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ABSTRACT 

RYAN E. FRAZER: Evaluating pluton-volcano relationships:  
an example from the Mount Givens Granodiorite 

(Under the direction of Drew S. Coleman) 

Zircon U-Pb geochronology indicates that the Mount Givens Granodiorite (MGG) of 

the Sierra Nevada batholith, California, was constructed over at least 7 Ma from 98-91 Ma. 

Chemical and volumetric similarities between homogenous ignimbrites (monotonous 

intermediates; MIs) and plutons such as the MGG led some to suggest a genetic relationship 

between the two. However, there are three issues regarding this link: 1) large plutons like the 

MGG accumulated at estimated rates of 0.001 km3/a, 1-2 orders of magnitude less than 

fluxes calculated for MIs; 2) zircon dissolution modeling indicates that rejuvenation events 

thought to affect MIs would not sufficiently dissolve zircon that should record multi-Ma 

growth of a crystal-rich mush 3) the Sierra Nevada batholith apparently lacks mafic plutons 

large enough to initiate MI eruptions. I suggest that MI eruptions are caused by high flux 

events, leaving little behind in the intrusive rock record, whereas low fluxes favor pluton 

growth. 
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I. INTRODUCTION 

Understanding the relationships between intrusive and extrusive magmatic rocks is a 

fundamental problem in igneous petrology. Some large plutons and zoned intrusive suites 

have been interpreted to either be unerupted crystal mushes or the crystalline residues left 

behind after large ignimbrite eruptions (Hamilton and Myers 1967; Hildreth 2004; Bachmann 

et al. 2007; Lipman 2007). In this hypothesis, both plutons and ignimbrites share the same 

histories as they are constructed incrementally as crystal-rich mushes over hundreds of 

thousands to millions of years. With no further inputs of magma, the mush may cool to form 

a granodiorite pluton. Conversely, the mush may be rejuvenated by energy inputs, including 

underplating of the mush by basalts. This may cause remelting of crystals until the mush may 

convectively stir and finally erupt as an unzoned, homogenous crystal-rich dacite, known as a 

monotonous intermediate (Hildreth 1981). 

In contrast, others suggested that voluminous intrusive rocks, such as those in large 

batholiths, do not share the same histories as monotonous intermediates. The plutons may 

accumulate mostly during low magma flux stages of long-lived volcanic centers. Ignimbrites 

could occur when power input peaks and allows for the rapid production of voluminous 

melts, which may preferentially erupt and leave little behind in the plutonic record (Glazner 

et al. 2004; Tappa et al. 2011; Zimmerer and McIntosh 2012; Mills and Coleman 2013).  

The composition, size, shape, and spacing of major intrusive suites has led some 

workers to suggest a direct connection to large caldera-forming eruptions (Lipman 2007; 

Bachmann et al. 2007; de Silva and Gosnold 2007). However, it is difficult to reconcile the  
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genetic link between intrusive rocks and large ignimbrite eruptions because the existing data 

indicate different magma accumulation rates for the two. Emplacement rates for plutons and 

intrusive suites are on the order of 0.001-0.0001 km3/a (Crisp 1984; Matzel et al. 2006; 

Tappa et al. 2011; Davis et al. 2012; Leuthold et al. 2012). In contrast, magma flux for 

regions of large ignimbrite activity such as the Altiplano-Puna volcanic complex of the 

central Andes can episodically be an order of magnitude higher (0.06 km3/a; de Silva and 

Gosnold 2007). Numerical modeling of sill intrusion suggests that a magma flux greater than 

0.01 km3/a is required to create enough eruptible magma to feed large (greater than 450 km3) 

ignimbrite eruptions (Annen 2009; Schöpa and Annen 2013). 

One proposed solution to the silicic magma flux problem is the rejuvenation of 

magmas that are stored high at crystallinity in the upper crust. The most commonly invoked 

method of rejuvenation is an event during which mafic magmas underplate a silicic mush, 

which serves to “defrost” them (Mahood 1990). As the mafic magmas crystallize, heat and 

volatiles may be released into the overlying mush. Various physical mechanisms that allow 

for heat transport, and thus rejuvenation, include “convective self-mixing” (Couch et al 

2001), “gas sparging” (Bachmann and Bergantz 2003, 2006; Huber et al 2010), and most 

recently “unzipping” (Burgisser and Bergantz 2011). All of these mechanisms may lead to 

resorption of crystals until they convect, or “stir” (Huber et al.2012), thus homogenizing the 

mush and allowing for eruption of a monotonous intermediate. 

The Mount Givens Granodiorite of the central Sierra Nevada batholith (Fig. 1) 

presents an opportunity to resolve some of the relationships between plutonic and volcanic 

rocks. Its outcrop area is similar in size to the zoned intrusive suites of the batholith (e.g. 

Tuolumne and Whitney intrusive suites), yet it is more homogenous in both composition and  
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Figure 1. Generalized geologic map of the central Sierra Nevada, CA. Plutons not assigned 
to major intrusive suites shown in light gray. The John Muir Intrusive Suite of Bateman 
(1992) has been modified after Davis et al. (2012) to separate the Mount Givens pluton on 
the basis of the Mount Goddard metamorphic pendant. Map after Bateman (1992), Cruden et 
al. (1999), Coleman et al. (2004) and Lackey et al. (2008).  
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texture compared to the zoned suites (Bateman 1992). Previous work on the pluton was 

undertaken with the notion that the magma was emplaced rapidly (e.g., Bateman and 

Nokleberg 1978; Tobisch et al. 1993); the longest estimates for its emplacement range from 

103-106 a (McNulty et al. 2000; Petford et al. 2000) suggesting fluxes on the order of 4.5 to 

0.0045 km3/a given the pluton’s 4500 km3 volume. Given its presumed rapid intrusion, large, 

segmented shape and intermediate composition, the Mount Givens Granodiorite has been 

postulated to represent an intrusive analog to caldera-forming eruptions that produce 

monotonous intermediates (Bachmann et al. 2007; de Silva and Gosnold 2007; Lipman 2007; 

Fig. 2). Specifically, the pluton has been compared to prominent calderas from which large 

ignimbrites erupted, such as the La Garita (Colorado; Bachmann et al. 2007), La Pacana 

(Chile; de Silva and Gosnold 2007) and Toba (Indonesia; Lipman 2007) calderas.  

I use zircon U-Pb geochronology to evaluate magma emplacement rates in the Mount 

Givens Granodiorite and its possible link to caldera-forming eruptions. Furthermore, I use 

knowledge of the pluton’s emplacement rate to evaluate models of crystal mush rejuvenation 

(e.g., Bachmann and Bergantz 2003, 2006; Burgisser and Bergantz 2011) and the effects 

rejuvenation may have on zircon dissolution. Geochronologic data are also useful in 

assessing the viability of existing hypotheses for the assembly of the Mount Givens pluton.  
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Figure 2. Areal extents of the Mount Givens Granodiorite and three calderas to which it has 
been compared (Bachmann et al. 2007; de Silva and Gosnold 2007; Lipman 2007). All 
features at the same scale. A Mount Givens Granodiorite (Bateman 1992); B caldera of the 
Youngest Toba Tuff, Indonesia (Chesner 2011); C La Pacana caldera, Altiplano-Puna 
volcanic complex, Chile (queries where caldera margins unknown; Lindsay et al 2001a); D 
La Garita caldera, San Juan volcanic field, Colorado (Bachmann et al. 2002).



 

II. GEOLOGICAL BACKGROUND 

The Sierra Nevada batholith of California is a composite of mostly Cretaceous-age 

granitoid plutons cropping out over approximately 35,000 km2 (Fig. 1; Bateman 1992). Many 

of the plutons in the batholith are grouped into intrusive suites on the basis of their ages, 

spatial relations, compositions and textures. Suites are characterized by having older, more 

mafic units at their margins and younger, more felsic units at their cores (Bateman 1992). 

Zircon U-Pb geochronology demonstrates that these suites were constructed incrementally 

over 7-16 Ma (Coleman et al. 2004; Frazer et al. 2009; Davis 2010; Memeti et al. 2010; 

Davis et al. 2012; Lackey et al. 2012). Individual plutons within suites also show evidence 

for incremental growth over several Ma, including the Half Dome (ca. 4 Ma, Tuolumne 

Intrusive Suite; Coleman et al. 2004) and Lamarck Granodiorites (ca. 3 Ma, John Muir 

Intrusive Suite; Davis et al. 2012). 

The Mount Givens Granodiorite is located in the central Sierra Nevada batholith (Fig. 

3), between the Shaver (106-98 Ma; Frazer et al. 2009) and John Muir (96-84 Ma; Davis et al. 

2012) intrusive suites. Although originally included in the John Muir Intrusive Suite 

(Bateman 1992), Davis et al. (2012) considered the Mount Givens pluton as distinct because 

it is separated from the rest of the suite by the Mount Goddard metamorphic pendant (Fig. 1). 

The Mount Givens Granodiorite is one of the largest single intrusions mapped in the 

Sierra Nevada batholith (Fig. 1; Bateman 1992), extending approximately 80 km in its 

longest direction and about 15-30 km across (Fig. 3). Whereas it is similar in area (1500 km2; 

Fig. 1) to the zoned Tuolumne and John Muir intrusive suites, published data indicate
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Figure 3. Simplified geologic map of the Mount Givens Granodiorite showing approximate 
locations and ages (in Ma) of samples dated in this study (stars) and in the literature (circles). 
Literature age prefixes: S – Stern et al. (1981); T3 – Tobisch et al. (1993); T5 – Tobisch et al. 
(1995). Thin dashed lines show gradational contacts; heavy black line on outer margin of the 
granodiorite of Cow Meadow indicates sharp intrusive contact. Individual plutons in the 
greater Sierra Nevada batholith not shown. Map after Bateman (1992), Cruden et al. (1999) 
and Lackey et al. (2008).   
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compositional and textural variations in the pluton are not as significant as those documented 

in the zoned suites (Bateman and Nokleberg 1978; Bateman and Chappell 1979; Bateman 

1992). Bateman and Nokleberg (1978) examined the northern portion of the pluton and 

determined that most compositional variation occurs within 2 km of the margin. The 

composition of the pluton ranges from tonalite to granite, but granodiorite and granite 

dominate (McNulty et al. 2000). Small volumes of aplitic granite are exposed in the center of 

the exposed northern part of the pluton (granite of Jackass Rock; Bateman and Nokleberg 

1978) and in the southern portion near Courtright Reservoir (Fig. 3).  

Whereas the southern two-thirds of the pluton are dominated by equigranular 

granodiorite (Bateman 1992), the bulbous northern end has both equigranular and 

megacrystic facies (Fig. 3). The largest observed K-feldspar megacrysts are 3 cm long 

(Bateman and Nokleberg 1978; McNulty et al. 2000). A horseshoe-shaped body of 

equigranular granodiorite (referred to herein as the granodiorite of Cow Meadow; Bateman et 

al. 1971) is found within the megacrystic facies and has been mapped with a sharp outer 

contact and a gradational inner contact (Fig. 3; Bateman et al. 1971; Bateman and Nokleberg 

1978; Bateman 1992; McNulty et al. 2000). All other contacts between textural and 

compositional phases are gradational (Bateman and Nokleberg 1978). 

Published zircon U-Pb ages for the Mount Givens Granodiorite range from 92.8 to 

87.9 Ma (Stern et al. 1981; Tobisch et al. 1993; 1995). However, these bulk zircon analyses 

are generally discordant and were not determined using modern thermal annealing and 

chemical abrasion techniques (Mattinson 2005). Many workers consider the pluton to have 

intruded around 90 Ma (e.g., Tobisch et al. 1993; 1995; Renne et al. 1993; Gilder and 

McNulty 1999; McNulty et al. 2000). 
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Most existing work on the pluton suggests it was assembled rapidly. Bateman and 

Nokleberg (1978) proposed the pluton was emplaced as a large, fractionally crystallizing 

magma body similar to the Tuolumne Intrusive Suite (Bateman and Chappell 1979), with 

aplite bodies in the northern and southern parts of the pluton crystallizing last. Bateman 

(1992) argued that the concentric structure of the northern portion might be the result of 

magma resurgence and folding. 

McNulty et al. (2000) suggested a rapid (103-106 a), multi-stage assembly of the 

Mount Givens Granodiorite via diking and sill formation (e.g., Cruden 1998; Petford et al. 

2000). Using anisotropy of magnetic susceptibility (AMS) methods, they proposed the 

construction of the Mount Givens pluton occurred as follows: (1) equigranular granodiorite 

magma ascended in N-S oriented dikes to the upper crust from a middle- to lower-crustal 

magma chamber. Ascent occurred in the southern part of the pluton, followed by lateral flow 

toward the northern portion. Space was created via floor downdrop into the emptying 

chamber below; (2) megacrystic granodiorite magma ascended via dikes in the northern part 

of the pluton and underplated the equigranular magma. Lateral flow is indicated by the 

“tongue” of megacrystic granodiorite that extends toward the central part of the pluton (Fig. 

3); (3) another pulse of equigranular magma (granodiorite of Cow Meadow) underplated the 

megacrystic magma. Floor downdrop ceased and the northern part of the pluton bulged up 

and outward, flexing the three sills; (4) ring diking allowed the Cow Meadow magma to 

ascend further, resulting in a sharp, arcuate contact and subvertical magnetic lineations. This 

action could have resulted in a trap-door style caldera at the paleosurface. 



 

III. METHODS 

Twelve 5-kg samples were collected from parts of the Mount Givens Granodiorite 

(Fig. 3) mapped as equigranular or porphyritic granodiorite or aplitic granite. Sample 

MG10-01 was collected in an area mapped as megacrystic granodiorite, but it is equigranular. 

Conversely, sample MG10-07 was collected in an area mapped as equigranular granodiorite, 

but it is megacrystic. Six samples were collected along a transect across the northern portion 

of the pluton including the central aplitic granite of Jackass Rock (Bateman and Nokleberg 

1978). Four samples were collected from different textural and compositional phases in the 

middle and southern portions of the pluton. Sample MG11-04 was collected from the same 

general locality as a sample dated by thermal ionization mass spectrometry using mg-sized 

fractions, which yielded an age of 90 +3/-4 Ma (Tobisch et al. 1993). 

Zircon was extracted from the samples by standard crushing (jaw crusher and disc 

mill) and gravimetric (water table and heavy liquids) techniques. Grains representative of the 

populations’ sizes and morphologies were selected by hand under a binocular microscope 

from the non-magnetic split on a Frantz magnetic separator operated at 1.5 A and 10° side tilt. 

Zircon grains from all samples were thermally annealed at 900°C for 48 hours and all but one 

sample were chemically abraded in 29M HF acid for 16 hours at 220°C to remove mineral 

inclusions and zones affected by radiation damage that are subject to Pb-loss (Mattinson 

2005). Zircons from sample MG10-03 (granite of Jackass Rock) were abraded for 16 hours at 

only 180°C to preserve more of the sparse, typically small grains. Fractions consisting of 

either a single zircon or an isolated zircon tip were spiked with a 205Pb-233U-236U tracer 
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(Parrish and Krogh 1987) and dissolved in 29M HF acid following a procedure modified 

after Krogh (1973) and Parrish (1987). Anion exchange (HCl) column chromatography was 

used to isolate U and Pb from the dissolved solution.  

Analyses of U and Pb were completed using a VG Sector 54 thermal ionization mass 

spectrometer at the University of North Carolina at Chapel Hill. Uranium was run on single 

Re filaments either as a metal, after loading in graphite and H3PO4, or as an oxide, after 

loading in silica gel. Lead was loaded in silica gel on single Re filaments. Both U and Pb 

were analyzed in single-collector peak-switching mode using a Daly ion-counting system. 

Data processing and age calculations were completed using the applications Tripoli and 

U-Pb_Redux developed as part of the EARTHTIME initiative (Bowring et al. 2011; McLean 

et al. 2011). Decay constants used were 238U = 1.55125 × 10−10 a−1 and 235U = 9.8485 × 10−10 

a−1 (Steiger and Jäger 1977).  

Corrections for initial Th/U disequilibrium (Schmitz and Bowring 2001) were made 

using U-Pb_Redux. An assumed magmatic Th/U ratio of 3.7 was used based on an average 

of six whole rock analyses of Th and U for the Mount Givens Granodiorite (Th/U range: 1.6-

5.7; Dodge et al. 1982; Noyes et al. 1983). Sample KMG-20 of Noyes et al. (1983) is 

excluded from the average Th/U calculation because its location is undetermined. A Th/U 

ratio of 3.7 is also reasonable because it is the average Th/U ratio of all granodiorites in the 

Sierra Nevada batholith according to data in the NAVDAT database (www.navdat.org). The 

difference between an uncorrected 206Pb/238U weighted mean age and an age that has been 

corrected for a magmatic Th/U ratio of 3.7 is approximately 95 ka in these samples. 

Variation in calculated ages due to different Th/U ratios found in the pluton is minor; the 
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disparity in weighted mean ages corrected for Th/U ratios from 1.6 to 5.7 is approximately 

20 ka. 



 

IV. RESULTS 

Zircon fractions from all samples contain few inclusions. Cathodoluminescence (CL) 

images of representative grains from each sample (except for MG10-03, which was not 

imaged) indicate typical magmatic oscillatory zonation (Appendix 1; Corfu 2003). CL 

imaging also revealed the presence of possible inherited cores in some zircons; visual 

inspection suggests that MG10-01, MG10-02, MG10-04, MG11-01 and MG11-03 may have 

more inherited cores than other samples. 

All fractions are concordant after correcting for initial Th/U disequilibrium 

(accounting for analytical and decay constant uncertainties; Appendix 2; Fig. 4). Thus, I use 

the weighted mean 206Pb/238U age as the best estimate for crystallization ages of the samples 

in which there is a tight distribution of fraction ages. Several samples show significant scatter 

in individual fraction ages beyond analytical uncertainty; these samples are only given an 

approximate crystallization age. However, when a subset of three or more overlapping 

fractions is present at the lower age limit for the sample, a weighted mean age is reported. 

Northern part of the Mount Givens Granodiorite 

Three of the four oldest crystallization ages come from samples collected near the 

outer margins of the Mount Givens Granodiorite. The oldest sample, MG11-04, was 

collected near the northwest margin of the pluton in a small area mapped as megacrystic 

granodiorite. It has 2 cm K-feldspar megacrysts, which were the largest observed for any 

sample in this study. It yielded an age of ca. 97.9 Ma with one fraction that is ca. 500 ka 
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Figure 4. Compilation of new 206Pb/238U ages for individual fractions from the Mount 
Givens Granodiorite. Only fractions that are concordant within analytical uncertainty are 
included. For clarity, fraction F-5 (~102.6 Ma) from sample MG10-02 is not shown. 
Weighted mean ages are calculated only for samples with three or more overlapping fractions 
that are interpreted to represent crystallization age; fractions not included in weighted mean 
calculations are faded out. All other sample ages are estimates. Weighted mean ages and 2σ 
analytical error calculated using the application U-Pb_Redux (Bowring et al. 2011; McLean 
et al. 2011). All fraction ages are corrected for initial Th-disequilibrium assuming a 
magmatic Th/U ratio of 3.7. 
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older than the others. This sample was collected near the location of the 90 +3/-4 Ma sample 

of Tobisch et al. (1993).  

Sample MG10-01 was collected from outcrop mapped as megacrystic facies at the 

northern margin but the sample is equigranular in texture. Individual fraction ages spread 

over ca. 1 Ma of concordia, from 96-95 Ma. On the basis of three overlapping fractions at the 

lower end of the age spectrum, I interpret its crystallization age to be ca. 95 Ma. Sample 

MG10-05 was collected at the southeastern margin of the pluton. It is equigranular in texture 

and six zircon fractions yielded a weighted mean age of 96.47 ± 0.05 Ma with an mean 

square of weighted deviates (MSWD) of 5.6. 

Samples MG10-02, MG10-03, MG10-04 and MG11-03 were collected inboard of the 

margins of the bulbous northern part of the pluton. The observed textures of all these samples 

matched the textures mapped for the sample locations by Bateman (1992; Fig. 3). All of the 

samples are younger than those collected at the margins. 

Sample MG11-03 was collected in the equigranular granodiorite of Cow Meadow 

near the mapped location of its intrusive contact with the megacrystic facies. However, I did 

not observe the contact at that locality. Four fractions range from 95.2-94.4 Ma. 

Samples MG10-03 and MG10-04 were collected approximately 1 km apart from each 

other in the core of the northern part of the pluton. Sample MG10-03 was collected from the 

granite of Jackass Rock, a body of fine-grained aplitic granite with a color index near zero. 

Three overlapping fractions give a weighted mean age of 92.71 ± 0.08 Ma with an MSWD of 

1.3. A fourth fraction yields an age of ca. 91.9 Ma. Sample MG10-04, collected in the nearby 

megacrystic facies, has three fractions ranging from 93.2-92.6 Ma.  
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The final rock dated from the northern portion of the pluton is sample MG10-02, a 

megacrystic granodiorite. It yields a complicated age spectra, with seven concordant 

fractions ranging from 102.6-92 Ma. The four youngest fractions cluster from 93-92 Ma. 

Central part of the Mount Givens Granodiorite 

One sample (MG11-02) was collected in the southern part of the megacrystic 

granodiorite. Uranium-lead data from two fractions indicate a crystallization age of ca. 95.6 

Ma, similar to ages from marginal samples in the northern part of the pluton.  

Southern part of the Mount Givens Granodiorite 

Whereas the entire southern portion of the pluton was previously mapped as 

equigranular (Bateman 1965; Bateman 1992), sample MG10-07 is megacrystic. Five 

fractions overlap for a weighted mean age of 90.87 ± 0.05 Ma and an MSWD of 4.1. One 

fraction falls below the main grouping with an age of ca. 90.15 Ma.  

Sample MG10-08 was collected from an area mapped as aplitic granite and was 

generally finer-grained and more felsic (CI = ~2) than nearby granodiorites. It also contains 

1-cm K-feldspar phenocrysts. Fraction ages occurred in two groupings: one group near 92.5 

Ma, and a second group near 91.0 Ma.



  

V. DISSCUSSION 

Zircon recycling in the Mount Givens Granodiorite 

Improvements in analytical methods for TIMS U-Pb zircon dating, including thermal 

annealing, chemical abrasion (Mattinson 2005) and error treatment (Schmitz and Schoene 

2007; McLean et al. 2011) revealed that spread along concordia is a common occurrence in 

plutonic rocks (e.g., Coleman et al. 2004; Matzel et al. 2006; Tappa et al. 2011; Davis et al. 

2012; Rioux et al. 2012). This led workers to question what causes age dispersion and what a 

set of zircon ages means (Miller et al. 2007; Schaltegger et al. 2009). 

The significance of analyses that are hundreds to thousands of years older (or 

younger) than the main age group is unclear. Older ages could be the result of prolonged 

(antecrystic) zircon growth in a crystal mush that was periodically rejuvenated by fresh 

magmas (Miller et al. 2007). This scenario suggests a direct genetic link between older and 

younger zircons. Conversely, the ages could represent variable incorporation of minor 

amounts of inherited (xenocrystic) zircon that was introduced into magma batches as they 

ascended through different levels of the crust (Schaltegger et al. 2009). This could result in a 

similar spread along concordia but does not necessitate a long-lived magma mush system at 

the level of emplacement. 

Despite the development of the thermal annealing-chemical abrasion technique 

(Mattinson 2005), zircons may still be affected by Pb-loss, causing spread along concordia. 

Age dispersion could be minimized (in the case of Pb-loss in an antecrystic zircon) or 

enhanced (in the case of Pb-loss in an autocrystic zircon), making zircon age spectra more 
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difficult to interpret. Though U-Pb dating of titanite from the same samples may shed light 

on when final zircon crystallization occurred (Schaltegger et al. 2009; Davis et al. 2012), I 

did not undertake those analyses in this study. As such, in samples with significant spread 

along concordia I choose to assign only approximate crystallization ages, favoring the 

younger end of the age spectrum (e.g., MG10-01). Though I aggressively chemically abraded 

zircons in this study, there were infrequent fractions far below the dominant age groupings or 

spreads in some samples (e.g., MG10-07). I interpret these to be the results of Pb-loss – 

perhaps even Pb-loss that occurred during chemical abrasion. In samples with consistent 

overlapping ages I assign a weighted mean age (e.g., MG10-05).  

The source(s) of the remaining spread in some of the samples is unclear, but I may 

make some inferences based on their age spectra. Miller et al. (2007) posited that zircons 

might be recycled (and thus result in age spread in single samples) as high-crystallinity 

magmas mix with new inputs and zircons are redistributed in the crystal mush. However, the 

results suggest that this redistribution did not occur on the pluton-scale, and if it did occur it 

was likely limited to local mixing. Age spectra for the youngest (MG10-07) and oldest 

(MG11-04) samples in the pluton, 60 km apart, do not show overlap. Sample MG10-02 has 

one fraction with an age of 96.3 ± 0.1 Ma and another at 94.5 ± 0.1 Ma, which bracket all the 

fraction ages from sample MG10-01, ~3 km away, but do not overlap (Fig. 4). However, 

overlap does occur between samples 1 km apart: MG10-03, an aplitic granite, is similar in 

age to sample MG10-04, a megacrystic granodiorite from which the aplite could have been 

derived. 

I suggest that incorporation of zircons in ascending magmas, prior to reaching 

emplacement level, could have contributed to the spread in zircon ages observed here 
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(Schaltegger et al. 2009). If ascent was rapid (e.g., Petford et al. 2000) and magmas cooled 

rapidly (Davis et al. 2012), they may preserve inherited zircons incorporated during the 

ascent. Trace element analyses of zircons using the ID-TIMS-TEA method (Schoene et al. 

2010) may be useful in helping determine the provenance of the zircons in future work. 

Emplacement models for the Mount Givens Granodiorite 

Many of the existing models for the formation of the Mount Givens Granodiorite call 

for rapid emplacement of the pluton. For example, Bateman and Nokleberg (1978) concluded 

that compositional patterns preserved in the Mount Givens pluton were the result of 

fractional crystallization of a large magma body (similar to interpretations of the Tuolumne 

Intrusive Suite [Bateman and Chappell 1979]). Modeling simple conductive cooling of large 

magma intrusions predicts a range of U-Pb zircon ages amongst samples of less than 1 Ma 

(Glazner et al. 2004). The age data presented here show a range of 6 Ma amongst samples in 

the northern portion of the pluton alone, making single-batch intrusion unlikely. 

Tobisch et al. (1993) followed the rapid emplacement model, using the 90 +3/-4 Ma 

age for a sample in the northwestern part of the pluton to also represent its age 60 km south 

near Courtright Reservoir. However, sample MG11-04, collected near Tobisch et al.’s (1993) 

sample, yielded an age of 97.9 Ma. The large age discrepancy between these two samples 

may be real, or may be the result of unresolved Pb-loss in the bulk zircon fractions by 

Tobisch et al. (1993), which were analyzed before development of techniques to minimize 

this problem.  

McNulty et al. (2000) also called for rapid assembly of the Mount Givens 

Granodiorite (103-106 a) based on modeling of piston sinking mechanisms by Cruden (1998). 

This range includes the preferred filling time for the Mount Givens pluton of 105 a by Petford 
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et al. (2000). Using AMS data, McNulty et al. (2000) suggested magma ascended rapidly in 

dikes and spread laterally, resulting in large sills of alternating texture. Further ring diking in 

the north would have allowed the structurally lowest equigranular magma to ascend, 

resulting in the sharp outer contact of the granodiorite of Cow Meadow. This hypothesis 

predicts that each textural facies would have internally similar ages throughout the pluton. 

However, the geochronologic data suggest that it is unlikely that the different textural 

facies were intruded in discrete events. Instead, equigranular samples dated here span at least 

2 Ma. The age span for the megacrystic facies includes the 7 Ma range for the entire pluton 

and thus overlaps with the equigranular facies. Finally, the granodiorite of Cow Meadow 

does not appear to be the youngest part of the Mount Givens pluton. Instead, its 94.7 Ma age 

is between the ages of the margin and core of the pluton (Fig. 3). 

Interpretations of magmatic and magnetic structures in plutons 

McNulty et al. (2000) found that magnetic foliations are subparallel to magmatic 

foliations observed in the field, which is a common observation (King 1966; Gulliet et al. 

1983; Cruden and Launeau 1994; de Saint Blanquat and Tikoff 1997; Cruden et al. 1999; 

Tikoff et al. 2005). They inferred that magnetic foliations and lineations are a result of 

magmatic processes due to the presence of a strongly concentric pattern of foliations in the 

northern portion of the pluton, and separate zones of subvertical and subhorizontal magnetic 

lineations in the southern portion. Neither of these observations is compatible with regional 

deformation patterns, which were oriented NW-SE (Bateman 1992; Tikoff and de Saint 

Blanquat 1997; de Saint Blanquat et al. 2011). Thus, they attributed magmatic and magnetic 

structures in the pluton to magma flow processes. However, there are at least two alternative 

mechanisms for the generation of aligned mineral grains, including crystallization in a 
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thermal gradient (Huang et al. 2009; Lundstrom 2009; Lundstrom et al. 2011) and 

realignment and recrystallization during thermal cycling (Mills et al. 2011). 

Thermal cycling is a process that is likely important during pluton construction 

because incremental emplacement should cause an oscillating temperature pattern through 

time (Annen et al. 2006; Davis and Coleman 2008; Annen 2009). Davis et al. (2012) used 

U-Pb (zircon and titanite) and 40Ar/39Ar (hornblende and biotite) thermochronology to 

demonstrate that magmas in the John Muir Intrusive Suite (Fig. 1) cooled rapidly from zircon 

saturation through Ar closure in hornblende, then remained elevated above biotite closure for 

2-11 Ma. They suggested that the prolonged period between hornblende and biotite dates 

could have been the result of thermal cycling due to younger pluses of magma reheating 

older pulses above biotite Ar closure temperatures. 

It seems likely that thermal cycling (and by extension, migrating thermal gradients) 

would have occurred in the Mount Givens Granodiorite. The pluton shows a large spread in 

U-Pb zircon ages, including a general decrease in age from margin to core in the northern 

portion (Fig. 3). This suggests incremental emplacement of small batches of magma, which 

could cause oscillating temperatures in older magma batches and thus realignment of 

minerals important to AMS such as magnetite and (to a lesser extent) hornblende.  

Origin of the sharp intrusive internal contact 

The presence of an obvious internal contact on the outer margin of the equigranular 

granodiorite of Cow Meadow (Fig. 3) was interpreted as a late intrusion of magma into the 

Mount Givens system, perhaps due to resurgence or late stage ring-diking (Bateman et al. 

1971; Bateman 1992; McNulty et al. 2000). However, the geochronologic data presented 

here indicate that the age of the granodiorite of Cow Meadow is intermediate between the 
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pluton’s western margin and its core. I hypothesize that the origin of the sharp contact and 

the pluton’s alternating textural facies may be due to repetition of magma emplacement 

cycles (Fig. 5). 

The cycles begin with the oldest magmas intruding cooler wallrocks, leading to rapid 

cooling and preservation of equigranular texture. As magmatism continues, the thermal 

gradient may increase; furthermore, successive inputs of magma will lead to thermal 

oscillations. The steady transition to higher, cycling temperatures may result in both the 

slightly younger megacrystic facies inboard of the equigranular facies, as well as the 

gradational contact between them (Johnson and Glazner 2010).  

The sharp contact between the megacrystic facies and the outer granodiorite of Cow 

Meadow may be a result of the magmatic cycle ending, allowing the system to cool. When a 

new cycle began, Cow Meadow magma batches were emplaced against cooler wallrock, 

which in this case was megacrystic granodiorite. This thermal juxtaposition could result in 

rapid cooling, preserving the sharp intrusive contact and the equigranular texture observed in 

the granodiorite of Cow Meadow. The magmatic cycle continued, repeating the process of a 

gradual thermal gradient increase along with thermal cycling, producing another gradational 

contact into the innermost megacrystic granodiorite. The concentric structure of the contacts 

may be due to doming and flexing in the northern portion of the pluton as it grew, resulting 

in a laccolith-type geometry.  

Magma fluxes in plutons and large ignimbrites 

The Mount Givens Granodiorite has been cited as a possible intrusive analog to 

ignimbrites because of its composition, structure, and volume (Fig. 2; Bachmann et al. 2007; 

de Silva and Gosnold 2007; Lipman 2007; Bachmann and Bergantz 2008). Specifically, the  
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Figure 5. Schematic representation of emplacement and textural facies development in the 
northern part of the Mount Givens Granodiorite. Potassium feldspars are represented by 
black boxes (not to scale). Individual magmatic inputs are bordered by light gray lines (not to 
scale). No vertical scale is implied. Gradational contacts between textural facies are indicated 
short black dashed lines; sharp intrusive contact is shown with a heavy black solid line. 
Present day erosional surface shown by long black dashed line. In this model, the magmatic 
cycle begins with the oldest magmas rapidly crystallizing into an equigranular texture. As 
magma inputs buffer the system, they may stay above the minimum temperature required for 
coarsening, allowing development of megacrystic texture and gradational contacts between 
textural facies (Johnson and Glazner 2010). A temporal break in magma emplacement is 
indicated by the jagged black lines. This break allows T to decrease such that when the 
magma input cycle begins again, the older megacrystic granodiorite is cool “wallrock”. The 
new magmas crystallize rapidly with equigranular texture, followed by the gradational 
development of megacrystic texture. The concentric pattern exposed today is the result of a 
doming of the sills as the northern portion grew into a laccolith-type structure.
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pluton has been likened to large (>2000 km3) homogenous crystal-rich dacites known as 

monotonous intermediates (Hildreth 1981). Bachmann et al. (2007) speculated that eruptions 

from the growing Mount Givens pluton were likely and thus the original vertical extent of the 

magma was greater than 5 km (McNulty et al. 2000), implying that even the source of the 

5000 km3 Fish Canyon Tuff may have left behind a large pluton. De Silva and Gosnold 

(2007) suggested that pluton growth and large ignimbrite generation occur at the same rates 

and are thus directly linked, based on the similarity of their calculated intrusion rates for the 

Altiplano-Puna volcanic complex (0.012-0.06 km3/a) to Petford et al.’s (2000) filling rate 

model for the Mount Givens pluton (0.032 km3/a).  

To evaluate these hypotheses, I calculate an average magma flux for the Mount 

Givens Granodiorite of 0.0006 km3/a by using the age range of the Mount Givens pluton 

established here (7 Ma), the area of the pluton (1500 km2) and the exposed vertical relief as a 

proxy for thickness (3 km). Using McNulty et al.’s (2000) thickness estimate of 5 km (based 

on AMS data) yields a flux of 0.0007 km3/a. These rates are similar to magma fluxes 

calculated for other plutons in the Sierra Nevada (Coleman et al. 2004; Davis et al. 2012; 

Lackey et al. 2012) and elsewhere (Matzel et al. 2006; Tappa et al. 2011; Leuthold et al. 

2012; Mills and Coleman 2013). However, this is 1-2 orders of magnitude lower than fluxes 

observed for large-volume ignimbrites (Schmitz and Bowring 2001; Schmitt et al. 2002; 

Vazquez and Reid 2004; Bachmann et al. 2007; Crowley et al. 2007), which record zircon 

growth on the order of 105 a rather than 106-107 a.  

Numerical modeling by Annen (2009) indicates that constant magma fluxes greater 

than 0.01 km3/a are necessary to develop magma chambers capable of supporting large (>450 

km3) eruptions. Schöpa and Annen (2013) considered the effects of variable magmatic fluxes 



  25 

through time, yielding similar results. Keeping the average magmatic flux of the Tuolumne 

Intrusive Suite constant at 0.0014 km3/a over 7 Ma, a mobile magma chamber greater than 

450 km3 can only be generated when there is a transient pulse of at least 0.05 km3/a, 

delivering more than 1000 km3 of magma to emplacement level over 40 ka. These modeled 

fluxes are in agreement with the fluxes calculated by de Silva and Gosnold (2007) for flare-

ups defined by large ignimbrite eruptions in the Altiplano-Puna volcanic complex. Thus, the 

difference in fluxes between large plutons and similarly-sized ignimbrites might: 1) indicate 

the hypothesized link between the two rock types—that plutons are either unerupted 

equivalents or complementary residua of large ignimbrites—is incorrect, or 2) be a reflection 

of the proposed differences in their T-t histories. 

Zircon dissolution during mush rejuvenation 

The observation that phenocrysts in ignimbrites often record heating events prior to 

eruption (e.g., Bachmann and Dungan 2002; Bachmann et al. 2002; Wark et al. 2007; Molloy 

et al. 2008; Shane et al. 2008; Bachmann 2010) led to the hypothesis that monotonous 

intermediates and other large ignimbrite eruptions occur when long-lived, crystal-rich silicic 

mushes (50+% crystals) are underplated by mafic magmas and rejuvenated (e.g., Mahood 

1990; Bachmann et al. 2002). Though the proposed mechanisms by which the mushes may 

be revived differ (Bachmann and Bergantz 2003, 2006; Huber et al. 2009, 2010, 2012; 

Burgisser and Bergantz 2011), the final outcome—eruption—is the same. If heating events 

do not successfully rejuvenate a magma mush, then it may cool completely to form a 

granodiorite pluton (Bachmann et al. 2007). 

If monotonous intermediates and plutons were both once large crystal mushes, and 

plutons are simply crystallized mushes with multi-Ma zircon age spans, then the zircons that 
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would have recorded the same multi-Ma growth of the mush must be dissolved prior to 

eruption. The difference in apparent magmatic fluxes calculated using zircon geochronology 

for large plutons and monotonous intermediates would thus be a result of their different T-t 

histories.  

Using Watson’s (1996) equation for the instantaneous dissolution of a spherical 

zircon, I modeled the effects of hypothetical heating events on zircons with initial radii from 

30-120 µm, which are reasonable sizes for zircons in large ignimbrites (Bindeman 2003). The 

parameters used were similar to those suggested for the Fish Canyon magma. Temperatures 

were increased from 715-760°C (Bachmann and Dungan 2002) monotonically. Since 

proposed rejuvenation times range from less than a few centuries (Burgisser and Bergantz 

2011) to 200 ka (Bachmann and Bergantz 2003), I used the equation iteratively over 

timespans ranging from 1 ka to 200 ka.  

In order to maximize dissolution I began with the assumption of no (zero) dissolved 

Zr in the melt initially, and any Zr derived from the dissolving zircons was immediately 

removed from the system. Adding initial Zr to the magma and increasing the Zr content of 

the magma in response to zircon dissolution would slow zircon dissolution and may even 

yield zircon precipitation. The lack of dissolved Zr in the model also accounts for the 

compositional differences between granodiorite magmas (M ≈ 1.7; where M  ≡ (2Ca+ Na+

K)/(Si ∙ Al)) and the peraluminous experiments upon which the dissolution equation is 

based (M ≈ 1.3; Watson 1996), which do not dissolve zircon as readily as metaluminous 

magmas. For example, at 715°C the Zr saturation concentration is 86 ppm when M = 1.7, but 

it is 60 ppm when M = 1.3. 
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Results suggest that it is possible to fully dissolve zircons with radii up to nearly 100 

µm under the favorable conditions of this model (Fig. 6A). A hypothetical heating event over 

the maximum 200 ka with no dissolved Zr present in the melt results in complete dissolution 

of the 10, 25, 50 and 75 µm-radius model zircons. However, a zircon with an initial radius of 

100 µm would survive the event with a final radius of 28 µm. Exposing zircons to the same 

temperature range using the shorter rejuvenation timespans (<1 ka) that have been recently 

proposed (Burgisser and Bergantz 2011) results in negligible dissolution (Table 1).  

The addition of Zr to the melt in this model results in less dissolution (Fig. 6A). With 

60 ppm Zr held constant throughout the model (i.e., as the temperature increases, [Zr] is 

constant and the system becomes Zr-undersaturated), the 75 µm zircon survives over 200 ka, 

as compared to the Zr-free case. The addition of Zr also limits dissolution over shorter 

timescales, as the 10 µm zircon requires nearly twice as much time to fully dissolve.  

If the rejuvenation event brings the temperature of the melt up to higher temperatures, 

more dissolution is possible. For example, if the temperature rises to 800°C (Lund Tuff; 

Maughan et al. 2002), larger model zircons will dissolve over the longer time paths (Fig. 6B). 

However, the increased temperature has little effect on zircons during the shorter 

rejuvenation events and dissolution is further inhibited with the addition of Zr to the melt 

(Table 1). 

These results suggest that the effects rejuvenation events have on zircons present in 

their systems may be limited, particularly because the parameters used in these models were 

chosen to maximize dissolution. Real systems would likely dissolve even less zircon than 

indicated here. For example, these models assume the zircon is interacting with an infinite 

reservoir into which Zr may diffuse. However, in real systems the zircons likely interact with  
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Figure 6. Temperature-time plots contoured for timing of dissolution of spherical model 
zircons based on the parameterization of Watson (1996). Contours indicate the T and t at 
which a zircon of a given radius will fully dissolve assuming a linear T-t path beginning at 
the origin (T = 715ºC; t = 0 ka). Solid colored lines show results determined with zero 
dissolved Zr in the model; dashed colored lines are for 60 ppm dissolved Zr held constant in 
the melt. At any point below a given curve, that zircon will survive without complete 
dissolution. Heavy black lines indicate the maximum proposed heating path (200 ka; 
Bachmann and Bergantz 2003), and a short heating path (10 ka). Note that Burgisser and 
Bergantz suggest rejuvenation times <1 ka. Any colored lines that intersect these paths 
indicate complete dissolution of model zircon. A Modeling based on the temperature range 
proposed for the Fish Canyon Tuff (Bachmann and Dungan 2002). Over the long heating 
path, zircons with radii <100 µm will not survive when no dissolved Zr is present, whereas 
60 ppm Zr limits complete dissolution to zircons ≤50 µm. The 10 ka heating path only 
permits very small (<10 µm) zircons to fully dissolve. This short path is longer than the 
rejuvenation timescales proposed by Burgisser and Bergantz (2011) B Modeling with the 
upper temperature (800°C) based on maximum temperature estimates for other monotonous 
intermediates (Chesner 1998; Lindsay et al. 2001b; Maughan et al. 2002). Larger zircons 
dissolve than for the Fish Canyon Tuff, but short rejuvenation timescales will fully dissolve 
only the smallest (10-25 µm) zircons.
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limited melt reservoirs (~1.5 mm), which would discourage dissolution (Watson 1996). 

Furthermore, the recent preferred timescales for the rejuvenation of even the largest crystal-

rich mushes such as the Fish Canyon Tuff are on the order of centuries to 10 ka (Burgisser 

and Bergantz 2011; Huber et al. 2012), which should preserve many of the initial zircons that 

would record mush growth (Fig. 6; Table 1). 

These results are supported by the presence of ancient xenocrystic zircon cores in 

monotonous intermediates (Lanphere and Baadsgaard 2001; Schmitt et al. 2002) and other 

large ignimbrites (Zimmerer and McIntosh 2012). It is improbable that heating events 

preceding ignimbrite eruption would selectively dissolve zircons recording long-term (up to 

10 Ma) growth of a “proto-ignimbrite” but would preserve much older zircons that were not 

derived from the active magmatic system. In order for such rejuvenation events to 

successfully dissolve zircon, the events must be hot, long-lived, and very Zr-poor.  

Large mafic sills in silicic batholiths 

A fundamental requirement of the hypotheses for erupting a crystal mush is the 

presence of hot basalt to underplate and rejuvenate the mush. Estimates for the volumes of 

basalt necessary vary widely depending on the mechanism by which the rejuvenation occurs. 

For example, much more mafic magma is required for “gas sparging” (Bachmann and 

Bergantz 2003) than for “unzipping” (Burgisser and Bergantz 2011).  

Using similar input parameters to Bachmann and Bergantz (2003) for gas sparging 

(Appendix 3), I find that 1550 km3 of mafic magma would be necessary to remobilize a 

hypothetical Mount Givens magma. The amount of mafic magma necessary for unzipping is 

much less, with a maximum sill thickness for the most viscous silicic magmas calculated to 

be 83 m, resulting in ~125 km3 of mafic magma if the entire 1500 km2 Mount Givens pluton  
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Table 1 Results of spherical zircon dissolution modeling 

ro (µm) 1 ka 50 ka 100 ka 150 ka 200 ka 

      715-760°C, 0 ppm Zr in melt 
10 7.3 - - - - 
25 24.1 - - - - 
50 49.5 14 - - - 
75 74.7 58 32 - - 

100 99.8 88 73 55 28 
125 124.8 115 105 93 78 
150 149.8 142 133 125 115 

maxa 6.8 48 68 83 96 

      715-760°C, 60 ppm Zr in melt 
10 9.2 - - - - 
25 24.7 - - - - 
50 49.9 42 33 19 - 
75 74.9 70 65 59 53 

100 99.9 96 93 89 85 
125 124.9 122 119 116 113 
150 150.0 148 145 143 140 

maxa 3.8 27 38 46 54 

      715-800°C, 0 ppm Zr in melt 
10 - - - - - 
25 22.1 - - - - 
50 48.6 - - - - 
75 74.1 - - - - 

100 99.3 57 - - - 
125 124.5 94 46 - - 
150 149.5 126 95 48 - 

maxa 11.6 82 116 142 164 

      715-800°C, 60 ppm Zr in melt 
10 5.3 - - - - 
25 23.5 - - - - 
50 49.3 - - - - 
75 74.5 45 - - - 

100 99.6 80 53 - - 
125 124.7 110 92 70 35 
150 149.8 137 124 108 90 

maxa 8.5 59.9 85 104 119.7 
a radius (µm) of the largest zircon that will completely dissolve using 
given parameters 
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were underplated. Under Burgisser and Bergantz’s (2011) “standard conditions”, a sill just 

5.3-m thick would unzip a 2-km thick mush. If the 4500 km3 Mount Givens magma were 

2-km thick, this would require only ~12 km3 of mafic magma. 

An examination of the Sierra Nevada batholith suggests that there is little potential 

for having remobilized significant volumes of magma via either of these mechanisms. Diorite 

and gabbro bodies are few in number relative to intermediate and felsic plutons (Fig. 7). 

None appear to be large enough to rejuvenate a Mount Givens-sized crystal mush by 

gas sparging. Whereas the small mafic plutons that do exist may meet the volumetric 

requirements of unzipping, they do not have the lateral extent necessary to underplate the 

large areas of intermediate-composition intrusive suites found in the batholith. Even the 

deeper crystallization depths exposed in the southern Sierra Nevada batholith (Ague and 

Brimhall 1988) do not reveal the volumes or areas of mafic rocks thought to be necessary to 

cause the eruption of large-volume ash sheets, though it is possible that mafic bodies 

crystallizing at those depths may have sunk (Glazner and Miller 1997).  

Furthermore, the rejuvenation hypotheses assume that the eventual eruption products 

were previously stored as long-lived mushes just above the solidus (e.g., Bachmann and 

Bergantz 2003; Bachmann et al. 2007; Huber et al. 2009; Burgisser and Bergantz 2011). 

However, modeling indicates that magmas intruded as sills at low accumulation rates will 

completely solidify before subsequent sills are emplaced (Annen 2009; Schöpa and Annen 

2013). This is supported by thermochronologic data by Davis et al. (2012) that suggests 

magma in the John Muir Intrusive Suite cooled rapidly below hornblende Ar closure (~580-

490°C) after emplacement (Fig. 8). Given the large span of zircon U-Pb ages presented here, 

it is likely that only small areas of the Mount Givens Granodiorite were melt-rich at any 



  32 

 
Figure 7. Generalized map of the central and southern Sierra Nevada batholith showing the 
distribution of mafic plutonic rocks relative to intermediate and felsic plutonic rocks. When 
highlighting mafic rocks, only gabbros and diorites were chosen if the maps specified them; 
otherwise the general categories “Mesozoic basic” and “Mesozoic ultrabasic” (e.g., Smith 
1964) were highlighted. Rock types and locations after Moore (1963, 1978, 1981), Smith 
(1964), Matthews and Burnett (1965), Huber (1983), du Bray and Moore (1985), Moore and 
Sisson (1985, 1987), Diggles et al. (1987), Moore and Nokleberg (1992), Bateman (1992), 
Pickett and Saleeby (1993), Sisson and Moore (1994), Stone et al. (2000), Wahrhaftig 
(2000), and Lackey et al. (2008).  



  33 

 
Figure 8. Schematic diagram indicating various T-t paths for intermediate magmas assuming 
incremental assembly of a large volume of magma. Relative closure temperatures of various 
thermochronometers are indicated on the y-axis; the temperature for zircon (Zrc) is a relative 
crystallization temperature. Ttn – titanite (U-Pb); Hbl – hornblende (40Ar/39Ar); Bt - biotite 
(40Ar/39Ar); San – sanidine (ignimbrites only; 40Ar/39Ar). Path 1 indicates the T-t path of a 
small batch of magma that is emplaced as a sill in the upper crust. Paths 2 and 3 indicate the 
T-t paths that magmas follow according to the magma mush hypothesis, where eventual 
plutons and ignimbrites share most of the same T-t histories. In path 1, the magma rapidly 
solidifies then slowly increases in T as subsequent sills are emplaced. As the locus of 
magmatism retreats and eventually subsides, T decreases to background levels. This T-t path 
is in agreement with geothermochronology by Davis et al. (2012) that indicates synchronous 
zircon, titanite and hornblende ages, but biotite ages that are much younger. Paths 2 and 3 
show the magma staying in a mushy state above the haplogranite eutectic for a long period of 
time after emplacement due to subsequent intrusions and latent heat buffering (Bachmann et 
al. 2007; Huber et al. 2009). The mush may then be rejuvenated and erupted as an MI (path 
2) or heat input may cease entirely, allowing the mush to cool into a pluton (path 3). This 
would result in zircon ages that are significantly older than the closure dates from any of the 
thermochronometers, which has thus far not been observed in plutonic rocks. 
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given time during its emplacement. Thus, in order to cause a growing pluton similar to the 

Mount Givens Granodiorite to erupt such that it will result in a monotonous intermediate, 

volumes of underplating mafic magma even greater than those called upon by the 

rejuvenation hypotheses are required. 

Pluton-volcano connections 

The data presented here indicate that the difference in age spans between monotonous 

intermediates and plutons is related to different magma accumulation rates for the two. The 

information recorded by zircon in monotonous intermediates is indicative of high flux events 

that favor magma evacuation in large eruptions. These eruptions may leave little behind in 

the plutonic record, as evidenced by the lack of large volumes of cogenetic intrusive rocks 

with the tight age spans similar to those observed in ignimbrites (Tappa et al. 2011; Mills and 

Coleman 2013). Conversely, the lower fluxes observed in plutons are a reflection of the 

incremental emplacement of magmas that are preferentially stored in the crust, because they 

tend to cool rapidly after emplacement (Annen 2009; Davis et al. 2012; Schöpa and Annen 

2013). Thus, whereas the Mount Givens Granodiorite’s composition and volume are similar 

to those observed in large ignimbrites, it likely grew too slowly to support the formation of a 

volume of magma capable of supporting a “super-eruption”.  

Instead, I suggest that potential magma loss from the Mount Givens system would 

have resulted in typical arc stratovolcano activity. There are many similarities between 

pluton assembly rates and small-volume arc volcanic fluxes. For example, the average 

extrusion rate calculated for the Aucanquilcha volcanic center (0.00003 km3/a; Grunder et al. 

2006) is in fact slower than the construction rate of the Mount Givens pluton. In addition, 

Grunder et al. (2006) found that volcanism at the Aucanquilcha volcanic cluster progressed 
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from mafic to more felsic eruptive products over time, similar to that observed in large 

intrusive suites, and to a lesser extent, the Mount Givens Granodiorite. 



  

VI. CONCLUSIONS 

New high-precision U-Pb zircon data indicate that the Mount Givens Granodiorite 

was emplaced over a period of at least 7 Ma, from ~98-91 Ma. Previous growth models for 

the pluton, such as upper-crustal fractional crystallization (Bateman and Nokleberg 1978) or 

rapid emplacement of large sills (McNulty et al. 2000) do not satisfy the range of 

crystallization ages in the pluton. Instead, I suggest that the pluton was constructed 

incrementally by small batches of magma over time, as is observed in many other plutons 

and intrusive suites. Using the pluton’s exposed area, relief and age range allows me to 

calculate a long-term average emplacement rate of 0.0006 km3/a. This is similar to average 

rates found in other intrusive rocks, but is orders of magnitude slower than magma fluxes 

observed in large ignimbrites. Because the Mount Givens Granodiorite has been likened to 

monotonous intermediates, which are thought to erupt as the result of rejuvenating a slowly 

accumulated crystal mush, I investigated the effects of hypothetical reheating events on 

zircon that would be present in the system. I found that even under favorable conditions, it is 

difficult to dissolve zircon and thus it is likely that ignimbrites should preserve information 

about long-term magma accumulation if it occurred. The lack of multi-Ma age spans in 

zircons from monotonous intermediates, coupled with the presence of much older 

xenocrystic cores in some monotonous intermediates, suggests that monotonous 

intermediates are the result of high-flux events that preferentially end in voluminous 

eruptions. Conversely, low magma fluxes are conducive to accumulating and cooling small 
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batches of magma in the crust in the form of plutons. This activity may be reflected in the 

volcanic record by long-lived, small-volume volcanic fields. 
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APPENDIX 1 

Cathodoluminescence images 

Photomicrographs of zircon (Fig. 1) were collected using a TESCAN scanning electron 

microscope operating at 15 kV equipped with a cathodoluminescence detector. Images were 

collected on individual zircons. Contrast and brightness were adjusted for each image to improve 

visual clarity. Zircon images were cropped, rotated and placed on a black background. No 

images were collected for sample MG10-03 in order to preserve its sparse zircons for U-Pb 

geochronology. 
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Figure 1. Cathodoluminescence images of typical zircon in samples dated from the Mount 
Givens Granodiorite. None of these specific zircons have been dated. Note that all zircons in all 
samples are shown at the same scale.
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Figure 1 (cont.). Cathodoluminescence images of typical zircon in samples dated from the 
Mount Givens Granodiorite. None of these specific zircons have been dated. Note that all 
zircons in all samples are shown at the same scale.
  



 

APPENDIX 2 

Zircon age data for rocks from the Mount Givens Granodiorite 
           ages (Ma)e  totalf 
sample U Pba     Thb      206Pbc           206Pbd error     207Pbd error         207Pbd error 206Pb 207Pb 207Pb corr. common 
fraction (ppm) (pg) U      204Pb            238U (%)      235U (%)         206Pb (%) 238U 235U 206Pb coeff. Pb (pg) 
MG10-01 Equigranular granodiorite (297825, 4153316)g 
F-1  925 131 0.40 2296 0.0149558 0.15 0.098896 0.54 0.047959 0.48 95.79 95.76 94.8 0.501 3.6 
F-2      942 65 0.38 1280 0.0148744 0.12 0.098493 0.88 0.048025 0.83 95.28 95.38 98.1 0.526 3.3 
F-4 814 120 0.42 6062 0.0149081 0.08 0.098783 0.26 0.048057 0.21 95.49 95.65 99.7 0.646 1.2 
F-7  1075 56 0.35 4490 0.0148368 0.09 0.098342 0.33 0.048072 0.30 95.04 95.24 100.4 0.493 0.8 
F-8 922 32 0.37 1613 0.0148255 0.13 0.098044 0.79 0.047964 0.73 94.97 94.97 95.0 0.540 1.3 
F-13     317 32 0.39 721 0.0149286 0.14 0.100268 1.66 0.048713 1.57 95.62 97.02 131.6 0.631 2.8 
MG10-02 Megacrystic granodiorite (299119, 4150174) 
F-1      470 31 0.38 946 0.0144093 0.14 0.095897 1.33 0.048268 1.23 92.32 92.98 110.0 0.702 2.1 
F-5      553 42 0.39 915 0.0160345 0.22 0.107185 1.29 0.048482 1.21 102.64 103.39 120.6 0.429 3.0 
F-6      1178 81 0.45 3459 0.0143706 0.14 0.094958 0.43 0.047924 0.37 92.07 92.11 93.1 0.566 1.5 
F-9      243 52 0.43 1532 0.0147715 0.13 0.098209 0.78 0.048220 0.72 94.62 95.12 107.7 0.526 2.1 
F-10     912 64 0.50 2077 0.0144672 0.10 0.095648 0.62 0.047950 0.57 92.69 92.75 94.4 0.583 1.9 
F-11     1116 104 0.40 4437 0.0144432 0.09 0.095467 0.36 0.047939 0.31 92.54 92.58 93.8 0.641 1.5 
F-14     957 86 0.48 2894 0.0150431 0.12 0.099769 0.46 0.048101 0.41 96.35 96.56 101.9 0.516 1.8 
MG10-03 Aplitic granite (295531, 4144923) 
F-1      1039 63 0.45 686 0.0144594 0.14 0.095729 1.64 0.048017 1.55 92.64 92.83 97.7 0.662 5.9 
F-2      2118 30 0.30 1302 0.0143416 0.12 0.094672 0.89 0.047876 0.83 91.89 91.85 90.6 0.540 1.5 
F-3      2600 74 0.49 3068 0.0144802 0.12 0.095742 0.45 0.047954 0.39 92.77 92.84 94.6 0.580 1.5 
F-4      801 34 0.48 2169 0.0144674 0.21 0.095616 0.83 0.047933 0.77 92.69 92.72 93.6 0.371 1.0 
MG10-04 Megacrystic granodiorite (296797, 4145483) 
F-1      762 152 0.50 6423 0.0145414 0.09 0.096247 0.30 0.048004 0.24 93.16 93.31 97.1 0.736 1.5 
F-3      1231 178 0.46 3985 0.0145218 0.09 0.095950 0.36 0.047921 0.31 93.03 93.03 92.9 0.594 2.8 
F-5      118 33 0.46 2309 0.0144186 0.18 0.095680 0.63 0.048128 0.55 92.38 92.78 103.1 0.574 0.9 
F-7      736 230 0.44 4572 0.0144520 0.10 0.095366 0.31 0.047859 0.26 92.59 92.49 89.9 0.615 3.2 
MG10-05 Equigranular granodiorite (288528, 4136287) 
F-1      820 127 0.41 5359 0.0150757 0.10 0.099691 0.29 0.047960 0.23 96.55 96.49 94.9 0.654 1.5 
F-2      260 95 0.43 3913 0.0150413 0.12 0.099474 0.35 0.047965 0.29 96.34 96.29 95.2 0.583 1.5 
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F-4      3342 143 0.42 5401 0.0150698 0.10 0.099826 0.31 0.048044 0.26 96.52 96.62 99.1 0.602 1.7 
F-5      327 94 0.42 3896 0.0150844 0.11 0.100088 0.42 0.048123 0.38 96.61 96.86 103.0 0.508 1.5 
F-6      486 67 0.36 3461 0.0150633 0.21 0.099793 0.41 0.048048 0.32 96.48 96.59 99.3 0.638 1.2 
F-8      313 157 0.42 8078 0.0150331 0.12 0.099688 0.39 0.048094 0.29 96.28 96.49 101.5 0.872 1.2 
MG10-07 Megacrystic granodiorite (326375, 4110337) 
F-1      633 105 0.63 4132 0.0140655 0.11 0.092879 0.43 0.047892 0.37 90.13 90.18 91.6 0.630 1.5 
F-2      798 140 0.49 5744 0.0142032 0.11 0.093807 0.32 0.047901 0.26 91.01 91.04 91.9 0.662 1.5 
F-3      696 179 0.51 6079 0.0141686 0.10 0.093480 0.33 0.047851 0.30 90.79 90.74 89.5 0.361 1.8 
F-4      676 106 0.53 4422 0.0141932 0.14 0.093838 0.35 0.047951 0.29 90.94 91.07 94.4 0.617 1.5 
F-7      475 94 0.68 4624 0.0141685 0.11 0.093480 0.32 0.047851 0.27 90.78 90.74 89.6 0.615 1.2 
F-8      448 106 0.54 2761 0.0141954 0.32 0.093637 0.53 0.047841 0.39 90.96 90.89 89.0 0.676 2.3 
MG10-08 Aplitic granite (324733, 4113647) 
F-1      214 69 0.50 3171 0.0144533 0.11 0.095382 0.53 0.047863 0.47 92.60 92.50 90.1 0.646 1.3 
F-2      870 58 0.69 2441 0.0142017 0.12 0.093864 0.53 0.047935 0.48 90.99 91.10 93.8 0.511 1.4 
F-4      639 99 0.44 2952 0.0144307 0.10 0.094960 0.51 0.047726 0.46 92.46 92.11 83.3 0.596 2.1 
F-5      798 131 0.54 2364 0.0142049 0.11 0.093700 0.51 0.047841 0.46 91.02 90.94 89.0 0.516 3.4 
MG11-02 Megacrystic granodiorite (312408, 4132076) 
F-3      902 121 0.45 6119 0.0149241 0.17 0.098947 0.36 0.048086 0.28 95.59 95.80 101.1 0.646 1.2 
F-4      434 84 0.44 3127 0.0149194 0.13 0.098739 0.44 0.048000 0.38 95.56 95.61 96.9 0.559 1.7 
MG11-03 Equigranular granodiorite (290404, 4140734) 
F-1      745 303 0.48 10007 0.0148615 0.08 0.097926 0.20 0.047790 0.14 95.19 94.86 86.5 0.809 1.9 
F-3      874 374 0.38 10047 0.0147955 0.08 0.097332 0.20 0.047712 0.14 94.78 94.31 82.6 0.765 2.4 
F-4      748 102 0.38 4655 0.0147705 0.09 0.097329 0.29 0.047791 0.24 94.62 94.31 86.5 0.639 1.4 
F-10     742 64 0.40 909 0.0147417 0.12 0.097653 1.22 0.048044 1.16 94.43 94.61 99.0 0.581 4.5 
MG11-04 Megacrystic granodiorite (283917, 4149984) 
F-1      148 62 0.45 2107 0.0152823 0.10 0.101211 0.57 0.048033 0.52 97.87 97.89 98.6 0.521 1.8 
F-3      570 107 0.46 2657 0.0152846 0.18 0.101111 0.48 0.047978 0.41 97.88 97.80 95.9 0.537 2.5 
F-4      380 80 0.48 4339 0.0153922 0.09 0.101809 0.31 0.047972 0.26 98.56 98.44 95.6 0.636 1.1 
a Total mass of radiogenic Pb 
b Th contents calculated from radiogenic 208Pb and the 207Pb/206Pb date of the sample, assuming concordance between U-Th and Pb systems 
c Measured ratio corrected for fractionation and spike contribution only 
d Measured ratios corrected for fractionation, tracer, blank 
e Th-corrected isotopic dates calculated using the decay constants λ238 = 1.55125E-10 and λ235 = 9.8485E-10 (Jaffey et al. 1971), assuming Th/Umagma = 3.7 
f  Total mass of common Pb 
g Locations in NAD 83, UTM Zone 11  
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APPENDIX 3 

Modeling mafic magma volumes required for rejuvenation of the Mount Givens Granodiorite 

The amount of mafic magma necessary to rejuvenate the Mount Givens Granodiorite is 

calculated using the “gas sparging” method (Bachmann and Bergantz 2003, 2006; Huber et al. 

2010). In the “gas sparging” hypothesis, basaltic magma underplates a locked silicic magma 

mush (50+% crystals; Bachmann and Bergantz 2006). As the basalt crystallizes, it releases 

volatiles (H2O+CO2), which may advect heat into the overlying silicic mush without leaving an 

easily detectable chemical signature (Bachmann and Bergantz 2003, 2006). This may cause 

resorption of crystals in the locked mush, allowing it to convect and homogenize. 

The volume of mafic magma may be determined by equating the amount of energy 

required to raise the temperature of the silicic mush and melt a fraction of the crystals in the 

mush with the amount of sensible and latent heat released by the crystallizing mafic magma 

(Bachmann and Bergantz 2003, 2006), while also accounting for conductive cooling of the mush 

over the time period in question. This is represented in the following equation 

mmafic =
{mmush[Cp,mushΔTmush + XmLmush ]}+ (−k)A

ΔTmush
Δx

Δt

Cp,maficΔTmafic + XcLmafic
 

All parameters are defined in Table 1 and were taken from Bachmann and Bergantz 

(2003, 2006) where applicable. Bachmann and Bergantz (2003, 2006) used an integrated form of 

Fourier’s law assuming a depth between 6 and 7 km for the top of the magma chamber (Δx) to 

calculate the amount of heat lost by conductive cooling over 150 ka (O Bachmann pers. comm.). 

The mass of the Mount Givens crystal mush was calculated assuming a volume of 4500 km3 and 

a density of 2450 kg m-3, whereas the final volume of the mafic magma was calculated assuming 

a density of 2900 kg m-3 (Bachmann and Bergantz 2003, 2006).
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Table 1. Parameters used in gas sparging calculations 
Symbol Definition Value Sourcea 
mmush Mass of the mush (kg) 1.1025 × 1016 this study 
mmafic Mass of mafic magma (kg)   
Cp,mush Specific heat, mush (J kg-1 K-1) 1370 B and B 2003 
Cp,mafic Specific heat, mafic magma (J kg-1 K-1) 1484 B and B 2003 
ΔTmush Tinitial – Tfinal, in mush (K) 40 B and B 2003 
ΔTmafic Tinitial – Tfinal, in mafic magma (K) 150 B and B 2003 
Xm Weight fraction melted, mush 0.2 B and B 2003 
Xc Weight fraction crystallized, mafic magma 0.9 B and B 2003 
Lmush Latent heat of fusion, mush (J kg-1) 2.7 × 105 B and B 2003 
Lmafic Latent heat of fusion, mafic magma (J kg-1) 4 × 105 B and B 2003 
k Thermal conductivity (W m-1 K-1) 2 B and B 2006 
A Cross-sectional area (m2) 1.5 × 109 B and B 2003 
Δx Distance between ends (m) 1000 OB pers. comm. 2010 
Δt Time elapsed (s) 4.73 × 1012 B and B 2003 
aB and B: Bachmann and Bergantz; OB: O. Bachmann 
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