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ABSTRACT 

XUEYI WANG: Exploring RNA and Protein 3D Structures by Geometric Algorithms  
(Under the direction of Jack Snoeyink) 

Many problems in RNA and protein structures are related with their specific 

geometric properties. Geometric algorithms can be used to explore the possible solutions of 

these problems. This dissertation investigates the geometric properties of RNA and protein 

structures and explores three different ways that geometric algorithms can help to the study 

of the structures. 

Determine accurate structures. Accurate details in RNA structures are important 

for understanding RNA function, but the backbone conformation is difficult to determine and 

most existing RNA structures show serious steric clashes (≥ 0.4 Å overlap). I developed a 

program called RNABC (RNA Backbone Correction) that searches for alternative clash-free 

conformations with acceptable geometry. It rebuilds a suite (unit from sugar to sugar) by 

anchoring phosphorus and base positions, which are clearest in crystallographic electron 

density, and reconstructing other atoms using forward kinematics and conjugate gradient 

methods. Two tests show that RNABC improves backbone conformations for most problem 

suites in S-motifs and for many of the worst problem suites identified by members of the 

Richardson lab. 

Display structure commonalities. Structure alignment commonly uses root mean 

squared distance (RMSD) to measure the structural similarity. I first extend RMSD to 
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weighted RMSD (wRMSD) for multiple structures and show that using wRMSD with 

multiplicative weights implies the average is a consensus structure. Although I show that 

finding the optimal translations and rotations for minimizing wRMSD cannot be decoupled 

for multiple structures, I develop a near-linear iterative algorithm to converge to a local 

minimum of wRMSD. Finally I propose a heuristic algorithm to iteratively reassign weights 

to reduce the effect of outliers and find well-aligned positions that determine structurally 

conserved regions. 

Distinguish local structural features. Identifying common motifs (fragments of 

structures common to a group of molecules) is one way to further our understanding of the 

structure and function of molecules. I apply a graph database mining technique to identify 

RNA tertiary motifs. I abstract RNA molecules as labeled graphs, use a frequent subgraph 

mining algorithm to derive tertiary motifs, and present an iterative structure alignment 

algorithm to classify tertiary motifs and generate consensus motifs. Tests on ribosomal and 

transfer RNA families show that this method can identify most known RNA tertiary motifs in 

these families and suggest candidates for novel tertiary motifs. 
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CHAPTER 1 

INTRODUCTION 

Computational geometry studies the design and analysis of algorithms for problems that 

are best stated in geometric form. The applications of geometric algorithms include computer 

graphics, computer-aided design and manufacturing, robotics, geographic information 

systems (GIS), and computational biology. The challenges for designing a geometric 

algorithm include how to represent a problem in terms of geometry, how to correctly obtain 

related geometric properties from the problem, and how to effectively build an algorithm to 

solve the problem by exploring its geometric properties. 

This dissertation focuses on using geometric algorithms to solve problems in RNA and 

protein structures. I present three works that abstract geometric properties of RNA and 

protein structures at different scales. In the following subsections, I first introduce the RNA 

and protein molecules and then discuss applications of geometric algorithms in RNA and 

protein structures. 

1.1 RNA and Protein Molecules 

RNA and protein molecules are essential for life. Protein carries out many crucial 

biological functions in organisms [Voet01]. Protein catalyzes most metabolic reactions in 

organisms [Johnson74, Voet01], forms scaffolds to bring other proteins together or maintain 
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cell shape [Faux96, Shih06], stores and transports ions and other molecules [Weber01, 

Long05], decodes and transmits genetic information [Latchman97, Dame05], and plays other 

important roles such as cell signaling [Lin04, Mohamed05], immune responses [Roux99, 

Diaz02], cell adhesion [White97, Wilson01], and the cell cycle [Nigg95, Bates98]. 

RNA also plays many important roles in organisms, with new ones being discovered 

constantly [Soukup04, Nielson05, Salehi-Ashtiani06]. RNA stores and transmits genetic 

information [Crick70, Sussman76, Lolle05], provides and regulates molecular-binding 

interactions [Huang03, Lukavsky03, Mattick01], maintains chromosome length [Chen04], 

controls metabolic processes [Winkler02, Serganov06], and catalyzes chemical reactions 

[Nissen00, Lilley05, Klein06]. RNA plays a central role in all aspects of gene expression and 

its control [Claverie05], such as performing and regulating RNA interference [Tomari05], 

co-suppression and silencing [Mattick01], and especially splicing and alternative splicing of 

exons [Nilsen94, Murray99, Stahley05]. 

1.2 Geometric Algorithms for RNA and Protein Structures 

The function of RNA and protein molecules is often closely related to the geometric 

arrangement of atoms. Understanding the details of the 3D structures of RNA and protein 

molecules is often a key to understanding their function. For example, the structures in figure 

1 show clearly which atoms are interacting –– information that is not available from the 

protein and RNA sequences. In figure 1.1a, NAD+ molecule (in place of alcohol molecule) 

binds to alcohol dehydrogenase, where a zinc atom and amino acids Cys-46, Ser-48, His-51, 

His-67, Cys-174, Ile-269, Val-292, Ala-317, and Phe-319 are involved to construct the active 

site [Hammes-Schiffer06], and in figure 1.1b, trypsin binds to its inhibitor to prevent trypsin 
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function (e.g. minimize the root mean squared distances for all atom pairs). Generally, 

establishing the correspondence is harder than optimizing the alignment. Most alignment 

methods regard each structure as a rigid body and allow only rotation and translation of the 

structure. Structure alignment methods have two categories: pairwise structure alignment 

aligns two structures and existing programs include DALI [Holm96] and MAMMOTH 

[Ortiz02]; multiple structure alignment aligns more than two structures and existing 

programs include MULTAL [Taylor94], CE [Guda01] and MUSTA [Leibowitz01]. 

Structure prediction is one of the most important problems in bioinformatics and is of 

great importance in medicine and biotechnology, e.g. drug design and novel enzyme design. 

The goal is to predict 3D structure of an RNA or protein molecule from its sequence. 

Structure prediction searches the space of possible structures and identifies the most probable 

structure by minimizing an energy function. The predicted structure is subject to many 

geometric constraints, such as preserving the covalent bonds between atoms, limiting the 

lengths of the covalent bond and the angles of contiguous bonds in small ranges to canonical 

values, and preventing remote atoms from getting too close. 

Structure prediction methods have three categories: homology modeling, threading, and 

ab initio modeling. Homology modeling builds a structure from known structures having 

similar sequences (e.g. > 30% sequence identity for proteins), based on the assumption that 

similar sequences deliver similar structures. Examples of programs include SWISS-MODEL 

[Schwede03] and MODELLER [Fiser03]. Threading is based on the observation that there 

are only a limited number of distinct folds and an unknown protein structure is very likely 

similar to a known protein structure, although their sequence similarities are low (e.g. < 30% 

sequence identity for protein). It searches a database of known structures to find a structure 
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whose sequence may be compatible to the sequence of an unknown structure and optimizes 

the structure. Examples of threading programs include 3D-PSSM [Kelley00] and 3D-Jury 

[Ginalski03]. Ab initio modeling builds 3D molecular structure without reference to existing 

structures. It is considered the hardest method and the examples of programs include 

ROSETTA [Bonneau01] and TOUCHSTONE [Zhang03]. 

In this dissertation, I present three works that apply geometric algorithms in RNA and 

protein structures. These three works abstract the geometric properties of RNA and protein 

structures at different scales: 1) finding alternative clash-free conformations with acceptable 

geometry for RNA crystal structures, which focuses on the atomic details of RNA structures, 

2) optimizing multiple structure alignment, which focuses on both local and global rigid 

geometry of RNA and protein structures, and 3) mining RNA tertiary motifs, which focuses 

on the topological geometry of RNA structures. 

In Chapter 2, I review the biochemical properties of macromolecules, especially the RNA 

molecules, and underline the geometric properties of macromolecules that are related to my 

works. In Chapter 3, I present a program called RNABC to find alternative clash-free 

conformations with acceptable geometry for RNA crystal structures [Wang08a]. In Chapter 4, 

I extend (RMSD) to weighted RMSD for multiple structure alignment and present two 

algorithms to optimize gapped multiple structure alignment and find structurally conserved 

regions [Wang06, Wang07b, Wang08b]. In Chapter 5, I propose a novel application of graph 

database mining to identify RNA tertiary motifs [Wang07a]. In Chapter 6, I summarize the 

results and discuss future research. 



CHAPTER 2 

RNA AND PROTEIN STRUCTURES 

In this chapter, I discuss the basic biochemical properties of the RNA and protein 

structures and the methods to obtain and evaluate their structures. 

2.1 Biochemical Properties 

2.1.1 Atoms and Chemical Bonds 

Hydrogen (H), carbon (C), nitrogen (N), oxygen (O), sulfur (S) and phosphorus (P) are 

the six most abundant atoms in RNA and protein molecules (sulfur occurs mostly in protein 

and phosphorus occurs mostly in RNA). RNA and protein molecules can also bond with 

some metal ions such as magnesium (Mg), zinc (Zn), and iron (Fe). All atoms other than 

hydrogen may be called heavy atoms. 

Various chemical bonds hold RNA and protein structures together. The common 

chemical bonds in RNA and protein structures include covalent bonds, ionic bonds, and 

hydrogen bonds. A covalent bond binds atoms together through the sharing of electron pairs 

between atoms. Most covalent bonds in RNA and protein structures are single and double 

bonds, where atoms share one and two pairs of electron. When one atom in a covalent bond 

has a greater affinity for the electrons, then this atom is called electronegative and the bond is 

called a polar covalent bond; examples include O-H, N-H, and S-H. Otherwise, the bond is 
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called a non-polar covalent bond; examples include C-C, O-O and H-H. The typical bond 

length for a covalent bond with heavy atoms is 1.5Å and for a covalent bond with hydrogen 

atom is 1.1Å. The typical bond angle formed by two contiguous covalent bonds is 109°. An 

ionic bond often forms between metal and non-metal ions. Metal ions in RNA and protein 

structures form ion bonds with several types of non-metal atoms, such as nitrogen, oxygen, 

sulfur and phosphorus. The length and angle of ionic bonds vary. A hydrogen bond is a 

special type of bond formed between an electronegative atom (e.g. nitrogen, oxygen, sulfur 

or phosphorus) and a hydrogen atom bonded with another electronegative atom. A hydrogen 

atom bound to a carbon atom (i.e. C-H bond) normally cannot form a hydrogen bond with 

other atoms because the difference of electron affinity for carbon and hydrogen atoms is 

small and C-H bond is normally considered non-polar. The normal length of a hydrogen 

bond is 1.97Å. 

2.1.2 Protein 

A protein molecule is a linear polymer of 20 different amino acids. Protein has four levels 

of structural organization: Primary structure is the linear sequence of amino acids, secondary 

structure is the common recurring patterns of inter-residue interactions, including α-helix 

and β-sheet, tertiary structure is the overall shape of a protein molecule, and quaternary 

structure is the organization of two or more protein molecules. The primary structure is 

formed by the covalent bonds, whereas the secondary, tertiary and quaternary structures are 

formed mainly by hydrogen bonds and ionic bonds. 

Each amino acid contains three components: amino group, carboxyl acid group and R 

group (sidechain) attaching to the Cα atom, as shown in Figure 2.1. For the 20 amino acids, 
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the amino and carboxyl groups are the same (except for Proline) and the R groups differ. The 

amino groups and carboxyl groups from contiguous amino acids are joined by peptide bonds 

(with the removal of water molecules) and form the protein backbone. 

 
Figure 2.1 A sequence of three amino acids joined by peptide bonds, showing amino, 

carboxyl and R groups attaching to the α-carbons 

 

Figure 2.2 Bond lengths, angles and dihedral angles in the amino acids. Black colored atoms 
are carbon, red is oxygen, blue is nitrogen, and gray is hydrogen (not all hydrogens are 
shown). For heavy atoms (i.e. non-hydrogen atoms), thick solid lines are bond lengths, 

curves are angles and arrow curves are dihedral angles 

In a protein structure, bond lengths (for covalent bonds) and bond angles (by two 

contiguous covalent bonds) are relatively rigid –– only limited flexibility is allowed, but 

dihedral angles (formed by three contiguous covalent bonds) are flexible. Figure 2.2 shows 

the bond lengths, angles and dihedral angles in protein backbone. Each amino acid backbone 

has three dihedral angles ϕ (C–N–Cα–C), ψ (N–Cα–C–N) and ω (Cα–C–N–Cα). The ϕ and 

ψ  angles are relatively free to rotate; the 2D Ramachandran plot shows the allowable ranges 
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of both angles [Morris92, Lovell03]. The ω angle around the peptide bond is relatively rigid 

because the peptide bond is a partial double bond but not a single bond. The ω angle can be 

either close to 0° in cis form (both Cα atoms are at the same side of C-N bond) or close to 

180° in the more common trans form (Cα atoms are at the different side of C-N bond). 

2.1.3 RNA 

An RNA molecule is a linear polymer of 4 different nucleotides. Like protein, RNA also 

has four levels of structural organization: primary structure is the linear sequence of 

nucleotides, secondary structure is the collection of pairs of bases in 3D structure, tertiary 

structure is the overall shape of an RNA molecule, and quaternary structure is the 

organization of two or more RNA molecules. 

Each nucleotide has three components: phosphate, ribose, and base, as shown in Figure 

2.3. The RNA backbone is comprised of alternating phosphate and ribose groups. The ribose 

is a five carbon sugar that connects the phosphate and the base. Each nucleotide has one of 

the four bases (A, C, G, and U) and the base extends out of the backbone as a sidechain. 

There are two alternative ways of defining a nucleotide: an RNA residue (the traditional way) 

goes from phosphate to phosphate, whereas an RNA suite goes from sugar to sugar 

[Murray03]. 
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Figure 2.3 A fragment of RNA structure with four nucleotides: A, C, G and U. Each 
nucleotide has three components: phosphate, sugar and base 

 

Figure 2.4 Bond lengths, angles and dihedral angles in a nucleotide. Black colored is carbon, 
red is oxygen, blue is nitrogen, and yellow is phosphorus. Thick solid lines are bond lengths, 

curves are angles and arrow curves are dihedral angles 
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In RNA structure, as in protein, bond lengths and angles are relatively rigid but dihedral 

angles are flexible. Figure 2.4 shows bond lengths, angles and dihedral angles in RNA 

backbone. Each nucleotide backbone has six dihedral angles, α, β, γ, δ, ε, and ζ, whose 

atoms and typical ranges are shown in Table 2.1. The δ angle is constrained by the ribose 

ring structure, but the other dihedral angles are more flexible and most of them show several 

peaks of allowable ranges [Murray03]. The ribose ring has a C2’-endo or C3’-endo pucker 

modes, in which either the C2’ or C3’ atom is extended out of the sugar plane and lies at the 

same side of C5’, as shown in Figure 2.5. 

Table 2.1 Typical ranges of 6 nucleotide backbone dihedral angles [Murray03] 

Dihedral Typical ranges 

α (O3’-P-O5’-C5’) Peaks at 60°, –60° and 180°. Extra peak at –110° for C3’-endo 

β (P-O5’-C5’-C4’) Peaks at 110°, –135° and 180°. Extra peaks at 80° and 135° for 
C3’-endo 

γ (O5’-C5’-C4’-C3’) Peaks at 60° and 180°. Extra peak at –60° for C2’-endo 

δ (C5’-C4’-C3’-O3’) Near 84° for C3’-endo and near 147° for C2’-endo 

ε (C4’-C3’-O3’-P) Peak at –150° for C3’-endo and peak at –100° for C2’-endo 

ζ (C3’-O3’-P-O5’) Peaks at 60°, –60° and 180°. Extra peak at –140° for C3’-endo 

 

a. C2’-endo                                                        b. C3’-endo 

Figure 2.5 C2’-endo and C3’-endo conformations 
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2.2 Structure Determination 

X-ray crystallography is the most common method to obtain data on RNA/protein 

structures. X-ray crystallography can be described as a 4-step process [Rhodes06]: in step 1, 

a pure sample of the desired protein/RNA is coerced to form a crystal by biochemistry 

methods in the laboratory (Figure 2.6a), in step 2, X-ray beams are scattered by atomic 

electrons in the crystal to form a series of 2D diffraction patterns (each with a distinct 

orientation of the crystal), which records the reflections of atoms (Figure 2.6b), in step 3, 3D 

electron density map is calculated from the diffraction patterns through Fourier transform 

(FT) (Figure 2.6c), and in step 4, a structure model is fit to the electron density (Figure 2.6d). 

X-ray crystallography suffers a phase problem: performing Fourier transform needs to know 

the intensities and phases for all atoms besides the X-ray wavelength, but the diffraction 

patterns capture only the intensities and not the phases. To solve this problem, at first 

scientists use various methods to guess initial phases for the atoms and build initial electron 

density map in step 3, then fit an initial structure model to the electron density in step 4, and 

repeat steps 3 and 4 for multiple times (called structure refinement) to find a good structure 

model that fits the electron density map well. 

 

Figure 2.6 The procedures of X-ray crystallography to determine RNA/protein structure 

a. Protein/RNA crystal b. Diffraction pattern c. Electron density map d. Atomic model 
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Progress in protein crystal structure determination has lead to decision algorithms that 

can largely replace manual rebuilding in an automated refinement pipeline [Adams02]. 

Although RNA crystallography has also seen revolutionary progress [Ban00, Schluenzen00, 

Wimberly00, Batey04, Torres-Larios05, Martick06], determining RNA backbone remains a 

difficult task –– RNA backbone has 6 dihedral angles per nucleotide and presents high 

degrees of freedom, while protein backbone has only 2 dihedral angles per amino acid. 

Nuclear magnetic resonance spectroscopy (NMR) explores the quantum mechanical 

magnetic properties of atoms’ nuclei to obtain the structure of a molecule [Keeler05]. When 

placed in the magnetic field, an atom’s nucleus (e.g. 1H, 13C and 15N) resonates at a certain 

frequency (e.g. proton resonates at 900 MHz). But when the atom is in a molecule, the 

resonant frequency of the atom’s nucleus may change depending on the presence of nearby 

atoms. NMR spectroscopy performs a sequence of changes of directions and intensities of the 

magnetic fields (e.g. Nuclear Overhauser Effect Spectroscopy) to detect the resonant 

frequencies of atoms and then derive the atoms positions. In NMR spectroscopy, usually the 

molecules are placed in solution and both the 3D structures and the molecular dynamics can 

be obtained from the experiments. Currently NMR spectroscopy works well on large protein 

molecules up to 100 kDa (more than 800 amino acids in total) and RNA molecules up to 100 

nucleotides and progress continues to be made to resolve the structures of larger molecules 

[Kolk98, Oberstrass06].  

Electron microscopy uses electrons to obtain the images of objects [Frank06]. Like light 

microscopy, electron microscopy is limited by its wavelength, although it can magnify the 

image much larger than light microscopy. Electron microscopy obtains the 3D shape (i.e. the 

surface) of a molecular structure rather than the atomic details. When performing electron 
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microscopy, the specimens (molecules) are cooled to very low temperature (e.g. liquid 

nitrogen temperature) and are placed in high vacuum to remove the noises (i.e. radiations). 

Combining with molecular reconstruction methods, electron microscopy works well on 

studying the structures, dynamics and interactions of protein and RNA molecules [Frank03]. 

2.3 All-Atom Contact Analysis for Structure Validation 

Various errors may occur when obtaining structures in X-ray crystallography and NMR 

methods, so structure validation methods are important to verify and correct the obtained 

structures. For both RNA and protein structures, common structure validation methods 

include the crystallographic residuals R and Rfree [Brunger92], difference density (Fobs–Fcalc), 

and all-atom contact analysis [Word99a, Davis04, Davis07]. The first method focuses on the 

validation of overall structures, while the last two methods focus on the validation of local 

structure details. Protein structures have 2D Ramachandran plots [Morris92, Lovell03] and 

rotamer libraries [Dunbrack97, Lovell00] for verifying local details, but no equivalent tools 

are available for RNA structures, although significant progress has been made recently 

[Murray03, Schneider04, Richardson08]. 

 

Figure 2.7 A diagram of the small-probe contact dot algorithm. Image courtesy of the 
Richardson Lab [Word99a] 
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Here I discuss the all-atom contact analysis method in details, because it is used to 

validate the RNA structures in Chapter 3. All-atom contact analysis measures and visualizes 

the goodness-of-fit of interactions of all atoms, especially the hydrogen atoms (for X-ray 

crystal structures, hydrogen atoms can be added by the program Reduce [Word99b]). It uses 

a 0.25Å probe sphere to roll over the van der Waals surface of each atom, leaving a contact 

dot only when the probe touches another not-covalently-bonded atom. The dots are colored 

by the local gap width between the two atoms: blue when near maximum 0.5Å separation, 

shading to bright green near perfect van der Waals contact (0Å gap). When suitable H-bond 

donor and acceptor atoms overlap, the dots are shown in pale green, forming lens or pillow 

shapes. When incompatible atoms interpenetrate, their overlap is emphasized with spikes 

instead of dots, and with colors ranging from yellow for negligible overlaps to hot pink for 

serious clash overlaps >0.4Å. All-atom contact analysis method has been proven to work 

well on both RNA and protein structures [Word99a, Davis04, Davis07], because it is easy to 

identify problematic regions. Figures 3.1, 3.8 and 3.9 show examples of all-atom contact 

analysis on the RNA structure, calculated by Probe on the MolProbity web service [Davis04, 

Davis07]. 



CHAPTER 3 

REDUCING STERIC CLASHES IN RNA BACKBONE 

3.1 Introduction 

Large RNA or RNP (ribonucleoprotein) structures are typically determined at resolutions 

of 2.5Å or worse by X-ray crystallography; at that level of detail the phosphates and bases 

can be seen clearly and accurately positioned (see Figure 3.1a), but the remaining backbone 

atoms and the sugar puckers are underdetermined. All-atom-contact analysis [Word99a, 

Davis04, Davis07] of deposited RNA structures commonly shows steric clashes between 

backbone and base atoms or among backbone atoms, as illustrated in Figure 3.1b. Thus, there 

is a need for new methodology for backbone fitting. 

The reason determining RNA backbone conformation is problematic can be appreciated 

by comparing the full atomic detail seen in an electron density map at 1.04Å resolution 

(Figure 3.2a) with the same piece of structure in a map at 2.4Å resolution (Figure 3.2b). In 

the latter, the P (phosphorus) atom of the PO4 (phosphate) group is still well located by a 

strong peak (in purple) but the surrounding O atoms cannot be seen individually; the base 

planes are still clear but sugar pucker cannot be observed directly; and between sugar and 

phosphate the density necks down evenly with no indication of the zigzag that determines the 

backbone dihedral angles. 
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a. all-atom-contact dots within bases. b. all-atom-contact dots within backbone 
and between backbone and bases. 

Figure 3.1 Selected all-atom-contacts in tr0002/1EVV (yeast phenylalanine tRNA 
[Jovine00]) at 2.0Å resolution (residues 28-32 and 40-44). The green and blue all-atom-
contact dots in 3.1a show almost perfect van der Waals and H-bond contacts between the 

stacked and paired bases, while the red spikes in 3.1b show large steric clashes that indicate a 
locally misfit backbone 

 

a. ur0035/1Q9A at 1.04Å resolution [Correll03] b. rr0033/1JJ2 at 2.4Å resolution [Klein01] 

Figure 3.2 Contoured electron density maps and atomic models for the same piece of 
ribosomal RNA structure (part of the “sarcin loop”) solved at quite different resolutions 

Base pairing and stacking are the dominant features determining RNA structure and 
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energetics. However, the 3D structure of the RNA backbone is at least equally important in 

functional interactions such as drug binding [Hansen03], protein/RNA interactions [Klein04], 

aptamer binding [Huang03], and ribozyme catalysis [Doudna02], which often occurs at sites 

with unusual backbone conformations [Ferre-D'Amare98, Adams04, Golden05] that require 

careful and accurate analysis. The partner molecules in all these systems interact with the full 

all-angle, all-atom detail of the RNA, and the structural biology should aim to accurately 

determine that same level of detail. 

The currently-available tools for fitting, refining, rebuilding, and validating crystal 

structures for proteins are significantly richer and more mature than those for RNA. For 

proteins, initial model building (“chain tracing”) can be done automatically by ARP/wARP 

[Perrakis99] or Resolve [Terwilliger02], but for RNA, such tools do not yet exist. Almost all 

large RNA and RNP structures are refined in CNS [Brunger98], which has provided 

parameter sets and other support for nucleic acids. CNS optimizes agreement of model to 

data by minimization or simulated annealing protocols, using a simple atomic force field 

weighted relative to an experimental data term. Energy parameters, weightings, and 

procedural strategies are not yet fully optimized for RNA: for example, sugar puckers are 

restrained to the default C3'-endo configuration unless explicitly set by the user, and there are 

not yet good diagnostics to help make that decision. Model rebuilding between rounds of 

refinement is traditionally performed by visually comparing the model to the electron density 

map and manually adjusting it, in software such as O [Jones91], XFit [McRee99], or Coot 

[Emsley04]. This process is especially time-consuming and error-prone for RNA. 

Some model evaluation measures work equally as well for nucleic acids as for proteins, 

including the crystallographic residuals R and Rfree [Brunger92], difference density (Fobs–
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Fcalc), and all-atom steric clashes [Word99a, Davis04, Davis07]. Other tools that are effective 

on protein do not yet have equivalently versions for RNA rebuilding, including 2-D 

Ramachandran plots that compactly assess all available protein backbone dihedral angles 

[Morris92, Lovell03]. Protein backbones have the advantage of only 2 major degrees of 

freedom per residue (φ and ψ), while RNA backbones have at least 6 degrees of freedom per 

nucleotide (depending on how sugar pucker is represented), meaning that the equivalent plot 

for RNA would be 6-D or 7-D. Simplifications using 2-D projections of pairs of adjacent 

dihedral angle values [Sasisekharan69; Murthy99] have not led to practical tools. 

Simplification by defining virtual dihedral angles at 2 atoms per residue [Duarte03] is very 

valuable for locating structural motifs, largely because it is designed to be insensitive to 

errors. For that same reason, however, it is not useful for building or correcting the all-atom 

models needed for refining crystallographic or NMR experimental structures. Recent work 

has identified clusters of preferred RNA backbone conformations [Murray03, Schneider04, 

Richardson08], but these cannot be represented as a simple 2-D plot and have not yet been 

incorporated into rebuilding tools. Most steric clashes in refined protein structures are caused 

by incorrect positions of sidechain atoms, while most steric clashes in refined RNA structures 

are caused by incorrect positions of backbone atoms. Amino acid sidechains, which have one 

end fixed in both position and orientation, are easier to adjust than nucleic acid backbone 

fragments, which have both ends fixed in position, but not orientation. 

As progress has been made for proteins that can largely replace manual rebuilding in an 

automated refinement pipeline [Adams02], I present a program called RNABC (RNA 

Backbone Correction) to respond the challenge of developing such an automated rebuilding 

functionality for RNA backbone structures, where the multi-dimensional fitting problem 
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makes it especially needed. RNABC produces new alternative conformations with equal or 

better geometry and fewer steric clashes. It first applies the robotics technique of forward 

kinematics [McCarthy90] (a technique determines the conformation of a robot or molecule 

given its parameters, which is considerably easier than the inverse kinematics problem of 

determining the parameters given the conformation.) to recalculate rough backbone 

conformation across a dinucleotide, subject to anchored positions of the best-known features: 

phosphates and base planes, and then applies conjugate gradient method [Shewchuk94] (a 

method finds local minimum nearest to the initial values of a function with n variables, in 

which the gradient of the function is computable) to build the dinucleotide for each of 

allowable rough backbone conformation. The user can specify most parameters and 

procedures, or use default values. RNABC finds and clusters all possible conformations 

within the specified constraints and outputs those with the best geometry and clash scores. 

The output conformations are scored and sorted based on their fitness to the electron density 

map. Multi-platform executables and source code of RNABC are available at 

http://kinemage.biochem.duke.edu/. 

In Section 3.2, I describe the details of the RNABC program. In Section 3.3, I show the 

performance of RNABC program and the results from two extensive tests on sets of existing 

RNA structures at widely varying resolutions. One tests typical performance, reproducibility, 

and success at removing clashes in a set of locally similar S-motif structures. The second 

tests ability to improve the worst local conformations in a set of completely unrelated RNA 

structures. 
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3.2 Method 

The goal of RNABC program is to remove steric clashes within an individual suite by 

considering the possible configurations of the dinucleotide that contains the suite, as shown 

in Figure 3.3. 

Figure 3.3 Atom labeling and nomenclature for reconstructing a suite within a dinucleotide 
span. Anchors mark atoms with fixed positions; green arrows mark the conformational 

degrees of freedom that are explored directly: dihedrals α, β, and ζ, PO4 orientation around 
the anchored P, and two of the three bond angles around C2', C3', and C4'. Hydrogens are not 

shown but are used extensively in RNABC 

There are many parameters needed to specify the conformation of a dinucleotide, so I 

begin the description by making clear which are obtained from the input, which are specified 

by the user or from standard values, which are constrained, and which are free to be 

determined by the program. It is important to note that parameters cannot be set arbitrarily 

because of the constraints that sugars are closed loops, that backbone remains connected, and 

that certain atom positions (particularly phosphorus and base planes) are usually defined by 

clear electron density. I conceptually break the bonds of the sugars, so that what remain are 

three backbone segments: main segment inside the suite and two supplementary segments 
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outside. RNABC samples the configurations of these segments and considers how they can 

be joined –– it emphasizes early filtering to reduce the number of tested conformations. 

3.2.1 Description of the Method 

RNABC program reads PDB-format [Berman00] files for the coordinates of the RNA 

structure. The input file is assumed to include hydrogen atoms, which can be added and 

optimized conveniently using Reduce [Word99b] via the structure validation service 

provided by the MolProbity web site [Davis04, Davis07]. MolProbity can also help the user 

decide which backbone suites need attention by flagging serious clashes between atoms 

[Word99a] and suspicious sugar puckers. RNABC holds fixed the positions of the bases 

(defined by the C1’–N1/9 bond) and the phosphorus atoms, since these are the features of 

RNA structure seen most clearly in X-ray crystallography, and reconstruct the positions of all 

other backbone atoms in the dinucleotide. RNABC allows only small standard deviations 

(e.g. 3-4σ) of all the bond lengths and angles to the canonical values used by CNS 

[Parkinson96]. Alternatively, the user can specify the target bond lengths and angles directly 

(e.g., from parameter files of a different refinement program), or from the input values, or 

from the average of the input and canonical values. The user can specify sugar puckers 

explicitly, keep them from the original coordinates, or let the software determine them by 

geometric rules based on the perpendicular distance from 3’ phosphorus to the C1’–N1/9 

vector or to the base plane. The user can even move the position of a phosphorus or base to a 

specified new location (e.g., to a local peak in the density). 

It is common to describe an RNA backbone conformation by the dihedral angles α-ζ 

illustrated in Figure 3.3. Because RNABC decomposes dinucleotide backbone into segments, 

it makes a different choice of dihedral and bond angles which is mathematically equivalent 
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but is easier to filter for disallowed atom positions. RNABC roughly samples dihedral angles 

α, β, and ζ, and phosphate orientations. It then determines one bond length (C4’–C3’) and 

two bond angles (C5’–C4’–C3’, C4’–C3’–O3’) to satisfy geometry and generates the sugar 

puckers by allowable rough backbone atoms and C1’ and N1/9 atoms using conjugate 

gradient method. Note that every atom type (e.g., C4’) and every bond length, angle, and 

dihedral, occurs at least twice within a target dinucleotide. Conditions defined below 

presume that distances or angles are between nearest atoms of the given type (i.e., within a 

residue, or within a segment) and hold for all instances, unless otherwise specified. 

RNABC uses four types of criteria for evaluating the positions of RNA backbone atoms. 

1. NOCLASH: selected atoms should not have steric clashes with the atoms in the suite or 

the atoms out of the dinucleotide. NOCLASH has two categories: 

NOCLASH_M: Atoms O5’, C5’, C4’, C3’, O3’, OP1, OP2, H5’, and H5’’ in the main 

segment should have no steric clashes with the atoms in the suite or out of the dinucleotide. 

NOCLASH_S: Atoms O4’, C2’, O2’, H1’, H2’, HO2’, H3’, and H4’ in the two sugars 

should have no steric clashes with the atoms in the suite or out of the dinucleotide. 

Atoms within the dinucleotide but out of the suite being adjusted are allowed to clash 

because local flexibility is not enough to avoid clashes between these and atoms in the suite; 

clashes related to these atoms may be corrected by running RNABC on adjacent suites. 

2. PUCKERTYPE: The two sugar puckers satisfy designated sugar pucker types. Each 

sextuple {C5’, C4’, C3’, O3’, C1’, N1/9} generates one sugar pucker through conjugate 

gradient method. For C3’-endo sugar pucker, the perpendicular distance from C3’ to plane 

C4’–O4’–C1’ should be longer than the perpendicular distance from C2’ to plane C4’–O4’–

C1’ by a threshold value (default = 0.2Å), and the perpendicular distance from C2’ to plane 



 

 25

C4’–O4’–C1’should be shorter than a threshold value (default = 0.4Å). The δ dihedral is also 

kept within a range compatible with C3’-endo pucker, but quite permissive (51 to 110°). The 

C2’-endo sugar pucker has similar criteria. 

3. INRANGE: distances of atom pairs, angles of certain atom triples and dihedrals of 

certain atom quadruples that are not pre-specified should be in certain ranges. INRANGE has 

two categories: 

INRANGE_BB: Backbone atoms O5’, C5’, C4’, C3’ and O3’ in the main and 

supplementary segments satisfy: the 2-bond to 4-bond distances of O5’–C1’, C4’–C1’, C5’–

C1’, C4’–N1/9, C3’–C1’, O3’–C1’ and C3’–N1/9 and the multi-bond virtual angles of C5’–

C4’–C1’, C4’–C1’–N1/9, O3’–C3’–C1’ and C3’–C1’–N1/9 should be within certain ranges 

(e.g. within 3 or 4 standard deviations (σ) of the range implied by combining specified values 

of the intervening parameters; see section 2.2.3), and multi-bond virtual dihedrals C5’–C4’–

C1’–N1/9 and O3’–C3’–C1’–N1/9 should be within certain ranges (see section 2.2.3). 

INRANGE_ SB: In the sugars on the backbone, bond length C4’–C3’ and bond angles 

C5’–C4’–C3’ and C4’–C3’–O3’ in each nucleotide should be within the specified ranges. 

4. CGRANGE: sum of squared distances (of atom pairs for bond lengths and of certain 

atom triples for bond angles) to designated values should be minimized in conjugate gradient 

method. CGRANGE has five categories: 

CGRANGE_O4C2: The sugar atoms O4’ and C2’ satisfy: bond lengths O4’–C4’, O4’–

C1’, C2’–C3’, C2’–C1’ and bond angles O4’–C4’–C5’, O4’–C4’–C3’, O4’–C1’–N1/9, C2’–

C3’–C4’, C2’–C3’–O3’, C2’–C1’–N1/9, and O4’–C1’–C2’ should be close to the designated 

values. 

CGRANGE_C4C3: The backbone atoms C4’ and C3’ satisfy: bond lengths C4’–C5’, 
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C4’–O4’, C3’–O3’, C3’–C2’, and C4’–C3’ and bond angles C4’–C5’–O5’, C4’–C3’–O3’, 

C4’–C3’–C2’, C4’–O4’–C1’, C3’–C4’–C5’, C3’–O3’–P, C3’–C4’–O4’, and C3’–C2’–C1’ 

should be close to the designated values. 

CGRANGE_O5C5: The backbone atoms O5’ and C5’ satisfy: bond lengths O5’–P, C5’–

C4’, and O5’–C5’ and bond angles O5’–P–O3’, O5’–C5’–C4’, C5’–O5’–P, C5’–C4’–C3’, 

and C5’–C4’–O4’ should be close to the designated values. 

CGRANGE_O3: The backbone atom O3’ satisfies: bond lengths O3’–C3’ and O3’–P and 

bond angles O3’–C3’–C4’, O3’–C3’–C2’, and O3’–P–O5’ should be close to the designated 

values. 

CGRANGE_O3O5: The backbone atoms O3’ and O5’ satisfy: bond lengths O3’–C3’, 

O3’–P, O5’–P, and O5’–C5’ and bond angles O3’–C3’–C4’, O3’–C3’–C2’, O5’–C5’–C4’, 

and O3’–P–O5’ should be close to the designated values. 

RNABC applies these criteria in first three of four steps: building backbone segments, 

building sugar geometry, and optimizing dinucleotide geometry. 

3.2.1.1 Step 1: building backbone segments 

In the first step, RNABC first samples positions of 5 outer 

atoms in the dinucleotide backbone (O5’, C5’ & C4’ in 

supplementary segment 1, and O3’ & C3' in supplementary 

segment 2) by changing dihedral angles, and use forward 

kinematics to calculate allowable positions of these atoms. Given 

fixed phosphorus positions and the bond lengths and angles, RNABC first calculates 

allowable positions of those 5 atoms and evaluate them using criterion INRANGE_BB, 

which relates them to the anchored atoms C1' and N1/9. To calculate the possible positions 

P 
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of atom C4’ in supplementary segment 1, for example, with given positions of atoms P, O5’ 

and C5’, RNABC rotates C4’ around bond O5’–C5’ (i.e. rotate 

dihedral angle β). 

After calculating the allowed positions of atoms in the two 

supplementary segments, RNABC calculates allowed positions of atoms C3', O3', O5’, C5’, 

C4’ in the main segment and evaluate them using criteria INRANGE_BB, INRANGE_SB, 

and NOCLASH_M. The positions of atoms O5’ and O3’ are calculated from the anchored 

phosphorus by sampling three Euler angles, which represent the rotation of a 3D object by 

the angles of rotation around three chosen axes. This ensures that O5’ and O3’ are sampled 

from a sphere centered at P with angle O5’–P–O3’ fixed. The positions of atoms C5’, C4’, 

and C3’ are calculated from the positions of O5’ and O3’ and the relevant bond and dihedral 

angles. 

In the implementation, I coarsely sample atom positions in steps of 10° (default). Larger 

rotation angle may not find allowable positions for certain atoms. Smaller rotation angle may 

generate many similar atom positions (i.e. generate same sugars in the second step) and slow 

down the program. 

3.2.1.2 Step 2: building sugar geometry 

In the second step, RNABC constructs the two sugars in the suite 

by conjugate gradient method from the coordinates of the two 

sextuples {C5’, C4’, C3’, O3’, C1’, N1/9} around them –– these are 

the atoms in the three bonds that join a sugar to the rest of the 

structure. The first sextuple has C5’ and C4’ from supplementary segment 1 and C3’ and O3’ 

from the main segment. The second sextuple has C5’ and C4’ from the main segment and 
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C3’ 

C5’ 

C4’ 
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N1/9 
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C3’ and O3’ from supplementary segment 2. The positions of atoms C1’ and N1/9 are 

anchored. RNABC generates allowable sextuples by evaluating the combinations of main 

segment and two supplementary segments using criterion INRANGE_SB. 

For each sextuple, RNABC first translates and rotates an ideal sugar with canonical bond 

lengths and angles to superimpose the sextuple, so that the positions of C1’ and the bonds 

C1’–N1/9 are coincident and the bonds C4’–C3’ parallel to each other. By adding C2’ and 

O4’ from the ideal sugar, the sextuple is expanded to an octuple {C5’, C4’, O4’, C3’, O3’, 

C2’, C1’, N1/9}. 

Next, RNABC optimizes two sugars by conjugate gradient method, using the octuple as 

initial atom positions. All atom positions except C1’ and N1/9 in the octuple are adjusted to 

make all bond lengths and angles close to the designated values. Conjugate gradient method 

may stick at an unfavorable local minimum when optimizing the positions of all atoms 

together, so RNABC divides the sugar atoms into four groups and runs the conjugate 

gradient method for each group, first optimizes the positions of O4’ and C2’ and adds O2’, 

H2’ and H1’, then optimizes C4’ and C3’ and adds H3’ and H4’, then optimizes O5’ and C5’ 

and adds H5’ and H5’’, and finally optimizes O3’, using the criteria CGRANGE_O4C2, 

CGRANGE_C4C3, CGRANGE_O5C5, and CGRANGE_O3, respectively. All sugar atoms 

are evaluated by criterion NOCLASH_S during the minimization. The whole optimization 

process is repeated five times (default) to make sure that all criteria are minimized. 

I use non-linear conjugate gradient method that minimizes a continuous function )(xf  

for which 'f  exists. The function )(xf  is a weighed sum of a series of quartic functions, in 

which each quartic function represents one bond length or angle constraint (see CGRANGE). 

I use two categories of quartic functions: 
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1. 222
33

2
22

2
11 ))()()(( daxaxaxf i −−+−+−= , where ),,( 321 xxx  is an unknown 

atom position, ),,( 321 aaa  is a known atom position and d is the distance. 

2. 222
33

2
22

2
11 ))()()(( dyxyxyxf i −−+−+−= , where ),,( 321 xxx  and ),,( 321 yyy  

are two unknown atom positions and d is the distance. 

For bond length constraint, d is the designated bond 

length; for bond angle constraint, if the three atoms related 

with bond angle constructing a triangle by designated values, then d is the length of the 

opposite edge of the angle. 

Choosing the above quartic functions has two reasons: first, these quartic functions 

satisfy the requirement that the bond lengths and bond angles (can be regarded as distances 

when two bonds are fixed) should be close to designated values, and second, these quartic 

functions are easy to calculate the derivatives –– an essential step in the conjugate gradient 

method. In the implementation, I set higher weights to the functions for bond lengths (default 

= 4.0) because the bond length constraints are less flexible than bond angle constraints. 

In the last round of minimization, if any of the bond lengths and angles is larger than a 

threshold scale of standard deviation (default = 3.0) to the designated value, then weight of 

the corresponding quartic function is increased by 2.0 in default and the conjugate gradient 

method runs again, in order to keep all the standard deviations small. 

3.2.1.3 Step 3: optimizing dinucleotide geometry 

In the third step, RNABC adjusts the whole dinucleotide to minimize all the bond lengths 

and angles to the designated values by conjugate gradient method. RNABC divides the whole 

dinucleotide into nine groups (some atoms may appear in two groups) and runs conjugate 

d 
d 
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gradient method for 

each group, first 

optimizes O3’ and O5’ 

and adds OP1 and OP2 

in the main segment, 

then optimizes O3’ in the main segment, then optimizes C4’ and C3’ and adds H4’ and H3’ 

in the first sugar, then optimizes O4’ and C2’ and adds O2’, H2’ and H1’ in the first sugar, 

then optimizes O5’ and C5’ and adds H5’ and H5’’ in the supplemental segment 1, then 

optimizes O5’ and C5’ and adds H5’ and H5’’ in the main segment, then optimizes C4’ and 

C3’ and adds H4’ and H3’ in the second sugar, then optimizes O4’ and C2’ and adds O2’, 

H2’ and H1’ in the second sugar, and finally optimizes O3’ in the supplemental segment 2. 

All atoms are evaluated by criteria NOCLASH_M and NOCLASH_S during the 

minimization. The whole process is repeated 10 times (default). 

RNABC starts at O3’ and O5’ in the main segment because both sugars have been 

optimized but the bond length O3’–P and P–O5’ and bond angle O3’–P–O5 remain in 

designated values and may provide extra flexibility to optimize the whole dinucleotide. 

Similar to step 2, in the last round of minimization, RNABC increases the weight of certain 

function if the corresponding bond length or angle is larger than a threshold scale of standard 

deviation (default = 3.0) to the designated value. 

RNABC evaluates and accepts the optimized dinucleotide geometry when all the bond 

length or angle are less than 5 standard deviations (default) to the designated values and both 

sugar puckers satisfy criterion PUCKERTYPE.  

Finally, RNABC calculates the positions of two HO2’ in both sugars and evaluate them 
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by criterion NOCLASH_S. RNABC leaves the calculation of HO2’ to the last because the 

position of HO2’ is very flexible and it can always find a good position for HO2’. 

3.2.1.4 Step 4: clustering and comparing to the electron density map 

In the fourth step, RNABC clusters similar suite conformations from the third step, 

calculates the error scores by comparing the conformations to the electron density map, sorts 

the conformations by the error scores, and outputs them. 

To cluster similar conformations, RNABC calculates RMSD of heavy atoms for each 

conformation pair and considers the pair as equivalent if the RMSD is less than a threshold 

value (default = 0.4Å). For equivalent conformations, RNABC keeps the conformation with 

smaller maximum standard deviation value for all bond lengths and angles to the designated 

values, because a conformation having a large standard deviation for a certain bond length or 

angle is more prone to a bad geometry. 

RNABC uses a standard procedure in X-ray crystallography for structure refinement to 

calculate the error score from the dinucleotide conformation to the electron density map 

[Diamond71, Chapman95]. The target function is ( ) ( )[ ]∑
∈

−+=
Vg

icio

i

gkgST ρρ , where S and 

k are scale factors and can be calculated during initialization using partial structural model, gi 

is a grid point, V is the volume around the dinucleotide, ρo is the observed electron density 

values and ρc is the calculated electron density values. S and k are pre-calculated during each 

run of RNABC by minimizing a partial model of the RNA structure with the electron density 

map. In the implementation, I use all the phosphorus in the partial model, because 

phosphorus is the clearest in the RNA structures. 

RNABC calculates ρc by Diamond’s real space method [Diamond71], which assumes the 
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electron density of each atom as an isotropic 3D Gaussian and sums up the electron density 

values for all atoms. The function of Diamond’s method is ( ) ( )∑ −=
i

iiiic rraGZg ,ρ , where 

Zi is the number of electrons associated with atom i, r – ri is the distance between the position 

of the atom and grid point, ( ) 223, arearaG π−−=  is a spherical Gaussian function. π4Ba =  

when the atomic scattering factor is 
22sin λθBZef −= , where B is the B-factor and θ and λ are 

known values related with resolution. 

For each output conformation, RNABC outputs PDB formatted ATOM items for all 

atoms, seven dihedral angle values for the suite conformation, standard deviations for all 

bond lengths and angles to the designated values, and kinemage formatted dinucleotide 

structure [Richardson01]. Future work is needed to assign each output conformation a 

backbone conformer name defined by RNA Ontology Consortium [Leontis06, 

Richardson08]. 

3.2.2 Implementation 

RNABC is implemented in C++. The executables and source code are available at 

http://kinemage.biochem.duke.edu. 

3.2.2.1 User-specifiable Parameters 

Each command line invocation of RNABC works on one specified suite. RNABC 

provides a broad set of parameters, all with defaults but with the option of user specification. 

Table 3.1 shows some parameters that users can change by flags on the command line. A 

fuller listing of flags, syntax and choices is given by typing “RNABC -help” in the command 

line. 
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Table 3.1 Parameters often specified by RNABC users 

Flag Parameter details 

-RESID Residue ID of central P atom in the suite to be analyzed 

-CHAIN Chain ID character, default = first chain in file 

-PUCKER 
Pucker type or method for first [second] sugar in suite, default = 
both determined by 3’P perpendicular to C1’–N1/9 vector 

-PARAMETER 
Specifies reference bond lengths and angles. Users can choose 
canonical, original, average of canonical and original, or specify 
values in a file. Default = canonical 

-COARSESPAN Step size for sampling coarse rotation angles, default = 10° 

-WITHINCHAIN Check collisions with atoms only on the local chain 

-OVERLAP Overlap distance considered a steric clash, default = 0.4Å 

-ADJUSTOUTLIER 
Maximum allowable standard deviation of all bond lengths and 
angles, default = 5σ 

-STDEV 
Standard deviation limitations of all bond lengths and angles that 
conjugate gradient method attempts to achieve, default = 3σ 

-ADJUSTSMALLCLASH 
Use geometric method to remove small steric clashes.  
For hydrogen, adjust the overlap within 0.45Å (default); 
For others, adjust the overlap within 0.5Å (default) 

-ADJUSTCLASHBYCG 
Add additional function to remove steric clashes in conjugate 
gradient method 

-CONFORMATION 
Maximum number of suite conformations to be output, default = 
output all conformations 

3.2.2.2 Output 

For each run on a specified RNA suite, RNABC outputs a single text file containing both 

coordinates and kinemage graphics from zero (if no trials were successful) to all (default) 

alternative conformations that satisfy the specified steric clash and covalent geometry 

conditions. The first half of the file consists of PDB-format coordinates for each output 
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conformation (with its name and dihedral-angle values), while the second half is readable by 

the Mage and KiNG kinemage viewers [Richardson01, Davis04, Davis07] for 3D display of 

the original and new conformations. Mage and KiNG can ignore the first half of the file, and 

do not need it to have a specific extension (e.g., *.kin). 

Mage (C) and KiNG (Java), available at http://kinemage.biochem.duke.edu, are open-

source software for multi-platform display and modeling of molecules. Both can display 

RNABC output, along with electron density maps and MolProbity validation kinemages of 

the original structure. Mage can build a dockable dinucleotide with adjustable backbone 

rotamers, if further fitting is desired. KiNG reads more map formats, recontours and moves 

in them in real time, and can be used on-line in the MolProbity service of the above web site, 

by reading in the RNABC output file and the user's electron density map (or fetching a map 

from the Electron Density Server at http://eds.bmc.uu.se/eds/ [Kleywegt04]. When the user 

has selected a preferred new conformation, the corresponding coordinates can then be cut-

and-pasted from the RNABC output file into the PDB file for the overall structure, for 

submission to further crystallographic refinement. 

3.2.2.3 Early rejection 

Although forward kinematics generates each segment conformation quickly, sampling 

many configurations to find segments that satisfy closure constraints can make this method 

slow. For example, in the first step, in order to calculate the positions of C4’ in the main 

segment, RNABC needs to calculate the positions of O5’ and C5’ first. The positions of O5’ 

are decided by three Euler angles, and the positions of C5’ and C4’ are decided by dihedrals 

α and β. With a coarse sampling of every 10° angle, the total of possible positions for C4’ 

can be (360/10)5 > 107. 
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To improve the performance, RNABC uses criterion INRANGE_BB to reject 

supplementary segments and main segment that contain disallowed atom positions as soon as 

they are calculated. For example, for the supplementary segment P–O3’–C3’ in residue 2, 

after calculating a position of O3’, RNABC checks the distance from O3’ to C1’ and if the 

distance is not within a valid range, it rejects O3’ and needs not to calculate C3’. 

In the INRANGE_BB, the distances C5’–C1’, C4’–N1/9, O3’–C1’ and C3’–N1/9 depend 

on the angles C5’–C4’–C1’, C4’–C1’–N1/9, O3’–C3’–C1’ and C3’–C1’–N1/9. These angles 

depend on the pucker state of the sugars and cannot be obtained directly from the other bond 

lengths and angles. Also I introduce two dihedral angles C5’–C4’–C1’–N1/9 and O3’–C3’–

C1’–N1/9, which are used to reject disallowed sugar poses, because the distance and angle 

criteria allow symmetric sugar poses but the β-D-ribose sugar in RNA has a fixed chirality at 

the C1’ atom. These angles are first measured from ideal C2’-endo and C3’-endo sugars and 

then extended to certain ranges to accommodate the influence of possibly changed bond 

lengths, angles and δ dihedral. 

Early rejection prevents disallowed positions for most backbone atoms. Table 3.2 shows 

a typical example, listing the numbers of possible and allowed positions for suite 77-78 of 

chain9, rr0082/1S72 using the default coarse rotation angles 10°, and with ±5 standard 

deviations for bond length C4’–C3’ and bond angles C5’–C4’–C3’ and C4’–C3’–O3’, Early 

rejection can reduce the total calculations by a factor 1.4×104. 
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Table 3.2 Comparison of total and allowed positions of backbone atoms found for suite 77-
78 of chain 9, rr0082/1S72 

  Sample step (every 10°) 

  Total positions Allowed positions Ratio(total/allow) 

Supplementary segment 1 O5’ 36 7 5 

C5’ 1,296 21 62 

C4’ 46,656 36 1,296 

Supplementary segment 2 O3’ 36 7 5 

C3’ 1,296 40 32 

Main segment† O5’ 46,656 362 129 

C5’ 1,679,616 1,284 1,308 

C4’ 60,466,176 1,723 35,094 

O3’ 46,656 362 129 

C3’ 1,679,616 733 2,291 

Total 63,968,040 4,575 13,982 
†The main-segment O3’ and O5’ are obtained by 3 Euler rotation angles around P, so the total number 
of positions of O3’ and O5’ could be (360/10)3 = 4.7×104. 

3.2.2.4 Adjustment to avoid steric clashes 

The conjugate gradient method described in Section 3.2.1.2 and 3.2.1.3 focuses on 

optimizing the geometry of dinucleotide but not steric clashes. Although in most cases, the 

optimized conformations are also clash-free, but some conformations may have steric clashes 

with other atoms and cannot be output. RNABC provides two flags, -

ADJUSTSMALLCLASH and -ADJUSTCLASHBYCG, to try to remove steric clashes and 

preserve the geometry. 

The flag -ADJUSTSMALLCLASH removes small steric clashes by moving the atoms to 
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clash-free positions using geometric method. For hydrogen atoms, the maximum overlap for 

steric clash is limited to 0.45Å (default); for heavy atoms, the maximum overlap for steric 

clash is limited to 0.5Å (default). RNABC moves the atom position so that the new overlap is 

0.39Å. For heavy atoms, RNABC moves the atom directly, but for hydrogen atoms, RNABC 

moves the heavy atom bonded with the hydrogen atom to keep the hydrogen geometry. For 

example, in Figure 3.4, atom C has steric clash with atom D. If C is a heavy atom, RNABC 

calculates the vector CD and move atom C to C’, and if C is a hydrogen atom, RNABC 

calculates the vector BD and move atom B to B’ so atom C moves to C’’. Since the 

adjustment is small, so it is highly possible that the standard deviations of influenced bond 

lengths and angles are still acceptable. 

 

Figure 3.4 Examples of removing small steric clashes by geometry method 

The flag -ADJUSTCLASHBYCG removes steric clashes by adding additional quartic 

function and rerunning the conjugate gradient method. The new quartic function is the same 

to the quartic function describing bond length or angle constraint (see Section 3.2.1.2) and 

the weight is assigned as 4.0 (default). Each steric clash is described by one quartic function. 

The initial value of d in the quartic function is set to the atom distance + 0.05Å (default) and 

if conjugate gradient method fails to remove the steric clash, RNABC increases the value of 

d by 0.02Å (default) and reruns the conjugate gradient method. The maximum runs of 

conjugate gradient method are limited to 20 times (default). 
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3.3 Results and Discussion 

3.3.1 Running Time Performance 

RNABC is tested on a desktop with a 3.0GHz Pentium 4 processor, 1GB memory and 

Windows XP operating system. I compare the current version with a preliminary version, 

which has been heavily tested on the performance and correcting steric clashes in RNA 

dinucleotide. The preliminary version uses exclusively forward kinematics method and runs 

in three steps. In the first step, it samples backbone conformation in two sub-steps: the first 

sub-step samples atom positions with steps of 5° and the second sub-step samples atom 

positions with steps of 1° in a ±2° span. Early rejection is used to speed up the program. In 

the second step, for each sextuple of backbone conformation, it uses geometric method to 

construct a sugar and satisfies all bond length and angle constraints. Various acceleration 

techniques are used to fast reject unfavorable sextuples and speed up the program. 

To demonstrate the time that RNABC takes on a typical example, I choose suites 52, 75 

and 51 of tr0002/1EVV (see Table 3.3), which exemplify three types of clashes that RNABC 

can resolve: (a) sugar clashes with base, (b) backbone clashes with base, and (c) 

sugar/backbone clashes with sugar/backbone. I report running times and number of sextuples 

for current and preliminary versions of RNABC. I run the preliminary version with three 

different allowable standard deviations (±3, ±4 and ±5σ) for all bond lengths and angles. 
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Table 3.3 Comparison of running time for three clash types in tr0002/1EVV for current and 
preliminary RNABC versions 

Clash type (a) sugar with base 
(b) backbone clashes 

base 
(c) sugar/backbone 

with sugar/backbone 

 # of 
sextuples 

Running 
time (s) 

# of 
sextuples 

Running 
time (s) 

# of 
sextuples 

Running 
time (s) 

Preliminary 
version 

±3σ 20,000 2.7 28,000 2.7 15,000 2.6 

±4σ 184,000 14.2 221,000 11.9 152,000 11.4 

±5σ 1,1119,000 95.8 1,459,000 62.8 1,341,000 75.5 

Current version 2,900 3.5 3,300 4.2 2,000 2.8 

 

Table 3.3 shows that the current version is slightly slower than the preliminary version 

with ±3σ, 3-4 times faster than that with ±4σ, and 15-27 times faster than that with ±5σ. The 

current RNABC version allows maximum standard deviations of ±5 and minimizes all bond 

lengths and angles to the designated values (for the above three examples, the maximum 

standard deviation is 2.1σ), so the current version is more efficient than the preliminary one. 

For preliminary version, clash type (a) takes more time than types (b) and (c) when 

allowable standard deviation increases, because there is a steric clash of 1H2’ in the first 

residue with the second base and it is not clear whether the position of 1H2’ is allowed until 

the positions of O4’, C2’ and O2’ are calculated, so the running time is related with the 

actual geometry but not with the number of sextuples. But for current version, the conjugate 

gradient method takes all clash types as the same and optimizes the dinucleotide together, so 

the running time is more related with the number of sextuples instead of the clash types. 
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3.3.2 Methods for the Practical Tests 

Coordinate files were downloaded either from the NDB (Nucleic acid Data Base 

[Berman92]) or the PDB (Protein Data Bank [Berman00]). In the text, files are described by 

both the 6-character NDB code and the 4-character PDB code (e.g., rr0082/1S72); here I list 

them by NDB code, for brevity, giving only the changing final number for codes with the 

same starting characters. For the S-motif test, files were: pr0015, 205; rr0009, 16, 20-23, 28-

30, 33, 42-45, 47, 49, 52, 54-61, 67, 71, 76-82; ur0002, 7, 26, 33-35. For the test on 154 non-

redundant suites, files were: ar0002, 4, 24, 28; dr0008, 10; pr0005, 11, 18, 26, 32, 67, 73, 81, 

85, 90; prv001; rr0005, 10, 16, 19, 33; trna12; ur0012, 19. 

Hydrogen atoms were added and optimized by Reduce [Word99b]. Residue numbers for 

S-motifs were obtained from the SCOR database [Klosterman04]. Problem suites were 

identified in the MolProbity web service [Davis04, Davis07] as having suspect sugar puckers 

or serious all-atom clashes. Bond length and angle deviations were checked within RNABC. 

RNABC defines an all-atom steric clash when the distance of two atoms i and j (including 

hydrogens; i and j > three bonds apart) is less then vdwi + vdwj – 0.4Å, where vdwi is the van 

der Waals radius for atom i from Probe [Word99a]. Bad geometry is defined as a bond length 

or angle > 4 standard deviations away from canonical value [Parkinson96]. 

RNABC was run on each problem suite; first with default parameter choices (see Table 

3.1). If RNABC failed to find an allowable output conformation at that level, it was rerun 

with other flags as well, such as -ADJUSTSMALLCLASH, -ADJUSTCLASHBYCG, and -

ADJUSTOUTLIER. In the second test, adjacent suites were also run and their results 

combined, and explicit sugar puckers sometimes specified if needed. If RNABC still 

produced no output conformations, that example was considered a failure. 
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The output conformations (see section 3.2.2.2) were visualized in KiNG [Davis04, 

Davis07], along with a MolProbity multi-criterion kinemage of the starting structure and 

2Fobs – Fcalc electron density maps from the EDS server [Kleywegt04], if structure factors had 

been deposited. Conformations were discarded if they were very close to the original or if 

they were clearly a poorer fit to the electron density. For numerical analysis, Excel 

spreadsheets were populated with data on initial conformations and their indiscretions, 

RNABC run parameters, and output conformations, including dihedral values and pucker 

parameters from Dang [Word00]. For Figures 3.6, 3.7 and 3.8, the selected output 

coordinates were edited into the PDB file and a new all-atom contact kinemage produced in 

MolProbity and displayed in KiNG. Such comparison kinemages were used in the second test 

to judge the level of improvement over the original structure (e.g. quantitative changes in 

clashes or hydrogen bonding). Any suggested conformations remaining after all these 

filtering steps were considered reliable options for improving the structure. 

3.3.2.1 Removing clashes in many similar S-motif structures 

The S-motif (or sarcin-, S-turn-, bulged G-, or loop E-motif) is a distinctive and highly 

structured internal loop within an A-form RNA double helix, especially common in 

ribosomal RNAs; an example is shown in Figure 3.5. It includes several non-canonical base 

pairs and a base triple, and the backbone forms a pronounced S-shape on the primary strand 

and a small dent and a stack switch on the secondary strand. The S-motif is named for its 

occurrence in loop E of the 5S ribosomal RNA and especially in the highly conserved 

sarcin/ricin loop of the large ribosomal subunit, which binds essential translation factors. 

Toxins like sarcin, ricin, and restrictocin inactivate ribosomes by cleaving the sarcin loop; the 

S-motif is at the toxin binding site. Classic S-motifs and variants also occur elsewhere in 
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ribosomal and other RNAs, so there are many similar but not identical examples in the 

structural database, including a few at very high resolution (e.g., ur0035/1Q9A at 1.04Å 

resolution [Correll03] shown in Fig. 3.2a). 

 

Figure 3.5 S-motif 587-589 in rr0082/1S72; primary strand (front) has black backbone and 
blue bases. Gold P-atom balls mark the 3-suite, "S"-shaped region studied, but this example 

was clash-free and thus refit was unnecessary 

102 S-motifs in 42 crystal structures are listed by the SCOR database of RNA motifs 

[Klosterman04]. One S-motif (ur0002/430D a8-a12) has a steric clash between the residue 12 

C1’, whose position is held fixed by RNABC, and an out-of-suite N6 on residue 20, and was 

removed from the test set. 

The test studied the three distinctive non-A-form suites on the primary strand. The sugar 

puckers are typically C3'-C2' for the first suite, C2'-C2' for the second, and C2'-C3' for the 

third. The backbone conformations differ in each suite; they are not easy to fit accurately, so 

they often show serious steric clashes and sometimes deviant geometry –– out of 101 S-

motifs, all but 13 contain either steric clashes or bad geometry –– making this dataset suitable 

for testing RNABC. 
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The S-motif test is done with current RNABC version. For the above 88 S-motifs, 

RNABC was run on the suites containing either steric clashes or bad geometry, specifying 

clash-free output with canonical parameters. For example, for the S-motif with primary-

strand residues 76-79 in chain 9 of rr0082/1S72 (5S ribosomal RNA) which is shown in 

Figure 3.6, residues 76 and 77 contain steric clashes so I ran RNABC on suites 76-77 and 77-

78, but not on suite 78-79. Table 3.4 summarizes the results. Although adjusting contiguous 

suites can help in difficult cases, I have confined in this test to running only the suites with 

clashes. 

Table 3.4 Performance on removing steric clashes and bad geometry for the 101 S-motifs 

 

For the 101 original S-motifs, 84 have at least one steric clash, and RNABC proposes at 

least one clash-free conformation for 72 of those (86%). In the 33 S-motifs with bad 

geometry, RNABC found conformations with good geometry for 31 of them (94%). 

Electron density was available for 30 of the 42 structures (71 of the 101 S-motifs). The 

output conformations were checked for acceptable fit to the electron density where available 

(e.g. Figure 3.8), and two S-motif outputs were rejected at this stage. Combining both criteria, 

the overall success rate on this first test was 72 good new proposed conformations out of the 

88 S-motifs originally having problems (82%). As an example of what can be accomplished, 

the RNABC refit shown in Figure 3.6c is very similar to the hand refit in Figure 3.6b, but 
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took significantly less time and expertise. 

 

a. before reconstruction b. refit by hand c. refit by RNABC. 

Figure 3.6 Suite 76-77 of chain 9, rr0082/1S72 before and after reconstruction 

3.3.2.2 Conformations: improving many dissimilar problem suites 

Having shown the consistent usefulness of RNABC in correcting a specific backbone 

motif, a second test was conducted to determine the program’s ability to handle severe local 

problems in a variety of contexts. A set of 25 diverse structures were chosen from the RNA 

database of Murray, et al. [Murray03], with representatives ranging from simple duplex RNA 

to the ribosomal subunits and tRNAs. For each of these structures, MolProbity and KiNG 

identify suites with especially bad clashes and sugar-pucker outliers. The test was done with 

the preliminary version of RNABC and was conducted by Richardson Lab in Duke 

University. RNABC was run on those suites, as well as suites immediately before and after. 

If an RNABC run with default parameters failed to yield results, parameters were relaxed in a 

sequential manner, ensuring that new conformations were found whenever feasible. Table 3.5 

gives sample command lines used at each level of trial and the number of suites in test two 

that first gave output conformations at each level. 
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Table 3.5 Command lines at successive trial levels for test two 

Sample Command New cases output 

RNABC -CHAIN[x] -RESNUM[n] [input.pdb] > [outputfile] 21 

RNABC -CHAIN[x] –RESNUM[n] -PARAMETER7  
[input.pdb] > [outputfile] 

15 

RNABC -CHAIN[x] -RESNUM[n] -PARAMETER7 -SIG4  
[input.pdb] > [outputfile] 

21 

RNABC -CHAIN[x] -RESNUM[n] -PARAMETER7 -SIG4  
-PUCKER2-3† [input.pdb] > [outputfile] 

15 

†Note that pucker parameter can be -PUCKER3-3, 3-2, 2-2, or 2-3. 

RNABC suggested new conformations for 72 of the 154 suites tested. However, 8 of 

these new suites were later rejected (see below), 3 due to remaining steric overlaps and/or 

sugar pucker outliers, 2 because of poor fit to the electron density, and 3 for both of those 

reasons. Thus, RNABC produced new clash-free conformations and/or better sugar puckers, 

with satisfactory geometry and density fit, for 64 of the 154 suites tested (42%); 19 of those 

successes were obtained with default parameters. 

Table 3.6 shows the most common problems identified among the original 72 suites, 

along with how well RNABC improved them. A given suite may have multiple problems, 

which are categorized into steric clashes (separated by specific pairs of clashing atoms), 

pucker outliers, and unfavorable ε dihedral values. Pucker and ε dihedral problems often 

occur together since distortion of ε is often the result of fitting a ribose into the wrong pucker 

state. RNABC does best at correcting steric clashes, as these were its central design 

emphasis. It can usually improve and sometimes correct sugar puckers that are misfit as 3’ or 

4’ when they should be 2’, as in the example of Figure 3.7. The “other” puckers are extreme 

distortions, which the program finds difficult to improve or correct. Each of the bad ε values 
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was related to a bad sugar pucker; RNABC corrects 5 of them; the 14 ε values that remain 

unfavorable correspond to 14 sugar puckers that are improved but are not corrected 

completely. For all but three suites, when RNABC aggravated a problem in one category, it 

greatly improved the other two categories. 

Table 3.6 Corrections: Instances of three categories of problems in the original structures for 
72 suites, and how many were fixed, improved, unchanged, or worsened by RNABC. 

Configurations are deemed unchanged unless there is a difference of either 5 clash spikes, 
10° δ dihedral, 0.5Å perpendicular-line length, or 40°  ε dihedral. Note that the total number 

of clashes is greater than 72 — many suites contained several clashes 

Common 
problems 

# of 
instances 

# fixed 
completely 

# 
improved 

# 
unchanged 

# 
worse 

% 
fixed 

% fixed or 
improved 

Steric Clashes 

1H5’–O2’ 29 17 6 3 3 59 79 

2HO’–P 23 13 5 4 1 57 78 

C5’ or H5’–
C2’ or H2’ 

19 11 4 3 1 58 79 

1H2’–O4’ 16 10 2 2 2 63 75 

Others 80 45 17 7 11 56 78 

Pucker outliers 

C4’ 12 2 8 2 0 17 83 

C3’→ C2’ 11 2 7 1 1 18 82 

Others 11 1 0 4 6 9 9 

Unfavorable ε dihedrals (–45° to +155°) 

Bad ε 19 5 0 14 2 26 26 
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a. before refit: clash of 1H5’ with O2’, 
and C4’ puckers for both sugars 

b. RNABC refit, in which puckers are improved 
(C2’-endo) and the clash has been removed 

Figure 3.7 pr0032/1FFY suite 33-34 before and after refit by RNABC 

The final filter was to determine for the 10 structures (42 of the 72 suites) that had 

structure factors available, how well RNABC’s proposed new conformations fit into the 

electron density. Although RNABC currently incorporates no constraints for electron density, 

the fit improved in almost every case –– dramatically for some suites, as depicted in Figure 

3.8. Five suites were exceptions; three conformations already targeted for elimination by 

other geometric offenses and two new cases were found that lay significantly outside the 

density compared to the initial structure. Thus, 8 of the 72 outputs were rejected by these post 

filtering steps, with 89% of the suggested suite conformations deemed acceptable for future 

refinement. Overall, this test of RNABC on extreme structural deviations had a 42% success 

rate, with a fairly low rate of false positives. 

The test closes with a look at how many different sets of conformations are output by 

RNABC, and how different these are from the original structure. In the 235 suites for which 

RNABC produced output conformations, the output dihedral angles differed from the 

original by 20°(±3°) RMSD across the 6-dihedral sets, with the extremes ranging from 2° 
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(tiny wiggles) to 100° (large backbone shifts). Often a single dihedral undergoes a relatively 

large change while the other dihedrals adjust slightly to accommodate; sometimes two 

dihedrals change 30°-50° (usually α and γ in the long-recognized “crankshaft” motion). 

Cases in which 3 or more dihedrals change more than 35° were rare. Moreover, 30% of the 

time RNABC yields two conformations that are different from each other as well (dihedral 

RMSD > 20°); a further 5% yield 3 or more different conformations. Thus, RNABC is 

capable of giving the user significantly new and sometimes varied options with which to 

replace the original local conformation. 

 

Figure 3.8 rr0082/1S72 suite 1941-1942 refit. The original is in black, and the refit in 
orange; RNABC’s conformation, chosen to avoid bad geometry and clashes, also fits the 

density better 



CHAPTER 4 

OPTIMIZING MULTIPLE STRUCTURE ALIGNMENT 

4.1 Introduction 

Macromolecular structure alignment is an important topic in bioinformatics. RNA and 

proteins with similar 3D structures may have similar functions and are often evolved from 

common ancestors [Branden99]. While available sequences of RNA and protein 

outnumbered available structures by several magnitudes and sequence alignment methods 

have been widely used to determine protein families and find sequence homology, RNA and 

protein structure alignment has its importance in disclosing the extend of structure similarity. 

For example, structure alignment provides “golden standard” for sequence alignment, and 

conserved regions determined by structure alignment are good candidates for threading and 

homology modeling. 

If RNA and protein structures are considered as rigid bodies, then the problem of 

structure alignment is to translate and rotate these structures to minimize a score function. 

Pairwise structure alignment commonly uses root mean squared deviation (RMSD) to 

measure the structural similarity between corresponding atoms in two structures, once a 

suitable correspondence has been chosen and the molecules have been translated and rotated 

to the best match [Horn87]. Pairwise RMSD can be extended to measure the goodness of 

multiple structure alignment in several ways. Examples from the literature include sum of all 
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pairwise squared distances [Lupyan05, Sutcliffe87], which I also use, or average RMSD per 

aligned position [Ochagavia04]. 

Multiple structure alignment introduces some interesting facts: As a first example, lower 

B-factors (values measure the mobility or uncertainty of given atoms’ positions) may suggest 

that the positions of the atoms should be regarded as more precisely known and should count 

more toward an alignment or a consensus structure. As a second example, if the 

correspondence between atoms is derived by multiple sequence alignment, one would like to 

use conserved atoms in the alignment and omit, or at least reduce the influence of, the 

exceptions — in a family of structures, an outlier atom should not force the removal of all 

other atoms that were reliably determined at a certain position. In both examples, I want to be 

able to assign weights that indicate the confidence levels of atoms’ positions. For structure 

alignment, weighting individual atoms allows a measure of local control in RMSD that is 

otherwise missing because RMSD is a global measure. Gapped alignment is a special case in 

which the weight of each atom is assigned either zero or one. In the next section, I show how 

to use the weights that are assigned to atoms to determine weights of pairs in RMSD and 

develop an algorithm for multiple structure alignment with weighted atoms. 

Many algorithms for multiple structure alignment have been presented. Some first do 

pairwise structure alignments and then combine structures together. STRUCTAL [Gerstein98] 

chooses a structure that has minimum total RMSD to all other structures as the consensus 

structure and aligns other structures to it, MAMMOTH-mult [Lupyan05] chooses one 

structure at a time and minimizes total RMSD to all previously aligned structures until all 

structures are aligned, STAMP [Russell92] combines closest pairs and builds a tree for all 

structure to align them together, and MULTAL [Taylor94] progressively combines the most 
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similar sequences into a consensus. 

Other algorithms align all the structures together instead of combining aligned pairs. 

Sutcliffe et al. [Sutcliffe87], Verboon and Gabriel [Verboon95], and Pennec [Pennec96] 

iteratively align all the structures to their average structure and achieve minimum RMSD by 

optimizing rotations for each structure: Algorithm 4.1 is a refinement of theirs, whereas I 

correctly handles the weights for atoms and optimizes both translations and rotations. CE 

[Guda01] uses Monte Carlo optimization to achieve a tradeoff between the average atom 

distance and the aligned columns. MUSTA [Leibowitz01] and MASS [Dror03] use 

geometric hashing for Cα atom and secondary structures respectively, and combine them into 

a consensus structure. MultiProt [Shatsky04] and MALECON [Ochagavia04] iteratively use 

each structure as a consensus, align other structures to it and determine the largest core as the 

consensus. CBA [Ebert06] and MUSTANG [Konagurthu06] progressively group similar 

structures, recalculate atom correspondences and optimize the alignment. 

4.2 Methods 

I define the average structure and weighted RMSD for multiple structures, and then 

establish properties of the wRMSD. 

4.2.1 Weighted Root Mean Square Deviation 

Assume there are n structures each having m points (atoms), so that structure Si for (1 ≤ i 

≤ n) has points pi1, pi2, …, pim. For a fixed position k, the n points pik for (1 ≤ i ≤ n) are 

assumed to correspond. I assign a weight wik ≥ 0 to point pik and assign zero weights to gaps, 

where the coordinates of points in the gaps do not matter. For structure Si, I define the 
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weighted centroid as ∑∑
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 for (1 ≤ k ≤ m). 

Given n structures, I define weighted RMSD (wRMSD) as the square root of the weighted 

average of all squared pairwise distances. Note there are n(n–1)/2 structure pairs and each 

structure pair has m distances. Thus, if wijk = ŵikwjk = wikŵjk is the weight for point pair (pik, 

pjk), then I define 

wRMSD =
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There are many ways to define a combined weight wijk; I choose to multiply the weights 

wik and wjk to capture the confidence in aligning atoms pik or pjk from structure i and structure 

j at position k. If either wik or wjk is zero, then the combination wijk is zero; if both atoms at a 

position have equal confidence, then they both factor equally into the combination. This 

choice is compatible with unweighted RMSD, and captures gapped alignment as a special 

case. As can be seen in the mathematics, with this choice I can align structures to an average 

structure and speed up computation. Alternate ways to define wijk may not work: For 

example, if I define wijk = (wik + wjk) / 2, then when one of wik or wjk is zero and the other is 

nonzero, the wRMSD value will be influenced by an atom position in which I have no 

confidence. 

Since m and n are fixed, I can equivalently minimize the weighted sum of all squared 
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pairwise distances ∑∑∑
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 instead of the wRMSD. The following lemma on 

weighted sums of squares allows us to make several observations about the average structure 

S  under the wRMSD. 

Lemma 4.1 For any aligned position k, the sum of weighted squared distances from p1k, 

p2k, …, pnk to any point qk equals the sum to the average point kp  plus the sum from kp  to 
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Proof: To establish the Lemma, I subtract the second term from both sides, expand the 

difference of squares, and apply the definition of kp  in the penultimate step. 

( ) ( )( )∑∑
==

+−−−+−=−−−
n

i

kikkikkikkikik

n

i

kikkikik ppqpppqpwppqpw
11

22
 

( ) ( ) ( ) ( ) ∑∑∑
===

−=−−=−−−=
n

i

kkik

n

i

kkikkk

n

i

kkikikkk pqwqpwqpqppwqp
1

2

11

2  □ 

I list three theorems relating the weighted sum of all squared pairwise distances to the 

average structure. Theorem 4.1 says that if the wRMSD is used to compare multiple 

structures, then what really happens is that all structures are being compared to the average 

structure –– that the average structure S  is a consensus. By comparing to the average 

structure, I reduce the number of pairs of structures that must be compared from n(n–1)/2 to 

n. 

Theorem 4.1 The weighted sum of squared distances for all pairs equals the weighted 

sum of squared distances from all structures to the average structure S : 

∑∑∑∑∑
= ==

−

= =

−=−
n

i

m

k

kikik

n

i

i

j

m

k

jkikijk ppwnppw
1 1

2

2

1

1 1

2
 



 

 54

Proof: In Lemma 4.1, I replace qk by pjk, multiply by the weight ŵjk, and sum over all j 

and k to obtain:  

∑∑∑∑∑∑
= = == = =

−=−
n

i

n

j

m

k

kikijk

n

i

n

j

m

k

jkikijk ppwppw
1 1 1

2

1 1 1

2
2  

Re-arrange the order of summation on the left and notice that the terms with i = j are 

canceled and every other term appears twice: 
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The resulting equation gives the desired result after dividing out the extra factor of two: 
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Theorems 4.2 and 4.3 suggest how to choose the structure closest to a given set of 

structures. If you can choose any structure, then chose the average S ; if you must choose 

from a limited set, then choose the structure closest to the average S . 

Theorem 4.2 The average structure S  minimizes the weighted sum of squared distances 

from all structures, i.e. for any structure Q with points q1, q2, …, qm, 
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 and equality holds if and only if kk pq =  or wik = 0 

for all points. 

Proof: This follows immediately from Lemma 1 since 0
1

2
≥−∑
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kkik pqw  with equality 

if and only if kk pq =  or wik = 0 for all points. □ 

Theorem 4.3 The structure from Q1, Q2, …, Ql with minimum wRMSD to S  minimizes 

the weighted sum of squared distances to all structures Si for (1 ≤ i ≤ n). 



 

 55

Proof: In Lemma 4.1, ∑∑
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4.2.2 Rotation and Translation to Minimize wRMSD 

In structure alignment, structures are translated and rotated in 3D space to minimize the 

wRMSD. I define Ri as a 3×3 rotation matrix and Ti as a 3×1 translation vector for structure 

Si. I aim to find optimal Ti and Ri for each structure to minimize wRMSD. The target function 

is 
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Let iikiik TpRp −='  and apply Theorem 1 to the target function, so 
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In this way, I change the minimization of the wRMSD for all pairs to the minimization of 

the wRMSD from all structures to the average structure. 

4.2.2.1 Optimum translation and rotation 

Horn [Horn87] shows that to align a pair of structures to minimize the wRMSD, one can 

first translate both structures so their centroids coincident (say, at the origin), then solve for 

the optimum rotation. For weighted multiple structure alignment, however, this is no longer 
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true. Consider the example of Figure 4.1 with 3 structures S1, S2, and S3, each containing 

three weighted atoms in correspondence from left to right. Black dots denote weights equal 

to 1 and white dots denote the weights equal to 0, i.e. the gaps. The alignment in Figure 4.1a 

moves the weighted centroids to the origin, and obtains wRMSD 6 ; moving unweighted 

centroids to the origin would give wRMSD 3/2 . The alignment in Figure 4.1b achieves the 

optimum wRMSD 0 by translating S2 by –1 and S3 by 1 from Figure 4.1a. The difference 

arises because the centroid is defined for each structure independently, but the contribution of 

each structure to the alignment score depends also on the weights assigned to the structures 

that are being compared to. 

  

a. Alignment by moving centroids to the origin b. Alignment achieves optimum RMSD 

Figure 4.1 Example of aligning three structures with gaps. Dashed lines denote the 
correspondence of points, black dots denote weights equal to 1, and white dots denote 

weights equal to 0, i.e. the gaps 

Verboon and Gabriel [Verboon95] and Pennec [Pennec96] present iterative algorithms to 

minimize RMSD for multiple structure alignment by translating the centroids of all structures 

to the origin and optimizing rotations, but the example in Figure 4.1 shows that their 

algorithms may not find optimum RMSD in weighted structure alignment. It turns out that 

the optimum translations cannot be found easily. Theorem 4.4 (see Appendix I for proof) 

shows the relation of the optimum translations and rotations. In general, the translations and 

rotations cannot be separated for minimizing wRMSD in multiple structure alignment. 

Theorem 4.4 The optimum translation Ti and the optimum rotation Ri for structure Si (1 ≤ 

–2        –1         0          1          2 

S1 

S2 

S3 

–2        –1         0          1          2 

S1 

S2 

S3 
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i ≤ n) satisfy the following n linear equations, of which n–1 are independent: 
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Given all optimal rotations Ri for (1 ≤ i ≤ n) and one translation Tj (1 ≤ j ≤ n), the 

remaining n–1 optimal translations Ti for (1 ≤ i ≤ n, i ≠ j) can be obtained by 
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Note that if I use weighted RMSD at aligned positions, i.e. wik = wjk = wk for (1 ≤ i, j ≤ n, 

1 ≤ k ≤ m), then the translations and rotations can be separated and the optimal translations 

can be obtained by translating the weighted centroids of all structures to the origin. It is 

because I have ŵik = 1 and wijk = wk, and the optimal translation Ti in Theorem 4.4 becomes: 
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If I translate the centroid iC  of structure Si for (1 ≤ i ≤ n) to the origin before optimizing 

the rotation, i.e. iikik Cpp −=' , then I have 0
11
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ikk wpw . The above equation 

becomes Ti = Tj and I can simply choose Tj = 0, so the optimal translation is achieved by 

translating the centroid of each structure to the origin. 

4.2.2.1 Algorithm for minimizing wRMSD 

Finding optimal translations and rotations for multiple structures is harder than for a pair 

because the minimization problem no longer reduces to a linear equation. Instead of directly 

finding the optimal translations and rotations, I use the fact that the average is the best 

consensus from Theorem 4.1, and present an iterative algorithm to converge to the minimum 
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wRMSD. I align each structure to the average structure separately in each iteration. Because 

translating and rotating structures also change the average structure, I repeatedly calculate the 

average structure and align each structure to it until the algorithm converges to a local 

minimum of wRMSD. 

Algorithm 4.1. Given n structures with m points (atoms) each and weights wik ≥ 0 for 

each point, minimize wRMSD to within a chosen ε, e.g. ε = 1.0×10–5. 

1. Calculate the average structure S  with points ∑
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=
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ikikk pw
n
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, and the weighted sum 

of squared distances to S : ∑∑
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2. For each i, translate Si and S  so their centroids, using weighs for Si, are at the origin. 
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 denote the centroid of S  using the weights of Si). Use 

Horn’s method [Horn87] to optimally rotate each Si into alignment with S . Translate 

Si and S  by iC− . 

3. Calculate new average newS  and ∑∑
= =

−=
n
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m

k

kikik ppwSD
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2newnewnew . 

4. If (SD – SD
new) / SD < ε, then the algorithm terminates; 

otherwise, set SD = SD
new and newSS =  and go to step 2. 

The translation of S  by iC−  in step 2 keeps S  untouched (no rotation involved with S

). The translation of Si by iC−  keeps the weighted sum of squared distances for Si and S  the 

same, after optimized by Horn’s method. 

Horn's method and the above theorems imply that the deviation SD decreases 

monotonically in each iteration. From Theorem 4.1, I know that minimizing the deviation SD 
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to the average minimizes the global wRMSD. From Horn [Horn87], in step 2 I have 
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From Theorem 4.2, in step 3 I have 
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So SD
new ≤ SD and SD  decreases in each iteration. The algorithm stops when the 

decrease is less than a threshold ε and achieves a local minimum of SD. 

Horn’s method calculates the optimal rotation matrix for two m-atom structures in O(m) 

operations and the translations in step 2 and 3 take O(n m) in total, so initialization and each 

iteration take O(n m) operations. 

If I use weighted RMSD at aligned positions or unweighted RMSD, I can simplify 

Algorithm 4.1 by translating the centroids of all structures to the origin before step 2, and 

remove all the translation operations in step 2. It is easy to verify that the convergence and 

the time complexity of the algorithm are the same. 

4.3 Results and Discussion 

4.3.1 Performance 

I test Algorithm 4.1 by minimizing wRMSD for 23 protein families from HOMSTRAD 

database [Mizuguchi98] with more than 10 structures and total aligned length longer than 

100 (each aligned position contains more than two Cα atoms). I assign weights 1 to aligned 

Cα atoms and weights 0 to gaps. I run the algorithm 10,000 times for each protein family. 

Each time I randomly translate (within 100Å) and rotate each structure in 3D space, then 
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minimize wRMSD. The results are shown in Table 4.1. 

Table 4.1 Performance of the algorithm on different protein families from HOMSTRAD. I 
report n, the number of proteins, m, the number of atoms aligned, the wRMSD from 

HOMSTRAD Alignment (HA), the wRMSD of the optimal alignment from Algorithm 4.1, 
statistics on iterations and time (milliseconds) for 10,000 runs of each alignment 

Protein family n m #gaps 
wRMSD 
HA(Å) 

optim. 
wRMSD 

% rel. 
diff 

Iterations 
avg,med,max 

Time (ms) 
avg,median,max 

α-amylase 23 616 415 6.14 6.01 2.11 15.5, 16, 19 382, 391, 471 

αamylase_NC 23 741 517 6.24 6.09 2.40 14.5, 15, 20 407, 411, 551 

asp 13 346 49 2.20 2.15 2.46 9.4,   9, 12 100, 100, 130 

cys 13 242 52 1.74 1.71 1.83 13.2, 13, 16 110, 110, 140 

fabp 17 137 15 1.89 1.89 0.26 6.9,   7,   8 44,   40,   60 

ghf22 12 129 10 1.42 1.40 1.50 6.0,   6,   7 29,   30,   40 

glob 41 168 59 2.07 2.01 2.57 10.5, 11, 12 148, 150, 170 

gluts 14 230 30 2.84 2.76 2.77 8.0,   8, 10 62,   60,   80 

grs 11 498 236 4.18 3.64 14.69 8.4,   8,   9 110, 110, 140 

igvar-h 21 134 27 2.25 2.14 5.42 8.3,   8, 10 60,   60,   70 

kinase 15 421 216 7.69 7.39 4.04 16.0, 16, 21 212, 210, 280 

ldh 14 352 86 2.64 2.60 1.41 11.6, 12, 14 127, 130, 160 

lipocalin 15 190 72 3.97 3.88 2.34 11.6, 12, 14 87,   90, 110 

ltn 12 246 44 1.51 1.49 1.39 7.6,   8,   9 60,   60,   80 

p450 12 481 186 4.08 4.04 1.18 10.0, 10, 13 132, 130, 160 

phc 12 177 29 3.20 2.93 9.24 9.1,   9, 12 55,   50,   80 

phoslip 18 130 19 1.51 1.49 1.53 10.5, 11, 12 66,   70, 150 

proteasome 17 283 135 6.86 6.10 12.50 13.2, 13, 16 137, 140, 160 

sdr 13 297 120 4.03 3.73 8.00 9.5, 10, 12 89,   90, 110 

sermam 27 275 94 2.10 2.06 2.18 9.4,   9, 12 134, 130, 170 

subt 11 309 87 2.82 2.78 1.53 15.6, 16, 18 148, 150, 180 

tim 10 254 12 1.47 1.46 0.87 7.3,   7,   9 51,   50,   70 

uce 13 162 48 2.57 2.50 3.14 9.6, 10, 11 57,   60,   70 
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For all minimized RMSD values in each protein family’s 10,000 tests, the difference 

between maximum and minimum RMSD is less than 1.0×10–5, so they converge to the same 

local minimum, which is likely the global minimum. 

Figure 4.2 shows that for all 23 families, each iteration decreases RMSD rapidly, in 5-6 

iterations, whereas the maximum number of iterations for ε = 1.0×10–5 is 21. The experiment 

was run on 1.8 GHz Pentium M laptop with 768M memory. The code is written in MATLAB 

and is downloadable at http://www.cs.unc.edu/~xwang. Figure 4.3 indicates that the observed 

average running time is linear in the number of atoms in the structures, so Algorithm 4.1 

approaches the lower bound of multiple structure alignment Θ(n m). 

 
Figure 4.2 Convergence of wRMSD for 23 protein families.  
Each structure starts with a random translation and rotation 
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Figure 4.3 Average running time vs. number of atoms for 23 protein families 

4.3.2 Optimizing aligned multiple structures in other programs 

Existing multiple structure alignment algorithms optimize the aligned multiple structures 

once the correspondence is determined. I run Algorithm 4.1 on their aligned structures to see 

how much their results can be improved. There are five web servers for multiple structure 

alignment available: CE-MC [Guda01], MAMMOTH-multi [Lupyan05], MultiProt 

[Shatsky04], POSA [Ye05], and Superpose [Maiti04]. MultiProt and POSA provide 

ungapped alignment results only, so I compare Algorithm 4.1 to the web servers CE-MC, 

MAMMOTH-multi and Superpose. 

I first run the 22 protein families (α-amylase_NC and α-amylase families use the same 

protein structures and we choose α-amylase_NC with longer aligned sequences) from 

Section III.A on each the three web servers using the defaulted setting. The results are shown 

in Table II and the best RMSDs are shown in bold. 

From all three programs, algorithm1 reduces RMSDs for all the aligned structures. The 

aligned structures of CE-MC [Guda01] are optimized by Monte Carlo optimization and their 

RMSDs are very close to the minima. Some aligned structures from MAMMOTH-multi 

[Lupyan05] have large room to be minimized for RMSDs. It is interesting to see that overall 

the alignments by CE-MC are best. Most alignments by Superpose stuck at certain local 

minima and failed to achieve the better alignments as CE-MC and MAMMOTH-multi did. 
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Table 4.2 Comparison of RMSD of aligned protein families from CE-MC, MAMMOTH-
mult, and Superpose programs and optimized wRMSD from algorithm 4.1 (best RMSD is in 

bold). We report the number of chains (n), the number of atoms aligned for each program (m), 
the RMSD from original alignment (CE, MAM, Sup), the wRMSD of the optimal alignment 

from our algorithm (wRMSD), and the improvement of RMSD (%diff) 

Protein family n 
CE-MC vs. wRMSD 

MAMMOTH-mult vs. 
wRMSD 

Superpose vs. wRMSD 

m, CE, wRMSD, %diff m, CE, wRMSD, %diff m, CE, wRMSD, %diff 

α-amylase_NC 23 PDB read failure* 932, 4.65, 4.58, 7.0 No output• 

asp 13 Broken chain failure# 376, 2.11, 2.10, 0.5 366, 4.23, 4.13, 2.4 

cys 13 Broken chain failure 279, 1.61, 1.59, 1.3 No output 

fabp 17 PDB read failure 146, 1.87, 1.86, 0.5 No output 

ghf22 12 PDB read failure 131, 1.41, 1.40, 0.7 No output 

glob 41 Too many structures+ 172, 2.06, 2.04, 1.0 No output 

gluts 14 PDB read failure 233, 2.83, 2.78, 1.8 No output 

grs 11 PDB read failure 552, 4.04, 3.75, 7.7 No output 

igvar-h 21 282, 3.17, 3.16, 0.3 137, 2.13, 2.05, 3.9 No output 

kinase 15 PDB read failure 476, 7.45, 7.23, 3.0 No output 

ldh 14 PDB read failure 372, 2.55, 2.52, 1.2 No output 

lipocalin 15 Broken chain failure 204, 3.66, 3.58, 2.2 No output 

ltn 12 Broken chain failure 280, 1.42, 1.42, 0.0 281, 2.61, 2.58, 1.2 

p450 12 PDB read failure 504, 4.14, 4.05, 2.2 568, 9.72, 9.43, 3.1 

phc 12 195, 1.66, 1.65, 0.6 180, 3.59, 2.96, 21.3 181, 5.33, 5.04, 5.8 

phoslip 18 PDB read failure 134, 1.55, 1.54, 0.7 No output 

proteasome 17 301, 2.32, 2.31, 0.4 306, 4.70, 4.23, 11.1 No output 

sdr 13 PDB read failure 360, 3.98, 3.74, 6.4 No output 

sermam 27 Broken chain failure 252, 2.09, 2.07, 1.0 No output 

subt 11 PDB read failure 396, 6.40, 6.18, 3.6 477, 5.93, 5.87, 1.0 

tim 10 PDB read failure 260, 1.44, 1.44, 0.0 262, 1.84, 1.82, 1.1 

uce 13 181, 1.65, 1.64, 0.6 176, 3.42, 3.37, 1.5 189, 3.67, 3.53, 4.0 
*At least one PDB file could not be read 
#At least one protein sequence is broken into multiple chains, which is not supported by CE-MC 
+CE-MC allows at most 25 sequences 
•No output from Superpose for unknown reason 
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4.3.3 Finding Structural Conserved Regions 

For RNA and protein molecules, structural conserved regions have great importance for 

classifying molecules, determining active site and functions, and applying homology 

modeling. RMSD has an inherent drawback that outliers have strong effects and cannot be 

used to determine the conserved regions. Many different measurements have been developed 

to determine the structural conserved regions [Altman94, Chew02]. Here I show that 

heuristic methods based on wRMSD can be developed to find conserved regions –– 

overcoming the inherent drawback of RMSD. By modeling B-factors and deviations from the 

average positions as the weights, I demonstrate one heuristic to find well-aligned positions 

that determine the structural conserved regions. 

Given n structures with m points (atoms) each and weights wik ≥ 0 for each point, I use 

the following iterative steps to adjust weights: 

1. Align the protein structures using the algorithm of Section 4.2.2.1 by setting wik =  

e–bik / 10, where bik is the B-factor for atom k in structure Si for (1 ≤ i ≤ n). 

2. For each aligned position k, calculate the number of aligned atoms l, distance 

kikik ppd −=  for the l aligned structures, and the average squared distance 

lda
l

lkk ∑= 2
. Then calculate the mean a  and standard deviation σ of ak. 

3. If all ak ≤ a  + 3σ, then return;  

Otherwise set weights ( ) ( )k

bik

k anlew += − 1.0/10/  if ak ≤ a  + 3σ for (1 ≤ k ≤ m) and 

other weights to 0, align structures by wRMSD, and go to step 2. 

B-factor measures the mobility or uncertainty of a given atom position. In general, lower 

B-factor suggests that the atom position should be regarded as more precisely known. Thus, 
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in step 1, the term 10/bike−  gives higher initial weights for those atoms whose positions are 

more accurate. In step 3, the weights are adjusted by two terms: The term ( )ka+1.01  

encourages alignment in the positions where the average squared deviation, ak, is small, and 

the term nl /  encourages the positions with more aligned atoms. By combining these factors, 

I reduce the weights of outliers and enhance the weights of atoms in structural conserved 

regions. 

Figure 4.4 shows multiple structure alignments of the short-chain 

dehydrogenases/reductases (sdr) and proteasome families before (a,c) and after (b,d) 

optimizing the structural conserved regions. The alignments before optimizing the structural 

conserved regions are done with gapped alignment by Algorithm 4.1. From the figure, it can 

be seen clearly that the above iterative algorithm significantly improved the alignment of the 

structural conserved regions. The distributions of ak for sdr and proteasome families are 

shown in Figure 4.5. For each structure, about 75% of the aligned positions in the optimized 

alignments have smaller ak values than the unoptimized (gapped) alignments. The changes of 

wRMSD for regions ak ≤ a , ak ≤ a  + σ, ak ≤ a  + 2σ, and all ak are shown in Table 4.3. For 

each structure, the wRMSD for the whole structure increases, but the wRMSDs for the first 

three regions decrease and the overall alignment is improved by achieving better alignments 

for the conserved regions. 
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a. Alignment of sdr family before optimizing 
the conserved region 

b. Alignment of sdr family after optimizing 
the conserved region 

  

c. Alignment of proteasome family before 
optimizing the structural conserved regions 

d. Alignment of proteasome family 
optimizing the structural conserved regions 

Figure 4.4 Alignment of short-chain dehydrogenases/reductases (sdr) and proteasome 
families before and after optimizing the structural conserved regions. Positions are colored 
by number of standard deviations from average with black ak ≤ a , peach a  ≤ ak ≤ a  + σ, 

brown a  + σ ≤ ak ≤ a  + 2σ, and gray ak > a  + 2σ 

Table 4.3 wRMSD before and after optimizing conserved regions  
for sdr and proteasome families 

Region ak ≤ a  ak ≤ a  + σ ak ≤ a  + 2σ all 

Sdr (before/after) 2.20,    1.84 2.60,    2.40 3.09,    3.12 3.80,    4.11 

Proteosome (before/after) 3.46,    2.31 3.83,    3.01 4.18,    3.69 6.17,    6.94 
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a. sdr family b. proteasome family 

Figure 4.5 The distribution of ak 

 



CHAPTER 5 

MINING RNA TERTIARY MOTIFS 

5.1 Introduction 

An RNA motif is a short fragment of RNA (continuous or non-continuous) that appears 

repeatedly in a variety of RNA molecules and reflects specific local sequential or structural 

arrangement of RNA molecules. Identifying RNA motifs is an important step for 

understanding RNA structures and their functions [Leontis03], because natural selection in 

molecular evolution suggests that motifs with an important role are biased to appear. 

RNA motifs have been classified into three types: A sequence motif is a common 

fragment of RNA sequences. A secondary motif is a common pattern of RNA base pairing 

relations, which form the scaffold of RNA structures and serve important biological roles like 

regulating cellular processes. A tertiary motif [Tamura02, Batey99, Hermann99] is a 

common pattern of spatial interactions between nucleotides that is related to biological 

functions such as stabilizing tertiary structures or binding metal ions. Although tertiary 

motifs are important for RNA folding and function, current RNA motif identification 

algorithms focus on finding sequence and secondary motifs, not tertiary motifs. 

In this chapter, which includes joint work with Jun Huan and others, I apply graph 

database mining method to identify RNA tertiary motifs. The goal is automated motif 

discovery by (1) modeling RNA structures as graphs and (2) mining a graph database to 
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identify common subgraphs (tertiary motifs) from RNA. I represent the 3D structures of 

RNA molecules as a database of structure graphs, discover common subgraphs with a 

subgraph mining algorithm, and build consensus motifs (representatives of subgraphs in 

same groups) by geometric algorithms. 

Each RNA structural graph includes three types of edges: backbone edges that encode 

connectivity along the primary sequence of an RNA molecule, base pair edges that encode 

base pair interaction of nucleotides, and contact edges that encode non-local contacts from 

the tertiary structure of the molecule. Thus I capture aspects of RNA primary, secondary and 

tertiary structures in the graph. 

The frequent subgraph mining algorithm by Huan et al. [Huan03] is used to identify the 

frequently occurring subgraphs in a collection of RNA structure graphs. For each group of 

subgraphs, I derive consensus motifs by applying a multiple structure alignment algorithm 

that classifies mirror symmetric subgraphs as right or left handed and iteratively finds local 

optimal solution (consensus motif). With the alignment algorithm, I show that the aligned 

tertiary motifs fit well with a 3D Gaussian distribution model. 

I demonstrate the overall utility of the algorithm on transfer RNA (tRNA) and ribosome 

RNA (rRNA). tRNA and rRNA are selected because of their abundance in known RNA 

structures and the extensive manual study in the SCOR database [Tamura04]. SCOR is a 

comprehensive database for recording RNA secondary and tertiary motifs that classifies 

RNA information into structural classification, functional classification, and tertiary 

interaction. By comparing the mined RNA tertiary motifs to the collections of motifs in 

tertiary interactions in SCOR, I show that this graph mining method can find known tertiary 

motifs, plus novel ones. 
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5.2 Related Work 

Many RNA motif identification algorithms have been developed with various 

assumptions. Below, I review some major algorithms, which are classified into four groups. 

The first group of motif identification algorithms involves manual processing to identify 

tertiary motifs. Klosterman et al. [Klosterman04] described examples of newly found RNA 

tertiary motifs, including extruded helical single strand, internal loop triples, and U-turns in 

internal loops. All these tertiary motifs are observed manually, but not discovered 

automatically by tools. 

The second group of motif identification algorithms finds sequence motifs only. For 

example, Morgante et al. [Morgante05] use a graph representation of sequence and find 

common non-consecutive motifs for two or more sequences. Rajasekaran et al. 

[Rajasekaran05] find common sequence of length l with Hamming distance of d in t 

sequences of length n. Zhao et al. [Zhao05] find the similar DNA motifs based on a permuted 

Markov model. 

The third group of motif identification algorithms uses simplified representations of RNA 

structures to find common structural motifs. COMPADRES [Wadley04] reduces RNA 3D 

structure to a sequence of contiguous P and C4’ atoms and calculates and clusters the 

pseudo-dihedrals defined by P and C4’ atoms. Huang et al. [Huang05] cut an RNA sequence 

into 6-nt fragments, compare their RMSD values, and cluster into a hierarchical structure by 

the unweighted pair group method with arithmetic mean (UPGMA). The structural motifs 

discovered by COMPARES and Huang et al. are limited to short consecutive sequences since 

they use no knowledge of secondary and tertiary interactions. 

The fourth group of motif identification algorithms uses structure alignment to derive 
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tertiary motifs. ARTS [Dror05], which stands for alignment of RNA tertiary structures, 

compares two RNA sub-structures with sizes from two to thousands of nucleotides. It uses a 

set of base pairs as seed, compares their minimum RMSD every two consecutive base pairs, 

extends to the whole structures, and scores the matching. RAG [Gan04] represents RNA 

secondary structure as tree and dual-graph motifs, enumerates all possible motifs, and 

clusters based on topological characteristics. These methods have difficulty finding tertiary 

motifs because they do not consider spatial interactions. 

In previous study, graph modeling and graph mining have been successfully applied to 

analyze 3D protein structures [Huan04]. Adapting the same technique to RNA analysis is 

non-trivial because of the following reasons: (1) Modeling RNA structure is different from 

that of protein structure: RNA structures are much larger and less stable than protein 

structures. (2) RNA is composed of 4 residues rather than 20 in proteins, which means that 

RNA graph mining has smaller set of node labels. 

5.3 Algorithms for Mining RNA Tertiary Motifs 

First, I define labeled graphs, which serve as the formal base of the graph representation 

of RNA molecules, and the data structure used by the frequent subgraph mining algorithm. 

Second, I discuss constructing graph representations for RNA molecules. Finally, I introduce 

the novel structure alignment algorithm for building consensus motifs. 

5.3.1 Labeled Graphs and Frequent Subgraph Mining Algorithms 

A labeled graph G is a quadruple G = (V, E, Σ, λ). V is a set of nodes, E ⊆ V×V is a set of 

undirected edges joining distinct nodes, Σ is a set of node labels and edge labels, and the 
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labeling function λ defining the mappings from nodes and edges to their labels: V ∪ E → Σ. 

The size of a graph G is the cardinality of its node set V.  A graph database GD is simply a 

group of labeled graphs. Figure 5.1 shows a graph database with three labeled graphs. The 

labels of nodes and edges are specified within the nodes and along the edges for each graph. 

Figure 5.1 A database GD of three labeled graphs 

From the graph theory, I formalize the search for tertiary motifs as the search for 

commonly occurring subgraphs in a group of graphs. A fundamental part of the frequent 

subgraph mining algorithm is to decide whether a subgraph G occurs in another graph Go. To 

make this more precise, I define that a graph G = (V, E, Σ, λ) is subgraph isomorphic to Go = 

(Vo, Eo, Σo, λo) if there exists a one-one mapping f : V →  V' such that: 

∀ u ∈ V, λ (u) = λo(f(u)), 

∀ u, v ∈ V, (u, v) ∈ E ⇒ (f(u), f(v)) ∈ Eo, 

∀ (u, v) ∈ E,  λ(u, v) =λo(f(u), f(v)). 

The one-one mapping f is defined as a subgraph isomorphism from G to Go. Figure 5.1 

shows a subgraph isomorphism f: q1 → p2, q2 → p1, and q3 → p3 from graph Q to P, hence 

graph Q occurs in P through the subgraph isomorphism f. Huan et al. [Huan04] show an 

example of using labeled graphs in protein structures. 

Given a graph database GD, which contains a set of graphs, the support of a subgraph G 

is the fraction of graphs in GD in which G occurs. Given a threshold 0 ≤ σ ≤ 1, I define G to 
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be frequent if its support is at least σ. The goal of frequent subgraph mining is to identify all 

frequent subgraphs from a graph database GD with support threshold σ. Figure 5.2 shows all 

six frequent connected subgraphs with σ =1 from the three graphs of Figure 5.1. 

Figure 5.2 All frequent connected subgraphs from G in Figure 5.1  
with support threshold σ = 100% 

I use the Fast Frequent Subgraph Mining algorithm (FFSM), which is competitive or 

outperforms other state-of-art subgraph mining algorithms [Huan03]. 

5.3.2 Graph Modeling of RNA Molecules 

In my graph representation of an RNA molecule, each node represents one nucleotide and 

each edge represents the connection for two nucleotides. I generate RNA graphs from RNA 

structures in the following way: 

RNA molecules consist of four different nucleotides with the same backbone but 

different bases –– A, C, G, and U. In the graph representation, each node corresponds to a 

nucleotide and is labeled either with purine (A and G) or pyrimidine (C and U). I reduce the 

alphabet to two because these nucleotides do not have significant structural differences, and 

it is common that mutated and wild-type RNAs have the same motif with different 

nucleotides [Leontis03]. I have tried the alphabet of all four symbols, but then I find very few 

tertiary motifs. 

I generate three types of edges to represent RNA primary, secondary, and tertiary 
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structures in the following priority order: 

a backbone edge connects two contiguous nucleotides, 

a base pair edge connects nucleotides recorded as base paired in NDB [Berman92], 

a contact edge connects spatial neighboring nucleotides within 8Å. 

Backbone and base pair edges are labeled by their types. For each nucleotide pair, contact 

edges are labeled by discretized distances in the following way: Each nucleotide is abstracted 

as two points, its phosphorus atom and the geometric center of its sugar ring (since most 

tertiary interactions involve the phosphate and sugar groups. I define the distance between 

two nucleotides as the shortest distance between their abstracted points, and discretize this 

into distance bins, detailed in section 5.4.2. 

I create one graph for each RNA structure, collect all the graphs into a graph database, 

and use the FFSM algorithm [Huan03] to mine frequent subgraphs. 

5.3.3 Constructing Consensus Motifs with Computational Geometry 

The graph representation in Section 5.3.2 abstracts away some of the precise geometry of 

motifs. After obtaining frequent subgraphs, I construct the corresponding tertiary motifs by 

the atom coordinates in 3D structure, and develop a novel multiple structure alignment 

algorithm that classifies mirror symmetric motifs as right or left handed and finds the optimal 

alignment by minimizing the sum of root mean squared distance (RMSD), which is widely 

used in measuring structure similarity in bioinformatics. 

Given n motifs, G1, G2, …, Gn, each with m points in correspondence, e.g. pi1, pi2, …, pim 

for motif Gi, I define the average motif G  with points ∑
=

=
n

i

ikk p
n

p
1

1
 for 1 ≤ k ≤ m, and 

define RMSD as the square root of the average of all squared pairwise distances between 
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motifs, 
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, where n(n–1)/2 is the total number of motif pairs 

and m is the number of points in each motif. Since n and m are fixed, I can look for rigid 

transformations that minimize the summation. As mentioned in Chapter 4, I observe that the 

sum of all squared pairwise distances between n motifs equals n times the sum of squared 

distances to the average motif G , i.e. ∑∑∑∑∑
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To minimize RMSD, I translate and rotate/reflect motifs in 3D space to minimize the 

target function 
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minarg , where Ri is a 3×3 

rotation/reflection matrix and Ti as a 3×1 translation vector for motif Gi. Matrix Ri can be 

either a rotation (determinant = 1) or reflection (determinant = –1). After minimization, I 

classify all motifs into two handedness groups depending on whether reflection matrix gives 

better RMSD. The following algorithm iteratively aligns all motifs Gi for (1 ≤ i ≤ n) to G , 

classifies mirror symmetric motifs, and updates the coordinates of G  to minimize RMSD. 

Algorithm 5.1. Given n motifs with m points each, classify and align motifs by 

performing the following steps: 

1. Move the centroids of all Gi for (1 ≤ i ≤ n) to the origin. 

2. Calculate the average motif G  and ∑∑
= =

−=
n

i

m

k

kik ppSD
1 1

2
. 

3. Align Gi for (1 ≤ i ≤ n) to G  by the optimal rotation or reflection matrix Ri, calculated 

by using the singular value decomposition (SVD) to determine the maximum 

eigenvalue of the covariance matrix N. 
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4. Calculate ∑∑
= =

−=
n

i

m

k

kiki

new ppRSD
1 1

2
. 

5. If SD – SD
new > ε (1.0×10–5 in tests), update pik = Ripik and SD = SD

new, calculate the 

average motif G , and go to step 3; otherwise, go to step 6. 

6. Set Ri = the product of all the rotation or reflection matrices for G, and classify Gi as 

right or left handed by the determinants of Ri (either 1 or –1). 

This algorithm extends the algorithm presented in Chapter 4, which finds optimal 

alignment in nearly linear time but does not classify the motifs into right and left handed. 

In each iteration, steps 1-5 need O(nm) each and step 6 needs O(n). The proof of 

convergence in Chapter 4 also applies to this algorithm. In experiments reported below, the 

number of iterations is small and the values reached are stable. 

5.4 Experiments 

5.4.1 Data Sets 

A list of selected tRNAs and rRNAs used in this paper is shown in Table 5.1. In total I 

have 20 tRNAs, 3 5s rRNAs, 2 16s rRNAs, and 4 23s rRNAs. There are many examples of 

same RNA from same species binding to different proteins in NDB [Berman92]. I manually 

cleansed the data set with the following criteria to remove redundant ones: 

A. From NDB with cutoff date December 22nd, 2005, I choose RNA with more than 90% 

nucleotides present. 

B. For duplicated structures (from same species with same function), I keep the most 

recent one. If the time is the same, I keep the one with highest resolution. 

C. For two structures with more than 70% of sequence similarity, I keep the more recent 
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one. If the time is the same, I keep the one with higher resolution. 

D. I keep wild-type RNA and remove mutated RNA and synthesized RNA. 

The tRNAs and rRNAs in Table 5.1 are the only available RNA molecules in NDB. Each 

RNA molecule is represented by a four-letter string, known as the protein databank 

identifiers (PDB ID). The fact that I have relatively few structures of rRNAs, some of which 

are large (especially the 23s rRNA), is a potential problem. FFSM determines frequent 

subgraphs by the number of graphs (structures) that have a subgraph, rather than the number 

of times a subgraph is found. This makes sense for identifying common structures in large 

families of related molecules, but I plan in future work to try to modify FFSM to count 

frequency by number of subgraphs for RNA. 

Table 5.1 List of selected tRNAs and rRNAs (before December 22nd, 2005) 

Type Pdb Name 

tRNA 
1ehz, 1yfg, 1fir, 1qf6, 1qu2, 1eiy, 1f7u, 1il2, 1h4s, 2fmt, 1ivs, 1n78, 1j1u, 1j2b, 
1u0b, 1wz2, 1zjw, 1h3e, 2csx, 1ser 

rRNA 

5s 1nkw (chain 9), 1s72 (chain 9), 1yl3 (chain B) 

16s 1fjg, 1pns 

23s 1nkw (chain 0), 1pnu (chain 0), 1s72 (chain 0), 1yl3 (chain A) 

5.4.2 Identifying Tertiary Motifs 

I identify motifs for tRNAs and rRNAs (5s, 16s and 23s) in two separate groups. For each 

group, I generate three different graphs using different bin sizes for contact edges (3, 4, or 

5Å), with cutoff distance 8Å. This cutoff distance is large enough to capture the edges of 

most known tertiary motifs; I have tried larger cutoff distances but found too many contact 

edges, causing “noisy” occurrences of motifs. Lists of all the mined motifs can be found at 
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http://www.cs.unc.edu/~xwang/RNAGraph/. 

Most of the mined motifs contain 4 nucleotides. RNA molecules are quite flexible and 

large frequent motifs are less likely to be found in the same topology. In trying larger cutoff 

distance (e.g. 18Å) for rRNAs, I find the largest mined motifs contain 8 nucleotides. 

I compare the results to SCOR [Tamura04], which is a comprehensive database of RNA 

motifs identified by manual. As mentioned in section 5.3.2, the focus is to identify motifs 

that are involved in backbone interactions within a single chain, which fall into the tertiary 

motifs category in SCOR. Because I use the phosphorus, which is between two nucleotides, 

as one of the two points representing a nucleotide, I allow a shift of one nucleotide when 

comparing mined motifs to those of SCOR. 

Note that all the motifs discussed in this paper involve backbone interactions only. I do 

not consider the backbone-base interactions. The contact distances are longer in the 

backbone-base interactions than the backbone-backbone interactions, and the number of 

contact edges and the noise in the data (motifs without biological meaning) significantly 

increase. 

For rRNA, I choose a support threshold σ of 70% –– that is, motifs must occur in 7 of the 

9 graphs in the family to be considered frequent. The threshold is high because the 16s and 

23s rRNAs are large and have many motifs. For example, for bin sizes of 3, 4, and 5Å I find 

75, 260 and 152 distinct subgraphs in the 23s rRNA 1s72, respectively. 

The ribose zipper is a tertiary motif formed by hydrogen bonds among the 2’–OH groups 

of sugars at two anti-parallel backbone strands. I identify 37 of the 43 ribose zippers recorded 

in SCOR (86%) for 23s rRNA 1s72. The number of found ribose zippers using different bin 

sizes is shown in Table 5.2. Note that all 37 identified ribose zippers are found with bin size 
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4Å, which occupies 14% of 260 total distinct subgraphs. 

Table 5.2 Ribose zippers found in 23s rRNA 1s72 

Bin size 3Å 4Å 5Å 

Number of identified ribose zippers 12 37 8 

Total found distinct subgraphs 75 260 152 

 

There are five subcategories of ribose zippers (canonical, single, reverse single, naked 

and Cis) in 1s72 and I identify instances of each of them. Figure 5.3 shows a canonical ribose 

zipper (nucleotides 1078-1079 and 2077-2078, 23s rRNA 1s72). 

 

Figure 5.3 Canonical ribose zipper (nucleotides 1078-1079 and 2077-2078, 23s rRNA 1s72). 
Yellow ball is phosphorus, red ball is oxygen, and blue line is hydrogen bond 

 

Figure 5.4 U turn motifs form by 5 continuous nucleotides (nucleotides 394-398, 23s rRNA 
1s72), found by bin size = 4Å. Yellow ball is phosphorus and red ball is oxygen 
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Figure 5.5 Tertiary interaction formed by a hydrogen bond (blue line) between two sugars 
and a hydrogen bond (blue line) between sugar and phosphorus (nucleotides 66-67 and 107-

108, 23s rRNA 1s72), found by bin size = 3Å 

I have also identified motifs classified as secondary motifs in SCOR. For example, Figure 

5.4 shows a U-turn motif formed by five contiguous nucleotides (394-398); this method 

identifies four of them (nucleotides 394-395 and 397-398, 23s rRNA 1s72). 

By carefully checking the mined motifs that do not match any existing motifs in SCOR, I 

find some interesting structures that could be good candidates for tertiary motifs. For 

example, Figure 5.5 shows a tertiary motif with one hydrogen bond between two sugars and 

another hydrogen bond between sugar and phosphorus (nucleotides 66-67 and 107-108, 23s 

rRNA 1s72). 

For tRNA, I choose a support threshold σ of 20%, that is, motifs must occur in 4 of the 

20 graphs in the family to be considered frequent. The threshold is much lower because 

tRNA is quite flexible and is much smaller than the large rRNA. I find several good 

candidates for tertiary motifs, available at http://www.cs.unc.edu/~xwang/RNAGraph/. 

For the 20 tRNAs I choose, SCOR records only 5 tertiary motifs in 3 tRNA: 1ehz, 1yfg 

and 1fir. All the tertiary motifs are large (the smallest having 7 nucleotides), and no two 

tertiary motifs share the same topology. So for tRNA, I cannot compare the mined tRNA 

motifs with SCOR, because the support threshold of tertiary motifs of tRNAs in SCOR is too 
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low (σ < 5%). 

5.4.3 Consensus Motifs 

I apply the multiple structure alignment algorithm to classify the structures of found 

tertiary motifs and generate consensus motifs. The alignment is done on a laptop with 

Pentium M 1.8GHz CPU and 784M memory. Table 5.3 shows the performance of aligning 

12 motif groups by bin size = 4Å. The running time is collected from 1,000 tests on each 

motif group. I can see that when I classify mirror symmetric motifs, the RMSD is 

significantly decreased, along with the number of iterations and running time. 

All the motif groups contain mirror symmetric motifs and better alignment is achieved 

when using the algorithm to classify and separate motifs by handedness, as shown in Figure 

5.6. For the identified frequent motif groups, I did not find strong relationship for the 

handedness with the functions of motifs and the type of motifs. For example, all five types of 

ribose zippers can occur in both right and left handedness. It is an interesting problem 

whether all the tertiary motifs are independent of handedness and it is possible that the 

handedness is important for certain motifs. 

  

a. Aligning right hand occurrences of motif 
#12 

b. Aligning left hand occurrences of motif 
#12 
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c. Consensus motif for right handed 
occurrences 

d. Consensus motif for left handed 
occurrences 

Figure 5.6 Example of aligning instances of motif #12. Two points in each of the four 
nucleotides are colored as yellow, red, green and blue. Blue line is backbone edges and 

black line is contact edges 

Table 5.3 Performance for 12 mined motifs by bin size = 4Å 

Motif # of subgraphs Motif Motifs with reflection Right handed Left handed 

ID all, 1s72, zipper RMSD RMSD, iterations, time(s) # RMSD # RMSD 

1 160,    19,    0 4.11 3.52,    6,  0.095 ± 0.005 81 3.44 79 3.47 

2 202,    45,    7 3.93 3.53,    8,  0.158 ± 0.004 106 3.38 96 3.44 

3 38,      8,    0 4.40 3.64,    4,  0.016 ± 0.005 20 3.56 18 3.72 

4 10,      1,    0 3.54 3.35,    5,  0.005 ± 0.005 6 2.95 4 2.78 

5 79,    21,    0 4.50 3.91,    5,  0.039 ± 0.003 41 3.74 38 3.93 

6 53,    10,    0 3.81 3.60,    8,  0.041 ± 0.003 28 3.49 25 3.59 

7 27,      7,    0 3.73 3.36,    7,  0.018 ± 0.004 15 3.29 12 3.04 

8 396,  116,    5 4.32 3.80,    7,  0.288 ± 0.013 219 3.76 177 3.79 

9 28,      7,    0 4.40 3.94,    4,  0.011 ± 0.004 15 3.83 13 3.92 

10 16,      5,    0 3.94 3.85,    9,  0.014 ± 0.005 10 3.88 6 3.50 

11 353,    76,  11 3.89 3.76,  16,  0.950 ± 0.576 192 3.54 161 3.72 

12 361,    86,  24 4.05 3.56,    8,  0.382 ± 0.230 218 3.51 143 3.54 
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5.4.4 Statistical Analysis of Consensus Motifs 

Deriving the statistical description of the aligned motifs is an intriguing question that has 

significant theoretical and practical implications. I test the null hypothesis that the distances 

of n atoms at a fixed position k to the average 
k

p  are consistent with the distances from a 3D 

Gaussian distribution. The Gaussian is most used distribution function due to the central limit 

theorem of statistics, and previous studies hint that Gaussian is the best model to describe the 

aligned structures [Alexandrov04]. I adopt the Quantile-Quantile Plot (QQ plot) procedure 

[Evans00] to test the fitness of the aligned data to the 3D Gaussian model. Figure 5.7a shows 

QQ plot for phosphorus of first node in motif #12. The y-axis is the distance from each motif 

to the average for a fixed position and the x-axis is the quantile data from 3D Gaussian. The 

correlation coefficient R2 = 0.993, which suggests that the data fits a 3D Gaussian model 

reasonably well. I carried out the same experiments for all the positions and the collected 

histogram of the correlation coefficient R2 is shown in figure 5.7b. I identify that more than 

88% of the positions I check have R2 > 0.9. 

  

a. QQ plot for phosphorus of first node in 
motif #12 

b. Histogram of R2 for all aligned positions 

Figure 5.7 3D Gaussian distribution analysis of the distances from each point to average 
motif 

 



CHAPTER 6 

CONCLUSION 

In this dissertation, I present three works that solve different problems for RNA and 

protein structures by exploiting different aspects of RNA and protein geometric properties. I 

show that when the proper geometric properties are extracted for corresponding structural 

problems, geometric algorithms solve the problems efficiently. 

In the first work, I present the RNABC program that produces new clash-free 

conformations with acceptable geometry for a large fraction of RNA suites with local 

backbone problems. To my knowledge, RNABC is the first piece of software that aims to 

correct identified local problems in the backbone conformation of RNA structures. RNABC 

is freely available on multiple platforms, straightforward to run, executes quickly, and is 

suitable for routine crystallographic use. 

While I have performed tests on correcting errors in completed structures, I believe that 

the best way to use RNABC is to incorporate it into the process of crystallographic 

refinement. By improving the geometry of RNA backbone earlier in the process of 

refinement and rebuilding, one can hope to improve the phases and map clarity at the next 

iteration, as has been done very successfully for protein backbone and sidechains 

[Arendall05]. 

Although RNABC does not guarantee to output the optimally correct answer every time, 

it seems probable that on-line diagnosis in the MolProbity validation site followed by 
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RNABC calculations and then re-refinement could significantly improve backbone 

conformation in almost any RNA crystal structure. These changes are often sufficiently large, 

and in sufficiently critical positions, that they would affect structure/function conclusions 

about biologically important RNA molecules. 

In the second work, I analyze the problem of minimizing the multiple structure alignment 

using weighted RMSD. I show that the wRMSD for all pairs is the same as the wRMSD to 

the average structure. I also show that in general, translations and rotations cannot be 

decoupled when minimizing weighted RMSD, which makes the problem hard. To my 

knowledge, it is the first to achieve the optimum RMSD for both rotations and translations in 

weighted multiple structure alignment; previous works [Sutclife87, Verboon95] focus on 

optimizing rotations only. 

Based on the property of the average structure, I create an efficient iterative algorithm to 

achieve optimum translations and rotations in minimizing wRMSD and prove its 

convergence. The 10,000 tests on each of 23 protein families from HOMSTRAD show that 

Algorithm 4.1 reaches the same local minimum regardless of the starting positions of 

structures, so the local minimum is most probably the global minimum. I further discuss the 

effects of outliers in the alignment using RMSD and present an iterative algorithm to find 

structural conserved region by iteratively assigning higher weights (by modeling the B-

factors and deviations from the average positions) to better aligned positions until reaching 

convergence. 

In the third work, I present an automated method of mining graph database to identify 

tertiary motifs in RNA structures. In this method, I defined a graph representation of RNA 

molecules and applied frequent subgraph mining algorithm for mining tertiary motifs. In 
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post-processing of the tertiary motifs, I develop a multiple structure alignment algorithm for 

classifying mirror symmetric motifs and finding consensus motifs, and show that the aligned 

motifs follow 3D Gaussian distribution model. The results show that the automated method 

can discover tertiary motifs in RNA molecules, despite limitations on the number of available 

RNA structures, and the fact that I included RNA only, but not the proteins that rRNA, in 

particular, interacts with. 

6.1 Future Work 

All three works in this dissertation present opportunities for extension in the future. For 

the first work, I plan to improve the RNABC program by analyzing the spatial arrangements 

of phosphate and base positions and allowing small movements of the anchored atoms to 

improve the ability to find alternative conformations from badly deviant starting 

conformations. The current RNABC program corrects one dinucleotide at a time; I plan to 

build a software pipeline to automatically correct longer strands of RNA backbone. 

Furthermore, I plan to build similar programs to find alternative conformations for some 

complex protein sidechains. 

For the second work, the extension from RMSD to wRMSD and the property that 

average structure is the consensus lay a solid foundation for structure similarity analysis and 

provide new hints on many current questions. I plan to develop new algorithms to solve 

problems like query databases for similar structures, perform all-to-all structure comparison, 

detect dissimilar structure, determine structural conserved region, and calculate structure-

based phylogenetic trees for RNA and protein families. 

For the third work, I plan to use graph database mining to find fingerprint (i.e. distinct 
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motif) candidates for RNA families, find RNA and protein interface motifs, and investigate 

evolutionary relations among the tRNAs. Statistical analysis of the aligned RNA subgraphs is 

intriguing and I plan to investigate how Gaussian distribution model may help cluster RNA 

tertiary motifs. 
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APPENDIX I: 

Theorem 4.4 The optimum translation Ti and the optimum rotation Ri for structure Si (1 ≤ 

i ≤ n) satisfy the following n linear equations, of which n–1 are independent: 
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Given all optimal rotations Ri for (1 ≤ i ≤ n) and one translation Tj (1 ≤ j ≤ n), the 

remaining n–1 optimal translations Ti for (1 ≤ i ≤ n, i ≠ j) can be obtained by 
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Proof: I aim to find optimal rotations Ri and translations Ti to minimize the target 

function: 
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Assume that I know the optimal rotations Ri for each structure Si (1 ≤ i ≤ n) and I need to 

find optimal translations Ti.  

Move each structure Si by a vector Ai, where Ai satisfies equation: 
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The new average structure S  from qik (1 ≤ i ≤ n, 1 ≤ k ≤ m) has points:  
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So the target function after translation becomes: 
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From the definition of Ai, I have ∑∑
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 for (1 ≤ i ≤ n), so the second 

term is zero and I am left with the first and third terms. The first term does not depend on Ti 

for (1 ≤ i ≤ n) and wik ≥ 0 for (1 ≤ i ≤ n, 1 ≤ k ≤ m), so the target function is minimized by 

setting rik = 0. 

Expand rik and re-arrange, so: 
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So the optimum translation is achieved when Ti = RiAi, i.e. Ti satisfies the following n 

linear equations: 
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Next I show that at most n–1 equations for Ti (1 ≤ i ≤ n) are independent. If I sum the 

right side of the n equations, re-arrange the order of the summation, reduce the term ∑
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The summation of the left right side of n equations equals to the sum of the right side of n 

equations, so at most n–1 equations are independent. 

Last I solve Ti (1 ≤ i ≤ n) from the n equations. Divide the ith equation by ∑
=

m

k

ikw
1

 for (1 ≤ 

i ≤ n) and rearrange, I have: 
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Rewrite n equations in determinant form, negate equation 1 and add to equations 2,…, n, 

I have: 
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By fixing one translation Tj (1 ≤ j ≤ n), the remaining n–1 translations are:  
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