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ABSTRACT

MYUNG HEE LEE: Continuum Direction Vectors in High Dimensional Low

Sample Size Data

(Under the direction of Dr. J. S. Marron)

This dissertation consists of three parts regarding High Dimensional Low Sample

Size (HDLSS) data analysis. Dimension reduction techniques in high dimensional

space, based on a small number of direction vectors, will be the common theme. In

the first part of the dissertation, Continuum Regression, originally proposed by Stone

and Brooks (1990), will be understood as a family of methods for searching among

direction vectors. Continuum Regression includes three popular methods- Ordinary

Least Squares, Partial Least Squares, and Principal Component Regression - as special

cases. The novel use of Continuum Regression in HDLSS settings will be illustrated by

an application to microarray experiments. In the second part of the dissertation, we

will extend the Continuum Regression idea to the challenging case of paired HDLSS

data. The extended method, Continuum Canonical Correlation, is proposed, as a

family of methods for searching direction vectors over two high dimensional spaces

simultaneously. The last part of the dissertation studies the HDLSS asymptotic

behavior of the maximum covariance direction vectors over two data spaces, i.e.,

the singular vectors of the sample cross-covariance matrix. We find some conditions

under which consistency and strong inconsistency of the singular vectors in HDLSS

is observed.
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2}, and the green line indicates the theoretical quantiles from
the χ2

n−1 distribution. The blue curves show the variation of quantiles
existing in a χ2

n−1 random sample. The red curve is inside the bundle
of blue curves, which shows the validity of the asymptotics in Theorem
4.3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ix



CHAPTER 1

Introduction

Data with more variables than observations are emerging in a number of fields.

For example, in typical microarray experiments, expression level of numbers of genes

ranging from the thousands to the tens of thousands are measured, while the number

of observations (i.e., tissue samples) is typically a few tens or hundreds. Data from

text recognition and signal processing also often have a much larger dimension d than

sample size n. The term High Dimensional Low Sample Size (HDLSS) will be used

to refer to this type of data in this dissertation. Another term in use for this type of

setting are “large p, small n” .

The statistical analysis of HDLSS data has become a serious challenge to statisti-

cians over a number of years. Classical multivariate tools, originally developed under

the assumption of d < n, seldom provide satisfying results for HDLSS data. One

of the main reasons for this failure is because there is not enough information (ob-

servations) to estimate the full underlying covariance matrix. An important step in

multivariate analysis is to sphere the data by pre-multiplying the root inverse of the

covariance matrix. The fact that the estimated covariance matrices from HDLSS data

are inevitably singular hinders this key step in practice.

There have been attempts to modify the existing tools, and also invention of

new methodologies, for HDLSS data over the last decades. In the linear regression

context, ridge regression (see Hoerl and Kennard (1970); Hastie et al. (2001) for useful



introduction and overview), the LASSO (Tibshirani, 1996), and the elastic net (Zou

and Hastie, 2005) can be viewed as modified Ordinary Least Squares (OLS) methods,

which can be applied to HDLSS input data. The Support Vector Machine (SVM)

(see e.g. Vapnik (1982); Vapnik (1995); Shawe-Taylor and Cristianini (2000)) is a

clever and powerful discrimination method. Marron et al. (2007) developed Distance

Weighted Discrimination (DWD), which can be seen as an improved version of the

SVM which has good performance with HDLSS data.

Among many attempts to analyze HDLSS data, dimension reduction techniques,

based on some directions of interest, are mainly considered in this dissertation. For

example, Principal Component Analysis (PCA) finds a set of direction vectors for

explaining most of the variability in the data. These direction vectors can be used

in several ways. One application is directions for visualization. One can produce 1-

dimensional projection plots on those directions or low dimensional projection plots

on the subspaces generated by those direction vectors. Another application is to find

important variables by sorting on the components of the direction vectors.

HDLSS data also motivate a new type of mathematical theory. Along with the

development of new methodologies has come a new family of asymptotics, with the

dimension d increasing. More detailed discussion on this topic, along with a literature

review, can be found in Chapter 4.

In Chapter 2, Continuum Regression (CR) (Stone and Brooks, 1990) will be viewed

as a family of direction searching methods, which includes three popular methods,

Ordinary Least Squares (OLS), Partial Least Squares (PLS) and Principal Compo-

nent Analysis (PCA) as special cases. Each of these will be studied in the HDLSS

setting. The novel HDLSS use of this methodology is illustrated by an application to

microarray experiments. The change in the relative gene weights, implied by these

different directions, will be studied.

The analysis of paired HDLSS data is considered in Chapter 3. When two multi-

2



variate data sets are obtained in pairs, Canonical Correlation Analysis (CCA) provides

a simple method for understanding the connection between the two data sets. PLS

and PCA are also generalizable in this scenario. All of these methods will be under-

stood as simultaneous direction searching methods over two high dimensional spaces.

As a generalization of CR for paired HDLSS data settings, we propose Continuum

Canonical Correlation (CCC), which includes the above as special cases.

In Chapter 4, some asymptotic analysis is developed. We focus on the maxi-

mum covariance direction vector for two multivariate data sets. The SVD of the

sample cross-covariance matrix provides the solutions to this problem, i.e., singular

vectors are the maximum covariance direction vectors. In a spiked marginal popula-

tion model, we establish the consistency of the sample singular vectors in the sense of

convergence in probability. However, in a spherical marginal population model, the

sample singular vector is strongly inconsistent to the population singular vector. In

both cases, the limiting distribution of the sample singular value is derived.

3



CHAPTER 2

Continuum Regression

Suppose we have a set of data which consists of n pairs (xi, yi) for i = 1, · · · , n. Let

xi ∈ Rd represent a regressor vector (i.e., input, i.e., covariates) and yi ∈ R denote

the response (output) value from the i-th observation. In the regression problem,

the goal is to explain or predict the quantitative response variable Y as a function

f(X) of the d-dimensional regressor vector X = (X1, · · · , Xd)
′ based on the training

data {(xi, yi)}n
i=1. The linear model assumes that the regression function, or the

conditional expectation of E(Y |X) = f(X) has the form f(X) = β0 +
∑d

j=1 Xjβj.

Despite the limitation of model structure, the linear model

(i) is simple and gives an interpretable description,

(ii) has been studied for a long time, so the resulting algorithms are efficient and

well understood, and

(iii) can be generalized into non-linear regression via transformation of the regressor

variables.

In the example that we have in mind, the response variable Y is a phenotypic mea-

surement assumed to be quantitative. The regressor variables (X1, · · · , Xd) are gene

expressions from microarrays. The microarray technology enables us to study thou-

sands of genes simultaneously from a sample. Because of its expensive experimental

cost, the number of samples, however, reaches only up to a few tens or hundreds.



As a result, in microarray studies, the number of variables, d, oftentimes, is much

larger than the number of samples, n. This type of data will be refereed to as High

Dimensional Low Sample Size (HDLSS) data in this dissertation.

Probably the most simple way to fit a linear regression function is the Ordinary

Least Squares (OLS) method. However, the OLS method directly applied to HDLSS

data usually does not provide satisfactory results. See Section 2.2 for details. When

the input variables d exceeds the number of data points n, among many alternatives

to the OLS method, two commonly considered approaches are the shrinkage method

and the method of linear transformation. The former includes ridge regression (see

Hoerl and Kennard (1970); Hastie et al. (2001) for useful introduction and overview),

the LASSO (Tibshirani, 1996), and the elastic net (Zou and Hastie, 2005). All these

methods impose a penalty on the regression coefficient size (in L1, L2, or in both

senses) and these constraints make the solution coefficients shrink.

We focus on linear transformation methods in this dissertation; a detailed ex-

planation can be found in Section 2.3. Special examples include Principal Compo-

nent Regression (PCR) and Partial Least Squares (PLS). These methods sequentially

produce linear transformations (i.e., direction vectors) of the input variables, and

use a small number of the direction vectors as regressors. Continuum Regression

(CR), proposed by Stone and Brooks (1990), brings OLS, PLS and PCR under one

mathematical umbrella. Including these three methods as special cases, they formu-

lated a richer family of regression procedures by introducing a continuous parameter

α ∈ [0, 1], which controls the tradeoff between the covariance (between the input and

the output data) and the variance (of the input data). In particular, for α = 0, 1/2,

and 1 CR corresponds to OLS, PLS, and PCR, respectively. The selection of α and

the number of regressors to be considered in regression, can be determined based on

Cross Validation.

5



In this dissertation, however, CR will be applied to microarray data in a slightly

differently sense than its original purpose (i.e., predictive modeling). CR will be

viewed as a family of direction searching methods. As opposed to the original CR or

shrinkage regression methods mentioned in the paragraphs above, choice of a single

“best” tuning parameter is not our goal. Rather, we study the entire family of

direction vectors over the whole range of the continuum parameter because each of

these illustrates a different aspect of the data. This point is reflected in the term

“continuum direction vectors” in the title of this dissertation. See Section 2.4 for

details.

In this chapter, we will first review CR and its special cases in the original context,

i.e., from the regression point of view. We begin the chapter by introducing notation

in Section 2.1 and review the OLS and study its behavior in HDLSS settings in the

following section. In Section 2.3, we establish a general framework for dimension

reduction and will discuss PCR, PLS, and CR, with examples as special cases of this

framework. Finally, in Section 2.4, an application of CR to microarray data will be

discussed.

2.1 Notation and Assumptions

We denote the regressor (input) variables by X = (X1, · · · , Xd)
′ and a scalar

response (output) variable by Y . The data, n samples of those variables, are written

in lower case letters xi ∈ Rd and yi ∈ R for i = 1, · · · , n. Bold upper case letters refer

to data matrices; we write input and output data matrices as

X =


x′1
...

x′n


n×d

and Y =


y1

...

yn


n×1

.

6



Note that the i-th input data is denoted by a column vector xi, but is stored as a

row vector x′i in the data matrix X to be consistent with the typical way of writing

the data matrix in the linear regression literature.

Column vectors with n components are written in bold lower case, for example,

the j-th column of X is denoted by xj for j = 1, · · · , d. It contains n observations on

the j-th regressor variable, Xj. This convention distinguishes the data vector on the

j-th variable xj ∈ Rn from the input data from the i-th sample xi ∈ Rd.

We assume that the columns of X (variables) and Y have been centered to have

sample mean zero; i.e., each element of the data matrices, xij and yj, have been

replaced by xij − 1
n

∑n
i′=1 xi′j and yi − 1

n

∑n
i′=1 yi′ , respectively. Thus, the sample

covariance matrix Cov(X)d×d and Cov(X,Y )d×1 (multiplied by n−1) will be denoted

as

S = X′X and s = X′Y. (2.1)

Linear regression techniques will be applied to the centered data as the result can

always be transformed back to the original data later.

2.2 Ordinary Least Squares

The linear model assumes that the regression function has the form f(X) =∑d
j=1 Xjβj. There are many ways to estimate the regression coefficients, βj, and by

far the Ordinary Least Squares (OLS) method is the most common and convenient

way. The OLS estimates β̂j, j = 1, · · · , d are chosen to minimize the residual sum of

squares over the data,

RSS(β) =
n∑

i=1

(yi −
d∑

j=1

xijβj)
2.

We can write this in a matrix notation,

RSS(β) = (Y −Xβ)′(Y −Xβ)

7



where β = (β1, β2, · · · , βd). Differentiating with respect to β and setting it to be 0,

we obtain the normal equations

X′Y −X′Xβ = 0. (2.2)

If the inverse of X′X exists, then the OLS estimates are uniquely given as β̂OLS =

(X′X)−1X′Y. The fitted values at the input training data are

Ŷ = Xβ̂OLS

= X(X′X)−1X′Y

and at an arbitrary point x0 = (x01, · · · , x0d)
′, we use the OLS predictors

Ŷ = x′0β̂
OLS (2.3)

as a predicted value.

2.2.1 Geometry in Rn

The geometry of Rn is helpful to understand how the OLS works with n training

data, and it is illustrated in Figure 2.1. Y ∈ Rn denotes the output data vector and

Xβ = x1β1 + · · ·+ xdβd ∈ Rn is a linear combination of column vectors of X. Recall

that xj ∈ Rn is the data vector for the j-th input variable. Let M, represented by

the cyan plane in Figure 2.1, be a closed subspace of Rn that is generated by the

n-dimensional data vectors for d input variables, namely,

M = {x1β1 + · · ·+ xdβd|βj ∈ R, j = 1, · · · , d}

= {Xβ|β ∈ Rd}.
(2.4)

Now the minimization problem (2.2) can be rephrased as follows; what is the closest

element to Y ∈ Rn in the subspace M?

8



Figure 2.1: Illustrates that the OLS fit Xβ̂OLS is the projection of Y onto the space
M = {Xβ|β ∈ Rd} ⊆ Rn.

The classical projection theorem tells that there is a unique element Xβ̂ ∈ M

closest to Y and it is obtained by making the residual vector Y − Xβ̂ orthogonal

to M. The unique element Xβ̂ is called the projection of Y onto M. The normal

equation (2.2) ensures that the least squares fit Xβ̂OLS is indeed the projection of Y

onto M, Xβ̂, since

Y −Xβ̂ is orthogonal to M.

⇐⇒ x′j(Y −Xβ̂) = 0 j = 1, · · · , d.

⇐⇒ x′jY = x′jXβ̂ j = 1, · · · , d.

⇐⇒ X′Y = X′Xβ̂.

9



2.2.2 Motivation for dimension reduction

It might happen that the dimension of the subspace, M, is less than d, i.e. X is

not of full column rank because

� regressors have an exact linear dependence (e.g. x1 = 2x2), or

� the number of variables, d, exceeds the number of observations, n.

For both cases, any element in M, say Xβ, can have a different representation Xβ∗,

where β∗ 6= β. Referring to the geometry of Rn, the projection of Y onto M, Ŷ, is

still unique, we just have more than one expression for it in terms of Xβ. The OLS

method for these type of data is not satisfactory for predicting the Y value for a new

input x0 since the choice of the OLS solutions β will give an arbitrary prediction x′0β.

When there is only an approximate linear dependence among regressors, X′X

could be nearly singular. The OLS solution to the normal equation (2.2) is unique,

but it could be very unstable, resulting in the estimated coefficients having large

variance, hence, poor prediction accuracy.

The first case, including the case when regressors have an approximate linear

dependence, has been a motivation for dimension reduction in the classical statistics

literature. For these data redundancies, it can be helpful to consider a reduced set of

regressors. With a subset selection approach, we could select a subset of regressors

according to a certain rule, for example, forward or backward selection procedures.

Assume for now that the rows of the data matrix are “ordered” in a way that the

“reduced” model can be written in the form

f(X) =
ω∑

i=1

Xiβi (2.5)

for some 1 6 ω 6 d. If ω is too large, then the model will have the same over-fitting

problems as the full model, but if too small, under-fitting will make it unlikely that

10



the model is rich enough to explain important underlying phenomena.

The data dimension reduction schemes which we will study in this dissertation

are motivated by the second case. Keeping in mind the applicability of the regression

techniques to microarray data, it is likely that many genes are working together for

regulating a specific phenotype. If prediction is the only concern, we could reduce

dimension by dropping some genes from the model just like (2.5), and improve the

prediction accuracy. This approach has the potential risk of discarding important

genes from the model. It can be very important to biologists not to miss genes which

play important roles. The way we reduce the data dimensionality should be different

from (2.5) in this case, and we defer the detailed review of this issue to Section 2.3.

2.2.3 The choice of OLS solution for HDLSS case

As we saw in the previous section, the OLS solution for HDLSS is not uniquely

determined. In some situations, however, we might want to choose an OLS estimate

to make a comparison with other methods. When we do not have enough information

to specify a solution, an approach to resolve this is to restrict or bias the solution in

some way. Two ways of resolving this are discussed in the following sections.

Restriction of the subspace

If we restrict the OLS solution, β, to be in the subspace, U ⊆ Rd generated by

the d- vectors of training inputs, i.e.,

U = {
∑n

i=1 xiαi|αi ∈ R, i = 1, · · · , n}

= {X′α|α = (α1, · · · , αn)′ ∈ Rn},

then we now project Y onto the subspace M∗ = {Xβ|β ∈ U} ⊆M = {Xβ|β ∈ Rd}.

Thus, the least squares problem becomes

arg min
α∈Rn

(Y −XX′α)′(Y −XX′α).

11



Assuming that XX′ is invertible, the solution is given as α̂ = (XX′)−1Y. Call

β̂dual = X′α̂ = X′(XX′)−1Y.

Ridge solution and its dual solution

The Ridge Regression solution β̂Ridge = (X′X+λI)−1X′Y was proposed by Hoerl

and Kennard (1970) as a remedy to instability of the OLS solution when X′X is

singular or nearly singular. The β̂Ridge solves a modified least squares problem,

β̂Ridge = argminβ(Y −Xβ)′(Y −Xβ) + λ||β||2

where λ > 0, called the ridge parameter, controls the balance between the residual

sum of squares and the squared length of the parameter vector β; the ridge regression

solution is shrinked toward 0 in the sense that, the λ larger, the length of β is smaller.

When λ = 0, we get back to the OLS problem. A dual version of the ridge solution,

(Shawe-Taylor and Cristianini (2004) and Saunders et al. (1998)), namely, as a form

of β̂Ridge = X′α =
∑n

i=1 xiαi for some α ∈ Rn, is obtained with α = (XX′ + λI)−1Y

for λ > 0. The OLS dual solution corresponds to the special case of ridge dual solution

with the choice of λ = 0. From now on, we let β̂OLS = X′(XX′)−1Y.

2.3 Dimension Reduction

In this section, a general approach (Stone and Brooks, 1990) to reduction of the

dimensionality for HDLSS data, is introduced. The idea behind this approach is that

� if we can summarize data set of high dimensional covariates, X = (X1, · · · , Xd)
′,

into linearly independent factors, Z = (Z1, · · · , Zω)′, where Zm = v′mX, a linear

transformation of the covariates for some vm ∈ Rd, (e.g. vm could be PCR or

PLS direction), for m = 1, · · · , ω � d,

� the small number of factors, Z, in the regression analysis, instead of using the

full set of X, could avoid the overfitting problem.
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This framework contains Principal Component Regression (PCR), Partial Least Squares

(PLS), and Continuum Regression (CR) as special cases.

2.3.1 Linear Transformation of the Input Data

Motivated by thinking of (2.5), we now consider a reduced regression model

f(Z) =
ω∑

m=1

Zmθm, (2.6)

where Zm = v′mX, is a linearly transformed variable for vm ∈ Rd and θm is a new

model parameter for m = 1, · · · , ω, for some 1 6 ω < d.

Now the important questions are:

� how to choose useful vectors vm for 1 6 m 6 ω

� how many transformed variables do we need, namely, what is the value of ω?

The discussion of the second question is important, we briefly mention a suggested

approach to the selection of ω in following sections, but will not focus on this issue

in this dissertation.

For the first question, we impose two reasonable restrictions on the vm;

R1 The vm is a unit vector (i.e., ||vm|| = 1) for m = 1, · · · , ω. The vm can be

thought of as a direction vector in the d-dimensional space. Another reason we

keep ||vm|| = 1 is to make θm identifiable.

R2 The v1, · · · , vω are S-orthogonal to each other, meaning that v′mSvl = 0 for

1 6 l < m 6 ω. It appears natural to make direction vectors “orthogonal”

to each other in some sense and this constraint, S-orthogonality, ensures that

the current variable Zm is uncorrelated with previously constructed variables,
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Z1 · · · , Zm−1 over the data;

(n− 1)Cov(Zm, Zl) = (Xvm)′Xvl

= v′mSvl

= 0

for l = 1, · · · , m− 1, where Cov is the sample covariance over the data.

With v1, · · · , vω fixed, the coefficients θω = (θ1, · · · , θω)′ are estimated by the OLS

method with the transformed input data,

Zω = XVω, where Vω = (v1, · · · , vω), (2.7)

hence, the least squares solution is given as

θ̂ω = (Z′
ωZω)−1Z′

ωY.

Note that the matrix Z′
ωZω is a diagonal matrix by the S-orthogonality constraint.

This will lead to a computational saving when fitting multiple regression; the OLS

solution of the m-th coefficient in the multiple regression fit

θ̂m =
z′mY

z′mzm

is just the OLS solution of the regression fitted with a single regressor Zm. Namely,

the regression fit of Y in the ω-dimensional subspace is the sum of ω univariate fits

on each transformed variable, Zm, separately.
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The fitted value can be written in term of the original data,

Ŷω = Zωθ̂ω

= XVωθ̂ω

= Xβ̂ω

where β̂ω =
∑ω

m=1 θ̂mvm is the corresponding linear transformation of the direction

vectors v1, · · · , vω. The estimated coefficient in terms of the original input variables,

β̂ω, now can be used to predict the value of Y at a general point x0 = (x01, · · · , x0d)
′

as

Ŷ = x′0β̂
ω. (2.8)

Geometry in Rn

The least squares problem with the transformed input data matrix Zω can be

viewed as a projection problem of Y ∈ Rn onto the space

M∗ = {z1θ1 + · · ·+ zωθω|zm = Xvm, θm ∈ R, m = 1, · · · , ω},

rather than M = {x1β1 + · · · + xdβd|βj ∈ R, j = 1, · · · , d}. A set of linearly trans-

formed data, {zm}M
m=1, where M ≡ dim(M) is an orthogonal basis of the subspace,

M, so, clearly, the choice of ω = M will get back to the original OLS regression

problem.

The idea of data reduction is to use the first ω vectors {zm}ω
m=1 for regression, but

discard M −ω vectors {zm}M
ω+1. By doing so, we project Y on a subspace M∗ ⊂M.

The regression procedures which we will discuss in the following sections differ by

the way they construct the direction vectors, {vm}ω
m=1; hence, the transformed data

{zm}ω
m=1.
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2.3.2 OLS Revisited

For understanding the relationship between OLS and the data reduction scheme

introduced in the previous section - OLS is presented as a special case of the general

method. The geometry of OLS on page 8 informs that Ŷ = Xβ̂OLS, the projection

of Y onto M, creates the maximum angle between Y among all the elements in M.

When studying angles, we observe that the square of the sample correlation between

v′X and Y emerges naturally via the following relationship;

Corr2(v′X,Y ) =
Cov2(v′X, Y )

Var(v′X)Var(Y )

=
< Xv,Y >2

||Xv||2||Y||2

= cos2 θ,

(2.9)

where θ is the angle between Xv ∈ M and Y in Rn. Since it is scale invariant,

v1 = β̂OLS/||β̂OLS|| solves the optimization,

v1 = arg max
||v||=1

Corr2(v′X,Y ). (2.10)

To search for the next direction vector, v2, let v denote any unit vector that

satisfies v′Sv1 = 0. Then,

< Xv,Y > = v′X′Y

= v′X′X(X′X)+X′Y

= ||β̂OLS||v′Sv1

= 0.

Thus, there is no well defined maximum of (2.9) for v satisfying v′Sv1 = 0, and no

gain for adding more transformed variables v′X to the model. So, the sequential

construction defined in Section 2.3.1 terminates with just the first direction vector,
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v1, i.e. Xv1 summarizes the full explanatory (of Y) power of X.

2.3.3 Principal Component Regression

Following the general framework for data reduction in Section 2.3.1, the m−th

direction vector for PCR, vm is chosen to maximize the sample variance of v′X, under

the constraint ||v|| = 1 and S-orthogonality with the m− 1 previous vectors;

vm = arg maxv Var(v′X)

= arg maxv

∑n
1 (v′xi)

2

= arg maxv v′Sv,

subject to ||v|| = 1, v′Svl = 0, l = 1, · · · , m− 1,

(2.11)

Principal Component Analysis

The method of Principal Component Analysis (PCA) is often used in multivariate

analysis (Anderson, 1958) as a method of dimension reduction: given a large number

of measurements on each observation, PCA tries to find a small number of linear

combinations of the measurements, called principal components, which explain most

of the variability across the observations.

In more detail, PCA begins with the eigenvector decomposition of the sample

covariance matrix (multiplied by n− 1),

S = λ1v1v
′
1 + · · ·+ λMvMv′M

where M = rank(S), λ1 > · · · > λM > 0 are the eigenvalues of S, and { v1, · · · , vM}

are their corresponding eigenvectors of length 1. (i.e., ||v1|| = · · · = ||vM || = 1). The

eigenvectors, {vm}, are called Principal Component (PC) direction vectors of X and

the entries the loadings. The projection of data onto the m-th PC direction vector,

zm = Xvm, is the m-th PC of X.
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Figure 2.2: Depicts the construction of the PC direction vector. The first direction
accounts for most variation of the data and the second direction is orthogonal to the
first.

In particular, the m-th eigenvector, vm, is the solution to

arg maxv v′Sv = arg maxv

∑n
i=1(v

′xi)
2

= arg maxv Var(v′X)

subject to ||v|| = 1 and v′vl = 0 for l = 1, 2, · · · , m− 1,

(2.12)

where Var is the shorthand for the variance over the sample. Put in words, the

measurements on observations spread out the most along the first PC direction vector

v1 in the d-dimensional space. The second PC direction vector, v2, is the maximal

variance amongst all direction vectors perpendicular to v1 as shown in Figure 2.2.

Note that a unit vector v orthogonal to the first eigenvector v1 is also S orthogonal

to v1, and vice versa. So, for m = 2, if we replace the orthogonality condition, v′v1 = 0,

in (2.12) by the S-orthogonality, v′Sv1 = 0, the second eigenvector of S, v2, remains
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the solution of the optimization. The same argument can be used subsequently to

show that the m-th eigenvector of S, vm, satisfies

arg maxv Var(v′X)

subject to ||v|| = 1 and v′Svl = 0 for l = 1, 2, · · · , m− 1.
(2.13)

The variance of the data along the m-th PC direction is

Var(v′mX) ∝
∑n

i=1(x
′
ivm)2

= v′mSvm

= λm.

The amount of variability that can be explained by the direction vm is reflected on

the magnitude of its corresponding eigenvalue. If eigenvalues beyond the m-th are

small, we might expect that discarding the principal components corresponding to or

beyond the m-th might not lead to loss of too much information.

Principal Component Regression

Principal Component Regression (PCR) (Massy, 1965), regresses the output vari-

able onto the first ω PCs, which contain most of the variability in the original input

variables. For the choice of ω, Cross-Validation (CV) (Stone, 1974) has been sug-

gested as an approach to this (Frank and Friedman, 1993).

The obvious disadvantage of PCR is that there is no reason why the first few

PCs, that are important to explain the variability of the input variables, will take

into account the output Y . This approach could discard a low X-variance direction,

which, in fact, could carry the important information about Y . To facilitate this idea,

a toy example showing this deficiency is shown in the next paragraph.
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Toy Example

We generate a 2−dimensional regression data set {(xi1, xi2, yi)} of size 50. The

input data, {(xi1, xi2)}, are seen in Figure 2.2. This plot gives an image of how the

regression data {(xi1, xi2, yi)} are distributed in the 2-dimensional input space only.

The movie, Lee (2005b), shows the data {(xi1, xi2, yi)} in the 3-dimensional space,

from a rotating viewpoint. This can be helpful to have a feeling about how the data

appear in the 3-dimensional space. Notice that the data appear to spread more along

the X2 axis than the X1 axis. As the view angle spins, the data points, sometimes,

appear to lie near a line (correlation ≈ 1), but sometimes they seem to spread very

randomly (correlation ≈ 0).

In the movie, Lee (2005c), the viewpoint is fixed, but the direction vector in the

X space, v, denoted as the blue line, is rotating to search for the maximal input

data variation vector. Figure 2.3 is a snapshot from this movie. The left panel

illustrates how the dimension reduction of the input data can be attained via the

linear transformation. The right plot shows the resulting projected data and linear

regression. For an arbitrarily chosen direction vector, v, the corresponding linear

transformed variable is given as Z1 = v′X. The regression of Y on Z1 now is a

simple linear regression, and the data pairs for this regression analysis are obtained

by projecting data on the 2-dimensional face determined by Z1 and Y , which is

denoted as the cyan phase. The projections - denoted as circles - are linked with

the original data - denoted as crosses- for i = 1, · · · , 50. For better demonstration of

the regression analysis with the transformed variable, the blue plane is extracted and

displayed on the right hand side.

The rotation stops at the vector v1 (PC1 direction vector) to maximize the vari-

ation of the input data. One can see that the performance of the regression on the

first PC very poor.

Figure 2.4 demonstrates how the important component concerning the variability
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Figure 2.3: Toy Example with 2−dimensional regression data (xi1, xi2, yi)}50
1 . A snap-

shot from the movie, Lee (2005c). Left : A subspace, represented by the cyan plane,
is generated by the arbitrarily chosen direction vector, v, and the output variable, Y .
Each data point- blue cross- and its projection on this plane- red circle- are linked
together by red lines. Right : The blue plane pulled from the left side. The red
dots form the data for the 1-dimensional regression analysis using the transformed
variable, v′X as a regressor.

of the input data could be irrelevant to the output variable. On the top left panel, the

two PC vectors, v1 and v2 are shown in the input space. Having fixed the direction

vector as the first PC vector, regression on the first PC is done on the top right panel

(as we saw in Figure 2.3). The fitted regression line is overlayed as the magenta line.

The bottom plots are for the second PC. We hardly see any pattern between the first

PC and the output on the top right. But the low variance component on the bottom

right is much more relevant to the output variable, Y , than the first PC.
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Figure 2.4: Toy Example with the same 2−dimensional regression data (xi1, xi2, yi)}50
1

as in Figures 2.2 and 2.3. (a) Projection of input data onto the first PC direction
vector in the (X1, X2) plane (b) Scatter plot of the first PC against output data (c)
Projection of input data onto the second PC direction vector (d) Scatter plot of the
second PC against output data, showing that it is the second PC that carries the
important information about the output data (i.e., much stronger correlation with
Y ).

2.3.4 Partial Least Squares

Since Partial Least Squares (PLS) introduced by Wold (1976) in an algorithmic

form, a variety of different algorithms (Naes and Martens (1985), Helland (1988))

that produce the same solutions have been proposed. It is very popular in the field

of chemometrics, where HDLSS settings which often lead to multicollinerity between

variables are commonplace.

PLS can be understood as an optimization problem (as was PCR in 2.13), specif-
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ically the m-th PLS direction vector, vm, solves

arg maxv Cov2(v′X, Y ) = arg maxv Corr2(v′X, Y )Var(v′X)

= arg maxv < Xv,Y >2

= arg maxv(v
′s)2

subject to ||v|| = 1, v′Svl = 0, l = 1, · · · , m− 1 where s = X′Y.

(2.14)

In contrast with the PC direction, the PLS direction is found in connection with

the output variable. The first PLS direction v1 maximizes the covariance between the

output variable and the linearly transformed variable, v′X over the data.

An interesting connection among the criteria for OLS in (2.10), PCR in (2.13),

and PLS in (2.14) can be found: the criteria for PLS, Corr2(v′X, Y )Var(v′X) is the

square of the geometric mean of criterion for OLS and PCR. This suggests that PLS

can be regarded as a compromise between OLS and PCR. This point is illustrated in

Figure 2.5. With the simulated data that we employed in the previous section, the

first OLS, PCR, and PLS vectors are drawn. The PLS vector lies between the OLS

and the PCR vectors. Unlike PCA, PLS makes direct use of the information about

the output variable, but to a smaller extent than OLS does.

While building up the PLS vectors sequentially, we can add the corresponding

factors in the regression analysis as explanatory variables. The Cross Validation

criteria is one way to choose the number of PLS factors that needs to be included in

the regression (Frank and Friedman, 1993).

2.3.5 Continuum Regression

Continuum Regression (CR) proposed by Stone and Brooks (1990) is a general

procedure to reduce a regression model in terms of linear transformations of the

original regressors as introduced in (2.6). With a criteria varying with a parameter

α ∈ [0, 1], CR constructs regressors sequentially. In particular, the family of built
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Figure 2.5: Toy Example with the same 2−dimensional regression data
{(xi1, xi2, yi)}50

1 as in Section 2.3.3. The cyan plane stands for the X-space. The
first direction vectors for OLS, PLS, and PCR are drawn. The OLS direction is
nearly orthogonal to the PCR direction, and the PLS direction lies between the OLS
and the PCR directions.

regressors embrace OLS, PLS, and PCR.

The fact that OLS, PLS, and PCR differ only in one aspect - the target quantity

maximized at each step - was pointed out by Stone and Brooks (1990). Based on

this analogy, they formulated a richer family of regression methods encompassing

those three methods. Namely, for each α ∈ [0, 1), a direction vector vm(α) is found
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sequentially to maximize

T (α) = Cov2(v′X, Y )Var(v′X)α/(1−α)−1

= (v′s)2(v′Sv)α/(1−α)−1

subject to ||v|| = 1 and v′Sv′l = 0 for l = 1, · · · , m− 1.

(2.15)

Here, Cov and Var are the sample covariance and sample variance over the data. For

α = 0,

arg max
v

T (0) = arg max
v

Cov2(v′X, Y )Var(v′X)−1

= arg max
v

Corr2(v′X, Y ).

For α = 1/2,

arg max
v

T (
1

2
) = arg max

v
Cov2(v′X, Y ).

Clearly, CR for α = 0 and α = 1
2

corresponds to OLS and PLS, respectively. The

PCR, however, can be understood only in the limiting sense as α → 1. But, we can

not expect that PCR is always the limit of CR as α goes to 1. In particular, even

though the function (2.15) is continuous with respect to α, it is not generally true

that the maximizer, v(α) ∈ Rd, as a function of α, is also continuous with respect to

α. Björkström and Sundberg (1996) demonstrates that CR can yield a discontinuous

maximizer v(α), as a function of α.

Having found the direction vector, vm(α) at the m-step for a fixed value of α, the

linearly transformed regressor, v′mX is added to the regression analysis. Thus, the

CR procedure gives rise to a set of linearly transformed regressors,

{(v1(α)′X, · · · , vω(α)′X)|α ∈ [0, 1], 1 6 ω 6 M}, where M = rank (X).

For the choice of the two tuning parameters to be set- α ∈ [0, 1], a continuum pa-

rameter indicating a regression procedure and ω, the number of regressors to be

included in the regression- the values of (α, ω) that gives the smallest leave-one-out
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Cross-Validation error is suggested by Stone and Brooks (1990).

Toy Example

Figure 2.6: Toy Example with the same 2−dimensional regression data (xi1, xi2, yi)}50
1

as in Section 2.3.3. Left: The CR direction vector for a given α is found and plotted
as the blue line. The projections of input data on this direction, in pairs of output
data, are plotted as red circles. Right: The blue plane from the left hand side shows
the CR on the corresponding CR factor.

Using the same data as in Section 2.3.3, the first direction and the corresponding

first factor of CR are calculated as a function of α in the movie, Lee (2005d). Figure

2.6 is a snapshot of this movie. Data pairs, (xi1, xi2, yi) are shown as crosses in the

3-dimensional space. For a fixed value of α, the direction vector, v, maximizing the

objective function in (2.15) is found and represented as the blue line. By projecting

the input data (xi1, xi2) onto this direction vector, we obtain the first CR factor,

which in pairs with the output data are plotted as dots. As a result, these reside on

the cyan face, the span of the first CR factor and the output variable. The plot on the

right hand side is basically the blue plane in the left panel. The solid line is the fitted
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CR on the first factor. The blue thick bar at the bottom indicates the magnitude

of the sample correlation between the output variable and the first CR factor. This

movie shows the full span of the CR vectors from the OLS vector to the PCR vector.

2.4 Application to Microarray Data

This example involves a large input data set with n = 36 mouse samples and

d = 17000 gene expression measurements from microarrays. The microarray measures

mRNA abundance which is used to derive the level of expression for thousands of genes

simultaneously. Since the activity of a gene, represented by the quantity of mRNA,

reflects the molecular status of the sample, gene expression profiles can be used to

classify the different subtypes of disease. There have been many attempts to adapt

statistical tools for discrimination/ clustering for performing this type of diagnosis.

When we have an accompanying variable that characterizes the same samples, such

as survival time or other quantitative measurements, a common statistical task is to

build a prediction model that uses the gene expression level, for a sample as input to

predict the output value.

CR can be seen as a method to unify these two types of tasks in a way that solely

unsupervised (PCR) and solely supervised (OLS) tasks occupy the two ends of the

CR spectrum and that puts an interesting range of intermediate methods, (e.g. PLS),

between them.

For this example, the maximizer direction vector will be computed for each value of

α = 0, .1, · · · , 1. Entries of a direction vector can be interpreted as the contribution of

genes on the particular direction vector. Sorting the entries of each direction vector in

an decreasing order gives the rank of gene contributions on each direction vector. Note

that genes with the largest positive (negative) entries are the ones which influence

most on the given direction vector.

We will describe the data as well as the mouse experiment done by the Rusyn
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lab in Section 2.4.1. In Section 2.4.2, we will use the continuum parameter, α, in a

novel way, to study how gene ordering changes over the α spectrum by creating “rank

tracking plots”. To identify biologically relevant genes, the tracking visualization will

be used in a different way in Section 2.4.3.

2.4.1 Experiment and Data

A mouse experiment was conducted in the Rusyn lab to study the genetic factors

affected by exposure to alcohol that may contribute to liver disease. A panel of six

inbred mouse strains (A/J, AKR/J, BALB/cJ, C3H/HeJ, C57BL/6J, and DBA/2J)

was exposed to alcohol acutely as a bolus of 5g/kg intra-gastric dose for 6 hours.

Liver and blood was taken from the alcohol-treated mice and controls to assess several

measurements. Several phenotypic changes (associated with alcohol toxicity in liver)

were measured from control and alcohol-treated mouse samples. In addition to that,

gene expression profiling was performed from the mouse samples above.

For the application of CR, we consider the d genes in the microarray as input

variables, (X1, · · · , Xd), and the Blood Alcohol Concentration (BAC), a continuous

phenotype, as the response variable, Y .

The heat map of the gene profiles (a typical way to visualize microarray data) is

shown in Figure 2.7. Gene expression values in the input data matrix X are converted

to colors ranging from green (negative) to red (positive) and displayed in rectangular

pixels so that each row represents a sample and each column corresponds to a gene.

Due to the resolution, not all 17,000 genes, but a subset of genes are seen. The inten-

sities of red and green reflect the magnitude of the absolute values of gene expression

levels. The rows and columns are ordered, using the clustering method in TreeView

(EisenLab, 2002) so that samples and genes with similar patterns of expressions can

be located close to each other. Note that within each of the six mouse strains (A/J,

BALB/CJ, C3H/HeJ, DBA/2J, AKR/J, and C57BL/6J) the data are clustered with
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Figure 2.7: Heat map view of Gene Expression from 36 mouse samples. Columns
represent genes (variables) and rows display gene profiles from samples (observation).
Note that transposing this map is the usual way of displaying. We take this view
because the mouse strain labels on the right are clearly labeled.

each other. This indicates that the strain factor dominates the treatment factor.

Also, note that all the alcohol-treated samples and the control samples within a

strain are clustered next to each other except for one strain, A/J. This indicates that

this experiment is very replicable. Genes with similar expression patterns are also

clustered together. In the middle, one can see a vertical stripe pattern- bright greens

for BALB/CJ, reds for the bottom three strains (DBA/2J, AKR/J, and C57BL/6J)

and somewhat green for the rest of two strains (A/J, C3H/HeJ). This stripe pattern

seems to dominate other patterns of genes.

Figure 2.8, a PCA scatter plot, shows expression patterns more clearly via low

dimensional projections. Strains and treatments are indicated by different colors and

symbols. The first 4 PC directions vectors are computed. Gene expressions from 36

mouse samples are projected onto those directions and plotted on the diagonals. As
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pointed out in the paragraph above, one can clearly see that the strain, BALB/CJ, is

far from the rest of the strains in the projection plot on the 1st PC. In the 2nd diagonal

plot, the circles (controls) and crosses (acute treatments) are nicely separated. This

shows that the treatment factor also explains the variability across the samples, having

adjusted the variability by the first PC. Off-diagonals are 2-dimensional projection

plots on the subspaces spanned by each pair of the 4 PC directions. For example, the

plot on the top and the second from the left is the projections of the expressions on

the subspace generated by PC1 and PC2 direction vectors. From the 2-dimensional

projection plots, one can see that

1. the same colors (strains) tend to be close to each other

2. within each color cluster, samples are grouped as symbols (treatments)

The main lessons from the PCA scatter plot are similar to the lessons from the

heat map, but some patterns are more clear through appropriate low dimensional

projections.

The top panel in Figure 2.9 is the bar-graph of the blood alcohol concentration

(BAC) data (Y ) from the samples with the microarray data and the bottom the

sample-mean subtracted BAC data. The bottom panel shows the distribution of

phenotypes across the mouse samples. The main variability clearly is due to treatment

effect. Note that, however, variability across strains within alcohol-treated samples

is noticeably bigger than variability in the control. This means that the phenotypes

are affected by genetic differences. OLS, a way to associate expression data with

phenotypes, clearly differs from the discrimination study in the sense that it takes

into account the strain variability within treatment/contol samples.

2.4.2 CR Analysis

In this section, CR is used to find “interesting genes”. Each entry of the CR

direction vectors, which will be referred to as gene loading in this dissertation, can be
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Figure 2.8: PCA Scatter plot of Gene Expression data. Colors and symbols indicate
strains and treatments, respectively. Diagonals are 1-dimensional projections on the
first 4 PC directions and off-diagonals are 2- dimensional projections on the subspaces
generated by those directions.

seen as a contribution of the corresponding gene on the first CR vector. Suppose, for

example, the first CR vector for α = 1, i.e., the first PC vector, is v1(1) = (1, 0, · · · , 0).

An interpretation of this is that the first gene explains the most variability in the

samples, whereas the rest of the genes contribute nothing to the directions of the

largest variability. We will use the continuum parameter, α, in a novel way, to study

loadings simultaneously over α ∈ [0, 1].

We find the first CR vector for a range of α ∈ [0, 1]. Each entry of the CR vectors

can be seen as a contribution of the corresponding gene on the first CR vector. The

rank of the effect of genes on the CR vector can be obtained by sorting the entries of

the CR vector. Since we keep the signs of the entries, the genes with largest positive

(top genes) and smallest negative (bottom genes) entries have the most influence on

the direction vector.
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Figure 2.9: The bar graph of the output data, Blood Alcohol Concentration. Mouse
samples (x-axis) are grouped as strain (A/J, ..., C57BL/6J) and within a strain,
alcohol-treated(T)/ control (C) samples are grouped together. We see an obvious
effect by alcohol treatment and some variability between mouse strains.

Figures 2.10 and 2.11 show the rank tracks (over the continuum parameter, α)

of the 100 largest positive and negative valued genes for the OLS direction (α = 0)

over α = 0, 0.1, · · · , 1. Based on OLS, we select those top ranked genes (100 largest

positive and 100 largest negative), i.e. genes that feel the phenotype differences across

the samples. Then, we keep track of their ranks based on CR direction vectors as the

continuum parameter, α marches along the range with increments .1. It is interesting

to see when the top ranked genes on OLS disappear. Most genes stay influential until

α reaches 0.5 (PLS). This means that a portion of genes that explains correlation

between the expression and the phenotypes the most also explains the covariance.

However, a large portion of genes disappear as the value of α further increases (in

increments of 0.1). In fact, there is no common gene between the 100 top ranked

genes for OLS and PCA, and 3 genes are common in the 100 bottom ranked genes.
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Figure 2.10: Rank tracking plot of the top 100 ranked genes from OLS (α = 0). Most
genes stay highly ranked until α goes to 0.5 (PLS). Afterwards, a portion of genes
disappear (low ranked) as we get closer to PCR and none of the genes survive at the
very end, α = 1 (PCR).

PLS, a compromise between the OLS and PCA, is in fact, much closer to the OLS in

this example.

2.4.3 Loading Tracking Plot

In this section, we will use the loading tracking visualization in a really different

way. Instead of comparing CR direction vectors over α, we now consider different

direction vectors. In addition to OLS and PLS, direction vectors considered in this

section include several important discrimination methods. We view the loadings

(entries) of the direction vector as gene contributions to the direction vector. The

loading tracking visualization nicely conveys the changes in relative gene contribution

as the direction vector changes.

The first considered vector is the second PC direction vector. This is because
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Figure 2.11: Rank tracking plot of the bottom 100 ranked genes from OLS (α = 0).
About half of genes appear to be highly ranked until α reaches 0.9 and all genes but 3
genes suddenly disappear when α = 1. Genes responsible for the PC direction, which
explains the most variability in the samples, could be very different from the genes
relevant to the response variable (α = 0).

the 1-dimensional projection on the first PC (first diagonal in Figure 2.8) shows that

most of the variability comes from strain differences. On the other hand, the second

most variability is mainly due to the treatment effect as seen in the second diagonal.

Genes that drive the treatment effect are of more interest than genes that drive strain

differences. For this reason, the second PC is considered rather than the first PC in

the following analysis.

A more direct approach for identifying genes that are expressed differently between

the treatment and control groups is discrimination. Discrimination methods, and

also their use in the analysis of expression data, have been widely studied by many

researchers. See Hastie et al. (2001), Duda et al. (2000), Tibshirani et al. (2003) and

references therein.

Among many discrimination methods, we consider Distance Weighted Discrimi-

34



nation (DWD) proposed by Marron et al. (2007) since it performs reasonably well

in HDLSS contexts. See Marron et al. (2007) for details. We also consider Mean

Difference (MD, also called centroid by Tibshirani et al. (2003)), an especially simple

discrimination method. MD is the normalized vector of the gene expression mean

difference between the control and treatment groups.
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Figure 2.12: loading tracking plot for 5 direction vectors- the 2nd PC, PLS, OLS,
DWD, MD. Each gene is represented by a piecewise line, connecting the entries of
the respective directions. A few genes stand out as important across all the methods.

Sorting genes based on different direction vectors suggest different lists of impor-

tant genes. Genes having large loadings in the second PC direction are the ones that

explain the second most variability across the samples in the gene expressions (which

might be related to treatment effect as explained above) . DWD and MD (right ends)

are useful to identify genes that differentiate the alcohol treated sample from the con-

trols. With OLS (the central ordinate), genes that best explain the phenotype, BAC,

can be obtained.

Figure 2.12, the loading tracking plot, conveys changes of gene contribution to
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these tasks. For each gene, we keep track of entries as the direction changes (from

the second PC to PLS, OLS, DWD, and MD). These form a piecewise line in Figure

2.12, which shows the change of gene loadings for the five different direction vectors.

Most of the loadings are between -.05 and .05 whereas there are some genes stand-

ing out for some particular methods, or across all the analyses. The thick bundle of

black curves in the middle hinders understanding as to whether they are actually par-

allel or crossed (up in one analysis, but down in the other, or vice versa). However,

genes with low loadings (in absolute value) for all ordinates are not related to the

treatment. A few genes stand out across all the methods, and these are worth looking

at in detail.
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Figure 2.13: loading tracking plot, with several genes of interest highlighted. The 50
top genes based on the absolute value of OLS are colored as red, 50 based on DWD
colored as blue, and purple for genes selected by both.

Let us now focus on lines that stand out either by OLS or DWD, or by both.

This can be done by highlighting particular genes of interest. For example, in Figure

2.13 we highlight 50 genes based on the absolute values of the OLS directions as red,
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Figure 2.14: Scatter plot of OLS and DWD gene loadings. Genes are distributed
along the 45◦, which indicates OLS and DWD loadings strongly correlated. The 50
top genes based on the absolute values of the OLS are colored as red, 50 based on
DWD colored as blue, and purple if selected by both.

50 based on DWD as blue, and purple if selected by both. While most of them lie

on the top area (i.e., entries are large positive values), a few highlighted lines lie on

the bottom. Out of 50 highlighted lines, 39 turn out to be purple. These 39 genes

are selected both by OLS and DWD, i.e., important to explain the phenotype and

also to differentiate alcohol samples from the controls. Some blue lines are partially

hidden around DWD as some purple lines lie exactly on top of them. These 11 genes

are in the top 50 list based on DWD, but not based on OLS. Conversely, genes that

correspond to 11 red lines are important based on OLS, but not DWD.
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Analyzing the gene loading changes that correspond to the black lines is challeng-

ing as the visualization is obscured by the thick bundle of lines in the middle. To focus

on the comparison of OLS and DWD only, we create a scatter plot of entries for these

two vectors in Figure 2.14. This scatter plot shows the loading distribution over the

two direction vectors. Genes are distributed along the 45◦ line with some variations,

i.e., some genes have larger loadings in OLS than DWD, and vise versa. However, the

45◦ line pattern is pretty clear, which indicates that the gene contributions to OLS

and DWD are strongly correlated with each other.

Note that the highlighted lines in Figure 2.13, are now converted into highlighted

crosses. The 50 genes that are most away from 0 horizontally (vertically) are colored

as red (blue), respectively. The 39 genes, colored as purple, are the intersection of the

two lists and located in the top-right or bottom-left corner. The 39 common genes

selected by both are worth looking at in detail.
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CHAPTER 3

Continuum Canonical Correlation

There are cases where two sets of multidimensional variables X = (X1, · · · , Xd1)
T

and Y = (Y1, · · · , Yd2)
T , are observed in pairs

{(xi,yi)| xi ∈ Rd1 ,yi ∈ Rd2 , i = 1, · · · , n}

and the distinction between explanatory variables and response variables are not so

clear. In that case, analysis dealing with two sets of variables in a symmetric manner

would be more appropriate than the regression type analysis, done in this context by

Stone and Brooks (1994).

Canonical Correlation Analysis (CCA), proposed by Hotelling in (Hotelling, 1936),

is an example of this type of analysis. CCA is a method of finding linear relationships

between two multi-variables. CCA seeks for two direction vectors, one for each vari-

able set, such that the sample correlation between the projections of the data onto

those two direction vectors are maximized.

In this chapter, we propose a generalization of CR, studied in Chapter 2, for two

sets of multivariate data cases. The new method will be obtained by extending CCA

into a family of CCA type analyses. Hence it will be called Continuum Canonical

Correlation(CCC). CCC bears resemblance with CR in that

(i) a free parameter, α ∈ [0, 1] controls the balance between covariance and vari-

ances and



(ii) several existing methods such as Canonical Correlation Analysis (CCA), PLS

(maximal covariance direction), and PCA, which we will study more in detail

later in this chapter are special cases.

However, CCC differs from CR in that direction vectors in both sets of variables are

of explicit interest.

In Section 3.1, we will give the description of the new method CCC. Three special

cases of CCC will be reviewed in the later sections; CCA, the maximum correlation

method in Section 3.3, PLS, the maximum covariance method in Section 3.4, and the

PCA, the maximum variance method in Section 3.5. CCA (α = 0) and PCA (α = 1)

occupy the ends of the spectrum of the new method and PLS (α = 1/2) lies in the mid-

dle. These three special methods can be put in a common mathematical framework,

and solved as a generalized eigenvalue problem (Borga et al. (1997), Shawe-Taylor

and Cristianini (2004)). In Section 3.2, the generalized eigenvalue problem will be

described. A numerical algorithm to find CCC direction vectors for general values of

α ∈ [0, 1] is proposed in Section 3.6.

3.1 Continuum Canonical Correlation

Define the two data matrices as Xd1×n := [x1, · · · ,xn] and Yd2×n := [y1, · · · ,yn].

The direction vectors, um ∈ Rd1 and vm ∈ Rd2 , are taken as the following maximizer:

T (α) = max
u∈Rd1 ,v∈Rd2

{Cov(uTX,vTY )}2{Var(uTX)Var(vTY )}α/(1−α)−1

= max
u∈Rd1 ,v∈Rd2

(uTXYTv)2(uTXXTuvTYYTv)α/(1−α)−1 (3.1)

where 0 6 α < 1 subject to uT
mum = vT

mvm = 1, uT
mXXTuj = 0 and vT

mYYTvj = 0

for j = 1, · · · , m− 1.

The parameter α controls the balance between the covariance and the variance.

Continuum Canonical Correlation has the same spirit as CR in that it solves a max-
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imization problem indexed by the free parameter, α, but differs in that it finds two

direction vectors, one for each variable set X and Y . As for CR, CCC also embraces 3

existing methods: CCA, PLS, and PCA. These three special cases can be formulated

as generalized eigen-problems, which will be introduced in the following section. In

Sections 3.3 - 3.5, CCA (α = 0), PLS (α = 1/2), and PCA (α → 1) will be studied

in detail.

3.2 The Generalized Eigenproblem

Following the development in Chapter 6 of Shawe-Taylor and Cristianini (2004),

the generalized eigenproblem will be reviewed in this section. The generalized eigen-

problem is closely related to the problem of finding the maximum point of a ratio of

quadratic forms

r =
wTAw

wTBw

where A and B are both symmetric and B is positive definite. This ratio is known

as the Rayleigh quotient. Taking the derivatives with respect to w and setting them

to zero gives the equation:

∂r

∂w
=

2

wTBw
(Aw − rBw) = 0

or equivalently the generalized eigenproblem:

Aw = rBw. (3.2)

Since by assumption B is positive-definite, by pre-multiplying the equation with B−1,

we can covert (3.2) to an ordinary eigenproblem

B−1Aw = rw.
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Let r1 > · · · > rm be the eigenvalues of B−1A and w1, · · · ,wm be the corresponding

eigenvectors.

It can be shown that (Shawe-Taylor and Cristianini (2004), Borga et al. (1997))

the eigenvector corresponding to the maximum (minimum) eigenvalue, w1(wm), is

the global maximum (minimum) point of the Rayleigh quotient and the remaining

eigenvectors are saddle points. Therefore, searching for the maximum point of the

Rayleigh quotient (3.2) is equivalent to finding the eigenvector of the generalized

eigen-problem (3.2) corresponding to the largest eigenvalue. It is useful to view the

generalized eigenproblem from a sequential viewpoint. After the eigenvector corre-

sponding to the largest eigenvalue, w1, is computed, the eigenvector corresponding to

the second largest eigenvalue, w2, solves the following maximization problem under

an orthogonality condition:

w2 = argmaxw : wTBw1=0

wTAw

wTBw
.

A similar sequential representation holds for the remaining eigenvectors. Thus, the

solution of the generalized eigenproblem gives a sequence of direction vectors to max-

imize the Rayleigh quotient in (3.2) under the B-orthogonality condition.

In the following sections, we will see that CCA, PLS, and PCA can be formulated

as a generalized eigenproblem, with a special choice of the matrices A and B.

3.3 CCA: Direction of maximum Correlation

CCA (Hotelling, 1936) is one of the principal tools in multivariate statistics for

studying the relationship between two paired sets of multivariate data. The goal

of CCA is to find two direction vectors, one for each variable set, such that the

correlation between the projections of variables onto these vectors are maximized.
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The empirical correlation between Z := uTX and W := vTY can be written as

ρ
.
=

Cov(Z,W )√
Var(Z)

√
Var(W )

=
uTXYTv√

uTXXTu
√

vTYYTv
. (3.3)

Note that this corresponds to the CCC when α = 0. Since the correlation is scale

invariant, the vectors u and w are determined up to direction. The requirement

uTXXTu = vTYYTv = 1 can resolve the ambiguity of scale issue. Then, CCA is

equivalent to the following:

maxu,v uTXYTv

subject to uTXXTu = vTYYTv = 1.

The corresponding Lagrangian is

uTXYTv − λx

2
(uTXXTu− 1)− λy

2
(vTYYTv − 1).

Taking the partial derivatives with respect to u and v, and setting the derivatives to

zero give the equations, { XYTv = λxXXTu

YXTu = λyYYTv.
(3.4)

Subtracting uT times the first from vT times the second, we obtain λxu
TXXTu −

λyv
TXXTv = 0, which implies λx = λy. Denoting this value by λ and letting

A =
( 0 XYT

YXT 0

)
, B =

( XXT 0

0 YYT

)
, and w =

(
u

v

)
, (3.5)

then the equation (3.4) can be reduced to solving a generalized eigenvalue problem,

Aw = λBw. As a result, the eigenvector w corresponding to the largest eigenvalue
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will give the canonical direction vectors, u1 and v1. The maximum of the correlation ρ

over u and v is called the canonical correlation, and the linearly transformed variables

Z = uT
1 X and W = vT

1 Y are called canonical variates.

3.3.1 Example

In the movie, (Lee, 2005a), the canonical directions are studied for a d1 = d2 = 2

example, using simulated data. Figure 3.1 is a snap shot from the movie. The top

panel on the left shows the X data as black stars, and the projections of data, onto

one arbitrarily chosen direction vector u, as red circles. The bottom panel is for the

Y data and another arbitrary v. The panel on the right shows the scatter plot of the

paired projections, onto the 2-d subspace of R4 generated by the direction vectors u

and v, which shows a weak correlation for this choice of u and v.

In the first part of the movie, the direction vector u in the X space is fixed as

shown in Figure 3.1, and the direction vector v in the Y space is rotated. As the

direction rotates, the joint distribution of the projections in the right panel changes.

Rotation stops at the direction v1 which gives the maximum correlation. In the

second part of the movie, v1 in the Y space is fixed, and direction vector in the X

space is rotated. Similarly, rotation stops at the vector u1 to maximize the correlation

of the paired projections.

Figure 3.2 is the last snap shot from this movie. The panel on the right shows

the scatter plot of data projections onto CCA direction vectors, which clearly shows

a strong linear correlation. Note that the CCA vectors, u1 and v1, indicated by

blue lines on the left, are nearly orthogonal to the PCA vectors, in each of X and Y

spaces, the directions along which data points are spread the most, highlighting the

important point that these can be quite different.
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Figure 3.1: Two paired sets of 2-d data vectors and the projections of the two direction
vectors are shown in the left panels. The scatter plot of data projections are seen in
the right panel. This show a weak correlation between the paired projections.

3.3.2 HDLSS CCA

For HDLSS data in the sense that either d1 > n or d2 > n holds, or both hold, the

matrix B in the equation (3.5) becomes singular. An ordinary approach to solving

the eigenvalue problem by pre-multiplying the inverse B on both sides of the equation

can not be applied. For the sake of simplicity, assume for now that only d1 > n is

true. Then, the rank of the covariance matrix XXT is less than its dimension d1.

In particular, this means that null space {u | uTXXTu = 0} is not empty. For

any direction vectors in this null space, the denominator of the correlation in (3.3)
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Figure 3.2: Two paired sets of 2-d data vectors and the projections of the CCA
direction vectors are shown in the left panels. The scatter plot of data projections
onto CCA vectors are seen in the right panel, which clearly shows a strong correlation.

is 0, thus the ratio is undefined. Therefore, for a singular covariance matrix XXT ,

maximizing the correlation is not well- defined. This is true in all of the cases d2 > n,

or both d1 > n and d2 > n are true.

To circumvent the singularity problem, confine the direction vectors to be in the

subspace generated by the data, i.e., u = Xα and v = Yβ for some α ∈ Rn and

β ∈ Rn. Substituting into the equation (3.3) we obtain the following

ρ =
αTXTXYTYβ√

αTXTXXTXα
√

βTYTYYTYβ
.
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Assume Rank(XTX) = n and Rank(YTY) = n. Then, the maximization problem

over α and β is now well defined. As for the ordinary CCA, it can be formulated as

a generalized eigenvalue problem.

3.4 PLS: Direction of maximum Covariance

PLS is a widely used method in chemometrics when tackling a regression problem.

The PLS begins with canonical covariance analysis; maximize the covariance between

projections of two paired sets of data onto two directions specified by u and v. There

are several versions of PLS for the multiple response case; they differ in the way

that orthogonality constraint for subsequent direction vectors is imposed (Phatak

and Jong, 1997). In this work we stick to a particular version of PLS introduced in

Borga et al. (1997).

The set of vectors are obtained in pairs and we are interested in studying the

covariance between the two parts of the paired data set. This is in contrast to the

CCA which normalizes with respect to the variances of two linear combinations,

thus studying correlation. The directions u and v of maximum covariance can be

formulated as follows:

max
u,v

Cov(uTX,vTY ) = max
u,v

uTXYTv

subject to uTu = 1 and vTv = 1.

(3.6)

The objective function is the same as that of CCC for α = 1/2. Applying the La-

grange multiplier technique to the maximization problem (3.6) gives the optimization

problem

max
u,v

uTXYTv − λx

2
(uTu− 1)− λy

2
(vTv − 1).

Taking derivatives with respect to u and v and setting them to zeroes, we have the
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equations { XYTv − λxu = 0

YXTu− λyv = 0.
(3.7)

Subtracting uT times the first from vT times the second, we obtain λxu
Tu−λyv

Tv =

0, which implies λx = λy. Denoting this value by λ and letting

A =
( 0 XYT

YXT 0

)
, B =

( I 0

0 I

)
, and w =

(
u

v

)
,

the equation (3.7) can be written as a generalized eigen-problem, Aw = λBw.

Another way to give the solutions to the maximum covariance problem (3.6)

(Shawe-Taylor and Cristianini, 2004) is the Singular Value Decomposition (SVD) of

matrix, XYT , the sample covariance matrix between two sets of variables. Namely,

if the SVD of XYT is given as

XYT = s1u1v
T
1 + · · ·+ smumvT

m (3.8)

where s1 > · · · > sm > 0 are singular values, and ui and vi are corresponding singular

vectors and rows of XYT , then the first singular vector and row, u1 and v1 indeed

are the solution to the problem (3.6). Equation (3.8) will be fundamental in Chapter

5.

3.5 PCA: Direction of Maximum Variance

The most distinctive feature of PCA from PLS or CCA is that PCA focuses on

searching for the direction vector which can explain the most variability of data in

each space separately, which thus does not take into account any relationship between

two sets of vectors.

Finding direction vectors u and v such that the linear combination uTX and vTY
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have the maximum variation can be written as the following optimization problem:

max
u,v

Var(uTX)Var(vTY ) = max
u,v

uTXXTu vTYYTv

subject to uTu = vTv = 1 or equivalently:

max
u,v

Var(uTX)

uTu

Var(vTY )

vTv
= max

u,v

uTXXTu

uTu

vTYYTv

vTv
. (3.9)

Looking back to the criteria of CCC in (3.1), as the parameter α tends to 1, we

essentially search for vectors u and v such that the variance of the projections of the

data onto those directions are maximized. Thus, PCA can be regarded as a limiting

case of CCC as α tends to 1.

Letting

A =
( XXT 0

0 YYT

)
, B =

( I 0

0 I

)
, and w =

(
u

v

)
,

the ratio (3.9) is of the form

wTAw

wTBw
.

As explained in Section 3.2, maximization of the Rayleigh Quotient can be formulated

as a generalized eigen-problem.

Example. With the same simulated data as in Figure 3.1 and 3.2 for the CCA

illustration in Section 3.3.1, we find the PCA directions and compare with the CCA

direction vectors. In Figure 3.3, data vectors for the X variables are seen in the top,

Y in the bottom. The CCA direction vectors and the data projections onto them are

shown in the left, PCA directions and projections are presented in the right. One

can easily see that the CCA and the PCA direction vectors in each set of variables

are nearly orthogonal to each other. This suggests that “interesting” vectors could
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Figure 3.3: For the same two sets of 2-d data vectors as in Figure 3.1 and 3.2, shown
in the left are the CCA direction vectors, and in the right PCA direction vectors. The
two vectors are almost perpendicular, in both the X and Y spaces, showing CCA can
be very different from PCA.

be very different depending on the task at hand.

3.6 Algorithm

In this section, a numerical algorithm for solving optimization for CCC is pro-

posed. Note that for the three special cases of CCA, PLS, and PCA, the objective

functions in (3.1) are in quadratic form, in which case the maximizer can be obtained

by solving a generalized eigen-problem. However, this is no longer the case for the

other values of α, so a more complicated numerical approach is needed.

Instead of maximizing the objective function (3.1) with respect to u and v simul-
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taneously, we fix one of the vector (i.e., either u or v), then maximize the function

with respect to the other vector. We will perform this optimization iteratively until

the solutions converge. Each iterative maximization step is exactly the CR problem,

which we can solve numerically using the algorithm by Stone and Brooks (1990).

Suppose that we have already found m−1 pairs of CCC vectors, i.e., u1, · · · ,um−1,v1 · · · ,

and vm−1 are available. The strategy for numerically solving for the m−th CCC vec-

tors, um and vm, is the following:

(i) For the initial step, j = 0, set

u(j)
m = (1− α)uCCA,m + αuPCA,m/||(1− α)uCCA,m + αuPCA,m||

v(j)
m = (1− α)vCCA,m + αvPCA,m/||(1− α)vCCA,m + αvPCA,m||,

where uCCA,m, vCCA,m, uPCA,m and vPCA,m are the m-th CCA and PCA direc-

tion vectors, respectively.

(ii) For j = 0, 1, · · · , fix v
(j)
m and let y = YTv

(j)
m . Use the algorithm of CR to

maximize the objective function (3.1) with respect to u, i.e.,

u∗ = argmaxu∈Rd1 (u
TXy)2(uTXXTu)α/(1−α)−1

subject to uTu = 1 and uT
mXXTui = 0 for i = 1, · · · , m− 1. Let u

(j+1)
m = u∗.

(iii) For j = 1, 2, · · · , fix u
(j)
m and let u = XTu

(j)
m . Again, use the algorithm of CR

to maximize the objective function (3.1) with respect to v, i.e.,

v∗ = argmaxv∈Rd1 (v
TYx)2(vTYYTv)α/(1−α)−1

subject to vTv = 1 and vT
mYYTvi = 0 for i = 1, · · · , m− 1. Let v

(j+1)
m = v∗.

Repeat (ii) and (iii) until the solutions converge.
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Solving the d1 or d2-dimensional problem in each iterative step, (ii) and (iii), and

continually updating solutions may appear to be a daunting task, especially when d1

or d2 is large. However, the numerical algorithm for solving CR, described by Stone

and Brooks (1990), is actually performing an n-dimensional optimization problem for

HDLSS cases (n < d1, d2), which makes the algorithm more tractable.

A useful property of the algorithm above is that each iteration does not decrease

the objective function. In particular, suppose that we just finished step (ii) at the

j-th iteration. Then, the target function (3.1) evaluated at u = u
(j+1)
m , v = v

(j)
m is

always greater than the value evaluated at u = u
(j)
m , v = v

(j)
m . This is true for all

iteration steps corresponding to (iii). For a given pair of data sets, X and Y, the

target function (3.1) is bounded. Thus, the sequence of function values evaluated at

iterative solutions will converge to a local maximum value.

However, there is no guarantee that the sequence of iterative solutions converges

to the global maximum. Depending on the starting point, the solution can converge

to a local maximum. Improvement for escaping from a local maximum can be made

by setting a better starting point (i.e., a initial point closer to the global maximum).

One approach toward this goal is to make use of the fact that we can obtain CCC

solution for α = .5. For given α, say .4, the solution is expected to be closer to the

solution for α = .5 than a convex combination of the two known solutions for the

extreme cases of α = 0 and 1, as the suggested above in step (i). For this reason, any

given α, we will use the solutions for α = 0, .5, or 1, as a starting point, depending

on whichever α is closest to among 0, .5, or 1, respectively. Thus, the step (i) will be

replaced by the following.
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(i’) For the initial step, j = 0, set

u(j)
m =


uCCA,m if 0 6 α < .25,

uPLS,m if .25 6 α 6 .75,

uPCA,m if .25 < α 6 1,

and

v(j)
m =


vCCA,m if 0 6 α < .25,

vPLS,m if .25 6 α 6 .75,

vPCA,m if .75 < α 6 1.

3.7 Future Work

In this section, a potential usage of CCC is suggested. Data that we have in

mind for the application are 1) gene expressions and 2) metabolomics data. They

are obtained in pairs and both are HDLSS data. We can compute CCC vectors for

a range of α values from 0 to 1, for example, with an increment of .1. The product

of the computation is a number of pairs of direction vectors, one in gene expression

space and the other in the metabolomics space. As α changes, we can analyze how the

genes and metabolomics loadings change as seen in Sections 2.4.2 and 2.4.3. Loading

tracking plots can give us insight as to how the important genes and the important

metabolites selected by different directions (tasks) are relate to each other. Genes

and metabolites that are important for explaining the correlation across the two data

sets (i.e., a “joint” structure of the two data sets) will be important for α close to 0.

As α tend to 1, CCC direction vectors eventually focus on the variation of the two

data sets separately (i.e., “marginal” structure of the two data sets). Thus, two sets

of CCC direction vector entries from α = 0 to α = 1, one for genes and the other

for metabolites, can be interpreted as a span of loadings changes from a “joint” data

analysis to a “marginal” data analysis. They can also help us select important genes
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and metabolites across the tasks, as done in Sections 2.4.2 and 2.4.3.
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CHAPTER 4

HDLSS Asymptotics

4.1 Introduction

As there are more HDLSS data emerging in various fields such as micro-array

experiments, signal processing, and image analysis, there is a strong need to develop

multivariate analysis tools which are designed to work well for this data type. The

HDLSS data type motivates a new approach to mathematical statistics. In particular,

there has been an increasing interest in a family of asymptotics, with the dimension,

d, increasing.

Among many subjects in the multivariate asymptotics literature, there is a long

history of the study on the eigenvalues and eigenvectors of the sample covariance

matrices, i.e., study on PCA ( Anderson (1963), Muirhead (1982)). Classical asymp-

totics deal with the case of increasing sample size but fixed dimensionality. In that

scenario, most of the studies make use of the fact that the sample covariance matrix

is a good approximation of the population covariance. However, this is no longer the

case with increasing dimensionality, d.

In an increasing d scenario, there are two types of circumstances commonly con-

sidered. One is to let dimensionality and sample size grow together. Bai and Yin

(1993), Paul (2004), and Johnstone and Lu (2004) have studied asymptotics where d

and n grow with the same rate, in the sense that the sample size to dimension ratio

converges to a positive constant γ. Some researchers have addressed the case where



d grows with some power of n, for example, Portnoy (1984) and Portnoy (1988) let

n → ∞, with d also growing as n1/2. We refer to these types of studies as High

Dimensional High Sample Size (HDHSS)- asymptotics.

The other extreme case, called HDLSS-asymptotics, emerges rather recently. In

Hall et al. (2005), the geometric structure of HDLSS data was explored. They let d

go infinity, while keeping the sample size n relatively small. This type of asymptotic

result is more relevant to the analysis of HDLSS data. In the fixed n and increasing

d setting, Ahn et al. (2007) found conditions under which the first eigenvector of the

sample covariance matrix is consistent to its theoretical counterpart. They assume

that the first eigenvalue of the population covariance matrix is extremely large com-

pared to the rest of them. They also found some interesting inconsistency conditions.

Namely, if the population covariance matrix is not extremely aspherical, the samples

eigenvalues tend to behave as if they are from the spherical Gaussian distribution.

There is an important contrast between the aforementioned work and this dis-

sertation work. Most of the former has a focus on the analysis of variance of the

variables. Thus, eigen-analysis of the covariance matrix, (i.e., PCA), becomes an

important tool. However, in the latter case, we focus our attention on the covariance

analysis of two sets of variables. Thus, in this case, the SVD of the sample cross-

covariance matrix plays a central role. Note that the cross-covariance matrix is not

required to be square.

In the next section, some HDHSS and HDLSS asymptotic results, mostly regarding

the eigenvalues and eigenvectors of the sample covariance matrix, will be reviewed. In

the following two sections, HDLSS asymptotic conditions under which there is consis-

tency and strong inconsistency of the singular vectors of the sample cross-covariance

matrix will be studied, respectively.
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4.2 Asymptotics of Sample Covariance Matrices

Consider a d × n data matrix X := [x1, · · · ,xn] where x1, · · · ,xn are i.i.d. with

mean zero and covariance Σ. Define the sample covariance matrix as

Σ̂ =
1

n
XXT

and let λ̂1 > · · · > λ̂r > 0 be the eigenvalues of Σ̂, where r = rank(Σ̂). Note that the

sample mean is not subtracted as this form is commonly considered in the study of

large dimensional random matrices.

In Sections 4.2.1 and 4.2.2, some HDHSS and HDLSS asymptotic results, mainly

about eigenvalues and eigenvectors of Σ̂, will be reviewed.

4.2.1 HDHSS Asymptotics

In this section, we will consider the case where both the sample size and the

dimension grow in a comparable manner in the sense that d
n
→ γ ∈ (0,∞) as n →∞.

In this case, data matrices will be viewed as a double array indexed by both d and n.

Spherical Distribution

Throughout this subsection, we assume the spherical population, i.e., the popu-

lation covariance Σ is assumed to be identity. Define the empirical distribution of

eigenvalues, often called the Empirical Spectral Distribution (ESD), as

F (x) =
1

d
× {number of λ̂is 6 x}.
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Then, the ESD converges almost surely to the Marčenko-Pastur distribution, F

(Marčenko and Pastur, 1967), with the density function defined as

f(x) =


1

2πγx

√
(b− x)(x− a), a 6 x 6 b,

0, otherwise,

where a = (1 − √γ)2 and b = (1 +
√

γ)2. Significant expansion and refinement of

the theorem has been made under various assumptions by Bai and Yin (1988) and

Yin (1986). For details, see the survey paper by Bai (1999), which provides extensive

reviews on the spectral analysis results.

While the result above focuses on the bulk of sample eigenvalues, the extremes

around the edge of the support, F , such as the largest (or the first few largest) and

the smallest eigenvalues, have drawn the attention of many researchers.

Studies on the largest sample eigenvalues include Geman (1980), Yin et al. (1988),

Silverstein (1989), and Johnstone (2001). Geman (1980) established the almost sure

limit of the largest sample eigenvalue, λ̂1:

λ̂1
a.s.→ (1 +

√
γ)2, (4.1)

assuming some additional conditions on the population moments. The other extreme,

the smallest eigenvalue, has been studied by Bai and Yin (1993) and Silverstein (1985).

They showed that under the spherical population model (not necessarily Gaussian)

with finite fourth moment,

λ̂r
a.s.→ (1−√γ)2.

The limiting distribution of λ̂1, which thus provides information on the variability of

the largest sample eigenvalue, is established by Johnstone (2001). Under a spherical
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Gaussian assumption, if centered by

µd = (
√

n− 1 +
√

d)2

and scaled by

σd = (
√

n− 1 +
√

d)(
1√

n− 1
+

1√
d
)1/3,

then the distribution of λ̂1 converges to the Tracy-Widom law of order 1 (Tracy and

Widom, 1996).

Spiked Distribution

For some real data, however, the spherical population seems unrealistic to assume.

Among many attempts to study non-spherical population models, the so called spiked

population model named by Johnstone (2001) is of particular interest. Examples in

speech recognition (Hastie et al. (1995), Johnstone (2001)), financial mathematics

(Laloux et al., 2000), and statistical learning (Hoyle and Rattray, 2004) indicate that

a few sample eigenvalues distinguish from the rest. The spiked population model

assumes that all eigenvalues are one except that a finite number of eigenvalues that

are bigger than one, i.e., Σd×d = diag(λ1, · · · , λM , 1, · · · , 1) where λ1 > λ2 > · · · >

λM > 1.

The almost sure limit of the first few largest sample eigenvalues were established

by Paul (2004) and Baik and Silverstein (2006). The former focuses on real Gaussian

samples and the latter includes complex non-Gaussian cases. The overlapping result

of the two papers is the following: as n →∞ with d
n
→ γ ∈ (0, 1)

� if λi 6 1 +
√

γ, then

λ̂i
a.s.→ (1 +

√
γ)2 (4.2)

� if λi > 1 +
√

γ, then

λ̂i
a.s.→ λi

(
1 +

γ

λi − 1

)
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Note that the limit in (4.2) is the same as the limit for the spherical in (4.1). In

other words, when the population eigenvalue is not much different from one, then

the corresponding sample eigenvalues behave as if the true population were spherical.

This is a crucial observation made in both works, which is termed as phase transition

phenomenon. Similar phenomenon is also observed in the HDLSS context (Ahn et al.,

2007).

The phase transition is also observed in the eigenvector analysis. Paul (2004) stud-

ied the limiting behavior of the angle between the true eigenvector and the sample

eigenvector. Let v1, · · ·vd be the eigenvectors of Σ, where the corresponding eigenval-

ues are sorted in a decreasing order. Define the sample eigenvectors, v̂1, · · · v̂d from

Σ̂, similarly. Then,

� if λi > 1 +
√

γ and of multiplicity one,

< v̂i,vi >
a.s.→

√
(1− γ

(λi − 1)2
)/(1 +

γ

λi − 1
) as n →∞

� if λi 6 1 +
√

γ,

< v̂i,vi >
a.s.→ 0 as n →∞. (4.3)

The result in (4.3) implies that if the population eigenvalue is not much bigger than

one, then the corresponding sample eigenvector is strongly inconsistent to the popu-

lation eigenvector in the sense that the two vectors become perpendicular.

4.2.2 HDLSS Asymptotics

While the results in the previous section treat the case where d and n grow to-

gether, we let d go to infinity with n fixed in this section. Geometrical representation

of HDLSS data and the HDLSS asymptotics involving the sample covariance matrices

are reviewed in the following two subsections.
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Geometric Representation

Hall et al. (2005) studied the geometrical representation of the HDLSS data. As-

sume x1, · · · ,xn are n independent random samples from the d−dimensional multi-

variate Gaussian distribution with mean 0 and an identity covariance matrix. Then,

the distance between any two samples tends to be deterministic in the following sense:

‖ xi − xj ‖= (2d)1/2 + Op(1) as d →∞.

In other words, n-data points independently drawn from Gaussian essentially lie at

the vertices of a regular n-simplex in Rd. Thus, the increasing randomness in the

data appear only in terms of a random rotation. Modulo rotation the behavior is

essentially deterministic. Also, Hall et al. (2005) studied the geometric representa-

tion of HDLSS data from two different distributions which arise in the context of

discrimination. In particular, this was used to analyze the limiting behavior of var-

ious discriminant methods, such as Support Vector Machine (SVM) and Distance

Weighted Discrimination (DWD).

Sample Covariance Matrices

Consider a sequence of d× n data matrices X := [x1, · · · ,xn] from Nd(0, Σd) for

d = 1, 2, · · · . Define the n× n dual sample covariance matrix as

Σ̂D =
1

n
XTX.

Ahn et al. (2007) studied the conditions under which the dual sample covariance

converges to an identity matrix as d grows. Thus, in the limit, the eigenvalues of

the sample covariance matrix behave as if they are from a spherical Gaussian. They
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formulated the assumption based on the sphericity parameter,

ε =
1

d

(
∑d

i=1 λi)
2∑d

i=1 λ2
i

,

where {λi} are eigenvalues of Σd. In particular, this parameter satisfies the inequality

1/d 6 ε 6 1. If the underlying population is spherical, i.e., Σd = Id, then the

parameter takes the extreme value 1. In an extreme singular case where the covariance

matrix is rank 1, then ε achieves the other extreme value 1/d. Assume that the

population distribution is not too close to the singular case (1/d � ε) in the sense

that 1
dε
→ 0 as d →∞. Then, the scaled dual sample covariance matrix,

Σ̂D/cd
a.s.→ Id as d →∞, (4.4)

where cd =
∑d

i=1 λi/n. This convergence of matrix happens entry-wisely, i.e., diago-

nals of the dual sample covariance matrix tends to 1 where as off-diagonals tends to

0.

This result will be used in the course of the proof of the inconsistency of the

singular vectors of the sample cross-covariance matrix in Section 4.3.3.

4.3 HDLSS Asymptotics of Sample Cross-Covariance

Matrices

Consider a data set consisting of n paired multivariate vectors,

{(xi,yi) |xi ∈ Rd1,yi ∈ Rd2 , i = 1, · · · , n},
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where the joint distribution of (x,y) is a (d1 +d2)- dimensional multivariate Gaussian

with mean 0 and covariance matrix

Σ =

 ΣX ΣXY

ΣY X ΣY

 .

Define the data matrices as Xd1×n := [x1, · · · ,xn] and Yd2×n := [y1, · · · ,yn] and

the sample mean matrices as Xd1×n and Yd2×n by taking the sample mean for each

row (each variable) over the n samples and replicating n copies of the mean vectors.

Most of the work discussed in Section 4.2 studied asymptotic behavior of the

sample covariance matrices themselves, or their eigenvalues or eigenvectors. In the

following sections, we will focus our attention on the sample paired cross covariance

matrices between X and Y , i.e.,

Σ̂XY =
1

n
X̃ỸT , (4.5)

where X̃ = X−X and Ỹ = Y −Y.

To distinguish (4.5) from the usual sample covariance matrices, such as Σ̂X or

Σ̂Y , we will call this the sample cross-covariance matrix in this dissertation. Top-

ics considered here include asymptotic properties of the sample singular values and

vectors of Σ̂XY when the sample size, n, is fixed, but the dimensions- both d1 and

d2, or sometimes d1 only- tend to infinity. We view the data matrices X and Y as

random matrices, indexed by d1 and d2. For the sake of notational simplicity, we will

suppress these indices. In Section 4.3.1, SVD or maximum covariance analysis of the

cross-covariance matrix is reviewed. In the following two Sections, 4.3.2 and 4.3.3, we

will study conditions under which the sample maximum covariance direction vectors

are consistent and strongly inconsistent, respectively.
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4.3.1 SVD of the Sample Cross-Covariance Matrices

The Singular Value Decomposition (SVD) of the cross-covariance matrix is

ΣXY = λ1u1v
T
1 + · · ·+ λmumvT

m

= UΛVT

where m = rank(ΣXY ), Ud1×m = (u1, · · · ,um), Vd2×m = (v1, · · · ,vm) satisfying

UTU = VTV = I, and Λ = diag{λ1, · · · , λm} with λ1 > λ2 > · · · > λm > 0. The

vectors, {ui} and {vi}, are called singular column vectors and row vectors, respec-

tively, and the {λi} are called singular values.

The SVD of the cross-covariance matrix provides the “maximum covariance di-

rection vectors” simultaneously over both the X and Y spaces, and the “maximum

covariance” of the underlying population. In particular, the singular vectors u1 and

v1 solve

max
u,v

Cov(uTX,vTY ) = max
u,v

uTΣXY v

subject to ‖ u ‖=‖ v ‖= 1

and the value of the maximum covariance is given by the corresponding singular value,

i.e., Cov(uT
1 X,vT

1 Y ) = λ1. The next pair of singular vectors, u2 and v2, achieves the

maximum covariance amongst vectors orthogonal to the previous singular vectors.

Henceforth, we will use the term singular vectors for maximum covariance direction

vectors, and singular values for maximum covariance.

However, the underlying population covariance matrices are usually unknown.

One can estimate population cross-covariance matrices by the sample cross-covariance

matrices as in (4.5).
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Letting r = rank(Σ̂XY ), the SVD of the sample cross-covariance matrix,

Σ̂XY = λ̂1û1v̂
T
1 + · · ·+ λ̂rûrv̂

T
r ,

provides the sample singular vectors and the sample singular values.

In the following two sections, asymptotic conditions under which the first sample

singular vectors are consistent and strongly inconsistent will be studied. In both

cases, the limiting distribution of the first sample singular value is derived.

4.3.2 Spiked Marginal Population Model

In this section, we formulate examples where the first singular vectors of the

sample cross covariance matrix are consistent. We consider an extreme case of spiked

cross covariance population model.

Asymptotic studies regarding PCA (maximum variance analysis) are usually done

by putting assumptions on the population covariance matrices and studying the be-

havior of the sample covariance matrices in the limit. See Section 4.2 for discus-

sion of these types of study. However, maximum covariance analysis differs from

maximum variance analysis in the sense that the object of the study, the sample

cross-covariance matrices, are not required to be square. Assumptions made on the

population cross-covariance matrix, ΣXY , readily imply some restrictions on the di-

agonals of the big covariance matrix, Σ, because of the Cauchy-Schwartz inequality,

Cov(Xi, Yj)
2 6 Var(Xi)Var(Yj). In other words, for maximum covariance study, focus

should not be confined to ΣXY , rather ΣXY should be understood as a sub-matrix of

the big square matrix Σ.

However, constructing the big covariance matrix, Σ, directly with the non-zero

sub-matrix, ΣXY , is not trivial due to non-negative definiteness restrictions on Σ. We

note that formulating examples using so-called factor matrix, F = Σ1/2, avoids the

need for special structures. Assumptions on Σ for the following theorem will be made
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through the factor matrix, F.

A non-intuitive, and very interesting, result is obtained when the dimension

d1 = d2 goes to infinity under a certain population model. The main theorem states

that consistency of the first sample singular vectors is observed even under some

challenging situations where the maximum correlation tends to 0. However, the first

sample singular value never converges to the population counterpart even when the

maximum correlation is 1.

In this section, we consider a sequence of paired d × n data matrices X and Y,

where

 X

Y

 is from N2d(0, Σd), based on Fd ≡ Σ
1/2
d , where

Fd =

 FX FXY

FY X FY

 ,

where the d × d partition matrices are FX = FY = diag(dα, 1, . . . , 1) and FXY =

FY X = diag(dαβ, 0, . . . , 0) for α > 0 and β > 0.

As the dimension grows (as more variables are added to the system), the system

gets noisier. In order to explore conditions for this type of asymptotic consistency,

the signal needs to get extremely stronger as the system gets noisier. For this reason,

the signal that is exponentially growing with increasing dimensionality (both in the

marginal factor matrices, FX and FY , and the cross - factor matrix, FXY ) is consid-

ered. This also explains why the two parameters α and β are required to be positive

(otherwise, the signal shrinks to 0 exponentially fast as d grows.)

One can think of other parametrization, for example, dα+β, in the cross-factor

matrix. With this parametrization, both α and α + β need to be positive in order

to have increasing signals as above. As a result, the considered region for the pair of

(α, β) is not the first quadrant, but a different convex hull. For the sake of simplicity,

we choose the former parametrization. All of the results that follow in this section
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can be transformed with the latter parametrization as well (basically by replacing αβ

by α + β.)

The parametrization is made on the factor matrix. The signal intensity in the

covariance matrix can be explained only by a combination of α and β. With the

factor matrix F above, the corresponding covariance matrix becomes

Σ =

 ΣX ΣXY

ΣY X ΣY

 =



d2α + d2αβ 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

2dα(1+β) 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

2dα(1+β) 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

d2α + d2αβ 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1



.

(4.6)

For PCA of the marginal data of X or Y , then γ = max(α, αβ) plays a driving

role in the results. This is because d2γ becomes a dominant signal in the limit for

the marginal covariance, ΣX or ΣY . See Section 4.2.2 for details. In particular, if

γ > 1/2, then the first eigenvalues in ΣX and ΣY dominate so strongly in the limit

that the first sample eigenvector converges to the population eigenvector. However,

in a mild spiked model for γ 6 1/2 cases, the dual sample covariance matrices tend to

a scaled identity matrix, which makes the sample eigenvalues and eigenvectors behave

as those from an identity covariance.

In the maximum covariance analysis across the two data sets, a different spike

parameter, τ , defined as

τ = min(α, αβ) (4.7)

becomes important. This parameter τ reflects the signal intensity of ΣXY . For ex-
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ample, if τ is above a certain threshold, say, 1/2, then the power of d in the signal

for ΣXY is at least 1.

Another important interpretation about β is that it can be also viewed as a cor-

relation intensity parameter. Observe that the corresponding correlation matrices

are

Σ̃ =

 Σ̃X Σ̃XY

Σ̃Y X Σ̃Y



=

 Id diag(
2dα(1+β)

d2α + d2αβ
, 0, . . . , 0)

diag(
2dα(1+β)

d2α + d2αβ
, 0, . . . , 0) Id

 .

For a fixed integer d and α > 0, define the maximum correlation between X and Y

as

f(β) ≡ Corr(X1, Y1) =
2dα(1+β)

d2α + d2αβ
.

If β = 1, X1 and Y1 have a perfect correlation, i.e., X1 and Y1 are identical. For

other values of β, however, the correlation becomes strictly less than 1. In fact, the

farther β is from 1, the smaller the correlation. In particular, it can be shown that f

is strictly increasing if 0 < β < 1 and strictly decreasing if β > 1.

Now, fix β and let d go to infinity. Under the population model, the maximum

correlation tends to 0 unless β = 1. Clearly, if β = 1, Corr(X1, Y1) = 1 for any

values of d. For other positive values of β, Corr(X1, Y1) → 0 as d →∞. In fact, the

limiting distribution of the first sample singular value of Σ̂XY is different depending

on whether β = 1 or not.

The following two main theorems essentially give

(i) Consistency of the first sample singular vectors for τ > 1/2 as d → ∞. Note

that this holds even in the case where β 6= 1, i.e., the maximum correlation

tends 0.
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(ii) Inconsistency of the first sample singular value. This is true even in the perfect

correlation case where β = 1. However, the limiting distributions are derived,

and they differ depending on the values of β.

With this covariance structure, note that the SVD of ΣXY is

ΣXY = 2dα(1+β)(1, 0, · · · , 0)T (1, 0, · · · , 0).

Hence, the first population singular value and singular vectors are λ1 = 2dα(1+β) and

u1 = v1 = (1, 0, · · · , 0)T .

Theorem 4.3.1. For α > 0 and β > 0, define τ as in (4.7). If τ > 1/2, then the

first sample singular value λ̂1 has the following asymptotic properties:

(i) If β = 1, λ̂1 is approximately distributed as λ1
χ2

n−1

n
, where χ2

n−1 represents the

Chi-square distribution with n− 1 degrees of freedom, in the sense that

λ̂1

λ1

=⇒ χ2
n−1/n as d →∞.

(ii) For other positive values of β, as d →∞,

2d−α(1−β) λ̂1

λ1

=⇒ χ2
n−1/n if 0 < β < 1,

2d−α(β−1) λ̂1

λ1

=⇒ χ2
n−1/n if β > 1.

Remark. Note that χ2
n−1/n = 1 + Op(n−1/2) as the sample size n → ∞. Hence, if

β = 1, with a large number of samples, n, the asymptotic ratio of the sample singular

value to the true singular value gets close to 1 as the dimension, d, grows.

When one gets the sample singular vector, û1 from the data, a natural measure
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of the closeness of two unit vectors u1 and û1 is the angle between the two vectors:

ang(u1, û1) = arccos(< u1, û1 >) ∈ [0, π/2],

where < u1, û1 > denotes uT
1 û1, the inner product of the two vectors.

In the following theorem, we measure the inner product of the true and the sample

singular vectors and examine the limiting behavior of them.

Theorem 4.3.2. For α > 0 and β > 0, define τ as in (4.7). If τ > 1/2, then the first

sample singular vectors converge to the first population singular vectors as d tends to

infinity, in the sense that

< u1, û1 >
p→ 1 as d →∞

and

< v1, v̂1 >
p→ 1 as d →∞

The following lemmas and corollaries will be used to prove the two Theorems 4.3.1

and 4.3.2. For notational simplicity, in the discussion that follows, we will denote the

entries of the d×d sample cross-covariance matrix, (Σ̂XY )ij, by σij for i, j = 1, · · · , d.

Lemma 4.3.3. For α > 0 and β > 0, define τ as in (4.7). If τ > 1/2, then entries

of the sample cross-covariance matrix, except for σ11, become negligible in the sense

that

1

λ2
1

∑
(i,j) 6=(1,1)

σ2
ij

a.s.→ 0 as d →∞.

Corollary 4.3.4. For α > 0 and β > 0, define τ as in (4.7). If τ > 1/2, then the

sample singular values, except for the first one, converge to 0, in the following sense:

1

λ2
1

m∑
i=2

λ̂2
i

a.s.→ 0 as d →∞
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Proof of Corollary 4.3.4. We will use some properties of the SVD and the Frobe-

nius norm of the matrix. Note that the squares the Frobenius norm of Σ̂XY is defined

as the sum of squares of the entries: ‖ Σ̂XY ‖2
F =

∑
i,j σ2

ij. One can show that the

squares of the Frobenius norm of the matrix can be defined as sum of the squares

of singular values, i.e., ‖ Σ̂XY ‖2
F =

∑m
i=1 λ2

i . Using the equivalent definition of the

Frobenius norm above,

‖Σ̂XY − λ̂1û1v̂
T
1 ‖2

F = ‖
m∑

i=2

λ̂iûiv̂
T
i ‖2

F =
m∑

i=2

λ̂2
i . (4.8)

Since λ̂1û1v̂
T
1 is the best rank 1 approximation to Σ̂XY in the Frobenius norm sense,

‖Σ̂XY − λ̂1û1v̂
T
1 ‖2

F 6 ‖Σ̂XY − σ11(1, 0 · · · , 0)T (1, 0 · · · , 0)‖2
F =

∑
(i,j) 6=(1,1)

σ2
ij. (4.9)

Combining (4.8) and (4.9),

1

λ2
1

∑
i=2

λ̂2
i 6

1

λ2
1

∑
(i,j) 6=(1,1)

σ2
ij

and the right hand side converges to 0 a.s. as d grows by Lemma 4.3.3.

Lemma 4.3.5. For α > 0 and β > 0, define τ as in (4.7). If τ > 1/2, then σ11

dominates the other entries in the following sense:

1

σ2
11

∑
(i,j) 6=(1,1)

σ2
ij

p→ 0 as d →∞.

Proof of the two Lammas above will be given at the end of this section.

Corollary 4.3.6. For α > 0 and β > 0, define τ as in (4.7). If τ > 1/2, then in the

limit, the first sample singular value behaves like σ11, the (1,1) entry of the sample
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cross-covariance matrix, in the following sense:

∣∣∣∣∣ λ̂1

σ11

− 1

∣∣∣∣∣ p→ 0 as d →∞

Proof of Corollary 4.3.6. By the unitary invariant property of the Frobenius norm,

σ2
11 +

∑
(i,j) 6=(1,1)

σ2
ij = ‖Σ̂XY ‖2

F = λ̂2
1 +

m∑
i=2

λ̂2
i

Dividing the above by σ2
11, we have

1 +

∑
(i,j) 6=(1,1) σ2

ij

σ2
11

=
λ̂2

1

σ2
11

+

∑m
i=2 λ̂2

i

σ2
11

.

Thus,

∣∣∣∣∣ λ̂2
1

σ2
11

− 1

∣∣∣∣∣ =
1

σ2
11

∣∣∣∣∣∣
m∑

i=2

λ̂2
i −

∑
(i,j) 6=(1,1)

σ2
ij

∣∣∣∣∣∣
6

1

σ2
11

m∑
i=2

λ̂2
i +

1

σ2
11

∑
(i,j) 6=(1,1)

σ2
ij

6
2

σ2
11

∑
(i,j) 6=(1,1)

σ2
ij.

The second inequality has been proven in the proof of Corollary 4.3.4 and the last

term converges to 0 in probability by Lemma 4.3.5. Therefore,

λ̂1

σ11

p→ 1 as d →∞.

Now we are ready to prove the main theorems. Intuition comes from comparing

the highest order in d of the entries of the sample cross-covariance matrix, Σ̂XY . For

α > 0 and β > 0, if τ = min(α, αβ) > 1/2, σ11 dominates the rest of the entries as
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d tends to infinity. So, when properly scaled, only σ11 survives whereas the rest are

negligible, which somehow resembles the population cross-covariance matrix. Now let

us closely look at what happens when d tends to infinity.

Proof of Theorem 4.3.1. The data matrices X and Y can be expressed

 X

Y

 = F

 ZX

ZY

 =

 FXZX + FXY ZY

FXY ZX + FY ZY


where the entries of ZX and ZY are iid from N (0, 1). Then, we can write the mean-

centered data matrix as

X−X = FX(ZX − ZX) + FXY (ZY − ZY )

≡ FXZ̃X + FXY Z̃Y .

Similarly, Y −Y = FXY Z̃X + FY Z̃Y . Then,

nΣ̂XY = (X−X)(Y −Y)T

= (FXZ̃X + FXY Z̃Y )(FXY Z̃X + FY Z̃Y )T

= (FXZ̃XZ̃T
XFXY + FXZ̃XZ̃T

Y FY + FXY Z̃Y Z̃T
XFXY + FXY Z̃Y Z̃T

Y FY )

=



dαz̃T
1X

z̃T
2X

...

z̃T
dX


[dαβ z̃1X ,0, . . . ,0] +



dαz̃T
1X

z̃T
2X

...

z̃T
dX


[dαz1Y , z2Y , . . . , zdY ]

+



dαβ z̃T
1Y

0T

...

0T


[dαβ z̃1X ,0, . . . ,0] +



dαβ z̃T
1Y

0T

...

0T


[dαz̃1Y , z̃2Y , . . . , zdY ].

73



The entries of the sample cross-covariance matrix are

σ11 =
1

n
(dα(1+β)z̃T

1X z̃1X + d2αz̃T
1X z̃1Y + d2αβ z̃T

1Y z̃1X + dα(1+β)z̃T
1Y z̃1Y ) (4.10)

=
1

n
(dαz̃1X + dαβ z̃1Y )T (dαβ z̃1X + dαz̃1Y ),

σ1j =
1

n
(dαz̃T

1X z̃jY + dαβ z̃T
1Y z̃jY )

=
1

n
dαβ(dα(1−β)z̃1X + z̃1Y )T z̃jY for j = 2, . . . , d,

σi1 =
1

n
(dαβ z̃T

iX z̃1X + dαz̃T
iX z̃1Y )

=
1

n
dαβ(z̃1X + dα(1−β)z̃1Y )T z̃iX for i = 2, . . . , d,

σij =
1

n
z̃T

iX z̃jY otherwise.

The limiting distribution of λ̂1/λ1 will be derived in the following manner. First, we

will show that λ̂1/λ1 and σ11/λ1 are getting close to each other as d →∞. Next, from

the exact expression of the entries as in (4.10), the limiting distribution of σ11/λ1 will

be obtained. Now for the first step, the distance between ( λ̂1

λ1
)2 and (σ11

λ1
)2,

1

λ2
1

∣∣λ̂2
1 − σ2

11

∣∣ =
1

λ2
1

∣∣ m∑
i=2

λ̂2
i −

∑
(i,j) 6=(1,1)

σ2
ij

∣∣
6

2

λ2
1

∑
(i,j) 6=(1,1)

σ2
ij

a.s.→ 0 as d →∞ (4.11)

by Lemma 4.3.3. Next, the limiting distribution of σ11/λ1 depends on β.

� Case (i) : β = 1.

From (4.10), when β = 1, note that σ11

λ1
does not depend on d. In particular,

σ11

λ1

=
1

2d2α
· d

2α

n
(z̃1X + z̃1Y )T (z̃1X + z̃1Y )

d
=

1

2n

n∑
i=1

2(zi − z)2
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d
= χ2

n−1/n, (4.12)

where {zi} are i.i.d N (0, 1) and z =
∑n

i=1 zi. Combining this with (4.11),

λ̂1

λ1

a.s.→ σ11

λ1

d
= χ2

n−1 as d →∞,

completes the proof of Case (i).

� Case (ii) : 0 < β < 1.

σ11

λ1

=
1

2dα(1+β)

1

n
(dαz̃1X + dαβ z̃1Y )T (dαz̃1X + dαβ z̃1Y )

d
=

1

2ndα(1+β)

n∑
i=1

(d2α + d2αβ)(zi − z)2

d
=

d2α + d2αβ

2dα(1+β)
χ2

n−1/n, (4.13)

where {zi} and z are defined as above in Case (i). Multiplying both sides by

2/dα(1−β),

2

dα(1−β)

σ11

λ1

d
=

d2α + d2αβ

d2α
χ2

n−1/n =⇒ χ2
n−1/n as d →∞.

Combining this with (4.11), we get the limiting distribution of the ratio,

2d−α(1−β) λ̂1

λ1

=⇒ χ2
n−1/n as d →∞.

� Case (iii) : β > 1.

The representation of σ11

λ1
is the same as (4.13) in the Case (ii). Now, multiplying

both sides of (4.13) by 2/dα(β−1),

2

dα(β−1)

σ11

λ1

d
=

d2α + d2αβ

d2αβ
χ2

n−1/n =⇒ χ2
n−1/n as d →∞.
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Combining this with (4.11), we get the limiting distribution of the ratio,

2d−α(β−1) λ̂1

λ1

=⇒ χ2
n−1/n as d →∞.

Now the proof of the consistency of the singular vectors follows.

Proof of Theorem 4.3.2. We will first show that λ̂1û1v̂
T
1 is getting close to

σ11(1, 0, · · · , 0)T (1, 0, · · · , 0) as d grows. Then, since the scalar λ̂1 is like σ11 in the

limit as shown in Corollary 4.3.6, the two vectors, û1 and v̂1 are expected to be close

to (1, 0, · · · , 0)T in the limit.

1

σ11

‖λ̂1û1v̂
T
1 − σ11(1, 0, · · · , 0)T (1, 0, · · · , 0)‖F

6
1

σ11

‖Σ̂XY − λ̂1û1v̂
T
1 ‖F +

1

σ11

‖Σ̂XY − σ11(1, 0, · · · , 0)T (1, 0, · · · , 0)‖F

6
2

σ11

‖Σ̂XY − σ11(1, 0, · · · , 0)T (1, 0, · · · , 0)‖F

=
2

σ11

√ ∑
(i,j) 6=(1,1)

σ2
ij. (4.14)

The second inequality holds because λ̂1û1v̂
T
1 is the best rank 1 approximation to Σ̂XY

in the Frobenious norm sense. The last quantity goes to 0 in probability by Lemma

4.3.5. Since the Frobenius norm is unitarily invariant,

1

σ11

‖λ̂1û1v̂
T
1 − σ11(1, 0, · · · , 0)T (1, 0, · · · , 0)‖F

=
1

σ11

‖λ̂1 − σ11û
T
1 (1, 0, · · · , 0)T (1, 0, · · · , 0)v̂1‖F

=

∣∣∣∣∣ λ̂1

σ11

− < û1,u1 >< v̂1,v1 >

∣∣∣∣∣ . (4.15)
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With (4.14) and (4.15) together, we obtain

∣∣∣∣∣ λ̂1

σ11

− < û1,u1 >< v̂1,v1 >

∣∣∣∣∣ p→ 0 as d →∞. (4.16)

On the other hand,

|< û1,u1 >< v̂1,v1 > −1| 6

∣∣∣∣∣ λ̂1

σ11

− < û1,u1 >< v̂1,v1 >

∣∣∣∣∣ +

∣∣∣∣∣ λ̂1

σ11

− 1

∣∣∣∣∣
p→ 0 as d →∞

by (4.16) and Lemma 4.3.5. Thus,

< û1,u1 >< v̂1,v1 >
p→ 1 as d →∞.

Since the inner product of two unit vectors cannot exceed 1, this readily means that

either

< û1,u1 >
p→ 1 and < v̂1,v1 >

p→ 1 as d →∞

or

< û1,u1 >
p→ −1 and < v̂1,v1 >

p→ −1 as d →∞.

By negating the signs of the sample singular vectors, we can exclude the latter case

without loss of generality. In conclusion, both the first sample singular row and

column vectors are consistent to the population singular vectors.

Remark on generalization of Theorem 4.3.2 . Suppose that ΣXY is a diagonal matrix

with the first few diagonal entries growing with some power of d, say, dτ1 , dτ2 , · · · ,

and dτM , where τ1 > τ2 > · · · > τM > 0. Also, assume that the marginal covariance

matrices ΣX and ΣY have similar large diagonal entries, that are large enough that

Σ is nonnegative definite. For M = 1, the proof of Theorem 4.3.2 essentially makes

use of the fact that, if τ1 > 1, then σ11(1, 0, · · · , 0)T (1, 0, · · · , 0) becomes a good
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rank one approximation to Σ̂XY as d grows. A similar phenomenon is expected for

M > 1. Namely, if τM > 1, the first M diagonal entries of Σ̂XY , {σ11, · · · , σMM},

dominate the rest of the entries in a sequential manner so that Σm
j=1σjjeje

T
j , where

ej is the standard j-th coordinate vector, becomes a good rank m approximation to

Σ̂XY for m = 1, · · · , M . However, substantial refinement of the proof will be needed

to rigorously establish this.

Example 1. Here, some illustrative examples are given to show the validity of the

HDLSS asymptotics of the sample singular values provided in Theorem 4.3.1. Set

n = 20, α = 1, β = 1 and take d = 200. Generate a data set (X,Y) from N2d(0, Σd),

where Σd has the form in (4.6). Estimate the sample cross-covariance matrix, and

singular value of it via SVD. Repeat this procedure M = 500 times to get a reasonable

distribution of the singular values. In Figure 4.1, the Q-Q plot of the ratio of the

sample singular value to the true singular value, λ̂1

λ1
, against the χ2

n−1/n is shown as

a red curve. The green line, the 45◦ line, shows the theoretical quantiles from the

χ2
n−1/n distribution. To understand the natural variation in the red curve, we use

a Q-Q Envelope plot. For this, 100 Q-Q plots of random samples from χ2
n−1/n are

displayed as blue curves. The red curve is inside the bundle of blue curves, which

shows the validity of the asymptotics.

Proof of Lemma 4.3.3. From (4.10), the entries of the sample cross-covariance ma-

trix can be written in terms of the row vectors of the mean-centered data matrix,

Z̃X := ZX − ZX and Z̃Y := ZY − ZY .

� Case (i): β = 1.

1

λ2
1

∑
(i,j) 6=(1,1)

σ2
ij =

1

d4α

[ d∑
j=2

{d
α

n
(z̃1X + z̃1Y )T z̃jY }2 +

d∑
i=2

{d
α

n
(z̃1X + z̃1Y )T z̃iX}2

+
d∑

i,j=2

(
1

n
z̃T

iX z̃jY )2
]
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Figure 4.1: Quantile-Quantile Envelope plot for testing the distribution of { λ̂1

λ1
}

against the χ2
n−1/n distribution. The red curve is inside the blue bundle, which

shows the validity of the asymptotics.

6
1

n2d2α
‖ z̃1X + z̃1Y ‖2 ·

d∑
j=2

‖ z̃jY ‖2

+
1

n2d2α
‖ z̃1X + z̃1Y ‖2 ·

d∑
i=2

‖ z̃iX ‖2

+
1

n2d4α

d∑
i,j=2

‖ z̃iX ‖2 · ‖ z̃jY ‖2

by the Cauchy-Schwartz inequality. Now, let’s look at the first term of the right

hand side of the inequality.

1

n2d2α
‖ z̃1X + z̃1Y ‖2 ·

d∑
j=2

‖ z̃jY ‖2=
1

n2d2α−1
‖ z̃1X + z̃1Y ‖2 ·1

d

d∑
j=2

‖ z̃jY ‖2

(4.17)

Note that ‖ z̃jY ‖2= z̃T
jY z̃jY is just the sum of the squares of the sample mean-
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centered n Gaussian draws. Thus, ‖ z̃jY ‖2 are i.i.d. χ2
n−1 for j = 2, · · · , d. By

the Law of Large Numbers (LLN),

1

d

d∑
j=2

‖ z̃jY ‖2 a.s.→ E ‖ z̃2Y ‖2= n− 1 as d →∞.

Therefore, if α > 1/2, then (4.17) converges to 0 almost surely as d → ∞

since it is the product of (1) a non-random sequence converging to 0 and (2) a

random sequence converging to a constant almost surely. Similarly, the second

term converges to 0 a.s. as d grows. For the third term, apply the LLN to the

sequence of i.i.d. random variables {‖ z̃iX ‖2 · ‖ z̃jY ‖2}d
i,j=2, with finite first

moment E ‖ z̃iX ‖2 · ‖ z̃jY ‖2= (n− 1)2. If α > 1/2, then

1

n2d4α−2
· 1

d2

d∑
i,j=2

‖ z̃iX ‖2 · ‖ z̃jY ‖2a.s.→ 0 as d →∞.

Since all of the three terms in (4.17) converge to 0 a.s., this completes the proof.

� Case (ii): 0 < β < 1.

Similarly as above in Case (i), by applying the Cauchy-Schwartz inequality,

observe that

1

λ2
1

∑
(i,j) 6=(1,1)

σ2
ij =

1

4d2α(1+β)

[ d∑
j=2

{d
αβ

n
(dα(1−β)z̃1X + z̃1Y )T z̃jY }2

+
d∑

i=2

{d
αβ

n
(z̃1X + dα(1−β)z̃1Y )T z̃iX}2 +

d∑
i,j=2

(
1

n
z̃T

iX z̃jY )2
]

6
1

4n2d2α
‖ dα(1−β)z̃1X + z̃1Y ‖2

d∑
j=2

‖ z̃jY ‖2

+
1

4n2d2α
‖ z̃1X + dα(1−β)z̃1Y ‖2

d∑
i=2

‖ z̃iX ‖2

+
1

4n2d2α(1+β)

d∑
i,j=2

‖ z̃iX ‖2‖ z̃jY ‖2 . (4.18)
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Apply the following inequality to the first term: ‖ x + y ‖26 2{‖ x ‖2 + ‖ y ‖2}

for two vectors, x and y. If αβ > 1/2, then

1

4n2d2α
· ‖ dα(1−β)z̃1X + z̃1Y ‖2

d∑
j=2

‖ z̃jY ‖2

6
2

4n2d2α−1
{d2α(1−β) ‖ z̃1X ‖2 + ‖ z̃1Y ‖2} · 1

d

d∑
j=2

‖ z̃jY ‖2

a.s.→ 0 as d →∞.

Similarly, the second term can be shown to converge to 0 a.s. The third term,

1

4n2d2α(1+β)

d∑
i,j=2

‖ z̃iX ‖2‖ z̃jY ‖2 =
1

4n2d2α(1+β)−2
· 1

d2

d∑
i,j=2

‖ z̃iX ‖2‖ z̃jY ‖2

a.s.→ 0 as d →∞,

because the power of d,

2− 2α(1 + β) < 2− 4αβ < 0.

This completes the proof.

� Case (iii): β > 1.

The same as the Case (ii) except that the first two terms in (4.18) are replaced

by

1

4n2d2αβ
‖ z̃1X + dα(β−1)z̃1Y ‖2

d∑
j=2

‖ z̃jY ‖2

and

1

4n2d2αβ
‖ z̃1X + dα(β−1)z̃1Y ‖2

d∑
i=2

‖ z̃iX ‖2,

respectively. With the same argument as above for the Case (ii), if α > 1/2,

these two terms converge to 0 a.s. as d →∞. This completes the proof.
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Combining all the three cases above, if τ = min(α, αβ) > 1/2, then

1

λ2
1

∑
(i,j) 6=(1,1)

σ2
ij

P→ 0 as d →∞.

Proof of Lemma 4.3.5. Use Lemma 4.3.3 and the equation (4.12) for β = 1 case.

Then, as d →∞,

1

σ2
11

∑
(i,j) 6=(1,1)

σ2
ij =

λ2
1

σ2
11

·
∑

(i,j) 6=(1,1) σ2
ij

λ2
1

= Op(1)op(1)

= op(1).

For other positive values of β, by Lemma 4.3.3 and (4.13), as d →∞,

1

σ2
11

∑
(i,j) 6=(1,1)

σ2
ij =

λ2
1

σ2
11

·
∑

(i,j) 6=(1,1) σ2
ij

λ2
1

= { 2d2α(1+β)

d2α + d2αβ
}2Op(1) · op(1)

= o(1)Op(1)op(1)

= op(1).

4.3.3 Spherical Marginal Population Model

In the previous section, we saw that the first sample singular vectors are consistent

to the true singular vectors as d → ∞ under the spiked marginal model. Shortly in

this section, we will see the inconsistency of the sample singular vectors under the

spherical marginal population model. In fact, the sample singular vectors are strongly

inconsistent in the sense that it is orthogonal to the population singular vector with
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the growing dimension d.

We consider a simple setting where d2 = 1 and there is perfect correlation between

Y and a linear combination of the X variables. The considered covariance matrices

are of the following form:

Σ =

 ΣX ΣXY

ΣY X ΣY

 =

 I u1

uT
1 1

 , (4.19)

where uT
1 = ( 1√

m
, · · · , 1√

m
, 0, · · · , 0) having 1√

m
in the first m-coordinates, and zeros

elsewhere, where 1 6 m 6 d.

Theorem 4.3.7. For d2 = 1 and a fixed n, consider a sequence of paired data matrices

(X,Y) from a (d+1)-dimensional multivariate Gaussian, with mean 0 and covariance

matrix of the form (4.19). Then,

(i)
√

d < u1, û1 >=⇒
√

χ2
n−1 as d →∞

and

(ii)

d−1/2λ̂1 =⇒
√

χ2
n−1/n as d →∞.

An immediate consequence of this theorem is that

uT
1 û1

P−→ 0 as d →∞.

The sample maximum covariance vector û1 is strongly inconsistent in the sense that

it is orthogonal to the theoretical covariance vector u1 in this setting. Note that the

inner product of the two direction vectors converges to 1 in the consistent case.

Proof. Note that the singular column vector, û1, is just the normalized d× 1 sample
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cross-covariance matrix, Σ̂XY , i.e.,

û1 =
X̃ỸT

‖ X̃ỸT ‖
=

X̃ỸT√
ỸX̃T X̃ỸT

.

Write the mean-centered data matrix as X̃ = X(I − 1
n
11T ) = X(I − 1

n
J) where

1 and J denote an n × 1 vector of ones and an n × n matrix of ones, respectively.

Similarly, Ỹ = Y(I− 1
n
J). Using the fact that (I− 1

n
J) is symmetric and idempotent,

one can write X̃ỸT = X(I− 1
n
J)YT = XỸT and ỸX̃T X̃ỸT = Y(I− 1

n
J)XTX(I−

1
n
J)YT = ỸXTXỸT . Then,

√
d uT

1 û1 =
√

d(
1√
m

, . . . ,
1√
m

, 0, · · · , 0)


xT

1

...

xT
d

 ỸT/
√

ỸXTXỸT

=
1√
m

(x1 + · · ·+ xm)T ỹ/
√

ỹT (XTX/d)ỹ, (4.20)

where xT
1 , . . . ,xT

d and ỹT denote the rows of X and Ỹ, respectively. Shortly, we will

see that

� the two random vectors y and 1√
m

(x1 + · · ·+xm) in the numerator are identical,

hence, the numerator is the same as yT ỹ = ỹT ỹ and

� the term in the denominator, ỹT (XTX/d)ỹ converges to ỹT ỹ in probability as

d →∞.

Putting these observations altogether, we have

d (uT
1 û1)

2 =
(ỹT ỹ)2

ỹT ỹ + oP (1)
=⇒ (ỹT ỹ)2

ỹT ỹ
= ỹT ỹ

d
= χ2(n− 1) as d →∞.

Finally, the Continuity mapping theorem completes part (i) of Theorem 4.3.7.
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Now, let’s closely look at the numerator and the denominator of (4.20). Note that

Var(
1√
m

X1 + · · ·+ 1√
m

Xm) =
1

m
Var(X1 + · · ·+ Xm) = 1

and

Cov(
1√
m

X1 + · · ·+ 1√
m

Xm, Y ) =
1√
m
{Cov(X1, Y ) + · · ·+ Cov(Xm, Y )} = 1.

Therefore, Corr( 1√
m

X1+· · ·+ 1√
m

Xm, Y ) = 1. In particular, this means that the linear

combination 1√
m

X1 + · · ·+ 1√
m

Xm is identical to Y since the joint distribution of them

is the multivariate Gaussian. Hence, the data vector of length n, 1√
m

(x1 + · · ·+ xm),

is the same as y.

In the denominator of (4.20), XTX/d, is the n×n dual sample covariance matrix,

multiplied by n/d. Using the HDLSS asymptotic result by Ahn et al. (2007) in section

4.2.2, (XTX/d)ij → δij in probability as d →∞, so the denominator in (4.20)

ỹT (XTX/d)ỹ =
n∑
ij

ỹi(X
TX/d)ij ỹj

=
n∑
ij

ỹi

(
δij + oP (1)

)
ỹj

=
n∑
i

ỹ2
i + oP (1) as d →∞.

Similarly, for the sample singular value,

d−1λ̂2
1 = d−1 ‖ X̃ỸT

n
‖2=

ỹT (XTX/d)ỹ

n2
=

ỹT ỹ + oP (1)

n2
=⇒ χ2(n− 1)

n2
as d →∞,

which completes part (ii) of Theorem 4.3.7.

Example 2. We use a simple example to illustrate the d-asymptotic behavior of the
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sample maximum covariance vector û1, and the sample maximum covariance λ̂1,

stated in Theorem 4.3.7. Set d = 500 and the covariance between X and Y as u1 =

(1, 0, · · · , 0)T . We generate a paired data set {(xi, yi)} of size n = 20 from Nd+1(0, Σ),

where Σ =

 I u1

uT
1 1

 . In this model, only the first variable X1 is related to Y ,

and the rest of them, X2, · · · , Xd, are independent of Y . For each simulation, the

sample maximum covariance vector û1 is estimated, and the quantity d (u1û1)
2 seen

in Theorem 4.3.7 is recorded. Call this simply the “scaled inner product” in this

example. The same procedure is done for M = 250 simulations. The Q-Q plot

of the scaled inner product from 250 simulations against the χ2
n−1 distribution with

n = 20 is shown in Figure 4.2. The red curve shows the quantiles of the scaled inner

product, and the green line is the straight 45◦ line which indicates the theoretical

quantiles from the χ2
n−1 distribution. The blues curves are the quantiles from 100

simulations from the χ2
n−1 distribution, showing the variation of quantiles existing in

χ2
n−1 random samples. Note that the red curve is consistent with the envelope of blue

curves, which shows the validity of the approximation of the scaled inner products to

a χ2 distribution for a large dimension d.
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Figure 4.2: Quantile-Quantile plot for testing distributional form of {d (u1û1)
2}

against the χ2 distribution. The red curve shows the quantiles of {d (u1û1)
2}, and

the green line indicates the theoretical quantiles from the χ2
n−1 distribution. The blue

curves show the variation of quantiles existing in a χ2
n−1 random sample. The red

curve is inside the bundle of blue curves, which shows the validity of the asymptotics
in Theorem 4.3.7.
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