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ABSTRACT

Rachel C. Nethery: Special Topics in Latent Variable Models with Spatially and Temporally
Correlated Latent Variables

(Under the direction of Young Truong)

The term latent variable model (LVM) refers to any statistical procedure that utilizes information

contained in a set of observed variables to construct a set of underlying latent variables that drive the

observed values and associations. Independent component analysis (ICA) is a LVM that separates

recorded mixtures of signals into independent source signals, called independent components (ICs).

ICA is popular tool for separating brain signals of interest from artifacts and noise in electroen-

cephalogram (EEG) data. Due to challenges in the estimation of uncertainties in ICA, standard

errors are not generally estimated alongside ICA estimates and thus ICs representing brain signals

of interest cannot be distinguished through a statistical hypothesis testing framework. In Chapter 2

of this dissertation, we propose a bootstrapping algorithm for ICA that produces bootstrap samples

that retain critical correlation structures in the data. These are used to compute uncertainties for ICA

parameter estimates and to construct a hypothesis test to identify ICs representing brain activity,

which we demonstrate in the context of EEG functional connectivity. In Chapter 3, we extend this

bootstrapping approach to accommodate pre-ICA dimension reduction procedures, and we use the

resulting method to compare popular strategies for pre-ICA dimension reduction in EEG research.

In the final chapter, we turn our attention to another LVM, factor analysis, which utilizes

the covariance structure of a set of correlated observed variables to model a smaller number of

unmeasured underlying variables. A spatial factor analysis (SFA) model can be used to quantify

the social vulnerability of communities based on a set of observed social variables. Current SFA

methodology is ill-equipped to handle spatial misalignment in the observed variables. We propose a

joint spatial factor analysis model that identifies a common set of latent variables underlying spatially

misaligned observed variables and produces results at the level of the smallest spatial units, thereby

minimizing loss of information. We apply this model to spatially misaligned data to construct an
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index of community social vulnerability for Louisiana, which we integrate with Louisiana flood data

to identify communities at high risk during natural disasters, based on both social and geographic

features.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

With the rise of technology and the resulting advances in data collection and storage capabilities,

so too have statistical procedures used to reduce the dimensionality of large datasets and dissect

complicated data structures experienced a surge in popularity. The term latent variable model (LVM)

refers to a broad class of statistical procedures that model a set of observed variables as a function

of a set of unobserved or latent variables. Latent variable modeling procedures utilize information

contained in the set of observed variables to construct a set of latent variables underlying the observed

variables that drive their values and the connections between them. These latent variables, in

conjunction with quantifiers of the relationships between the observed and latent variables which

are estimated by latent variable modeling procedures, are used for a variety of purposes including

dimension reduction and data summarization, identification of variable clustering structures, and

unmixing of recorded signals. Hence, LVMs have a wide range of applications, particularly in big

data settings.

In many application areas of LVMs, particularly in the biomedical and public health arenas,

data are collected over time and/or space, and observations from the same variable contain temporal

and/or spatial correlation, making standard LVMs invalid due to their assumption of independent

observations within variables. Thus, extensions to the standard models have been developed to

allow for spatial or temporal correlation in the latent variables, which induces the correlation in the

observed variables. Though general methodologies exist for accounting for spatial and temporal

correlation in latent variable models, they are often inadequate to address the challenges of real

data and need to be extended further to increase their applicability. In this chapter, I review the

literature on two types of LVMs, one of which allows for temporally correlated latent variables and

one of which allows for spatially correlated latent variables. I then identify challenges presented by
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biomedical and public health data that cannot be sufficiently resolved with existing latent variable

model methodology.

1.2 Independent Component Analysis

Blind source separation (BSS) techniques are a class of statistical and machine learning methods

that can be applied to multivariate data generated by the linear mixing of signals in order to recover

the original, unmixed signals, also known as latent sources of activity. Often, the use of BSS

methods is motivated by a situation akin to the classic “cocktail party problem”, in which the mixing

conversations of a roomful of mingling partygoers are being recorded throughout the party by some

fixed number of devices/sensors placed in various locations across the room. Afterwards, the goal is

to extract the speech of each individual partygoer from the mixed recordings and understand how the

voice of each partygoer contributed to the recording from each sensor. In this situation, the recordings

from the sensors are the multivariate mixture data, and the voices of the individual partygoers are

the latent sources of activity. Many types of experiments across a variety of disciplines collect data

in a fashion that results in mixtures of signals analogous to the recordings from the cocktail party,

making BSS a topic of interest for many researchers.

1.2.1 The ICA Model

Independent component analysis (ICA) falls within the scope of BSS methods, distinguishing

itself from its BSS kinfolk by its aim of uncovering latent sources of activity that are statistically

independent of one another, also called independent components (ICs). ICA has proven to be a

useful, data-driven tool for a diverse range of applications; in particular, it has become popular as a

means of analyzing data collected from biomedical devices, which often record a mixture of signals

originating from sources of interest, nuisance sources such as irrelevant bodily processes (known as

artifacts), and noise. Functional magnetic resonance imaging (fMRI), electroencephalogram (EEG),

and electrocardiogram research have all been fruitful areas of ICA application and development

(Calhoun and Adali, 2006; He et al., 2006; Makeig et al., 1996; McKeown et al., 1997; Vigário et al.,

2000; Wisbeck et al., 1998).
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Let k denote the number of sensors/recording locations, T denote the number of discrete time

points at which recordings are made. Then, the ICA model can be written mathematically as

X = AS, (1.1)

whereX is the k × T matrix of observed mixtures with each row containing the recording from a

given sensor over time (each column, thus, contains the recordings from all of the sensors at a single

point in time). Each row of the k × T matrix S contains the unobserved values of a single IC over

time. Finally, A is a k × k matrix of linear mixing coefficients which represent the contribution

of each IC to the recording at each sensor. The columns of A are sometimes called spatial maps,

as each column maps a single IC back onto the recording space. Henceforth, we refer toX as the

data or mixture matrix,A as the mixing matrix, and S as the IC matrix. For convenience, we also

define the unmixing matrix asW = A−1. Note that this model formulation assumes that the number

of sensors, k, is equal to the number of ICs. Below we address the procedure applied to relax this

assumption when the number of ICs is assumed to be less than the number of sensors.

The primary goal of ICA is to obtain an estimate of the unmixing matrix, denoted Ŵ , in a

manner that imposes as few assumptions as possible on the form and the distribution of the ICs. Given

Ŵ , the estimates of the ICs can then be constructed by Ŝ = ŴX . Most ICA estimation algorithms,

such as the popular FastICA (Hyvarinen and Oja, 2000) and Infomax (Bell and Sejnowski, 1995)

algorithms, take the approach of finding a Ŵ that maximizes the statistical independence in the

corresponding estimated ICs in Ŝ.

1.2.2 Popular Approaches to ICA Estimation

1.2.2.1 Entropy and Mutual Information

If the goal of ICA is to uncover maximally independent ICs, before embarking on the details

of estimation schemes it is necessary to first understand how to measure statistical independence.

A popular means of measuring the independence of random variables is through functions of the

entropy. Entropy (also called the differential entropy when referring to continuous random variables)

measures the degree of structure and predictability of a random variable, and larger entropy indicates

less structure and predictability (Hyvarinen and Oja, 2000). The entropy of a continuous random
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vector z1 is defined as

H(z1) = −Epz1 (log(pz1(z1))) (1.2)

where pz1 is the probability density function (pdf) of z1. The joint entropy of n random vectors,

z1, ...,zn is defined as

H(z1, ...,zn) = −Epz1,...,zn (log(pz1,...,zn(z1, ...,zn))). (1.3)

One of the most useful functions of entropy for ICA estimation is the multivariate mutual

information, which is defined for a collection of vectors, z1, ...,zn, as

I(z1, ...,zn) = Epz1,...,zn

(
log
(
pz1,...,zn(z1, ...,zn)

pz1(z1) · · · pzn(zn)

))
=

n∑
j=1

H(zj)−H(z1, ...,zn). (1.4)

The mutual information is equivalent to the Kullback-Leibler divergence, a statistical measure of

distance, between the joint density and the product of the marginal densities of any collection

of random vectors. It follows immediately, then, that mutual information could be an appropriate

measure independence of random vectors, given that the product of the marginal densities is equivalent

to the joint density when the random vectors are independent. The definition of entropy can easily

be extended to accommodate stationary processes, as explained by Comon and Jutten (2010), and

we will make no distinction in notation between the entropy and mutual information of a stationary

process and those of a random vector.

To the best of our knowledge, the mutual information approach to ICA estimation was first

proposed by Comon (1994). In the context of ICA, we want to uncover maximally independent ICs;

thus, we would need to minimize the mutual information for the rows of S. Because S = WX , this

can be done through a minimization of the mutual information with respect toW . In doing this, we

find a value forW such that the distance between the joint density and the product of the marginal

densities of the ICs is minimized, resulting in approximately statistically independent ICs (Hyvarinen

and Oja, 2000).

We denote the rows of S as s1, ..., sk and the rows of W as w1, ...,wk. Comon and Jutten

(2010) show that minimizing the mutual information between s1, ..., sk is approximately the same as

4



minimizing the following criteria with respect toW :

C(W ) =
k∑
j=1

H(wjX)− log(det(W )). (1.5)

In practice, when using this estimation method it is typically assumed that the observations of

the same IC over time are independent and identically distributed (i.i.d.), resulting in C(W ) =∑T
t=1(

∑k
j=1H(sj(t)) − log(det(W ))). To minimize equation 1.5, we must also estimate the

entropy. Entropy estimation is a complex topic and will not be addressed here. Details on common

procedures used for this purpose can be found in Comon and Jutten (2010).

The minimization of the mutual information is a very intuitive means of finding ICs. The result

of this minimization is an estimate of W with desirable statistical properties (Comon and Jutten,

2010). An advantage of this method of estimation is that it does not require that the data follow the

ICA model in order to produce maximally independent components (Hyvarinen et al., 2001).

As in most classical ICA estimation methods, the assumption that the ICs are nongaussian

distributed is needed for identifiability in the minimization of mutual information. More precisely, in

order for the ICs to be blindly separable, they must not be gaussian with proportional covariance

matrices (Comon and Jutten, 2010), but, because most classical methods assume that the ICs all have

proportional covariance matrices, this reduces to the assumption that they are nongaussian. Hyvarinen

and Oja (2000) explain that any orthogonal transformation of independent gaussian random variables

has the same distribution as the original variables, and, due to this equivalence, the ICA model is only

identifiable up to an orthogonal transformation if more than one of the random variables is gaussian.

Nongaussianity is an assumption that is made in almost all popular ICA algorithms but is difficult

to verify. Furthermore, in practice, methods which minimize mutual information to estimate ICA

parameters typically assume that all the observations from the same IC are independent. In many

applications, the observations from the same IC come from a process such as a time series and are

highly correlated, making this assumption invalid. This assumption is relaxed in methods developed

more recently.
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1.2.2.2 Maximum Likelihood Estimation

Maximization of the likelihood is a common method of parametric statistical estimation, and,

in spite of the fact that little is typically known about likelihoods in the ICA formulation, it can be

applied to solve the ICA problem. To the best of our knowledge, maximum likelihood estimation was

first applied to ICA by Gaeta and Lacoume (1990) and Pham et al. (1992). For the moment, consider

the case where T = 1, making both X and S k × 1 vectors. Let pi(si) denote the distribution of

the ith IC. Then, due to independence, the vector of ICs has joint distribution pS(S) =
∏k
i=1 pi(si).

By a simple transformation of variables, we can see that pX(X) = (
∏k
i=1 pi(wiX))det(W ).

Now, extending this to the case of T > 1 when the time points are assumed to be independent,

pX(X) =
∏T
t=1(

∏k
i=1 pi(wix(t)))det(W ), where x(t) is a column of X . Therefore, we get the

following likelihood forW :

L(W |X) =
T∏
t=1

(
k∏
i=1

pi(wix(t))

)
det(W ) (1.6)

which can be maximized (in practice the log likelihood is maximized) to estimateW .

It should be noted that taking the expected value of the log likelihood renders the negative of the

criteria given in equation 1.5, so that maximum likelihood is approximately equivalent to minimizing

the mutual information when pi is the true distribution of si (Hyvarinen and Oja, 2000). Thus, we

see that, since the two methods are approximately equivalent, maximum likelihood estimation is

also finding the maximally independent components. Moreover, the popular Infomax ICA algorithm

(Bell and Sejnowski, 1995) is equivalent to maximum likelihood estimation under the default model

specifications (Cardoso, 1997).

Although the formulation of the maximum likelihood method seems simple to this point, one

can imagine how estimation using this method is complicated by the fact that the distributions of the

ICs are typically unknown. Generally, estimation of densities is a computationally intensive problem

because it must be done nonparametrically; however, Hyvarinen et al. (2001) prove that IC densities

can be approximated using a simple family of densities, dramatically reducing the complexity of

the problem, while retaining the local consistency of the maximum likelihood estimator. To use

this approach, one only needs to specify whether the densities of the ICs are sub-gaussian or super-

6



gaussian. Several algorithms are provided in Hyvarinen et al. (2001) that perform this approximation

while simultaneously maximizing the likelihood.

The maximum likelihood estimation method for ICA is theoretically simple, as maximum

likelihood is perhaps the most popular estimation method in statistics. The estimators also have

desirable statistical properties under some mild conditions (Hyvarinen et al., 2001). Additionally,

in the case that the distributions of the sources are known a priori, maximum likelihood should be

preferred over the mutual information method, since it can take advantage of this added information

(Comon and Jutten, 2010).

However, like many other ICA estimation methods, maximum likelihood requires that the ICs be

nongaussian and assumes that the observations from the same IC are independent. Moreover, if the

distributions of the ICs are unknown, the user must specify whether the ICs are sub- or super-gaussian

in order to estimate the densities (Hyvarinen and Oja, 2000). This task is often difficult, and an

incorrect choice compromises the good properties of the estimates (Hyvarinen et al., 2001).

1.2.2.3 Estimation by Maximizing Nongaussianity

One of the most popular ICA estimation procedures, FastICA (Hyvarinen and Oja, 2000), is

based on the principle of finding rows of W such that the rows of S = WX are maximally

nongaussian. We first seek to estimate w1 such that w1X equals one of the ICs. We note that

computingw1X is equivalent to summing linear combinations of random variables. By the Central

Limit Theorem, the sum of any two independent random variables is “more gaussian” than either

of the two original variables; thus, if we maximize the nongaussianity of w1X , we should arrive at

a single random variable– specifically, one of the ICs (Hyvarinen and Oja, 2000). We repeat this

procedure forw2, ...,wk. To ensure that we are detecting different ICs each time, after the estimation

of each new component, we can constrain the search space to look exclusively for estimates that

are uncorrelated with all the previous ICs, which is equivalent to orthogonalization under some

conditions which can be imposed through preprocessing (Hyvarinen and Oja, 2000).

The primary challenge in this method is in finding a way to estimate gaussianity. Hyvarinen

and Oja (2000) discuss several methods of quantifying gaussianity. Because gaussian variables

are known to have the largest entropy in any set of random variables with equal variance (Cover

and Thomas, 1991; Papoulis, 1991), certain functions of the entropy can also be used to estimate
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W when approaching the problem from this perspective. FastICA maximizes nongaussianity by

maximizing the negentropy, a function defined as the difference between the entropy of a gaussian

random variable and the random variable of interest (Hyvarinen and Oja, 2000). Then, we wish to

maximize

J(sj) = H(ygaussj )−H(sj) = H(ygaussj )−H(wjX) (1.7)

with respect to wj for j = 1, ...,m, where ygaussj is a gaussian random vector with the same covari-

ance matrix as wjX . However, because the negentropy is difficult to estimate, an approximation is

used in the fastICA algorithm, using methods described in detail in Hyvarinen and Oja (2000).

As implied by the name, one of the major advantages of the fastICA approach is its computational

speed and simplicity and quick convergence (Giannakopoulos et al., 1999). It can also uncover

ICs that are both sub-gaussian and super-gaussian, without the need for the user to specify this

information, making it more user-friendly than the maximum likelihood approach (Hyvarinen et al.,

2001). FastICA is also set apart from maximum likelihood estimation and minimization of mutual

information by its ability to estimate the independent components one-by-one (Hyvarinen et al., 2001).

However, it shares with the previous two estimation methods the difficult-to-verify assumptions of

nongaussianity of the ICs and the independence of observations from the same IC.

FastICA is closely linked to maximum likelihood estimation and minimization of mutual infor-

mation. The equivalence of maximum likelihood and mutual information was shown in the previous

section. Hyvarinen et al. (2001) show further that fastICA is also equivalent to these methods when

the estimates of the ICs are constrained to be uncorrelated (this constraint is built into the default

procedure in the fastICA algorithm). Thus, with appropriate model specifications, which correspond

to the default procedures in the estimation algorithms, these three estimation methods give identical

estimates.

1.2.3 EEG Research and ICA

Since being proposed as a tool to separate artifact and brain activity signals in EEG data by

Makeig et al. (1996), ICA has become wildly popular in EEG research. EEG data is collected using

a helmet containing metal nodes called electrodes which record electrical signals at locations across

the scalp. The recordings from the electrodes are mixtures of signals generated by brain activity,
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artifactual signals, and noise, and the use of ICA is highly recommended for separating brain activity

signals from one another and from noise and artifacts prior to doing inference on EEG data (Delorme

et al., 2001; Delorme and Makeig, 2004; Delorme et al., 2007; Flexer et al., 2005; Joyce et al., 2004;

Jung et al., 1998, 2000; Makeig et al., 1996; Onton et al., 2006; Vigário, 1997).

After applying ICA to EEG data, both the spatial maps and the temporal structure of the ICs are

analyzed to distinguish artifactual ICs from brain activity ICs and, where applicable, to determine

what type of brain activity is reflected in an IC. Different types of brain activity are associated

with electrical signals exhibiting distinct frequencies, also known as rhythms; thus, an analysis of

the power of an IC over a range of frequencies provides insight into what type of brain activity it

represents. Delta rhythms, with frequency in the range 0-4 Hertz (Hz), are typically observed in

humans during sleep or while anesthetized (Schomer and Da Silva, 2012). Theta rhythms have

frequency in the range 4-7 Hz and have been associated with navigation and memory tasks (Schomer

and Da Silva, 2012). With frequency approximately 8-13 Hz, alpha rhythms arise when the brain is

idle and visual attention is diminished, such as during rest with eyes closed (Schomer and Da Silva,

2012). Faster rhythms are associated with wakefulness and information processing (Schomer and

Da Silva, 2012). Many of these rhythms are also distinguishable due to their prominence in a limited

spatial region on the scalp in EEG recordings (Schomer and Da Silva, 2012).

An emerging question of interest in the EEG community that can be investigated using ICA

relates to the functional connectivity of these EEG rhythms. Functional connectivity analyses

aim to uncover functional dependencies between brain areas that are physically separated, i.e.

identify physically separated brain areas that activate simultaneously either during rest or during

the performance of tasks (Friston, 2011). For decades, the brain’s functional connectivity has been

assessed primarily through fMRI (Buckner et al., 2008), but the low temporal resolution of fMRI may

result in high frequency connectivity patterns being missed. Recently, EEG functional connectivity

analyses have become popular as a means of providing insight into the connectivity of high frequency

brain activity (Chen et al., 2008). The recommended approach to EEG connectivity analyses is to

first apply ICA to the data to extract ICs representing the rhythms of interest and then perform source

localization and compute connectivity statistics for these ICs of interest (Chen et al., 2013; Delorme

et al., 2002; Schoffelen and Gross, 2009).
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As this discussion makes clear, the appeal of ICA as a tool to analyze EEG data lies in its

potential to separate the data into ICs with recognizable temporal correlation structures representing

various types of brain activity. Thus, popular algorithms which assume that the realizations from

each IC are independent over time threaten to distort the features of interest in the EEG context.

ICA algorithms that allow for temporal correlation within the ICs are needed in order to properly

characterize the cyclic nature of the signals generated by brain activity.

1.2.4 ICA with Temporally Correlated Sources

Although they have not gained the popularity of FastICA and Infomax, ICA methods which

account for temporal correlation in the ICs have been developed. Pham and Garat (1997) were the

first to develop an ICA estimation procedure that models source autocorrelation, to the best of our

knowledge. This method was followed by the colored ICA (CICA) method of Lee et al. (2011),

which relaxes some of the assumptions of Pham and Garat. CICA is a semi-parametric ICA method

that assumes that the ICs are auto-regressive (AR) time series processes. Rather than maximizing IC

independence through higher order statistics, CICA estimates parameters by maximizing the Whittle

likelihood (Whittle, 1952) of the AR ICs. CICA has been shown to out-perform its competitors

which assume independence within ICs when applied to fMRI data (Lee et al., 2011). The authors

also demonstrate that the parameter estimates have good statistical properties, namely consistency

and asymptotic normality (Lee, 2011).

CICA is an estimation scheme based on exploiting the time series structure of the ICs, in the

frequency domain, to estimate the unmixing matrix,W , and, thereby, the IC matrix S. The procedure

views each IC as realizations from an AR process, i.e. for the jth IC, Sj(t),

Sj(t) = µ+

p∑
h=1

φhSj(t− h) + εj(t), (1.8)

where p is the AR order chosen by model selection and εj(t) is an error term with unspecified

distribution and variance σ2
j . CICA utilizes the properties of AR processes from the frequency

domain approach to perform estimation. The frequency domain approach treats a time series as a

sinusoidal function, a system of periodic sines and/or cosines, and desires to estimate frequencies

(number of sinusoid cycles/time) and explain the cycles in the system (Shumway and Stoffer, 2011).
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The frequency domain analog of the covariance, called the spectral density, can be used to

measure the power of a signal at a given frequency. The spectral densities of the ICs are critical in

the estimation scheme of Lee et al. (2011). For an IC, Sj and a frequency, r, the spectral density

matrix is defined as

gjj(r;S) =
1

2π

∞∑
h=−∞

γ(h;Sj) exp(−irh) (1.9)

where γ(h;Sj) = cov(Sj(t), Sj(t + h)). The condition needed for the existence of g(r;Sj) is∑∞
h=−∞ |γ(h;Sj)| <∞ (Shumway and Stoffer, 2011).

The periodogram can be thought of as the sample spectral density estimator (Shumway and

Stoffer, 2011). For Sj , the periodogram can be defined as

I(rt,Sj) =
1

2πT
ϕ(rt,Sj)ϕ ∗ (rt,Sj) (1.10)

where rt = 2πt/T for t = 0, ..., T − 1 are the Fourier frequencies, ϕ(rt,Sj) is the discrete Fourier

transform (DFT) of Sj(t), and ϕ∗ is the conjugate transpose of ϕ (Lee et al., 2011).

The CICA algorithm performs estimation by iteratively updating the unmixing matrix, through

maximization of the Whittle likelihood, then updating the time series parameters corresponding to

each IC, through standard time series model selection procedures, until convergence. Denoting the

observed frequencies as rt = 2πt
T for t = 0, ..., T − 1, then the Whittle Likelihood is given by

L(G;S) = −1

2

k∑
j=1

T−1∑
k=0

{
I(rt,Sj)

gjj(rt;S)
+ log(gjj(rt;S))

}

= −1

2

k∑
j=1

T−1∑
k=0

{
eTjWI(rt,X)W Tej

gjj(rt;S)
+ log(gjj(rt;S))

}
+ T log(det(W ))

(1.11)

whereW is the unmixing matrix, I(rt,X) is the periodogram forX and I(rt,Sj) the periodogram

for Sj , and ej is a k × 1 matrix with jth entry 1 and all other entries 0. gjj(rt;S) is the spectral

density of the jth IC at frequency rt, which can be written in terms of its AR time series parameters

as gjj(rt;S) =
σ2
j

2π|Φj(e−irt )|2 , where σ2
j is the variance of the error term in the time series process

and Φj(z) = 1 − φj,1z1 − ... − φj,pjzpj is the autoregressive polynomial. The spectral density

matrix, which will be denotedG, is a k×T matrix with the spectral density of IC j over all observed
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frequencies in row j. The estimate of W is constrained to be orthogonal through a penalty term

added to the Whittle likelihood.

1.2.5 Pre-ICA Dimension Reduction

In some applications of ICA, including fMRI and EEG, the number of recording locations k,

is often believed to be greater than the number of independent signals generating the data, and

much of the activity in the observed data is believed to be pure noise. This scenario is referred

to as overdetermined ICA (Winter et al., 2003), and it has been shown that applying ICA without

regard for this problem can lead to overlearning (Särelä and Vigário, 2003). Moreover, due to the

computationally intensive nature of ICA and the high dimensionality of the data in many of the

popular ICA application areas, this assumption often introduces an insurmountable computational

challenge. The mixing matrix,A, is the target of estimation in ICA, and, as it is typically constrained

to be orthogonal, it contains k(k − 1)/2 free parameters (Hyvarinen and Oja, 2000). Thus, the

computational burden of ICA increases dramatically as k increases and is less impacted by increasing

T . In fMRI data, which have extremely high spatial resolution, k can range from hundreds of

thousands to millions, making direct application of ICA computationally unfeasible (McKeown et al.,

1998). EEG data, too, have recently begun to be collected at high enough spatial resolution (k > 100)

to make ICA computationally burdenson.

In order to prevent overlearning and/or reduce the computational burden of ICA, it is often

preceded by a dimension reduction step, which is accomplished using principal component analysis

(PCA) (Pearson, 1901) or singular value decomposition (SVD). In applying these procedures, we

reduce the dimensions of the data from k × T to m× T , m < k. m can be chosen based on prior

knowledge about an appropriate number of ICs (Xu et al., 2004), or a reasonable value for m can

be inferred through exploratory data analyses (Calhoun et al., 2001b). ICA is then applied to the

reduced data, resulting in the estimation of only m ICs.

Though mathematical justification of the combined use of dimension reduction methods and ICA

is rarely provided in the literature, this procedure can be rationalized as using a linear transformation

(PCA or SVD) to partition the data into a signal subspace and a noise subspace and applying ICA

to transform the signal subspace into independent components. To formalize this concept, consider

a k × T matrix of mixed signal data,X , that has been row-centered. ThenX can be decomposed
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using SVD as

X = UDV ′, (1.12)

where U is a k× k matrix of left singular vectors, V is a T × T matrix of right singular vectors, and

D is a k× T diagonal matrix with singular values on the diagonal. If we assume that m components

form the signal subspace of the data and the remaining components form a noise subspace, then

we can partition each of these matrices into terms corresponding to the signal and noise subspace,

denoted by S and N respectively, in the following way:

U =

[
US UN

]

D =

 DS 0

0 DN


V =

[
VS VN

]
(1.13)

where US is k×m, UN is k× (k−m),DS is m×m,DN is (k−m)× (T −m), VS is T ×m,

and VN is T × (T −m). Then, a reduced dataset with dimensions m× T , representing only the

signal subspace, can be formed by XR = DSV
′
S , and we can apply ICA to XR to transform the

signal subspace into independent components (Petersen et al., 2000). This approach is reasonable if

the data are truly generated by a small number of signals that explain most of the variance in the data,

but, because noise from the recording devices and artifacts can often explain more of the variation in

fMRI and EEG data than the signals of interest, caution must be exercised in the choice of m so that

the signals of interest are not removed during dimension reduction.

1.2.6 Uncertainty Estimation in ICA

The estimation of statistical uncertainties has always presented an obstacle for ICA users and

researchers, which precludes the testing of statistical hypotheses related to ICA parameter estimates.

One impediment to the estimation of uncertainties is the identifiability problem in ICA. If no

constraints are placed on the model,A and S are identified only up to a permutation and scale factor,

i.e.,

X = AS = [A(PD)]
[
(PD)−1S

]
(1.14)
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for any permutation matrix, P , and diagonal matrix,D. Uncertainty estimates are not meaningful

in a non-identifiable model. However, identifiability constraints can be applied to circumvent these

problems. In CICA, the mixing matrix can be constrained to be orthogonal to resolve the scale

ambiguity. After the model is fit, performing a permutation procedure, such as the one proposed by

(Chen and Bickel, 2005), overcomes the permutation ambiguity. When such constraints are made,

uncertainties can be estimated.

Although many ICA estimation techniques, including CICA, use maximum likelihood estimation

or simplify under certain assumptions to maximum likelihood estimation (Cardoso, 1997; Hyvarinen

and Oja, 2000) for which asymptotic theory has been developed (Comon and Jutten, 2010; Lee,

2011), the computation of the asymptotic standard errors for the mixing matrix proves to be very

mathematically challenging. Moreover, the use of distributional and asymptotic theory for estimation

is often seen as contrary to the spirit of BSS and ICA, which claim to be “blind” procedures, meaning

they impose few or no assumptions on the data. Finally, if pre-ICA dimension reduction or other

ICA pre-processing procedures are used, the variance in the data may be distorted so that asymptotic

variance estimates are inaccurate. For these reasons, measures of uncertainty are rarely computed or

used in practice.

1.3 Factor Analysis

Like ICA, factor analysis is a statistical procedure used to estimate latent variables underlying

multivariate data; however, the assumptions, methodologies, and motivations surrounding factor

analysis differ considerably from those of ICA. Factor analysis, which analyzes the covariance

structure of a large set of observed variables to identify and estimate a small number of latent

variables, called latent factors, that drive the values of all the observed data, is primarily employed

for data reduction or summarization. It has experienced popularity particularly in research areas that

rely on questionnaires to collect data, such as psychology, as questionnaires often ask participants

many questions aimed at indirectly measuring the same underlying feature of interest, which can be

uncovered by factor analysis.
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1.3.1 The Factor Analysis Model

Using notation that facilitates the transition between classic factor analysis and spatial factor

analysis (Banerjee et al., 2003), the classic factor analysis model takes the form

Y (si) = Λη(si) + ε(si), (1.15)

where Y (si) is the p× 1 vector of continuous, observed variables for the ith unit of study, denoted

si, for i = 1, ..., N . Letting m be a prespecified number of latent factors, Λ represents the p×m

matrix of factor loadings (m� p), η(si) is the m× 1 vector of latent factor scores for the ith unit

of study, and ε(si) represents the vector of errors for the ith unit of study. It is assumed that the

ε(si) vectors have independent and identically distributed multivariate normal distributions such

that ε(si)
iid∼ MVN(0,Σ), where Σ is a diagonal matrix with (i, i)th entry equal to σ2

i , and Λ is

constrained to be lower triangular with diagonal entries λii > 0 for identifiability purposes (Bollen,

1989). In the standard model, the m× 1 vectors of factor scores, η(si), are assumed to be random

vectors which are independent across units of study.

1.3.2 Bayesian Estimation in Factor Analysis

Here we choose to take a Bayesian approach to factor analysis parameter estimation. The

observed data are assumed to be realizations of random variables following a specified statistical

distribution, which is used to create a likelihood for the data. All model parameters are given prior

distributions, and samples are drawn from the corresponding posterior (or full conditional) distribu-

tions using Markov Chain Monte Carlo (MCMC) sampling. These samples are then summarized to

produce parameter estimates and credible intervals and to draw inference.

For our purposes, only continuous data will be considered, in which case it is standard use a

multivariate normal likelihood. Following (Nethery et al., 2015), the vectors of data for each unit of

study, conditional on the introduced model parameters, are independently distributed as

Y (si) |Λ,η (si) ,Σ
ind∼ MVN {Λη (si) ,Σ} ; i = 1, ..., n (1.16)
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which can also be written jointly as

Y |Λ,η,Σ ∼ MVN(Λ∗η,Σ∗) (1.17)

whereY =
{
Y (s1)T , . . . ,Y (sN )T

}T , Λ∗ is an np×nm block diagonal matrix with Λ on the diago-

nal, Σ∗ is an np×np block diagonal matrix with Σ on the diagonal, and η =
{
η(s1)T , . . . ,η(sN )T

}T .

The standard Bayesian factor analysis prior distribution specifications (Ghosh and Dunson, 2009;

Nethery et al., 2015; Rowe, 1998), which lead to semi-conjugacy, are as follows. The diagonal

elements of the factor loadings matrix, Λ, are given independent truncated normal prior distributions

(truncated below by 0) with a common variance such that λjj
iid∼ TN(0, τ2

1 ;≥ 0), j = 1, . . . , p.

The off-diagonal entries (below the diagonal) assume independent normal prior distributions with

a common variance such that λjk
iid∼ N(0, τ2

1 ), j > k. The variance parameters take independent

and identically distributed inverse gamma prior distributions, such that σ2
j

iid∼ IG(α, β), j = 1, . . . , p.

Finally, the factor score vectors are assigned independent and identically distributed multivariate

normal prior distributions, such that η(si)
iid∼ MVN(0, Im) where Im is the m×m identity matrix.

In a standard factor analysis model, the factor scores are assumed to be independent both within and

among locations.

Based on these prior distributions, full conditional distributions can be computed, and samples

can be drawn from these distributions using a Gibbs sampler (Gelfand and Smith, 1990; Geman and

Geman, 1984). The steps in the Gibbs sampler are as follows:

(1) Sample λjj |Σ,η,Y ,Λ (−j,−j) from TN
(

τ21
∑n

h=1 γhjηj(sh)

τ21
∑n

h=1 ηj(sh)2+σ2
j

,
σ2
j τ

2
1

τ21
∑n

h=1 ηj(sh)2+σ2
j

;≥ 0

)
for

j = 1, . . . , p where Λ (−j,−j) is the Λ matrix with the (j, j) element removed, γhj =

Yj (sh)−Λ(j,−j)Tη−j (sh), Λ(j,−j) is the jth row of Λ with the jth component removed,

and η−j (sh) is the set of factor scores for location sh with the jth component removed.

(2) Sample λjk|Σ,η,Y ,Λ (−j,−k) from N
(
τ21

∑n
h=1 γhjkηk(sh)

τ21
∑n

h=1 ηk(sh)2+σ2
j

,
σ2
j τ

2
1

τ21
∑n

h=1 ηk(sh)2+σ2
j

)
for j >

k, k = 1, . . . , p − 1 where Λ (−j,−k) is the Λ matrix with the (j, k) element removed,

γhjk = Yj (sh)−Λ(j,−k)Tη−k (sh), Λ(j,−k) is the jth row of Λ with the kth component

removed, and η−k (sh) is the set of factor scores from location sh with the kth component

removed.
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(3) Sample σ2
j |Λ, η, Y ,Σ (−j,−j) from IG

(
n
2 + α,

(
1
2

)∑n
h=1

{
Yj (sh)−ΛT

j η (sh)
}2

+ β

)
for j = 1, . . . , p where Σ (−j,−j) is the Σ matrix with the (j, j) element removed and Λj is

the jth row of Λ.

(4) Sample η (si) |Σ,Λ, Y ,η (−si) from

MVN
({

ΛTΣ−1Λ + I
}−1 {

ΛTΣ−1Y (si)
}
,
{
ΛTΣ−1Λ + I

}−1
)

where η (−si) is the

complete vector of factor scores with those from location si removed.

A large number of samples may be collected in this way, and convergence is gauged by the user,

generally through graphical representations of the samples, such as traceplots.

1.3.3 Social Vulnerability and Factor Analysis

After decades of use in psychology, where it is often applied to questionnaire and test data

to quantify unmeasurable concepts such as intelligence, factor analysis has only more recently

experienced popularity as a tool for quantifying latent variables in the context of epidemiology

and public health. In particular, as climate change threatens to increase the frequency and severity

of natural disasters, the public health community has become interested in measuring the “social

vulnerability” of communities to natural disasters. Because the extent to which a community is

able to prepare for and recover from disasters is largely determined by social factors, socially

vulnerable areas may be more severely impacted; thus, identification of these areas is critical to

disaster preparation (Cutter et al., 2003).

An index of community social vulnerability, which assigns relative vulnerability scores to each

community across a region of interest, can be used to identify the most highly vulnerable areas.

Community social vulnerability is not directly measurable, but an abundance of social indicator

variables are available, many of which are highly correlated thanks to their common association

with this broader concept of social vulnerability. Thus, an index of social vulnerability can be

constructed as a latent factor (or set of latent factors) underlying a relevant set of observed social

indicator variables, through the use of factor analysis (Cutter et al., 2003; Cutter and Finch, 2008).

The standard factor analysis model, however, is potentially inappropriate because it fails to properly

account for the spatial correlation that is likely present in the social indicator variables collected at

the community level.
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1.3.4 Factor Analysis with Spatially Correlated Factors

Spatial correlation occurs in data when the similarity between measures of interest collected

from the units of study is dependent on the geographic distance and/or direction between the units of

study. Spatial correlation often arises when the units of study are geographic regions, and interest lies

in counts or averages of some measure within each region. Data collected in this fashion is referred

to as spatially referenced data. Here we focus primarily on one type of spatially referenced data,

areal data, which is data assembled at the level of blocks or regions formed by the partitioning of a

space.

Spatial factor analysis (Wang and Wall, 2003) deviates from the standard factor analysis model

above by its assumption that the latent factors, denoted above as η(si), are Gaussian processes

containing spatial correlation, i.e. the latent factors for a given unit of study are no longer independent

of the latent factors for all other units of study, but are correlated based on some measure of

the geographic distance between them. This correlation in the latent factors then induces spatial

correlation in the observed data. Spatial factor analysis methodology in the Bayesian setting has

been developed to accommodate a variety of data types and analysis goals and has been applied to a

wide range of problems (Hogan and Tchernis, 2004; Liu et al., 2005; Lopes et al., 2008; Nethery

et al., 2015; Mezzetti, 2012; Stakhovych et al., 2012; Wang and Wall, 2003). (Stakhovych et al.,

2012) provides a detailed summary of these developments and applications.

The Bayesian model specification for the spatial factor analysis model is identical to that of the

standard factor analysis model with the exception of the assumptions and prior distribution for the

latent factors. The spatial model relies on the vectorized form of the latent factors, η, as in (7). The

prior distribution is now placed on η so that spatial correlation between the η(si) may be introduced.

The prior for η takes a multivariate normal distribution with a kronecker product form covariance

matrix to account for the possibility of multiple latent factors represented in each η(si). Let ΣS be

the N ×N covariance matrix which controls the spatial correlation within the latent factors based

on some measure of the known distance between units and an unknown spatial parameter, φ (the

structure could of course be extended to include multiple spatial parameters). Then the prior has the

form η ∼ MVN(0,ΣS ⊗ Im).
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The form of the spatial covariance matrix, ΣS , may be determined by the user and should be

guided by the type of spatially referenced data being analyzed, the goals of the analysis, and the

available information. (Banerjee et al., 2003) provide a thorough consideration of the topic of valid

spatial covariance functions, and Wang and Wall (2003) explain how some of these functions may be

applied in the spatial factor analysis context. For data that are collected by counting or averaging some

measure over pre-defined geographic regions, known as areal data, conditional auto-regressive model

covariance functions (Besag, 1974) are commonly chosen (Hogan and Tchernis, 2004; Wang and

Wall, 2003). They take the form (or a variant of the form) ΣS = I − φR, whereR is an adjacency

matrix, taking value 1 in the (i, j)th position if si and sj share a boundary and value 0 otherwise.

Analyses that rely on point-referenced spatial data, or data that are collected at geocoded points in

space, might, instead, choose a distance-based spatial covariance matrix, so that spatial correlation

increases as the distance between two units of study decreases. One example of a distance-based

covariance matrix is the exponential covariance matrix, in which the (i, j)th entry of the matrix has

the form ΣS(i, j) = exp {−φ||si − sj ||}, where ||si − sj || is the Euclidean distance between si

and sj .

In order to let the data inform the level of spatial correlation in the latent factors, a prior

distribution is assigned to φ, and a step is added to the MCMC sampling algorithm to draw samples

from its posterior distribution. The standard choice of prior is φ ∼ Unif(a, b), where a and b are

lower and upper bounds, respectively, whose values are determined by a combination of the data

and the type of covariance structure used. Wang and Wall (2003) provide more detail about the

computation of these bounds.

Steps (1)-(3) of the sampling algorithm for the spatial factor analysis model are identical to

those of the standard factor analysis model, but step (4) must be revised to accommodate the updated

prior on η (and corresponding full conditional distribution), and a 5th step must be added to obtain

samples of φ. Because the full conditional distribution for φ does not have a closed form, Nethery

et al. (2015) recommend performing a transformation of φ and drawing samples of the transformed

parameter using a Metropolis step (Hastings, 1970; Metropolis et al., 1953). This results in a sampler

with steps (4) and (5) as follows:
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(4) Sample η from

MVN
({

Λ∗TΣ∗−1Λ ∗ +(ΣS ⊗ Im)−1
}−1 {

Λ∗TΣ ∗−1 Y
}
,
{
Λ∗TΣ ∗−1 Λ ∗ +(ΣS ⊗ Im)−1

}−1
)
.

(5) Sample ψ = log
(
φ−a
b−φ

)
∈ R using a Metropolis sampler with a Normal proposal distribution.

φ is obtained by transformation such that φ = exp{ψ}b+a
1+exp{ψ} .

1.3.5 Spatial Misalignment in Factor Analysis

Though the Bayesian spatial factor analysis model allows for a good deal of flexibility and a wide

range of spatial correlation structure specifications, it has not yet been extended to accommodate

a common complication encountered in the analysis of areal data– spatial misalignment. Spatial

misalignment occurs when spatially referenced variables intended for use in the same analysis

originate from differing spatial levels (Banerjee et al., 2003). Spatial misalignment is common in

areal data, because the geographic regions across which data are recorded may be incompatible for

different measures of interest. Because many spatially referenced variables often need to be analyzed

together using spatial factor analysis, misalignment of some variables is likely to present an obstacle

to in this context.

Although we know of no instances of spatial misalignment addressed specifically in the context

of spatial factor analysis, the topic of spatial misalignment in general has received a great deal of

attention, as described by Gotway and Young (2002), and some of the general solutions may be able

to be applied to the problem of areal misalignment in spatial factor analysis. A common approach

to handling areal misalignment is to align all the variables to a common set of areal units prior to

application of a statistical model (Banerjee et al., 2003). This can be done by choosing a single set of

areal units and, for each variable not recorded at those units, assigning values to each of the chosen

units in proportion to a value of that variable recorded in overlapping units. For example, consider

the case where variables are collected at areal units of two different sizes, which we refer to as small

areal units (SAUs) and large areal units (LAUs), and the SAUs are fully nested within the LAUs, i.e.

each SAU is fully contained in a single LAU. In order to align the variables recorded at the LAUs

to the SAUs, the value at each LAU could be directly assigned to each of its nested SAUs (for a

rate or average variable) or an appropriate proportion of the value at each LAU could be assigned to
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each nested SAU, based on population or land area in the SAU (for a count variable). This method,

however, imposes strong assumptions about the distributions of the aligned variables, which can

distort patterns in the data that are critical to the performance of the factor analysis model.

Another general method of aligning the data prior to statistical analyses, proposed by Mugglin

and Carlin (1998), is to construct a model to predict the values of each variable of interest over

the desired set of units, using as predictors variables that are recorded at the desired units and are

correlated with the variable of interest. However, this method may be inappropriate in the factor

analysis context, because it may well be the case that any variable that is collected at the desired

units and would be a reasonable predictor is also being included in the factor analysis. Given that

factor analysis is fundamentally studying the relationships between observed variables in order to

identify the proper latent variables, artificially constructing such a relationship between variables that

will go on to be included in the factor analysis together results in a circular procedure.
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CHAPTER 2: BOOTSTRAPPING MEASURES OF UNCERTAINTY FOR EEG RESTING
STATE CONNECTIVITY STUDIES USING INDEPENDENT COMPONENT ANALYSIS

2.1 Introduction

Since the early 2000s, following a series of publications providing a theoretical justification

for the study of the brains at-rest network, known as its default network (Gusnard et al., 2001;

Gusnard and Raichle, 2001; Raichle et al., 2001), the study of resting state brain connectivity has

exploded (Buckner et al., 2008). The resulting body of literature has demonstrated that not only is

the characterization of resting state networks integral to the understanding of how tasks impact the

brains functioning, but also that alterations in resting state networks are associated with a number

of diseases, suggesting that resting state research will bring us closer to understanding some of the

most perplexing psychological and neurological conditions (Buckner et al., 2008). For instance,

autism (Assaf et al., 2010; Kennedy et al., 2006), attention deficit hyperactivity disorder (Tian et al.,

2006), schizophrenia (Bluhm et al., 2007; Garrity et al., 2007), dementia (Greicius et al., 2004), and

a number of other disorders, as described by Broyd et al. (2009), have been associated with default

network abnormalities.

Resting state connectivity research has historically been dominated by functional magnetic

resonance imaging (fMRI) studies (Broyd et al., 2009), a natural choice for identifying functionally

connected brain region thanks to the fMRI’s high spatial resolution. However, fMRIs suffer from

low temporal resolution, and, as a consequence, high frequency resting state connectivity is likely

to be missed by such studies. Electroencephalogram (EEG) recordings, which use metal electrodes

to record scalp electrical activity at lower spatial resolution but very high temporal resolution, have

more recently been recognized as a means to obtain insight into high frequency changes in resting

state network activity (Britz et al., 2010; Laufs, 2010; Musso et al., 2010; Yuan et al., 2012). The

default network for the brain’s electrical activity, as characterized by EEG, was first proposed by

Chen et al. (2008).
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During rest, EEG scans record electrical signals produced by a variety of different types of brain

activity, and these different activity types are distinguishable by the unique frequencies prominent

in the resulting signals (Chen et al., 2008; Lusted and Knapp, 1996). Delta (0.5-3.5Hz), theta

(4-7Hz), alpha (7.5-12Hz), beta (13-34Hz), and gamma (35-45Hz) activity have all been found to be

present during rest (Chen et al., 2008). The goal of resting state EEG connectivity analyses is often

to characterize the default networks for these different types of activity (Chen et al., 2008, 2013;

Congedo et al., 2010).

EEG connectivity analyses commonly take one of two different approaches. The first, and

simpler, of the two is to compute connectivity measures directly from the scalp recordings (Chen

et al., 2008). We refer to this method as the “direct approach”. The direct approach, while popular,

is commonly criticized due to its neglect of the field spread issue and the EEG inverse problem,

as described by Schoffelen and Gross (2009) and Delorme et al. (2002) respectively. Field spread

refers to the inevitable EEG phenomenon in which the electrical signal from a single brain activity

source will be recorded at multiple electrodes sources (Schoffelen and Gross, 2009), and, similarly,

the EEG inverse problem arises because each electrode records a linear mixture of signals from

a variety of different activity sources (Delorme et al., 2002). Due to these problems, performing

connectivity analyses directly on the scalp recordings can lead to distorted results (Delorme et al.,

2002; Schoffelen and Gross, 2009).

The second approach to EEG connectivity analyses is to first perform an unmixing procedure on

the scalp recordings to recover the source signals and their corresponding scalp maps and compute

connectivity measures using these source signals (Chen et al., 2013; Delorme et al., 2002; Schoffelen

and Gross, 2009). Often, blind source separation procedures such as independent component analysis

(ICA) are employed to perform the unmixing of the scalp signals; thus, we call this approach to

connectivity analyses the “ICA approach”. ICA (Bell and Sejnowski, 1995; Hyvarinen and Oja,

2000) is a multivariate statistical method that can be used to unmix recorded mixtures of signals to

recover a set of independent source signals, called independent components (ICs).

Letting k denote the number of electrodes/scalp recording locations, and T denote the number

of time points at which recordings are made, the ICA model has the form

X = AS (2.18)
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whereX is the k×T matrix of EEG recordings with each row containing the recording from a given

electrode over time, S is the k × T matrix of ICs with each row containing the values of a given IC

over time, andA is a k × k matrix of linear mixing parameters which represent the contribution of

each IC to the recording at each electrode. A is often assumed to be an orthogonal matrix, and, if we

don’t believe this to be true for the data, ICA pre-processing techniques are performed to enforce this

assumption. ICA estimation is done by first estimating the mixing parameters inA in a manner that

imposes as few assumptions as possible about the distributions of the ICs, and then obtaining the IC

values by plugging in Ŝ = Â−1X .

Following the application of ICA, one challenge to characterizing resting state connectivity is

identifying the type(s) of resting state brain activity reflected in each IC (Congedo et al., 2010).

Although the power spectrum of the ICs can be assessed to determine what frequencies are most

powerful in a signal, providing some insight into the type(s) of brain activity that generated it,

the spectrum of a single IC may exhibit power peaks in multiple frequency ranges of interest, as

demonstrated by Congedo et al. (2010). Moreover, some of these peaks may be small, making

it difficult to determine which type(s) of activity are reflected in the IC. This type of imperfect

separation of brain activity signals is a result of multiple activity types demonstrating similar spatial

activity across the scalp and, therefore, being grouped together into a single IC.

In connectivity analyses, decisions about the type(s) of activity represented in an IC are typically

made simply by eyeballing power spectrum plots (Chen et al., 2013; Congedo et al., 2010), a

strategy that could easily lead to misplaced inference, because it fails to account for the uncertainties

associated with the IC estimates. Statistical hypothesis testing, which would provide a natural

solution to this problem, is obstructed by the difficulty in computing uncertainties for ICA parameters.

Although asymptotic theory is available for some ICA estimation procedures (Comon and Jutten,

2010), it is very complex and requires strong assumptions that are often undesirable given that one of

the selling points of ICA is the minimal assumptions it imposes.

In this paper, we propose a semi-parametric bootstrapping algorithm which invokes ICA es-

timates in order to create bootstrap samples of either single subject or group EEG scalp data. By

bootstrapping from the independent auto-regressive (AR) time series residuals of each estimated

IC and reconstructing the data using the ICA parameter estimates, we are able to preserve the

cross-correlation between EEG channels and the auto-correlation within EEG scalp channels, critical
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features for assessing connectivity, in these bootstrap samples. Bose (1988) showed that bootstrap-

ping from the residuals in AR models approximates the distributions of the parameter estimates

with o(
√
T ) accuracy, which improves on the error of the normal approximation, under some mild

assumptions. A review of popular methods for bootstrapping time series is provided by Li and

Maddala (1996). Bootstrapping from the ICs in a manner that preserves temporal structure was

proposed by Meinecke et al. (2002) to gauge the separation performance of the ICA algorithm. We

introduce a new method for bootstrapping from the ICs, which preserves their temporal structure,

and we demonstrate that the bootstrap samples of EEG data produced by re-mixing the bootstrapped

ICs can be used to form confidence intervals and perform hypothesis tests on connectivity-related

parameters.

If one is using the direct approach to connectivity analyses, standard errors (SEs) and confidence

intervals (CIs) for scalp channel spectral coherences and other connectivity measures can be formed

using the bootstrap samples. In the ICA approach to connectivity analyses (recommended), these

bootstrap samples allow for the computation of SEs and CIs for the IC power spectra and related

quantities. Using these CIs, we propose a novel hypothesis testing framework that can be used to

detect the presence of various types of brain activity in each IC. In particular, confidence limits on

a variation of the IC power spectra are used to test for significant peaks in the frequency ranges of

brain activity of interest. Such a test allows for a more statistically rigorous approach to analyzing

the default networks of each brain activity type. Though Congedo et al. (2010) proposed the use of

non-parametric IC power spectra CIs to identify peaks representing abnormal brain functioning in

the context of resting state EEG, their method can only be used to test a patient against a normative

database. Our method allows any type of brain activity to be detected in any of the ICs within a

single subject or group of subjects.

In Section 2.2, we introduce the bootstrapping algorithm and the corresponding approach to

hypothesis testing for brain activity within an IC. In Section 2.3, simulation studies are used to

demonstrate the effectiveness and utility of our bootstrap approach. The bootstrap algorithm and

hypothesis test are applied to single subject resting state EEG data in Section 2.4, and using this

analysis, we illustrate why it is critical to consider the variability in the IC-related estimates when

drawing conclusions about the type(s) of brain activity an IC contains. Finally, the results and the

impact of this method are discussed in Section 2.5.
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2.2 Methods

While the most popular ICA algorithms assume that the ICs contain no auto-correlation (Bell

and Sejnowski, 1995; Hyvarinen and Oja, 2000), Lee et al. (2011) developed a semi-parametric ICA

algorithm called colorICA (CICA) that models the ICs as AR time series processes, i.e. for the jth

IC, Sj(t),

Sj(t) = µ+

p∑
h=1

φhSj(t− h) + εj(t), (2.19)

where p is the AR order chosen by model selection and εj(t) is an error term with unspecified

distribution and variance σ2
j . A run of CICA produces estimates of the mixing matrix and ICs,

Â and Ŝ, a collection of estimated AR coefficients for each IC, φ̂, a collection of estimated time

series variances for each IC, σ̂2, and a matrix of smoothed power spectra estimates for each IC, Ĝ.

Allowing for auto-correlation within ICs is critical in the analysis of resting state EEG data, because

the electrical signals emitted by resting state brain activity are known to be cyclic processes. Hence,

we focus the development of our bootstrapping algorithm around CICA.

The recorded EEG scalp channels contain both cross-correlation and auto-correlation, and each

of these features are critical to properly characterizing connectivity. Thus, any useful bootstrapping

algorithm must preserve both the channel cross-correlation and auto-correlation in the bootstrapped

datasets. In order to do so, our algorithm must take into consideration both the mixing of signals,

which induces the cross-correlation between the channels, and the temporal correlation in these

signals, which induces the auto-correlation within the channels.

We propose the following semi-parametric ICA-based procedure for creating a bootstrapped

resting state EEG dataset, which is analogous to the semi-parametric procedure recommended for

bootstrapping in a linear model framework. First, CICA should be applied to the matrix of resting

state EEG data,X .Because the ICs are independent, we can construct a bootstrap sample of each

of one and mix them to obtain a bootstrap sample of the original data that preserves the channel

cross-correlations. To create a bootstrap sample of each IC that retains its time series structure, its

estimated AR model residuals should be resampled with replacement and plugged into the estimated

AR model, as described by Efron and Tibshirani (1986), initializing the bootstrapped time series

using the block initialization method of Stine (1987). Finally, to construct the bootstrap sample of
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the data, X̃ , the bootstrapped ICs should be concatenated into a matrix S̃ and multiplied by Â, i.e.

X̃ = ÂS̃. A large number, B, of bootstrapped datasets can be constructed by repeating this process

B times. A summary of this method can be found in Table 2.1.

After constructing B bootstrap samples in this manner, direct connectivity statistics, such as the

squared coherence between channels, may be estimated for each bootstrap sample. As explained in

Efron and Tibshirani (1986), the standard deviation of these bootstrap estimates can be used as SEs

for each connectivity statistic, and CIs can be formed by applying the percentile method.

To compute SEs and CIs for the ICA parameters, which are needed for the ICA approach to

connectivity, more involved computations using the bootstrap samples are needed. In particular,

CICA must be performed on each bootstrapped dataset, to obtain B bootstrap estimates for each

CICA parameter. Thus, using ∗ notation to denote the bootstrap parameter estimates, we have

A∗1, ...,A
∗
B , S∗1 , ...,S

∗
B , φ∗1, ...,φ

∗
B , σ2∗

1, ...,σ
2∗
B , and G∗1, ...,G

∗
B . One final complication ob-

structs the computation of SEs and CIs for the ICA parameters from these bootstrap estimates–

namely, the IC permutation ambiguity in ICA.

In ICA, the ICs are not estimated in any consistent order (unlike principal component analysis, in

which the components are estimated in order of the amount of the variability in the observed data they

explain). Thus, due to the jittering of the observed data through bootstrapping, the ordering of the ICs

may be different in the bootstrap estimates from each bootstrapped dataset. Then, the ICs estimated

from all the bootstrapped datasets (and their corresponding parameters) must be aligned or matched

prior to computing SEs or CIs to ensure that bootstrap parameters estimates for corresponding ICs

are being summarized. To achieve a common permutation of the ICs in all the bootstrap estimates,

the bootstrap estimated ICs (and their corresponding parameters) should be placed in the same order

as the original estimated ICs.

Although the cross-correlation between the original estimated ICs (Ŝ) and the bootstrap estimated

ICs (S∗1 , ...,S
∗
B) might seem like a natural measure to use to perform this permutation, the cross-

correlation between these time series may not, in fact, be a relevant measure of their similarity. This is

a result of the fact that there may be little to no cross-correlation between a time series and a bootstrap

sample of it, due to differences in the starting values of the two series. Instead, the permutation of

the bootstrap estimates should be performed based on the magnitude of the correlation between the
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original estimated power spectra of the ICs (Ĝ) and the bootstrap estimated power spectra of the ICs

(G∗1, ...,G
∗
B), as the power spectra of a time series is unaffected by its starting value.

Then, the permutation of the bootstrap estimates should proceed as follows. For each set of

bootstrap estimates, choose the row ofG∗ with the highest magnitude of correlation with the first

row of Ĝ, say row i, and make row i ofG∗ the first row of the new permuted power spectra matrix,

G∗perm. Repeat this matching process for the second row of Ĝ, removing row i ofG∗, which was

chosen in the first iteration, from consideration, and now placing the most highly correlated row of

G∗ into the second row ofG∗perm. Continue this process for each of the k rows of Ĝ, removing a

row ofG∗ from consideration in all future repetitions after it has been chosen, so that each row of

G∗ appears as exactly one row of G∗perm. Upon completion of this process, the estimated power

spectrum for a given IC should be in the same row in Ĝ andG∗perm. Of course, all other bootstrap

parameter estimates in the set must be permuted accordingly.

After each set of bootstrap estimates has been permuted in this way, SEs may be computed for

the IC AR parameters by taking the standard deviation of the bootstrap estimates, and CIs may be

formed using the percentile method (Efron and Tibshirani, 1986). These uncertainty measures can

be computed pointwise for the IC power spectra inG. This procedure is summarized in Table 2.2.

Finally, the SEs and CIs can be used to test statistical hypotheses about the ICs.

In particular, to form a test for the presence of a certain type of brain activity in an IC, we adapt

a method commonly used in the time series literature to test whether a peak in a power spectrum

is significant. In this method, a lower 95% confidence limit is computed for the power spectrum in

the frequency range around the peak, and if that confidence limit exceeds a chosen “baseline” value

for the power spectrum, the null hypothesis of no significant peak is rejected (Shumway and Stoffer,

2011). This method, to our knowledge, has not previously been applied in the EEG setting.

In resting state EEG data, we want to know whether the power spectrum for a given IC contains

a significant peak in the frequency range of a certain type of brain activity. Thus, we will test

whether the IC’s power spectrum significantly exceeds its AR noise level (our chosen baseline value)

anywhere in the frequency range of that activity type. This is equivalent to testing whether the

difference in the power spectrum and the AR model noise is significantly greater than zero anywhere

in that frequency range. Thus, for IC j with AR variance σ2
j and spectrum value gj(rh) at frequency
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rh, we test the hypothesis

H0 :gj(rh) ≤ σ2
j (2.20)

gj(rh)− σ2
j ≤ 0 (2.21)

To perform this test, we can compute a one-sided lower 95% bootstrap confidence limit for the

difference in the estimated power spectrum (at each frequency of interest) and the AR noise, and,

using zero as our critical value, we reject the null only if this lower confidence limit exceeds zero.

The significance level can be Bonferroni corrected for multiple comparisons if many frequencies

are being considered. A rejected null hypothesis implies that the IC under consideration exhibits

“significant” brain activity of the tested type.

2.3 Simulation Studies

2.3.1 Preservation of Correlation Structures in Bootstrap Samples

All simulations are carried out in R statistical software (R Core Team, 2016). In this section, we

intend to demonstrate through simulations that key cross-correlation and auto-correlations structures

in EEG data are preserved in the bootstrap samples of the data constructed using our bootstrapping

algorithm. We also compare these properties in bootstrap samples constructed using simpler boot-

strapping procedures. Simulation structures in this section are informed by the simulations of Lee

et al. (2011).

Given fixed values of k and T , mixed signal data, X , are simulated by first generating T

realizations from each of k independent signals with AR time series structures (corresponding to the

ICs), concatenating these signals into the rows of a matrix, S, and then mixing the signals using a

fixed, orthogonal matrix of mixing parameters,A, i.e.,X = AS. Here we consider k = {2, 5} and

T = 1, 000. For the k = 2 simulation, the AR structures used for the ICs are as follows:

• IC 1: AR(2), φ11 = 1, φ12 = −.21 with random error from Unif(−
√

3,
√

3).

• IC 2: AR(1), φ21 = .3 with random error from Normal(0,1).
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For k = 5, the first two ICs are simulated as above, and the remaining ICs are generated from the

following AR processes:

• IC 3: AR(2), φ31 = 1.3, φ32 = −0.7 with random error from Unif(a = −
√

9, b =
√

9).

• IC 4: AR(1), φ41 = −0.8 with random error from Laplace(µ = 0, b = 1).

• IC 5: AR(2), φ51 = 0.5, φ52 = 0.2 with random error from Logistic(µ = 0, s = 1.5).

These are chosen to test a range of time series structures and error distribution shapes.

Our bootstrapping algorithm, which we refer to as semi-parametric CICA bootstrapping, is

applied to each simulated dataset to collect 1,000 bootstrap samples. We also collect 1,000 bootstrap

samples of the data using each of three simpler bootstrapping methods. The first, which we call

non-parametric data bootstrapping, resamples non-parametrically directly from the observed signals,

i.e. the rows of X . The second, called semi-parametric data bootstrapping, resamples from the

AR residuals from AR models fit for each of the observed signals and plugs back into the AR

model to construct a bootstrap sample of the data (analogous to the way that semi-parametric

CICA bootstrapping constructs a bootstrap sample of the ICs). We also consider bootstrapping non-

parametrically from the CICA estimated ICs, a method we call non-parametric CICA bootstrapping.

To do so, we simply apply CICA to the simulated data, resample non-parametrically from the

estimated ICs, and construct a bootstrap sample of the data by multiplying the resampled ICs by the

estimated mixing matrix.

To examine the preservation of the data correlation structures among these bootstrapping methods,

we compare the average lag 1 auto-correlation of each of the signals across bootstrap samples with

the lag 1 auto-correlations in the observed data, and we compare the average lag 0 cross-correlation

between each pair of signals across bootstrap samples with the lag 0 cross-correlations in the observed

data. Table 2.3 provides the results of this simulation. The results indicate that, as expected, the semi-

parametric CICA bootstrap is the only method considered that preserves both the auto-correlation

and the cross-correlation structures in the bootstrap samples. By focusing our bootstrapping at the

IC level and mixing the bootstrapped ICs, cross-correlation structures are retained in the bootstrap

samples, and by semi-parametrically bootstrapping from the AR models of the ICs, auto-correlation

structures are retained. Each of the simpler approaches to bootstrapping fails to preserve one or both

of these types of correlation, making them unsuitable for use in the connectivity analysis setting.
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2.3.2 CICA Confidence Interval Coverage Rates

In this section, we conduct simulations to test whether the bootstrap CIs formed for the CICA

parameters using our method attain the appropriate coverage rates. We simulate mixed signal data

using the same procedure as described in the previous section and the same IC structures, although we

now consider a range of T values for each k: T = {500, 1000, 5000, 10000}. For each combination

of k and T , we simulate 2,000 mixed signal datasets and apply our bootstrapping algorithm with

B = 1, 000 to each dataset to obtain 95% CIs for the CICA parameters. Coverage rates are computed

as the percentage of simulated datasets for which the 95% CI contains the parameter’s true value.

Coverage rates for IC AR model parameters for the k = 2 and k = 5 simulations can be found

in Table 2.4. Plots of the coverage rates of the pointwise IC spectra CIs for the k = 2 simulations

can be found in Figure 2.1. Parameter coverage rates improve overall as T increases, with 28% of

parameters achieving 95% or greater coverage at T = 500 and 100% of parameters achieving 95%

or greater coverage at T = 10, 000. While these coverage rates provide compelling evidence for the

reliability of the bootstrap CIs with T large, making them well-suited for use on EEG data, some

caution should be exercised in applying these CIs in other settings, such as fMRI data, in which T is

typically small. Refer to the discussion section for additional discussion of the applicability of these

CIs in fMRI data.

2.3.3 Hypothesis Testing for Power Spectra Peaks

To demonstrate the use of the lower confidence limits of the IC spectra for detecting significant

activity peaks, we now simulate data from signals with cyclic properties. We create four-channel

mixed signal data recorded at a rate of 200Hz for a total of 15 seconds (T = 3000). Four ICs are

used to generate the mixed signal data. The first is a pure noise signal with high variability. High

variability noise ICs are common in EEG data. ICs 2, 3, and 4 are the “brain activity” ICs, containing

delta, alpha, and beta activity, respectively. The ICs can be summarized as follows:

• IC 1: S1(t) = ε(t)

• IC 2: S2(t) =
∑

z1
(sin(2π ∗ (z1/200) ∗ (t+ 1000))) + γw(t)

• IC 3: S3(t) =
∑

z2
(sin(2π ∗ (z2/200) ∗ (t+ 1000))) + γw(t)
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• IC 4: S4(t) =
∑

z3
(sin(2π ∗ (z3/200) ∗ (t+ 1000))) + γw(t)

where z1 is a sequence of 25 frequencies between 2.5 and 3.5 Hz, z2 is a sequence of 25 frequencies

between 9.5 and 10.5 Hz, and z3 is a series of 25 frequencies between 16.5 and 17.5 Hz. ε(t) is

random noise from a N(0, 5), w(t) is an AR(1) process with φ = 0.3 and noise from a N(0, 1), and

γ is a scalar used to control the signal to noise ratio (Lee et al., 2011). Figure 2.2 shows the first 500

time points of the sinusoidal signals (ICs 2-4) with no noise and with signal-to-noise ratios (SNRs)

of 0.25 and 0.50. For SNRs of 0.200, 0.225, 0.250, and 0.500, we generate 500 replicates of the ICs

and used them, along with a fixed orthogonal mixing matrix, to create 500 mixed signal datasets.

We investigate the power of our hypothesis testing method at each SNR by applying the bootstrap

algorithm to each simulated dataset and finding the proportion of times our hypothesis test correctly

detects a single IC with each of delta, alpha, and beta activity. Figure 2.3 plots the power at each

SNR. These results demonstrate that our hypothesis testing method is highly powered for detecting

brain activity in the ICs, even in the presence of strong noise, making it well-suited for EEG data,

which are known to be highly noisy.

2.4 Resting State EEG Analysis

The following analyses are performed using R (R Core Team, 2016), MATLAB (The MathWorks

Inc., 2015), and EEGLAB (Delorme and Makeig, 2004) softwares. Resting state, eyes open EEG

data were recorded from a single subject using an EEG cap with 32 electrodes, including vertical and

horizontal electro-oculograms. Channels were referenced to the right mastoid (M2). Samples were

collected at a rate of 500Hz with a 0.1570Hz bandpass recording filter. A 1Hz high pass filter was

applied to the data to remove low frequency activity, such as slow drift, and the data were thinned to

include only 10,000 time points.

We apply the CICA bootstrap to these data, including a pre-whitening step in the CICA algorithm.

Pre-whitening is a common ICA pre-processing technique (Hyvarinen and Oja, 2000), which we

apply to ensure that our assumption that the mixing matrix is orthogonal is met. Figure 2.4 and

Figure 2.5 contain the resulting lower 95% bootstrap confidence limits for the difference in the

spectrum and the AR error variance for ICs 1-16 and ICs 17-32, respectively. Figure 2.6 provides the

topographical maps (Â) corresponding to each of the ICs. While many of the IC spectra exhibit a
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“bump” in the alpha range, the lower 95% confidence limit for the difference in the spectrum and

the AR error variance, which can be used for hypothesis testing, suggest that these bumps are not

indicative of significant alpha activity in most of the ICs. Only nine of the ICs– 3, 4, 6, 8, 9, 10, 11,

12, and 14 – have a 95% confidence limit exceeding zero in the alpha range. Thus, we conclude that

only these ICs contain significant alpha activity. The topographical maps for the ICs identified by our

method as containing alpha activity largely agree with previous research, with alpha activity most

prominent in the posterior regions during rest (Barry et al., 2007).

This analysis suggests that conclusions drawn from our method about which ICs contain brain

activity may differ dramatically from the conclusions one might make by simply “eyeballing” IC

spectra plots. Consider, for instance, IC 15. While the spectrum for this IC exhibits a spike in alpha

range and the spatial map exhibits high values in the posterior region of the head, which would

likely lead us to assume this IC contains alpha activity without a formal testing mechanism, our test

shows that, after appropriately accounting for the variability in the IC, this peak is not statistically

significant. Erroneous conclusions about the type(s) of activity contained in an IC could result in

misleading connectivity inference; thus, our formal hypothesis test for brain activity in the ICs is

needed in order to increase the reliability of EEG connectivity studies.

2.5 Discussion

In this paper, we proposed a semi-parametric bootstrapping algorithm for constructing bootstrap

samples of resting state EEG data and creating confidence intervals for CICA parameters, which can

be used in resting state EEG connectivity analyses to detect brain activity in ICs. We demonstrated

how the bootstrap samples created with this algorithm preserve correlation structures in the data that

are critical to assessing connectivity, while simpler bootstrapping methods do not preserve these

features. We also constructed simulations to demonstrate the reliable performance of the confidence

intervals for the IC time series parameters and to confirm that our hypothesis testing approach has

high power, even when SNRs in the ICs are low. Finally, we applied the hypothesis testing method

to an EEG resting state dataset to identify ICs containing significant alpha activity. This analysis

revealed that a formal hypothesis testing mechanism like ours is needed in order to take into account

the variability in the IC-related estimates when using them to make a decision about the presence
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of brain activity, otherwise erroneous conclusions could easily be made. Such erroneous decisions

threaten the validity of results and inference made in downstream connectivity analyses.

The use of uncertainties in ICA has previously been limited because asymptotics for these

methods are difficult and unappealing. This often leads to ad hoc and subjective decision making

based on ICA results. To our knowledge, ours is the first attempt to develop a bootstrapping approach

that can be used to measure uncertainty, create CIs, and perform hypothesis tests on either single

subject or group ICA parameters. Because group ICA is typically performed by simply concatenating

the data across subjects into a single matrix and applying ICA to all the data simultaneously, our

bootstrap approach could easily be applied in this setting. While we have focused on an application

to EEG resting state connectivity, the potential demonstrated by our method to accurately capture

uncertainty in ICA parameters could have much more far-reaching effects. Variations of this approach

could be used to construct CIs and hypothesis tests for task-based EEG and fMRI analyses.

One limitation to our approach that is crucial to address in order to extend the applicability

of this method is that it cannot yet accommodate pre-ICA dimension reduction procedures. Pre-

ICA dimesion reduction can be achieved using principal component analysis or singular value

decomposition. Such procedures are extremely common in fMRI applications (McKeown et al., 1998),

where the high spatial resolution can make direct application of ICA computationally untenable, and

are increasingly appearing in EEG analyses as well, as the number of recording channels increases

(De Vos et al., 2011; Dyrholm et al., 2007; Kachenoura et al., 2008; McMenamin et al., 2010; Xu

et al., 2004). Future work will investigate an extension of this approach to account for pre-ICA

dimension reduction.
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2.6 Tables and Figures

Table 2.1: Steps to create a bootstrap sample of EEG data.

1. Run CICA on the observed EEG scalp channel data,X

2. For each IC, resample from its estimated AR model residuals, ε̂j(t)

3. Plug resampled residuals back into the fitted AR model to get a bootstrap sample of the IC,
S̃j(t)

4. Concatenate the S̃j(t) into a matrix S̃

5. Create a bootstrap sample, X̃ , of the data by plugging in X̃ = ÂS̃

Table 2.2: Steps to form bootstrap uncertainties for CICA parameters.

1. Form a large number, B, of bootstrap samples of the data using the method described in
Table 2.1

2. Run CICA on each bootstrap sample to get B bootstrap estimates of all parameters

3. Permute each set of bootstrap estimates to order the ICs and corresponding parameters in
the same way they are ordered in the original estimates (based on the correlation in the IC
spectra in the original and bootstrap estimates)

4. Using the permuted bootstrap estimates, compute bootstrap SEs and apply the percentile
method to create CIs for the IC AR parameters and power spectra (pointwise)
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Table 2.3: True lag 1 auto-correlation (L1AC) and lag 0 cross-correlation (L0CC) for observed
signals from two simulated datasets (k = 2;T = 1, 000 and k = 5;T = 1, 000) and average L1AC
and L0CC across 1,000 bootstrap samples of each dataset for each of the following four bootstrapping
methods: non-parametric data bootstrapping (NP Data), semi-parametric data bootstrapping (SP
Data), non-parametric CICA bootstrapping (NP CICA), and semi-parametric CICA bootstrapping
(SP CICA).

Measure Signal(s) Truth NP Data SP Data NP CICA SP CICA

k = 2
L1AC

1 0.36 -0.00 0.36 -0.00 0.37
2 0.82 -0.00 0.82 -0.00 0.82

L0CC 1 and 2 0.31 -0.00 0.00 0.31 0.31

k = 5

L1AC

1 0.59 -0.00 0.59 -0.00 0.60
2 0.70 -0.00 0.70 -0.00 0.70
3 0.75 -0.00 0.74 -0.00 0.74
4 -0.75 -0.00 -0.74 -0.00 -0.75
5 0.69 -0.00 0.68 -0.00 0.69

L0CC

1 and 2 -0.12 0.00 0.00 -0.10 -0.10
1 and 3 0.72 0.00 -0.00 0.72 0.72
1 and 4 0.10 0.00 0.00 0.11 0.11
1 and 5 -0.30 -0.00 0.00 -0.26 -0.26
2 and 3 0.25 0.00 0.00 0.27 0.27
2 and 4 0.03 0.00 0.00 0.03 0.03
2 and 5 0.56 0.00 0.00 0.57 0.58
3 and 4 -0.16 0.00 0.00 -0.15 -0.15
3 and 5 -0.09 -0.00 0.00 -0.06 -0.06
4 and 5 -0.01 0.00 0.00 -0.01 -0.01

36



Table 2.4: Coverage rates of semi-parametric CICA bootstrap 95% CIs for IC AR time series
parameters over 2,000 simulations.

T = 500 T = 1, 000 T = 5, 000 T = 10, 000

k = 2

φ11 0.90 0.93 0.94 0.95
φ12 0.95 0.96 0.96 0.95
φ21 0.94 0.94 0.95 0.95
σ2

1 0.96 0.95 0.96 0.95
σ2

2 0.93 0.93 0.95 0.95

k = 5

φ11 0.87 0.92 0.96 0.95
φ12 0.94 0.97 0.98 0.97
φ21 0.94 0.95 0.95 0.95
φ31 0.89 0.94 0.96 0.95
φ32 0.92 0.97 0.97 0.96
φ41 0.94 0.97 0.98 0.98
φ51 0.97 0.97 0.97 0.96
φ52 0.93 0.95 0.97 0.95
σ2

1 0.95 0.97 0.98 0.96
σ2

2 0.91 0.91 0.95 0.96
σ2

3 0.95 0.96 0.94 0.95
σ2

4 0.91 0.93 0.94 0.95
σ2

5 0.89 0.93 0.96 0.95
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Figure 2.1: Pointwise spectra CI coverage rates from k = 2 simulations.
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40



Frequency

1 2 3* 4*

5 6* 7 8*

9* 10* 11* 12*

0 10 20

13

0 10 20

14*

0 10 20

15

0 10 20

16

Figure 2.4: Lower 95% confidence limits for the difference in the spectrum and the AR error variance (solid line) for ICs 1-16 with zero indicated by a
dotted line. ICs containing significant alpha activity are labeled with a ∗.
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Figure 2.5: Lower 95% confidence limits for the difference in the spectrum and the AR error variance (solid line) for ICs 17-32 with zero indicated by
a dotted line. ICs containing significant alpha activity are labeled with a ∗.
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Figure 2.6: Topographical maps for each IC.
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CHAPTER 3: A BOOTSTRAP APPROACH TO COMPARE METHODS FOR EEG DATA
DIMENSION REDUCTION PRIOR TO INDEPENDENT COMPONENT ANALYSIS

3.1 Introduction

Independent component analysis (ICA) is a multivariate statistical method that can be used to

decompose recorded mixtures of signals into independent source signals, also called independent

components (ICs). ICA is commonly used to unmix signal mixtures recorded by biomedical devices,

such as functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) scanners.

EEG scanners use metal electrodes positioned on the scalp to record electrical signals. The signal

recorded by each electrode may be a mixture of the brain signals of interest, artifacts, and noise,

and separation of the brain signals from one another and from the artifacts/noise is often desired for

inference (Makeig et al., 1996).

Letting k denote the number of electrodes/recording locations and T denote the number of time

points at which recordings are made, the ICA model has the form

X = AS (3.22)

whereX is a k × T matrix of observed data with each row containing the recording from a given

electrode over time, S is a k × T matrix of ICs with each row containing the values of a given IC

over time, and A is a k × k matrix of linear mixing parameters which represent the contribution

of each IC to the recording at each electrode. Note that this formulation of the ICA model is often

called temporal ICA, and, while other formulations of the model are possible, we use ICA to refer

exclusively to temporal ICA. ICA estimation is performed by first estimating the mixing parameters

inA in a manner that imposes as few assumptions as possible about the distributions of the ICs, and

then predicting the IC values by plugging in Ŝ = Â−1X . Most ICA algorithms constrainA to be

orthogonal in order to reduce the number of parameters being estimated and improve convergence.
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One limitation of ICA in EEG, as well as a number of other applications, is its assumption that

the number of ICs is equal to the number of electrodes, k. In recent years, as the push to improve the

spatial resolution of EEG data has led to increasing numbers of electrodes, researchers often believe

that the number of independent source signals generating EEG data is smaller than the number of

electrodes and that much of the observed data are pure noise, an assumption adopted from fMRI

applications of ICA (Beckmann and Smith, 2004; Calhoun et al., 2001a,b; Chawla, 2011; Cordes

and Nandy, 2006; De Vos et al., 2011; Delorme et al., 2007; Dyrholm et al., 2007; Kachenoura

et al., 2008; McMenamin et al., 2010; Varoquaux et al., 2010; Xu et al., 2004). This scenario is

referred to in the literature as overdetermined ICA (Winter et al., 2003). ICA model fitting in the

overdetermined setting has been shown to lead to overlearning (also called overfitting), which can

often be recognized by the estimation of a single large peak in each IC (Särelä and Vigário, 2003).

Not only does application of ICA in the overdetermined case lead to poor model performance,

but it can also introduce an enormous computational burden, only to estimate many ICs that reflect

uninteresting noise. Because A, which contains k(k − 1)/2 free parameters (Hyvarinen and Oja,

2000), is the primary target of estimation, the number of parameters to be estimated and, consequently,

the computational burden of ICA increases dramatically as k increases. The computational burden is

less impacted by the increase of T . The heavy computational burden of ICA when k is very large

has plagued users of ICA with fMRI for decades, as k in fMRI data can be greater than 1,000,000,

leading the fMRI community to develop procedures to reduce the dimensionality of the data prior to

the application of ICA (McKeown et al., 1998). While the low spatial resolution of EEG scanners

has historically produced data to which ICA can be directly applied without major computational

obstacles, improvements in spatial resolution have recently introduced these concerns for users of

ICA on EEG data.

Thus far, the EEG community’s response to the challenge of large k and overdetermined ICA

has been somewhat ad hoc. Following the fMRI community’s lead, EEG users have applied methods

to reduce the dimensionality of the data prior to ICA. This pre-ICA dimension reduction is typically

performed using one of two approaches. The first, which we call “theory based” dimension reduction

(TBDR), takes into consideration EEG theory and the goals of the analysis and, based on these

considerations, simply discards data from electrodes that are believed to be irrelevant and applies

ICA to the remaining data (Frank and Frishkoff, 2007; Lau et al., 2012). While integration of subject

45



matter knowledge is critical to proper statistical analyses, this method could preclude novel findings

by limiting the analysis to only investigation of the expected associations. Moreover, this approach

wastes resources and potentially valuable information.

The second approach to pre-ICA EEG dimension reduction, which we call “procedure based”

dimension reduction (PBDR), has been adopted from the fMRI literature. In it, statistical dimension

reduction procedures, such as principal component analysis (PCA) or singular value decomposition

(SVD), are applied to the observed data to reduce its dimensionality to m (m < k) and ICA applied

to the dimension reduced data (Calhoun et al., 2001b; Delorme et al., 2007; Petersen et al., 2000).

In some cases, authors claim to know a reasonable value for m a priori based on subject matter

knowledge (Xu et al., 2004). In other cases, a reasonable value for m may be inferred through

exploratory analyses (Calhoun et al., 2001b). While this approach has been widely used in the context

of fMRI, its effects have not been sufficiently investigated in the EEG setting. Furthermore, to our

knowledge, these two approaches to pre-ICA dimension reduction in EEG have not been compared.

In this paper, we propose a method that can be used to aid in the comparison of results from these

two approaches.

According to Petersen et al. (2000), pre-ICA PBDR with SVD can be performed using the

following procedure, which yields equivalent results to a PCA on the covariance matrix of the data.

Considering a k × T matrix of mixed signal data,X , that has been row-centered, decomposeX as

X = UDV ′, (3.23)

where U is a k× k matrix of left singular vectors, V is a T × T matrix of right singular vectors, and

D is a k× T diagonal matrix with singular values on the diagonal. If we assume that m components

form the signal subspace of the data and the remaining components form a noise subspace, then

we can partition each of these matrices into terms corresponding to the signal and noise subspace,
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denoted by S and N , respectively, in the following way:

U =

[
US UN

]

D =

 DS 0

0 DN


V =

[
VS VN

]
(3.24)

where US is k×m, UN is k× (k−m),DS is m×m,DN is (k−m)× (T −m), VS is T ×m,

and VN is T × (T −m).

Then, a reduced dataset with dimensions m × T , XR, can be formed by XR = DSV
′
S . We

use the terms reduced dataset and signal subspace interchangeably to refer toXR. Note that, while

the terms signal and noise subspace are adopted to be consistent with the literature, these terms

could be misleading. Applied in this way, SVD finds a set of uncorrelated basis vectors of the data

in which the first m components explain the maximal amount of variability in the data. Thus, pure

noise components with no interesting temporal structure, if they account for a large amount of the

variance in the data, will be retained in the signal subspace after SVD. Hence, while intended to

remove noise, this method could result in the removal of important signals if they account for very

little of the variability in the data (Särelä and Vigário, 2003). Theoretical details on the assumptions

of pre-ICA dimension reduction are discussed at length by Comon and Jutten (2010).

A salient feature of SVD is that it not only produces a reduced dataset but it also solves much of

the problem of ICA by finding uncorrelated components (UCs) of the original data (in the rows of

XR). While the UCs are not generally equivalent to ICs, they are typically “closer” to the ICs than

the original data, so that only a small orthogonal rotation of the UCs is needed to recover the ICs

(Hyvarinen and Oja, 2000). We demonstrate this property through simulations in Section 3.3.1. This

partial solving of the ICA problem, along with the reduced data size, can substantially lighten the

computational burden of ICA when applied after SVD.

ICA is performed on XR, so that only m ICs are estimated. The resulting m ×m estimated

mixing matrix, Â, is multiplied by US to produce a k ×m matrix of mixing coefficients, Ĉ. In Ĉ,

each column contains the set of mixing coefficients that quantify the relationships between a given
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IC and each electrode, also known as the spatial map of the IC; thus, in this case Ĉ is of interest

rather than the ICA estimated mixing matrix.

Because much of the brain’s electrical activity is known to demonstrate cyclic patterns (Schomer

and Da Silva, 2012), an ICA algorithm that allows for temporal correlation in the ICs is needed in

this context; however, many popular ICA algorithms require the ICs to be i.i.d. over time (Bell and

Sejnowski, 1995; Hyvarinen and Oja, 2000). Thus, we focus instead on a semi-parametric algorithm

called colorICA (CICA) (Lee et al., 2011), which assumes that the ICs are autoregressive (AR) time

series processes with unspecified error distributions, i.e. for the jth IC, Sj(t),

Sj(t) = µ+

p∑
h=1

φhSj(t− h) + εj(t), (3.25)

where p is the AR order chosen by model selection and εj(t) is an error term with unspecified

distribution and variance σ2
j . We consider an approach that applies SVD to reduce the observed data,

followed by CICA to separate the reduced data into ICs. We refer to this procedure as SVD-CICA.

Uncertainty estimation in ICA is typically foregone, because asymptotic theory is complex

and requires restrictive assumptions that sacrifice the highly appealing flexibility of ICA. Without

uncertainties, hypothesis testing and inference cannot be carried out; thus, proper consideration

cannot be given to the question of how different pre-ICA dimension reduction approaches impact

results and inference. In Chapter 2, we proposed a bootstrapping approach to allow for inference and

hypothesis testing in ICA (Efron and Tibshirani, 1986). However, when procedure based pre-ICA

dimension reduction is performed, this approach must be extended to accommodate the additional

uncertainty introduced into the estimation by the application of two statistical procedures rather

than one. Fortunately, the flexibility of the bootstrap allows us to estimate uncertainties that take

into account the variability of parameter estimates produced by applying these two procedures

sequentially.

In this paper, we introduce a semi-parametric bootstrapping algorithm to estimate standard errors

(SEs) and create confidence intervals (CIs) for the IC time series parameters and spectral densities

from SVD-CICA applied to resting state EEG data. This method is an extension of the one presented

in Chapter 2 to integrate the SVD step into the semi-parametric creation of the bootstrap samples and

the construction of empirical distributions for the ICA parameters. The uncertainties formed from
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these empirical distributions can then be used for hypothesis testing on the ICs. For our purposes, the

benefits of this method are two-fold. First, because both ICA and bootstrapping are computationally

intensive and EEG data are typically large, allowing for pre-ICA dimension reduction, and thereby

reducing computation time, dramatically increases the usability of this bootstrapping approach

compared to that of Chapter 2. Second, combined with the ICA bootstrap proposed in Chapter 2,

this method provides a novel opportunity to formally compare the results of no pre-ICA dimension

reduction, TBDR, and PBDR in EEG analyses.

In Section 3.2, we introduce the bootstrapping algorithm to compute uncertainties for and

perform hypothesis tests on SVD-CICA estimates. We simulate data in Section 3.3 in order to

test the performance of our bootstrapping approach and to compare the bootstrap uncertainties

from SVD-CICA with the bootstrap uncertainties resulting from running CICA on the full data. In

Section 3.4, we apply the SVD-CICA bootstrap as well as the CICA bootstrap with TBDR to eyes

open and eyes closed resting state EEG data to demonstrate how the resulting bootstrap hypothesis

tests aid in the comparison of the results from these two methods. Finally, we summarize and discuss

our method and findings in Section 3.5.

3.2 Methods

We refer the reader back to Table 2.1 and Table 2.2 in Chapter 2 for descriptions of how to create

bootstrap samples of the data and how to estimate SEs and create CIs for the CICA parameters in the

setting without dimension reduction. We use the same approach with a few additional steps to create

bootstrap samples and CIs in the presence of dimension reduction. Again, useful bootstrap samples

must preserve both the cross-correlation and auto-correlation in the observed data, which are a result

of the mixing of the ICs and the temporal correlation in the ICs, respectively; thus, we must resample

from the independent AR residuals of the ICs in order to retain these properties. However, in order to

properly characterize the uncertainty in the estimates, we must also integrate the dimension reduction

step into our bootstrap algorithm.

To create a bootstrap sample of the row-centered mixed signal data,X , when pre-ICA dimension

reduction is needed, we first reduce the data using SVD, as described in the previous section, to get

an m× T matrix XR. We then apply CICA to XR and create a bootstrap sample of each IC that
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retains its temporal structure by resampling with replacement from its estimated AR residuals and

plugging the resampled residuals into the estimated AR model (Efron and Tibshirani, 1986). As

before, the block initialization method of Stine (1987) can be used to initialize the bootstrapped time

series. The bootstrapped ICs should then be concatenated into a matrix, S̃, and a bootstrap sample of

the reduced data, or signal subspace, can be constructed as X̃R = ÂS̃.

Finally, to create a bootstrap sample that fully captures the noisiness of the original data, we

must mix the removed noise subspace with the bootstrap sample of the signal subspace. Thus, the

bootstrap sample can be constructed as

X̃ = U

 X̃R

DNV
′
N

 . (3.26)

This procedure is summarized in Table 3.5.

When a large number, B, of bootstrap samples of the data are created in this manner, we can

perform SVD-CICA on each of them and use the resulting set of bootstrap parameter estimates to

assess the uncertainty in the estimates. Let C∗1 , ...,C
∗
B , S∗1 , ...,S

∗
B , φ∗1, ...,φ

∗
B , σ2∗

1, ...,σ
2∗
B , and

G∗1, ...,G
∗
B denote the B estimates for each parameter resulting from the application of SVD-CICA

to each of the bootstrapped datasets. Then, due to the ICA permutation ambiguity discussed in

Chapter 2, these bootstrap estimates must be permuted in order to ensure that parameters associated

with corresponding ICs are located in the same position in each set of bootstrap estimates. To do this,

we apply the same procedure described in Chapter 2. We identify matching ICs in the original and

bootstrap estimates based on the correlation in the IC spectra estimates (Ĝ andG∗b), and we use this

information to order the bootstrap estimated ICs and corresponding bootstrap parameter estimates in

the same order as the ICs are originally estimated.

After the bootstrap estimates have been permuted appropriately, SEs can be computed pointwise

for the IC AR parameters and spectra or any linear combination of these parameters by simply

computing the standard deviation over all the bootstrap estimates (Efron and Tibshirani, 1986).

CIs can also be created pointwise using the percentile method (Efron and Tibshirani, 1986). This

procedure for computing uncertainties for the SVD-CICA parameters is summarized in Table 3.6.

In the analysis of EEG data, we can use this approach to perform hypothesis tests to detect brain
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activity in the ICs by constructing a lower 95% bootstrap confidence limit for the difference in the

spectrum and the AR error variance of each IC and determining whether the CI exceeds zero in the

frequency range of interest. This procedure is described in greater detail in the context of the CICA

bootstrap in Chapter 2 and can be applied equivalently with the SVD-CICA bootstrap.

3.3 Simulation Studies

3.3.1 How SVD-CICA Works

All simulations were carried out using R statistical software (R Core Team, 2016). In this section,

we present a simple simulated scenario to demonstrate how SVD and CICA can work together

to recover the independent signals underlying a dataset, while decreasing computing time over

ICA alone by removing low variance noise. With T = 3000, we generate realizations from an IC

containing delta activity, an IC containing alpha activity, and an IC that is white noise with variance

lower than that of the signals using the following procedure:

• IC 1: S1(t) =
∑

z1
(sin(2π ∗ (z1/200) ∗ (t+ 1000))) + γw(t)

• IC 2: S2(t) =
∑

z2
(sin(2π ∗ (z2/200) ∗ (t+ 1000))) + γw(t)

• IC 3: S3(t) = ε(t)

where z1 is a sequence of 25 frequencies between 2.5 and 3.5 Hz, z2 is a sequence of 25 frequencies

between 9.5 and 10.5 Hz, ε(t) is random noise from a N(0, 0.5), w(t) is an AR(1) process with

φ = 0.3 and noise from a N(0, 1), and γ is a scalar used to set the signal to noise ratio to 0.5 (Lee

et al., 2011). We then mix these signals using an orthogonal mixing matrix, apply SVD to reduce the

data to m = 2, and perform CICA on the reduced dataset.

Figure 3.7 provides the spectra of the original ICs, the mixed signals, the SVD decomposed UCs,

and the SVD-CICA estimated ICs. This figure illustrates that SVD removes the noise IC from the

data while retaining the signals and also that, by finding UCs, SVD alone solves much of the problem

of separating our components of interest. However, the UCs from SVD are clearly somewhat mixed

versions of the original ICs, with each component containing a considerable bump in each of the

delta and alpha ranges. Further application of CICA is needed to achieve full separation of the ICs.
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Although SVD-CICA preserves the signals of interest effectively when the variance of the pure

noise is low, as in the above example, we emphasize that, in the presence of noise or artifacts with

higher variance than the signals of interest, the signals of interest may be at risk of being distorted

or removed by SVD if the situation is not properly accounted for when choosing m. To illustrate

this, we repeat the above simulation while increasing the variance of IC 3 to 1, 1.1, and 1.2, so that

it has variance comparable to the variances of IC 1 and IC 2. The resulting SVD-CICA estimated

IC spectra are plotted in Figure 3.8. While the signals are still preserved at variance 1, they are

somewhat distorted at variance 1.1. At variance 1.2, the noise IC is fully preserved while the signals

are partially removed by SVD, with what remains of the two signals forced into a single IC. Because

EEG data is known to be corrupted by high variance noise and artifacts, it is critical to allow for

more ICs in SVD-CICA than the number of anticipated brain activity ICs, otherwise critical brain

activity could be removed by SVD, in which the first few components may be dominated by noise

and artifacts.

3.3.2 Bootstrap Performance when Removing Low Variance Noise

To test the performance of the SVD-CICA bootstrap, we simulate overdetermined mixed signal

datasets, i.e. mixed signal datasets in which the number of signal ICs is less than the number of

observed recording locations (rows ofX). The datasets are generated by mixing m signal ICs and

k −m pure noise ICs using an orthogonal mixing matrix. In particular, we used two signal ICs

(m = 2) and eight noise ICs (k = 10). The signal ICs are given below.

• IC 1: AR(2), φ11 = 1.3, φ12 = −.7 with random error from Unif(−
√

9,
√

9).

• IC 2: AR(2), φ21 = .5, φ12 = .2 with random error from Logistic(0,1.5).

In the first set of simulations, we generate the eight noise ICs from distributions with variances

considerably smaller than the variance of the signal ICs. In particular, four of the noise ICs come

from Normal distributions with zero mean and variances {0.001, 0.072, 0.144, 0.215} and four come

from exponential distributions with variances {0.286, 0.357, 0.429, 0.500}. We simulated 500 mixed

signal datasets using these specifications for each of T = {2500, 5000}.

The SVD-CICA bootstrap with m = 2 and B = 1, 000 was applied to each of the simulated

datasets. Because the variance of each of the noise ICs is smaller than the variance of the signals,
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SVD separates the noise into the noise subspace, which is removed, and the signals are retained in

the reduced dataset, to which CICA is applied. Thus, our bootstrap algorithm provides SEs and CIs

for the AR parameters for IC 1 and IC 2. The 95% CI coverage rates for each of these parameters is

given in Table 3.7.

For each simulated dataset, the CICA bootstrap is also performed on the full data. The coverage

rates for the IC AR parameters can be seen to be similar to those from the SVD-CICA bootstrap

(Table 3.7). Moreover, we want to compare the SEs from the SVD-CICA bootstrap with the SEs from

the application of the CICA bootstrap to the full data. This provides insight into how the variability

of ICA estimates is impacted by pre-ICA dimension reduction. Figure 3.9 provides boxplots of the

SEs for each signal IC AR parameter from each simulation (outliers omitted). The distribution of the

SEs across simulations are highly similar for SVD-CICA and CICA on the full data, with SVD-CICA

producing only marginally higher distributions for several parameters. This indicates that very little

precision in the parameter estimation is lost by applying SVD prior to ICA. We also note that the

SEs from the T = 5000 simulations demonstrate a substantial decrease compared to the T = 2500

simulations for both SVD-CICA and CICA, suggesting good performance of these bootstrap SEs.

3.3.3 Bootstrap Performance when Noise Variance Exceeds Signal Variance

The simulated data above, while providing a simple and insightful example, may not reflect

real biomedical signal data, because such data may contain noise that has variance greater than the

variances of the signals of interest. This is particularly common in EEG data, where noise ICs often

account for a large portion of the variability in the data. In this section, we test the SVD-CICA

bootstrap on mixed signal data generated using noise ICs with variances both larger and smaller

than the variance of the signal ICs. When noise explains more of the variability in the data than

the signals, it will be retained in the signal subspace during SVD; thus, unless we make m large

enough to allow for it, it will distort the estimation of the ICs. We wish to investigate if and how the

performance of SVD-CICA is impacted by this high variance noise when it is accounted for in the

model by increasing m appropriately.

We simulate data as in Section 3.3.2, by mixing two signal ICs with eight noise ICs using an or-

thogonal mixing matrix. The signal ICs are generated from the same AR processes as in Section 3.3.2.

Now, however, one of the eight noise ICs has variance greater than the variance of the signal ICs.
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The four Normally distributed noise ICs have mean zero and variances {10, 0.001, 0.084, 0.167}

and the four exponential distributed noise ICs have variances {0.251, 0.334, 0.417, 0.500}. Again,

we create 500 datasets for each of T = {2500, 5000}. We apply the SVD-CICA bootstrap to each

dataset, with B = 1, 000 and m = 3, to allow for the high variance noise IC and both signal ICs to

be retained in the signal subspace.

As before, we consider the coverage rates (Table 3.8) and SEs (Figure 3.10) for the signal IC AR

parameters from the SVD-CICA bootstrap and from the application of the CICA bootstrap to the full

data. We see that, having allowed for the high variance noise to remain in the data and separated it

into its own IC, the bootstrap CIs for the signal AR parameters perform just as well as above. Again,

SVD-CICA and CICA on the full data produce SEs that are remarkably similar.

3.4 Resting State EEG Analysis

The following analyses are performed using R (R Core Team, 2016), MATLAB (The MathWorks

Inc., 2015), and EEGLAB (Delorme and Makeig, 2004) softwares. In this section, we demonstrate

the use of bootstrap hypothesis tests for comparing the results of EEG analyses using different

pre-ICA dimension reduction techniques. To compare results, we test hypotheses about the presence

of brain activity in the ICs estimated by each technique, using the approach described in Chapter 2,

i.e. we form a lower 95% confidence limit on the difference in each IC spectrum and its AR error

variance and, if it exceeds zero in the frequency range of the brain activity type of interest, we reject

the null hypothesis of no activity.

In particular, we use these hypothesis tests to detect alpha activity (frequency 7.5-12 Hz) in ICs

estimated with TBDR and PBDR from both eyes open and eyes closed resting state EEG scans. It is

well known that alpha activity is prominent during rest with eyes closed and is suppressed when the

eyes are opened, a phenomenon observed in the very early days of EEG research and often called

“alpha desynchronization” (Chen et al., 2013; Klimesch et al., 2000; Pollen and Trachtenberg, 1972).

In accordance with this phenomenon, we expect to detect alpha activity in more ICs from the eyes

open scans than eyes closed scan. Furthermore, alpha activity is known to originate primarily from

the posterior regions of the head.
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The EEG data analyzed were collected by Schalk et al. (2004) using BCI2000 software (Schalk

Lab, 2017) and are publicly available through PhysioNet (Goldberger et al., 2000). We consider the

eyes closed and the eyes open scan from Subject 1. In each scan, data are recorded from 64 channels

at a speed of 160 Hz for 2 minutes, with the electrodes positioned on the scalp in accordance with

the international 10-10 system. An earlobe channel was used as the reference. Further information

about the data collection procedures can be found at https://www.physionet.org/pn4/

eegmmidb/. Prior to analysis, we applied a 1Hz high pass filter to the data to remove low frequency

activity.

We first consider an analysis using PBDR, by applying the SVD-CICA bootstrap to these datasets.

The dimensionality of the data is reduced from 64 to 20 in the SVD step (k = 64, m = 20). These

20 components retain 98.9% and 98.8% of the variance in the full data for the eyes closed and eyes

open scans, respectively. To speed up computation and improve convergence, we pre-whiten the

data in the SVD step as well, by constructing the reduced data using only V ′S rather thanDSV
′
S and

adjusting the bootstrapping algorithm accordingly.

Figure 3.11 and Figure 3.12 provide the bootstrap lower 95% confidence limit for the difference

in the IC spectrum and the AR error variance for each of the 20 ICs from the eyes closed and eyes

open scans, respectively. The corresponding spatial maps are provided in Appendix A, Figure 20

and Figure 21. In the eyes closed scan, our hypothesis testing method detects alpha activity in 14

out of 20 ICs. The spatial maps indicate that the six ICs not containing alpha activity may be eye

and muscle artifacts. On the other hand, during the eyes open scan, our method only detects alpha

activity in 11 out of 20 ICs. This is consistent with Barry et al. (2007), who find reductions in alpha

activity between resting state eyes closed and eyes open scans.

Because alpha activity originates primarily in the posterior region of the head (Barry et al., 2007),

we investigate IC alpha activity with TBDR by restricting our analysis to electrodes in this region.

For the eyes open and eyes closed scans, we select 20 electrodes in this region for analysis, so that

results are comparable with the PBDR above. We note that this approach will only allow us to

uncover ICs from which activity has been recorded at the selected electrodes; thus, the resulting set

of 20 ICs is likely to look quite different from the SVD-CICA ICs. Moreover, IC spatial maps will

be restricted to the selected electrodes.
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The CICA bootstrap hypothesis test plots for alpha activity in the ICs from eyes closed and eyes

open scans are contained in Figure 3.13 and Figure 3.14, respectively, with corresponding spatial

maps in Appendix A, Figures 22 and 23. 18 ICs from the eyes closed data contain alpha activity,

according to the bootstrap hypothesis tests with TBDR, considerably more than the 14 that contain

alpha activity in the eyes closed data using PBDR. The spatial maps from TBDR, while they may

restrict some types of inference by being confined to a small area, do provide a more detailed glimpse

of how alpha activity is distributed in the posterior region of the head. In the eyes closed data, we see

that many of the ICs containing alpha rhythms are most active on the right side of the head in the

posterior region (ICs 2, 3, 6, 7, 9, and 10). TBDR makes this trend much more obvious than PBDR.

However, Barry et al. (2007) show that, particularly during rest with eyes closed, alpha activity can

be detected widely across the scalp and is not restricted to only the posterior regions, inference that

is missed by TBDR.

Surprisingly, while TBDR leads to more ICs containing alpha activity in the eyes closed data,

our hypothesis tests suggest that many fewer ICs from the eyes open data contain alpha activity

when using TBDR compared to PBDR. Significant alpha activity is detected in only four ICs from

TBDR, compared to 11 from PBDR. One possible explanation for this phenomenon relates to the

fact that eyes open data are likely to contain both more noise and more artifactual activity than

eyes closed data, due to increased eye and muscle movement. Compared to TBDR, PBDR is better

able to remove noise, and, by preserving the spatial map across the entire scalp, PBDR can more

easily separate artifacts like eye and muscle movement. Thus, in the eyes open data, the improved

reduction of noise and separation of artifacts provided by PBDR may enhance our ability to detect

alpha activity in the ICs when compared with TBDR. This explanation is supported by the spatial

maps, many of which demonstrate prominent activity on the right side of the head, as in the eyes

closed data, but we are unable to detect significant alpha activity in these ICs, possibly due to the

increased noise.

3.5 Discussion

Due to the high dimensional nature of data in the primary application areas of ICA, dimension

reduction procedures are often needed prior to ICA in order to ensure that the assumptions of ICA are
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met and the application of ICA is computationally feasible. Asymptotic variance estimation in ICA is

challenging and distastefully restrictive even in the simplest of scenarios. The use of pre-processing

procedures such as dimension reduction further complicates this situation by adding another source

of variability to the ICA estimates.

In response to these challenges, we developed a semi-parametric bootstrapping approach to

estimate uncertainties for CICA parameters in the presence of procedure based pre-ICA dimension

reduction. The resulting uncertainties take into account the variability in the parameter estimates

introduced by both ICA and the pre-ICA dimension reduction step without imposing restrictive

parametric assumptions, and, compared to computing bootstrap uncertainties for CICA on the full

data, this method provides a substantial decrease in the required computation time. Moreover, these

uncertainties allow for novel hypothesis tests to be performed on the ICA parameters to detect

the presence of brain activity in the ICs. Using these inferential tools, we are able to formally

compare approaches to pre-ICA dimension reduction in resting state EEG, where such procedures

are relatively new and unexplored.

In Section 3.3, we performed simulations to demonstrate that the CIs formed by our bootstrapping

approach achieve appropriate coverage. We also used simulations to compare the bootstrap standard

errors for signal ICs of interest from CICA on the full data to those from SVD-CICA. We found that

procedure based pre-ICA dimension reduction adds surprisingly little variability to these parameter

estimates, with the distribution of the standard errors from SVD-CICA shifted up only slightly, if at

all, compared to the distribution of the standard errors from CICA on the full data.

Finally, we performed a novel comparison of the results of pre-ICA TBDR and PBDR using

single subject resting state EEG data with eyes open and eyes closed by applying both the CICA

bootstrap (on a relevant subset of the EEG channels) and the SVD-CICA bootstrap. In the eyes closed

data, both TBDR and PBDR produced many ICs containing alpha activity, with PBDR allowing for

the analysis of this activity across the entire scalp while TBDR provides a more detailed picture of

the distribution of alpha activity in the posterior region of the head, where it primarily originates.

Thus, with eyes closed data, the preferable approach to pre-ICA dimension reduction may depend on

the goals of the analysis. On the other hand, due to increased noise in the eyes open data, PBDR

seemed to yield better results than TBDR, allowing for the detection of alpha activity in more ICs

thanks to its reduction of noise and easier separation of artifacts.
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Over the past decade, EEG has begun to play an increasing role in our understanding of the

brain’s functionality, thanks to the high temporal resolution of EEG data compared to other imaging

techniques like fMRI. Many studies now take a multi-modal approach to investigating the brain,

recording fMRI and EEG simultaneously and analyzing the data together in a manner that takes

advantage of the high spatial resolution of fMRI and the high temporal resolution of EEG (Huster

et al., 2012). As these multi-modal studies, which collect huge quantities of data, become increasingly

popular, dimension reduction procedures become increasingly critical; thus, we must improve our

understanding of how such procedures may impact conclusions. To improve our understanding of

the impact of different pre-ICA dimension reduction techniques on inference in EEG data analysis,

comparisons such as the ones presented here should be considered in a diverse range of settings.
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3.6 Tables and Figures

Table 3.5: Steps to create a bootstrap sample of mixed signal data using SVD-CICA.

1. Reduce the observed data,X , using SVD to get an m× T datasetXR

2. Run CICA onXR

3. For each IC, resample from its estimated AR model residuals, ε̂j(t)

4. Plug resampled residuals back into the fitted AR model to get a bootstrap sample of the IC,
S̃j(t)

5. Concatenate the S̃j(t) into a matrix S̃

6. Create a bootstrap sample of the signal subspace, X̃R = ÂS̃

7. Form a bootstrap sample of the original data by mixing the noise subspace with the bootstrap

sample of the signal subspace, i.e. X̃ = U

[
X̃R

DNV
′
N

]

Table 3.6: Steps to compute SEs and form bootstrap CIs for SVD-CICA parameters

1. Form a large number, B, of bootstrap samples of the data using the method described in
Table 3.5

2. Run SVD-CICA on each bootstrap sample to get B bootstrap estimates of all parameters

3. Permute each set of bootstrap estimates to order the ICs and corresponding parameters in
the same way they are ordered in the original estimates (based on the correlation in the IC
spectra in the original and bootstrap estimates)

4. Compute pointwise standard errors for IC AR parameters and spectra by finding the standard
deviation over all bootstrap estimates or form CIs using the percentile method
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Table 3.7: 95% bootstrap confidence interval coverage rates for IC AR parameters from low variance
noise simulations with SVD-CICA and CICA on the full data.

SVD-CICA CICA
T = 2500 T = 5000 T = 2500 T = 5000

φ11 0.96 0.97 0.96 0.97
φ12 0.98 0.97 0.98 0.98
φ21 0.96 0.95 0.96 0.96
φ22 0.95 0.95 0.95 0.95
σ2

1 0.95 0.96 0.95 0.95
σ2

2 0.93 0.94 0.93 0.95
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Figure 3.7: Spectra of the original ICs (a), the mixed signals (b), the SVD UCs (c), and the SVD-CICA
estimated ICs (d).
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Figure 3.8: Spectra of the original brain activity ICs (a) and the estimated ICs with noise variance 1
(b), noise variance 1.1 (c), and noise variance 1.2 (d).
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Figure 3.9: Standard errors for the signal IC AR parameters from the low variance noise simulations for both SVD-CICA and CICA on the full data.
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Table 3.8: 95% bootstrap confidence interval coverage rates for IC AR parameters from high variance
noise simulations with SVD-CICA and CICA on the full data.

SVD-CICA CICA
T = 2500 T = 5000 T = 2500 T = 5000

φ11 0.97 0.97 0.97 0.96
φ12 0.97 0.98 0.98 0.98
φ21 0.95 0.95 0.96 0.95
φ22 0.95 0.95 0.95 0.95
σ2

1 0.96 0.96 0.96 0.97
σ2

2 0.94 0.93 0.95 0.93
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Figure 3.10: Standard errors for the signal IC AR parameters from the high variance noise simulations for both SVD-CICA and CICA on the full data.
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Figure 3.11: Spectrum brain activity hypothesis tests (solid line) for ICs 1-20 from the SVD-CICA bootstrap on the eyes closed data with a dotted line
at zero indicating the null hypothesis. ICs containing significant alpha activity are labeled with a ∗.
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Figure 3.12: Spectrum brain activity hypothesis tests (solid line) for ICs 1-20 from the SVD-CICA bootstrap on the eyes open data with a dotted line at
zero indicating the null hypothesis. ICs containing significant alpha activity are labeled with a ∗.
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Figure 3.13: Spectrum brain activity hypothesis tests (solid line) for ICs 1-20 from the CICA bootstrap with pre-ICA TBDR on the eyes closed data
with a dotted line at zero indicating the null hypothesis. ICs containing significant alpha activity are labeled with a ∗.
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Figure 3.14: Spectrum brain activity hypothesis tests (solid line) for ICs 1-20 from the CICA bootstrap with pre-ICA TBDR on the eyes open data with
a dotted line at zero indicating the null hypothesis. ICs containing significant alpha activity are labeled with a ∗.
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CHAPTER 4: A JOINT SPATIAL FACTOR ANALYSIS MODEL TO ACCOMMODATE
DATA FROM MISALIGNED NESTED AREAL UNITS WITH APPLICATION TO LOUISIANA

SOCIAL VULNERABILITY

4.1 Introduction

In recent years, advances in global positioning system and geographic information system

technologies have simplified the process of collecting and analyzing spatially referenced data.

The consequent explosion of spatially based research led to an increased capacity to holistically

characterize places and communities. The assessment of social indicators across space is a topic that

has a long and rich academic history (Duncan, 1974; Smith, 1973, 1981; Taylor and Hudson, 1970),

but, recently, the mining of enormous quantities of data on social indicators has propelled this topic

beyond the realm of the purely academic (Cutter et al., 2003). One obstacle to the analysis of trends

in social indicators across space is the need to accommodate spatially referenced variables collected

at differing spatial levels– a problem known as spatial misalignment (Banerjee et al., 2003).

Much of the academic community’s recent interest in social indicators has focused on quantifying

the “social vulnerability” of places/communities to climate change and natural disasters (Cutter et al.,

2003). Because the extent to which a community is able to prepare for and recover from disasters is

largely determined by social factors, socially vulnerable areas may be more severely impacted; thus,

identification of these areas is critical to disaster preparation (Cutter et al., 2003). Several groups have

developed indices of social resilience/vulnerability to natural disasters and environmental changes

and have estimated them across the US (Cutter et al., 2003; Cutter and Finch, 2008; Cutter et al.,

2008).

Community social vulnerability is not directly measurable, but an abundance of social indicator

variables are available, many of which are highly correlated thanks to their common association with

this broader concept of social vulnerability. Thus, an index of social vulnerability can be constructed

as a latent factor (or set of latent factors) underlying a relevant set of observed social indicator
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variables, through the use of factor analysis or principal component analysis (Cutter et al., 2003;

Cutter and Finch, 2008). The standard factor analysis model, however, is potentially inappropriate

because it fails to properly account for the spatial correlation that is likely present in spatially

referenced data. We propose instead using spatial factor analysis to create social vulnerability indices,

and we extend spatial factor analysis to address the issue of spatially misaligned data.

When the units of study in an analysis are spatially or geographically defined, units that are

closer together are likely to be more similar than units further apart, leading to spatial correlation. In

this case, spatial factor analysis (Wang and Wall, 2003) should be used instead of the standard factor

analysis to appropriately account for the spatial correlation and improve estimation and model fit

(Nethery et al., 2015; Wang and Wall, 2003). The spatial factor analysis model takes the form

Y (si) = Λη(si) + ε(si), (4.27)

where Y (si) is the p× 1 vector of continuous, observed variables for the ith geographic location/re-

gion, denoted si, for i = 1, ..., N (Banerjee et al., 2003). Letting m be a prespecified number of

latent factors (m � p), η(si) is the m × 1 vector of latent factor scores for si, Λ represents the

p×m matrix of factor loadings, and ε(si)
i.i.d.∼ MVN(0,Σ) represents the vector of errors for si. Σ

is a diagonal matrix with (i, i)th entry equal to σ2
i , and Λ is constrained to be lower triangular with

diagonal entries λii > 0 for identifiability purposes (Bollen, 1989). After applying spatial factor

analysis to the observed data, the predicted latent factors quantify the latent constructs underlying

the observed data, and, in our setting, are used to construct community social vulnerability scores.

Here, we focus on a Bayesian approach. Spatial factor analysis methodology in the Bayesian

setting has been extended to accommodate various data types and analysis goals and has been

applied to a wide range of problems, including the reduction of social indicator data (Hogan and

Tchernis, 2004; Liu et al., 2005; Lopes et al., 2008; Nethery et al., 2015; Mezzetti, 2012; Rowe,

1998; Stakhovych et al., 2012; Wang and Wall, 2003). The standard Bayesian factor analysis prior

distribution specifications, which lead to semi-conjugacy, are discussed by Ghosh and Dunson (2009)

and Rowe (1998). In the spatial factor analysis model, spatial correlation is introduced in the factor

scores through the prior distribution placed on η = [η(s1)′ · · ·η(sN )′]′ (Wang and Wall, 2003). The
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prior distribution has the form η ∼ MVN(0,ΣS ⊗ Im), where ΣS is the N ×N spatial covariance

matrix, containing a spatial parameter, φ (Banerjee et al., 2003; Wang and Wall, 2003).

Although the Bayesian spatial factor analysis model allows for a good deal of flexibility and

a wide range of spatial correlation structures, it has not yet been extended to accommodate spatial

misalignment, a common obstacle to the analysis of social indicator data. Henceforth, we will

consider a single type of spatial data, known as areal data. Areal data are counts or averages of

a measure collected over geographically defined regions formed by the partitioning of the area of

interest. Areal social indicator data are often spatially misaligned (Cressie, 1996), as indicators

may be collected by different organizations over distinct geographic partitions that correspond to

each organization’s specific goals. Social vulnerability research, due to its reliance on areal social

indicator data, may be dramatically impacted by spatial misalignment.

Our objective is to assess the social vulnerability of census tracts. Census tracts are areal units

defined by the US Census Bureau that contain approximately 2,500-8,000 residents and are subsets of

counties (US Bureau of the Census, 1994). Although many social vulnerability indices are developed

at the county level (Cutter et al., 2003; Cutter and Finch, 2008), effects are commonly obscured at

this level, particularly for counties that contain large cities, where many communities with different

vulnerability levels may be grouped together. Thus, performing inference over smaller regions with

more homogeneity in population size, such as census tracts, may provide more insight.

In pursuit of this goal, we wish to analyze a standard set of social indicators, including socioe-

conomic, demographic, and crime data (Diener and Suh, 1997). The US Census Bureau collects

socioeconomic and demographic data for each census tract in the US and makes these data publicly

available (US Bureau of the Census, 1994). The US Federal Bureau of Investigation (FBI) makes

crime data publicly available for each county in the US through its Uniform Crime Report (UCR)

(US Federal Bureau of Investigation, 2010), but crime data are not consistently collected at any finer

spatial level. To use both the census tract level socioeconomic and demographic data and the county

level crime data together in a spatial factor analysis to create social vulnerability scores for each

census tract, it is imperative to address the issue of spatial misalignment.

While there are limited instances of spatial misalignment addressed specifically in the context

of spatial factor analysis, the topic of spatial misalignment in general has received a great deal of

attention (Gotway and Young, 2002). Some of the general approaches for handling misalignment may
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be applied in the spatial factor analysis setting. We focus on the case where variables are collected

at areal units of two different sizes, which we refer to as small areal units (SAUs) and large areal

units (LAUs), with the SAUs fully nested within the LAUs, as in the county/census tract example.

One approach to resolving misalignment, which we call pre-analysis data alignment, is to align the

data to a common set of areal units prior to application of a statistical model. For inference at the

SAU level, data collected at LAUs must be aligned to the SAUs. This can be done by allocating the

value at a larger unit into its component smaller units either directly (for variables that are averages

or rates), by assigning each SAU the exact value of its LAU, or proportionally to the population/land

area in the smaller units (for variables that are counts or sums) (Banerjee et al., 2003). This method

imposes the assumption that, for a variable collected at the LAUs, its distribution is the same across

all SAUs within a LAU. For some variables, such as crime, this type of constancy would likely be an

unreasonable assumption.

In this paper, we propose a joint spatial factor analysis model in the Bayesian setting that can

accommodate a set of spatially referenced variables recorded at misaligned nested areal units. The

model identifies and predicts a common set of latent factors underlying all the data from two (and

possibly more) levels of nested areal units by sharing information between spatial factor analysis

models constructed for each spatial level. The model allows prediction of factor scores and inference

at the SAU level. In Section 4.2, we introduce the joint model, the necessary assumptions, and the

recommended approach to model fitting. We test our method on simulated data in Section 4.3 and

compare those results to results from the pre-analysis alignment method. In Section 4.4, we apply

the joint model to a set of misaligned social indicator data from the state of Louisiana to create a

social vulnerability index, and we combine it with Louisiana flood vulnerability data to identify

the highest risk communities in a region prone to natural disasters. Finally, we discuss results and

possible extensions in Section 4.5.

4.2 Methods

Let si denote LAU i, i = 1, ..., N , and sij denote SAU j nested within LAU i, j = 1, ..., ni. We

denote the total number of SAUs as NT (NT =
∑N

i=1 ni). Consider a set of p1 variables, Y , that is

recorded at SAUs such that Y (sij) is a p1 × 1 vector of measurements at sij . Let Z represent a set
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of p2 variables measured at LAUs such that Z(si) is a p2× 1 vector of measurements at si. Our goal

is to construct spatial factor analysis models that relate the observed variables at both the SAUs and

the LAUs to a common set of spatially correlated latent factors at the SAUs. In other words, we want

to write both Y (sij) and Z(si) in terms of latent factors η(sij). Then these models can be fit jointly.

Of course, we can model the Y (sij) as a function of the η(sij) using the standard spatial factor

analysis model; however, constructing a model relating theZ(si) to the η(sij) is less straightforward.

To do so, we rely on the assumption that the variables recorded at LAU i (Z(si)) are weighted sums

of the same unobserved variables at all the SAUs contained in LAU i, i.e.,

Z(si) =

ni∑
j=1

wijZ(sij) (4.28)

for i = 1, ..., N , where Z(sij) is a p2 × 1 vector of the unobserved values of the variables in Z at

sij and the wij are known, scalar weights. These weights might be assumed to be 1 if Z contains

sum/count variables or to be the proportion of the land area or population in si that is contained in

sij if Z contains average or rate variables.

Now, if the Z(sij) were observed, we could fit a spatial factor analysis model at the SAU level

as in (1):  Y (sij)

Z(sij)

 =

 Λ1

Λ2

η(sij) +

 ε1(sij)

ε2(sij)

 (4.29)

where Λ1 is a p1 ×m matrix of factor loadings corresponding to the variables in Y , Λ2 is a p2 ×m

matrix of factor loadings corresponding to the variables in Z, η(sij) is an m × 1 vector of the

common factors at location sij (these factors are correlated across locations), and ε1(sij) and ε2(sij)

are location-specific error vectors for the variables in Y and Z, respectively. It is assumed that

ε1(sij) ∼ MVN(0,Σ1) and ε2(sij) ∼ MVN(0,Σ2).

We now return to the construction of our two models. The top half of equation 4.29 provides

the spatial factor analysis model for Y (sij). For Z(si), we must use the model specification in

equation 4.29 combined with our assumption thatZ(si) is a weighted sum of theZ(sij), j = 1, ..., ni

to write

Z(si) =

ni∑
j=1

wijZ(sij) =

ni∑
j=1

wijΛ2η(sij) +

ni∑
j=1

wijε2(sij). (4.30)
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In this way, Y (sij) and Z(si) can be modeled in terms of a common set of latent factors at the SAU

level, allowing us to specify our joint model.

Borrowing notation from equation 4.29, the two models can be written separately as

Model 1:

Y (sij) = Λ1η(sij) + ε1(sij) (4.31)

Model 2:

Z(si) = Λ2

ni∑
j=1

wijη(sij) + ε∗2(si) (4.32)

where ε∗2(si) =
∑ni

j=1wijε2(sij) and ε∗2(si) ∼ MVN(0,Σ∗2). These models can then be written

jointly in the following way:

X(si) = Λ(si)η(si) + ε∗(si) (4.33)

where ε∗(si) ∼ MVN(0,Σ(si)) and

X(si) =



Y (si1)

Y (si2)

...

Y (sini)

Z(si)


, Λ(si) =



Λ1 0 · · · · · · 0

0 Λ1
. . . 0

...
. . . . . . . . .

...

0 · · · 0 Λ1 0

wi1Λ2 wi2Λ2 · · · · · · winiΛ2


,

η(si) =



η(si1)

...

...

η(sini)


, ε∗(si) =



ε1(si1)

...

...

ε1(sini)

ε∗2(si)


, Σ(si) =



Σ1 0 · · · 0

0
. . . . . .

...
...

. . . Σ1 0

0 · · · 0 Σ2


.

(4.34)

To finalize the model structure, the number of latent factors, m, must be specified. Although

model selection techniques could be integrated into the estimation procedure, we forego the discussion

of such an extension here and assume that the user has specified m in advance. Methods to guide the

choice of m are discussed later. Having specified m, estimation can proceed.

Define λ1kl as the element in the (k, l) position of Λ1, λ2kl as the element in the (k, l) position

of Λ2, σ2
1k as the element in the (k, k) position of Σ1, and σ2

2k as the element in the (k, k) position
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of Σ2. As in the classic spatial factor analysis model, this model allows for spatial correlation in

the factor scores through a spatial covariance matrix in the prior distribution for the factors, with

spatial parameter φ embedded in this matrix. Using this notation, we provide the data likelihood and

recommended prior distributions for Bayesian estimation in Appendix B, Section B.1 and Section B.2,

respectively. Markov chain Monte Carlo (MCMC) samples are drawn from the full conditional

distribution of each parameter using a Gibbs sampler with a Metropolis step (Geman and Geman,

1984; Gelfand and Smith, 1990; Hastings, 1970; Metropolis et al., 1953). The full conditional

distributions and sampling algorithm corresponding to the recommended prior distributions are

provided in Appendix B, Section B.3. Finally, posterior means and credible intervals for each

parameter can be computed from the MCMC output.

4.3 Simulation Studies

4.3.1 Assessment of Joint Model Performance

Simulations are carried out using R (R Core Team, 2014) and MATLAB (The MathWorks Inc.,

2015) statistical software. Misaligned areal data are simulated from a lattice with 125 LAUs and 625

nested SAUs, with each LAU containing exactly 5 SAUs, as shown in Figure 4.15 (N = 125, ni = 5

for all i, NT = 625). We construct this lattice so that the simulated data reflect anticipated real data,

with many fewer LAUs than SAUs. A single latent factor is simulated over the SAUs from a normal

distribution, with spatial correlation introduced by assigning a covariance of 0.15 to the factor scores

of any pairs of SAUs sharing a boundary (m = 1, φ = −0.15).

The latent factor and fixed loadings, along with randomly generated error terms from normal

distributions with fixed variances (Table 4.9), are used to generate six observed variables at the

SAUs (p1 = 6), by plugging into equation 4.31. Six distinct observed variables are generated at the

LAUs (p2 = 6) by plugging the latent factor, fixed loadings, randomly generated errors from normal

distributions, and a common set of weights, wi = {.2, .15, .3, .1, .25} into equation 4.32 (Table 4.9).

This process is repeated 1,000 times to generate 1,000 simulated misaligned datasets. We apply

the Gibbs sampler described above, with hyperparameters chosen to create non-informative prior

distributions, to each dataset for 100,000 iterations. We discard the first 50,000 samples as burn-in

and retain 50,000.
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Our primary interest is in accurate prediction of the latent factor scores, as these will form the

social vulnerability index. Across the 1,000 simulations, the average correlation between the true

and predicted factor scores is 0.99, and the average coverage rate of the 95% credible interval for

each factor score across all simulations is 0.93, indicating that this model performs extremely well

for our purposes. Average parameter estimates and 95% credible interval coverage rates are provided

in Table 4.9. All parameters are estimated consistently with credible interval coverage very close

to the desired 95%, with the exception of the parameters impacted by the identifiability constraint,

i.e. λ11, λ21, σ2
11, σ2

21, whose estimation suffer somewhat due to this constraint. However, extensive

investigation into this issue has revealed that the sub-optimal performance of these parameter

estimates has little, if any, impact on the performance of the other parameter estimates and the factor

score predictions. While the effects appear to be minor, it may be wise to order the variables such

that the first variable at each spatial level is one not believed to carry great importance or to run the

model with different variable orderings to ensure results are not highly impacted.

This joint model works by sharing information from both the SAU variables and the LAU

variables to predict the values of the common latent factor(s). The unique parameters for each model

are estimated using the data corresponding to that model as well as these predicted factor values;

thus, the parameter estimation also incorporates information from both the SAU and LAU data. In

order to justify prediction of the latent factor(s) at the SAU level, intuition suggests that some data

from the SAUs are needed to provide information about characteristics at the SAU level. Although

the development of theoretical results for this model will be left for future work, we note that, in

accordance with existing factor analysis theory, we need p1 ≥ m to predict latent factors at the SAU

level (Ghosh and Dunson, 2009).

Then, a pertinent question for users of this method might be related to model performance when

the number of SAU variables is small. To test this performance, we conduct 1,000 simulations with

misaligned data constructed using the same procedure as described above, except with p1 = 3 rather

than p1 = 6. While the model identifies the correct factor and performs comparably to the previous

simulation in parameter estimation, precision in the latent factor prediction is reduced, as expected

when less information is available at the SAU level. For instance, average correlation between the

true latent factor and the predicted latent factor declines from 0.99 in the previous simulation to 0.73.

Thus, we believe this joint model will be most advantageous when used on data involving many SAU
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variables. Similar results to those presented in this section are observed in simulations with two

latent factors as well (m = 2).

4.3.2 Comparison of the Joint Model with Pre-Analysis Alignment

We also want to compare our joint model to the simple method of pre-analysis data alignment

described in Section 4.1. To the best of our knowledge, alignment methods like this one would

typically be the only viable competitors to our model that would allow for factor scores to be predicted

and inference performed at the level of the SAUs. We implement pre-analysis alignment on the first

1,000 simulated datasets described above (p1 = 6). To do so, for each variable collected at LAUs,

we assign the value of each LAU to all of its nested SAUs, and we use these constructed variables

at the SAUs together with the variables originally collected at the SAUs in a standard spatial factor

model. A spatial factor model with the number of factors correctly specified and prior distributions

analogous to those used in the joint model is applied to each aligned dataset using a Gibbs sampler

with a Metropolis step. The sampler is run for 100,000 iterations with the first 50,000 samples

discarded as burn-in.

When m = 1, the pre-analysis alignment model is able to identify the factor underlying the

simulated data by relying on the information contained in the SAU data (average correlation of

0.99 between the true and predicted factor across the simulations); however, the estimated factor

loadings matrices demonstrate that the information contained in the LAU data has little to no

impact on the factor score predictions. The average posterior means of the LAU factor loadings

are Λ2 = [0.09 0.13 0.11 − 0.05 0.27 0.07]′. The very small estimates of these loadings

compared to their true values (Table 4.9) show that the LAU variables, likely distorted through the

alignment procedure, no longer contribute appropriately to the factor score predictions, rendering

this approach ineffective for integrating information from misaligned data for factor score prediction.

The superiority of the joint model over pre-analysis alignment is even more evident when

a multi-factor simulation is assessed. Thus, we simulate 10 misaligned datasets using the same

lattice described above, now with m = 2. We again fit both the joint model and the pre-analysis

alignment model to each dataset. Because the factors can be estimated in a different order in each

simulation, we investigate factor score predictive performance using the maximum of the pairwise

correlations between each of the predicted factors and each of the true factors. For the joint model,
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the average maximum correlation across the 10 simulations was 0.80 and 0.81 for factors one and

two, respectively. For the pre-analysis model, the average maximum correlation across the 10

simulations was 0.70 and 0.24 for factors one and two, respectively. This demonstrates that, while the

pre-analysis alignment model can again use the SAU variables to identify one factor reasonably well,

the distortion of the LAU variables misguides the model in the identification of the second factor.

4.3.3 Choosing the Number of Latent Factors

Finally, a well-known and highly contentious issue in factor analysis is how to choose m, the

number of latent factors to model. This question may become even more complicated in the spatial

misalignment setting, when variables at the LAUs and variables at the SAUs do not have identical

dimensions. Popular criteria for choosing m in a standard factor analysis include the eigenvalue

criterion and/or scree tests as described by (Ledesma and Valero-Mora, 2007); however, these cannot

be applied directly to the misaligned data due to dimensional discrepancies. We simulate a single

set of misaligned data with two latent factors using the procedure described in Section 4.3.2. We

then pre-align these simulated data at the LAU level by taking weighted sums of the SAU data

over the corresponding LAUs, and we test these methods on the LAU aligned data. After applying

this procedure to accommodate the misalignment, both the eigenvalue criterion and the scree test

identified the correct number of factors for our simulated dataset (m = 2) (Figure 4.16).

Model selection criteria, such as the Deviance Information Criterion (DIC) (Spiegelhalter et al.,

2002) which is appropriate in Bayesian settings, have also been used to select the number of factors

(Nethery et al., 2015; Wang and Wall, 2003), though in some cases this method may be less desirable

than those previously identified due to the computation time required for fitting multiple models.

The DIC, an adaptation of the frequentist model selection criteria Akaike Information Criteria (AIC)

(Akaike, 1998), does not require specification of the number of parameters in the model, making it

particularly well-suited for Bayesian and hierarchical models where this number is often ambiguous.

As with the AIC, the DIC is a relative measure that only has value for comparing models, which can

either be nested or non-nested, with smaller DIC values indicating better fit. We fit the joint model to

the simulated m = 2 data described above three times, once correctly specifying m (m = 2) and

twice misspecifying it (m = 1, m = 3). DIC also correctly chooses the model with m = 2, with DIC

values of 5172327.51, 5171898.41, and 5173833.12 for m = 1, m = 2, and m = 3, respectively.
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Thus, while the best method of choosing the number of factors remains a contentious topic in the

literature, this simulation suggests that standard methods may perform well when applied in the

misaligned data setting.

4.4 Application to Louisiana Social Vulnerability

Since the US Gulf Coast Region is particularly susceptible to environmental disasters, which

could be compounded by climate change, there is a great deal of interest in developing indices of

social vulnerability for this region in order to identify high risk communities and implement measures

to reduce the impact of future disasters (Oxfam America Inc, 2009). Oxfam America Inc (2009) has

analyzed the Social Vulnerability Index created by Cutter et al. (2003) in the Gulf Coast Region and

has integrated it with an indicator of susceptibility to climate hazards. The US National Oceanic

and Atmospheric Administration, in combination with other institutions, is developing a Coastal

Resilience Index to measure the social vulnerability of disaster-prone coastal communities in the

region (Simpier et al., 2010). The US Centers for Disease Control and Prevention (CDC) have also

constructed a Social Vulnerability Index, which ranks the social vulnerability of the census tracts

in each state to disaster and disease and can be used to identify the most vulnerable communities

in each state in the Gulf Coast Region (Agency for Toxic Substances and Disease Registry, 2014).

However, none of these indices take into account crime, which is an important component of social

vulnerability to environmental hazards (Perdikaris, 2014). In this section, we present an example of

how our joint spatial factor analysis model can be applied to misaligned socioeconomic, demographic,

and crime data from Louisiana to create a social vulnerability score for each census tract in the state.

Louisiana socioeconomic and demographic data, collected by the US Census Bureau, and crime

data, collected by the US FBI, were accessed using Social Explorer (US Bureau of the Census, 2016;

US Federal Bureau of Investigation, 2016). Socioeconomic and demographic measures come from

the 2008-2012 American Community Survey (US Bureau of the Census, 2013) and are obtained at

the census tract level. The crime data being used are from the FBI’s UCR in the year 2010 and are

obtained at the county level (counties are referred to as parishes in Louisiana), as they are unavailable

at the census tract level, as described in Section 1. The names and descriptions of all variables being

included in the factor analysis appear in Table 4.10.
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Census tracts for which some or all variables are missing are excluded from the analysis. Crime

data are not missing for any parish. The final dataset contains a total of 1,110 census tracts and 64

parishes (NT = 1, 110, N = 64). Adhering to common practice in factor analysis, each variable

is centered and scaled before applying the model (Ghosh and Dunson, 2009; Nethery et al., 2015).

Hyperparameters are chosen to create vague prior distributions, and we let m = 1 in order to

construct a single measure of vulnerability. Finally, the MCMC sampler for the joint model is run

for 100,000 iterations, discarding the first 90,000 iterations as burn-in. Larger burn-ins are often

required in the analysis of real data as compared to simulated data, as real data typically exhibit more

messiness, causing samplers to converge more slowly. Model convergence was assessed through

traceplots of the remaining 10,000 samples and found to be acceptable. Posterior means are used as

estimates for all parameters.

Figure 4.17a provides a map of the predicted latent factor scores for each census tract in

Louisiana, with zooming for only Orleans Parish, Louisiana, which contains much of the city of New

Orleans, in Figure 4.17b. Census tracts mapped in white were eliminated from the analysis due to

missing data. The pattern in the factor loadings, shown in Figure 4.17c, suggests that census tracts

with higher predicted latent factor scores may, indeed, have higher levels of social vulnerability.

As further evidence that the latent factor from the joint model, which we call the joint model

index, measures the social vulnerability of the Louisiana census tracts, we have plotted it against the

CDC’s social vulnerability rankings for the census tracts in Louisiana from 2014 in Figure 4.18. This

plot demonstrates that the joint model index is correlated with a respected social vulnerability index

(correlation of 0.63), but it also illustrates the effect of including crime in the scores. The ordinary

least squares (OLS) regression line from the regression of the joint model index on the CDC’s social

vulnerability ranking is included on the plot. Census tracts from counties with high crime rates,

defined as having both violent and property crime rates above the 75th percentile for the state, largely

fall above the OLS regression line, indicating that these tracts are typically assigned relatively higher

vulnerability scores from our index compared to the CDC’s index. Thus, as we hoped, evidence

suggests that our index appropriately integrates information about crime and gives higher scores to

communities with higher crime rates when compared with existing social vulnerability indices which

fail to account for crime. This application of the joint model demonstrates how it can be used to

incorporate data at different spatial scales to improve on existing social vulnerability indices.
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Given that these results suggest that the joint model index constitutes an index of social vulnera-

bility for Louisiana, we now provide an example of how it can be integrated with historic natural

disaster data for Louisiana to identify the communities that are at high risk geographically for natural

disasters and are highly socially vulnerable, which exacerbates the impacts of such disasters. During

future natural disasters, this type of information can be consulted to help allocate resources in a

way that alleviates the burden on the highest risk communities. We choose to focus on geographic

vulnerability to flooding, because Louisiana has been historically hard hit by tropical storms and

floods. To measure flood vulnerability, we employ data from the Federal Emergency Management

Agency (FEMA). FEMA offers low-cost flood insurance to property owners nationwide through its

National Flood Insurance Program (NFIP), and it makes historic policy and claims data available

for each county in the US, summarized January 1, 1978-January 30, 2017 (Federal Emergency

Management Agency, 2017a).

As a proxy for flood vulnerability, we investigate the rate of losses closed with payment (per

100,000 residents) from NFIP for each county in Louisiana. This variable is chosen because a loss

closed with payment indicates that flood damages to property were confirmed by multiple sources–

both the property owner and the insurance assessor– making it a more reliable measure of flood

vulnerability than other NFIP statistics such as rate of policies or rate of claims made (Federal

Emergency Management Agency, 2017b). Finally, using thresholds corresponding to the 75th

percentile of both the flood vulnerability and social vulnerability measures for Louisiana, we create

binary classifiers of flood risk and social vulnerability, i.e., any county above the 75th percentile

of losses closed with payment is considered high flood risk and any census tract above the 75th

percentile of social vulnerability is considered high social vulnerability.

The interaction between these classifiers is mapped across Louisiana, with zooming for Orleans

Parish (Figure 4.19). This indicator shows that the city neighborhoods in New Orleans are both highly

socially vulnerable and also highly geographically vulnerable to flooding. This is not a surprising

finding given the extent of the flooding damages in New Orleans following Hurricane Katrina in

2005, which exacerbated the already high social vulnerability in many of these city neighborhoods.
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4.5 Discussion

Given the vast amount of spatially referenced data now available, the issue of using these data

to provide meaningful and concise characterizations of places and communities is of great interest

to researchers and policy makers alike. However, these data may be spatially misaligned. For this

reason, we have developed a joint spatial factor analysis model to handle data from misaligned nested

areal units, which can be used to produce a common set of latent factors underlying two (or more)

nested spatial levels. The ability of this model to provide results and inference at the smallest spatial

level is critical, as this prevents loss of information and potential obscuring of results.

In Section 4.3, we demonstrated the effectiveness of the model and its superiority over naive

methods for dealing with spatial misalignment in factor analysis. We also made recommendations,

based on our observations in simulations, that this joint model be applied to misaligned data contain-

ing a reasonably large number of SAU variables and that classic methods be used to determine the

number of latent factors to model. Finally, the model was applied to misaligned social indicator data

from Louisiana to develop social vulnerability scores for each census tract in the state. We provided

evidence that the joint model produces a social vulnerability index for Louisiana that improves on

existing indices by incorporating information from different spatial levels while yielding high spatial

resolution results.

When integrated with information about past or future vulnerability to environmental disasers,

our social vulnerability index can be used to help policy makers and disaster responders identify

communities likely to need the most assistance in future disasters, as we demonstrated through a joint

assessment of flood vulnerability and social vulnerability in Louisiana. Future work could combine

our index with climate change disaster predictions to prepare for impacts on the population in the

high risk US Gulf Coast Region. Data from the Gulf Long Term Follow-Up Study (Kwok et al.,

2017), a study tracking the long term health of workers on the 2010 Deepwater Horizon oil spill,

when combined with our social vulnerability index, provide an opportunity to investigate whether

people living in socially vulnerable communities were differentially impacted by the oil spill.

We have demonstrated the use of this model in a relatively simple form. However, methodological

extensions could be implemented to accommodate additional data problems and allow for greater

model flexibility. For instance, three or more models could be fit jointly to allow for more nested
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spatial levels. When m > 1, separate spatial parameters can be specified for each latent factor in

order to allow the latent factors to contain different degrees of spatial correlation. This method could

also be integrated with a model-based approach to choosing m, such as the reversible jump MCMC

method of Lopes and West (2004). Although non-nested misaligned data cannot be accommodated

by this model in its current form, future work will investigate a similar approach for dealing with

non-nested misaligned spatial data in factor analysis.

The applications of this method extend well beyond the social vulnerability application empha-

sized here. For example, environmental toxicant and pollutant data are often measured at different

spatial levels. A model like the one presented here could be used to reduce misaligned toxicant and

pollutant data to develop environmental exposure scores across a region of interest.
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4.6 Tables and Figures

Figure 4.15: Lattice for simulations with large areal units bounded by solid lines (N = 125) and
nested small areal units bounded by dotted and solid lines (ni = 5).
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Figure 4.16: Scree plot for simulated data with the small areal units pooled over the large areal units.
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Table 4.9: True values for all parameters in the misaligned data simulation and average posterior
means (PM) and 95% credible interval coverage rates from the joint model across 1,000 simulations.

Truth Average PM Coverage
λ111 0.50 0.40 0.78
λ121 0.14 0.14 0.95
λ131 -0.63 -0.63 1.00
λ141 1.20 1.21 0.99
λ151 0.25 0.25 0.95
λ161 -0.62 -0.62 0.98
λ211 0.37 0.30 0.74
λ221 0.55 0.56 0.94
λ231 0.43 0.44 0.96
λ241 -0.23 -0.23 0.95
λ251 1.13 1.16 0.95
λ261 0.29 0.30 0.95
σ2

11 0.27 0.32 0.75
σ2

12 0.39 0.39 0.94
σ2

13 0.01 0.01 0.96
σ2

14 0.38 0.39 0.95
σ2

15 0.87 0.87 0.95
σ2

16 0.34 0.34 0.95
σ2

21 0.48 0.50 0.94
σ2

22 0.60 0.61 0.95
σ2

23 0.49 0.50 0.95
σ2

24 0.19 0.19 0.94
σ2

25 0.83 0.84 0.94
σ2

26 0.67 0.68 0.94
φ -0.15 -0.11 0.96
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Table 4.10: Variables included in the joint spatial factor analysis model.

Variable Name Definition
Census Tract Level

Age Proportion of the population under 65 years old
Race Proportion of the population caucasian/white
Education Proportion of the population 25 or older with a bachelor’s degree

or higher
Marital Status Proportion of the population 15 or older married
Employed Proportion of the civilian population 16 or older in the labor force

employed
Median Household Income Median household income in 2012 inflation adjusted dollars
Rent as Proportion of Income Median gross rent in 2012 inflation adjusted dollars as a proportion

of median household income in 2012 inflation adjusted dollars
Household Size Average household size
Health Insurance Proportion of the population with health insurance
Gini Index of Inequality Measure of income inequality developed by Gini (1912)
Household Makeup Proportion of the population living in married family households

County Level
Violent Crime Rate Rate of violent crimes reported per 100,000 population (violent

crimes include murders, rapes, robberies, and aggravated assaults)
Property Crime Rate Rate of property crimes reported per 100,000 population (property

crimes include burglaries, larcenies, and motor vehicle thefts)
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Figure 4.17: Predicted factor scores for each census tract from the joint model mapped across all of
Louisiana (a) and Orleans Parish only (b) and a heat map of the estimated factor loadings (c).
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Figure 4.18: The index created by the joint model plotted against the US Centers for Disease Control
and Prevention’s Social Vulnerability Index for Louisiana census tracts. Points plotted as ‘x’ represent
census tracts from counties with both violent and property crime rates above the 75th percentile for
the state. All other census tracts are plotted with an ‘o’. The ordinary least squares regression line
from the regression of the joint model index on the CDC’s social vulnerability index is included.
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Figure 4.19: The interaction between flood vulnerability and social vulnerability classifiers mapped
across all of Louisiana (a) and Orleans Parish only (b).
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APPENDIX A: SUPPLEMENTARY MATERIALS FOR CHAPTER 3

Figure 20: Topographical maps for each IC from PBDR on eyes closed data.
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Figure 21: Topographical maps for each IC from PBDR on eyes open data.
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Figure 22: Topographical maps for each IC from TBDR on eyes closed data.
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Figure 23: Topographical maps for each IC from TBDR on eyes open data.
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APPENDIX B: SUPPLEMENTARY MATERIALS FOR CHAPTER 4

B.1 Data Likelihood

The data likelihood can be written as X(si)|Λ(si),η(si),Σ(si) ∼ MVN(Λ(si)η(si),Σ(si))

or in vector form, to facilitate modeling of the spatial correlation, as X|Λ,η,Ω ∼ MVN(Λη,Ω)

where

X =


X(s1)

...

X(sN )

 , Λ =



Λ(s1) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 Λ(sN )


,

η =


η(s1)

...

η(sN )

 , Ω =



Σ(s1) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 Σ(sN )


.

B.2 Prior Distributions

The prior structure for this model is informed by the default, semi-conjugate factor analysis

prior structure introduced by Ghosh and Dunson (2009) and extended to spatial factor analysis by

Wang and Wall (2003). As in the standard Bayesian spatial factor analysis model, an identifiability

constraint of lower triangularity must be placed on the factor loadings matrices, so we force λ1kl = 0

for k < l and λ2kl = 0 for k < l. The prior for each of the remaining model parameters is given

below.

λ1kk ∼ TN(0, τ2
1 ), k = 1, ..., p1

λ1kl ∼ N(0, τ2
1 ), k = 1, ..., p1, l = 1, ...,m

λ2kk ∼ TN(0, τ2
2 ), k = 1, ..., p2

λ2kl ∼ N(0, τ2
2 ), k = 1, ..., p2 l = 1, ...,m

σ2
1k ∼ IG(α1, β1), k = 1, ..., p1

σ2
2k ∼ IG(α2, β2), k = 1, ..., p2
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η ∼ MVN(0,Σs ⊗ Im), Σs = IN − φR, (R is an adjacency matrix)

φ ∼ Unif(a, b)

Note that τ2
1 , τ

2
2 , α1, β1, α2, and β2 are hyper-parameters to be selected based on prior knowledge or,

more likely, selected to make the prior distributions vague and flat in order to give equal weight to a

wide range of values. a and b should be chosen to be the inverses of the minimum and maximum

eigenvalues ofR, respectively, to ensure positive definiteness of the covariance matrix of η (Hogan

and Tchernis, 2004). If m > 1, a unique spatial parameter can be specified for each factor to allow

for different amounts of spatial correlation in each factor, which will increase the flexibility and

robustness of the model.

B.3 Sampling Algorithm and Full Conditional Distributions

(1) Sample λ1kk|Λ1(−k,−k),Λ2,Y ,Z,Σ1,Σ2,η from

TN

(
τ2

1

∑
i

∑
j γkk(sij)ηk(sij)

τ2
1

∑
i

∑
j η

2
k(sij) + σ2

1k

,
σ2

1kτ
2
1

τ2
1

∑
i

∑
j η

2
k(sij) + σ2

1k

;≥ 0

)
,

for k = 1, ..., p1 where Λ1(−k,−k) is the matrix Λ1 with the (k, k) element removed,

ηk(sij) is the kth element of the vector η(sij), γkk(sij) = Yk(sij) −Λ1(k,−k)Tη−k(sij),

Λ1(k,−k) is the kth row of Λ1 with the kth element removed, and η−k(sij) is η(sij) with

the kth component removed.

(2) Sample λ1kl|Λ1(−k,−l),Λ2,Y ,Z,Σ1,Σ2,η from

N

(
τ2

1

∑
i

∑
j γkl(sij)ηl(sij)

τ2
1

∑
i

∑
j η

2
l (sij) + σ2

1k

,
σ2

1kτ
2
1

τ2
1

∑
i

∑
j η

2
l (sij) + σ2

1k

)
,

for k > l where Λ1(−k,−l) is the matrix Λ1 with the (k, l) element removed, ηl(sij) is the

lth element of the vector η(sij), γkl(sij) = Yk(sij)−Λ1(k,−l)Tη−l(sij),Λ1(k,−l) is the

kth row of Λ1 with the lth element removed, and η−l(sij) is η(sij) with the lth component

removed.
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(3) Sample λ2kk|Λ1,Λ2(−k,−k),Y ,Z,Σ1,Σ2,η from

TN
(
τ2

2

∑
i γkk(si)η

∗
k(si)

τ2
2

∑
i η
∗2
k (si) + σ2

2k

,
σ2

2kτ
2
2

τ2
2

∑
i η
∗2
k (si) + σ2

2k

)
,

for k = 1, ..., p2 where Λ2(−k,−k) is the matrix Λ2 with the (k, k) element removed, η∗k(si)

the kth element of the vector η∗(si) =
∑

iwijη(sij), γkk(si) = Zk(si)−Λ2(k,−k)Tη∗−k(si),

Λ2(k,−k) is the kth row of Λ2 with the kth element removed, and η∗−k(si) is η∗(si) with the

kth component removed.

(4) Sample λ2kl|Λ1,Λ2(−k,−l),Y ,Z,Σ1,Σ2,η from

N
(
τ2

2

∑
i γkl(si)η

∗
l (si)

τ2
2

∑
i η
∗2
l (si) + σ2

2k

,
σ2

2kτ
2
2

τ2
2

∑
i η
∗2
l (si) + σ2

2k

)
,

for k = 1, ..., p2 where Λ2(−k,−l) is the matrix Λ2 with the (k, l) element removed, η∗l (si)

the lth element of the vector η∗(si) =
∑

iwijη(sij), γkl(si) = Zk(si)−Λ2(k,−l)Tη∗−l(si),

Λ2(k,−l) is the kth row of Λ2 with the lth element removed, and η∗−l(si) is η∗(si) with the

lth component removed.

(5) Sample σ2
1k|Λ1,Λ2,Y ,Z,Σ1(−k,−k),Σ2,η from

IG

(
NT

2
+ α1,

∑
i

∑
j(Yk(sij)−Λ1(k, ·)Tη(sij))

2

2
+ β1

)
,

for k = 1, ..., p2, where Σ1(−k,−k) is Σ1 with the (k, k) element removed and Λ1(k, ·) is

the kth row of Λ1.

(6) Sample σ2
2k|Λ1,Λ2,Y ,Z,Σ1,Σ2(−k,−k),η from

IG

(
N

2
+ α2,

∑
i

∑
j(Zk(si)−Λ2(k, ·)Tη∗(sij))2

2
+ β2

)
,

for k = 1, ..., p2, where Σ2(−k,−k) is Σ2 with the (k, k) element removed and Λ2(k, ·) is

the kth row of Λ2.
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(7) Sample η|Λ1,Λ2,Y ,Z,Σ1,Σ2 from

MVN
(
(ΛTΩ−1Λ + (ΣS ⊗ Im)−1)−1(ΛTΩ−1X), (ΛTΩ−1Λ + (ΣS ⊗ Im)−1)−1

)
.

(8) Sample ψ = log
(
φ−a
b−φ

)
∈ R using a Metropolis sampler with a Normal proposal distribution.

φ is obtained by transformation such that φ = exp{ψ}b+a
1+exp{ψ} .
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