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ABSTRACT

JOLYNN PEK: Fungible Parameter Contours and Confidence Regions in
Structural Equation Models

(Under the direction of Robert C. MacCallum)

There are at least two kinds of uncertainty associated with parameter estimates when

statistical models are fit to sample data. The first kind of uncertainty is typically con-

veyed by confidence regions which provide a plausible range of values for population

parameters of interest. The second kind of uncertainty involves a sensitivity analysis

(Cook, 1986) with respect to model fit. Here, contours representing alternative so-

lutions for parameter estimates that are almost as good as the optimal estimates in

terms of model fit are obtained. Contours of these slightly suboptimal parameter val-

ues have been termed fungible weights or contours (Waller, 2008; Waller & Jones, 2009;

MacCallum, Browne & Lee, 2009). Although distinct from each other, confidence re-

gions and fungible contours communicate parameter uncertainty and are both com-

puted from the likelihood function. Given these commonalities, we set out to clarify

the relationship between confidence regions and fungible parameter contours by accom-

plishing three objectives.

First, we show that confidence regions and fungible parameter contours are an-

alytically related when both types of parameter uncertainty are unified under a gen-

eral perturbation framework. Second, we carried out a simulation study that confirms

the distinction between confidence regions and fungible parameter contours. Although

the magnitude of correlations among measured variables have an impact on these two

kinds of parameter uncertainty, confidence regions are primarily determined by sample

size while fungible parameter contours are determined primarily by model fit and, to a
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much smaller extent, sampling variability. Third, we implemented a new computational

procedure for obtaining confidence regions and fungible parameter contours associated

with focal parameters by the profile likelihood method, which takes account of nuisance

parameters. We conclude with directions for future research and end with a discussion

of what applied researchers may gain from examining these two distinct kinds of pa-

rameter uncertainty.
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Chapter 1

INTRODUCTION

A major goal of statistical modelling is to obtain parameter estimates that

summarize regularity inherent in the data at hand. Such parameter estimates allow

researchers to describe, understand, explain and predict complicated phenomena. Yet,

parameter estimates carry different kinds of uncertainty which should be taken into

account when these estimates are to be rigorously interpreted or applied.

One kind of uncertainty, due to sampling variability, is typically conveyed by

confidence intervals or regions. Parameter estimates are only point estimates that are

our best guess as to what the population parameter values truly are. With repeated

sampling using replicate experiments or observations, a distribution of these point esti-

mates may be empirically obtained. Without such replicate observations, assumptions

regarding the distribution of these point estimates are made in order to construct con-

fidence regions. Confidence regions provide a plausible range of values for the popula-

tion parameters of interest. A confidence interval is constructed for a single parameter

whereas a confidence region is constructed for more than one parameter. For example,

a 95% confidence region denotes the range of parameter estimates which are expected

to capture the true population value 95% of the time over repeated sampling. Stated

differently, confidence regions convey how much statistical variation is inherent in the

parameter estimates. Tight confidence regions communicate small sampling variability

and little uncertainty or high precision in parameter estimates. With small sampling

variability, parameter estimates obtained from another sample from the same popu-

lation will not differ appreciably from the original estimates. Hence, tight confidence



regions promote cross-validation. Clearly, strong scientific conclusions require small

sampling variability (Green, 1977).

A second kind of uncertainty associated with parameter estimates may be in-

vestigated via a sensitivity analysis (Cook, 1986). Sensitivity analysis involves intro-

ducing practically insignificant changes to modelling conditions and assessing their ef-

fects on study results. One form of sensitivity analysis examines the relationship be-

tween parameter estimates and model fit. Specifically, parameter uncertainty is inves-

tigated with respect to small perturbations introduced to model fit. Given a slightly

suboptimal model fit, alternative solutions for parameter estimates may be obtained.

Such alternative parameter values have been called exchangeable or “fungible” in that

each set is associated with the same suboptimal model fit (Waller, 2008; Waller &

Jones 2009). When a single parameter is involved, two fungible values are obtained.

When more than one parameter is concerned, an infinite number of alternative solu-

tions may be obtained. Uncertainty is couched as the degree of variation across dif-

ferent combinations of parameter values that give practically the same, albeit slightly

worse, model fit as the unique optimal solution. Stated differently, fungible parame-

ter contours convey information on parameter variation, given a slightly suboptimal

model fit. If the size of parameter values change radically under a minute perturbation

to model fit, such parameter values provide a weak basis for scientific conclusions.

The objective of computing fungible parameter values is to determine whether

parameter variation, under a practically insignificant change to model fit, is tolerable.

Stated differently, the goal of such a sensitivity analysis is to ensure that parameter es-

timates are robust to a minute change in model fit. Fungible parameter values in linear

regression models have been studied by Waller (2008) and Waller and Jones (2009),

building upon the work regarding the study of parameter sensitivity (Green, 1977;

Wainer, 1976, 1978; Rozeboom, 1979; Koopman, 1988; Dana & Dawes, 2004). More re-

cently, the study of fungible parameter values was extended to the more general frame-
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work of structural equation models (SEMs) of which linear regression is a special case

(MacCallum, Browne, & Lee, 2009). Indeed, the developments by these researchers are

generalizable to virtually any statistical model.

Both tight confidence regions and tight fungible parameter contours promote

strong scientific conclusions. Under maximum likelihood (ML) estimation, confidence

regions or bounds and fungible contours are both based on the likelihood function

which carries information regarding uncertainty associated with parameter estimates.

While these two kinds of parameter uncertainty are distinct, these commonalities raise

a need for clarification regarding the relationship between confidence regions and fungi-

ble contours. As such, there are three objectives of the study. First, we will examine

the analytical relationship between confidence regions and fungible contours in the

context of SEMs. Second, we propose to develop computational methods to obtain

likelihood-based confidence regions and fungible parameter contours for more than one

parameter. Third, an investigation is conducted on how these two kinds of uncertainty

are influenced by aspects of the data and model. The following is an overview of the

study.

To begin, conceptual definitions of confidence regions and fungible contours

in SEM are provided to facilitate the development of analytical relationships between

these two kinds of parameter uncertainty. First, we will review the SEM and ML es-

timation of model parameters. The theoretical construction of likelihood-based confi-

dence intervals and regions is then described, followed by the analogous construction

of fungible parameter values. This theoretical overview is followed by a brief review

of existing computational methods to estimating likelihood-based confidence intervals,

and then a description of the method used by MacCallum, Browne and Lee (2009) to

compute fungible parameter values. Finally, a general theoretical framework for under-

standing these two kinds of uncertainty is laid out. It is noted that this framework is a

generalization of the work of MacCallum, Browne and Lee (2009) in obtaining fungible
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parameter values. Under this general theoretical framework, we will establish condi-

tions under which confidence regions and fungible parameter contours are numerically

identical, and summarize the similarities and differences between confidence regions

and fungible contours.

Practical issues concerning the estimation of confidence regions and fungible

contours are also discussed. In particular, computational difficulties arise when the

number of parameters involved in computations is not small. Typically, analysts are

interested in a small number of focal parameters and treat the remaining non-focal pa-

rameters as nuisance parameters. We will review several approaches to dealing with

nuisance parameters and focus on the estimated likelihood and profile likelihood meth-

ods to address the presence of nuisance parameters. We will then describe a root find-

ing algorithm (Brent, 1973) to obtaining confidence regions and fungible parameter

contours from both the estimated likelihood and the profile likelihood. An empirical

example based on published data (Schmitt, Branscombe, Kobrynowicz, & Owen, 2002)

is used to demonstrate this computational method as well as illustrate the relationship

between confidence regions and fungible parameter contours.

Next, we explore conditions and factors which influence the size of confidence

regions and fungible contours with simulated data. Specifically, the effect of sample

size, magnitude of correlations among the measured variables, and model fit are exam-

ined. Additionally, we examine two different perturbation schemes for obtaining fungi-

ble parameter contours. For this simulation, computations are generally carried out on

the profile likelihood. However, for comparison, confidence regions and fungible param-

eter contours will also be obtained from the empirical likelihood in targeted study cells.

Finally, we end with a discussion on the properties and behavior of these two kinds of

uncertainty associated with parameter estimates, comment on the advantage of basing

computations on the profile likelihood, and suggest future directions for research.
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1.1 Structural Equation Models and Maximum Likelihood Estimation

To set the framework and establish notation, we first review the structural

equation model (SEM) and maximum likelihood (ML) estimation of these model pa-

rameters. Structural equation models are multi-parameter models involving a hypoth-

esized network of directional and non-directional relationships among sets of measured

and latent variables (MVs and LVs). The p × p population covariance matrix of the

MVs is typically denoted by Σ and the model implied k × 1 vector of parameters is

denoted by θ . We will focus on covariance structure models, although our develop-

ments may be extended to model mean structures. The SEM is simply expressed as

Σ = Σ(θ) , implying that the population covariance matrix for the MVs is a func-

tion of the model parameters. Parameter estimates θ̂ are computationally obtained by

minimizing the discrepancy between the model implied population matrix Σ(θ) and

the sample covariance matrix S.

There are many discrepancy functions for obtaining SEM parameter estimates

such as the generalized least squares (GLS) and the asymptotically distribution free

(ADF; Browne, 1984) approaches. However, the method of ML is the most commonly

used technique. The multivariate normal likelihood function L(θ) to be maximized is

defined by the specified model parameters θ and the data at hand. Note that L(θ) is

a nonlinear expression of Σ(θ) . In practice, a monotonic transformation of the mul-

tivariate normal likelihood function L(θ) , known as the ML discrepancy function F ,

is optimized to obtain θ̂ . Maximizing L(θ) is equivalent to minimizing F . The ML

discrepancy function is

F (Σ,S) = ln |S|+ tr(SΣ−1)− ln |Σ| − p (1)

where p is the number of MVs and tr(.) denotes the trace function which is the sum of

the diagonal elements of a square matrix.
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The estimated sample discrepancy function is given by F̂ = F (Σ(θ̂),S) . Mul-

tiplying F̂ by (N − 1) , where N is the sample size, obtains the goodness-of-fit test

statistic under the Wishart distribution (Browne & Arminger, 1995). This test statistic

T = (N − 1)F̂ (2)

asymptotically follows a χ2 distribution with p(p + 1)/2 − k degrees of freedom under

the null hypothesis that the model impled covariance matrix Σ(θ) is no different from

the population covariance matrix Σ . Recall that k is the total number of parameters

estimated under the specified model. This goodness-of-fit test statistic is also known as

a likelihood ratio test (LRT) as this statistic compares the likelihoods of the specified

model against the saturated model or the model which perfectly reconstructs the data

(Bollen, 1989).

1.2 Constructing Confidence Regions and Fungible Contours

1.2.1 Likelihood-Based Confidence Regions

A useful supplement to ML point estimates is a confidence region, which con-

veys the sampling variability that underlies parameter estimates. Besides likelihood-

based confidence regions, there exist other approaches to constructing confidence re-

gions such as the standard Wald approach. Suppose that a confidence interval for a

single parameter is desired. Wald-type confidence intervals are constructed using the

formula: estimate ± percentile × standard error of estimate. Here, the percentile is

determined by some chosen confidence or error rate α and a reference distribution

such as the normal distribution. Wald-type confidence intervals, however, perform

poorly when the distribution of the parameter estimate is markedly skewed or if the

estimated standard error is inaccurate (Stryhn & Christensen, 2003).

Another alternative to constructing confidence regions is based on the Score
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statistic or Lagrange Multiplier test. Score-type confidence regions are constructed us-

ing the same formula as Wald-type confidence regions. While the percentile for both

the Wald-type and Score-type confidence regions are the same, the estimate and stan-

dard error of the estimate for the Score approach are distinct from the Wald method.

In particular, Wald-type standard errors are obtained from the second derivatives of

the likelihood function (or Hessian matrix) while Score-type standard errors are com-

puted from the first derivatives of the likelihood function (or Gradient matrix). Score-

type confidence regions suffer the same shortcomings as Wald-type confidence regions

as these two approaches are based on quadratic approximations to the log-likelihood

(Meeker & Escobar, 1995). Perfect conformity of the log-likelihood to the quadratic

form is rare in SEMs (Neale & Miller, 1997). Therefore, we will investigate likelihood-

based confidence regions here.

Likelihood-based confidence intervals are constructed by inverting a certain

type of LRT as described below. Suppose a likelihood-based confidence region for the

k × 1 vector of parameter estimates is desired. The null hypothesis tested by the LRT

is H0 : θ = θ0 where θ0 is a k × 1 vector of population parameter values determined

by the null hypothesis. Formally, this LRT is defined as

G2 = 2[l(θ̂)− l(θ0)] (3)

where l(θ̂) is the log-likelihood associated with the k × 1 vector of ML estimates and

l(θ0) is the log-likelihood associated with the k × 1 vector of parameter values deter-

mined by the null hypothesis. The test statistic G2 is asymptotically distributed as χ2

with k degrees of freedom under the null hypothesis.

To construct a 100(1 − α)% confidence region, the LRT in Equation 3 is in-

verted. In particular, the confidence region is constructed such that values of θ0 are

found to be associated with a non-significant G2 at some desired error rate α . There-
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fore, the likelihood-based confidence region is determined by solving for values of θ0

which satisfy the inequality

G2 ≤ χ2
1−α,k. (4)

In this vein, the bounds or limits to likelihood-based confidence regions are obtained

by solving for values of θ0 such that Equation 4 is an equality or G2 = χ2
1−α,k . Note

that when the null hypothesis is false, the appropriate statistic approximately follows

a noncentral χ2 distribution with k degrees of freedom and a noncentrality parame-

ter λ that depends on the alternative hypothesis that is taken to be true. Although

confidence regions may be constructed using the noncentral χ2 distribution, when the

null hypothesis is not true, implementation of this approach would require the user to

specify some value of λ reflecting the degree of model misfit in the population. As this

task could be problematic in practice, we will focus on inverting the LRT based on the

central χ2 distribution in the current project.

Suppose now that a likelihood-based confidence region for a focal subset of the

vector of parameters is desired. Let the parameter vector be partitioned into focal pa-

rameters and nuisance parameters as θ = (θf ,θn)′ . It follows from the general case

that the null hypothesis tested by the LRT on focal parameters is H0 : θf = θ0f where

θ0f is a kf × 1 vector of parameter values specified under the null hypothesis. The

associated LRT statistic is

G2 = 2[l(θ̂)− l(θ̃n,θ0f )]

where l(θ̂) remains the log-likelihood value associated with the ML estimates θ̂ =

(θ̂f , θ̂n)′ and l(θ̃n,θ0f ) is the joint log-likelihood associated with the ML nuisance pa-

rameter estimates θ̃n and the kf × 1 vector of population focal parameters under the

null θ0f . Note that θ̂n is distinct from θ̃n as θ̂n is estimated jointly with θ̂f while

θ̃n is estimated while holding θ0f fixed under the null hypothesis. This G2 follows an

asymptotic χ2 distribution with kf degrees of freedom under the stated null hypoth-
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esis. Compared to the general case, values of θ0f are obtained in place of values of θ0

so as to obtain confidence regions for a vector of focal parameters.

1.2.2 Fungible Parameter Contours

Fungible parameter values in SEM are obtained from applying a perturbation

to the sample value discrepancy function F̂ , and then computing parameter values

that are associated with the perturbed value of model fit (MacCallum, Browne & Lee,

2009). The magnitude of the perturbation to apply remains subjective and will be the

responsibility of the investigator. However, perturbations should be small to the ex-

tent that the suboptimal model fit is practically no different than the fit of the optimal

solution. Let F̂ ∗ denote the perturbed sample value discrepancy function. It is impor-

tant to apply a perturbation which may be understood on a meaningful metric. For

instance, the perturbed F̂ ∗ may be determined by adding some small percentage of F̂

to the sample discrepancy value. Under such a perturbation scheme, a perturbation of

5% of F̂ would result in F̂ ∗ = 1.05F̂ .

MacCallum, Browne and Lee (2009) have suggested the use of perturbations

based on the root mean squared error of approximation (RMSEA; Browne & Cudeck,

1993; Steiger & Lind, 1980) as this index has a scale understood in terms of model fit.

The RMSEA is defined in the population as

ε =
√
F0/df (5)

where F0 is the discrepancy due to model error in the population and df = p(p +

1)/2 − k is the model degrees of freedom. The population RMSEA is a measure of dis-

crepancy per degree of freedom for the model. Extending Equation 5 to a sample gives

the sample RMSEA, which corrects for the bias in F̂ as an estimator of F0 (Browne &
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Cudeck, 1993). Specifically, the sample RMSEA is a nonlinear function of F̂ given by

ε̂ =

√
max(

F̂

df
− 1

N − 1
, 0) (6)

where max(.) is the maximum operator. The sample RMSEA may be similarly in-

terpreted as a measure of the discrepancy per degree of freedom for the model, and a

value of RMSEA ≤ 0.05 is conventionally viewed as indicating a close fit of the model

in relation to the degrees of freedom. In this vein, a perturbed value of the RMSEA

may be expressed as

ε∗ = ε̂+ ε̃ (7)

where ε̃ denotes the perturbation to the optimal RMSEA. For computations, F̂ ∗ may

be obtained from ε∗ via Equation 7. Specifically, F̂ ∗ = df((ε̂ + ε̃)2 + 1
N−1) when

RMSEA 6= 0.

Fungible parameter values, denoted by the vector θ̂
∗
, are obtained by solving

the following equation

F (Σ(θ̂
∗
), S) = F̂ ∗

or

F (Σ(θ̂
∗
), S)− F̂ ∗ = 0. (8)

Here, S, F̂ ∗ and θ̂ are known, and the vector of fungible parameter values is obtained

by perturbing ML estimates θ̂ such that these perturbations yield F̂ ∗ .

In summary, likelihood-based confidence regions may be constructed by invert-

ing the LRT G2 . From Equation 4, the size of these confidence regions is determined

by the selected error rate α , the number of parameters involved, and some assumed

distribution. In contrast, fungible parameter contours are constructed from a chosen

level of suboptimal model fit F̂ ∗ . Hence, the size of fungible parameter contours is di-

rectly determined by the magnitude of perturbation introduced.
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1.3 Computing Confidence Regions and Fungible Contours

1.3.1 Existing Algorithms for Likelihood-Based Confidence Regions

Several algorithms have been proposed to obtain likelihood-based confidence

intervals for a single parameter where k = 1. Venzon and Moolgavkar (1988) devel-

oped a modified Newton-Raphson algorithm based on analytical derivatives to solve for

the limits of Equation 4. Developing this work further, Neale and Miller (1997) intro-

duced a more flexible algorithm which is instead based on numerical derivatives. These

approaches are computationally more efficient compared to a systematic search over

the parameter space, but do not provide exact solutions to Equation 4. In some cases,

biased estimates to confidence intervals have been reported (Neale & Miller, 1997). Ad-

ditionally, these algorithms have not been generalized to compute confidence bounds

for k > 1 .

Computing exact likelihood-based confidence intervals typically involves a grid

search (Stryhn & Christensen, 2003). For simplicity, consider constructing a confidence

interval for a single parameter θ where k = 1. To obtain the lower bound of a confi-

dence interval θL , a reasonable lower bound θl is first selected; for example, −5 times

the standard error of θ̂ . This is followed by constructing a grid of values ranging from

θl to θ̂ . A G2 test statistic value is obtained for each grid value θt and the estimated

lower bound θ̂L is the smallest grid value θt for which Equation 4 holds. The upper

bound θ̂U may be obtained in a similar manner by starting with a reasonable upper

bound θu .

For k = 2 parameters, the search for a joint confidence bound occurs over a

two-dimensional grid. First, reasonable lower and upper bounds for the two parameters

θ1l , θ2l , θ1u and θ2u are selected. Then, a two-dimensional grid of values ranging from

θ1l to θ1u on the first dimension and from θ2l to θ2u on the second dimension is con-

structed. Similar to the one-dimensional case, a G2 test statistic value is obtained for
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every point θt on the two-dimensional grid. The estimated confidence bound will be

an elliptical figure surrounding the parameter estimates θ̂ = (θ̂1, θ̂2)
′ , which will take

on certain values of grid points. In particular, the grid points that make up the confi-

dence bound are the ones located furthest away from the parameter estimates θ̂ and

satisfying Equation 4.

In theory, this grid search may be generalized to k -parameters. In place of a

one- or two-dimensional grid, a k -dimensional grid is constructed for the search. At

the end of the search, a k -dimensional confidence bound is obtained. In practice, com-

puting a k -dimensional confidence bound from the large number of grid points is com-

putationally burdensome. As an alternative to a crude search based on a grid as out-

lined above, a systematic search procedure may be used to obtain exact likelihood-

based confidence regions. However, such an algorithm has not yet been implemented

in popular SEM software.

1.3.2 Estimating Fungible Contours

The root finding algorithm (Brent, 1973) was applied by MacCallum, Browne

and Lee (2009) to obtain fungible parameter values in SEM. Recall that fungible val-

ues are computed by perturbing the ML estimates θ̂ such that the perturbations yield

a user-specified sample discrepancy function value F̂ ∗ that is slightly suboptimal as

defined in Equation 9. This perturbation of θ̂ is achieved by adding a term

θ̂
∗
t = θ̂ + κtdt (9)

where dt is one of T unit length vectors and κt is one of T scaling constants to be

determined. With k = 1, dt spans a line and only T = 2 direction vectors are re-

quired. Suppose that with k = 2, dt adequately spans a two-dimensional plane with

T directional vectors. For k = 3, T 2 directional vectors are required to adequately
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span the three-dimensional space with equal coverage as the two-dimensional plane. It

follows that for k parameters, dt spans a k -dimensional space with T k−1 directional

vectors. Vectors of fungible parameter values θ̂
∗
t are obtained by solving for κt in the

following expression

F (Σ(θ̂ + κtdt),S)− F̂ ∗ = 0. (10)

Note that κt is iteratively solved via the Brent (1973) algorithm and the computa-

tional burden of obtaining fungible parameter contours increases exponentially with the

k number of parameters involved.

1.3.3 Obtaining Confidence Regions via the Brent (1973) Algorithm

The computational procedure applied by MacCallum, Browne and Lee (2009)

to compute fungible parameter contours may be generalized to compute exact likelihood-

based confidence bounds. First, G2 in Equation 4 may be re-expressed in terms of dis-

crepancy function values

G2 = (N − 1)[F (Σ(θ0),S)− F̂ ] (11)

where N is the sample size,Σ(θ0) is the population covariance matrix under the null

hypothesis and F̂ is the sample discrepancy function value. From Equation 4, popu-

lation values of θ0 falling within the (100 − α)% confidence region are obtained by

perturbing ML estimates θ̂ such that these perturbations satisfy the equation

(N − 1)[F (Σ(θ0),S)− F̂ ] = χ2
1−α,k

or equivalently,

(N − 1)[F (Σ(θ0),S)− F̂ ]− χ2
1−α,k = 0. (12)
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Similar to obtaining fungible parameter values, values of θ0 in Equation 12 could be

obtained by perturbing the ML estimates θ̂ by Equation 9. Here, T confidence bound-

ary points are obtained in the search. By combining Equations 9 and 12, values of θ0

are obtained by solving for κt in the following expression

(N − 1)[F (Σ(θ̂ + κtdt),S)− F̂ ]− χ2
1−α,k = 0

or equivalently,

F (Σ(θ̂ + κtdt),S)− [F̂ + χ2
1−α,k/(N − 1)] = 0. (13)

1.4 Analytical Relations between Confidence Regions and Fungible Contours

Given that computations of confidence regions and fungible parameter values

are based on the likelihood function, we shall now consider the issue of when these two

kinds of parameter uncertainty are numerically equivalent. By comparing Equations 10

and 13 of the general perturbation framework, it can be seen that confidence bounds

and fungible parameter contours are numerically equivalent if and only if

F̂ ∗ = F̂ + χ2
1−α,k/(N − 1).

or equivalently

F̂ + Fp = F̂ + χ2
1−α,k/(N − 1) (14)

where Fp is the perturbation to F̂ or (F̂ ∗−F̂ ) . As discussed earlier, Fp may be a per-

turbation in the scale of RMSEA ( ε̃ from Equation 7) or a predetermined percentage

of F̂ . From Equation 14, it can be seen that (N − 1)Fp = χ2
1−α,k .

When the magnitude of perturbation in model fit Fp is equivalent to the dis-

tance from the ML estimates used to construct confidence bounds χ2
1−α,k/(N − 1) ,

fungible parameter contours and confidence bounds are numerically equivalent. Sup-
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pose we have a sample of size N = 150 and fit a common factor model with correlated

factors and simple structure to data collected on six MVs such that three MVs load

onto the first factor and the remaining three MVs load onto the second factor. In this

model, k = 13 and df = 8. Suppose further that we are interested in obtaining a con-

fidence region and a fungible parameter contour for the three factor loadings associated

with the first factor such that kf = 3.

Let F̂ = 0.082 with RMSEA ε̂ = 0.059 . To construct a 95% confidence in-

terval for kf = 3, χ2
.95,3/(150 − 1) = 0.052 . From Equation 14, this 95% confidence

bound would be numerically equivalent to the fungible parameter contour from a per-

turbation to model fit of F̂ ∗ = 0.082 + 0.052 = 0.134 . From Equations 6 and 7,

this perturbation in the discrepancy function value scale may be translated to a per-

turbation of the RMSEA of ε̃ = 0.041 , resulting in a perturbed RMSEA of ε∗ =

0.059 + 0.041 = 0.100 . Likewise, this perturbation may be translated to a percentage of

F̂ or %F̂ = 0.052/0.082× 100 = 63.4%. Alternatively, from a sensitivity analysis using

a chosen ε̃ = 0.005 , the perturbed RMSEA ε∗ = 0.059 + 0.005 = 0.064 or F̂ ∗ = 0.086 .

This RMSEA perturbation translates to a perturbation of %F̂ = 4.9%. Given the

value of F̂ ∗ , Fp = 0.086− 0.082 = 0.004 . From Equation 14, χ2
1−α,3/(150− 1) = 0.004

which translates to an error rate of α = 0.111 or a 88.89% confidence region. Instead

of applying an RMSEA perturbation ε̃ , perturbations based on a percentage of F̂ or

%F̂ may alternatively used.

Although numerical equivalence of fungible parameter contours and confidence

bounds is established analytically in Equation 14, these two kinds of uncertainty are

not substantively equivalent. Fungible parameter contours communicate uncertainty

of estimates in terms of their robustness/sensitivity to minor perturbations to model

fit. In the given example, a 95% confidence bound translates to a relatively large per-

turbation of ε̃ = 0.041 or %F̂ = 63.4% in model fit. This magnitude of perturbation

in model fit is quite different from the optimal ML solution, and does not translate to
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a meaningful sensitivity analysis. Alternatively, the small perturbation of ε̃ = 0.005

or %F̂ = 4.9% in the given example obtains meaningful fungible parameter contours

and translates to a confidence bound of 88.89% which may be associated with less than

optimal coverage values.

In summary, likelihood-based confidence regions and fungible parameter con-

tours have several different properties that contribute to their theoretical distinction

even though they share the commonality of being based on the likelihood function.

Confidence regions are a device of statistical inference which allows for statements to

be made regarding the population parameter. Specifically, confidence regions communi-

cate the precision of point estimates and the extent of their cross-validity. Confidence

bounds are intended to contain the population parameters based on some pre-specified

α level. Therefore, confidence bounds are limits to a range of estimates which are plau-

sible population parameter values, and the region within these bounds are meaning-

ful. For instance, a 95% confidence interval provides a range of plausible population

parameter values 95% of the time over repeated sampling. Tight confidence regions

are optimal in that they convey better precision of the estimates and limited sampling

variability. Proper coverage of likelihood-based confidence bounds requires the assump-

tion that the population implied model is correctly specified. Hence, strictly speak-

ing, confidence bounds are applicable only to a correctly specified maximum likelihood.

Likelihood-based confidence regions are also constructed from assuming that the LRT

in Equation 4 follows a known distribution. For Equation 4 to follow an asymptotic χ2

distribution with k degrees of freedom, the k estimates for θ may be ML estimates.

In this context, likelihood-based confidence bounds are tied to the ML discrepancy

function defined in Equation 1. From Equation 13, the k -dimensional confidence re-

gion depends on sample size N and a specified coverage probability α . Hence, these

two factors have a direct effect on the size of the confidence bounds.

In contrast, fungible parameter contours are computed as part of a sensitivity
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analysis to assess the sensitivity/ robustness of parameter estimates under a practically

insignificant perturbation to model fit. Fungible contours are alternative explanations

of the data (with equivalent minimally suboptimal model fit) that are practically the

same as the optimal solution. Unlike confidence regions, where the area located within

the bounds is meaningful, only points on the fungible parameter contour are of interest

in that they are associated with the user-specified perturbation to model fit; fungible

parameter values lying within the fungible contour are associated with a smaller than

specified perturbation to model fit. Tight fungible contours are desirable as they im-

ply limited or tolerable parameter variation in describing the data under a practically

equivalent model fit. Conversely, large fungible contours imply unstable model descrip-

tions of the data. In the context of obtaining fungible parameter values, the optimal

solution need not necessarily be ML estimates. Indeed, fungible values may be ob-

tained from any discrepancy function such as ordinary least squares (OLS), two-stage

least squares (2SLS), generalized least squares (GLS) and ADF (Browne, 1984) ap-

proaches. Hence, another main distinction between these two kinds of parameter uncer-

tainty is that distributional assumptions are required in the construction of confidence

regions but not fungible parameter contours. From Equation 10, the k -dimensional

fungible hyper-contour depends on a specified perturbation of the sample discrepancy

function value F̂ ∗ whereas the k -dimensional confidence region in Equation 13 de-

pends on the χ2
1−α(k) distribution based on ML estimation.

The construction of confidence regions and fungible parameter contours in

Equations 13 and 10 respectively suggest that different factors might have an effect

on the size of each kind of parameter uncertainty. The determination of θ̂
∗

in Equa-

tion 10 to obtain fungible parameter values does not explicitly involve sample size N .

However, the determination of θ0 in Equation 13 to obtain confidence bounds involves

sample size N . In particular, given smaller sample size, the kernel F (Σ̂(θ̂+κtdt),S)−

F̂ in Equation 13 requires larger numbers for the equation to hold and therefore re-
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sults in larger ranges of θ0 . Stated differently, decreasing sample size is associated

with larger likelihood-based confidence regions. Clearly, confidence regions incorporate

information about sampling variability whereas fungible values mainly portray charac-

teristics of the postulated model (cf. Green, 1977).

1.5 Accounting for Nuisance Parameters

When the number of model parameters k is not small, the general perturba-

tion framework to obtaining confidence regions and fungible parameter contours using

the method of root finding (Brent, 1973) outlined above is not computationally fea-

sible. With increasing numbers of parameters, locating the desired contour from the

k -dimensional likelihood function of a multi-parameter SEM becomes computationally

burdensome. In the context of k = 2 parameters, suppose that T directional vectors

are required to adequately sample the two-dimensional parameter space. With k = 3

parameters, T 2 directional vectors are required to sample the three-dimensional pa-

rameter space with equal coverage as the two-dimensional scenario. In general, with

k -dimensions, T k−1 directional vectors are required to sample the hypercube while

maintaining the same coverage as the lower-dimensional scenarios.

Computations thus rapidly become intractable with increasing parameter di-

mensionality. Additionally, multi-dimensional parameter confidence regions and fun-

gible contours are difficult to describe and communicate. In a k = 2 dimensional pa-

rameter space, confidence regions and fungible contours may be easily visualized as

elliptical shapes. In a k = 3 dimensional parameter space, wire frame plots may be

employed to visually depict the regions and contours as ellipsoidal forms. However, vi-

sualizing a multidimensional space beyond k = 3 is less than optimal as it typically

requires dimensional reduction of the space, and then plotting elliptical or ellipsoidal

figures.

It may often be the case in practice that only a few key or focal parameters in
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the multi-parameter model are of interest. Recall that the parameter vector θ may

be partitioned into focal and nuisance parameters θ = (θf ,θn)′ . When focal param-

eters are of interest, the dimensionality of the likelihood may then be reduced to the

dimension of θf by various methods of dealing with nuisance parameters to be re-

viewed. Once a reduced likelihood is obtained, the computational algorithms described

in the above sections may be implemented to obtain confidence regions and fungible

parameter contours. We will focus on implementing the Brent (1973) algorithm to ob-

tain estimates of confidence regions and fungible parameter contours from the reduced

likelihood.

1.5.1 Profile Likelihood Method

The profile likelihood offers a simple approach to obtaining the reduced likeli-

hood of focal parameters; nuisance parameters are eliminated by substituting the latter

with their ML estimates. The joint multivariate normal likelihood in terms of focal and

nuisance parameters may be expressed as L(θ) = L(θf ,θn) . The profile likelihood of

θf is then

L(θf ) = max
θn L(θf ,θn) (15)

where the estimation of θn is performed at fixed values of θf . Let the ML estimates

of θn in Equation 15 be denoted as θ̃n . Note that these ML estimates of the nuisance

parameters θn are distinct from the ML estimates obtained for the vector of model

parameters θ̂ = (θ̂f , θ̂n)′ . In Equation 15, θ̃n is estimated while holding θf fixed

whereas θ̂n is estimated jointly with θ̂f .

Only the Newton-Raphson based computation algorithms (Venzon & Mool-

gavkar, 1988; Neale & Miller, 1997) seem to have been implemented in the context of

a single-parameter profile likelihood to obtain confidence intervals. While these algo-

rithms are computationally efficient, they obtain only approximate estimates. Addi-

tionally, these algorithms have not been extended to compute confidence regions for
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k > 1 parameters. Neither the grid search nor root finding method (Brent, 1973)

have been implemented to obtain estimates from the profile likelihood in Equation 15.

Given the better precision of estimates obtained from the Brent (1973) algorithm due

to its exact computational nature, this algorithm will be extended to obtain exact esti-

mates of confidence regions and fungible parameter contours for k ≥ 1 parameters.

1.5.1.1 Profile Likelihood-Based Confidence Bounds

Using the method of root finding, profile likelihood-based confidence bounds for

θf are obtained by solving for values of κt by modifying the expression in Equation 13

to account for the partitioning of focal parameters from nuisance parameters as follows:

F (Σ(θ̃n, θ̂f + κtdt),S)− [F̂ + χ2
1−α(k)/(N − 1)] = 0 (16)

where θ̂f contains the ML estimates obtained jointly with θ̂n . Similar to Equation 15,

the ML estimates of the nuisance parameters θ̂n , obtained jointly with the ML esti-

mates of the focal parameters θ̂f , are distinct from θ̃n or the ML estimates obtained

while holding θ̂f + κtdt fixed.

In terms of implementation, for each of the t = 1, · · · , T unit length direction

vectors dt , boundary points of the confidence region are located via the Brent(1973)

algorithm by solving for the scaling constants κt . For every candidate scaling con-

stant κ̇t , assessed by the root funding algorithm, the nuisance parameters θn are re-

estimated by optimizing the ML discrepancy function in Equation 1 while holding the

values of the focal parameters fixed at θ̂f + κ̇tdt . Therefore, for every κ̇t a new set

of θ̃n are estimated. Once Equation 16 is satisfied, κ̇t is taken to be κt and boundary

points to the confidence region are calculated as θ̂f + κtdt .
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1.5.1.2 Profile Likelihood-Based Fungible Parameter Contours

Similar to profile likelihood-based confidence bounds, fungible parameter con-

tours for θf may be obtained by re-expressing Equation 10 to account for the parti-

tioning of focal from nuisance parameters as follows:

F (Σ(θ̃n, θ̂f + κtdt),S)− F̂ ∗ = 0. (17)

Again, θ̂f is the vector of ML estimates obtained jointly with the vector of nuisance

parameters θ̂n , and θ̃n contains the ML estimates of the nuisance parameters com-

puted while holding θ̂f + κtdt fixed.

1.5.2 Marginal and Conditional Likelihood Methods

In addition to the profile likelihood method, there are two major alternative

theoretical approaches to eliminating nuisance parameters. The first obtains a marginal

likelihood from the joint multivariate normal likelihood L(θf ,θn) . The second ap-

proach is to obtain a conditional likelihood. The method of marginalizing is appro-

priate when the joint likelihood of focal and nuisance parameters can be re-expressed

as

L(θf ,θn) = pθf ,θn(yf ,yn) = pθf (yf )pθn,θf (yn|yf )

= Lm(θf )Lc(θn) (18)

where p(.) denotes some probability distribution function and y is the vector of MVs

associated with the parameters in θ . The marginal likelihood of θf is then Lm(θf ) =

pθf (yf ) , where this expression does not contain the nuisance parameters θn .

Alternatively, the method of conditioning may be employed when the joint like-
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lihood may be re-expressed as

L(θf ,θn) = pθf ,θn(yf |yn)pθn(yn)

= Lc(θf )Lm(θn) (19)

where the conditional likelihood for θf is Lc(θf ) = pθf (yf |yn) . Note that this condi-

tional likelihood does not include the vector of nuisance parameters θn .

Unfortunately, the likelihood for SEMs cannot be easily re-expressed into Equa-

tions 18 or 19 as the model implied likelihood is expressed in terms of the covariance

matrix Σ(θ) , which is a function of simultaneous equations of the parameters. Only

for special cases involving limited types of models have conditional likelihoods been

worked out (for example, see duToit & Cudeck, 2009). Hence, we will focus on profile

likelihood-based approaches in computing confidence bounds and fungible parameter

values.

1.6 Likelihood-Based Estimation in Practice

The implementation of the Brent (1973) algorithm by MacCallum, Browne,

and Lee (2009) to obtain fungible parameter values is distinct from the profile likeli-

hood approach outlined in Equation 17. Instead, these authors computed fungible pa-

rameter values from the estimated or pseudo likelihood. This estimated likelihood is

a simplified version of the profile likelihood where θ̃n is replaced by θ̂n such that the

nuisance parameters are not re-estimated with every θ̂f + κtdt from Equation 9. In

place of Equation 17, fungible parameter values were computed from the following ex-

pression:

F (Σ(θ̂n, θ̂f + κtdt),S)− F̂ ∗ = 0 (20)

where θ̂n is the vector of ML estimates for the nuisance parameters obtained jointly

with the focal parameters θ̂f . While T sets of ML estimates θ̃n are computed in
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Equation 17, only a single set of ML estimates θ̂ = (θ̂f , θ̂n)′ is employed in the compu-

tations for Equation 20. Compared to obtaining estimates from the profile likelihood in

Equation 17, estimates obtained from the estimated likelihood in Equation 20 are com-

putationally more efficient as the latter requires only a single optimization to obtain

estimates for the nuisance parameters θn .

Confidence bounds may be similarly computed from the estimated likelihood.

Here, instead of optimizing Equation 16, confidence regions are computed from

F (Σ(θ̂n, θ̂f + κtdt),S)− [F̂ + χ2
1−α(k)/(N − 1)] = 0 (21)

where θ̃n is replaced by θ̂n in the same fashion as fungible parameter contours.

Although obtaining confidence regions and fungible parameter contours from

the estimated likelihood has the advantage of computational efficiency over the profile

likelihood, the estimated bounds and contours come with the price of potential bias

and overly optimistic precision (Pawitan, 2001). By substituting θ̂n for θ̃n , the esti-

mated likelihood does not take into account the uncertainty inherent in the nuisance

parameters, nor the correlations among the nuisance and focal parameters. Hence,

computed confidence regions and fungible parameter contours based on the estimated

likelihood will be smaller in magnitude compared to those computed from the proper

profile likelihood. In the following section, an empirical demonstration using published

data will be used to illustrate the computation of confidence regions and fungible bounds.

We have implemented the method of Brent (1973) to obtaining confidence bounds and

fungible parameter contours from the profile likelihood, and the following computations

are based on the profile likelihood via the root finding algorithm of Brent (1973).
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1.7 An Empirical Demonstration

As an illustration, confidence bounds and fungible parameter contours are ob-

tained from a published example in social psychology (Schmitt, Branscombe, Kobrynow-

icz & Owen, 2002). The authors fit a latent variable (LV) mediation model to data ob-

tained from a group of women (N = 220) where the effect of perceived discrimination

against one’s in-group on psychological well-being was hypothesized to be mediated by

in-group identification. Perceived discrimination was indicated by four measured vari-

ables (MVs) - in-group disadvantage (y1) , out-group privilege (y2 ), prejudice across

contexts (y3 ) and past experience with discrimination (y4 ). In-group identification

was indicated by four MVs quantifying the extent of emotional attachment to one’s

group - liking one’s group (y5 ), valuing one’s group (y6 ), having pride in one’s group

(y7 ) and having positive experiences due to being a member of one’s group (y8 ). Fi-

nally, psychological well-being was indicated by five MVs - life satisfaction (y9 ), self-

esteem (y10 ), positive affect (y11 ), anxiety (y12 ) and depression (y13 ). To identify the

model, all LVs were scaled according to their first indicators by fixing respective factor

loadings to 1.0. Figure 1 is a path diagram of the model with standardized ML esti-

mates.

For simplicity, profile likelihood-based confidence intervals and fungible pa-

rameter values are computed for a single parameter first. Of interest, is the direct ef-

fect of perceived discrimination on well-being. To illustrate that the profile likelihood-

based computational method may be extended to multi-parameter contexts, confidence

bounds and fungible parameter contours are computed for two parameters next. Here,

the mediation effect of in-group identification between perceived discrimination and

psychological well-being will be examined. In this published example, the sample dis-

crepancy function value is F̂ = 0.576 , the number of estimated parameters is k = 29 ,

df = 62 and the estimated RMSEA is ε̂ = 0.0687 .
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Figure 1: Path Diagram for Schmitt et al. (2002) Mediation Model
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1.7.1 Direct Effect (k = 1)

The ML estimate for the direct effect of perceived discrimination on well-being

is θ̂f = −0.19 . In order to compute a 95% confidence interval for this focal parameter,

the perturbation applied to F̂ as defined in Equation 13 is χ2
0.95(1)/(220− 1) = 0.0175 ,

and the profile likelihood-based confidence interval for this direct effect is (−0.389,−0.010) .

As the confidence interval does not capture the value of θf = 0, the direct effect of

perceived discrimination on well-being is statistically significant at p < .05 . Such a

conclusion is consistent with Schmitt, et al. (2002) who would have obtained a stan-

dard error of 0.092, and a Wald-type confidence interval of (−0.368,−0.008) . Note

that the Wald-type confidence interval is different from the estimated likelihood-based

confidence interval due to the former using a quadratic approximation of the likelihood

function.

To compute fungible parameter values, the RMSEA perturbation of ε̃ = 0.005

to model fit is specified, such that from Equations 6 and 7, F̂ ∗ = 0.620 and Fp =

0.044 . In this example, the two fungible parameter values are (−0.533, 0.097) . Since

these two values are of different signs, the direct effect of perceived discrimination on

well-being is not consistently negative under the minor perturbation introduced to

model fit. These results suggest that the effect of perceived discrimination on well-

being is sensitive to a perturbation of model fit. Hence, the robustness of this signif-

icant direct effect is somewhat questionable, and the direct effect is said to be sen-

sitive to a perturbation resulting in practically the same model fit as the ML solu-

tion. Note that these fungible parameter values are larger in magnitude compared to

the confidence bounds as the perturbation applied to the ML estimate for the former

(Fp = 0.044) is larger than the latter (Fp = 0.0175).

Recall that the two kinds of uncertainty are analytically related as shown in

Equation 14. From this equation, the confidence interval translates to an F ∗ = 0.576 +

0.0175 = 0.593 , or a perturbed RMSEA of ε∗ =
√

max(0.593/62− 1/(220− 1)) =

26



0.071 . This is equivalent to perturbing the RMSEA by ε̃ = 0.071 − 0.0687 = 0.002 , a

value smaller than the specified perturbation of ε̃ = 0.005 , which was used to compute

the two fungible parameter values above. Alternatively, the perturbation associated

with the fungible values translates to χ2
1−α(1) = (220−1)(0.578−0.576) = 9.672 , which

is associated with a 99.81% confidence interval along with α = 0.002 .

The above calculations show that confidence bounds may be translated to fun-

gible parameter values and vice versa. However, the conversion of one measure of un-

certainty to the other may not necessarily be meaningful. First, the fungible parameter

values are numerically equivalent to constructing a 99.81% confidence interval. How-

ever, the associated small error rate of α = 0.002 is not practically useful in making

statistical inferences. Second, the 95% confidence interval is equivalent to a model per-

turbation of ε̃ = 0.002 . While this perturbation is smaller than the specified perturba-

tion used to compute fungible parameter values, ε̃ = 0.002 is practically no different

from ε̃ = 0.005 in terms of model fit. The small difference of 0.003 between these two

perturbations of RMSEA was associated with fungible parameter values with different

conclusions regarding θf = 0, implying that the direct effect is sensitive to the magni-

tude of perturbation applied to model fit.

1.7.2 Indirect Effect (k = 2)

The effect of perceived discrimination on psychological well-being was hypothe-

sized to be mediated by in-group identification, and the ML estimates for the effect of

perceived discrimination on in-group identification and the effect of in-group identifica-

tion on well-being are θ̂f = (0.18, 0.20)′ . To compute the 95% confidence bound for the

focal parameters, we apply a perturbation of χ2
0.95(2)/(220 − 1) = 0.0273 as defined in

Equation 13. Recall that a perturbation of ε̃ = 0.005 or Fp = 0.044 is used to compute

fungible parameter values. Similar to the one-parameter illustration, the perturbation

applied to the ML estimate to compute the confidence region is smaller than that of
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the fungible parameter contour. Hence, it is expected that the latter has larger values

than the former. Figure 2 depicts the simultaneous 95% confidence region (as blue col-

ored crosses) and the fungible parameter contour (as red colored circles) based on the

profile likelihood.

Figure 2: Profile Likelihood-Based Confidence Bounds and Fungible Contours for the
Indirect Effect of Perceived Discrimination on Well-being.
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In Figure 2, the dot in the center of the elliptical forms depicts the ML esti-

mates from the optimal solution. Here, T = 100 points are computed for the con-

fidence bound and fungible parameter contour as can be seen from the 100 crosses

and 100 open circles. From Figure 2, the confidence bound contains the zero-point or
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θf = (0, 0)′ , implying that the estimated effects are not simultaneously significant at

p < .05 . Additionally, the fungible parameter values take on all possible combinations

of positive and negative values for each of the effects, suggesting that the results are

sensitive to a perturbation to model fit. Hence, the distinct information on parameter

uncertainty, as depicted in the elliptical forms of Figure 2, implies that the mediation

effect may not be interpreted vigorously.

It is noted that Schmitt et al. (2002) drew the opposite conclusion that the two

effects are significant at p < .05 . However, there are at least two explanations for this

inconsistency. First, Schmitt, et al. (2002) conducted their hypothesis tests using the

Wald test. Although the two effects were statistically significant at p < .05 , the Wald-

type confidence intervals were close to θf = (0, 0)′ ; the intervals are (0.004, 0.346) and

(0.042, 0.352) for the effect of perceived discrimination on in-group identification and

the effect of in-group identification on psychological well-being respectively. Addition-

ally, the profile likelihood-based confidence regions reported here are, however, based

on an LRT. While the Wald test and LRT are asymptotically equivalent, a sample of

N = 220 may not be large enough for these two test results to converge. It is notewor-

thy to mention here that the LRT is usually more reliable than the Wald test for small

to mid-sized samples (Agresti, 2002).

Second, the Wald tests conducted by Schmitt, et al. (2002) are non-simultaneous;

the effect of perceived discrimination on in-group identification is tested independently

of the effect of in-group identification on well-being despite these effects being slightly

positively correlated. Stated differently, the Wald tests carried out by Schmitt, et al.

(2002) do not take into account the correlation between these two focal effects. This

positive correlation is graphically evident in Figure 2 as the confidence region does

not fall onto a perfect circle. In contrast to the independent Wald tests, the profile

likelihood-based confidence region is associated with a joint LRT where both effects

are tested simultaneously. In such joint tests, the correlation between the focal param-
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eter estimates is accounted for. Therefore, the non-simultaneous Wald tests reported

in Schmitt, et al. (2002) tended to be overpowered compared to a joint test associated

with the confidence region in Figure 2.

As the fungible parameter values in Figure 2 take on all combinations of pos-

itive and negative values, the sign of both effects may be reversed given a practically

similar model fit to the optimal ML solution. Observe that the range of the fungible

values for the effect of perceived discrimination on in-group identification is wider than

the effect of in-group identification on well being; this suggests that the latter effect

is relatively less sensitive to the former effect under a small perturbation to model fit.

The two measures of uncertainty, computed from the estimated likelihood, suggest that

the indirect effect of perceived discrimination on well-being should not be interpreted

rigorously.

Numerical association between the simultaneous confidence region and fungi-

ble parameter contour may also be established in this two-parameter illustration. From

Equation 14, the confidence region translates to an F̂ ∗ = 0.576 + 0.0273 = 0.603 or a

perturbed RMSEA of ε∗ =
√

max(0.603/62− 1/(220− 1), 0) = 0.0718 that results in

an RMSEA perturbation of ε̃ = .0718 − 0.0687 = 0.003 . As with the one-parameter

example, this perturbation is substantively no different from the specified perturbation

of ε̃ = 0.005 used to compute the fungible parameter contour. Hence, these results are

sensitive to model fit perturbations. Conversely, the fungible parameter contour trans-

lates to χ2
1−α(2) = (220 − 1)(0.603 − 0.576) = 9.673 , such that it is equivalent to an

extremely large 99.2% confidence region with α = 0.008 . Similar to the single param-

eter example, although the numerical equivalence of the confidence region and parame-

ter contour in this two-parameter illustration may be determined, the conversion of one

measure of uncertainty to the other may not be substantively meaningful.
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1.7.3 Summary and Extensions

Confidence regions may be translated to fungible parameter contours and vice-

versa as demonstrated in the empirical illustration. However, the example showed that

the resulting information gained from translating confidence regions into fungible pa-

rameter contours may be of limited value. In particular, the equivalence of these es-

timates was achieved at the expense of their interpretability, especially for confidence

regions. However, it may not always be the case that the equivalence between confi-

dence regions and fungible parameter values occur under unrealistic or substantively

less meaningful conditions. In situations where these two kinds of parameter uncer-

tainty are meaningful numerical translations of each other, they provide unique and

useful information to the analyst.

The different information provided by these two distinct kinds of parameter

uncertainty informs analysts of the extent to which results may be interpreted rigor-

ously. Confidence bounds allow researchers to make inferential statements about effects

in terms of estimate precision, sampling variability and predictive validity. Fungible

contours convey the robustness of parameter estimates under a small perturbation to

model fit. Hence, these contours communicate how stable parameter estimates remain

in describing the data under a practically indifferent model fit. Another important dis-

tinction to note is that confidence regions span a range of plausible population values

whereas fungible parameter contours are point values that are associated with a spe-

cific perturbation to model fit. Therefore, confidence bounds are limits to a range of

estimates whereas fungible parameter contours are not. Stated differently, the region

located within a confidence bound is meaningful in that any point within the region is

a plausible set of population parameter values for some specified α level. With regards

to fungible parameter values, however, only points lying on the contour are of interest

in that they are exchangeable parameter values associated with the user-specified per-

turbation to model fit; parameter values lying within the fungible parameter contour
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are associated with a smaller perturbation to model fit than what the user specified.

The limitations of the current empirical demonstration call for several exten-

sions. Primarily, little is known about the behavior of confidence regions and fungible

parameter contours under different modelling conditions. Thus, a simulation study was

conducted to assess how certain factors influence these two kinds of parameter uncer-

tainty. As the empirical demonstration made use of only one perturbation scheme to

compute fungible parameters, it was a secondary goal to examine fungible parameter

contours using more than one perturbation scheme. Additionally, computations for the

empirical example were based on the profile likelihood outlined in Equations 16 and 17

although previous work on fungible parameter contours (MacCallum, Browne & Lee,

2009) were based on the empirical likelihood. Therefore, a third aim in the simulation

study was to compare results obtained from the empirical likelihood versus the profile

likelihood.
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Chapter 2

METHODS

There were three objectives of the project. The first two aims of establishing

the analytical relationship between confidence regions and fungible parameter contours,

and implementing computations to be based on the profile likelihood have been accom-

plished. The remaining objective is to assesses how certain factors affect confidence

regions and fungible parameter contours. These factors involve certain modelling condi-

tions, the perturbation schemes used to construct fungible parameter contours, as well

as whether computations are based on the empirical or profile likelihood. The following

sections describe how each of these factors are examined in the simulation study.

2.1 Modelling Factors that May Impact Parameter Uncertainty

To better understand the nature of the two kinds of parameter uncertainty -

confidence bounds and fungible parameter values - it is proposed that certain mod-

elling factors which may influence them are examined. The three factors explored are

sample size, overall model fit, and the magnitude of correlations among MVs. As this

aspect of the project is exploratory, the following suggested hypotheses on how the

three factors may affect the two kinds of parameter uncertainty differently are only

working hypotheses based on informed speculation.

First, sample size is expected to affect the size of confidence regions but not

fungible parameter contours. From Equation 13, the computation of likelihood-based

confidence regions directly involves sample size N whereas the computation of fungible

parameter contours in Equation 10 does not. Therefore, it is expected that increas-



ing sample size would lead to tighter confidence regions, reflecting higher precision and

lower sampling variability of the estimates. It is also expected that changes in sample

size will not affect the size of fungible parameter contours. Stated differently, fungible

parameter contours are expected to be independent of sample size. Yet with different

sample sizes, fungible parameter values should not remain constant; instead these con-

tours are expected to shift slightly from sample to sample, reflecting sampling variabil-

ity. Note that the sampling variability expected to be reflected in fungible parameter

values does not result from the effect of sample size, but the variation in the correla-

tions among MVs across the different samples.

Second, from limited exploratory computations of fungible parameter values

on published examples, an apparent tendency for the size of fungible parameter con-

tours to be related to model fit has been observed. In particular, larger fungible pa-

rameter contours were found to be associated with less well-fitting models. Alterna-

tively, smaller fungible parameter contours were found to be observed when the fit of

the model was good. It is plausible that the likelihood surface would be less peaked

when model fit is not extremely good (Michael Browne, personal communication March

2011). A basis for conjecture regarding this phenomenon is that when model fit is not

very good, the sample discrepancy function values based on ML and GLS estimation

can differ substantially (Browne, MacCallum & Kim, 2002), possibly implying a flatter

likelihood surface. Alternatively, when the sample discrepancy function values based

on ML and GLS estimation coincide in the context of good model fit, the likelihood

function may tend to be more peaked. With a more peaked likelihood surface, fungible

parameter contours as well as confidence regions are anticipated to be tighter compared

to a flatter likelihood surface.

The third factor examined concerns the correlations among MVs. In general,

larger correlations compared to smaller correlations are associated with smaller vari-

ances which lead to more power to reject false models (Neale & Miller, 1997). In other
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words, fewer models can fit well to data structures with large correlations among MVs

compared to data structures with small correlations among MVs. This limited number

of models in data structures with larger correlations translates to more peaked likeli-

hood surfaces which are expected to be associated with tighter confidence bounds and

fungible parameter contours. Stated differently, higher correlations are expected to be

associated with fungible parameter values that provide data descriptions that are tol-

erably different from the ML solution. Likewise, holding sample size constant, larger

correlations are expected to be associated with more precise confidence regions.

The following section describes the exploratory simulation study used to assess

the effect of sample size, model fit and the magnitude of correlations among MVs on

the size of confidence regions and fungible parameter contours. Additionally, the as-

sertion that parameter sensitivity (or parameter fungibility) is a property of the model

(Green, 1977) and not the sample is empirically examined.

2.1.1 Population Generating Models

The empirical illustration based on Schmitt, et al. (2002) will serve as the blueprint

to generating data for the proposed exploratory simulation study. Recall that there

were 13 MVs and 3 LVs involved in this model of LV mediation (see Figure 1). The

general SEM model in covariance structure form is expressed as

Σ = Λ(I−B)Φ(I−B)′Λ′ + Ψ (22)

where Λ is a 13 × 3 matrix of factor loadings , I is a 3 × 3 identity matrix and B is

the 3 × 3 matrix of structural paths; Φ is a 3 × 3 matrix which contains the variance

and covariances of the exogenous LV as well as the variances and covariances of the

endogenous LV residuals, and Ψ is a 13 × 13 matrix of unique variances of the MVs.
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In particular, the population generating model has the following specified matrices:

Λ =



0.8073 0 0

0.8102 0 0

0.8047 0 0

0.8059 0 0

0 0.8086 0

0 0.8072 0

0 0.8038 0

0 0.8017 0

0 0 0.8007

0 0 0.8043

0 0 0.8004

0 0 0.8081

0 0 0.8055



and Φ =


1.0

0 1.0

0 0 1.0

 .

The values for Ψ and B will be introduced in the following section where different

magnitudes of correlations between the MVs are specified. Note that these popula-

tion values for Λ and Ψ are based on the estimated values reported in Schmitt et al.

(2002).

2.1.1.1 Magnitude of Correlations

Two different approaches are adopted to control the magnitude of correlations

between the MVs. Based on the work of Browne, MacCallum and Kim (2002), the first

approach alters the size of unique variances in Ψ to manipulate the magnitude of cor-

relations. The second approach specifies different effect sizes of the three structural

paths of the LV mediation in B. These two different approaches were considered as

some substantive research is solely focused on measurement models while others place
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more weight on structural paths. The study will fully cross these two methods for ma-

nipulating the correlations among MVs.

The size of unique variances indirectly affects correlations between MVs. The

variance of each MV is attributable to three sources of variation - common variance,

specific variance, and error variance. The common variance is attributable to the com-

mon factor or LV, the specific variance represents systematic factors affecting a given

MV and the error variance represents random error of measurement or unreliability.

Hence, reliable variance in any given MV is made up of common and specific variances.

Unique variance is made up of the sum of specific and error variances. Small unique

variances indirectly translate to larger correlations between MVs as they reflect ac-

curacy of measurement associated with increased power to reject false models. Addi-

tionally, when MVs have smaller unique variances, effect sizes tend to be larger and

power of the LRT will be high (Browne, MacCallum & Kim, 2002), implying tighter

confidence regions due to a more peaked likelihood surface. As fungible parameter con-

tours are also based on the peakedness of the likelihood surface, they are expected to

be tighter when unique variances of MVs are small. Large measurement errors take on

values close to Ψp,p = 0.50 where p = 1, · · · , 13 . These unique variances are not ex-

actly 0.50 , but randomly vary very slightly from one another to avoid equivalent pop-

ulation parameter values. In addition, these values were chosen to follow the unique

variances observed in Schmitt, et al. (2002) where 0.19 ≤ Ψp,p ≤ 0.86 . Small measure-

ment errors similarly take on values close to Ψp,p = 0.10 .

Effect sizes of the structural pathways among the LVs directly affect the mag-

nitude of correlations among the MVs through B as can be seen from Equation 22. In

general, the larger the effect size, the larger the correlations between the MVs. Small
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effect sizes are specified using

B =


0 0 0

0.2076 0 0

−0.1989 0.2015 0

 ,

which reflects the values observed by Schmitt, et al. (2002) where β2,1 = 0.17 , β3,1 =

−0.18 and β3,2 = 0.19 . In contrast, large effect sizes are specified using

B =


0 0 0

0.6076 0 0

−0.5989 0.6015 0

 .

With the two different specifications of Ψ and the two different specifications

of B, there are four possible population covariance matrices. Let the subscripts ΨL

and ΨH denote low and high correlations among MVs due to controlling the size of

unique variances. Similarly, let the subscripts BL and BH denote low and high corre-

lations resulting from manipulating the size of the structural effects respectively. It is

emphasized that L and H refer to low and high correlations among MVs due to ma-

nipulating Ψ and B, and not the values within these two matrices themselves. Hence,

ΣΨLBL
refers to the population covariance matrix based on large unique variances and

small structural effect sizes. It follows that ΣΨHBL
refers to the population covariance

matrix defined by small unique variances and small structural effect sizes, ΣΨLBH
is

the population covariance matrix due to large unique variances and large effect sizes

and ΣΨHBH
is the population covariance matrix derived from small unique variances

and large structural effects. Let PΨLBL
, PΨHBL

, PΨLBH
and PΨHBH

denote their

commensurate population correlation matrices.

To illustrate, by using the specified values for the matrices in the SEM Equa-

tion 22, the population covariance and correlation matrix associated with large unique
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variances and small effect sizes is

ΣΨLBL
and PΨLBL

=

1.15 0.57 0.56 0.56 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13

0.65 1.16 0.56 0.56 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13

0.65 0.65 1.16 0.56 0.12 0.12 0.11 0.11 0.13 0.13 0.13 0.13 0.13

0.65 0.65 0.65 1.16 0.12 0.12 0.11 0.11 0.13 0.13 0.13 0.13 0.13

0.14 0.14 0.14 0.14 1.18 0.57 0.57 0.57 0.14 0.14 0.14 0.14 0.14

0.14 0.14 0.13 0.14 0.68 1.18 0.57 0.57 0.14 0.14 0.14 0.14 0.14

0.13 0.14 0.13 0.13 0.68 0.68 1.18 0.57 0.14 0.14 0.14 0.14 0.14

0.13 0.13 0.13 0.13 0.68 0.68 0.67 1.18 0.14 0.14 0.14 0.14 0.14

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 1.21 0.58 0.58 0.59 0.59

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.71 1.22 0.58 0.58 0.59

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.70 0.71 1.21 0.58 0.58

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.71 0.71 0.71 1.22 0.59

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.71 0.71 0.71 0.72 1.21


where the covariances among the MVs are presented in the lower triangular matrix,

the variances are bold in the diagonal of the matrix, and the correlations are italicized

in the upper triangular matrix. Note that ΣΨLBL
and PΨLBL

have values based on

Schmitt et al.’s (2002) empirical study. The remaining three population covariance

matrices (ΣΨHBL
, ΣΨLBH

, and ΣΨHBH
) as well as correlation matrices (PΨHBL

,

PΨLBH
, and PΨHBH

) are presented in Appendix A.

2.1.1.2 Model Fit

Overall model fit was controlled by using the Cudeck and Browne (1992) method

to constructing a covariance matrix that yields a specified minimum discrepancy func-

tion value F . This method adds realism to the data generation process as actual data
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do not appear to follow models which hold exactly in the samples (Tucker, Koopman

& Linn, 1969). Introducing noise to the regularity of the population generating model

reflects any variety of unsystematic or unknown aspects of the process which gave rise

to the observed data. Two levels of model fit - good and poor - are predetermined. For

good model fit, a population RMSEA value of ε = 0.03 is used. Alternatively, for poor

model fit, a population RMSEA value of ε = 0.09 is specified.

To illustrate, the population covariance and correlation matrix associated with

large unique variances and small effect sizes for good model fit is

ΣΨLBLG and PΨLBLG =

1.15 0.58 0.55 0.56 0.12 0.11 0.14 0.12 0.13 0.13 0.15 0.14 0.15

0.67 1.16 0.56 0.55 0.13 0.13 0.11 0.10 0.12 0.13 0.14 0.12 0.14

0.63 0.65 1.16 0.58 0.11 0.11 0.08 0.10 0.11 0.12 0.14 0.10 0.11

0.64 0.64 0.67 1.16 0.13 0.10 0.11 0.15 0.14 0.15 0.16 0.13 0.14

0.14 0.15 0.13 0.16 1.18 0.59 0.58 0.56 0.12 0.17 0.18 0.12 0.14

0.13 0.15 0.13 0.11 0.69 1.18 0.56 0.57 0.11 0.13 0.14 0.12 0.13

0.16 0.13 0.10 0.13 0.68 0.66 1.18 0.58 0.13 0.13 0.12 0.11 0.11

0.14 0.12 0.12 0.17 0.66 0.68 0.69 1.18 0.14 0.15 0.16 0.13 0.18

0.15 0.14 0.13 0.17 0.14 0.13 0.16 0.16 1.21 0.57 0.59 0.60 0.57

0.16 0.15 0.15 0.18 0.20 0.16 0.15 0.18 0.70 1.22 0.59 0.57 0.60

0.17 0.16 0.17 0.19 0.21 0.17 0.14 0.19 0.71 0.71 1.21 0.58 0.57

0.16 0.15 0.12 0.16 0.15 0.15 0.13 0.15 0.73 0.70 0.70 1.22 0.59

0.18 0.16 0.13 0.17 0.17 0.16 0.14 0.21 0.70 0.73 0.70 0.72 1.21


where covariances are presented in the lower triangular matrix, the variances are bold

in the diagonal, and the correlations are italicized in the upper triangular matrix. As

will be elaborated later, the subscript G denotes good model fit. The remaining popu-

lation covariances and variances with model lack of fit are presented in Appendix B.
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2.1.1.3 Sample Size

Two sample sizes were chosen to cover the range of designs that are used in

applied psychological research. The moderate sample size is N = 200 and the large

sample size is N = 1000 . The large difference in these values is meant to cover a broad

range of sample sizes in addition to amplifying the effect of sample size on confidence

bounds and fungible parameter values.

2.1.2 Study Conditions

From the model specifications laid out, there are four derived population co-

variances constructed with (a) large unique variances and small structural effects ΣΨLBL
,

(b) small unique variances and small structural effects ΣΨHBL
, (c) large unique vari-

ances and large structural effects ΣΨLBH
and (d) small unique variances and large

structural effects ΣΨHBH
. To be explicit, let the subscript 0 denote covariance ma-

trices which hold exactly in the population. For example, ΣΨLBL0 is the population

covariance matrix based on large unique variances and small structural effects which

holds exactly in the population.

Noise may then be added to these four population covariance matrices, which

hold exactly, via the Cudeck and Browne (1992) method. Let the subscripts G and

P denote good and poor model fit respectively. Therefore, ΣΨLBLG is the population

covariance matrix based on large unique variances, small structural effects and good

model fit, ΣΨLBLP is the population covariance matrix based on large unique vari-

ances, small structural effects and poor model fit, and so on. By adding two levels of

model error to the four population covariances, there are a total of 4 × 3 = 12 popula-

tion covariance matrices (see Appendices A and B).

Finally, a single random sample for moderate (N = 200) and large (N = 1000)

sizes is drawn from each of the 12 population covariance matrices defined above, re-

sulting in 24 sample covariances. Only a single sample for each condition is examined
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as computing profile likelihood-based confidence regions and fungible parameter con-

tours is computationally intensive. Additionally, we are not focused on the repeated

sampling properties of likelihood-based confidence intervals and fungible parameter

contours. Let the subscripts N200 and N1000 denote the moderate and large sample

sizes. Following the established notation, let SΨLBLGN200 denote the sample covariance

matrix constructed with large unique variances, small structural effects, good model

fit and moderate sample size; likewise, SΨLBLGN1000 is the sample covariance matrix

based on large unique variances, small structural effects, good model fit and large sam-

ple size, and so forth.

In summary, there are a total of 12 proposed population conditions where only

fungible parameter values can be obtained. Additionally, we will compute both likelihood-

based confidence bounds and fungible parameter contours for the 24 sample conditions.

Of interest, is the indirect effect of the LV mediation concerning the focal parameters

of θf = (β2,1, β3,2)
′ . Hence, the study has a total of 24 + 12 = 36 conditions. Ta-

ble 1 summarizes the 36 cells associated with the proposed design. Estimation will be

carried out using R (R Development Core Team, 2010).

Beyond the factors of sample size, model fit and the magnitude of correlations

among MVs, the effect of two different perturbation schemes on fungible parameter

contours are also explored. The next section provides more detail on the perturbations

used to compute both confidence regions and fungible parameter contours.
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2.2 Perturbation Schemes

Confidence regions and fungible parameter contours may be constructed from

the general perturbation framework as laid out in Equations 10 and 13. The “pertur-

bation” applied to obtain confidence regions is derived directly from the LRT, and

is an objective function of sample size and the quantiles of the χ2 distribution (see

Equation 13). Following convention, we will construct 95% confidence regions where

α = 0.05 .

In contrast to confidence regions, the choice of perturbations to be used to

compute fungible parameter contours is a subjective one. As a general principle, per-

turbations should be very small such that the change in model fit is practically no dif-

ferent from the fit of the optimal solution; the constructed fungible parameter contour

will therefore contain alternative exchangeable parameter values that describe the data

almost as well as the optimal solution in terms of model fit. As suggested by MacCal-

lum, Browne and Lee (2009), and consistent with the perturbation scheme used in our

empirical demonstration, we continue to use the perturbation based on RMSEA for all

study cells. Specifically, the RMSEA perturbation is chosen to be ε̃ = 0.005 , corre-

sponding to a practically insignificant difference in model fit.

Additionally we implemented a perturbation directly to the sample discrep-

ancy function value F̂ to compute fungible parameter contours. In particular, a small

percentage of F̂ was used as the alternative perturbation scheme. For a subset of the

study cells, a perturbation of %F̂ = 5% or F̂ ∗ = 1.05F̂ will be used to compute

fungible parameter contours. These two perturbation schemes were applied to the con-

ditions of large unique variances and small structural effects (ΨLBL ) as well as small

unique variances and large structural effects (ΨHBH ) to obtain two distinct sets of

fungible parameter contours. These conditions were chosen as their respective fungible

parameter contours were expected to be the most distinct among the study conditions.
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2.3 Profile and Empirical Likelihood-Based Computation

Estimates based on the empirical likelihood, as implemented by MacCallum,

Browne and Lee (2009), have the advantage of computational efficiency over estimates

based on the profile likelihood. In a multi-parameter context, where interest is in a se-

lected set of focal parameters θf , the estimated likelihood makes use of a single ML

solution to take account of the nuisance parameters θn . Here, the nuisance parame-

ters take on values of θ̂n which are the estimates of the nuisance parameters obtained

jointly with the focal parameters, θ̂f . In other words, the estimated likelihood does

not re-compute θn or θ̃n in the search for fungible parameter values or confidence

bounds (see Equations 20 and 21). However, confidence bounds and fungible parameter

contours based on the empirical likelihood may be biased downward. Stated differently,

confidence bounds computed from the estimated likelihood, compared to the profile

likelihood, may communicate overly optimistic precision (Pawitan, 2001). Likewise,

fungible parameter contours obtained from the estimated likelihood may be tighter

than contours obtained from the profile likelihood. By substituting θ̂n for θ̃n , the es-

timated likelihood does not take account of the uncertainty of the nuisance parameters

and the correlations among the nuisance and focal parameters, causing potential bias

in estimates.

The advantage of obtaining less biased estimates from the profile likelihood

outweighs the computational burden of having to re-compute θ̃n for every point on the

confidence bound or fungible parameter contour (see Equations 16 and 17). From the

empirical demonstration, obtaining confidence regions and fungible parameter contours

from the profile likelihood is computationally tractable. To evaluate the extent of bias

present in the estimates obtained from the empirical likelihood, empirical likelihood-

based confidence regions and fungible parameter contours will be computed from a

subset of the study cells. Note that profile likelihood-based confidence regions and fun-
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gible parameter contours will be computed for every study cell.

2.4 Hypothesized Results

Comparisons between the different study conditions will be made to assess the

effect of the three factors - sample size, magnitude of MV correlations and model fit -

on the size of likelihood-based confidence regions and fungible parameter contours. A

matrix of plots for each study cell will be employed to summarize the findings and aid

in making visual comparisons. Confidence regions and fungible parameter contours for

different conditions may also be overlaid in a single plot to aid in visual comparisons.

Besides a graphical approach, we will compute and report the length of the ma-

jor axis and minor axis of the confidence bound and fungible parameter contour. Note

that the major axis cuts the center of the elliptical figure, and has antipodal points

which are of maximum distance. Conversely, the minor axis cuts the center of the ellip-

tical shape, but has antipodal points which are of minimum distance. Given that the

likelihood surface has a single maximum value - the ML solution - it is expected that

confidence regions and fungible parameter bounds based on the same covariance matrix

do not cross each other. As many of the comparisons involve multiple cells, these nu-

merical values can be summarized using descriptive statistics such as means and stan-

dard deviations.

2.4.1 Sample Size

Sample size effects may be observed from comparisons made between confi-

dence regions and fungible parameter contours obtained from sample covariances based

on N = 200 versus sample covariances based on N = 1000 . For example, estimates

from SΨLBL0N200 versus SΨLBL0N1000 , SΨLBLGN200 versus SΨLBLGN1000 , SΨLBLPN200

versus SΨLBLPN1000 , and so forth are compared against each other. There are a total

of 12 such comparisons. Holding the magnitude of MV correlations and model fit con-
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stant, it is hypothesized that confidence regions will be smaller in the large sample size

compared to the moderate sample size due to the effect of N on the perturbation ap-

plied to obtain confidence regions as shown in Equation 13. It is also expected that

sample size will not affect fungible parameter contours, but the different fungible con-

tours will exhibit sampling variability, by small shifts in the contours, due to them be-

ing computed from different samples.

2.4.2 Model Fit

The effect of model fit on the size of confidence regions and fungible parameter

contours may be examined by comparing estimates from sample covariances with sub-

scripts 0 , G and P , holding all other factors constant. For instance, with three levels

of model fit, estimates from the three sample covariances, SΨHBH0N200 , SΨHBHGN200

and SΨHBHPN200 may be compared against one another to assess the effect of increas-

ing model error. There are a total of 8 sets of such comparisons. Holding all other fac-

tors constant, it is hypothesized that both confidence bounds and fungible parameter

contours will increase in size as model fit changes from exact to good and then to poor.

2.4.3 Magnitude of Correlations

Recall that there are two approaches to manipulating the size of correlations

among the MVs. First, the effect of the size of MV correlations on the two kinds of

parameter uncertainty, due to manipulating unique variances, may be assessed by com-

paring estimates obtained from sample covariances with subscripts ΨL and ΨH while

holding sample size, model fit and structural effects constant. For example, confidence

bounds and fungible contours from SΨLBHGN200 are compared against those from SΨHBHGN200 .

A total of 12 such comparisons may be made. It is hypothesized that confidence re-

gions and fungible parameter contours from lower sample correlations among MVs, due

to larger unique variances, will be larger than those obtained from higher MV correla-
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tions, resulting from smaller unique variances.

Second, the magnitude of correlations among the MVs is also controlled by al-

tering the size of the structural effects in B. The effect of such a manipulation may be

investigated by comparing estimates obtained from sample covariances with subscripts

BL against subscripts BH , holding all other factors constant. There are a total of 12

such comparisons. Similar to the effect of altering unique variances to manipulate the

size of MV correlations, it is expected that confidence regions and fungible parameter

contours from higher MV correlations due to larger effect sizes are tighter than those

computed from lower MV correlations because of smaller effect sizes.

Additionally, comparisons between estimates obtained from sample covariances

with subscripts BL versus subscripts BH may be used to empirically check that ma-

nipulating focal parameters - the structural effects - shifts the center of the confidence

bounds and fungible parameter contours. Note that the center of these bounds and

contours is the ML solution. In particular, it is expected that the center of the confi-

dence bounds and fungible parameter contours be further away from θf = 0 given

larger structural effects compared to smaller structural effects. Therefore, these com-

parisons also serve to confirm that larger effect sizes are associated with estimates

which may be interpreted with more rigor as it is less likely for confidence bounds and

fungible parameter contours to capture θf = 0 when the center of their ellipses are

further away from the zero point.

Finally, the joint effect of the two approaches of manipulating the size of MV

correlations may be assessed by comparing estimates obtained from sample covariances

with subscripts ΨLBL against estimates obtained from covariances with subscripts

ΨHBH , holding all other factors constant. These two conditions were chosen as they

correspond to the smallest and largest correlations among the MVs respectively. For

instance, confidence bounds and fungible parameter contours from SΨLBL0N1000 are

compared against those computed from SΨHBH0N1000 . For all of these 6 comparisons, it
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is expected that confidence regions and fungible contours estimated from lower sample

correlations among MVs will be larger than those estimated from higher sample MV

correlations. Note that there are no specific expectations regarding comparisons made

between sample covariances with subscripts ΨL versus BL or ΨH versus BH . This is

because the effect of manipulating unique variances on MV correlations does not share

a common scale with the effect of manipulating structural effect sizes on MV correla-

tions. For the same reason, there are no specific hypotheses for comparisons between

sample covariances with subscripts ΨL versus BH and ΨH versus BL .

2.4.4 Population Covariances

Unlike confidence regions, fungible parameter contours may be computed at

the level of the population. This is because sample size N is required for computing

likelihood-based confidence bounds as shown in Equation 13. Stated differently, confi-

dence regions cannot be computed for the population as sampling error does not exist.

To examine whether parameter fungibility is free of sampling variability, we will com-

pare fungible values obtained from sample covariances and their population counter-

parts. For example, we compare fungible parameter contours computed from ΣΨHBHG

versus SΨHBHGN1000 as well as ΣΨHBHG versus SΨHBHGN200 . From the 36 conditions,

there are a total of 24 such comparisons. If parameter fungibility is indeed a property

of the model (Green, 1977), it is expected that fungible parameter contours are no dif-

ferent when obtained at the level of the population versus the sample; these estimates

will only show variability in the form of contours shifting slightly from condition to

condition.

2.4.5 Profile and Empirical Likelihood-Based Computation

The extent of bias present in solutions based on the empirical likelihood may

be evaluated against solutions based on the profile likelihood. Holding sample size,
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model fit and the magnitude of correlations among MVs constant, it is expected that

the profile likelihood solutions will communicate more parameter uncertainty compared

to the estimated likelihood solutions. Stated differently, confidence regions and fungible

parameter contours based on the empirical likelihood are anticipated to be tighter than

those based on the profile likelihood.
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Chapter 3

RESULTS

Results from the simulation study are organized into preliminary and primary

analysis. To validate the generated data, we conducted manipulation checks in our pre-

liminary analysis. Following these preliminaries, our primary analysis focuses on test-

ing the hypotheses of the simulation study.

3.1 Preliminary Analysis Evaluating Generated Data

Prior to examining how certain factors affect confidence regions and fungible

parameter contours, preliminary analysis were conducted. First, we describe the mag-

nitude of variances, covariances and correlations of the measured variables (MVs) due

to controlling unique variances and structural effects. Second, population standardized

covariance residuals are used to describe and quantify good and poor levels of model

fit, specified as population RMSEA values of ε = 0.03 and ε = 0.09 respectively.

Third, we report model fit information for all the study conditions.

3.1.1 Correlations among Measured Variables

Recall that the magnitude of correlations among MVs was manipulated in two

ways, either by controlling the size of unique variances in Ψ or by controlling the size

of the structural effects in B. To quantify the effect of these manipulations on the mag-

nitude of correlations among MVs, Table 2 reports descriptive statistics of the various

types of elements in each of the four different population generating covariance and

correlation matrices. Note that the matrices examined are free of model and sampling



error. Within each matrix, there are 13 variances and 78 covariances or correlations

among the 13 MVs.

From Table 2, manipulating the size of unique variances in Ψ altered only the

variances of the MVs and not their covariances; large unique variances are associated

with larger variances and small unique variances vice-versa. As anticipated, the mag-

nitude of correlations was affected in that smaller unique variances (ΨH ) were asso-

ciated with larger correlations whereas larger unique variances (ΨL ) were associated

with smaller correlations. Manipulating the size of structural effects in B , however, af-

fected both population variances and covariances among the MVs in that larger struc-

tural effects are associated with larger variances and covariances whereas smaller struc-

tural effects are associated with smaller variances and covariances. As expected, large

structural effects (BH ) were associated with larger correlations and small structural

effects (BL ) were associated with smaller correlations.

Table 2: Descriptive Statistics of Elements within Population Matrices

Variances Covariances Correlations

Population Matrix Mean SD Mean SD Mean SD

ΣΨLBL0 1.187 0.026 0.303 0.242 0.255 0.202

ΣΨHBL0 0.787 0.026 0.303 0.242 0.384 0.304

ΣΨLBH0 1.550 0.375 0.748 0.320 0.476 0.137

ΣΨHBH0 1.150 0.375 0.748 0.320 0.652 0.168

Note. SD = standard deviation, ΨL = large unique variances, ΨH = small unique
variances, BL = small structural effects and BH = large structural effects.

There was a clear rank order of population generating conditions in terms of

the average size of correlations among the 13 MVs. In particular, the condition with

large unique variances and small structural effects (ΨLBL ) had the smallest mean cor-

relations followed by the condition with small unique variances and small structural
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effects (ΨHBL ). As anticipated, the condition with small unique variances and large

structural effects (ΨHBH ) had the largest mean correlations followed by the condi-

tion with large unique variances and large structural effects (ΨLBH ). These observa-

tions validate the two approaches to controlling the size of correlations among MVs,

and confirm that the population generating matrices had the desired properties.

3.1.2 Model Fit in Terms of Covariance Residuals

As an alternative calibration of model error associated with population RM-

SEA values of ε = 0.03 and ε = 0.09 , which reflect good and poor model fit respec-

tively, Table 3 presents the range of the standardized population residuals for the four

population covariance matrices. Recall that these covariance residuals were generated

via the Cudeck and Browne (1992) method.

Table 3: Range of Standardized Population Residuals

ε = 0.03 ε = 0.09

Condition Minimum Maximum Range Minimum Maximum Range

ΨLBL -0.031 0.042 0.073 -0.091 0.122 0.213

ΨHBL -0.015 0.028 0.043 -0.045 0.082 0.126

ΨLBH -0.027 0.029 0.056 -0.080 0.084 0.164

ΨHBH -0.011 0.024 0.036 -0.033 0.072 0.105

Mean -0.021 0.031 0.052 -0.062 0.090 0.152

Note. ε = population RMSEA, ΨL = large unique variances, ΨH = small unique
variances, BL = small structural effects and BH = large structural effects..

From Table 3, across the four different population covariance or correlation ma-

trices, the range of these residuals is much smaller when ε = 0.03 compared to when

ε = 0.09 . On average, the range of standardized population residuals for ε = 0.09 is

about three times larger than those for ε = 0.03 . Note that the mean and median of
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the population residuals for each of the four generating models is zero. The pattern of

standardized population residuals in Table 3 validates our manipulation of model error,

and confirm that our population generating matrices reflected substantively different

levels of model fit.

3.1.3 Maximum Likelihood Estimates of Model Fit

The population generating models were fit to their respective generated data

structures to obtain ML estimates. Table 4 summarizes model fit information for the

36 study conditions. Although the columns containing fit information in Table 3 are

ordered from left to right according to increasing correlations between the MVs, the

magnitude of MV correlations did not largely affect estimated model fit. Within each

level of population model fit (exact ε = 0, good ε = 0.03 and poor ε = 0.09), the

effect of sampling error on the estimates may be observed with decreasing sample size.

In general, the sample RMSEA ε̂ = 0 when the model fit the data exactly. For

population covariances (represented by N =∞ in Table 4), the sample RMSEA values

are equivalent to the population RMSEA values or ε̂ = ε . Within the good model fit

condition ( ε = 0.03), increasing sampling error is associated with more bias in the

direction of better model fit. Stated differently, the sample RMSEA ε̂ for N = 1000

and N = 200 are smaller than the population RMSEA value ε = 0.03 with the latter

estimate being smaller than the former estimate. It may also be observed from Table

4 that there is little effect of sampling variability on estimated model fit in the poor

model fit condition or ε = 0.09 ; the ε̂ values were very close to ε .

In sum, the data generated for the simulation study displayed the properties

required to assess the effect of sample size, model fit and the magnitude of correlations

on the size of fungible parameter contours and confidence regions. Before examining

how these factors influence parameter uncertainty, the next section describes how the

different kinds of perturbations, used in the study to compute fungible parameter con-
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Table 4: Model Fit Information for Study Conditions

ΨLBL ΨHBL ΨLBH ΨHBH

ε N F̂ ε̂ F̂ ε̂ F̂ ε̂ F̂ ε̂

0 ∞ 0 0 0 0 0 0 0 0

0 1000 0.059 0 0.056 0 0.056 0 0.054 0

0 200 0.277 0 0.280 0 0.289 0 0.283 0

0.03 ∞ 0.056 0.030 0.056 0.030 0.056 0.030 0.056 0.030

0.03 1000 0.106 0.027 0.110 0.028 0.102 0.025 0.104 0.026

0.03 200 0.338 0.021 0.338 0.021 0.343 0.022 0.337 0.020

0.09 ∞ 0.502 0.090 0.502 0.090 0.502 0.090 0.502 0.090

0.09 1000 0.530 0.087 0.544 0.088 0.526 0.086 0.534 0.087

0.09 200 0.793 0.088 0.784 0.087 0.781 0.087 0.774 0.086

Note. ε = population RMSEA, N = sample size, F̂ = sample discrepancy function
value, ε̂ = sample RMSEA, ΨL = large unique variances, ΨH = small unique
variances, BL = small structural effects and BH = large structural effects.

tours and confidence regions, are related to one another.

3.2 Relationship among Different Kinds of Perturbations

Under the perturbation framework, the first step in the process of computing

estimates for the two kinds of parameter uncertainty is to perturb the sample discrep-

ancy function value F̂ (see Equations 8 and 13). As described earlier, we used two

perturbation schemes in the computation of fungible parameter contours; one based

on a fixed value in the scale of RMSEA or ε̃ and another based on a fixed percentage

of F̂ or %F̂ . These two perturbation schemes are explicitly tied to some estimate of

model fit. Stated differently, the size of the perturbations are in some scale of model

fit. In contrast, although confidence regions may be computed from a perturbation
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framework, such a “perturbation” is tied to sample size and quantiles of the χ2 distri-

bution (see Equation 13). Hence, the construction of confidence regions is not explic-

itly tied to model fit in contrast to the construction of fungible parameter contours.

Table 5 presents these three different perturbations in four different scales -

minimum discrepancy function value (Fp ), RMSEA ( ε̃ ), percentage of the sample dis-

crepancy function value (%F̂ ) and χ2 quantiles. Recall that Fp = (F̂ ∗ − F̂ ) . Note

that of these scales, the first three are measures of model fit. We only report perturba-

tion values for study conditions where all three perturbation schemes were applied. As

confidence regions cannot be constructed at the level of the population, perturbations

applied to population covariance matrices were not reported. Hence, Table 5 reports

perturbation values for the conditions involving large unique variances and small struc-

tural effects or ΨLBL as well as small unique variances and large structural effects or

ΨHBH , which allow for comparisons between generating models with the largest ver-

sus the smallest correlations among MVs.

From Table 5, the perturbations applied to obtain 95% confidence regions in

the scale of F , as shown in the Fp column, are constant regardless of model fit or

magnitude of correlations among MVs. These perturbations are translations from the

0.95 χ2 quantile into the scale of F , and are affected only by sample size. Specifically,

for N = 1000 and N = 200 , regardless of model fit and the generating model, the per-

turbations used to obtain 95% confidence regions in the scale of F are 0.006 and 0.030

respectively. Therefore, controlling for sample size, if a perturbation of a fixed value in

F or Fp is used to compute fungible parameter values across different levels of model

fit, such an approach is no different from constructing boundary points of a confidence

region.

The first perturbation scheme used to compute fungible parameter contours

was based on a specified RMSEA value. In particular an RMSEA perturbation of ε̃ =

0.005 was applied as this value may be interpreted as a practically insignificant change
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in model fit (MacCallum, Browne & Lee, 2009). Recall that the choice of the magni-

tude of ε̃ remains subjective, but rests on the principle that perturbations applied to

obtain fungible parameter contours should be small to the extent that the perturbed

model fit is practically no different from the fit obtained in the optimal solution. As

RMSEA takes into account sample size and model error (see Equation 6), much vari-

ability was observed across the different levels of model fit, sample size and the magni-

tude of correlations among MVs when ε̃ = 0.005 was translated into the F scale, χ2

quantiles and some percentage of F̂ . From Table 5, under the ε̃ = 0.005 Fungible Con-

tour column, it may be observed that the values for Fp , χ2 quantile and %F̂ do not

follow a regular pattern with decreasing sample size or increasing model error. In gen-

eral, when model fit is either good or poor, ε̃ = 0.005 translates into larger percentages

of F̂ and larger χ2 quantiles for N = 1000 compared to N = 200 .

The second perturbation scheme applied in the computation of fungible pa-

rameter contours was based on F̂ directly. This perturbation was arbitrarily chosen to

be 5% of F̂ . Similar to the perturbation scheme based on RMSEA, taking a percent-

age of F̂ as a perturbation takes into account both model and sampling error because

both types of error are incorporated in the estimates of F̂ . The translation of the per-

turbation value of 5% of F̂ into the scale of F was identical across the two different

levels of correlations among MVs, after controlling for model fit and sample size. For

instance, in Table 5, Fp = 0.017 when ε = 0.03 and N = 200 across the conditions of

ΨLBL and ΨHBH .

In sum, the perturbations used to construct confidence regions are indepen-

dent of model fit and magnitude of correlations among MVs. As shown in Equation 12,

these perturbations are a function of sample size, the number of focal parameters, the

error rate α and the χ2 distribution. Conversely, in order to construct meaningful fun-

gible parameter contours, the perturbation scheme incorporates model fit information.

An RMSEA perturbation ε̃ of some fixed value is in a meaningful scale of model fit,
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but this perturbation scheme does not translate to a consistent value in the scale of F

or a percentage of F̂ across the different conditions examined. Hence, fungible param-

eter contours constructed using ε̃ are not comparable in the scale of F or %F̂ . Note

that RMSEA corrects for the bias in F̂ due to sampling variability (see Equation 6).

Alternatively, at the cost of interpretability in terms of model fit, a perturbation as a

percentage of F̂ allows for relative comparisons between fungible parameter contours

in a scale based on the sample discrepancy function value. However, unlike RMSEA,

F̂ in itself does not correct for bias due to sampling variability. Additionally, the per-

turbation of ε̃ was shown to be more sensitive to the size of correlations among MVs

compared to %F̂ . Given the advantages of using ε̃ to construct fungible parameter

contours over %F̂ , the results to follow will mainly focus on the former approach to

computing fungible parameter contours.

3.3 Factors that Impact Parameter Uncertainty

Three factors were examined for their effects on the size of confidence regions

and fungible parameter contours. They are sample size, model fit, and magnitude of

correlations among MVs. The following four figures (Figures 3 to 6) are visual repre-

sentations of the confidence regions and fungible parameter contours obtained from

the profile likelihood. Each figure corresponds to one of the four different magnitudes

of correlations among MVs such that Figure 3 presents results for the large unique

variances and small structural effects (ΨLBL ), Figure 4 corresponds to small unique

variances and small structural effects (ΨHBL ), Figure 5 presents results for the large

unique variances and large structural effects (ΨLBH ) and Figure 6 corresponds to

small unique variances and large structural effects (ΨHBH ). Note that the ordering of

these Figures are in terms of increasing correlations among MVs as described in Table

2. Hence, the effect of the magnitude of correlations on the size of confidence bounds

and fungible parameter contours may be assessed by making visual comparisons among
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these four figures.

Within each figure, the ML estimates of the focal parameters θ̂f = (β̂2,1, β̂3,2)
′

are represented by a black dot, located within the confidence bounds and fungible pa-

rameter contours. Confidence bounds are represented by blue colored crosses and fun-

gible parameter contours are represented by red colored circles. For the conditions of

ΨLBL and ΨHBH , two sets of fungible parameter contours are represented; fungible

parameter values represented by medium red colored circles are based on the ε̃ = 0.005

perturbation whereas fungible parameter values represented by dark red colored circles

are based on a 5% perturbation to F̂ (see Figures 3 and 6).

The panels within each figure are arranged such that sampling variability in-

creases as one moves from the top panels to the bottom panels. Additionally, within

each figure, the panels are arranged such that model error increases as one moves from

the left panels to the right panels. Therefore, controlling for the magnitude of correla-

tions among MVs, the effect of sample size on the two kinds of parameter uncertainty

may be gleaned from making visual comparisons between the top to middle, top to

bottom and middle to bottom panels within each figure. In a similar fashion, control-

ling for the magnitude of correlations among MVs, the effect of model fit on the size of

the two kinds of parameter uncertainty may be visually assessed by comparing the left

to middle, left to right and middle to right panels within each figure. It follows that

the joint effect of increasing sampling variability and increasing model error, controlling

for the magnitude among the MVs, may be observed from visually comparing panels

along the diagonals within each figure. For example, the top left panel is compared to

the middle panel and finally to the bottom right panel.

In the following subsections, the effect of each of the three factors on the size

of confidence bounds and fungible parameter contours is examined. First, the effect of

sample size on the two kinds of parameter uncertainty is investigated, followed by the

effect of model error and finally the effect of the magnitude of MV correlations.
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Figure 3: Profile Likelihood-Based Confidence Bounds and Fungible Contours of β2,1
and β3,2 for ΨLBL .
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Figure 4: Profile Likelihood-Based Confidence Bounds and Fungible Contours of β2,1
and β3,2 for ΨHBL .
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Figure 5: Profile Likelihood-Based Confidence Bounds and Fungible Contours of β2,1
and β3,2 for ΨLBH .
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Figure 6: Profile Likelihood-Based Confidence Bounds and Fungible Contours of β2,1
and β3,2 for ΨHBH .
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3.3.1 Sample Size

In general, sample size effects on confidence regions and fungible parameter

contours can be observed by comparing the second and third rows of the plots within

Figures 3 to 6. These plots suggest that with decreasing sample size, confidence regions

increase in size while fungible parameter values remain somewhat constant. A more

formal visual comparison may be made by overlaying plots across the levels of model

fit as shown in Figure 7. In Figure 7, there are six different conditions (two levels of

sample size and three levels of model fit) presented within a panel. The top panels of

Figure 7 present confidence bounds and the bottom panels present fungible parameter

contours. Additionally, the magnitude of correlations between the MVs increases as

one moves from the left panel to the right panel.

Figure 7: Profile Likelihood-Based Confidence Bounds and Fungible Contours of β2,1
and β3,2 by Magnitude of Correlations among Measured Variables.
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The size of confidence regions is clearly determined by sample size as shown in

the top panels of Figure 7. Although there are six different elliptical forms within each

65



panel, it is striking that only two elliptical shapes may be observed, implying that the

confidence regions for different levels of model fit within a given sample size are almost

identical. Regardless of model fit, confidence bounds for the N = 1000 conditions as

represented by dark blue colored crosses are smaller than those of the N = 200 condi-

tions as represented by medium blue colored crosses. This observation is confirmed by

Table 6, which presents descriptive statistics of the major and minor axes of the ellipti-

cal plots.

Table 6: Major and Minor Axis across Model Fit

Confidence Region Fungible Contour

Major Axis Minor Axis Major Axis Minor Axis

N Mean SD Mean SD Mean SD Mean SD

ΨLBL 1000 0.192 0 0.182 0 0.361 0.213 0.343 0.203

200 0.435 0.001 0.403 0 0.459 0.151 0.425 0.139

ΨHBL 1000 0.166 0 0.162 0 0.330 0.168 0.321 0.163

200 0.379 0 0.364 0 0.391 0.128 0.376 0.123

ΨLBH 1000 0.247 0 0.198 0 0.482 0.244 0.388 0.199

200 0.555 0.001 0.435 0 0.550 0.186 0.431 0.145

ΨHBH 1000 0.203 0 0.174 0 0.407 0.191 0.350 0.165

200 0.464 0 0.393 0 0.469 0.156 0.398 0.133

Note. Fungible contours are constructed with the ε̃ perturbation. N = sample size,
ΨL = large unique variances, ΨH = small unique variances, BL = small structural
effects and BH = large structural effects.

Across model fit and controlling for the magnitude of correlations among MVs,

the major and minor axes for the confidence regions are consistently smaller for the

larger sample. Additionally, the confidence regions for each sample size, across model

fit, are essentially identical as evidenced by the zero and near zero standard deviations

in Table 6. The non-zero standard deviations may be due to sampling variability in
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that within a given sample size, the data used for the different levels of model fit are

from different samples. Additionally, recall from Table 5 that the “perturbations” ap-

plied to obtain these confidence regions are identical across study conditions save for

sample size. Hence, taken together, the results suggest that the size of confidence re-

gions are not determined by model fit but by sample size and the magnitude of correla-

tions among MVs.

Unlike confidence regions, six distinct fungible parameter contours can be ob-

served within each of the lower panels of Figure 7. The dark red colored circles repre-

sent conditions where N = 1000 and the medium red colored circles represent condi-

tions were N = 200 . Within each panel representing fungible parameter contours, the

different levels of sample size are represented by three elliptical figures, implying that

the size of these fungible parameter contours are not strongly determined by sample

size. There is, however, a small main effect of sample size on the size of fungible pa-

rameter contours as shown in Table 6; larger sample sizes are consistently associated

with slightly smaller major and minor axes across the levels of model fit.

Sample size does not monotonically affect the size of fungible parameter con-

tours when a perturbation based on RMSEA or ε̃ is applied. Instead, sample size may

effect the size of fungible contours in two ways. First, the ε̃ perturbation itself is a

nonlinear function of sample size, as the sample RMSEA is a nonlinear function of N

(see Equation 6). Second, the minimum sample discrepancy function value F̂ , which

RMSEA is a function of, incorporates sampling error in that smaller samples are as-

sociated with larger F̂ (see Table 4). In contrast, the %F̂ perturbation scheme is

monotonically influenced by sample size due to the sampling variability inherent in F̂ .

From Table 5, the relationship between sample size and the two perturbation schemes

used to compute fungible parameter contours may be observed from the Fp columns.

For the ε̃ perturbation, the size of the perturbation in the scale of F does not have a

monotonic relationship with sample size, unlike the %F̂ perturbation. For the latter
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perturbation scheme, larger sample sizes are consistently associated with smaller per-

turbations (in the scale of F ) which results in smaller fungible parameter contours.

In sum, sample size directly affects the size of confidence regions due to its in-

fluence on the “perturbation” applied to construct them (see Equation 16). Although

the size of fungible parameter contours are somewhat influenced by sample size, the

effect of sample size is relatively small compared to that of model fit. In the next sec-

tion, we explore how model fit affects confidence regions and fungible parameter con-

tours.

3.3.2 Model Fit

As suggested in the previous section on sample size effects, confidence regions

are independent of model fit. Visual comparisons moving from the left to the right

panels within Figures 3 to 6 suggest that confidence regions remain essentially constant

across the three levels of model fit. Alternatively, it may be observed from Figure 7

and Table 6 that there is little to no variability in the size of confidence regions across

the three levels of model fit examined. This finding is clearly a result of the fact that

confidence regions do not incorporate information on model fit in their construction.

In contrast, fungible parameter contours are strongly influenced by model fit

as the perturbations applied to construct them are determined by some function of

how well the estimated model fits to the data. The %F̂ perturbation directly incorpo-

rates model error as it is a function of F̂ which quantifies the discrepancy between the

model and data. Although the RMSEA perturbation ε̃ is a fixed value, this fixed per-

turbation translates to very different values in the scale of F or Fp as demonstrated

in Table 5 (cf. Chen, Curran, Bollen, Kirby & Paxton, 2008). Stated differently, the

ε̃ = 0.005 perturbation translates into different values of Fp depending on sample size

and model error.

From Figures 3 to 6, at the level of the population and at N = 1000 , model
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lack of fit shows a monotonic increasing relationship with the size of fungible parame-

ter contours constructed using ε̃ and %F̂ . As one makes visual comparisons moving

from the left to right panels within these four figures, the size of the fungible contours

increases with increasing model error. At N = 200 , the size of fungible parameter con-

tours based on the %F̂ perturbation shows the same monotonic relationship in that

increasing model error is associated with larger contours (see Figures 3 and 6). How-

ever, the size of fungible parameter contours based on ε̃ at N = 200 do not display

this monotonic increasing relationship with model fit (see third row of plots within Fig-

ures 3 to 6). Hence, when ε̃ is applied to construct fungible parameter contours, sam-

ple size and model fit interact to influence the size of these contours.

These observations concerning the size of fungible parameter contours are cor-

roborated in Table 7 which presents descriptive statistics of the major and minor axes

of the concerned elliptical plots for ΨLBL and ΨHBH . Note that the pattern of re-

sults for ΨHBL and ΨLBH is similar for the ε̃ perturbation scheme and is thus not

presented. From Table 7, under the ε̃ perturbation scheme, the minor and major axis

of the elliptical figures increase with increasing model error for the population (N =

∞ ) and N = 1000 . However, for N = 200 , the major and minor axis of the elliptical

figures are smallest for ε = 0.03 followed by ε = 0 and then ε = 0.09 . In comparison,

the major and minor axes of the fungible parameter contours, obtained from the alter-

native %F̂ perturbation scheme, displayed a monotonic increasing relationship with

model error.

The size of fungible parameter contours is mirrored by the magnitude of their

respective perturbations in the scale of F . We shall first focus on the interaction effect

between model fit and sample size on the size of fungible parameter contours based on

the RMSEA perturbation ε̃ . From Table 5, the value of Fp for N = 200 and ΨLBL

is 0.037, 0.014 and 0.056 for perfect, good and poor levels of model fit, respectively; a

similar pattern may also be observed for ΨHBH . For N = 1000 , however, a mono-
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Table 7: Major and Minor Axis for Two Sets of Fungible Parameter Contours

ε̃ Fungible Contour %F̂ Fungible Contour

ε N Major Axis Minor Axis Major Axis Minor Axis

0 ∞ 0.095 0.090

0.03 ∞ 0.343 0.325 0.132 0.125

0.09 ∞ 0.580 0.549 0.398 0.378

0 1000 0.158 0.150 0.135 0.128

ΨLBL 0.03 1000 0.323 0.307 0.180 0.171

0.09 1000 0.566 0.538 0.404 0.384

0 200 0.457 0.425 0.293 0.272

0.03 200 0.285 0.266 0.324 0.301

0.09 200 0.567 0.527 0.501 0.463

0 ∞ 0.104 0.089

0.03 ∞ 0.376 0.322 0.140 0.119

0.09 ∞ 0.635 0.545 0.420 0.359

0 1000 0.252 0.216 0.137 0.117

ΨHBH 0.03 1000 0.349 0.300 0.189 0.162

0.09 1000 0.620 0.534 0.429 0.369

0 200 0.462 0.391 0.318 0.269

0.03 200 0.317 0.268 0.347 0.294

0.09 200 0.628 0.534 0.526 0.446

Note. ε = population RMSEA, N = sample size, ε̃ = perturbation in the RMSEA scale,
%F̂ = perturbation as a percentage of F̂ , ΨL = large unique variances, ΨH = small unique
variances, BL = small structural effects and BH = large structural effects.

tonic increasing relationship between Fp and model fit is observed for the RMSEA

perturbation ε̃ . Hence, the complex relationship between model fit and sample size

is manifested in the sizes of the fungible parameter contours as a function of the mag-
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nitude of ε̃ in the scale of F or Fp . Similarly, the size of fungible parameter contours

constructed using the alternative %F̂ perturbation reflects the magnitude of the per-

turbation applied in Fp . Large fungible contours are associated with large Fp whereas

small fungible contours are associated with small Fp .

In summary, confidence regions are not influenced by model fit. In contrast,

the size of fungible parameter contours are strongly affected by model fit. Depending

on the perturbation scheme, the effect of model fit may interact with sample size to

affect the size of fungible parameter contours. Beyond sample size and model fit, the

magnitude of correlations among MVs was also examined for its effect on the sizes of

the two kinds of parameter uncertainty.

3.3.3 Magnitude of Correlations

Recall that there were four different levels of the magnitude of correlations

among MVs (see Table 2). These four population covariances or correlations were de-

rived from two approaches of controlling the size of correlations among MVs − by ma-

nipulating either the size of unique variances in Ψ or the size of structural effects in

B . By comparing panels of the same location across Figures 3 to 6, the effect of the

size of correlations among MVs may be observed. However, to aid in visual compar-

isons, Figure 8 presents the confidence regions and fungible parameter contours for the

four different conditions within a single panel.

In Figure 8, the confidence regions are formed by blue colored crosses and the

fungible parameter contours are formed by red colored circles. There are only two plots

of confidence bounds for each level of sample size as confidence regions did not change

across the different levels of model fit examined (see Tables 6 and 8). In contrast, be-

cause fungible parameter contours are influenced by model fit, there are six of these

panels; moving from the left to right panels shows how increasing model error affects

the size of the fungible parameter contours for the four different covariance structures.
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Figure 8: Profile Likelihood-Based Confidence Bounds and Fungible Contours of β2,1
and β3,2 by Model Fit and Sample Size.
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Additionally, the MLEs of the focal parameters θ̂f = (β̂2,1, β̂3,2)
′ are represented either

as squares or triangles such that squares relate to estimates based on large unique vari-

ances ΨL , and triangles relate to estimates based on small unique variances ΨH . In a

similar fashion, dark blue colored crosses and dark red colored circles, respectively, rep-

resent confidence regions and fungible parameter contours for solutions based on small

unique variances ΨH ; medium colored blue crosses and medium colored red circles rep-

resent confidence bounds and fungible contours based on large unique variances ΨH .

It may be observed from Figure 8 that confidence bounds and fungible parame-

ter contours based on smaller unique variances ΨL , holding structural effects constant,

are smaller than those based on larger unique variances ΨH . This pattern may be vi-

sually confirmed by comparing the dark blue and dark red colored figures with similar

elliptical shapes against their medium blue and medium red colored counterparts. The

darker colored figures are smaller than their lighter colored counterparts, save for the
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fungible parameter contours where N = 1000 , model fit is perfect and BL . This in-

consistency may be attributed to the complex relationship between the magnitude of

the perturbation ε̃ , in the scale of F̂ with model error and sample size (see Table 5).

The effect of manipulating structural effects, holding unique variances constant,

on the size of the two kinds of parameter uncertainty may be seen from comparing the

same colored plots against each other within a panel of Figure 8. As anticipated, the

focal parameter estimates θ̂f associated with BH are located further away from the

zero point compared to those associated with BL ; thus, the former estimates may be

interpreted with more rigor as their confidence regions and fungible parameter con-

tours are less likely to overlap θf = 0 compared to the latter estimates. Within each

panel, the elliptical figures to the bottom left which have smaller structural effects are

consistently smaller than the elliptical figures to the top right which have larger struc-

tural effects. In general, holding unique variances constant, smaller structural effects

BL are associated with smaller confidence regions and fungible parameter contours

compared to larger structural effects BH . Additionally, the elliptical shapes associated

with smaller structural effects are more circular in form compared to those associated

with larger structural effects.

Although it was hypothesized that the sizes of confidence regions and fungible

parameter contours for the large unique variances and small structural effects ΨLBL

would be smaller than those for the small unique variances and large structural ef-

fects ΨHBH , due to the latter having the largest correlations among MVs and the

former having the smallest correlations among MVs (see Table 2), this hypothesis was

not supported. From Figure 8, the lighter colored elliptical figures within each panel

located to the bottom left were consistently smaller than the darker colored elliptical

figures located to the top right. Therefore, contrary to expectations, the confidence re-

gions and fungible parameter contours for ΨLBL were smaller than those for ΨHBH .

The sizes of confidence regions and fungible contours were smallest for ΨHBL and
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largest for ΨLBH . In Figure 8, within each of the eight panels, one may juxtapose the

size of the darker colored elliptical figures located to the bottom left against the lighter

colored elliptical figures located to the top right.

Table 8: Major and Minor Axis by Magnitude of Correlations among MVs

Confidence Regions

N = 1000 N = 200

Major Axis Minor Axis Major Axis Minor Axis

Condition Mean SD Mean SD Mean SD Mean SD

ΨLBL 0.192 0 0.182 0 0.435 0.001 0.403 0

ΨHBL 0.166 0 0.162 0 0.379 0 0.364 0

ΨLBH 0.247 0 0.198 0 0.555 0.001 0.435 0

ΨHBH 0.203 0 0.174 0 0.464 0 0.393 0

Fungible Parameter Contours

N = 1000 N = 200

Major Axis Minor Axis Major Axis Minor Axis

Condition Mean SD Mean SD Mean SD Mean SD

ΨLBL 0.361 0.213 0.343 0.203 0.459 0.151 0.425 0.139

ΨHBL 0.330 0.168 0.321 0.163 0.391 0.128 0.376 0.123

ΨLBH 0.482 0.244 0.388 0.199 0.550 0.186 0.431 0.145

ΨHBH 0.407 0.191 0.350 0.165 0.469 0.156 0.398 0.133

Note. N = sample size, ΨL = large unique variances, ΨH = small unique variances,
BL = small structural effects and BH = large structural effects.

The observations drawn from Figure 8 are consistent with the size of the ma-

jor and minor axes of these elliptical shapes in Table 8. The mean major and minor

axes of the two kinds of parameter uncertainty are consistently larger for the ΨL con-
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ditions compared to the ΨH conditions. For example, for fungible parameter contours

at N = 1000 and large structural effects BH , the major and minor axes are larger

for ΨL (M = 0.482 , SD = 0.244 and M = 0.388 , SD = 0.199) compared to ΨH

(M = 0.407 , SD = 0.191 and M = 0.350 , SD = 0.165) . In terms of structural ef-

fects, holding unique variances constant, the major and minor axes of the two kinds of

parameter uncertainty are larger for BH as opposed to BL . Additionally, contrary to

our hypothesis, the major and minor axes of confidence regions and fungible parameter

contours in Table 8 for ΨLBL are smaller than those of ΨHBH . As observed in Fig-

ure 8, the major and minor axes of the two kinds of parameter uncertainty for ΨHBL

are the smallest whereas they are largest for ΨLBH .

These results suggest that it may not be the size of correlations among the

MVs that directly affect the size of the confidence regions and fungible parameter con-

tours, by changing the shape of the likelihood surface, but the magnitude of the vari-

ances and covariances of the MVs. A decrease in the MV variances from ΨL to ΨH

(see Table 2) seems to be associated with a steeper likelihood surface as manifested by

tighter confidence regions and fungible parameter contours as shown in Figure 8. In

contrast, increasing the size of structural effects causes the shape of the likelihood sur-

face (as manifested by confidence regions and fungible parameter contours) to become

less steep and to depart from a circular form. Recall that an increase in the structural

effects from BL to BH led to larger variances and covariances among the MVs as

shown in Table 2. Hence, the increase in the size of the elliptical shapes from BL to

BH may be due to the increase in the variances of the MVs. Additionally, the length-

ening of the elliptical forms from BL to BH may be due to the focal parameters be-

coming more correlated in the latter condition; across all other factors, the covari-

ance between the focal parameters for BH was larger in magnitude (M = −0.179 ,

SD = 0.062) compared to BL (M = −0.028 , SD = 0.012).

Taken together, these results suggest that manipulating the size of the corre-
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lations among the MVs changes the likelihood surface, and that affects the size and

shape of confidence regions and fungible parameter contours. However, it is not the

magnitude of correlations among MVs that determine the degree of the two kinds of

parameter uncertainty. Larger structural effects, resulting in larger correlations among

MVs, were associated with larger confidence bounds and fungible parameter contours.

Alternatively, smaller unique variances which resulted in larger correlations among

MVs were associated with smaller confidence bounds and fungible contours. Instead,

the effects of altering unique variances in Ψ and structural effects in B on the size of

confidence regions and fungible parameter contours may be better understood by their

effect on the variances and covariances of the MVs.

3.4 Population Covariances

Fungible parameter contours may be computed at the level of the population as

shown in the first row of panels of Figures 3 to 6. Note that the perturbation ε̃ which

is added to the RMSEA in the population does not involve sample size (see Equation

5). We examine the extent to which fungible parameter contours are free of sampling

variability by comparing contours computed at the population to their sample coun-

terparts. Visual comparisons may be made within Figures 3 to 6 by comparing the top

panels to the middle and bottom panels. To allow for better visual comparisons, Fig-

ure 9 presents fungible contours computed by the two perturbation schemes ( ε̃ and

%F̂ ) by sample size and model fit for the conditions of ΨLBL and ΨHBH . Fungible

parameter contours, based on the RMSEA perturbation ε̃ , for the other conditions of

ΨLBH and ΨHBL are similarly influenced by model fit and sample size and thus are

not displayed for brevity.

In Figure 9, the first row of plots presents fungible parameter contours based

on the RMSEA perturbation ε̃ . The second row of plots shows fungible parameter con-

tours based on the %F̂ perturbation. The columns within Figure 9 display fungible
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Figure 9: Profile Likelihood-Based Fungible Contours of β2,1 and β3,2 for ΨLBL and
ΨHBH by Model Fit and Sample Size.
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parameter values associated with different levels of model fit; moving from left to right

within Figure 9 shows how these fungible contours change with increasing model error.

Within each panel, the dark red colored circles represent population fungible values,

the medium red colored circles represent fungible values when N = 1000 and the light

red colored circles represent fungible values when N = 200 . Note that fungible pa-

rameter contours based on the %F̂ perturbation cannot be computed when model fit

is perfect in the population (F = 0) and thus were not plotted. Additionally, the el-

liptical forms to the bottom left of each panel in Figure 9 represent fungible parameter

contours for ΨLBL and the elliptical forms to the top right of each panel are fungible

parameter contours for ΨHBH .

It may be observed from Figure 9 that fungible parameter contours computed

from the %F̂ perturbation increase in size as sampling variability increases. Addition-

ally, this pattern is also observed for fungible parameter contours computed from the
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ε̃ perturbation when model fit is perfect. For good model fit, the size of the fungible

parameter contours based on the RMSEA perturbation ε̃ seems to decrease with in-

creasing sampling variability. Finally, for poor model fit, fungible parameter contours

are largest in the population, followed by N = 1000 and then by N = 200 ; there is,

however, little distinction between these contours for N = 1000 and N = 200 .

Table 9: Descriptive Statistics of Major and Minor Axes for the Two Sets of
Fungible Parameter Contours

ε̃ = 0.005 %F̂ = 5%

Model Fit Major Axis Minor Axis Major Axis Minor Axis

Perfect (ε = 0) 0.255 (0.168) 0.227 (0.148) 0.221 (0.099) 0.197 (0.086)

Good (ε = 0.03) 0.332 (0.031) 0.298 (0.026) 0.219 (0.093) 0.195 (0.081)

Poor (ε = 0.09) 0.599 (0.032) 0.538 (0.008) 0.447 (0.054) 0.400 (0.044)

Note. ε = population RMSEA. Descriptive statistics were obtained across two
conditions of ΨLBL and ΨHBH and across the three levels of sampling variability.
Standard deviations are presented in the parenthesis.

These observations are confirmed by the size of the major and minor axes pre-

sented in Table 7, and their respective descriptive statistics presented in Table 9 above.

It is noted that the major and minor axes of the fungible parameter contours based

on the ε̃ perturbation scheme did not differ considerably between the three levels of

sampling variability when model fit was good or poor as communicated by the rela-

tively small standard deviations in Table 9. Recall that the size of these fungible pa-

rameter contours directly maps onto the magnitude of the perturbations, in the scale

of F , applied to obtain them (see Table 5). Hence, the ε̃ perturbation may be one

approach that somewhat allows for comparisons between fungible parameter contours

constructed from different levels of model fit and sample size.

In sum, contrary to expectation, fungible parameter contours are not based

solely on model error, but incorporate information on sampling variability. Sampling
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variability influences the magnitude of the perturbations used to compute fungible pa-

rameter contours as these perturbations are based on the sample minimum discrepancy

function value F̂ . Controlling for model fit, the effect of sampling variability on the

magnitude of %F̂ perturbations is monotonic and increasing (see second row of plots

in Figure 9). When an RMSEA perturbation ε̃ is used, however, sample size influences

the size of these fungible parameter contours in a complex way as the sample RMSEA

is a nonlinear function of sample size.

3.5 Profile and Empirical Likelihood-Based Computations

Confidence regions and fungible parameter contours may be computed from the

empirical likelihood or the profile likelihood. The difference between these two likeli-

hoods is in how nuisance parameters θn are taken account of. In the empirical likeli-

hood, the nuisance parameters θn are not re-estimated with every boundary point of

the confidence region or fungible parameter value; instead, nuisance parameters take

on values of the ML estimates θ̂n which were obtained jointly with the ML estimates

of the focal parameters θ̂f (see Equations 20 and 21). In contrast, nuisance parame-

ters in the profile likelihood are re-computed (represented by θ̃n ) for every confidence

bound estimate or fungible parameter value (see Equations 16 and 17). Note that the

ML estimates of the nuisance parameters θ̂n , obtained jointly with the ML estimates

of the focal parameters θ̂f , are distinct from θ̃n or the ML estimates obtained at a

fixed confidence bound estimate or fungible parameter value.

Although we have presented results from the profile likelihood, we will examine

how estimates of these two kinds of parameter uncertainty differ when they are com-

puted from the profile likelihood versus the empirical likelihood. As the conditions of

ΨHBL and ΨLBH are associated, respectively, with the smallest and largest confi-

dence regions and fungible parameter contours in the profile likelihood, we will focus

on these two study cells. Figure 10 presents plots of confidence regions and fungible
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Figure 10: Estimated and Profile Likelihood-Based Confidence Regions and Fungible
Contours of β2,1 and β3,2 .
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parameter contours where estimates from the empirical likelihood are overlaid with

their commensurate estimates from the profile likelihood.

Confidence bounds are represented as blue colored crosses in Figure 10 and fun-

gible parameter contours are represented as red colored circles. Note that the RMSEA

perturbation ε̃ was applied to construct these fungible parameter contours. As model

fit did not influence the size of confidence regions (see Tables 6 and 8), these confidence

regions are not shown for the varying levels of model fit as was done for fungible pa-

rameter contours. The panels representing fungible parameter contours are arranged

such that moving from left to right is associated with increasing model error. Visual

comparisons may be made between the top and bottom rows of panels within Fig-

ure 10 to assess the effect of sampling variability on the size of the confidence regions

and fungible parameter contours computed from the empirical and profile likelihood.

Within each panel of Figure 10, the elliptical forms situated at the bottom left are
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based on small unique variances and small structural effects ΨHBL and the ellipti-

cal shapes located at the top right of each panel are based on large unique variances

and large structural effects ΨLBH . The two kinds of parameter uncertainty are rep-

resented in darker and lighter colors when they were computed from the profile and

empirical likelihood respectively.

Table 10: Descriptive Statistics of Major and Minor Axes from the Empirical
and Profile Likelihoods

Confidence Regions Fungible Parameter Contours

Likelihood Major Axis Minor Axis Major Axis Minor Axis

Empirical 0.282 (0.113) 0.251 (0.098) 0.369 (0.136) 0.329 (0.123)

Profile 0.330 (0.140) 0.289 (0.114) 0.431 (0.167 ) 0.379 (0.140)

Note. Descriptive statistics were obtained across the four levels of magnitude of
correlations between MVs, the two sample sizes and the three levels of model fit.
Standard Deviations are presented in the parenthesis

It may be concluded from Figure 10 that both confidence regions and fungible

parameter contours computed from the profile likelihood are consistently larger than

their counterparts from the empirical likelihood. In Figure 10, the darker colored ellip-

tical figures are larger in size compared to the lighter colored elliptical figures. Table 10

provides summary information on the major and minor axes of confidence regions and

fungible parameter estimates based on the profile and estimated likelihoods, confirming

these observations. Across all the study conditions involving samples, the major and

minor axes of the confidence regions and fungible parameter contours are consistently

larger when computations are based on the profile likelihood compared to the empirical

likelihood.

In sum, when the confidence regions and fungible parameter contours are com-

puted from the estimated likelihood, they have a tendency to communicate overly op-

timistic estimates of parameter uncertainty. Under the empirical likelihood, confidence
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regions tend to convey optimistic precision; likewise, fungible parameter contours tend

to suggest that the model description of the data under a small perturbation to model

fit is more tolerable or robust. Such estimates from the profile likelihood take into ac-

count the uncertainty of the nuisance parameters θn , unlike the empirical likelihood.

Interestingly, when the nuisance parameters are re-estimated in the profile likelihood,

the shape of the likelihood surface of the focal parameters is less elliptical compared to

that of the empirical likelihood in the context of large structural effects BH . Indeed,

compared to the empirical likelihood, the larger and elongated profile likelihood surface

for the focal parameters under the BH condition not only takes account of the uncer-

tainty inherent in the nuisance parameters θn , but also the correlations among θn .
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Chapter 4

DISCUSSION

Confidence regions and fungible parameter values are similar in that they com-

municate parameter uncertainty and are both computed directly from the likelihood

function. Due to these commonalities, we set out to clarify the relationship between

confidence regions and fungible parameter contours by accomplishing three study ob-

jectives. First, we developed a general perturbation framework which served as a theo-

retical basis to lay out the analytical relationship between confidence regions and fungi-

ble parameter contours. Second, we carried out a simulation study to examine various

factors that affect confidence regions and fungible parameter contours. Third, we suc-

cessfully implemented a new computational procedure for obtaining confidence regions

and fungible parameter contours that takes account of nuisance parameters by the pro-

file likelihood method. In the following sections, we discuss findings for each of these

objectives. We conclude with study contributions, directions for future research and

end with a discussion of what applied researchers may gain from examining confidence

regions and fungible parameter contours.

4.1 General Perturbation Framework

The general perturbation framework extends the theoretical framework out-

lined in MacCallum, Browne and Lee (2009), for constructing fungible parameter con-

tours, to confidence regions. Hence, the two kinds of parameter uncertainty - confi-

dence regions and fungible parameter contours - are unified under the same theoretical

framework. It follows that this theoretical framework also serves as a basis for com-



puting confidence regions and fungible parameter contours from the same algorithm.

Importantly, from the general perturbation framework, we show that confidence regions

and fungible parameter contours are analytically related. One kind of parameter un-

certainty may be numerically translated to the other, and vice versa. However, such

translations may not be substantively meaningful. Even when confidence regions and

fungible parameters are numerically identical, the distinction between these two kinds

of parameter uncertainty continue to be important. Both kinds of parameter uncer-

tainty contain unique information that enhance scientific conclusions.

In practice, confidence regions are a probabilistic device that convey the ex-

tent of statistical variation inherent in the parameter estimates; they provide a range of

plausible population parameter values, and may be used for significance testing. Note

that confidence bounds are limits to a range of parameter estimates in that any point

located within the region is a set of plausible population parameter values. Further-

more, confidence regions communicate information regarding the precision of the pa-

rameter estimates, which in turn convey how well the parameter estimates generalize to

the population. Additionally, confidence regions also quantify how well parameter es-

timates cross-validate in that with small sampling variability, parameter estimates ob-

tained from a different sample of the same population will not differ considerably from

the original parameter estimates. Hence, tight confidence regions promote strong sci-

entific conclusions; parameter estimates with smaller confidence regions have a higher

probability of being statistically significantly different from zero, have little uncertainty

or more precision and tend to generalize and cross-validate better than parameter esti-

mates with larger confidence regions. Therefore, by quantifying parameter uncertainty

in relation to the population of interest, the information embodied by confidence re-

gions allow analysts to make probabilistic inferences.

Fungible parameter contours, in contrast, convey information about how sen-

sitive parameter estimates are to a perturbation to model fit. Unlike confidence re-
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gions, fungible parameter contours do not contain information regarding the population

which the sample is drawn from. Instead, they communicate parameter uncertainty of

the solution in relation to model fit. Note that unlike confidence regions, only points

lying on the fungible contour are of interest; these parameter values that make up the

contour are exchangeable, alternative parameter values that are associated with the

same model fit that is practically no different than the best model fit. Stated differ-

ently, fungible parameter values may be considered to be equally good descriptors of

the data compared to the optimal solution. In this vein, fungible parameter contours

carry diagnostic value. Small fungible contours imply that there is a limited range

of parameter values that describe the sample data equally well in terms of model fit,

giving assurance that the model description of the data is robust. Therefore, from a

practical standpoint, tight fungible parameter contours promote strong scientific con-

clusions in that they show that parameter estimates are robust to a minute change in

model fit.

Although fungible parameter values are alternative parameter values that de-

scribe the data practically as well as the ML estimates in terms of model fit, they are

not strictly estimators for a set of population parameters. Therefore, fungible values

do not have statistical properties such as unbiasedness, efficiency, sufficiency and con-

sistency. Instead, fungible parameter contours are a diagnostic device used to assess

the robustness of the solution to a small change in model fit. Alternatively, each fun-

gible parameter value on the contour may be considered as potential ML estimates of

competing models. In particular, these hypothetical competing models have the same

user-specified model fit that is slightly poorer than the optimal solution. In this vein, if

one considers fungible parameter values to be alternative ML solutions to hypothetical

competing models with some user-specified lack of fit, these estimates would have sta-

tistical properties of unbiasedness, efficiency, sufficiency and consistency. However, this

view is complicated by the fact that the full parametric specification of these hypothet-
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ical alternative models is unknown and probably unknowable. For present purposes we

find it most useful to consider fungible parameter values to simply represent alternative

and optimal parameter values for a given model lacking any optimal statistical proper-

ties.

Associated with these interpretational differences, several modelling factors

were found to affect confidence regions and fungible parameter contours differentially.

We summarize how several modelling factors - sample size, model fit and the magni-

tude of correlations among measured variables (MVs) - affect these two kinds of pa-

rameter uncertainty.

4.2 Factors that Impact Parameter Uncertainty

Recall that confidence regions and fungible parameter contours are computed

from the likelihood function, which combines information from the sample data and

the specified model. In particular, the likelihood function represents the likelihood

of the model parameters given the data. Under maximum likelihood (ML) estima-

tion, the ML estimates of the parameters are estimates that make the observed data

most likely. For a model with k = 1 parameter, the likelihood function spans a two-

dimensional space; one dimension for the parameter, and the second dimension for its

likelihood. For a model with k = 2 parameters, the likelihood function spans a three-

dimensional space; one dimension for each parameter and the third dimension for their

joint likelihood. It follows that for k parameters, the likelihood function spans a k+ 1-

dimensional space. Note also that the ML parameter estimates are unique, and take

on values where the likelihood is at its maximum. As the likelihood surface is convex,

more than one set of parameter values is associated with likelihood values that are not

the maximum.

Both confidence regions and fungible parameter contours consist of parameter

values at some determined likelihood value that is not the ML. With k = 1 parame-
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ter, two estimates make up the confidence interval, and there are two fungible param-

eter values. With k = 2 parameters, elliptical figures composed of parameter values

make up the confidence bound and/or fungible parameter contours. More generally,

with k parameters, the two kinds of parameter uncertainty would each be represented

by k -dimensional hyper-elliptical forms. Regardless of the number of parameters, the

k -dimensional confidence regions or fungible parameter contours may be regarded as

slices of the likelihood function or surface. In general, given the same likelihood value,

steeper likelihood surfaces are associated with tighter confidence regions and param-

eter contours whereas flatter likelihood surfaces are associated with more parameter

uncertainty. Hence, confidence regions and fungible parameter contours are determined

by the shape of the likelihood surface, as well as the likelihood value that defines their

parameter values.

The modelling factors considered in our study affect confidence regions and

fungible parameter contours in two main ways. First, they could influence the size of

the perturbation applied to construct these two kinds of parameter uncertainty. Stated

differently, these modelling factors could affect the likelihood value at which the pa-

rameter values are taken to form confidence regions and/or fungible parameter con-

tours. Second, the modelling factors could change the shape of the likelihood surface

thereby affecting confidence regions and fungible parameter contours. Below, we de-

scribe how sample size, model fit and the magnitude of correlations among MVs af-

fected confidence regions and fungible parameter contours in these two ways.

4.2.1 Size of Perturbation

The “perturbation” applied as a first step to constructing confidence regions is

determined by sample size, the error rate α and the χ2 quantile. Larger sample sizes,

larger error rates and smaller quantiles are associated with smaller “perturbations” and

consequently tighter confidence regions. Conversely, smaller sample sizes, smaller er-
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ror rates and larger quantiles are associated with larger ”perturbations” that result in

larger confidence regions. Additionally, the “perturbation” used to construct confidence

regions is independent of model fit. In sum, as the “perturbation” applied to compute

confidence regions is a function of sample size and not model fit, confidence regions

carry information regarding sampling variability and not model error.

In comparison, the two different perturbation schemes used in our simulation

study to compute fungible parameter contours are affected largely by model fit and, to

a lesser extent, sample size. Recall that one perturbation was a fixed value of RMSEA

or ε̃ and the other was a specified percentage of the sample discrepancy function value

or %F̂ . Across these two perturbation schemes, larger perturbations (translated to the

scale of the discrepancy function value F ) are associated with larger fungible parame-

ter contours and vice-versa. Unlike the “perturbation” applied to construct confidence

regions, which is determined primarily by sample size, the perturbations used for com-

puting fungible parameter contours primarily incorporate information on model fit and,

to a much smaller extent, sample size.

Although the two perturbation schemes applied to compute fungible parame-

ter contours displayed similar properties, there were several notable subtle differences.

First, model fit and sample size interacted in a complex way to determine the size of

the RMSEA perturbation or ε̃ when it was transformed into the scale of F (see Table

5). In contrast, model error and sampling variability were strictly positively monoton-

ically related to the size of the %F̂ perturbation. This distinction is due to the fact

that the ε̃ perturbation corrects for bias due to sampling variability whereas the %F̂

perturbation does not. Second, the ε̃ perturbation takes on a fixed RMSEA value that

is in a meaningful metric of model fit. The %F̂ perturbation, however, is relative and

remains in the scale of F . By remaining in the scale of F , the %F̂ perturbation is

difficult to interpret directly in terms of model fit. As a result, fungible parameter con-

tours, across different data sets and models, that are constructed from a ε̃ perturba-
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tion may be compared against one another. In contrast, as the %F̂ perturbation is

relative, fungible parameter contours based on this perturbation scheme may not be

compared against similarly constructed fungible contours on some fixed level of model

fit.

In sum, confidence regions and fungible parameter contours are distinct in that

sample size and model fit differentially affect the size of the perturbations applied to

construct these two kinds of parameter uncertainty. Specifically, the size of the pertur-

bation used to compute confidence regions is affected by sample size. However, the size

of perturbations applied to construct fungible parameter contours are affected primar-

ily by model fit and, to a limited extent, sample size.

4.2.2 Likelihood Surface

As confidence regions and fungible parameter contours are both based on the

likelihood surface, the factors that affect the likelihood surface would therefore affect

both kinds of parameter uncertainty. Although it was hypothesized that changes in

model fit and the magnitude of correlations among MVs would alter the shape of the

likelihood surface, these hypotheses were disconfirmed. Instead, model fit was found

to affect only the size of the perturbations used to compute fungible parameter con-

tours. Additionally, it was the size of the MV variances that affected the steepness of

the likelihood surface instead of the magnitude of the correlations among MVs. In gen-

eral, the smaller the MV variances, the steeper the likelihood surface and vice-versa.

With steeper likelihood surfaces, confidence regions and fungible parameter contours

tend to be tighter. Conversely, shallower likelihood surfaces are associated with more

parameter uncertainty.

The computational procedure used to take account of nuisance parameters also

affects the observed steepness and shape of the likelihood surface of the focal param-

eters as manifested in the computed confidence regions and fungible parameter con-
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tours. In the next section, we discuss uncertainty parameter computations based on

the profile and empirical likelihood.

4.3 Computational Procedure

Confidence regions and fungible parameter contours, computed following the

general perturbation framework, are based on the Brent (1973) method of root finding.

These computations are exact, and are computationally more efficient compared to a

basic grid search. Based on the work of MacCallum, Browne and Lee (2009), we have

extended their computational procedure beyond obtaining fungible parameter contours

to confidence regions. Additionally, these two kinds of parameter uncertainty may be

obtained for more than two focal parameters. Note that computing these estimates of

parameter uncertainty for some number of focal parameters is feasible only when there

is a computationally tractable number of direction vectors required to adequately span

the focal parameter space.

With increasing numbers of parameters, locating the desired confidence bound

or fungible parameter contour becomes computationally burdensome. When k = 1

parameter, T = 2 direction vectors are required to span the one-dimensional pa-

rameter space. With k = 2 parameters, suppose that T directional vectors ade-

quately sample the two-dimensional parameter space. When k = 3, T 2 directional

vectors are required to sample the three-dimensional space with the same coverage as

the two-dimensional case. In this vein, with k parameters, T k−1 directional vectors

are required to sample the hypercube with the same coverage as the lower dimensional

scenarios. Clearly, computations rapidly become intractable with increasing parame-

ter dimensionality. In large models with many parameters, computing confidence re-

gions or fungible parameter contours for the full set of parameters is not feasible. As a

workaround, the dimensionality of the parameter space may be reduced to a few key or

focal parameters θf . Here, the non-focal parameters or nuisance parameters θn may
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be taken account of by the empirical or profile likelihood methods.

When the computational procedure is applied to compute confidence regions

and fungible parameter contours from the empirical likelihood, the ML estimates of the

nuisance parameters θ̂n obtained jointly with the focal parameters θ̂f are substituted

for every boundary point of the confidence region or fungible parameter value. Under

the profile likelihood approach, however, the uncertainty of the nuisance parameters

as well as their correlations with the focal parameters are taken account of. Here, the

nuisance parameters θn are re-estimated to obtain θ̃n for every focal parameter value

of the confidence bound or fungible parameter contour.

This difference in the treatment of nuisance parameters between the empiri-

cal and profile likelihoods manifests in the computational time required to obtain esti-

mates of parameter uncertainty. Suppose that T directional vectors are employed to

adequately span the parameter space so as to construct confidence regions and fungible

parameter contours. In general, computations based on the profile likelihood take at

least T times as long as computations based on the empirical likelihood. The empirical

likelihood approach requires only a single optimization to obtain parameter estimates

for the nuisance parameters whereas at least T such optimizations are required by the

profile likelihood method. Beyond this difference in computational efficiency, there are

also important practical differences between estimates of parameter uncertainty based

on the empirical versus the profile likelihood.

4.3.1 Empirical Likelihood

In general, the observed empirical likelihood surface seems to be consistently

steeper and more elliptical compared to the observed profile likelihood, as manifest

in the two kinds of parameter uncertainty. Therefore, as expected, computations of

parameter uncertainty based on the empirical likelihood tend to communicate overly

optimistic parameter uncertainty. Compared to profile likelihood-based estimates, es-
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timated likelihood-based confidence regions tend to be tighter. Such tighter than opti-

mal confidence regions would be associated with an overly liberal test or an inflated α

error rate. Additionally, such confidence regions would erroneously convey overly op-

timistic precision, cross-validity and generalizability of the focal parameter estimates.

Under the empirical likelihood, fungible parameter contours would similarly be smaller

than optimal. Therefore, these fungible contours would falsely imply that the model

description of the data is overly robust to a small perturbation to model fit. In sum,

when the two kinds of parameter uncertainty are based on the empirical likelihood,

they tend to convey less uncertainty than is actually present.

4.3.2 Profile Likelihood

Unlike empirical likelihood-based computations, the profile likelihood takes

into account the uncertainty of the nuisance parameters as well as the correlations

among the nuisance and focal parameters by re-estimating θn for every confidence

region boundary point or fungible value of the focal parameters. As such, compared

to the empirical likelihood, computations based on the profile likelihood more com-

pletely communicate the two kinds of parameter uncertainty at the cost of computa-

tional time. For a small number of focal parameters and a large number of nuisance

parameters, computing confidence regions and fungible parameter contours from the

profile likelihood are computationally tractable. Therefore, we recommend obtaining

confidence regions and fungible parameter contours from the profile likelihood over the

empirical likelihood in general.

4.4 Study Contributions

The theoretical contribution of the study rests on the development of the gen-

eral perturbation framework, which unifies confidence regions and fungible parameter

contours under a single framework. With such a unification, we have shown how con-
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fidence regions and fungible parameter contours are analytically related, even though

they represent distinct aspects of parameter uncertainty. Additionally, the general

perturbation framework allows for the computation of both kinds of parameter un-

certainty from the same algorithm. Further, our simulation results confirmed the dis-

tinction between confidence regions and fungible parameter contours. Although both

kinds of parameter uncertainty were affected by the magnitude of correlations among

the MVs, confidence regions were primarily influenced by sample size whereas fungi-

ble parameter contours were influenced primarily by model fit and, to a lesser extent,

sample size.

Based on the general perturbation framework, we have extended the compu-

tation of parameter uncertainty estimates to include confidence regions in addition

to fungible parameter contours. Importantly, we have implemented a new algorithm

based on the profile likelihood, which has the advantage over the existing empirical

likelihood method (MacCallum, Browne & Lee, 2009) of taking account of the uncer-

tainty inherent in the nuisance parameters. This new computational procedure there-

fore communicates parameter uncertainty more completely than the existing procedure.

Additionally, confidence regions and fungible parameter contours, based on the profile

likelihood, may be obtained for more than one focal parameter in the presence of many

nuisance parameters.

Although we have clarified the distinction between confidence regions and fun-

gible parameter contours, as well as provided an improved method of computing them,

there remain several areas that merit further study.

4.5 Future Directions

To better understand the nature of confidence regions and fungible parameter

contours, other factors that affect them beyond sample size, model fit, and the magni-

tude of correlations among MVs may be explored. These factors are the number of pa-
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rameters in the model and the types of parameters in the model. Specifically, the two

kinds of parameter uncertainty may be influenced by how many focal versus nuisance

parameters are specified in the model. Additionally, whether focal and/or nuisance pa-

rameters are means, variances, intercepts or residuals may play a role in changing the

size and shape of confidence regions and fungible parameter contours.

The “perturbation” applied as a first step to compute confidence regions is

fixed. However, the perturbation used to obtain fungible parameter contours remains

a subjective choice. Importantly, the perturbation associated with fungible parameter

contours determines how these fungible contours are interpreted. Although we have

used two different perturbation schemes, there exist many other types of perturbation

schemes for the construction of fungible parameter contours. For future study, other

types of perturbations to model fit may be explored. For example, perturbations based

on the Tucker-Lewis Index (TLI; Tucker & Lewis, 1973), or information criteria such as

the Akaike Information Criteria (AIC; Akaike, 1973) or the Bayes Information Criteria

(BIC; Schwartz, 1978) may be considered.

In terms of computations, confidence regions and fungible parameter contours

based on the profile likelihood are preferable over the empirical likelihood; the former

incorporates more information about the nuisance parameters compared to the latter.

However, the profile likelihood remains to be evaluated on how well it takes account

of the set of nuisance parameters. In particular, confidence regions and fungible pa-

rameter contours based on the profile likelihood should be examined against confidence

regions and fungible parameter contours computed for all model parameters jointly.

Such an evaluation would clarify what limitations are inherent in the profile likelihood

method to reducing the dimensionality of the parameter space to focal parameters.
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4.6 Conclusion

Confidence regions and fungible parameter contours are distinct kinds of pa-

rameter uncertainty that provide useful and unique information to the analyst. Con-

fidence regions are an inferential device and convey information that is strictly tied to

sampling variability. As one type of parameter uncertainty, confidence regions inform

analysts of the statistical significance of parameter estimates, the accuracy of these

estimates, as well as how well these estimates generalize to the population and cross-

validate to a similar sample. Beyond confidence regions, fungible parameter contours

convey parameter uncertainty with respect to model fit. Hence, what is gained from

computing fungible parameter contours is a quantification of how robust or sensitive

the model description is of the data under a perturbation to model fit. Both kinds of

parameter uncertainty therefore provide distinctive information that have the potential

to buttress the case for strong scientific conclusions.
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APPENDIX A

The population covariance matrices without model error ( ε = 0) are presented

in the lower triangular matrix, the variances are bold in the matrix diagonal and the

population correlation matrices are presented in the upper diagonal (in italics) for the

conditions of (a) small unique variances and large structural effects (ΨHBL ), (b) large

unique variances and large structural effects (ΨLBH ) and (c) small unique variances

and large structural effects (ΨHBH ). Recall that the subscript 0 denotes exact model

fit. The covariance and correlation matrix for small unique variances and small struc-

tural effects has been presented in the text.

The population covariance and correlation matrix associated with small

unique variances and small effect sizes with perfect model fit is

ΣΨHBL0 and PΨHBL0 =

0.75 0.87 0.86 0.86 0.18 0.18 0.18 0.18 0.20 0.20 0.20 0.20 0.20

0.65 0.76 0.86 0.86 0.18 0.18 0.18 0.18 0.20 0.20 0.20 0.20 0.20

0.65 0.65 0.76 0.86 0.18 0.18 0.17 0.17 0.20 0.20 0.20 0.20 0.20

0.65 0.65 0.65 0.76 0.18 0.17 0.17 0.17 0.20 0.20 0.20 0.20 0.20

0.14 0.14 0.14 0.14 0.78 0.87 0.87 0.86 0.20 0.20 0.20 0.20 0.21

0.14 0.14 0.13 0.14 0.68 0.78 0.87 0.86 0.20 0.20 0.20 0.20 0.20

0.13 0.14 0.13 0.13 0.68 0.68 0.78 0.86 0.20 0.20 0.20 0.20 0.20

0.13 0.13 0.13 0.13 0.68 0.68 0.67 0.78 0.20 0.20 0.20 0.20 0.20

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.81 0.87 0.87 0.87 0.87

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.71 0.82 0.87 0.87 0.87

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.70 0.71 0.81 0.87 0.87

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.71 0.71 0.71 0.82 0.87

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.71 0.71 0.71 0.72 0.81


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The population covariance and correlation matrix associated with large unique

variances and large effect sizes with perfect model fit is

ΣΨLBH0 and PΨLBH0 =

1.15 0.57 0.56 0.56 0.31 0.31 0.31 0.31 0.41 0.41 0.41 0.42 0.42

0.65 1.16 0.56 0.56 0.31 0.31 0.31 0.31 0.41 0.41 0.41 0.42 0.42

0.65 0.65 1.16 0.56 0.31 0.31 0.31 0.31 0.41 0.41 0.41 0.41 0.41

0.65 0.65 0.65 1.16 0.31 0.31 0.31 0.31 0.41 0.41 0.41 0.41 0.41

0.40 0.40 0.40 0.40 1.40 0.64 0.64 0.64 0.46 0.46 0.46 0.46 0.46

0.40 0.40 0.39 0.40 0.89 1.40 0.64 0.64 0.46 0.46 0.46 0.46 0.46

0.39 0.40 0.39 0.39 0.89 0.89 1.39 0.63 0.46 0.46 0.46 0.46 0.46

0.39 0.39 0.39 0.39 0.89 0.89 0.88 1.39 0.46 0.46 0.46 0.46 0.46

0.63 0.63 0.62 0.62 0.77 0.77 0.77 0.76 1.98 0.74 0.74 0.75 0.75

0.63 0.63 0.63 0.63 0.77 0.77 0.77 0.77 1.48 2.00 0.74 0.75 0.75

0.62 0.63 0.62 0.62 0.77 0.77 0.76 0.76 1.47 1.48 1.98 0.75 0.75

0.63 0.63 0.63 0.63 0.78 0.78 0.77 0.77 1.49 1.49 1.49 2.00 0.75

0.63 0.63 0.63 0.63 0.77 0.77 0.77 0.77 1.48 1.49 1.48 1.50 1.99


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The population covariance and correlation matrix associated with small

unique variances and small effect sizes with perfect model fit is

ΣΨHBH0 and PΨHBH0 =

0.75 0.87 0.86 0.86 0.46 0.46 0.46 0.46 0.57 0.57 0.57 0.57 0.57

0.65 0.76 0.86 0.86 0.46 0.46 0.46 0.46 0.57 0.57 0.57 0.57 0.57

0.65 0.65 0.76 0.86 0.46 0.45 0.45 0.45 0.57 0.57 0.57 0.57 0.57

0.65 0.65 0.65 0.76 0.45 0.45 0.45 0.45 0.57 0.57 0.57 0.57 0.57

0.40 0.40 0.40 0.40 1.00 0.90 0.90 0.89 0.61 0.61 0.61 0.61 0.61

0.40 0.40 0.39 0.40 0.89 1.00 0.89 0.89 0.61 0.61 0.61 0.61 0.61

0.39 0.40 0.39 0.39 0.89 0.89 0.99 0.89 0.61 0.61 0.61 0.61 0.61

0.39 0.39 0.39 0.39 0.89 0.89 0.88 0.99 0.61 0.61 0.61 0.61 0.61

0.63 0.63 0.62 0.62 0.77 0.77 0.77 0.76 1.58 0.93 0.93 0.93 0.94

0.63 0.63 0.63 0.63 0.77 0.77 0.77 0.77 1.48 1.60 0.93 0.93 0.93

0.62 0.63 0.62 0.62 0.77 0.77 0.76 0.76 1.47 1.48 1.58 0.93 0.93

0.63 0.63 0.63 0.63 0.78 0.78 0.77 0.77 1.49 1.49 1.49 1.60 0.94

0.63 0.63 0.63 0.63 0.77 0.77 0.77 0.77 1.48 1.49 1.48 1.50 1.59
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APPENDIX B

The population covariance matrices with model error are presented in the lower

triangular matrix, the variances are bold in the matrix diagonal and the population

correlation matrices are presented in the upper diagonal (in italics) for the four study

conditions. Note that large and small unique variances are denoted by ΨL and ΨH ,

respectively, while small and large structural effects are denoted by BL and BH . Re-

call that model error was added to the population covariances in Appendix A via the

Cudeck and Browne (1992) method and the subscripts G and P denote good ( ε =

0.03) and poor ( ε = 0.09) model fit respectively.

The population covariance and correlation matrix associated with large

unique variances and small effect sizes with poor model fit is

ΣΨLBLP and PΨLBLP =

1.15 0.61 0.52 0.55 0.12 0.10 0.18 0.12 0.12 0.13 0.17 0.14 0.18

0.71 1.16 0.56 0.52 0.15 0.15 0.10 0.07 0.08 0.11 0.15 0.10 0.14

0.60 0.65 1.16 0.61 0.09 0.11 0.03 0.08 0.07 0.11 0.17 0.04 0.07

0.63 0.60 0.71 1.16 0.17 0.06 0.10 0.21 0.16 0.19 0.22 0.13 0.17

0.15 0.18 0.11 0.20 1.18 0.61 0.59 0.52 0.08 0.23 0.26 0.10 0.14

0.12 0.17 0.13 0.07 0.72 1.18 0.54 0.58 0.07 0.12 0.15 0.09 0.13

0.21 0.11 0.03 0.12 0.69 0.63 1.18 0.60 0.13 0.12 0.09 0.06 0.07

0.15 0.08 0.10 0.24 0.62 0.69 0.71 1.18 0.14 0.19 0.19 0.11 0.25

0.14 0.10 0.08 0.20 0.10 0.08 0.16 0.16 1.21 0.56 0.61 0.63 0.55

0.16 0.13 0.13 0.23 0.28 0.15 0.14 0.23 0.68 1.22 0.60 0.55 0.62

0.20 0.17 0.20 0.26 0.31 0.18 0.10 0.23 0.73 0.73 1.21 0.57 0.55

0.17 0.12 0.05 0.16 0.12 0.11 0.07 0.14 0.76 0.67 0.69 1.22 0.61

0.21 0.17 0.09 0.20 0.17 0.15 0.09 0.30 0.67 0.76 0.67 0.74 1.21
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The population covariance and correlation matrix associated with small

unique variances and small effect sizes with good model fit is

ΣΨHBLG and PΨHBLG =

0.75 0.87 0.86 0.86 0.16 0.16 0.17 0.18 0.19 0.20 0.20 0.19 0.19

0.66 0.76 0.86 0.86 0.17 0.17 0.17 0.17 0.19 0.20 0.20 0.19 0.19

0.65 0.65 0.76 0.86 0.17 0.18 0.17 0.18 0.20 0.21 0.21 0.20 0.19

0.65 0.65 0.65 0.76 0.19 0.18 0.18 0.20 0.21 0.22 0.22 0.21 0.21

0.13 0.13 0.13 0.14 0.78 0.87 0.87 0.86 0.19 0.22 0.21 0.20 0.19

0.13 0.13 0.14 0.14 0.68 0.78 0.86 0.86 0.19 0.21 0.21 0.20 0.19

0.13 0.13 0.13 0.14 0.68 0.67 0.78 0.87 0.20 0.21 0.20 0.20 0.19

0.13 0.13 0.14 0.16 0.67 0.68 0.67 0.78 0.21 0.22 0.22 0.21 0.22

0.15 0.15 0.16 0.17 0.15 0.16 0.16 0.17 0.81 0.87 0.87 0.88 0.87

0.16 0.16 0.17 0.18 0.17 0.17 0.17 0.18 0.71 0.82 0.87 0.87 0.87

0.16 0.16 0.17 0.17 0.17 0.17 0.16 0.17 0.71 0.71 0.81 0.87 0.87

0.15 0.15 0.16 0.17 0.16 0.16 0.16 0.17 0.71 0.71 0.71 0.82 0.88

0.15 0.15 0.15 0.16 0.15 0.16 0.15 0.17 0.71 0.72 0.71 0.72 0.81
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The population covariance and correlation matrix associated with small

unique variances and small effect sizes with poor model fit is

ΣΨHBLP and PΨHBLP =

0.75 0.88 0.85 0.86 0.14 0.14 0.17 0.18 0.17 0.20 0.20 0.18 0.17

0.67 0.76 0.86 0.85 0.15 0.16 0.15 0.16 0.16 0.20 0.19 0.17 0.16

0.64 0.65 0.76 0.87 0.17 0.19 0.17 0.20 0.20 0.23 0.24 0.19 0.18

0.65 0.64 0.66 0.76 0.21 0.18 0.20 0.26 0.24 0.27 0.27 0.23 0.22

0.11 0.11 0.13 0.16 0.78 0.88 0.87 0.85 0.17 0.24 0.23 0.18 0.17

0.11 0.12 0.15 0.14 0.69 0.78 0.85 0.87 0.18 0.22 0.21 0.19 0.17

0.13 0.11 0.13 0.16 0.68 0.67 0.78 0.87 0.20 0.22 0.20 0.18 0.16

0.13 0.12 0.16 0.20 0.67 0.68 0.68 0.78 0.22 0.26 0.25 0.22 0.24

0.13 0.13 0.15 0.19 0.13 0.14 0.16 0.18 0.81 0.86 0.88 0.88 0.86

0.16 0.15 0.19 0.21 0.20 0.18 0.18 0.21 0.70 0.82 0.87 0.86 0.88

0.15 0.15 0.19 0.21 0.19 0.17 0.16 0.20 0.71 0.71 0.81 0.86 0.86

0.14 0.13 0.15 0.18 0.14 0.15 0.14 0.17 0.72 0.71 0.71 0.82 0.88

0.13 0.12 0.14 0.17 0.13 0.14 0.13 0.19 0.70 0.72 0.70 0.72 0.81
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The population covariance and correlation matrix associated with large

unique variances and large effect sizes with good model fit is

ΣΨLBHG and PΨLBHG =

1.15 0.58 0.55 0.55 0.31 0.31 0.33 0.31 0.41 0.41 0.42 0.42 0.43

0.67 1.16 0.57 0.55 0.32 0.32 0.31 0.30 0.40 0.41 0.42 0.41 0.42

0.64 0.65 1.16 0.58 0.30 0.31 0.28 0.30 0.40 0.41 0.42 0.39 0.40

0.64 0.63 0.67 1.16 0.33 0.29 0.31 0.34 0.42 0.43 0.43 0.41 0.42

0.40 0.41 0.39 0.42 1.40 0.65 0.64 0.62 0.45 0.49 0.49 0.45 0.47

0.39 0.41 0.40 0.37 0.91 1.40 0.63 0.64 0.45 0.46 0.47 0.45 0.46

0.42 0.39 0.36 0.39 0.90 0.88 1.39 0.64 0.46 0.46 0.45 0.45 0.45

0.40 0.38 0.38 0.43 0.86 0.89 0.90 1.39 0.46 0.47 0.47 0.46 0.49

0.62 0.61 0.60 0.64 0.75 0.74 0.76 0.76 1.98 0.74 0.75 0.76 0.74

0.63 0.62 0.62 0.65 0.81 0.77 0.76 0.79 1.47 2.00 0.75 0.74 0.75

0.64 0.63 0.64 0.66 0.82 0.78 0.75 0.79 1.48 1.48 1.98 0.74 0.74

0.64 0.62 0.59 0.63 0.76 0.76 0.74 0.76 1.51 1.48 1.48 2.00 0.75

0.65 0.63 0.60 0.64 0.78 0.77 0.75 0.81 1.47 1.50 1.47 1.51 1.99
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The population covariance and correlation matrix associated with large

unique variances and large effect sizes with poor model fit is

ΣΨLBHP and PΨLBHP =

1.15 0.61 0.53 0.54 0.32 0.30 0.37 0.32 0.41 0.42 0.44 0.43 0.45

0.71 1.16 0.57 0.52 0.34 0.34 0.30 0.27 0.37 0.40 0.42 0.39 0.42

0.61 0.66 1.16 0.61 0.29 0.31 0.23 0.28 0.36 0.40 0.44 0.35 0.37

0.62 0.60 0.71 1.16 0.36 0.26 0.30 0.39 0.43 0.45 0.48 0.41 0.44

0.41 0.44 0.37 0.46 1.40 0.66 0.65 0.59 0.42 0.53 0.55 0.43 0.47

0.38 0.43 0.40 0.33 0.93 1.40 0.61 0.64 0.41 0.45 0.47 0.43 0.46

0.47 0.37 0.29 0.38 0.91 0.86 1.39 0.66 0.46 0.45 0.43 0.41 0.42

0.40 0.34 0.36 0.50 0.82 0.90 0.92 1.39 0.46 0.50 0.50 0.45 0.54

0.61 0.56 0.55 0.66 0.70 0.69 0.76 0.76 1.98 0.73 0.76 0.78 0.73

0.63 0.60 0.60 0.69 0.89 0.76 0.75 0.83 1.45 2.00 0.75 0.73 0.77

0.67 0.64 0.67 0.72 0.91 0.79 0.71 0.83 1.50 1.49 1.98 0.73 0.72

0.65 0.60 0.53 0.63 0.73 0.73 0.69 0.74 1.55 1.46 1.46 2.00 0.76

0.68 0.64 0.56 0.66 0.78 0.76 0.70 0.90 1.45 1.53 1.44 1.52 1.99
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The population covariance and correlation matrix associated with small

unique variances and large effect sizes with good model fit is

ΣΨHBHG and PΨHBHG =

0.75 0.87 0.86 0.86 0.45 0.45 0.46 0.46 0.57 0.57 0.57 0.57 0.57

0.66 0.76 0.86 0.86 0.45 0.45 0.45 0.45 0.56 0.57 0.57 0.57 0.56

0.65 0.65 0.76 0.86 0.45 0.46 0.45 0.46 0.57 0.58 0.58 0.57 0.57

0.65 0.65 0.65 0.76 0.46 0.46 0.46 0.48 0.58 0.59 0.59 0.58 0.58

0.39 0.39 0.39 0.40 1.00 0.90 0.90 0.89 0.61 0.62 0.62 0.61 0.61

0.39 0.39 0.40 0.40 0.90 1.00 0.89 0.89 0.61 0.62 0.61 0.61 0.61

0.39 0.39 0.39 0.40 0.89 0.89 0.99 0.89 0.61 0.61 0.61 0.61 0.60

0.39 0.39 0.40 0.41 0.88 0.89 0.88 0.99 0.61 0.62 0.62 0.61 0.62

0.62 0.62 0.62 0.63 0.76 0.76 0.76 0.77 1.58 0.93 0.93 0.94 0.93

0.63 0.63 0.64 0.65 0.78 0.78 0.77 0.78 1.48 1.60 0.93 0.93 0.94

0.62 0.62 0.63 0.64 0.78 0.77 0.76 0.78 1.47 1.48 1.58 0.93 0.93

0.62 0.62 0.63 0.64 0.77 0.77 0.77 0.77 1.49 1.49 1.48 1.60 0.94

0.62 0.62 0.62 0.63 0.76 0.77 0.76 0.78 1.48 1.49 1.48 1.50 1.59
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Finally, the population covariance and correlation matrix associated with

small unique variances and large effect sizes with poor model fit is

ΣΨHBHP and PΨHBHP =

0.75 0.89 0.85 0.86 0.42 0.43 0.45 0.46 0.55 0.57 0.57 0.56 0.55

0.67 0.76 0.86 0.85 0.43 0.44 0.43 0.44 0.54 0.57 0.57 0.55 0.54

0.64 0.65 0.76 0.87 0.45 0.47 0.45 0.48 0.57 0.59 0.60 0.56 0.56

0.65 0.64 0.66 0.76 0.48 0.46 0.48 0.52 0.60 0.62 0.62 0.59 0.58

0.37 0.38 0.39 0.42 1.00 0.90 0.90 0.88 0.59 0.64 0.63 0.60 0.59

0.37 0.38 0.41 0.40 0.90 1.00 0.88 0.89 0.60 0.62 0.62 0.60 0.59

0.39 0.37 0.39 0.41 0.89 0.88 0.99 0.90 0.61 0.62 0.61 0.60 0.59

0.39 0.38 0.42 0.45 0.88 0.89 0.89 0.99 0.62 0.65 0.64 0.62 0.63

0.60 0.60 0.62 0.65 0.74 0.75 0.76 0.78 1.58 0.93 0.94 0.94 0.93

0.63 0.63 0.65 0.68 0.80 0.78 0.78 0.81 1.47 1.60 0.93 0.93 0.94

0.62 0.62 0.65 0.67 0.79 0.78 0.76 0.80 1.48 1.48 1.58 0.93 0.93

0.61 0.61 0.62 0.65 0.75 0.76 0.75 0.78 1.50 1.48 1.48 1.60 0.94

0.60 0.60 0.61 0.64 0.75 0.75 0.74 0.79 1.48 1.50 1.47 1.50 1.59



105



REFERENCES

Agresti, A. (2002). Categorical data analysis (2nd. ed.). Hoboken, NJ: John Wiley &
Sons.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle. In B. N. Petrov & F. Csaki (Eds.), Proceedings of the second interna-
tional symposium on information theory, (pp. 267-281). Budapest: Akadamiai
Kiado.

Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wi-
ley & Sons.

Brent, R. (1973) Algorithms for minimization without derivatives. Englewood Cliffs,
NJ: Prentice-Hall.

Browne, M. W. (1984) Asymptotically distribution-free methods for the analysis of
covariance structures. British Journal of Mathematical and Statistical Psychology,
37, 62-83.

Browne, M. W. & Arminger, G. (1995). Specification and estimation of mean- and
covariance-structure models. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.),
Handbook of statistical modeling for the social and behavioral sciences (pp. 311-
359). New York: Plenum Press.

Browne, M. W. & Cudeck, R. (1993). Alternative ways of assessing model fit. In K.
A. Bollen & S. Long (Eds.), Testing structural equation models (pp. 131-161).
Newbury Park, CA: Sage.

Browne, M. W., MacCallum, R. C. & Kim, C. T. (2002). When fit indices and residu-
als are incompatible. Psychological Methods, 7, 403-421.

Chen, F., Curran, P. J., Bollen, K. A., Kirby, J. & Paxton, P. (2008). An empirical
evaluation of the use of fixed cutoff points in RMSEA test statistic in structural
equation models. Sociological Methods and Research, 36, 462-494.

Cook, R. D. (1986). Assessment of local influence (with discussion). Journal of the
Royal Statistical Society, Series B, 48, 133-169.

Cudeck, R. & Browne, M. W. (1992). Constructing a covariance matrix that yields
a specified minimizer and a specified minimum discrepancy function value. Psy-
chometrika, 57, 357-369.

Dana, J. & Dawes, R. M. (2004). The superiority of simple alternatives to regression
for social science predictions. Journal of Educational and Behavioral Statistics,
29, 319-331.

106



duToit, S. H. C. & Cudeck, R. (2009). Estimation of the nonlinear random coefficient
model when some random effects are separable. Psychometrika, 74, 65-82.

Green, B. F. (1977). Parameter sensitivity in multivariate methods. Multivariate Be-
havioral Research, 12, 263-287.

Koopman, R. F. (1988). On the sensitivity of a composite to its weights. Psychome-
trika, 53, 547-552.

MacCallum, R. C, Browne, M. W., & Lee, T. (2009). Fungible parameter estimates
in structural equation modeling. Paper presented at the Annual Meeting of the
Psychometric Society. Salishan Resort, Oregon.

Meeker, W. Q. & Escobar, L. A. (1995). Teaching about approximate confidence re-
gions based on Maximum Likelihood Estimation. American Statistician, 49, 48-
53.

Neale, M. C., & Miller, M. B. (1997). The use of likelihood-based confidence intervals
in genetic models. Behavior Genetics, 27, 113-120.

Pawitan, Y. (2001). In all likelihood: Statistical modelling and inference using likeli-
hood. New York: Oxford University Press.

R Development Core Team (2010). R: A language and environment for statistical
computing [Computer software manual]. Vienna, Austria: R Foundation for Sta-
tistical Computing.

Rozeboom, W. W. (1979). Sensitivity of a linear composite of predictor items to dif-
ferential item weighting. Psychometrika, 44, 289-296.

Schmitt, M. T., Branscombe, N. R., Kobrynowicz, D., & Owen, S. (2002). Perceiving
discrimination against one’s gender group has different implications for well-being
in women and men. Personality and Social Psychology Bulletin, 28, 197-210.

Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6,
461-464.

Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of com-
mon factors. Paper presented at the Annual Meeting of the Psychometric Soci-
ety. Iowa City.

Stryhn, H. & Christensen, J. (2003). Confidence intervals by the profile likelihood
method, with applications in veterinary epidemiology. Paper presented at the
Proceedings of the 10th International Symposia on Veterinary Epidemiology and
Economics. Vina del Mar, Chile.

Tucker, L. R., Koopman, R. F. & Linn, R. L. (1969). Evaluation of factor analytic
research procedures by means of simulated correlation matrices. Psychometrika,
34, 421-459.

107



Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood
factor analysis. Psychometrika, 38, 1-10.

Venzon, D. J., & Moolgavkar, S. H. (1988). A method for computing profile-likelihood-
based confidence intervals. Journal of the Royal Statistical Society, Series C, 37,
87-94.

Wainer, H. (1976). Estimating coefficients in linear models: It don’t make no never-
mind. Psychological Bulletin, 83, 213-217.

Wainer, H. (1978). On the sensitivity of regression and regressors. Psychological Bul-
letin, 85, 267-273.

Waller, N. G. (2008). Fungible weights in multiple regression. Psychometrika, 73, 691-
703.

Waller, N. G., & Jones, J. A. (2009). Locating the extrema of fungible regression
weights. Psychometrika, 74, 589-602.

108


