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ABSTRACT 

STEVEN D. CAPPELL: Systematic Analysis of Essential Genes Reveals New 
Regulators of G Protein Signaling 

(Under the direction of Dr. Henrik G. Dohlman) 

Heterotrimeric G proteins are molecular switches that respond to a wide range of 

stimuli including light, neurotransmitters, small molecules and peptides.  Due to their role 

in a variety of physiological responses, it is no surprise that over 50% of drugs modulate 

G protein signaling pathways.  While many drugs function at the level of the G protein-

coupled receptor, downstream signaling components are increasingly being investigated 

as drug targets.  Therefore, discovery of new components and regulators will help 

identify new ways to exploit G protein-coupled signaling pathways for therapeutic utility. 

Previous attempts to systematically identify new components of G protein 

pathways have focused on genome-wide knockout screens including gene-deletion 

mutants.  However, these methods are inherently limited because they exclude the 

essential genes.  In this thesis, we present studies to identify new signaling components 

by systematically analyzing 870 essential genes using repressible-promoter strains.  

Specifically, we show that the SCFCdc4 E3 ubiquitin ligase complex regulates G protein 

turnover and catalyzes ubiquitination of the G protein α subunit, Gpa1.  Also, we 

demonstrate that Pik1, a phosphatidylinositol (PtdIns) 4-kinase, regulates the mitogen-

activated protein kinase (MAPK) cascade and helps maintain signaling fidelity.  These 

findings reveal the essential-genome as an untapped resource for identifying new 

components and regulators of signal transduction pathways.  Furthermore, work on this 

thesis has expanded our understanding of G protein signaling networks and could lead 

to future opportunities for drug discovery.  
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Organisms growing in complex environments are exposed to multiple chemical 

and physical stimuli.  The ability to interpret and respond to such stimuli is critical for a 

cell to survive in changing environments.  At the cellular level, external signals are 

transduced across the plasma membrane by a variety of cellular signaling networks.  

However, the most widely used networks are those coupled to heterotrimeric G proteins.  

Organisms as diverse as yeast and humans utilize G-protein coupled receptors 

(GPCRs) to respond to a wide range of stimuli including light, tastes, odors, 

neurotransmitters, and hormones (1-3).  Given their role in critical biological processes, 

perturbations of G protein signaling pathways are often associated with human disease 

(4).  Not surprisingly, G proteins and GPCRs have been extensively studied because of 

their potential importance as pharmacological targets.  In fact, over 50% of drugs 

currently on the market target GPCRs, thereby modulating G protein-coupled signaling 

pathways (5-7).  Notable examples include antidepressants such as Zoloft (sertraline 

hydrochloride), antipsychotics such as Zyprexa (olanzapine), and the asthma drug 

Singulair (montelukast).  While directly targeting GPCRs has been highly successful, 

efforts to find new drugs have focused on downstream modulators of G protein signaling 

(8-10).  Therefore, by studying proteins and signaling events downstream of receptor 

activation, it is possible to identify new drug targets in G protein signaling pathways. 

This thesis will focus on new regulators of G proteins and the signaling pathways 

they activate.  While many proteins are known to regulate G protein function, much is 

still unknown about other aspects of G protein signaling, such as protein turnover.  In 

this introductory chapter, special attention will be paid to known regulators of G protein 

signaling, how these regulators were originally identified, and recent advancements that 

allow for more sophisticated methods of studying G protein signaling pathways. 
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Heterotrimeric G proteins 

Cell surface receptors with seven-transmembrane domains couple to 

heterotrimeric guanine nucleotide binding proteins (G proteins), thereby linking the 

extracellular environment to the inside of the cell.  Heterotrimeric G proteins are 

comprised of α, β, and γ subunits and function as molecular switches (Figure 1.1).  In the 

absence of stimulus, the Gα subunit is bound to GDP and the obligate heterodimer Gβγ.  

Activation of the receptor by an extracellular ligand results in the exchange of GDP for 

GTP on the Gα subunit of the heterotrimer.  GTP-bound Gα undergoes conformational 

changes in three distinct switch regions that allow it to dissociate from the Gβγ dimer.  

Both Gα and Gβγ can then signal through effector proteins to elicit their downstream 

effects (11).  Inactivation of G proteins results from the slow intrinsic GTPase activity of 

Gα, hydrolyzing GTP to GDP (12).  After hydrolysis, GDP-bound Gα has lower affinity 

for effectors and a higher affinity for free Gβγ and thus the heterotrimeric complex 

reforms, terminating signaling.  To accelerate inactivation, G proteins are negatively 

regulated by a class of proteins known as regulators of G protein signaling (RGS) (13), 

which stabilize the transition state of GTP hydrolysis and function as GTPase 

accelerating proteins (GAPs) (14).   

Heterotrimeric G proteins are regulated by a number of accessory proteins.  In 

addition to receptors and RGS proteins, which activate and inactivate G proteins 

respectively, there are several other classes of proteins that modulate G protein function.  

First, guanine nucleotide dissociation inhibitors (GDIs) function to limit activation of the 

Gα subunit by inhibiting the release of GDP.  The most notable example is Gβγ, which 

functions as a GDI to reduce basal activation of Gα.  Also, the 19 amino acid GoLoco 

motif functions as a GDI on the Gαi/o class of G proteins (15), and is found on a number 

of proteins, including RGS12 (16).  A crystal structure of the GoLoco motif in complex 
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Figure 1.1 

 

Figure 1.1  The heterotrimeric G protein activation cycle. 
G protein-coupled receptors (GPCR) respond to extracellular ligands and 

activate heterotrimeric G proteins inside the cell.  When inactive, the Gα subunit is 
bound to GDP and the Gβγ dimer.  Upon ligand binding, the receptor functions as a 
guanine nucleotide exchange factor (GEF) allowing Gα to exchange GDP for GTP.  
GTP-bound Gα undergoes a conformational change and dissociates from Gβγ. Both 
subunits are then free to activate downstream effectors. Signaling is terminated by 
hydrolysis of GTP, a reaction that is catalyzed by GTPase accelerating proteins (GAP) 
such as the regulator of G protein signaling (RGS) family of proteins, which stabilize the 
transition state of the reaction.   
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with Gαi1-GDP revealed a direct interaction between three conserved residues of the 

GoLoco motif and the α- and β-phosphates of GDP.  This crystal structure indicated GDI 

activity is mediated by direct contact with GDP, preventing its release from Gα (17).  

Second, G protein activation can be modulated by non-receptor guanine nucleotide 

exchange factors (GEFs).  To date, several non-receptor GEFs have been identified 

such as Ric-8A (18), Arr4 (19), and GIV (20).  Similar to GPCRs, non-receptor GEFs 

accelerate the release of GDP on the Gα subunit, facilitating the binding of GTP, which 

is in excess in the cell.  However, unlike GPCRs, non-receptor GEFs typically cannot 

accelerate nucleotide exchange on the heterotrimeric complex.  They require dissociated 

Gα−GDP to accelerate GDP release.  This observation has led to the hypothesis that 

non-receptor GEFs work after receptor-driven activation and function to sustain signaling 

by promoting faster cycling of Gα (21).  Through a combination of GPCRs, RGS 

proteins, GDIs, and non-receptor GEFs, cells have the ability to fine-tune G protein 

signaling, suggesting all of these proteins could be exploited for therapeutic utility (8, 

22).  However, of the proteins listed, only drugs that target GPCRs have made it through 

clinical trials and into patients.  Thus, further efforts are needed to identify new proteins 

that regulate G protein signaling pathways in the hopes of finding better drug targets.   

Model systems for studying heterotrimeric G protein signaling 

The human genome encodes more than 700 GPCRs, 20 Gα subunits, 5 Gβ 

subunits, and 13 Gγ subunits.  Given this complexity, simpler model organisms have 

been extensively utilized to study fundamental principles of G protein signaling.  In the 

yeast S. cerevisiae, a single canonical heterotrimeric G protein signaling pathway 

regulates the process of cell mating.  In addition to having only one GPCR and G 

protein, there are several other reasons why yeast is an attractive model for studying G 

protein signaling.  First, most of the yeast components are highly conserved in humans.  
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In particular, the G protein (23) and mitogen-activated protein kinase (MAPK) 

components (24-26) are both structurally and functionally similar to their human 

counterparts (Figure 1.2).  Therefore, discoveries made in yeast will be applicable to 

human G protein signaling.  Second, the signaling events downstream of the receptor 

and G protein are well understood.  Pathway activation results in easily measured 

phenotypes including cell-cycle arrest, morphological changes, and new gene 

transcription.  Third, yeast has the ability to stably grow as a haploid, making it easy to 

identify recessive mutations.  Fourth, yeast readily undergo homologous recombination, 

making it easy to perform gene replacement and gene disruption at the genomic-scale.  

In fact, a gene-deletion strain has been made for nearly every non-essential gene in 

yeast (27) and a tetracycline-repressible strain has been made for nearly every essential 

gene (28).  This combination allows for unprecedented coverage when using genome-

wide screens to uncover novel signaling components.    

Yeast exist as one of two haploid mating types, MATa and MATα.  In the 

proximity of a member of the opposite mating type, the yeast cell will excrete a small 

polypeptide pheromone: MATa cells release a factor and MATα cells release α factor 

(29, 30).  The pheromones activate GPCRs on the cell surface eliciting a mating 

response consisting of transcriptional changes, polarized growth, and cell cycle arrest at 

the G1 phase, which ultimately results in the fusion of two haploid cells to produce one 

diploid cell (31). 

The pheromone response pathway has been extensively studied for over 40 

years, and is arguably the most well understood signaling pathway in any eukaryotic 

organism.  Many of the core components required to transmit signaling from the plasma 

membrane to the nucleus have been identified and characterized.  The yeast 

pheromone receptor, Ste2, couples to a heterotrimeric G protein made up of Gpa1G
α
 (32- 
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Figure 1.2 

 

Figure 1.2  MAPK signaling pathways are conserved from yeast to humans. 
(A) Human MAPK pathways. (B) Yeast MAPK pathways. Most components of 

yeast MAPK pathways have homologs in humans.  Fus3 is homologous to Erk2 (green); 
Kss1 is homologous to Erk1 (Red); Hog1 is homologous to p38 (Blue).  Thus, 
discoveries in yeast are likely to lead to discoveries in humans.  G protein-coupled 
receptor (GPCR); receptor tyrosine kinase (RTK).  
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34), Ste4G
β, and Ste18G

γ (35) (Figure 1.3).  Pheromone binding to Ste2 promotes 

exchange of GDP for GTP on Gpa1.  GTP-bound Gpa1 then dissociates from the 

Ste4/18 dimer.  Dissociated Ste4/18 activates the MAPK cascade (36) comprised of 

Ste20, Ste11 (37, 38), Ste7 (39), the partially redundant MAPKs Fus3 and Kss1 (40), 

and the MAPK scaffold Ste5 (41-43).  Active Fus3 then phosphorylates the transcription 

factor Ste12 (44, 45), which regulates the expression of genes necessary for proper 

mating responses (46-49).   

The pheromone response pathway - Discovery of the components that 

comprise the pheromone pathway is the result of two key advancements in the field of 

biology.  The first breakthrough came in the 1970’s when two labs used classical genetic 

techniques to identify mutations that conveyed sterility to yeast.  In 1974, Mackay and 

Manney published two papers in which they irradiated yeast cells with an ultraviolet light 

to induce random mutations in the yeast genome (50, 51).  The mutagenized yeast were 

then mixed with members of the opposite mating type and spread on selective agar 

medium.  The experiment was designed so that only unmated, sterile cells would grow 

on the selective medium.  Genetic analysis of the sterile colonies identified 20 genes 

thought to be involved in pheromone signaling.  Mackay and Manney designated these 

genes with the symbol ste (STErile) and numbered them in the order that they were 

characterized.  

While Mackay and Manney were irradiating yeast to identify genes involved in 

mating, Lee Hartwell was using temperature-sensitive mutants to identify genes involved 

in the cell cycle (52-56), an endeavor that would eventually win him the Nobel Prize in 

Medicine in 2001 (57).  Once Hartwell had identified many of the genes involved in the 

cell division cycle (CDC), he shifted his attention to the pheromone pathway and its 

ability to induce cell-cycle arrest (58).  Hartwell randomly mutagenized yeast using 

ethylmethane sulfonate and selected for colonies that mated at 22oC but not at 34oC.  
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Figure 1.3 

 

Figure 1.3  The yeast mating response pathway. 
Haploid yeast respond to mating pheromones through a canonical heterotrimeric 

G protein-coupled signaling pathway.  Pheromone causes the dissociation of GTP-
bound Gpa1 and the Gβγ dimer comprised of Ste4 and Ste18.  Free Ste4/18 coordinates 
the activation of the MAPK cascade by binding the MAPK scaffold Ste5 and activating 
the small G protein Cdc42.  This leads to the phosphorylation of Fus3, which mainly 
activates two effectors: Ste12 and Far1.  Ste12 is a transcription factor that regulates 
mating-specific genes and Far1 is a cyclin-dependent kinase inhibitor that causes cell 
cycle arrest in the G1 phase. 
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Using temperature-sensitive mutants allowed Hartwell to conduct complementation 

studies and thus achieve a greater understanding of the function of each ste gene.  

Hartwell was able to narrow down Mackay and Manney’s list of genes in the pheromone 

pathway from 20 to 8, including the major pathway components Ste2, Ste4, Ste5, Ste7, 

Ste11, and Ste12.   

Examining these early studies with the benefit of hindsight reveals the authors 

made some insightful conclusions about their data.  For example, Hartwell was able to 

determine that Ste2 is specific only to MATa cells, and likely encodes the pheromone 

receptor, without any knowledge of the sequence of the gene or the protein it encodes.   

Such insights, obtained only through simple genetic techniques, underscore the power of 

yeast genetics and illustrate why the pheromone pathway is now one of the most well-

characterized signaling pathways in eukaryotes. 

Early studies of the pheromone pathway identified the key genes absolutely 

required to transmit signaling across the plasma membrane to elicit intracellular effects.  

However, we now know that some genes function in the pheromone pathway but are not 

absolutely required for mating.  These genes, such as SST2, FUS3, and KSS1, were 

missed by both Mackay and Manney’s and Hartwell’s screens.  While these simple 

genetic techniques were quite successful, increasingly sophisticated technologies are 

required to identify genes that are not necessary for pheromone signaling but rather fine-

tune signaling.  

 While the genes required for pheromone signaling were identified relatively 

quickly, discovering the proteins they encoded and their biochemical functions would 

take many years.  From 1980-1995, many different labs worked on individual ste genes.  

For example, Whiteway et al. found that Ste4 encodes the Gβ subunit of the yeast 

heterotrimeric G protein (35).  Additional research identified genes with roles in the 

pheromone pathway that did not yield a sterile phenotype when mutated.  For example, 
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the MAP kinase Fus3 was identified in a screen for mutants defective in cell fusion after 

mating (40), the Gα subunit Gpa1 was identified as a gene homologous to mammalian 

Gα subunits (23, 34), and the RGS protein Sst2 was identified in a screen for mutants 

super-sensitive to pheromone (59).  Despite the success in characterizing known 

components, the rapid pace of discovery of new components and regulators of the 

pheromone response pathway was beginning to subside in the mid-1990’s.   

The second major breakthrough came in 1996, when the yeast genome was 

completely sequenced by a worldwide collaboration (60).  It was the first completely 

sequenced genome of a eukaryote and ushered in a new age of conducting science.  

Prior to this, approximately 1000 yeast genes were known (61), but the sequence 

incredibly identified almost 6,000 open-reading frames (ORFs).  The addition of almost 

5,000 new genes greatly increased the opportunity for discovering new signaling 

components.  However, given the complexity of studying 6,000 genes, new tools and 

techniques would be required to study an organism at the genomic-scale.   

In the years following the sequencing of the yeast genome, an international 

consortium was formed to systematically disrupt every ORF in the yeast genome.  In 

2000, the Saccharomyces Genome Deletion Project released the Yeast Knock-Out 

(YKO) deletion collection, which included almost 82% of all yeast genes (27, 62).  While 

Manney, Hartwell, and others relied on random mutagenesis, the YKO collection allowed 

for the systematic analysis of almost every gene to identify new components and 

regulators of G protein signaling.  For the first time, research could be conducted on the 

genomic-scale, assaying the function of every gene simultaneously, instead of relying on 

the variable process of generating random mutations or the time consuming process of 

studying one gene at a time.   

Our lab utilized the YKO collection to identify genes required for proper 

pheromone signaling and answer a long-standing question about the role of the yeast 
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Gα subunit.  In the yeast mating pathway pathway, the signal generated by pheromone 

stimulation is mostly propagated by Gβγ effectors (63, 64).  For many years, it was 

thought that Gpa1 functions solely to sequester Gβγ, and prevent it from activating 

downstream effectors.  Therefore, Gpa1 was considered a negative regulator of the 

pathway.  In support of this model, deletion of Gpa1 results in constitutive activation of 

the pheromone pathway and permanent cell-cycle arrest.  However, given the role of 

human Gα subunits in activating downstream effectors, it was speculated that the yeast 

Gα subunit may also activate downstream effecters.  In 2006, Slessareva et al. sought to 

identify novel effectors of Gpa1 by screening the YKO collection for deletion strains that 

block signaling by a constitutively active Gpa1QL mutant.  Using this systematic 

approach, they found that GTP-bound Gpa1 activates the phosphatidylinositol (PtdIns) 

3-Kinase Vps34 at the endosome, resulting in increased PtdIns 3-P production, 

translocation of signaling components to the endosome, and enhanced MAPK activation 

(65).  Thus, Gpa1 has a positive role in signaling and can, in fact, activate effectors.  

Given that Vps34 or its human homolog had never been implicated in G protein 

signaling, it is unlikely that a more directed, hypothesis-driven approach would have 

identified it as a Gα effector.  Therefore, the systematic approach utilized by Slessareva 

et al. was instrumental in discovering the first new component of the pheromone 

pathway in almost 8 years (66).  Despite the yeast pheromone pathway being mapped 

out in incredible detail over the previous 35 years, this result demonstrated that more 

signaling components are still waiting to be discovered using systematic screening 

methods.  

Essential genes 

One of the outcomes of the yeast Genome Deletion Project was the realization 

that 18% of yeast genes are essential for growth.  Genes involved in cellular processes 
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required for cell viability such as cell division, DNA replication, and cytoskeletal 

rearrangements tend to be essential (27, 62).  Interestingly, essential genes are more 

highly conserved than the non-essential genes; 38% of essential genes have a human 

ortholog compared to only 20% of non-essential genes (67).  Thus, any discoveries 

made while studying yeast essential genes are more likely to translate to humans.  

Additionally, their role in cell viability makes them attractive drug targets for diseases 

such as cancer.   

Despite the benefits of studying essential genes, they have remained poorly 

characterized.  This is due primarily to the fact that essential genes are incredibly difficult 

to study.  They cannot be permanently deleted in haploid cells and mutations that alter 

their function or enzymatic properties tend to be lethal.  Classical genetic techniques, 

such as random mutagenesis employed by Mackay and Manney, are not suited for 

identifying essential genes.  For example, the yeast Gα subunit GPA1 is essential, 

because when it is deleted, the Gβγ dimer is free to activate signaling, and induces 

permanent cell-cycle arrest, terminating growth.  GPA1 was not originally identified in 

screens conducted by Mackay and Manney or Hartwell, and its role in the pheromone 

pathway escaped detection until 1987, when it was identified due to its similarity to 

human Gα subunits (23, 34).  The fact that the G protein alpha subunit, arguably the 

most important component of the pheromone pathway, could not be identified by random 

mutagenesis screens underscores the limitation of previous techniques to identify novel 

signaling components, and highlights the need for more sophisticated screening 

methods in order to study the role of essential genes.   

Temperature-sensitive mutants - The best way to identify the function of a 

given gene is to delete it and look for altered cellular behavior or morphology.  Since an 

essential gene cannot be stably deleted, conditional mutants are required.  The most 

common method of generating a conditional mutant is to create a temperature-sensitive 
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(ts) mutant (68).  A plasmid containing the wild-type gene is randomly mutagenized and 

transformed into a strain lacking the same gene.  For essential genes, the mutagenized 

plasmid must be transformed at the same time the genomic allele is deleted.  Once 

colonies form, they are patched onto two different plates, one placed at 25oC and the 

other placed at 37oC.  The ts mutants are those that grow at 25oC, the permissive 

temperature, but not at 37oC, the restrictive temperature.  Mutations that convey 

temperature-sensitivity usually alter protein stability and result in unfolded protein at the 

restrictive temperature.  Thus, the protein can be rapidly knocked-down by growing the 

cells at elevated temperatures.  The main drawback to this technique however, is that 

the exact function of the randomly generated mutation is not known (69).  For example, 

the mutation could only cause local instability of a particular domain within the protein, 

disrupting some functions but retaining others.  This could cause unforeseen effects 

such as making a dominant-negative.  Alternatively, the mutations could be overly 

effective, resulting in low activity at the permissive temperature, and rapid loss of protein 

function at the restrictive temperature.  This could alter cell viability or induce cell stress 

pathways that could alter the experimental outcome.  Thus, experimental conditions 

cannot be properly controlled if the function of the mutation is not fully understood.  

Furthermore, this method is time consuming, results can vary from gene to gene, and it 

is not suited for high-throughput systematic screens.   

Alternative methods have been developed to generate ts alleles in a more 

systematic manner and remove the variability and uncertainty that comes with 

generating random mutants.  In 1986, Alexander Varshavsky discovered that the half-life 

of a given protein is determined by the amino-acid composition of the N-terminus.  

Proteins with amino-terminal residues such as arginine or lysine are degraded more 

quickly than proteins with amino-terminal residues such as glycine or alanine, a 

phenomenon called the “N-end rule” (70).  Subsequently, it was found that proteins 
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degraded by the N-end rule are ubiquitinated on a lysine close to the N-terminus and 

degraded by the proteasome (71, 72).  

Varshavsky wanted to use the N-end rule as a tool to generate a ts N-degron 

sequence.  To this end, he found a mutant form of the mouse protein dihydrofolate 

reductase (DHFR) that contains a destabilizing arginine residue at its N-terminus, yet is 

long-lived in yeast.  Using the standard methods described above, Dohmen et al. 

created a ts mutant of DHFR (DHFRts) that is stable at the permissive temperature but is 

rapidly degraded by the N-end rule at the restrictive temperature.  They reasoned that 

fusion of DHFRts to the N-terminus of other proteins should convey temperature-

sensitivity to that protein.  To test this hypothesis, they fused DHFRts to the essential 

gene CDC28 and created a protein (Cdc28td) that was also stable at 25oC but rapidly 

degraded at 37oC.  Thus, DHFRts can serve as a temperature-inducible degron (td) 

sequence when fused to another gene (73).  This strategy offers several improvements 

over the traditional method of generating ts mutants.  First, the td method does not 

typically alter the function of the protein of interest because many proteins can tolerate 

modification of the N-terminus.  In contrast, random destabilizing mutations are likely to 

affect protein function.  Second, degradation of the td sequence is rapid and predictable, 

whereas ts alleles can cause only partial disruption of protein stability, resulting in slow 

or incomplete degradation of the protein of interest.  Thus, the td method normalizes the 

time required for degradation between two proteins.  Finally, by simply fusing the td 

sequence to the protein of interest, one can bypass the need for an exhaustive search 

for ts alleles generated by random mutagenesis.  This makes the td method preferable 

when conducting large-scale systematic screens.  For example, Kanemaki et al. fused 

the td sequence to half of the essential genes with an unknown function to determine if 

any have a role in regulating the cell cycle (74).  This experiment would not be possible if 

ts alleles had to be independently generated, one at a time.  
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  Despite having many benefits for studying essential genes, ts and td strains 

have several major drawbacks.  The most obvious limitation to using both methods is the 

requirement for growth at sub-optimal temperatures that could have unintended effects.  

At 37oC, enzymes will exhibit altered kinetics, cells will divide more quickly, off-target 

genes will likely be de-stabilized, and cellular stress pathways will be activated, all of 

which could affect the outcome of the experiment.  For example, growth at 37oC causes 

a 50% reduction in MAPK activation in response to pheromone in wild-type cells (75).  

Therefore, any phenotype caused by a temperature-sensitive allele may be masked by 

the effect of non-physiological temperatures on normal cell growth.  A second limitation 

is that both techniques require altering the open-reading frame of the protein, which 

could affect normal protein function.  As mentioned above, random mutations can affect 

protein function in a number of unknown and undesired ways.  Fusion of the td 

sequence to proteins helps eliminate most of this uncertainty, but protein function can 

still be affected.  The heat-inducible N-degron sequence is actually a 21 kDa protein, 

which could interfere with normal protein folding, protein-protein interactions, and 

localization.  Furthermore, some proteins cannot tolerate alterations to their N-terminus. 

For example, Gpa1 is mysristoylated and palmitoylated at its N-terminus and both 

modifications are required for proper localization to the plasma membrane (76-79).  

Disruption of either modification by adding additional residues to the N-terminus results 

in mislocalized Gpa1, constitutive activation of the pheromone pathway, and permanent 

cell cycle arrest.  Likewise, transmembrane proteins do not tolerate alteration of their N-

termini.  Therefore, ts and td mutants are not suitable for studying a significant portion of 

essential genes.  

Regulatable-promoter strains - Conditional mutants can also be generated by 

using a regulatable-promoter.  Such an approach is an attractive alternative to 

temperature-sensitive mutants because it allows for tight control of gene expression 
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without changing the open-reading frame, protein function, or the temperature at which 

cells are grown.  In yeast, there are several regulatable-promoters that can be used, and 

selecting the correct promoter requires a detailed understanding of the advantages and 

disadvantages of each.   

The most widely used regulatable-promoter is the GAL1-10 promoter, which can 

be induced up to 1000-fold by galactose (80, 81).  This makes the GAL promoter useful 

when overexpression is required.  In addition, gene repression can be achieved by the 

removal of galactose from the growth medium.  The main drawback of the GAL promoter 

is that it requires changing the carbon source from glucose to galactose, which alters cell 

metabolism.  The presence of glucose in the growth medium actively represses the 

GAL1-10 promoter (82).  Thus, transcriptional induction can be delayed as much as 1 hr 

while the cells metabolize any glucose still remaining in the medium.  To counterbalance 

this delay, cells can be grown in medium containing the alternative carbon source 

raffinose, which does not repress the GAL1-10 promoter.  However, cellular growth is 

not optimal in raffinose-containing medium (83).  Regardless, the required changes in 

carbon source affect cell metabolism and growth-rate, complicating the interpretation of 

any phenotypes that may arise upon overexpression of the gene of interest.  Therefore, 

the GAL1-10 promoter should be used with caution.    

 An alternative solution is the MET3 promoter, which is repressed by methionine 

(84).  Removal of exogenous methionine results in low-level induction of genes under 

the control of the MET3 promoter.  This method is useful when overexpression is not 

desired.    However, low gene induction and changes in the nutritional composition of the 

growth medium limit its usefulness in many applications (85).  The copper-inducible 

promoter CUP1 has slightly higher induction ratios than MET3, but gene expression in 

the absence of copper can be quite high (86-88).  Thus, the CUP1 promoter cannot be 

as tightly regulated as the MET3 and GAL1-10 promoters.  Furthermore, at high enough 
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concentrations, copper can be lethal, and the introduction of copper into the growth 

medium at concentrations sufficient for CUP1 induction could have pleiotropic effects on 

the cellular stress response (89).  All three of these regulatable-promoters, GAL1-10, 

MET3, and CUP1, were designed from endogenous promoter systems and thus all 

suffer from the same disadvantage; they require nutritional changes to the growth 

medium.  A better solution would incorporate a promoter not induced by nutrients, but 

rather a substance that is relatively inert in yeast.   

The tetracycline-resistance operon of Escherichia coli provides a system of 

regulating gene transcription in yeast that relies on a non-endogenous control element 

(90).  In E. coli, the transcription of resistance-mediating genes is inhibited by the 

tetracycline repressor (TetR) protein (91).  In the presence of the antibiotics tetracycline, 

TetR can no longer bind to the tet operon promoter sequence (tetO) and transcriptional 

repression is alleviated (91).  Thus, tetracycline induces gene expression.  In 1992, 

Gossen and Bujard adapted this system so that it could be used in other organisms (90) 

(Figure 1.4).  They fused TetR to the viral transcription factor virion protein 16 (VP16) 

(92), to create a tetracycline-controlled transactivator (tTA).  They also adapted the tetO 

sequence by fusing it to the minimal promoter sequence for VP16 (TetO).  In the 

absence of tetracycline, the tTA binds with high affinity to TetO, and transcription is 

induced by VP16 up to 1000-fold.  In the presence of tetracycline, the tTA falls off the 

TetO and transcription is terminated.  Thus, tetracycline inhibits gene expression.  This 

system is often referred to as “Tet-Off.”  

Of the regulatable-promoters outlined above, the tetracycline-repressible 

promoter system is the most attractive for several reasons.  First, the affinity of 

tetracycline or the more stable analog doxycycline for TetR is very high (~1nM) (93).  

Therefore only small doses are required to achieve sufficient gene repression.  Second, 

tetracycline and doxycycline have limited physiological effects on organisms other than 
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Figure 1.4 

 

Figure 1.4  The tetracycline-repressible promoter system. 
The tetracycline-repressible promoter system requires two components.  First, a 

fusion of the tetracycline repressor (TetR) protein and virion protein 16 (VP16) is 
expressed under the control of a constitutive CMV promoter.  This fusion protein is 
called the tetracycline transactivator (tTA).  Second, the promoter of the gene of interest 
is replaced with seven repeats of the tetracycline operon (TetO) promoter sequence. In 
the absence of doxycycline, the tTA binds the TetO and drives expression of the gene of 
interest.  When added to the growth medium, doxycycline binds the tTA and causes it to 
fall off the TetO and transcription is terminated.  
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bacteria, including yeast and humans, and no changes in the nutritional content of the 

growth medium are required.  Thus, unlike the other regulatable promoters GAL1-10, 

MET3, CUP1, the Tet-Off promoter system is unlikely to produce pleiotropic effects on 

cell physiology.  Third, the binding interaction between tTA and TetO is highly specific so 

off-target gene induction is unlikely (90).  Fourth, the Tet-Off system has a very high 

induction ratio (91).  In the absence of doxycycline gene expression is very high, while in 

the presence of even low concentrations of doxycycline gene expression is extremely 

low.  

The major drawback of the Tet-Off system, and indeed all regulatable promoter 

systems, is that mRNA production can be rapidly inhibited while protein levels decrease 

much more slowly.  Depending on the natural rate of decay for a given protein, the 

emergence of phenotypes due to gene depletion can be significantly, and sometimes 

unpredictably, delayed.  This caveat must be taken into account when characterizing a 

large number of proteins whose half-lives may vary considerably.  Regardless, the Tet-

Off system remains the most attractive approach for characterizing large numbers of 

genes, because TetO strains can be easily generated and only minimal changes to 

growth conditions are required.  

Since the sequencing of the yeast genome in 1996, all the non-essential genes 

have been systematically deleted, but the essential genes have eluded systematic 

analysis.  In a recent effort to overcome this deficit, Hughes and colleagues generated a 

library of tetracycline-repressible promoter strains for 602 of the 1,100 yeast essential 

genes (28).  They incorporated the tTA originally developed by Gossen and Bujard (90) 

into the yeast genome and then systematically replaced the promoter of each essential 

gene with seven repeats of the TetO cassette (TetO7).  In the years since, the library has 

expanded to include over 900 essential genes.  This powerful new tool allows for the 

systematic analysis of almost all (~80%) the yeast essential genes.  Indeed, Mnaimneh 
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et al. analyzed the original 602 TetO7-strains using four phenotypic assays including 

cellular morphology, cell size, growth rates under 15 different conditions, and 

transcriptional profiles using microarrays (28).  This approach helped assign functions to 

several previously uncharacterized genes and identify new genes involved in ribosome 

biogenesis and mitochondrial import.  The Hughes TetO7 library has also been used to 

identify essential genes involved in the cell division cycle (94), mitochondrial 

morphogenesis (95), and tombusvirus RNA recombination (96).  In Chapter II, I describe 

a systematic screen of the essential genes using the TetO7 library to identify new 

regulators of the yeast pheromone response pathway.   

Ubiquitin-proteasome system 

 Efficient protein degradation is essential for many cellular processes such as 

progression through the cell cycle (97), the DNA damage response (98), and regulation 

of metabolic pathways (99).  Some proteins undergo normal turnover to maintain steady-

state levels while others must be rapidly degraded to switch cellular mechanisms on or 

off.  In either case, the 26S proteasome functions to degrade the majority of proteins in 

the cytoplasm and the nucleus (100, 101).  Proteins destined for proteolysis by the 26S 

proteasome are marked by the covalent attachment of multi-ubiquitin chains, allowing 

the 26S proteasome to recognize which proteins should be degraded.  Tight control of 

the ubiquitination process is required to target the correct proteins for degradation and 

prevent the unnecessary degradation of the incorrect proteins.  Not surprisingly, 

deregulation of the ubiquitin-proteasome system is often associated with human 

diseases such as cancer (102) and Parkinson’s disease (103).  

 Ubiquitin is an 8 kDa protein (104, 105) that is attached to substrates through the 

processive action of E1, E2, and E3 enzymes (106).  Ubiquitin is activated for 

attachment to substrates by the E1 ubiquitin-activating enzyme (107).  In an ATP-
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dependent reaction, a thioester bond is formed between the active site cysteine of the 

E1 and the C-terminal carboxyl group of ubiquitin (108).  Then, ubiquitin is transferred to 

the active site cysteine of an E2 ubiquitin-conjugating enzyme via a 

trans(thio)esterification reaction (106).  Finally, an E3 ligase is required to transfer 

ubiquitin either directly or indirectly from the E2 to an internal lysine residue on the 

substrate, resulting in an isopeptide bond between the lysine residue and the C-terminal 

glycine of ubiquitin.  E3 ligases directly bind substrates and therefore confer substrate 

specificity to the ubiquitination machinery (109).  Given that ubiquitin contains seven 

internal lysines, it also can serve as a substrate for ubiquitination, resulting in multi-

ubiquitin chains (72). 

 Substrate proteins can either be mono- or poly-ubiquitinated and each 

modification results in a different fate.  Monoubiquitination is defined as the attachment 

of three or less ubiquitins to a substrate (110).  Typically, transmembrane proteins or 

proteins localized to membranes are monoubiquitinated, which results in their 

internalization by endocytosis and subsequent degradation by the lysosome or vacuole 

(111).  Polyubiquitination is defined as the attachment of a multi-ubiquitin chain 

consisting of four or more ubiquitins (112).  Chain elongation can occur through any of 

the seven lysines on ubiquitin, and linkages through different lysines can have different 

effects.  Chains made of K48-linked ubiquitin are the most common, and target proteins 

for degradation by the 26S proteasome (112).  Linkages by other lysines can have 

proteolysis-independent functions (113).  Most notably, K63-linked polyubiquitin chains 

have a role in signal transduction and can activate kinases.  For example, upon 

stimulation of cells with proinflammatory cytokines, the protein TRAF6 is modified with 

K63-linked ubiquitin chains.  Proteins containing ubiquitin-binding domains specific for 

K63-linked chains are recruited to TRAF6, which results in the activation of IkappaB 

kinase (IKK) (114).  Distinct E3 ligases are required to generate ubiquitin chains through 
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different lysines.  Likewise, distinct E3 ligases are required for mono- versus poly-

ubiquitination (115).   

 Typically, organisms such as yeast and humans have only one E1 enzyme that is 

responsible for activating the entire cellular pool of ubiquitin (116, 117).  There are 

slightly more E2 enzymes.  Yeast have 13 E2 enzymes, but each is capable of coupling 

with multiple E3 ligases.  E3 ligases are by far the most diverse; humans have ~500 and 

yeast have ~40.  Across all species, more than 1000 E3 ligases have been identified 

(115).  Considering E3 ligases provide substrate specificity to the ubiquitination reaction, 

it is no surprise they are by far the most diverse component of the ubiquitin machinery.  

There are three main subfamilies of E3 ubiquitin ligases: homologous to E6-AP carboxyl 

terminus (HECT) domain-containing E3s, single-subunit really interesting new gene 

(RING) domain-containing E3s, and multi-subunit RING domain-containing E3s.   

 HECT domain E3s – The HECT domain is a conserved 350 amino acid 

sequence that was originally discovered in the E6-associated protein (E6-AP) (118).  

Five yeast genes are classified as HECT domain-containing E3 ligases due to their 

similarity to E6-AP.  Aside from the conserved sequence, the ubiquitination reaction 

catalyzed by HECT domain-containing E3 ligases further distinguishes them from RING 

domain-containing E3s.  The HECT domain first binds an E2 conjugating enzyme and 

ubiquitin is transferred from the E2 to the active site cysteine of the HECT domain (115).  

Through an additional protein-protein interaction domain, HECT E3s bind the substrate 

and directly catalyze the transfer of ubiquitin to an internal lysine residue on the 

substrate.  HECT E3s contain a number of different protein-protein interaction domains 

but the most common is the WW domain, which is capable of binding phosphoserine 

and phosphothreonine residues (119) .  The most well characterized HECT E3 ligase in 

yeast is Rsp5 (118).  Rsp5 contains a C2 domain for binding phospholipids at 

membranes and a WW domain for binding substrates that contain the consensus 
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sequence Proline-Proline-X-Tyrosine (120).    

 Ubiquitination of substrates by HECT E3s can be regulated by several different 

mechanisms.  Many HECT E3s are constitutively active and are regulated by an adapter 

protein that recruits a ubiquitin-charged E2 activating enzyme to the E3-substrate 

complex (121).  Such is the case with the human E3 ligase Smurf1 and its substrate the 

TGF-β receptor (122).  The adapter protein Smad7 binds both Smurf1 and the TGF-β 

receptor and then recruits ubiquitin-charged UbcH7E2 to initiate ubiquitination.  

Alternatively, constitutively active HECT E3s can be associated with a deubiquitinating 

enzyme (DUB) which functions to remove ubiquitin from substrates.  Rsp5 associates 

with Ubp2, a ubiquitin-specific protease, that functions to “edit” substrate ubiquitination 

by Rsp5.  Rsp5 has been shown to polyubiquitinate some substrates and 

monoubiquitinate others (123).  It is hypothesized that Ubp2 functions to partially 

degrade multi-ubiquitin chains to produce monoubiquitinated substrates.  However, it is 

not known how Ubp2 recognizes which proteins should be monoubiquitinated.  Other 

HECT E3 ligases are basally inactive and can be activated by phosphorylation (121).  

The human E3 Itch is inactive due to intra-molecular interactions between its WW 

domain and HECT domain (124).  Phosphorylation by the MAP kinase JNK1 disrupts 

this intra-molecular interaction and activates Itch (125).  These examples demonstrate 

that HECT E3s have acquired a variety of different mechanisms, some quite elegant, to 

tightly regulate protein ubiquitination.  As will be discussed below, RING domain-

containing E3 ligases are typically regulated via only one mechanism.   

 RING domain E3s – The RING domain was originally identified as a conserved 

zinc-binding motif in the human protein Really Interesting New Gene (RING) 1 due to its 

similarity to other known zinc fingers.  Since their discovery, over 200 proteins have 

been found to contain RING domains.  RING domains are comprised of repeating 

histidine and cysteine residues that allow binding of two zinc molecules (121).  While the 
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exact primary sequence is not highly conserved, the spacing of the two zinc molecules is 

invariant in almost all RING domains, indicating they play a particularly important role in 

regulating function.  For years, the exact function of the RING domain was unknown and 

it was thought that they were DNA binding motifs, like other zinc fingers.  However, in 

1999 three independent groups found proteins with RING domains bound E2 ubiquitin-

conjugating enzymes, suggesting RING domains play an important role in ubiquitination 

(126-128).  Subsequent discoveries revealed these RING domain-containing proteins 

were actually E3 ubiquitin ligases.  This revelation had a huge impact in the 

ubiquitination field since it meant that the more than 200 proteins with RING domains 

were all E3 ligases.  

 RING E3s are catalytically distinct from HECT E3s.  Whereas HECT E3s have an 

active site cysteine and catalyze ubiquitination, RING E3s have no enzymatic activity 

and function solely as scaffolds.  They function to bring the substrate and the ubiquitin-

conjugated E2 sufficiently close to each other for efficient transfer of ubiquitin to the 

substrate (115).  This lack of enzymatic activity is most likely why the RING E3s escaped 

detection for almost a decade, and their initial characterization actually triggered a fierce 

debate in the ubiquitination field as to whether they should in fact be called E3 “ligases.”  

As such, a protein with a RING domain is often referred to as simply an “E3”.   

 There are two different types of RING E3s: single-subunit and multi-subunit.  

Single-subunit RING E3s, such as the human proteins c-Cbl (129) and Mdm2 (130), 

contain both a RING domain and a substrate-binding domain.  Multi-subunit RING E3s 

are comprised of multiple proteins that, together, form a functional E3.  Typically, one 

protein in the complex contains a RING domain and binds the E2 while another protein 

contains a substrate-binding domain (131).  Other proteins in the complex function as 

scaffolds, adapters, or regulatory subunits.  The two major types of multi-subunit RING 

E3s are the Skp1-cullin-F-box (SCF) complex and the anaphase promoting complex 



26 

(APC) (reviewed in (131-133)).  For this introduction, the main focus will be the SCF 

complex since it is discussed further in Chapter II of this thesis. 

 SCF complex – The SCF complex is a heterotetrameric complex that functions 

to bind both a substrate and an E2 conjugating-enzyme to facilitate ubiquitination.  The 

SCF complex was first identified in yeast and was named after three of its key 

components: Skp1, Cullin, and F-box protein (134, 135).  The F-box protein conveys 

substrate specificity to the complex through a substrate-binding domain, and is denoted 

in superscript to differentiate SCF complexes (e.g SCFCdc4 where Cdc4 is the F-box).  

Typically, several different F-box proteins can couple to the same SCF complex, greatly 

increasing the variety and number of different proteins that can be ubiquitinated by the 

SCF.  Regulation of SCF-mediated ubiquitination is generally through the 

phosphorylation of target proteins (131).  Almost all the substrates identified so far must 

be phosphorylated before they can bind the F-box protein (135).  This provides the cell 

with a simple mechanism to regulate which proteins should be ubiquitinated by the SCF 

complex.   

 In yeast, the most well-studied SCF complex is SCFCdc4 and it is comprised of 

Cdc4, Skp1, Cdc53, and Roc1 and couples with the E2 enzyme Cdc34.  These four 

essential components form a scaffold that holds the substrate and E2 enzyme close 

enough to allow the transfer of ubiquitin.  The F-box protein, Cdc4, binds substrates, 

Cdc53 and Roc1 bind the E2 conjugating enzyme, and Skp1 is an adapter protein that 

binds both Cdc4 and Cdc53, linking the entire complex (Figure 1.5).  

 The SCFCdc4 was discovered through a series of papers that slowly identified the 

function of all the components of the complex.  CDC4, CDC53, and CDC34 were 

identified in screens for mutants with defects in the cell division cycle (136, 137).  

Subsequently, all three were found to be required for the degradation of the G1/S phase 

checkpoint protein Sic1 (136, 137), indicating they may play a role in regulating Sic1 
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Figure 1.5 

 

Figure 1.5  The SCF E3 ubiquitin ligase complex. 
The SCF complex is an E3 ubiquitin ligase and is comprised of four essential 

components. A protein that contains a RING domain binds the E2 ubiquitin-conjugating 
enzyme. The F-box protein functions as the substrate receptor and typically binds 
phosphorylated substrates.  Skp1 is an adapter that links the F-box protein to the rest of 
the complex.  The cullin functions as a scaffold and organizes the complex by binding 
multiple components.  In yeast, the SCF is comprised of the yeast proteins Cdc4, Skp1, 
Cdc53, and Roc1 and couples to the E2 enzyme Cdc34.   
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turnover.  At the time, it was known that Cdc34 was an E2 ubiquitin-conjugating enzyme, 

further supporting this hypothesis (138).  Cdc53 was also found to be part of a recently 

identified protein family called Cullins which were involved in protein turnover (139).  

However, the exact role of Cdc4 and Cdc53 in Sic1 ubiquitination and degradation was 

unclear.  Further complicating the model, SKP1 was identified in a screen for genes that 

suppress cdc4ts mutants when overexpressed.  It was then shown that skp1ts mutants 

were also defective in Sic1 degradation and that Skp1 binds Cdc4 at a conserved motif 

called an F-box (140).  Thus, Cdc4, Cdc53, and Skp1 were thought to form a multi-

protein complex that along with Cdc34 is required for ubiquitination of Sic1.  To 

definitively test this hypothesis, Skowyra et al. and Feldman et al. expressed Cdc4, 

Cdc53, and Skp1 from insect cells and showed they formed a functional E3 ubiquitin 

ligase, that along with Cdc34 purified from bacteria, was capable of ubiquitinating 

phosphorylated Sic1 in vitro (134, 135).  Interestingly, Skowyra et al. also showed that 

another protein containing an F-box domain, Grr1, was capable of forming an SCF 

complex with Skp1 and Cdc53.  SCFGrr1 was unable to bind Sic1, but was able to bind a 

different SCF substrate, Cln1 (135).  These data indicate F-box proteins are 

interchangeable substrate receptors and, by coupling to different F-box proteins, the 

SCF can target a wide range of proteins for ubiquitination (141).   

 As mentioned above, SCF complexes contain four different proteins, yet Skowyra 

et al. and Feldman et al. expressed only three proteins in insect cells to form a functional 

SCF ligase (134, 135).  The fourth protein in the SCF complex was eventually 

discovered a few years after their papers were published.  Three independent groups 

identified Roc1 as a protein that co-purified with Cdc53, was required for Sic1 

degradation, and contained a RING domain (142-144).  Coincidentally, this discovery 

was made around the same time that RING domains were found to be E3 ligases that 

bind E2 enzymes (126-128).  This led to the obvious hypothesis that Roc1 must be a 
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missing link between the core SCF components Cdc4, Cdc53, and Skp1 and the E2 

enzyme Cdc34.  Indeed, when Roc1 was added to Cdc4, Cdc53, and Skp1 purified from 

insect cells, Sic1 ubiquitination was greatly enhanced (144).  Later, it was determined 

that by expressing Cdc4, Cdc53, and Skp1 in insect cells, Skowyra et al. and Feldman et 

al. inadvertently co-purified the insect homolog of Roc1, thus forming a functional SCF 

complex (131).  This highlights the fact that SCF components are highly conserved 

across species, and discoveries made in model organisms such as yeast are likely to 

yield similar results in humans.  

 Typically, the SCF is regulated through its interaction with substrates.  Given the 

F-box protein is the substrate receptor for the complex, it is the most functionally 

relevant subunit.  All F-box proteins contain a short conserved ~50 amino acid domain 

called an F-box that mediates binding to Skp1.  The F-box was first identified as a 

shared motif between Cyclin F and Cdc4 (140).  Since then, over 400 F-box proteins (18 

in yeast) have been identified (145, 146).  F-box proteins also contain a substrate-

binding domain and a short linker that connects the F-box to the substrate-binding 

domain, which has been implicated in regulating protein turnover (147) and dimerization 

(148).  F-box proteins are divided up into three main families based on their substrate 

binding domains which can be seven WD40 repeats (FBXW), multiple leucine-rich 

repeats (FBXL), or a unique binding domain (FBXO) (146).   Cdc4, the prototype F-box 

protein, contains seven WD repeats (crystal structures reveal a possible eighth cryptic 

WD40 repeat) and is highly conserved (149).  The human homolog of Cdc4 is Fbw7 

(150, 151).  While F-box proteins contain a diverse array of substrate-binding domains, 

they all seem to selectively bind phosphorylated substrates.  Thus, despite evolutionary 

divergence of the F-box protein structure, they have maintained a conserved regulatory 

mechanism, suggesting that control of protein ubiquitination by phosphorylation conveys 

an evolutionary advantage. 
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 Since the discovery of the SCFCdc4 over 13 years ago, much effort has gone into 

identifying all of its substrates.  Only six have been identified, including Sic1 (152).  This 

lack in progress is mostly due to the difficulty in identifying protein substrates of E3 

ligases.  Typically, one must demonstrate both a functional and a physical interaction 

with the E3 before a protein can be considered a substrate.  However, demonstrating a 

physical interaction can be very difficult since interactions are often very weak, substrate 

levels in the cell are usually low, and when interactions occur they lead to rapid 

ubiquitination and degradation of the substrate (152, 153).  Furthermore, most 

substrates must first be phosphorylated before they can bind the SCF.  Unless the 

cellular conditions that promote substrate phosphorylation are known, no physical 

interactions will be detected.  Thus, the identification of SCF substrates remains a high 

priority.    

Gα  ubiquitination 

Gα proteins undergo a variety of different post-translational modifications 

including i) myristoylation, ii) palmitoylation, iii) ADP-ribosylation, iv) phosphorylation, 

and v) ubiquitination.  These diverse modifications regulate cellular localization, the 

ability to interact with other proteins, GTP hydrolysis, and GDP release, and play a 

critical role in the regulation of G protein signaling.  Of all these post-translational 

modifications however, G protein ubiquitination is the least studied.   

The first evidence of G protein ubiquitination came in 1994 when it was shown 

that the yeast G protein, Gpa1, was degraded by the N-end rule (154).  In 1996, Obin et 

al. purified a ubiquitinated protein out of retinal rod outer segments that had the same 

molecular weight as Gt (155).  Human Gαi3 was shown to be degraded in HEK293 cells 

in a proteasomal-dependent manner, and it was shown that overexpression of a putative 

E3 ubiquitin ligase enhanced degradation.  However, direct evidence of Gα 
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ubiquitination was lacking in this report (156).  Recently, more convincing evidence of G 

protein ubiquitination in humans has emerged.  Nagai et al. was able to detect 

ubiquitinated Gαs in HEK293 cells by using the proteasomal inhibitor MG132.  

Furthermore, they showed that the protein Ric-8B (a homolog of Ric-8A which functions 

as a non-receptor GEF) binds Gαs and prevents its ubiquitination and subsequent 

degradation (157).  While the details of human G protein ubiquitination are still emerging, 

it is clear that ubiquitination does play a role in regulating Gα abundance in several 

different organisms.  Ubiquitination of the yeast Gα subunit, Gpa1, is by far the most 

studied (154, 158-161).  As further evidence of human G protein ubiquitination is 

gathered, Gpa1 is likely to serve as a model for studying both the regulation of G protein 

ubiquitination and its role in G protein-mediated signaling pathways.    

 Gpa1 is one of only a few proteins that is known to be both mono- and poly-

ubiquitinated.  Consistent with its localization at the plasma membrane, Gpa1 is 

monoubiquitinated, endocytosed, and delivered to the vacuole for degradation (159).  

Rsp5, a HECT E3, is necessary and sufficient for Gpa1 monoubiquitination both in vivo 

and in vitro (160).  Interestingly, Rsp5 also monoubiquitinates the α factor receptor Ste2 

and mediates receptor internalization after pheromone stimulation (162, 163).  The fact 

that Gpa1 and Ste2 are targeted for internalization by the same enzyme indicates Gpa1 

and Ste2 monoubiquitination may both be required for desensitization.  However, it is not 

currently known how Gpa1 monoubiquitination by Rsp5 is regulated.  While Ste2 

ubiquitination is stimulated by pheromone treatment, Gpa1 monoubiquitination is not 

(159, 162).  Thus, the exact role of Gpa1 monoubiquitination is unknown and is an active 

area of research.  

 Gpa1 is also polyubiquitinated and degraded by the 26S proteasome (159).   

Mass spectrometry analysis revealed that Gpa1 is modified with ubiquitin on K165 (158).  
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Polyubiquitination of Gpa1 can be blocked by deletion of the ubiquitinated subdomain 

(residues 128-236) and results in a dampened pheromone response (159).  Such a 

phenotype is consistent with overexpression of Gpa1 which functions to sequester Gβγ 

and inhibit signaling (164).  However, contrary to this phenotype, blocking poly-

ubiquitination of Gpa1 did not alter total cellular abundance of Gpa1 as measured by 

western blotting (159).  These data indicate that polyubiquitination may regulate specific 

subpopulations of Gpa1.  Thus, while total cellular Gpa1 levels are unchanged, specific 

subpopulations of Gpa1 could be elevated, resulting in dampened pheromone signaling.  

Further study of Gpa1 polyubiquitination is needed to fully understand its role in 

regulating G protein signaling.  

 The E3 ligase that mediates Gpa1 polyubiquitination is unknown, but it is distinct 

from Rsp5.  Why yeast require two different modes of ubiquitinating Gpa1 is not well 

understood, but identifying the E3 ligase involved in polyubiquitination could reveal 

important differences in the regulation of mono- vs poly-ubiquitination.  Furthermore, E3 

ligases involved in yeast G protein ubiquitination are likely to be conserved in humans 

and could be useful drug targets.   

Phosphatidylinositol kinases 

Phosphatidylinositol (PtdIns) is a component of cell membranes and has a role in 

regulating many cell signaling pathways.  PtdIns has both polar and non-polar groups 

allowing it associate with both the plasma membrane and cytosolic proteins (165).  It is 

comprised of a glycerol backbone, two fatty acids, and a phosphate group attached to an 

inositol head group (Figure 1.6).  The inositol head group has five hydroxyls and each 

are capable of being phosphorylated by specific PtdIns kinases to produce 

phosphoinositides (166).  Yeast have six such kinases and are capable of producing five 

distinct derivatives of PtdIns, each with its own cellular function (165).  Typically,
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Figure 1.6 

 

Figure 1.6  Phosphatidylinositol is phosphorylated by lipid kinases 
Phosphatidylinositol (PtdIns) is an amphiphatic lipid that associates with both 

non-polar lipid membranes and the cytosol.  Phosphorylated derivatives of PtdIns are 
called phosphoinositides and function as membrane anchors for many proteins. They 
are comprised of two non-polar fatty acid chains, a glycerol backbone, and a polar 
inositol headgroup.  Inositol can be phosphorylated by a number of lipid kinases to 
produce different PtdIns derivatives.  For example, Stt4 and Pik1 phosphorylate PtdIns 
at the 4 position to make PtdIns 4-P.  Phosphatases such as Sac1 and Sjl2 catalyze the 
reverse reaction and remove the phosphorylation.   
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 phosphoinositides can regulate cell signaling pathways in one of two ways.  First, they 

can serve as a substrate for phospholipases, which cleave PtdIns and produce the 

second messengers inositol phosphate (IP) and diacyglyercol (DAG) (167, 168).  

Second, phosphoinositides can bind cytosolic proteins altering either their localization or 

activity.  A variety of phospholipid-binding domains have been identified so far including 

the pleckstrin homology (PH) domain, phox homology (PX) domain, epsin N-terminal 

homology (ENTH) domain, and Fab1p/YOTB/Vac1p/EEA1 (FYVE) domain (169).  Each 

domain can have a different specificity for phosphorylated subspecies.  For example, the 

PX domain of Bem3 binds only to PtdIns 3-P while the PX domain from Bem1 binds 

PtdIns 3-P and PtdIns 4-P (170).  Such differences allow for the regulation of only a 

subset of lipid-binding domains by a given PtdIns kinase.    

PtdIns have long been known to play an important role in G protein signaling 

(171-173).  In mammals, Gq activates phospholipase C (PLC) which cleaves PtdIns 

3,4,5-P3 to produce IP3 and DAG (174).  Both of these second messengers then trigger 

the release of intracellular calcium stores from the endoplasmic reticulum.  More recently 

however, a new role for PtdIns in G protein signaling was identified in yeast.  Slessareva 

et al. found that GTP-bound Gpa1 activates the PtdIns 3-kinase Vps34 and stimulates 

the production of PtdIns 3-P at the endosome (65).  PtdIns 3-P then recruits the PX 

domain-containing protein Bem1 to the endosome and is required for full activation of 

the MAPK Fus3.  This new discovery indicates PtdIns may have a larger role in 

pheromone signaling than was previously recognized.   

Thesis summary 

 The pheromone pathway has served as a model system for studying 

heterotrimeric G proteins for many years.  It all started with Mackay, Manney, and 

Hartwell who discovered the first sterile genes in yeast (50, 51, 58).  Since then, the 
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yeast pheromone pathway has been one of the most intensely studied signaling 

pathways in all eukaryotes.  Insights made in yeast have often led to discoveries in 

humans.  Relevant examples include the RGS protein Sst2 (13, 59, 175), the MAPK 

scaffold Ste5 (176), and the F-box protein Cdc4 (150).  At the time research began on 

this thesis, systematic screens to identify new components of the pheromone pathway 

had attained impressive coverage, including deletion strains representing almost 5,000 

genes (177).  Thus after more than 30 years of research, almost 80% of genes had been 

assayed for activity in the pheromone pathway.  The last 20% however, has proven the 

most difficult to study since they are essential for cell growth and survival.  The essential 

genes represent one of the last frontiers of yeast genetics and are a virtually untapped 

resource for identifying new components of signaling pathways coupled to heterotrimeric 

G proteins.  For my thesis research, I intended to identify new components of the yeast 

pheromone pathway by systematically screening the essential genes, and to finally 

achieve near 100% coverage of the yeast genome.  I undertook this challenge in the 

hopes that discovering new regulators of G protein signaling would lead to a better 

understanding of human G protein signaling and perhaps to the development of new 

therapies to treat G protein-related diseases.   

The remainder of this thesis is divided into 3 chapters.  In Chapter II, “Systematic 

screen of essential genes reveals important regulators of G protein signaling,” I present 

a genome-scale screen of the TetO7 promoter library, including the design and validation 

of the screening method.  Also in this chapter, I characterize several essential genes that 

were identified in the screen, with special attention paid to the SCFCdc4 complex and its 

role in regulating G protein ubiquitination.  In Chapter III, “Selective regulation of MAP 

kinase signaling by an endomembrane phosphatidylinositol 4-kinase,” I compare and 

contrast the role of two PtdIns 4-kinases, Pik1 and Stt4, in regulating the pheromone 

pathway and reveal a unique role for Pik1 in regulating parallel MAP kinase pathways.  
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Finally, in Chapter IV, “Conclusions and general discussion,” I discuss the broad impact 

of these findings and speculate on the future direction of the field.  
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Summary 

The yeast pheromone pathway consists of a canonical heterotrimeric G protein 

and MAP kinase cascade.  To identify new signaling components we systematically 

evaluated 870 essential genes using a library of repressible-promoter strains. 

Quantitative transcription-reporter and MAPK activity assays were used to identify 

strains that exhibit altered pheromone sensitivity.  Of the 92 newly identified essential 

genes required for proper G protein signaling, those involved with protein degradation 

were most highly-represented.  Included in this group are members of the SCF (Skp-

Cullin-F-Box) ubiquitin ligase complex.  Further genetic and biochemical analysis reveals 

that SCFCdc4 acts together with the Cdc34 ubiquitin conjugating enzyme at the level of 

the G protein, promotes degradation of the G protein α subunit, Gpa1, in vivo and 

catalyzes Gpa1 ubiquitination in vitro.  These new insights to the G protein signaling 

network reveal the essential-genome as an untapped resource for identifying new 

components and regulators of signal transduction pathways.  

 

 

 



39 

Introduction 

The budding yeast Saccharomyces cerevisiae is an established model for 

investigating fundamental biological processes including cell division, cell growth, and 

intracellular communication.  One unique attribute of the yeast system is the availability 

of several thousand isogenic gene-deletion strains, which allows for unbiased genome-

scale analysis of cellular functions (27).  However, of the approximately 6,000 genes in 

the yeast genome, nearly 1,100 are essential for viability and difficult to study using 

standard gene-deletion mutants.  This limitation has led to a poor understanding of a 

substantial fraction of the yeast genome (28).  Notably, these essential genes are more 

likely to have a human ortholog, as compared with non-essential genes (38% vs. 20%) 

(67).  Here we describe the identification of new components and new regulators of the 

G protein signaling apparatus.  Our approach was to conduct a systematic analysis of 

the “essential genome”, identify components required for efficient signal transduction, 

and establish their mode of action. 

In yeast, a canonical heterotrimeric G protein signaling pathway regulates the 

process of cell mating.  Yeast exists as one of two haploid cell types, a and α, that 

secrete peptide pheromones (a factor and α factor).  These ligands bind to cell surface 

receptors, consequently promoting new gene transcription, morphological changes, cell 

cycle arrest, cell fusion, and the creation of an a/α diploid cell (178). 

As in other G protein pathways, agonist stimulation of the α factor receptor (Ste2) 

promotes exchange of GDP for GTP on the G protein α subunit (Gpa1).  GTP-bound Gα 

undergoes conformational changes and dissociates from the Gβγ subunit dimer 

(Ste4/18).  Dissociated Gβγ can then signal through effector proteins including a 

mitogen-activated protein kinase (MAPK) cascade (Ste20, Ste11, Ste7, and Fus3).  

Inactivation of G protein signaling results from the slow intrinsic GTPase activity of Gα, 
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hydrolyzing GTP to GDP, and the re-association of Gα and Gβγ subunits.  GTP 

hydrolysis is further accelerated by the RGS (Regulator of G protein Signaling) protein 

Sst2.  Therefore, Gpa1 functions primarily to sequester Gβγ in the absence of receptor 

stimulation (178).   

Many components of the yeast pheromone pathway were identified genetically, 

by isolating mutants that exhibit a mating-deficient (sterile) phenotype (58).  Recent 

efforts to identify new components of G protein signaling have employed more 

systematic, genome-scale approaches (65).  For example, a library of gene-deletion 

strains (representing almost all of the non-essential genes) was used to identify direct 

effectors of Gα signaling.  Consequently, it was shown that Gpa1G
α modulates 

pheromone signaling through a direct interaction with phosphatidylinositol (PtdIns) 3-

kinase, resulting in elevated production of the second messenger PtdIns 3-P (65).   

While the non-essential genes have been thoroughly studied, the essential genes 

are inherently less tractable and have therefore been poorly characterized.  Previous 

approaches to investigating essential gene function have included the isolation of 

temperature-sensitive (ts) alleles, or fusion to a heat-inducible degron sequence (73, 

74).  However, the use of temperature-sensitive alleles requires growth at sub-optimal 

temperatures, and introduces destabilizing mutations that could alter enzyme function or 

protein-protein interactions.  Recently a new resource for studying essential genes has 

been developed.  Hughes and colleagues have constructed a library of repressible-

promoter strains representing 870 of the yeast essential genes (28).  These strains 

employ the tetracycline-regulatable promoter (TetO7 promoter) system, allowing for 

precise control of gene expression, with no change in protein sequence or function.  This 

TetO7 promoter library has been used previously to identify new components of the cell 

division cycle (94), translation, and mitochondria import machinery (28).  However, the 

role of essential genes in signal transduction has not been explored in any systematic 
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manner.   

While signal transduction networks, such as those mediated by heterotrimeric G 

proteins, are not typically thought of as essential for cell viability, they can share 

components with essential processes such as control of cytoskeletal rearrangements 

and the cell division cycle (178).  In fact, GPA1 is an essential gene because when it is 

deleted, Gβγ is free to activate downstream effectors resulting in permanent cell cycle 

arrest (34).   

Here, we systematically characterized 870 essential genes for participation in the 

yeast G protein signaling pathway.  Our results show that proper G protein signaling 

requires the Cdc34 E2 ubiquitin conjugating enzyme and the SCFCdc4 E3 ubiquitin ligase 

(134, 135).  Ubiquitin ligases, such as the SCF, promote covalent modification of specific 

substrate proteins with ubiquitin, which can, in turn, target them for degradation by the 

26S proteasome (131).  Previous work has showed that Cdc34 and the SCF complex 

are involved in regulating the cell cycle and the mating-associated cell cycle arrest (135, 

179).  Here we show that SCF also regulates signal initiation, through ubiquitination of 

the G protein α subunit.  More generally, these findings reveal considerable overlap 

among genes required for cell viability and signal propagation. 

Results 

Screen of essential genes for new regulators of G protein signaling  

To identify new regulators of G protein signaling, we monitored the pheromone 

response in 870 TetO7 promoter strains.  This strain collection represents nearly all 

genes essential for viability.  Pathway activation was measured initially using a 

pheromone-inducible promoter from the FUS1 gene fused to the β-galactosidase (lacZ) 

gene.  To validate this approach, we tested the effects of inactivation of two essential 

genes known to function in the pheromone response pathway: GPA1 (34) and CDC42 
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(180).  GPA1 encodes a negative regulator of the pheromone pathway that functions to 

sequester Gβγ, and thereby prevents it from activating effectors.  As expected, 

doxycycline treatment of the TetO7-GPA1 strain resulted in constitutive activation of the 

pathway, and a higher dose of doxycycline exacerbated this effect (Figure 2.1 A).  

Conversely, CDC42 encodes a positive regulator required for full activation of the 

signaling cascade.  Doxycycline treatment of the TetO7-CDC42 strain resulted in 

complete loss of the pheromone response (Figure 2.1 B).  As expected, treatment of the 

TetO7 Wild-Type strain with doxycycline had no effect (Figure 2.1 C).  These results 

validate our screening method and demonstrate that the reporter assay is sufficiently 

sensitive to identify bona fide signaling components. 

The 870 TetO7 strains were next arrayed in a 96-well format and transformed 

with the FUS1-lacZ reporter.  Since gene product depletion varies depending on mRNA 

and protein half-life, we treated each strain with two doses of doxycycline (10 ng/mL and 

100 ng/mL) for 15hrs.  Each strain was then exposed to a range of six pheromone 

concentrations and β-galactosidase activity was measured using a spectrofluorometer.  

During the screening process, 61 essential genes repeatedly failed to either transform 

with the reporter plasmid or grow to a suitable cell density (A600nm = 0.8) required to 

conduct the reporter assay, and were not tested.   

After the initial rounds of screening, we identified 92 genes required for normal 

pheromone response as measured by our transcriptional reporter (Figure 2.2).  By using 

a highly specific reporter assay, we were assured that components of the mating 

pathway would be identified.  However we excluded an additional 97 genes likely to 

have global effects on transcription and translation.  The list of excluded genes is 

comprised of those involved in mRNA production, protein synthesis, DNA replication, 

RNA processing, or ribosome biogenesis.   

We classified our hits by functional category using Gene Ontology (GO)   
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Figure 2.1 

 

Figure 2.1  Validation of the TetO7 promoter essential gene screen. 
(A) Transcriptional activation (β-galactosidase activity) in response to α factor 

treatment was measured spectrofluorometrically in TetO7-GPA1 cells treated with 
doxycycline (Dox, 10 ng/mL and 100 ng/mL) or untreated control. Cells were 
transformed with a plasmid containing the pheromone-inducible reporter FUS1-lacZ. 
Data were analyzed by non-linear regression (sigmoidal-dose response, variable slope) 
using GraphPad Prism software. Results are the mean ± S.E. for three individual 
experiments each performed in triplicate.  (B) TetO7-CDC42 cells treated as in (A).  (C) 
TetO7-WT cells treated as in (A).  (D) Percentage of essential genes associated with the 
indicated GO Process.  (E) Percentage of essential gene hits associated with the 
indicated GO Process.  (F) Fold-enrichment of hits compared to all essential genes for 
each GO Process. 
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Figure 2.2 
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Figure 2.2  Phenotype clustering analysis. 
Gene hits were analyzed by Cluster 3.0 software based on maximum response, 

EC50, and basal activity normalized to the untreated control and converted to Log2. 
Gene similarity was calculated using Pearson correlation (uncentered correlation) and 
clusters were generated using centroid linkage. Clustering data was visualized by Java 
TreeView (v 1.1.3). Genes were labeled by their involvement in the indicated GO 
Process. 
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annotations generated by Osprey, whereby each gene was classified according to one 

of 30 GO processes.  When compared with all essential genes, our pheromone pathway 

hits were enriched for the following GO processes: protein degradation, cell cycle, 

protein transport, and phosphorylation (compare Figures 2.1 D and E).  Interestingly, 

genes involved in protein degradation were enriched 3-fold, by far the most highly 

represented group of functionally degradation were related genes (Figure 2.1F).   

In order to further prioritize our investigations, we generated an interaction map 

using the Osprey Network Visualization System (181), which incorporates known 

physical and genetic interactions from the Biological General Repository for Interaction 

Datasets (BioGRID) (182) (Figure 2.3).  We found several previously known interactions 

between pheromone pathway components and genes identified in our screen.  In 

particular, genes involved in cell organization and biogenesis (dark blue), protein 

transport (green), and protein degradation (orange) were highly connected to known 

pheromone pathway components.  We also used hierarchical clustering to organize 

genes into phenotypically similar groups based on changes in the maximal response, 

EC50, and basal activity (Figure 2.2).  We found that genes involved with protein 

degradation tended to cluster more closely than genes involved in other cellular 

processes such as metabolism, cell organization and biogenesis.  Given that genes 

involved in protein degradation were (i) over-represented in our screen, (ii) highly 

connected with known pathway components, and (iii) clustered more closely than any 

other functional group, we reasoned they must play a particularly important role in 

regulating G protein signaling.   

Screen validation 

Based on the above analysis, we selected six genes deemed likely to participate 

in cell signaling (Table 2.1).  MPS1 is the yeast ortholog of mammalian TKK (183), and 
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Figure 2.3 

 

Figure 2.3  Many of the hits from the essential-gene screen have known 
interactions with pheromone pathway components. 

The Osprey Network Visualization System software was used to generate an 
interaction network based on known genetic and physical interactions from BioGRID. 
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Table 2.1  Selected essential genes required for proper pheromone signaling    

Systematic 
Namea 

Standard 
Name Functionb 

Plasmid 
Rescue 

α factor Max 
Responsec,d 

α factor 
LogEC50

c,d,e 

YDL028C MPS1 Dual-specific kinase; 
required for spindle 
checkpoint function 

Yes 178.7% ± 5.6% 
 

-5.71 ± 0.04 
 

YLR305C STT4 Phosphatidylinositol-
4-kinase; involved in 
the Pkc1 pathway 

Yes 44.8% ± 0.7% 
 

-6.10 ± 0.04 
 

YNL267W PIK1f Phosphatidylinositol-
4-kinase; may 
control cytokinesis 
through actin 
cytoskeleton 

Yes 88.3% ± 4.9% 
 

-5.82 ± 0.05 
 

YFL009W CDC4 F-Box protein; 
component of the 
SCF ubiquitin ligase 

Yes 46.1% ± 3.1% 
 

-5.40 ± 0.03 
 

YDR054C CDC34 E2 ubiquitin 
conjugating enzyme; 
component of the 
SCF ubiquitin ligase 

Yes 6.2% ± 0.2% 
 

-5.98 ± 0.05 
 

YDL132W CDC53 Cullin; component of 
the SCF ubiquitin 
ligase 

Not 
Done 

36.1% ± 1.9% 
 

-5.59 ± 0.06 
 

aThe essential genes PMA1 and SLN1 were confirmed but were not characterized further. 
bSaccharomyces Genome Database (www.yeastgenome.org). 
cFUS1 reporter transcription was measured in the indicated TetO7 strains treated with 
doxycycline or untreated control (average ± SEM). 
dTranscriptional response with α factor pheromone; α factor Max Response and LogEC50 data 
derived from nonlinear regression analysis (sigmoidal dose-response). 
eLogEC50 for TetO7 Wild-Type strain is -5.60 ± 0.01 M 
fShowed 4x increase in basal activity when treated with doxycycline. 
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is known to encode a dual-specificity kinase (184).  According to our hierarchical 

analysis it was the only gene that failed to cluster with any of the other 91 hits.  We 

speculate that Mps1 phosphorylates some component of the pheromone pathway.  We 

also selected for further consideration two PtdIns 4-kinases, STT4 and PIK1 (185, 186).  

Recently, components of the PtdIns 3-kinase, Vps15 and Vps34, were shown to bind 

directly to Gα and to be required for full activation of the pheromone signaling pathway 

(65).  Given this precedent, we postulated a broad role for mono-phosphorylated 

inositides in G protein signaling.  Validation of STT4 and PIK1 involvement in G protein 

signaling would strengthen the proposed model.  Among genes involved in protein 

degradation, we were particularly interested in CDC4, CDC34, and CDC53 because they 

encode proteins that either form (CDC53, CDC4) or function with (CDC34) the SCFCdc4 

ubiquitin ligase complex (134, 135).  The Cdc34/SCF family of ubiquitin ligases regulates 

a variety of proteins, in most cases promoting their degradation by the proteasome.  

Among SCFCdc4 targets are proteins that play key roles in the regulation of cell growth 

and division, and the mating-associated cell cycle arrest.  However, we were interested 

in determining a role of SCFCdc4 in regulating components of the G protein-coupled 

signaling cascade.   

The six TetO7 strains described above were re-transformed with the FUS1-lacZ 

reporter and re-tested individually using a broader range of pheromone concentrations, 

as well as a higher dose of doxycycline (10 µg/mL).  Testing individual strains in this 

manner confirmed results obtained by the high-throughput screening method.  For 

further validation, we transformed each TetO7 strain with a single-copy plasmid 

containing the absent wild-type gene, and showed this restored proper signaling (Table 

2.1). 

Transcriptional reporter assays are susceptible to false positives by proteins 

affecting overall gene expression.  To determine if any of the six components have 
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global effects on transcription or translation, we used a dual-reporter assay containing 

red fluorescent protein (RFP) under the control of a constitutive promoter (ADH1-RFP) 

and green fluorescent protein (GFP) under the control of a pheromone-responsive 

promoter (FUS1-GFP).  None of the six genes exhibited any change in RFP abundance, 

despite clear differences in GFP expression.  Investigation of five other randomly-

selected genes revealed three that alter RFP as well as GFP expression (Figure 2.4).  

Thus each of the six genes of interest regulates pheromone signaling specifically and 

not general gene transcription (Table 2.1).   

Analysis of pathway regulation by the newly identified essential genes 

Information from dose-response curves can be used to infer function.  For 

example, a gene mutation leading to an increase in maximal response typically indicates 

a negative role in signaling.  Knockdown of five genes, CDC4, CDC34, CDC53, STT4 

and PIK1, dampened the pheromone response (Figures 2.5 B-F), indicating a positive 

role in signaling.  Conversely, knockdown of MPS1 resulted in an increase in maximal 

activation (Figure 2.5 G), indicating a negative role in signaling.  Knockdown of PIK1 

resulted in substantial pathway activity even in the absence of pheromone addition 

(Figure 2.5 F).  These findings indicate that PIK1 (or its catalytic product PtdIns 4-P) 

serves to suppress basal signaling. 

To further define the function of each candidate gene, we measured pathway 

activity upstream of transcriptional regulation.  Phosphorylation of the MAPK is a 

prerequisite for transcription of pheromone-responsive genes.  Therefore we measured 

MAPK phosphorylation using an antibody that recognizes the dually-phosphorylated, 

fully-activated form of Fus3 and the partially redundant MAPK Kss1.  Compared to the 

TetO7 wild-type control strain (Figure 2.5 A), knockdown of CDC4, CDC34, CDC53, 

STT4, or PIK1 resulted in a decrease in Fus3 phosphorylation (Figures 2.5 B-F) in 
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Figure 2.4 

 

Figure 2.4  Hits from the essential-gene screen regulate G protein signaling 
upstream of translation. 

(A-L) The indicated TetO7 strains expressing the pRS315 AR/FG dual reporter 
plasmid were treated with 10 µg/mL doxycycline for 15 hrs and 3 µM α factor for 30min. 
Cell lysates were probed with GFP and RFP antibodies. Five additional strains, TetO7-
RIO2, TetO7-KIC1, TetO7-SSY1, TetO7-PMA1 and TetO7-SLN1, were also tested. 
Strains representing RIO2, KIC1, and SSY1 exhibited changes in RFP expression. 
Strains representing PMA1 and SLN1 showed no changes in RFP expression but were 
not considered further. 
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Figure 2.5 

 

Figure 2.5  Verification of the roles of selected essential genes in pheromone 
signaling.  

(A-G) The indicated essential genes were chosen for further validation and 
analysis. TetO7 strains expressing FUS1-lacZ were treated with 10 µg/mL doxycycline 
for 15 hrs and exposed to the indicated concentrations of α factor for 90 min. Below 
each pheromone dose-response curve is a corresponding immunoblot probed using 
phospho-p42/44 (P-Fus3, P-Kss1) or G6PDH (load control) antibodies. TetO7 strains 
were treated with 10 µg/mL doxycycline for 15 hrs and then 3 µM α factor for 30min. 
Results are the mean ± S.E. (n=5).  
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relation to total Fus3 levels (Figure 2.6).  Conversely, knockdown of MPS1 resulted in an 

increase in Fus3 activation (Figure 2.5 G).  Thus the changes in Fus3 phosphorylation 

mirror the changes in β-galactosidase activity reported above.  These results confirm a 

role for each gene in pheromone pathway regulation, and indicate they all function at a 

point upstream of the MAPK.   

Most genes involved in the pheromone response pathway regulate 

phosphorylation of both Fus3 and Kss1 in tandem.  Interestingly, doxycycline treatment 

of both TetO7-PIK1 and TetO7-STT4 strains resulted in a reduction of Fus3 but not Kss1 

activity (Figures 2.5 E and F).  Selective regulation of Fus3 has only been observed for a 

small number of gene deletion mutants, but this list includes the Fus3-binding protein 

Ste5 (176, 187) as well as the PtdIns 3-kinase Vps34 and its binding partner Vps15 (65).  

Pik1 and Stt4 are both PtdIns 4-kinases, but are present at different subcellular 

locations: Stt4 at the plasma membrane (188) and Pik1 at the Golgi and the nucleus 

(189).  Taken together, these findings reveal a possible role for mono-phosphorylated 

inositides in Fus3 signaling.   

SCFCdc4 regulates the pheromone pathway upstream of Ste4G
β 

Of the essential genes found to regulate pheromone signaling, we were 

particularly interested in those that promote protein degradation.  As noted above, genes 

involved in degradation were enriched almost 3-fold compared to all the essential genes.  

Moreover they were clustered more closely than any other functional group in the 

hierarchical analysis.  Among the genes identified in our screen, CDC4, CDC34, and 

CDC53 encode components of the Skp1, Cullin, F-box protein (SCF)-type ubiquitin 

ligase (134, 135).  When treated with doxycycline, the TetO7-CDC4, TetO7-CDC34, and 

TetO7-CDC53 strains all exhibited a significant decrease in the maximal response to 

pheromone as well as diminished MAPK activation (Figures 2.5 B-D).  The similarity of 
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Figure 2.6 

 

Figure 2.6  Knock-down of essential genes affects Fus3 activation.  
(A-G) The indicated TetO7 strains were treated with 10µg/mL doxycycline for 15 

hrs and 3 µM α factor for 30 min. Cell lysates were probed with phospho-p42/44 (P-
Fus3, P-Kss1) and Fus3 antibodies. Bands were quantified by densitometry and the ratio 
of P-Fus3:Fus3 is shown below each immunoblot. Results are the mean ± S.E. (n=3). 
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the responses of these strains, and the fact that the affected proteins exist as a complex 

in cells, suggests the SCFCdc4 has a particularly important role in signal regulation.   

While each component of the SCF is necessary for ubiquitin-ligase function, the 

F-box protein, Cdc4, binds directly to the substrate and therefore defines substrate 

specificity of the SCF complex.  For this reason we focused further efforts on 

characterizing the role of Cdc4.  To narrow our search for Cdc4 substrates we activated 

the pathway at several points downstream of the pheromone receptor.  First, we over-

expressed the constitutively active STE11-4 mutant (190).  STE11 encodes the MAPK 

kinase kinase (MAPKKK) that phosphorylates Ste7, which in turn phosphorylates and 

activates Fus3 and Kss1.  TetO7-CDC4 cells expressing STE11-4 triggered MAPK 

phosphorylation in the absence of pheromone.  However, doxycycline treatment of these 

cells had no effect on Fus3 activity, in contrast to the reduction seen in pheromone-

stimulated cells (Figure 2.7 A).  These results indicate that SCFCdc4 acts on a protein 

component that is upstream of the MAPKKK.   

Next, we over-expressed STE4G
β using a galactose-inducible promoter.  Since 

Gpa1 cannot sequester excess Ste4G
β (34), the overproduced Ste4G

β is free to activate 

effectors even in the absence of any stimulus.  TetO7-CDC4 cells containing GAL-STE4 

were grown in dextrose- or galactose-containing medium to induce protein expression.  

Overexpression of STE4 resulted in MAPK activation in the absence of pheromone.  

Once again, doxycycline treatment failed to dampen this signal (Figure 2.7 B).  Thus 

knock-down of Cdc4 attenuates signaling by pheromone but not the G protein β  subunit.  

These data indicate that SCF acts at the level of the G protein or the receptor.      

Loss of Cdc4 stabilizes Gpa1 protein levels 

Our genetic epistasis analysis indicates that Cdc4 acts early in the pathway.  We 

hypothesized further that Cdc4 must ubiquitinate a negative regulator, since knockdown
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Figure 2.7 

 

Figure 2.7  The Cdc34 E2 and SCFCdc4 regulate signaling upstream of Ste4G
β.  

(A) TetO7-CDC4 cells were transformed with a plasmid containing either STE11-
4 (constitutively active mutant) or no insert. Cells were treated with 10 µg/mL 
doxycycline for 15 hrs and then 3 µM α factor for 30 min. Samples were analyzed by 
immunoblotting using phospho-p42/44 or G6PDH antibodies. Bar graphs represent 
quantification of the indicated bands. Results are the mean ± S.E. (n=3).  (B) TetO7-
CDC4 cells were transformed with a plasmid containing STE4 under the control of a 
galactose-inducible promoter. Cells were treated with 10 µg/mL doxycycline for 12 hrs in 
medium containing either dextrose or switched to galactose (2% w/v final concentration) 
for 3 hrs prior to α factor treatment (3 µM for 30 min). Samples were analyzed by 
immunoblotting using phospho-p42/44 or G6PDH antibodies. Bar graphs represent 
quantification of the indicated bands. Results are the mean ± S.E. (n=3). 
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of Cdc4 resulted in a decrease in signaling.  There are only two well-characterized 

negative regulators that function upstream of Ste4G
β, Gpa1 and the RGS protein Sst2, 

and both are known to be ubiquitinated (154, 191).  To determine if Cdc4 affects Gpa1 

or Sst2 stability, we tracked their rates of degradation in a temperature-sensitive cdc4-1 

strain.  This mutant strain has been used previously in similar experiments to identify 

Cdc4 substrates (152).  The rate of Sst2 degradation was similar in both the wild-type 

and cdc4-1 cells (Figures 2.8 B and D).  In contrast, Gpa1 was considerably more stable 

in the absence of Cdc4 function.  Whereas Gpa1 in wild-type cells exhibited an 

approximate half-life of 141min, in cdc4-1 cells the half-life was extended to 344 min 

(Figures 2.8 A and C).  These data demonstrate that Cdc4 is required for proper 

turnover of Gpa1 in vivo.  Interestingly, Wang et al. showed that a  

mutant Gpa1 that cannot be ubiquitinated in vivo produces a dampened pheromone 

response (159), comparable to that seen in the SCF mutant strains (Table 2.1).  Taken 

together, these data indicate that SCFCdc4 regulates the function of Gpa1.   

We also considered whether the Cdc34/SCF complex regulates other 

components involved in G protein signaling.  To this end we measured the abundance 

and stability of proteins downstream of the receptor but upstream of the transcription 

factor (Ste4, Ste20, Ste5, Ste11, Ste7, Fus3, and Kss1).  To identify Cdc34/SCF 

substrates, including those that could be recruited by F-box proteins other than Cdc4, we 

used a temperature sensitive cdc34-2 mutant strain.  Of the proteins tested, four (Ste4, 

Ste20, Ste7, and Ste5) were significantly stabilized in the cdc34-2 mutant as compared 

with wild-type cells (Figure 2.9 A).  These data corroborate reports that the Cdc34/SCF 

pathway promotes the degradation of Ste7 and Ste5 (192, 193), and suggest that it may 

likewise act on Ste20 and Ste4.  Of these proteins at least one binds to Cdc4 (Ste5) and 

another is clearly ubiquitinated (Ste7) (192, 193).  Strikingly, despite stabilized 

expression of multiple components that propagate the signal, loss of Cdc34 or SCFCdc4 
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Figure 2.8 
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Figure 2.8  SCFCdc4 ubiquitinates Gpa1 in vitro and facilitates its turnover in vivo. 
(A) Gpa1 stability in wild-type vs. temperature-sensitive cdc4-1 mutant cells. 

Cultures were grown at 25oC, shifted to 37oC for 1 hr, and then treated with 
cycloheximide (CHX) for the indicated times. Myristoylated (bottom band) and 
unmyristoylated (top band) Gpa1 detected by immunoblotting with Gpa1 antibodies.  (B) 
Samples from panel (A) analyzed with Sst2 antibodies.  (C and D) The intensity of bands 
from (A) and (B), analyzed by densitometry. Results are the mean ± S.E. (n=3).  (E) In 
vitro ubiquitination of Gpa1. Purified Gpa1-Flag was incubated with purified SCFCdc4 
complex (Flag-Skp1/Cdc53/Myc-Rbx1/Cdc4), His6-Uba1, His6-Cdc34, and ubiquitin as 
indicated, followed by SDS-PAGE and immunoblotting. Unmodified (Gpa1) and 
ubiquitinated (Gpa1-(Ub)n) Gpa1 protein was visualized with Gpa1 antibodies. 
Membranes were also probed with Cdc4 antibodies and Cdc53 antibodies.  (F) In vitro 
ubiquitination using Lys-less ubiquitin (Ub0K).  Reactions contain either Gpa1 or Gpa1Δ

128-

236, a mutant form of Gpa1 lacking the ubiquitinated subdomain.  (G) In vitro 
ubiquitination of Gpa1 using Ub0K and SCF complexes containing either Cdc4 or Met30 
as indicated. Note that Met30 appears to bind weakly to Gpa1 but does not sustain 
Gpa1 ubiquitination (Figure 2.9 B). 
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Figure 2.9 

 

Figure 2.9 The SCF does not destabilize any positive regulators of G protein 
signaling and primarily functions to ubiquitinate Gpa1. 

(A) The indicated TAP-fusion genes were integrated into wild-type and cdc34-2 ts 
strains. Cycloheximide was administered at time zero and protein levels measured by 
immunoblotting with protein A antibodies.  (B) GST-Skp1/Cdc4-HA or Met30-HA 
complexes were immobilized on Glutathione SepharoseTM resin and incubated with 
purified Gpa1-Flag, followed by washing and analysis of the bound proteins with Gpa1-
antibodies to detect co-purification of Gpa1.  (C) In vitro ubiquitination of Gpa1 
expressed in yeast and E coli, which lacks most post-translational modifications. 
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function leads to a reduction in pheromone signaling.  Furthermore, loss of CDC4 gene 

expression has no effect when the pathway is activated at the level of Ste4G
β (Figure 

2.7).  Taken together, these findings highlight the importance of a negative regulator as 

the most functionally significant target for Cdc34/SCFCdc4-dependent degradation, and 

demonstrate that the dampened pheromone signaling in SCF-depleted cells is due 

primarily to the stabilization of Gpa1.    

Cdc34 poly-ubiquitinates purified Gpa1 in vitro in an SCFCdc4-dependent manner 

Protein turnover is often dependent upon polyubiquitination.  Gpa1 was shown 

previously to undergo ubiquitination in vivo (154).  To test the possibility that SCFCdc4 is 

directly responsible for the modification, we sought to establish whether SCFCdc4 could 

interact with Gpa1.  We affinity purified Skp1-GST/Cdc4-HA from insect cell lysates and 

added purified Gpa1-Flag.  As shown in Figure 2.9 B, Gpa1 copurified with Cdc4.  

Additionally, we tested a closely related F-box protein, Met30.  Both Met30 and Cdc4 

contain a substrate-binding domain comprised of WD repeats (99).  Gpa1 bound to 

Met30 (Figure 2.9 B), but with a lower affinity than Cdc4.  These results suggest that the 

Cdc4 component of the SCFCdc4 ubiquitin ligase complex binds Gpa1, and as a 

consequence may promote its ubiquitination by Cdc34. 

To establish whether Gpa1 is ubiquitinated by Cdc34/SCFCdc4 we sought to 

reconstitute Gpa1 ubiquitination in vitro.  We purified Gpa1-Flag from yeast (to maintain 

post-translational modifications) and purified the SCFCdc4 complex (comprised of yeast 

Flag-Skp1, Cdc53, Rbx1, and Cdc4) from insect cells.  As shown in Figure 2.8 E, Gpa1 

is polyubiquitinated in reaction mixtures composed of purified SCFCdc4, Cdc34, Uba1, 

Ubiquitin and ATP, but not in the absence of SCFCdc4 or Cdc34.  To determine if the SCF 

polyubiquitinates Gpa1 at a single site, or instead monoubiquitinates Gpa1 at multiple 

sites, we performed the in vitro ubiquitination reactions with a mutant form of ubiquitin 
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(Ub0K) that, due to the replacement of all the lysines with arginine, cannot be 

incorporated into poly-ubiquitin chains.  Under such conditions, we observed only a 

single 8kD shift, suggesting Gpa1 is modified at a single lysine residue (Figure 2.8 F).   

In order to determine if Gpa1 is ubiquitinated by the SCFCdc4 at the previously 

identified site, we conducted an in vitro ubiquitination assay using a mutant form of Gpa1 

that lacks the ubiquitinated subdomain (Gpa1Δ
128-236).  As shown in Figure 2.8 F, 

Gpa1Δ
128-236 is not ubiquitinated in vitro, indicating the SCFCdc4 ubiquitinates Gpa1 at the 

known site of ubiquitination.  Interestingly, Gpa1Δ
128-236 is not ubiquitinated, and the 

response to pheromone is partially abrogated.  This gain-of-function phenotype is likely 

due to stabilized expression of the protein.  However we cannot rule out the possibility 

that there are other functional differences between the mutant and wild-type protein.  As 

an additional control, we conducted an in vitro reaction with the F-box protein Met30.   

We show above that Met30 was able to bind Gpa1.  However, SCFMet30 complexes were 

not able to ubiquitinate Gpa1 (Figure 2.8 G).   

Finally, the SCF complex is typically recruited to substrates in response to 

substrate phosphorylation (194).  To determine if Gpa1 ubiquitination by the SCFCdc4 is 

regulated by phosphorylation we conducted in vitro ubiquitination assays with Gpa1 from 

E. coli, which should lack all post-translational modifications.  As shown in Figure 2.9 C, 

Gpa1 expressed from E. coli is ubiquitinated poorly, indicating that Gpa1 ubiquitination 

by SCFCdc4 may be regulated by a post-translational modification.      

Notably, the Gpa1Δ
128-236 mutant, which is not ubiquitinated in vivo or in vitro (159) 

(Figure 2.8 F),  exhibits a dampened pheromone response comparable to that seen 

following knock-down of SCFCdc4 expression (Table 2.1).  The ability of SCFCdc4 to 

ubiquitinate Gpa1 in vitro, and to accelerate Gpa1 turnover in vivo, reveals Gpa1 as a 

critical target of SCF regulation.  To date, only a handful of SCFCdc4 substrates have 
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been verified by direct ubiquitination using purified components.  Indeed, of the mating 

pathway components only the cell cycle regulatory protein Far1 has been characterized 

in this manner (Figure 2.10) (195).  The identification of Gpa1 as an SCFCdc4 substrate 

could explain the critical role of SCFCdc4 in pheromone signaling, and expands the 

repertoire of regulatory SCFcdc4 functions in the pheromone pathway (Figure 2.10).   

Discussion 

The yeast pheromone response system is perhaps the most thoroughly 

characterized of any signaling pathway.  The contributions of non-essential gene 

products have been exhaustively and systematically characterized over much of the past 

three decades.  Much less is known about genes that are essential to cell viability, but 

which nevertheless contribute to effective signal transduction.  Until now, only two major 

components of the pheromone signaling cascade, Gpa1 and Cdc42, were known to be 

encoded by essential genes.  To address this deficit, we conducted a systematic 

analysis of the essential yeast genome.  Our results implicate 92 essential genes in the 

regulation of G protein signaling, verify the involvement of 6 selected genes, and define 

their mode of action.  These findings suggest a level of complexity in G protein signaling 

that has not been fully appreciated.   

Protein degradation 

Among the genes required for proper pheromone responses, those involved in 

protein degradation (13 of 92 genes) were over-represented in our screen, indicating 

that they may have a particularly important role in signal regulation.  Included in this 

group are four components of the 20S proteasome, four components of the 19S 

regulatory particle (together forms the 26S proteasome complex), as well as the Cdc34 

E2 ubiquitin conjugating enzyme and the SCFCdc4 E3 ubiquitin ligase.  These data are 

consistent with the observation that many of the core components of the pheromone 



64 

Figure 2.10 

 

Figure 2.10  The pheromone response pathway. 
The Cdc34/SCF complex targets several known substrates in the pheromone 

response pathway. Known substrates of Cdc34/SCF are shown in dark blue. Likely 
substrates of the SCF are shown in light blue. SCFCdc4 substrates that have been verified 
using in vitro ubiquitination assays are designated with an asterisk (*). 
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pathway are ubiquitinated, including the receptor, G protein, RGS protein, and 

components of the MAP kinase cascade (154, 162, 179, 191-193, 196).  Further, there is 

indirect evidence that SCF complexes promote ubiquitination of several proteins that 

propagate the signal, including Ste5 (192), Ste7 (193), Ste4 and Ste20 (Figure 2.9 A).  

Strikingly, despite stabilized expression of these positive regulators, loss of SCFCdc4 

function results in a reduction in pheromone signaling.  A negative regulator is thus the 

most functionally significant target of the SCFCdc4 in signal transduction.  Our analysis 

indicates that Gpa1 is this critical target of the SCFCdc4.   

These findings expand the classic roles of SCF complexes in orchestrating the 

events leading to mating (Figure 2.10).  Arrest of cell division in the G1 phase is needed 

to ensure cell cycle synchrony prior to cell fusion.  Essential to G1 cell cycle arrest is 

inactivation of the cyclin-dependent kinase (CDK) Cdc28.  Several mechanisms 

contribute to the G1-specific functions of Cdc28; these include degradation of the G1 

cyclins Cln1 and Cln2, and direct inhibition of Cln/Cdc28 activity by Far1 (197), a protein 

that is upregulated in a Ste12-dependent manner during mating (198).  Additionally, 

these changes prevent proteolysis of the Sic1 S-phase CDK inhibitor, which normally 

depends on G1 CDK activity, thereby ensuring that the S-phase Cdc28 functions are not 

activated in mating cells.  Each of these processes is regulated by SCF complexes.  

Whereas SCFCdc4 promotes the ubiquitination and degradation of Far1 (179) and Sic1 

(134, 135), SCFGrr1 promotes the degradation of Cln1 and Cln2 (199, 200). 

As noted above, loss of Gpa1 leads to G1 cell cycle arrest.  Thus an additional 

role for SCFCdc4 in ubiquitination and degradation of Gpa1 is likely to contribute to cell 

cycle regulation.  Inhibition of SCFCdc4 could promote a timely recovery following 

pheromone stimulation, and also prevent pheromone signaling in non-G1 phases of the 

cell cycle when improper activation of cell mating could result in aneuploidy.  The 

observation that many of the pheromone pathway components are not expressed in 
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diploid cells suggests that SCF could also promote degradation of unnecessary (haploid-

specific) signaling proteins and, as such, prevent aberrant pathway activation after 

mating.   

Gpa1 as a target for proteasomal and vacuolar proteolysis 

Gpa1 is a rare example of a protein that can be either mono- or poly-

ubiquitinated (154).  Whereas polyubiquitinated Gpa1 is targeted to the proteasome, 

monoubiquitinated Gpa1 is internalized and degraded within the vacuole (159).  Left 

unresolved was whether mono- and poly-ubiquitination of Gpa1 requires two distinct sets 

of E2 and E3 enzymes.  Recently, we showed that Rsp5 monoubiquitinates Gpa1 (160).  

Here we show that the SCF complex polyubiquitinates Gpa1.  Taken together these 

findings reveal that Gpa1 mono- and poly-ubiquitination occur by distinct pathways 

and/or mechanisms.   

Although complex, there may be specific benefits to having two ubiquitinating 

pathways that can target the same protein for distinct proteolytic machineries.  One such 

benefit would be that degradation could be triggered in response to different signals 

and/or functional states of the protein.  In support of this model, we showed that the 

Rsp5 E3 ligase ubiquitinates only the fully myristoylated (fully mature) form of the G 

protein.  Myristoylated Gpa1 would localize to the plasma membrane and its degradation 

in vacuoles could therefore be linked to endocytosis.  Conversely, there may be another 

modification that directs Gpa1 to SCFCdc4.  Indeed, many E3 ubiquitin ligases including 

the SCF, are recruited to substrates in response to substrate phosphorylation (194).  

Recently, two independent phospho-proteomic screens revealed that Gpa1 is 

phosphorylated at Thr-189 and Ser-200 (201, 202), and it is noteworthy that both sites 

are located near a known Gpa1 ubiquitination site, Lys-165, established by mass 

spectrometry (158).  In this study, we show that Gpa1 purified from E. coli and lacking 
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any post-translational modifications is not ubiquitinated in vitro.  Thus phosphorylation of 

Gpa1 may serve to recruit the SCF ubiquitination machinery.  It is also possible, 

however, that phosphorylation of a Gpa1-binding partner, rather than Gpa1 itself, is 

sufficient to direct the protein to the SCFCdc4 complex.  Knowing when Gpa1 is 

phosphorylated, whether there are additional sites of phosphorylation, and the identity of 

the protein kinase(s) could further establish the role of Gpa1 ubiquitination in regulating 

the pheromone pathway. 

Interestingly, depletion of Cdc4 does not result in increased steady-state levels of 

Gpa1 (data not shown).  While any differences in Gpa1 abundance are small, even small 

differences in abundance could account for the 54% loss of signal observed in the 

TetO7-CDC4 strain.  The SCFCdc4 likely targets a small pool of Gpa1 that is functionally 

important for signaling as has been shown for other proteins (99, 203).  In this case, 

small changes in protein levels, in a specific functional context, can result in large 

changes in signaling.  We further expect that slower Gpa1 turnover in the TetO7-CDC4 

strain would increase the proportion of protein that has had time to be correctly folded, 

fully modified, properly localized, and assembled into the heterotrimeric complex.  

Unfortunately, it is not currently feasible to distinguish Gpa1 that is folded and functional 

from protein that is non-functional but nevertheless expressed in the cell. 

G protein ubiquitination may also be regulated by external stimuli.  F-box proteins 

appear to serve as receptors for the plant hormones auxin and jasmonates; in each case 

binding to these hormones enhances the interaction between SCF and its substrates 

(204-206).  Thus F-box proteins and ubiquitin ligases can function as hormone 

receptors.  By extension, F-box proteins might also serve as targets for drugs that 

enhance or diminish signaling by G proteins and G protein-coupled receptors. 

Non-proteolytic new essential regulators of G protein signaling 
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We also characterized three other essential genes required for proper G protein 

signaling.  Of particular interest are the PtdIns 4-kinases Pik1 and Stt4.  Whereas 

pheromone stimulation leads to activation of both Fus3 and Kss1, we found that 

knockdown of PIK1 or STT4 leads to a selective diminution of Fus3 activity.  These 

observations suggest a positive role for PtdIns 4-P in signal transduction, and in 

particular for Fus3.  Similarly, there is a selective loss of Fus3 activation in cells that lack 

the PtdIns 3-kinase components Vps34 and Vps15, or in cells treated with the PtdIns 3-

kinase inhibitor Wortmannin (65).  Taken together, these findings indicate a potential role 

for mono-phosphorylated phosphoinositides in Fus3 activation.  Notably, Fus3 activation 

requires the MAPK scaffolding protein Ste5, while Kss1 activation does not.  Moreover, 

Ste5 was shown to bind to PtdIns 4-P and PtdIns 4,5-P2 in vitro (207).  We hypothesize 

that PtdIns 4-P interaction is required for Ste5 activity or proper localization.  

Additionally, PtdIns 3-P and 4-P are produced in different sub-cellular locations, and 

these differences could contribute further to signaling specificity and activity.  In any 

event, these discoveries suggest an important and expanded role for phosphoinositides 

in the pheromone-response pathway.   

Conclusions 

 We have systematically characterized 870 essential genes for participation in the 

yeast G protein signaling pathway, identified up to 92 new regulators of the pathway, 

and characterized six in detail.  Our findings reveal considerable overlap among genes 

required for cell viability and signal propagation.  More significantly, our work reveals that 

there are still many new pathway components to be found.  While we focused on 

components for which there was a specific and rigorously-testable hypothesis, there are 

still dozens of others that will be pursued in the future.  Based on these results, we 

regard the essential-genome as an under-utilized resource for the identification of new 
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signal transduction factors.  Further efforts to screen the essential genes in yeast and 

other model systems will undoubtedly lead to a more complete understanding of signal 

transduction networks.  Given the conservation of G protein function across species, 

newly described functions in yeast are likely to extend as well to humans.  Due to the 

established importance of G proteins in physiology and pharmacology, our findings may 

also reveal future opportunities for drug discovery.   

Experimental Procedures 

Strains and plasmids - Standard procedures for the growth, maintenance, and 

transformation of yeast and bacteria and for the manipulation of DNA were used 

throughout.  Yeast Saccharomyces cerevisiae strains used in this study were BY4741 

(MATa leu2Δ met15Δ his3-1 ura3Δ), MTY235 (MATa ade2-1 his3-11,15 leu2-3,112 trp1-

1 ura3-1 can1-100), MTY670 (MTY235 cdc34-2), and MTY668 (MTY235 cdc4-1) 

(provided by Mike Tyers, Samuel Lunenfield Research Institute) (152), BY4741-derived 

strains containing a C-terminal tandem affinity purification (TAP)-tag (Yeast TAP-Fusion 

Library, Open Biosystems), and the BY4741-derived strain R1158 (MATa URA3::CMV-

tTA leu2Δ met15Δ his3-1 ura3Δ) (208).  The tetracycline-repressible strains were 

purchased as the yeast Tet-promoter Hughes Collection (yTHC, Open Biosystems) (28).   

Yeast shuttle plasmids used were pRS315 (CEN, ampR, LEU2), and pRS316 

(CEN, ampR, URA3).  Expression plasmids described previously were pRS423-FUS1-

lacZ (209), pRS316-ADH1, pRS316-ADH1-GPA1 (78), pFAGa-mRFP1-KanMX6 (210), 

pUG35 (provided by Johannes Hegemann, Heinrich-Heine-Universität), YCp50-STE11-4 

(from George Sprague, University of Oregon) (190), and pRS315-GAL-STE4 (175).  

Plasmid pRS316-ADH-GPA1-Flag was constructed by PCR amplification of a 384 bp 

fragment of GPA1 from pRS316-ADH-GPA1 using primers 1 and 2 (see Appendix I).  

Plasmid pRS316-ADH-GPA1Δ
128-236-Flag was constructed by QuikChange (Stratagene) 
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using primers 3 and 4 to remove the 324 bp fragment corresponding to amino acids 128-

236.  Plasmid pRS315-STE11 was constructed by PCR amplification of STE11 from 

BY4741 genomic DNA, followed by SacI and XmaI digestion and ligation into the 

corresponding sites of pRS315.  Plasmid pRS315-STE11-4 was constructed by 

engineering the single point mutation Thr-596-Ile (190) into pRS315-STE11 using 

QuikChange and primer 5 and its complement.  Rescue plasmids for CDC4, CDC34, 

and STT4 were constructed by PCR amplification of each gene from BY4741 genomic 

DNA, followed by SacI and XmaI digestion and ligation into the corresponding sites of 

pRS315.  Rescue plasmids for PIK1 and MPS1 were made in a similar manner except 

that SacII was used in place of SacI. 

The pRS316-ADH1-RFP/FUS1-GFP (AR/FG) dual reporter was constructed 

using the steps outlined below.  The plasmid pRS316-ADH1-GFP was constructed by 

PCR amplification of GFP from the plasmid pUG35 using primers 6 and 7 including SacI 

sites, followed by SacI digestion and insertion into the corresponding site in pRS316-

ADH1.  The ADH1 terminator sequence (ADH1t) (from the stop codon to 600bp 

downstream) was PCR amplified from genomic DNA with primers 8 and 9 including 

XmaI and SalI sites.  The resulting PCR product was digested with XmaI and SalI and 

inserted into the corresponding sites in pRS316-ADH1-GFP, resulting in pRS316-

ADH1p-ADH1t-GFP.  RFP was PCR amplified from pFA6a-mRFP1-KanMX6 using 

primers 10 and 11 with XmaI sites.  This fragment was ligated into the corresponding 

XmaI sites of pRS316-ADH1p-ADH1t-GFP, resulting in the plasmid pRS316-ADH1p-RFP-

ADH1t-GFP.  The FUS1 promoter (FUS1p) (600bp upstream of the start codon of FUS1) 

was PCR amplified from genomic DNA using primers 12 and 13 containing SalI sites.  

The resulting fragment was digested with SalI and inserted into the corresponding sites 

of pRS316-ADH1p-RFP-ADH1t-GFP resulting in the plasmid pRS316-ADH1p-RFP-

ADH1t-FUS1-GFP (designated pRS316-AR/FG).  pRS315-AR/FG was constructed by 
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digestion of pRS316-AR/FG with PvuI and ligation into the corresponding sites in 

pRS315. 

Screen of essential genes - 852 TetO7 promoter strains (Open Biosystems, 

yTHC) were transformed with pRS423 FUS1-lacZ, and β-galactosidase activity was 

measured in a 96-well plate format as described previously (177).  Prior to pheromone 

stimulation, cells were grown for ~15 hrs in either untreated medium or medium 

containing 10 ng/mL, or 100 ng/mL doxycycline hyclate (Sigma-Aldrich).  β-

galactosidase activity was measured in triplicate for each condition.  Strains were 

considered for further analysis if doxycycline treatment resulted in a >50% increase or 

decrease in maximal response, at least a two standard deviation shift in the EC50, or at 

least a four-fold increase in the basal activity as determined by non-linear regression 

analysis (Graphpad Prism).  Twenty-six candidate strains were re-tested individually 

using twelve concentrations of α factor pheromone and a higher dose of doxycycline (10 

µg/mL).  Eleven confirmed strains were transformed with the pRS316-AR/FG dual 

reporter and tested for GFP and RFP expression by immunoblotting.  While all eleven 

strains exhibited changes in GFP expression, three TetO7-strains representing the 

essential genes RIO2, KIC1, and SSY1 also exhibited detectable changes in RFP 

expression and were not considered further.  The remaining eight TetO7-strains 

representing the essential genes MPS1, STT4, PIK1, CDC4, CDC53, CDC34, PMA1, 

and SLN1 showed no change in RFP expression.  Of the remaining eight strains, six 

were selected for transformation with a single-copy plasmid containing the 

corresponding wild-type gene, and these were re-tested for restoration of normal β-

galactosidase activity (Table 2.1).   

Bioinformatics - Physical and genetic interactions among the genes identified in 

the screen were analyzed using Osprey Network Visualization System (181) which 
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incorporates published data from the Biological General Repository for Interaction 

Datasets (BioGRID) (182).  Functional categories were assigned based on Gene 

Ontology annotations using Functional Clustering in Osprey.  Genes involved in multiple 

GO processes were assigned a single GO term based on Osprey’s hierarchical GO 

process order.  Hierarchical clustering of TetO7-Strain phenotypes was conducted with 

the open source software Cluster 3.0 (211) using uncentered correlation and centroid 

linkage.  The generated clustering data was visualized with the open source software 

Java TreeView (v1.1.3) (212). 

Cell-extract preparation and immuno-blot analysis - The yeast TetO7 strains 

were grown in selective medium to A600nm~0.8 and re-inoculated at 1:80 into medium 

containing doxycycline at a final concentration of 10µg/ml and grown to A600nm~0.8.  Cell 

cultures were then divided in half, and either treated with 3 µM α factor pheromone or 

left untreated at 30oC for 30 min.  Protein extracts were produced by glass bead lysis in 

trichloroacetic acid (TCA) as previously described (19).  Protein extracts were resolved 

by 12% SDS-PAGE and immunoblotting with Phospho-p44/42 MAPK antibodies (9101L, 

Cell Signaling Technology) at 1:500, Fus3 antibodies (sc-6773, Santa Cruz 

Biotechnology, inc.) at 1:500, GFP antibodies (632375, BD Biosciences) at 1:500, 

dSRed antibodies (632496, Clontech) at 1:1000, and G6PDH antibodies (A9521, Sigma-

Aldrich) at 1:100,000.  Immunoreactive species were visualized by chemiluminescent 

detection (PerkinElmer Life Sciences LAS) of horseradish peroxidase-conjugated 

antibodies (170-5047 and 170-5046, Bio-Rad).  Protein concentration was determined 

by Dc protein assay (Bio-Rad Laboratories).  Where indicated, TetO7 cells were 

transformed with pRS315-GAL-STE4, pRS315-STE11-4, pRS315-ADH-RFP/FUS1-

GFP, or empty vector, and grown in selective medium containing 2% (w/v) dextrose or 

galactose to induce STE4 expression.   

Protein turnover measurements - Cells were grown in 100 mL of selective 
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medium at room temperature to A600nm ~0.6, and then shifted to 37oC for 1hr.  Cells were 

then treated with cycloheximide (final concentrations, 10 µg/mL in 0.1% ethanol) for up 

to 3 hrs.  Growth was stopped by the addition of TCA (5% final concentration) and 

samples were normalized to the same A600nm.  Cell pellets were washed and brought up 

directly in boiling SDS-PAGE sample buffer (62.5 mM Tris-HCl, pH 6.8, 10% glycerol, 

2% SDS, 1% 2-mercaptoethanol, 0.0005% bromophenol blue) and lysed using glass 

beads as previously described (213).  Protein extracts were resolved by 10% SDS-

PAGE and immunoblotting with Gpa1 antibodies at 1:1000 (76) and Sst2 antibodies at 

1:2000 (214).   

TAP-fusion protein turnover screen - TAP-fusion genes were PCR amplified 

and integrated into MTY235 and cdc34-2 cells.  Cells were grown at room temperature 

to A600nm ~0.25, shifted to 37oC for 3h rs treated with 3 µM α factor for 1 hr, and treated 

with cycloheximide for up to 90 min.  Protein extracts were resolved by 7.5% SDS-PAGE 

and immunoblotting with protein A (P3775, Sigma-Aldrich) antibodies at 1:50,000.  

Experiments were performed in triplicate, and bands were quantified by densitometry. 

Preparation and purification of recombinant proteins - BY4741 yeast cells 

were transformed with pRS316-ADH1-GPA1-Flag and pRS316-ADH1-GPA1Δ
128-236-Flag 

and grown to early log phase (A600nm ~1.0) before harvesting by centrifugation.  The cell 

pellet was frozen in liquid nitrogen and lysed by grinding cells blast-frozen in a 1:0.7 ratio 

of lysis buffer (50 mM Tris-HCl, pH 7.5, 400 mM KCl, 0.1% Triton, 0.2 mM dithiothreitol) 

supplemented with 20 µM GDP, 10 mM NaF, 10 mM β-glycerol phosphate, 1 mM 

sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride and 1 proteinase inhibitor 

tablet per 50mL (11873580001, Roche Applied Science).  The cell lysate was thawed on 

ice, and centrifuged at 15,000xg for 30 min at 4oC.  The supernatant was transferred and 

incubated with EZview anti-Flag M2 beads (Sigma-Aldrich) for 2 hrs rotating at 4oC.  
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Beads were harvested by centrifugation and washed 3 times with 100x bead-bed volume 

of ubiquitination buffer (50 mM Tris-HCl, pH 7.5, 50 mM KCl, 0.2 mM dithiothreitol, 2 mM 

MgCl2, 20 µM GDP) supplemented with 5% glycerol, followed by elution with 2x bead-

bed volume of the supplemented ubiquitination buffer containing 0.25 mg/mL 3XFlag 

peptide (Sigma-Aldrich).  Protein aliquots were frozen and stored at -80oC.   

Yeast HisCdc4 E2 was purified from E. coli, yeast HisUba1 E1 was purified from 

yeast, and yeast SCF E3 Complexes were purified from insect cells infected with the 

baculoviruses expressing yeast Flag-Skp1, Cdc53, Myc-Rbx1, and HA-Cdc4 or HA-

Met30 for 40 hrs as described previously (135).  Cells were disrupted in NETN buffer (50 

mM Tris-HCl, pH7.5, 150 mM KCl, 0.5% Nonidet P-40, 0.2 mM dithiothreitol, 10 mM 

NaF, 10 mM β-glycerophosphate, 1 mM phenylmethylsulfonyl fluoride) supplemented 

with proteinase inhibitor tablets and cleared by centrifugation at 15,000xg for 30 min at 

4oC.  Typically 3 mL of NETN buffer was used per 0.5 x 108 cells.  For 

immunopurification 300 µL of cell lysate was incubated with 10 µL EZview anti-Flag M2 

beads with rotating for 1 hr at 4oC.  Beads were washed 3 times with 500 µL of NETN 

buffer for 5 min each with rocking and 3x quick washes with 500 µL of ubiquitination 

buffer.  Bound protein was eluted from the beads with 2x 10 µL of ubiquitination buffer 

supplemented 0.25 mg/mL 3XFlag peptide for 10 min each.  Eluted protein was added 

directly to ubiquitination reactions. 

6xHIS-Gpa1 expression plasmid was described previously (215) and transformed 

into BL21 (DE3) E. coli.  Cells were grown from a single colony overnight at 37oC in 

Luria Broth (LB) supplemented with 100 µg/mL carbenicillin and then diluted 1:100 into 

fresh media.  Once cells grew to A600nm ~0.7, 6xHIS-Gpa1 expression was induced by 

addition of 0.2 mM isopropyl β-D-1-thiogalactopyranoside and incubation at room 

temperature for 5 hrs with shaking.  Cells were harvested by centrifugation, resuspended 
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in Buffer A (20 mM Tris pH 8.0, 200 mM NaCl, 5% glycerol, 20 µM GDP, 2 mM MgCl2, 1 

mM DTT) supplemented with protease inhibitor tablets (Roche), and homogenized with 

an Emulsiflex-C5 Homogenizer (Avestin).  Lysates were clarified by centrifugation at 

12,000xg for 30 min, and the resulting supernatent was mixed with Buffer A-equilibrated 

Ni-SepharoseTM6 Fast Flow resin (GE Healthcare) for 2 hrs rotating at 4oC.  Resin was 

collected by centrifugation at 500xg for 5 min and washed 3 times with Buffer A followed 

by elution with Buffer A supplemented with 250 mM imidazole.  The elution was mixed 

with His-tagged tobacco etch virus protease (to remove the N-terminal 6xHIS from 

Gpa1) and dializyed in 1 L of Buffer B (20 mM Tris, pH 8.0, 100 mM NaCl, 5% glycerol, 

20 µM GDP, 2 mM MgCl2, 1 mM DTT) overnight.  Sample was incubated with Ni-

Sepharose resin for 1hr to remove tobacco etch virus protease and cleavage products.  

Flow-through from the Ni-Sepharose was concentrated using Vivaspin concentrators 

(Vivascience AG). 

Co-immunoprecipitation assay - Insect cell lysates containing GST-Skp1 and 

either Cdc4-HA or Met30-HA where mixed with Glutathione SepharoseTM 4 Fast Flow 

resin (GE Healthcare) for 1hr rotating at 4oC.  The beads were then washed 3x with 50x 

bead-bed volume of binding buffer (50 mM Tris-HCl, pH 7.5, 15 0mM KCl, 0.5% NP-40, 

0.2 mM dithiothreitol, 2 mM MgCl2, 20 µM GDP, 10 mM NaF, 10 mM β-glycerol 

phosphate, 1 mM sodium orthovanadate, and proteinase inhibitor tablets).  Gpa1-Flag 

purified from yeast was added to the beads and incubated for 2 hrs at 4oC with rotating.  

The beads were washed 3x with 50x bead-bed volume of binding buffer for 5min each 

with rocking and 3x quick washes with 50x bead-volume of binding buffer.  Bound 

protein was then eluted in 2x bead-bed volume of binding buffer supplemented with 20 

mM glutathione.  Protein samples were resolved by 10% SDS-Page and immunoblotting 

with Gpa1 antibodies at 1:1000 and HA antibodies (3F10, Roche Applied Sciences) at 

1:2000. 
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In vitro ubiquitination assay - Ubiquitination reactions were prepared with 

FlagSCF complexes containing Flag-Skp1/Cdc53/Myc-Rbx1/Cdc4 or Met30 purified from 

insect cells as described in Supplemental Methods, and in (135).  9 µL of purified and 

eluted SCF complex (~2 pmol) was combined with 13.5 pmol HisCdc34, 1.0 pmol 

HisUba1, 120 pmol Ub or 0K Ub (Boston Biochem), 1.5 pmol Gpa1-Flag and 

supplemented with 1mM ATP, 5mM MgCl2, and 20µM GDP in a volume of 15 µL.  

Reactions were allowed to proceed at 30oC and stopped after 90min with the addition of 

boiling SDS-PAGE sample buffer, followed by SDS-PAGE and immunoblotting with 

Gpa1 antibodies.  Membranes were stripped and re-probed with Cdc4 antibodies at 

1:1000 and Cdc53 antibodies at 1:1000 (provided by Mark Goebl, University of Indiana 

Medical School).   
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Summary 

 Multiple mitogen-activated protein (MAP) kinase pathways share components yet 

initiate distinct biological processes.  Signaling fidelity can be maintained by scaffold 

proteins and restriction of signaling complexes to discreet subcellular locations.  For 

example, the yeast MAP kinase scaffold Ste5 binds to phospholipids produced at the 

plasma membrane and promotes selective MAP kinase activation.  Here we show that 

Pik1, a phosphatidylinositol (PtdIns) 4-kinase that localizes primarily to the Golgi, also 

regulates MAP kinase specificity, but does so independently of Ste5.  Pik1 is required for 

full activation of the MAP kinases Fus3 and Hog1 and represses activation of Kss1.  

Further, we show by genetic epistasis analysis that Pik1 likely regulates Ste11 and 

Ste50, components shared by all three MAP kinase pathways.  These findings reveal a 

new regulator of signaling specificity functioning at endomembranes rather than at the 

plasma membrane. 
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Introduction 

Cells growing in complex environments are exposed to multiple chemical and 

physical stimuli.  Many external stimuli activate mitogen-activated protein (MAP) kinase 

pathways to elicit intracellular biological processes.  In some cases, a single stimulus will 

activate multiple MAP kinases, yet signaling specificity is maintained (216).  How cells 

regulate the activation of different MAP kinase pathways to invoke the appropriate 

biological response is not well understood.   

The yeast Saccharomyces cerevisiae provides a versatile model for 

understanding the coordinated regulation of multiple MAP kinases.  In yeast, three well-

characterized MAP kinase pathways respond to different external stimuli to initiate 

distinct, and sometimes mutually exclusive, biological processes (Figure 3.1 A) (217).  

First, mating pheromones activate a pathway that induces cell cycle arrest, polarized cell 

expansion, and the fusion of haploid a- and α-type cells to form an a/α diploid.  This 

process is mediated by a heterotrimeric G protein and a protein kinase cascade 

comprised of Ste20, Ste11, Ste7, and the MAP kinase Fus3 (178).  Second, nutrient 

deprivation results in the activation of the same kinase components, with the exception 

of the MAP kinase, Kss1 (218, 219), and induces filamentous growth as well as 

increased adherence and invasion into the substratum (220).  Third, osmotic stress 

activates the MAP kinase Hog1 in the high osmolarity glycerol (HOG) response pathway 

(221), and induces glycerol production to counterbalance osmotic pressure and enable 

cell survival (222, 223).   

Despite profound differences in stimulus and response, different MAP kinase 

pathways will often share signaling components.  For example, the MAP kinase kinase 

kinase Ste11 and its adapter protein Ste50 are shared by the mating, filamentous 

growth, and HOG pathways (224-226).  Ste7 is shared by the mating and filamentous 
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Figure 3.1 
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Figure 3.1  Pik1 is required for proper pheromone signaling.  
(A) Three yeast MAP kinase pathways respond to different stimuli and regulate 

distinct biological processes, yet all three pathways share signaling components. The 
MAP kinase kinase kinase Ste11 and the adapter Ste50 regulate all three pathways.  (B) 
TetO7-PIK1 cells were transformed with the FUS1-lacZ transcription reporter and 
pRS315-PIK1 (pPIK1) or pRS315 (Vector) and treated with a factor pheromone at the 
indicated concentration for 90 min. β-galactosidase activity was measured 
spectrofluorometrically. Inset is activity in cells not stimulated with a factor.  (C) TetO7-
STT4 cells were transformed with the FUS1-lacZ reporter and pRS315-STT4 (pSTT4) or 
empty vector (Vector) and treated with a factor pheromone. Results are the mean ± S.E. 
for three individual experiments each performed in triplicate.  
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pathways (217).  Yet remarkably little pathway cross-talk is observed.  In the pheromone 

response pathway, MAP kinase specificity is maintained by the scaffold protein Ste5, 

which binds Ste11, Ste7, and Fus3 (227).  Upon pheromone stimulation, Ste5 

translocates to the plasma membrane by binding to G protein βγ subunits (228) and 

facilitates signal propagation through Fus3, but not Kss1 or Hog1 (229).  In the HOG 

pathway, specificity is maintained by another scaffold protein Pbs2, which also functions 

as the kinase that activates Hog1.  However, despite the existence of these scaffolds, 

Kss1 is still partially activated in response to pheromone (230, 231) and osmotic stress 

(232).  Therefore, scaffolds that associate with Fus3 or Hog1 are not sufficient to prevent 

activation of Kss1.  Additional mechanisms are likely to be required to maintain proper 

balance between Fus3, Hog1, and Kss1 activation.   

Previous reports demonstrated a role for phospholipids in maintaining signaling 

fidelity.  For example, deletion of the PtdIns 3-kinase Vps34, alters Fus3 activation but 

not Kss1 (65), indicating that phosphorylated phosphoinositides may play an important 

role in maintaining MAP kinase specificity.  Ste5 is likewise required for Fus3 activation; 

Ste5 binds PtdIns 4-P and PtdIns 4,5-P2 in vitro (207, 233) and Ste5 translocation to the 

plasma membrane in vivo requires the PtdIns 4-kinase Stt4 and the PtdIns 4-P 5-kinase 

Mss4 (75, 233).  While both Stt4 and Mss4 localize primarily to the plasma membrane 

(188, 234), Vps34 localizes to endosomes (235, 236).  Together these findings show 

that phospholipids play an important role in maintaining MAP kinase specificity, and 

these phospholipids do not necessarily function at the plasma membrane. 

In a recent screen of essential genes we identified regulators of pheromone 

signaling including Stt4, as well as a second PtdIns 4-kinase Pik1 (161).  As noted 

above Stt4 promotes the activation of Fus3.  Here we show that Pik1 regulates the 

activity of three different MAP kinases in yeast.  Whereas Pik1 enhances Fus3 and Hog1 

activation, it inhibits Kss1 activation.  We demonstrate further that Pik1 regulates MAP 
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kinase signaling through a mechanism distinct from that of Stt4.  Whereas Stt4 acts by 

promoting Ste5 translocation to the plasma membrane (75), Pik1 exerts its effects 

through Ste11 and the adapter protein Ste50.  These findings reveal a novel role for 

PtdIns 4-P at endomembranes in maintaining specificity across multiple MAP kinase 

pathways.   

Results 

Pik1 is required for proper pheromone signaling  

In a recent screen to identify essential genes required for proper pheromone 

signaling, we identified two PtdIns 4-kinases, Stt4 and Pik1.  While Stt4 and Pik1 have 

the same enzymatic activity, they are both essential, suggesting they have non-

redundant functions in vivo (237).  Furthermore, Stt4 and Pik1 localize to different parts 

of the cell: Stt4 at the plasma membrane (188), and Pik1 at the Golgi and nucleus (189).  

Given that depleting the cell of either STT4 or PIK1 diminishs pheromone signaling 

(161), we reasoned they might likewise have non-redundant functions in the pheromone 

response pathway.  Stt4 has a known role promoting Ste5 translocation to the plasma 

membrane (75).  Here we investigate the signaling properties of Pik1. 

Previous research on Pik1 and Stt4 was conducted using temperature-sensitive 

(ts) alleles.  The use of ts alleles requires growth at suboptimal temperatures and 

introduces destabilizing mutations that could alter enzyme function or protein-protein 

interactions.  Growth at high temperatures can impair MAP kinase activity independent 

of any gene mutations.  For example Garrenton et al. reported a ~50% reduction in Fus3 

activation in wild-type cells grown at 37oC vs. 26oC, (see Figure 5 in (75)).  Thus the use 

of higher growth temperatures could obscure small differences resulting from partial loss 

of function ts alleles. 

To best determine the contribution of Pik1 in pheromone signaling, and to verify a 
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role for Stt4, we used strains where the native promoter was replaced with a 

doxycycline-repressible (TetO7) promoter.  Cells were grown in the presence or absence 

of doxycycline to repress gene expression.  Pathway activation was measured using a 

highly specific pheromone-inducible promoter (from FUS1) fused to the β-galactosidase 

gene.  As shown in Figure 3.1, knockdown expression of TetO7-PIK1 or TetO7-STT4 

results in dampened transcriptional output upon pheromone stimulation.  Furthermore, 

knockdown of PIK1 results in constitutive activation in the absence of pheromone (161).  

Thus, knockdown of PIK1 paradoxically yields both a dampened maximum response 

and increased basal activity.  To confirm the integrity of these strains, we expressed 

single-copy plasmids containing the wild-type gene in the corresponding TetO7 strain.  

For both PIK1 (Figure 3.1 B) and STT4 (Figure 3.1 C), introduction of the absent gene 

restored normal pheromone responses.    

To determine if depletion of PIK1 results in a subsequent loss of intracellular 

PtdIns 4-P, we visualized PtdIns 4-P in vivo using three well-characterized GFP-tagged 

biosensors.  First, the pleckstrin homology (PH) domain from phospholipase Cδ (PHPLC
δ-

GFP) binds specifically to PtdIns 4,5-P2 at the plasma membrane and has been used to 

monitor plasma membrane pools of both PtdIns 4-P and PtdIns 4,5-P2 (238).  Second, 

the PH domain from FAPP1 (PHFAPP1-GFP) binds specifically to PtdIns 4-P at the Golgi 

(238).  Third, the C2 (conserved region-2) domain from bovine lactadherin (C2lact-GFP) 

binds phosphatidylserine (PS), an abundant component of all membranes (239) and 

serves as a reference control.  Knockdown of PIK1 resulted in a partial loss of Golgi 

staining of PHFAPP1-GFP but no change in localization of PHPLC
δ-GFP or C2lact-GFP 

(Figure 3.2 A).  In contrast, knockdown of STT4 resulted in a partial loss of plasma 

membrane staining of PHPLC
δ-GFP but no change in localization of PHFAPP1-GFP or C2lact-

GFP (Figure 3.2 B) (188).  Thus, partial knockdown of either PIK1 or STT4 is sufficient to  
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Figure 3.2 
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Figure 3.2  Knockdown of PIK1 or STT4 results in loss of PtdIns 4-P in vivo.  
GFP fluorescence of cells expressing a single copy plasmid pRS316 containing 

GFP fusion proteins of PHPLC
δ, PHFAPP1, or C2Lact and treated with 10 µg/mL doxycycline 

(Dox) for 15 hr, as indicated.  (A) TetO7-PIK1.  (B) TetO7-STT4.  
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observe a dampened pheromone response, underscoring the importance of PtdIns 4-P 

in maintaining proper pheromone signaling. 

Loss of Pik1 induces elongated growth  

Cells exposed to pheromone undergo cell cycle arrest and form mating 

projections in preparation for mating (“shmoo” morphology).  At low doses of 

pheromone, cells continue to divide in a bipolar fashion and elongate along pheromone 

gradients in the direction of a potential mating partner (chemotropic growth) (240-243).  

When elongated cells encounter a sufficiently high level of pheromone, they undergo cell 

cycle arrest and form shmoos.  Since knockdown of PIK1 results in constitutive induction 

of pheromone-responsive genes (see Figure 3.1 B and inset), we considered whether 

these cells also exhibit an altered morphology.  DIC microscopy revealed that PIK1 

knockdown results in large and elongated cells, even in the absence of pheromone 

(Figure 3.3 A).  The observed cellular elongation was most similar to that of cells 

exposed to low doses of pheromone (240-243) and is consistent with our observation 

that PIK1 knockdown results in a small, but significant, increase in basal activation of the 

pheromone pathway.  Conversely, knockdown of STT4 has no effect on cell morphology, 

suggesting further that Pik1 and Stt4 regulate signaling in fundamentally different ways.   

Pik1 regulates pheromone signaling independently of Ste5  

Prior to pheromone stimulation, the MAP kinase scaffold Ste5 is localized 

diffusely in the nucleus and cytoplasm.  After pheromone stimulation, Ste5 translocates 

to the plasma membrane.  In an stt4ts strain, however, Ste5 is no longer localized to the 

plasma membrane, most likely due to diminished synthesis of PtdIns 4-P or PtdIns 4,5-

P2 (75, 228, 233).  Accordingly, Stt4 (like Ste5) is required for full activation of Fus3.  

Pik1 also generates PtdIns 4-P and is required for Fus3 activity, yet Pik1 is absent from 

the plasma membrane.  Thus we investigated whether Pik1 affects Ste5 localization in 
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Figure 3.3 

 

Figure 3.3  Pik1 does not alter Ste5 localization.  
(A) DIC image of TetO7-PIK1 and TetO7-STT4 cells treated with 10 µg/mL 

doxycycline for 90 min where indicated (+ Dox).  (B) GFP fluorescence of TetO7-PIK1 
cells expressing pRS316-Ste5-(GFP)x3. Cells were treated with doxycycline for 90 min 
and 3 µM α factor pheromone for 90 min. Arrow heads indicate Ste5-GFP localized to 
shmoo tips.  Arrows indicate absence of Ste5-GFP at shmoo tips.  (C) TetO7-STT4 cells 
treated as in (B).  
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some other way.  To this end we expressed STE5-(GFP)x3 in a TetO7-PIK1 strain and 

treated cells with and without α factor pheromone.  Consistent with previous data from ts 

strains, knock down of PIK1 had no effect on Ste5-GFP localization (Figure 3.3 B) while 

knock down of STT4 resulted in a marked loss of Ste5-GFP from the shmoo tip (Figure 

3.3 C).  These results indicate that Ste5 translocation to the plasma membrane requires 

Stt4 but is unaffected by Pik1.   

In addition to binding phospholipids, Ste5 binds several signaling components 

including Gβγ (228) and all three kinases in the MAP kinase cascade: Ste11, Ste7, and 

Fus3 (176, 187).  While available evidence indicates that Stt4 helps to recruit this 

scaffolded complex to the plasma membrane, the differences between Stt4 and Pik1 

suggest that Pik1 might activate the complex without contributing to Ste5-membrane 

association.  To test this model, we tethered Ste5 to the plasma membrane using a C-

terminal transmembrane (CTM) fusion protein and expressed it under the control of a 

galactose-inducible promoter.  Ste5-CTM results in constitutive association of the MAP 

kinase cascade with upstream activators, and therefore results in constitutive activation 

of Fus3.  Ste5-CTM is localized only at the plasma membrane and therefore should not 

interact with Pik1 or PtdIns 4-P at the Golgi or nucleus (228).  We then monitored Fus3 

activation, using an antibody that recognizes the dually phosphorylated and fully 

activated form of the kinase.  As shown in Figure 3.4, Ste5-CTM strongly activates Fus3 

(228).  As expected, Fus3 activity was largely unaffected by the loss of STT4 (Figure 3.4 

A).  In contrast, this response was substantially diminished by the loss of PIK1 (Figure 

3.4 B).  Thus Stt4 and Pik1 regulate MAP kinase signaling by distinct mechanisms.  

Whereas expression of Ste5-CTM bypasses a need for PtdIns 4-P at the plasma 

membrane, these cells remain sensitive to changes in PtdIns 4-P by Pik1 within the cell. 
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Figure 3.4 

 

Figure 3.4  Pik1 regulates pheromone signaling independently of Ste5.  
(A) TetO7-STT4 cells were transformed with pRS313-GAL1-STE5-CTM and 

grown in selective medium containing dextrose or galactose to induce STE5-CTM 
expression. Cells were treated with 10 µg/mL doxycycline for 90 min and 3 µM α factor 
pheromone for 30 min, as indicated. Cell lysates were resolved by 12.5% SDS-PAGE 
and immunoblotting with phospho-p44/42 antibodies (P-Kss1, P-Fus3) and G6PDH 
antibodies as a loading control. Phosphorylated and activated Fus3 (P-Fus3) was 
quantified by scanning densitometry and analyzed with ImageJ software. Results were 
normalized to P-Fus3 levels of untreated samples. Bar graphs represent quantification of 
the indicated bands. Results are the mean ± S.E. (n=3).  (B)TetO7-PIK1 cells treated as 
in (A). Results are the mean ± S.E. (n=3). 
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Pik1 is required for full Fus3 activation and inhibits Kss1 activation  

Although necessary for Fus3 signaling, Ste5 actually slows the rate of Fus3 

activation (244).  A second MAP kinase Kss1 is also activated by pheromone, but is not 

scaffolded and is activated comparatively quickly (240).  To determine if STT4 or PIK1 

affects the kinetics of activation, we monitored Fus3 and Kss1 at multiple time points 

following pheromone treatment.  While knockdown in either case reduced the magnitude 

of Fus3 phosphorylation, the dynamics of activation were largely unchanged: Fus3 

activation remained slow while Kss1 activation remained fast (Figure 3.5 A and 3.5 B).  

There were however notable differences in the behavior of Kss1.  In contrast to STT4, 

loss of PIK1 resulted in marked elevation of Kss1 activity, particularly in the absence of 

pheromone stimulation (Figure 3.5 A).  The 22-51% increase in Kss1 activation is 

particularly striking when compared to the 28-61% reduction in Fus3 activation.  

Considering that Kss1 induces chemotropic growth at low doses of pheromone, these 

data are consistent with the observed elongated growth upon PIK1 knockdown (Figure 

3.3 A).  Treatment of cells harboring the TetO7 promoter attached to a non-expressible 

genetic element (TetO7-WT) with doxycycline had no effect on activation of Fus3 or 

Kss1, indicating that doxycycline alone has no effect on pathway activation (Figure 3.6 

A).   

As an additional control we monitored MAP kinase activity in cells lacking Vps34, 

a PtdIns 3-kinase required for full activation of Fus3 (65) (Figure 3.5 C).  Again the 

dynamics of activation were largely unaltered (Figure 3.5 C), even as overall Fus3 

activity was diminished by 29-66%.  The reduction we observed here is comparable to 

that reported by Slessareva et al. (65) but somewhat greater than the ~20% difference 

reported by Garrenton et al. (75).  These data reveal that Pik1 differentially regulates 

MAP kinase activation and is required to maintain MAP kinase specificity.  Whereas Pik1  
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Figure 3.5 
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Figure 3.5  Pik1 is required for full Fus3 activation and represses basal Kss1 
activation. 

(A) TetO7-PIK1 cells were treated with 10 µg/mL doxycycline for 90 min and 3 µM 
α factor pheromone for the times indicated. Cell lysates were resolved by 12.5% SDS-
PAGE and immunoblotting with phospho-p44/42 antibodies (P-Fus3 and P-Kss1), Fus3 
antibodies, or G6PDH antibodies as a loading control. Note that pheromone stimulation 
induces FUS3 but not KSS1 expression. Bands were quantified by scanning 
densitometry and analyzed with ImageJ software. Results are the mean ± S.E. (n=3).  
(B) TetO7-STT4 cells treated as in (A).  (C) BY4741 (WT) and isogenic vps34Δ cells 
treated as in (A) except that no doxycycline was added to the cultures. 
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Figure 3.6 

 

Figure 3.6  Doxycycline treatment does not affect Fus3, Kss1, or Hog1 activation.  
(A) Cells harboring a doxycycline-repressible promoter attached to a non-

expressible genetic element (TetO7-WT) were treated with 10 µg/ml doxycycline (Dox) 
for 15 hr and 3 µM α factor pheromone for the times indicated. Cell lysates were 
resolved by 12.5% SDS-PAGE and immunoblotting with phospho-p44/42 antibodies, 
which recognize the dually phosphorylated and activated form of Fus3 (P-Fus3) and 
Kss1 (P-Kss1), Fus3 antibodies, or glucose-6-phosphate dehydrogenase (G6PDH) 
antibodies as a loading control.  Note that pheromone stimulation induces FUS3 but not 
KSS1 expression. Bands were quantified by scanning densitometry and analyzed with 
ImageJ software. Results are the mean ± S.E. (n=3).  (B), as in (A), but cells were 
treated plus and minus 0.5 M KCl for the times indicated instead of pheromone. 
Immunoblots were analyzed with phospho-p38 (P-Hog1) antibodies, phospho-p44/42 (P-
Kss1) antibodies, Hog1 antibodies, or G6PDH antibodies as a loading control. 
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is required for stimulus-dependent activation of Fus3, it is also required to limit the 

activation of Kss1. 

Pik1 functions at the level of Ste11  

Given that Pik1 activates Fus3 while inhibiting Kss1, we hypothesized that Pik1 

must regulate a pathway component upstream of both kinases.  In order to better define 

which component is targeted by Pik1, we took a genetic epistasis approach.  Using 

constitutively active mutants we stimulated the pathway at multiple points, bypassing the 

need for pheromone and the pheromone receptor.  First we overexpressed the G protein 

βγ subunits (STE4G
β expressed using a galactose-inducible promoter).  Since Gpa1 

cannot sequester excess Gβγ (63, 64, 245), the overproduced Ste4G
β is free to activate 

effectors even in the absence of any stimulus.  As shown in Figure 3.7, knockdown of 

PIK1 dampened Gβγ-mediated activation of Fus3 (Figure 3.7 A and 3.7 C).  Next, we 

overexpressed the constitutively active STE11-4 mutant (190).  STE11 encodes the 

kinase that phosphorylates Ste7, which in turn phosphorylates and activates Fus3 and 

Kss1.  Once again, knockdown of PIK1 dampened STE11-4-mediated activation of Fus3 

(Figure 3.7 B and 3.7 C).  Knockdown of STT4 likewise dampened STE11-4-mediated 

activation of Fus3 (Figure 3.7 E and 3.7 F).  Thus Pik1 promotes signaling by 

pheromone, the G protein, the kinase scaffold, and the protein kinase Ste11. 

Pik1 regulates HOG pathway  

The data presented above indicate that Pik1 regulates the pheromone pathway, 

and that Pik1 acts on, or downstream of, Ste11.  We have largely excluded Ste5 as a 

target for Pik1 regulation, leaving three likely targets: Ste11, its binding-partner Ste50 or 

its direct substrate Ste7 (Figure 3.1 A).  To further distinguish between these candidate 

targets, we examined Pik1 regulation of the HOG pathway (224-226).  The pheromone 

and HOG pathways share the use of Ste11 and Ste50, but not Ste7.  We measured 
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Figure 3.7 
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Figure 3.7  Pik1 acts on Ste11 or a pathway component downstream of Ste11.  
(A) TetO7-PIK1 cells were transformed with pRS315-GAL1-STE4 and grown in 

selective medium containing dextrose or galactose to induce Ste4 (Gβ) protein 
expression. Cells were treated with 10 µg/mL doxycycline for 90 min and 3 µM α factor 
pheromone for 30 min, as indicated. Cell lysates were resolved by 12.5% SDS-PAGE 
and immunoblotting with phospho-p44/42 antibodies (P-Kss1, P-Fus3) and G6PDH 
antibodies as a loading control.  (B) TetO7-PIK1 cells were transformed with pRS425 
(Vector) or pRS425-STE11-4.  (C) P-Fus3 levels from (A) and (B) were quantified by 
scanning densitometry and analyzed with ImageJ software. Results are the mean ± S.E. 
(n=3).  (D) TetO7-STT4 cells treated as in (A).  (E) TetO7-STT4 cells treated as in (B).  
(F) P-Fus3 levels from (D) and (E) were quantified as in (C). 
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activation of Hog1 and Kss1 in response to the addition of 0.5 M KCl.  As shown in 

Figure 3.8, knockdown of PIK1 resulted in diminished Hog1 activity (Figure 3.8 A).  

Furthermore, we again observed constitutive activation of Kss1 as well as an overall 

increase in Kss1 activation in response to salt stress.   

Recent reports indicate that Kss1 activates a Hog1-specific phosphatase Ptp2 

(246).  To determine whether high basal activation of Kss1 was in any way responsible 

for the diminished Hog1 response, we deleted KSS1 from the TetO7-PIK1 strain.  As 

shown in Figure 3.8, the loss of KSS1 did not affect the ability of Pik1 to regulate 

activation of either Fus3 (Figure 3.8 D) or Hog1 (Figure 3.8 C).  Finally, the available 

data indicate that Pik1 and Stt4 act in different ways to promote Fus3 signaling; Pik1 

acts via Ste11 while Stt4 acts via Ste5.  However Pik1 also acts to limit Kss1 signaling.  

As a further test of our model, we monitored Kss1 activity in the absence of Ste11 and 

Pik1 (TetO7-PIK1 ste11Δ strain).  In accordance with the model, we found that Ste11 is 

necessary for the constitutive activation of Kss1 (Figure 3.8 D) while deletion of STE5 

had no effect.  These data further confirm that Pik1 regulates the function of Ste11 but 

not Ste5. 

Discussion 

Signal transduction systems will often share core signaling components yet 

maintain specificity and avoid pathway cross-talk.  In yeast, three proteins have been 

found to preferentially regulate Fus3 and not Kss1.  First, the scaffold Ste5 binds Fus3 

and is required for Fus3 catalytic activity.  Ste5 is not required by other MAP kinases and 

thus helps to differentiate pheromone signaling from other signaling systems.  Second, 

the PtdIns 4-kinse Stt4 promotes activation of Fus3 (but not Kss1), and does so by 

helping to recruit Ste5 to the plasma membrane.  Third, the PtdIns 3-kinase Vps34 

promotes activation of Fus3 in preference to Kss1.  While functionally similar to Stt4 (see  
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Figure 3.8 
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Figure 3.8  Pik1 acts via Ste11.  
(A) TetO7-PIK1 cells were treated with doxycycline for 90 min and 0.5 M KCl for 

the times indicated and analyzed by immunoblotting with phospho-p38 (P-Hog1) 
antibodies, phospho-p44/42 (P-Kss1) antibodies, Hog1 antibodies, or G6PDH antibodies 
as a loading control.  (B) TetO7-PIK1 and TetO7-PIK1 kss1Δ cells were treated with 
doxycycline and 3 µM α factor pheromone for 30 min, as indicated. Immunoblots were 
analyzed with phospho-p44/42, Fus3 and G6PDH antibodies.  (C) TetO7-PIK1 and 
TetO7-PIK1 kss1Δ cells were treated with doxycycline and 0.5 M KCl for 10 min. 
Immunoblots were analyzed with phospho-p38 and G6PDH antibodies.  (D) Wild-type, 
TetO7-PIK1 and isogenic cells carrying ste5Δ or ste11Δ mutations were treated with 
doxycycline and α factor (αF) for 30 min and analyzed with phospho-p44/42 antibodies 
(P-Kss1). All bands were quantified by scanning densitometry and analyzed with ImageJ 
software. Results are the mean ± S.E. (n=3).  
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Figure 3.5), Vps34 is expressed at endosomes rather than at the plasma membrane.  

Here we have investigated the function of another PtdIns 4-kinase Pik1.  Like Stt4, Pik1 

generates PtdIns 4-P and selectively regulates MAP kinase activity.  Like Vps34, Pik1 is 

an endomembrane protein.  Thus Pik1 joins a small but growing number of factors that 

promote MAP kinase signaling specificity.  Unlike any of the previously characterized 

regulators however, Pik1 activates two MAP kinases (Fus3 and Hog1) while 

simultaneously inhibiting a third, competing MAP kinase (Kss1).   

While much has been learned, important questions remain for the future.  For 

instance, is the location of Pik1 at endomembranes related to its unique function in 

signaling?  Activation of intracellular pathways usually requires the assembly of signaling 

components at the plasma membrane.  In pheromone signaling, several mechanisms 

are required to recruit components to activated transmembrane receptors.  The 

heterotrimeric G-proteins subunits Gα  and Gγ (79, 247) and the small G-protein Cdc42 

(248) are covalently modified with lipid moieties that anchor them to the plasma 

membrane.  The scaffold Ste5 translocates from the cytoplasm to the plasma membrane 

by binding to the Gβγ dimer (228) as well as to Stt4-derived PtdIns 4-P and PtdIns 4,5-P2 

(207, 233).  Additionally, the PAK-family kinase Ste20, as well as the closely related 

kinase Cla4, translocates to the plasma membrane by binding both PtdIns 4,5-P2 and 

Cdc42 (249, 250).  Therefore, spatial restriction of signaling components to areas near 

activated receptors helps prevent aberrant activation of parallel pathways.    

Another question is whether Pik1 acts by altering the distribution of some 

signaling protein within the cell.  Our epistasis analysis reveals that the likely target of 

Pik1 is Ste11 or its binding partner Ste50.  Although required for Ste11 catalytic activity, 

the role of Ste50 in yeast MAP kinase signaling is not well understood (225, 251-255).  

Both proteins are shared among three different MAP kinase pathways, and have 

previously been shown to regulate cross-talk between Hog1 and Kss1 (232, 256).  This 
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makes them ideal candidates for regulation of cross-talk between all three pathways.  

Furthermore, Ste11 and Ste50 translocate from the cytoplasm to puncta after exposure 

to osmotic stress (224).  While the puncta were not identified by co-localization with 

known organelle markers, it might be useful to determine if they coincide with the 

distribution of Pik1 or PtdIns 4-P.  While localization studies can be informative, a more 

pressing (and difficult) question is the direct target of Pik1 and PtdIns 4-P.  We consider 

it unlikely that either Ste11 or Ste50 bind to PtdIns 4-P.  Neither protein contains a 

typical phospholipid-binding domain such as a PH or PX domain (169).  However, the 

BLAST CDD database does predict a low confidence BAR (Bin/Amphiphysin/Rvs) 

domain in Ste50 (E-value=0.19).  BAR domains are dimerization, lipid binding, and 

curvature sensing modules found on many proteins involved in protein trafficking (257).  

It is possible this putative BAR domain is responsible for osmotic stress-induced 

localization of Ste11 and Ste50 at puncta, thereby regulating MAP kinase specificity.  

Alternatively, Ste11 and Ste50 could interact with PtdIns 4-P indirectly through 

interaction with a protein containing a known lipid-binding domain.  This model is 

particularly attractive since Ste50 binds the transmembrane protein Opy2, and this 

interaction is required for Ste11 and Ste50 localization at the plasma membrane (255).  

Perhaps an interaction with some auxiliary protein is likewise required for Ste11 and 

Ste50 localization to endomembranes. 

Fus3 is known to down-regulate Kss1 (231).  Thus, a decrease in Fus3 activation 

could lead to elevated Kss1 activation, similar to that observed after PIK1 knockdown.  

While we propose that Pik1 affects a shared upstream component that results in the 

differential regulation of both Fus3 and Kss1, it is possible that Pik1 regulates Fus3 

directly, but Kss1 indirectly.  We consider this unlikely however, since loss of STT4 or 

VPS34 dampens Fus3 activation without a concomitant increase in Kss1 activation.   

Thus, simply dampening Fus3 activation does not result in constitutively-active Kss1. 



103 

Another question is the mechanism of Pik1 regulation.  Currently, there is little 

evidence to suggest the enzymatic activity of Pik1 is dynamically regulated by 

pheromone.  Garrenton et al. showed that pheromone treatment does not change total 

cellular PtdIns 3-P or PtdIns 4-P levels (75).  Therefore, it is likely that direct regulation 

of an unidentified binding-partner is required.  Interestingly, Hog1 feedback-

phosphorylates Ste50 in response to osmotic-stress and thereby accelerates both Kss1 

and Hog1 inactivation (232, 256).  It is possible that Ste50 phosphorylation affects its 

subcellular localization or its ability to activate Ste11.  We also considered a previous 

suggestion that Pik1 is needed for efficient mRNA export and protein synthesis (75).  

Under conditions where MAP kinase activity is severely affected, however, we observed 

no changes in the expression of control proteins including alcohol dehydrogenase 

(ADH1-RFP), glucose 6-phosphate dehydrogenase, or Hog1 (161).  Furthermore, 

selective knockdown of Pik1 at the Golgi, and not the nucleus, is responsible for 

dampened pheromone signaling (data not shown).  Therefore, Pik1 regulation of MAP 

kinase signaling is likely due to the direct regulation of signaling components present at 

the Golgi membrane.   

In conclusion, we show that Pik1 and PtdIns 4-P promote the activation of Fus3 

and Hog1 while repressing activation of Kss1.  By acting on all three MAP kinases, Pik1 

appears well-positioned to coordinate cellular responses in the face of competing 

signals.  Together with previous demonstrations of signal regulation by a PtdIns 3-kinase 

at the endosome, there is growing evidence for signal coordination by endomembrane-

associated second messengers (65, 258-261).  Finally, Ste11 is homologous to human 

MEKK3 and Ste50 is highly similar to human OSM (Osmosensing Scaffold for MEKK3) 

(262).  Given the conservation of MAP kinase signaling across species, our findings are 

likely to translate to human MAP kinase pathways as well. 
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Experimental Procedures 

Strains, plasmids, and growth conditions - Standard procedures for the 

growth, maintenance, and transformation of yeast and bacteria and for the manipulation 

of DNA were used throughout.  Cells were grown in selective medium containing 2% 

(w/v) dextrose or galactose to induce gene expression.  Yeast strains used are listed in 

Table 3.1.  Plasmids used are listed in Table 3.2.  Plasmid pRS313 GAL-STE5-CTM 

was created by SacI and ApaI digestion of pGS5-CTM (228) and ligation into the 

corresponding sites of pRS313.   

The yeast TetO7 strains (28) were grown in selective medium to A600nm~0.8, re-

inoculated at 1:80 into medium containing doxycycline at a final concentration of 10 

µg/mL and grown to A600nm~0.8.  To activate the pheromone pathway, α factor 

pheromone was added at a final concentration of 3 µM for 30 min unless otherwise 

noted.  To induce osmotic stress, KCl was added to a final concentration of 0.5 M for 10 

min unless otherwise noted.  Time courses were halted by the addition of trichloroacetic 

acid (TCA) at a final concentration of 5%.   

Cell extracts and immunoblotting - Protein extracts were produced by glass 

bead lysis in TCA as previously described (19).  Protein extracts were resolved by 

12.5% SDS-PAGE and immunoblotting with phospho-p44/42 MAPK antibodies (9101L, 

Cell Signaling Technology) at 1:500, Fus3 antibodies (sc-6773, Santa Cruz 

Biotechnology, Inc.) at 1:500, phospho-p38 MAPK antibodies (9211L, Cell Signaling 

Technology) at 1:500, Hog1 antibodies (sc-6815, Santa Cruz Biotechnology) at 1:500, 

and glucose-6-phosphate dehydrogenase (G6PDH) antibodies (A9521, Sigma-Aldrich) 

at 1:50,000.  Immunoreactive species were visualized by chemiluminescent detection 

(PerkinElmer Life Sciences LAS) of horseradish peroxidase-conjugated antibodies (170-

5047 and 170-5046, Bio-Rad Laboratories).  Protein concentration was determined by 

Dc protein assay (500-0112, Bio-Rad Laboratories).  Band intensity was quantified by  
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Table 3.1 Strains Used 
Strain Name Genotype Source 

BY4741* MATa leu2D met15D his3-1 ura3D (263) 

TetO7-STT4 MATa URA3::CMV-tTA kanR-TetO7-TATACYC1-STT4 (28) 

TetO7-PIK1 MATa URA3::CMV-tTA kanR-TetO7-TATACYC1-PIK1 (28) 

TetO7-PIK1 kss1Δ MATa URA3::CMV-tTA kanR-TetO7-TATACYC1-PIK1 
kss1::LEU2 This study 

TetO7-PIK1 ste11Δ MATa URA3::CMV-tTA kanR-TetO7-TATACYC1-PIK1 
ste11::LEU2 This study 

TetO7-PIK1 ste5Δ MATa URA3::CMV-tTA kanR-TetO7-TATACYC1-PIK1 
ste5::LEU2 This study 

vps34Δ MATa vps34::kanR Invitrogen 

*All strains derived from BY4741 
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Table 3.2 Plasmids Used 

Fig Plasmid Name Alias Description Source  

3.1 pRS315 SC-2-013 CEN LEU2 vector (264) 

3.7 pRS425 SC-2-006 2mM LEU2 vector (265) 

3.1 pRS423 FUS1-LacZ SC-2-001 2mM HIS3 PFUS1-lacZ (222) 

3.1 pRS315-STT4 SC-2-075 CEN LEU2 STT4 (161) 

3.1 pRS315-PIK1 SC-2-076 CEN LEU2 PIK1 (161) 

3.7 pRS425-STE11-4 SC-2-025 2mM LEU2 STE11-4 (161) 

3.7 pRS315 GAL1-STE4 SC-2-024 CEN LEU2 PGAL1-STE4 (175) 

3.4 pRS313 GAL1-STE5-CTM SC-2-035 CEN HIS3 PGAL1-STE5-CTM This Study 

 pGS5-CTM SC-2-027 CEN TRP1 PGAL1-STE5-CTM (228) 

3.3 pRS316 STE5-GFPx3 SC-1-055 CEN URA3 GFP-STE5x3-TCYC1 (233) 

3.2 pRS426 GFP-2xPH-PLCδ SC-3-008 2mM URA3 GFP-2xPH-PLCδ (238) 

3.2 pRS426 GFP-2xPH-FAPP SC-3-009 2mM URA3 GFP-2xPH-FAPP (238) 

3.2 pRS416 GFP-Lact-C2 SC-3-010 CEN URA3 GFP-Lact-C2 (239) 
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scanning densitometry using Image J (National Institutes of Health).  Phospho-

Fus3 and phospho-Kss1 values were normalized to G6PDH loading control and 

phospho-Hog1 values were normalized to total Hog1.   

Transcriptional reporter assay - FUS1-LacZ levels were measured 90 min after 

treatment with α factor pheromone using a β-galactosidase assay and fluorescein di-β-

D-galactopyranoside as described previously (209). 

Microscopy - Cells were visualized with differential interference contrast (DIC) 

and fluorescence microscopy using an Olympus Fluoview 1000 confocal microscope 

equipped with a 488 nm laser (blue argon, for GFP).  Images were analyzed using 

ImageJ (National Institutes of Health).   



 

CHAPTER IV 

Conclusions and General Discussion 
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Summary 

G protein-coupled signaling pathways have been extensively studied because of 

their role in human disease and their importance as pharmacological targets.  Most 

current drugs target the G protein-coupled receptor, but alternative therapies are being 

developed that modulate G protein signaling downstream of the receptor (5-7).  Thus, a 

complete understanding of the proteins that comprise G protein signaling networks will 

aid in the development of new pharmacological therapies.   

In this thesis, we report the identification of 92 new proteins required for proper G 

protein signaling.  We utilized a repressible-promoter library and quantitative 

transcriptional reporter assays to systematically analyze the essential genes in yeast, a 

group of genes that accounts for ~20% of the yeast genome and has not been 

extensively characterized (62).  Three components of the SCF ubiquitin ligase complex, 

Cdc4, Cdc53, and Cdc34, were among the genes identified in our screen.  We showed 

that the SCFCdc4 polyubiquitinates and regulates turnover of the Gα subunit, Gpa1.  This 

discovery reveals a new mode of regulating G protein signaling via ubiquitination and 

indicates the SCFCdc4 could be a viable drug target.  However, how ubiquitination of 

Gpa1 by the SCFCdc4 is regulated and what is its role in the pheromone pathway remains 

to be determined.   

Also in our screen, we identified two PtdIns 4-kinases, Stt4 and Pik1.  We show 

that both Stt4 and Pik1 are required to maintain MAPK specificity in the pheromone 

pathway, but Pik1, unlike Stt4, also regulates MAPK specificity in the high-osmolarity 

glycerol (HOG) response pathway.  Thus, we defined a novel role for PtdIns 4-P in 

maintaining signaling fidelity in multiple MAPK signaling pathways.  This work reveals 

two new mechanisms that regulate signal transduction, both at the level of the 

heterotrimeric G protein and downstream effectors.  In this chapter, I relate the work in 

this thesis to the existing literature, discuss its implications, and speculate on the future 
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direction of yeast G protein research.   

Role of essential genes in pheromone signaling 

Genes that are involved in critical cellular processes such as transcription, 

translation, and metabolism tend to be essential, and genes involved in dispensable 

cellular processes such as mating tend to be non-essential (27, 62).  Our systematic 

analysis unexpectedly revealed a great deal of overlap between essential genes and 

genes required for proper mating response.  In particular, genes that are involved in 

protein degradation, protein transport, and the cell cycle were over represented in our 

screen, indicating these cellular processes are especially important in both G protein 

signal propagation and cell mating.  

As discussed in Chapter II, genes involved in protein degradation were enriched 

3-fold in our screen.  We demonstrated a role for three such genes, CDC4, CDC53, and 

CDC34, in directly regulating Gpa1 turnover.  However, we also identified 9 other genes 

involved in protein degradation, including 8 components of the 26S proteasome (266, 

267).  This indicates protein degradation must be playing a much larger role in regulating 

the pheromone pathway than just simply regulating Gpa1 turnover.  Indeed, many of the 

components of the pheromone pathway are known to be ubiquitinated, including Ste2, 

Sst2, Gpa1, Ste7, and Ste5 (154, 162, 191, 192).  Still others may await identification.   

Why are so many components of this pathway regulated by ubiquitination?  

There are several potential answers to this question.  First, in the absence of 

pheromone, pathway components are distributed uniformly in the cell.  When cells are 

exposed to pheromone they become polarized and many localize to the tip of the mating 

projection, or shmoo (268, 269).  How these proteins become so polarized is not 

completely understood, but it is possible that ubiquitination may play a role.  In support 

of this hypothesis, pheromone triggers the ubiquitination and internalization of the 
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pheromone receptor Ste2 (162).  Subsequently, newly transcribed Ste2 is delivered to 

the plasma membrane in a polarized fashion to what will eventually become the shmoo 

tip (62, 270).  If ubiquitination of Ste2 is blocked by mutation of its C-terminus, cells are 

unable to polarize and mating is blocked.  This example demonstrates how ubiquitination 

may regulate cell polarization in response to a graded signal, and indicates that other 

proteins in the pheromone pathway may be regulated in a similar fashion.   

Second, ubiquitination may help the cell eliminate signaling components after 

mating has occurred.  When two haploid yeast cells mate, they form a diploid cell.  

Interestingly, many of the components of the pheromone response pathway are not 

expressed in a diploid cell (271).  This likely prevents two diploid cells from mating and 

creating a tetraploid cell.  Thus, immediately following a successful mating event, cells 

must quickly degrade the components of the mating pathway, and the most efficient way 

to accomplish this is through the ubiquitin/proteasome system.  This may explain why 

many ste genes are ubiquitinated. 

In our screen, we also identified many genes involved in protein transport and the 

secretory pathway.  We hypothesize that efficient protein transport is needed to deliver 

newly transcribed signaling molecules to the plasma membrane.  This is certainly true 

for Ste2 and the G protein components, Gpa1, Ste4, and Ste18, which must be available 

at the plasma membrane in sufficient quantities to respond to any pheromone in the 

local environment.  But even after pheromone stimulation, proteins must be delivered to 

the plasma membrane to continue signaling and respond to changing gradients of 

pheromone (272, 273).  For example, in response to pheromone the small G protein 

Cdc42 localizes to the shmoo tip and regulates actin polymerization (274, 275).  Actin 

fibers function to deliver vesicles containing extra membrane material to “build” the 

mating projection and other proteins required for cell-cell fusion.  Cdc42 and actin are 

also important if a cell needs to alter the direction of its mating projection.  Disruption of 
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the protein transport machinery would most likely halt delivery of these key mating 

response proteins and prevent mating.  Thus, our screen of essential genes highlights 

the broad importance of protein transport in maintaining proper signaling.  

Regulation of Gpa1 ubiquitination  

Here we showed that Gpa1 is polyubiquitinated by the SCFCdc4 complex.  

However, it is still not known how Gpa1 ubiquitination is regulated.  Typically, substrates 

of the SCF complex must be phosphorylated in order to bind to the F-box protein.  In 

fact, almost all substrates of F-box proteins identified to date are phosphorylated, 

suggesting that Gpa1 must also be phosphorylated before it can be ubiquitinated (152).  

While there is no substantial evidence so far that Gpa1 is phosphorylated, there is some 

information in the literature that indicates it is.  Two proteome-wide screens of 

phosphorylated proteins in yeast found Gpa1 is phosphorylated on two residues, 

threonine 189 (202) and serine 200 (201).  These data were not confirmed and phospho-

proteomic screens are prone to false positives.  However, these data do indicate that 

Gpa1 may be phosphorylated.  Interestingly, the two proposed phosphorylation sites, 

T189 and S200, are close to the previously identified site of ubiquitination, K169 (158).   

In fact, all three residues are located on the same structurally distinct subdomain, 

specifically a 110 amino acid unstructured region that extends from the all-helical 

domain of Gpa1 (276).   

As discussed in Chapter II, and shown in Figure 2.8F, deletion of the 

ubiquitinated subdomain blocks ubiquitination of Gpa1 by purified SCFCdc4.  This could 

result because the primary site of ubiquitination was deleted.  However, E3 ligases are 

notoriously promiscuous when it comes to choosing a lysine for ubiquitin attachment.  An 

E3 ligase will favor one particular lysine when given a choice, but if that lysine is mutated 

to arginine, the E3 ligase will almost always find a nearby lysine to ubiquitinate (115).  
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Thus, one might expect that despite the deletion of the primary lysine site in the 

ubiquitinated subdomain, the SCFCdc4 would find another site to ubiquitinate, but we 

observed a complete loss of ubiquitination of Gpa1 that lacks the ubiquitinated 

subdomain (Gpa1Δ
128-236).  Alternatively, we hypothesize that the 110 amino acid 

ubiquitinated subdomain also functions as the SCFCdc4 binding site when T189 and/or 

S200 are phosphorylated.  In support of this hypothesis, we showed that purified Gpa1 

from E. coli, which should not contain post-translational modifications such as 

phosphorylation, was not ubiquitinated by the SCFCdc4.  Further experiments are required 

in order to make firm conclusions.  Specifically, pull-down experiments should be 

performed between Cdc4 and Gpa1T189A/S200A mutants, Gpa1110
Δ
 mutants, and wild-type 

Gpa1 that has been treated with λ phosphatase.  No interaction between Cdc4 and 

Gpa1 should be detected in any of these three conditions.  However, given that 

phosphorylation of T189 and S200 were identified in phospho-proteomic screens, it is 

possible that there are additional phosphorylation sites on Gpa1, and mutation of T189 

and S200 is insufficient to block binding to Cdc4.  Mass spectroscopy of Gpa1 may be 

required to identify all sites of phosphorylation in order to better understand how Gpa1 

ubiquitination by the SCFCdc4 may be regulated.  

 Cell-cycle regulation of Gpa1 ubiquitination – Gpa1 ubiquitination does not 

seem to be regulated by pheromone.  In early studies of Gpa1 ubiquitination, it was 

thought that pheromone signaling may trigger degradation of Gpa1, providing a 

mechanism whereby signaling could be enhanced or prolonged.  However, experiments 

have shown pheromone does not induce Gpa1 polyubiquitination (159).  Since then, the 

conditions that promote Gpa1 ubiquitination have remained elusive, and it is simply 

thought that a basal level of polyubiquitinated Gpa1 is present in the cell at all times.  

This has prompted the hypothesis that polyubiquitination may be regulating and 

degrading misfolded Gpa1 (159, 160).  However, several pieces of evidence refute this 
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hypothesis.  Most notably, polyubiquitination of Gpa1 has been shown to require 

localization to the plasma membrane.  When the sites of lipid modification of Gpa1 are 

mutated, C2A and C3A, Gpa1 can no longer bind the plasma membrane, and 

surprisingly polyubiquitination is no longer detected in the cell (160).  Replacement of the 

lipid-attachment residues with a polybasic region, Gpa1C2A/4K, restores both plasma 

membrane binding and polyubiquitination.  Only properly folded protein would make it to 

the plasma membrane, suggesting fully formed and properly folded Gpa1 is 

polyubiquitinated.   

We suggest an alternative hypothesis, where Gpa1 polyubiquitination is 

regulated by progression through the cell cycle.  Given that several proteins known to 

regulate the cell cycle, Cdc4, Cdc34, and Cdc53, are directly involved in Gpa1 

ubiquitination, it is likely the cell cycle is involved in regulating Gpa1 ubiquitination.  All of 

the other known substrates of Cdc4, such as Sic1 and Far1, are ubiquitinated in specific 

stages of the cell cycle (152).  To test the hypothesis that Gpa1 ubiquitination is 

regulated by the cell cycle, levels of Gpa1 ubiquitination should be measured in different 

cell cycle stages.  Preliminary experiments conducted by members of our lab using cell 

cycle inhibitors do in fact show that polyubiquitinated Gpa1 is present in G1 but not S or 

G2/M phases (data not shown).  This indicates that Gpa1 is polyubiquitinated and 

degraded in G1 phase, and stabilized in S and G2/M phase.  This correlates well with 

other known Cdc4 substrates, which are also ubiquitinated in G1 (135).  

Regulation of Gpa1 ubiquitination in different cell cycle stages is an attractive 

model because mating is prevented in non-G1 phases of the cell cycle in order to 

prevent aneuploidy.  One mechanism by which this can be achieved is regulating the 

abundance of key signaling components in different stages of the cell cycle (Figure 4.1).  

Since Gpa1 is a negative regulator of pheromone signaling, it is desirable for the cell to  
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Figure 4.1 

 

Figure 4.1 G protein ubiquitination cycle. 
Model showing G protein ubiquitination is regulated by the cell cycle.  In S, G2 

and M phase, Gpa1 is stabilized and prevents activation of the pheromone response 
pathway. Fusion of two cells in any of these phases would result in aneuploidy.  In G1 
phase, excess Gpa1 is ubiquitinated by the SCFCdc4 complex and degraded by the 26S 
proteasome. This restores a more favorable stoichiometry between Gpa1 and Ste4, 
allowing efficient signaling to occur.   
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accumulate Gpa1 in S, G2, and M phases to prevent aberrant signaling.  Then, in G1 

phase, the cell would want to degrade excess Gpa1 to allow greater sensitivity to 

pheromone.  Thus, by regulating Gpa1 levels in different cell cycle stages, the cell can 

fine-tune its ability to respond to mating pheromones.  To test this hypothesis, cells 

arrested in different stages of the cell cycle could be assayed for total cellular Gpa1, 

levels of ubiquitinated Gpa1, and mating efficiency.   Gpa1 could also be purified from 

yeast arrested at different stages of the cell cycle and subjected to in vitro ubiquitination 

assays with SCFCdc4.  Gpa1 purified from cells arrested in G1 should be a suitable 

substrate for the SCFCdc4 while Gpa1 purified from cells arrested in G2/M should not.   

Regulation of total Gpa1 levels – We showed that the SCFCdc4 complex 

polyubiquitinates Gpa1 and targets it for degradation by the 26S proteasome.  Based on 

this knowledge, one would assume that deletion of the SCF complex would result in an 

accumulation of total cellular Gpa1 levels.  However, when we knocked down Cdc4 we 

observed only a slight change in total cellular Gpa1 levels.  There are several 

explanations as to why we did not observe Gpa1 accumulation.  First, we measured 

Gpa1 levels using western blotting, which is a notoriously poor method for protein 

quantification.  The linear range for ECL is rather narrow, which can mask small 

differences in protein concentration.  To better quantify protein levels, we could use a 

secondary antibody fused to a fluorescent probe which has a wider linear range, rather 

then horseradish peroxidase which has a narrow linear range.  Second, small changes 

in Gpa1 are known to have large effects on pheromone signaling.  Gpa1 functions to 

sequester Ste4G
β, and small increases in Gpa1 levels function to buffer free Ste4 and 

prevent normal pheromone signaling (164).  Thus, the small changes we observed may 

be sufficient to yield a large decrease in pheromone signaling.  Third, we measured total 

cellular protein levels in a population of cells.  This cannot account for variability in the 

population.  Gpa1 levels could be higher in a proportion of cells and unchanged in the 
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rest, masking an accumulation phenotype.  Fourth, western blotting measures total 

protein levels and does not provide any information about subcellular localization.  Given 

that the mating response involves cell polarization, it is reasonable to assume that a 

subpopulation of Gpa1 is targeted for degradation by polyubiquitination.  For example, 

Gpa1 is known to localize to endosomes in small quantities.  It is possible that this small 

pool of endosomal Gpa1 is targeted for ubiquitination and would accumulate in SCF-

deficient cells.  Unfortunately, at this time, we have not had the opportunity to accurately 

quantify Gpa1 levels.  However, the fact remains that depletion of the SCFCdc4 increases 

the half-life of Gpa1 and decreases pheromone signaling, which is rescued by 

overexpressing Ste4G
β.  Furthermore, Gpa1 is ubiquitinated by the SCFCdc4 in vitro.  

These data provide overwhelming evidence that the SCFCdc4 ubiquitinates Gpa1.   

SCF and disease 

Like other E3s, deregulation of F-box proteins and their ability to recognize 

substrates is often associated with human diseases including cancer and Von Hippel-

Lindau (VHL) disease.  The human homolog of Cdc4, Fbw7, is involved in cancer (277).  

SCFFbw7 degrades several different proto-oncogenes including c-MYC (278), cyclin E 

(151), and c-JUN (279).  Fbw7 is often inactivated by a truncation mutation in breast and 

pancreatic cancer that prevents it from recognizing substrates (280).  Accumulation of 

SCFFbw7 substrates leads to genomic instability and cancer.  Other diseases also involve 

mutated F-box proteins.  VHL is a hereditary disease that results in a predisposition for 

malignant tumors in a number of different organs including the brain, kidney, and 

pancreas.  VHL is caused by a germline mutation in an F-box protein that prevents it 

from recognizing substrates, including hypoxia-inducible-factor (HIF) (281).  HIF controls 

the expression of genes that induce angiogenesis and when overexpressed, supports 

tumor growth by supplying the tumor with a constant supply of glucose and growth 
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factors.  Thus, patients who carry mutations in VHL have elevated levels of HIF, and are 

highly prone to tumor formation (282).  Currently it is unclear how to therapeutically re-

activate mutant F-box proteins that cannot bind substrates such as those found in VHL 

and breast cancer, but this is an active area of research (283).     

 SCFSkp2 also involved in human cancer due to its role in the degradation of the 

cyclin-dependent kinase inhibitor p27 (284).  p27 inhibits cell division and promotes 

quiescence.  Loss of p27 results in unchecked progression through the cell cycle (285).  

Thus, control of p27 levels is required for proper regulation of the cell cycle, and the 

prevention of tumor formation.  When the F-box protein Skp2 is overexpressed in mice, 

p27 levels decrease and tumors start to form (286).  Indeed, Skp2 is found 

overexpressed in many different types of human cancers, and is always correlated with 

low levels of p27 (287, 288).  Drugs that inhibit Skp2 and prevent degradation of p27 

could prove to be a highly successful chemotherapeutics (283, 289).   

 Recently, two labs discovered small molecule inhibitors of F-box proteins (290, 

291).  Aghajan et al. found an inhibitor of the yeast F-box protein Met30, which contains 

seven WD40 repeats and is structurally very similar to Cdc4 (290).  The inhibitor, small-

molecule enhancers of rapamycin (SMER) 3, was found to disrupt binding between 

Met30 and Skp1.  It is hypothesized that SMER3 binds at or near the F-box protein of 

Met30 and prevents its interaction with Skp1.  Interestingly, the authors demonstrated 

that SMER3 was only active with Met30, and not Cdc4.  Thus, despite binding a 

common domain, SMER3 shows remarkable specificity.  Given the role of many F-box 

proteins in human disease (283), these results are encouraging and indicate a common 

mechanism whereby diverse F-box proteins could be inhibited by small molecules.  

 Tyers and colleagues found a small molecule inhibitor of Cdc4 that functions via 

a different mechanism than SMER3.  Using yeast as a model, Orlicky et al. identified a 

small molecule called SCF-I2 that disrupts the Cdc4 substrate-binding domain (291).  A 
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crystal structure of Cdc4 in complex with SCF-I2 shows the small molecule binds 

between two β-propellers formed by WD40 repeats number 5 and 6, and is 25 Å from 

the substrate binding pocket.  By wedging between these two propellers, SCF-I2 induces 

a large conformational shift of the main chain, which disrupts the substrate-binding 

pocket.  Given the high degree of homology between Cdc4 and the human F-box protein 

Fbw7, it is likely that human Gα proteins will also be ubiquitinated by the SCFFbw7.  It is 

our hope that a small molecule similar to SCF-I2 will be found to inhibit Fbw7.  If such a 

drug were developed, it could be used to enhance G protein signaling by stabilizing the 

Gα subunit.  This is an exciting proposition and further reinforces the theory that new 

drugs can be derived from studies of G protein signaling in yeast.   

The crystal structure of SCF-I2 and Cdc4 also indicates a general mechanism 

where all WD40 repeat proteins can be therapeutically targeted.  The list of proteins 

containing WD40 repeats is not restricted to F-box proteins (292-294).  Most notably, the 

Gβ subunit of the heterotrimeric G protein is comprised of 7 WD40 repeats (295, 296) 

and forms the same β-propeller structure as Cdc4 (149, 297).  Perhaps the discovery of 

SCF-I2 could lead to a new class of drugs that directly regulates heterotrimeric G protein 

signaling by disrupting the interaction between Gβ and Gα (298).  Nevertheless, SCF-I2 

and SMER3 prove that small molecule inhibitors of F-box proteins are indeed feasible, 

and future research is likely to focus on F-box proteins involved in human disease, such 

as Skp2 and Fbw7 (289).   

Phosphoinositides in MAPK signaling 

Recently, several reports have detailed new roles for phosphoinositides in 

regulating MAPK signaling pathways.  Specifically, the PtdIns kinases Stt4, Vps34, and 

Pik1 have all been implicated in regulating the pheromone response pathway (65, 75, 

207, 233).  Despite the fact that PtdIns kinases all produce phosphorylated 
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phospholipids, they all seem to regulate signaling via a distinct mechanism.  Stt4 

produces PtdIns 4-P at the plasma membrane and is necessary to recruit the scaffold 

Ste5 to the cell periphery where it can interact with upstream activators such as Ste20 

(207, 233).  This process is required for Fus3 activation but not Kss1 activation.  Vps34 

is localized to early endosomes and produces PtdIns 3-P when stimulated by GTP-

bound Gpa1.  Deletion of VPS34 diminishes Fus3 activation but does not affect Kss1 

activation (65).  The exact mechanism of action of Vps34-derived PtdIns 3-P is not 

currently known.  Pik1 produces PtdIns 4-P at the Golgi and in the nucleus.  Like Vps34, 

knockdown of Pik1 causes a reduction in Fus3 activation.  However, it also causes 

constitutive Kss1 activation.  Thus, in yeast, three separate PtdIns kinases regulate 

MAPK specificity by selectively affecting Fus3 and not Kss1.   

 Although Stt4, Vps34, and Pik1 produce different catalytic products at different 

cellular locations, they all differentially regulate Fus3 and Kss1.  This suggests a general 

requirement for phosphoinositides in maintaining signaling fidelity between multiple 

MAPK signaling pathways that share components.   The most logical hypothesis is that 

phosphoinositides insulate signaling pathways by physically tethering components to 

different subcellular locations.  For example, Stt4 helps tether Ste5, and by association 

Ste11, Ste7, and Fus3, to the plasma membrane in locations of pheromone-bound 

receptors (233).  This most likely helps prevent aberrant activation of Kss1 and a third 

MAPK, Hog1.  Similar mechanisms are likely to exist for Vps34 and Pik1 at endosomes 

and the Golgi respectively.  Examining the localization of proteins that contain lipid-

binding domains could reveal the function of Vps34 and Pik1.   

Proteins can contain a number of different lipid-binding domains including PH, 

PX, ENTH, and FYVE domains (169).  Of these examples, ENTH domain-containing 

proteins are intriguing candidates for proteins that may directly bind phosphoinositides at 

endomembranes and regulate pheromone signaling.  Proteins that contain ENTH 
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domains typically localize to endosomes or the Golgi due to their ability to bind 

phosphoinositides, clathrin coated pits, and possibly actin (299, 300).  Yeast have five 

proteins that contain an ENTH domain, designated Ent1-5 (301, 302).  Ent5 is a 

particularly interesting protein because it is involved in trafficking between the Golgi and 

endosomes (301).  

Ent5 has been shown to physically interact with Fus3 (303).  This indicates Pik1 

and/or Vps34 could be regulating Fus3 activation by physically sequestering Fus3 to 

sites of intracellular compartments through Ent5.  Preliminary data show that Fus3-GFP 

localizes to intracellular puncta in addition to the nucleus (Figure 4.2).  While the identity 

of these spots has not yet been determined, this observation is consistent with the 

hypothesis that PtdIns kinases regulate Fus3 localization to endomembrane 

compartments.   

Genetic studies have also shown a negative interaction between Ent5 and Ste50, 

which is an adapter protein for the MAPKKK Ste11 (304).  Ste50 regulates cross-talk 

between the HOG pathway and the filamentous growth pathway (305).  The genetic 

interaction between Ent5 and Ste50 indicates they function in the same pathway.  

Furthermore, Ste50 localizes to intracellular puncta upon exposure to osmotic stress, 

indicating a physical interaction between Ent5 and Ste50 is possible (176).  It has not 

been determined whether Ste50 localization to intracellular spots is dependent on either 

PtdIns 3-P or PtdIns 4-P.  Nevertheless, the several pieces of evidence outlined above 

suggest Ent5 may be the target of phosphoinositides regulation of MAPK signaling. 

Future experiments should aim at identifying proteins that link phosphoinositides 

to pheromone signaling.  GFP fusions to proteins with known lipid binding domains can 

be monitored in the presence and absence of specific PtdIns kinases.  Candidate genes 

can then be subjected to co-Immunoprecipitation experiments with components of the 

MAPK cascade, specifically Ste50, Ste11, and possibly Fus3.  Ent1-5 will be a high 
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Figure 4.2 

 

Figure 4.2  Fus3-GFP localizes to intracellular puncta.  
FUS3-GFP was integrated into the genome of wild-type BY4741 cells. Cells were 

treated with 3 µM α factor for 2 hrs. Cells were visualized and fluorescence microscopy 
using an Olympus Fluoview 1000 confocal microscope equipped with a 488 nm laser 
(blue argon, for GFP).  Images were analyzed using ImageJ (National Institutes of 
Health).   
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priority for analysis, as will other proteins that have physical and genetic interactions with 

known pheromone pathway components.   

Conclusions 

We identified 92 essential genes required for proper pheromone signaling in 

yeast.  Of these, we thoroughly characterized five genes to reveal how they regulate G 

protein signaling.  This work revealed a link between genes that regulate the cell cycle 

via protein ubiquitination and G protein turnover, indicating the cell may control its ability 

to respond to external stimuli by altering the abundance of key signaling components.  

Furthermore, we uncovered new roles for phosphoinositides in regulating fidelity in 

signal transduction networks.  Together, these findings reveal the essential genes are a 

virtually untapped resource for identifying new signaling components.  Given the high 

degree of conservation between yeast and human G protein pathways, discoveries 

made during the course of this research are likely to translate to humans, leading to new 

avenues for drug discovery.    
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APPENDIX I 
PCR Primers (Used In Chapter II) 
Name Primer Sequence 
1 5’-TAG GAT CCG TAG GAA ATA ATG GGG TGT AC-3’ 
2a 5’-TAA AGC TTT GAT TAC AAG GAT GAC GAC GAT AAG AGC CTT TAG CAG 

TAT TCT C-3’ 

3 5’-GAA GGA TGA CGA CGA TAA GAA ACT TAT TCA CGA AGA CAT 
TGC-3’ 4 5’-GCA ATG TCT TCG TGA ATA AGT TTC TTA TCG TCG TCA TCC 
TTC-3’ 5 5’-GGT TGC GTA AAA ATT ATT GAT TTT GGT ATT TC-3’ 

6 5’-GAG CTC GCC ATG TCT AAA GGT GAA GAA TTA TTC ACT GGT G-3’ 
7 5’-GAG CTC GCC ATG TCT AAA GGT GAA GAA TTA TTC ACT GGT G-3’ 
8 5’-CTC GAG CCC GGG GCG AAT TTC TTA TGA TTT ATG ATT TTT ATT ATT 

AAA TAA G-3’ 

9 5’-GAA TTC GGT ACC CAA TAG CAA TGG GGT TTT TTT CAG-3’ 
10 5’-CCC GGG AAC ATG GCC TCC TCC GAG GAC-3’ 
11 5’-CCC GGG GCC TTA GGC GCC GGT GG-3’ 
12 5’-GTC GAC CCA TGC AGA AGC TGT TGC GAA G-3’ 
13 5’-GTC GAC TTT GAT TTT CAG AAA CTT GAT GGC TTA TAT CCT GC-3’ 
Cdc4 F 5’-CAG TTA GAG CTC TGG TAT TCA TCA TCA AAA ACA GCC TTC CAG-3’ 
Cdc4 R 5’-CAG TTA CCC GGG AAA AAT CAG CAG AAT CAA CTT CTT AAC G-3’ 
Cdc34 F 5’-TAG AGC TCG GCA ATT ACT AAT GCG GGT TC-3’ 
Cdc34 R 5’-TAC CCG GGT CGC AAA GAT CGA CCT AAG AC-3’ 
Stt4 F 5’-GAG CTC AAA TTA GGC TGA ATA GAA CTG C-3’ 
Stt4 R 5’-CCC GGG AGA TTT TCC TTG TCC TCC CTT T-3’ 
Pik1 F 5’-CCG CGG CTA GAA GAT ATT GAC ATC GAT TCC G-3’ 
Pik1 R 5’-CCC GGG CGA TGT GCC ATA TAG TAA GCT GG-3’ 
Mps1 F 5’-CCG CGG ATC ACA ACA AAT GGT GAT TCT GG-3’ 
Mps1 R 5’-CCC GGG TCT AAG CAA GAA TGG CAA GAA AG-3’ 
Ste4 F 5’-CAG GTA CAC ATT ACG ATG GAA TTC CAT CAG ATG GAC TCG ATA ACG-

3’ Ste4 R 5’-CGT TAT CGA GTC CAT CTG ATG GAA TTC CAT CGT AAT GTG TAC CTG-
3’ Ste20 F 5’-AAG GAA AAA AGC GGC CGC CTC GCT TAT GGA TTG TGG GAT CTC ACC-
3’ Ste20 R 5’-CCG CTC GAG CCT TTC CGT CAC TGT TCC ATG-3’ 

Ste5 F 5’-TCC CCG CGG GAC ATC AGC TGA TTT CTC ATA GAG-3’ 
Ste5 R 5’-AAG GAA AAA AGC GGC CGC GCT CAT TAT GTA ACC ATT CCG ATT GAC-

3’ Ste11 F 5’-AAG GAA AAA AGC GGC CGC CTG CGC AGC TTT ATA CAA GTT AGC-3’ 
Ste11 R 5’-CCG CTC GAG ACG CTT CTA GAG GTA CAG GCG-3’ 
Ste7 F 5’-CGC GGA TCC TGG TAT CCT TCT TGG GAA TAT TCA ATG C-3’ 
Ste7 R 5’-CCG CTC GAG AGC GAG TAC AGT CAT TGT GTG CCA CC-3’ 
Fus3 F 5’-CGC GGA TCC GCA GCG ACT GCA CTA AAC TAG AGG-3’ 
Fus3 R 5’-CCG GAA TTC TCT AGT AAG ACG GTC TCT TGC TGC-3’ 
Kss1 F 5’-AAG GAA AAA AGC GGC CGC GAC AGA TTA CGA GAG TCC AGC C-3’ 
Kss1 R 5’-CCG CTC GAG CTT GGC TGG GTA TTA GTT GTG-3’ 
Ste12 F 5’-CGC GGA TCC TCT TCC CTT CCC AGA GAG AAA AAA GG-3’ 
Ste12 R 5’-CCG CTC GAG CTG CTT TTA TTA TTT GTT AGT GCC-3’ 
aFLAG sequence highlighted in bold 
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