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ABSTRACT 

Denis O. Okumu: Lyn Regulates Drug Resistance Mechanisms in Chronic Myelogenous 
Leukemia (CML) 

(Under the direction of Lee Graves) 

     Acquired resistance to anti-cancer therapy presents a critical challenge to effective clinical 

management of chronic myelogenous leukemia (CML).  Drug-resistant CML cells devise diverse 

molecular adaptations to evade therapy.  Examples of such adaptations include: target (Bcr-Abl) 

mutations that eliminate drug binding, target amplification, up-regulation of drug exporter 

proteins, and activation of alternative kinase(s).  The CML cell (MYL-R) model described in this 

dissertation is a classic example of how CML cells can activate alternative kinase(s) to promote 

cell survival.  Herein, I discuss two molecular adaptations regulated by Lyn in MYL-R cells.   

     In the first project, I showed that increased Lyn expression and activity in MYL-R cells up-

regulated the expression and stability of BIRC6, a member of the inhibitor of apoptosis proteins 

(IAP) family known to bind and inactivate active caspases.  BIRC6’s role in promoting imatinib 

resistance was confirmed by the 15-fold increase in imatinib sensitivity upon BIRC6 shRNA 

knockdown.  Pharmacological or genetic inhibition of Lyn reduced BIRC6 expression and 

stability.  Further, BIRC6 stability was increased via Lyn-dependent phosphorylation of serine 

residues in a region that overlapped with caspase cleavage motifs.  Pharmacological inhibition of 

Lyn resulted in caspase-mediated degradation of BIRC6.   

     In the second project, I am investigating Lyn’s role in regulating creatine uptake by MYL-R 

cells.  Our lab previously showed that total intracellular creatine pool was 5-fold higher in MYL-
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R than MYL cells.  Our unpublished data show that the increased intracellular creatine comes 

from uptake from the cell culture media and not de novo synthesis.  I, therefore, investigated the 

role of creatine in MYL-R cells by incubating the cells in normal growth media into which 

competitive inhibitors of creatine uptake were added. Our data show that reduction in total 

intracellular creatine pool lowered cell viability.  Others previously showed that the Na+/K+-

ATPase pump activity was critical for creatine uptake.  Our data show that Lyn inhibition or 

shRNA knockdown reduced Na+/K+-ATPase activity and total intracellular creatine pool, 

suggesting a tripartite signaling cascade that supports MYL-R cell survival.   

     Taken together, these studies enrich our understanding of the diverse therapy-survival 

mechanisms utilized by CML cells, and provide insights into novel targets for effective cure of 

CML. 
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CHAPTER 1:  INTRODUCTION 
 

1.1 Chronic Myelogenous Leukemia (CML) overview 
 
     Chronic myelogenous leukemia (CML), also called chronic granulocytic leukemia, is 

a slow and progressive malignancy of myeloid origin, occurring during or after middle 

age (>55 years), and rarely occurs in children (< 10% of cases) (1-3).  CML accounts for 

~15% of all leukemia cases, and approximately 9,000 cases will be diagnosed in 2018, 

with an estimated ~1000 deaths (4,5).  CML is characterized by an accumulation of 

granulocytes (or leukemia cells), immature and less differentiated cells that fail to 

differentiate into mature, functional white blood cells (Figure 1.1).  CML’s hallmark 

cytogenetic diagnosis is the presence of Philadelphia (Ph) chromosome, a mutation 

resulting from balanced reciprocal translocations between portions of chromosomes 9 

(Abl gene) and 22 (Bcr gene), t(9;22)(q34;q11.2).  The result is a chimeric and 

constitutively active Bcr-Abl kinase that promotes growth and proliferation, and is the 

initiating oncogene in CML (1,4,6,7).  Failure to initiate therapy in the early stages of 

CML will lead to accelerated buildup of granulocytes in the blood and bone marrow 

resulting in less room for healthy white blood cells, red blood cells, and platelets to 

develop.  When this happens, infection, anemia, or easy bleeding may occur, sometimes 

resulting in death (3,4,6). 

     Before the advent of targeted therapy in 2000, CML treatment was limited to non-

selective chemotherapeutic agents including busulfan, hydroxyurea, cytarabine, and 

interferon-alpha (IFN-α) (4,8).  The modest efficacies shown by these compounds in 
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terms of altering the course of disease and the associated toxicities left allogeneic 

hematopoietic stem cell transplantation (allo-HSCT) as the only alternative cure for 

CML.  Allo-HSCT, however, is beset with risks of morbidity and mortality due to 

advanced age at time of CML diagnosis, and lack of suitable donors.  This fueled the 

need for more research to develop novel drugs with better efficacies and minimal adverse 

effects, culminating in the approval of the first kinase inhibitor, imatinib, in 2001 (4,8).  

Imatinib is a first generation Bcr-Abl inhibitor and constitutes first-line therapy for Ph+ 

CML.  Although initially successful, high incidences of disease relapse and drug 

resistance have been recorded in CML patients treated with imatinib (4,7,9,10).  With the 

emergence of therapy-limiting Bcr-Abl mutations that eliminate imatinib binding, and 

activation of alternative kinase (Lyn) signaling pathways that promote drug resistance, 

recent research advances have yielded more effective targeted therapies including second 

generation (dasatinib and bosutinib) and third-generation (ponatinib) inhibitors that target 

both Bcr-Abl and Lyn (Src-family kinases, SFKs), with ponatinib being able to also 

circumvent Bcr-Abl mutations (4,8,11). 

1.2 Lyn modulates various signaling cascades in human cells 
 

1.2.1 Lyn kinase 

     Lyn kinase (Lyn) is a member of the Src-Family Kinases (SFK), the largest group of 

non-receptor tyrosine kinases (NRTKs) involved in regulation of various normal cellular 

processes including growth, differentiation, proliferation, apoptosis, migration, immune 

responses, adhesion and metabolism (12-16).  Three main subfamilies exist within the 

SFK with Lyn being a member of the Lyn-related family comprising of Lck/Yes-related 

novel tyrosine kinase (Lyn), hematopoietic cell kinase (Hck), lymphocyte-specific 
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protein tyrosine kinase (Lck), and B lymphocyte kinase (Blk) (15).  SFK proteins are 

defined by the presence of an N-terminal region (SH4) unique to each member, followed 

by three homologous domains: Src Homology 3 (SH3) for protein-protein interactions, 

Src Homology 2 (SH2) for binding to phosphorylated tyrosines on other proteins, and Src 

Homology 1 (SH1, the kinase domain) (14,15).  The SH4 domain is critical for plasma 

membrane targeting and binding, and encodes a myristoylation site in addition to 

containing either one or two palmitoylation sites as in Lyn and Fyn respectively 

(14,17,18).  The C-terminal region of SFKs contains an auto-inhibitory phosphorylation 

site whose phosphorylation by, for example, C-terminal Src Kinase (Csk) or Csk-like 

protein tyrosine kinase (Ctk) or C-terminal Src kinase-homologous kinase (Chk) is 

critical for regulating the normal cellular activities of these kinases (15,19-21).   

     Lyn has two major splice variants that differ by the excision of 21 amino acids 

(residues 23 – 43) in the SH4 domain resulting in two protein isoforms, Lyn A (p56) and 

Lyn B (p53) (22-24) (Figure 1.2).  Even though p56Lyn is taken to be the canonical 

isoform, research is ongoing to understand if any significant functional differences exist 

between the two isoforms.  Data from recent studies suggest the two isoforms may have 

different biological functions as manifested by the dual nature of Lyn’s signaling in 

which it is able to both activate and inhibit signaling in diverse systems (14).  The SH4 

domain is critical for Lyn localization, and given that the splice site is proximal to regions 

in the SH4 domain that undergo lipid post-translational modification (PTM), excision of 

the 21 amino acids may suggest isoform-specific localization (17,25).  Other studies 

demonstrated that Lyn localization to intracellular membranous structures like the Golgi 

membranes was mediated by certain regions within the kinase and SH4 domains, and that 
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deletion of the kinase domain prevented trafficking of Lyn from the Golgi apparatus to 

the plasma membrane.  Closed-conformation induced by phosphorylation at tyrosine 508 

(Y508) was observed to have a similar effect (26,27).  Moreover, inhibition of Lyn’s 

kinase activity increases its accumulation in the nucleus (28).  

     Like Src kinase, Lyn can be switched from an inactive to an active conformation in a 

phosphorylation-dependent manner or via protein interactions.  As shown in Figure 1.2, 

there are two major, conserved phosphorylation sites on Lyn: Tyr397 (Tyr416 in Src) in 

the kinase domain and Tyr508 (Tyr 527 in Src) in the C-terminal tail of the protein.  

Phosphorylation of Tyr508 (Y508) by Csk or Ctk or Chk inactivates the protein through 

interaction of the phosphorylated tyrosine with the SH2 domain thereby folding up the 

kinase into an inactive conformation (26,29) (Figure 1.2).  Dephosphorylation of Y508 

opens up Lyn to trans-autophosphorylation on Tyr397 (Y397) leading to an open, active 

conformation.  Dephosphorylation of Y508 may be achieved via one or more of the 

following: protein tyrosine phosphatases (for example, SHP-1 phosphorylase), reduced 

Csk activity, displacement of protein-protein interactions, and mutational activation (due 

to mutation or deletion of Y508).  Lyn kinase activity is derived from dephosphorylation 

of this residue that leads to displacement of pY397 from the binding pocket thereby 

enabling substrate access (29).  Data from domain deletion studies showed that loss of 

SH2 and SH3 decreased Lyn activity.  Similar deletions did not affect Src activity; 

pointing to variability in the manner Src and Lyn are auto-regulated, and also provides 

evidence that despite their homology, SH3 domains of various Src family members have 

critical functional differences (30).  Protein interactions may directly activate SFK 

proteins or activate them by moving them to sites of action.  For example, platelet-
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derived growth factor (PDGF) and focal adhesion kinase (FAK) activate Src by directly 

interacting with their SH2 domains (29). 

1.2.2 Lyn in Health  

     Lyn is expressed in all blood cells except T-lymphocytes, and has been shown to act 

both as an inhibitor and activator of signaling (31).  Normally, Lyn, like other SFKs, is 

mostly inactive in cells and is activated only when required (29).  Although previous 

studies had identified Lyn to be exclusively expressed in hematopoietic cells especially 

those of myeloid origin and B-cell lymphocytes (32), recent data show that Lyn is 

expressed in a lot other tissues where it modulates signaling (14).  Lyn is an activator of 

the B-cell receptor (BCR) complex and physically interacts with the erythropoietin 

receptor (EpoR) to induce tyrosine phosphorylation on the receptor thereby transducing 

growth signals that promote B-cell development (33) and erythrocyte differentiation 

(12,34).  Thus, Lyn is a transducer of signals from growth factor receptors like BCR, 

GM-CSF receptor, Epo-receptor and c-kit to support development and proliferation of 

various cells.  Additionally, Lyn functions in several mature blood cells where it 

regulates cell growth, differentiation, adhesion, movement and the cytoskeleton (14).  

Like Src, Lyn’s subcellular localization affects its function.  For example, whereas at the 

plasma membrane Lyn transduces signals from a variety of growth factor receptors to 

affect cell growth and proliferation, it phosphorylates certain nuclear proteins that are 

involved in chromatin remodeling and cell cycle regulation (29,35,36).  Accordingly, Lyn 

modulates critical signaling cascades necessary for the development and proliferation of 

hematopoietic and other cells.     
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1.2.3 Lyn in Cancer 

     Like Src, alternating phosphorylation and dephosphorylation events in the cell tightly 

regulate the activity of Lyn.  However, the fine balance between these two events may 

sometimes be disrupted, altering Lyn activity with dire consequences (15,29).  Like Src, 

enhanced Lyn activity resulting from de-regulation and overexpression has been 

documented to have an oncogenic role in various human cancers where the enhanced 

activity often correlates with adverse disease outcomes.  Increased Lyn activity has been 

shown to promote solid tumor growth, proliferation, metastasis and tumor cell survival  

(14,15).  For example, hard-to-treat human solid tumors expressing hyperactive Lyn 

include, among others: colon carcinoma, prostate, Ewing’s sarcoma, colorectal, cervical, 

lung adenocarcinoma, glioblastoma and breast cancers (37-47).  Moreover, targeting Lyn 

in cancer has been shown to reduce epithelial-mesenchymal transition (EMT) thereby 

abolishing metastasis (48).  Accordingly, several studies show that Lyn is one of the most 

consistently activated tyrosine kinases in solid tumors where it plays a significant role in 

tumor development and drug resistance.   

     Being mainly a hematopoietic kinase, however, Lyn has been shown to play an 

important role in sustaining hematologic tumors.  Data from studies involving several 

types of leukemia and lymphoma, especially acute myeloid leukemia (AML), chronic 

myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), B-cell acute 

lymphocytic leukemia (B-ALL), B-cell chronic lymphocytic leukemia (B-CLL), B-Non 

Hodgkin’s lymphoma, and myelo-proliferative disorders, strongly suggest Lyn as an 

important regulator of several signaling pathways modulating these diseases (14).  Hence, 
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understanding what Lyn does has broader implications for therapy of both solid and 

liquid tumors.  

1.2.4 Lyn kinase in myeloid leukemia 

     The duality of Lyn signaling has been documented in various cell types including 

hematopoietic progenitors, mature myeloid cells (neutrophils, macrophages, and dendritic 

cells), platelets and erythrocytes.  Lyn knockout mice studies suggest that Lyn inhibits 

myeloid progenitor responses to colony stimulating factors (CSFs) leading to abnormal 

myeloid cell development characterized by rapid myeloproliferation and accumulation of 

large numbers of myeloblasts (31).  On the contrary, numerous studies show that many 

hematologic malignancies including myeloid leukemias depend on increased expression 

and activity of Lyn for survival and proliferation (14).  For example, increased Lyn 

activity has been documented as playing an important role in AML cell lines and primary 

AML progenitor cells (14,49,50) as shown by the loss in proliferation and induction of 

apoptosis upon treatment of the cells with PP2, a SFK inhibitor, or by siRNA knockdown 

of Lyn (50).  Constitutively active FLT3-ITD, a mutated kinase expressed in ~30% of 

AML cases, provides docking sites upon which Lyn binds with high affinity and gets 

phosphorylated to mediate downstream activation of STAT5 leading to enhanced growth 

and proliferation of AML cells (14,51).  Inhibition of Lyn activity (using genetic and 

small molecule inhibitors) in FLT3-ITD-driven AML suppressed cell growth and resulted 

in loss of Lyn activity and STAT5 phosphorylation.  Tumor formation and tumor size 

were similarly suppressed when mice transplanted with FLT3-ITD cells were treated with 

PP2.  These observations underscore the important role Lyn plays in maintaining AML 

cells (51).   
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     Various studies have demonstrated that Bcr-Abl fusion protein is the initiating 

molecule for CML (14).  However, Lyn has been shown to bind and undergo reciprocal 

phosphorylation with Bcr-Abl thereby modulating the ability of Bcr-Abl to transform 

cells.  Lyn phosphorylation of Bcr-Abl leads to recruitment of the adaptor Gab2, a key 

activator of the PI3K pathway essential for Bcr-Abl induced leukemogenesis (14).  In 

pivotal studies involving selection of K562 or MYL cells for imatinib resistance, the 

resultant cell line (K562R or MYL-R) was found to have increased Lyn expression and 

activity without associated Bcr-Abl mutations (14,52).  Moreover, the cells regained their 

imatinib sensitivity upon down-regulation of Lyn.  Similarly, elevated Lyn levels were 

observed in primary CML cells from patients who had acquired imatinib resistance in the 

course of therapy (14).  Thus, there exists a critical role for Lyn in the progression and 

maintenance of myeloid leukemias.  

1.2.5 Lyn regulates Bcr-Abl-independent drug resistance 
mechanisms in CML 

 
     Imatinib resistance in CML cells is mediated by the up-regulation of Lyn protein and 

Lyn kinase activity as demonstrated by various studies using diverse CML cell systems.  

Increased proliferation and survival of Lyn-overexpressing CML cells are mediated by 

diverse mechanisms (11,52-57).  Studies comparing primary cells taken from CML 

patients before and after failure of imatinib therapy, suggest that increased Lyn 

expression and/or activation leading to acquired imatinib resistance occurs in the course 

of therapy and during disease progression (14,53).  Of particular significance is the 

observation that drug resistance in these cells occurs almost exclusively in the absence of 

detectable Bcr-Abl kinase mutations known to abolish drug binding.  Thus, Lyn mediates 

drug resistance in CML cells in a Bcr-Abl-independent manner (52,53,58,59).  In the 
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same CML cell systems, targeting Lyn with small molecule inhibitors or knockdown of 

Lyn suppressed both proliferation and pro-survival signaling, and sensitized the cells to 

imatinib (52,55).  Of clinical significance is the observation that administration of dual 

Lyn (or SFK) and Bcr-Abl inhibitors like ponatinib and dasatinib to CML patients that 

are non-responsive to imatinib causes disease remission (4,60). 

     The underlying mechanisms by which Lyn regulates drug resistance in CML are not 

fully understood.  It is, however, known that Lyn modulates diverse signaling 

mechanisms that regulate drug resistance in CML.  For example, studies using K562R, 

LAMA-R, and MYL-R cells, three imatinib-resistant CML cell lines with elevated Lyn 

expression and/or activity revealed changes in both expression and activation of various 

proteins known to enhance cell proliferation and mediate cell survival (11,52-57).  

Notably, the loss in imatinib sensitivity was not mediated by expression of multidrug 

resistance genes (53) like P-glycoprotein, a drug-efflux protein that has been linked to 

resistance in certain CML cells (61).  MYL-R, LAMA-R, and K562R cells, however, 

showed some variability in terms of down-regulated or up-regulated genes, further 

suggesting that Lyn’s regulation of diverse signaling mechanisms that drive imatinib 

resistance in CML may be cell-specific.   

     Whereas immunoblot analyses of lysates from K562R and LAMA-R cells showed that 

Bcr-Abl protein and its phosphorylated form were reduced compared to that in their 

imatinib-sensitive counterparts, there was no significant difference in expression of these 

proteins between MYL-R cells and their imatinib-sensitive counterparts, MYL cells (52-

54).  As opposed to reduced STAT5 expression and phosphorylation in K562R and 

LAMA-R cells compared to their imatinib-sensitive counterparts, STAT5 expression and 
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phosphorylation were significantly increased in MYL-R cells compared to MYL cells 

(52-54).  Previous studies had associated increased Bcl-2 expression and drug resistance 

with increased Lyn (or SFK) activity (54).  However, in contrast to LAMA-R and K562R 

that showed elevated levels of Bcl-2, MYL-R cells did not show increased Bcl-2 

expression compared to MYL cells (52,54), further suggesting that the mechanism of 

imatinib resistance in MYL-R cells may be different from that of LAMA-R and K562R 

cells.  PP2, but not imatinib, treatment of LAMA-R cells reduced Bcl-2 expression (54).  

Bim, one of the pro-apoptotic proteins in the Bcl-2 family whose suppression has been 

linked to imatinib-resistance was found to be elevated in MYL-R compared to MYL cells 

(52), further pointing to the unique nature in which Lyn regulates imatinib-resistance in 

this system.  Later studies using proteomics approach in MYL and MYL-R cells linked 

increased Lyn activity to up-regulation of various cell signaling pathways 

(Ras/MEK/ERK; PI3K/AKT; NF-κB) as well as up-regulation of certain genes involved 

in increased transcriptional activation (PKCβ), cell proliferation (NEK9), migration 

(FAK), and immune response (JNK, RIPK2) (57). 

      Micro-RNA (miRNA) expression analyses of K562/K562R and MYL/MYL-R cells 

revealed substantial reduction in expression of certain miRNAs in K562R and MYL-R 

cells compared to K562 and MYL cells in a Lyn-dependent manner (56), pointing to yet 

another mechanism by which Lyn regulates drug resistance in CML.  Of note, there was 

between ~11 to ~25-fold reduction in miR181 family (a – d) expression that correlated 

with increased expression of myeloid cell leukemia-1 (Mcl-1) protein in K562R and 

MYL-R cells compared to their imatinib-sensitive counterparts (56).  Mcl-1 is an anti-

apoptotic protein of the Bcl-2 family whose expression is increased in MYL-R cells and 
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cells of other drug-resistant leukemias with increased Lyn activity.  Lyn’s dual role in 

regulating expressions of miR181 and Mcl-1 was evident from the observation that 

dasatinib treatment of MYL-R cells or siRNA knockdown of Lyn in MYL-R cells 

increased miR181 expression and decreased Mcl-1 expression (56).  Furthermore, 

overexpression of Lyn was shown to decrease miR181 expression and increased Mcl-1 

expression.  Thus, Lyn drives drug resistance in CML by suppressing expression of 

certain miRNAs known to target and degrade Mcl-1. 

     Earlier studies investigated Lyn’s role in modulating Bcr-Abl oncogenesis.  In CML 

cells from patients who did not respond to imatinib therapy despite expressing Bcr-Abl 

without detectable kinase domain mutations, Lyn was observed to couple with and 

directly phosphorylate Bcr-Abl on Tyr177 (59), a docking site for growth factor receptor-

bound protein 2 (GRB2).  Once at this site, GRB2 recruited the adaptor protein GRB2-

associated binder 2 (Gab2) which was then persistently phosphorylated and activated by 

Lyn.  Gab2 is a key activator of the PI3K pathway essential for Bcr-Abl-mediated 

oncogenesis characterized by increased differentiation, cell-cycle progression, 

proliferation, and enhanced cell survival (14,62).  Thus, through phosphorylation of 

transformation-regulatory sites on Bcr-Abl and activation of Gab2, hyperactive Lyn in 

CML mediates phospho-regulatory control of Bcr-Abl signaling in a manner that 

supports imatinib resistance (59).   

     Lyn also supports cancer cell survival by negatively regulating both tyrosine 

phosphorylation and protein expression of c-Cbl, an E3 ubiquitin ligase known to 

ubiquitinate activated protein tyrosine kinases (PTKs) (63) resulting in reduced cell 

signaling.  RNAi-mediated silencing of Bcr-Abl or Lyn demonstrated that silencing Bcr-
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Abl reduced c-Cbl tyrosine phosphorylation in both imatinib-sensitive and imatinib-

resistant K562 cells, but did not affect c-Cbl protein.  Conversely, Lyn silencing 

increased both c-Cbl protein and c-Cbl tyrosine phosphorylation levels.  C-Cbl silencing, 

on the other hand, had no impact on Lyn expression in K562R cells (59).  Findings from 

these studies show that Lyn, rarely a primary causative agent in leukemia, regulates drug 

resistance in these CML systems by intimately integrating itself into and altering the 

transforming signaling cascades initiated by Bcr-Abl (14,59). 

     In earlier studies, Dai et al had demonstrated that transfection of Lyn into K562 cells 

resulted into increased, Lyn activity-dependent expression of XIAP, a member of the 

inhibitor of apoptosis proteins (IAP) family known to bind and inactivate active caspases 

leading to drug resistance in cancer (54,64).  More recently, our lab has undertaken 

proteomics based studies in an effort to better understand the underlying mechanisms and 

interrogate key downstream substrates of Lyn implicated in drug resistance in CML 

(11,57).  In addition to the up-regulation of certain signaling pathways and genes 

implicated in drug resistance (57), global phosphorylation analyses revealed that 

increased Lyn expression and activity in MYL-R cells contributed to increased 

expression and stability of certain IAPs (11).  Of particular significance was the finding 

that substantial amounts of a multiply serine-phosphorylated peptide (Figure 1.3) unique 

to BIRC6, an IAP, were found in extracts of MYL-R, but not MYL cells (11).  Western 

blot and RT-PCR analyses revealed that BIRC6 protein and mRNA levels were increased 

in MYL-R compared to MYL and K562 cells.  Knockdown of BIRC6 in MYL- R cells 

using anti-BIRC6 shRNA made the cells significantly (p < 0.05) more sensitive to 

imatinib and gemcitabine, a cytotoxic nucleoside analog used in cancer chemotherapy.  
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The shifts in sensitivity (to the left of the dose-response curves) were ~15-fold and ~13-

fold for imatinib and gemcitabine respectively (11).  Similarly, BIRC6 shRNA 

knockdown-MYL-R cells showed significant (p < 0.05) increase in caspase activation 

when exposed to imatinib (1 µM, 24 hrs.) compared to MYL-R cells bearing empty 

vector.  Even though the BIRC6 peptide was phosphorylated on serine residues, 

pharmacological targeting of Lyn resulted in lower counts of the peptide (11) suggesting 

Lyn’s involvement in the observed phosphorylation events.  Earlier studies had shown 

that Lyn up-regulated the expression and activity of CK2 (65), a ubiquitously expressed 

serine/threonine kinase whose consensus sequence often overlaps with caspase cleavage 

motifs thus regulating global caspase signaling (66).  The multiply phosphorylated serine 

residues on the BIRC6 peptide were proximal to acidic residues, a consensus sequence 

that very closely approximates to that for CK2, S-X-X-E/D/pS/pY (Figure 1.3).  Further, 

pharmacological and genetic targeting of Lyn in MYL-R cells reduced BIRC6 expression 

and stability, and resulted in increased caspase activation (11).  Accordingly, increased 

expression and stability of IAPs via phosphorylation of regions overlapping with caspase 

cleavage motifs are some other mechanisms by which Lyn promotes drug resistance in 

CML. 

     Transduction of MYL-R cells with anti-Lyn shRNA resulted in loss of mitochondrial 

membrane potential, release of cytochrome c and increased caspase activation (11).  

Studies in other systems had shown that Lyn accumulated in the mitochondrial inter-

membrane space in an active form where it phosphorylated a multi-protein complex 

leading to the preservation of mitochondrial integrity (67).  Thus, though such studies 

have not been undertaken in MYL-R cells, my data from shRNA knockdown of Lyn 
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suggest that Lyn probably promotes cell survival by regulating phosphorylation events 

that lead to enhanced stability of the mitochondria. 

     1H NMR analysis of metabolic profiles of MYL and MYL-R cells revealed substantial 

differences between the two cell lines in a manner consistent with increased Lyn activity 

and imatinib-resistance in MYL-R cells (68).  Of particular significance was the finding 

that the total intracellular creatine pool (creatine + phosphocreatine) was ~5-fold higher 

in MYL-R compared to MYL cells (68).  In the cell, creatine kinase converts creatine 

into phosphocreatine, a high-energy phosphate donor that regulates ATP homeostasis in 

the cell (Figure 1.4).  Additionally, studies in other systems have shown that 

phosphocreatine promotes cell survival by regulating mitochondrial oxidative 

phosphorylation (69).  Similarly, Lyn has been shown to promote autophagy as a survival 

mechanism for cancer cells under conditions of nutrient deprivation (41).  Our 

unpublished data show that Lyn’s regulation of increased creatine uptake in MYL-R cells 

is accomplished via Lyn phosphorylation and activation of the Na+/K+-ATPase leading to 

establishment of an energy gradient that facilitates coupled uptake of Na+ and creatine.  

Further, pharmacological or genetic inhibition of Lyn resulted in reduced total 

intracellular creatine pool in MYL-R cells.  Finally, incubation of MYL-R cells with 

creatine uptake inhibitors resulted in reduced cell viability suggesting that creatine 

promotes MYL-R cell survival through diverse mechanisms. 

     Lyn signaling plays an important role in promoting acquired resistance to therapy in 

myeloid cell cancer through various mechanisms including kinome reprogramming, up-

regulation of survival genes, and changes in metabolism of CML cells.  Thus, Lyn has 

proven to be an important target in the development of novel therapies for malignancies 
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of myeloid origin.  However, to develop more effective therapies, much still remains to 

be done to gain deeper understanding of what Lyn does to modulate the various adaptive 

responses to CML therapy.   
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Figure 1.1.  Illustration of the process of normal human blood cell development.  

Increased accumulation of granulocytes (leukemia cells) from the myeloid lineage leads 
to the development of CML.  (Figure modified from: 
http://www.cancer.gov/types/leukemia/patient/cml-treatment-pdq) 
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Figure 1.2. Lyn domain structure.   

Schematic representation of the various Lyn functional domains and motifs, Src 
Homology 4 (SH4), Src Homology 3 (SH3), Src Homology 2 (SH2), and Src Homology 
1 (SH1, kinase domain).  Critical pY motifs that are either deactivating (pY508 or pY527 
in Src) or activating (pY397 or pY416 in Src).   
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Figure 1.3.  Sequence and position of the BIRC6 phosphopeptide.                        

 
BIRC6 is phosphorylated on multiple serine residues flanked by acidic residues proximal 
to the BIR domain.      
 

 

 
Figure 1.4.  Creatine is converted into phosphocreatine by creatine kinase.                

 
In the presence of ATP, creatine kinase phosphorylates creatine to produce 
phosphocreatine in a reversible reaction in the cell.  (Figure modified from: 
https://www1.udel.edu/chem/C465/senior/fall00/Performance1/ 
phosphocreatine.htm.html) 
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1.3 Dissertation overview 

     Acquired drug resistance presents significant challenges to effective treatment of 

malignancies of myeloid origin.  Various mechanisms of drug resistance including 

increased expression of drug exporter proteins, amplification of target, target mutation, 

and kinome reprogramming develop due to chronic exposure of patients to drugs.  In this 

dissertation, I discuss certain ways in which activation of alternative signaling cascades 

(modulated by Lyn) promote drug resistance in chronic myelogenous leukemia (CML) 

initiated by Bcr-Abl fusion protein. 

     The dissertation is partitioned into 4 chapters.  Chapter 1, “Introduction”, I review Lyn 

kinase signaling in drug resistant human cancers with specific focus on CML.  I discuss 

how Lyn activity is increased in Bcr-Abl initiated CML, and how this alters global 

signaling cascades leading to emergence of drug resistance.  In Chapter 2, “BIRC6 

mediates imatinib resistance independently of Mcl-1”, I used an imatinib-resistant CML 

cell model (MYL-R) to interrogate downstream effectors of drug resistance modulated by 

Lyn.  I showed that increased Lyn activity up-regulated expression and stability of 

BIRC6, a member of the inhibitor of apoptosis proteins family.  In Chapter 3, “Lyn 

regulates creatine uptake in an imatinib-resistant CML cell line”, I investigate the role 

Lyn plays in the increased accumulation of creatine and phosphocreatine in MYL-R cells, 

and the implications for MYL-R cell survival.  Finally, in Chapter 4, “Conclusions and 

Future Directions”, I review the broad implications of these observations and suggest 

certain experiments that should be done to further characterize Lyn’s role in CML, and to 

inform the development of new, more effective therapies for drug resistant CML. 
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CHAPTER 2:  BIRC6 MEDIATES IMATINIB RESISTANCE  
INDEPENDENTLY OF Mcl-11 

 
2.1 Introduction 

 
     Chronic myelogenous leukemia (CML) is a malignancy of myeloid cells characterized 

by accumulation of mostly myeloid cells in the bone marrow and bloodstream (1,3).  

CML is a result of the fusion of the breakpoint cluster region (Bcr) and Abelson (Abl) 

genes due to reciprocal translocations between chromosomes 9 and 22, t(9;22), resulting 

in a chimeric, constitutively active Bcr-Abl tyrosine kinase(1,6-8,70-73).  While 

successfully treated with the Bcr-Abl kinase inhibitor imatinib, high incidences of disease 

relapse and drug resistance have been recorded in CML patients (7,8,10,70,74). 

     Imatinib mesylate (IM, Gleevec®, STI571, CGP57148B), the first clinically available 

kinase inhibitor, is an ATP-competitive inhibitor of Bcr-Abl developed as a frontline 

treatment for CML (70,75,76).  Some of the IM therapy-related (Bcr-Abl-dependent) 

mechanisms of resistance include Bcr-Abl amplification or expression of inhibitor-

resistant Bcr-Abl with mutations in the kinase domain.  For example, the T315I 

“gatekeeper mutation” diminishes the kinase’s affinity for the drug.  Additional evidence 

suggest that imatinib resistance is due to Bcr-Abl independent mechanisms like enhanced 

expression of drug exporters (like P-glycoprotein) or activation of alternative kinase 

                                                
1 This chapter previously appeared as an article in PLoS ONE.  The original citation is as follows: Okumu 
DO, East MP, Levine M, Herring LE, Zhang R, Gilbert TSK, et al. (2017) “BIRC6 mediates imatinib 
resistance independently of Mcl-1.” PLoS ONE 12(5): e0177871. 
https://doi.org/10.1371/journal.pone.0177871 
 



 
 

 21 

signaling cascades (52,57,72).  These challenges have led to the development of second 

generation (dasatinib and bosutinib) and third generation (ponatinib) inhibitors that target  

both Bcr-Abl and Src family kinases (8,75,77).  Alternatively, hematopoietic stem cell 

transplantation remains the only other feasible cure for refractory CML.  Unfortunately,  

most patients cannot benefit from this approach due to advanced age at diagnosis or lack 

of a suitable stem cell donor (6,78).   

     Inhibitors of apoptosis proteins (IAPs) are a group of highly evolutionarily conserved 

anti-apoptotic proteins known to globally regulate caspases and immune signaling (79-

84). Studies have shown that up-regulation of IAPs such as cellular inhibitor of apoptosis 

protein 2 (cIAP2), X-linked inhibitor of apoptosis protein (XIAP), survivin and others 

correlates with decreased apoptosis and increased drug resistance (81,85-89).  Non-IAP 

anti-apoptotic proteins of the Bcl-2 family such as myeloid cell leukemia-1 protein (Mcl-

1), are known to also mediate drug resistance in diverse cancers (52,56,90).  Mcl-1 is a 

well-known marker of anti-apoptosis whose role in cancer drug resistance is well 

documented (91-94).  It is localized to the outer mitochondrial membrane where it 

heterodimerizes with and neutralizes pro-apoptotic Bcl-2 proteins like Bak, Bim, Noxa, 

and PUMA resulting in suppression of cytochrome c release and prevention of apoptosis 

(52,56,57,91-94).  We previously observed that Mcl-1 is increased in the imatinib-

resistant CML cell line (MYL-R) characterized by overexpression and activity of the Src 

family kinase, Lyn (56,57,95,96).  These results suggest that Mcl-1 may play a role in the 

Bcr-Abl-independent, Lyn-mediated imatinib resistance in these cells (52,56,57).    This 

is consistent with several studies over the last decade that have focused on Mcl-1 as a key 

anti-apoptotic protein mediating drug resistance in various human cancers (90,93,94,97-
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99).  The development of effective Mcl-1 inhibitors, however, has met various challenges 

with the few commercially available candidates having limited success in the clinic (98-

101).    

     Baculoviral inhibitor of apoptosis repeat-containing protein 6 (BIRC6), also known as 

Apollon or BRUCE, is a member of the BIR domain containing family of IAPs 

(81,83,89,102).  BIRC6 is localized to the trans-Golgi membrane and vesicular networks, 

and possesses a single BIR domain of 75 amino acid residues arranged in tandem repeats 

in the N-terminal region of the protein.  This domain is the region that binds and inhibits 

caspases, thereby preventing caspase activation required for apoptosis (81).  BIRC6 has a 

UBC domain at its C-terminus that allows it to function as a chimeric E2/E3 ubiquitin 

ligase, one target being the pro-apoptotic protein, Diablo (81,103,104).  This domain is 

also a binding site for mitochondrial proteins like Diablo/Smac and HtrA2/Omi that 

antagonize BIRC6’s anti-apoptotic activity in cells.    It was shown that BIRC6 only 

binds and inhibits caspases as a homodimer, and that caspases could cleave this dimer 

and degrade BIRC6, thereby quenching its anti-apoptotic properties (81).  Thus, the 

reciprocal inhibition between BIRC6 and caspase activation is a potential mechanism by 

which cells may coordinate survival and apoptotic processes (81,103,105,106).  

     BIRC6 has been shown to be important in cell cycle progression and DNA damage 

repair where it functions as a scaffold protein for assembly of the DNA damage repair 

machinery (107-109).  Furthermore, several in vivo studies show that total ablation of 

BIRC6 causes growth retardation and, embryonic and perinatal lethality, underscoring the 

protein’s critical role in cell viability (103,110,111).  Recent studies show that BIRC6 is 

increased in a number of intractable human cancers, including de novo acute myeloid 
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leukemia, breast cancer, ovarian cancer, hepatic cancer, prostate cancer, colon cancer, 

neuroblastoma, and non-small-cell lung cancer where it may contribute to cancer cell 

survival and proliferation (80,82,84,105,112-115).  Despite increased interest in BIRC6 

and its role in cancer cell survival, its regulation and involvement in mediating drug 

resistance is not well understood.     

     In this study, I examined BIRC6 regulation in an imatinib-resistant cell line (MYL-R) 

and compared this to its imatinib-sensitive counterpart (MYL).  MYL-R cells are 

independent of Bcr-Abl mutations, amplification or overexpression of multi-drug 

resistance proteins like P-glycoprotein (52,116).  Our studies show that BIRC6 

expression is increased in this cell line, and that BIRC6 knockdown is sufficient to 

restore imatinib sensitivity.  Our data further show that Lyn activity is important for up-

regulation of both Mcl-1 and BIRC6 in MYL-R cells, and suggest that BIRC6 plays a 

dominant role in mediating imatinib resistance in these cells.  Lastly, our results suggest 

that Lyn-dependent BIRC6 phosphorylation may regulate BIRC6 stability by preventing 

degradation by caspases.  In summary, these studies suggest BIRC6 may be a promising 

target for the treatment of some drug resistant human cancers.   

2.2 Materials and Methods 
 

2.2.1 Cells, Cell Culture and Reagents   

      MYL and MYL-R human CML cell lines were generous gifts from Dr. Hideo Tanaka 

(Department of Haematology and Oncology, Hiroshima University, Hiroshima, Japan) 

(52).  K562 cells, another CML cell line, were bought from American Type Culture 

Collection (ATCC) (Manassas, VA).  Cells were cultured in culture flasks suspended in 

RPMI 1640 medium (Gibco® by Life TechnologiesTM, U.S.A.) supplemented with 10% 
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fetal bovine serum (Atlanta Biologicals; Norcross, GA), and 1% antibiotic/antimycotic 

(Invitrogen; Carlsbad, Ca).  Cells were maintained at 37 oC in a humidified 5% CO2 

atmosphere in concentrations of approximately 0.6x106 cells mL-1.  Culture medium was 

replaced every 2 to 4 days.  For most experiments described here, cells were harvested by 

low-speed centrifugation and washed with 1X PBS prior to lysis. 

     Reagents were obtained from the following sources: ponatinib and dasatinib were 

from LC Laboratories (Woburn, MA); Z-VAD-FMK, imatinib, dinaciclib, and 

flavopiridol were from Selleckchem (Houston, TX); and HY-16462 was from MedChem 

Express (Monmouth Junction, NJ).  The primary human antibodies used include: BIRC6 

(Abcam, Cambridge, MA and Cell Signaling Technology, CST, Danvers, MA), 

Cytochrome c (Abcam), CDK9, phospho-CDK9, phospho-Src (Y416), PARP/Cleaved 

PARP, phospho-c-Abl (CST), phospho-EEF1D, phospho-CK2beta, phospho-IF2B 

(Litchfield Lab, University of Western Ontario, Canada), Lyn, Mcl-1, c-Abl, alpha-

Tubulin, Hsp60, Erk2, and β-actin (SCBT); with secondary antibodies, anti-mouse and 

anti-rabbit IgG-HRP conjugated (Promega {Madison, WI}).  Phospho-EEF1D, phospho-

CK2beta, and phospho-IF2B antibodies were diluted per supplier recommendations: 

1:20,000, 1:10,000, and 1:10,000 respectively in 3% bovine serum albumin (BSA) in 

Tris-buffered saline supplemented with Tween-20, TBS-T (10 mM Tris-HCl pH 7.6, 150 

mM NaCl, 0.05% Tween-20).  All other primary antibodies were diluted following 

supplier recommendations: 1:1000 in 5% BSA/TBS-T.  Secondary antibodies were 

diluted at 1:10,000 in 5% dry, non-fat milk in TBS-T. 
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2.2.2 Multiplexed Inhibitor Bead (MIB) Affinity Chromatography / 
MS Analysis 

 
     Kinases were isolated from MYL and MYL-R cell lysates as previously described 

(57,117).  Briefly, cells were harvested by centrifugation and washed once with 

PBS.  Cells were lysed in MIB Lysis Buffer [50 mM HEPES pH 7.5, 150 mM NaCl, 

0.5% Triton X-100, 1 mM EDTA, 1 mM EGTA, 10 mM NaF, and 2.5 mM Na3VO4, 

supplemented with protease inhibitor cocktail (Roche) and phosphatase inhibitor 

cocktails 2 & 3 (Sigma-Aldrich)].  Lysates were sonicated, clarified by centrifugation, 

and filtered through a 0.2 µm syringe filter.  The amount of starting material was 5 mg 

protein, and was diluted to 1.25 mg/mL with MIB lysis buffer.  Diluted lysates were 

passed over a mixture of 117uL each of the following kinase inhibitors conjugated to 

ECH Sepharose beads: Purvalanol B, VI-16832, and PP58, layered from top to bottom 

respectively.  The kinase inhibitor-bead conjugates were previously equilibrated in high 

salt buffer (50 mM HEPES pH 7.5, 1 M NaCl, 0.5% Triton X-100, 1 mM EDTA, and 1 

mM EGTA).  MIBs columns were sequentially washed with high salt buffer, low salt 

buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 0.5% Triton X-100, 1 mM EDTA, and 1 

mM EGTA), and SDS buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 0.5% Triton X-

100, 1 mM EDTA, 1 mM EGTA, and 0.1% SDS).  Proteins were eluted by boiling 

samples in elution buffer (100 mM Tris-HCl pH 6.8, 0.5% SDS, and 1% B-

mercaptoethanol) for 15 minutes twice.  Dithiothreitol (DTT) was added to a final 

concentration of 5 mM and samples were incubated at 60°C for 25 minutes.  Samples 

were then cooled to room temperature on ice and alkylated by adding iodoacetamide to a 

final concentration of 20 mM and incubating for 30 minutes in the dark at room 

temperature.  Samples were then concentrated in 10K Amicon Ultra centrifugal 
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concentrators (Millipore) followed by methanol and chloroform precipitation of 

proteins.  The final protein pellets were re-suspended in 50 mM HEPES pH 8.0 and 

incubated with trypsin at 37°C overnight.  Residual detergent was removed by three 

sequential ethyl acetate extractions then desalted using Pierce C-18 spin columns 

(Thermo Scientific) according to the manufacturers protocol.  Samples were run on the 

Q-Exactive HF mass spectrometer (see LC/MS/MS analysis).  Kinases were quantified 

by label-free analysis of kinase peptides using the MAXQUANT software package with 

integrated search engine (ANDROMEDA).  Peptides required a minimum length of six 

amino acids and protein identification required at least two unique peptides.  The cutoff 

of global false discovery rate for peptides and proteins was set at 1% and only unique 

peptides were used for label free quantification.  

2.2.3 Trypsin Digestion and Phosphopeptide Enrichment 

     For phosphoproteome analysis, 4 volumes of cold acetone were added to 1 mg of each 

lysate for protein precipitation.  The samples were then reconstituted in 7 M urea, 

reduced, alkylated, and digested overnight with trypsin (Promega). Peptides were 

desalted using Sep-Pak C18 cartridges (Waters) according to manufacturer’s protocol, 

then dried down and stored at -80˚C until further use.  Phosphopeptide enrichment was 

performed using the 200 µl TiO2 Spin Columns from GL Sciences.  Peptide samples were 

reconstituted with 80/20 ACN/lactic acid in 1% TFA, then loaded onto the TiO2 spin 

column prewashed with 80% ACN, 1% TFA. Peptides were washed once with 80/20 

ACN/lactic acid in 1% TFA and twice with 80% ACN, 1% TFA. Retained peptides were 

eluted twice with 20% ACN, 5% NH4OH and acidified < pH 4 with formic acid. All 
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phosphopeptide eluates were desalted using C18 Spin Columns (Thermo Fisher) then 

dried down and stored at -80˚C until further use. 

2.2.4 LC/MS/MS Analysis 

     Each sample was analyzed by LC-MS/MS using an Easy nLC 1000 coupled to a 

QExactive HF equipped with an Easy Spray source (Thermo Scientific). First, samples 

were reconstituted in loading buffer (1% ACN, 0.1% formic acid), and then loaded onto a 

PepMap 100 C18 column (75 µm id × 25 cm, 2 µm particle size) (Thermo Scientific). 

Peptides were separated over a gradient consisting of 5–32% mobile phase B over 60 min 

at a 250 nl/min flow rate, where mobile phase A was 0.1% formic acid in water and 

mobile phase B consisted of 0.1% formic acid in ACN. The QExactive HF was operated 

in data-dependent mode where the 15 most intense precursors were selected for 

subsequent fragmentation. Resolution for the precursor scan (m/z 400–1600) was set to 

120,000 with a target value of 3 × 106 ions. For MS/MS scans with HCD (normalized 

collision energy 27%), resolution was set to 15,000 with a target value of 2 × 104 ions. 

Peptide match was set to preferred, and precursors with unknown charge or a charge state 

of 1 and >7 were excluded. 

2.2.5 Data Analysis 

     Raw data files were processed using MaxQuant software (version 1.5.3.17). Data were 

searched against a human UniProt database (downloaded Aug 2015) using the integrated 

Andromeda search engine. The following parameters were used to identify tryptic 

peptides for protein identification: up to two missed trypsin cleavage sites; 

carbamidomethylation (C) was set as a fixed modification; and oxidation (M), 

deamidation (NQ), and phosphorylation (STY) were set as variable modifications. A 
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false discovery rate (FDR) of 1% was used to filter all results, and match between runs 

was enabled. Bioinformatics analyses were performed with Perseus software (version 

1.5.3.0). Phosphorylation sites with a localization probability of at least 0.70 were 

considered. 

2.2.6 Immunoblot Analysis 

     Cells were harvested and lysed in a modified RIPA (RIPA, no SDS) buffer (150 mM 

NaCl, 9.1 mM Na2HPO4, 1.7 mM NaH2PO4, 1% NP-40, and 0.5% deoxycholic acid; 

adjusted to pH 7.4) and supplemented with 2 mM sodium orthovanadate, 10 mM NaF, 

0.0125 µM calyculin A, and cOmplete Protease Inhibitor Cocktail (Roche Diagnostics, 

U.S.A.).  The lysates were clarified by centrifugation and the protein concentrations were 

normalized using a Bradford assay (with reagents from BIO-RAD).  Samples for gel 

electrophoresis were prepared by adding protein lysates to Laemmli sample buffer (final 

concentration: 0.25 M Tris pH 6.8, 10% glycerol, 5% β-mercaptoethanol, 0.001 µg/mL 

Bromophenol blue) and 30 µg of protein were loaded into each well of an SDS-

polyacrylamide gel for protein separations.  Proteins were transferred to polyvinylidene 

difluoride (PVDF) membranes (BIO-RAD) which were then blocked for 1 hr with 5% 

non-fat dry milk or 5 % BSA dissolved in Tris-buffered saline supplemented with 

Tween-20 (TBS-T).  The membranes were then incubated in primary antibodies at 4° C 

overnight, washed 3 times with TBST, then incubated with anti-mouse / rabbit IgG-HRP 

conjugated secondary antibodies for 1 hr at room temperature.  The membranes were 

rinsed 3 times with TBST then developed using Clarity TM ECL Western Substrate (BIO-

RAD), and imaged using a ChemiDoc TM Touch Imaging System (BIO-RAD).  
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2.2.7 RNA Extraction and cDNA Synthesis 

     Total RNA was extracted and purified using RNeasy® Mini Kit (Qiagen, U.S.A.) 

according to the manufacturer’s protocol.  cDNA was synthesized from reverse 

transcription on 1.5 µg total RNA in a 50 µL reaction using High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, U.S.A.) and iCycler (BIO-RAD, 

U.S.A.), according to the manufacturer’s protocol. 

2.2.8 Quantitative Real-time PCR (qRT-PCR)   

     The cDNA was analyzed by real-time qPCR using TaqManTM Gene Expression 

Assays Kit and TaqManTM 2X Universal PCR Master Mix (Applied Biosystems by Life 

Technologies) on an Applied Biosystems 7500 Fast Real-Time PCR System.  All 

procedures followed company protocol.  

2.2.9 Cell Viability Assay  

     Cell viability was determined by seeding triplicate populations of MYL-R or MYL or 

BIRC6 knockdown MYL-R cells on a 96-well plate at 5x103 cells/well in 100 µL culture 

medium supplemented with various concentrations of kinase inhibitors.  Cells were 

incubated at 37 ºC / 5% CO2 for 72 hours.  20 µL of ResazurinTM (SIGMA) MTS assay 

reagent was added to each well, and the plate returned to the incubator for ~ 2 hrs.  Cells 

were transferred into opaque, black 96-well assay plates (Costar) and fluorescence 

measured at 520 nm using the PHERAstar microplate reader Spectra Max Plus 384 

(BMG Labtech).  Cell viability was assessed using GraphPad Prism SoftWare version 

6.05 (GraphPad Prism, Inc).  The data presented for each cell viability assay is 

representative of three independent experiments performed for each cell line. 
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2.2.10 shRNA Knockdown of BIRC6  

     pLKO.1 lentiviral vectors containing shRNA directed against BIRC6 

(TRCN0000004157, 58, 59, 60, and 61) or a non-targeting shRNA (shCtrl) were 

purchased from the UNC Lenti-shRNA Core Facility.  Lentivirus transduction of MYL-R 

cells with shRNA was done per the protocol supplied by the RNAi Consortium 

(http://www.broadinstitute.org/rnai/public/resources/protocols).  Briefly, MYL-R cells 

were seeded at 5x105 cells/mL in 5 mL growth media containing 8 µg/mL polybrene, and 

incubated with 1 mL of viral shRNA overnight.  Stably transduced cells were selected for 

by exposure to 2 µg/mL puromycin in cell culture (57).  The cells were harvested one 

week after selection and immunoblot analysis performed to determine which shRNA 

strain was most effective in knocking down BIRC6. 

2.2.11 shRNA Knockdown of Lyn 

     pLKO.1 lentiviral vectors containing shRNA directed against Lyn 

(TRCN0000010101, 04, 05, 06, and and 07) or a non-targeting shRNA (shCtrl) were 

purchased from the UNC Lenti-shRNA Core Facility.  Lentivirus transduction of MYL-R 

cells with shRNA was done per the protocol supplied by the RNAi Consortium, and as 

outlined above for BIRC6.  One week after puromycin selection, BIRC6 mRNA and 

protein were analyzed by QRT-PCR and immunoblot respectively. 

2.2.12 shRNA Knockdown of CDK9  

     shRNA directed against CDK9 (TRCN 0000000494, 495, 496, 497, and 498) or a 

non-targeting shRNA (shCtrl) were purchased from Thermo Scientific and packaged into 

pLKO.1 lentiviral vectors by the UNC Vector Core as described above (for BIRC6 and 

Lyn).  Lentivirus transduction of MYL-R cells with shRNA was done per the protocol 
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supplied by the RNAi Consortium.   The transiently transduced MYL-R cells were 

harvested at 48 hrs post-infection and BIRC6 mRNA and protein were analyzed by qRT-

PCR and immunoblot.  Transient transduction was used in order to avoid substantial loss 

in cell viability previously observed upon knockdown of the protein and selection with 

puromycin. 

2.2.13 Caspase-3/7 Activity Assay   

     BIRC6 protein was knocked down in MYL-R cells with shRNA transcripts shBIRC6-

58 and shBIRC6-59.  A third population of the same MYL-R cells was transduced with 

shCtrl.  After selection and stabilization of the transduced cells with puromycin, 3x10 6 

cells from each population were treated with 1 µM imatinib (Selleckchem) and a DMSO 

control, with an additional treatment of parental MYL-R cells with a 1 nM dasatinib 

(control).  After 24 hours, cells were collected from each flask, lysed on ice for 10 

minutes with 300 µL lysis buffer [50 mM HEPES (pH 7.4), 5 mM CHAPS, and 5 mM 

DTT], and lysates clarified by centrifugation at 10,000xg for 10 minutes at 4°C.  Protein 

concentrations were normalized using the Bradford Assay.  In a 96-well plate, 100 µg of 

protein was added to 200 µL of assay buffer [20 mM HEPES (pH 7.4), 0.1% CHAPS, 2 

mM EDTA, 5 mM DTT, and 15 µM Ac-DEVD-AMC caspase-3/7 substrate (Sigma-

Aldrich)] in triplicate, and the plate incubated at room temperature in the dark for 2 

hours.   The fluorescence intensity from liberated AMC (7-amido-4-methylcoumarin) 

was measured using a PHERAstar microplate reader (BMG Labtech, Cary, NC) with 360 

nm excitation and 460 nm emission filters. 
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2.2.14 Detection of Apoptosis by Flow Cytometry 

    Apoptotic cells were detected using the simultaneous dual mitochondrial membrane 

potential detection and caspase activity assay kit, MitoCaspTM (Cell Technology), 

according to the manufacturer’s protocol.  MitoCaspTM is a cell permeable two-color 

stain used to simultaneously detect caspase activity and mitochondrial membrane 

potential (DeltaPsi, ΔΨm) using flow cytometry.  For detection of caspase activity, 

MitoCaspTM uses cell permeable, non-toxic carboxyfluorescein (FAM) labeled 

fluoromethyl ketone (FMK)-peptide inhibitors of caspases that covalently bind to the 

active caspases thereby allowing for analyses by flow cytometry of cells containing 

bound inhibitors.   For ΔΨm detection, MitoCaspTM uses a cell permeable, low toxicity, 

and low ΔΨm independent (nonspecific) binding cationic dye that has a strong 

fluorescent signal in the red region.  Healthy cells accumulate the dye in their 

mitochondria in proportion to the ΔΨm, mostly resulting in high fluorescence intensity.  

Apoptotic cells have compromised ΔΨm that prevents the dye from accumulating in the 

mitochondria thereby yielding low fluorescence signals. 

     Briefly, three separate populations of approximately 6x105 cells/mL BIRC6 

knockdown MYL-R cells (shCtrl, shBIRC6-58, and shBIRC6-59) were treated as 

described in caspase-3/7 activity assay above.  After 24 hours of apoptosis induction, 300 

µL of cells from each cell line was transferred to a 5 mL FACS tube prior to staining for 

flow cytometry analysis as described below.  Appropriate controls were included as 

necessary.  Approximately 6x105 cells/mL of Lyn knockdown MYL-R cells (shCtrl, 

shLyn-01, shLyn-04, shLyn-05, shLyn-06, and shLyn-07) were cultured overnight.  The 
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cells were prepared for flow cytometry analysis as described above for BIRC6 

knockdown cells, with appropriate controls. 

2.2.15 Flow Cytometry 

     Cells were stained with 10 µL each of the 30X ΔΨm dye and 30X Caspase detection 

reagent.  Single-stain controls were included for instrument compensation and 

background correction.  Cells were gently vortexed and incubated for 60 min at 37°C/5 % 

CO2.  They were washed twice with 2 mL of 1X Wash Buffer, and then resuspended in 

300 µL of 1X Wash Buffer before filtering with 30 µm filters (Becton Dickinson, BD, 

Biosciences).  The cells were quickly analyzed by measuring fluorescence using the FL1 

(FITC filter) channel (for caspase detection reagent) and FL2 (Phycoerytherin:PE filter) 

channel (for ΔΨm dye) of a fluorescence-activated BD Fortessa flow cytometer 

(Excitation: 488 nm).  At least 10,000 cells were determined for each sample.  The flow 

cytometry data were analyzed by FlowJo v10 software.  

The percent apoptotic cells represent the fraction of cells in Q3 defined by a loss in 

mitochondrial membrane potential and gain in caspase activity as shown in 

supplementary figure 4 (Figure 2.S4).  

2.2.16 Detection of Cytochrome C Release  

     Cytochrome c release was measured using Cytochrome c Releasing Apoptosis Assay 

Kit (Abcam, U.S.A.), per the manufacturer’s protocol.  Briefly, approximately 1x108 

MYL-R cells were treated with 5 nM ponatinib or DMSO for 24 hours.  Cells were 

harvested and washed with 10 mL cold 1X PBS.  Each cell population was split into two 

and one pair of cell pellets were lysed in immunoblot lysis buffer and protein 

concentrations normalized using the Bradford assay.  Pellets from the second set were 
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resuspended in 1.0 ml of the supplied 1X Cytosol Extraction Buffer Mix containing DTT 

and protease inhibitors (Abcam, USA).  After incubating the cells on ice for 10 minutes, 

they were homogenized in an ice-cold Dounce tissue grinder (Wheaton, USA) as outlined 

in the protocol (Abcam, USA).  This process was repeated with fresh 1.0 ml of 1X 

Cytosol Extraction Buffer Mix due to the large number of cells.  Aliquots of the crude 

lysates were saved before centrifuging the lysates at 10,000xg for 30 min at 4°C and 

collecting the supernatant as Cytosolic Fractions.  The pellets were resuspended by 

vortexing for 10 seconds in 0.2-ml Mitochondrial Extraction Buffer Mix containing DTT 

and protease inhibitors (Abcam, USA) and saved as Mitochondrial Fractions.  Protein 

concentrations for the crude lysates, Cytosolic Fractions, and Mitochondrial Fractions 

were normalized using the Bradford assay and appropriate amounts of 4X Reducing 

Sample Buffer added.  Immunoblot analyses were performed on all lysates. 

2.2.17 Statistics 

     Data are reported as the mean + standard error of the mean (S.E.M); S.E.M. was 

performed on all datasets to determine positive and negative error.  Two-tailed student t-

test was used to make comparisons between groups, and p values below 0.05 at the 95% 

confidence level were considered to be statistically significant.  Calculations were 

performed using GraphPad Prism and Microsoft Excel. 

2.3    Results 
 
2.3.1 BIRC6 mRNA and protein are increased in imatinib-resistant MYL-R cells 

     In a previous study we compared the functional kinomes of MYL and MYL-R cells 

(57) using MIB/MS technology (117) and showed that Lyn was substantially up-

regulated in MYL-R compared to MYL cells (57).   Other studies showed that elevated 
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Lyn activity mediated imatinib resistance in these cells (52,118).  Hence, I further 

examined both the functional kinome and phosphoproteome of these cells to identify 

phosphorylation events that may contribute to imatinib resistance (Figure 2.1).  MYL-R 

cells were treated for 1 hour with 10 nM ponatinib, a dual Bcr-Abl and Lyn inhibitor 

(75,77), or DMSO and MIB/MS kinome profiling and phosphopeptide enrichment were 

performed as described in Materials and Methods.  This concentration of ponatinib was 

sufficient to potently inhibit cell viability as shown in supplementary figure 1 (Figure 

2.S1).  Untreated MYL cells were also included.  The MIB/MS technology can be used to 

assess inhibitor specificity (119).  With short-term (1 hour) treatment, kinases bound by 

ponatinib will no longer be available to bind to inhibitor beads, and therefore show a 

decrease in MIBs capture.  The MIB/MS kinome profiling data showed that, as expected, 

both Bcr-Abl and Lyn were potently inhibited by ponatinib treatment (Figure 2.S2).  

Immunoblot analyses were performed on the same lysates to validate changes in Bcr-Abl 

and Lyn observed from the MIB/MS data (Figure 2.2C).  Short-term (1 hour) ponatinib 

treatment of MYL-R cells suppressed both Bcr-Abl and Lyn activity as determined by 

immunoblots of activating phosphorylation sites on Bcr-Abl, the Bcr-Abl substrates Crkl 

and Cbl, Src Family kinases, and Lyn substrates Crkl and Cbl (Figure 2.2C).  Total 

BIRC6 and Mcl-1 proteins were not affected by short-term treatment (Figure 2.2D).  

Immunoblotting detected both the anti-apoptotic (Mcl-1L) and the pro-apoptotic (Mcl-1S) 

isoforms that result from differential splicing (120).  Only the anti-apoptotic isoform, 

Mcl-1L, was included for simplicity.  Titanium enrichment and phosphopeptide analysis 

revealed ~4000 unique phosphopeptides.  Phosphopeptide abundance was calculated 

using label-free quantification with MaxQuant (121), and normalized to MYL cells.  A 
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number of phosphopeptides determined to be enriched in MYL-R lysates decreased after 

ponatinib treatment (Herring, unpublished data), consistent with the change in Lyn 

activity in these cells (Figure 2.2C).  From the list of phosphorylated proteins that 

followed the Lyn activity pattern, we identified a phosphopeptide 

[LEGDSDDLLEDS(480)DS(482)EEHS(486)R] from the anti-apoptotic protein BIRC6 

that was multiply phosphorylated on serines 480, 482, and 486, proximal to the BIR 

domain (Figure 2.2A).  Quantitation of the data showed that there was ~ a 1.6-fold 

increase in the BIRC6 phosphopeptide in MYL-R lysate compared to MYL lysate, and 

that ponatinib treatment of MYL-R cells reduced phosphopeptide abundance to levels 

close to those observed in MYL cells (Figure 2.2B). 

     I next examined BIRC6 mRNA expression in MYL and MYL-R cells, and compared 

these to another CML cell line, K562.  Approximately equal numbers of MYL, MYL-R, 

and K562 cells were collected, and each cell population split into two parts, one for total 

RNA extraction and the other for immunoblot analysis.  Total RNA was extracted and 

purified using RNeasy Mini Kit (Qiagen), and analyzed by QRT-PCR using BIRC6 and 

Mcl-1 TaqMan probes as described in Materials and Methods.  Similarly, lysates were 

probed for BIRC6 protein by immunoblotting.  Our data showed that BIRC6 and another 

anti-apoptotic protein known to be upregulated in MYL-R cells (56), Mcl-1, mRNA were 

significantly higher (p < 0.05) both in the imatinib-resistant MYL-R and K562 cell lines 

as compared to the imatinib-sensitive MYL cell line (Figure 2.2F).  Similarly, Mcl-1 and 

BIRC6 protein levels were higher in MYL-R and K562 cells respectively (Figure 2.2E). 
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2.3.2 Knockdown of BIRC6 in MYL-R cells increases sensitivity to imatinib  

     Increased levels of BIRC6 have been observed in a number of human cancers and 

shown to correlate with poor prognostic profiles and higher incidences of disease relapse 

(80,82,84,115).  Consistent with this, I found higher levels of BIRC6 in MYL-R cells 

(Figure 2.2E and 2.2F).  Thus, I examined whether imatinib had any effect on BIRC6 

protein.  MYL-R cells were treated for 24 hours with increasing concentrations of 

imatinib.  A separate population of MYL-R cells was treated with 10 nM ponatinib.  

Immunoblotting showed that imatinib treatment was effective in reducing BIRC6 protein 

only in the micro-molar range with 50% reduction at 10 µM.  Phospho-Bcr-Abl and the 

Bcr-Abl substrate, phospho-Crkl, were similar reduced.  Ponatinib, on the other hand, 

reduced BIRC6 protein by 60% and almost completely reduced phospho-Bcr-Abl and 

phospho-Crkl (Figure 2.S3A).  Based on the above data, I investigated whether imatinib-

resistance was dependent on BIRC6 expression in MYL-R cells.   I infected MYL-R cells 

with lentiviral particles containing five independent anti-BIRC6 shRNAs or shCtrl.  

Stably transduced cells were selected with puromycin, and BIRC6 protein levels were 

measured by immunoblotting (Figure 2.3A).  These analyses showed that shRNA 

constructs shBIRC6-58 and shBIRC6-59 were the most efficient, reducing BIRC6 protein 

by approximately 90%.  Thus all subsequent experiments used these constructs to achieve 

BIRC6 knockdown.  Knockdown of BIRC6 did not affect Mcl-1 or total Lyn protein 

levels in MYL-R cells (Figure 2.3A and 2.3E).  Further immunoblot analysis showed 

that while there was not a substantial decrease in either phospho-Crkl or total Crkl in 

BIRC6 knockdown MYL-R cells, phospho-Bcr-Abl and total Bcr-Abl were substantially 

reduced (Figure 2.S3B).  This was consistent with a previous study that showed 
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enhanced degradation of Bcr-Abl upon disruption of survivin (BIRC5) in K562 cells 

(73).  

     To examine the effects of BIRC6 knockdown on imatinib resistance, I first examined 

the effects of imatinib on cell viability using an MTS assay.  As expected, MYL and 

MYL-R cells showed substantial differences in their imatinib sensitivities with IC50 

values of ~ 0.2 µM and ~3.0 µM for MYL and MYL-R cells respectively  (Figure 2.3B).  

Next, BIRC6-knockdown MYL-R cells were incubated with increasing concentrations of 

imatinib for 72 hours and MTS assay performed.  BIRC6 knockdown resulted in ~15-fold 

shift (IC50 ~0.2 µM) in the imatinib dose-response curve and increased imatinib 

sensitivity to levels similar to that observed for MYL cells (IC50 ~0.2 µM) (Figure 

2.3C).  Importantly, increases in imatinib sensitivity resulting from BIRC6 knockdown 

were consistent with the level of BIRC6 knockdown achieved by the individual shRNAs 

with shBIRC6-59 resulting in greater sensitivity, further emphasizing BIRC6’s role in 

mediating imatinib resistance in MYL-R cells.  

     I next examined whether the effect of imatinib on viability of BIRC6 knockdown cells 

was specifically due to the induction of apoptosis.  The stable BIRC6-knockdown MYL-

R cell lines were treated with 1 µM imatinib for 24 hours and caspase-3/7 activity assays 

performed as described in Materials and Methods (Figure 2.3D).  Data from the 24-hour 

treatment were reported because caspase-3/7 activity was determined to be maximal at 

this time-point.  MYL-R parental cells (positive control) were treated with dasatinib, a 

dual Bcr-Abl and Src family kinase inhibitor known to induce caspase-3/7 activity in this 

cell line (57).  BIRC6 knockdown (shBIRC6-58 and -59) caused ~ 2-fold increase in 

caspase-3/7 activity compared to shCtrl.  Compared to shCtrl, knockdown of BIRC6 
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(shBIRC6-58 and -59) significantly (p < 0.05) increased MYL-R sensitivity to imatinib 

(Figure 2.3D).  Treatment of parental MYL-R cells and BIRC6 knockdown control cells 

with imatinib showed comparable caspase-3/7 activation.   These observations 

demonstrate that BIRC6 reduces apoptosis in MYL-R cells treated with imatinib. 

     To further characterize the response of MYL and MYL-R cells to imatinib, I treated 

cells with 1 µM imatinib and measured caspase-3/7 activities at 0, 6, 12, 24, 48 and 72-hr 

time points (Figure 2.S3C).  The MYL cells yielded an early (~12 hours) peak response 

to imatinib that gradually subsided.  On the other hand, MYL-R cells showed a slow, 

gradual response to imatinib with a lower peak response at about 48 hours.   Moreover, 

consistent with lower levels of BIRC6 in MYL cells, MYL cells had a higher basal 

caspase-3/7 activity than the MYL-R cells (Figure 2.S3C). 

     MYL-R cells express increased amounts of the anti-apoptotic protein Mcl-1 relative to 

MYL cells (56,57).  Therefore, I investigated whether the increase in imatinib sensitivity 

observed in BIRC6 knockdown MYL-R cells (Figure 2.3C) was due to concomitant loss 

of Mcl-1 protein.  Separate populations of the stable BIRC6-knockdown MYL-R cell 

lines were treated with DMSO or imatinib (300 nM or 1 µM) for 24 hrs.  MYL-R cells 

expressing shCtrl were similarly treated and immunoblot analyses performed (Figure 

2.3E).  The data showed that treatment of BIRC6-knockdown MYL-R cells with imatinib 

(300 nM or 1 µM) had no effect on Mcl-1 protein, further suggesting that the anti-

apoptotic effects of BIRC6 in these cells are independent of Mcl-1. 

     We have also observed that MYL-R cells are resistant to cytotoxic nucleoside analogs 

like gemcitabine and ARA-C (Data not shown).  Therefore, I examined whether BIRC6 

knockdown affected sensitivity of MYL-R cells to gemcitabine using an MTS assay 
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(Figure 2.3F).  BIRC6-knockdown resulted in ~13-fold shift in the gemcitabine dose-

response curve and significantly increased (p < 0.05) gemcitabine sensitivity (shCtrl, 

IC50 ~ 120 nM; shBIRC6-58, IC50 ~ 9 nM; shBIRC6-59, IC50 ~ 9 nM).  Gemcitabine 

did not achieve absolute cell death under these experimental conditions likely due to its 

cytostatic mechanism of action (122).  Thus, BIRC6 mediates resistance to multiple anti-

cancer drugs including targeted inhibitors and cytotoxic compounds.  

2.3.3 Lyn kinase regulates BIRC6 expression 

     MYL-R cells are characterized by the overexpression and activation of Lyn kinase 

which is important for their survival (52,56,57).  Lyn activity is inhibited by dasatinib, a 

small molecule inhibitor of Bcr-Abl and other tyrosine kinases (95,96).  To examine if 

Lyn regulates BIRC6 expression, MYL-R cells were treated with dasatinib (1 or 5 nM) 

for 24 hours and BIRC6 mRNA and protein were analyzed using QRT-PCR and 

immunoblotting respectively (Figure 2.4A and 2.4B).   Whereas dasatinib significantly 

increased (p < 0.05) BIRC6 mRNA in MYL-R cells, BIRC6 protein was substantially 

reduced (Figure 2.4A and 2.4B).  Similarly, treatment of MYL-R cells with ponatinib, a 

more selective inhibitor of Bcr-Abl and Lyn (123,124) (Figure 2.S2), recapitulated the 

effects on BIRC6 protein (Figure 2.4C).  Ponatinib substantially inhibited Lyn activity as 

measured by autophosphorylation of Src family kinases including Lyn (PY416) (Figure 

2.4C), and in parallel, reduced both BIRC6 and Mcl-1.  To further validate the 

importance of Lyn in regulating BIRC6, I examined the effects of Lyn-knockdown in 

MYL-R cells.  I tested five lentiviral Lyn targeted shRNA oligonucleotides and a non-

targeting shRNA (shCtrl).  Aliquots were harvested from each of the cell lines, and QRT-

PCR and immunoblot analyses performed (Figure 2.4E and 2.4D).  Anti-Lyn shRNA 
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constructs shLyn-01, shLyn-05, and shLyn-06 were the most efficient in knocking down 

Lyn as determined by immunoblotting, reducing Lyn protein by 80-90%.  A substantial 

reduction in BIRC6 protein was observed in response to Lyn knockdown (Figure 2.4D).  

By contrast, shRNA knockdown of Lyn did not affect Mcl-1 protein (Figure 2.4D).  Loss 

of BIRC6 protein was not mediated by changes in gene expression as mRNA levels were 

significantly (p < 0.05 for shLyn-05 and -06) elevated in response to Lyn knockdown 

(Figure 2.4E).  Similarly, Mcl-1 mRNA levels were significantly increased in response 

to Lyn knockdown.  These data suggest that Lyn regulates BIRC6 protein at the 

translational or post-translational level. 

     Since Lyn inhibition or knockdown reduced BIRC6 protein levels in MYL-R cells 

(Figure 2.4C and 2.4D), I investigated whether this was sufficient to increase caspase-

3/7 activity in these cells.  Lyn knockdown cells were harvested and caspase-3/7 activity 

was measured (Figure 2.4F).  Lyn knockdown resulted in significant increase (p < 0.05) 

in caspase-3/7 activity in MYL-R cells.  Cells expressing the more efficient Lyn-

knockdown oligonucleotides (shLyn-05 and shLyn-06), showed a ~5-fold increase in 

caspase-3/7 activity.  I next examined if a change in the mitochondrial membrane 

potential contributed to the increase in caspase-3/7 activity in the Lyn-knockdown cells.  

Approximately 1x106 of the Lyn-knockdown or control MYL-R cells were analyzed for 

mitochondrial membrane potential and caspase-3/7 activity using MitoCaspTM (Figure 

2.S4A).  Lyn knockdown lowered the mitochondrial membrane potential and increased 

caspase-3/7 activity.  Consistent with the Lyn knockdown immunoblot data, the best anti-

Lyn oligonucleotides yielded the largest reduction in mitochondrial membrane potential 

and increase in caspase-3/7 activity.  Furthermore, the most efficient anti-Lyn shRNA 
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construct (shLyn-06) yielded the highest percent of apoptotic cells as determined by the 

fraction of cells in quadrant 3 (Q3) (Figure 2.S4B).  Based on the above observations, I 

investigated whether inhibiting Lyn with ponatinib would affect the basal level of 

caspase-3/7 activity.  MYL-R cells were treated with ponatinib (1 nM or 5 nM or 10 nM) 

or 0.1% DMSO for 24 hours and caspase-3/7 activity assays performed (Figure 2.4G).  

Compared to DMSO, there was significant increase (p < 0.05) in basal caspase-3/7 

activity with ~ 2-fold increase upon treatment with 1 nM ponatinib and ~ 8-fold increase 

upon treatment with 5 nM or 10 nM ponatinib.  These observations support the 

importance of Lyn-mediated regulation of BIRC6 in MYL-R cells.    

     I next investigated if the observed reduction in BIRC6 protein levels in MYL-R cells 

upon Lyn inhibition or Lyn knockdown was through effects on BIRC6 protein stability.  

Two MYL-R cell populations infected with anti-Lyn shRNAs (shLyn-01 and shLyn-04) 

(Figure 2.5A) were selected and treated with cycloheximide (50 µg/mL).  Cells were 

harvested at 0, 2, 4, 6, 24, and 48 hours after cycloheximide treatment, and 

immunoblotted for BIRC6 (Figure 2.5B).  I observed that BIRC6 protein half-life was 

approximately the same (~24 hours) in shCtrl-infected MYL-R cells as that in the 

parental MYL cells (Figure 2.5B and 2.5C).  By contrast, Lyn knockdown caused a 

substantial reduction in BIRC6 protein stability, with the protein half-life reduced ~4-fold 

to approximately 6 hours (Figure 2.5B and 2.5D).  

2.3.4 CDK9 regulates BIRC6 mRNA levels 

     We previously showed that increased Lyn activity correlated with elevated Mcl-1 

expression in MYL-R cells (56).  Other studies demonstrated that Cyclin-dependent 

kinase 9 (CDK9), a critical component of the elongation factor complex P-TEFb, is 
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required for transcription of Mcl-1 (90,97).  CDK9 regulates RNA Polymerase II (RNA 

Pol II) by phosphorylating it, thereby promoting transcription elongation (125).  Cancer 

cells require continuous activity of RNA Pol II to suppress oncogene-induced apoptosis 

(126,127).  Small molecule inhibitors of CDK9 have been shown to induce apoptosis in 

cancer cells by suppressing Mcl-1 (90,97).  To investigate if CDK9 regulates BIRC6, I 

treated MYL-R cells with the CDK9 inhibitors dinaciclib, flavopiridol, and a novel 

CDK9 inhibitor (HY-16462), and compared Mcl-1 and BIRC6 expression.  Whereas 

dinaciclib and flavopiridol target multiple CDKs (126,128), HY-16462 is reported to be a 

highly specific CDK9 inhibitor (Novartis, data not shown).  All three CDK9 inhibitors 

significantly (p < 0.05) reduced BIRC6 mRNA in a dose-dependent manner with the 

highest concentrations yielding  >5-fold reduction as determined by QRT-PCR (Figure 

2.6A).  Mcl-1 mRNA was similarly reduced.  Immunoblot analysis revealed that the 

highest concentrations of CDK9 inhibitors strongly reduced Mcl-1 protein as previously 

reported (90,97,129) (Figure 2.6B).  Consistent with loss in mRNA, I observed a 

decrease in BIRC6 protein after treatment with CDK9 inhibitors.  The decrease in BIRC6 

protein was modest compared to Mcl-1 but likely reflects differences in protein half-life.  

To further confirm the role of CDK9 in regulating BIRC6 expression, I used shRNA-

mediated knockdown of CDK9 in MYL-R cells.  Knockdown of CDK9 substantially 

reduced Mcl-1 protein levels (Figure 2.6C), but had no effect on BIRC6 (Figure 2.6D).  

These data demonstrate differential regulation of BIRC6 and Mcl-1 by CDK9 and 

suggest that specific inhibition of CDK9 is not sufficient to decrease BIRC6 protein 

levels.     
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2.3.5   Lyn regulates caspase-mediated degradation of BIRC6 in MYL-R cells    

     BIRC6 is degraded by caspases in response to cell death signals (81).  I observed 

multiple fragments of BIRC6 after treatment of MYL-R cells with ponatinib (10 nM, 

24hr) or dasatinib (1 nM, 24hr), including formation of a prominent ~52-kDa band 

(Figure 2.7A).  This fragment was determined to contain the N-terminal region of BIRC6 

as confirmed by the location of the antibody epitope and peptide competition experiment 

(Figure 2.7A and data not shown).  Interestingly, the formation of the BIRC6 ~52-kDa 

immunoreactive band was significantly reduced in MYL-R cells co-treated with a pan-

caspase inhibitor, Z-VAD-FMK (Figure 2.7A), indicating that the pan-caspase inhibitor 

rescued BIRC6 loss, further emphasizing the role played by caspases in BIRC6 

degradation.  Others previously reported that the onset of apoptosis can lead to BIRC6 

degradation by proteasome and caspase cleavage (106).  However, addition of a 

proteasome inhibitor (MG-132) had no effect on BIRC6 degradation in ponatinib-treated 

cells (Figure 2.7A).  The data suggest that caspases are primarily involved in BIRC6 

degradation following Lyn inhibition. 

     Previous studies showed that increased cell proliferation was accompanied with 

elevated tyrosine phosphorylation inside mitochondria mediated by activated Src family 

kinases (67).  Additionally, active Lyn was reported to accumulate in the mitochondrial 

inter-membrane space where it complexes with a multi-protein complex (67).  Hence, I 

investigated whether Lyn inhibition would trigger mitochondrial events leading to 

caspase activation and loss in BIRC6 protein.  MYL-R cells were treated with 5 nM 

ponatinib or 0.1% DMSO and cytochrome c protein release analyzed by immunoblotting 

(Figure 2.7C).  Ponatinib treatment resulted in 70% loss in Src family kinases activation 
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(PY416) and 30% loss in BIRC6 protein (Figure 2.7B).  Total Lyn was increased by 

80%.  The appearance of cleaved PARP in whole cell lysates from ponatinib-treated but 

not DMSO-treated cells confirmed the induction of apoptosis (Figure 2.7B).  

Immunoblot analysis of cytochrome c was performed on crude lysate, cytosolic, and 

mitochondrial fractions.  Cytochrome c bands were normalized to the respective DMSO 

fractions.  Lysates from MYL-R cells treated with ponatinib showed a 2.7-fold increase 

in cytosolic cytochrome c (Figure 2.7C).  These data suggest that Lyn reduces BIRC6 

degradation by regulating mitochondrial events that are key to caspase activation.  

2.4 Discussion 
 
     Acquired resistance to apoptosis is an important defining characteristic of many drug 

resistant cancers (52,117,130,131).  While there is considerable evidence supporting 

BIRC6’s role in mediating drug resistance in several human cancers, the mechanisms 

regulating its expression and stability are not well understood (82,84,105,112-

115,130,131).  I used a model of imatinib-resistance in CML cells to investigate the 

molecular determinants of acquired resistance.  Phosphoproteomics of MYL and MYL-R 

cells identified BIRC6 as a potential regulator of imatinib resistance in MYL-R cells.  

Our data demonstrate three important observations: BIRC6 mediates imatinib resistance 

in MYL-R cells; Lyn activity regulates BIRC6 expression and stability; and inhibition or 

knockdown of Lyn results in caspase-mediated degradation of BIRC6. 

      In our MYL-R model of imatinib-resistant CML, I observed Lyn activity to be 

correlated with increased phosphorylation, expression, and stability of BIRC6.  Lyn 

inhibition with ponatinib resulted in loss of Mcl-1 protein, release of cytochrome c from 

mitochondria, caspase activation, and degradation of BIRC6 protein.  Lyn depletion with 
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shRNA also led to loss in BIRC6 protein.  Regulation of BIRC6 degradation has been 

described to occur via various mechanisms including caspase-3, -6, -7, -8, and -9 

cleavage (81).  I observed that induction of apoptosis correlated with both the loss of full 

length BIRC6 and the formation of a prominent N-terminal BIRC6 fragment by 

immunoblot analysis.  Use of the pan-caspase inhibitor, Z-VAD-FMK, prevented both 

loss of full length BIRC6 and fragment formation indicating that caspase activation was 

required for BIRC6 degradation in response to Lyn inhibition.  I did not observe any role 

for proteasome-mediated degradation of BIRC6 in response to Lyn inhibition as 

suggested by the failure of the proteasome inhibitor, MG-132, to rescue BIRC6 

degradation.  

     Our lab previously made a link between Lyn activity and increased Mcl-1 (56).  In the 

present study, I show that BIRC6-knockdown rendered MYL-R cells several-fold more 

sensitive to imatinib and gemcitabine, two compounds used in cancer therapy.  The 

increase in imatinib sensitivity after BIRC6 knockdown occurred without concomitant 

loss of Mcl-1.  This was surprising since multiple studies have suggested that Mcl-1 is 

necessary for mediating drug resistance in cancers including leukemias 

(56,90,93,94,97,129).  Mcl-1 and CDK9 inhibitors, however, have had limited success in 

cancer therapy (100,101,126,132-134).  My data show that BIRC6 exerts a dominant role 

in mediating imatinib resistance independently of Mcl-1.     

     My study suggests that BIRC6 expression and stability in MYL-R cells is dependent 

on Lyn and that elevated BIRC6 levels promotes cell survival.  The phosphorylated 

peptide derived from BIRC6 correlated with Lyn activity, exhibiting increased levels in 

MYL-R relative to MYL cells and decreased levels after ponatinib treatment.  Notably, 
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short-term ponatinib treatment did not affect total BIRC6 protein suggesting that the 

change in BIRC6 phosphopeptide abundance was largely dependent on changes in kinase 

signaling.  Interestingly, this peptide contains consensus caspase-8/9 and -3/7 cleavage 

sites that overlap with potential consensus phosphorylation motifs of certain 

serine/threonine kinases including CK2, PLK1, Aurora A kinase, and others (66,135-

139).  Treatment of MYL-R cells with a CK2 inhibitor caused a substantial reduction in 

BIRC6 protein (Figure 2.S5A).  Furthermore, BIRC6 immunoprecipitation experiments 

showed that CK2 co-precipitated with BIRC6 (Figure 2.S5B and 2.S5C) as reported 

earlier (140).  CK2 phosphorylation of caspase substrates in the vicinity of caspase 

recognition motifs protects proteins from caspase cleavage (66).  Interestingly, the ~52-

kDa N-terminal degradation fragment observed in our studies (Figure 2.7A) is consistent 

with the predicted molecular weight of the product of caspase cleavage near the identified 

phosphorylation sites proximal to the BIR domain.  Cleavage of BIRC6 in the N-terminal 

region inactivates its ability to bind and inhibit caspases (81).  Thus, phosphorylation of 

BIRC6 by CK2 may prevent BIRC6 degradation by caspases.  While previous studies 

suggested that Lyn regulates CK2 activity in imatinib-resistant CML cells (65), I did not 

observe differences in CK2 activity in MYL and MYL-R cells as measured by the 

phosphorylation of validated CK2 substrates (141), CK2β and EEF1D (Figure 2.S5D).  

It remains to be determined if CK2 regulates BIRC6 stability through phosphorylation of 

these sites. 

    In summary, my data demonstrate that BIRC6 is enriched in imatinib-resistant CML 

cells (MYL-R), and that knockdown of BIRC6 was sufficient to increase imatinib 

sensitivity independent of Mcl-1.  I showed that CDK9 inhibition suppressed both BIRC6 
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and Mcl-1 mRNA and protein levels.  The increase in Mcl-1 protein caused by dinaciclib 

(10 nM, 24 hours) was likely due to activation of compensatory signaling mechanisms 

but was not pursued further in the present study.  I next used anti-CDK9 shRNAs to test 

whether CDK9 specifically regulates BIRC6.  Whereas Mcl-1 was reduced by >95% 

upon CDK9 knockdown, there was no effect on BIRC6 protein suggesting that CDK9 

does not regulate BIRC6 protein.  These data indicate that the effects observed with 

CDK9 inhibitors were likely due to off-target effects rather than specific inhibition of 

CDK9.  CDK9 inhibitors, including those used in this study, have been reported both by 

their manufacturers and in the literature to have poor specificity for CDK9 (126,128,142).  

Thus, CDK9 inhibitors are unlikely to overcome imatinib resistance mediated by BIRC6.  

Taken together, these data also indicate that targeting Mcl-1 directly (Obatoclax 

Mesylate) or indirectly through CDK9 inhibition will have little effect on drug resistance 

in cells expressing high levels of BIRC6.  Although there are currently no direct 

inhibitors of BIRC6, targeting Lyn or kinases that maintain BIRC6 expression or stability 

may have therapeutic potential in treating drug resistant CML or other cancers.   
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Figure 2.1. Combined MIB/MS and phosphopeptide enrichment strategy for 
studying proteome dynamics in CML cells. 

MIB/MS was used to study kinome dynamics in MYL, MYL-R, and MYL-R cells treated 
with ponatinib (10 nM, 1 hr.).  In parallel, phosphoproteomics was used to study global 
phosphorylation differences from the same cells.  Identification of peptides was 
accomplished by LC-MS/MS and label-free quantification (LFQ) of mass spectral data 
was performed using MaxQuant and the integrated ANDROMEDA search engine (121). 
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Figure 2.2. BIRC6 mRNA, protein, and BIRC6 phosphopeptide are higher in 
imatinib resistant MYL-R cells.   

(A) Sequence and position of the BIRC6 phosphopeptide.  (B) Short-term ponatinib 
treatment of MYL-R cells reduced BIRC6 phosphopeptide.  The BIRC6 phosphopeptide 
was isolated from cell lysates of MYL, MYL-R, and MYL-R cells treated with 10 nM 
ponatinib or 0.1% DMSO for 1 hour.  Label-free quantification of mass spectral data was 
done using MaxQuant and normalized to MYL.  (C and D) Short-term ponatinib 
treatment suppressed Bcr-Abl and Lyn signaling in MYL-R cells.  Total BIRC6 and Mcl-
1 proteins were not affected.  Immunoblot analyses of the same lysates were performed to 
validate changes in Bcr-Abl and Lyn observed from the MIB/MS data.  (E and F) BIRC6 
mRNA and protein were elevated in MYL-R cells compared to MYL and K562 cells.   
QRT-PCR and immunoblot analyses were performed as described in Materials and 
Methods on parental MYL, MYL-R, and K562 CML cell lines to examine BIRC6 
expression.  * Represents p < 0.05.  Data are representative of three independent 
experiments.   
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Figure 2.3.  BIRC6 mediates drug resistance in MYL-R cells independently 
of Mcl-1.    

(A) Anti-BIRC6 shRNAs were used to knock down BIRC6 in MYL-R cells.  
Immunoblot analyses showed that shBIRC6-58, -59, and -61 yielded efficient knockdown 
without affecting Mcl-1.  (B) MYL-R cells were resistant to imatinib (IC50 ~3.0 µM) as 
compared to MYL cells (IC50 ~0.2 µM), and (C) BIRC6 knockdown sensitized MYL-R 
cells to imatinib (IC50 ~0.2 µM).  MYL, MYL-R, and BIRC6 knockdown MYL-R cells 
were cultured in triplicate in 96-well plates with increasing concentrations of imatinib for 
72 hours, and cell viability was assessed by MTS assay.  (D) Treatment of BIRC6 
knockdown MYL-R cells with imatinib showed elevation in caspase-3/7 activity. BIRC6 
knockdown MYL-R cells were treated with 1 µM imatinib for 24 hours.  Parental MYL-
R cells were treated with DMSO or 1 nM dasatinib or 1 µM imatinib.   Caspase-3/7 
activity was measured using a fluorogenic substrate as described in Materials and 
Methods.  (E) BIRC6 knockdown or imatinib treatment in MYL-R cells did not affect 
total Lyn or total Mcl-1 protein levels. BIRC6 knockdown MYL-R cells were treated 
with DMSO or 300nM or 1 µM imatinib (IM) for 24 hours, and immunoblot analyses 
used to measure total Lyn and total Mcl-1 proteins.  (F) Knockdown of BIRC6 in MYL-R 
cells increased sensitivity to gemcitabine.  BIRC6 knockdown MYL-R cells were 
cultured as described in (C) with increasing concentrations of gemcitabine for 72 hours 
and cell viability determined by MTS assay.  The data presented in this figure are 
representative of at least three independent experiments, and * represents p < 0.05. 
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Figure 2.4.  Lyn kinase regulates BIRC6 expression.   

(A) Treatment of MYL-R cells with dasatinib significantly increased BIRC6 and Mcl-1 
mRNA levels as determined by QRT-PCR.  MYL-R cells were treated with dasatanib (1 
nM or 5 nM, 24 hours) and BIRC6 and Mcl-1 mRNA levels measured by QRT-PCR.  (B) 
Immunoblotting of lysates from the same cells showed that dasatinib treatment reduced 
BIRC6 protein in MYL-R cells in a dose-dependent manner.  (C) Ponatinib treatment of 
MYL-R cells recapitulated BIRC6 protein reduction observed with dasatinib.  MYL-R 
cells were treated for 24 hours with increasing concentrations of ponatinib and 
immunoblot analyses used to measure BIRC6, Mcl-1, Lyn, and phospho-Src family 
(Y416) protein levels.  Whereas BIRC6, phospho-Src family (Y416), and Mcl-1 were 
reduced in a dose-dependent manner, total Lyn was increased.   (D) Whereas shRNA 
knockdown of Lyn in MYL-R cells substantially reduced BIRC6 protein, but not Mcl-1, 
(E) both BIRC6 and Mcl-1 mRNA levels were significantly increased by the more 
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efficient Lyn knockdown shRNA constructs (shLyn-05 and -06).  MYL-R cells were 
infected with lentiviral particles containing shRNA directed against Lyn.  Upon selection 
of stably transduced cells, BIRC6 and Mcl-1 protein and mRNA levels were measured by 
immunoblotting and QRT-PCR.  (F) Lyn knockdown in MYL-R cells was sufficient to 
increase caspase-3/7 activity.  Data was normalized to shCtrl.  (G) Ponatinib treatment of 
MYL-R cells significantly increased caspase-3/7 activity.  MYL-R cells were treated with 
1 nM, 5 nM, or 10 nM ponatinib or 0.1% DMSO for 24 hours and caspase-3/7 activity 
measured.  The data are representative of three independent experiments, and * represents 
p < 0.05. 
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Figure 2.5.  Lyn knockdown reduced the half-life of BIRC6 protein in MYL-R cells.   

(A) MYL-R cells were infected with lentiviral particles containing anti-Lyn shRNA 
constructs (shLyn-01 and -04), and Lyn knockdown confirmed by immunoblot analysis. 
(B) Lyn knockdown in MYL-R cells reduced the half-life of BIRC6 4-fold (~24 hrs in 
shCtrl cells to ~ 6 hrs in Lyn knockdown cells).  Lyn knockdown MYL-R cells were 
incubated with 50 µg/mL cycloheximide (CHX) in a time-course manner and BIRC6 
protein determined by immunoblotting.  (C) BIRC6 half-life in MYL cells was ~24 
hours.  MYL cells were treated with CHX as in (B) and BIRC6 protein determined by 
immunoblotting.  (D) GraphPadTM Prism was used to plot change in BIRC6 stability over 
time upon Lyn-knockdown in MYL-R cells as described in (B).  The BIRC6 stability 
data presented here are representative of two independent experiments. 
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Figure 2.6.  CDK9 regulates BIRC6 mRNA levels.   

(A) Inhibition of CDK9 with dinaciclib, HY-16462, and flavopiridol significantly 
reduced BIRC6 and Mcl-1 mRNA levels in a dose-dependent manner.  MYL-R cells 
were treated with dinaciclib (10 or 100 nM), HY-16462 (250 nM or 1 µM), and 
flavopiridol (250 nM or 1 µM) for 24 hours and BIRC6 and Mcl-1 mRNA measured by 
QRT-PCR.  (B) Immunoblot analyses of lysates from the same conditions in (A) above 
had no substantial effect on BIRC6 protein.  By contrast, Mcl-1 protein levels were 
reduced in a dose-dependent manner except with 10 nM dinaciclib that showed a 
substantial increase in Mcl-1 protein.  (C and D) shRNA knockdown of CDK9 in MYL-R 
cells and immunoblot analysis recapitulated the data obtained in (B) above.  The data 
presented here are representative of three independent experiments.  * Represents p < 
0.05. 
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Figure 2.7.  Lyn regulates caspase-mediated degradation of BIRC6 in MYL-R cells.   

(A) Caspase inhibitors, but not proteasome inhibitors inhibited ponatinib-mediated 
BIRC6 degradation.  MYL-R cells were incubated with 10 nM ponatinib or 0.1% DMSO 
and/or a pan-caspase inhibitor (Z-VAD-FMK 10 or 20 µM) and/or the proteasome 
inhibitor MG132 (300 nM) for 24 hours and BIRC6 protein examined by 
immunoblotting.  Inhibition of Lyn (or Src family kinases) was validated by the loss in 
phospho-Src family (Y416).  (B) Inhibition of Lyn in MYL-R cells caused a 30% 
reduction in BIRC6 protein and induced PARP cleavage as determined by immunoblot 
analyses.  MYL-R cells were incubated with 5 nM ponatinib or 0.1% DMSO for 24 hours 
and BIRC6 protein measured.  Induction of apoptosis was demonstrated by PARP 
cleavage.  (C) Inhibition of Lyn in MYL-R cells caused cytochrome c release from 
mitochondria.  MYL-R cells were treated with 5 nM ponatinib or 0.1% DMSO for 24 
hours and mitochondria enriched using the Cytochrome C Releasing Apoptosis Assay 
Kit.  Cytochrome c release was measured by immunoblotting cytosolic and mitochondrial 
fractions.  Erk2 and Hsp60 were used as cytosolic and mitochondrial markers 
respectively.  The data presented here are representative of three independent 
experiments. 
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Figure 2.S1.  Ponatinib is effective against imatinib-resistant CML cells (MYL-R). 

MYL and MYL-R cells were cultured in triplicate in 96-well plates with increasing 
concentrations of ponatinib for 72 hours, and cell viability was assessed by MTS assay. 
MYL and MYL-R showed no difference in ponatinib sensitivity with IC50 values of  
~1.3 nM and ~1.2 nM respectively. 
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Figure 2.S2.  MIB/MS analysis of lysates from MYL-R cells treated with ponatinib 
revealed select kinase inhibition.   

MYL-R cells were treated with 10 nM ponatinib or DMSO for 1 hour and kinome 
changes analyzed by MIB/MS in two independent experiments.  A total of ~ 230 kinases 
were identified in each of the two experiments.  Kinases were quantified by label-free 
quantification using the MAXQUANT software package with integrated search engine 
(ANDROMEDA).  Data is representative of results from the two experiments, and 
represent changes in the kinase abundance as determined from ratios of ponatinib/DMSO.  
Ratios are defined by the dashed lines where <1 and >1 respectively denote decreased 
and increased MIB binding of kinase in lysates from ponatinib-treated versus DMSO-
treated MYL-R cells. 
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Figure 2.S3.  Low doses of imatinib have no effect on BIRC6. 

(A)  Ponatinib more effectively suppresses Bcr-Abl and Lyn signaling, and BIRC6 
protein than imatinib.  MYL-R cells were treated with increasing concentrations of 
imatinib or 10 nM ponatinib or 0.1% DMSO for 24 hours and immunoblot analyses 
performed to examine the effects on BIRC6, phospho-Bcr-Abl, and Bcr-Abl/Lyn 
substrate, Crkl.  (B)  BIRC6 knockdown in MYL-R cells did not affect either phospho-
Crkl or total Crkl.  By contrast, BIRC6 knockdown caused substantial decrease in both 
phospho-Bcr-Abl and total Abl.  (C) MYL-R cells had delayed activation of caspase-3/7 
in response to imatinib treatment relative to MYL cells.  MYL and MYL-R cells were 
treated with 1 µM imatinib in a time-course manner: 0, 6, 12, 24, 48 and 72 hours.  
Treatment was scheduled so that all cells were harvested at the 72-hr time-point.  
Caspase-3/7 activity was measured for each condition using a fluorogenic assay.  MYL 
cells showed a two-fold higher basal caspase-3/7 activity relative to MYL-R cells. 
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Figure 2.S4.  Lyn knockdown in MYL-R cells lowered mitochondrial membrane 
potential and increased caspase-3/7 activity.    

(A) Lyn knockdown resulted in lower membrane potential and increased caspase-3/7 
activity in MYL-R cells as determined by flow cytometry.  Knockdown of Lyn was 
achieved by infecting MYL-R cells with lentiviral particles containing shRNA directed 
against Lyn.  Fluorescence intensities for mitochondrial membrane potential and caspase-
3/7 activity for Lyn knockdown MYL-R cells (shCtrl, shLyn-01, shLyn-04, shLyn-05, 
shLyn-06, and shLyn-07) were measured using the MitoCaspTM dual sensor.  (B) The 
most efficient anti-Lyn shRNA construct (shLyn-06) yielded the highest percent of 
apoptotic cells as determined by the fraction of cells in quadrant 3 (Q3).  
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Figure 2.S5.  CK2 regulates BIRC6 protein. 

(A) CK2 inhibition substantially reduced BIRC6 protein. MYL-R cells were treated with 
CX-4945, a small molecule inhibitor of CK2, in a time-course manner and cells harvested 
after 24, 48, and 72 hours.  Immunoblot analyses were performed to examine BIRC6 
protein and activation level of a validated CK2 substrate (phospho-IF2β).  (B) BIRC6 
was immunoprecipitated from lysates of MYL-R cells.  The supernatant and beads-only 
lanes showed no BIRC6 protein as determined by immunoblot analysis, and (C) CK2 co-
immunoprecipitated with BIRC6.  CK2α was present in the BIRC6 IP but not in the 
beads-only control.  (D) Baseline CK2 activity is the same in both MYL and MYL-R 
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cells.  MYL and MYL-R cells were lysed and immunoblot analyses performed to 
determine the activity level of CK2 (phospho-CK2β) and the level of active CK2 
substrate (phospho-EEF1D).  The data showed that CK2 activity was the same in MYL 
and MYL-R cells. 
 
 
 
 
 
 
 
 
 
Target shRNA sequence, 5’-3’ 
Non-targeting vector None 
Lyn_1 TTCATGAGGTTGGCTTCTTCC 
Lyn_4 TTCCCATAGGTGACAATTTCG 
Lyn_5 AAACGTTGGTCTCTCTTCTGC 
Lyn_6 TTCTAAGGTGTTGAGTTTGGC 
Lyn_7 TTCGTGGAGAGATGTAATAGC 
CDK9_94 TTCTAACGGACCAAACTGTGC 
CDK9_95 ATTAGCAGCCTTCATGTCCCT 
BIRC6_58 AATGCACTGTAGAAAGAACGC 
BIRC6_59 ATTTGCACCATTCACTACAGC 
 

Table 2.1. shRNA oligonucleotides used in Chapter 2. 
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CHAPTER 3.  LYN REGULATES CREATINE UPTAKE 
IN AN IMATINIB-RESISTANT CML CELL LINE 

 
3.1 Introduction 
 

The defining characteristic of Philadelphia chromosome-positive chronic 

myelogenous leukemia (Ph+ CML) is the presence of the Bcr-Abl fusion protein 

resulting from the reciprocal translocation of chromosomes 9 and 22 (143,144).  Bcr-Abl 

protein possesses constitutive kinase activity and is the principal cause of CML 

development and progression (145,146).  A major advance in CML cancer therapy was 

the approval of imatinib mesylate (Gleevec, Novartis), a 2-phenylaminopyrimidine 

compound that selectively inhibits the enzymatic activity of the Bcr-Abl protein 

(147,148). While imatinib has been extremely successful in the treatment and 

management of CML, the development of acquired imatinib-resistance in patients 

remains a clinical problem (149).  

Multiple Bcr-Abl-dependent mechanisms contribute to imatinib resistance including 

increased transcript and protein expression levels, gene amplification, extra chromosomal 

aberrations, and specific point mutations (“gate-keeper”) that sterically inhibit imatinib 

binding to the inactive configuration of Bcr-Abl (52,150-155). In addition to alterations 

in molecular signaling events, Bcr-Abl is linked to cellular metabolic alterations that 

underlie enhanced cell proliferation and viability (156). Hematopoietic cells transfected 

with Bcr-Abl show increased GLUT1 transporter expression and glucose uptake (157). 

Metabolomics studies demonstrated that imatinib treatment alters glucose carbon flux 
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involved in the de novo synthesis of nucleic and fatty acids thereby limiting Bcr-Abl 

transformed cells of important macromolecule substrates essential for proliferation (158). 

In addition, imatinib treatment also results in increased mitochondrial activity, reduced 

glycolytic activity, and internalization of the GLUT1 transporter in Bcr-Abl-positive 

CML cells that consequently leads to reduced glucose uptake (159-161). In fact, an 

important hallmark of imatinib-resistance in CML cell lines is up-regulated glucose 

uptake mediated by increased glycolytic activity and retention of GLUT1 transporters in 

the cell membrane.  The increased glucose metabolism phenotype in these cell lines is 

further evidenced by high lactate synthesis and elevations in phosphocholine, which are 

believed to support enhanced cell proliferation (162).  

     Bcr-Abl-independent mechanisms such as the overexpression of the Src-family 

kinase Lyn or Hck also contribute to imatinib resistance in CML (52-54,145,146,163).  

Our lab previously showed that increased Lyn activity in imatinib-resistant CML cells 

(MYL-R) leads to upregulation of anti-apoptotic proteins such as Mcl-1 and BIRC6 

resulting in increased imatinib resistance (11,56,147,148).  Furthermore, using high-

resolution NMR spectrometry to analyze water-soluble metabolites revealed that in 

addition to the commonly observed alterations in glucose metabolism, there was a 

significant elevation of intracellular creatine in the imatinib-resistant MYL-R cells 

(68,149).  Over 50% of the creatine was in the form of phosphocreatine under these 

conditions, and considering its role as a high-energy phosphate donor, it was speculated 

that elevated phosphocreatine might confer a survival advantage on MYL-R cells.  In the 

present study, I investigated the molecular mechanisms involved in the accumulation of 

creatine in MYL-R cells.  The results of these studies demonstrate that MYL-R creatine 
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levels were dependent both on creatine uptake from the media and the Na+/K+-ATPase 

activity.  Moreover, I now provide evidence for the direct involvement of Lyn in creatine 

uptake through phosphorylation and regulation of the Na+/K+-ATPase pump.  Thus, these 

studies demonstrate a pivotal role for the Na+/K+ ATPase pump in regulating creatine 

uptake and suggest that increased creatine uptake and metabolism may be an important 

cellular adaptation mechanism utilized by the imatinib-resistant CML sub-line (MYL-R 

cells). 

3.2 Materials and Methods 
 
3.2.1 Cells, Cell Culture and Reagents   

      The human chronic myelogenous leukemia cell line, MYL, and its imatinib-resistant 

sub-line, MYL-R, were generous gifts from Dr. Hideo Tanaka (Department of 

Haematology and Oncology, Hiroshima University, Hiroshima, Japan) (52,150-155).  

Cells were cultured in culture flasks suspended in RPMI 1640 medium (Gibco® by Life 

TechnologiesTM, U.S.A.) supplemented with 10% fetal bovine serum (Atlanta 

Biologicals; Norcross, GA), and 1% antibiotic/antimycotic (Invitrogen; Carlsbad, Ca) as 

previously described (68,156).  Cells were maintained at 37 oC in a humidified 5% CO2 

atmosphere in concentrations of approximately 0.6x106 cells mL-1.  Culture medium was 

replaced every 2 to 4 days.  Similar to what was originally reported, MYL-R cells can be 

maintained in imatnib-free culture medium for up to ~6 months without a change in their 

sensitivity to imatinib treatment (52,157).  For most experiments described here, cells 

were harvested by low-speed centrifugation and washed with cold 1X PBS prior to lysis. 

For the labeled glycine experiments, an additional 10 mg/L 2-13C-glycine (Cambridge 

Isotope Laboratory, Tewksbury, MA) was added to the growth medium that already 
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contained 10 mg/L unlabeled glycine, thereby resulting in a 50% labeled glycine pool.  

As a control, more unlabeled glycine was added, resulting in a final concentration of 20 

mg/L. MYL and MYL-R cells were maintained under these culture conditions for 5 days 

prior to extraction. 

     Reagents were obtained from the following sources: ponatinib and dasatinib were 

from LC Laboratories (Woburn, MA); imatinib was from Selleckchem (Houston, TX).  

Ouabain, DMSO, and 3-Guanidinopropionic acid were from Sigma-Aldrich (St. Louis, 

MO).  Polyethylenimine (P.E.I.) was from Polysciences Inc. (Warrington, PA).  The 

primary human antibodies used include:  SLC6A8 and creatine kinase B (Abcam, 

Cambridge, MA), Phospho-Na+/K+-ATPase α1 (Tyr10), Na+/K+-ATPase, phospho-Src 

(Y416), PTMScan® Phospho-Tyrosine (Cell Signaling Technology, CST, Danvers, 

MA).), Lyn and β-actin (Santa Cruz Biotechnology, SCBT, Dallas, TX); with secondary 

antibodies, anti-mouse and anti-rabbit IgG-HRP conjugated (Promega {Madison, WI}).  

The primary antibodies were diluted following supplier recommendations: 1:200 to 

1:1000 in 5% BSA in TBS-T.  Secondary antibodies were diluted at 1:10,000 in 5% dry, 

non-fat milk in TBS-T. 

The Lyn overexpression plasmids {pEGFP-Lyn wild type and -Lyn mutant (Y508F)} 

were kind gifts from Dr. Klaus Hahn’s Lab (Department of Pharmacology, UNC-Chapel 

Hill School of Medicine, Chapel Hill, NC, U.S.A.).  pEGFP-Lyn kinase dead (K275R) 

was made from p-EGFP-Lyn-wild type using site-directed mutagenesis.  

For experiments examining creatine depletion, cells were grown in RPMI medium 

containing 10% heat-inactivated dialyzed FBS (Sigma-Aldrich Company, St. Louis, MO) 

in place of normal FBS for 5 days prior to extraction. 
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3.2.2 Cell Treatments 

Approximately 15 x 106 cells were grown and exposed to different drugs to examine 

the regulation of creatine uptake.  Fewer cells, approximately 2 X 106, were used in 

experiments for immunoblot analyses.  Drug dose-response experiments were initially 

performed with different compounds to determine the effective concentrations.  For 

ouabain, cells were incubated in increasing concentrations, starting at 1.0 nM and 

increased by order of 10 until the concentration of 10 mM was achieved.  Separate 

populations of the cells were also treated with dasatinib or ponatinib (Selleckchem), dual 

Bcr-Abl and Src family tyrosine kinase inhibitors.  The creatine competitive inhibitor, 3-

Guanidinopropionic Acid (Sigma-Aldrich, St. Louis, MO), was reconstituted in media 

(above) and a 30-mM concentration used to treat MYL-R cells.  Cells were treated for 24 

h before metabolite extraction.  The drugs/compounds were reconstituted in regular 

media (3-Guanidinopropionic acid), hot, autoclaved water (ouabain), and DMSO 

(imatinib, ponatinib, dasatinib); likewise regular media, diH2O, and DMSO were also 

used as the vehicle controls.   

3.2.3 Cell Extraction and NMR Sample Preparation 

Following cell treatments or incubations, cells were harvested by low-speed 

centrifugation and the metabolites were extracted using a cold methanol extraction 

method, as previously described (68,158).  Briefly, the cells were collected by 

centrifugation and washed three times with cold PBS.  Following removal of the last 

wash, 500 mL of ice-cold 50% methanol was added to the cell pellet and vortexed.  The 

cell extracts were then incubated for 30 minutes on dry ice and then allowed to thaw for 

10 minutes on ice.  The extracts were clarified by centrifugation at 16,000g for 10 
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minutes at 4° C.  The methanol extract (supernatant) was collected and transferred to a 

new microcentrifuge tube, while an additional 500 mL of 50% methanol was added to the 

pellet for a second extraction.  The second 50% methanol extract was collected and 

combined with the previous (first) extract.  The total cell extract was evaporated to 

dryness using a SpeedVac lyophilizer. 

Prior to NMR spectroscopy, the evaporated cell extract pellet was dissolved in 600 

µL of D2O containing 0.5 mM (final concentration) trimethylsilyl-2,2,3,3-

tetradeuteropropionic acid (TSP) and transferred to a 5 mm NMR tube for high resolution 

NMR analysis.  For the MYL-R NMR studies on the regulation of creatine uptake, the 

pellet was suspended in 70 µL of D2O containing 0.1 mM TSP.   

3.2.4 1D 1H and 2D 1H-{13C} HSQC NMR Spectroscopy  

1D 1H NMR spectra characterizing the metabolic differences between MYL and 

MYL-R were acquired at 16.4T using a Varian INOVA NMR spectrometer (700 MHz 

1H, Varian Instruments) equipped with a 5 mm indirect cold probe.  The FIDs were 

acquired using a one-pulse sequence with a total repetition time (TR) of 12.65s, number 

of transients (nt) of 64 and 1024, and a 90° flip angle. 2D 1H-{13C} heteronuclear single 

quantum coherence (HSQC) NMR spectra were acquired at 14.1 T NMR spectrometer 

equipped with 5 mm indirect HCN probe using 256 increments and zero filled in f1 and 

f2 to 4.096 points and with a shifted sine bell apodization. 

For the MYL-R creatine regulation analysis, 1D 1H NMR spectra were acquired at 

14.1T using a Varian INOVA NMR spectrometer (599.64 MHz 1H, Agilent) equipped 

with a 5 mm indirect cold probe. The 5 mm probe is a Varian pulsed field gradient, 

inverse detection probe. The micro-coil probe is a Protasis/MRM 10 ll capillary NMR 
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probe (Magnetic Resonance Micro- sensors, Savoy, IN). Samples were introduced into 

the micro-coil using a Protasis High-throughput Sample Automation System (Protasis, 

Marlboro, MA). A simple presaturation pulse sequence was used which included a 1 s 

solvent presaturation, followed by an Ernst angle optimized read pulse and a 2.3 s 

acquisition delay. The Ernst angle was based upon an assumed average metabolite T1 of 

three seconds. A sweep width of 7,195.5 Hz was digitized with 16,384 complex points. A 

total of 256 transients were collected requiring a total of approximately 20 min. 

3.2.5 Spectral Processing, Pattern Recognition and Metabolite determination 

     All NMR spectra were processed using ACD/1D NMR Manager, version 12.0 

(Advanced Chemistry Development, Inc., Toronto, ON, Canada).  Imported FIDs were 

zero filled to at least 32,000 points and an exponential line broadening of 0.1 to 1.0 Hz 

was applied prior to Fourier transformation.  Spectra were phased, baseline corrected, and 

referenced to the TSP peak at 0.00 ppm. TSP (at 0.75 ppm and upfield), residual 

methanol, water, and formate were excluded from binning process.  Metabolite 

identification and quantification were performed using Chenomx software (version 6.1; 

Chenomx Inc., Edmonton, Canada), as previously described (Dewar et al., 2010). 

3.2.6 shRNA Knockdown of Lyn 

     pLKO.1 lentiviral vectors containing shRNA directed against Lyn 

(TRCN0000010101, 04, 05, 06, and and 07) or a non-targeting shRNA (shCtrl) were 

purchased from the UNC Lenti-shRNA Core Facility.  Lentivirus transduction of MYL-R 

cells with shRNA was done per the protocol supplied by the RNAi Consortium 

(http://www.broadinstitute.org/rnai/public/resources/protocols), and as previously 

described (11,159-161).  Briefly, MYL-R cells were seeded at 5x105 cells/mL in 5 mL 
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growth media containing 8 µg/mL polybrene, and incubated overnight with 1 mL of anti-

Lyn viral shRNA (shLyn-01, -05, and -06) known to efficiently knock down Lyn.  Non-

targeting viral shRNA (shCtrl) was used as control.  Stably transduced cells were selected 

for by exposure to 2 µg/mL puromycin in cell culture (57,162).  Aliquots of the cells 

were harvested one week after selection and immunoblot analyses performed to confirm 

Lyn knockdown.  The rest of the cells were expanded in puromycin for another one week 

to obtain enough cells (~20M) per condition for NMR analyses of total creatine pool.  

3.2.7 Western Blotting Conditions 

     Cells were harvested by centrifugation, washed once in cold 1X PBS, and lysed in a 

modified RIPA (RIPA, no SDS) buffer (150 mM NaCl, 9.1 mM Na2HPO4, 1.7 mM 

NaH2PO4, 1% NP-40, and 0.5% deoxycholic acid; adjusted to pH 7.4) and supplemented 

with 2 mM sodium orthovanadate, 10 mM NaF, 0.0125 µM calyculin A, and cOmplete 

Protease Inhibitor Cocktail (Roche Diagnostics, U.S.A.).  The lysates were clarified by 

centrifugation and the protein concentrations were normalized using a Bradford assay 

(BIO-RAD).  Samples for gel electrophoresis were prepared by adding protein lysates to 

Laemmli sample buffer (final concentration: 0.25 M Tris pH 6.8, 10% glycerol, 5% β-

mercaptoethanol, 0.001 µg/mL Bromophenol blue) and 30 µg of protein were loaded into 

each well of an SDS-polyacrylamide gel for protein separations.  Proteins were 

transferred to polyvinylidene difluoride (PVDF) membranes (BIO-RAD) which were 

then blocked for 1 hr with 5% non-fat dry milk or 5 % BSA dissolved in Tris-buffered 

saline supplemented with Tween-20 (TBS-T).  The membranes were then incubated in 

primary antibodies at 4° C overnight, washed 3 times with TBST, then incubated with 

anti-mouse / anti-rabbit IgG-HRP conjugated secondary antibodies for 1 hr at room 
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temperature.  The membranes were rinsed 3 times with TBS-T then developed using 

Clarity TM ECL Western Substrate (BIO-RAD), and imaged using a ChemiDoc TM Touch 

Imaging System (BIO-RAD). 

3.2.8 Cell Transfection 

     HEK293 cells were passaged and split into four 60 mm plates a day before 

transfection. The following day, the cells were transfected with Lyn expression vectors: 

wild type or mutant (Y508F) or kinase dead (K275R), using polyethylenimine (PEI) 

transfection reagent (Polysciences Inc., Warrington, PA).  A total of 5 µg DNA was used 

for each transfection.  The fourth 60 mm plate was transfected with empty vector (mock).  

The cells were harvested 24 hours after transfection, washed in cold 1X PBS, and lysed 

in cold Western blot lysis buffer (above).  Western blot analysis was performed as 

described above to examine the effect of Lyn overexpression on Na+/K+-ATPase (Tyr10) 

phosphorylation.   

3.2.9 Cell Viability (MTS Assay) 

MYL and MYL-R cells were maintained in normal growth medium (10% FBS) or 

regular media containing various concentrations of cyclocreatine (CCr), a competitive 

inhibitor of creatine known to have high affinity for the Na+/creatine symporter(164).  

Cyclocreatine was dissolved in regular cell growth medium at a stock concentration of 

100 mM.  In triplicate, CCr was added to 10 x 103/100 µL MYL or MYL-R cells in 

increasing concentrations in a 96-well plate.  Regular cell culture medium was used as 

the vehicle control.  After 48-hr incubation at 37°C with 5% CO2, cell viability was 

determined by MTS assay performed according to the manufacturer’s instructions 

(CellTiter 96® AQueous One Solution Reagent, Promega, Madison, WI).  The 
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absorbance was read at 490 nm using a SpectraMAX plate reader (Molecular Devices, 

Sunnyvale, CA).  Trypan blue exclusion assay was performed using the Trypan blue 

reagent, and cells were counted using a hemacytometer (Hausser Scientific, Horsham, 

PA). Triplicate counts were obtained and used to determine cell proliferation.  Data was 

analyzed for significant differences using a paired t-test. 

3.2.10  Rubidium Uptake Assay 

     Rb+ uptake measurements were performed by Dr. Andrew Ghio’s lab (EPA, UNC- 

Chapel Hill).  Approximately 15M MYL-R cells were treated for 24 hours with dasatinib 

(1 nM) or ouabain (100 nM) or DMSO.  From every condition, approximately 4M cells 

were pelleted (enough for 1M cells per time point), resuspended in 4x1.5 mL tubes and 

washed once with Rb+-free uptake buffer.  Then, the cells were resuspended in fresh 

uptake buffer supplemented with 5 mM RbCl and incubated at room temperature for 

different time-points: 0, 15, and 30 minutes.  The fourth tube had cells resuspended only 

in Rb+-free uptake buffer, and was incubated for 30 min.  O-min time-point cells were 

pelleted immediately after resuspending the cells in fresh uptake buffer containing 5 mM 

RbCl.  The cells were washed X3 with Rb+-free buffer, and 1 mL metal free HCl added 

on removal of third wash.  Cells from other time-points were similarly processed.  The 

rest of the procedure to determine Rb concentration in each sample tube was done as 

previously described (165).    

3.2.11 Statistical Analyses 

     Data are reported as the mean + standard error of the mean (S.E.M); S.E.M. was 

performed on all datasets to determine positive and negative error.  Two-tailed student t-

test was used to make comparisons between groups, and p values below 0.05 at the 95% 
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confidence level were considered to be statistically significant.  Calculations were 

performed using GraphPad Prism and Microsoft Excel. 

3.3 RESULTS 
 
3.3.1 Increased steady state levels of creatine in MYL-R cells detected by 1H NMR 

1H NMR spectroscopy was used to examine the metabolic differences between the 

CML cell line MYL and its imatinib-resistant counterpart, MYL-R (52,68). Consistent 

with our previous study, the 1D 1H spectra obtained from MYL and MYL-R cell extracts 

demonstrated increased levels of intracellular creatine in the MYL-R cells as shown in 

supplementary figure 1B (Figure 3.S1B) compared to MYL cells (in Figure 3.S1A).  We 

observed the 3H of the creatine methyl group (*) at a chemical shift of 3.023 ppm and the 

2H of the methylene group (**) at a chemical shift of 3.92 ppm as shown in 

supplementary figure 1B (Figure 3.S1B).  To verify the identity of creatine, 2D 1H-{13C} 

HSQC NMR was performed on the MYL-R cell extracts and this confirmed the creatine 

signal by correlating the 1H and 13C resonances (Figure 3.S1, inset).  

3.3.2 De novo synthesis does not account for elevated creatine levels in MYL-R 

cells 

In order to determine if de novo synthesis was contributing to the elevated levels of 

creatine observed in MYL-R cells, both MYL and MYL-R cells were maintained in total 

growth medium (RPMI + 10%FBS) with or without the addition of 2-13C-glycine for 5 

days.  Glycine and arginine are required for the biosynthesis of creatine and therefore, 

incubation with 2-13C-glycine, results in creatine labeled at the 2-position through this 

two-part reaction (Figure 3.1A) (166).  After 5 days, the cells were harvested, 

metabolites extracted, and 1H NMR spectra of each cell extract were obtained.  Following 
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incubation in medium containing 50% 2-13C-glycine, the percent incorporation of labeled 

glycine in the cell extracts was found to be 31.3 ± 4.1% and 31.0 ± 2.6% for MYL and 

MYL-R cells, respectively.  These data indicate that there were no statistically significant 

differences in the ability of each cell type to synthesize labeled creatine de novo. Shown 

in Figure 3.1B are the stacked 1H NMR spectra from MYL-R cells incubated with (blue) 

or without (black) labeled 2-13C-glycine. The proton peaks representing the unlabeled 

(12C) glycine and creatine were observed at 3.56 and 3.93 ppm, respectively.  As 

expected, satellite peaks from 2-13C-glycine were only observed in MYL-R cells 

incubated with labeled glycine (blue line). However, we did not observe any satellite 

peaks associated with creatine under these conditions indicating that de novo synthesis 

does not account for the elevated creatine levels observed in MYL-R cells.  

3.3.3 Media creatine is a major source of intracellular creatine 
in both MYL and MYL-R cells 

 
Since enhanced de novo creatine synthesis was not observed in MYL-R cells, I 

examined whether uptake from the cell culture medium was a potential source of 

creatine. 1H NMR analysis of RPMI and RPMI + 10% FBS media indicated that FBS is a 

significant source of creatine at an average concentration of 37.4 ± 3.04 µM (see 

Supplemental Data). Dialyzed FBS (dFBS) is depleted of creatine and other small 

molecules, including growth factors, cytokines, and metabolites. Incubating MYL and 

MYL-R cells in RPMI medium supplemented with 10% dFBS resulted in a significant 

decline in creatine in both cell types (Figure 3.2). Addition of 100 mM creatine to the 

dFBS containing culture medium, restored the total creatine pool (creatine and 

phosphocreatine) in the MYL cells to basal levels, whereas the increase in the total 
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creatine pool was nearly 2-fold greater in MYL-R cells compared to MYL-R cells 

incubated in RPMI + 10% FBS (Figure 3.2). 

3.3.4 Creatine transporter and creatine kinase B protein levels 
are comparable in MYL and MYL-R cells 

 
     Whereas creatine is imported into the cell through SLC6A8 transporter, creatine 

kinase, brain-type (CKB) phosphorylates creatine both in the extracellular and 

intracellular spaces to generate phosphocreatine, a source of high-energy phosphate used 

to generate ATP in low-energy states(167).  CKB is expressed mainly in the brain and 

distributed to other tissues of the body.  Its overexpression in many tumor types has been 

linked to adverse prognostic outcomes(168).  Hence, I compared the protein levels of 

both the creatine transporter (SLC6A8) and creatine kinase B in MYL and MYL-R cells 

to determine if these proteins contributed to the increased total creatine pool in MYL-R 

cells (Figure 3.S1B).  Untreated MYL and MYL-R cells were harvested and prepared for 

Western blotting as described in Materials and Methods.  Western blot analyses showed 

that SLC6A8 and creatine kinase B protein levels were comparable in MYL and MYL-R 

cells (Figure 3.3A), suggesting that the observed increase in total creatine pool was 

independent of the expression levels of the two proteins. 

3.3.5 Role of the Na+/ K+-ATPase in regulating creatine uptake in MYL-R cells 

     Since our data indicated that the total creatine pool in MYL-R cells was dependent on 

uptake from the media, I examined possible mechanisms for this regulation.  

Extracellular creatine uptake is mediated by a Na+ /creatine symporter, SLC6A8 

(166,169-171), and import of creatine is dependent on a gradient which requires both Na+ 

and Cl- ions(172).  Since earlier studies showed that creatine uptake was dependent on 

the activity of the Na+-K+-ATPase pump, I tested the requirement for this protein in 
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creatine uptake in MYL-R cells (Figure 3.3B).  MYL-R cells were incubated with 

increasing concentrations of ouabain, a glycoside that directly binds to and inhibits the 

Na+-K+-ATPase.  As expected, oubain significantly (P<0.05) depleted the total creatine 

pool in MYL-R cells at 100 nM or greater concentrations (Figure 3.3C).  Similar results 

were obtained with digitoxin, another well-established Na+-K+-ATPase inhibitor (data not 

shown).  A rubidium uptake assay further confirmed that these drug treatments directly 

inhibited Na+/K+-ATPase activity (Figure 3.3D).  Compared to DMSO treatment, 100 

nM ouabain substantially lowered Rb uptake in MYL-R cells resuspended in rubidium-

free uptake buffer supplemented with 5 mM RbCl.  Thus, these studies demonstrate the 

importance of Na+/K+-ATPase activity in affecting creatine levels in MYL-R cells. 

3.3.6 Role of Lyn in mediating creatine uptake in MYL-R cells 

     Studies from our lab and others have demonstrated that Lyn is an important tyrosine 

kinase for the survival of MYL-R cells (52,57),(11,56).  Immunoprecipitation data have 

shown that Lyn is able to bind in a complex with the Na+, K+-ATPase pump resulting in 

phosphorylation and activation of the pump(173-175).  Further studies have revealed that 

phosphorylation of the α-subunit of Na+/K+-ATPase on Tyr10 (pY10) is critical to the 

enzyme’s activity(174,175).  To test the potential involvement of Lyn in the regulation of 

the Na+/K+-ATPase, MYL-R cells were incubated with dasatinib, a broad tyrosine kinase 

inhibitor known to inhibit Lyn, and the intracellular creatine pool measured.  Compared 

to DMSO, dasatinib treatment substantially reduced total intracellular creatine pool in 

MYL-R cells (Figure 3.S2A).  Western blot analyses were used to compare both Lyn 

activation (as measured by pY416) and Na+/K+-ATPase α-1 activation (as measured by 

pY10) in MYL and MYL-R cells.  As reported earlier, both total Lyn and phospho-SFK 
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(P-Y416) were substantially higher in the MYL-R compared to the MYL cells (Figure 

3.4A).  Phospho-Na+/K+-ATPase α-1 (pY10) was also substantially higher in MYL-R 

compared to MYL cells whereas total Na+/K+-ATPase protein was comparable in the two 

cell lines (Figure 3.4A).  Ponatinib, a more selective Bcr-Abl and Lyn inhibitor(11,76), 

inhibited Lyn activity (pY416) and significantly reduced the amount of creatine in MYL-

R cells (Figure 3.4C & 3.4B).  While phospho-Na+/K+-ATPase α-1 (pY10) was 

substantially reduced by this treatment, neither the Na+/K+-ATPase nor the SLC6A8 

protein was affected (Fig 4C).  Finally, incubation of MYL-R cells with dasatinib or 

ouabain caused ~65% and ~95% inhibition of creatine uptake respectively (Figure 

3.S2B). 

    To further study the role of Lyn in creatine uptake, I developed a lentiviral shRNA 

system to investigate the effects of Lyn knockdown.  While three knockdown constructs 

(shLyn-01, -05, and -06) were effective as determined by Western blot analyses (Figure 

3.4E), two constructs (shLyn-01 and shLyn-06) were selected for further studies, and the 

amount of intracellular creatine measured as described above.  As observed with Lyn 

inhibition (Figure 3.4B), Lyn knockdown substantially reduced the amount of 

intracellular creatine observed in these cells compared to the vector control (Figure 

3.4D).  ShLyn-06, the shRNA construct most effective at reducing Lyn protein, most 

efficiently reduced intracellular creatine levels (Figure 3.4D).  These data support the 

requirement of Lyn for creatine uptake in MYL-R cells. 

3.3.7 Reduced Na+/K+-ATPase tyrosine phosphorylation 
correlates with Lyn inhibition or Lyn knockdown 

 
     Since tyrosine 10 has been identified as a key phosphorylation site involved in 

regulating the Na+/K+-ATPase pump activity(175,176), I examined the effects of Lyn 
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knockdown on the phosphorylation of this site using a commercially available antibody 

(anti-phospho-Na+/K+-ATPase α1 (pY10), Cell Signaling Technology).  Lyn knockdown 

substantially reduced phosphorylation of the Na+/K+-ATPase pump on tyrosine 10 

(pY10), consistent with inhibition of pump activity (Figure 3.4E).  Conversely, 

overexpression of Lyn in HEK293 cells resulted in substantial increase in phospho-

Na+/K+-ATPase α1 (pY10) (Figure 3.5).  Compared to the empty vector or wild-type 

Lyn or kinase dead (K275R) Lyn, transfection of constitutively active Lyn (Y508F) into 

HEK293 cells dramatically increased Na+/K+-ATPase α1 (Tyr10) phosphorylation 

(Figure 3.5).  Phospho-STAT5A (pY694), a known readout for Lyn activity, was 

strongly increased in HEK293 cells expressing constitutively active (Y508F) Lyn.  Taken 

together, these data are consistent with Lyn mediating the phosphorylation and activation 

of the Na+/K+-ATPase pump. 

3.3.8 Inhibitors of creatine uptake reduce cell viability 

     I next investigated the effect of intracellular creatine depletion on cell viability.  MYL 

and MYL-R cells were treated for 48 hours with increasing concentrations of 

cyclocreatine (CCr), a competitive inhibitor of creatine with high affinity for the 

Na+/creatine symporter(164).  Cell viability, calculated as a percentage of the cells 

maintained in regular media only (0 mM CCr), was determined as described in Materials 

and Methods.  Creatine depletion altered the viability of the MYL and MYL-R cells in a 

dose-dependent manner (Figure 3.6).  Under normal culture conditions (0 mM CCr), the 

percent of viable MYL and MYL-R cells were the same after 48 hours of treatment.  

There was a dose-dependent loss in cell viability over the 48-hr period for both the MYL 

and MYL-R cells as shown in Figure 3.6.  The loss in viability was substantially higher 
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(~80%) for the MYL-R cells compared to the MYL cells (~20%) when treated with 50 

mM CCr for 48 hours (Figure 3.6).  In addition to demonstrating that MYL-R cells have 

a higher creatine uptake than MYL cells, these studies suggest that creatine may also play 

a critical role in maintaining cell viability.  Similarly, I tested the effect of Beta-

Guanidinopropionic Acid or 3-Guanidinopropionic Acid (3-GPA), a creatine 

analog(177), on creatine uptake by MYL-R cells.  Treatment of MYL-R cells with 3-

GPA (30 mM, 24 Hr) reduced total intracellular creatine pool ten-fold; comparable to 

untreated MYL cells (Figure 3.S3).  MTS assay studies following treatment of MYL-R 

cells with increasing concentrations of 3-GPA revealed loss in cell viability at >30 mM 

concentrations (data not shown). 

3.3.9 Discussion 

     Similar to that originally reported by Ito et al., studies from our lab have shown that 

increased Lyn activity is one of the major drivers of drug resistance in MYL-R 

cells(11,52,56). Since our previous study demonstrated a substantial accumulation of 

creatine (and phosphocreatine) in MYL-R cells compared to MYL cells, the objective of 

the current study was to investigate the molecular basis for this difference.  A second goal 

was to determine if increased creatine levels was important for MYL-R cell viability.  

Lastly, I sought to determine if hyperactivation of Lyn in MYL-R cells contributed to the 

increased accumulation of creatine in these cells.  The results of these studies 

demonstrate three important findings.  First, the accumulation of creatine was dependent 

on uptake from the extracellular media, a rich source of creatine, and not dependent on de 

novo synthesis.  Second, our data demonstrate an essential role for the Na+/K+-ATPase 

pump in creatine uptake in MYL-R cells and suggest that Lyn-dependent tyrosine 



 
 

80 
 

phosphorylation is required for this effect.  Lastly, my results suggest that the increased 

accumulation of creatine (and phosphocreatine) may be important for cell viability. 

     Multiple mechanisms are known to contribute to the development of imatinib-

resistance in CML.  While mutations in Bcr-Abl are frequent, additional mechanisms of 

resistance are now established, including hyperactivation of Lyn of Hck kinases and 

overexpression of anti-apoptotic proteins(11,52-54,56-58,163).  The development of 

second and third generation inhibitors targeting these kinases, in addition to Bcr-Abl, has 

been promising.  Despite these clinical advances, the exact mechanisms by which Lyn or 

other Src family kinases contribute to acquired drug resistance are poorly understood. 

     The MYL-R cells are a well characterized model system to investigate the potential 

role of Lyn kinase in imatinib resistance(52).  Our phosphoproteomics analyses also 

revealed changes in tyrosine phosphorylation of the Na+/K+-ATPase in a manner 

consistent with Lyn activation and inhibition (data not shown).  Western blot analyses for 

phospho-Na+/K+-ATPase (pY10) confirmed Lyn-dependent changes in the 

phosphorylation of this protein (Figure 3.4 and 3.5).  Consistent with studies 

demonstrating the importance of Y10 phosphorylation, inhibition or knockdown of Lyn 

reduced the uptake of creatine in MYL-R cells (Figure 3.4B and 3.4D). 

     Metabolic reprogramming is a hallmark of a variety of human cancers(68,178-180).  

While high levels of creatine and phosphocreatine have been reported in human 

breast(181,182) and colorectal(167) cancers, the importance of these high-energy 

intermediates on drug resistance have not been extensively explored.  While our previous 

studies demonstrated that MYL-R cells had elevated creatine(68), the current study now 

suggests that this may exert a protective effect that contributes to enhanced cell viability.  
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Though outside the scope of this study, our observations are consistent with other studies 

that have shown the creatine/phosphocreatine system to be protective against apoptosis 

by regulating mitochondrial oxidative phosphorylation(69).  Additionally, the 

creatine/phosphocreatine system acts as an ATP buffering system where excess ATP in 

the cell is abstracted by creatine (Cr) to produce pools of phosphocreatine (PCr), a high-

energy reservoir used by the cell when needed.  Thus, the system functions to ensure 

energy/ATP homeostasis in the cell(183). 

     As demonstrated in Figure 3.6, creatine uptake is needed to mediate MYL-R cell 

viability given that the recorded intracellular creatine does not come from de novo 

synthesis from glycine (Figure 3.1).  MYL-R cells were also treated with dasatinib and 

bryostatin 1, therapeutic agents also used in the treatment of CML (184,185), to 

determine their effects on creatine uptake.  Bryostatin 1 first activates and then inhibits 

protein kinase C (PKC).  Both PKC and protein kinase A (PKA), have been reported to 

phosphorylate the α-subunit of the Na+/K+-ATPase on serine and threonine residues.  

Phosphorylation on these residues may not account for the observed basal 

phosphorylation level of this subunit in various cells (175).  This is supported by our 

current data that shows treatment of MYL-R cells with bryostatin 1 increased the total 

intracellular creatine pool compared to the DMSO-treated cells (Figure 3.S2A).  By 

contrast, treatment of MYL-R cells with dasatinib or ouabain substantially reduced the 

total intracellular creatine pool, with ouabain registering ~10-fold reduction (Figure 

3.S2A).  Additionally, dasatinib and ouabain treatments inhibited creatine uptake by 

~65% and ~95% respectively compared to DMSO treatment (Figure 3.S2B).  Given that 

dasatinib is a Lyn inhibitor and ouabain inhibits the Na+/K+-ATPase pump, our data 
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suggest that Lyn and possibly other tyrosine kinases can mediate creatine regulation in 

MYL-R cells.  Taken together, these data suggest that targeting Lyn or kinases that 

activate the Na+/K+-ATPase pump and are required for increased uptake of creatine may 

have therapeutic potential in treating drug resistant CML or other cancers. 
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Figure 3.1.  Increased intracellular creatine in MYL-R cells is due to uptake from 
cell media, and not de novo synthesis.   

(A) Glycine and arginine are required for the biosynthesis of creatine in a two-part 
reaction.  MYL and MYL-R cells were maintained in total growth medium with or 
without the addition of 2-13C-glycine for 5 days.  (B) Analysis of 1H NMR spectra of 
each cell extract revealed that there was no statistically significant difference in percent 
incorporation of labeled glycine in the cell extracts from MYL and MYL-R cells.  
Whereas satellite peaks from 2-13C-glycine were only observed in MYL-R cells 
incubated with heavy glycine, satellite peaks associated with creatine under these 
conditions were not observed. 
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Figure 3.2.  Media creatine is responsible for observed differences between 
MYL and MYL-R cells.   

MYL and MYL-R cells were cultured in RPMI medium supplemented with 10% dFBS 
and intracellular creatine concentrations analyzed as described in Materials and Methods.  
Compared to cells cultured in RPMI medium supplemented with 10% FBS, there was 
significant reduction in creatine in both cell lines.  Addition of 100 µM creatine to the 
dFBS-containing media restored creatine in MYL cells to normal levels and increased 
creatine levels in MYL-R cells by ~2-fold over that observed with 10% FBS.  
Approximately 50M MYL or MYL-R cells were cultured in RPMI media supplemented 
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with 10% dFBS five days prior to extraction.  Creatine was added to each cell population 
in 10% dFBS to a final concentration of 100 µM two days prior to extraction.  Cells were 
collected and metabolites extracted for 1H NMR analysis of total intracellular creatine.  
Metabolites from MYL and MYL-R cells cultured under normal conditions (10% FBS) 
were similarly analyzed for comparison.  Error was determined based on data from three 
independent experiments.  
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Figure 3.3.  The Na+/K+-ATPase pump is required for creatine uptake 
by MYL-R cells.   

(A) Creatine kinase B (CKB) and SLC6A8 protein levels are comparable in MYL and 
MYL-R cells.  Western blot analysis was performed as described in Materials and 
Methods on parental MYL and MYL-R cells to examine CKB and SLC6A8 protein 
levels.  (B) Model diagram depicting creatine uptake and subsequent phosphorylation by 
CKB to generate phosphocreatine.  (C) Treatment of MYL-R cells with increasing 
concentrations of ouabain significantly reduced total intracellular creatine in a dose-
dependent manner as determined by 1H NMR analysis.  MYL-R cells were treated for 24 
hours with increasing concentrations of ouabain and 1H NMR used to measure total 
creatine.  (D) Treatment of MYL-R cells with dasatinib or ouabain substantially reduced 
rubidium (Rb) uptake as determined using the Rb uptake assay. After MYL-R cells were 
treated for 24 hours with DMSO or dasatinib (1 nM) or ouabain (100 nM), approximately 
1M cells per condition were counted out, pelleted and washed in Rb-free uptake buffer.  
Cells were then resuspended in uptake buffer supplemented with 5 mM RbCl and 
incubated at room temperature over increasing time-points as described in Materials and 
Methods.  Rb+ uptake was measured as described by Frazier et al., 2011(165).  Rubidium 
uptake measurements were performed courtesy of Dr. Andrew Ghio’s lab (EPA, UNC 
Chapel Hill, NC).  The data presented in this figure are averages of three independent 
experiments, and * represents p < 0.05. 
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Figure 3.4.  Lyn regulates creatine uptake in MYL-R cells.   

(A) Activities for Lyn and Na+/K+-ATPase were elevated in MYL-R compared to MYL 
cells.  Immunoblot analyses were performed on lysates of parental MYL and MYL-R 
cells to compare activity of Na+/K+-ATPase in the two cell lines.  (B and C) Lyn 
inhibition significantly reduced total creatine pool in MYL-R cells.  Approximately 15M 
MYL-R cells were treated for 1 hour with DMSO or ponatinib (10 nM) and total 
intracellular creatine concentrations determined using 1H NMR as outlined in Materials 
and Methods.  Untreated MYL-R cells were similarly analyzed for comparison.  
Similarly, Lyn inhibition reduced both Na+/K+-ATPase and Lyn activities as determined 
by immunoblot analyses.  The creatine transporter, SLC6A8, and Na+/K+-ATPase protein 
levels were not affected.  (D and E)  Lyn knockdown significantly reduced total 
intracellular creatine pool in MYL-R cells.  Similarly reduced by the more efficient Lyn 
knockdown shRNA constructs (shLyn-01, shLyn-05, and shLyn-06) were Na+/K+-
ATPase and Lyn activities, together with SLC6A8 and Na+/K+-ATPase protein levels.  
Approximately 15M MYL-R cells were infected with lentiviral particles containing 
shRNA directed against Lyn.  Upon selection of stably transduced cells, total intracellular 
creatine levels were measured using 1H NMR, and Na+/K+-ATPase and Lyn activities, 
together with SLC6A8 and Na+/K+-ATPase protein levels were measured by 
immunoblotting.  The data are the averages of three independent experiments, and * 
represents p < 0.05.  
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Figure 3.5.  Lyn mediates the phosphorylation and activation of the  
Na+/K+-ATPase pump.   

Transfection of constitutively active Lyn (Y508F) into HEK293 cells increased phospho-
Na+/K+-ATPase α1 (pY10) levels.  Phospho-STAT5A (pY694) levels were measured as 
an indication of Lyn activity and were similarly increased.  No changes in Na+/K+-
ATPase, SLC6A8 or STAT5A protein levels were observed under these conditions.   
HEK293 cells were transiently transfected with wild type or constitutively active 
(Y508F) or kinase dead (K275R) Lyn DNA as described in Materials and Methods.  
Na+/K+-ATPase, STAT5A and Lyn activities, together with SLC6A8, STAT5A and 
Na+/K+-ATPase protein levels were measured by immunoblotting.  
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Figure 3.6.  Depletion of intracellular creatine pool substantially 
reduces MYL-R cell viability.  

Treatment of MYL-R cells with cyclocreatine (CCr) reduced cell viability in a dose-
dependent manner compared to MYL cells.  MYL and MYL-R cells were treated for 48 
hours with increasing concentrations of CCr.  Cell viability was determined in triplicate 
using the MTS Assay as described in Materials and Methods. 
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Figure 3.S1.  Quantification of intracellular creatine in MYL (A) and MYL-R (B) 
cells.   
1H NMR analysis showed that intracellular creatine was significantly higher in MYL-R 
compared to MYL cells (68).  Creatine concentrations from the 1H NMR processed 
spectra were determined using Chenomx software and calculated as mmol/106 cells.  
Two-tailed student’s t test was used to test for significance (p < 0.05) in the difference in 
total intracellular creatine between MYL and MYL-R cells (68).  
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Figure 3.S2.  Lyn and Na+/K+-ATPase inhibitors suppress creatine 
uptake in MYL-R cells.   

(A) Lyn and Na+/K+-ATPase inhibitors reduced total creatine pool in MYL-R cells.  My-
R cells were treated overnight with 1 nM dasatinib or 0.1% DMSO or 10 nM bryostatin 1 
or 100 nM ouabain and total intracellular creatine examined by 1H NMR.  Creatine 
quantification was performed as described in Materials and Methods.  Inhibition of Lyn 
or Na+/K+-ATPase with dasatinib or ouabain substantially reduced total intracellular 
creatine.  Conversely, treatment of MYL-R cells with bryostatin 1 increased total 
intracellular creatine levels above those recorded for DMSO.  (B) Percent inhibition of 
intracellular creatine was calculated from the values obtained in (A), with ouabain 
registering ~100% inhibition.     
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Figure 3.S3.  Competitive inhibitors of creatine transport reduce creatine levels 
in MYL-R cells.   

Treatment of MYL-R cells with 3-Guanidinopropionic acid (3-GPA) reduced total 
intracellular creatine pool ten-fold, comparable to untreated MYL cells.  MYL-R cells 
were treated for 24 hours with 3-GPA (30 mM), and total intracellular creatine pool 
determined using 1H NMR as outlined in Materials and Methods.  Untreated MYL and 
MYL-R cells were similarly analyzed for comparison. 
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Target shRNA sequence, 5’-3’ 

Non-targeting vector None 

Lyn_1 TTCATGAGGTTGGCTTCTTCC 

Lyn_5 AAACGTTGGTCTCTCTTCTGC 

Lyn_6 TTCTAAGGTGTTGAGTTTGGC 

 

Table 3.1. shRNA oligonucleotides used in Chapter 3. 
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CHAPTER 4.  CONCLUSIONS AND FUTURE DIRECTIONS 
 
4.1 Conclusions 

     The emergence of acquired resistance to cancer therapy has presented monumental 

challenges to successful treatment of various human cancers, making it critical to fully 

understand the drivers of this phenomenon (11,178).  In this regard, we in the Graves lab 

have adopted multi-omics approaches aimed at unraveling some of the adaptation 

mechanisms utilized by various human cancers to evade molecularly targeted therapies.  

We have used transcriptomics, proteomics, and metabolomics to accomplish these studies 

both in solid and liquid tumors.  In this dissertation, and as shown in Figure 4.1, I have 

described two mechanisms by which an alternative kinase (Lyn), activated in a Bcr-Abl 

initiated CML, promotes cell survival.  To successfully accomplish the studies described 

herein, I have collaborated with others and used the multi-omics approaches outlined in 

Figure 4.1.   

     Whereas our MIB-MS analyses of imatinib-sensitive (MYL) and imatinib-resistant 

(MYL-R) CML cells confirmed Lyn to be up-regulated in MYL-R compared to MYL 

cells, phosphopeptide analyses revealed that increased Lyn activity in MYL-R cells 

resulted in downstream substrate changes that promote drug resistance.  For example, 

expression of anti-apoptotic proteins were found to be up-regulated (11,56,57).  

Zimmerman et al showed in a previous study that increased Lyn activity resulted in 

increased expression of Mcl-1, an anti-apoptotic protein.  As illustrated in Figure 4.2, I 

showed that increased Lyn activity in MYL-R cells led to increased expression and 
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stability of BIRC6, an anti-apoptotic protein known to bind and inactivate active caspases 

(11).  The stability of BIRC6 was regulated via phosphorylation in a Lyn-dependent 

manner.  Thus, increased expression and stability of anti-apoptotic proteins is one 

mechanism by which Lyn promotes drug resistance in MYL-R cells. 

     Altered metabolism is a hallmark of a variety of human cancers and is thought to 

promote drug resistance by yet undefined mechanisms (68,178-180,186).  High 

intracellular ATP levels, however, have been linked to drug resistance in many human 

cancer cells (186).  Our lab previously showed that total intracellular pool was 5-fold 

higher in MYL-R than MYL cells (68).  Accordingly, I have demonstrated in this 

dissertation that increased Lyn activity plays a critical role in regulating creatine uptake 

by MYL-R cells.  In collaborations using metabolomics (1H-NMR spectroscopy) 

approach as shown in Figure 4.1, and Western blot analyses, I have shown that Lyn 

phosphorylates and activates the Na+/K+-ATPase pump resulting in the establishment of a 

membrane gradient required for Na+ and creatine symport.  As shown in Figure 4.3, 

upon uptake into the cell, creatine is phosphorylated by creatine kinase to produce 

phosphocreatine, a high-energy source that supports cell survival via maintenance of ATP 

homeostasis (183,186).  Consistent with these observations, my data showed that creatine 

uptake inhibition resulted in reduced MYL-R cell viability.   

     Although not very exhaustive, our studies have highlighted some of the many ways in 

which increased Lyn activity enriches our understanding of the molecular mechanisms 

underlying Bcr-Abl-initiated CML progression into imatinib-resistance (Fig 4.4).  More 

research, however, remains to be done to fully understand Lyn’s role in promoting drug 

resistance in CML. 
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4.2 Future Directions 
 
     Data from my studies highlight novel targets that may be critical to the development 

of effective therapies for drug-resistant CML.  In furtherance of these studies, I propose 

the following experiments:  

(1) Develop approaches to study BIRC6 and caspases interactions as a first step to inform 

more robust assays to screen for potential inhibitors of the BIR domain of BIRC6.  

Validation of key residues involved in these interactions will be important in designing 

peptide-based inhibitors of BIRC6.  Already, research is ongoing in this area to develop 

inhibitors of the BIR regions of IAPs (187). 

Lyn being a tyrosine kinase, the multiple serine phosphorylation events observed close to 

the BIR domain of BIRC6 (Figure 2.2A) were not due to direct action by Lyn, but the 

result of multiple signaling cascades regulated by Lyn.  Since direct inhibitors of BIRC6 

are not available, it is important to interrogate further the involved signaling proteins 

downstream of Lyn that may be targeted in an effort to eliminate BIRC6 and make the 

cancer cells more sensitive to therapy.  

(2) For the creatine studies, overexpress Lyn in MYL cells and use 1H-NMR analysis to 

investigate if there is any impact on creatine uptake.  Compare to MYL-R cells.  

Investigate if MYL cells show any changes in imatinib-sensitivity.  Additionally, perform 

cell viability assays to compare cell viability between the two cell lines.  

Previous findings showed that phosphocreatine was important for maintaining the 

integrity of the mitochondrial membrane thereby protecting cells against apoptosis (69).  

Our creatine uptake inhibitor data show that depletion of creatine reduced MYL-R cell 

viability (Figure 3.6).  Therefore, it is important to investigate if and how creatine (or 
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phosphocreatine) may be promoting drug resistance in MYL-R cells.  Incubation of 

MYL-R cells with inhibitors of creatine uptake (like cyclocreatine and 3-GPA) and 

investigating changes in mitochondrial membrane potential will probably be a critical 

step in addressing this question. 
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Figure 4.1.  MIB/MS, phosphopeptide enrichment, and metabolomics approaches 
for studying drug resistance mechanisms in CML.  

MIB/MS was used to study kinome dynamics in MYL, MYL-R, and MYL-R cells treated 
with ponatinib (10 nM, 1 hr.).  In parallel, phosphoproteomics was used to study global 
phosphorylation differences from the same cells.  Identification of peptides was 
accomplished by LC-MS/MS and label-free quantification (LFQ) of mass spectral data 
was performed using MaxQuant and the integrated ANDROMEDA search engine (121).  
Metabolomics was used to study metabolon dynamics in MYL, MYL-R, Lyn-knockdown 
MYL-R, and MYL-R cells treated with 3-GPA or ponatinib or dasatinib or bryostatin or 
ouabain.  Identification of metabolites was accomplished using.  1H-NMR spectral data 
were acquired using 1D 1H and 2D 1H-{13C} HSQC NMR Spectroscopy, and the 
metabolites were identified and quantitated using Chenomx software (version 6.1; 
Chenomx Inc., Edmonton, Canada). 
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Figure 4.2.  Lyn regulates BIRC6 expression and stability in MYL-R cells.   

Schematic depiction of how activation of Lyn in Bcr-Abl-initiated CML leads to up-
regulation of BIRC6 expression and stability thereby preventing the cells from going into 
apoptosis when challenged with imatinib.  BIRC6 stability is enhanced via multiple 
phosphorylations in regions that overlap with caspase cleavage motifs, thus abrogating 
caspase-mediated degradation of the protein. 
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Figure 4.3.  Creatine uptake by MYL-R cells.   

Model showing creatine uptake machinery in MYL-R cells comprising of Lyn, the 
Na+/creatine symporter (SLC6A8), and the Na+/K+-ATPase pump.  Lyn phosphorylation 
and activation of the Na+/K+-ATPase pump allows for the establishment of a membrane 
gradient that facilitates inflow of Na+ accompanied with creatine.  Intracellular creatine is 
phosphorylated by creatine kinase (CK) to produce phosphocreatine, a high-energy 
molecule known to promote cancer cell survival. 
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Figure 4.4.  Adaptation mechanisms regulated by Lyn in MYL-R cells.   

Simplified depiction of some of the Lyn-mediated survival pathways utilized by drug-
resistant CML cells (MYL-R).  Our lab uses MYL-R cells as a model system for studying 
drug resistance in CML. 
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