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ABSTRACT 

Tamara Tal: Investigating Tyrosine Phosphatases as Targets of Air Pollutants 

(Under the direction of James M. Samet) 

 

Exposure to ambient particulate matter (PM) is associated with elevated rates of morbidity and 

mortality. Inflammation is thought to be a central mechanism by which PM exposure induces adverse 

health effects. In lung epithelial cells, a principle target of inhaled PM, proinflammatory signaling is 

mediated by phosphorylation-dependent signaling pathways whose activation is opposed by the 

activity of protein tyrosine phosphatases (PTPases), which thereby function to maintain signaling 

quiescence. PTPases contain an invariant catalytic cysteine that is susceptible to electrophilic attack. 

Therefore, we hypothesized that exposure to oxidative, electrophilic or metal cation components of 

ambient PM would impair PTPase activity allowing for unopposed basal tyrosine kinase activity. 

Here we report that exposure to the ubiquitous PM components Zn or diesel exhaust particles (DEP) 

induce activation of the receptor tyrosine kinase Epidermal Growth Factor Receptor (EGFR) in 

primary human airway epithelial cells. This phosphorylation event occurs by a ligand-independent 

mechanism that requires EGFR kinase activity. We also show that exposure to Zn or DEP impair the 

activity of PTPases, which function to dephosphorylate the EGFR. These data provide a mechanism 

by which disparate components of ambient PM can similarly activate proinflammatory signaling in 

human lung cells. In summary, these data show that PM-induced EGFR-phosphorylation in human 

airway epithelial cells is the result of a loss of PTPase activities that normally function to 

dephosphorylate EGFR in opposition to baseline EGFR kinase activity. 
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Chapter I: Background and significance 

 

1-A Particulate Matter (PM) as a public health concern  

Numerous epidemiological studies have associated PM inhalation with adverse health effects 

including diminished lung function, morbidity and mortality (Dockery et al., 1993; Koenig et al., 

1993; Schwartz, 1994). In particular, exposure to PM may account for as many as 500,000 deaths 

worldwide each year (U.N., 1994; Nel, 2005). A recent study has shown that the onset of myocardial 

infarction was three times as likely for those individuals exposed to traffic within one hour of the 

heart attack (Peters et al., 2004). A similar association between ambient particulate matter and the 

rate of hospitalization for congestive heart failure has also been reported (Wellenius et al., 2005).  

While the correlation between PM inhalation and cardiopulmonary events is well established, the 

means by which inhaled particles exert deleterious effects on the cardiovascular system remains 

unclear. It has been proposed that particle inhalation may directly induce alterations in cardiac 

autonomic function thereby causing changes in heart rate variability and increasing the likelihood of 

myocardial infarctions (Rhoden et al., 2005).  It has also been hypothesized that particles deposited in 

the terminal region of the lung promote pulmonary inflammation triggering a subsequent release of 

blood-borne mediators into the circulatory system which are thought to either induce or contribute to 

pre-existing atherosclerosis, arrhythmia, and vascular dysfunction [reviewed in (Brook et al., 2003), 

Figure 1-1]. As a primary target of inhaled pollutants, the airway epithelium is capable of initiating or 

augmenting pulmonary inflammatory defenses by synthesizing a number of mediators that can cause 

chemotaxis and activation of inflammatory cells (Fujii  et al., 2001). These mediators promote local
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and systemic inflammation that is thought to culminate in cardiovascular dysfunction [reviewed in 

(Bai et al., 2006)]. 
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Figure 1-1 

 

Figure 1-1 PM and cardiovascular disease. Inhalation of PM2.5 produces pulmonary inflammation leading to 
alterations in autonomic balance in addition to systemic inflammation capable of triggering acute and chronic 
cardiovascular disease (Brook et al., 2003). 
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 1-B Composition of ambient PM  

PM is a ubiquitous air pollutant particle with adsorbed metals, nitrates, sulfates and organic 

compounds. PM is produced from both natural and anthropogenic sources including waste 

incineration, vehicular exhaust, power generation, tire wear, wildfires and agricultural practices. Not 

surprisingly, ambient PM varies greatly in its size, composition, and toxicity. This variation makes it 

difficult to identify particle types or components that cause biological toxicity [Figure 1-2 from 

(Seagrave et al., 2006)].  

1-C PM and pulmonary inflammation 

In human studies, exposure to diesel exhaust particles (DEP) has been shown to induce acute 

pulmonary inflammation characterized by increased levels of neutrophils, B-lymphocytes, and the 

inflammatory mediators, histamine and fibronectin (Salvi et al., 1999). Biopsies revealed an 

upregulation of the endothelial adhesion molecules ICAM-1 and VCAM-1 suggesting a possible 

mechanism by which initiation of DEP-induced recruitment of inflammatory cells occurs (Salvi et al., 

1999). Inflammation-associated cytokine expression is another validated means of detecting 

pulmonary inflammation. Exposure to the coarse fraction (PM10) of Concentrated Air Particles 

(CAPs), obtained in Chapel Hill, induced upregulation of TNF-α, IL-6, and COX-2 in alveolar 

macrophages, and IL-8, TNF-α, and COX-2 in primary human airway epithelial cells (HAEC) 

(Becker et al., 2005). Exposure to the fine fraction (PM2.5) of CAPs collected in Dunkerque, France 

was similarly shown to induce expression of the inflammatory cytokines TNF-α, IL-1β, IL-8, IL-6, 

GM-CSF, and Transforming Growth Factor-beta (TGF- β) in cultured epithelial cells (Dagher et al., 

2005). Taken together, these studies show that exposure to a wide variety of PM can induce 

pulmonary inflammation which is hypothesized to contribute to the presentation of cardiovascular 

pulmonary inflammation which is hypothesized to contribute to the presentation of cardiovascular 

disease associated with PM inhalation (Brook et al., 2003). Although these studies describe similar
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Figure 1-2 

Figure 1-2A-C 

 

Figure 1-2D 

 

Figure 1-2 Composition of ambient PM. Season and site related differences were noted in particle composition 
(Figure 1-2A), PM-associated metals (Figure 1-2B) and classes of PM-associated organic compounds between 2 
rural (CTR and PNS) and 2 urban (BHM and JST) sites in the Southeastern U.S. sampled in the Summer and 
Winter of 2004 (Seagrave et al., 2006). Source apportionment analyses were performed demonstrating that 
diesel and gasoline derived PM substantially contributed to PM generated in urban versus rural areas (Figure 1-
2D). 
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 inflammatory responses to particle challenge, the mechanism by which particles induce pulmonary 

inflammation remains unresolved. 

 

1-D Proinflammatory signaling pathways 

The MAPKs consist of parallel kinase cascades leading to the activation of the four Serine/Threonine 

MAPKs (ERK, JNK, p38 and ERK5/BMK) (Figure 1-3). Activation of these signaling cascades 

functions to drive diverse cell fates including proliferation, differentiation, apoptosis, growth and 

inflammation (Zhang and Dong, 2007). MAPK activity is regulated by the phosphorylation status of a 

conserved Threonine-X-Tyrosine sequence present in the MAPK activation loop (Chen et al., 2001). 

When appropriately phosphorylated, MAPK can activate a diverse set of transcription factors via 

phosphorylation on regulatory Serine and Threonine residues.  

Transcription factor activation stimulates its translocation to gene promoters as well as recruitment of 

cofactors and the transcriptional complex to modulate the expression of genes involved in 

proliferation, migration, inflammation, apoptosis, or differentiation (Chen et al., 2001). In the case of 

inflammatory signaling in lung epithelial cells, MAPK-mediated activation of the transcription factors 

NFκB, AP-1 and STAT-3 leads to the generation of proinflammatory signaling molecules such as IL-

8, IL-6, TNF-α, COX-2 and GM-CSF in response to physiological and toxicological stimuli (Hayden 

and Ghosh, 2008).  

A number of PM components have been associated with increased expression of proinflammatory 

signaling cytokines in vivo, in cells and in vitro(Salvi et al., 1999; Bonvallot et al., 2001; Fujii et al., 

2001; Li et al., 2002; Pourazar et al., 2005; Kim et al., 2006; Matsuzaki et al., 2006; Cao et al., 2007). 

Perhaps most strikingly, a series of studies from the Sandstrom laboratory reported enhanced  
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Figure 1-3 
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Figure 1-3 Mitogen activated protein kinase (MAPK) signaling pathways. MAPK pathways constitute a large 
kinase network that regulates a variety of physiological processes, such as cell growth, differentiation, and 
apoptotic cell death. MAPK cascades are organized as modular pathways in which activation of upstream 
kinases by cell surface receptors leads to sequential activation of a MAPK module. After MAPKs are activated 
either in the cytoplasm or in the nucleus, they regulate transcription by modulating the function of a target 
transcription factor via phosphorylation of Serine and Threonine residues. 
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expression of the proinflammatory cytokines IL-13 (Pourazar et al., 2004), IL-8 and Gro-α (Salvi et 

al., 2000) in bronchial biopsies obtained from humans exposed to DEP. Pourazar et al. later used 

archived biopsies and reported three important findings (Pourazar et al., 2005). First, DEP exposure 

resulted in an increase in the nuclear translocation of NFκB and AP-1, demonstrating a means by 

which DEP exposure can induce expression of proinflammatory cytokines. Second, activation 

(determined by enhanced phosphorylation) of the upstream MAPKs JNK and p38 in response to DEP 

exposure was demonstrated by immunohistochemical staining. Third, total tyrosine phosphorylation 

was significantly increased in biopsies obtained from DEP exposed subjects. Taken together, these 

data demonstrate that DEP exposure stimulates MAPK signaling, characterized by increased tyrosine 

phosphorylation, leading to activation of NFκB and AP-1 and synthesis of proinflammatory 

cytokines. While the pathways involved in PM-induced proinflammatory signaling have been 

described, much less is known about the mechanisms by which PM initiates phosphorylation-

dependent proinflammatory signaling.  

 

1-E Epidermal growth factor receptor 

As mentioned previously, the MAPK cascades can be activated by the receptor tyrosine kinase EGFR 

(Citri and Yarden, 2006) and some reports suggest that PM-induced proinflammatory signaling 

begins at the level of receptor tyrosine kinases (Wu et al., 1999; Wu et al., 2002). EGFR (ERBB1) is 

one of four ERBB family members capable of undergoing homo- and hetero-dimerization. With some 

exceptions (ERBB2 is unable to bind ligand and ERBB3 lacks a functional kinase domain), ERBB 

family members are structurally defined by the presence of an extracellular ligand-binding domain, a 

single transmembrane spanning domain and cytoplasmic juxtamembrane, kinase and C-regulatory 

domains all of which are reported to contribute to the complex regulation of receptor activity (Landau 

and Ben-Tal, 2008).  
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Upon ligand stimulation, the EGFR undergoes receptor homo- or hetero-dimerization, activation of 

receptor kinase activity, and autophosphorylation of key tyrosine residues in the Src-homology (SH)-

2 and protein tyrosine binding (PTB) domains (Gale et al., 1993).  In particular, EGFR’s carboxy-

terminus contains three major (Tyr1068, 1173, and 1148) and two minor (Tyr992 and 1086) tyrosine 

autophosphorylation sites that are differentially phosphorylated following receptor activation by 

ligand or transphosphorylation by other stimuli [Figure 1-4 and (Keilhack et al., 1998)]. 

Phosphorylation of these sites results in the recruitment of SH-2-, or PTB-containing proteins, such as 

Grb2, activation of RAS and the MAPK pathways (Gale et al., 1993). EGFR phosphorylation is 

regulated by a number of Protein Tyrosine Phosphatases which function to dephosphorylation the 

EGFR returning the receptor to its inactive form (Table 1-1). 

One critical mechanism through which ERBB activity is regulated is by receptor dimerization (Figure 

1-5). It was long believed that in the absence of ligand, EGFR dimerization was prevented (with the 

exception of ERBB2). However, random, ligand-independent dimerization of ERBB family members 

has recently been reported [reviewed in (Warren and Landgraf, 2006)]. In particular, a recent study 

showed that in the absence of ligand, the majority of EGFR and ERBB2 receptors form dimers (Liu et 

al., 2007). Another study proposed that the formation of the ligand-less dimers actually facilitate the 

formation of active dimers. This hypothesis is supported by their finding that ligand-independent 

dimers bind EGF with markedly greater affinity than the monomers (Teramura et al., 2006). The 

authors speculate that the formation of the ligand-independent dimers primes the complex for 

activation by decreasing the area through which the necessary components must diffuse (Teramura et 

al., 2006). Regulation of EGFR activity by PTP1B is also reported to be both spatially and temporally 

regulated in cells (Haj et al., 2002). In particular, EGFR and PTP1B expression was shown to be 

restricted to the plasma membrane or endoplasmic reticulum, respectively, in resting  
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Figure 1-4 

 

Figure 1-4 The Epidermal growth factor receptor phosphorylation sites. The EGFR consist of an extracellular 
ligand-binding domain, a single transmembrane spanning domain, and cytoplasmic kinase and C-regulatory 
domains containing a number of physiologically relevant tyrosine phosphorylation sites (shown in red) 
(Kaushansky et al., 2008).  
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Table 1-1 

PTPase Classification Cell type Reference 
LAR Receptor PTPase McA-RH777 rat 

hepatoma cells 
(Kulas et al., 1996) 

RPTPσ Receptor PTPase A431 cells (Suarez Pestana et al., 
1999) 

SHP-1 Intracellular 
PTPase 

1293T cells or COS 
cells and 2A431 cells 

(Tenev et al., 1997; 
Keilhack et al., 1998) 

PTP1B Intracellular 
PTPase 

COS cells (Liu and Chernoff, 
1997) 

TCPTP Intracellular 
PTPase 

COS cells (Tiganis et al., 1999) 

SHP-2 Intracellular 
PTPase 

1SHP-2 (-/-) wt 
chimeras and2COS cells 

(Qu et al., 1999; Fina et 
al., 2006) 

DEP-1/Scc1 Receptor PTPase C. elegans (Berset et al., 2005) 

Table 1-1 PTPases that regulate EGFR.  
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Figure 1-5 

 

 

 

 

 

Figure 1-5 Ligand-dependent EGFR activation. The EGFR forms ligand-less dimmers with other members of 
the ERBB recepter family. Upon ligand binding to the extracellular ligand binding domain, the dimmer 
undergoes a conformational change assuming an asymmetric conformation of the intracellular kinase and C-
regulatory domains. This allows one member of the dimer to phosphorylate the other on Tyrosine residues 
(Zhang and Dong, 2007). 
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cells. Upon receptor activation, EGFR internalization and subsequent dephosphorylation was shown 

to co-localize with PTP1B.  

Researchers have recently solved the conformation of the EGFR active site providing deeper 

understanding of EGFR-dependent signaling. Appropriate interactions between the external, 

transmembrane, juxtamembrane, kinase and C-terminal domains result in the formation of an 

asymmetric dimer in which one kinase domain activates its partner [Figure 1-5 and (Zhang and Dong, 

2007)]. This mechanism of receptor autophosphorylation is relevant to the exploration of PM induced 

signaling effects in primary human lung cells where autophosphorylation is a major mechanism by 

which EGFR activation occurs [(Tal et al., 2006), Chapter II and Tal, unpublished observations, 

Chapter III].  

The EGFR is activated by multiple ligand-independent mechanisms (Figure 1-6). Src tyrosine kinase 

mediates transphopshorylation of the EGFR at Tyr845 and 1101 leading to activation of the receptor’s 

tyrosine kinase activity (Tice et al., 1999). Moreover, Src-mediated EGFR transactivation has been 

reported has been reported in a number of cell types including A431 cells (Samet et al., 2003), B82 

mouse lung fibroblasts (Wu et al., 2002), and rat cardiac fibroblasts (Chen et al., 2006). Inactivation 

of EGFR-directed PTPase activity is another ligand-independent mechanism by which EGFR 

activation occurs where impairment in PTPase activity is sufficient to activate EGFR-dependent 

signaling in the presence of low levels of basal EGFR activity (Zhande et al., 2006).  

1-E.1 Evidence for PM induced EGFR activation  

Recently, there have been several studies linking PM exposure to EGFR activation. First, our lab has 

shown that Zn2+ exposure induces EGFR phosphorylation by cell-type specific mechanisms involving 

Src kinase-mediated transactivation (Samet et al., 2003) or by inhibition of EGFR-directed PTPase 

activity [(Tal et al., 2006), Chapter 2] in cultured BEAS2B cells or primary human lung cells, 

respectively. In support of a PTPase driven mechanism of EGFR activation, we have also reported  



   

 14 

Figure 1-6 

1.

2.

1.

2.

 

Figure 1-6 Ligand-independent EGFR activation. Tyrosine kinase-mediated transactivation (1) or inhibition of 
EGFR-directed PTPase activity (2) results in ligand-independent EGFR phosphorylation. 
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that exposure to a low-organic containing DEP (NIST SRM 2975) (Cao et al., 2007b) or high-organic 

containing DEP (Tal, unpublished observations, Chapter III) similarly impairs EGFR-directed PTPase 

activity, resulting in the activation of EGFR dependent signaling. Carbon nanoparticles are also 

reportedly capable of stimulating EGFR dependent activation of ERK1/2 and JNK in human 

bronchial or rat epithelial cells, respectively (Sydlik et al., 2006; Unfried et al., 2008). Additionally, a 

series of papers has recently described a mechanism by which PM exposure results in sustained 

proinflammatory signaling involving EGFR activation. In human bronchial epithelial cells (16HBE), 

PM2.5 or DEP treatment induced EGFR- and Erk-dependent expression of amphiregulin, a ligand of 

the EGFR (Blanchet et al., 2004). In support of these data, it was subsequently reported that PM-

induced amphiregulin is secreted toward the basolateral side where the EGFR is expressed in 

differentiated airway epithelial cells (Rumelhard et al., 2007a).  The authors propose that PM induces 

EGFR-activation directly, leading to expression of amphiregulin, and indirectly, through 

amphiregulin induced EGFR-dependent signaling, thereby prolonging proinflammatory signaling 

through the induction of GM-CSF expression (Blanchet et al., 2004; Rumelhard et al., 2007a; 

Rumelhard et al., 2007b). A more recent paper, from the Sanstrom laboratory using archived 

bronchial biopsies from human subjects exposed to diesel exhaust, provides the first in vivo data 

showing a significant increase in both total and phosphorylated EGFR (Tyr1173) (Pourazar et al., 

2008). Taken together, these studies support the concept that PM exposure impacts EGFR-dependent 

signaling. 

In addition to proinflammatory signaling, activation of EGFR-dependent signaling leads to a diverse 

set of cellular outcomes including proliferation, differentiation, growth, and apoptosis (Figure 1-3). 

Recently, a series of studies have elucidated a mechanism of EGFR-dependent wound healing 

following damage to the lung epithelium (Vermeer et al., 2003; Vermeer et al., 2006a; Vermeer et al., 

2006b). These studies demonstrate that the EGFR is located on the basolateral domain while the 

soluble receptor ligand heregulin-α is restricted to the apical membrane. Tight junctions between 
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adjacent epithelial cells form a barrier between the apical and basolateral domains thereby restricting 

diffusion of soluble ligands. However, following mechanical injury or disruption of the tight 

junctions by Ca2+ chelation, heregulin-α gained access to the basolateral domain and induced EGFR 

kinase activation and cellular proliferation to repair the damaged monolayer. In addition to 

physiologically relevant signaling, inappropriate activation of EGFR-dependent signaling is involved 

in numerous pathological outcomes including cancer progression [reviewed in (Milanezi et al., 2008)] 

and inappropriate mucin production that has been implicated in a number of hypersecretory disesases 

including asthma, chronic obstructive pulmonary disease, and cystic fibrosis [reviewed in (Nadel and 

Burgel, 2001)]. 

 

1-F Protein Tyrosine Phosphatases 

Tyrosine kinase activity is opposed by protein tyrosine phosphatases (PTPases) which function to 

maintain signaling quiescence (Stoker, 2005). PTPases are characterized by a highly conserved 11-

residue signature motif, I/VHCXAGXXR(S/T)G, which contains required Cys and Arg residues 

necessary for catalysis (Barford et al., 1994). The PTPase catalytic pocket has a low pKa (<6). 

Therefore, the catalytic thiol group (R-SH) exisits as a thiolate anion (R-S-) at physiological pH 

(Peters et al., 1998). The thiolate anion can thereby initiate catalysis by nucleophilic attack of 

phosphate-bearing substrates.  

It is estimated that the human genome codes for over 100 proteins in the PTPase superfamily with 

additional diversity introduced by alternative promoters and splice sites and post-translational 

modifications (Tonks, 2006). The PTPase superfamily is subdivided into multiple classes based upon 

their structure and substrate specificities (Figure 1-7). The classical PTPases function to 

dephosphorylate phospho-tyrosine bearing substrates. This class of PTPases includes receptor-like 

and cytosolic PTPases. Receptor-like PTPases, such as CD45 and LAR, contain an extracellular  
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Figure 1-7 

Protein Tyrosine Phosphatase Superfamily
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Intracellular
e.g., PTP1B 

Receptor-like
e.g., CD45 

Dual Specificity 
Phosphatases
~50 members

CDC25
CDC25A, B, C

LMW PTPs

VH1-like
e.g., 
Vaccinia
VH1, MKPs

Cdc14-like
e.g., 
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e.g., Mce1

 

Figure 1-7 Protein tyrosine phosphatase superfamily.  
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ligand-binding domain, a transmembrane domain and two tandem intracellular PTPase domains. The 

catalytic activity resides in the proximal D1 domain while the distal D2 PTPase domain is reported to 

be involved in enzymatic specificity and stability (Streuli et al., 1990). Cytosolic classical PTPases, 

such as PTP1B, SHP1, and PTP-PEST, contain regulatory regions that flank the catalytic site and 

control enzymatic activity directly- by interactions with the active site or by influencing substrate 

specificity- and spatially- by directing subcellular localization (Wang et al., 2003; Tonks, 2006). The 

second main class of PTPases is the cytosolic Dual Specificity Phosphatases (DSPs). DSPs are 

defined by their ability to dephosphorylate phospho-serine and phospho-threonine residues in addition 

to phospho-Tyrosine bearing substrates. The best characterized sub-division of DSPs, the MAPK 

phosphatases, inactivate MAPKs by dephosphorylating the signature Tyrosine-X-Threonine sequence 

in the MAPK activation loop (Owens and Keyse, 2007). The Cdc25 PTPases constitute the third class 

of PTPases that function to dephosphorylate conserved Threonine and Tyrosine residues on cyclin-

dependent kinases (Wang et al., 2003). In the case of Cdc25 PTPases, dephosphorylation of substrate 

kinases results in their activation and drives progression through the cell cycle (Millar and Russell, 

1992). The fourth class of PTPases, the low molecular weight PTPases, is less well understood but 

has been reported to regulate a number of tyrosine kinase receptors including the platelet derived-, 

vascular endothelial-, and fibroblast-growth factor receptors (Wang et al., 2003). Finally, there are 

some members of the PTPase superfamily that have non-protein targets, including mRNA, complex 

carbohydrates and inositol phospholipids (Ross et al., 2007).  

 

1-F.1 Regulation of PTPase activity 

PTPase superfamily members contain conserved Cys, Arg, and Asp residues critical for catalysis 

(Barford et al., 1994). The microenvironment of the PTPase active site cleft lowers the pKa of the 

catalytic cysteine residue to < 6, allowing it to exist in its thiolate anion (R-S-) form at physiological  
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Figure 1-8 

 

Figure 1-7 Regulation of PTPase activity. PTPases are characterized by a signature motif [I ⁄V]HCXXGXXR[S⁄ 
T], which contains an invariant Cys residue that is essential for catalysis. The environment of the active site 
confers an unusually low pKa on this Cysteine residue, which therefore is present as a thiolate anion at neutral 
pH (green). However, the low pKa also renders this residue highly susceptible to a series of oxidations, with 
concomitant reversible (yellow) and irreversible (red) inhibition of PTPase activity. A number of reversible, 
post-translational modifications of the catalytic cysteine have also been reported.  
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pH (Peters et al., 1998). This renders PTPases highly susceptible to inactivation by oxidation (Denu 

and Tanner, 1998; Takakura et al., 1999) (Figure 1-8). A primary oxidation to a sulphenyl derivative 

(R-SOH) reversibly inactivates PTPase activity. PTPases are protected from further oxidation by 

mechanisms involving intra- and inter-molecular disulfide formation, sulphenyl-amide formation or 

S-glutathionylation (Heneberg and Draber, 2005; Salmeen and Barford, 2005). The addition of 

reducing agents, such as dithiothreitol (DTT), reverts inactivated sulphenic acids to active thiolate 

anion groups. In particular, we have observed a reversal of H2O2-mediated inhibition of human 

recombinant PTP-1B activity following treatment with DTT (Tal, unpublished observations). In the 

presence of strong oxidizing agents, such as peroxyvanadate or peroxynitrite, subsequent stepwise 

oxidations from the sulphenic (SOH) to the sulphinic (SO2H) and sulphonic or cysteic acid (SO3H) 

groups occur. Those PTPases that become doubly or triply oxidized are terminally inhibited 

(Takakura et al., 1999). Interestingly, transient EGF-mediated EGFR activation, concurrent with ROS 

generation and reversible PTPase inactivation, was shown to induce lateral EGFR activation, 

supporting the notion that reversible inactivation of PTPases by a single oxidation event is not a 

toxicological effect, but rather a required means for activation of phospho-dependent signaling 

cascades (Reynolds et al., 2003).  

 

1-F.2 Evidence for PM-PTPase interactions 

In order to address whether PM exposure inhibits PTPase activity and in light of the varied 

mechanisms by which PTPase activity is regulated, it is useful to discuss the components of PM and 

how they might contribute to PTPase inactivation. There are two broad mechanisms by which 

components of PM could potentially interact with PTPases. These include both indirect inhibition, 

through PM-induced formation of reactive oxygen species, and direct inhibition by PM associated 

metals and nucleophilic organic compounds.  
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1-F.2A Indirect PTPase inhibition via PM-induced oxidative stress 

Numerous studies have sought to identify the mechanism by which particle inhalation induces local 

and systemic inflammation. Particle mass, size and surface area, metallic and organic contents, acids, 

sulfates, nitrates, elemental carbon, and co-pollutants have been investigated and oxidative stress has 

emerged as a leading mechanism by which PM elicits pulmonary toxicity (Gurgueira et al., 2002; 

Brook et al., 2003; Li et al., 2003; Risom et al., 2005). Oxidative stress, induced by the imbalance of 

oxidant formation and elimination, is tightly regulated by both enzymatic (e.g. superoxide dismutase, 

catalase, and glutathione peroxidase) and non-enzymatic (e.g. α-tocopherol and glutathione) defenses. 

Oxidative stress is characterized by glutathione (GSH) depletion and diglutathione (GSSG) 

accumulation triggering the activation of redox-sensitive signaling pathways and culminating in the 

expression of cytoprotective- and inflammation-associated genes (Xiao et al., 2003). Generation of 

reactive species is not limited to pathological outcomes but instead is a critical contributor to 

immunological host defense (Geiszt et al., 2003) and a proposed mediator of phospho-dependent 

signaling progression (Reynolds et al., 2003). Interestingly, reactive species is commonly described 

in response to growth factor-mediated activation of transmembrane receptors (Nakashima et al., 

2005) and has been implicated in PM-related signaling aberrations (Kim et al., 2006; Tal et al., 2006).  

PM is thought to exert oxidative stress on the lung by presenting or stimulating cells to produce 

reactive species via its metals, organics (semi-quinones and hydrocarbons), lipopolysaccarides, and 

ultrafine constituents (Tao et al., 2003). Studies using residual oil fly ash (ROFA) have demonstrated 

that pulmonary inflammation is attributable to water-soluble metal constituents (Gavett et al., 1997; 

Kodavanti et al., 1998; Gavett et al., 2003). Common soluble metallic components associated with 

PM include Fe3+, Cu2+, Zn2+, V3+/5+ and Cr3+/6+ (Gavett et al., 1997). Mechanistically, redox-cycling 

metals, such as Fe3+, Cu2+, V3+/5+ and Cr3+/6+, can generate ROS by Fenton-type chemistry and act as 

catalysts by Haber-Weiss reactions (Koppenol, 2001). Fe3+ in particular, is reported to be a primary 

contributor to DEP-induced H2O2 generation (Park et al., 2006).  
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In addition to metals, bioavailable organic compounds have been reported to contribute to oxidant 

effects induced by PM exposure (Xia et al., 2004). Two main families of compounds, polycyclic 

aromatic hydrocarbons (PAHs) and quinones, are adsorbed on diesel particles (Baulig et al., 2003) 

and are thereby delivered to the airway epithelium following inhalation. Both reactive PAH 

metabolites and redox-cycling quinones generate reactive oxygen species. In particular, NADPH-

cytochrome P450 reductase reduces quinones to semiquinone radicals which in turn, reduce oxygen 

to O2
.- and become reoxidized to the original quinone. PM-associated PAHs are metabolized by 

cytochrome P450s and peroxidases to oxidized derivatives such as epoxides, diols, and redox-cycling 

quinones [reviewed in (Li et al., 2002)].  A body of work has been produced supporting the notion 

that the organic fraction of DEP, via ROS generation, is the primary mediator of PM-associated 

inflammation/toxicity (Li et al., 2002; Li et al., 2003; Li and Whorton, 2003). However, it must be 

noted that most studies cited in these particular reviews used a Japanese diesel particle (H-DEP), 

which reportedly contains approximately 50% organics and as such, is not representative of most 

ambient DEP. The chemical composition of DEP is influenced in part by the age of the engine, type 

of fuel, load characteristics, lube oil composition, presence and efficiency of control devices and the 

sampling procedures (Wichmann, 2007). Not surprisingly, pulmonary toxicity, adjuvancy, and 

mutagenicity in response to DEP exposure vary greatly among different DEPs (Table 1-2).  

 

1-F.2B Direct PTPase inhibition 

In addition to indirect inhibition by PM-induced oxidative stress, a growing body of literature 

supports the notion that both metallic and organic PM components can directly impair PTPase 

activity by forming inhibitory electrostatic interactions with the catalytic cysteine or by covalent 

modification of catalytic and regulatory residues, respectively.  
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Table 1-2 

Metal content (%) Particle Source Organic 
content 

DCM 
Extractable 

organic mass 

Pulmonary 
toxicity 

Mutagenic 
properties 

Fe Zn Ni Cu V 

NIST-SRM 
2975 

Diesel 
powered 
forklift 

5%* 2%* +*PMNs +† .033 .032 0 0 0 

DEP-3 Diesel 
engine with a 
compressor 

41%¥ 18.9%¥ Adjuvants¥ n/a .078 .115 0 .001 0 

Sagai DEP Automobile 50%* 26.3%* +* MACs 
Adjuvant¥ 

+† .004 .030 0 0 0 

 
 
Table 1-2 Diesel exhaust particles. Differences in organic content, pulmonary toxicity, adjuvancy, and 
mutagenecity have been reported in DEPs obtained from different sources [*(Singh et al., 2004), †(DeMarini et 
al., 2004), ¥(Stevens et al., 2008), and ‡Dr. Seung-Hyun Cho US EPA, personal communication]. For metal 
content analysis, 1.0 ml 3 N HCL was used to determine ionizable concentrations of iron (Fe), zinc (Zn), 
vanadium (V), nickel (Ni), copper (Cu), and vanadium (V) by inductively coupled plasma optical emission 
spectroscopy as previously described (Ghio et al., 2003).  
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We and others have reported that Zn2+, a common PM constituent, may be implicated in the toxicity 

associated with PM inhalation (Kodavanti et al., 2002; Samet et al., 2003; Okeson et al., 2004; Tal et 

al., 2006; Kim et al., 2007). Zn2+ is unable to undergo redox cycling yet is a known inhibitor of 

PTPases (Haase and Maret, 2003; Haase and Maret, 2005), including a broad spectrum of PTPases 

present in airway epithelial cells (Samet et al., 1999). A mechanism of direct inhibition has been 

proposed wherein Zn2+ blocks PTPase activity by binding to the catalytic cysteine and to neighboring 

histidine or aspartate residues present in the highly conserved active site (Haase and Maret, 2003). 

More recently, the authors suggest that Zn2+-coordinated thiolates can additionally participate in 

redox cycling generating disulfide and terminally oxidized sulfur moieties (Krezel et al., 2007). 

However, treatment of Zn2+-exposed HAEC with the strong reductant and weak Zn2+ chelator, 

dithiothreitol (DTT), but not other structurally unrelated anti-oxidants, reverses Zn2+-mediated 

inhibition of EGFR-directed PTPase activity (Tal, unpublished observations). This suggests that Zn2+-

mediated PTPase inhibition may occur through a mechanism dependent upon direct metallic attack of 

the PTPase catalytic site, rather than indirectly inhibiting PTPases by oxidation. Interestingly, 

exposure to nucleophilic aldehydes (commonly associated with ambient PM) was reported to 

mobilize cellular Zn2+ from metallothionein and thionein at levels sufficient to reduce PTPase activity 

in HepG2 cells (Hao and Maret, 2006).  

The second mechanism by which PM components are known to directly inhibit PTPase activity has 

recently surfaced in a series of studies that provided the first mechanistic evidence that 

environmentally relevant reactive quinones and aldehydes can directly inactivate PTP1B activity by a 

covalent modification of reactive cysteines (Iwamoto et al., 2007; Seiner et al., 2007). Seiner et al. 

reported that the reactive aldehyde acrolein inhibited PTP1B activity through conjugate addition to 

the catalytic cysteine in vitro (Seiner et al., 2007). Notably, treatment of A431 cells with 1,2-

napthoquinone was shown to arylate two reactive cysteinyl residues in PTP1B, thereby inhibiting its 

activity and leading to the prolonged and irreversible activation of EGFR (Iwamoto et al., 2007). 
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Taken together, these studies are in keeping with the concept that DEP-associated oxy-organics can 

inhibit PTPase activity and thereby directly contribute to proinflammatory signaling. In support of 

this, activation of vanilloid receptor 1 leading to contraction of tracheal smooth muscle in guinea pigs 

exposed to 1,2-napthoquinone was blocked when tracheal tissue was pretreated with the EGFR kinase 

inhibitor PD153035 (Kikuno et al., 2006).  

1-G Conclusions  

Exposure to ambient PM is associated with elevated rates of morbidity and mortality. Toxicological 

and epidemiological studies have implicated multiple particle constituents as active agents of the 

toxicology of PM. Inflammatory responses have been reported to be a feature of many of the adverse 

effects of PM exposure (Brook et al., 2003). We have previously shown that in vitro exposure to PM 

constituents, such as the divalent metal cation Zn2+, or carbonaceous ultrafine particles, activates 

multiple phosphorylation-dependent signaling pathways, including the EGFR signaling cascade [(Wu 

et al., 1999; Kim et al., 2005; Tal et al., 2006), Chapter II]. Moreover, PM-induced EGFR activation 

leads to increased expression of inflammatory mediators such as COX-2 and the chemokine IL-8 in 

human airway epithelial cells [(Cao et al., 2007a), Tal, unpublished observations, Chapter III]. 

Through studies aimed at elucidating the mechanism of PM-induced signaling, we have shown that 

exposure to a variety of metallic components of ambient PM blunts the activity of cellular PTPases. 

Based on the mechanisms by which PTPase activity is regulated, these data suggest that metallic, 

oxidant or electrophilic constituents of ambient PM can similarly induce kinase-dependent 

proinflammatory signaling in HAEC through inhibition of kinase-directed PTPase activity.  

1-G.1 Hypothesis and specific aims of the doctoral research 

We hypothesized that ambient PM constituents, including DEP and Zn2+, activate phosphorylation-

dependent signaling pathways through inhibition of PTPases that function to maintain signaling 
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quiescence and moreover, that an inhibitory interaction between PM components and PTPases results 

in the activation of proinflammatory signaling in lung epithelial cells. 

This hypothesis was addressed in this dissertation research through three specific aims. First, we 

characterized the effects of Zn2+ on EGFR signaling in HAEC by examining the role of Src and 

EGFR kinase activities and PTPase inhibition in Zn2+-induced EGFR activation. Because 

PTPases can be inhibited by electrophilic organic compounds, we hypothesized that other 

components of ambient PM such as DEP would similarly inhibit EGFR-directed PTPase activity 

leading to sustained EGFR-dependent signaling. Therefore, with the goal of improving the 

understanding of the relationships between biologically active constituents of DEP and 

mechanisms of toxicity, we investigated the effects of DEP with varying organic content on 

EGFR activation and EGFR dephosphorylation in HAEC. Preliminary studies revealed that the 

same exposures to PM constituents that led to signaling disregulation characterized by EGFR 

activation and impairment in EGFR-directed PTPase activity, resulted in elevated expression of 

proinflammatory mediators in HAEC. Therefore, we also hypothesized that exposure to PM leads to 

proinflammatory mediator expression as a consequence of disruption of cell signaling by PTPase 

inhibition. In order to examine the link between PM-induced signaling and ensuing 

proinflammatory responses, we determined the effect of PM constituents on signaling pathways 

that regulate expression of proinflammatory mediators (such as IL-8) and examined the role of 

signal transduction disregulation involving PTPase inhibition in PM-induced IL-8 expression in 

HAEC.  

 

 

 



Chapter II: Inhibition of protein tyrosine phosphatase activity mediates epidermal growth 

factor receptor signaling in human airway epithelial cells exposed to Zn2+ 
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2-A Abstract 

Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) 

inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine 

phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads to Src-

dependent activation of EGFR signaling in B82 and A431 cells. In order to elucidate the mechanism 

of Zn2+-induced EGFR activation in HAEC, we treated HAEC with 500 µM Zn2+SO4 for 5-20min and 

measured the state of activation of EGFR, c-Src and PTPs. Western blots revealed that exposure to 

Zn2+ results in increased phosphorylation at both trans- and auto-phosphorylation sites in the EGFR. 

Zn2+ mediated EGFR phosphorylation did not require ligand binding and was ablated by the EGFR 

kinase inhibitor PD153035, but not by the Src kinase inhibitor PP2. Src activity was inhibited by Zn2+ 

treatment of HAEC, consistent with Src-independent EGFR transactivation in HAEC exposed to 

Zn2+. The rate of exogenous EGFR dephosphorylation in lysates of HAEC exposed to Zn2+ or V4+ was 

significantly diminished. Moreover, exposure of HAEC to Zn2+ also resulted in a significant 

impairment of dephosphorylation of endogenous EGFR. These data show that Zn2+ -induced 

activation of EGFR in HAEC involves a loss of PTP activities whose function is to dephosphorylate 

EGFR in opposition to baseline EGFR kinase activity. These findings also suggest that there are 

marked cell-type specific differences in the mechanism of EGFR activation induced by Zn2+ 

exposure.  



   

 29 

2-B Introduction 

Zinc (Zn2+) is a ubiquitous metallic constituent of ambient particulate matter (PM) (Chang et al., 

2000; Claiborn et al., 2002). Epidemiological studies have associated PM inhalation with adverse 

health effects including diminished lung function, morbidity and mortality (Dockery et al., 1993; 

Koenig et al., 1993; Schwartz, 1994; Samet et al., 2000). In occupational settings, inhalation of zinc 

oxide is known to cause Metal Fume Fever, an acute flu-like syndrome accompanied by airway 

inflammation and production of TNF-α and IL-6 (Nemery, 1990; Blanc et al., 1993). Animal and in 

vitro studies have shown that Zn2+ exposure results in increased synthesis of inflammatory mediators, 

such as chemokines and cytokines (Kodavanti et al., 2002; Richter et al., 2003; Riley et al., 2003) 

whose expression is regulated by phosphorylation-dependent signaling cascades.   

Zn2+ is known to affect a variety of cellular proteins and phosphorylation-dependent signaling 

pathways including the Epidermal Growth Factor Receptor (EGFR) (Wu et al., 1999), Tropomyosin-

related kinase (Hwang et al., 2005), the Mitogen Activated Protein Kinase (Samet et al., 1998) and 

insulin/insulin-like growth factor-1 (Haase and Maret, 2003) pathways. These signaling pathways 

originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by 

opposing protein tyrosine phosphatase (PTP) activity (Ostman and Bohmer, 2001). We have 

previously shown that exposure to Zn2+ can inhibit PTP activity in Human Airway Epithelial Cells 

(HAEC) (Samet et al., 1999). 

The EGFR is a 170-kDa transmembrane glycoprotein that mediates the mitogenic response of cells to 

a variety of polypeptides including EGF and transforming growth factor alpha (Korc et al., 1987). 

Structurally, the receptor contains an extracellular ligand binding domain, an intracellular tyrosine 

kinase domain, and a C-terminal region harboring several tyrosine residues which undergo trans- and 

autophosphorylation upon receptor activation (Ullrich et al., 1984; Hsu et al., 1990; Margolis et al., 

1990). Following ligand stimulation, EGFR undergoes homo- or heterodimerization consequently 
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activating the receptor’s intrinsic kinase activity (Ullrich and Schlessinger, 1990). 

Transphosphorylation of activating tyrosine residues by Src kinase has also been shown to activate 

the receptor (Samet et al., 2003). Both traditional, ligand stimulated receptor activation and 

transactivation events prompt increased receptor kinase enzymatic efficiency (Cooper and Howell, 

1993).  

We have previously reported that Zn2+ activates EGFR in human epidermoid carcinoma cells (A431), 

B82 mouse lung fibroblasts (B82L), and primary HAEC (Wu et al., 1999; Wu et al., 2002; Samet et 

al., 2003). The signaling mechanism by which Zn2+ induces EGFR phosphorylation was shown to be 

secondary to Src kinase activation in both A431 and B82L cells (Wu et al., 2002; Samet et al., 2003). 

It must be noted however, that striking cell-type dependent variability exists within signaling 

pathways (Lakshminarayanan et al., 1998).  In order to study Zn2+ exposure in a highly relevant 

model of PM inhalation in the present study, we have examined the effect Zn2+ exposure on EGFR in 

primary HAEC cultures. We report here that Zn2+ exposure induces EGFR activation in HAEC 

through a mechanism which does not involve Src activation but rather, inhibition of EGFR-directed 

PTP activity. 
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2-C Methods 

Reagents  

Tissue culture media, supplements, and supplies were obtained from Clonetics (San Diego, CA). 

Phosphate-buffered saline, tissue culture media, and reagents were purchased from GibcoBRL 

(Gaithersburg, MD); bis[sulfosuccinimidyl]suberate (BS3) was obtained from Pierce (Rockford, IL). 

Protease inhibitors, phosphatase inhibitors, PD153035, 4-amino-5-(4-chlorophenyl)-7-

(tbutyl)pyrazolo[3,4-d]pyrimidine (PP2), Compound 56 (c56), and EGF were purchased from 

Calbiochem (San Diego, CA). Detergents, metal salts, human collagen, Nonidet P-40, 

PolyGlu:Tyr(4:1),  2-β-mercaptoethanol, dithiothreitol (DTT), 1-hydroxypyridine-2-thione 

(pyrithione) and common laboratory reagents were purchased from Sigma Chemical Co. (St. Louis, 

MO). Tissue culture flasks were purchased from Falcon (Fisher Scientific, Raleigh, NC). The Src 

assay kit, active EGFR, magnesium/ATP cocktail and Fer Kinase were purchased from Upstate (Lake 

Placid, NY). Polyacrylamide was obtained from Roche (Indianapolis, IN). Electrophoresis supplies 

such as molecular mass standards, polyacrylamide and buffers were purchased from Bio-Rad 

(Richmond, CA). PAGEr Duramide precast gels were obtained from Cambrex (Rockland, ME).  

Luminescence reagents and [32P]-γ-adenosine triphosphate (ATP) (10mci/ml) were purchased from 

Amersham Biosciences (Piscataway, NJ). Phospho-EGFR (Tyr845/Tyr1068) and phospho-Src 

(Tyr527/Tyr416 antibodies were purchased from Cell Signaling Technology (Beverly, MA). 

Horseradish peroxidase (HRP)-conjugated goat anti-rabbit, goat anti-mouse, donkey anti-goat IgG, C-

terminal EGFR antibody, protein A-agarose, agarose conjugated EGFR, and broad specificity Src 

antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA).  
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Cell Culture  

Primary normal human airway epithelial (HAEC) cells were obtained from normal adult human 

volunteers by brush biopsy of the mainstem bronchus using a cytology brush during fiberoptic 

bronchoscopy, conducted under a protocol approved by the Committee on the Protection of the Rights 

of Human Subjects at the University of North Carolina at Chapel Hill. HAEC cells were initially 

plated in supplemented bronchial epithelial cell basal medium (0.5 ng/ml human epidermal growth 

factor, 0.5 µg/ml hydrocortisone, 5 µg/ml insulin, 10 µg/ml transferrin, 0.5 µg/ml epinephrine, 

6.5 ng/ml triiodothyronine, 50 µg/ml gentamycin, 50 ng/ml amphotericin-B, 52 µg/ml bovine 

pituitary extract, and 0.1 ng/ml retinoic acid) (BEGM) on tissue culture plates coated with human 

collagen (Sigma), grown to confluence, and then passaged 2 or 3 times in BEGM on ordinary tissue 

culture plates. Solutions of 100 mM Zn2+ and 100 mM V4+ were prepared in distilled water and used 

as stocks for dilution into serum free BEGM. The final concentration of both metals was 500 µM, a 

concentration previously shown to be acutely non-cytotoxic (Samet et al., 1998). 

 

Western Blotting 

Cells were extracted with RIPA lysis buffer consisting of phosphate-buffered saline (pH 7.4) 

containing 1% NP-40, 0.5% deoxycholate, 0.1% SDS, phosphatase inhibitor cocktail sets I and II, and 

protease inhibitor cocktail set III purchased from Calbiochem. Each sample was normalized for a 

protein content of 30-100 µg then mixed with one volume of SDS-PAGE loading buffer containing, 

0.125 M Tris [pH 6.8], 4% SDS, 20% glycerol, 10% ß-mercaptoethanol, and 0.05% bromophenol 

blue. The samples were heated for 1 min at 95°C and run on adjacent lanes of 11% SDS-PAGE gels 

or 4-20% Tris-Glycine Gradient pre-cast gels (Cambrex) with pre-stained molecular weight markers 

in Tris-glycine-SDS buffer. Electrophoresed proteins were electroblotted onto nitrocellulose paper. 

Blots were blocked with 5% non-fat milk, washed briefly, and incubated overnight with HRP-
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conjugated antiphosphotyrosine primary antibodies. HRP-goat anti-rabbit and HRP-donkey anti-goat 

were used as secondary antibodies. A non-specific EGFR primary antibody, which has lower binding 

efficiency when EGFR is highly phosphorylated, was used to normalize for loading variability. 

Protein bands on the membrane were detected using chemiluminescence reagents and film as per 

manufacturer's instructions (Amersham Pharmacia Biotech) and exposed on high-performance 

chemiluminecence film (Amersham Pharmacia Biotech). In some cases, blots were stripped and 

reblotted using a commercially available stripping reagent (Chemicon International, Temecula, CA). 

Blots were digitized using a Kodak EDAS 120 System (Rochester, NY). Western blotting results 

shown are representative of three or more experiments. 

 

Src Kinase Activity Assay 

Cells were lysed in a low-salt buffer containing 1% Triton X-100, 25 mM Tris, pH 7.5, 2 mM EGTA, 

10% glycerol, 1 mM Phenyl methane sulfonyl fluoride (PMSF) (Calbiochem, San Diego, CA), 1 mM 

sodium metavanadate, 10 mM sodium fluoride, 1 µg/ml pepstatin, and 1 µg/ml leupeptin. Following 

preclearing with protein-A agarose, Src kinase was immunoprecipitated from 500 µg cell lysate using 

anti-Src kinase monoclonal antibody (Santa Cruz) for 1 h at 4°C. The immunoprecipitates were then 

washed with lysis buffer followed by a Src reaction buffer provided in the Src activity kit (Upstate, 

Lake Placid, NY). Src kinase activity was assayed in kinase buffer containing 6µCi [32P]-γ-ATP and 

Src substrate peptide as per the manufacturer’s instructions. The reaction was incubated for 10 min at 

30°C with vigorous agitation in an Eppendorf ThermoMixer (Brinkman Instruments, Westbury, NY) 

and was subsequently terminated by the addition of 20 µl of 40% (final) TCA, and a fraction was 

absorbed onto P81 cellulose phosphate paper (Src Activity Kit, Upstate) then washed extensively 

with 1% phosphoric acid. Radioactivity retained on the P81 paper was quantified by liquid 

scintillation counting (LKB Wallace, Gaithersberg, MD).  
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Radiolabeling of [32P]PolyGlu:Tyr(4:1)  

A total of 200 µg PolyGlu:Tyr was radiolabeled using 1 µg of recombinant FER kinase  (Upstate, 

Lake Placid, NY) in the presence of 200 µCi [32P]-γ-ATP for 1 hour at 30° C in 300 µl of a buffer 

consisting of 10 mM MgCl2, 50 mM NaCl and 0.1 mM ATP. The substrate was precipitated by 

adding TCA solution to 20% wt/vol and centrifuging at 12,000 × g for 5 min. The pellet was washed 

three times in 10% TCA and the substrate was resuspended at 10 µg/ml in 2 M Tris, pH 8.0.  

 

In-Gel Tyrosine Phosphatase Activity Assay  

The in-gel phosphatase activity assays were carried out using a modification of a method described 

elsewhere (Burridge and Nelson, 1995). Protein extracts were prepared as for Western blots 

(described previously), except that samples were not boiled. The samples were then subjected to 

SDS-PAGE on 11% polyacrylamide gels containing [32P]PolyGlu:Tyr (approximately 1.5 million 

cpm/40 ml gel). The proteins were then renatured by removing SDS with 20% isopropanol, followed 

by extensive washing of the gels with 0.04% Tween-40 in Tris, pH 8.0.  Clear bands indicative of 

tyrosine phosphatase activity were visualized by autoradiography using a Molecular Dynamics 

PhosphorImager (Molecular Dynamics, Sunnyvale, CA).  

 

Exogenous EGFR Dephosphorylation Assay 

Active EGFR (86kDa) was induced to autophosphorylate by incubation at room temperature for 5 

min in Mg2+/ATP cocktail. HAEC at ~80% confluency were starved for 8-14 hours prior to treatment 

with 500 µM Zn2+ or V4+ in 4µM pyrithione for 20min and harvested in a specialized Phosphatase 

Lysis Buffer containing 100 mM HEPES, 0.2% NP-40, 20 µg/ml PMSF and 10 µM c56. Cell lysates 

were normalized for protein content and 100 µg of protein was brought up in 35 µl of phosphatase 
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buffer composed of 25 mM HEPES pH 7.2, 50 mM NaCl and 2.5 mM EDTA. 100 µg of harvested 

protein in 35 µl was added to the reaction mixture containing 115 µl of PTPs buffer, 10 µM c56 and 

20 µl of phosphorylated EGFR substrate (10 ng/µl) which was incubated at 30°C with mixing and 

sampled at 0 (prior to lysate addition), 5, 10, and 20 minutes. Each sample was placed in 15 µl 4X 

loading buffer on ice and heated for 1 min at 100°C then subjected to SDS-PAGE and Western 

Blotting as previously described to assess the change in phosphorylation over time. 

 

Endogenous EGFR Dephosphorylation Assay 

HAEC at ~80% confluency were starved for 8-14 hours prior to treatment with 20 ng/ml EGF to 

induce full receptor phosphorylation. After washing with room temperature PBS, cells were treated 

with 500 µM Zn2+ or V4+ in 4 µM pyrithione for 20 min and then exposed to 10 µM c56 to inhibit 

further EGFR kinase activity. Cells were harvested, in lysis buffer (as previously described) without 

phosphatase inhibitors, at 10, 30, and 90 seconds and cellular lysates were subjected to SDS-PAGE 

and Western Blotting using phospho-specific antibodies enabling detection of EGFR activation over 

time. Separate blots were analyzed for optical densities using Kodak Software System. Optical 

densities are shown as percentage of individual control. 
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2-D Results 

2-D.1 Zn2+-induced EGFR phosphorylation in human airway epithelial cells (HAEC) requires EGFR 

kinase domain activity but not EGFR ligand binding  

To study the effects of Zn2+ exposure on EGFR signaling in HAEC, we first examined EGFR 

phosphorylation in HAEC treated with 500 µM Zn2+ for 5 and 20 min using phospho site-specific 

antibodies. As shown in Fig. 2-1A, Zn2+ treatment induced a significant increase in EGFR 

phosphorylation at both Tyr1068 and Tyr845 which was evident as early as 5 min. The total EGFR 

antibody used for normalization has reduced binding efficiency for phosphorylated EGFR. As 

reported elsewhere (Haase and Maret, 2003), the Zn2+-specific ionophore pyrithione was found to 

reduce inter-experiment variability in HAEC responsiveness to Zn2+ exposure and, therefore, all 

subsequent experiments in this study were conducted in the presence of 4 µM pyrithione unless 

otherwise noted.  

We have previously shown in B82L (Wu et al., 2002) and A431 cells (Samet et al., 2003) that Zn2+-

induced EGFR activation is independent of EGFR kinase activity, being mediated via 

transphosphorylation by Src. To characterize the mechanism by which Zn2+ activates EGFR in 

HAEC, these cells were pretreated with the potent EGFR kinase inhibitor, c56 prior to exposure with 

500 µM Zn2+ or 20 ng/ml EGF for 20 min. In contrast to observations in B82L and A431 cells, EGFR 

kinase inhibition significantly blocked Zn2+-mediated EGFR activation in HAEC. As expected, c56 

pretreatment completely abolished EGF-induced EGFR phosphorylation (Figure 2-1B).  

To test the role of the extra-cellular ligand-binding domain of the EGFR, HAEC were pretreated with 

a blocking antibody prior to stimulation with Zn2+. Blocking the EGFR ligand binding domain ablated 

EGF-induced EGFR phosphorylation but had no discernible effect on EGFR phosphorylation of 

either site in response to Zn2+ (Figure 2-1C).  
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Figure 2-1 

Figure 2-1A      Figure 2-1B 

  

Figure 2-1C 

Figure 2-1. Zn2+-induced EGFR activation in 
Human Airway Epithelial Cells (HAEC) requires 
EGFR kinase domain activity but not external 
ligand binding. 2-1A: HAEC were treated with 
500 µM Zn2+ for 5 and 20 min in the presence and 
absence of the Zn2+-membrane ionophore, 
pyrithione (PT). Cells were harvested and 
analyzed for EGFR activation by Western 
Blotting using phospho-specific antibodies. The 
antibody used for normalization has reduced 
binding efficiency for phosphorylated EGFR. 2-
1B: Following pretreatment with 10 µM 
Compound 56 (c56) or vehicle control (DMSO) 
for 1 h, HAEC were treated with 500 µM Zn2+ or 
20 ng/ml EGF in media containing 4 µM PT for 
20 min. Lysates were analyzed for EGFR 
activation via Western Blotting with phospho-
specific antibodies. 2-1C: HAEC were pretreated 
with 1 µg/ml of the EGFR blocking antibody, 
LA-1 for 1 hr. Cells were then exposed to 500 µM 
Zn2+ or 20 ng/ml EGF in media containing 4 µM 
PT for 20 min. EGFR activation was assessed via 
Western Blotting with phospho-specific 
antibodies. The results shown are representative 
of three or more experiments. 
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2-D.2 Zn2+-mediated EGFR activation does not require Src kinase activity in HAEC 

The data above showed that Zn2+-induced EGFR phosphorylation required receptor kinase activity 

but not external ligand binding, and suggested that Src activity is not involved in EGFR activation of 

HAEC exposed to Zn2+. To further clarify its role in Zn2+-induced EGFR activation in HAEC, we 

directly examined the effect of Zn2+ exposure on Src activation in these cells. Immunoblotting with 

phosphospecific anti-Src antibodies showed no changes in levels of P-Tyr527  Src or P-Tyr416 Src in 

HAEC exposed to 500 µM Zn2+ for 5 or 20 min relative to untreated controls (Figure 2-2A).  In 

addition, pretreatment of HAEC with the Src kinase activity inhibitor PP2 was partially effective in 

blocking Zn2+-induced EGFR phosphorylation at Tyr1068 and Tyr845 by 20 min (Figure 2-2B). We 

subsequently examined the effect of Zn2+ treatment on Src kinase activity in HAEC. As shown in 

Figure 2-2C, exposure to Zn2+ resulted in a marked reduction in Src kinase activity as early as 5 min, 

with nearly complete inhibition by 20 min. The inhibitory effect of Zn2+ treatment on Src activity was 

also pronounced in the absence of pyrithione (Figure 2-2C) These results confirmed that Zn2+-induced 

EGFR phosphorylation is independent of Src kinase activity in HAEC. 

2-D.3 Exposure to Zn2+ inhibits EGFR-specific Protein Tyrosine Phosphatases (PTP) in HAEC. 

Phosphorylation-dependent signal transduction pathways are regulated by the opposing activities of 

kinases and phosphatases, and we previously reported that exposure to Zn2+ and the non-specific PTP 

inhibitor vanadium (V4+) inhibits protein tyrosine phosphatases in a human airway epithelial cell line 

(Samet et al., 2003). We therefore examined the possibility that Zn2+-induced EGFR activation is 

driven by an inhibition of the tyrosine phosphatase activity(ies) which normally opposes baseline 

EGFR autophosphorylation activity.  Lysates from HAEC treated with 500 µM Zn2+ or 20 ng/ml EGF 

for 20 min were subjected to in-gel phosphatase activity analyses on 32P-polyGlu:Tyr-impregnated 

acrylamide gels. As seen in Figure 2-3, Zn2+ treatment inhibited PTPs of molecular weights ranging 

from 15 to 250 kDa in HAEC, while stimulation with EGF had no discernible effect. 
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These data confirmed that exposure to Zn2+ can decrease PTP activity in HAEC. In order to examine 

EGFR-specific dephosphorylation, we first measured the dephosphorylation activity in lysates 

prepared from HAEC exposed to Zn2+, V4+ or media alone. Dephosphorylation activity in control 

HAEC against exogenous P-EGFR could be observed clearly over the assay period, with a marked 

decrease in phosphorylation of Tyr1068 and Tyr845 observed by 20 min (Figure 2-4A). By comparison, 

exposure to 500 µM Zn2+ for 20 min resulted in a significant impairment in the rate of exogenous 

EGFR dephosphorylation in HAEC (Figure 2-4A and 2-4B). As expected, V4+ treatment of HAEC 

also induced marked inhibition of EGFR dephosphorylation activity (Figure. 2-4A).
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Figure 2-2 

Figure 2-2A                Figure 2-2B 

 

Figure 2-2C 

Figure 2-2. Zn2+-mediated EGFR activation does not require Src kinase activity in HAEC. 2-2A:  HAEC were 
treated with 500 µM Zn2+ and 4 µM PT for 5 and 20 min. Cellular lysates were subjected to SDS-PAGE and 
Western Blotting using phospho-specific antibodies directed against Src activation residues. The results shown 
are representative of three or more experiments. 2-2B: Following pretreatment with 10 µM PP2 or vehicle 
control (DMSO) for 1 h, HAEC were treated with 500 µM Zn2+ in media containing 4 µM PT for 5 and 20 min. 
Lysates were analyzed for EGFR activation via Western Blotting with phospho-specific antibodies. The results 
shown are representative of three or more experiments. 2-2C: HAEC were treated with 500 µM Zn2+ for 5 and 
20 min in the presence and absence of 8 µM PT. 500 µg of cellular lysates were precleared with 20 µl protein-A 
agarose for 30 min and immunoprecipitated (IP) using a broad specificity Src monoclonal antibody for 1 h at 
4°C. The precipitated protein was assessed for Src kinase activity. Shown are means + SE of three independent 
experiments. *P<0.05 and **P<0.01 compared with control.  
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Figure 2-3 

 

 

Figure 2-3. Zn2+ inhibits Protein Tyrosine Phosphatases 
(PTPases) in HAEC. HAEC were treated with 500 µM 
Zn2+ or 20 ng/ml EGF in media containing 4 µM PT for 20 
min. 40-80 µg of protein extracts were prepared as for 
Western Blots, except that samples were not boiled. The 
samples were then subjected to SDS-PAGE on 11% 
polyacrylamide gels containing [32P]PolyGlu:Tyr 
(approximately 1.5 million cpm/40 ml gel). Following 
protein renaturation, clear bands indicative of tyrosine 
phosphatase activity were visualized by autoradiography 
using a Molecular Dynamics PhosphorImager. The results 
shown are representative of three or more experiments. 
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Figure 2-4 

Figure 2-4A 

Figure 2-4B  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4. Exogenous EGFR Dephosphorylation 
was inhibited in lysates obtained from HAEC 
exposed to Zn2+ in vitro. 2-4A: HAEC treated with 
500 µM Zn2+ or V4+ in 4 µM PT for 20 min. 1 ng/µl 
active, phosphorylated EGFR substrate was mixed 
with 60-100 µg of cellular lysate and the reaction 
was sampled at 5, 15, and 20 min. Lysates were 
analyzed for EGFR dephosphorylation over time 
via Western Blotting with phospho-specific anti-
EGFR antibodies. The results shown are 
representative of three or more experiments. 2-4B: 
A graphical representation of the optical densities 
corresponding to the blot shown. 
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To corroborate the findings obtained using exogenous EGFR and HAEC cell lysates, we next 

performed separate experiments in which the effect of Zn2+ on phosphatase activity toward 

endogenous EGFR was assayed in intact HAEC. HAEC were first stimulated with EGF to induce 

maximal autophosphorylation of endogenous EGFR at multiple sites. Following treatment with 500 

uM Zn2+, 500 uM V4+ or 20 ng/ml EGF for 20 min, a fast-acting EGFR kinase inhibitor (c56) was 

added to the cells and the rate of EGFR dephosphorylation was then measured using immunoblotting 

(Figure 2-5A). As shown in Figure 2-5B and 2-5C, endogenous EGFR dephosphorylation at both 

sites in untreated HAEC was strikingly fast, with over 80% of the P-Tyr1068 signal being lost within 10 

s. In comparison, the rate of P-Tyr1068EGFR and P-Tyr845EGFR dephosphorylation was markedly 

diminished in Zn2+-exposed cells (Figure 2-5B). HAEC treatment with V4+, used as a reference 

inhibitor of PTP activity, also resulted in a pronounced impairment of EGFR dephosphorylation at 

both sites examined (Figure 2-5B).  
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Figure 2-5 

Figure 2-5A 

Figure 2-5B 

Figure 2-5C 

 

 

 

 

2-

Figure 2-5. EGFR dephosphorylation is inhibited by 
Zn2+ in intact HAEC. 2-5A: A schematic displaying 
the experimental protocol. 2-5B: HAEC were treated 
with 20 ng/ml EGF for 5 min to induce maximal 
receptor phosphorylation. Cells were subsequently 
exposed to 500 µM Zn2+ or V4+ in 4 µM PT for 20 
min followed by 10 µM c56 treatment to inhibit 
further EGFR kinase activity. Cells were then 
harvested at 10, 30, and 90 seconds. Lysates were 
subjected to SDS-PAGE and Western Blotting using 
phospho-specific anti-EGFR antibodies. Band 
intensities were analyzed using Kodak Software 
System. Optical densities shown were normalized to 
the DMSO value within each treatment group. The 
results shown are representative of 5 or more 
experiments. 2-5C: A graphical representation of the 
optical densities corresponding to the blot shown. 

 



   

 45 

2-E Discussion  

We have previously reported that exposure to Zn2+ induces EGFR phosphorylation in A431 (Samet et 

al., 2003) and B82L cells (Wu et al., 2002) through a mechanism that involves transactivation of the 

receptor by Src. In this study we examined the pathway that leads to EGFR activation in primary 

cultures of the human airway epithelium and report a Src-independent mechanism wherein the 

initiating event appears to be not kinase activation, but rather inhibition of tyrosine phosphatase 

activity by Zn2+ (See Appendix B). 

The lack of involvement of Src in EGFR phosphorylation induced by Zn2+ in HAEC is supported in 

this study by several lines of evidence. First, EGFR phosphorylation in HAEC exposed to Zn2+ is not 

accompanied by an alteration in the levels or pattern of phosphorylation at activating (Tyr416) and 

inhibiting (Tyr527) sites on Src. Second, by 20 min, Zn2+-induced EGFR phosphorylation minimally 

blocked by pretreatment of HAEC with the Src kinase inhibitor PP2. Third, EGFR kinase activity is 

necessary for Zn2+ induced EGFR phosphorylation. Perhaps the most compelling data in the case 

against a role for Src in EGFR phosphorylation in Zn2+-treated HAEC, is the fact that Src kinase 

activity is actually inhibited under the same conditions in which EGFR phosphorylation is increased 

during exposure to Zn2+. Thus the data show that Src kinase activity is not required for Zn2+-mediated 

EGFR activation. However, these data do not rule out the possibility that other PP2-sensitive kinases 

contribute to Zn2+-mediated EGFR transphosphorylation. It is also possible that the required EGFR 

kinase activity is itself partially inhibited by PP2. Zn2+ is also known as a competitive inhibitor of Csk 

(Sun and Budde, 1999), a tyrosine kinase that functions to suppress Src activity and is structurally 

very similar to Src.  Moreover, Zn2+ inhibits Ck2 activity in vitro (W. Wu, personal communication), 

and therefore, Zn2+ likely acts as a competitive inhibitor of all tyrosine kinases by displacing required 

Mg2+ ions from specific metal binding sites (Sun and Budde, 1999).  
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Here we report that the mechanism of Zn2+-induced EGFR activation in HAEC is clearly distinct 

from that previously reported in the A431 skin carcinoma and B82L mouse lung fibroblast cells. In 

those cell lines, Zn2+ exposure was found to induce a Src-dependent and EGFR-kinase independent 

transphosphorylation of EGFR (Wu et al., 2002; Samet et al., 2003). The mechanistic explanation for 

these differences is not known, however is it possible to speculate that cell type differences in 

permeability to Zn2+ result in temporal variations in the inactivation of PTPs and the activation of Src. 

The highly conserved PTP active site requires that the catalytic cysteine be in the thiolate form in 

order to allow efficient transfer of substrate phosphates. Due to its unique microenvironment, the 

catalytic cysteine has a low pKa (Zhang and Dixon, 1993) enabling activity at physiological pH but 

also rendering the active thiolate anion highly susceptible to oxidation by ROS (Salmeen and Barford, 

2005), and possibly also to attack by metal ions like Zn2+ (Appendix A). Transient and reversible 

inhibition of tyrosine phosphatases is now recognized as an essential event in growth factor receptor 

signaling (Meng et al., 2004). ROS-mediated PTP inhibition has been shown to occur in a variety of 

cell types in response to EGF (Deyulia and Carcamo, 2005), PDGF (Meng et al., 2002) and insulin 

receptor (Meng et al., 2004) binding. The target of the inhibition is the thiolate group in the catalytic 

cysteine of the PTP, which is oxidized to the inactive sulfenyl derivative. 

Zn2+ is a known inhibitor of PTPs (Haase and Maret, 2003), including a broad spectrum of PTPases 

present in HAEC (Samet et al., 1999). A mechanism of direct inhibition has recently been proposed 

wherein Zn2+ blocks PTP activity by binding to the catalytic cysteine and to neighboring histidine or 

aspartate residues present in the highly conserved active site (Haase and Maret, 2003). Treatment of 

Zn2+ exposed HAEC with the reductant dithiothreitol reversed Zn2+-mediated EGFR activation 

demonstrating the transient nature of the proposed mechanism of PTP inactivation (Tal, Appendix i). 

Interestingly, Maret and colleagues have proposed a physiological role for intracellular Zn2+ stores in 

the inhibition of PTPs during receptor-mediated signaling. According to this model, tightly regulated 

fluctuations in intracellular Zn2+ are induced by oxidation of metallothionein cysteine residues 
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associated with Zn2+ causing the release of free Zn2+ at concentrations sufficient to inhibit PTPs and 

thereby regulate phosphorylation dependent signaling pathways in a reversible manner (Haase and 

Maret, 2003).  

In untreated HEAC, growth factor induced receptor phosphorylation was extensively reversed within 

10 s of the cessation of kinase activity, demonstrating the tight control that PTPs exert over receptor 

tyrosine kinase signaling. The ability of Zn2+ exposure to induce a prolongation of EGFR 

phosphorylation in the absence of kinase activity illustrates the susceptibility of phosphoprotein 

catabolism to inhibition by Zn2+. Interestingly, our data may show differential rates of 

dephosphorylation at tyrosine residues 1068 and 845, suggesting the involvement of multiple PTPs in 

this regulatory event. The number of PTPs which exert activity on EGFR is not currently known. 

Implicated candidates include PTP1B (Flint et al., 1997; Haj et al., 2003), LAR (Kulas et al., 1996), 

PTP-σ (Suarez Pestana et al., 1999), SHP-1 (Keilhack et al., 1998), and T-cell PTP (Tiganis et al., 

1998). Additional studies will be required to identify the specific EGFR-directed PTP(s) whose 

activity is inhibited in HAEC exposed to Zn2+.   

The data presented in this study suggest that signal transduction events induced by exposure to Zn2+ 

are initiated not by the direct induction of kinase activation, but through the inhibition of critical 

phosphatases whose activities oppose baseline kinase activity and normally function to maintain 

signaling quiescence in resting cells. It was not a goal of this study to model the conditions of Zn2+ 

exposure experienced by HAEC in vivo. Nonetheless, it is interesting to note that serum 

concentrations of Zn2+ are approximately 25 µM, and certain biological compartments (e.g., synaptic 

space) can exceed 300 µM Zn2+ (Chen et al., 1997; Huang, 1997). Thus, the exposure conditions used 

in this study, which did not induce overt cytoxicity, may be relevant from a toxicological as well as a 

pathophysiological standpoint. Given the pervasive presence of Zn2+ in ambient air, and the broad 

role that EGFR plays in signaling processes within cells, these findings may be relevant as a 

mechanism of PM inhalation toxicity.  



Chapter III: Epidermal growth factor receptor activation by diesel particles is mediated by 

tyrosine phosphatase inhibition 

 

The main findings of Specific Aim 2 (Chapter III) are currently under revision for resubmission to 

Toxicology and Applied Pharmacology “Tamara Tal, Philip Bromberg, Yu-Mee Kim, and James 

Samet. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine 

phosphatase inhibition.” 

 

TT contributed to the manuscript as follows. TT, JS, and PB conceived of the study design; TT 

performed all experiments; and TT and JS wrote the manuscript. 
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3-A Abstract 

Exposure to particulate matter (PM) is associated with increased cardiopulmonary morbidity and 

mortality. Diesel exhaust particles (DEP) are a major component of ambient PM and may contribute 

to PM-induced pulmonary inflammation. Proinflammatory signaling is mediated by phosphorylation-

dependent signaling pathways whose activation is opposed by the activity of protein tyrosine 

phosphatases (PTPases), which thereby function to maintain signaling quiescence. PTPases contain 

an invariant catalytic cysteine that is susceptible to electrophilic attack. DEP contain electrophilic 

oxy-organic compounds that may contribute to the oxidant effects of PM. Therefore, we hypothesized 

that exposure to DEP impairs PTPase activity allowing for unopposed basal kinase activity. Here we 

report that exposure to 30 µg/cm2 DEP for 4 h induces differential activation of signaling in primary 

cultures of human airway epithelial cells (HAEC), a primary target cell in PM inhalation. In-gel 

kinase activity assays of HAEC exposed to DEPs of low (L-DEP), intermediate (I-DEP) or high (H-

DEP) organic content showed differential activation of intracellular kinases. Exposure to these DEP 

also induced varying levels of phosphorylation of the receptor tyrosine kinase EGFR in a manner that 

requires EGFR kinase activity but does not involve receptor dimerization. We demonstrate that 

treatment with DEP results in an impairment of total and EGFR-directed PTPase activity in HAEC 

with a potency that correlates with the organic content of these particles. These data show that DEP-

induced EGFR-phosphorylation in HAEC is the result of a loss of PTPase activities which normally 

function to dephosphorylate EGFR in opposition to baseline EGFR kinase activity.  
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3-B Introduction 

Diesel exhaust particles (DEP) are ubiquitous air contaminants in ambient and occupational settings 

(Lloyd and Cackette, 2001). The composition of DEP is complex and variable consisting of an 

elemental carbon core with adsorbed organic compounds, as well as small amounts of sulfate, nitrate, 

metals and other trace elements (Wichmann, 2007). The organic fraction of DEP varies, ranging from 

2-50% of the total particle mass, and has been associated with differential pulmonary toxicity and 

mutagenicity in cell and animal models (Li et al., 2002; DeMarini et al., 2004; Singh et al., 2004). 

In human studies, acute exposure (1 h) to freshly generated DEP has been shown to induce acute 

pulmonary inflammation characterized by increased levels of neutrophils, B-lymphocytes, and the 

inflammatory mediators, histamine and fibronectin in bronchoalveolar lavage fluid (Salvi et al., 1999). 

Another study reported an increased expression of the proinflammatory cytokine IL-8 in bronchial 

mucosal biopsies obtained from healthy human volunteers exposed to DEP for 1 h (Pourazar et al., 

2005). It is also well established that DEP induces the expression of proinflammatory cytokines in 

cultured cell systems (Bonvallot et al., 2001; Baulig et al., 2003; Matsuzaki et al., 2006). Taken 

together, these studies support the notion that exposure to DEP can induce pulmonary inflammation.  

Expression of proinflammatory signaling molecules is controlled by phosphorylation-dependent 

signaling cascades wherein activated kinases function to phosphorylate downstream signaling 

molecules. In the case of tyrosine kinases, the activities of these enzymes are opposed by that of 

protein tyrosine phosphatases (PTPases) which thereby function to maintain signaling quiescence 

(Stoker, 2005). The PTPases constitute a superfamily of enzymes which contain conserved Cys, Arg, 

and Asp residues critical for catalysis (Barford et al., 1994). The microenvironment of the PTPase 

active site cleft lowers the pKa of the catalytic cysteine residue to < 6, allowing it to exist in its 

thiolate anion (R-S-) form at physiological pH (Peters et al., 1998). This property renders PTPases 
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highly susceptible to electrophilic attack (Denu and Tanner, 1998; Takakura et al., 1999; Kikuno et 

al., 2006; Iwamoto et al., 2007). 

We have previously shown that divalent zinc (Zn2+), another component of ambient PM, induces 

EGFR activation and upregulation of NFκB-dependent IL-8 expression in human airway epithelial 

cells (Kim et al., 2006; Tal et al., 2006). Moreover, we reported that Zn2+ exposure did not increase 

EGFR kinase activity but rather, impaired EGFR-directed PTPase activity, allowing for ligand-

independent activation of the EGFR (Tal et al., 2006). A recent study showed that a specific organic 

constituent of PM, 1,2-napthoquinone, impairs the tyrosine phosphatase PTP1B, leading to sustained 

EGFR signaling (Iwamoto et al., 2007). However, the link between PTPase inhibition and EGFR 

activation has not been made for particulate exposures. Here we show that DEP exposure induces 

EGFR-dependent phosphorylation though a mechanism involving the inactivation of EGFR-directed 

PTPase activity in primary human airway epithelial cells, a principal target cell of inhaled PM.  
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3-C Materials and Methods 

Preparation of DEP. Thee DEP samples were examined. The first, DEP with low organic content (L-

DEP), was obtained from the National Institute of Sciences and Technology (NIST 2975; Donaldson, 

Minneapolis, MN). The material was collected using a diesel forklift and hot bag filter system. L-DEP 

contains 2.0 % (wt/wt) organic matter extractable by dichloromethane (Singh et al., 2004). The 

second sample, DEP with intermediate organic content (I-DEP), was generated in June 2005 at the 

U.S. Environmental Protection Agency (Research Triangle Park, NC) with the use of a 30-kW (40 

HP) four-cylinder Deutz BF4M1008 diesel engine connected to a 22.3-kW Saylor Bell air compressor. 

I-DEP contains 18.9% (wt/wt) organic matter by dichloromethane extraction (Dr. Seung-Hyun Cho, 

personal communication). The third particle, DEP with high organic content (H-DEP), was generated 

using a light-duty (2,740 cc), 4-cylinder, 4JB1-type Isuzu diesel engine with torque load of 6 kg/m 

generated by an ECDY dynamometer (Meiden-Sya, Tokyo, Japan) and collected as previously 

described by Sagai et al. (Sagai et al., 1993). H-DEP contains 26.3 % (wt/wt) organic matter 

extractable by dichloromethane (Singh et al., 2004). 

Cell culture and treatment. Primary normal human airway epithelial (HAEC) cells were cultured as 

described earlier (Chapter II). Prior to particle treatment, cells were growth factor starved in un-

supplemented BEBM for 9-15 h. L-DEP, I-DEP, H-DEP and carbon black suspensions (Columbian 

Chemicals Company; Marietta, GA) were freshly prepared at 300 µg/ml in BEBM by water bath 

sonication for 10 min. HAEC were exposed to a final concentration of 30 µg/cm2 for 4 h. H2O2 (100 

mM) and vanadate (100 mM) were mixed at room temperature to produce 50 mM pervanadate (PV) 

stock (Sigma Chemical Co; St. Louis, MO). HAEC were treated with 50 µM PV for 30 min.  

In-gel kinase activity assay. Protein kinase activities in cell lysates fractionated by SDS-PAGE were 

measured as described by Wang and Erikson (Wang and Erikson, 1992). Briefly, cells were lysed in a 

low-salt buffer containing 1% Triton X-100, 25 mM Tris, pH 7.5, 2 mM EGTA, 10% glycerol, 1 mM 
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PMSF, 1 mM sodium metavanadate, 10 mM sodium fluoride, 1 µg/ml pepstatin, and 1 µg/ml 

leupeptin. Lysates were loaded onto standard 11% SDS-polyacrylamide gels containing 250 µg/ml 

myelin basic protein (MBP). In each well, 100 µg of sample protein was loaded and the gel was 

submitted to electrophoriesis at 20 V for overnight at 4°C. After running, the gels were washed 

sequentially with (i) 20% 2-propanol-50 mM Tris (pH 8.0), (ii) 50 mM Tris (pH 8.0)-0.05% 2-

mercaptoethanol (buffer A), (iii) 6 M guanidine hydrochloride in buffer A, followed by repeated 

washings in (iv) 0.04% Tween in buffer A overnight at 4°C. Phosphorylation of MBP was carried out 

by adding 10 ml of 40 mM HEPES (pH 8), 2 mM dithiotheitol (DTT), 100 µM EGTA, 5 mM MgCl2, 

25 µM ATP, and 250 µCi [γ-32P]ATP for 60 min at room temperature. The gel was then washed 

extensively with 5% TCA-1% sodium pyrophosphate, dried, and exposed to film. 

Western Blotting. Western Blotting was performed as earlier described (Section 2-C). Graphical 

representation of blot densities obtained from thee separate experiments is also shown.   

EGFR dimerization. A431 cells were cultured in Dulbecco's minimum essential medium (DMEM) 

with high glucose supplemented with 10% fetal bovine serum and gentamicin (5 µg/ml) and deprived 

of serum for 12–18 h prior to treatment with DEP in DMEM. Following particle exposure, cells were 

washed with ice-cold PBS and treated with 1 ml of 2.5 mM Bis(Sulfosuccinimidyl)suberate (BS3; 

Pierce, Rockford, IL) in PBS for 30 min at room temperature. The cross-linking reaction was stopped 

by incubation in PBS containing 20 mM Tris, pH 7.5, for 15 min, and the cells were scraped into 100 

µl of PBS and centrifuged at 1000 × g for 5 min at 4°C. The pellet was resuspended in 50 µl RIPA 

buffer containing a cocktail of anti-protease and anti-PTPase inhibitors, sheared with a syringe, and 

subjected to Western blotting using a mouse anti-human-EGFR antibody cocktail that recognizes the 

extracellular domain of the EGFR (Santa Cruz). 

Protein tyrosine phosphatase activity assay. DEP-treated HAEC were harvested in a specialized 

glove box flushed with argon with a final concentration < 2% oxygen. HAEC were lysed using a 
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Phosphatase Lysis Buffer containing 100 mM HEPES, 0.2% NP-40, 20 µg/ml PMSF and centrifuged 

at 850 g for 5 min to remove cellular debris. Lysates were subsequently centrifuged at 20,000 g for 20 

min to remove visible particles. Supernatants were normalized for protein content. Samples 

containing 10 µg of cell lysates were used to determine total PTPase activity using a 96 EnzChek 

Tyrosine Phosphatase Assay Kit, as per manufacturer’s directions (Molecular Probes; Carlsbad, CA). 

Fluorescence was measured over time using excitation at 355 + 20 nm and emission at 460 + 12.5 nm. 

Data are shown as percent control of untreated from 3 independent experiments. Two-way ANOVA 

with a Bonferroni post-test was used to determine significance. 

Exogenous EGFR dephosphorylation assay. The exogenous EGFR dephosphorylation assay was 

performed as described Section 2-C. Band intensities were analyzed using Kodak Software System. 
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3-D Results 

3-D.1 Exposure to DEP of varying organic-content induces differential kinase activation in HAEC. 

The organic content of DEP has been suggested to be a determinant of its toxicity (Singh et al., 2004).  

In order to obtain a general assessment of the role of organic content on DEP-induced activation of 

intracellular signaling pathways, protein extracts prepared from HAEC exposed for 4 hours to 30 

µg/cm2 of DEP of low (L), intermediate (I), or high (H) organic content were subjected to an in-gel 

kinase activity assay. As shown in Figure 3-1, exposure to L-DEP, I-DEP or H-DEP induced 

differential kinase activation profiles in HAEC. For example, extracts prepared from HAEC treated 

with H-DEP showed activation of a distinct kinase of approximately 45 kDa, which is altogether 

absent in L-DEP and I-DEP treated cells. In contrast, treatment with L-DEP resulted in the loss of a 

kinase with a molecular weight of approximately 70 kDa. Carbon black (CB) was used as a negative 

control for the effect of organic-free particulate exposure, and the data show that CB exposure did not 

result in noticeable changes in kinase activity relative to controls treated with media alone.  These 

data showed that DEP with varying organic content can differentially activate intracellular kinase 

activity in HAEC. 
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Figure 3-1 

 

Figure 3-1. Exposure to DEP induces differential kinase activation in HAEC. Cells were treated with 
30 µg/cm2 L-DEP, I-DEP, H-DEP or carbon black (CB) or media control (CT) for 4 h. Samples 
containing 50-100 µg cell lysate were loaded onto a gel containing 250 µg/ml MBP and analyzed for 
kinase activity by the addition of 5 mM MgCl2, 25 µM ATP, and 250 µCi [gamma32P]ATP. Image 
contrast was optimized to show bands of intermediate molecular weights. The results shown are 
representative of two experiments.    
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3-D.2 Exposure to DEP induces EGFR kinase-dependent EGFR phosphorylation in HAEC. The 

EGFR is a critical receptor tyrosine kinase that regulates cell growth, survival, differentiation, 

apoptosis, and inflammation (Bazley and Gullick, 2005). Therefore, to determine whether DEP 

exposure triggers EGFR activation, we first measured levels of phospho EGFR in HAEC exposed to 

30 µg/cm2 L-DEP, I-DEP or H-DEP for 4 h using Western Blotting with a phosphosite-specific 

antibody. As shown in Figure 3-2A, exposure to H-DEP induced a marked increase in EGFR 

phosphorylation levels relative to control. In contrast, L-DEP or I-DEP exposure resulted in relatively 

weak EGFR phosphorylation, while CB failed to increase phospho-EGFR levels above control levels. 

As expected, treatment with pervanadate (PV), a potent inhibitor of PTPase activity, induced marked 

EGFR phosphorylation. Time-course and dose-response experiments showed that 30 ug/cm2 H-DEP 

treatment for 4 h produced maximal EGFR phosphorylation in HAEC (data not shown).  

To characterize the mechanism of its activation, we next examined the functional requirements for 

DEP induced activation of the EGFR in HAEC. HAEC were pretreated with the potent EGFR kinase 

inhibitor, c56 (10 µM for 60 min) or vehicle control (DMSO) prior to exposure with 30 µg/cm2 L-

DEP, I-DEP, H-DEP or CB for 4 h, 50 µM PV for 30 min or 100 ng/ml EGF for 15 min. EGFR 

kinase inhibition significantly blocked H-DEP-induced EGFR phosphorylation in HAEC (Figure 3-

2B). P-EGFR levels induced by L-DEP and I-DEP were also suppressed. As expected, c56 treatment 

also prevented EGF-mediated EGFR phosphorylation. Interestingly, c56 pretreatment in control 

HAEC completely ablated basal (control) levels of EGFR phosphorylation, suggesting that EGFR 

autophosphorylation is the dominant mechanism of EGFR activation in untreated HAEC. As expected, 

we observed that c56 pretreatment failed to block PV-mediated EGFR phosphorylation. While these 

results do not rule out transphosphorylation of the receptor, they suggest that, in the absence of 

EGFR-directed PTPase activity basal EGFR kinase activity is required for EGFR phosphorylation. 
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Figure 3-2 

Figure 3-2A 

 

Figure 3-2B 

 

 

Figure 3-2. DEP exposure induces EGFR kinase dependent EGFR phosphorylation. 3-2A: Cells 
were treated with 30 µg/cm2 L-DEP, I-DEP, H-DEP or CB or media (CT) for 4 h or 50 µM 
pervanadate (PV) for 30 min. Cells were lysed and the state of EGFR phosphorylation was detected 
by Western Blotting using a phosphorylation-specific antibody directed against tyrosine 845. 3-2B: 
Following pretreatment with 10 µM of the EGFR kinase inhibitor compound 56 (c56), vehicle control 
(DMSO), or 1 µg/ml of the EGFR blocking antibody LA-1 for 1 h, HAEC were exposed to 30 µg/cm2 
L-DEP, I-DEP, H-DEP or CB or media for 4 h, 50 µM PV for 30 min or 100 ng/ml EGF for 15 min. 
Lysates were analyzed for EGFR phosphorylation via Western Blotting with phospho-specific 
antibodies. The results shown are representative of thee experiments. 
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3-D.3 DEP-induced EGFR phosphorylation does not require access to the EGFR ligand binding 

domain or receptor dimerization. To further characterize the functional requirements for DEP-

induced EGFR phosphorylation, we investigated the role of the EGFR extracellular ligand-binding 

domain. HAEC were pretreated with a blocking antibody (clone LA-1, 1 µg/ml for 60 min) prior to 

exposure with 30 µg/cm2  L-DEP, I-DEP or H-DEP for 4 h, 50 µM PV for 30 min or 100 ng/ml EGF 

for 15 min. LA-1 pretreatment effectively blocked EGF-mediated EGFR phosphorylation (Figure 3-

2B). In comparison, LA-1 pretreatment diminished DEP induced EGFR phosphorylation only 

partially. These data suggest that blocking the EGFR ligand binding site is ineffective in preventing 

H-DEP and L-DEP induced EGFR phosphorylation.  

Ligand-dependent EGFR activation results in homo- or hetero-dimerization of the receptor (Gunther 

et al., 1990). As an independent assessment of the possibility that DEP induced-EGFR 

phosphorylation is initiated though an extracellular ligand-like mechanism, we next examined the 

possibility that DEP treatment induces EGFR dimerization. To increase the likelihood of detecting 

EGFR dimerization should it occur with DEP exposure, we performed these experiments using A431 

cells, a skin carcinoma cell line which overexpresses EGFR and displays a high density of surface 

EGFR molecules (Samet et al., 2003). EGFR dimerization was measured in intact A431 cells treated 

with 30 µg/cm2 L-DEP, I-DEP, H-DEP or  CB for 4 h, or with 200 ng/ml EGF for 15 min. The 

presence of EGFR dimers was then measured in protein extracts by Western blotting following the 

addition of a cross-linking agent (2.5 mM BS3). As expected, activation by EGF resulted in EGFR 

dimerization in A431 cells (Figure 3). However, exposure to L-DEP, I-DEP, or H-DEP did not result 

in detectable EGFR dimerization. Similarly, CB and PV treatments failed to induce EGFR 

dimerization. Taken together with the receptor blocking experiments, these data suggest that DEP-

mediated EGFR phosphorylation occurs though a mechanism that is independent of ligand-

stimulation and receptor dimerization.  
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Figure 3-3 

 

 

Figure 3-3. DEP-induced EGFR phosphorylation does not require receptor dimerization. Analysis of 
EGFR dimerization was measured in intact A431 cells treated with 30 µg/cm2 L-DEP, I-DEP, H-DEP 
or CB or media for 4 h or 200 ng/ml EGF for 15 min. Cells were then rinsed and treated with 2.5 mM 
BS3 for 30 min lysed and subjected to Western blotting using an EGFR antibody that recognizes the 
extracellular domain of the EGFR. The results shown are representative of thee or more experiments. 
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3-D.4 Exposure to DEP inhibits PTPases in HAEC. Our previous work with Zn2+-induced activation 

of EGFR demonstrated ligand-independent activation of the EGFR secondary to PTPase inactivation. 

To assess whether DEP can induce a similar effect in HAEC, we measured PTPase activity in lysates 

obtained from HAEC exposed to 30 µg/cm2 L-DEP, I-DEP, H-DEP or CB for 4 h, 50 µM PV for 30 

min or media alone. To prevent non-specific oxidation of cellular PTPases, lysates were handled in an 

anaerobic chamber as described previously (Meng et al., 2005). Total PTPase activity was then 

measured using a synthetic substrate and the data are shown as the ratio of PTPase activity in treated 

versus untreated controls (Figure 3-4). Treatment with L-DEP- or H-DEP resulted in a marked and 

statistically significant (p < 0.01) impairment of PTPase activity in comparison to lysates obtained 

from control cells (Figure 3-4). Moreover, consistent with observed EGFR phosphorylation trends 

noted earlier (Figure 3-2A), H-DEP was a more potent inhibitor of PTPase activity relative to L-DEP, 

whereas I-DEP exposure did not show an effect on PTPases. Consistent with their respective effects 

on EGFR phosphorylation, treatment with CB did not result in significant impairment of PTPase 

activity (p > 0.05) while treatment with PV induced pronounced impairment in cellular PTPase 

activity relative to control (p < 0.01).  
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Figure 3-4 

Figure 3-4A 

 

Figure 3-4B 

 

Figure 3-4. DEP exposure impairs total PTPase activity HAEC lysates. HAEC were treated with 30 
µg/cm2 L-DEP, I-DEP, H-DEP or CB for 4 h or 50 µM PV for 30 min and harvested in an anaerobic 
environment to prevent non-specific oxidation. Protein extracts (10 µg) were loaded onto a PTPase 
activity kit and fluorescence was measured at using excitation at 355 + 20 nm and emission at 460 + 
12.5 nm at 0-18 min.  Data are expressed as the ratio of picomoles of phosphate released in treated 
versus control samples at 6 min (3-4A) and rates of dephosphorylation over the entire assay period 
are shown (3-4B). Total PTPase activity in cells treated with L-DEP, H-DEP or PV were statistically 
significant from control samples (P < 0.001). HAEC exposed to I-DEP and CB did not result in 
significant impairments in total PTPase activity. Significance was determined by one-way ANOVA 
with a Bonferroni post-test (n=3).  
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3-D.5 Exposure to DEP impairs EGFR-directed PTPase activity in HAEC. We next determined 

whether DEP-induced EGFR phosphorylation is linked to the inhibition of PTPases that regulate the 

phosphorylation status of the receptor. EGFR dephosphorylation rates were measured in lysates 

prepared from HAEC exposed to 30 µg/cm2 L-DEP, I-DEP, H-DEP or CB for 4 h, or treated with 50 

µM pervanadate for 20 min or media alone. Recombinant P-EGFR was added to cell lysates and the 

reaction mixture was sampled at 0, 3, 10, and 30 min and analyzed by Western blotting. Time-

dependent dephosphorylation of the exogenous P-EGFR substrate could be observed clearly in 

control HAEC lysates over the 30 min assay period, with a significant decrease in levels of P-EGFR 

observed by 10 min (Figures 3-5A and 3-5B). In marked contrast, exposure to H-DEP resulted in a 

marked impairment in the rate of exogenous EGFR dephosphorylation at each time point. Similarly, 

treatment with L-DEP also induced a measureable impairment in EGFR dephosphorylation. Notably, 

the magnitude of the effect of H-DEP and L-DEP on impairment of EGFR-directed PTPase activity 

exceeded the effects of PV, the general PTPase inhibitor (Fig. 3-5B).  In agreement with the data 

shown in Figure 3-4, there were no differences in EGFR-directed PTPase activity in lysates obtained 

from HAEC treated with I-DEP or CB (Fig. 3-5A and 3-5B).  
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Figure 3-5 

Figure 3-5A 

 

Figure 3-5B 

 

 

 

Figure 3-5B 

 

 

 

 

 

Figure 3-5. Exogenous EGFR dephosphorylation was inhibited in lysates obtained from HAEC 
exposed to DEP containing high and low but not intermediate organic content in vitro. 3-5A: HAEC 
were treated with 30 µg/cm2 L-DEP, I-DEP, H-DEP or CB for 4 h or 50 µM PV for 30 min. In an 
anaerobic environment, 0.2 µg of active, phosphorylated EGFR substrate was mixed with 100 µg of 
cellular lysate and the reaction was sampled at 0, 3, 10, and 30 min. Lysates were analyzed for EGFR 
dephosphorylation over time via Western Blotting with phospho-specific anti-EGFR antibodies. The 
results shown are representative of thee experiments. 3-5B: A graphical representation of the optical 
densities obtained from thee independent experiments (error bars omitted for clarity). Band intensities 
were analyzed using Multigauge Software and shown here as % control of the intensity of the band 
area minus the background (n=3). 
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3-E Discussion  

The mechanisms by which PM induces adverse health effects are not well understood. Lung epithelial 

cells are directly exposed to inhaled particles and are a significant source of inflammatory mediators. 

We have previously reported that exposure to Zn2+ or DEP induces proinflammatory signaling in lung 

epithelial cells (Kim et al., 2006; Cao et al., 2007a; Cao et al., 2007b; Kim et al., 2007). In the case of 

Zn2+, we have shown that impairment in tyrosine kinase-directed PTPase activity was the initiating 

event in Zn2+-induced inflammatory mediator expression (Kim et al., 2006; Tal et al., 2006). Here we 

report that exposure to DEP induces ligand-independent EGFR phosphorylation though a mechanism 

that involves impairment of EGFR-directed PTPase activity in HAEC.  

A recent study examining the role of basal PTPase activity in signaling showed that pharmacological 

inhibition of kinases activated by insulin leads to rapid dephosphorylation of downstream 

phosphosubstrates (Zhande et al., 2006). This mechanism, termed “dephosphorylation by default” by 

the authors, demonstrates that impairment of PTPases is sufficient to allow phosphorylation by basal 

tyrosine kinase activity to accumulate. Our data showing that exogenous P-EGFR is rapidly 

dephosphorylated in lysates prepared from HAEC treated only with an EGFR kinase inhibitor is in 

agreement with this concept. Furthermore, our finding that exposure to DEP impairs EGFR-directed 

PTPase activity supports the notion that frank kinase activation is not required for the initiation of 

phosphorylation-dependent signaling in HAEC treated with DEP. In addition, our results imply that 

an impairment of EGFR-directed PTPase activity(ies) is sufficient to enable an accumulation of basal 

EGFR phosphorylation, leading to downstream phosphorylation-dependent signaling pathways. 

Interestingly, we have recently observed that treatment with H-DEP and L-DEP but not I-DEP for 4 h 

results in increased expression of the proinflammatory mediator IL-8 in HAEC, arguing that PTPase 

impairment is a pivotal event in signaling that leads to pro-inflammatory gene expression. Moreover, 

recent findings in our laboratory have also shown that L-DEP-induced increases in IL-8 expression 
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can be blocked with EGFR kinase inhibitors, evincing the toxicological relevance of EGFR activation 

in HAEC exposed to DEP (Tal, unpublished observations). 

In order to characterize the mechanism by which DEP induces EGFR phosphorylation, we employed 

a variety of tactical approaches. First, we showed that treatment with an EGFR kinase inhibitor 

completely abolished DEP-mediated EGFR phosphorylation (Figure 3-2B). This suggests that EGFR 

autophosphorylation is a central mechanism by which DEP activates the receptor. We next sought to 

determine whether DEP stimulated ligand-dependent or -independent activation of the EGFR. 

Although DEP fails to induce EGFR dimerization, these data were obtained in the A431 cell line 

(Figure 3-3B). A431 cells were used because they grossly overexpress the EGFR (Samet et al., 2003) 

however, these data may not be indicative of what occurs in lung epithelial cells. In support of this, 

the data shown in Figure 3-3A suggests that L-DEP and H-DEP induce EGFR phosphorylation by 

different mechanisms. Treatment with an EGFR-ligand binding domain blocking antibody (LA-1) 

fails to block L-DEP induced EGFR phosphorylation. Furthermore, EGFR activation induced by 

pervanadate treatment, a known inhibitor of PTPase activity, is similarly unaffected by LA-1 

pretreatment. These data support the notion that L-DEP induces EGFR phosphorylation by a ligand 

independent mechanism possibly involving inhibition of EGFR-directed PTPase activity. In 

comparison, LA-1 partially ablates H-DEP induced EGFR phosphorylation suggesting that H-DEP 

activates the receptor by multiple ligand- dependent and –independent mechanisms.  

The thiolate cysteine residue required for PTPase catalytic activity is highly susceptible to 

electrophilic attack. Recently, a series of studies has provided the first mechanistic evidence 

supporting the notion that environmentally relevant reactive quinones and aldehydes can directly 

inactivate protein tyrosine phosphatase 1B (PTP1B) activity by a covalent modification of reactive 

cysteines (Iwamoto et al., 2007; Seiner et al., 2007). Notably, treatment of A431 cells with 1,2-

napthoquinone was shown to arylate two reactive cysteinyl residues in PTP1B, thereby impairing its 

activity and leading to the prolonged and irreversible activation of EGFR (Iwamoto et al., 2007). 
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These studies are in keeping with the concept that DEP-associated oxy-organics can directly 

contribute to proinflammatory signaling though a mechanism involving EGFR activation and suggest 

a possible mechanism by which H-DEP induces PTPase inhibition in our system. 

In addition to arylation or acylation of reactive cysteines, DEP-associated oxy-organics may 

indirectly impair PTPase activity via redox cycling. Two main families of compounds, polycyclic 

aromatic hydrocarbons (PAHs) and quinones, are absorbed on diesel particles (Baulig et al., 2003) 

and are thereby delivered to the airway epithelium with inhaled PM. In addition to irreversible oxy-

organic adduct formation, DEP-associated quinones and reactive PAH metabolites can generate 

reactive oxygen (ROS) and nitrogen species (RNS) that reversibly inactivate PTPases by the 

formation of –S-OH or –S-NO derivatives (Li et al., 2002; Barrett et al., 2005; Chiarugi and Buricchi, 

2007). ROS are also formed during the NADPH-cytochome P450 reductase-mediated metabolism of 

DEP-associated quinones to semiquinone radicals. PM-associated PAHs are first metabolized by 

cytochome P450s and peroxidases to oxidized derivatives such as epoxides, diols, and redox-cycling 

quinones.  This source of oxidants has been implicated in the toxicity associated with H-DEP (Xia et 

al., 2004) which contains 26.3 % (wt/wt) extractable organic matter (EOM) (Singh et al., 2004). 

However, this mechanism does not explain L-DEP-induced PTPase inhibition since L-DEP has a low 

(approximately 2.0 % (wt/wt)) EOM (Singh et al., 2004), arguing that the potency with which DEP 

activate EGFR is not correlated with its EOM content. This alternative view is further supported by 

the inability of I-DEP (18.9% (wt/wt) EOM; (Singh et al., 2004)) treatment to impair PTPase activity 

in our system. Thus, the exact mechanism of inactivation of PTPase activity by DEP is likely 

complex and will require further investigation 

PM-associated metal ions may represent an additional mechanism responsible for DEP-induced 

PTPase inhibition. We have previously shown that exposure to residual oil fly ash, a metallic ash that 

contributes to the PM mass in some airsheds, can disregulate phosphoprotein metabolism by 

inactivating PTPase activity in airway epithelial cells (Gavett et al., 1997; Samet et al., 1997; 
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Kodavanti et al., 1998; Gavett et al., 2003). Common soluble metallic components associated with 

PM include Fe3+, Cu2+, Zn2+, V3+/5+ and Cr3+/6+ (Gavett et al., 1997). Redox-cycling metals, such as 

Fe3+, Cu2+, V3+/5+ and Cr3+/6+, can generate ROS capable of inactivating PTPases though the Haber-

Weiss reaction (Koppenol, 2001). V3+/5+, Fe3+ and Cu2+ are reportedly present in L-DEP at 

concentrations of 20, 100 and 300 ppm, respectively (Park et al., 2006). Thus, depending on their 

speciation, it is possible that these metals contribute to L-DEP induced PTPase inhibition and EGFR 

signaling effects in HAEC. Moreover, Zn2+, which is found at a concentration of 400 ppm in L-DEP 

(Park et al., 2006), and V3+/5+ are potent direct inhibitors of PTPase activity (Samet et al., 1999; Tal et 

al., 2006), suggesting an additional mechanism by which L-DEP exposure impairs EGFR-

dephosphorylation in HAEC.  

Inflammatory responses are thought to be a critical feature of many of the adverse effects of PM 

exposure, including morbidity and mortality (Brook et al., 2003). Though studies aimed at elucidating 

the mechanism of PM-induced EGFR activation, we show here that exposure to DEP impairs EGFR-

directed PTPase activity in HAEC. These findings provide evidence for an initiating mechanism 

though which DEP exposure induces the expression of proinflammatory proteins such as IL-8 and 

COX-2.  

 



Chapter IV: Investigating the transcriptional regulation of IL-8 expression in human airway 

epithelial cells exposed to diesel exhaust 

 

The main findings of Specific Aim 3 (Chapter IV) will be submitted for publication in Cell Signaling 

upon completion. “Tamara Tal, Steve Simmons, Robert Silbajoris, Ram Ramabhadran, Philip 

Bromberg, and James Samet. Distinct regulation of IL-8 expression in BEAS2B cells exposed to 

diesel exhaust particles.” 

 

TT contributed to the manuscript as follows. TT, SS, RR, JS, and PB conceived of the study design; 

TT performed all experiments; and TT wrote the manuscript. 
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4-A Abstract 

Particulate matter (PM) exposure induces adverse health effects, leading to cardiopulmonary 

morbidity and mortality. Inflammation is thought to be a central mechanism by which PM exposure 

exerts deleterious health effects. Diesel exhaust particles (DEP) are a ubiquitous component of urban 

ambient PM. Exposure to DEP induces inflammatory signaling characterized by MAP kinase-

mediated activation of NFκB and AP-1 in vitro and in bronchial biopsies obtained from human 

subjects exposed to DEP. NFκB and AP-1 activation results in the upregulation of genes involved in 

promoting inflammation in lung epithelial cells, a principle target of inhaled DEP. IL-8 is a 

proinflammatory chemokine synthesized by lung epithelium in response to environmental pollutants. 

Although DEP exposure is known to cause increases in IL-8 mRNA levels, the mechanism by which 

this occurs is not well understood. Here we show that exposure to DEP with varying physicochemical 

compositions differentially induces IL-8 expression in primary human lung epithelial cells and 

BEAS2B cells. Here we show that treatment with a low organic-containing DEP (L-DEP) stimulates 

IL-8 expression by an NFκB-dependent mechanism. In contrast, we report that exposure to a high 

organic-containing DEP (H-DEP) induces IL-8 expression independently of NFκB. These data 

suggest that DEP induces proinflammatory signaling by multiple mechanisms in BEAS2B cells. 
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4-B Introduction 

Epidemiological studies have consistently demonstrated an association between exposure to ambient 

particulate matter (PM) and adverse respiratory and cardiovascular health effects particularly with 

regards to fine particles with an aerodynamic diameter < 2.5 µM (Peters et al., 2001; Peters et al., 

2004). Diesel exhaust particles (DEP), generated from diesel powered engines, are ubiquitously 

present in PM2.5 derived from urban areas (Lloyd and Cackette, 2001). DEP contain a carbon core 

with adsorbed organic compounds, such as polycyclic aromatic hydrocarbons and quinones 

(Wichmann, 2007). These compounds or their reactive metabolites can redox cycle thereby 

generating reactive oxygen species (ROS) (Li et al., 2002; Baulig et al., 2003; Li et al., 2003). In 

support of these findings, activation of redox-sensitive transcription factors, such as NFκB and AP-1 

and their upstream map kinases (MAPKs) p38 and JNK, has been reported in bronchial biopsies 

obtained from human subjects exposed to diesel exhaust (Pourazar et al., 2005).  

Airway epithelial cells, a principle target cell of inhaled DEP, synthesize and secrete a number of 

chemical mediators capable of activating and recruiting inflammatory cells. It has been previously 

shown that DEP induces the expression of proinflammatory cytokines in cultured cell systems 

including IL-8, IL-1α, GM-CSF, and Gro-α (Bonvallot et al., 2001; Matsuzaki et al., 2006; Baulig et 

al., 2007). In agreement with these findings, enhanced epithelial expression of IL-8, IL-13 and Gro-α 

was reported in bronchial biopsies obtained from human subjects exposed to DEP (Salvi et al., 2000; 

Pourazar et al., 2005). Taken together, these studies support the notion that DEP exposure induces 

pulmonary inflammation mediated by MAPK signaling, activation of NFκB and AP-1, and synthesis 

of proinflammatory cytokines. 

IL-8 is a potent neutrophilic activator and chemotaxin agent that is secreted by airway epithelial cells 

and often used as a biological marker of environmentally-induced pulmonary inflammation (Strieter, 

2002). In particular, IL-8 expression is increased in epithelial cells exposed to ambient PM, the 
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metallic PM components Zn and V (Samet et al., 1998; Kim et al., 2006), as well as DEP (Salvi et al., 

1999; Salvi et al., 2000; Mudway et al., 2004) and residual oil fly ash (ROFA) particles (Carter et al., 

1997) and the atmospheric contaminant ozone (Jaspers et al., 1997b; Jaspers et al., 1997a). Although 

some information concerning DEP-induced activation of upstream redox-sensitive signaling pathways 

has been reported (Takizawa et al., 1999; Pourazar et al., 2005), the exact mechanism by which DEP 

exposure induces IL-8 expression remains unclear.  

The IL-8 gene contains multiple 5’ regulatory elements in its promoter, including binding sites for 

NFκB, AP-1, AP-2, AP-3, CCAAT/enhancer binding protein β (C/EBP β), interferon regulatory 

factor 1, and a glucocorticoid response element [(Mukaida et al., 1989; Strieter, 2002) and Figure 4-1]. 

Exposure to a high organic-containing DEP (H-DEP) has been previously shown to induce NFκB-

dependent IL-8 expression in the human epithelial cell line BEAS2B (Takizawa et al., 1999). 

However, we have preliminary data suggesting that H-DEP induces increased IL-8 mRNA levels by 

an NFκB-independent mechanism in BEAS2B cells (Tal, unpublished observations). Cell culture 

conditions may play a role in this apparent discrepancy, as Takizawa et al. cultured their cells in 

serum, which contains 25 ng/ml EGF among other components. Furthermore, in contrast to the data 

presented here, cells were not serum starved prior to treatment with DEP. 

In addition to H-DEP, a low-organic containing model DEP (L-DEP; NIST SRM 2975) can 

reportedly stimulate proinflammatory signaling (Singh et al., 2004; Cao et al., 2007a; Cao et al., 

2007b), suggesting that DEP may also activate redox-independent mechanisms by which aberrant 

signaling occurs in lung epithelial cells. Therefore, in the present study, multiple DEPs with different 

physicochemical characteristics were used in an attempt to unravel the transcriptional regulation of 

IL-8 expression in lung epithelial cells exposed to DEP.  
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Figure 4-1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4-1 The IL-8 gene. Mire-Sluis and Thorpe. Cytokines 1998 
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4-C Materials and Methods 

Preparation of DEP. L-DEP, I-DEP, H-DEP, and CB were used in the current study. The preparation 

of these particles is described in detail in the methods section of Chapter III (Section 3-C).  

Cell culture and treatment. Primary normal human airway epithelial (HAEC) cells were obtained 

from normal adult human volunteers by brush biopsy of the mainstem bronchus, using a cytology 

brush during fiberoptic bronchoscopy, conducted under a protocol approved by the Committee on the 

Protection of the Rights of Human Subjects at the University of North Carolina at Chapel Hill and 

cells were cultured as previously reported [(Tal et al., 2006), Section 2-C]. HAEC were growth factor 

starved in un-supplemented BEBM for 9-15 h prior to particle treatment. BEAS2B cells were derived 

by transformation of human airway epithelial cells with an ad12-SV40 adenovirus construct (Reddel 

et al., 1988). BEAS2B cells (subclone S6) were obtained from the Human Studies Division, National 

Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, and 

maintained in keratinocyte growth medium (KGM, Cambrex Bioproducts, Clonetics Division, San 

Diego, CA). Cells were then growth factor starved in un-supplemented KGM for 9-15 h prior to 

particle treatment. L-DEP, I-DEP, H-DEP and carbon black suspensions (Columbian Chemicals 

Company; Marietta, GA) were freshly prepared at 100 µg/ml in BEBM or KBM by water bath 

sonication for 10 minutes. HAEC or BEAS2B cells were exposed to a final concentration of 10 

µg/cm2 for 4 h.  

Real-Time Quantitative PCR. Relative gene expression in HAEC and BEAS2B cells were quantified 

using Real-Time Quantitative PCR. Total RNA was isolated using a Qiagen kit (Qiagen, Valencia, 

CA) and reverse transcribed to generate cDNA using a High Capacity cDNA Reverse Transcription 

kit (Applied Biosystems, Foster City, CA). Oligonucleotide primer pairs and fluorescent probes for 

IL-8, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), firefly luciferase (FLuc), and enhanced 

green fluorescent protein (EGFP) were designed using a primer design program (Primer Express, 
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Applied Biosystems) and obtained from Integrated DNA Technologies (Coralville, IA). Quantitative 

fluorogenic amplification of cDNA was performed using the ABI Prism 7500 Sequence Detection 

System (Applied Biosystems), primer/probe sets of interest and TaqMan Universal PCR Master Mix 

(Applied Biosysytems). The relative abundance of IL-8 and GAPDH mRNA levels were determined 

from standard curves generated from a serially diluted standard pool of cDNA prepared from cultured 

human airway epithelial cells. The relative abundance of GAPDH mRNA was used to normalize 

levels of IL-8 mRNA. The relative abundance of FLuc and EGFP mRNA levels were determined 

from standard curves generated from serially diluted pGL3-basic and pHygroEGFP plasmids, 

respectively. To control for transduction efficiency, the relative abundance of EGFP mRNA was used 

to normalize levels of FLuc mRNA. Data shown are representative of 3 or more experiments. 

Synthesis of lentiviral promoter reporters. Briefly, the IL-8 promoters were digested from the pGL2 

parent vectors by BamHI and XhoI and cloned into the lenti transfer vector (Open Biosystems) 

between the BamHI and XhoI sites. The sequences for the IL-8 wildtype (IL-8 wt-FLuc) promoter 

and a promoter bearing a mutated NFκB response element (IL-8- NFκB-FLuc) have been previously 

published [(Jaspers et al., 1999) and Figure 4-2]. The NFκB and AP-1 promoters were generated by 

annealing complementary oligos which were then cloned into the lenti transfer vector between the 

NheI and XhoI sites. The sequences for the NFκB and AP-1 promoters are as follows. For the tandem 

repeat NFkB (NFkB sites in bold)  

GGGGACTTTCCGCTTGGGGACTTTCCGCTGGGGACTTTCCGCTGGGGACTTTCCGCT

GGGGACTTTCCGCGGAGACTCAAGAGGGTATATAATG and for the tandem repeat AP-1 

(AP-1 sites in bold) 

GCATGACTCAGAGAAACGCTGGAAGAAACGCAGGTATGACTCAGTAGTGCGGACAGA

GTGATAAACGATGACTCAGGAGAAATAGGGGAGACAGCCCATAACTAGCCAATCACGT 
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Figure 4-2 

 

 

 

 

 

 

 

 

Figure 4-2 Lentiviral promoter reporters. Schematics describing the IL-8 wildtype (4-2A), IL-8 promoter with 
a mutated NFκB binding site (4-2B) and  a synthetic tandem repeat of the NFκB consensus sequence (4-2C). 

Figure 4-2B  IL-8-NFĸB-FLuc 
 

 Figure 4-2C NFĸBsynthetic-Fluc 
 

 Figure 4-2A  IL-8 wt-FLuc 
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AATCTGCTGCTTGCAATCAAAAAAACCACCGCTACCAGTATAAAAGGGGGGGAAGTCGT

GTCTTACCGGGTTATCAGTCTT. All transfer vector constructs were confirmed by DNA capillary 

sequencing. HEK293T cells were co-transfected with purified transfer vector plasmids and lentiviral 

packing mix (Open Biosystems) by a calcium phosphate method.  Sixteen h post-transfection, media 

was replaced with 6 ml fresh Dulbecco’s modified eagle’s medium (DMEM) + 5% fetal bovine 

serum and cells were incubated for 48 h.  Media was harvested and centrifuged for 10 minutes at 

5,000 g, and the supernatants were transferred to sterile microfuge tubes.  Viral stocks were stored at -

80 °C. To titer, 70,000 HEK293T cells stably expressing the rTTA3 (tet-off) transactivator were 

transduced with 25 µl of undiluted, 1:5, 1:25, 1:125, 1:625, and 1:3125 dilutions. Viral titer was 

determined 72 h post-transduction by counting red fluorescent colonies by fluorescent microscopy 

(red colonies are present due to rTTA3-mediated activation of secondary TRE-turboRED reporter 

within transgene) and back-calculating transducing units per ml stock. 

Lentiviral promoter reporter assays. To determine an appropriate multiplicity of infection (MOI), 

BEAS2B cells were transduced for 72 h with MOI of 1, 2, 5, or 10 of IL-8 wildtype-firefly luciferase 

(IL-8 wt-FLuc) or a synthetic NFĸB tandem repeat-FLuc (NFĸB-FLuc). Following transduction, cells 

were challenged with 20 ng/ml Tumor necrosis factor α (TNF) for 4, 6, or 24 h and assessed for the 

presence of luciferase mRNA by RT-PCR. To obtain stably transduced cell lines, BEAS2B were 

transduced with IL-8wt-FLuc (MOI 5), IL-8-NFĸB-FLuc (MOI 5), or NFĸB synthetic-FLuc (MOI 5) 

for 72 h and carried for the duration of the study. All cells were co-transduced with EF1α-EGFP 

(MOI 10) in order to control for transduction efficiency. Transduced cells were treated with 10 

µg/cm2 L-DEP, I-DEP, H-DEP or CB or 20 ng/ml TNF for 4 h and assessed for promoter reporter 

activity by RT-PCR. Shown are data representative of 4 or more experiments.   

Statistical Analysis. Data are presented as mean + SE. Two-tailed paired Student’s t test or one-way 

ANOVA was used to evaluate differences between control and treated groups; values of P < 0.05 

were considered statistically significant. 
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4-D Results 

4-D.1 DEP exposure induces IL-8 expression in primary and immortalized human lung epithelial 

cells. To study the effects of DEP exposure on proinflammatory signaling in lung epithelial cells, we 

first examined IL-8 expression in HAEC treated with 10 µg/cm2 L-DEP, I-DEP, H-DEP, or CB for 4-

24 h using RT-PCR. The data are expressed as the fold change over control normalized to GAPDH 

mRNA levels. As shown in Figure 4-3A, each DEP induced expression of IL-8 with varying potency 

and kinetics. Moreover, the rank potency by which these DEPs induce IL-8 expression is similar to 

that with which they induce phosphorylation of the Epidermal Growth Factor Receptor (EGFR) and 

impair EGFR-directed PTPase activity (Chapter III). Both L-DEP and I-DEP induced a time-

dependent increase in IL-8 mRNA levels, whereas H-DEP-induced IL-8 expression peaked at 4 h and 

stabilized at an approximately 10-fold increase throughout the remainder of the time course. Carbon 

black (CB), used as a particle control, induced a time-dependent increase in IL-8 expression.  

In order to assess the transcriptional regulation of DEP-induced increases in IL-8 expression, we next 

employed the immortalized lung epithelial cell line BEAS2B, which is amenable to stable 

transduction. First, non-transduced BEAS2B cells were treated with 10 µg/cm2 L-DEP, I-DEP, H-

DEP, CB or 20 ng/ml TNF for 4-24 h and IL-8 expression was assessed by RT-PCR. In agreement 

with Figure 4-3A, DEP induced IL-8 expression with a similar rank potency at 4 h (H-DEP > L-DEP 

> I-DEP) (Figure 4-3B). In contrast, while H-DEP exposure induced a robust induction in IL-8 

mRNA 6 h post exposure, neither L-DEP, I-DEP or CB stimulated IL-8 expression at 6 h and all 

particles failed to induce IL-8 expression at 24 h (Figure 4-1B). As expected, TNF, a potent inducer 

of IL-8 expression, induced a robust increase in IL-8 mRNA at 4 and 6 h. Because the focus of this 

study is on early signaling events in response to DEP treatment and the similarities noted between 

DEP treated HAEC and BEAS2B cells at 4 h, the remainder of experiments were carried out in 

BEAS2B cells treated with particles for 4 h.  



 79 

Figure 4-3 

Figure 4-3A  

 

Figure 4-3B 

 

 

Figure 4-3. Exposure to DEP induces differential IL-8 expression in lung epithelial cells. 4-3A: Primary human 
airway epithelial cells (HAEC) were treated with 10 µg/cm2 L-DEP, I-DEP, H-DEP or carbon black (CB) or 
media control (CT) for 4 h. Following RNA extraction and cDNA generation, samples were assessed for IL-8 
expression by RT-PCR. 4-3B: BEAS2B cells were treated with 10 µg/cm2 L-DEP, I-DEP, H-DEP or carbon 
black (CB), media control (CT), or 20 ng/ml TNF for 4 h and IL-8 mRNA levels were determined by RT-PCR. 
Data are normalized to GAPDH mRNA levels and expressed as the fold change over controls. The results 
shown are representative of thee or more experiments. 



 80 

4-D.2 L-DEP and H-DEP induce IL-8 promoter reporter activity in BEAS2B cells. The data above 

show that L-DEP and H-DEP induced IL-8 expression in HAEC and BEAS2B cells at 4 h post 

exposure (Figure 4-3A and 4-3B). To further clarify their respective roles in DEP-induced IL-8 

expression in BEAS2B cells, we examined the effect of DEP exposure on IL-8 promoter reporter 

activity directly in BEAS2B cells co-transduced with lentiviral promoter reporter constructs 

expressing the human wild type IL-8 and EF1α promoters linked to firefly luciferase and EGFP, 

respectively (IL-8 wt-FLuc and EF1α-EGFP). Because particles interfere with luminescence and 

fluorescence measurements, and luciferase protein expression requires 24 h of DEP exposure (Tal, 

unpublished observations) promoter reporter activity was assessed by RT-PCR 4 h following particle 

treatment. FLuc mRNA levels are normalized to EGFP mRNA levels and expressed as the fold 

change over controls. As shown in Figure 4-4A, a statistically significant elevation in promoter 

reporter activity was measured in cells exposed to 10 µg/cm2 L-DEP or H-DEP. In contrast, both I-

DEP and CB exposure failed to induce IL-8 promoter reporter activity. As expected, TNF exposure 

resulted in a pronounced increase in IL-8 promoter reporter activity.  

To confirm that transduced cells appropriately respond to particle exposures by synthesizing IL-8, 

endogenous IL-8 mRNA levels were assessed in the same RNA pools initially probed for FLuc 

expression. In support increased promoter reporter activity (Figure 4-4A), both L-DEP and H-DEP 

exposure resulted in a 10-20 fold increase in endogenous IL-8 mRNA, respectively (Figure 4-4B). In 

comparison, both I-DEP and CB exposure failed to induce IL-8 expression whereas TNF induced a 

highly significant increase in IL-8 mRNA. Interestingly, although the magnitude of response to DEP 

exposure varies greatly when comparing promoter reporter activity to endogenous IL-8 expression, 

the relative potency with which individual DEPs induce these effects is conserved (Figure 4-4A and 

4-4B).  
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Figure 4-4 

Figure 4-4A 

Figure 4-4B 

 

Figure 4-4. DEP exposure induces IL-8 promoter reporter activity. BEAS2B cells were stably co-
transduced with lentiviral promoter reporters carrying the human wildtype IL-8 promoter linked to 
firefly luciferase (IL-8 wt-FLuc) and EF1α-EGFP. Transduced cells were treated with 10 µg/cm2 L-
DEP, I-DEP, H-DEP or CB, media (CT) or 20 ng/ml TNF for 4 h and cDNA generated from cell 
lysates was analyzed for (4-4A) FLuc and EGFP or (4-4B) endogenous IL-8 and GAPDH by RT-
PCR. FLuc and IL-8 mRNA levels were normalized to EGFP or GAPDH mRNA levels, respectively 
and the data is expressed as fold change over controls. Statistical significance was determined by one-
way ANOVA with a Bonferronni’s or Dunnett’s Multiple Comparison Test (* P < 0.05, ***P < 
0.001). The results shown are representative of thee or more experiments. 
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4-D.3 L-DEP- but not H-DEP-induced IL-8 promoter reporter activity is NFκB dependent. The IL-8 

promoter contains putative binding sites for several transcription factors including NFκB, AP-1, and 

C/EPB1-β, among others [Figure 4-1 and (Jaspers et al., 1999)]. H-DEP exposure has been previously 

reported to drive IL-8 expression by an NFκB-dependent mechanism (Takizawa et al., 1999). We 

therefore examined the possibility that NFκB-mediated transcriptional activation was responsible for 

L-DEP and H-DEP induced IL-8 expression.  To do so, BEAS2B cells were stably co-transduced 

with IL-8 lentiviral promoter reporter containing a mutated NFκB response element (IL-8-NFκB-

FLuc), and EF1α-EGFP. Transduced cells were exposed to 10 µg/cm2 L-DEP, I-DEP, H-DEP, CB or 

20 ng/ml TNF for 4 h and promoter activity was measured by RT-PCR as previously described. 

Mutant promoter reporter data was compared to IL-8 wt-FLuc data reported in Figure 4-4A. As 

shown in Figure 4-5A, L-DEP-induced wildtype promoter reporter activity was blunted in cells 

transduced with the mutant reporter suggesting that L-DEP-induced IL-8 expression is NFκB-

dependent in BEAS2B cells. In comparison, H-DEP-induced promoter reporter activity was not 

statistically different between the wildtype and mutant promoters. TNF is known to induce NFκB-

dependent IL-8 expression (Smith et al., 1994). In agreement, transduction with the mutant promoter 

completely abolished promoter reporter activity (Figure 4-5A). In contrast, there were no statistically 

significant differences detected between the wildtype and mutant promoter reporter activity in cells 

exposed to I-DEP or CB (Figure 4-5A).  

To confirm that transduced cells respond appropriately to treatment with DEP, endogenous IL-8 

expression was measured in cells transduced with IL-8 wt-FLuc and IL-8- NFκB-FLuc. As shown in 

Figure 4-5B, L-DEP, I-DEP and H-DEP induce IL-8 expression with a similar rank potency as 

reported earlier (Figures 4-3B and 4-4B).  

Although our observation that H-DEP induces IL-8 promoter reporter activity in cells transduced with 

the IL-8-NFκB-FLuc lentiviral promoter reporter (Figure 4-5A) is at odds with a previously published 
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report (Takizawa et al., 1999), the data presented here suggested that H-DEP induces IL-8 expression 

by an NFκB-independent mechanism. In order to confirm these findings, BEAS2B cells stably 

transduced with a lentiviral promoter reporter expressing tandem repeats of the NFκB consensus 

sequence was generated (NFκB-FLuc) and tested in response to DEP exposure. As shown in Figure 

4-5C, exposure to H-DEP failed to induce NFκB promoter reporter activity. This is in agreement with 

earlier data showing that H-DEP induces IL-8 expression by an NFκB-independent mechanism 

(Figure 4-5A and 4-5C). By comparison, L-DEP treatment induced NFκB promoter reporter activity 

(Figure 4-5C). These findings align well with earlier observations that are suggestive of an NFκB-

dependent mechanism by which L-DEP exposure results in increased IL-8 expression (Figure. 4-5A 

and 4-5C). As expected, TNF exposure induced robust NFκB promoter reporter activity. Increased 

NFκB (consensus sequence) promoter reporter activity was also observed in cells treated with I-DEP 

and CB.  To confirm that transduced cells respond appropriately to treatment with DEP, endogenous 

IL-8 expression was next measured in cells transduced with NFκB-FLuc (Figure 4-5D). Although the 

magnitude of the response was greater in cells expressing NFκB-FLuc, the rank potency with which  

DEP exposure induced IL-8 expression was similar to that reported earlier (Figures 4-3B, 4-4B and 4-

5B).  
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Figure 4-5 

Figure 4-5A         Figure 4-5D 

 

Figure 4-5B 

   

Figure 4-3C 

 

Figure 4-5C 

 

Figure 4-5. L-DEP but not H-DEP exposure 
induces NFκB-dependent IL-8 expression in 
BEAS2B cells. BEASE2B cells co-transduced 
with EF1α-EGFP and IL-8 wt-FLuc (data 
from 4-4A) and compared to data obtained 
from BEAS2B cells co-transduced with 
EF1α-EGFP and IL-8-NFκB (Figure 4-5A). 
Cells were exposed to 10 µg/cm2 L-DEP, I-
DEP, H-DEP or CB, media (CT) or 20 ng/ml 
TNF for 4 h and (4-5A) EGFP and FLuc or 
(4-5B) IL-8 and GAPDH mRNA levels were 
assessed by RT-PCR. FLuc and IL-8 mRNA 
levels were normalized to EGFP or GAPDH 
mRNA levels, respectively, and expressed as 
fold change over controls. Statistical 
significance was determined by a two-tailed 
Student’s T Test or by one-way ANOVA 
with a Bonferronni’s Multiple Comparison 
Test (*P < 0.05, ***P < 0.001). The results 
shown are representative of thee or more 
experiments. BEASE2B cells co-transduced 
with NFκB-FLuc and EF1α-EGFP were 
exposed to 10 µg/cm2 L-DEP, I-DEP, H-DEP 
or CB, media (CT) or 20 ng/ml TNF for 4 h 
and (4-5C) EGFP and FLuc or (4-5D) IL-8 
and GAPDH mRNA levels were assessed by 
RT-PCR. FLuc and IL-8 mRNA levels were 
normalized to EGFP or GAPDH mRNA 
levels, respectively, and expressed as fold 
change over controls. The results shown are 
representative of two experiments. 
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4-D.4 Involvement of EGFR in DEP-induced IL-8 expression. We and others have implicated EGFR 

in DEP-induced proinflammatory signaling effects (Blanchet et al., 2004; Tal et al., 2006; Cao et al., 

2007b; Rumelhard et al., 2007a; Rumelhard et al., 2007b; Pourazar et al., 2008). It has been proposed 

that DEP associated electrophilic compounds (Iwamoto et al., 2007), DEP-generated ROS, or ROS 

produced by cells in response to DEP exposure impair EGFR-directed PTPase activity leading to 

sustained EGFR activation (Tal et al., 2006; Cao et al., 2007b). However, the toxicological relevance 

of these findings in relation to DEP-induced proinflamatory signaling is unclear. To determine 

whether EGFR is involved in DEP-mediated increases in IL-8 expression, BEAS2B cells expressing 

IL-8 wt-FLuc were pretreated with an inhibitor of EGFR kinase activity (c56) for 1 h followed by 

exposure to 10 µg/cm2 L-DEP, I-DEP, H-DEP, CB or 20 ng/ml TNF for 4 h and FLuc expression was 

measured by RT-PCR. As shown in Figure 4-6A, c56 pretreatment blunts L-DEP and H-DEP 

mediated increases in IL-8 promoter reporter activity. As expected, c56 is unable to block TNF-

induced IL-8 promoter reporter activity. Interestingly, c56 pretreatment enhanced I-DEP’s ability to 

induce IL-8 promoter reporter activity. 

To further examine the role of the EGFR in DEP induced IL-8 expression we next determined 

whether c56 pretreatment was sufficient to prevent DEP induced increases in endogenous IL-8 

mRNA in BEAS2B cells expressing IL-8 wt-FLuc. As shown in Figure 4-6B, c56 pretreatment 

markedly blocked L-DEP- and H-DEP-mediated IL-8 expression and weakly blocked I-DEP-induced 

IL-8 expression. An increase in IL-8 mRNA levels in response to CB was also diminished by c56 

pretreatment. Interestingly, TNF-induced IL-8 expression was partially blocked by c56. TNF is 

known to induce IL-8 expression though TNF receptor mediated activation of NFκB. Although 

substantial crosstalk is reportedly involved in MAPK signaling (Pimienta and Pascual, 2007), our 

data showing that c56 blocks TNF induced IL-8 expression suggests that c56 may have downstream, 

off-target effects. Taken together, these data suggest that EGFR may be involved in DEP-induced IL-
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8 expression although, in light of off-target concerns and the fact that these data are derived from a 

single experiment, these findings should be interpreted with caution.  
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Figure 4-6 

Figure 4-6A 

Figure 4-6B 

 

Figure 4-6. Characterizing the role of the EGFR in DEP-induced proinflammatory signaling. BEASE2B cells 
co-transduced with IL-8 wt-FLuc and EF1α-EGFP were pretreated with 10 µM c56 or vehicle control for 1 h. 
Cells were then washed and treated with 10 µg/cm2 L-DEP, I-DEP, H-DEP or CB, media (CT) or 20 ng/ml 
TNF for 4 h and (4-6A) EGFP and FLuc or (4-6B) IL-8 and GAPDH mRNA levels were assessed by RT-PCR. 
FLuc and IL-8 mRNA levels were normalized to EGFP or GAPDH mRNA levels, respectively, and expressed 
as fold change over controls (n = 1). 
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4-E Discussion 

The mechanisms by which DEP induces adverse health effects are not well understood. Lung 

epithelial cells are directly exposed to inhaled DEP and are a significant source of inflammatory 

mediators. We have previously reported that exposure to L-DEP induces proinflammatory signaling 

in lung epithelial cells characterized by increased expression of IL-8 and Cox-2 (Cao et al., 2007a; 

Cao et al., 2007b). However, it is unclear whether the physicochemical properties of DEP determine 

proinflammatory signaling in lung epithelial cells. Moreover, the transcriptional regulation by which 

these signaling events occur are not well understood. Here we report that exposure to DEP with low 

or high organic content induces IL-8 expression by distinctly different mechanisms in BEAS2B cells.  

While the mechanism by which DEP induces proinflammatory signaling in airway epithelial cells is 

not fully understood, information concerning the pathways involved has been reported. DEP-exposure 

has been shown to activate the redox-sensitive transcription factors AP-1 and NFκB (Takizawa et al., 

1999; Bonvallot et al., 2001) in addition to their upstream, stress-related MAPKs, p38 and JNK, in 

human lung biopsies (Pourazar et al., 2005). Activation of these molecules promotes the transcription 

of pro-inflammatory cytokines, triggering a pulmonary inflammatory response characteristic of PM 

exposure (Kim et al., 2006). The data presented in Chapter IV suggest that L-DEP and H-DEP induce 

IL-8 expression by distinctly different mechanisms. In particular, we report that L-DEP triggers 

NFκB-dependent IL-8 transcriptional activation (Figures 4-3A and 4-3C). These findings are in 

agreement with studies demonstrating DEP-mediated NFκB activation (Takizawa et al., 1999; 

Bonvallot et al., 2001). In contrast, we report that H-DEP exposure induces IL-8 expression by an 

NFκB-independent mechanism.  

Induction of IL-8 expression is controlled in part by an enhancer region upstream of the 

transcriptional start site (base pairs -126 to -72) [Figure 4-1 and (Jaspers et al., 1999)]. As mentioned 

previously, the enhancer region contains cis-acting AP-1, NFκB, and C/EPB response elements 



 89 

(Mukaida et al., 1989; Strieter, 2002). All three elements are required for maximal transcriptional 

activation (Jaspers et al., 1999).  

H-DEP exposure has been previously reported to drive IL-8 expression by an NFκB-dependent 

mechanism in BEAS2B cells (Takizawa et al., 1999). However, here we provide several lines of 

evidence showing that H-DEP induces NFκB-independent IL-8 transcription in BEAS2B cells. First, 

H-DEP-induced promoter reporter activity was not prevented by use of an IL-8 promoter reporter 

carrying a mutated NFκB response element (IL-8-NFκB-FLuc, Figure 4-5A). Second, DEP failed to 

induce NFκB promoter reporter activity in BEAS2B cells stably transduced with a lentiviral promoter 

reporter expressing tandem repeats of the NFκB consensus sequence (NFκB-FLuc, Figure 4-5C) 

Taken together, these data suggest that, in opposition to earlier published findings (Takizawa et al., 

1999),  H-DEP induces NFκB-independent IL-8 expression. One possible explanation for the 

alternative mechanism of proposed here is the cells themselves. BEAS2B cells cultured in serum-

supplemented KGM results in a morphologic shift to squamous epithelial cells (Jaspers, unpublished 

observations). The results reported in Takizawa et al. were obtained in BEAS2B cells cultured in 

serum (Takizawa et al., 1999) and therefore, a different cell type than that which generated the data 

presented here (obtained in BEAS2B cells appropriately cultured in serum-free KGM).  

In support of NFκB-independent mechanism by which exposure to H-DEP increases IL-8 

mRNA levels, Zhao et al. showed that treatment with Lysophosphatidic Acid (LPA) resulted 

in the activation of its cognate GPCR, which in turn, stimulated transactivation of the EGFR by 

protein kinase Cδ (Zhao et al., 2006). Activation of p38, JNK, NFκB, and AP-1 and increased 

expression of IL-8 in primary human airway epithelial cells was also observed in cells exposed to 

LPA. Interestingly, LPA-induced IL-8 expression, but not MAPK, AP-1, or NFκB activation, was 

almost completely blocked by downregulation of EGFR by siRNA or by pretreatment with an EGFR 

kinase inhibitor. These data demonstrate a role for EGFR in LPA-induced IL-8 expression that is 
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independent of AP-1 and NFκB (Zhao et al., 2006). Moreover, this study highlights a cross-link 

between GPCR and EGFR receptors and provides a physiological role for GPCR/EGFR signaling in 

the synthesis of IL-8 (Zhao et al., 2006). Future studies involve the use of lentiviral promoter 

reporters carrying a tandem repeat of the AP-1 or C/EPBβ consensus sequences to test the hypothesis 

that H-DEP induces IL-8 expression by an NFκB-independent mechanism.  

Transcriptional activation is just one means by which cells regulate gene expression. Transcripts are 

additionally controlled via splicing, polyadenylation, mRNA transport (nuclear export, cytoplasmic 

compartmentalization, and polysomal localization), and by mRNA turnover (stabilization and 

destabilization) (Wilusz and Wilusz, 2004; Hu et al., 2005; Garneau et al., 2007; Ibrahim et al., 2008). 

Gene regulation is controlled by the complex interaction of these varied regulatory events and it 

therefore seems likely that the relative contribution of transcriptional and posttranscriptional events 

differs greatly in response to different stressors. Strikingly, recent studies using cDNA microarrays to 

compare steady-state mRNA versus newly transcribed mRNA reveal shown that over half of all 

known stress-response genes are regulated by changes in mRNA stability (Fan et al., 2002; Kawai et 

al., 2004). One common feature found in transcripts that undergo rapid turnover, such as cytokines 

and cell-cycle associated proteins, is the presence of adenosine-uridine-rich elements (AUREs) in the 

3’ untranslated regions (3’UTRs) (Caput et al., 1986). AUREs interact with a number of proteins 

thought to either impede or induce mRNA degradation (Garneau et al., 2007).  

A recent study reported that LPS-induced nitric oxide (NO.) generation stabilized a large set of 

mRNA transcripts by activation of Erk1/2 or p38 MAPKs (Wang et al., 2006). Sequence analysis 

revealed an over-representation of AUREs in the 3’UTRs of transcripts stabilized by NO.-induced 

P38 MAPK signaling. In contrast, CU-rich elements (CUREs) were over-represented in a group of 

transcripts stabilized by Erk1/2-dependent signaling. Taken together, these data indicate that MAPK-

specific signaling is involved in distinct mechanisms by which mRNA is stabilized. p38-dependent 

MAPK signaling in particular, has been implicated in regulating the mRNA half life of over 40 
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AURE-containing genes including IL-8 (Wang et al., 2008). In support of this, we have observed that 

mRNA stabilization is the main mechanism by which nanodiamond particles induce IL-8 expression 

in the absence of transcriptional activation in HAEC (Silbajoris, in preparation). Therefore it is 

possible that DEP exposure induces IL-8 message stabilization in BEAS2B cells. However, our data 

showing that L-DEP and H-DEP induce IL-8 promoter reporter activity suggests that mRNA stability 

would be only one of multiple mechanisms by which DEP exposure increased IL-8 expression in our 

model. 

We have previously shown that exposure to L-DEP, I-DEP, or H-DEP induces differential EGFR 

activation in HAEC [Tal, Submitted, Chapter III]. In support of these findings, here we report that 

DEP induces IL-8 expression and IL-8 promoter reporter activity with a similar rank potency (H-DEP 

> L-DEP > I-DEP). These data are in agreement with earlier reports showing that these DEPs have 

differential pulmonary toxicity (Singh et al., 2004), mutagenic potential (DeMarini et al., 2004), and 

adjuvant properties (Stevens et al., 2008). Therefore, these data suggest that organic content is an 

inaccurate means of predicting particle toxicity and that the exact mechanism of signal disregulation 

by DEP is likely complex and will require further investigation. 

We report that exposure to DEP induces EGFR activation and proinflammatory signaling 

characterized by increased IL-8 expression in HAEC and BEAS2B [Tal, submitted, Chapter III and 

Tal, unpublished observations, Chapter IV]. However, it is unclear whether EGFR-dependent 

signaling is causally related to IL-8 expression or if it instead, occurs in parallel. While there are some 

reports suggesting that EGFR activation induces IL-8 expression, the data is generally obtained 

through the use of EGFR kinase inhibitors which, as noted earlier, likely have off-target effects. The 

role of the EGFR in IL-8 expression will be discussed in detail in the following chapter (Chapter V). 

In summary, DEP is a pervasive environmental contaminant known to activate proinflammatory 

signaling in lung epithelium. Here we provide evidence that DEP exposure can enhance expression of 
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IL-8 mRNA by distinct NFκB-dependent and –independent mechanisms in bronchial epithelial cells.  

Future work includes the use of AP-1 and C/EPBβ wildtype and mutant promoter reporters to further 

elucidate the mechanisms by which DEP exposure induces IL-8 expression in lung epithelial cells.  

 



 

Chapter 5: Concluding Remarks 

The research presented here was designed to determine whether exposure to ambient PM constituents 

activate tyrosine phosphorylation-dependent signaling pathways through inhibition of PTPases that 

function to maintain signaling quiescence in airway epithelial cells. In support of this, we have 

demonstrated that exposure to disparate PM components, including Zn2+ and DEP, induce 

phosphorylation of the EGFR by a similar mechanism. First, we show that Zn2+- or DEP-mediated 

EGFR phosphorylation requires EGFR kinase activity. Second, through the use of a ligand-blocking 

antibody and dimerization assays, we report that Zn2+ and DEP induce EGFR phosphorylation 

independently of receptor dimerization. Third, we show that both Zn2+ and DEP exposure result in 

impairment of total and EGFR-directed PTPase activity. Taken together, these data support the notion 

that exposure to different components of ambient PM similarly blunt the activity of PTPases that 

exert their activity against the EGFR. Therefore, in the presence of low levels of basal kinase activity, 

an impairment in EGFR-directed PTPase activity would enable EGFR-dependent signaling to occur 

unopposed in lung epithelial cells (Figure 5-1).  

Based on these findings, we hypothesized that inhibition of PTPase activity by PM exposure would 

result in the activation of phosphorylation-dependent signaling and culminate in the synthesis of 

proinflammatory mediators such as IL-8. In order to examine the link between PM-induced signaling 

and ensuing proinflammatory responses, we determined the effect of PM constituents on signaling 

pathways that regulate expression of IL-8. Here we report that DEP treatment results in the 

expression of IL-8 by mechanisms dependent and independent of NFκB in cultured lung epithelial 

cells. 
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Figure 5-1 

 

 

 

 

Figure 5-1 Zn2+ and DEP induce EGFR-dependent signaling through inhibition of EGFR-directed PTPases. 
Impairment in PTPases that function to regulate the EGFR results in an accumulation of basally phosphorylated 
EGFR leading to activation of MAPK pathways and upregulation in genes involved in inflammation, cell 
growth and differentiation, apoptosis, and mucin production. 
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5-A Toxicity associated with ambient PM inhalation 

 

The cardiovascular risk associated with exposure to ambient particulates is well documented 

(Dockery et al., 1993; Schwartz, 1994; Peters et al., 2001; Peters et al., 2004; Peters et al., 2006). 

However, the mechanisms by which PM induces adverse health effects are not well understood. 

Although, oxidative stress, triggering proinflammatory signaling in the lung, has emerged as a leading 

mechanism by which ambient PM might trigger cardiopulmonary attack (Gurgueira et al., 2002; Li et 

al., 2002; Xiao et al., 2003; Xia et al., 2004), there are a number of other, less well studied 

mechanisms that may also contribute to the adverse health effects associated with PM exposure 

(Figure 1-1). In particular, inhaled ultrafine PM can reportedly bypass the lung completely by 

transposition through the lung epithelium, entering the cardiovascular system and thereby directly 

exerting deleterious effects on the heart (Geiser et al., 2005). PM exposure has also been reported to 

induce cardiac oxidant stress by autonomic signaling resulting in significant functional alterations in 

the heart (Rhoden et al., 2005). More recently, air pollution exposure has been associated with a 

disruption of the blood-brain barrier and neuroinflammation in the sudden death of children and 

young adults living in highly-polluted cities (Calderon-Garciduenas et al., 2008). A disruption of the 

blood-brain barrier by DEP exposure involving inflammatory signaling and oxidant stress has 

recently been described in rat and mice brain capillaries (Hartz et al., 2008) providing a novel 

mechanism by which ambient PM might induce deleterious neurological health effects.  
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5-B PM-induced mechanisms of toxicity  

 

Numerous studies have sought to identify the mechanism by which particle inhalation induces local 

and systemic inflammation. Particle mass, size and surface area, metallic and organic contents, acids, 

sulfates, nitrates, elemental carbon, and co-pollutants have been investigated and oxidative stress has 

emerged as a pivotal mechanism by which PM elicits pulmonary toxicity (Gavett et al., 1997; 

Gurgueira et al., 2002; Kodavanti et al., 2002; Li et al., 2002; Brook et al., 2003; Gavett et al., 2003; 

Risom et al., 2005).  

PM exposure exerts oxidative stress on the lung by presenting or stimulating cells to produce reactive 

species via its metals, organics, lipopolysaccarides, and ultrafine constituents (Tao et al., 2003). 

Among them, bioavailable organic compounds have been reported to contribute to oxidant effects 

induced by PM exposure (Xia et al., 2004). Two main families of compounds, PAHs and quinones, 

are adsorbed on diesel particles (Baulig et al., 2003) and both reactive PAH metabolites and redox-

cycling quinones generate ROS via reduction by NADPH-cytochrome P450 reductase resulting in the 

formation of semiquinone radicals capable of reducing oxygen to O2
.-. A body of work has been 

produced supporting the notion that the organic fraction of DEP, via ROS generation, is the primary 

mediator of PM-associated toxicity (Li et al., 2002; Li et al., 2003; Li and Whorton, 2003).  

In addition to bioavailable organics, studies using residual oil fly ash have demonstrated that 

pulmonary toxicity is attributable to water-soluble metal constituents (Gavett et al., 1997; Kodavanti 

et al., 1998; Gavett et al., 2003). In particular, ubiquitous soluble metallic components such as Fe3+, 

Cu2+, V3+/5+ and Cr3+/6+, can generate ROS by Fenton-type chemistry and act as catalysts by Haber-

Weiss reactions (Koppenol, 2001).  
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We and others have also reported that Zn2+, a common PM constituent, may be implicated in the 

toxicity associated with PM inhalation (Kodavanti et al., 1998; Soukup et al., 2000; Kodavanti et al., 

2002; Okeson et al., 2004). Although Zn2+ is unable to undergo redox cycling, the metal cation is a 

known inhibitor of PTPases (Kim et al., 2006; Tal et al., 2006), including a broad spectrum of 

PTPases present in HAEC (Samet et al., 1999). Here we report that Zn2+-mediated PTPase inhibition 

may occur through a mechanism dependent upon direct metallic attack of the PTPase catalytic site, 

rather that indirectly inhibiting PTPases by oxidation (Chapter II and Appendix A). As shown in 

Figure 1-2B, Zn is present in ambient PM, particularly in urbanized and industrialized areas although 

these data do not identify the speciation of Zn present (Seagrave et al., 2006). Analysis of DEP (NIST 

SRM 1650, representative of DEP produced by heavy-duty diesel engines) by X-ray absorption fine 

structure and proton-induced X-ray emission and analysis revealed the presence of high 

concentrations of Zn2+ relative to other metals (Huggins et al., 2000). Although DEP SRM 1650 was 

not used in the present studies, these data demonstrate that a characteristic DEP contains measurable 

concentrations of Zn2+ that may be involved in DEP’s mode of action. In our model, pretreatment of 

cells with a Zn2+ chelating agent prior to DEP exposure would demonstrate whether Zn2+ contributes 

to DEP-induced toxicity.  Additionally, future experiments include the determination of the Zn2+ 

content in L-DEP, I-DEP, and H-DEP by inductively coupled plasma mass spectrometry.  

5-C Mechanisms of PM-induced PTPase inhibition  

The data presented here supports the concept that structurally dissimilar components of ambient PM 

induce signal disregulation characterized by increases in phospho-EGFR levels, reduced rates of 

EGFR dephosphorylation and therefore, inhibition in EGFR-directed PTPase activity, and activation 

of proinflammatory signaling in HAEC and BEAS2B cells [Tal, Chapters I-III, (Kim et al., 2006; Tal 
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et al., 2006; Cao et al., 2007)]. A more thorough discussion detailing how Zn2+ and DEP potentially 

interact with PTPases can be found in Chapters I-III. Briefly, based on the literature and the data 

presented here, we suspect that Zn2+ and DEP inhibit PTPase activity by direct and indirect 

mechanisms. First, the nucleophilic catalytic cysteine present in all PTPases is susceptible to direct 

inhibitory interactions with a variety of PM components including electrostatic associations with 

metal cations, such as Zn2+ and V3+/5+ (Stankiewicz et al., 1995; Haase and Maret, 2005) and covalent 

modification by DEP-associated electrophilic organic compounds (Iwamoto et al., 2007; Seiner et al., 

2007). Second, PTPases are indirectly inhibited via oxidation of the catalytic cysteine by DEP-

associated quinones and PAHs (Li et al., 2002; Xia et al., 2004). Taken together, these studies 

provide a plausible mechanism by which Zn2+ and DEP exposure induce similar effects in our system.   

Although the catalytic cysteine is often hypothesized to be susceptible to post-translational 

modification (Chiarugi and Buricchi, 2007), it is likely that other regulatory residues are targets of 

direct and indirect inhibition by Zn2+ and DEP. A recent report examining the effects of 1,2 

napthoquinone on PTP1B activity demonstrated that nucleophilic histidine (His25) and cysteine 

(Cys121) residues, in addition to the catalytic cysteine (Cys215), are susceptible to covalent 

modification by 1,2 napthoquinone (Iwamoto et al., 2007). The authors speculate that although Cys121 

is non-catalytic, it may act as a site of allosteric inhibition (Iwamoto et al., 2007). In the case of Zn2+, 

the metal cation is hypothesized to form inhibitory electrostatic interactions with multiple cysteine 

and histidine residues located near the catalytic groove (Haase and Maret, 2003).  

There is accumulating evidence that PM-associated electrophilic aldehydes and quinones such as 

acrolein and 1,2 napthaquinone, respectively, can covalently modify critical cysteine and histidine 

residues thereby irreversibly inhibiting PTPase activity (Iwamoto et al., 2007; Seiner et al., 2007). 

While these data show that reactive organic compounds commonly found in ambient PM directly 

impair PTPase activity, it is not known whether these compounds inactivate PTPase activity when 

associated with particles. The data presented here demonstrate for the first time that DEP exposure 
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reduces the rate of EGFR-directed PTPase activity leading to sustained EGFR phosphorylation in 

HAEC (Tal, Submitted, Chapter III). However, these data can not distinguish the exact mechanism by 

which DEP inhibits PTPase activity. In particular, it is unclear whether DEP associated electrophilic 

compounds are covalently inhibiting PTPase activity or participating in redox cycling resulting in the 

oxidation of PTPases. Furthermore, the role of Zn2+ and other metal cations in DEP-mediated toxicity 

is not well understood.  

To better understand how DEP impairs PTPase activity, airway epithelial cells can be treated with 

organic extracts obtained from different DEPs and levels of EGFR phosphorylation and as well as 

total and EGFR-directed PTPase activity can be measured to determine whether the biological 

activity resides in the organic extract. In order to determine whether the particles themselves or their 

soluble components mediate DEP-induced signaling effects, similar experiments can be conducted 

using particles or particle washes obtained from DEP “washed” in media for 4 h, then spun down and 

resolubilized. Furthermore, the role of soluble metals such as Zn2+ can be similarly assessed by 

treating HAEC with the Zn2+ chelating agent TPEN prior to DEP exposure. While the data generated 

from the aforementioned experiments will reveal some information about biologically active 

compartments present in DEP, more studies are needed to characterize the mechanism by which DEP 

interacts with cellular PTPases. To do so, cells could be pretreated with metal chelators or 

antioxidants or transfected with antioxidant expressing constructs to determine whether metals or 

oxidant stress is involved in DEP-induced signaling disregulation. The most rigorous means of 

identifying the inhibitory mechanism is by the identification of DEP-induced covalent modifications 

to PTPases by mass spectrometry (Iwamoto et al., 2007).  
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5-D PM-induced activation of EGFR-dependent signaling 

The data presented here and elsewhere demonstrate that exposure to Zn2+ and DEP induce activation 

of the EGFR and proinflammatory signaling characterized by increases in IL-8 expression in lung 

epithelial cells [Chapter III-IV and (Kim et al., 2006; Tal et al., 2006)]. However, it is unclear 

whether PM-induced EGFR-dependent signaling leads to upregulation of IL-8 in our system. A 

number of recent studies support the notion that EGFR activation causes an upregulation of IL-8. 

First, a recent study showed that IL-8 expression induced by exposure to the inflammatory mediator 

MMP12 was blocked in A431 cells treated with EGFR kinase inhibitors or EGFR siRNA (Quement 

et al., 2008). Second, rhinovirus-induced IL-8 expression was blocked by pretreatment with EGFR 

kinase inhibitors and by overexpression of a kinase inactive EGFR (Liu et al., 2008). Third, in 

agreement with these studies, exposure to phorbal 12-myristate 13-acetate, a model inflammatory 

agent, or gram-negative bacterial lipopolysaccharide was shown to induce EGFR-dependent IL-8 

expression in airway epithelial cells (NCI-H2N2) (Nakanaga et al., 2007). Taken together, these 

studies provide evidence supporting the direct role of the EGFR in increases in IL-8 mRNA levels in 

response to proinflammatory stimuli. 

 

In addition to proinflammatory signaling, activation of EGFR-dependent signaling leads to a diverse 

set of cellular outcomes including proliferation, differentiation, growth, and apoptosis (Figure 1-3). 

Recently, a series of studies have elucidated a mechanism of EGFR-dependent wound healing 

following damage to the lung epithelium (Vermeer et al., 2003; Vermeer et al., 2006a; Vermeer et al., 

2006b). These studies demonstrate that following mechanical injury or disruption of the tight 

junctions by Ca2+ chelation, apically restricted EGFR ligand gained access to the basolateral domain 

and thereby inducing EGFR kinase activation and cellular proliferation to repair the damaged 

monolayer. In addition to physiologically relevant signaling, inappropriate activation of EGFR-

dependent signaling is involved in numerous pathophysiological outcomes including cancer 
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progression [reviewed in (Milanezi et al., 2008)] and inappropriate mucin production that has been 

implicated in a number of hypersecretory disesases including asthma, chronic obstructive pulmonary 

disease, and cystic fibrosis [reviewed in (Nadel and Burgel, 2001)]. 

 

5-E Identity of PTPases that regulate EGFR activity in lung epithelial cells 

Previously published reports and data presented here (Chapters II-III) reveal that Zn2+ and DEP 

induce EGFR phosphorylation by a ligand-independent mechanism (Samet et al., 2003; Tal et al., 

2006). In the case of Zn2+, we report that Zn2+ exposure induces Src-dependent (Samet et al., 2003) 

and Src-independent (Tal et al., 2006) EGFR phosphorylation in A431 cells and HAEC, respectively. 

Moreover, we observed an impairment in cellular and EGFR-directed PTPase activity in HAEC 

exposed to Zn2+ and DEP [(Tal et al., 2006), Chapter 2 and Tal unpublished observations, Chapter 3]. 

While these findings do not rule out the possibility the PM exposure induces transactivation of the 

EGFR by intracellular tyrosine kinases, they identify a common mechanism of PTPase inhibition by 

which disparate components of ambient PM similarly activate the EGFR. For PM-induced inhibition 

of EGFR-directed PTPase activity to result in downstream signaling in the absence of EGFR 

transactivation by cytosolic tyrosine kinases, low-levels of basal EGFR kinase activity required. In 

support of this, preventing EGFR autophosphorylation by c56 abolished EGFR phosphorylation in 

HAEC exposed to media (Figure 2-5A) suggesting that EGFR autophosphorylation is the dominant 

mechanism by which EGFR phosphorylation occurs under basal conditions.  

Here we report that structurally dissimilar components of ambient PM (DEP and Zn2+) inhibit EGFR-

directed PTPase activity (Figures 2-4, 2-5, 3-4, and 3-5). Although many PTPases have been shown 

to regulate the phosphorylation status of the EGFR (Table 1-1), we have not identified specific 

PTPases that control phospho-EGFR levels and are impaired by PM exposure in our system. 

Recently, a new technique has been described that would allow for the identification of PTPases 
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inhibited by PM exposure that function to regulate EGFR activity (Li et al., 2007). Briefly, the 

methodology reverses the role of the substrate and kinases in traditional in-gel tyrosine kinase activity 

assays (Figure 3-1). Rather than impregnating the gel with a kinase substrate and running lysates 

obtained from different treatment groups to determine their effect on cellular kinase activity, active 

kinases are impregnated in the gel to identify PTPases capable of dephosphorylating them (Li et al., 

2007). Future studies are currently being designed to identify PTPases that regulate the 

phosphorylation status of the EGFR and are inhibited by PM exposure by impregnating gels with 

phosphorylated/active EGFR.   

5-F Summary 

Exposure to ambient PM is associated with elevated rates of morbidity and mortality. Inflammation is 

thought to be a central mechanism by which PM exposure induces adverse health effects. In lung 

epithelial cells, a direct target of inhaled PM, exposure to ambient PM has been shown to activate 

tyrosine phosphoylation-dependent signaling culminating in the synthesis of proinflammatory 

mediators capable of recruiting and activating circulating immune cells. Here we report that exposure 

to the ubiquitous PM components Zn2+ or DEP induce activation of the receptor tyrosine kinase 

EGFR in human airway epithelial cells. This phosphorylation event occurs by a ligand-independent 

mechanism that requires EGFR kinase activity. We also show that exposure to Zn2+ or DEP impair 

the activity of PTPases that function to dephosphorylate the EGFR. Taken together, these data show 

that PM-induced EGFR-phosphorylation in human airway epithelial cells is the result of a loss of 

PTPase activities which normally function to dephosphorylate EGFR in opposition to baseline EGFR 

kinase activity. We additionally show that DEP exposure induces proinflammatory signaling 

characterized by increases in IL-8 expression. Moreover, we report that DEP exposure induces 

NFκB-dependent and NFκB-independent IL-8 expression in airway epithelial cells. 
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In summary, exposure to ambient PM, an extremely complex and heterogenous environmental 

pollutant is associated with an increased risk of cardiopulmonary morbidity and mortality. The data 

described in this dissertation support the concept that the components of PM, particularly metals and 

specific organic compounds, are primary contributors to particle-induced toxicity. Furthermore, our 

findings showing that two structurally dissimilar PM components (Zn2+ and DEP) induce signal 

disregulation characterized by EGFR kinase-dependent EGFR phosphorylation, inhibition of cellular 

PTPases including those PTPases that directly regulate the phosphorylation status of the EGFR, and 

induce proinflammatory signaling suggests that inhibition of PTPase activity is a unifying mechanism 

by which ambient air pollutants exert toxicological effects in airway epithelial cells.  
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Appendix A: Zn2+ directly impairs EGFR-dependent PTPases in HAEC 

 

A-1 Background  

We and others have reported that Zn2+, a common PM constituent, may be implicated in the toxicity 

associated with PM inhalation (Gavett et al., 1997; Kodavanti et al., 2002; Tal et al., 2006). Zn2+ is 

unable to undergo redox cycling yet is a known inhibitor of PTPases (Kim et al., 2006; Tal et al., 

2006; Cao et al., 2007), including a broad spectrum of PTPases present in HAEC (Samet et al., 

1999). A mechanism of direct inhibition has recently been proposed wherein Zn2+ blocks PTPase 

activity by binding to the catalytic cysteine and to neighboring histidine or aspartate residues present 

in the highly conserved active site (Haase and Maret, 2005). Treatment of Zn2+ exposed HAEC with 

the strong reductant and weak Zn2+ chelator, dithiothreitol (DTT) but not other structurally unrelated 

anti-oxidants, can reverse Zn2+-mediated inhibition of EGFR-directed PTPase activity (Tal, 

unpublished observations, Appendix A). This suggests that Zn2+-mediated PTPase inhibition may 

occur through a mechanism dependent upon direct metallic attack of the PTPase catalytic site, rather 

that indirectly inhibiting PTPases by oxidation.  
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A-2 Methods (Cell culture, exogenous EGFR dephosphorylatrion assays, and Western blotting were 

performed as previously described in Sections 2-C, 3-C, and 4-C)  

Radiolabeling of [32P]PolyGlu:Tyr(4:1)  

A total of 200 µg PolyGlu:Tyr was radiolabeled using 1 µg of recombinant FER kinase  (Upstate, 

Lake Placid, NY) in the presence of 200 µCi [32P]-γ-ATP for 1 hour at 30° C in 300 µl of a buffer 

consisting of 10 mM MgCl2, 50 mM NaCl and 0.1 mM ATP. The substrate was precipitated by 

adding TCA solution to 20% wt/vol and centrifuging at 12,000 × g for 5 min. The pellet was washed 

three times in 10% TCA and the substrate was resuspended at 10 µg/ml in 2 M Tris, pH 8.0.  

Recombinant PTP1B activity assay  

In a polypropalene 96 well plate, 0.1 µg of recombinant agarose conjugated PTP1B (Upstate) was 

added to 3 µg [32P]PolyGlu:Tyr(4:1) diluted in a reaction buffer containing 20 mM Hepes pH7.4, 350 

mM sucrose, and 150 mM KCl per well. To stop the reaction, 50 µl of the reaction mixture was 

sampled at 1, 5, 10, and 20 min and placed into wells containing 150 µl 10% TCA. Following the 

assay period, the plate was microcentrifuged at maximum speed for 10 min. 150 µl of the unpelleted 

mixture was removed and assessed for radioactivity by liquid scintillation counting.  
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A-3 Results 

A-3A Treatment with Chelators but not Reducing Agents Reverses Zn2+-Mediated EGFR 

Phosphorylation. Zn2+ has been postulated to influence phosphorylation dependent signaling 

pathways by forming both direct electrostatic interactions with highly conserved PTP residues 

thereby directly inhibiting enzymatic activity (Haase and Maret, 2005). Although Zn2+ is not a redox 

active metal, it is possible that treatment with Zn2+ induces the formation of reactive species, thereby 

indirectly causing PTP inhibition and activation of EGFR-dependent signaling. In order to determine 

whether Zn2+ exposure induces EGFR phosphorylation directly or indirectly, through the generation 

of oxidants, following exposure to 50µM Zn2+ for 30 min, HAEC were treated with the Zn2+ chelators 

TPEN or DTT or structurally dissimilar antioxidants, α-lipoic acid (LA) or N-acetyl cysteine (NAC). 

As shown in Figure A-1, TPEN and DTT but not NAC or LA were capable of reversing Zn2+-

mediated EGFR phosphorylation at Tyr1068/845. These data suggest that Zn2+ induces Tyr-kinase 

phosphorylation by a mechanism independent of oxidant formation.  

 

A-3B. Zn2+-mediated impairment of EGFR-directed PTPase activity is metal but not oxidant-

dependent. Phosphorylation-dependent signal transduction pathways are regulated by the opposing 

activities of kinases and phosphatases. We previously reported that exposure to Zn2+ inhibits a broad 

range of cellular PTPases in HAEC (Samet et al., 1999) including those which regulate EGFR kinase 

activity (Tal et al., 2006; Cao et al., 2007). We have also recently shown that Zn2+-mediated 

impairment of tyrosine kinase activity is not limited to the EGF-receptor but also the cellular kinases, 

ERK and JNK by a similar mechanism of impairment of PTPase activities (Kim et al., 2006). 

Therefore, it is likely that the ability of Zn2+ to inhibit PTPase activity is conserved across the entire 

PTPase family. However, the mechanism which Zn2+-impairs PTPase activity is unclear. As shown in 

Figure A-2 inhibition of human recombinant PTP1B activity by Zn2+ is reversed by DTT. We have 

reported previously that Zn2+ induce EGFR phosphorylation by a mechanism involving the  
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Figure A-1 

 

 

 

Figure A-1 Treatment with Chelators by not Reducing Agents Reverses Zn2+-Mediated EGFR Phosphorylation. 
HAEC were treat with 50 µM Zn2+ for 20 min the rinsed with room temperature PBS to remove excess Zn2+. 
Cells were then treated with 100 µM TPEN, 1 mM DTT, 100 µM LA, or 10 mM LAC for 30 min. EGFR 
phsophorlyation was measured by Western blotting.  
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Figure A-2 

 

 

Figure A-2 DTT reverses Zn2+-mediated impairment in PTP1B activity. Agarose conjugated human 
recombinant PTP1B was treated with 500 µM Zn2+ for 20 min then added to a reaction mixture containing 10 
mM DTT and [32P]PolyGlu:Tyr(4:1). The reaction mixture was sampled at 1, 5, 10, and 20 min and PTP1B 
activity was assessed by liquid scintillation. Statistical significance was determined by one-way ANOVA with a 
Dunnett’s Multiple Comparison Test (* P < 0.01, **P < 0.001). The results shown are representative of four 
independent experiments. 
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We have reported previously that Zn2+ induce EGFR phosphorylation by a mechanism involving the 

inactivation of EGFR-directed PTPase activity. Therefore, we next examined the possibility that DTT 

treatment would reverse Zn2+-induced impairment in EGFR-directed PTPase activity. As shown in 

Figure A-3, treatment with DTT but not NAC reversed Zn2+-mediated inhibition of EGFR-directed 

PTPase activity further supporting the concept that Zn2+ inhibits PTPase activity by a mechanism that 

is independent of oxidant generation.  
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Figure A-3 

 

 

 

 

Figure A-3 Inhibition of exogenous EGFR dephosphorylation by Zn2+ was reversed by DTT but not NAC in 
lysates obtained from HAEC exposed to Zn2+ in vitro. HAEC treated with 50 µM Zn2+ in 4 µM PT for 20 min. 
Cells were rinsed then treated with 10 mM DTT or NAC. 1 ng/µl active, phosphorylated EGFR substrate was 
mixed with 60-100 µg of cellular lysate and the reaction was sampled at 5, 15, and 20 min. Lysates were 
analyzed for EGFR dephosphorylation over time via Western Blotting with phospho-specific anti-EGFR 
antibodies. The results shown are representative of three or more experiments.  
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Appendix B: Zn2+ induces EGFR phosphorylation in differentiated HAEC cultured under air-

liquid interface 

 

B-1 Background 

The conducting region of the airways is lined with pseudo-stratified ciliated columnar epithelia 

forming the first line of defense against inhaled pathogens, particles and xenobiotics. Polarization, 

mediated by the appearance of tight and adheren junctional complexes, precedes- and is required for- 

differentiation (Ross et al., 2007). Recently, a series of elegant studies have elucidated a mechanism 

of cellular regeneration following damage to the lung epithelium (Vermeer et al., 2003; Vermeer et 

al., 2006). These studies employed primary human airway epithelial cells differentiated under air-

liquid interface culturing conditions. Briefly, EGFR is located on the basolateral surface in 

differentiated HAEC grown under air-liquid interface (HAEC-ALI) but not undifferentiated cells, 

while the soluble receptor ligand heregulin-α is restricted to the apical membrane. Tight junctions 

between adjacent epithelial cells form a barrier between the apical and basolateral domains thereby 

restricting diffusion of soluble ligands. However, following mechanical injury or disruption of the 

tight junctions by Ca2+ chelation, heregulin-α was liberated from the apical domain and induced 

basolaterally localized EGFR kinase activation and cellular proliferation to repair the damaged 

monolayer. It is unclear whether the mechanism of PM-mediated receptor tyrosine kinase activation 

will be affected by the state of cellular differentiation, junctional complex formation and subsequent 

receptor localization.  
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B-2 Methods Primary human bronchial epithelial cells were obtained from three different healthy, 

nonsmoking adult donors. The protocol and consent form were approved by the University of North 

Carolina School of Medicine Committee on the Protection of the Rights of Human Subjects. Cells 

were obtained by cytological brushing at bronchoscopy and expanded to passage three in bronchial 

epithelial growth medium (BEGM). Cells were plated on vitrogen-coated filter supports inserted into 

12-well culture plates and maintained as described previously (Turi et al., 2002). 500 nM retinoic 

acid was added to culture medium after cells reached 100% confluence to promote differentiation. 

Air-liquid interface culture was initiated 48 hours later by removing the apical medium, and basal 

medium containing 100 nM retinoic acid was used for the remainder of the culture period. The cells 

were maintained in ALI culture for 28 days prior to treatment with EGF or Zn2+ as previously 

described (Section 2-C). All other methods used in the following experiments were performed as 

previously described (Sections 2-C and 3-C). 
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B-3 Results 

B-3A EGF-mediated EGFR phosphorylation requires ligand access to the basolateral domain in 

HAEC differentiated under air-liquid interface. As mentioned previously, Zabner et al. has elucidated 

a mechanism by which the respiratory epithelium regenerates following injury (Vermeer et al., 2003). 

To verify our experimental model, we determined that HAEC-ALI expressed EGFR on the 

basolateral side by immunohistochemistry. As shown in Figure B-1A, EGFR is uniformly expressed 

on the surface of HAEC cultured on plastic and submerged by media. In contrast, following 

differentiation under air-liquid interface, EGFR expression is restricted to the basolateral domain 

(Figure B-1A).  To further verify the experimental model, HAEC-ALI were treated with 50 ng/ml 

EGF for 20 min and assessed for the state of EGFR and Erk phosphorylation using phospho-specific 

antibodies directed against Erk Thr202/Tyr204. As expected, EGF-induced Erk phosphorylation was 

only observed in cultures that were exposed basolaterally (Figure B-1B). This suggests that EGFR 

localizes to the basolateral domain and also, is indicative of the presence of functional tight junctions 

within our experimental model. Additionally, pretreatment with the Ca2+ chelator EGTA disrupted 

Ca2+-dependent tight junctions, thereby inducing phospho-Erk Thr202/Tyr204 in apically stimulated 

cells (Figure B-1B). These experiments confirm previous reports in which receptor localization and 

cellular polarization (as evidenced by the restriction of soluble ligands implicating the presence of 

functional junctional complexes) indicate the presence of differentiated airway epithelium (Vermeer 

et al., 2003). 

 

B-3B Zn2+ Induces kinase-dependent EGFR phosphorlyation in HAEC-ALI. We have previously 

reported that Zn2+-induced EGFR phosphorylation requires EGFR kinase activity in HAEC [Chapter 

II, (Tal et al., 2006)]. Additionally, membrane permeability to Zn2+ but not EGFR ligand binding was 

required to initiate EGFR phosphorylation and downstream signaling [Chapter II, (Tal et al., 2006)]. 

This suggests that Zn2+-mediated EGFR phosphorylation requires metal cation access to the 



   

 114 

Figure B-1 

 

 

 

 

 

Figure B-1 EGF-mediated EGFR phosphorylation requires ligand access to the basolateral domain in HAEC 
differentiated under air-liquid interface B-1A. HAEC were cultured under submerged (HAEC) or air-liquid 
interface (HAEC-ALI) conditions for then EGFR expression was assessed by immunohistochemistry (red 
arrows). B-1B. HAEC-ALI were apically and basolaterally pretreated with 10 mM EGTA for 30 min followed 
by treatment with 50 ng/ml EGF for 20 min and Erk phosphorylation was assessed by Western blotting.  
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 intracellular domain. To ascertain whether Zn2+-mediated, EGFR phosphorylation depends upon the 

state of cellular differentiation, HAEC-ALI were treated Apically (Ap) or Basolaterally (BL) with 50 

µM Zn2+ in the presence or absence of pyrithione (PT) for 30 min and assessed for the state of EGFR 

and ERK phosphorylation by Western Blotting. Ap and BL treatment with Zn2+ induced robust 

phosphorylation of EGFR Tyr845/1068 only when concomitantly exposed to PT (Figure B-2A). These 

data are in agreement with earlier findings demonstrating that Zn2+-mediated EGFR phosphorylation 

requires intracellular labile Zn2+ in HAEC [Chapter 2 (Tal et al., 2006)] and HAEC-ALI (Figure B-

2A).  

We have previously reported that Zn2+ exposure induces EGFR kinase dependent EGFR 

phosphorylation in HAEC (Tal et al., 2006). To determine whether a similar mechanism of EGFR 

activation in conserved in differentiated cells, HAEC-ALI were pretreated with the EGFR kinase 

inhibitor c56. As expected, pretreatment with the EGFR kinase inhibitor c56 blocked ligand-mediated 

receptor phosphorylation (Figure B-2B). As shown in Figure B-2A, c56 prevented Zn2+-induced 

EGFR phsophorylation. Taken together these data suggest that Zn2+-mediated EGFR kinase-

dependent EGFR phosphorylation occurs independently of the state of cellular differentiation, 

junctional complex formation and subsequent receptor localization.  
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Figure B-2 

 

 

 

 

Figure B-2 Zn2+ induces kinase-dependent EGFR phosphorlyation in HAEC-ALI B-2A. HAEC-ALI were 
pretreated with 10 µM c56 for 1 h then treated Ap or BL with 50 µM Zn2+ in the presence or absence of 4 µM 
PT for 30 min. EGFR phosphorylation was measured by Western blotting with phospo-specific antibodies. B-
1B. HAEC-ALI were pretreated with 10 µM c56 for 1 h followed by apically or basolaterally treatment with 50 
ng/ml EGF for 30 min and EGFR and Erk phosphorylation were assessed by Western blotting.  
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