigm shift occurred in processor design

in hopes of further increasing computational performance. Instead of creating ever-faster CPUs

running computations in serial, additional performance can be gained by having multiple processors

work together, or in parallel [45].

The ability of having ever increasing computational power and efficient numerical methods

that can take advantage of this power has lead to great advances in science. As computational

power increases, so does the number of problems previously considered impractical to solve become

feasible. Therefore, creating methods to solve these problems is also an increasingly important

field of research. The following are a few examples of areas of open problems that require much

computational power: climate modeling, data analysis, and molecular dynamics (protein folding

and drug discovery).

0.2 Overview of Numerical Methods

For over fifty years, the creation of methods for numerically solving the solutions of time-

dependent differential equations has been an active area of research. For ordinary differential

equation (ODE) initial value problems (IVPs), various methods such as the linear multistep

methods and Runge-Kutta methods have become standard topics in numerical analysis textbooks

[1, 2, 28, 40, 49]. In addition, many numerical solvers have become standard tools in order to solve

1

ODE IVPs such as DASPK, a backward differentiation formula (BDF) based solver [10, 41], and

Runge-Kutta method based Radau5 solvers [24]. Numerical solvers have been successfully applied in

research and have advanced our knowledge in science and engineering. However, there still presides

attributes that limit the effectiveness of existing numerical algorithms. For example, to understand

the evolution of charged particles in systems containing thousands of particles, current molecular

dynamics simulation tools usually require millions of time steps to accurately capture the motion of

particles using existing low order time stepping schemes (e.g., the Verlet integration scheme). Even

with the acceleration of the fast N -body solvers [22, 43] for each time step, simulations may require

weeks or longer to get physically relevant results.

In recent years, several schemes were introduced to address the challenges in designing accurate

and efficient algorithms for large-scale long-time simulations. Examples include the parareal

algorithm for parallelization in time [18, 42]; the high order temporal discretization using an

orthogonal basis and pseudo-spectral formulations for each time step, to allow larger step sizes

[6, 43, 38]; the spectral deferred correction (SDC), integral deferred correction (InDC), iterated

defect correction (IDeC), and Krylov deferred correction (KDC) methods for their efficient solutions

[3, 14, 16, 30]; and the parallel full approximation scheme in space and time (PFASST), which

utilizes parallel computing while combining several preconditioners [17]. The aim of the research

presented in this dissertation is to understand the properties of these existing methods and create

new methods that take advantage and possibly enhance their favorable traits such as high accuracy,

high efficiency, and parallelism.

0.3 Stiff Ordinary Differential Equations

As mentioned earlier, there exists various limitations of numerical methods for time-dependent

differential equation systems. The main goal of the research presented in this dissertation is to

remedy some of these limitations. One of the aspects known to limit the effectiveness of many

numerical algorithms by increasing runtime is stiff ODE IVP systems. In general, a differential

equation system is said to be stiff if the solution contains signals of multiple time scales: one being

smooth and slowly varying (relative to the time interval of the computation) and the others being

much more rapidly varying [40]. In other words, Leveque states in [40], “if we perturb the solution

2

slightly at any time, the resulting curve through the perturbed data has rapid variation. Typically

this takes the form of a short lived “transient” response that moves the later solution back toward a

smooth solution.” To understand stiffness, consider the following ODE

y′(t) = λ(y(t)− cos(t))− sin(t). (1)

where <(λ) < 0. A solution to this equation is y(t) = cos(t) with the initial condition y(0) = 1.

Notice that this smooth solution is the solution for any value of λ. If the initial data is y(t0) = η,

which does not lie on the curve cos(t), then the solution through this point is

y(t) = eλ(t−t0)(η − cos(t0)) + cos(t) (2)

One can verify that this is true through differentiation. Since <(λ) < 0, the function approaches

cos(t) exponentially with decay rate λ. When one perturbs the solution at some point, the perturbed

solution approaches the slow changing particular solution cos(t).

The reason why stiff systems pose hardships on numerical methods for time dependent differential

equations is because stiff systems require algorithms to take a much smaller time step in order for

an algorithm to be stable. Although the true solution is smooth and it seems that a large time step

would suffice, the numerical method must handle the rapidly changing signal by taking smaller time

steps in order to attain accuracy. This property of stiff systems increases the runtime of simulations

and limits their effectiveness. This documents presents research aimed at overcoming the limitations

given by stiff systems.

0.4 Overview of Dissertation

This dissertation will present research on the numerical integration methods used to decrease

computational runtime. In chapter 1, we will give an overview of the fast multipole method, the

spatial solver we will use when modeling the evolution of charged particles. In chapter 2, we describe

and present the properties of the deferred corrections methods, especially the spectral deferred

correction method applied to temporal integration. In chapter 3, we present a new integration

method based on the Jacobian-free Newton-Krylov method and show initial results when applied

3

to stiff systems. In chapter 4, we will present the parallel integration method, the parallel full

approximation scheme in space and time (PFASST). In chapter 5, we will present an application of

PFASST with no spatial-temporal coupling to a geochemical process. In chapter 6, we will present

an application of PFASST with spatial-temporal coupling to the evolution of N charged particles.

Finally in chapter 7, we will mention future work related to the discussed research.

4

CHAPTER 1

Fast Multipole Method

In this chapter, we will present a brief overview of the spatial method used for modeling the

evolution of charged particles in a vacuum. In this dissertation, we are using the electrostatics

assumption, which states that the charge density, denoted by ρ, is stationary or the charge density

does not change quickly in time. That is, ∂ρ
∂t = 0 or ∂ρ

∂t � 1.

With that being said, the evolution of N charged particles in space is given by Newton’s 2nd

law. For the ith particle, the equation of motion is

d2xi(t)

dt2
=

qi
mi

E(xi(t)) (1.1)

where xi is the position, Ei is the electric field, qi is the charge, and mi is the mass of the ith particle.

Therefore, solving this system consists of two steps. (1) Finding an expression for the electric field.

We will designate this as the spatial calculation. (2) Once the electric field is calculated, integrating

in time to find the new position of the particle. We will designate this as the temporal calculation.

What follows is an explanation on how to solve for the electric field.

1.1 Poisson Equation

The electrostatic field in a vacuum is described by two of the Maxwell’s equations

∇ ·E =
ρ

ε0
(1.2)

∇×E = 0 (1.3)

5

where ρ(x) is the charge density within a volume and the constant ε0 is the permeability of free

space [32]. Eq. (1.3) is equivalent to expressing E as the gradient of a scalar function Φ(x) such that

E = −∇Φ. (1.4)

Φ is called the electrostatic potential. Combining Eq. (1.4) and Eq. (1.2), we can write the vector

equation for E in terms of a scalar equation for Φ

∇2Φ = − ρ
ε0
. (1.5)

The above equation is called the Poisson equation. In regions of space lacking a charge density,

Poisson’s equation becomes the Laplace equation

∇2Φ = 0. (1.6)

Hence, solving the spatial calculation for E in Eq. (1.1) is equivalent to solving the Poisson equation.

1.1.1 Green’s Function

The solution to the Poisson equation Eq. (1.5) within a volume V bounded by a surface S can

be found by using a construct called a Green’s function, G(x,x′). The Green’s function for Eq. (1.5)

has the property that it is a fundamental solution to the following equation

∇′G(x,x′) = −4πδ(x− x′). (1.7)

Assuming we have found the solution G(x,x′) to the above equation, the general solution Φ to the

Poisson equation is

Φ(x) =
1

4πε0

∫
V
ρ(x′)G(x,x′) d3x′ +

1

4π

∮
S

[
G(x,x′)

∂Φ

∂n′
− Φ(x′)

∂G(x,x′)

∂n′

]
da′ (1.8)

6

where n′ is the normal direction pointing out of the surface and da′ is the area element [32].

Fortunately, there is an explicit formulation of the Green’s function for electrostatic problems; it is

G(x,x′) =
1

|x− x′|
. (1.9)

1.1.2 Coulomb Potential

Recall that we are interested in finding the potential in free space. The relevant boundary

conditions are the Dirichlet conditions. Therefore, we must have that Φ(x) → 0 as x → ∞. In

addition, we also have the Green’s function satisfy Dirichlet conditions G|S = 0 in Eq. (1.7).

Applying the Dirichlet boundary conditions and the appropriate Green’s function, Eq. (1.8) becomes

Φ(x) =
1

4πε0

∫
V

ρ(x′)

|x− x′|
d3x′. (1.10)

The above equation is called the Coulomb potential, and it gives the electrostatic potential subject

to the Dirichlet condition in free space for a general charge distribution ρ(x).

By modeling a charged particle as a point charge, we can write the charge density distribution

of N charged particles as

ρ(x) =

N∑
i=1

qiδ(x− xi)

where qi is the charge of a particle located at xi [32]. Using the above charge distribution in

Eq. (1.10) leads to the Coulomb potential for N charged particles

Φ(x) =
1

4πε0

N∑
j=1

qj
|x− xj |

. (1.11)

We now have all of the components needed to write an explicit formulation for the equations of

motion for a system of N charges. Using E = −∇Φ and Eq. (1.11), we can express Eq. (1.1) as

d2xi(t)

dt2
= − qi

mi
∇Φi(xi) (1.12)

7

where

Φi(xi) =
1

4πε0

N∑
j 6=i

qj
|xi − xj |

. (1.13)

Occasionally in this dissertation, we will make reference to the forces instead of the potential in

Eq. (1.12). The force F is related to the electric field, and hence, the electrostatic potential by

F = qE = −q∇Φ. Using the identity

∇
(

1

|x− x′|

)
= − x− x′

|x− x′|3
,

the force of the ith particle is given by

Fi(xi) = −qi∇Φi(xi) = qi

N∑
j 6=i

qj
xi − xj
|xi − xj |3

. (1.14)

1.2 Multipole and Local Expansions

The cost of directly calculating the potentials Φi(xi) in Eq. (1.12) for all N particles is O(N2).

When N is large, this cost is too high. In actual applications, we avoid the direct O(N2) calculation

by using approximations. The approximation technique that this dissertation uses is the fast

multipole method (FMM), which approximates Eq. (1.13) over all particles with cost O(N) [22, 43].

The FMM takes advantage of the fact that the potential Φ(x) can be written as a a sum of

potentials from two different spatial domains. This property comes from the Green’s function

G(x,x′) =
1

|x− x′|

which has spatial multirate properties. We define the following spatial domains Ωnear and Ωfar,

which we will denote as the near-field and the far-field, respectively. For a given location x, a charge

found at xi has xi ∈ Ωnear with respect to x if |x − xi| < R. And we consider xi ∈ Ωfar with

respect to x if |x− xi| ≥ R where R is the characteristic distance that determines the near-field

and far-field. In Ωfar, the Green’s function is smooth; and in Ωnear, the Green’s function is more

singular. Hence, Φ may be written as Φ = Φnear + Φfar.

8

1.2.1 Multipole Expansion

Assuming that |x| > |x′|, it is convenient to express the Green’s function in terms of the series

1

|x− x′|
=

1

|x|

∞∑
n=0

Pn(cos θ)

(
|x′|
|x|

)n
(1.15)

where Pn are the Legendre polynomials and θ is the angle between x and x′. Normally, x′ corresponds

to the position of a source charge, so our assumption implies that x is far from a charge found at x′.

This expansion is especially useful in describing far field interactions, since the expansion converges

quickly when |x|
|x′| < 1.

The Legendre polynomial Pn(u) is the solution to the following recursion formulation

(2n+ 1)uPn(u) = (n+ 1)Pn+1(u) + nPn−1(u)

with P0(u) = 1. We can further expand the Legendre polynomials in terms of spherical harmonic

functions

Pn(cos θ) =
m=n∑
m=−n

Y −mn (x′)Y m
n (x) (1.16)

to obtain a new formulation of the Green’s function in Eq. (1.15)

1

|x− x′|
=
∞∑
n=0

m=n∑
m=−n

|x′|nY −mn (x′)
Y m
n (x)

|x|n+1
. (1.17)

If we express x in spherical coordinates (r, θ, φ), the spherical harmonic function Y m
n (x) is

defined as

Y m
n (θ, φ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
· P |m|n (cos θ)eimφ (1.18)

where Pmn are the associated Legendre polynomials [32, 52, 31]. The associated Legendre polynomials

Pmn are found by the following formulations


Pmn (u) = (1− u2)

m
2
∂m

∂umPn(u)

P−mn (u) = (−1)m (n−m)!
(n+m)!P

m
n (u).

Using the ideas discussed so far, we can express the potential Φ at a position x = (r, θ, φ)

9

expressed in spherical coordinates due to N charged particles at positions xi = (ri, θi, φi) in

Eq. (1.11) as

Φ(x) =
1

4πε0

N∑
i=1

qi

∞∑
n=0

m=n∑
m=−n

|xi|nY −mn (xi)
Y m
n (x)

|x|n+1
(1.19)

=
1

4πε0

∞∑
n=0

m=n∑
m=−n

N∑
i=1

qi|xi|nY −mn (xi)
Y m
n (x)

|x|n+1
.

The terms 1
|x|n+1 are called “multipoles,” and their coefficients

Mm
n =

N∑
i=1

qi|xi|nY −mn (xi) (1.20)

are called moments of the expansion. Using the the moments Mm
n , we can rewrite the potential as

Φ(x) =
1

4πε0

∞∑
n=0

m=n∑
m=−n

Mm
n

Y m
n (x)

|x|n+1
. (1.21)

The above formulation for the potential is called the multipole expansion. Notice that if |x| is

large when compared to the charge locations |xi|, the multipole expansion will converge quickly.

Due to this property, we can approximate the infinite sum by truncating the series with p terms

Φp(x) =
1

4πε0

p−1∑
n=0

m=n∑
m=−n

Mm
n

Y m
n (x)

|x|n+1
; (1.22)

and the residual error of the truncated series is bounded by

|Φ(x)− Φp(x)| = Q

|x| − |xmin|

(
|xmax|
|x|

)p
(1.23)

where Q =
N∑
i=1
|qi| , |xmin| and |xmax| are the minimum and maximum magnitude of |xi|, respectively.

Note that the amount of calculations needed to calculate Φp(x) is O(p2).

If we partition space into regions or “boxes” Ωj of radius R that contain various charges found

at xi ∈ Ωj , the multipole expansion approximation Φp(x) is useful in expressing the potential Φ

due to the particles within Ωj when the point of interest x is far from region Ωj . By far, we mean

|x−uj | > R where uj is the center of region Ωj . For this reason, Φ(x) is also known as the “far-field

10

expansion” with the respect to region Ωj .

1.2.2 Local Expansion

The multipole expansion approximation assumes that the source particles are in the near field

with respect to an origin, xi ∈ Ωnear; and the point of interest is in the far field from the origin

x ∈ Ωfar. However, when the case is reversed, xi εΩfar and x εΩnear with respect to an origin, we

will need a new formulation for the potential Φ. We can use Eq. (1.19) and exchange the vectors x

and xi to obtain

Φ(x) =
1

4πε0

N∑
i=1

qi

∞∑
n=0

m=n∑
m=−n

|x|nY m
n (x)

Y −mn (xi)

|xi|n+1
(1.24)

=
1

4πε0

∞∑
n=0

m=n∑
m=−n

N∑
i=1

qi
Y −mn (xi)

|xi|n+1
|x|nY m

n (x).

The above series converges when |x|
|xi| < 1. We can express the moments of this expansion Lmn as

Lmn =

N∑
i=1

qi
Y −mn (xi)

|xi|n+1

and rewrite the potential as

Φ(x) =
1

4πε0

∞∑
n=0

m=n∑
m=−n

Lmn |x|nY m
n (x). (1.25)

The above formulation for the potential is called the local expansion. Notice that if |x| is small

when compared to the charge locations |xi|, the local expansion will converge quickly. Due to this

property, we can approximate the infinite sum by truncating the series with p terms

Φp(x) =
1

4πε0

p−1∑
n=0

m=n∑
m=−n

Lmn |x|nY m
n (x). (1.26)

The local expansion approximation has similar residual error properties as the multipole expansion

approximation with the respective values, |x| and |xi| exchanged.

11

1.3 The O(N) Algorithm

The FMM works by using a tree structure to partition space into boxes that contain certain

numbers of particles [22]. For each box m, we define the following spatial domains Ωnear and Ωfar,

which we will denote as the near-field and the far-field, respectively. For a given location x, a charge

found at xi has xi ∈ Ωnear with respect to x if |x − xi| < R. And we consider xi ∈ Ωfar with

respect to x if |x− xi| ≥ R where R is the characteristic distance that determines the near-field

and far-field.

In short, the FMM approximates Eq. (1.11) by directly calculating potential due to particles in

the near-field and approximating the potential due to particles in the far-field. We can express the

FMM approximation Ψ(x) such that Ψ(x) ≈ Φ(x) as

Ψ(x) =
1

4πε0

 ∑
xiεΩnear

qi
|x− xi|

+

p−1∑
j=0

aj |x− xc|j
 . (1.27)

We will call Eq. (1.27) the fast multipole approximation. In the expansion, xc is the position

of the box center on the finest level containing x; and aj are coefficients that depend on ∀xi ∈ Ωfar.

p is the number of terms in the expansion, and it controls the accuracy of Ψ(x). The larger p is,

the more accurate the FMM becomes. The first summation in Ψ(x) is the direct calculation of

the potential due to the near-field charges. The second summation in Ψ(x) is the approximation

of the potential due to the far-field. We will give a brief explanation of the FMM; but for more

information on the FMM, the reader is encouraged to read [22, 31].

For an arbitrary distribution of particles, the FMM uses a hierarchical oct-tree so that each

particle is associated with a box at different levels. Each box i has a “parent box” on the next-coarse

level to which the ith box is a subset. A box i is a “child box” of box j if i is on the j’s subsequent

fine level and i is a subset of j. A divide-and-conquer strategy is used to account the far-field

interactions of each box on each level by accumulating multipole expansions. Afterwards, the local

expansion of a parent box receives the far-field contributions and transmits it to its children [52].

The fast multipole method needs the following properties to approximate the O(N2) calculation

in Eq. (1.13) in O(N) [31].

1. The FMM needs a way to combine several fine-grid multipole expansions into a single coarse-

12

grid expansion.

2. The FMM needs a way to combine several multipole expansions into a single local expansion

about origin of a target box on the same level.

3. The FMM needs a way to translate a box’s local expansion to an origin within each of the

child boxes at the following fine level of the tree.

1.3.1 Translation of the Multipole Expansion

The following expansion allows us to combine several multipole expansions of one level into a

single expansion on a coarser level. If we have a multipole expansion about the origin, we can shift

the expansion and center it at a point z [31]. The original expansion about the origin

Φ(x) =
1

4πε0

∞∑
n=0

m=n∑
m=−n

Mm
n

Y m
n (x)

|x|n+1

can be written as an expansion about z as

Φ(x) =
1

4πε0

∞∑
n=0

m=n∑
m=−n

M̃m
n

Y m
n (x− z)

|x− z|n+1

where

M̃m
n =

n∑
j=0

j∑
k=−j

Mm−k
n−j

i|m|

i|k|i|m−k|

AkjA
m−k
n−j

Amn
|z|jY k

j (z)

and the constant Amn is defined by

Amn =
(−1)n√

(n−m)!(n+m)!
.

The error bounds of the truncated expansion is

|Φ(x)− Φp(x)| ≤ Q

|x− z| − |xi| − |z|

(
|xi|+ |z|
|x− z|

)p
.

13

1.3.2 Conversion to a Local Expansion

The following shows how to convert a multipole expansion to a local expansion on the same

level. We must assume that the new center at −z must be far enough away from the multipole

expansion assumed at the origin such that |z| > (1 + c)|x|.

Φ(x) =
1

4πε0

∞∑
n=0

n∑
m=−n

Lmn |z− x|Y m
n (z− x)

where

Lmn =

∞∑
j=0

j∑
k=−j

Mk
j

(−1)j
i|m−k|

i|k|i|m|

AkjA
m
n

Ak−mj−n

Y k−m
j+n (z)

|z|j+n−1

and Akj is defined as before. The error bounds of a truncated expansion with p terms, Φp is

|Φ(x)− Φp(x)| ≤ Q

(c− 1)|x|

(
1

c

)p
.

1.3.3 Translation of the Local Expansion

To shift a local expansion of a box on the parent level to a box center of the child box at −z, we

start with the local expansion given by

Φp(x) =
1

4πε0

p−1∑
n=0

m=n∑
m=−n

Lmn |x|nY m
n (x).

We can express the truncated expansion

Φp(x) =
1

4πε0

p−1∑
n=0

m=n∑
m=−n

L̃mn |x− z|nY m
n (x− z)

where

L̃mn =

∞∑
j=0

j∑
k=−j

Lkj
(−1)j+n

i|k|

i|k−m|i|m|

Ak−mj−n A
m
n

Akj
Y k−m
j−n (−z)|z|j−n

where Ajk is defined as before [31].

14

1.3.4 The Algorithm Outline

The FMM consists of the following steps [31]:

1. Form multipole expansions (moments) at the finest scale.

2. Merge (translate) expansions to form expansions on the next coarser level until the coarsest

scale is reached.

3. Starting at the coarsest level, for each target region, convert the multipole expansion into

local expansion at the center of each target box.

4. For each box, merge (translate) the local expansion to the center of each of a box’s children

until the finest level is reached.

5. Add the near-field potential contribution from the nearest neighbors to the approximated

far-field potentials to obtain Eq. (1.27).

1.4 Multirate FMM

The FMM is an extremely useful method that takes advantage of the spatial properties of

the Coulomb potential Φ(x(t)). However, we can take advantage of the temporal properties of

the Coulomb potential and fast multipole approximation Ψ(x(t)) to make a less computationally

expensive algorithm.

From Eq. (1.14), one can see that the magnitude of the forces is proportional to 1
r2

where

r = |xj − xi|. When xj ∈ Ωnear with respect to xi, we can expect that the near-field forces should

change rapidly in time due to the 1
r2

force with r small. When xj ∈ Ωfar with respect to xi, we can

expect that the far-field forces should change slowly in time due to the 1
r2

force with r large. Thus,

we can represent the forces in Eq. (1.1) as

d2xi
dt2

= − qi
mi
∇ (Φnear(xi) + Φfar(xi)) . (1.28)

15

This can be rewritten as

d2xi
dt2

= − qi
4πε0mi

∇

 ∑
xj∈Ωnear

qj
|xj − xi|

+
∑

xj∈Ωfar

qj
|xj − xi|

 .

This formulation suggests that the forces have a dual behavior as they change in time, reminiscent

of a stiff system. The total force has two different time scales: a fast changing near-field and a slow

changing far-field. Since the FMM approximation Ψ, defined in Eq. (1.27), approximates the right

hand side of Eq. (1.28), we should expect Ψ to uphold this multirate behavior. More importantly,

it should be possible to take account of this multirate behavior in time integration schemes. We

will call the process of exploiting the temporal multirate behavior of the FMM as the multirate

FMM (MRFMM).

1.4.1 Numerical Evidence

To test our hypothesis of the inherent temporal multirate behavior of the FMM, we ran numerical

experiments to see how the far-field and near-field potentials change in time. To do this, we simulated

the the motion of particles while keeping track of Ψnear(x(t)) and Ψfar(x(t)) for each time step. Once

the simulation is over, for a given particle, we calculated the respective least-squares polynomial that

approximates Ψnear(x(t)) and Ψfar(x(t)) over time. Afterwards for each time step, we calculated

the L∞ norm of the error between Ψnear(x(t)) and Ψfar(x(t)) and their respective least-squares

approximating polynomial over all particles.

For a fixed L∞ error, the slower a potential varies in time (ie. a smoother potential), the lower

the degree of the least-squares polynomial is needed. Our intuition says that for a fixed error

between the numerical FMM solution and the least-squares polynomial, the least squares polynomial

corresponding to Ψfar(x) should have a lower degree than that of Ψnear(x). The results of the

experiment show this to be true. That is, for a fixed error, there is a difference in scale between

Ψfar(x) and Ψnear(x). One needs a least-squares polynomial of lower degree for Ψfar(x) than that

of Ψnear(x).

Our experimental setup was as follows. We first designated two types of particles: sources and

targets. Source particles had randomly distributed charges in [−1
2 ,

1
2]. Source particles were used to

provide the electrostatic potential, and they were able to move in space. The target particles had

16

charge 1. They simply moved in space but did not have any effect on the potential due to neither

the source particles nor due the other target particles. The potential at the all locations were due

solely to the source particles. We also assumed that all particles have mass equal to 1.

The numerical experiment was done using 16,000 source particles and 16,000 target particles

randomly distributed in a unit cube. We used the FMM approximation Ψ(x) to approximate the

Coulomb potential Φ(x) such that the error tolerance in Ψ(x) was 0.5×10−9. During the simulation,

the FMM tree was fixed as well. The simulation consisted of 200 time steps with size ∆t = 10−7 so

that tstart = 0 and tfinal = 2× 10−5. And the time-marching scheme that we used was the velocity

Verlet method, which is as follows

x(tn+1) = x(tn) + v(tn)∆t+
a(tn)

2
∆t2

v(tn+1) = v(tn) +
∆t

2
(a(tn+1) + a(tn)) (1.29)

where ∆t = tn+1−tn; x(tn), v(tn), and a(tn) are the position, velocity, and acceleration, respectively

at time t = tn [26]. The velocity Verlet method has many favorable properties. Namely, it is explicit,

O(∆t2), and symplectic [26]. For future reference, we will call running this experiment as the

multirate test.

Figure 1.1 shows the results of our experiment. We plot the L∞ error over all target particles

between Ψfar(x) and Ψnear(x) and their respective least squares approximating polynomials for

various degrees. We represent the error logarithmically, showing the digits of precision in the error.

Figure 1.1: Results of the multirate test

17

These results provide numerical evidence of the inherit temporal multirate behavior in the

FMM. We can see that for the same error, there is about a 3-degree separation in the least squares

polynomial between the smoother Ψfar(x) than Ψnear(x). That is for a fixed error, Ψfar(x) needs

a lower degree least-squares polynomial than that for Ψnear. This agrees with our intuition; the

far-field potential should change more slowly in time than the far-field potential. Thus, we have two

distinct temporal behaviors. We will take advantage of the FMM’s inherent multirate behavior in

what we will call the MRFMM in modeling Eq. (1.1).

18

CHAPTER 2

Deferred Correction Methods

It is desirable for algorithms to efficiently converge to solutions of large-scale long-time simulations

for ODEs with high accuracy. One way to obtain such high accuracy solutions is to create methods

that converge to high order temporal collocation formulations. Solvers that have been made to

directly calculate accurate collocation formulation solutions have shown to not be able to do so

efficiently. For example in [23, 25], the Gauss collocation formulations using only 2, 4, and 6 nodes

were implemented as geometric integrators for Hamiltonian systems. Unfortunately, numerical

results show that without the aid of deferred correction or other acceleration techniques, these

solvers may not be able to calculate a highly accurate solution as efficiently as other linear multistep

methods (see Fig. 5.1 in [23]). If an algorithm can obtain high accuracy at the cost of severely

reduced efficiency, the algorithm becomes impractical in application. Hence, it is of great importance

to create algorithms that obtain high accuracy while at the same time obtaining high efficiency.

What follows is a perspective of understanding and integrating methods in a numerical framework

for solving ODE systems by calculating high order collocation formulations (highly accurate solutions).

In this framework, we consider the deferred correction techniques as efficient iterative schemes to

reduce the error in the convergence procedure; and different deferred correction strategies can

be applied to reduce different error components in the provisional solution. Within the prescribed

convergence tolerance, we will analyze the mathematical properties of the solution by studying the

underlying collocation formulations. In the optimal numerical implementation of this framework,

the collocation formulation is selected based on the physical properties of the solution. We treat

each low order deferred correction scheme as a preconditioner, and integrate these preconditioning

techniques with existing iterative solvers (e.g., fixed point iterations or Jacobian-free Newton-Krylov

methods) for better convergence. By understanding the different properties of various collocation

formulations for high accuracy and the different convergence procedures for high efficiency, we will

lay the ground work for creating an “optimal” algorithm for attaining high temporal accuracy.

19

This chapter is organized as follows. In Sec. 2.1, we study the converged solution by developing

the “collocation formulations database” for the numerical framework for solving ODE initial value

problems and by discussing the properties of each formulation. In Sec. 2.2, we start from the

backward Euler based spectral deferred correction methods and their convergence properties, and

then study different deferred correct methods to form the “deferred correction methods database” in

the convergence procedure, an iterative procedure to reduce the errors in the provisional solution.

In Sec. 2.4, we discuss several algorithm design guidelines to integrate different components to

efficiently converge to the solution of an “optimal” discretization in the numerical framework.

2.1 Collocation Formulations and Properties

For long time simulations, it is in general impractical to use one single step for the entire

interval from t = 0 to tfinal (e.g., by using a spectral formulation for [0, tfinal]). What is done

in practice is that the entire time interval is divided into a sequence of subintervals (time steps)

based on the properties of the solution and any step size constraints. In this section, we discuss

different collocation formulations for each time step. These collocation formulations differ in the

mathematical formulations, choices of collocation points, and numerical integration or differentiation

strategies. We leave the discussions of their accurate and efficient solutions to later sections.

Spectral and pseudo-spectral methods have been widely used for solving spatial differential

equations in simple geometries (i.e., Fourier series for periodic solutions, or Chebyshev polynomials

for rectangular or cubic geometries) [11, 20, 21]. One advantage of these methods is that when the

number of expansion terms (in the spectral formulation) or node points (in the pseudo-spectral type

collocation formulation) increases, the approximation error decays very rapidly for smooth functions.

And unlike traditional linear multistep methods or low order explicit Runge-Kutta methods for

the temporal initial value problems, the stability region constraint is in general not a big concern.

Not surprisingly, as time is only one dimensional and there is no complex geometry involved, these

methods have also been applied for solving time-dependent differential equations in the past. In

this section, we first discuss the Legendre polynomial based Gauss collocation formulation, and

then discuss other collocation formulations for initial value problems. We would like to emphasize

that when an iterative scheme is applied to a specific collocation formulation and is convergent

20

(up to a prescribed precision), the numerical properties of the solution are then determined by the

properties of the collocation formulation, not the convergence procedure. Unlike existing analysis of

the deferred correction methods, this new viewpoint allows us to study the mathematical properties

of the framework (e.g., order and stability) by focusing on the converged solution of the collocation

formulation, and to consider the convergence procedure (describing how the iterations converge)

separately.

2.1.1 Gauss Collocation Method

We first present a variant of the well-studied Gauss collocation formulation (also referred to

as the Gauss Runge-Kutta (GRK) method) for ODE initial value problems y′(t) = f(t, y(t)) with

given initial data y(0) [25, 28]. To march one step from t = 0 to t = ∆t, we define Y (t) = y′(t) as

the new unknown function and recover y(t) using y(t) = y(0) +
∫ t

0 Y (τ)dτ . This will give what we

call the “yp-formulation” as

Y (t) = f(t, y(0) +

∫ t

0
Y (τ)dτ). (2.1)

In the Gauss collocation formulation, p Gaussian quadrature nodes t = [t1, t2, · · · , tp]T are used

to discretize the yp-formulation in [0,∆t]. For the given function values Y = [Y1, Y2, · · · , Yp]T

at the Gaussian nodes, we can construct the (p− 1)th degree Legendre polynomial expansion to

approximate Y (t) = y′(t) where the coefficients are computed using the Gaussian quadrature rules.

We can integrate this interpolating polynomial analytically from 0 to tm, where 1 ≤ m ≤ p, to

form a linear mapping that maps the function values Y to the integral of Y (t) at the node points.

Taking out the scalar factor ∆t in this mapping, the integral
∫ t

0 Y (τ)dτ can be approximated by

∆tSY, where S is called the “spectral integration matrix” [21] which can be precomputed. The

discretized Gauss collocation formulation using p node points in the time interval [0,∆t] is given by

Y = F(t,y0 + ∆tSY). (2.2)

The following theorem, mostly from [28], summarizes several nice properties of this formulation,

assuming it is solved exactly.

21

Theorem 2.1.1. For ODE initial value problems, the Gauss collocation formulation in Eq. (2.2)

with p nodes is of order 2p (super convergence), A-stable, B-stable, symplectic (structure preserving),

and symmetric (time reversible). In addition, the error decays exponentially when p increases.

Interested readers are referred to [5, 27] for the proof of the theorem. These nice properties

allow the use of very large time step sizes when solving ordinary differential equation initial value

problems.

Comment: The yp-formulation can be easily generalized to differential algebraic equations

(DAEs) of the form F (t, y, y′) = 0, and the discretized system becomes

F(t,y0 + ∆tSY,Y) = 0.

Similar to the ODE case, the pseudo-spectral type collocation formulation allows much larger time

step sizes in the numerical simulation. In Fig. 2.1, we compare the Gauss collocation formulation

with traditional BDF methods for the DAE system from [1]


x′1

x′2

0

 =


10− 1

2−t 0 10(2− t)
9

2−t −1 9

t+ 2 t2 − 4 0




x1

x2

z

+


3−t
2−te

t

2et

et(2− t− t2)

 (2.3)

whose analytical solution is given by (x1, x2, z) =
(
et, et,−et/(2− t)

)
and can be resolved to machine

precision using a 15-term Legendre polynomial expansion for each component when t ∈ [0, 1]. Due

to the stiffness of the DAE, the fourth order BDF method requires a time step size of 10−3 for 10

digits of accuracy, as shown in (a) of Fig. 2.1 (also see [1], p.268). On the other hand, the Gauss

collocation discretization using a step size of 10−1 and 5 Gaussian nodes gives 14 digits accuracy

(see (b) in Fig. 2.1). Detailed analysis of different collocation formulations for DAE systems can be

found in [24] and references therein. More examples demonstrating the step size-accuracy relations

of the pseudo-spectral type collocation formulations for both ODE and DAE problems can be found

in [29, 30].

22

10
−4

10
−3

10
−2

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time Step ∆ t

M
a
x

 E
rr

o
r

Errors in x
 1
 (t)

Order 2

Order 3

Order 4

(a)

10
−0. 9

10
−0.8

10
−0. 7

10
−15

10
−10

10
−5

Errors in x
 1
 (t)

Time step ∆ t

M
a
x

 E
rr

o
r

p=3

p=4

p=5

(b)

Figure 2.1: Accuracy in x1 for different step sizes using (a) traditional BDF methods, orders 2, 3, 4
(from [1]) and (b) Gauss collocation methods using 3, 4, 5 Gaussian nodes.

2.1.2 Different Collocation Formulations

In the Gauss collocation formulation discussed in the previous section, the Legendre polynomial

based Gaussian quadrature nodes are used and the spectral integration matrix is constructed

accordingly for the yp-formulation. Other types of formulations, quadrature nodes, and numerical

differentiation or integration techniques have also been studied in the literature. In this subsection,

we present different collocation formulations to form our “collocation formulation database” for

ODE initial value problems.

For the ODE initial value problem y′ = f(t, y), most existing collocation formulations use y as

the unknown and solve the differential equation directly. In the “differential quadrature method” [13]

and other traditional pseudo-spectral collocation formulations, the “spectral differentiation matrix”

is constructed by differentiating the interpolating polynomial of y at the collocation points and

evaluating the derivative polynomial to form the spectral differentiation matrix D mapping y at the

collocation points to y′. We refer to this class of formulations as the “differential formulation,”

and the discretized ODE system can be represented as Dy = f(t,y). An alternative formulation is

to use the equivalent Picard integral equation formulation y(t) = y0 +
∫ t

0 f(τ, y(τ))dτ and discretize

the ODE system as in

y = y0 + ∆tSF(t,y) (2.4)

23

where y are the unknowns at the collocation points, and S is the (scaled) spectral integration

matrix. We refer to this formulation as the “integral formulation.” It is important to note that

when the spectral integration matrix is used, this integral formulation also converges to the Gauss

collocation formulation. When this formulation is coupled with uniform collocation points, the

resulting deferred correction methods are called the integral deferred correction methods (InDC)

[14]. In the previous subsection, we also presented the “yp-formulation” using y′ as the unknown

and using the spectral integration matrix to form the discretized collocation formulation given by

Y = f(t,y0 + ∆tSY). Although these formulations are equivalent mathematically, they have very

different numerical properties. Also, it is not easy to generalize some of these formulations to more

complicated differential equation systems. For example, for a general DAE system F (t, y, y′) = 0,

it is nontrivial to derive the standard Picard integral equation for y in the integral formulation,

and one may prefer the differential formulation or yp-formulation. On the other hand, we will see

later that an integral formulation approach may be better suited for handling stiff systems than a

yp-formulation approach.

Instead of Gaussian quadrature nodes, other node points have also been studied in the literature:

when Radau Ia nodes are used, the left end-point t = 0 is added when constructing the numerical

integration or differentiation matrices; when Radau IIa nodes are used, the right end-point

t = ∆t is added. In the Gauss-Lobatto scheme, both end points are added in the collocation

formulation. One can also use the Chebyshev polynomial based Clenshaw-Kurtis quadrature

and the corresponding spectral differentiation or integration matrices to take advantage of the “near-

minimax” approximation properties of the Chebyshev polynomial expansion and the fast Fourier

transform [50]. Since these collocation points are closely related with the underlying orthogonal

polynomials, one can very stably construct the least squares polynomial using the corresponding

Gaussian-type quadratures and differentiate or integrate the resulting polynomial to construct the

spectral differentiation or integration matrices. Note that for ODE problems, when considering the

errors at both the interior and boundary collocation points, these collocation formulations have

similar order properties as shown in traditional ODE analysis. However, when only considering the

solution at the right end point t = ∆t, the Legendre polynomial based collocation formulations are

preferred due to their relatively higher order of convergence. Also, for DAE problems, the orders

at t = ∆t will be different for the “differential” and “algebraic” components (see, e.g. [28]) for

24

different choices of nodes; and the Radau IIa or Gauss-Lobatto nodes are usually preferred due to

their relative higher order properties for the algebraic components.

More recently, assuming the solution can be better approximated by exponential sums as

in the case for linear homogeneous ODEs, collocation nodes and spectral integration matrices are

designed using skeletonization techniques by Rokhlin et. al. for ODE systems [19, 38]. When the

solution can be approximated by the so-called “band-limited” functions, in [6], quadrature nodes and

the corresponding spectral integration matrix using the “prolate spheroidal wave functions”

were applied to initial value problems. These collocation formulations only differ in the set of node

points and precomputed spectral differentiation matrix D or integration matrix S. It is therefore

possible to precompute and form a collocation formulation database. For a given ODE system,

based on the physical properties of the solution and different measures of the error, one can choose a

particular set of nodes and the corresponding matrix to form the “optimal” formulation. Also note

that unlike traditional ODE solvers, for better accuracy, in addition to changing to a smaller step

size and reducing the error using the “order of convergence” concept, one can also add more points

to the interval in the collocation formulation to take full advantage of the convergence properties

in the orthogonal basis based pseudo-spectral methods. The latter option may be more favorable

if the resulting system can be solved efficiently, and usually allows much larger step sizes in the

simulation.

When a smaller number of nodes (e.g., less than 10 node points) is preferred (e.g., due to

memory constraints), in the existing integral deferred correction methods [14], the uniform nodes

are usually applied as they show better convergence properties in the deferred correction iterations

as will be discussed in the next section. However, such uniform collocation formulations may have

serious numerical problems (especially when the number of nodes increases) due to the stability

and accuracy issues from the underlying uniform polynomial interpolation schemes, such as the

well-known Runge’s phenomenon. We believe such collocation formulations should be avoided in

the final converged solution; however, one may want to take advantage of their fast convergence

in the deferred correction iterations as will be discussed in Section 2.2. Also, generalization of the

collocation schemes to partial differential equations is straightforward and interested readers are

referred to [12, 33, 34] for preliminary results along this direction.

25

2.2 Deferred Correction Methods and Properties

Despite the aforementioned excellent properties of many of the high order collocation formulations,

the higher order (p ≥ 10 node points) collocation formulation is rarely used in most of today’s

numerical simulations. The main reason is the efficiency of the solution algorithms. Assuming

an ODE system with N equations is resolved using p Gaussian nodes in the Gauss collocation

formulation, as the spectral differentiation matrix D or integration matrix S is dense (solutions at

current time depend both on history data and solutions at future times), the Newton’s method and

direct Gauss elimination (for each linearized system) will require O((Np)3) operations. This number

increases cubicly as p increases. In most BDF type methods, the operation is only N3 for each time

step. Also, when the step size is large, the initial value may no longer serve as a good initial guess

for the solution in the time interval, resulting in convergence problems in the nonlinear solver.

Instead of direct Gauss elimination, in recent years, different deferred correction methods were

proposed to improve the efficiency when solving the discretized collocation formulations iteratively.

We first present the backward Euler based spectral deferred correction (SDC) methods for the

yp-Gauss collocation formulation.

2.2.1 Backward Euler Preconditioned SDC for yp-Gauss Collocation Formulation

We consider the yp-formulation in Eq. (2.2) using the Gaussian nodes. The first step in a SDC

method is to use a low order “predictor” to find an approximate solution of Y (t) at the collocation

points in [0,∆t], denoted by Ỹ = [Ỹ1, Ỹ2, · · · Ỹp]T . When the backward Euler’s method is applied,

the predictor solves the low order discretized system given by

Ỹ1 = f(t1, y0 + ∆t1Ỹ1)

Ỹ2 = f(t2, y0 + ∆t1Ỹ1 + ∆t2Ỹ2)

... · · ·

Ỹp = f(tp, y0 + ∆t1Ỹ1 + ∆t2Ỹ2 · · ·+ ∆tpỸp)

26

where ∆ti = ti − ti−1 (t0 = 0) is the time step size from ti−1 to ti. In matrix form, this is equivalent

to solving

Ỹ = F(t,y0 + ∆tS̃Ỹ) (2.5)

where

∆tS̃ =



∆t1 0 · · · 0 0

∆t1 ∆t2 · · · 0 0

∆t1 ∆t2 · · · 0 0

...

∆t1 ∆t2 · · · ∆tp−1 ∆tp


(2.6)

is the first order rectangular rule (using the right end point) for approximating
∫ ti

0 Y (τ)dτ . Unlike

the spectral integration matrix S where solutions at current time depend on both the history

and future data, in the low order discretization represented succinctly in Eq. (2.5), solutions are

“decoupled” due to the lower triangular structure of S̃. This reduces the solution time to O(N3p) for

ODE systems of size N , assuming Gauss elimination is used for each step of the Newton iterations

when solving the nonlinear system Ỹk = f(tk, y0 + ∆t1Ỹ1 + ∆t2Ỹ2 · · ·+ ∆tkỸk) when marching from

tk−1 to tk. We use Ỹ (t) to represent the corresponding Legendre interpolating polynomial of Ỹ,

where the expansion coefficients are stably computed using the Gaussian quadrature.

In the second step of the SDC method, we define the error as δ(t) = Y (t)− Ỹ (t). We can express

the “error’s equation” given by

Ỹ (t) + δ(t) = f(t, y0 +

∫ t

0
(Ỹ (τ) + δ(τ))dτ) (2.7)

with initial value δ(0) = 0. Since Ỹ at the Gaussian nodes is given, we can apply the spectral

integration matrix to
∫ t

0 Ỹ (τ)dτ to accurately evaluate the integral. For the unknown δ(t), similar to

the predictor step, the backward Euler’s method can be applied to obtain a low order approximation

of the error δ(t) by solving the equation system

Ỹ + δ̃ = F(t,y0 + ∆tSỸ + ∆tS̃δ̃) (2.8)

where δ̃ = [δ̃1, δ̃2, · · · , δ̃p]T is the low order solution at each collocation node. Next, we can add δ̃

27

to Ỹ to obtain an “improved” approximation of Y (t), define the new error, and repeat the second

step. We refer to each such iteration as one SDC correction. In the SDC methods, this procedure is

stopped either when δ̃ is smaller than a prescribed accuracy requirement or after a fixed number

of iterations. In the latter case, if the error is still large, one reduces the step size and solves the

collocation formulation in a smaller interval. In other words, one accepts the SDC results only when

δ̃ in Eq. (2.8) is within certain error tolerance. Notice that in this case, Ỹ approximately satisfies

(up to O(δ̃) error)

Ỹ = F(t,y0 + ∆tSỸ) (2.9)

which is exactly the Gauss collocation formulation in Eq. (2.2). Therefore, SDC is simply an iterative

scheme trying to converge to the Gauss collocation formulation.

Comment: When analyzing the deferred correction methods, most existing results follow

traditional numerical ODE theory and study the convergence and stability region properties for

varying step size ∆t. However, note that when the error is large in the deferred correction iterations,

the results will not be accepted and smaller step sizes have to be used until the error is small enough.

This implies that most existing analyses cover inapplicable numerical regimes which never appear

in real implementations. It is therefore more appropriate to separate the study of the convergence

procedure from that of the converged solutions. When the corrections are convergent, the numerical

properties of the algorithm are determined by the underlying collocation formulation.

Comment: Generalization of the SDC methods to the DAE problems is straightforward. When

the backward Euler’s method is applied, the corresponding low order discretization for the error

is given by F(t,y0 + ∆tSỸ + ∆tS̃δ̃, Ỹ + δ̃) = 0. For a given provisional solution, only O(N3p)

operations are required to get the low order error approximation δ̃ in each SDC correction due to

the lower triangular structure of S̃.

2.2.2 Backward Euler Preconditioned SDC for integral-Gauss Collocation Formula-
tion

We now consider the integral formulation in Eq. (2.4) using the Gaussian nodes and present

a similar analysis as the previous subsection. As mentioned earlier, SDC begins with a predictor.

28

And applying the backward Euler’s method, we obtain the provisional solution

ỹ1 = y0 + ∆t1f(t1, ỹ1)

ỹ2 = y0 + ∆t1f(t1, ỹ1) + ∆t2f(t2, ỹ2)

... · · ·

ỹp = y0 + ∆t1f(t1, ỹ1) + ∆t2f(t2, ỹ2) + · · ·+ ∆tpf(tp, ỹp)

where ∆ti = ti − ti−1 (t0 = 0) is the time step size from ti−1 to ti. In matrix form, this is equivalent

to solving

ỹ = y0 + ∆tS̃F(t, ỹ) (2.10)

where ∆tS̃ is the same as in Eq. (2.6).

In the second step of the SDC method, we define the error as δ(t) = y(t) − ỹ(t). The error’s

equation is now given by

ỹ(t) + δ(t) = y0 +

∫ t

0
f(τ, ỹ(τ) + δ(τ))dτ (2.11)

with initial value δ(0) = 0. We then obtain a low order approximation of the error δ(t) by solving

the equation system

ỹ + δ̃ = y0 + ∆tSF(t, ỹ) + ∆tS̃(F(t, ỹ + δ̃)− F(t, ỹ)) (2.12)

where δ̃ is the low order solution at each collocation node. Next, we continue the SDC procedure by

adding δ̃ to ỹ to obtain an improved approximation to y(t), defining a new error, and repeating

the second step. When δ̃ is within a certain error tolerance in Eq. (2.12), the approximation ỹ

approximately satisfies (up to O(δ̃) error)

ỹ = y0 + ∆tSF(t, ỹ) (2.13)

which is the Gaussian collocation formulation in Eq. (2.4).

29

2.2.3 Understanding Deferred Correction Iterations

To gain further insight of the deferred correction iterations, we first consider the SDC scheme

in matrix form applied to a linear ODE of the form y′(t) = λy + f(t) with given initial condition

y(0) = y0. We will present an analysis using both the yp-formulation and the integral formulation.

The corresponding collocation formulations for the yp-formulation and integral formulation,

respectively become

Y = λ(y0 + ∆tSY) + F (2.14)

y = y0 + ∆tS(λy + F) (2.15)

where y0 = [y0, y0, · · · , y0]T and F = [f(t1), f(t2), · · · , f(tp)]
T . Therefore the linear systems for Y

and y are given by

(I − λ∆tS)Y = λy0 + F (2.16)

(I − λ∆tS)y = y0 + ∆tSF. (2.17)

In the first step of SDC, using the backward Euler’s method as the predictor to solve the low

order discretization for the respective formulations

(I − λ∆tS̃)Y = λy0 + F (2.18)

(I − λ∆tS̃)y = y0 + ∆tSF, (2.19)

we obtain the respective initial provisional solutions

Y[0] = (I − λ∆tS̃)−1(λy0 + F) (2.20)

y[0] = (I − λ∆tS̃)−1(y0 + ∆tSF). (2.21)

Assuming the provisional solution from the previous SDC correction is denoted by Y[n] and y[n],

the discretized low order error’s equations in Eq. (2.8) and Eq. (2.12) for the respective formulations

30

become

Y[n] + δ̃ = λ(y0 + ∆tSY[n] + ∆tS̃δ̃) + F (2.22)

y[n] + δ̃ = y0 + λ(∆tSY[n] + ∆tS̃δ̃) + ∆tSF. (2.23)

For the yp-formulation, using Eq. (2.20) to write (λy0 + F) as (I − λ∆tS̃)Y[0], δ̃ is then given by

δ̃ = Y[0] − (I − λ∆tS̃)−1(I − λ∆tS)Y[n]. (2.24)

Similarly for the integral formulation, using Eq. (2.20) to write y0 + ∆tSF as (I − λ∆tS̃)y[0], the

integral formulation correction is then given by

δ̃ = y[0] − (I − λ∆tS̃)−1(I − λ∆tS)y[n]. (2.25)

Notice that the correction equations for the yp-formulation and the integral formulation mirror each

other. Therefore, we have the same recursive relation for both formulations

Y[n+1] = Y[n] + δ̃ = Y[0] + CY[n] (2.26)

y[n+1] = y[n] + δ̃ = y[0] + Cy[n] (2.27)

where the matrix C is given by

C = I − (I − λ∆tS̃)−1(I − λ∆tS)

= I − (I − λ∆tS̃)−1(I − λ∆tS̃ + λ∆tS̃ − λ∆tS)

= (I − λ∆tS̃)−1λ∆t(S − S̃),

and is what we call the “correction matrix” in this dissertation. We would like to emphasize the

fact that the correction matrix is the same for both the yp and integral formulation based SDC

schemes. Solving the recursive equation in Eq. (2.26) for the yp-formulation and Eq. (2.27) for the

31

integral formulation, we obtain

Y[n] = Y[0] + CY[0] + C2Y[0] + · · ·+ CnY[0] (2.28)

y[n] = y[0] + Cy[0] + C2y[0] + · · ·+ Cny[0]. (2.29)

Instead of the above step-by-step analysis of the SDC method, a more straightforward viewpoint

is to consider the collocation formulations in Eq. (2.16) and Eq. (2.17) and apply the low-order

preconditioner (I − λ∆tS̃)−1 to get the preconditioned systems

(I − λ∆tS̃)−1(I − λ∆tS)Y = (I − λ∆tS̃)−1(λy0 + F) = Y[0] (2.30)

(I − λ∆tS̃)−1(I − λ∆tS)y = (I − λ∆tS̃)−1(y0 + ∆tSF) = y[0]. (2.31)

Since S̃ is a low order approximation of S (or when λ∆t is small), (I−λ∆tS̃)−1(I−λ∆tS) = I−C is

close to the identity matrix. Applying the Neumann series to the equation (I −C)Y = Y[0], we can

derive Eq. (2.28) directly. Likewise, applying the Neumann series to the equation (I − C)y = y[0],

we can derive Eq. (2.29) directly. Therefore, for linear ODE problems, we conclude that the SDC

method is simply a Neumann series expansion for solving the optimal collocation formulation

preconditioned by the low order methods. The convergence of the deferred correction methods is

then determined by the following theorem.

Theorem 2.2.1. For linear ODE initial value problems, the spectral deferred correction iterations

in Eq. (2.28) are convergent if and only if the spectral radius ρ(C) (the supremum among the

absolute values of all the eigenvalues) of the correction matrix C is less than 1.

For nonlinear problems, the SDC approach can be considered as a simplified Newton’s method for

the yp-formulation. For a given input provisional solution Y[k], denoting the low order approximation

of the error δ̃ as an implicit function of Y[k] as δ̃ = H(Y[k]), one can apply the Newton’s method to

find the zero of H,

Y[k+1] = Y[k] − J−1
H H(Y[k]) = Y[k] − J−1

H δ̃.

32

To find an expression for J−1
H = ∂

˜δ
∂Ỹ

, we can start with the general error equation for DAEs

0 = F(t, ũ, Ỹ + δ̃)

where ũ = y0 + ∆tSỸ + ∆tS̃δ̃. As in [30], we use the implicit function theorem to obtain s

0 =
∂F

∂ũ

(
∆tS + ∆tS̃

∂δ̃

∂Ỹ

)
+
∂F

∂Ỹ

(
I +

∂δ̃

∂Ỹ

)

=⇒
(
∂F

∂Ỹ
+
∂F

∂ũ
∆tS̃

)
∂δ̃

∂Ỹ
= −

(
∂F

∂Ỹ
+
∂F

∂ũ
∆tS

)
=⇒ ∂δ̃

∂Ỹ
= −

(
∂F

∂Ỹ
+
∂F

∂ũ
∆tS̃

)−1(∂F

∂Ỹ
+
∂F

∂ũ
∆tS

)
∂δ̃

∂Ỹ
= −

(
∂F

∂Ỹ
+
∂F

∂ũ
∆tS̃

)−1(∂F

∂Ỹ
+
∂F

∂ũ
∆tS̃ − ∂F

∂ũ
∆tS̃ +

∂F

∂ũ
∆tS

)
JH =

∂δ̃

∂Ỹ
= −I +

(
∂F

∂Ỹ
+
∂F

∂ũ
∆tS̃

)−1(∂F

∂ũ
∆t(S − S̃)

)
.

Here, we can think of the Jacobian matrix as JH = −I +C (note that ∂F
∂Ỹ

= I for ODE systems).

The Jacobian matrix is close to the negative Identity matrix −I when the low-order preconditioner

is effective, since S̃ is an approximation to S and ∆t is small. Therefore, the Newton’s method in

Y[k+1] = Y[k] − J−1
H H(Ỹ[k]) = Y[k] − J−1

H δ̃

is simplified to Y[k+1] = Y[k] + δ̃.

We can show that SDC is a simplified Newton’s method for the integral formulation as well. For

a given input provisional solution y[k], denoting the low-order approximation of the error δ̃ as an

implicit function of y[k] as δ̃ = H(˜y[k]), one can apply the Newton’s method to find the zero of H,

y[k+1] = y[k] − J−1
H H(˜y[k]) = y[k] − J−1

H δ̃.

To find an expression for J−1
H = ∂

˜δ
∂ỹ , we can start with the error equation for the integral formulation

33

in Eq. (2.12) and use the implicit function theorem to obtain

I +
∂δ̃

∂ỹ
= ∆tS

∂F

∂ỹ
+ ∆tS̃

(
∂F

∂ỹ
(ỹ + δ̃)

(
I +

∂δ̃

∂ỹ

)
− ∂F

∂ỹ

)

=⇒
(
I −∆tS̃

∂F

∂ỹ
(ỹ + δ̃)

)
∂δ̃

∂ỹ
= −I + ∆tS̃

∂F

∂ỹ
(ỹ + δ̃) + ∆t(S − S̃)

∂F

∂ỹ

=⇒ JH =
∂δ̃

∂ỹ
= −I +

(
I −∆tS̃

∂F

∂ỹ
(ỹ + δ̃)

)−1(
∆t(S − S̃)

∂F

∂ỹ

)
.

Once again, we can think of the Jacobian matrix as JH = −I + C. Thus, the Newton’s method

in

y[k+1] = y[k] − J−1
H H(˜y[k]) = y[k] − J−1

H δ̃

is simplified to y[k+1] = y[k] + δ̃.

2.2.4 Properties of Deferred Correction Iterations

Our numerical results (also see [16]) show that for many ODE initial value problems, the

properly implemented deferred correction methods outperform many existing commonly used solvers

in efficiency for the same accuracy requirement, especially when very high accuracy (i.e., more

than 6 digits accuracy) is required. However, we also observe the “order reduction” phenomenon

when deferred correction iterations are applied to very stiff ODE systems. For some DAE systems,

the deferred correction scheme becomes divergent, independent of the selected step size. We refer

interested readers to Fig. 7 in [30], where the SDC method is applied to Andrews’ squeezing problem

(see [44] for the full description of this DAE system) and becomes divergent after a few iterations for

different step sizes. One observation is that when the Gauss collocation formulation is solved exactly,

“order reduction” or divergence is never a concern in the converged solution. This observation means

that the order reduction or divergence is not caused by the final converged solution, but by the

deferred correction convergence procedure, in particular, the spectral radius ρ(C) of the correction

matrix C and the error in the initial provisional solution.

We first define the “convergence region” to measure when the deferred correction methods are

convergent for linear problems.

Definition 2.2.2. For linear ODE initial value problems, we define the “convergence region” Ω

34

of a deferred correction method as Ω = {λ∆t : ρ(C(λ∆t)) < 1, λ ∈ C}. The method is called “A-

convergent” if Ω contains the left half complex plane. It is called “L-convergent” if it is “A-convergent”

and lim|λ∆t|→∞ ρ(C(λ∆t))→ 0 for λ∆t on the left half complex plane.

0.25

0.5

0.75

0.75

0.75

0.75

1

1.25

1.5

1.5
1.75

1.75

2

2

2.25

2.25

-10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

x

y

Figure 2.2: Contour of ρ(C(λ∆t)) for p = 4 for SDC, λ∆t = x+ iy.

0.50.60.70.8

0.9

1

1.1

1.2

1.3

-100 -50 0 50 100

-100

-50

0

50

100

x

y

Figure 2.3: Contour of ρ(C(λ∆t)) for p = 10 for SDC, λ∆t = x+ iy.

For the backward Euler preconditioned SDC methods for yp-Gauss collocation formulation, the

correction matrix is

C = (I − λ∆tS̃)−1(λ∆t)(S − S̃). (2.32)

In Figs. 2.2 and 2.3, we plot the numerically computed convergence region (contour = 1) and other

contour lines of ρ(C) for p = 4 and p = 10. Both seem to be A-convergent.

For the correction matrix C(λ∆t), we are particularly interested in two regimes to understand

35

the properties of the deferred correction iterations: when |λ∆t| � 1 (non-stiff systems), and when

|λ∆t| → ∞ (“strongly stiff limit” for stiff systems). For non-stiff systems where |λ∆t| � 1, after

each iteration, clearly the error will decay approximately by the factor (λ∆t)(S − S̃) as

Cns = (I + (λ∆tS̃) + (λ∆tS̃)2 + · · ·)(λ∆t)(S − S̃) (2.33)

= (λ∆t)(I + (λ∆tS̃) + (λ∆tS̃)2 + · · ·)(S − S̃). (2.34)

However in the strongly stiff limit, the correction matrix becomes

Cs = −(λ∆tS̃)−1(λ∆t)(S − S̃)

Cs = I − S̃−1S. (2.35)

The convergence of the iterations will then depend on how accurate the low order integration rule

in S̃ approximates the high order rule in S. In Table 2.1, we list ρ(Cs) for different numbers of node

points. It can be seen that “order reduction” becomes a serious problem as the number of nodes

Table 2.1: ρ(Cs) for different numbers of Gaussian nodes, stiff case, SDC.

p 2 3 4 5 6 7 8
ρ(Cs) 0.3170 0.4210 0.5610 0.6653 0.7420 0.7998 0.8448

p 9 10 11 12 13 14 15
ρ(Cs) 0.8805 0.9096 0.9337 0.9540 0.9713 0.9861 0.9991

p 16 17 18 19 20 25 50
ρ(Cs) 1.0105 1.0205 1.0295 1.0375 1.0448 1.0724 1.1280

increases. For 8 points, the modulus of the largest eigenvalue of the correction matrix is 0.8448.

This means that for general stiff ODE systems, one error component will decay asymptotically by

the factor 0.8448 after each SDC iteration due to the “unresolved” stiff components (as |λ∆t| � 1)

in the iterations. When p = 16, the SDC method becomes divergent as ρ(Cs) = 1.0105. Clearly,

when p > 15, the methods are not A-convergent, and the error will eventually start to increase

when the number of iterations increases. For several cases when p ≤ 15, our numerical results show

that the methods are A-convergent. Also, from Table 2.1, we see that none of these methods are

L-convergent. In Fig. 2.4, we also plot the eigenvalue distributions of Cs for p = 10 and p = 40.

In addition to spectral radius ρ(C) which determines the asymptotic convergence properties of

36

0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re

Im
p=10

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re

Im

p=40

Figure 2.4: Distributions of correction matrix eigenvalues for p = 10 and p = 40, stiff case, SDC.

the deferred correction iterations, the initial error (and its corresponding eigen-decomposition) in

the provisional solution also plays an important role in the “convergence procedure”. This will be

explained in this subsection by comparing the SDC iterations with standard Picard iterations for

non-stiff linear ODE systems (Picard iterations are divergent for stiff systems).

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of nodes

E
ig

e
n

v
a

lu
e

Largest eigenvalue (Picard)

Largest eigenvalue (SDC)

(a)

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of nodes

E
ig

e
n

v
a

lu
e

Second largest eigenvalue (Picard)

Second largest eigenvalue (SDC)

(b)

Figure 2.5: Modulus of the (a) largest and (b) second largest eigenvalues for different numbers of
nodes, SDC vs. Picard for the Gauss collocation formulation.

In the standard Picard iteration, the solution is derived by applying the Neumann series directly

to (I − λ∆tS)Y = b ≡ (λy0 + F) as Y = b + CP
nsb + (CP

ns)
2b + · · · for the yp-formulation or

(I − λ∆tS)y = b ≡ (y0 + ∆tSF) as y = b+ CP
nsb+ (CP

ns)
2b+ · · · for the integral formulation. For

both cases, the new correction matrix is given by CP
ns = λ∆tS. To understand the asymptotic

convergence properties, we notice that after each Picard iteration, similar to the SDC iterations,

the error will be reduced by a factor of O(λ∆t). We therefore compare the constant prefactor

37

determined by the spectral radius of S − S̃ in the SDC correction matrices Cns and the radius of S

in the Picard correction matrix CP
ns. In (a) of Fig. 2.5, we compare the spectral radius (modulus of

the largest eigenvalue |λ|max) of S for Picard iteration and that of S − S̃ for SDC. It can be seen

that asymptotically the SDC iterations have a similar convergence rate as the Picard iterations

when λ∆t is small. In (b) of Fig. 2.5, we also show how the second largest eigenvalues change as a

function of the number of Gaussian nodes for the SDC and Picard iterations. In Fig. 2.6, we plot

the eigenvalue distributions of the matrix S − S̃ in the SDC method and S in the Picard iterations

for (a) p = 10 and (b) p = 20, respectively. In Fig. 2.7, we plot the normalized eigenvectors of the

matrix S − S̃, and in Fig. 2.8, the normalized eigenvectors of S, both for p = 15. These vectors

can be considered as the discretized eigenfunctions. Each component vj in the eigenvector v is

considered as the eigenfunction value at tj .

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Re

Im

Picard eigenvalues

SDC eigenvalues

(a)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Re

Im

Picard eigenvalues

SDC eigenvalues

(b)

Figure 2.6: Eigenvalue distributions of SDC and Picard iterations for (a) 10 nodes and (b) 20 nodes

One interesting observation is that even though the spectral radii of the two correction matrices

are similar in magnitude (which implies similar convergence rates for a large number of iterations),

the eigenvalue distributions and structures of the eigenvectors are very different. To see this behavior,

note that we can use Eq. 2.26 and Eq. 2.28 to express the solution of the yp-formulation as

Y[n] = Y[0] + CY[0] + C2Y[0] + · · ·+ CnY[0]

= Y[0] + δ̃
[0]

+ Cδ̃
[0]

+ · · ·+ Cn−1δ̃
[0]

where C can be the Picard correction matrix Cpns or the non-stiff SDC correction matrix Cns and

δ̃
[0]

is the initial error. Expressing δ̃
[0]

in the eigenvector (of the correction matrix) decomposition

38

0 0.5 1
−0.4

−0.3

−0.2

−0.1

0

λ=2.3e−052

0 0.5 1
0

0.1

0.2

0.3

0.4

λ=−0.0099

0 0.5 1
−0.5

0

0.5

1

λ=−0.017

0 0.5 1
−0.3

−0.2

−0.1

0

0.1

λ=−0.021

0 0.5 1
−0.4

−0.2

0

0.2

0.4

λ=−0.028

0 0.5 1
−0.3

−0.2

−0.1

0

0.1

λ=−0.031

0 0.5 1
−0.4

−0.2

0

0.2

0.4

λ=−0.038

0 0.5 1
−0.2

0

0.2

0.4

0.6

λ=−0.04−0.002i

0 0.5 1
−0.2

0

0.2

0.4

0.6

λ=−0.04+0.002i

0 0.5 1
−0.2

0

0.2

0.4

0.6

λ=−0.042−0.0066i

0 0.5 1
−0.2

0

0.2

0.4

0.6

λ=−0.042+0.0066i

0 0.5 1
−0.5

0

0.5

λ=−0.045−0.012i

0 0.5 1
−0.2

0

0.2

0.4

0.6

λ=−0.045+0.012i

0 0.5 1
−0.5

0

0.5

1

λ=−0.048−0.02i

0 0.5 1
−0.5

0

0.5

1

λ=−0.048+0.02i

Figure 2.7: S − S̃: Real (o) and imaginary (+) components of each eigenvector at the collocation
points, non-stiff case, p = 15, SDC.

0 0.5 1
−1

−0.5

0

0.5

λ=0.01−0.036i

0 0.5 1
−1

−0.5

0

0.5

λ=0.01+0.036i

0 0.5 1
−1

−0.5

0

0.5

λ=0.019−0.036i

0 0.5 1
−1

−0.5

0

0.5

λ=0.019+0.036i

0 0.5 1
−0.5

0

0.5

1

λ=0.028−0.033i

0 0.5 1
−0.5

0

0.5

1

λ=0.028+0.033i

0 0.5 1
−1

−0.5

0

0.5

λ=0.035−0.029i

0 0.5 1
−1

−0.5

0

0.5

λ=0.035+0.029i

0 0.5 1
−0.5

0

0.5

1

λ=0.041−0.023i

0 0.5 1
−0.5

0

0.5

1

λ=0.041+0.023i

0 0.5 1
−0.5

0

0.5

1

λ=0.045−0.016i

0 0.5 1
−0.5

0

0.5

1

λ=0.045+0.016i

0 0.5 1
−0.5

0

0.5

1

λ=0.048−0.0082i

0 0.5 1
−0.5

0

0.5

1

λ=0.048+0.0082i

0 0.5 1
−0.5

0

0.5

1

λ=0.049

Figure 2.8: S: Real (o) and imaginary (+) components of each eigenvector at the collocation points,
non-stiff case, p = 15, Picard iteration

39

0 2 4 6 8 10 12 14
10

−15

10
−10

10
−5

10
0

Number of corrections

E
rr

SDC

Picard

Figure 2.9: How errors decay after each SDC or Picard iteration.

δ̃
[0]

=
p∑
i=1

αivi, we can express k iterations of the correction matrix impacting the initial error as

Ckδ̃
[0]

= Ck(α1v1 + α2v2 + · · ·+ αpvp)

=
(
α1(λ1)kv1 + α2(λ2)kv2 + · · ·+ αp(λp)

kvp

)
(2.36)

where Cvi = λivi with |λ1| ≤ |λ2| ≤ · · · ≤ |λp|. Though |λp| for Cpns and Cns are similar, the

eigenvalues in Figs. 2.7 and 2.8 show different behaviors.

For the matrix S − S̃ in the SDC iterations, zero is an eigenvalue and the corresponding

eigenvector is the constant vector. Notice that for both methods, when a Taylor expansion is

applied to the error term in the initial provisional solution, the constant component is usually the

largest term, followed by linear, then quadratic, and then higher degree terms. Thus, one should

expect smaller initial error when using the SDC method because SDC can effectively eliminate

the dominating “low-frequency” error components. This is validated numerically in Fig. 2.9, by

implementing both the SDC and Picard iterations for the model problem y′(t) = y(t) + f(t), where

f(t) is chosen so that the analytical solution is given by y(t) = 1
1+t . The figure shows how the errors

decay after each SDC or Picard iteration in one time step [0, 0.6]. In the simulation, p = 15 is used

for both methods; and the spectral radius of S − S̃ is approximately 0.049. It can be seen that the

error from the SDC iterations is smaller than that of the Picard iterations, and the asymptotic

decay slope of the Picard iterations approaches that of the SDC method. Also, the numerical value

40

of the slope of the SDC curve is approximately −3.37, which is very close to the theoretical value

−3.53 ≈ log(0.6 · 0.049).

When the SDC methods are applied to the stiff systems where |λ∆t| � 1, in Fig. 2.10, we

plot all the eigenvectors of the correction matrix Cs for p = 15. It can be observed that higher

0 0.5 1
0

0.1

0.2

0.3

0.4

λ=−1.8e−045

0 0.5 1
−1

−0.5

0

0.5

λ=0.13−0.079i

0 0.5 1
−1

−0.5

0

0.5

λ=0.13+0.079i

0 0.5 1
−1

−0.5

0

0.5

λ=0.17−0.23i

0 0.5 1
−1

−0.5

0

0.5

λ=0.17+0.23i

0 0.5 1
−0.5

0

0.5

1

λ=0.25−0.37i

0 0.5 1
−0.5

0

0.5

1

λ=0.25+0.37i

0 0.5 1
−1

−0.5

0

0.5

λ=0.35−0.49i

0 0.5 1
−1

−0.5

0

0.5

λ=0.35+0.49i

0 0.5 1
−0.5

0

0.5

1

λ=0.48−0.57i

0 0.5 1
−0.5

0

0.5

1

λ=0.48+0.57i

0 0.5 1
−1

−0.5

0

0.5

λ=0.62−0.62i

0 0.5 1
−1

−0.5

0

0.5

λ=0.62+0.62i

0 0.5 1
−0.5

0

0.5

1

λ=0.77−0.64i

0 0.5 1
−0.5

0

0.5

1

λ=0.77+0.64i

Figure 2.10: Real (o) and imaginary (+) components of each eigenvector at the collocation points,
stiff case, p = 15, backward Euler preconditioned Gauss collocation formulation.

frequency errors decay slower than the lower frequency errors because the moduli of the corresponding

eigenvalues are larger. Recall that for the initial provisional solution in the SDC iterations, the

low frequency errors are usually the dominating components. The overall errors will therefore

decay rapidly in the first few iterations, but “order reduction” or even “divergence” is expected

eventually for a large number of corrections due to the asymptotic convergence properties determined

by the spectral radius ρ(Cs). One interesting numerical example can be found in Fig. 7 in [30],

where the SDC method is applied to Andrews’ squeezing DAE system. For this specific example

and different step sizes, the errors decay in the first few iterations and start to increase once the

dominating error becomes the high frequency component corresponding to the largest eigenvalue.

In existing deferred correction implementations, such divergence (and order reduction for smaller

p) was usually controlled by fixing the total number of iterations to bound the growth of the

eigenvectors corresponding to eigenvalues of large moduli, and by using smaller step sizes to reduce

the magnitude of the coefficients of these eigenvectors in the initial error.

41

Comment: For general DAE systems, it is usually expected that in the discretized algebraic

equations, since S̃−1 is applied to precondition S directly by applying the implicit function theorem,

the convergence of the SDC method for DAE systems will most likely depend on the spectral radius

of I − S̃−1S, especially for higher index DAE systems, and the numerical properties of the SDC

methods will be similar to the strongly stiff limit case for ODEs.

2.2.5 Different Deferred Correction Methods

In this subsection, we discuss several deferred correction strategies and present their properties.

We focus on the “yp-formulation” but other formulations (like the integral formulation) have

also been studied and can be included in the “deferred correction methods database”. In the

“convergence procedure”, appropriate deferred correction schemes will be selected to reduce different

error components in the initial solution for faster convergence to the collocation formulation.

We also studied the backward Euler preconditioned SDC type methods for the Radau IIa

collocation formulation (SDC-Radau) where the right end point t = ∆t is included in the spectral

integration, and the Lobatto formulation (SDC-Lobatto) with both end points t = 0 and t = ∆t

used in the formulation.

For Radau IIa nodes, we found that the convergence behaviors of the SDC-Radau schemes are

similar to those of the Gaussian nodes in both the non-stiff (|λ∆t| small) and stiff (|λ∆t| large) cases.

In Table 2.2, we show the spectral radius ρ(C) of the correction matrices for different numbers of

Radau IIa nodes for the stiff case. It can be seen that when p ≥ 12, the SDC-Radau methods

become divergent. We also plot the convergence region of the SDC-Radau. Similar to the Gauss

p 2 3 4 5 6 7 8
ρ(C) 0.2500 0.4344 0.6184 0.7364 0.8161 0.8726 0.9146

p 9 10 11 12 13 14 15
ρ(C) 0.9469 0.9724 0.9931 1.0101 1.0244 1.0365 1.0470

p 16 17 18 19 20 25 50
ρ(C) 1.0560 1.0639 1.0709 1.0772 1.0827 1.1037 1.1444

Table 2.2: ρ(C) for different numbers of nodes, SDC-Radau.

collocation case, our numerical results show that the methods are A-convergent for smaller p, but

become divergent when p is large. Also, none of these formulations are L-convergent.

42

0.20.4

0.6

0.8

0.8

0.8 0.8

1

1.2

1.4

1.6

1.8

-10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

x

y

Figure 2.11: Contour of ρ(C) for p = 4 for SDC-Radau, λ∆t = x+ iy.

For Lobatto nodes, the left end point (t = 0) is included in the integration quadrature and we

also add t0 = 0 to the collocation formulation. It is easy to see that all entries in the first row of the

integration matrix S (representing
∫ 0

0 Y (τ)dτ) will be zero. We denote

S =

 01×1 01×(p−1)

S21 S22

 ,
where S21 is the (p− 1)× 1 vector and S22 is the (p− 1)× (p− 1) submatrix. The equation at t = 0

is simply the initial consistency condition Ỹ0 = f(t0, y0). The low order quadrature rule can be

represented in a similar way as

S̃ =

 01×1 01×(p−1)

S̃21 S̃22

 .
When the backward Euler’s method (rectangular rule using the right end point) is used, S̃21 is a

zero vector, and S̃22 contains the lengths of the subintervals between adjacent Lobatto quadrature

nodes similar to Eq. (2.6). Applying the Woodbury matrix identity, the correction matrix can be

43

0.8750.90.9250.95

0.975

1

1.025

1.05

1.075

-600 -400 -200 0 200 400 600

-400

-200

0

200

400

x

y

Figure 2.12: Contour of ρ(C) for p = 10 for SDC-Radau, λ∆t = x+ iy.

simplified as

C = I − (I − λ∆tS̃)−1(I − λ∆tS)

= I −

 1 0

(I − λ∆tS̃22)−1λ∆tS̃21 (I − λ∆tS̃22)−1


 1 0

−λ∆tS21 (I − λ∆tS22)


=

 0 0

(I − λ∆tS̃22)−1λ∆t(S21 − S̃21) I − (I − λ∆tS̃22)−1(I − λ∆tS22)

 .
One therefore only needs to study the “sub-correction matrix” I − (I − λ∆tS̃22)−1(I − λ∆tS22) to

understand the convergence properties of the original correction matrix. For stiff systems when

|λ∆t| is large, one needs to study the matrix I − S̃−1
22 S22. In Table 2.3, we show the spectral radius

of this matrix for stiff ODE systems. Similar to the Gaussian and Radau IIa cases, the SDC-Lobatto

methods become divergent when p > 14 and order reduction is expected for smaller numbers of

nodes. For comparison, we also plot the convergence regions of SDC-Lobatto methods.

Comment: In most existing analysis and implementations of deferred correction methods, a

fixed number of iterations is performed and the resulting “solution” may still be far away from

the converged solution in each time step. Hence, one should expect a relatively large error in the

initial value y0 for the next step. For stiff problems, the large error may accumulate rapidly when

44

p 3 4 5 6 7 8 9
ρ(C) 0.5000 0.5922 0.6837 0.7576 0.8150 0.8600 0.8957

p 10 11 12 13 14 15 16
ρ(C) 0.9247 0.9485 0.9685 0.9853 0.9998 1.0123 1.0233

p 17 18 19 20 21 25 50
ρ(C) 1.0330 1.0415 1.0492 1.0560 1.0622 1.0820 1.1333

Table 2.3: ρ(C) for different numbers of nodes, SDC-Lobatto methods.

0.20.4

0.6

0.8

1

1.2

1.4

1.6

-5 0 5

-5

0

5

x

y

Figure 2.13: Contour of ρ(C) for p = 4, SDC-Lobatto methods, λ∆t = x+ iy.

the number of time steps increases in any yp-formulation using the left end point t = 0. This

can be shown by studying the initial provisional solution Y[0] = (I − λ∆tS̃)−1(λy0 + F) (also see

Eq. (2.20)). When the left end point is used in the collocation formulation, as

(I − λ∆tS̃)−1 =

 1 0

(I − λ∆tS̃22)−1λ∆tS̃21 (I − λ∆tS̃22)−1

 ,
the error in the first entry (corresponding to the left end point) of Y[0] will be λ times the error

from the initial value y0. When this entry is used in the spectral integration scheme, this error will

propagate to other collocation points and magnify the overall error by O(λ) in the final solution

at each time step, resulting in an unstable numerical time marching scheme. Therefore, the yp-

formulation with the left end point t = 0 should be avoided in the standard deferred correction

45

0.60.70.8

0.9

1

1.1

1.2

-200 -100 0 100 200

-100

-50

0

50

100

x

y

Figure 2.14: Contour of ρ(C) for p = 10, SDC-Lobatto methods, λ∆t = x+ iy.

methods.

It is well-known that the uniform interpolations suffer from the Runge phenomena when a large

number of interpolation points are used, so in existing implementations, only low order uniform

collocation formulations (e.g., p < 10) are considered in the integral deferred correction (InDC)

methods [14]. In this subsection, we analyze the backward Euler preconditioned deferred correction

methods for the uniform yp-collocation formulations (denoted as InDC-yp). In Figures 2.15-2.17, we

show the convergence regions for p = 4, p = 5 and p = 10. The numerically computed convergence

regions show that when p = 4, the method is A-convergent. However, the method is no longer

A-convergent when p > 4.

The most interesting feature of the InDC-yp is the following theorem for stiff systems.

Theorem 2.2.3. For the InDC-yp method, when |λ∆t| → ∞, the correction matrix S̃−1S − I has

eigenvalues equal to zero; and its Jordan canonical form consists of one Jordan block.

The proof is sketched in the Appendix. Because there only exist zero eigenvalues, we conclude

that the InDC-yp methods are L-convergent for p < 5. Clearly, the InDC methods have better

convergence properties, but larger error is expected from the converged solution due to the uniform

collocation points for large p.

In the following we study the convergence properties of the second order trapezoidal rule

46

0.5

1

1.5

2

2.5

3

-10 -5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

x

y

Figure 2.15: Contour of ρ(C) for p = 4 for InDC-yp, λ∆t = x+ iy.

preconditioned yp-formulations.

We first consider the non-stiff case. The left end point (t = 0) is used in the first subinterval

by the trapezoidal rule. We add it to the collocation formulation to compare the trapezoidal rule

preconditioned Lobatto collocation formulation (denoted as SDC-Lobatto-T and the corresponding

correction matrix is denoted as CTns) with the backward Euler preconditioned Lobatto collocation

formulation, SDC-Lobatto. From Fig. 2.18, it can be seen that the spectral radius of S − S̃ from

CTns is smaller than that from the SDC-Lobatto. Therefore for non-stiff problems, the second order

trapezoidal rule preconditioned SDC-Lobatto-T should converge asymptotically faster. Also, using

the trapezoidal rule predictor, the initial low order solution should have much better accuracy

(smaller error). One interesting observation is that as the spectral radius of the trapezoidal rule

preconditioned SDC-Lobatto-T method is non-zero, one should only expect the error to decay by

the factor λ∆t after each iteration, assuming the initial error has all eigenmodes. This disagrees

with some existing claims that the error decays by a factor ∆t2 after each 2nd order SDC correction.

Such disagreements were also pointed out in [14], where the integral deferred correction methods

are studied as special Runge-Kutta approaches.

For stiff problems, the second order trapezoidal rule preconditioned SDC-Lobatto-T iterations

show worse convergence properties. In Table 2.4, we show the spectral radius of the correction

47

1

2

3

4

5

6

7

8

-10 -5 0 5 10 15 20

-20

-10

0

10

20

x

y

Figure 2.16: Contour of ρ(C) for p = 5 for InDC-yp, λ∆t = x+ iy.

matrix in this regime. It can be seen that the trapezoidal rule preconditioned SDC iterations

become divergent when p > 5. Therefore, without resolving the “order reduction” and divergence

problems, the higher order trapezoidal rule preconditioner is usually not recommended for solving

the pseudo-spectral discretization for stiff ODE and DAE systems.

p 3 4 5 6 7 8 9
|λ|max 0.3333 0.6180 0.8934 1.1658 1.4370 1.7076 1.9780

p 10 11 12 13 14 15 16
|λ|max 2.2482 2.5183 2.7884 3.0585 3.3285 3.5986 3.8687

p 17 18 19 20 21 25 50
|λ|max 4.1388 4.4089 4.6789 4.9490 5.2191 6.2995 13.0530

Table 2.4: ρ(C) of SDC-Lobatto-T, strongly stiff limit case.

Another interesting observation is obtained when the trapezoidal rule preconditioner is applied

to the uniform collocation formulation (denoted as InDC-yp-T) of non-stiff problems, described in

the following theorem, and the proof is given in the Appendix.

Theorem 2.2.4. For a non-stiff ODE system and its uniform collocation discretization, after each

trapezoidal rule preconditioned InDC-yp-T iteration, the error decays by the factor (∆t)2 before

reaching its discretization order (∆t)p+1.

Therefore, higher order preconditioners are more effective to reduce the non-stiff errors when the

48

0.6
0.8

1

1.2

1.4

1.6

-200 0 200 400 600 800

-600

-400

-200

0

200

400

600

x

y

Figure 2.17: Contour of ρ(C) for p = 10 for InDC-yp, λ∆t = x+ iy.

uniform nodes are used. However many of these schemes show worse convergence properties for stiff

systems in the standard deferred correction iterations, e.g., we found that for p = 6, the trapezoidal

rule preconditioned iterations are divergent. For smaller p, severe order reduction is observed.

For non-stiff problems, existing numerical results show that the Neumann-series type deferred

correction methods are very effective in the solution procedure to converge to the corresponding

collocation formulation. This is unfortunately not true for stiff problems, and one has to deal

with the divergence and order reduction for stiff ODE systems in the convergence procedure.

One effective solution in existing literature is to search for the optimal solution in the Krylov

subspace. One can use the Krylov deferred correction (KDC) methods [29, 30] to solve the

preconditioned formulation in Eq. (2.30). For linear stiff problems, instead of the Neumann series

solution in Eq. (2.28), one can search for the optimal least squares solution in the Krylov subspace

Km(C,Y[0]) = span{Y[0], CY[0], C2Y[0], · · · , Cm−1Y[0]} using existing Krylov subspace methods

such as the GMRES (generalized minimal residuals) or BiCGStab (bicongugate gradient stabilized

method) as the matrix C is usually non-symmetric [4, 35, 46].

For nonlinear stiff problems, one can apply the Jacobian-free Newton Krylov (JFNK) methods

to find the root of the low-order method preconditioned system δ̃ = H(Ỹ), where the “input”

variable Ỹ is the approximate solution and the “output” δ̃ is the low-order estimate of the error in

49

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

number of Lobatto nodes

S
p
e
c
tr

a
l
R

a
d
iu

s

TR

BE

Figure 2.18: Spectral Radius ρ(S − S̃) for different numbers of nodes, SDC-Lobatto and SDC-
Lobatto-T.

the SDC correction. Note that when Ỹ solves the original collocation formulation in Eq. (2.2), the

output δ̃ = 0. Also, when the output is a good estimate of the error in the input variable Ỹ, by

applying the implicit function theorem, one can show that the Jacobian matrix of H is close to −I.

We refer interested readers to [36, 37] for details of the JFNK methods. In the following we present

the algorithmic structure of one step of the KDC methods marching from 0 to ∆t using existing

implementations of the JFNK methods.

Krylov deferred correction method: Subroutine OneStep(y(t0 + ∆t), Y, y(t0), t0, ∆t)

Comment:

Input: Initial values y(t0) at t = t0 and step size ∆t.

Output: Solution y(t0 + ∆t) at t0 + ∆t and derivatives Y at collocation nodes.

Step 1, Predictor: Use a low order method to find an approximate solution Ỹ

as the initial guess.

Step 2, JFNK: Call existing JFNK solver to find the root Y of the equation

δ̃ = H(Ỹ) = 0.

Step 3, Output: Use high order quadrature and integrate Y to get y(t0 + ∆t).

In the JFNK method, the function evaluation δ̃ = H(Ỹ) is simply one SDC iteration for the

50

given provisional solution Ỹ, and such a function evaluation module should be provided by the

user. We refer interested readers to [29, 30, 33] for details of the KDC algorithm and preliminary

numerical results. Though KDC is a promising method, we do find that straightforward application

of existing JFNK packages in KDC is not optimal. For small ∆t, existing JFNK methods often

encounter difficulty converging to the collocation formulation even though the original deferred

correction approaches converge satisfactorily. Also, for some settings, the deferred correction

approach converges faster than the JFNK. We believe the reason is that the general purpose JFNK

solvers are unaware of the special structures in the preconditioned system implicitly given by the

function H. Modification and optimization of the JFNK methods for the numerical framework will

be further addressed in chapter 3.

2.2.6 Integral Formulation, yp-formulation, and Convergence

Our analysis also shows that using different formulations will also change the convergence prop-

erties of the deferred correction iterations. In this subsection, we compare the integral formulation

with the yp-formulation for the linear ODE y′(t) = λy(t) + f(t) for both non-stiff and stiff cases.

In the yp-formulation, we use Y (t) = y′(t) as the unknown and solve the discretized system in

Eq. (2.16). The iterations for the yp-formulation is given in Eq. (2.28), and the converged solution

Y is explicitly given by

Y = (I − λ∆tS)−1(λy0 + F).

After finding Y, the solution ỹ is constructed using ỹ = y0 + ∆tSY. In the integral formulation,

one computes y(t) directly by solving the Picard integral equation y(t) = y0 +
∫ t

0 (λy(τ) + f(τ)) dτ .

The discretized system is given by ỹ = y0 + ∆tS (λỹ + F), and the converged solution is given

explicitly by

ỹ = (I − λ∆tS)−1(y0 + ∆tSF).

The Neumann series expansion for the preconditioned formulation

(I − λ∆tS̃)−1(I − λ∆tS)ỹ = (I − λ∆tS̃)−1(y0 + ∆tSF) = y[0]

51

is given by

y[n] = y[0] + Cy[0] + C2y[0] + · · ·+ Cny[0]

where C is the same correction matrix as in the yp-formulation.

However, after a fixed numberK iterations, the truncated expansions will have different properties.

Assuming both series expansions are convergent, the error from the truncated yp-formulation is

then given by

erryp = ∆tS(
∞∑

k=K+1

CkỸ[0]) = ∆tS

(∞∑
k=K+1

Ck(I − λ∆tS̃)−1(λy0 + F)

)
,

and the error from the integral formulation is given by

errintegral =
∞∑

k=K+1

Ckỹ[0] =
∞∑

k=K+1

Ck
(

(I − λ∆tS̃)−1(y0 + ∆tSF)
)
.

Comparing the error terms, we can see that for non-stiff problems when |λ∆t| � 1, the error

from the yp-formulation should be one order higher (in ∆t) than the integral formulation due

to the additional ∆t factor. However for stiff problems when |λ∆t| � 1, the integral form is

preferred. Also, when the deferred correction methods are applied to the integral formulations with

the left end point t = 0, the numerical schemes should be more stable in time marching than the

corresponding yp-formulation case discussed in Sec. 2.2.5, since the term λy0 doesn’t exist in the

integral formulation.

2.3 Algorithm Design Guidelines and Numerical Experiments

In most existing deferred correction implementations, one applies a particular deferred correction

method for the corresponding collocation formulation. For stiff systems, when the estimated error is

still large after a fixed number of iterations due to the order reduction or divergence, a commonly

used strategy is to reduce the step size since the error components corresponding to the “bad

eigenvalue” in the provisional solution become smaller when ∆t decreases. One can therefore

“control” the growth of the divergent or slowly convergent components in the Neumann series

expansion by stopping the iterations before they become significant. The drawback of this strategy

52

is that this approach only works when the step size is reasonably small (due to the divergence

or order reduction), and one can no longer take advantage of the large step size in the optimal

collocation formulations.

In the new numerical framework, instead of using one single deferred correction method for

a particular collocation formulation, different deferred correction techniques can be applied to

reduce different components in the error of the provisional solution in order to more efficiently

converge to the solution of the “optimal” collocation formulation for the underlying ODE system.

In the following, we provide some guidelines for each step of the numerical framework. Preliminary

numerical experiments are also performed to support these guidelines. We want to mention that the

new perspective of looking at the deferred correction methods as iterative schemes to converge to the

optimal collocation formulation also allows the introduction of other existing effective preconditioning

techniques for faster convergence, e.g., domain decomposition or multigrid techniques commonly

used in today’s spatial solvers.

2.3.1 Optimal Collocation Formulation

p 4 5 6 7 8 9 10
ErrU 1.51e-1 1.05e+0 4.82e-2 5.27e-1 1.78e-2 2.68e-1 7.11e-3
ErrG 3.83e-2 2.23e-2 5.91e-3 4.11e-3 1.05e-3 7.99e-4 1.99e-4

p 11 12 13 14 15 16 17
ErrU 1.36e-1 2.97e-3 6.94e-2 1.28e-3 3.52e-2 5.61e-4 1.78e-2
ErrG 1.57e-4 3.86e-5 3.11e-5 7.55e-6 6.17e-6 1.48e-6 1.23e-6

p 18 19 20 21 25 31 41
ErrU 2.50e-4 9.03e-3 1.13e-4 4.56e-3 1.15e-3 1.47e-4 4.66e-6
ErrG 2.93e-7 2.44e-7 5.81e-8 4.86e-8 1.94e-9 1.54e-11 4.88e-15

Table 2.5: Errors from Gauss and uniform collocation formulations for different numbers of nodes.

A good collocation formulation can be selected from the “collocation formulation database”

based on the physical properties of the system. For ODE systems, our default choice is the Legendre

polynomial based Gauss collocation formulation. In general, the orthogonal basis functions based

collocation formulations are recommended because it is a widely accepted fact that they outperform

the uniform nodes based formulations by allowing larger step sizes and better accuracy. This is

demonstrated by comparing the solutions from the Gauss and uniform collocation formulations for

53

the non-stiff ODE system y′(t) = y(t) + f(t) with the analytical solution y(t) = 1
1+5(x−0.5)2

(and

f(t) is determined accordingly). In Table 2.5, we list the errors for different numbers of nodes for

both formulations, where the numerical solution is derived by solving the collocation formulations

directly using Gauss elimination (instead of deferred correction iterations) in one time step [0, 1]. It

can be seen that for this particular system, the results from the Gauss collocation formulations are

always more accurate than those from the uniform collocation formulations.

There are several factors in finding the optimal formulation for a specific ODE system. One may

need to know the properties of the solution to determine which formulation will need fewer points

for the same accuracy requirement. In general, the orthogonal basis based collocation formulations

or the skeletonization based schemes should give good results for most problems and uniform

collocation formulations should be avoided, especially when one wants to use a large number of

node points for efficiency considerations.

2.3.2 Techniques for Convergence Procedure

Existing studies of the deferred correction methods show that it is more efficient to solve the

collocation formulation using an iterative approach instead of the direct Gauss elimination, and the

low-order methods are good preconditioners for the pseudo-spectral collocation formulation. In the

“convergence procedure” of the numerical framework, different preconditioning techniques can be

integrated to eliminate the errors of the provisional solutions efficiently. In this section, we compare

different strategies for stiff and non-stiff problems, and provide guidelines for faster convergence.

We first compare different schemes for the non-stiff model problem y′(t) = y(t) + f(t) with

analytical solution y(t) = 1
1+t (and f(t) determined accordingly). In Table 2.6, we show how

the errors change for different numbers of deferred correction iterations using different low-order

preconditioners and collocation schemes. We march from t = 0 to tfinal = 3 using “nsteps” time steps,

and set the number of node points to p = 7 for each time step in all cases. In the “Uniform+B(oth)”

collocation formulation, both end points are used in the formulation. We also tested the Radau IIa

nodes and Gaussian nodes, and the results are very similar to those from the Lobatto collocation

formulation for the non-stiff case in Table 2.6. We therefore neglect those results in the table. It

can be seen that:

54

nsteps 4 8 16 32 Order

yp, BE, Uniform+B, 0 SDC Iters 3.14e-1 7.55e-2 1.83e-2 4.48e-3 2.04
yp, BE, Uniform+B, 1 SDC Iters 2.64e-2 2.72e-3 3.06e-4 3.62e-5 3.17
yp, BE, Uniform+B, 2 SDC Iters 2.31e-3 1.00e-4 5.19e-6 2.94e-7 4.31

yp, BE, Lobatto, 0 SDC Iters 3.78e-1 9.39e-2 2.32e-2 5.76e-3 2.01
yp, BE, Lobatto, 1 SDC Iters 4.56e-2 4.93e-3 5.71e-4 6.85e-5 3.13
yp, BE, Lobatto, 2 SDC Iters 6.43e-3 2.80e-4 1.48e-6 8.53e-7 4.29

yp, TR, Uniform+B, 0 SDC Iters 1.49e-2 1.88e-3 2.28e-4 2.78e-5 3.02
yp, TR, Uniform+B, 1 SDC Iters 6.90e-5 1.62e-6 4.36e-8 1.30e-9 5.23
yp, TR, Uniform+B, 2 SDC Iters 3.11e-5 2.56e-7 1.33e-9 6.43e-12 7.42

yp, TR, Lobatto, 0 SDC Iters 2.18e-2 3.11e-3 4.01e-4 5.03e-5 2.92
yp, TR, Lobatto, 1 SDC Iters 7.44e-5 5.25e-6 3.74e-7 2.50e-8 3.84
yp, TR, Lobatto, 2 SDC Iters 2.74e-6 7.31e-8 2.25e-9 6.92e-11 5.08

integral, BE, Uniform+B, 0 SDC Iters 6.20e-1 2.78e-1 1.32e-1 6.45e-2 1.08
integral, BE, Uniform+B, 1 SDC Iters 5.38e-2 1.01e-2 2.22e-3 5.22e-4 2.23
integral, BE, Uniform+B, 2 SDC Iters 5.44e-3 4.00e-4 3.89e-5 4.32e-6 3.43

integral, BE, Lobatto, 0 SDC Iters 8.38e-1 3.71e-1 1.75e-1 8.46e-2 1.10
integral, BE, Lobatto, 1 SDC Iters 9.88e-2 1.89e-2 4.15e-3 9.74e-4 2.22
integral, BE, Lobatto, 2 SDC Iters 1.52e-2 1.11e-3 1.08e-4 1.19e-5 3.43

integral, TR, Uniform+B, 0 SDC Iters 1.55e-2 3.89e-3 9.73e-4 2.43e-4 2.00
integral, TR, Uniform+B, 1 SDC Iters 1.47e-5 1.17e-6 9.78e-8 6.46e-9 3.70
integral, TR, Uniform+B, 2 SDC Iters 3.08e-5 2.52e-7 1.29e-9 5.80e-12 7.46

integral, TR, Lobatto, 0 SDC Iters 2.62e-2 7.04e-3 1.80e-3 4.52e-4 1.96
integral, TR, Lobatto, 1 SDC Iters 6.08e-5 2.76e-6 1.39e-7 7.76e-9 4.31
integral, TR, Lobatto, 2 SDC Iters 7.98e-7 1.42e-8 9.46e-9 5.98e-10 3.50

Table 2.6: Errors and Orders of the backward Euler and trapezoidal rule preconditioned deferred
correction iterations for different collocation formulations, non-stiff case.

55

(a) The order of the yp-formulation is 1 order higher than the corresponding integral formulation.

(b) After each correction, the backward Euler preconditioned deferred correction methods improve

the convergence order by 1 for both the yp-formulation and integral formulation.

(c) For both the yp-formulation and integral formulation, the trapezoidal rule preconditioned

deferred correction methods improve the convergence order by 2 after each iteration for the

uniform collocation formulations. This is not true for the Lobatto nodes.

(d) For all cases, the trapezoidal rule preconditioner outperforms the backward Euler preconditioner

for the non-stiff problem.

These results agree with our analysis in previous sections and suggest the following strategies to

start the iteration procedure: (1) one should apply a high order “predictor” to uniform collocation

formulations to derive a more accurate initial provisional solution Y[0] using the yp-formulation; (2)

to reduce the non-stiff error components in the provisional solution, the higher order method (e.g.,

trapezoidal rule) preconditioned deferred correction schemes for the yp-formulation with uniform

grids are preferred as they show better convergence properties; (3) one should compare the result

δ̃[0] from the first deferred correction iteration to the initial provisional solution, to check if Y[0]

is an acceptable initial guess for the Newton’s method to converge to the collocation formulation

solution. One possible measure is to check if the ratio ||δ̃[0]||/||Y[0]|| is sufficiently small; and (4) for

the first several deferred correction iterations, as the dominating error comes from the non-stiff part,

it is probably unnecessary to search for the solution in the Krylov subspace, and the fixed point

type iterations (Neumann series for linear problems) should provide good convergence properties.

This can be measured by the ratio of ||δ̃[n+1]||/||δ̃[n]||. When the ratio is small, standard deferred

correction iterations should still be acceptable.

A relatively large ratio ||δ̃[n+1]||/||δ̃[n]|| (e.g. > 1/2) suggests that the dominating error no longer

comes from the non-stiff components, and algorithms which can efficiently reduce the errors from

the stiff components should be applied. It is unfortunately still an open problem what the optimal

strategy should be to reduce the errors from the stiff components. In this dissertation, we consider

possible strategies for two scenarios: (1) when only the Neumann series type iterations are used

as in standard deferred correction procedures, and (2) when the Krylov subspace based iterative

56

methods can be applied to further accelerate the convergence. Note that many researchers prefer

the standard deferred correction methods in the first scenario since it doesn’t require additional

overhead operations (e.g., solving the least squares problem using the Krylov subspace methods)

or additional memory to store the vectors in the Krylov subspace. However when scenario (1) is

used to solve stiff ODE systems, serious order reduction (or even divergence) is expected unless

very small time step sizes are used. In the remainder of this chapter, we provide some guidelines for

scenario (1); and we will present the framework for scenario (2) in chapter 3.

In Table 2.7, we check the numerical properties of different deferred correction schemes for the

stiff model problem y′(t) = λy(t) + f(t) with analytical solution y(t) = 1
1+t (and f(t) determined

accordingly). We set λ = −105 and use the same settings for other parameters as in the non-stiff

case. We show how the errors change for different numbers of deferred corrections in a time marching

scheme. In the table, we add the “uniform+R” collocation formulation where only the right hand

side is included in the spectral integration. We focus on the first order backward Euler preconditioner,

and neglect results from the trapezoidal rule based schemes due to their poor convergence properties

in the “strongly stiff limit” case as summarized in Table 2.4. The purpose of this experiment is not

to identify which method should be used to reduce the stiff components errors, but to find out which

methods should be avoided when standard deferred correction methods are preferred. We consider

the case when one doesn’t require the iteration procedure to converge to the collocation formulation

and hence allows the existence of relatively large errors in the solution. Our observations can be

summarized as follows:

(a) Without converging to the collocation formulation, the deferred correction schemes for the

yp-formulation using the left end point should be avoided because the large error in the initial

value will be magnified by the factor λ and will propagate to later steps when marching in time,

as discussed in Sec. 2.2.5.

(b) When the iterations converge to an acceptable accuracy, the yp-formulation without the left

end point will become acceptable (see the case yp, Radau IIa, 2 SDC Iters).

(c) When there are large errors in the initial solution, the integral formulations give more stable

results than the yp-formulation, as discussed in Sec. 2.2.5.

57

nsteps 4 8 16 32 Order

yp, Uniform+B, 0 SDC Iters 2.04e+9 9.89e+20 1.17e+42 3.80e+79 —-
yp, Uniform+B, 2 SDC Iters 7.09e+6 2.86e+17 3.12e+36 1.11e+70 —-

yp, Lobatto, 0 SDC Iters 1.62e-1 2.84e-1 2.31e+0 4.98e+2 —-
yp, Lobatto, 2 SDC Iters 1.80e+5 9.16e+12 1.26e+26 5.81e+47 —-

yp, Uniform+R, 0 SDC Iters 6.21e-1 8.61e+0 4.69e+3 4.46e+9 —-
yp, Uniform+R, 2 SDC Iters 2.73e-2 1.39e-1 3.24e+1 1.64e+7 —-

yp, Radau IIa, 0 SDC Iters 1.42e-1 2.57e-1 2.21e+0 5.31e+2 —-
yp, Radau IIa, 2 SDC Iters 1.25e-4 2.61e-5 6.01e-6 1.44e-6 2.14

integral, Uniform+B, 0 SDC Iters 3.99e-3 1.97e-3 9.82e-4 4.90e-4 1.01
integral, Uniform+B, 2 SDC Iters 3.87e-4 1.50e-4 6.71e-5 3.17e-5 1.20

integral, Lobatto, 0 SDC Iters 7.38e-4 1.41e-4 2.77e-5 3.78e-6 2.51
integral, Lobatto, 2 SDC Iters 1.14e-3 6.12e-5 3.00e-5 2.34e-6 2.78

integral, Uniform+R, 0 SDC Iters 3.41e-3 1.69e-3 8.41e-4 4.19e-4 1.01
integral, Uniform+R, 2 SDC Iters 4.01e-6 4.66e-7 4.93e-8 9.87e-10 3.92

integral, Radau IIa, 0 SDC Iters 7.96e-4 3.97e-4 1.99e-4 9.99e-5 1.00
integral, Radau IIa, 2 SDC Iters 1.90e-4 7.49e-5 3.26e-5 1.50e-5 1.22

Table 2.7: Errors and orders of the backward Euler preconditioned deferred correction iterations for
different collocation formulations, stiff case.

(d) The best results are derived using the integral formulation with uniform grids.

Note that in the previous numerical experiments, we follow the standard deferred correction

schemes and consider both the converged and non-converged solutions in the simulations. Also,

in the initial error, we have both stiff and non-stiff components. Because in the new numerical

framework we first reduce the errors from the non-stiff components, it is more appropriate to

focus on the rate of convergence (determined by the spectral radius of the correction matrix) for

different schemes for stiff problems (instead of checking the errors in the first few iterations that

also include the initial errors as in the previous experiments). In Figure 2.19, we compare the rate

of convergence for the backward Euler preconditioned deferred correction iterations for the integral

formulations using the Gauss collocation points to that using the uniform collocation points.

Both schemes are applied to the model problem y′(t) + sin(t) = λ (y(t)− cos(t)) with initial value

y(0) = 1. We march from t = 0 to t = 1 using one big step, and use p = 10 node points in the

discretization. We only test real λ values for λ = −10k, k = 1, · · · , 6. Our numerical results show

that the scheme using the uniform nodes converges at a faster rate compared to that using the

58

0 50 100 150 200 250
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of iterations

e
r
r
o
r

−1e+1

−1e+2

−1e+3

−1e+4

−1e+5

−1e+6

(a)

0 10 20 30 40 50 60 70 80 90
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

number of iterations

e
r
r
o
r

−1e+1

−1e+2

−1e+3

−1e+4

−1e+5

−1e+6

(b)

Figure 2.19: Convergence rate for backward Euler preconditioned Gauss (a) and uniform (b)
collocation formulations for different stiffness parameters λ.

Gauss nodes. For λ = −1e + 6, the error decays rapidly when the uniform nodes are used. We

therefore conclude that when the standard deferred correction scheme is preferred, the backward

Euler preconditioned integral deferred correction schemes for the uniform collocation formulation are

acceptable schemes to reduce the stiff error components. However order reduction (and divergence

for large numbers of nodes) is still expected, e.g., the case when λ = −1e + 2 in the numerical

experiments.

2.4 Mapping Between Different Node Points

Analysis and numerical experiments in previous sections show that when the uniform nodes are

used in the “convergence procedure”, better convergence properties are usually expected compared

with deferred correction schemes using other types of nodes. However the converged solutions are less

accurate and may suffer from the Runge phenomenon. In this section, we show how to use different

nodes for the provisional solution Ỹ and error δ for both the yp- and integral formulations so that

when the deferred correction iterations for the uniform collocation formulations are convergent, the

converged solution will solve the orthogonal basis based collocation formulations.

We first consider the yp-formulation given in Eq. (2.7); its error’s equation is given by

δ(t) =

(
f(t, y0 +

∫ t

0
(Ỹ (τ) + δ(τ))dτ)− f(t, y0 +

∫ t

0
Ỹ (τ)dτ)

)
+ ϕ(t)

59

where ϕ(t) =
(
f(t, y0 +

∫ t
0 Ỹ (τ)dτ)− Ỹ (t)

)
is usually referred to as the residual function in the

spectral deferred correction methods. Introducing the linear mapping PuG which maps the polynomial

values at the Gauss nodes to those at the uniform nodes, we can discretize the error’s equation at

uniform node points as

δ̃u =
(
F(tu,y0 + PuG(∆tSGỸG) + ∆tS̃uδ̃u)− F(tu,y0 + PuG(∆tSGỸG))

)
+ PuGϕG (2.37)

where ϕG = F(tg,y0 +∆tSGỸG)−ỸG is the discretized residual at the Gauss collocation nodes, the

sub-indices u andG represent that the corresponding vectors or integration matrices are defined on the

uniform (u) or Gauss (G) nodes, respectively. Once the low order estimate of the error δ̃u is available,

it can be mapped to the Gauss nodes using a precomputed linear mapping PGu = P−1
uG ; and PGuδ̃u

can be added to the provisional solution ỸG defined on the Gauss nodes in the deferred correction

procedure. Note that when the residual ϕG = 0 (meaning that ỸG solves the Gauss collocation

formulation), δ̃u = 0. Similar to section 2.2.3, for a linear ODE of the form y′(t) = λy + f(t)

with given initial condition y(0) = y0, detailed matrix analysis shows that this mapping procedure,

if applied from the beginning of the deferred correction iterations, is equivalent to solving the

Gauss collocation formulation YG = λ(y0 + ∆tSGYG) + FG (with given y0 = [y0, y0, · · · , y0]T and

F = [f(t1), f(t2), · · · , f(tp)]
T) using the preconditioner PGu(I − λ∆tS̃u)−1PuG. The preconditioned

system is given by

PGu(I − λ∆tS̃u)−1PuG(I − λ∆tSg)YG = PGu(I − λ∆tS̃u)−1PuG(λy0 + FG) = Y[0]. (2.38)

This mapping procedure can be applied in the same way to the integral Gauss collocation

formulation represented by ỹG = y0 + ∆tSGf(tG, ỹG). Defining the residual function as ϕG =

y0 + ∆tSGf(tG, ỹG)− ỹG, the discretized error’s equation at uniform nodes is then given by

δ̃u = ∆tS̃u

(
f(tu, PuGỹG + δ̃u)− f(tu, PuGỹG)

)
+ PuGϕG, (2.39)

where the operators PGu and PuG are the same operators as the yp-formulation. Clearly when

ϕG = 0, the error δ̃u = 0.

60

CHAPTER 3

A New Jacobian-free Newton-Krylov Method

In this chapter, we will present a brief overview of general Jacobian-free Newton-Krylov (JFNK)

methods [30]. Then, we will present a novel improved implementation of the JFNK algorithm made

for deferred correction formulations. And finally, we will apply this novel technique to solve stiff

time-dependent differential equations and compare performance results to general JFNK methods

and SDC.

3.1 Krylov Methods

Before we present JFNK methods, it is important to review iterative methods to solve general

matrix systems Ax = b. Solving Ax = b using direct methods like Gaussian elimination is

computationally expensive, requiring O(N3) operations. To avoid the cost of direct solvers, one can

use iterative methods instead.

3.1.1 GMRES

One class of iterative methods is the Krylov methods, and one of the popular Krylov methods is

the GMRES (generalized minimum residuals) method. We will now give a brief overview of GMRES.

Note that a detailed overview of various Krylov methods can be found in [35, 36, 46, 51].

Assume we are trying to solve the linear system Ax = b where A ∈ Cn×n is a square matrix and

b ∈ Cn is a vector. We will denote the Krylov subspace as Km given by

Km(A, b) = span
{
b, Ab,A2b, · · · , Am−1b

}
.

Assuming that A is nonsingular, GMRES is an iterative scheme that creates a series of converging

solutions x[m] to the exact solution x = A−1b. The idea of GMRES is to calculate an approximation

x[m] ∈ Km that minimizes the L2 norm (the reader should note that we denote ‖ · ‖ as the L2 norm)

61

of the residual r[m] = Ax[m] − b. This turns out to be the same as solving a series of least squares

problems to find x[m] [51].

GMRES starts by constructing a sequence of Krylov matrices Qm whose orthogonal columns

q1, q2, · · · , qm span the successive Krylov subspace Km. During the mth iteration of GMRES,

GMRES attempts to solve the least squares problem

‖Ax[m] − b‖ = minimum. (3.1)

We can express x[m] within the Krylov subspace Km as x[m] = Qmy
[m] where y[m] ∈ Cn is a

vector of coefficients for the the orthogonal basis q1 · · · qm. The system now becomes

‖AQmy[m] − b‖ = minimum.

Note that applying Q∗m+1, the conjugate transpose of Qm+1, to the above equation does not change

the value of the norm. Using this fact and the Hessenburg factorization Hm = Q∗m+1AQm, we

obtain

‖Q∗m+1AQmy
[m] −Q∗m+1b‖ = minimum

‖Hmy
[m] − ‖b‖2e1‖ = minimum (3.2)

where Hm is a (m+ 1)×m upper Hessenburg matrix and e1 = (1, 0, · · · 0)T . At each iteration m of

GMRES Eq. (3.2) is solved, and the approximate solution becomes x[m] = Qmy
[m].

3.1.2 Inexact GMRES

The above GMRES description assumed that the matrix-vector product Av can be computed

exactly. However, there are cases where one will not be able to have such a formulation. We now

present the “inexact” GMRES method where we assume that the product Av cannot be computed

exactly [15].

Assume we are trying to solve the linear system Ax = b. Let x[0] be an provisional solution and

62

r[0] = b−Ax[0] the initial residual. Solving Ax = b is equivalent to solving the residual equation

Aδ = r[0] (3.3)

where the exact solution x = x[0] + δ. Let δ[m] be the approximate solution to Eq. (3.3) at the mth

iteration where δ[m] ∈ Km(A, q1). The Krylov subspace is given by

Km(A, q1) = span
{
q1, Aq1, A

2q2, · · · , Am−1q1

}
with q1 = r0

‖r0‖ . In addition, let Qm+1 = [q1, q2, · · · , qm+1] be a matrix whose columns are the

orthonormal basis of Km+1(A, q1). Qm+1 is generally obtained by the Arnoldi method (a Graham-

Schmidt procedure applied to a Krylov subspace) [51]. We then write the Arnoldi relation as

AQm = Qm+1Hm (3.4)

where Hm is an (m+ 1)×m Hessenburg matrix.

In the inexact Krylov method, the matrix-vector product Aq[m] cannot be calculated exactly.

Instead we have (A+Em)qm, where Em is an error matrix. When this occurs, the Arnoldi relation

Eq. (3.4) does not hold. Instead we have the inexact Arnoldi relation

[(A+ E1)q1 (A+ E2)q2 · · · (A+ Em)qm] = Qm+1Hm

AQm + [E1q1E2q2 · · · Emqm] = Qm+1Hm. (3.5)

Note that the above relation no longer spans the Krylov subspace Km+1(A, q1). However, as ‖Eiqi‖

decreases, we approach the true Arnoldi relation.

The exact GMRES method calculates the approximation δ[m] = Qmy
[m], where y[m] solves the

least squares problem

‖Hmy
[m] − ‖r[0]‖e1‖ = minimum. (3.6)

In the inexact GMRES method, the approximation δ[m] is computed in a similar manner using the

matrices Qm+1 and Hm, satisfying the inexact Arnoldi relation Eq. (3.5). After δ[m] is found, we

63

have two different types of residuals: the computed residual and the true residual. The computed

residual r̃[m] is defined as

r̃[m] = b−Ax[m] = b−A(x[0] + δ[m])

= b−A(x[0] +Qmy
[m])

= r[0] −AQmy[m]

= r[0] −Qm+1Hmy
[m]. (3.7)

Secondly, we will define the true residual r[m] as

r[m] = b−Ax[m]

= b−Ax[0] −AQmy[m]

= r[0] −AQmy[m]

= r[0] − (Qm+1Hm + [E1q1E2q2 · · · Emqm])y[m]

= r̃[0] − [E1q1E2q2 · · · Emqm]y[m]. (3.8)

For the inexact GMRES method to converge to the exact GMRES method within a prescribed

error tolerance ε > 0, we must have ‖r[m] − r̃[m]‖ ≤ ε. The following theorem from [47] explains the

conditions for convergence.

Theorem 3.1.1. Let ε > 0. Let r[m] = r[0] − Aδ[m], r̃[m] = r[0] − Qm+1Hmy
[m] be the true and

computed residuals after m iterations of the inexact GMRES method, respectively with y[m] being

the solution of Eq. (3.6). If for all k = 1, . . . ,m,

‖Ek‖ ≤
σmin(Hm−1)

m

ε

‖r̃k−1‖
(3.9)

where σmin(Hm−1) is the smallest singular value of Hm−1, then ‖r[m] − r̃[m]‖ ≤ ε.

Note that the inexact GMRES assumes that r[0] = b − Ax[0] is calculated exactly. If there is

an error E0, then the computed residual becomes r̃[0] = b− (A+ E0)x[0] = r[0] − E0x
[0]. And the

64

inexact GMRES method converges to

‖r̃[0] −Aδ[m]‖ = minimum.

Hence, the inexact GMRES converges not to the solution

‖r[0] −Aδ[m]‖ = minimum

but to

‖r[0] −Aδ[m] − E0x
[0]‖ = minimum.

This may be a problem for overall convergence if ‖E0‖ is large [47].

3.2 General JFNK Methods

To begin, let’s consider a general nonlinear algebraic system M(x) = 0 with N equations and

N unknowns. Suppose an approximate solution x[0] is known. Newton’s method can be used to

iteratively compute convergent approximations

x[k+1] = x[k] + δx[k]

where k = 0, 1, . . . For each iteration k, the vector δx[k] is found by solving the following system

JM (x[k])δx[k] = b (3.10)

where b = −M(x[k]) and JM (x[k]) is the Jacobian matrix of M(x) at x[k]. We will call solving

Eq. (3.10) solving the Newton iteration.

When the matrix JM (x[k]) is dense, computing the solution directly is computationally expensive,

especially for large systems. For many special systems, the amount of operations necessary to find

the solution can be significantly reduced. Consider systems with the following property

JM (x[k]) = ±I − C

65

where most of the eigenvalues of the matrix C, λ, are such that |λ| < 1. Due to the rapid decay of

eigenmodes in Cmb, instead of using Gaussian elimination, a more efficient approach is to iteratively

search for the optimal solution in the Krylov subspace given by

Km(JM , b) = span
{
b, (±I − C)b, (±I − C)2b, · · · , (±I − C)m−1b

}
= span

{
b, Cb, C2b, · · · , Cm−1b

}
.

That is, in order to solve Eq. (3.10), we can use a typical Krylov method like GMRES to efficiently

solve the Newton’s iteration. When the Newton’s method iterations and Krylov subspace methods

are combined, they are referred to as the Newton-Krylov methods.

To have an efficient implementation of a Newton-Krylov method, the system to be solved needs

the following properties:

1. A system M(x) such that JM is close to the identity matrix ±I.

2. An efficient way to calculate the matrix-vector product Cb, or equivalently JMb.

It is common that the original system M(x) may not have favorable convergence properties for the

Newton-Krylov method. A common technique to improve convergence is to apply a “preconditioner”

to the original system such that the preconditioned system satisfies (1). In addition, it is usually

the case the the Jacobian of the operator M(x) is not easy to derive. To address point (2), a

general forward difference approximation technique is used to approximate the Jacobian in most

Newton-Krylov solvers. That is, we have (∇hM)(x) ≈ JM (x) where (∇hM)(x) is given by the

following definition from [36].

Definition 3.2.1. Let M(x) be defined in a neighborhood of x ∈ RN , (∇hM)(x) is the N × N

matrix whose jth column is given by

(∇hM)(x)j =


M(x+h‖x‖ej)−M(x)

h‖x‖ if x 6= 0

M(hej)−M(x)
h if x = 0

for some parameter h.

We will denote using this Jacobian approximation technique within the Newton-Krylov method

66

as the general Jacobian-free Newton-Krylov Method (or general JFNK for short). A more detailed

analysis of the choice of h can be found in [36].

3.3 Modified JFNK Method

In this section, we present the principles behind an improved JFNK method applied to deferred

correction systems. We claim that by taking advantage of special properties of deferred correction

systems, one is able to design a JFNK algorithm that will take far fewer calculations than general

JFNK methods.

3.3.1 Deferred Correction Methods

Consider a general nonlinear algebraic system A(y) = b with N equations and unknowns. In

addition, assume given a provisional solution ỹ, we have a method to approximate the error δ = y− ỹ

by

δ̃ = H(ỹ)

where ỹ is the input variable and the output variable, δ̃, is an approximation to the error. Note

that solving A(y) = b is equivalent to solving H(y) = 0. Assume that we have a method that solves

H(y) = 0 via a deferred correction formulation


δ[i] = H(y[i])

y[i+1] = y[i] + δ[i] i = 1, 2, . . .

that creates a series corrections δ[i] that converge to a prescribed error tolerance. When the correction

δ[i] reaches the prescribed error tolerance, we will have y[i+1] = y[i] + δ[i] as the solution to A(y) = b.

To accelerate deferred correction methods, we can view solving H(y) = 0 as a root finding

problem. Hence, we can use Newton’s method. Using x[1] as the provisional approximation within the

Newton iteration, we obtain a series of converging solutions x[k] by using the following formulation


JH(x[k])δx[k] = −H(x[k])

x[k+1] = x[k] + δx[k] k = 1, 2, . . .

(3.11)

67

In addition, we will use the ideas behind Newton-Krylov methods. Namely, we assume that

JH(x̃) = ±I − C

where most of the eigenvalues of C, λ, are such that |λ| < 1.

3.3.2 Properties

Recall that in order for Newton-Krylov methods to be efficient, there must be a way to calculate

JHv efficiently. Deferred correction algorithms have special properties that can be exploited to

attain this goal. First, note that a deferred correction can be expressed as

δ[m+1] = H(y[m+1]) = H(y[m] + δ[m]).

Taylor expanding the above formulation, we can write an equation of the Jacobian matrix JH(y[m])

applied to the correction vector δ[m] as

δ[m+1] − δ[m] = JH(y[m])δ[m] +O(‖δ[m]‖2). (3.12)

When the Jacobian JH(y[m]) is applied to an arbitrary correction vector δ[i] where i 6= m, we can

Taylor expand JH(y[m]) about y[i] to derive the following expression

JH(y[m])δ[i] = JH(y[i])δ[i] +O(‖y[m] − y[i]‖ · ‖δ[i]‖)

= JH(y[i])δ[i] +O(‖δ[i]‖
m−1∑
j=i+1

‖δ[j]‖).

Using Eq. (3.12), an expression of the Jacobian JH(y[m]) applied to an arbitrary correction vector

δ[i] when i 6= m can be expressed as

JH(y[m])δ[i] = δ[i+1] − δ[i] +O(‖δ[i]‖
m−1∑
j=i

‖δ[j]‖). (3.13)

68

3.3.3 The Krylov Subspace

For the vector δ[1] and the Jacobian matrix JH = JH(y[1]), the exact Krylov subspace is given

by the following

Km(JH , δ
[1]) = span

{
δ[1], JHδ

[1], J2
Hδ

[1], · · · , Jm−1
H δ[1]

}
.

Using Eq. (3.12) and Eq. (3.13), we can build an “inexact” Krylov subspace

K̃m(JH , δ
[1]) = span

{
δ[1], δ[2], δ[3], · · · , δ[m−1]

}
+ {0, ε2, ε3, · · · , εm}

where the error terms εi = O(‖δ[1]‖
i−1∑
j=1
‖δ[j]‖) come from the approximations from Eq. (3.13). Note

that this formulation resembles the inexact Arnoldi relation in Eq. (3.5) where εi = ‖Ei‖. Hence,

the successive vectors δ[i] from the deferred corrections formulation approximately span the Krylov

subspace Km(JH , δ
[1]) in a similar manner of the inexact GMRES method.

3.3.4 Newton’s Method

We will now lay the ground work of accelerating deferred correction methods via the Newton-

Krylov framework by taking advantage of special properties when solving the Newton iterations


JH(x[k])δx[k] = −H(x[k])

x[k+1] = x[k] + δx[k]

in solving H(x) = 0.

In terms of notation, we will designate the value δ
[m]
k as the mth deferred correction iteration

(also referred as an “inner” iteration) taking during the kth Newton iteration (also referred as

an “outer iteration”). Also, we will designate the approximate solutions y
[m]
k to follow the same

convention of notation.

First Newton Iteration To begin the Newton iteration, let the initial approximation in Newton’s

method can be provided by using the (m+ 1)st iterate x
[m+1]
1 of a deferred correction procedure.

69

That is, let x[1] = y
[m+1]
1 . We now obtain the following system to solve

JH(y
[m+1]
1)δx[1] = −δ[m+1]

1 . (3.14)

Using y
[m+1]
1 instead of y

[1]
1 as an initial solution in Newton’s method has two main properties

that we will take advantage of. First, y
[m+1]
1 is closer to the solution than y

[1]
1 , so we can expect

Newton’s method to converge more rapidly. Secondly, doing m+ 1 deferred correction iterations

allows us to construct vectors that span the Krylov subspace K̃m(JH , δ
[1]
1).

To have efficiency of the Newton-Krylov method, assume H(x) is preconditioned such that JH

has favorable convergence properties. Recall that for a Newton-Krylov method to be efficient there

must be a way to calculate JH(x̃)v efficiently. We will present a novel way to approximate the

Jacobian without using a finite difference approximation.

If we express δx[1] in Eq. (3.14) as a linear combination of previous deferred correction vectors,

which span K̃m(JH , δ
[1]
1), such that

δx[1] =
m∑
i=1

ciδ
[i]
1 ,

The Newton iteration, Eq. (3.14), can be rewritten as

JH(y
[m+1]
1)

m∑
i=1

ciδ
[i]
1 = −δ[m+1]

1 (3.15)

where the coefficients ci are the unknowns. Applying the results from Eq. (3.13) to Eq. (3.15), an

expression for the system to be solved, Eq. (3.14), may be written as

m∑
i=1

ciJH(y
[m+1]
1)δ

[i]
1 = −δ[m+1]

1

m∑
i=1

ci(δ[i+1]
1 − δ[i]

1) +O(‖δ[i]
1 ‖

m∑
j=i

‖δ[j]
1 ‖)

 = −δ[m+1]
1 .

Since the error should decrease with each deferred correction iteration, we should have ‖δ[1]
1 ‖ =

70

max
1≤i≤m

‖δ[i]
1 ‖. Hence, the above formulation becomes

m∑
i=1

ci(δ[i+1]
1 − δ[i]

1) +O(
m∑
j=i

‖δ[1]
1 ‖

2)

 = −δ[m+1]
1 .

m∑
i=1

[
ci(δ

[i+1]
1 − δ[i]

1) +O
(

(m− i+ 1)‖δ[1]
1 ‖

2
)]

= −δ[m+1]
1 .

m∑
i=1

ci(δ
[i+1]
1 − δ[i]

1) +O

(
(m+ 1)m

2
‖δ[1]

1 ‖
2

)
= −δ[m+1]

1 . (3.16)

Instead of solving Eq. (3.14) for δx[1], one can efficiently solve the following preconditioned system

m∑
i=1

ci(δ
[i+1]
1 − δ[i]

1) = −δ[m+1]
1 (3.17)

where c, a vector consisting of the coefficients ci, is the unknown. Note that from Eq. (3.16) the

solution of the preconditioned system δx[1] =
m∑
i=1

ciδ
[i]
1 satisfies Eq. (3.14) up to O

(
(m−1)m

2 ‖δ[1]
1 ‖2

)
.

Recall that x[k] is the solution after k Newton iterations. After solving Eq. (3.17), one updates

the solution used in the Newton iteration x[1] = y
[m+1]
1 with x[2] = y

[m+1]
1 + δx[1]. Let δ

[1]
2 = H(x[2]);

we can approximate the magnitude ‖δ[1]
2 ‖ using the formula

‖δ[1]
2 ‖ = ‖H(y

[m+1]
1 + δx[1])‖

= ‖δ[m+1]
1 + JH(y

[m+1]
1)δx[1] +O(‖δx[1]‖2)‖.

From Eq. (3.16), we obtain the following estimate of ‖δ[1]
2 ‖,

‖δ[1]
2 ‖ = O

(
(m+ 1)m

2
‖δ[1]

1 ‖
2 + ‖δx[1]‖2

)
.

Notice that we can expect ‖δx[1]‖ = O(‖δ[1]
1 ‖) since δx[1] =

m∑
i=1

ciδ
[i]
1 . We obtain a sizeable drop

or “jump” in the error since ‖δ[1]
2 ‖ � ‖δ

[m+1]
1 ‖. If ‖δ[1]

2 ‖ < ε where ε is a prescribed tolerance,

we have converged; and we stop the Newton’s method. The approximation to the solution is

x[2] = y
[m+1]
1 + δx[1].

Consider the case when ‖δ[1]
2 ‖ has not converged to a prescribed error such that ‖δ[1]

2 ‖ ≥ ε. We

71

will we attempt to solve the Newton iteration

JH(x[2])δx[2] = −δ[1]
2

where δx[2] is a linear combination of m correction vectors.

We want to update the Krylov subspace K̃m by using the latest information. Therefore, we will

add new Krylov vector and remove ‖δ[1]
1 ‖ from the Krylov subspace K̃m. In order for a vector the

span the subspace, the m correction vectors must be such that the approximation in Eq. (3.13)

holds. Keeping this in mind, one can see that δx[1] cannot be included within the subspace due to

two reasons.

1. The correction vectors in δx[1] =
m∑
i=1

ciδ
[i]
1 already span the original Krylov subspace K̃m(JH , δ

[1]
1)

where JH = JH(y
[m+1]
1). Hence, δx[1] does not provide new information in terms of the Krylov

subspace.

2. The jump in the error ‖δ[1]
2 ‖ may cause the assumption from Eq. (3.13) to not hold. To see

this, let’s consider

δ
[1]
2 = H(x[2]) = H(y

[m+1]
1 + δx[1])

= δ
[m+1]
1 + JH(y

[m+1]
1)δx[1] +O(‖δx[1]‖2).

Writing JH(y
[m+1]
1) as −I − C, we obtain

δ
[1]
2 = δ

[m+1]
1 + (−I − C)δx[1] +O(‖δx[1]‖2).

If the eigenvalues of the matrix C, λ, are such that JH 6≈ −I, our Jacobian matrix-vector

product approximation from Eq. (3.13) will not be valid. Under these conditions, the magnitude

of the right hand side of the above equation is O(‖δ[1]
1 ‖) while ‖δ[1]

2 ‖ is O(‖δ[1]
1 ‖2). Note that

this phenomenon may be observed when solving stiff ODE systems with deferred correction

methods like SDC.

Due to the above reasons, updating the Krylov subspace calls for adding the vectors δ
[i]
2 . In fact,

we have two different strategies to consider for updating the Krylov subspace for the kth Newton

72

iteration:

1. The restart strategy. This idea is popular in “restarted” GMRES procedures. Given δ
[1]
k ,

one can do an additional m deferred correction iterations to use y
[m+1]
k as the provisional

solution for the Newton iteration and use δ
[i]
k i = 1, . . . ,m vectors to span K̃m(JH , δ

[1]
k) where

JH = JH(y
[m+1]
k). Afterwards, we can use m of the new deferred corrections in δx[k] =

m∑
i=1

ciδ
[i]
k

and solve Eq. (3.14) by using the novel JFNK strategy. This is equivalent of restarting the

entire deferred correction JFNK procedure.

2. The recycle strategy. One can calculate p < m new deferred correction vectors and remove

the first p deferred correction vectors in δx[k−1] while keeping vectors δ
[p+1]
k−1 , · · · , δ[m]

k−1, hence

recycling them, and adding the new p deferred correction vectors. Hence we solve Eq. (3.14)

by using

δx[k] = c1δ
[p+1]
k−1 + · · ·+ cm−pδ

[m]
k−1 + cm−p+1δ

[1]
k + · · · cmδ[p]

k .

In the next section, we take into account of the properties discussed so far when providing the initial

design of the modified JFNK algorithm. In the algorithm, we will focus on the restart strategy and

leave the recycle strategy for future research.

3.4 Algorithm Design

Assume we are trying to solve the deferred correction H(y) = 0. In the algorithm, we will

continue using the deferred correction type function evaluations δ̃
[k]

= H(ỹ[k−1] + δ̃
[k−1]

) as they

effectively control the growth of the non-stiff errors, even though the Jacobian matrix of the low

order techniques preconditioned system is no longer close to −I for the stiff components.

We introduce a predefined but adjustable parameter η1 < 1 to check if the initial provisional

solution provided by the predictor can serve as a good initial guess for the Newton’s method

when solving the nonlinear collocation formulation. We also include another parameter η2 < 1

to check if the standard deferred correction schemes are still effective. When order reduction or

divergence is observed, we search for the optimal solution in the Krylov subspace, K̃m, using a

modified Jacobian-free Newton-Krylov method. The Krylov subspace is updated when the low order

estimate δ̃
[k]

= H(ỹ[k−1] + δ̃
[k−1]

) shows no significant improvement compared with previous step

73

results. When the subspace Km is complete with m vectors, the optimal solution for the linearized

equation JHδx = −δ̃[k]
in each Newton’s iteration is sought in the updated Krylov subspace. In the

modified JFNK, instead of the finite difference approximation as used in standard JFNK methods,

the matrix-vector product JH δ̃
[k−1]

is computed using the Taylor expansion

δ̃
[k]

= H(ỹ[k−1] + δ̃
[k−1]

) ≈ δ̃[k−1]
+ JH δ̃

[k−1]
,

which is valid when O(||δ̃[k]||) ≈ O(||δ̃[k−1]||), i.e., when the result from one deferred correction

iteration no longer converges efficiently for stiff systems. We stop the iterations in the “convergence

procedure” when the solution is sufficiently close to that of the collocation formulation, measured

by a prescribed error tolerance. The algorithm is described in detail by the following pseudo-code.

JFNK based “convergence procedure”

Step 1: Predictor: Use a “good” low order method to find an approximate solution ỹ[0]

Step 2: Check ỹ[0]: Use a “good” low order method to solve the error’s equation to

get a low order estimate of the error δ̃
[0]

= H(ỹ[0]).

if ||δ̃[0]||/||ỹ[0]|| < η1,

ỹ[1] = ỹ[0] + δ̃
[0]

continue

else

Select a smaller time step size, go to Step 1.

endif

Step 3: Standard Deferred Correction Iterations: Start from k = 1, update the

error’s equation and get a low order estimate of the error δ̃
[k]

= H(ỹ[k]).

if ||δ̃[k]|| < ε,

Go to Step 5 with the converged solution ỹ[k] + δ̃
[k]

.

elseif ||δ̃[k]||/||δ̃[k−1]|| < η2,

ỹ[k+1] = ỹ[k] + δ̃
[k]

, k + +, repeat Step 3.

else

Set k = 1. Add δ̃
[1]

as the first vector in the Krylov subspace.

Go to Step 4.

74

endif

Step 4: Modified JFNK:

if k < m+ 1

Update ỹ[k+1] = ỹ[k] + δ̃
[k]

.

Evaluate δ̃
[k+1]

= H(ỹ[k+1]).

if ||δ̃[k+1]|| < ε,

Go to Step 5 with the converged solution ỹ[k+1].

else

Update the Krylov subspace, by adding δ̃
[k+1]

and updating the

corresponding JH δ̃
[k]

, and by removing any outdated (inaccurate)

δ̃
[j]

and JH δ̃
[j]

.

k + +, go to Step 4.

endif

Solve the linearized equation JH(ỹ[m+1])δx = −δ̃[m+1]
by searching for the optimal

solution in the Krylov subspace K̃m(JH , δ̃
[1]

).

Set ỹ[0] = ỹ[m+1], δ̃
[0]

= δx.

Set k = 0, go to Step 4.

Step 5: Output: Output the computed approximate solution.

3.5 Numerical Experiments

In this section, we show some preliminary numerical results in solving linear and nonlinear stiff

ODE systems using the following techniques: a spectral deferred correction method, the general

JFNK, and the modified JFNK. We compare their performance results over the coarse of one time

interval of size ∆t. Each method attempts to find a solution to the deferred correction formulation

H(y) = 0. The deferred correction formulation δ̃ = H(ỹ) that we use is the backward Euler, integral

formulation of SDC consisting of 10 Gauss-Lobatto nodes. Recall that converged solution is not the

exact solution to the ODE system but the Gauss collocation solution Eq. (2.4).

For each example, the predictor solution is gained via the backward Euler method. The modified

JFNK method is implemented as follows. Note that the we relate the following procedure to the

75

steps from the proposed pseudo-code from the previous section. After obtaining the provisional

solution, the deferred correction JFNK does k0 ≥ 0 additional iterations to obtain an adequate low

order approximation (Step 3). For the kth Newton iteration, 11 SDC iterations are used to gain the

δ
[i]
k i = 1, . . . , 11 used in solving the Newton iteration δx[k] =

10∑
i=1

ciδ
[i]
k with the initial solution for

the Newton iteration as x[k] = y
[11]
k in conjunction with Eq. (3.11) (Step 4). Lastly, note that the

number of SDC iterations 11 corresponds to the number of Lobatto nodes + 1.

3.5.1 Cosine Problem

The system that we are trying to solve is


(y(t)− p(t))′ = λ(y(t)− p(t))

y(0) = p(0)

where p(t) = cos(t). The exact solution is y(t) = p(t). When λ is a large negative number, the

system is stiff. We set λ = −100 and ∆t = π and solve the system within t ∈ [0,∆t]. We show the

results in figure 3.1.

0 50 100 150 200 250
−18

−16

−14

−12

−10

−8

−6

−4

−2
the norm of the corrections

number of H(y)

lo
g
1
0
 (

 e
rr

o
r

)

sdc

jfnk

jfnk−new

(a)

0 0.5 1 1.5 2 2.5 3 3.5
−16

−14

−12

−10

−8

−6

−4

−2

re
rr

y vs yspect

time

be

sdc

jfnk

jfnk−new

(b)

Figure 3.1: Cosine problem. (a): the magnitude of the deferred correction ‖δ̃‖
‖ỹ‖ . (b): the relative

error of the final iteration vs. the collocation formulation

The results from figure 3.1 (a) show the relative magnitude of the calculated deferred correction

from the following methods: SDC (sdc), general JFNK (jfnk), and the modified JFNK (jfnk-new).

76

First thing to note is that the SDC method suffers from order reduction as predicted. This leads to

a high number of SDC iterations needed to converge. The general JFNK method is able to converge

must faster than SDC. We can see that the modified JFNK method (k0 = 0) is in line with SDC for

the first 11 iterations. Then there is a large jump in the error due to solving Eq. (3.11). Since we

are solving a single-mode linear problem, the approximation Eq. (3.12) is exact and explains why

after the Newton iteration we practically converge to the solution.

The results from figure 3.1 (b) show the relative error of the backward Euler provisional solution

(be), SDC, general JFNK (jfnk), and modified JFNK (jfnk-new) methods compared to the collocation

formulation. All three methods are able to converge to the collocation formulation.

3.5.2 Linear Multimode Problem

The system that we are trying to solve is


(ȳ(t)− p̄(t))′ = B(ȳ(t)− p̄(t))

ȳ(0) = p̄(0).

where ȳ(t) and p̄(t) are vectors of dimension M . The exact solution is ȳ(t) = p̄(t). The matrix B is

constructed by

B = UTΛU,

where U is a randomly generated orthogonal matrix, Λ is a diagonal matrix whose diagonal entries

{λi}Mi=1 are all negative. We have p̄i(t) = cos(t+ αi) with αi = 2πi/M .

For this experiment, M = 7 and λ = [−100 − 1 − 1 − 1 − 1 − 1 − 1] . We set ∆t = π and

model the system from t ∈ [0,∆t]. Figure 3.2 shows the numerical results.

The results from figure 3.2 (a) show that SDC suffers from order reduction due to the stiffness of

the problem. The general JFNK converges faster than SDC, but takes more iterations than in the

single mode cosine problem. Since the initial SDC iterations converge quickly, we start the deferred

correction JFNK method’s Newton iterations Eq. (3.11) after k0 = 5 iterations. Recall that in order

for Eq. (3.12) to be valid, ‖δ[k+1]‖ 6� ‖δ[k]‖. That is, if the error of successive iterates drops too

fast, we cannot add those correction vectors to the Krylov subspace. Instead, we do k0 = 5 SDC

77

0 50 100 150 200 250
−18

−16

−14

−12

−10

−8

−6

−4

−2

0
the norm of the corrections

number of H(y)

lo
g
1
0
 (

 e
rr

o
r

)

sdc

jfnk

jfnk−new

(a)

0 0.5 1 1.5 2 2.5 3 3.5
−15

−10

−5

0

L
2
 e

rr
o
r

error vs y−spect

time

be

sdc

jfnk

jfnk−new

(b)

Figure 3.2: Linear multimode problem. (a): the magnitude of the deferred correction ‖δ̃‖‖ỹ‖ . (b): the
relative error of the final iteration vs. the collocation formulation

iterations so that order reduction can slow down the convergence of SDC.

Although the problem is linear, the deferred correction JFNK undergoes a series of Newton

iterations, each causing a jump in the error. This occurs because the problem is a multimode

problem, unlike the cosine problem, which is single mode. Nevertheless, we see that the deferred

correction JFNK outperforms SDC and the general JFNK.

3.5.3 Nonlinear Multimode Problem

The system that we are trying to solve is


(yi(t)− pi(t))′ = λyi+1(t)(yi(t)− pi(t)), 1 < i < M − 1

(y′M (t)− pM (t))′ = λ(yi(t)− pi(t)), i = M.

The exact solution is yi(t) = pi(t) where pi(t) = 2 + cos(t+ αi) and αi = 2πi/M . For the numerical

simulation, we set M = 7, λ = [−100 − 100 − 1 − 1 − 1 − 1 − 1], ∆t = π/2, and t ∈ [0,∆t]. Figure

3.3 shows the numerical results.

The results from figure 3.3 show the SDC method suffering from order reduction, once again.

However, the general JFNK requires does not converge to the accuracy of SDC. The modified JFNK

with k0 = 5 is able to converge much faster than the other two methods since it needs 50 iterations.

78

0 100 200 300 400 500 600 700
−18

−16

−14

−12

−10

−8

−6

−4

−2

0
the norm of the corrections

number of H(y)

lo
g
1
0
 (

 e
rr

o
r

)

sdc

jfnk

jfnk−new

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−14

−12

−10

−8

−6

−4

−2

0

lo
g
1
0
 L

2
 e

rr
o
r

error vs y−exact

time

be

sdc

jfnk

jfnk−new

(b)

Figure 3.3: Nonlinear multimode problem. (a): the magnitude of the deferred correction ‖δ̃‖‖ỹ‖ . (b):
the relative error of the final iteration vs. exact solution

3.5.4 Van der Pol Oscillator

This last example describes the behavior of vacuum tube circuits. The following formulation

was proposed by B. Van der Pol in the 1920’s and is referenced as the Van Der Pol Oscillator [29].

The system that we are trying to solve is


y′1(t) = y2(t)

y′2(t) = λ(−1 + y2
1(t)y2(t) + y1(t)).

where the initial condition is [y(0), y′(0)] = [y1(0), y2(0)] = [2,−0.6666654321121172].

For this experiment, λ = −100. We set ∆t = π and model the system from t ∈ [0,∆t]. Figure

3.4 shows the numerical results of solving this system.

The results from figure 3.4 show that the SDC method suffers from order reduction. The general

JFNK is able to converge faster than SDC. The modified JFNK with k0 = 0 is able to converge

much faster than the other two methods.

We summarize the results from the the numerical experiments in Table 3.1 and Table 3.2. We see

that for stiff systems, SDC suffers from order reduction and does not perform well. It is interesting

to note that the general JFNK outperforms SDC in all examples except the nonlinear multimode

problem. Nevertheless, the modified JFNK method is able to converge much faster than SDC and

79

0 50 100 150 200 250 300 350 400
−18

−16

−14

−12

−10

−8

−6

−4

−2

0
the norm of the corrections

number of H(y)

lo
g
1
0
 (

 e
rr

o
r

)

sdc

tk

jfnk

(a)

0 0.5 1 1.5 2 2.5 3 3.5
−14

−12

−10

−8

−6

−4

−2

0

L
2
 e

rr
o
r

error vs spect

time

be

sdc

jfnk

jfnk−new

(b)

Figure 3.4: Van der Pol oscillator. (a): the magnitude of the deferred correction ‖δ̃‖
‖ỹ‖ . (b): the

relative error of the final iteration vs. the collocation formulation

problem SDC general JFNK modified JFNK

cosine 255 73 13
linear multimode 220 113 42

nonlinear multimode 180 649 50
Van der Pol 360 189 66

Table 3.1: The number of H(ỹ) needed to converge.

problem SDC general JFNK modified JFNK

cosine -15.9 -16.0 -16.6
linear multimode -16.1 -15.4 -16.2

nonlinear multimode -15.9 -15.1 -15.7
Van der Pol -16.2 -15.5 -16.3

Table 3.2: The relative correction log10

(
‖δ̃‖
‖ỹ‖

)
of the converged solution.

80

is about 3 to 4 times faster than the general JFNK method.

81

CHAPTER 4

Parallel Full Approximation Scheme in Space and Time

There is new interest in developing numerical algorithms with parallel temporal integration.

The creation of the parareal algorithm in 2001 by Lions, Maday, and Turinici has given insight on

making numerical parallel integration methods for solving ordinary differential equations (ODEs)

and partial differential equations (PDEs) [42]. Parareal is an iterative method where the algorithm’s

parallel efficiency is bounded by 1
K where K is the number of parareal iterations needed to converge.

To address this limitation, Minion and Emmett created another parallel integration method called

the parallel full approximation scheme in space and time, known as PFASST [17]. PFASST is an

iterative method the combines ideas from parareal, spectral deferred corrections (SDC), multigrid,

and the full approximation scheme (FAS). PFASST’s parallel efficiency is bounded by Ks
Kp

where Kp

and KS are the number of iterations need for PFASST and serial SDC to converge respectively [17].

This chapter will review the temporal and spatial properties that lie within PFASST.

4.1 Temporal Methods

In this section we will describe the numerical time stepping methods used for parallel integration

in time. First, we will briefly mention some favorable properties of SDC. Afterwards, we will review

a parallel integration method called parareal followed by the full approximation scheme (FAS),

popular in multigrid methods. And finally, we will see how all of these methods merge to form

the parallel time-stepping algorithm, the parallel full approximation scheme in space and time

(PFASST).

4.1.1 Spectral Deferred Corrections

PFASST uses SDC as a main component of its temporal integration scheme. SDC has many

favorable properties to be considered when integrating in time. Other than being able to converge

82

to the solution of the Gaussian collocation formulation, SDC’s use of low order methods allows

construction of methods that use operator splitting and/or multirate time-stepping [7, 8, 39]. In

addition, SDC can be modified to create semi-implicit or IMEX schemes [17]. To see this, assume

we are trying to solve the following ODE system


y′(t) = fE(t, y(t)) + fI(t, y(t))

y(0) = y0

where the first term on the right-hand side fE should be treated explicitly and the second term fI

should be treated implicitly. The SDC sweep becomes

ỹ
[k+1]
m+1 = ỹ[k+1]

m + ∆tm[fE(tm, ỹ
[k]
m + δ̃m)− fE(tm, ỹ

[k]
m)]

+ ∆tm[fI(tm+1, ỹ
[k]
m+1δ̃m+1)− fI(tm+1, ỹ

[k]
m+1)] + Sm+1

m f(t, ỹ[k])− ỹ[k]
m+1 + ỹ[k]

m .

where ỹ
[k]
m is the kth iteration’s approximation of y(tm), ỹ[k] is a vector consisting of all the values of

ỹ
[k]
m , and Sm+1

m f(t, ỹ[k]) is the spectral integration matrix applied to f(t, ỹ[k]) from t ∈ [tm, tm+1].

4.1.2 Parareal

The second component of the PFASST algorithm is the parareal method. The following is a

brief explanation of the parareal method. Assume we are solving the general ODE system


y′(t) = f(t, y(t))

y(0) = y0

where t ∈ [0, TN]. The domain is divided into N intervals where Tn = n∆t and ∆t = TN
N . Parareal

first computes a provisional solution Yn using a low-order method (like backward Euler) in serial

over the entire time domain [0, TN]


Yn+1−Yn

∆t = f(Tn+1, Yn+1)

Y0 = y0

83

for n = 1 · · ·N . We will call Yn the “coarse solution.” Next, we use the calculated solutions Yn as

initial conditions for each interval [Tn, Tn+1] and solve the following system exactly for yn(t) in the

interval [Tn, Tn+1] 
y′n(t) = f(t, yn(t))

yn(Tn) = Yn.

We will call yn(t) the “fine solution.” In practice, it is impossible to solve the above system exactly;

instead, one uses a highly accurate solve. The above system can be solved in parallel if each

processor Pn is responsible for solving for yn(t), where t ∈ [Tn, Tn+1]. Parareal then approximates

the error δ(t) = y(t) − yn(t) in the interval t ∈ (Tn, Tn+1] by solving an error’s correction. The

error’s equation can be written as

δ(t) = y(t)− yn(t)

= y(Tn) +

∫ t

Tn

f(τ, y(τ)) dτ − Yn −
∫ t

Tn

f(τ, yn(τ)) dτ

= y(Tn)− Yn +

∫ t

Tn

f (τ, yn(τ) + δ(τ))− f (τ, yn(τ)) dτ. (4.1)

Using Eq. (4.1), an expression for δ(Tn+1) can be written as

δ(Tn+1) = y(Tn)− Yn +

∫ Tn+1

Tn

f (τ, yn(τ) + δ(τ))− f (τ, yn(τ)) dτ.

We can calculate an approximation of the correction δ̃ by using a low-order method (like backward

Euler) to approximate the integral. In addition, since y(t) is the unknown, we can approximate

y(Tn) in the above formulation as y(Tn) ≈ yn−1(Tn) + δ̃(Tn). Keeping this in mind, we can write an

expression for the correction as

δ̃n+1 = δ̃n + yn−1(Tn)− Yn + ∆t[f(Tn+1, yn(Tn+1) + δ̃n+1)− f (Tn+1, yn(Tn+1))].

Finally we finish the “parareal iteration” by updating the coarse solutions Y
[1]
n = yn−1(Tn) + δ̃n

in serial. The process continues with calculating a new fine solution. That is, assuming we have

already done k iterations of parareal, the coarse solution is updated Y
[k+1]
n = y

[k]
n−1(Tn) + δ̃

[k]
n .

Parareal iterates by using Y
[k+1]
n as the new initial condition when calculating the fine solution in

84

t ∈ (Tn, Tn+1] 
d
dty

[k+1]
n (t) = f(t, y

[k+1]
n (t))

y
[k+1]
n (Tn) = Y

[k+1]
n

and so on.

Parareal can also be understood in terms of two numerical approximation methods: G and F .

Both G and F are ODE methods that take an initial condition ỹn ≈ y(Tn) and compute the solution

to the ODE from Tn to Tn+1. For parareal to be efficient, G must be computationally less expensive

than F . Hence, G is usually a low-order method; and F is a high-order method. In addition, F also

may use a smaller time step than G because the accuracy of parareal is limited by the accuracy of

F . Thus, we will refer to G as the coarse propagator and F as the fine propagator [17].

Parareal begins by calculating calculating the coarse solution in serial using the coarse propagator

Y
[k]
n+1 = G(Tn+1, Tn, Y

[k]
n)

for n = 0 · · ·N − 1 with y0 = y(0). These values act as the initial conditions for the respective

processor in the parallel computation

y
[k]
n+1 = F(Tn+1, Tn, Y

[k]
n).

Parareal continues iteratively by alternating between the parallel computation of F(Tn+1, Tn, Y
[k]
n)

and updating the initial conditions at each processor of the form

Y
[k+1]
n+1 = G(Tn+1, Tn, Y

[k+1]
n) + F(Tn+1, Tn, Y

[k]
n)− G(Tn+1, Tn, Y

[k]
n) (4.2)

for n = 0 · · ·N − 1 with y0 = y(0) [17].

After N iterations of the parareal method, the solution is equal to applying F in serial. In

practice, the iterations converge much more quickly for large N . Parareal provides speedup if the

number of iterations needed to converge K is significantly less than N . Recall that the parallel

efficiency in parareal is bounded by 1
K , which limits parareal’s effectiveness and scalability. Full

details on the parareal method can be found in [42].

85

4.1.3 Full Approximation Scheme

The third component of PFASST is the use of the full approximation scheme (FAS). To

understand the FAS, we should consider applying multigrid to solve a nonlinear equation of the form

A(x) = b. (4.3)

Let x̃ be a provisional approximation to the solution of Eq. (4.3). The residual equation becomes

A(x̃+ δ) = A(x̃) + r

where δ = x− x̃ is the error and r = b−A(x̃) is the residual.

Like in multigrid, we define two levels in solving Eq. (4.3): a fine level and a coarse level, denoted

with the 0 and 1 superscript respectively. In multigrid, an approximation for the solution to Eq. (4.3)

is first found on the fine level, x̃0 by solving

A0(x) = b,

the fine-grid formulation of Eq. (4.3). Next, one solves the residual equation on the coarse level

using data from the fine-grid approximation x̃0. That is, one solves

A1(x) = A1(Rx̃0)R[b−A0(x̃0)].

A1(x) and A0(x) are the formulation of the equation on the coarse and fine grid respectively; and R

is a restriction operator that takes the data on the fine grid and expresses it on the coarse grid. Let

τ1 = A1(Rx̃0) − RA0(x̃0). We will call τ the FAS correction. The residual equation can now be

rewritten as

A1(x) = Rb+ τ1.

The FAS correction added to the residual equation allows the solution to attain fine-grid accuracy

though the residual equation was calculated on the coarse gird [9]. Let the numerical approximation

to solution of the residual equation be denoted as x̃1. The error δ1 is calculated by δ1 = x̃1 −Rx̃0.

86

Finally, we then update the fine-grid solution x̃ = x̃0 + Lδ1 where L is the interpolation operator

that takes data from the coarse grid to the fine grid.

4.1.4 Parallel Full Approximation Scheme in Space and Time

The parallel full approximation scheme in space and time (PFASST) is an iterative parallel-in-

time algorithm that combines SDC, parareal, and the FAS to solve ODEs and PDEs [17]. Like in

multigrid methods, PFASST works by operating on multiple grids. However, PFASST operates on

temporal grids with different step sizes. For now, let’s assume the PFASST algorithm only has 2

levels (level 0 being the finest and level 1 the coarsest).

Like SDC, PFASST is an iterative method for solving


y′(t) = f(t, y(t))

y(0) = y0

by computing the Gaussian collocation formulation using the integral formulation for each time

interval

y −∆tSF(y) = y0 (4.4)

where y = [y(t0), y(t1), · · · , y(tM)]T , F = [f(t0, y(t0)), f(t1, y(t1)), · · · , f(tM , y(tM))]T and y0 =

[y(t0), y(t0), · · · , y(t0)]T . It is useful to rewrite Eq. (4.4) as the following system that resembles

nonlinear multigrid

A(y) = b

where 
A(y) = y −∆tSF(y)

b = y0.

Similar to SDC, PFASST consists of using a provisional solution and iteratively updating that

provisional solution by approximating the error via an error’s equation.

In PFASST, the time domain [0, TN] is divided into N uniform intervals [Tn, Tn+1] where each

interval is assigned to a processor Pn, n = 0, 1, 2, ..., N−1. When temporal and spatial parallelization

are combined, Pn is not a single processor but one communicator in charge of a group of processors

87

responsible for calculating the solution within [Tn, Tn+1] [48]. In PFASST, each interval [Tn, Tn+1]

is divided into subintervals on each level l defined by the Ml + 1 SDC nodes tl = [tl,0 · · · tl,M] such

that Tn = tl,0 < · · · < tl,M = Tn+1. We choose that the SDC nodes to be Gauss-Lobatto nodes

where there are more nodes on the fine level than the coarse level (M0 > M1).

For a two-level scheme, the system of equations that PFASST solves on each interval [Tn, Tn+1]

for n = 0, 1, · · · , N − 1 is

y0 −∆tS0F0(y0) = b0 = y0 (4.5)

y1 −∆tS1F1(y1) = b1 = Rb0 + τ1. (4.6)

Note that the FAS correction τ1 is given by

τ1 = A1(Rỹ0)−RA0(ỹ0).

Since A(y) = y −∆tSF(y), the FAS correction τ1 becomes

τ1 = −∆t
[
S1F1(Rỹ0)−RS0F0(ỹ0)

]
.

In the above equations, S0 and S1 are the spectral integration matrices corresponding to M0 and M1

nodes, respectively. F0 and F1 correspond to the expression of f(t, y(t)) on the fine and coarse grid,

respectively. Like the temporal coarsening in PFASST seen with M0 > M1, PFASST allows spatial

coarsening as well. That is, F0 may be a more accurate representation of f(t, y) than F1. R is the

restriction matrix that takes data from the fine grid to the coarse grid, and L is the integration

matrix that takes data from the coarse grid to the fine grid.

PFASST starts in an initiation phase where each processor Pn performs n coarse SDC sweeps.

This has the same computational cost as doing one SDC sweep per processor in serial; however, it

has been shown that the additional SDC sweeps improve the accuracy of the final solution [17].

What follows is a description of each PFASST iterations on each processor Pn. Assuming we

have that the fine solution y
[k−1]
n of the previous iteration, the PFASST iterations undergo the

following steps:

88

1. Do one SDC sweep on the fine level using y
[k−1]
n to calculate an approximation to the solution

to Eq. (4.5). We now have an updated value y
[k′]
n .

2. Do nc SDC sweeps using y
[k′]
n to solve Eq. (4.6) to gain a coarse approximation Y

[k]
n .

3. Interpolate the coarse correction δ̃
1

= Y
[k]
n −Ry

[k′]
n to obtain an updated fine-grid approxima-

tion y
[k]
n = y

[k−1]
n + Lδ̃

1
.

Recall that the FAS correction in Eq. (4.6) allows PFASST to obtain fine-grid accuracy on the

coarse grid. For complete details of PFASST, we recommend the reader to read [17, 48].

PFASST’s parallel speedup and efficiency can be calculated by comparing PFASST to serial

SDC. The speedup S is defined as the ratio of the cost of serial SDC to the cost of PFASST run

with PN processors in the temporal direction. The efficiency is defined as S
PN

. In order to compare

the two methods, we assume that PFASST and serial SDC will approximately attain the same

accuracy. We will denote the number of iterations to needed to converge to the desired accuracy as

Kp and Ks for the PFASST and serial SDC methods, respectively. It can be shown in [17] that one

can bound the maximum speedup in the two level case by

S(PN) ≤ Ks

Kp
PN .

The maximum parallel efficiency of PFASST is Ks
Kp

, which is better than the parallel efficiency of

parareal, 1
Kp

.

4.2 Spatial Methods

When solving PDEs, there are also considerations in the spatial calculations that the general

PFASST algorithm must consider. Recall that PFASST has different temporal grids, a coarse grid

and a fine grid when assuming two levels. For PDEs, PFASST attains higher efficiency by also

being able to coarsen in space as well as in time.

89

4.2.1 Grid Systems

An example of coarsening is when the system being modeled has spatial unknowns at fixed grid

points. A natural way to coarsen space in this system is by dividing the unknowns in the spatial

domain by 2 in each spatial dimension, assuming d dimensions. That is, if there are (2N)d spatial

unknowns on the fine level in Eq. (4.5), we can solve Eq. (4.6) using Nd spatial unknowns. This

allows us to solve the coarse-grid equation with 2d times fewer spatial unknowns. Keep in mind

that the spatial coarse evaluation F1 in Eq. (4.6) is less accurate than the fine-grid evaluation.

4.2.2 Gridless Systems

When solving a particle system, the concept of spatial coarsening is harder to define since the

spatial domain does not have a grid. Fortunately for some systems such as the N-body problem

consisting of the evolution of charged particles, the fast multipole approximation Ψ allows us to

an obtain spatial coarsening for a gridless system. This is done by changing the precision of Ψ

by changing the amount of terms p in Ψ on the various levels. That is, we use a more accurate

approximation on the fine level in Eq. (4.5) and use a less accurate approximation in Eq. (4.6).

90

CHAPTER 5

A PFASSTer Application: Geochemical Problem

In this chapter, we will examine how PFASST performs within a stiff system relevant to

environmental science. A problem of interest for environmental scientists is the reaction and

diffusion of chemical species while being advected within a fluid flow.

5.1 Formulation

We will assume that the chemical species are advected within a 1D single phase fluid flow with

a known, invariant velocity. In this case, the transport of chemical species is described as

∂ci
∂t

= Dx
∂2ci
∂x2

− vx
∂ci
∂x

+Ri, i = 1, . . . , nc (5.1)

where ci is the concentration of species i, nc are the number of species, t is the time, Dx is the

hydrodynamic dispersion, x is the spatial dimension, vx is the average pore velocity of the aqueous

phase, and Ri represents the mass transfer and chemical reactions of ci. Note that Dx and vx are

known inputs.

91

The concentrations that correspond to the species that we are solving are the following

c1 = [Ca2+]

c2 = [HCO−3]

c3 = [OH−]

c4 = [H+]

c5 = [CO2]

c6 = [H2CO3]

c7 = [CO2−
3]

c8 = [CaHCO+
3]

where the primary species are Ca2+, HCO−3 , and OH−. The secondary species are H+, CO2, H2CO3,

and CaHCO+
3 .

Eq. (5.1) can be simplified to the following system

∂g1

∂t
= Dx

∂2g1

∂x2
− vx

∂g1

∂x
+ r (5.2)

∂g2

∂t
= Dx

∂2g2

∂x2
− vx

∂g2

∂x
∂g3

∂t
= Dx

∂2g3

∂x2
− vx

∂g3

∂x

where g1, g2, and g3 are


g1 = c2 + c5 + c6 + c7 + c8,

g2 = c2 − c3 + c4 + 2c5 + 2c6 + c8,

g3 = c2 + c5 + c6 + c7 − c1.

(5.3)

r is defined by

r = κσ(1− Ω) (5.4)

where κ is a known constant; σ is a known constant, the specific reactive surface area of calcite; and

Ω is a saturation index indicated whether the aqueous phase is sub-saturated or super-saturated

92

with respect to calcium and carbonate. Ω is defined as Ω = c1c7
Ksp

. In our simulations, we assume

κ = 1.0, σ = 0.1, and Ksp = 3.98 10−9.

The chemical species are subject to the following constraints

c6 = (K1 + 1)c5

c6 =
a2a4

K2

a2 =
a7a4

K3

a8 =
a1a2

K4

a3a4 = Kw

where a is the vector of activities, ai = γici, i = 1, . . . , 8 and K1 = 1.58 10−3, K2 = 3.80 10−7,

K3 = 3.72 10−11, K4 = 5.50 10−2, and Kw = 4.57 10−15.

The activity of species i is

ai = γici.

The activity coefficient γi is a function of the ionic strength of the solution, which is defined as

µ =
1

2

∑
i

ciZ
2
i (5.5)

where Zi is the charge of species i. The activity coefficients are computed using the DeBye-Hückel

relationship

− log10 γi =
AZ2

i µ
1
2

1 +Bαiµ
1
2

(5.6)

where A and B are values that depend upon the temperature and αi is a coefficient for species i that

depends upon the diameter of the ion solution. We set A = 0.5, B = 0.326, Z = [2 1 1 1 0 0 2 1]T ,

and α = [6 4 3 9 1 1 5 6]T . These addition algebraic constraints cause the system to be a partial

differential algebraic system, which are stiff systems.

93

5.2 PFASST Simulation

In this dissertation, we ignore the spatial calculations in the partial differential equation system

Eq. (5.2). Secondly, we add the algebraic constraints discussed earlier to obtain the following

differential algebraic equation system


gt = F(c)

L(c,g) = 0

(5.7)

subject to the initial condition c3(0) = c4(0) = 6.760177512462228 10−8 and ci(0) = 0 when i 6= 3, 4.

g = [gi(t, x)], i = 1, 2, 3; F = (r, 0, 0); c = [ci(t, x)], i = 1, . . . , 8; and the operator L is



c2 + c5 + c6 + c7 + c8 − g1,

c2 − c3 + c4 + 2c5 + 2c6 + c8 − g2

c2 + c5 + c6 + c7 − c1 − g3

c6 − (K1 + 1)c5

c6 − a2a4
K2

a2 − a7a4
K3

a8 − a1a2
K4

a3a4 −Kw.

(5.8)

The purpose of these simulations is to see if PFASST’s parallelism can outperform the serial

SDC method by converging in far less time. In the simulations, we used PFASST with 2 levels.

For time stepping, we used PFASST with 100 time steps from t ∈ [0, tfinal] and varied tfinal. The

temporal coarsening proceeds as follows. Each time step [Tn, Tn+1] used 5 and 9 Gauss-Lobatto

nodes on the coarse and fine level, respectively. Since there are no spatial calculations, there is no

spatial coarsening.

94

5.2.1 Results

What follows are the convergence results of our simulations for various end times tfinal. We

apply the serial SDC method and PFASST to the geochemical system and compare the results.

The reference solution consists of serial SDC with 4, 000 time steps with 10 nodes per time step

for the respective tfinal. Finally, the reader should recall that SDC and PFASST are methods that

aim to converge to the Gauss collocation formulation and not the exact solution. We apply serial

SDC with 9 Gauss-Lobatto nodes and plot the convergence results of the relative L∞ error of the

concentrations ci(t): one with tfinal = 10−2 and the other with tfinal = 10−3.

(a) tfinal = 10−2, ∆t = 10−4 (b) tfinal = 10−3, ∆t = 10−5

Figure 5.1: Relative error of L∞(c) per iteration over time using SDC

We can see that in Fig. 5.1 (a) SDC converges in 7 iterations when tfinal = 10−2 and 6 iterations

when tfinal = 10−3. Notice that in Fig. 5.1 (b) the system reaches equilibrium around t = 4 10−3.

This occurs because dg1
dt = 0 when (1− Ω) = 0, implying that at this point c1c7

Ksp
≈ 1. In addition to

a SDC reference solution, we compare results to a Krylov deferred correction (KDC) solver. We use

a converged KDC solution as a reference solution and compare the results of serial SDC. In what

follows, we compare the error calculating the concentrations ci(tfinal) per iteration. Unlike SDC,

these KDC methods converge to the exact solution.

The results in Fig. 5.2 (a) show that SDC with tfinal = 10−2 converges to the KDC method

solution in 4 iterations. Fig. 5.2 (b) shows that SDC with tfinal = 10−3 converges to the KDC

method solution in 5 iterations.

What follows are the convergence results of the PFASST simulations for various tfinal. We

plot the relative L∞ error for the concentrations ci(t) between the reference solution (SDC) and

95

(a) tfinal = 10−2, ∆t = 10−4 (b) tfinal = 10−3, ∆t = 10−5

Figure 5.2: Relative error per iterations for each ci at tfinal

approximated solution (PFASST).

(a) tfinal = 10−2, ∆t = 10−4 (b) tfinal = 10−3, ∆t = 10−5

Figure 5.3: Relative error of L∞(c) per iteration over time, PFASST

The results in Fig. 5.3 (a) show that the PFASST with tfinal = 10−2 converges to the reference

solution in 10 iterations. When the time step is decreased to ∆t = 10−5, PFASST only needs 5

iterations to converge to the reference solution in Fig. 5.3 (b).

In addition to a SDC reference solution, we compare results to a Krylov deferred correction

(KDC) solver. We use a converged KDC solution as a reference solution and compare the results

of PFASST. In what follows, we compare the error calculating the concentrations ci(tfinal) per

iteration.

The results in Fig. 5.4 (a) show that PFASST with tfinal = 10−2 converges to the KDC method

solution in 8 iterations. Fig. 5.3 (b) shows that PFASST with tfinal = 10−3 converges to the KDC

method solution in 4 iterations.

96

(a) tfinal = 10−2, ∆t = 10−4 (b) tfinal = 10−3, ∆t = 10−5

Figure 5.4: Relative error per iterations for each ci at tfinal

Recall for stiff systems, deferred correction methods, such as KDC, require many iterations

resulting in long runtime. Thus, it is desirable to introduce parallelism in hopes of decreasing the

runtime of computation. Table 5.1 shows timing results for running serial SDC and PFASST.

Table 5.1: Timing results for SDC and PFASST

Method tfinal iterations Run Time[s] speedup efficiency

SDC 10−3 6 11.9
PFASST 10−3 5 6.5 1.83 1.83 10−2

SDC 10−2 7 11.4
PFASST 10−2 10 13 0.88 8.8 10−3

Notice, that PFASST for this problem is not efficient compared to serial SDC. This is due to

the fact that there is only temporal coarsening since we are solving an ordinary DAE system. If we

added the spatial equations to solve a partial DAE, we could include spatial coarsening. This would

allow an enhanced speedup and would likely make PFASST more efficient. In addition, the cost of

communication between the 100 processors may be relatively high when compared to the low cost

of solving for gi(t) and ci(t) in each time step, which would also decrease the efficiency.

97

CHAPTER 6

A PFASSTer Application: N-body Solver

Parallel integration algorithms show potential to decrease the runtime of various physical

simulations such as the evolution of charged particles seen in molecular dynamics. For large systems

of N particles, one of the challenges in modeling is due to the cost of direct calculation of the

acceleration over all of the particles, which is O(N2). In practice, simulations avoid this difficulty by

using approximation techniques such as the fast multipole method (FMM), which approximates the

direct calculation with O(N) [22]. Another challenge in molecular dynamics simulations lies with

the fact that simulations often require large number of small time steps. Thus, parallel integration

techniques such as PFASST are desirable in order to decrease the overall simulation time. We will

show that parallel integration via PFASST combined with a parallel implementation of the FMM

and the MRFMM (multirate fast multipole method) is capable of greatly decreasing runtime versus

serial integration methods.

6.1 PFASST Simulation

In this section, we will discuss how to implement PFASST with the FMM and the MRFMM in

solving Eq. (1.1). For a charged particle system with N bodies in free space, we are trying to solve

the following differential equation system


y′i(t) = F(yi(t))

yi(0) = ηi i = 1, · · · , N

with

yi =

xi(t)

vi(t)

 ,F(yi) =

vi(t)

ai(t)

 =

 vi(t)

− qi
4πε0mi

∇Ψi(xi)

 , and ηi =

xi(0)

vi(0)

 .

98

xi(t), vi(t), ai(t), mi, qi are the position, velocity, acceleration, mass, and charge of the ith particle

at time t. ηi is the initial condition for the ith particle. For simplification, we set 4πε0mi = 1.

We will use the integral formulation of SDC in order to converge to the Gauss collocation

formulation

yi −∆tSF(yi) = ηi.

In addition, we also use the first order rectangular rule (using the left end point) S̃ to approximate

the spectral integration matrix S.

The process of solving Eq. (2.12) at each node tm is called an SDC sweep. It is useful to express

the SDC sweep in matrix notation as

ỹ
[k+1]
i = ηi + ∆tSF(ỹ

[k]
i) + ∆tS̃[F(ỹ

[k+1]
i)− F(ỹ

[k]
i)]. (6.1)

6.1.1 Temporal Coarsening

For all of the numerical experiments, PFASST was used with only two levels. Each time step

[Tn, Tn+1] was divided into subintervals using Gauss-Lobatto nodes. The temporal coarsening was

such that there were 3 nodes per time step on the coarse level and 5 nodes per time step on the fine

level.

6.1.2 Multirate Fast Multipole Method

Earlier we provided numerical results showing the different temporal scales of the FMM potential.

Because the near-field forces at xi, fnear = −qi∇Ψnear, change in time quickly, they are calculated

at all nodes in [Tn, Tn+1]. However, the far-field forces at xi, ffar = −qi∇Ψfar, change slowly in

time. Instead of calculating the far-field forces at every node, we use a strategy of interpolating the

far-field forces in time at some nodes and directly calculating the far-field forces at other nodes.

The following describes the interpolation scheme used on the far-field forces in the MRFMM.

On the coarse level (consisting of 3 nodes), we use a constant interpolation for the far-field forces

based on the value at node 0. On the fine level (consisting of five nodes), the interpolation is a

degree two Lagrange interpolating polynomial based on the far-field forces from nodes 0, 2, and

4 from the previous iteration. That is, for a given particle, if we let f
[k]
i with i = 0, 1, ..., 4 be the

99

far-field forces based on iteration k at node i and l0, l2, and l4 correspond to the Lagrange weights,

then the far-field at nodes 1 and 3 are calculated by

f
[k]
1 = f

[k−1]
0 l0(τ1) + f

[k−1]
2 l2(τ1) + f

[k−1]
4 l4(τ1) (6.2)

f
[k]
3 = f

[k−1]
0 l0(τ3) + f

[k−1]
2 l2(τ3) + f

[k−1]
4 l4(τ3) (6.3)

where the Lagrange weights are l0(τ) = (τ−τ2)(τ−τ4)
(τ0−τ2)(τ0−τ4) , l2(τ) = (τ−τ0)(τ−τ4)

(τ2−τ0)(τ2−τ4) , and l4(τ) = (τ−τ0)(τ−τ2)
(τ4−τ0)(τ4−τ2) .

τi corresponds to the ith Lobatto node scaled in the range [0, 1].

Now we will describe the calculation/ interpolation scheme for the MRFMM evaluations in

PFASST. It should be said that for the FMM evaluations, we hold the FMM tree fixed within each

time step [Tn, Tn+1]. The following is the MRFMM calculation/ interpolation scheme on the coarse

level with 3 nodes:

Node 0 Calculate the FMM tree. Calculate fnear and ffar.

Node 1 Calculate fnear. Use a constant interpolation of ffar calculated at node 0.

Node 2 Calculate fnear. Use a constant interpolation of ffar calculated at node 0.

The following is the MRFMM calculation/ interpolation scheme on the fine level with 5 nodes:

Node 0 Calculate the FMM tree. Calculate fnear and ffar.

Node 1 Calculate fnear. Interpolate ffar using Eq. (6.2).

Node 2 Calculate fnear and ffar.

Node 3 Calculate fnear. Interpolate ffar using Eq. (6.3).

Node 4 Calculate fnear and ffar.

6.1.3 Step size

In order to have adequate multirate behavior for the near and far-field potentials, we need to

choose a step size ∆t such that Ψnear(x) and Ψfar(x) have adequate smoothness within the step

∆t. To do this, we divide a step size ∆t = 1.25× 10−4 into 200 substeps and run the multirate test

100

described in section 4.2 to show the smoothness of the FMM potentials Ψnear(x) and Ψfar(x) as

they change in time within the interval of size ∆t.

Figure 6.1: Multirate test for electrostatic case

Fig. 6.1 shows that to achieve 11 digits of precision within the interval ∆t, one needs to use a

least squares polynomial of degree 4 for the near-field and of degree 2 for the far-field potential.

This corresponds to using 5 nodes for the far-field and 3 nodes for the near-field potential on the

fine level of PFASST.

6.1.4 Spatial Coarsening

Earlier, we mentioned that for PDEs one can increase speedup by adding temporal as well as

spatial coarsening to the PFASST algorithm. Because we have a particle system and there is no

concept of a physical spatial grid to coarsen, we achieve spatial coarsening by changing the accuracy

of the FMM evaluation on the coarse level and fine level. In Table 6.1 we show the calculation time

of the FMM approximation Ψ(x) over all particles for different accuracies ε = |Φ(x)−Ψ(x)|. Ideally

Table 6.1: Runtime for various FMM precisions

ε Runtime[s]

0.5 10−2 5.29 10−1

0.5 10−6 9.43 10−1

0.5 10−9 1.47

we would use a computationally cheap, low-accuracy FMM approximation in the coarse propagator

G. And we would use a more computationally expensive, high-accuracy FMM approximation in

101

the fine propagator F . In the numerical experiments, we surveyed the following spatial coarsening

strategies:

1. Use the FMM with the same fixed spatial accuracy on the coarse and fine level.

2. Use the MRFMM with the same fixed spatial accuracy on the coarse and fine level.

3. Use the FMM with less accurate spatial solver on the coarse level and a more accurate spatial

solver on the fine level.

4. Use the MRFMM with a less accurate spatial solver on the coarse level and a more accurate

spatial solver on the fine level.

6.2 Numerical Results

In this section, we present the numerical results of running PFASST with the FMM and MRFMM.

6.2.1 Numerical Setup

For the following numerical experiments, we ran a simulation with 16,000 source particles with

charges randomly distributed between [−1
2 ,

1
2]. The particles are initially distributed within a unit

cube. The simulations were run from t = 0 to t = 8× 10−3.

The reader should know that the numerical simulations only model the Coulomb forces stemming

from the potential Eq. (1.10). The simulations do not take into account the collisions of particles.

Since particles of opposite charge attract, it is inevitable that at least two particles will start to

accelerate towards a collision. When this occurs, we need to use a different physical model than

Eq. (1.1). Therefore, we had to limit the runtime of the simulations so our physical model was valid

during the total simulation time.

We have a reference solution using serial SDC with 5 nodes per time step and directly calculating

the Coulomb potential Eq. (1.10). The reference solution uses 7 SDC iterations, ∆t = 3.125 10−5

for 256 steps. The approximated solutions used PFASST with ∆t = 1.25× 10−4 for 64 steps. All of

the PFASST calculations are done using 2 levels and 7 PFASST iterations. Each PFASST iteration

consists of 1 fine SDC sweep and 1 coarse SDC sweep.

102

Each FMM evaluation calculates the Coulomb potential Eq. (1.10) within a certain tolerance.

We will denote the tolerance approximating the Coulomb potential on the coarse and fine grid as ε1

and ε0, respectively. We can expect a loss of some digits of accuracy from the electrostatic potential

for the acceleration due to the numerical derivatives of the gradient operator in ai = −qi∇Ψi.

6.2.2 Results

Recall that ε0 and ε1 are the accuracies of the electrostatic potential evaluation on the fine and

coarse level respectively. All of the PFASST solutions in this chapter have ε0 = 0.5× 10−9. We will

use the notation for the PFASST solutions.

• V [k]
fmm0 be FMM solution on the kth iteration for the velocity using a spatial solver accuracy

of ε1 = 0.5× 10−9.

• V [k]
fmm1 be the FMM solution on the kth iteration for the velocity using a spatial solver accuracy

of ε1 = 0.5× 10−6.

• V [k]
fmm2 be the FMM solution on the kth iteration for the velocity using a spatial solver accuracy

of ε1 = 0.5× 10−2.

• V [k]
mr0 be the MRFMM solution on the kth iteration for the velocity using a spatial solver

accuracy of ε1 = 0.5× 10−9.

• V [k]
mr1 be the MRFMM solution on the kth iteration for the velocity using a spatial solver

accuracy of ε1 = 0.5× 10−6.

• V [k]
mr2 be the MRFMM solution on the kth iteration for the velocity using a spatial solver

accuracy of ε1 = 0.5× 10−2.

Figures 6.2, 6.3, and 6.4 are the convergence plots of the particle velocity calculated by PFASST

with various spatial solver accuracies with the FMM and MRFMM solvers. For each time step, the

maximum absolute velocity error of the approximated solution compared to the reference solution

over all particles is plotted for each iteration. Each line corresponds to the absolute error at each

time step of a PFASST iteration with the topmost line corresponding to the first iteration. The

next line down corresponds to the second iteration and so on.

103

In Fig. 6.2, both solutions used a spatial solver with electrostatic potential tolerance ε0 = ε1 =

0.5 × 10−9. We see that as we increase the PFASST iteration, the errors decrease. Here we see

that the MRFMM scheme has similar convergence properties as the FMM scheme. The numerical

method converges in 6 iterations. However we will later that PFASST with the MRFMM runs

quicker than PFASST with the FMM.

(a) convergence of V
[k]
fmm0 (b) convergence of V

[k]
mr0

Figure 6.2: Absolute error of velocity per iteration compared to the reference solution. Coarse-level
FMM precision is ε1 = 0.5× 10−9

Instead of fixing the spatial accuracy on the coarse and fine level, we can also use different

spatial accuracies on the various levels. Notably, we can do the following.

1. Use a less accurate FMM on the coarse level and a more accurate FMM on the fine level.

2. Use a less accurate MRFMM on the coarse level and a more MRFMM on the fine level.

Figures 6.3 and 6.4 show the velocity convergence plots of the FMM and MRFMM by varying

the spatial accuracy on the coarse level and fixing the spatial accuracy on the fine level. It seems

that changing the spatial accuracy of the correction equation has little effect on the convergence

behavior of the solution.

In order to see the effect of varying the spatial accuracy on the correction equation, we calculate

the L2 norm of the relative error of the various FMM/ MRFMM solutions (V
[k]
mr0, V

[k]
mr1, V

[k]
fmm1,

V
[k]
fmm2) with respect to the high accuracy FMM solution, V

[k]
fmm0 of that particular iteration k for

all iterations. We show the results in Figures 6.5, 6.6, and 6.7.

Figure 6.6 shows that the FMM solution V
[k]
fmm1 converges to the more accurate solution V

[k]
fmm0

within 3 iterations and V
[k]
fmm2 does so in 4 in Fig. 6.5. Since we showed earlier that it takes 6 PFASST

104

(a) convergence of V
[k]
fmm1 (b) convergence of V

[k]
mr1

Figure 6.3: Absolute error of velocity per iteration compared to the reference solution. Coarse-level
FMM precision is ε1 = 0.5× 10−6

(a) convergence of V
[k]
fmm2 (b) convergence of V

[k]
mr2

Figure 6.4: Absolute error of velocity per iteration compared to the reference solution. Coarse-level
FMM precision is ε1 = 0.5× 10−2

(a) relative error of V
[k]
fmm2 (b) relative error of V

[k]
mr2

Figure 6.5: Relative error of velocity per iteration to V
[k]
fmm0 with coarse-level FMM precision

ε1 = 0.5× 10−2

105

(a) relative error of V
[k]
fmm1 (b) relative error of V

[k]
mr1

Figure 6.6: Relative error of velocity per iteration to V
[k]
fmm0 with coarse-level FMM precision

ε1 = 0.5× 10−6

(a) relative error of V
[k]
mr0

Figure 6.7: Relative error of velocity per iteration to V
[k]
fmm0 with coarse-level FMM precision

ε1 = 0.5× 10−9

106

iterations for the FMM solution to converge, dropping the accuracy of each FMM evaluation in

solving Eq. (4.6) on the coarse level has negligible effect in the overall convergence.

The MRFMM solutions V
[k]
mr0, V

[k]
mr1, V

[k]
mr2 are less accurate than V

[k]
fmm0 and converge towards

the V
[k]
fmm0 solution slower than V

[k]
fmm1. The difference in behavior from both MRFMM solutions

compared to the FMM solutions comes from the MRFMM’s interpolation of the far-field. Noticeably,

we lose some far-field accuracy because of the constant interpolation of the far-field per time step

when solving Eq. (4.6).

6.2.3 The Residual Equation

In order to explain the lack of change in the convergence behavior of PFASST using the FMM

and MRFMM, while varying the spatial accuracy, we need to examine the coarse-level residual

equation Eq. (4.6). We can express the residual equation as

y1 −∆tS1F1(y1) = y1
0 −∆t[S1F1(Rỹ0)−RS0F0(ỹ0)]. (6.4)

We solve the above equation by using one SDC sweep to obtain

ỹ1 = y1
0 + ∆tRS0F0(ỹ0) + ∆tS̃1[F1(ỹ1)− F1(Rỹ0)]. (6.5)

For this analysis, we are only focussing on solving for the velocity as the unknown y as opposed

to having y = [x v]T . Hence, F will be the acceleration calculation. We can rewrite F(y) as

the acceleration due to the sum of near and far-field forces such that F(y) = Fnear(y) + Ffar(y).

Eq. (6.5) becomes

ỹ1 = ỹ0 + ∆tRS0F0(ỹ0) (6.6)

+ ∆tS̃1[F1
near(ỹ

1)− F1
near(Rỹ0)] + ∆tS̃1[F1

far(ỹ
1)− F1

far(Rỹ0)].

Let’s examine the case of using the FMM with varying spatial accuracy on the coarse level. Recall

that Vfmm0, Vfmm1, and Vfmm2 have the spatial accuracy of the potential set to ε0 = 0.5× 10−9 on

the fine level. First note that by using the FAS, the coarse-level solution is able to attain fine-grid

107

resolution via the

ỹ0 + ∆tRS0F0(ỹ0)

term in Eq. (6.6). Given the same fine-level solution ỹ0, for all of the FMM solutions, this operation

is the same. The difference in the solutions comes from the later part of Eq. (6.6), which is

∆tS̃1[F1
near(ỹ

1)− F1
near(Rỹ0)] + ∆tS̃1[F1

far(ỹ
1)− F1

far(Rỹ0)].

By examining the solutions Vfmm0, Vfmm1, and Vfmm2, we see that the difference in solutions

comes from the coarse-level calculation of near and far-field forces in Eq. (6.6). To see that relation,

let x be Rỹ0 and u be the solution to the SDC sweep ỹ1 in Eq. (6.5) such that u = x + δ. We can

express F1(u)− F1(x) for the ith particle in Eq. (6.5) as

F 1(ui)− F 1(xi) = −qi∇[Φ(ui)− Φ(xi)]

= −qi∇
∑
j

qj

(
1

|uj − ui|
− 1

|xj − xi|

)

= −qi∇
∑
j

qj

(
1

|xj − xi + δj − δi|
− 1

|xj − xi|

)

= −qi∇
∑
j

qj
|xj − xi|

((
1 +
|δj − δi|
|xj − xi|

)−1

− 1

)
.

Recall we have set 4πε0 = 1. Taylor expanding the above formulation and assuming
|δj−δi|
|xj−xi| < 1, we

obtain

F 1(ui)− F 1(xi) = −qi∇
∑
j

qj
|xj − xi|

∑
k=1

(−1)k
(
|δj − δi|
|xj − xi|

)k

F 1(ui)− F 1(xi) = qi∇

∑
j

qj
|xj − xi|

(
|δj − δi|
|xj − xi|

)
+O

((
|δj − δi|
|xj − xi|

)2
) . (6.7)

This can be rewritten as

F 1(ui)− F 1(xi) ≈ qi∇

 ∑
xj∈Ωnear

qj
|xj − xi|

(
|δj − δi|
|xj − xi|

)
+

∑
xj∈Ωfar

qj
|xj − xi|

(
|δj − δi|
|xj − xi|

) . (6.8)

108

Recall that each FMM calculation directly calculates near-field forces and approximates far-field

forces. The more accurate the FMM approximation, the more particles are assumed in the near-field.

The less accurate the FMM, the smaller the near-field is, and the larger the far-field is. Hence,

the inaccuracy from the FMM comes from not only limiting the amount of terms in the expansion

but also poorly approximating the far-field by not including enough near-field particles in direct

calculation. However, even for an inaccurate FMM calculation, the potential for the nearest (hence,

the most influential), neighbors to a particle are always calculated directly.

By using less accurate FMM evaluation on the coarse level than V
[k]
fmm0, V

[k]
fmm1 and V

[k]
fmm2 are

able to attain similar convergence to V
[k]
fmm0 after few iterations as seen in Figures 6.6 and 6.5 with

a smaller computation cost. This occurs because the difference in the far-field forces in Eq. (6.8)

are negligible. Note that as approximations become more accurate as we iterate, the corrections

in |δj − δi| become smaller. More importantly, in the far-field |xj − xi| is large. This dampens the

effect of the calculated inaccuracies even when the FMM solver is inaccurate.

The difference per iteration between V
[k]
fmm0, V

[k]
fmm1, and V

[k]
fmm2 comes from the near-field

component in Eq. (6.8). We see that even though V
[k]
fmm1 and V

[k]
fmm2 contain an inaccurate spatial

solver on the coarse level, the two less accurate solutions directly calculate enough of the most

influential near-field particles. Hence, they V
[k]
fmm1 and V

[k]
fmm2 are able to obtain similar convergence

behavior to V
[k]
fmm0 in few iterations.

There is very similar convergence behavior with V
[k]
mr0, V

[k]
mr1, and V

[k]
mr2 in Figures 6.7, 6.6, and

6.5. However, the MRFMM solutions are not as able to converge to the V
[k]
fmm0 solution as the

other FMM solutions. This difference in behavior comes from the MRFMM’s constant interpolation

of the far-field forces over a time step ∆t on the coarse level in Eq. (6.8). As seen in Figure 6.1,

using a constant interpolation for the far-field forces causes a loss in accuracy. But a second order

interpolation of the far-field (used on the fine level) does not. Hence, unlike the FMM solutions, the

dominant error in Eq. (6.8) comes from the far-field interpolation and not the near-field calculations

for the MRFMM solutions. Recall that the near-field forces are calculated at every node in a

time step ∆t in both the MRFMM and the FMM. Even with the interpolated far-field forces, the

MRFMM solutions are able to converge very close to the high spatial accuracy FMM solution V
[k]
fmm0

with less computational cost after 6 iterations.

109

6.2.4 Gravitational Forces

Each particle in the electrostatic simulation is under the influence of more singular attractive

forces (lim
r→0

1
r2

) and smoother repulsive forces (lim
r→∞

1
r2

) due to charge-polarities being opposing or

similar, respectively. If all the forces were to be attractive, like in gravitational simulations, we

should expect the MRFMM to be less effective. This should occur because the force field exclusively

contains increasingly fast-changing attractive forces that are less smooth in time. Thus, these forces

are more difficult to interpolate.

To show this phenomena, we run the same simulations as earlier with the following changes.

All of the charges have the same magnitude and are all positive. We change the sign in Eq. (1.1)

so that now all of forces are attractive whereas they would be repulsive. Finally, the time step is

shortened to ∆t = 7.8125× 10−5 to avoid the more imminent particle collisions.

Figure 6.8 shows the result of the multirate test within the first time step ∆t. Keep in mind that

the forces are less singular in the first time step. Figures 6.9 and 6.10 are the velocity convergence

Figure 6.8: Multirate test for gravitational case

plots for PFASST with the FMM and MRFMM respectively. The results show that the MRFMM

converges to the solution; however, it takes more iterations than in the FMM case. In addition, the

initial MRFMM iterations are less accurate than the FMM’s. The higher abundance of singular

forces causes the MRFMM to behave less predictively than in the simulations with the dual charge

polarities.

110

(a) convergence of V
[k]
fmm0 (b) convergence of V

[k]
mr0

Figure 6.9: Absolute error of velocity per iteration compared to the reference solution. Coarse-level
FMM precision is ε1 = 0.5× 10−9

(a) convergence of V
[k]
fmm2 (b) convergence of V

[k]
mr2

Figure 6.10: Absolute error of velocity per iteration compared to the reference solution. Coarse-level
FMM precision is ε1 = 0.5× 10−2

111

6.3 Speedup

The following are results for the parallel speedup and efficiency for the PFASST algorithm using

the FMM and MRFMM for the electrostatic problem. Recall that ε0 and ε1 correspond to the FMM

evaluation tolerance for the electrostatic potential for the fine and coarse level, respectively.

Table 6.2: Serial SDC, 6 iterations

Method ε0 nsteps Run Time[s]

FMM 0.5 10−9 64 4131
MRFMM 0.5 10−9 64 3275

Table 6.3: PFASST, 7 iterations

Method ε1 ε0 nsteps Speedup Parallel Efficiency Run Time[s]

FMM 0.5 10−2 0.5 10−9 64 15.078 0.236 274
FMM 0.5 10−6 0.5 10−9 64 8.101 0.127 510
FMM 0.5 10−9 0.5 10−9 64 5.819 0.091 710

Table 6.4: PFASST, 7 iterations

Method ε1 ε0 nsteps Speedup Parallel Efficiency Run Time[s]

MRFMM 0.5 10−2 0.5 10−9 64 26.484 0.414 156
MRFMM 0.5 10−6 0.5 10−9 64 9.675 0.151 427
MRFMM 0.5 10−9 0.5 10−9 64 7.915 0.124 522

Table 6.2 shows the runtime of serial SDC. Tables 6.3 and 6.4 shows the various speedup attained

by PFASST. PFASST is able to run much quicker than serial SDC. The various speedup in the

PFASST solutions comes from mainly two different attributes: the spatial coarsening and the

multirate time stepping. By making the coarse-level spatial solver less accurate, i.e. cheaper to

compute, PFASST is able to undergo the initialization phase described in [17] much quicker. This

allows PFASST to start iteratively approximating the solutions much earlier than if we used a high

accuracy, i.e.more computationally expensive, spatial solver on the coarse level. This phenomena

is greatly enhanced when the MRFMM is used because the multirate time stepping has fewer

calculations. The PFASST iterations are also done quicker due to the coarser approximations and

MRFMM.

To explain the speedup that PFASST has with the MRFMM, let F and N be the amount of

work it takes for a FMM evaluation to calculate the far-field forces and near-field respectively. For

112

this analysis, we will assume that that the coarse and fine-level spatial solver will have the same

accuracy. We will ignore the cost of communication between processors and the cost of interpolation

and restriction between PFASST levels. For the FMM, computing 1 PFASST iteration (with 1

SDC sweep on the fine and coarse level) corresponds to doing 2 × 3(F +N) work on the coarse

level (3 nodes) and 2 × 5(F +N) work on the fine level (5 nodes) for a total of amount of work

Tfmm = 16F + 16N amount of work. For the MRFMM, computing 1 PFASST iteration corresponds

to doing 2× (1F + 3N) work on the coarse level and 2× (3F + 5N) work on the fine level for a

total of amount of work Tmr = 8F + 16N .

Let β =
Tfmm

Tmr
be the ratio of the amount of work between PFASST with the FMM and the

MRFMM. We have two limiting cases for β: when the amount of work in the far field equals the

amount of work done in the near field (F = N) and when the amount of work in the far field

dominates that of the near field (F � N). This gives us bounds for β as long as F ≥ N

4

3
≤ β ≤ 2

1 + N
F

1 + 2NF
. (6.9)

Eq. (6.9) provides insight on how the MRFMM algorithm should be made to increase speed

in PFASST. To increase the speedup, we need N
F � 1. The smaller this ratio is, the faster the

MRFMM will run in comparison to the regular FMM. That is, one should design a FMM algorithm

in a way such that as much of the computational time is used calculating the far-field as possible.

6.4 Conclusion

For the simulation of charged particles, we have showed that parallel integration in time should

be considered. The PFASST algorithm used with the FMM allows one to attain speedup versus

serial SDC. PFASST’s multigrid-like structure allows additional speedup by relaxing the accuracy

of the FMM on the coarse level without compromising the convergence of the solution. By taking

into account the temporal behavior of the far-field and near-field forces, one can use the MRFMM’s

property of interpolating the far-field forces to decrease the total amount of calculations per time

step. Hence, PFASST used with the MRFMM allows for greater speedup without too much of a

loss of accuracy.

113

The MRFMM decreases the amount of calculations per time step by only calculating forces

when they change quickly in time and interpolating forces when the change slowly in time. This is

a promising property for more complex simulations that include dipole (1
r3

) and Van der Waals (1
r7

)

forces. These more singular forces have the property that the more singular the force, the smaller

Ωnear is and the larger Ωfar is. Hence, by using the MRFMM, one can decrease the net amount of

calculation by interpolating the larger far-field in a time step ∆t instead of calculating the far-field

at each node within the time step.

114

CHAPTER 7

Future Work

When using deferred correction methods, a numerical algorithm of an “optimal” method can be

made by keeping in mind the ideas of the “collocation formulation” and “convergence procedure.”

For a given problem, an efficient method can made by selecting a collocation formulation to

converge to based on the properties of the solution from a “collocation formulation database.”

Afterwards, different deferred corrections schemes can be selected from the “deferred correction

methods database” to effectively reduce different error components in the provisional solution. When

deferred correction methods stall, especially in stiff systems, the modified JFNK then can be used

to accelerate convergence. A possible way to make this new JFNK method more efficient would be

to find a way to reuse/ recycle the old Krylov basis vectors instead of always computing new Krylov

basis in forming a new subspace.

The PFASST algorithm has great potential in decreasing runtime by taking into account temporal

parallelism. PFASST could be used to accelerate calculations of many elliptic equation systems

such as Stokes flows, electromagnetics, and Helmholtz equation systems. For elliptic equation

solvers and fast N-body solvers, work can be done to increase efficiency by using temporal multirate

techniques when taking account more singular potentials than the 1
r Coulomb potential. Multirate

time stepping with these singular potentials would greatly add to the algorithm’s efficiency.

For differential (algebraic) equation initial value problems or very stiff systems, PFASST should

be able to be combined with the modified JFNK. Since PFASST depends on SDC as its integrator,

PFASST will suffer from order reduction or divergence in solving extremely stiff systems. However,

the inclusion of the modified JFNK could overcome this limitation while still maintaining time

parallelism.

PFASST’s use of multiple grids and multirate time stepping are a significant step towards possible

temporally adaptive algorithms where signals are only calculated when they change significantly

and interpolated when they do not. This feature added with time-parallelism can be very promising

115

for long-time, large-scale simulations.

116

APPENDIX A

PROOFS OF THEOREMS

A.1 Proof of Theorem 2.2.3.

Proof. Assuming p points {1/p, 2/p, · · · , (p−1)/p, 1} are used in the uniform collocation formulation,

then S̃ is a lower triangular matrix and all non-zero entries (including diagonal entries) are 1/p.

Simple calculation shows that S̃−1 has zero entries everywhere except along the diagonal and

subdiagonal, with nonzero entries p on the diagonal and −p on the subdiagonal,

S̃−1 =



p 0 0 · · · 0 0

−p p 0 · · · 0 0

0 −p p · · · 0 0

0 0 −p · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · −p p


.

Consider the vector Vj = [(p−1)j , (p−2)j , · · · , 2j , 1j , 0]T (j = 1, · · · , p−1) and V0 = [1, 1, · · · , 1, 1]T .

As S integrates polynomials of degree ≤ p− 1 exactly, one can show

(S̃−1S − I)Vj =
1

j + 1

j−1∑
l=0

(
l

j + 1

)
Vl,

and

(S̃−1S − I)V0 = 0.

Define W0 = V0. The basis for the Jordan canonical form can then be constructed recursively by

solving (S̃−1S− I)Wj = Wj−1, where Wj consists of a linear combination of Vk, k = 0, · · · , j.

A.2 Proof of Theorem 2.2.4.

We start from the following Lemma:

Lemma A.2.1. For the trapezoidal rule preconditioned uniform collocation formulation (InDC-

117

yp-T), the matrix S − S̃ maps the vector [(jp)k]pj=0 := [(0
p)k, (1

p)k, (2
p)k, · · · , (p−1

p)k, 1]T (k ≤ p) to a

linear combination of vectors [(jp)m]pj=0, m = 0, · · · , k − 1.

Proof. Assume p + 1 points {0/p, 1/p, 2/p, · · · , (p − 1)/p, 1} are used in the uniform collocation

formulation. As the integration matrix S integrates polynomials of degree p or less exactly, we have

S

[
(
j

p
)k
]p
j=0

=

[∫ j
p

0
xkdx

]p
j=0

=
1

k + 1

[
(
j

p
)k+1

]p
j=0

.

Now consider the jth entry of the vector S̃[(jp)k]pj=0 given by

S̃

[
(
j

p
)k
]
j

=
1

p

(
1

2

(
0

p

)k
+

(
1

p

)k
+ · · ·+

(
j − 1

p

)k
+

1

2

(
j

p

)k)
=

1

pk+1
(1k + 2k + · · ·+ jk − 1

2
jk)

=
1

pk+1
(
jk+1

k + 1
+

1

2
jk + lower order (< k) terms − 1

2
jk).

Therefore, after cancelling the jk+1 and jk terms, we have

(S − S̃)

[
(
j

p
)k
]p
j=0

=
k−1∑
m=0

cm

[
(
j

p
)m
]p
j=0

.

Applying Lemma A.2.1 and the Taylor expansion of the initial provisional solution in the

trapezoidal rule preconditioned deferred correction iterations for the uniform collocation formulation

(InDC-yp-T), Theorem 2.2.4 can be proved as follows:

Proof. From Eq. (2.34), we see that the correction matrix has the expansion

Ctns = (λ∆t)(S− S̃) + (λ∆t)2S̃(S− S̃) + (λ∆t)3S̃
2
(S− S̃) + · · · ,

and the initial provisional solution b has the expansion of the form (neglecting all (∆t)p+1 and

higher order terms)

b ≈
p∑

m=0

(λ∆t)mcm

[
(
j

p
)m
]
.

118

By induction and Lemma A.2.1, it is straightforward to show that

(Ctns)
kb ≈ (λ∆t)2k

p∑
m=0

cm,k

[
(
j

p
)m
]
,

neglecting (∆t)p+1 and higher order terms. Therefore, after each trapezoidal rule preconditioned

SDC iteration for the uniform collocation formation, the order will increase by (∆t)2, until it reaches

(∆t)p+1.

119

REFERENCES

[1] U.M. Ascher and L.R. Petzold, Computer methods for ordinary differential equations and
differential-algebraic equations, SIAM, 1998.

[2] K. Atkinson, An introduction to numerical analysis, 2nd edition, John Wiley, 1989.

[3] W. Auzinger, H. Hofstatter, W. Kreuzer, and E. Weinmuller, Modified defect correction
algorithms for ODEs. part i: General theory, Numerical Algorithms 36 (2004), 135–156.

[4] R. Barrett et al., Templates for the solution of linear systems: Building blocks for iterative
methods, 2nd edition, SIAM, Philadelphia, 1994.

[5] R. Barrio, On the A-stability of Runge-Kutta collocation methods based on orthogonal polyno-
mials, SIAM Journal Numerical Analysis 36 (1999), no. 4, 1291–1303.

[6] G. Beylkin and K. Sandberg, ODE solvers using band-limited approximations, Journal of
Computational Physics 265 (2014), 156–171.

[7] A. Bourlioux, A.T. Layton, and M. Minion, High-order multi-implicit spectral deferred correction
methods for problems of reactive flow, Journal of Computational Physics 189 (2003), 351–376.

[8] E.L. Bouzarth and M. Minion, A multirate time integrator for regularized Stokeslets, Journal of
Computational Physics 229 (2010), no. 11, 4208–4224.

[9] W. Brigss, V. Henson, and S. McCormick, A multigrid tutorial, SIAM, 2000.

[10] P.N. Brown, A.C. Hindmarsh, and L.R. Petzold, Using Krylov methods in the solution of
large-scale differential-algebraic systems, SIAM Journal of Scientific Computing 15 (1994),
1467–1488.

[11] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang, Spectral methods in fluid dynamics,
Springer-Verlag, 1988.

[12] M. Causley, A. Christlieb, B. Ong, and L. Van Groningen, Method of lines transpose: An
implicit solution to the wave equation, Mathematics of Computation 83 (2014), 2763–2786.

[13] W. Chen, X. Wang, and Y. Yu, Reducing the computational requirements of the differential
quadrature method, Numerical Methods for Partial Differential Equations 12 (1996), 565–577.

[14] A. Christlieb, B. Ong, and J. Qiu, Integral deferred corrections constructed with high order
Runge-Kutta methods, Mathematics of Computation 79 (2010), 761–783.

[15] X. Du and D.B. Szyld, Inexact GMRES for singular linear systems, 2007.

[16] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary
differential equations, BIT 40 (2000), 241–266.

[17] M. Emmett and M. Minion, Toward an efficient parallel in time method for partial differential
equations, Communications in Applied Mathematics and Computational Science 7 (2012),
105–132.

120

[18] M.J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method,
SIAM Journal on Scientific Computing 29 (2007), 556–578.

[19] A. Glaser and V. Rokhlin, A new class of highly accurate solvers for ordinary differential
equations, Journal of Scientific Computing 38 (2009), no. 3, 368–399.

[20] D. Gottlieb and S.S. Orszag, Numerical analysis of spectral methods, SIAM, Philadelphia, 1977.

[21] L. Greengard, Spectral integration and two-point boundary value problems, SIAM Journal of
Numerical Analysis 28 (1991), 1071–1080.

[22] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of Computa-
tional Physics 73 (1987), 325–348.

[23] E. Hairer and M. Hairer, Gnicodes - matlab programs for geometric numerical integration,
Frontiers in Numerical Analysis, Springer, Berlin, 2003, pp. 199–240.

[24] E. Hairer, C. Lubich, and M. Roche, The numerical solution of differential-algebraic systems
by Runge-Kutta methods, Springer-Verlag, 1989.

[25] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration: Structure-preserving
algorithms for ordinary differential equations, Springer-Verlag, 2002.

[26] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the
Stormer/Verlet method, Acta Numerica 12 (2003), 399–450.

[27] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration: Structure-preserving
algorithms for ordinary differential equations, vol. 31, Springer-Verlag, 2006.

[28] E. Hairer and G. Wanner, Solving ordinary differential equations II: Stiff and differential-
algebraic problems, Springer, 1996.

[29] J. Huang, J. Jia, and M. Minion, Accelerating the convergence of spectral deferred correction
methods, Journal of Computational Physics 214 (2006), 633–656.

[30] , Arbitrary order Krylov deferred correction methods for differential algebraic equations,
Journal of Computational Physics archive 221 (2007), no. 4, 739–760.

[31] A.T Ihler, An overview of fast multipole methods, 2004.

[32] J.D. Jackson, Classical electrodynamics: Third edition, John Wiley and Sons, 1999.

[33] J. Jia and J. Huang, Krylov deferred correction accelerated method of lines transpose for
parabolic problems, Journal of Computational Physics 227 (2008), no. 3, 1739–1753.

[34] J. Jia and J. Liu, Stable and spectrally accurate schemes for the Navier-Stokes equations, SIAM
Journal on Scientific Computing 33 (2011), no. 5, 2421–2439.

[35] C.T. Kelly, Iterative methods for linear and nonlinear equations, SIAM, 1995.

[36] , Solving nonlinear equations with Newton’s method, SIAM, 2003.

[37] D.A. Knoll and D.E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and
applications, Journal of Computational Physics 193 (2004), no. 2, 357 – 397.

121

[38] D. Kushnir and V. Rokhlin, A highly accurate solver for stiff ordinary differential equations,
SIAM Journal of Scientific Computation 34 (2012), no. 3, A1296–A1315.

[39] A.T. Layton and M. Minion, Conservative multi-implicit spectral deferred correction methods
for reacting gas dynamics, Journal of Computational Physics 194 (2004), 697–714.

[40] R. Leveque, Finite difference methods for ordinary and partial differential equations: steady-state
and time-dependent problems, SIAM, 2007.

[41] S. Li and L.R. Petzold, Software and algorithms for sensitivity analysis of large-scale differential
algebraic systems, Journal of Computational and Applied Mathematics 125 (2000), no. 1,
131–145.

[42] J. Lions, Y. Maday, and G. Turinici, Resolution d’EDP par un schema en temps parareel,
Comptes Rendus de l’Academie des Sciences 332 (2001), 661–668.

[43] B. Lu, C. Xiaolin, J. Huang, and A.J. McCammon, Order N algorithm for computation of
electrostatic interactions in biomolecular systems, Proceedings of the National Academy of
Sciences 103 (2006), no. 51, 19314–19319.

[44] F. Mazzia et al., Test set for IVP solvers, https://www.dm.uniba.it/~testset/

testsetivpsolvers.

[45] P.S. Pacheco, An introduction to parallel programming, Elsvier Inc, Boston, MA., 2011.

[46] Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving
non-symmetric linear systems, SIAM Journal of Scientific and Statistical Computing 7 (1986),
856–869.

[47] V. Simoncini and D.B. Szyld, Theory of inexact Krylov subspace methods and applications to
scientific computing, SIAM Journal on Scientific Computing 25 (2003), 454–477.

[48] R. Spec, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, and P. Gibbon, A
massively space-time parallel n-body solver, Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (Los Alamitos, CA, USA),
SC ’12, IEEE Computer Society Press, 2012, pp. 92:1–92:11.

[49] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer, 1992.

[50] L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Review 50 (2008),
no. 1, 67–87.

[51] L.N. Trefethen and D. Bau, Numerical linear algebra, SIAM, Philadelphia, PA., 1997.

[52] B. Zhang, Integral-equation-based fast algorithms and graph-theoretic methods for large-scale
simulations, Ph.D. thesis, University of North Carolina at Chapel Hill, 2010.

122

https://www.dm.uniba.it/~testset/testsetivpsolvers
https://www.dm.uniba.it/~testset/testsetivpsolvers

