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ABSTRACT

Wen Jenny Shi: Bayesian Viral Substitution Analysis and Covariance Estimation via
Generalized Fiducial Inference

(Under the direction of Jan Hannig and Corbin Jones)

With the advances in biology and computing technologies, there have been increasing

amount of big bio data awaiting to be analyzed. Aiming to develop statistical tools for

omics data, we focus on the problem of viral sequencing data modeling as well a fundamental

statistics question with applications in both biology and many other fields. This dissertation

is comprised of three major parts.

Motivated by a multi-time sampled, case-control influenza viral population study, in

the first part we model the sequencing data of a viral population under a Bayesian Dirichlet

mixture distribution. We have developed an efficient clustering scheme that enables us to

distinguish treatment causal changes from variation within viral populations. As a proof of

concept, we applied our method to a well-studied HIV dataset, and successfully identified

known drug resistant regions and additional potential sites. For the influenza data, our

algorithm revealed two genome sites with strong evidence of treatment effect.

The second part of the thesis concerns the covariance matrix estimation in a high-

dimensional multivariate linear models and sparse covariate settings using fiducial inference.

The sparsity imposed on the covariate matrix allows to estimate relationships between a

list of gene expressions and several metabolic levels under a high dimension low sample size

setting. Aiming to quantify the uncertainty of the estimators without having to choose a

prior, we have developed a fiducial approach to the estimation of covariance matrix. Built

upon the Fiducial Berstein-von Mises Theorem, we show that the fiducial distribution of the

covariance matrix is consistent under our framework. Furthermore, we propose an adaptive

efficient reversible jump Markov chain Monte Carlo algorithm for sampling from the fiducial

iii



distribution, which enables us to define a meaningful confidence region for the covariance

matrix.

In the last part of the thesis, we examine the stochastic models for capturing the evo-

lutionary processes of gene expression levels. Generalizing a microarray Brownian motion

(BM) model, we have developed a BM model for high-throughput sequencing data that

takes sampling variance into account. To allow conservation in the evolution process, we

also investigate Ornstein-Uhlenbeck (OU) models. Applying to a multiple-tissue mam-

malian dataset, we showed that the OU model is more appropriate for the top 10 highly

expressed genes in the dataset, and we performed hypothesis testing for significant changes

in gene expression levels along specific lineages.
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CHAPTER 1

Introduction

In recent years, with the advances in data collection technologies and computing, large

amounts of data have been and are continuously harvested. There is a critical need for

developing powerful analytical tools and extracting the important information embedded.

In this dissertation we present several statistical methods developed for analyzing omics

data in the field of biology, which may be extended to other fields as well.

In Chapter 2, we focus on modeling the RNA sequencing (RNA-seq) data and detecting

drug resistant regions on the genome for viral populations. To describe the RNA-seq read

count distributions, we suggest a Bayesian Dirichlet mixture framework. We develop an

efficient three-step clustering procedure to generate the mixture clusters without requiring

to specify the number of mixture components a priori. Our method analyzes data collected

from multiple time points and/or under control and treatment environment simultaneously,

and compares posterior distributions for the same genomic location across time and treat-

ment environments. Through simulations we showed that our clustering algorithm is much

more efficient comparing to direct Gibbs sampler. We further applied our method to a

well-studied HIV-1 dataset and an H1N1 data with two biological duplicates. Our method

revealed the most common known drug resistant sites along with a few other interesting

genomic locations.

Next, in Chapter 3, we look into covariance estimation, a rather classical statistics prob-

lem. Instead of the common sparse covariance constraint, we impose a sparsity structure

on the covariate matrix, a scenario that arises in proteomics and metablomics. Aiming for

a distribution of estimators without requiring priors, we considered a fiducial approach.

Under the assumption that there is a one-to-one correspondence between the covariate and

covariance matrices, (which is often true under the sparse setting), we prove that the de-

rived fiducial distribution satisfies the Fiducial Bernstein von-Mises Theorem (Sonderegger



and Hannig, 2012). To sample from the fiducial distribution, we suggest to use Markov

chain Monte Carlo (MCMC) methods. In the general case where the sparse structure of the

covariate is unknown, we propose an adaptive Reversible Jump MCMC (RJMCMC) that

incorporates the zeroth-order method to improve efficiency.

Finally, we present a review of stochastic modeling for phylogenetically dependent con-

tinuous traits in Chapter 4. How much a gene is expressed can determine important pheno-

types and other characteristics of an organism. The study of gene expression modeling has

been a popular area in the past decades. The stochastic nature of the evolutionary process

of gene expression needs to be taken into account when the expression levels are compared

across related species. Here, we review the stochastic modeling of gene expression levels

for phylogenetically dependent species using Brownian motion (BM), Ornstein-Uhlenbeck

(OU), and general Lévy processes. For illustration, the BM and OU methods were applied

to the RNA-seq data of nine mammalian species. Based on the top 10 highly expressed

genes, we showed that the OU model is more appropriate than the BM model, and that

there is no significant mean shift on the mouse branch, even though its expression levels

appear to be much more different from the others.
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CHAPTER 2

Viral substitution analysis

2.1 Introduction

RNA viruses and retroviruses, such as SARS, influenza, hepatitis C, polio, and HIV, use

RNA as their genetic material. The RNA polymerases of these viruses lack the proof-reading

ability of DNA polymerases, which results in a high mutation rate in these RNA genomes

and a high rate of genome evolution. This rapid rate of evolution can be advantageous for

the virus as it can confound the immune system and lead to the emergence of resistance to

antiviral drugs (Boutwell et al., 2010; Rambaut et al., 2004).

Phylogenetic and molecular evolutionary analyses of viral genes and genomes are stan-

dard tools for investigating RNA virus evolution at a molecular level (Norström et al.,

2012). However, the high mutation rate and the complex secondary structures of RNA

viruses genomes often compromise sequence based methods of analysis (Simmonds and

Smith, 1999; Damgaard et al., 2004; Watts et al., 2009; Cuevas et al., 2012). These aspects

of viral biology complicate teasing apart the evolutionary signal of adaptation, such as evo-

lution of drug resistance, from the signal of neutral evolutionary processes, such as genetic

drift. Further complicating sequence analysis are compensatory mutations that offset struc-

tural defects and other pleiotropic costs of adaptive alleles, which often arise and sweep to

fixation in viral populations (Knies et al., 2008). Thus there is a clear need for analytical

methods that are robust to these complications, make minimal assumptions as to how the

virus should evolve, and can identify regions of the viral genome that have changed over

time in response to treatment.

The wealth of new viral sequence data made possible by recent advances in sequencing

technology has amplified the need for new analytical tools (Jabara et al., 2011). Increasingly,

populations of thousands of viruses are sampled and sequenced from an infected individual.



This approach captures a snapshot of the viral genetic variation within an individual. A

few studies have combined this approach with traditional passage experiments or sampling

during the course of an infection (Eriksson et al., 2008; Kuroda et al., 2010; Leitner et al.,

1993; Wright et al., 2010). This powerful experimental design reveals how a population

of viruses genomically responds to evolutionary pressure. With the ever-decreasing cost of

sequencing, these studies are expected to become commonplace.

Our motivating dataset came from a study of influenza A H1N1 viruses (IVA) in response

to an inhibitor of neuraminidase, oseltamivir (a.k.a. Tamiflu). Oseltamivir has been used

both for prevention and treatment of influenza viruses. It prevents the virus from budding

from the host cell, thereby slowing viral reproduction. How the IVA respond to oseltamivir

on the genomic level has not been fully understood. Our goal is to find the genomic regions of

the virus that evolved in response to oseltamivir. The dataset contains replicate populations

of IVA sampled over many generations (“passages”) in the presence and absence oseltamivir

(Renzette et al., 2014). The IVA were first adapted from chicken eggs to Madin-Darby

canine kidney (MDCK) cells for three passages. Then the samples were serially passaged

in MDCK cells in either the absence or presence of oseltamivir in replicated experiments

(Figure 2.1). At the end of each passage, whole-genome high throughput sequencing data

were collected (Renzette et al., 2014).

RNA viruses evolve rapidly even within the untreated group. It is important to dis-

tinguish genetic changes selected for by the inhibitor from those that arise due to other

population genetic forces. The time series data and control-treatment setup provides mul-

tiple samples for the virus populations with and without the administration of oseltamivir.

Two biological replicates allow to crosscheck sites for drug resistance. We take advantage

of the replicated longitudinal data and develop a novel statistical approach for identifying

evolved nucleotides in a viral genome without relying on sequence annotation or the nature

of the change (non-synonymous or synonymous; transition or transversion).

Our approach analyzes multiple time-sampled observations simultaneously, models viral

sequence position indices under a Bayesian Dirichlet mixture distribution, performs a series

of clustering algorithms, and identifies treatment causal substitution sites via comparing

the before and after treatment posterior distributions for the corresponding regions on the

4
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Figure 2.1: IVA adapted from chicken egg to MDCK cells for passages 1-3, then serially passaged
in either absence (white) or presence (red) of oseltamivir environments. There are two biological
replicates. The size of the oval corresponds to the average total read count per site. The number in
the oval corresponds to the generation.

viral genome. Our algorithm also allows us to identify genomic locations that have similar

patterns of change.

We first validated our approach with synthetic test data. Then we used a well-studied

HIV-1 data set (Jabara et al., 2011) as a positive control. We showed that this approach

identifies key changes that have been experimentally shown to be important to the evolution

of drug resistance. Finally, we applied our method to the longitudinal time-sampled IVA

data in the absence and presence of oseltamivir. We identified two genome sites (S6-822 &

S8-80) that presented the greatest evidence of drug resistance along with a set of locations

might have been affected by adaptation to the host or genetic drift.

The rest of the chapter is arranged as follows. Section 2.2 describes the viral genome

data type, a Bayesian framework used to model the viral populations, and an f-divergence

measure used in our study. Section 2.3 introduces a three-step sequential approach we have
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developed to identify treatment causal substitutions. Simulation results are presented in

Section 2.4, and in Section 2.5 implementation of our method to a well described HIV-

1 dataset as a proof of concept, followed by the analysis of the IVA dataset. Section 5

concludes the chapter with a few remarks and a discussion.

2.2 Parametric Bayesian Mixture Framework

In this section, we first briefly introduce the whole genome high-throughput sequencing data.

We then define the Bayesian Dirichlet mixture framework used to model a viral population

and state a distance measure for comparing the distributions for the same genome position

across time.

2.2.1 Sequencing Data

Advances in high-throughput whole genome shotgun sequencing allow deep genome sequenc-

ing of viral populations within a host (Muers, 2011). This technology produces millions of

short DNA or RNA sequences. These sequences are aligned to a reference genome and

differences between the reference and sequenced population are noted. With this advanced

shotgun sequencing method, we are able to combine the reads from each individual and

work with data with the following form:

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 · · ·
C A T · · ·

C T C T A C A · · ·
C T A C C M · · ·

G C T T · · ·
C M G T C T · · ·
G C T C · · ·

=⇒

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 · · ·
A 0 0 0 0 2 0 2 0 · · ·
C 1 1 3 0 1 5 1 0 · · ·
G 0 1 0 1 1 0 0 0 · · ·
T 0 1 0 3 1 0 2 2 · · ·
M 0 0 1 0 0 0 0 1 · · ·

Table 2.1: High through-put sequencing data from all samples are pooled and aligned (left panel)
and then compressed into a five-row count matrix for the genome of interest (right panel).

Letters A, C, G, T, M stand for five possible read types in this toy example: Adenine,

Cytosine, Guanine, Thymine, Missing/deleted data, respectively. Left-hand side of Table

2.1 illustrates a high through-put sequencing alignment result. Its read-specific compressed
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view is shown in the right panel of Table 2.1. Counts of each read type (A, C, G, T, M) at

the ith position are recorded as Yi = (y1
i , y

2
i , y

3
i , y

4
i , y

5
i ).

2.2.2 Dirichlet Mixture Model

To describe the genomic site specific variation residing within a viral population we con-

structed a parametric Bayesian mixture model based on observed nucleotide read counts.

Assume that total number of read types is J . Given the probability parameters, the col-

lection of different read counts at each genomic site is assumed to follow a J-dimensional

multinomial distribution. For an arbitrary ith position on the sequence, the probabilities

of having each of the J read types are denoted as Pci = (p1
ci , p

2
ci , · · · , p

J
ci). Every pci lies

between 0 and 1; their sumation
∑J

j=1 p
j
ci = 1. We assume a finite collection of K possible

probability parameters, P = {P1, · · · , PK}, each genomic site could take on, i.e. every Pci

is a member of P. The subscript ci is an assignment indicator denoting which probability

parameter in the set P the ith genomic site is associated with, ci ∈ {1, · · · ,K}. The number

of elements in P, K, is the number of mixture components in the Bayesian mixture frame-

work. Because many sites in the genome sequence share the same tendencies of having

certain kinds of genetic vairation (as captured by the reads), it is intuitive that K is much

smaller than the length of the viral sequence of interest, N . Furthermore, a weakly infor-

mative symmetric Dirichlet prior is applied to all the elements of P to ensure probability

properties of P ′ks, k = 1, · · · ,K. With total J possible read types, a corrected Perks prior,

Dirichlet ( 1
J2 ,

1
J2 , · · · , 1

J2 ) is chosen for the multinomial parameters. The corrected Perks

prior reduces the prior strength (concentration) by a factor proportional to the number of

categories of the multinomial to ensure that the Bayesian estimator is preferred to max-

imum likelihood estimators for the parameters (Walley, 1996; de Campos and Benavoli,

2011). With an additional assumption that there is an equal chance of getting any Pk in P,

we constructed the following hierarchical Dirichlet mixture model:

Yi|ci,P
indep∼ Multinomial (mi;Pci)

ci|P
iid∼ Uniform Discrete

(
1

K

)
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Pk
iid∼ Dirichlet

(
1

J2
,

1

J2
, · · · , 1

J2

)
where mi indicates the total number of reads observed at the ith position, i.e.

∑J
j=1 y

j
i =

mi. Component number K is some fixed unknown integer. Integrating the posterior density

π(c1, · · · , cN ,P|Y1, · · · , YN ) over P, the marginal posterior for the assignments given reads

on the sequences is

π(c1, · · · , cN |Y1, · · · , YN ) =
1

h(Y1, · · · , YN )

K∏
k=1

∏J
j=1 Γ

(∑N
i=1 y

j
i 1{ci=k} + 1

J2

)
Γ
(∑N

i=1mi1{ci=k} + 1
J

) , (2.1)

where h(Y1, · · · , YN ) is the normalizing constant.

Furthermore, if both read counts and assignments are given for the entire sequence

sample, we have

Pk|c1, · · · , cN , Y1, · · · , YN
indep∼ Dirichlet

(
α1
k, α

2
k, · · · , αJk

)
, (2.2)

where αjk =
∑N

i=1 y
j
i 1{ci=k} + 1

J2 , for j = 1, 2, · · · , J ; and k = 1, 2, · · · ,K.

In the methodology section we will introduce a sequence of efficient Markov chain Monte

Carlo (MCMC) procedures used to cluster the genome sequence positions and generate

assignment labels c′is for each viral genome site. Notice that the posterior distribution

(2.1) is defined for a fixed mixture component number K. One may choose K ad hoc,

however, if the chosen K is smaller than the real number of mixture components, at least

one resulting cluster contains members from multiple true clusters ; if the chosen K is too

large, the clustering procedure can be infeasible due to the high dimensionality of most

genome sequence data. At every iteration of the MCMC updating step, one coordinate or a

class of coordinates will be altered into one of the K possible assignments. As K increases,

the probability of assigning the correct label to each position decreases. Equation (2.1)

naturally places an AIC-like penalty on non-empty clusters. It encourages empty groups

by scaling the marginal posterior π(c1, · · · , cN |Y1, · · · , YN ) by
[
Γ
(

1
J2

)]J
. This shrinkage

property allows our algorithm to start with a liberal upper bound of component number

instead of the truth and naturally reduces it to a close upper bound of K. In Section 2.3 we
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will introduce a tree-like MCMC step that provides the liberal upper bound and a block-

MCMC procedure that produces a reasonably close upper bound of K. In Section 2.4 we

will show through a simulation study that with the close upper bound of K, our algorithm

correctly identifies the genomic regions with evolutionary changes.

2.2.3 Hellinger Distance

In order to capture significant evolutionary changes within the genomes of the viral pop-

ulations, we need a measure for quantifying the changes. We chose an f-divergence, the

Hellinger distance, H, to measure the similarity between two probability distributions

(Hellinger, 1909). Under Lebesgue measure, for two probability density functions f and

g, the squared Hellinger distance can be expressed as following:

H2(f, g) =
1

2

∫ (√
f(x)−

√
g(x)

)2
dx = 1−

∫ √
f(x)g(x)dx. (2.3)

The Hellinger distance is a metric. The larger H is, the more different f and g are.

We prefer the Hellinger distance over relative entropy, the Kullback-Leibler divergence

(KL), because symmetry is a desired property for the comparison of distributions. One

can also use a symmetrised KL, such as the Jensen-Shannon divergence. We used the

Hellinger distance to compare two marginal posterior distributions of the probability pa-

rameters given all cluster assignments and every read count, Pk1 |c1, · · · , cN , Y1, · · · , YN , and

Pk2 |c1, · · · , cN , Y1, · · · , YN . The distance measures how similar the two allelic positions or

same allelic position at two different time points are. Applying the squared measure (2.3)

to two marginal posteriors with form (2.2), we have

H2(Pk1 , Pk2 |c1, · · · , cN , Y1, · · · , YN ) = 1−
B(~βk1,k2)√
B(~αk1)B(~αk2)

, (2.4)

where

~αi =
(
α1
i , α

2
i , · · · , αJi

)
, for i = k1, k2;

~βk1,k2 =

(
α1
k1

+ α1
k2

2
,
α2
k1

+ α2
k2

2
, · · · ,

αJk1 + αJk2
2

)
;
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B(a1, a2, · · · , aJ) =

∏J
j=1 Γ(aj)

Γ
(∑J

j=1 a
j
) .

To better visualize Hellinger distances for the viral data we further applied a monotonic

transformation on H: f(H) = ln
(
1− ln

(
1−H2

))
. With the definition (2.4) the Hellinger

distance can then be transformed into

Ht(Pk1 , Pk2 |c1, · · · , cN , Y1, · · · , YN ) = ln

(
1− ln

(
B(~βk1,k2)√
B(~αk1)B(~αk2)

))
. (2.5)

Consider the toy example where three data collections, baseline (t1), pre-treatment (t2),

and post-treatment (t3D), were obtained (Figure 2.2). To see if the ith genomic site has

been affected by the treatment, we compute the marginal posterior distributions for site i

at all three time points: πt1i , π
t2
i , π

t3D
i , perform pairwise comparison with the transformed

Hellinger distance Ht, and check if the comparisons between the treated and non-treated

populations, Ht(πt1i , π
t3D
i ) & Ht(πt2i , π

t3D
i ), are much greater than the variation within the

untreated group, Ht(πt1i , π
t2
i ).

2.3 Methodology

In order to perform the comparisons illustrated in Figure 2.2, we first need the group

assignments c1, c2, · · · to compute the marginal posterior distributions. In general, we

assume that the viral population was sampled and sequenced before and after the treatment.

To see whether a genome site has been affected by the treatment, we cluster the genome

sites, generate the assignment labels, derive its marginal posterior distribution for each site

from each sample and compare the posteriors across time points and treatments. If a site

shows significant change over time under treatment but not under control environment,

it is identified as a substitution site due to treatment. The details of this procedure are

described below.
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Figure 2.2: The transformed Hellinger distance is used to compare the marginal posterior distribu-
tions for the same genomic site across time. If the comparison between the treated and non-treated
groups are much larger than the variation within drug-free environment, then the site is identified
to be affected by the treatment.
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Y t1
1 Y t1

2 Y t1
3 Y t1

4 Y t1
5

A 8 0 0 0 0
C 0 0 6 1 0
G 0 0 0 0 0
T 0 7 0 6 8
M 0 0 0 0 0

Y t2
1 Y t2

2 Y t2
3 Y t2

4 Y t2
5

A 10 0 0 0 0
C 0 0 9 2 0
G 0 0 0 0 0
T 0 10 0 9 5
M 0 0 0 0 0

Y t3
1 Y t3

2 Y t3
3 Y t3

4 Y t3
5

A 11 0 0 0 0
C 0 0 10 0 0
G 0 0 0 0 0
T 3 9 0 7 8
M 0 0 1 0 1

⇓
Y all t

1 Y all t
2 Y all t

3 Y all t
4 Y all t

5 Y all t
6 Y all t

7 Y all t
8

A 18 0 0 0 0 11 0 0
C 0 15 0 1 2 0 10 0
G 0 0 0 0 0 0 0 0
T 0 0 46 6 9 3 0 8
M 0 0 0 0 0 0 1 1

⇓
Y all t

1 = Y t1
1 + Y t2

1 ,

Y all t
2 = Y t1

3 + Y t2
3 ,

Y all t
3 = Y t1

2 + Y t1
5 + Y t2

2 + Y t2
5 + Y t3

2 + Y t3
4 + Y t3

5 ,

Y all t
4 = Y t1

4 ,

Y all t
5 = Y t2

4 ,

Y all t
6 = Y t3

1 ,

Y all t
7 = Y t3

3 ,

Y all t
8 = Y t3

5 .

Table 2.2: Toy example of joining and preprocessing three 5×5 data matrices. The first few columns
in the joint data matrix (second row) are the consolidation of columns with single nucleotide read
in the sampled data panels (first row). The remaining columns of the joint data matrix are the
copies of non-homogeneous reads of the sample (first row). The detail of the consolidation process
is described in the panel in the third row.

2.3.1 Preprocess

Continuing with the toy example in Figure 2.2, the first step is to combine the datasets

collected at different time points and consolidate the invariant read sites (Table 2.2). Assume

that in the toy example J = 5. The five possible reads are A, C, G, T, M, as in Table 2.1.

The three small tables in the first row of Table 2.2 show the read counts obtained at

time points t1, t2, and t3; the second row table shows the combined data of the first row

produced by merging all the sites with a particular homogeneous read type. The first few

columns of the joint data (second row table in Table 2.2) are the consolidation of columns

with single read type A, C, G, T, M, respectively. The sites with multiple read types

(non-invariant sites) are copied to joint data matrix after all the combined invariant sites
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(Y all t
1 , Y all t

2 , Y all t
3 in the toy example). In particular, Y all t

1 in the joint data matrix (second

row in Table 2.2) is formed by merging columns Y t1
1 and Y t2

1 . Similarly, Y all t
2 , Y all t

3 are

formed from the sites that have a homogenous read of C and T , respectively:

Y all t
2 = Y t1

3 + Y t2
3 ,

Y all t
3 = Y t1

2 + Y t1
5 + Y t2

2 + Y t2
5 + Y t3

2 + Y t3
4 + Y t3

5 .

The following columns in the second row are

Y all t
4 = Y t1

4 , Y all t
5 = Y t2

4 , Y all t
6 = Y t3

1 , ...

The exact mapping is shown in the third row of the table. Note that this preporcessing

step consolidates invariant sites and reduces the dimensionality of sequencing data without

losing any significant information.

2.3.2 Processing

After preprocessing the read counts, a series of MCMC methods are implemented to cluster

the geomic locations and obtain the assignment labels c′is (Figure 2.3).

The first step is a “top down” hierarchical clustering with 2-means initial states (hierar-

chical SCMH) based on a two-component Single Coordinate updating Metropolis Hastings

algorithm (Fishman, 2005). Under the divisive hierarchical model, sibling nodes are mu-

tually exclusive and complementary respect to their parent node. In the case that one

child node is empty, that branch stops growing and its parent node is recorded as a leaf

node. Eventually this branching process stops. A block Metropolis Hastings (block MH)

step (Fishman, 2005; Robert and Casella, 2004) is then applied to the leaf nodes, each

treated as a block. After assessing convergence (e.g. Geweke diagnostic (Geman, 1992)),

T thinned-out iterations of the assignment labels are reserved. Finally, one run of a fixed

scan Gibbs sampler (Geman and Geman, 1984) is implemented on the joint data with the

reserved assignment labels as initial states (Gibbs). At every stage of a MCMC, a label

proposal for each site is given according to the posterior likelihood for the joint sequence if

the label is assigned.
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Figure 2.3: Three steps clustering procedure. It automatically produces an upper bound from K,
assigns cluster labels to genomic sites at each time point, and allows parallel computing.

The divisive hierarichical clustering model allows us to avoid choosing a K, number of

the mixture components. The total number of leaf nodes in the tree forms a reasonable

upper bound for the number of mixture components regarding the entire joint data matrix.

With sufficient number of observations at each site, mi (n.b. most sequencing data have

hundreds to thousands of sequencing reads), the Metropolis-Hasting splitting algorithm

clusters correctly with probability one. This result is a direct consequence of the following

theorem:

Theorem 2.1. Suppose that Y = [Y1, Y2], Y1 and Y2 are J × 1 random read count vectors.

J ∈ {2, 3, 4, · · · }. Further assume that Yi|ci,P
indep∼ Multinomial (mi;Pci) , for i = 1, 2.

If c1 = c2 = 1 and mi’s are sufficiently large, then the marginal posterior likelihood ratio of

assigning different labels over current state goes to zero almost surely,

i.e. LR =
π(c1 = 1, c2 = 2|Y )

π(c1 = 1, c2 = 1|Y )
→ 0, a.s.

The proof of Theorem 2.1 can be found in the appendix.
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Most genomes are lengthy, which results in high dimensional data. Direct application

of multiple mixture component MCMC methods to this high dimensional data quickly

becomes infeasible. Our hierarchical tree model enables efficient computing on this high

dimesionality data. After the first split (at the root node) only a portion–typically only

a small portion–of the original data set is analyze at a time. With this reduced input

size, each Markov chain converges much faster. At the root node, although the entire joint

sequence is used, there are only two possible values for each assignment label. Thus the

Markov chain typically reaches convergence inexpensively. The hierarchical SCMH step

is also easily parallelized for high performance computing systems. As a result, we have

an efficient clustering procedure that automatically produces a component number upper

bound and initial assignments for the block MH step.

In practice, the MCMC tree usually splits the data into too many groups. The block

MH step, however, allows clusters to combine. The binary hierarchical clustering process

therefore does not require the true number of components to be representable by binary

clusters. The shrinkage property of the marginal distribution (2.1) favors combining leaf

nodes that belong to the same group. As a result of this natural penalty on non-empty

groups, the number of distinct groups at the end of the block MH step is almost always

much smaller than the total leaf number in the hierarchical tree. The block MH step

in essence tunes the assignments for each genome site and reduces the total number of

mixture components. As shown later in Section 2.4, our clustering algorithm with only the

first two steps (hierarchical SCMH & block MH) produces reasonable results with slightly

higher error rate, compared to the full algorithm.

Occasionally a few indices in some end nodes can be misplaced in the tree splitting

step. Because all the indices in each leaf node are kept in the same cluster throughout the

block MH process, those position indices do not get a chance to be moved to a different

cluster. We solve this by adding a fixed scan Gibbs sampler step, Gibbs, that can modify

the assignments for individual indices and move them to more appropriate clusters.

It is worth noting that when the preprocessed dataset is very length (i.e. many columns),

even one scan of Gibbs can take a large amount of time to compute with standard methods.

For this very reason, direct Gibbs sampler can become infeasible even if a the number of
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mixture components K is provided. Furthermore, one must choose such a K ad hoc and

risk either having a small mixture number that always misgroups elements from multiple

true clusters together or risk having a large mixture number that might make computation

infeasible. Further, most sequencing data sets are large. Direct Gibbs sampler might

be infeasible even with a small K. Because the hierarchical SCMH step enables parallel

computing and the block MH step works with a dataset of smaller dimension than the

original, the computational cost is much lower in comparison to direct MCMC approaches.

In the simulation study section (Section 2.4), we will compare the result and computation

time using our three-step clustering approach to a direct Gibbs sampler with several choices

of K, including the truth. We will show that our clustering is much more efficient, it

outperforms the direct Gibbs sampler given the true K.

Alternatively, one can apply a Dirichlet process model to the joint dataset. A Dirichlet

process model can be viewed as a Dirichlet mixture model with infinite number of compo-

nents. With this framework, the point when cluster number stops growing depends heavily

on the shrinkage power of the prior. Hence for a Dirichlet process model to work a more

careful choice of prior is required. Intuitively, the computational time for the Dirichlet

process is at best as good as a direct Gibbs sampler with the true K and a good initial

state.

2.3.3 Postprocess

After implementing the three steps: hierarchical SCMH, block MH, and Gibbs, we obtain

T running sets of assignment labels for the joint data. By reversing the preprocessing step

(illustrated in Table 2.2) each genome position gets an assignment label for each time point

from each Gibbs result. The posterior distribution per genome position per time point

can now be computed. For each position i, we use the transformed Hellinger distance, Ht

(Equation 2.5), to compare posterior distributions before and after treatment. Given two

time points tk1 , tk2 , a collection of Hellinger distance values are obtained from the clustering

result for each location i. We take the median of those distance values and denote it as

Ht(π
tk1
i , π

tk2
i ). In principle, one can use another measure of center instead of the median.

We chose the median for its simplicity and straightforward interpretation. The summary
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statistic of the Hellinger distance between treated and non-treated times for location i

is denoted as Ht(Di). Large values in Ht(Di) indicate evolutionary changes in the viral

genome. Those changes can be caused by the treatment or non-treatment related reasons,

such as genetic drift and adaptation to the host. To distinguish between these potential

causes of changes, we denote a summary statistic Ht(Ni) for the comparison between time

points without treatment.

Exact form of the statistics Ht(Di) and Ht(Ni) depends on the experimental design.

The basic idea is that, at genomic location i, Ht(Di) is the minimum change between the

last treated time point and all pre-treatment times, while Ht(Ni) is the maximum change

among pairwise comparisons between untreated samples. At position i, if Ht(Di) is large,

the last sampled population after treatment is significantly different from all samples before

treatment; if Ht(Ni) is large, some untreated sample is significantly different from some

other untreated sample.

Intuitively, if the nucleotide read count distribution at site i has been affected by the

treatment, Ht(Di) shall be large, relative to Ht(Ni) and the comparisons for all the other

sites that are not affected by treatment. How large is large will be determined by thresh-

olding. For any given cutoff d, we define the following three sets:

Sd1 = {i : Ht(Di) > d},

Sd2 = {i : Ht(Ni) > d & Ht(Ni) > Ht(Di)},

Sd3 = Sd1 \ Sd2 .

The first set, Sd1 , includes all the genomic locations that have large changes when

comparing the treated and untreated groups. It is a potential set for substitutions. The

second set concerns the large differences within the untreated group. It consists of all the

genomic locations that have large variation which is not due to the treatment. The set Sd2

can be viewed as a noise set. Taking the set difference between the potential list and the

noise list, the resulting set Sd3 is the list containing the signals. As d decreases, the sets

Sd1 and Sd2 grow. We expect the growth of the sets accelerates as the cutoff moves from

the signal to noise portion of the data. Therefore, the threshold d0 used for inference is
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determined by the tipping point where the size of Sd2 starts to increase dramatically, as d

decreases.

To illustrate the derivation of Ht(Di) and Ht(Ni), we continue with the toy example. It

can be easily generalized to more than three time point collections, with duplicates, or with

a treatment-control setup (see Sections 2.4 & 2.5). Return to the toy example (Figure 2.2),

which shares the same experimental setup as the HIV-1 study in Section 2.5.1; the treatment

is administrated after t2; by time t3 the viral population have completely responded (see

Figure 2.4).

t1	  

t3D	  

t2	  

+ Treatment 

Toy Example / HIV  

Figure 2.4: Illustration of the experimental setup the toy example and the HIV data. This setup
includes two untreated populations (t1, t2) and one post-treatment population (t3D). Observations
are collected from each time point.

For each genome site i, we compare its marginal posterior distributions (Eq 2.2) at time

t1, t2, and t3D, denoted as πt1i , π
t2
i , π

t3D
i , respectively, using the transformed Hellinger

distance (Eq 2.5). Taking the clustering results from parallel chains, for a site i, we may

define the summary statistics Ht(Di) and Ht(Ni) as

Ht(Di) = min{Ht(πt1i , π
t3D
i ), Ht(πt2i , π

t3D
i )}, Ht(Ni) = Ht(πt1i , π

t2
i ), ∀i. (2.6)

If the change of read count distribution is caused by the treatment, the posterior

distribution πt3Di ought to be much different from πt1i and πt2i . Consequently, both

Ht(πt1i , π
t3D
i ) and Ht(πt2i , π

t3D
i ) result in large values. Large Ht(Di) value guarantees that

both Ht(πt1i , π
t3D
i ) and Ht(πt2i , π

t3D
i ) are large, it is therefore sufficient to look at Ht(Di).
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Depending on the noise level of the data, the boundary of noise and signal portions of

the data can be approximated by the curvature of noise set size function as the cutoff d

decreases. The size of Sd2 is a step function of d. We suggest to plot the size of Sd2 against

a decreasing series of cutoffs. We approximate the curvature of the plot by looking at the

total segment length of every consecutive ∆ number of steps. We then pick the point whose

left ∆ steps minus its right ∆ steps is the largest as the optimal point. The default ∆ value

is 3 in our program. Larger ∆ values lead to more coarse yet more robust approximation

of the curvature. We also require a minimum length for the step on the left of the optimal

point to guarantee that the noise set did not enlarge shortly after the value that is slightly

greater than the cutoff. If the step on the left of the optimal point is shorter than the

required minimum length, we move the optimal point to the left by one step and the check

the length of the next step. The final threshold is chosen to be the optimal point shifted to

the left by the minimum length. This default sets the minimum length to be half (α = 0.5)

of the average length of the left ∆ steps. A larger α leads to a more conservative result while

a smaller α corresponds to a more liberal result. Both ∆ and α = 0.5 are introduced to

mathematically capture the boundary of noise and signal sections of the data. In practice,

we suggest users to verify the output by examining the site count plot directly.

2.4 Simulation Study

In this section, we use simulations test our algorithm, with and without the Gibbs modifi-

cation step, and compare its efficiency with direct Gibbs samplers.

Consider the following experiment setup for a viral population with genome length 300

nucleotides and five possible nucelotides at each genome site: A, C, G, T, M (see Figure

2.5).

The simulation mimics the experiment which first samples the RNA data twice be-

fore the administration of the treatment (t1, t2), then obtains a control group (t3) and a

treatment group (t3D). For each genome site at time t1, t2, t3, the sequencing read count

data are generated from multinomial distribution invariant in time and dependent on the

genomic location. For the treated group t3D, the evolved drug resistance sites 1, 21, 41, 61,
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t1	  

t2	  

t3	   t3D	  

Control Treatment 

+ Treatment 

Simulation 

Figure 2.5: The experimental design used for the simulated test data. After two generations
without treatment (t1, t2) the population is split into a control group t3 and a treatment group
t3D. The treatment group is given a drug and allowed to evolve resistance to that drug for a
few generations. The before treatment, control group, and treatment populations are sampled and
sequenced.

81 are generated from alternative multinomial distributions, while the rest follow the same

multinomial distributions as other time points.

As discussed in Section ??, we assume that the probability parameter for the nucleotide

at each genomic location is sampled from a Dirichlet mixture model. For the sample without

treatment, total 15 probability parameters, P1, P2, · · · , P15, are used to generate the five

possible reads: A, C, G, T, M. Five additional probability parameters, P16, P17, · · · , P20,

are introduced to generate the treated population. The total number of mixture component

for the joint dataset is therefore 20.

At each genomic location i, the corresponding summary statistics are

Ht(Di) = min{Ht(πt1i , π
t3D
i ), Ht(πt2i , π

t3D
i )}

Ht(Ni) = max{Ht(πt1i , π
t2
i ), Ht(πt1i , π

t3
i ), Ht(πt2i , π

t3
i )}

(2.7)

For a simulated dataset (Figure 2.6), we analyzed the clustering results from both

without (top two panels) and with (bottom two panels) the Gibbs modification step. The

left two panels in Figure 2.6 show the sizes of sets Sd1 , S
d
2 , S

d
3 (potential, noise, signal) as

threshold d decreases (zoom-in view). The dashed and the dotted lines are the thresholds
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obtained using our method at two different choices of α (α = 0.5, 0.25). At either threshold,

without or with Gibbs, both Sd1 and Sd3 have five elements; Sd2 is empty. It is clear that

a wide range of α parameter would produce different threshold, yet the same results here.

The right two panels present the summary statistics Ht(Di) (small green circle) and Ht(Ni)

(blue cross) at each genome position. The horizontal dashed and dotted lines correspond

to the thresholds chosen in the left panels. Above the dashed line, five large red circles

highlights the Ht(Di) corresponding to the signal sites in right panels. They show much

larger values than the rest and reveal clear separation between signals and noise. The

potential set, noise set, and signal set are:

Sd0
1 = {1, 21, 41, 61, 81}, Sd02 = ∅, Sd0

3 = Sd01 . (2.8)

Compared between without and with the Gibbs step, the inference results are equally

good for this simulated dataset.

We repeat above data generating procedure and analysis 100 times. All of the 100 test

sets precisely identified the five substitution sites with our full algorithm. Without the

Gibbs step, 97 out of 100 simulated date sets were able to correctly identify the five signal

sets robustly regarding to the choices of α parameter. The few tests that did not produce

perfect result each included one false positive identification. The overall result with default

parameter setting (∆ = 3, α = 0.5) is summarized in Table 2.3, along with results from

direct Gibbs samplers with K = 20, 40, 60, 80. PR, FN, FP, FNP correspond to perfect

results, only false negatives, only false positives, both false negatives and false positives,

respectively. The numbers under each category are test counts. The Gibbs step improves

the result obtained for the block MH step. The median of K derived from our algorithm is

K = 42. Although the derived K is larger than the true K, the inference result is still 100%

correct. This suggests that an overestimated K can still result in correctly identified signal

sites. Similarly, direct Gibbs with larger K’s show perfect result for all 100 tests. As the

goal is to compare posterior distributions not to obtain precise cluster number, an upper

bound of mixture component number suffices. Note that when using our algorithm, we are
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Figure 2.6: The result plots for Test 1 without (top) and with (bottom) the Gibbs step. The left
two panels show the number of elements of Sd1 , S

d
2 , S

d
3 as the threshold d decreases with thresholds

indicated in dashed (α = 0.5) and dotted lines (α = 0.25); the right two panels are the summary
statistics plots with correspond thresholds to the left. The small green circles and blue pluses are
the Ht(Di) values and Ht(Ni) values, respectively. For genome site i that belongs to the signal set,
its Ht(Di) value is highlighted in a large red circle. The five red circles on the top left correspond
to the true substitution sites: 1, 21, 41, 61, 81. There is a clear separation between signals and the
rest of the sites.

guarantee to be working with an appropriate upper bound of K. This insurance does not

exist if K is chosen ad hoc, as would be required for a direct Gibbs.
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Result
Our method Direct Gibbs

w/ Gibbs w/o Gibbs K = 20 K = 40 K = 60 K = 80
PR 100 97 99 100 100 100
FN 0 0 1 0 0 0
FP 0 3 0 0 0 0

FNP 0 0 0 0 0 0

Table 2.3: Result comparison of our method, Gibbs with K = 20, Gibbs with K = 40, and Gibbs
with K = 60 using a variety of thresholds. PR, FN, FP, FNP are the number of tests with perfect
results, only false negatives, only false positives, both false negatives and false positives, respectively.
All methods show good results. The Gibbs step improves the result over the block MH step alone.

To assess the efficiency of our sequential MCMC algorithm, we also compared the clus-

tering time (measured in CPU time) of the methods discussed in Table 2.3 for the 100

synthetic data sets (see Table 2.4). For each test, the reported time under our method was

the waiting time for the processing step (with or without Gibbs); the reported time for the

direct Gibbs samplers was the time needed for one chain completing with corresponding K-

means initial states. The CPU time is based on compute nodes including 122 blade servers,

each with 8-cores 2.80 GHz Intel processors, 2×4M L2 cache (Model X5560), and 48GB

memory for a total of 976 processing cores, two similar 8 core blades with 96 GB mem-

ory, and three more blades with 192 GB memory and 24 total cores. Summaries including

means and standard deviations of computing time are recored for each method. As shown

below, our method takes only a fraction of the time needed for the direct Gibbs, even when

the true K is given. The variation of clustering time among the 100 tests is also much

smaller using our algorithm. As K increases, the processing time for the direct Gibbs grows

rapidly. It is worthy noted that the general computational issue with Gibbs sampler also

affects the modification step in our algorithm. Our algorithm without the Gibbs step does

not suffer the same issue. At the price of slight higher error rate, it produces reasonable

results promptly.

2.5 Real Data Analysis

We applied the our algorithm to an HIV-1 dataset collected from three longitudinal plasma

samples from tan individual participating in an anti-retroviral drug trial and an H1N1 viral
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Clustering Time
Our method Direct Gibbs

w/ Gibbs w/o Gibbs K = 20 K = 40 K = 60 K = 80
Min 55.78 41.49 95.94 289.3 576.6 959.1

1st Quartile 60.96 48.83 104.9 320.7 647.2 1083
Median 67.61 56.04 124.7 371.0 721.4 1178
Mean 67.72 55.42 148.8 394.8 766.8 1241

3rd Quartile 73.46 61.01 171.4 423.0 805.7 1368
Max 86.20 74.86 422.8 706.6 1467 1961

Standard Deviation 7.996 7.747 63.22 94.92 166.8 208.6

Table 2.4: Clustering time comparison in CPU time. For each test set, the corresponding process
time of the direct Gibbs was that of a single Markov chain with K-means initial state for Gibbs
sampler given a pre-chosen number of clusters. For our method, the corresponding process time
records the total waiting time (in CPU time) needed for the processing step to finish 100 parallel
Markov chains for each test set. The medians, means, and standard deviations here are from all 100
test sets. Our algorithm shows clear advantage in computational efficiency.

dataset produced by serially passaging the virus in kidney cells both in the presence and in

the absence of an anti-viral drug.

2.5.1 Human immunodeficiency virus 1 (HIV-1)

As a ”positive control”, we applied our approach to an experimentally well characterized

HIV-1 dataset (Jabara et al., 2011). Viral RNA was extracted from three longitudinal blood

plasma samples taken from one individual infected with subtype B HIV-1, participating in

a protease inhibitor (ritonavir) efficiency trial (Cameron et al., 1998). 454 sequencing was

used to survey the genetic variation at the protease (pro) gene within the viral population.

This population variation was surveyed twice, separated by six months, prior to ritonavir

drug selection (t1, t2) and then once after the initiation of therapy (t3D). HIV-1 is known

to rapidly evolve resistance to ritonavir and several resistance mutations in the pro gene

have already been identified and confirmed with in vitro experiments. Thus, if our method

is efficacious we should recover these same sites through our analysis.

The length of the protease gene is 297. As in the toy example, there are five possible

reads and the corresponding Hellinger summary statistics are

Ht(Di) = min{Ht(πt1i , π
t3D
i ), Ht(πt2i , π

t3D
i )}, Ht(Ni) = Ht(πt1i , π

t2
i ), i = 1, · · · , 297.

(2.9)
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The inference results based on clustering without and with the Gibbs step are shown

in the top and bottom panels of Figure 2.7 respectively. The left two panels set size plot

of Sd1 , S
d
2 , S

d
3 as the threshold d decreases (zoom-in); the right are the summary statistics

plots. The thresholds according to two α parameter levels, α = 0.5 (dashed line) and

α = 0.5 (dotted line), are plotted as well. In the summary statistics panels, the large red

circles highlight the signal with default α(= 0, 5). Looking at the trajectory of the Sd2 size

function in the top left panel, the default α appears to be too conservative, only site 245

was identified. The smaller α seems to be more appropriate, with which, three additional

sites, 48, 55, 268, were added to the signal set. The two α levels considered in the full

algorithm produce similar thresholds and the same inference result:

Sd01 = {48, 55, 243, 245, 250, 264, 268}, Sd02 = {70, 72, 168, 219, 289}, Sd03 = Sd01 . (2.10)

Due to the noise level and limited time points of this dataset, the clustering without the

Gibbs produced more conservative results. In the detected signal set, sites 48, 55, 245, 250

268 correspond to known drug resistance mutations (Jabara et al., 2011). The other two

sites identified, positions 243 and 264, both correspond to synonymous amino acid variation

prior to treatment that disappeared post treatment. Meanwhile, the corresponding amino

acids to sites 70, 72, 168, 219, 289, in the noise set Sd0
2 , were identified as high variability

in the study of genetic variation in the untreated environment (Jabara et al., 2011).

As shown above, our full method reveals not only the well-known drug resistant sites but

also additional genomic locations that show clear evolutionary changes. The sites identified

correspond to major resistance sites manually identified and curated from the literature in

Jabara et al. (Jabara et al., 2011). Site 245, which corresponds to the major ritonavir

resistant variant, V82A, shows a strong signal (Baldwin et al., 1995). Similar patterns are

seen at other known resistance sites. These data suggest that our approach can identify

biologically important genetic changes. We also note that in contrast to the earlier work,

we were able to identify these sites with minimal a priori knowledge of genome. That is, we

assumed nothing about where the genes were in the genome, if the change altered an amino
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Figure 2.7: Results from the HIV-1 protease genome data set, without (top) and with (bottom)
the Gibbs step. The left panels show the sizes of sets Sd1 , S

d
2 , S

d
3 as the threshold d decreases; the right

panels are the summary statistics plots with signal identified (with default parameters) highlighted
in red circles. Without the modification step, the default α appears to be too conservative. For the
full algorithm result, either choice of α produced the same inference result with seven signal sites:
48, 55, 243, 245, 250, 264, 26, and five noise sites: 70, 72, 168, 219, 289.

acid or other structural element, etc. Thus, we can apply our method with confidence to

viral genomes that are not nearly as well studied as HIV-1.
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2.5.2 H1N1 Influenza A (IVA)

We applied our method to the whole-genome sequencing time series data of influenza A virus

A/Brisbane/59/2007 strain (NIH Biodefencse and Emerging Infectious Research Resources

Repository NIAID, NIH; NR-12282; lot 58550257). The data were collected from multiple

passages in the presence and absence of an inhibitor of neuraminidase, oseltamivir, for a total

of two biological replicates (E1 & E2) (see Figure 2.1). At the end of each passage, whole-

genome high throughput sequencing data were collected. The read counts are unbalanced

between the two experiments, as the first replicate, E1, consistently had more reads than

the second one. There are four possible nucleotides: A, C, G, T, i.e. J = 4.

This IVA strain consists of 8 segments: PB2 (2313 nucleotides (nts)), PB1 (2301 nts), PA

(2303 nts), HA (1775 nts), NP (1396 nts), NA (1426 nts), M1/2 (1005 nts), and NS1/2 (869

nts). To reduce computational intensity, we examine each segment per replicate separately.

Within each duplicate, we analyze the control and treatment groups over selected time

points simultaneously. In particular, we choose five time points: 1, 3, 9, 12, and the end (13

and 18 for E1 and E2, respectively). As the first three passages were shared across groups, we

analyze total of 8 time-samples, three of which were treated, for each biological replicate.

Denote the 8 collection times as t1, t2, t3, t4, t5, t3D, t4D, t5D. The summary statistics are

then formulated as

Ht(Di) = min{Ht(πt1i , π
t5D
i ), Ht(πt2i , π

t5D
i )}

Ht(Ni) = max{Ht(πt1i , π
t2
i ), Ht(πt1i , π

tj
i ), Ht(πt2i , π

tj
i ), j = 3, 4, 5}

(2.11)

To allow additional response time for the drug, the comparisons to t3D and t4D are not

directly included in Ht(Di).

Taking segment 6 as an example, we analyzed both replicates simultaneously, without

and with the Gibbs step. The result plots for E1 and E2 are presented in Figures 2.8 &

2.9, respectively. Both replicates revealed site 833 (S6-822). The clear separation between

Ht(DS6−822) and the rest indicates that there is strong signal attributable to the treatment

for S6-822.

To further investigate this finding, we plot the proportions of nucleotide type at each

time point using the raw data (see Figure 2.10). The two panels on top are based on E1,
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Figure 2.8: The results for H1N1 Seg6E1. Without (top panels) or with (bottom panels) the
Gibbs step, our algorithm identified one signal site, site 822 (S6-822). It corresponds to a known
oseltamivir-resistant mutation for H1N1. The inference result for H1N1 Seg6E1 is consistent even
without the Gibbs step, and is robust to the choices of α parameter.

while the two on the bottom are based on E2. The controls are the left two panels; the

treatment groups are the right two panels. The complete transition of the nucleotide type

in the treated group and nearly no change in the control group indicates strong drug effect.

The consistent behavior across replicates enables us to conclude that S6-822 is a substitution

site due to the treatment. In fact, this is a known oseltamivir-resistant mutation, H274Y
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Figure 2.9: The result plots for H1N1 Seg6E2. Similar to Seg6E1, without (top panels) and with
(bottom panels) the Gibbs step, our algorithm identified site 822 (S6-822). The inference result for
H1N1 Seg6E1 is consistent even without the Gibbs step, and is robust to the choices of α parameter.

(Collins et al., 2008). The color tiles on the top of each panel indicates that the total read

count at each time point varies.

In contrast, Segment 7 evinces a negative result. Figures 2.11 & 2.12 show result plots

for E1 and E2, respectively. Top two panels were obtained without the Gibbs step. In

the top right panel of Figure 2.11, site 503 (S7-503) was highlighted since it is above the

threshold (∆ = 3, α = 0.5). However, it does not exceed the threshold in Figure 2.12. As
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Figure 2.10: H1N1 nucleotide read count proportion and total count at position S6-822. The top
and bottom rows are for Replicate I and Replicate II, respectively; the left and right panels are for
control and treatment groups, respectively. For the treated groups, there is a complete transition
from C to T due to the drug. The color tiles on the top of each panel indicates the total read count
at each time point.

we are initially interested in substitution sites that are not replicate specific, we are only

looking for signals observed in both biological replicates. The one red circle above threshold

(top right panel of Figure 2.11) corresponds to S7-503. It appears to be a signal site based

on E1, without the Gibbs. However, in Seg7E2, Ht(DS7−503) is below the threshold (top

right panel of Figure 2.12). Hence, we conclude that S7-503 is not a substitution site based

on clustering result without the modification step. Conservatively, our conclusion is based

on the intersection of the findings from each experiment. Of course it is possible each

replicate could evolve along its own evolutionary path and hence differ between replicates.

However, with the Gibbs, the signal set was adjusted to be empty for Seg7E1 (see bottom

right panel of Figures 2.11 & 2.12) and we arrive at the same negative conclusion.
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Figure 2.11: The results for H1N1 Seg7E1. Without the Gibbs step (top panels), S7-503 was
highlighted. However, Ht(DS7−503) does not exceed the threshold with the full algorithm(bottom
right panel). Site 91 showed large summary statistic values Ht(NS7−91) & Ht(DS7−91) in both right
panels. The control statistic value for S7-1005 is alarmingly high. We suspect that is the result of
low alignment quality at the tail of the segment. The inference result for H1N1 Seg7E1 is robust to
the choices of α parameter.

There is one site, S7-91, that consistently presented large Ht(Di) and Ht(Ni) values

across the two replicate. The proportions of its nucleotide read at each time point are shown

in Figure 2.13. All four panels show complete transversion from G to C, with or without

the treatment. The large values in Ht(DS7−91) and Ht(NS7−91) in both replicates precisely
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Figure 2.12: The result plots for H1N1 Seg7E2. The inference result for H1N1 Seg7E2 is consistent
even without the Gibbs step, and is robust to the choices of α parameter. No site was identified as
signal. Similar to Seg7E1, Ht(NS7−91) & Ht(DS7−91) exceeded the thresholds in both right panels.
A site on the tail part of the segment, S7-1004, showed large control statistic values.

captures the read type switch that is likely due to genetic drift or adaptation to the host

cells–not the drug.

With multiple biological replicates and many time point collections, the algorithm with-

out the Gibbs step produced reasonable results with much greater computational efficiency.

As discussed in Section 2.3, the modification step can take a long time due to the pitfall of
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Figure 2.13: H1N1 nucleotide read count proportion and total count at position S7-91. All four
panels show complete transversion from G to C.

standard Gibbs sampler, in which case, one may skip the Gibbs step at the cost of a slightly

higher error rate.

For the rest of the segments, we performed the same analysis. Comparing the sites

identified based on each biological replicate, we conclude that positions S6-822, and S8-80

are drug resistant sites. In addition, the following sites present evolutionary changes that

are likely due to genetic drift or adaptation to the hosts: S1-2299, S1-2303, S3-2193, S4-

1210, S5-1103, S7-91, S8-819. The complete list of signal and noise sets are provided in
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Seg E Threshold d0 Signal Sd03 Noise Sd02

w/ Gibbs w/o Gibbs w/ Gibbs w/o Gibbs w/ Gibbs w/o Gibbs

1 1 8.756 10.59 1006, 1115,
1638, 1731,
1938, 2101

∅ 33, 281, 311, 404,
632, 839, 926, 1542,
1889, 2290, 2298,
2299, 2303

∅

2 9.401 9.483 ∅ ∅ 2299, 2303 2299, 2303

2 1 9.782 9.86 ∅ ∅ 224, 1118, 1499, 2066 224, 1118, 1499, 2066
2 9.505 9.647 2099 2099 1036, 1675 1036, 1675

3 1 10.101 10.531 ∅ ∅ 2193 2193
2 9.655 8.937 174 174, 177 1850, 2193 79, 146, 153, 173,

176, 200, 203, 210,
1527, 1850, 2078,
2192, 2193, 2195

4 1 10.709 10.784 ∅ ∅ 1210, 1394 729, 1210, 1394
2 9.672 9.827 ∅ ∅ 1210 638, 1210

5 1 10.352 9.98 ∅ 300 1103, 1395 24, 389, 1103, 1395
2 8.626 8.566 300 300 24, 389, 1103 24, 389, 1103

6 1 10.763 10.912 822 822 ∅ ∅
2 8.304 8.319 822 822 977 977

7 1 9.249 8.57 ∅ 503 91, 1005 17, 91, 112, 1005
2 9.377 9.435 ∅ ∅ 91, 1004 91, 1004

8 1 10.706 10.681 80 80, 848 385, 819, 848 385, 819, 848
2 10.956 10.987 80 80 819 663, 819

Table 2.5: Result derived using Passages 1, 3, 9, 12, and the end time point. The table provides
the thresholds and corresponding signal & noise sets for each segment according to each biological
replicate with and without the Gibbs step. The sites identified as signal in both experiments are
highlighted in red, the ones identified as noise in both experiments are highlighted in blue. The
modification step took much more time comparing to the first two steps. The w/ Gibbs results was
not finished for Seg1E1 and Seg2E1 in four weeks time with standard Gibbs. In comparison, the
algorithm with or without the modification step produced similar final result after cross check the
replicates.

Table 2.5. All of our findings are supported by the raw nucleotide read proportion plots

(See Figures 2.10, 2.21, 2.22, 2.23, 2.24, 2.25, 2.28, 2.13, 2.29).

As mentioned earlier, for lengthy preprocessed data, direct Gibbs sampler can be com-

putational expensive. Although our last clustering step, the Gibbs, only includes one scan

of Gibbs sampling, it can also suffer from the same computational issue. For each seg-

ment, the one scan Gibbs sampler took at least two weeks real time on a high performance

computing cluster while the first two steps only took a day or two. Our algorithm with

and without the Gibbs step present consistent result generally. This is partly because that

multiple time points were incorporated in the clustering procedure, yet only the last treated

time was used to define the control statistics. Furthermore, because there are two biological

replicates, taking the intersection of discoveries between the two helped to tease out some

noise within each replicate. Skipping the modification step leads to a lightly higher error
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rate, however, with multiple time points and replicates, the clustering result without the

Gibbs leads to similar inference conclusion as basing on the full algorithm. When drawing

inference without the modification step, we advise to double check the shift parameter α,

as the default setting might not be the best for capturing the curvature of noise set size

function.

We required that a ”true” site be one that showed the same evolutionary behavior in

both replicates. This approach is conservative as it requires that the same evolutionary

path is taken by both viral populations, which may not necessarily be true. While at

least two sites–including a known resistance variant–meet this strict criterion, there are

several ”signal” sites in each replicate that do not. These are potentially replicate specific

adaptations. Moreover, it is possible the same amino acid can evolve through different

nucleotide substitutions. For example, on segment 2 positions 31 and 32 evolved in Seg2E1

and Seg2E2 respectively. These neighboring changes both affect the amino acid lysine coded

for by the 10th codon of the protein. Similar pattern is seen at sites 1004, 1005 on segment

7.

The first 12 passages of the dataset (Figure 2.14) were analyzed by Foll et al. from a

population genetics and structural perspective (Foll et al., 2014). According to that study,

the following sites are identified drug resistant: S2-32, S3-2193, S4-47, S4-1394, S6-581,

S6-822, S7-146, S8-819; the sites with evolutionary changes without treatment are S2-1118,

S4-1394, S5-1103, S5-1395.

For a fairer comparison to Foll et al, we applied our method to the joint data from

Passages 1, 3, 9, 12 for both the control and treatment groups, i.e. t1, t2, t3, t4, t3D, t4D.

The summary statistics used are

Ht(Di) = min{Ht(πt1i , π
t4D
i ), Ht(πt2i , π

t4D
i )}

Ht(Ni) = max{Ht(πt1i , π
t2
i ), Ht(πt1i , π

tj
i ), Ht(πt2i , π

tj
i ), j = 3, 4}

(2.12)

The result from each biological replicate is shown in Table 2.6. Here we used the default

parameters, ∆ = 3, α = 0.5, and the summary results are for without the Gibbs step.

Taking the intersection of the findings from both replicates, we identify only S6-822

as a substitution site due to the treatment (although potentially S2-32, if the S2-31 and
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Seg E d0 Sd03 Sd02

1 1 8.713 ∅ 33, 281, 404, 824, 839, 926, 1889, 2290, 2298, 2299,
2303

2 9.138 2072 311, 2299, 2303

2 1 9.718 32 224, 1118, 1499, 2066
2 9.43 31, 1663, 2099 1483, 1675, 2033

3 1 7.84 1613 89, 134, 173, 174, 176, 177, 200, 203, 1556, 2078,
2192, 2193, 2195

2 7.944 180, 997 79, 146, 153, 173, 174, 176, 200, 203, 210, 1527,
1850, 2078, 2192, 2193, 2195

4 1 9.447 47, 1394 729
2 9.274 ∅ 638, 1210

5 1 8.855 ∅ 24, 389, 1103, 1395
2 8.522 300 24, 389, 1103

6 1 8.496 581, 822 977,1047
2 7.728 822 680, 977

7 1 9.099 146, 1005 ∅
2 8.725 91, 1004 637

8 1 10.307 200, 819 385
2 10.435 80 729, 819

Table 2.6: Our approach (w/o Gibbs) identifies only one true signal when data from only Passages
1, 3, 9, and 12 are used. The thresholds and corresponding signal & noise sets for each segment ac-
cording to each biological replicate. The sites identified as signal in both experiments are highlighted
in red, the ones identified as noise in both experiments are highlighted in blue. Fewer substitution
sites were identified compared to previous table (see Table 2.5).
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Figure 2.14: Only the first 12 passages were used in Foll et al (Foll et al., 2014). The complete
dataset includes two biological replicates with one control group and one treatment group. Each
ovals presents a passage. The colors white and red indicate absence and presence of the inhibitor.
The sizes of the ovals indicate the average total read count per genome site. Note that the first
replicate have much larger total reads than the second.

S2-32 sites of our analysis are treated as one). Several other sites, S1-2299, S2-2303, S3-

173,174,176,200,203, 2078,2192,2193,2195, S5-24,389,1103, S6-977, were identified as loca-

tions with evolutionary changes not due to the treatment.

Intriguingly, most sites identified in Foll et al. (Table 2.6) appear in our analysis to only

have signal in the first biological replicate. The exception, S6-822, has a strong signal in

both replicates and regardless of end point generation analyzed (2.10). We speculate that

the lack of consistent signal/false signal coming from the other sites is caused by the lower

average read count per site for the second replicate compare to the first. The population

genetic approach used in Foll et al. appears to be heavily influenced by the first replicate.

This leads us to postulate that their result is adversely affected by the large imbalance in

counts.

The additional sites identified in Table 2.5, S8-80, showed a more pronounced drug effect

after the 12th passage in both replicate (Figures 2.21). We conclude that IVA may not have

fully responded to the treatment by Passage 12, which was the final passage analyzed by

37



Foll et al. Thus our previous analysis, which included the last time point collection, is likely

more reliable for the identification of substitution sites.

2.6 Discussion

We introduce a Dirichlet mixture model for detecting and clustering changes in allele fre-

quencies in DNA or RNA sequence data from a population sampled at different time points.

This annotation free approach is particularly useful for RNA viruses and other organisms

where the secondary structure of the RNA can influence evolution in ways not predicted by

standard molecular evolutionary analysis methods.

To identify significant changes in allele frequency, our clustering algorithm uses a com-

bination of a hierarchical divisive clustering tree (hierarchical SCMH), a block Metropolis-

Hasting (block MH), and a fixed scan Gibbs sampler (Gibbs) procedures. This approach

does not require a prior distribution on the number of mixture components. The hier-

archical SCMH step automatically produces an upper bound for the number of mixture

components, K, and fine clusters for the block MH step. The hierarchical tree structure

enables parallel computing and overcomes the computational difficulties any direct Markov

chain Monte Carlo method presents. The block MH step improves the upper bound for K

and combines similar clusters. Last but not least, the Gibbs step modifies the clustering

result. The threshold for identifying substitution sites is derived based on the posterior dis-

tribution comparison for the time collections without treatment. It is chosen by examining

the curvature in the graph of the number of members in the noise set instead of selecting

an ad hoc cutoff.

With synthetic datasets we showed that our method with full clustering algorithm

achieves results comparable to direct Gibbs without having to choose a K ad hoc. If the

Gibbs step was skipped, we still achieved high perfect identification rate with even more

gain in computation time. The hierarchical SCMH step enables parallel computing with

partial data, which makes our clustering algorithm is much more efficient, even compared

to the direct Gibbs with the true K.
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The last cluster step of our algorithm, the Gibbs, can take a long time if the consolidated

dataset is still very large. One may choose to skip this modification step at the price of a

slightly higher error rate. It is advised to check the set size function plot and determine if

the default parameters are appropriate.

As a positive control, we applied our method to a well described HIV-1 dataset. With

minimal assumptions on gene annotation or the coding nature of the substitution, we suc-

cessfully identified known drug resistance alleles previously reported (Jabara et al., 2011)

and a list of sites with significant allelic changes within untreated population.

In the IVA dataset that motivated this study, we analyzed multiple time points and

treatment-control simultaneously. We identified two sites, S6-822 & S8-80, with strong evi-

dence of evolution in response to inhibitor treatment and six locations with high variability

not due to the inhibitor. We compared our findings to a previous analysis of the same

dataset based on a population genetic approach. Noticing that most of the sites identified

using the latter method only appear in the biological replicate with larger sample size, we

suspect that the population genetic based approach is biased due to this imbalance. Our

algorithm performs analysis on each biological replicate individually first and then aggre-

gate the results across replicates. Therefore, our inference technique is not sensitive to the

unbalanced nature of the data.

In this chapter we have applied our method to high-through put sequencing nucleotide

read count data. It can also be applied to other count data, such as amino acids. As

the model requires minimum assumption, it can be broadly applied. For example, this

approach can be used to identify evolved sites in non-coding regions of the genome such

as the regulator regions of genes or in RNA genes such as ribosomal RNA and other long

non-coding RNAs.

2.7 Appendix

2.7.1 Proof of Theorem 2.1

Suppose there are only two genome positions to be clustered, Y = [Y1, Y2]. If they share

the same probability parameter, then the likelihood of the two share the same parameter
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is one when the numbers of observations at the two sites m1 and m2 are large. Fix a

J ∈ {2, 3, 4, · · · }. Without loss of generality, assume c1 = c2 = 1, and then the marginal

posterior likelihood ratio of splitting the two over current state on the log scale is the

following:

LR = log(π(c1 = 1, c2 = 2|Y ))− log(π(c1 = 1, c2 = 1|Y ))

=

J∑
j=1

[
log Γ(yj1 + J−2) + log Γ(yj2 + J−2)

]
− log Γ(m1 + J−1)− log Γ(m2 + J−1)

−
J∑
j=1

log Γ(yj1 + yj2 + J−2) + log Γ(m1 +m2 + J−1)

Claim: LR −→ −∞ a.s.

Proof. Recall that Stirling’s formula provides the following approximation:

log Γ(z) ≈ 1

2
log(2π)− 1

2
log z + z log z − z

Therefore,

LR

≈
J∑
j=1

[
1

2
log(2π)− 1

2
(yj1 + J−2)− 1

2
(yj2 + J−2) +

1

2
(yj1 + yj2 + J−2) + (yj1 + J−2) log(yj1 + J−2)

+(yj2 + J−2) log(yj2 + J−2)− (yj1 + yj2 + J−2) log(yj1 + yj2 + J−2)− J−2
]
− 1

2
log(2π)

+
1

2
log(m1 + J−1) +

1

2
log(m2 + J−1)− 1

2
log(m1 +m2 + J−1)− (m1 + J−1) log(m1 + J−1)

−(m2 + J−1) log(m2 + J−1) + (m1 +m2 + J−1) log(m1 +m2 + J−1) + J−1

=
J − 1

2
log(2π) +

J∑
j=1

[(
yj1 + J−2 − 1

2

)
log(yj1 + J−2) +

(
yj2 + J−2 − 1

2

)
log(yj2 + J−2)

−
(
yj1 + yj2 + J−2 − 1

2

)
log(yj1 + yj2 + J−2)

]
+

(
m1 +m2 + J−1 − 1

2

)
log(m1 +m2 + J−1)

−
(
m1 + J−1 − 1

2

)
log(m1 + J−1)−

(
m2 + J−1 − 1

2

)
log(m2 + J−1)

Under null hypothesis that Y1 and Y2 follow the same distribution, i.e. they share

the same probability parameter. Denote the comment probability parameter as P =
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(p1, · · · , pJ). Then the normal approximation of the multinomial random variables are

yji ≈ mip
j +
√
miz

j
i +Op(

√
mi), for i = 1, 2; j = 1, · · · , J,

where zji ’s are standard normal random variables and
∑J

j=1 z
j
i = 0 for i = 1, 2.

Hence,

LR

≈ J − 1

2
log(2π) +

(
m1 +m2 + J−1 − 1

2

)
log(m1 +m2 + J−1)−

(
m1 + J−1 − 1

2

)
log(m1 + J−1)

−
(
m2 + J−1 − 1

2

)
log(m2 + J−1) +

J∑
j=1

[(
m1p

j +
√
m1z

j
1 + J−2 − 1

2

)
log(m1p

j +
√
m1z

j
1 + J−2)

+

(
m2p

j +
√
m2z

j
2 + J−2 − 1

2

)
log(m2p

j +
√
m2z

j
2 + J−2)

−
(
m1p

j +
√
m1z

j
1 +m2p

j +
√
m2z

j
2 + J−2 − 1

2

)
log(m1p

j +
√
m1z

j
1 +m2p

j +
√
m2z

j
2 + J−2)

]
=

J − 1

2
log(2π) +

(
m1 +m2 + J−1 − 1

2

)[
log(m1 +m2) + log

(
1 +

J−1

m1 +m2

)]
−
(
m1 + J−1 − 1

2

)[
logm1 + log

(
1 +

J−1

m1

)]
−
(
m2 + J−1 − 1

2

)[
logm2 + log

(
1 +

J−1

m2

)]
+

J∑
j=1

{(
m1p

j +
√
m1z

j
1 + J−2 − 1

2

)[
log(m1p

j) + log

(
1 +

√
m1z

j
1 + J−2

m1pj

)]

+

(
m2p

j +
√
m2z

j
2 + J−2 − 1

2

)[
log(m2p

j) + log

(
1 +

√
m2z

j
2 + J−2

m2pj

)]

−
(

(m1 +m2)pj +
√
m1z

j
1 +
√
m2z

j
2 + J−2 − 1

2

)[
log((m1 +m2)pj)

+ log

(
1 +

√
m1z

j
1 +
√
m2z

j
2 + J−2

(m1 +m2)pj

)]}

=
J − 1

2
log(2π) +

J − 1

2
log

(
1

m1
+

1

m2

)
+

(
m1 +m2 + J−1 − 1

2

)
log

(
1 +

J−1

m1 +m2

)
−
(
m1 + J−1 − 1

2

)
log

(
1 +

J−1

m1

)
−
(
m2 + J−1 − 1

2

)
log

(
1 +

J−1

m2

)
+

J∑
j=1

{(
m1p

j +
√
m1z

j
1 + J−2 − 1

2

)
log

(
1 +

√
m1z

j
1 + J−2

m1pj

)

+

(
m2p

j +
√
m2z

j
2 + J−2 − 1

2

)
log

(
1 +

√
m2z

j
2 + J−2

m2pj

)

−
(

(m1 +m2)pj +
√
m1z

j
1 +
√
m2z

j
2 + J−2 − 1

2

)
log

(
1 +

√
m1z

j
1 +
√
m2z

j
2 + J−2

(m1 +m2)pj

)}
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Note that, in general, by L’Hopital’s rule, as mi →∞,

√
mi log

(
1 +

√
miz

j
i + J−2

mipj

)
=

log

(
1 +

√
miz

j
i +J−2

mipj

)
1/
√
mi

−→
zji
pj
,

for i = 1, 2; j = 1, · · · , J.

Under the assumption that m1 and m2 are increasing at the same rate, let m1 = m and

m2 = cm, for some c > 0. Then as m→∞,

(
√
m1z

j
1 +
√
m2z

j
2) log

(
1 +

√
m1z

j
1 +
√
m2z

j
2 + J−2

(m1 +m2)pj

)

= (zj1 +
√
czj2)
√
m log

(
1 +

√
m(zj1 +

√
czj2) + J−2

(1 + c)mpj

)

−→ (zj1 +
√
czj2)2

(1 + c)pj
, for j = 1, · · · , J.

Therefore, as m→∞, the log likelihood ratio

LR

≈ J − 1

2
log(2π) +

J − 1

2
log

1 + c

cm
+

(
m(1 + c) + J−1 − 1

2

)
log

(
1 +

J−1

m(1 + c)

)
−
(
m+ J−1 − 1

2

)
log

(
1 +

J−1

m

)
−
(
cm+ J−1 − 1

2

)
log

(
1 +

J−1

cm

)
+

J∑
j=1

{(
mpj +

√
mzj1 + J−2 − 1

2

)
log

(
1 +

√
mzj1 + J−2

mpj

)

+

(
cmpj +

√
cmzj2 + J−2 − 1

2

)
log

(
1 +

√
cmzj2 + 1/25

cmpj

)

−
(

(1 + c)mpj +
√
mzj1 +

√
cmzj2 + J−2 − 1

2

)
log

(
1 +

√
mzj1 +

√
cmzj2 + J−2

(1 + c)mpj

)}
−→ −∞

Therefore, Y1 and Y2 have the same cluster label almost surely.

2.7.2 Additional IVA Ht plots

In this subsection, we provide the Ht plots for some additional segments.
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Figure 2.15: The two thresholds produce the same result. No drug resistant site is identified on
this segment.

2.7.3 Raw data plot

Nucleotide read count proportion plot for identified IVA sites. The color tiles on the top

of each panel indicates the total read count at each time point. The top and bottom

rows are for each replicate; the left and right panels are for control and treatment groups,

respectively.
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Figure 2.16: Similar to Seg4E1, no drug resistant site is identified.

The nucleotide read type proportions at each time point for the sites with high genetic

variation that might be due to adaptation to the hosts: S1-2299, S3-2193, S4-1210, S5-24,

S5-1103, S8-819.
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Figure 2.17: On this segment, without Gibbs, site S5-300 is highlighted, however, it is excluded
from the signal set after the modification step.
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Figure 2.18: For Replicate II, both with and without the Gibbs reveals site S5-300. Since the site
was not included in Replicate I, (with Gibbs), we exclude this location from the final result.
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Figure 2.19: The result plots for H1N1 Seg8E1. The inference result for H1N1 Seg7E2 is consistent
even without the Gibbs step, and is robust to the choices of α parameter. The highlighted site, S8-
80, was identified as a drug resistant site with or without the Gibbs step. The noise set consists of
S8-385, S8-819, S8-848.
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Figure 2.20: Similar to Seg8E1, the inference result is consistent with or without the Gibbs step.
The highlighted S8-80 was identified as a signal site; S8-819 was a noise site that was also identified
in Seg8E1.
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Figure 2.21: H1N1 nucleotide read count proportion and total count at position S8-80. Unlike
the previous two figures, the read type does not switch completely. Instead, the starting read type
A remains in more than 25% of the sample while the rest have read type G post treatment.
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Figure 2.22: H1N1 nucleotide read count proportion and total count at position S1-2299. In all
four panels, there is great variation between read type G and T. The alternating behavior happened
in almost all panels in dictating that the genetic variation is not due to treatment and likely that
the read types G and T together dominate the reads at equilibrium.
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Figure 2.23: H1N1 nucleotide read count proportion and total count at position S1-2303. Regard-
less treatment or control, there was significant fluctuation in the mixture proportion of nucleotides
C and T over time.
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Figure 2.24: H1N1 nucleotide read count proportion and total count at position S3-2193. In all
four panels, there is great variation between read type C and G with and without the treatment.
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Figure 2.25: H1N1 nucleotide read count proportion and total count at position S4-1210. There
is a complete transversion from C to A in all four panels, suggesting that this change might be due
to adaptation to the hosts or genetic drifts.
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Figure 2.26: H1N1 nucleotide read count proportion and total count at position S5-24. The four
panels show similar pattern. It appears that the treated groups (right two panels) took longer time
to reach equilibrium.
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Figure 2.27: H1N1 nucleotide read count proportion and total count at position S5-389. The
untreated groups appear to present greater variation over time.
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Figure 2.28: H1N1 nucleotide read count proportion and total count at position S5-1103. The
untreated groups appear to present greater variation over time.

56



Figure 2.29: H1N1 nucleotide read count proportion and total count at position S8-819. The
untreated groups present transition from G to C; one of the treated groups (top right panel) appears
to have interchanged read type in the intermediate time points while the other treated group presents
low variation.
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CHAPTER 3

Covariance estimation via fiducial inference

3.1 Introduction

Estimating covariance matrices has always been an important task. We are particularly

interested in a high-dimensional multivariate linear model setting with an atypical sparsity

constraint. Instead of classic sparsity assumptions on the covariance matrix, we consider

a type of experimental design that enforces sparsity on the covariate matrix. This phe-

nomenon often arises in the studies of metabolomics and proteomics. One example of

this setup is the modeling of the relationship between a set of gene expression levels and

metabolomic data. The expression levels of the genes serve as the predictor variables while

the response variables are a variety of metabolite levels, such as sugar and triglycerides. It

is known that only a small subset of genes contribute to each metabolite level, and each

gene can be responsible for just a few metabolite levels, hence the sparse structure in the

covariate matrix. Another example is the analysis of protein-protein interaction networks.

Detecting the cliques in the network can also be achieved through our fiducial covariance

estimation framework.

In the world of covariance estimation, maximum likelihood based methods and Bayesian

approaches are the most common tools. We took a different perspective by looking through

the generalized fiducial inference glasses. The general approach of fiducial inference was first

proposed by Ronald A. Fisher, whose intention was to overcome the need for priors and other

problems with Bayesian methods at the time. The procedure of fiducial inference allows to

obtain a measure on the parameter space without requiring priors and defines approximate

pivots for parameters of interest. It is ideal when a priori information about the parameters

is unavailable, which is often the case in biology. The key recipe of the fiducial argument is



the data generating equation. Roughly, the generalized fiducial likelihood is defined as the

distribution of the functional inverse of the data generating mechanism.

In a high-dimensional and sparse covariate setting, we derived the generalized fiducial

likelihood of the covariate matrix based on given observations and proved its asymptotic

consistency as the sample size increases. Samples from the fiducial distribution of a covariate

matrix can be generated using a reversible jump Markov chain Monte Carlo (RJMCMC)

algorithm. Similar to the classic likelihood functions, fiducial distributions favor models

with more parameters. Therefore, in the case where the exact sparsity structure of the

covariate is unclear, a penalty term needs to be added. We chose a penalty function based

on the minimum description length principle (MDL) (Rissanen, 1978). To obtain a family of

covariance estimators, we adapted a zeroth-order method and develop an efficient RJMCMC

algorithm that samples from the penalized fiducial distribution.

One great advantage of the fiducial approach to covariance matrix estimation is that,

without specifying a prior, it produces a family of matrices that are close to the true

covariance matrix with a probabilistic characterization using the fiducial likelihood function.

This attractive property enables a meaningful definition for matrix confidence regions.

The rest of this chapter is organized as follows. In Section 3.2 we first provide a

brief background and recent developments on fiducial inference. Then we introduce the

fiducial model for covariance estimation and derive the Generalized Fiducial Distribution

(GFD) for the covariate and covariance matrices in Section 3.3. We explore the asymptotic

properties of the GFD of the covariance matrix under minor assumption, and show that

it satisfies the Fiducial Bernstein von-Mises Theorem (Sonderegger and Hannig, 2012) in

Section 3.4. Section 3.5 presents an adaptive Reversible Jump Markov Chain Monte Carlo

method (RJMCMC) developed for sampling from the GFD, followed by simulation studies

in Section 3.6. We then conclude the chapter with a discussion (Section 3.7).
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3.2 Generalized fiducial inference

3.2.1 Brief background

The idea of fiducial inference was first proposed by Ronald Aylmer Fisher in 1930 when he

first introduced the concept of a fiducial distribution of a parameter. In the case of a single

parameter family of distributions, Fisher gave the following definition for a fiducial density

f(θ|x) of the parameter based on a single observation x for the case where the cumulative

distribution function F (x|θ) is a monotonic decreasing function of θ:

f(θ|x) ∝ −∂F (x|θ)
∂θ

(3.1)

A fiducial distribution can be viewed as a Bayesian posterior distribution without hand

picking priors. In many single parameter distribution families, Fisher’s fiducial intervals

coincide with classical confidence interval. For families of distributions with multiple pa-

rameters, the fiducial approach leads to confidence set. Seeing the advantage of avoiding

choosing prior ad hoc, Fisher proposed the use of fiducial inference in replace of Bayesian

framework, which led to major discussions among prominent statisticians in 1930’s, 40’s,

and 50’s (Dempster, 1966, 1968; Fraser, 1961b,a, 1966, 1968; Jeffereys, 1940; Lindley, 1958;

Stevens, 1950). Many focused on non-exactness of the confidence sets and non-uniqueness

of fiducial distributions. In the latter part of 20th century, only a handful of publications

(Barnard, 1995; Dawid and Stone, 1982; Salome, 1998; Wilkinson, 1977) regarding Fisher’s

idea has been seen as the fiducial approach fell into disfavor. In recent years, the work of

Tsui and Weerahndi (Tsui and Weerahandi, 1989, 1991) and Weerahndi (Weerahandi, 1993,

1994, 1995) on generalized confidence intervals and the work of Chiang (Chiang, 2001) on

the surrogate variable method for obtaining confidence intervals for variance components led

to the realization that there was a connection between these new procedures and fiducial

inference. This realization evolved through a series of works by Hannig, Iyer and their col-

laborators (Hannig and Lee, 2009a; Hannig et al., 2006b; Iyer et al., 2004; Patterson et al.,

2004) where the definition of fiducial inference has been generalized. The strengths and

limitations of fiducial approach has been better understood (Hannig and Lee, 2009a; Han-

nig, 2012). In particular, the asymptotic exactness of fiducial confidence seats, under fairly
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general conditions, was established in (Hannig, 2012; Hannig et al., 2006b; Sonderegger and

Hannig, 2012) The generalized fiducial approach has been applied to a variety of models,

both parametric and nonparametric, both continuous and discrete. These applications in-

clude bioequivalence (Hannig et al., 2006a), variance components (Cisewski and Hannig,

2012; E et al., 2008), problems of metrology (Hannig et al., 2007, 2003; Wang et al., 2012;

Wang and Iyer, 2005, 2006a,b), inter laboratory experiments and international key compar-

ison experiments (Iyer et al., 2004), maximum mean of a multivariate normal distribution

(Wandler and Hannig, 2011), multiple comparisons (Wandler and Hannig, 2012a), extreme

value estimation (Wandler and Hannig, 2012b), mixture of normal and Cauchy distribu-

tions (Glagovskiy, 2006), wavelet regression (Hannig and Lee, 2009b), logistic regression

and LD50 (E et al., 2009).

3.2.2 Generalized fiducial distribution

The idea underlying GFI is built upon a data generating equation G(·, ·) expressing the

relationship between the data X and the parameters θ:

X = G(U, θ), (3.2)

where U is the random component of this data generating equation whose distribution is

known. The data X are assumed to be created by generating a random variable U and

plugging it into the date generating equation (3.2). A set-value function of inverse notion

of G is defined as

Q(x, u) = {θ : x = G(u, θ)}, (3.3)

where u is an implicit function of θ, x is a fixed realization of X.

A weak fiducial distribution of θ is defined as a conditional distribution of

V (Q(x, U?))|{Q(x, U?) 6= ∅}, (3.4)

where U? is an independent copy of U , and V is a function often taken to be identity. A

weak fiducial distribution is well-defined provided that P(Q(x, U?) 6= ∅) > 0. However, if

P(Q(x, U?) 6= ∅) = 0, definition (3.4) leads to a potential source of non-uniqueness due to
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conditioning on events with zero probability, known as Borel Paradox (Casella and Berger,

2002). Since it is reasonable to assume the data have been discretized by a measuring device

and storage on a computer, this potential hazard can be resolved by simply perturbing the

observation and looking at a small neighborhood of the observation (Hannig, 2009; Hannig

et al., 2007). We then arrive at a formal definition of Generalized Fiducial Distribution

(GFD):

lim
ε→0

[Qx,ε(U
?)|{Qx,ε(U?) 6= ∅}] (3.5)

where Qx,ε(U
?) = {θ : ‖x − G(U?, θ)‖ < ε} and ‖v‖ is a norm of the vector v. Equation

(3.5) can be rewritten as

lim
ε→0

[argmin
θ
‖x−G(U?, θ)‖|min

θ
‖x−G(U?, θ)‖ < ε]. (3.6)

While definition (3.6) is conceptually appealing and very general, it not immediately

clear how to compute the limit in many practical situations. In a less general setup using l∞

norm, Hannig derives a closed form of the limit in (3.6) applicable to many practical situa-

tions (Hannig, 2012). In particular, assume that the parameter θ ∈ Θ ⊂ Rp is p-dimensional

and that the inverse to (3.2) G−1(x, θ) = u exists. Then under some differentiability as-

sumptions, Hannig (Hannig, 2012) has shown that the GFD is absolutely continuous with

density

r(θ|x) =
f(x, θ)J(x, θ)∫

Θ f(x, θ′)J(x, θ′)dθ′
, (3.7)

where

J(x, θ) =

n
p


−1 ∑

i=(i1,··· ,ip)
1≤i1<···<ip≤n

∣∣∣∣∣det

(
d

dθ
G(u, θ)

∣∣∣∣
u=G−1(x,θ)

)
i

∣∣∣∣∣ (3.8)

In the above f(x, θ) is the likelihood the the sum goes over all p-tuples of indices i = (1 ≤

i1 < · · · < ip ≤ n) ⊂ {1, · · · , n}. For any matrix M , (M)i stands for a p × p matrix

consisting of rows i = (i1, · · · , ip) of M .
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3.3 A fiducial approach to covariance estimation

In this section, we introduce the data generating equation under our framework. For two

special cases and the general case, we derive the GFD for the covariance matrix of a mul-

tivariate normal random variable.

3.3.1 Data generating equation

Let QT denote the transpose of a matrix Q. For a collection of n observed p dimensional

objects Y = {Yi, i = 1, · · · , n}. Consider the following data generating equation:

Yi = AZi, i = 1, · · · , n; (3.9)

where A is a p × p matrix of full rank, Z = {Zi = (zi1, · · · , zip)T , i = 1, · · · , n} are

independent and identically distributed (i.i.d) p× 1 random vectors following multivariate

normal distribution N(0, I). Hence, Yi’s are i.i.d random vectors centered at 0 with variance

AAT ,

i.e. Yi
iid∼ N(0,Σ), where Σ = AAT . (3.10)

Consequently, we have

f(Y, A) = (2π)−
np
2 |det(A)|−n exp

[
−1

2
tr{nSn(AAT )−1}

]
, (3.11)

where Sn = 1
n

∑n
i=1 Y

′
i Yi is the corresponding sample covariance matrix and tr{·} is the

trace operator.

We propose to estimate the covariance matrix Σ through the GFD of covariate matrix

A:

r(A|Y) ∝ J(Y, A)f(Y, A) (3.12)

Since A is assumed to be invertible, we have Zi = A−1Yi for all i. For any i =

(i1, · · · , ip), 1 ≤ i1 < · · · < ip ≤ n, denote the stacked observation vector Wi =

(Y T
i1
, · · · , Y T

ip
)T = (wi

1, · · · , wi
p2)T , and let aij be the ijthe entry of matrix A, i.e. A =
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[aij ]1≤i,j≤p. The corresponding Jacobian J(Y, A) derived from (3.8) is then

J(Y, A) =

n
p


−1 ∑

i=(i1,··· ,ip)
1≤i1<···<ip≤n

∣∣∣∣det

(
∂Wi

∂A

)∣∣∣∣ , (3.13)

and ∂Wi
∂A is defined to be

∂Wi

∂A
=



∂wi
1

∂A

∂wi
2

∂A

...
∂wi

p2

∂A


;

for all q ∈ 1, · · · , p2,

∂wi
q

∂A
=

(
∂wi

q

∂a11

∂wi
q

∂a12
· · · ∂wi

q

∂aij
· · · ∂wi

q

∂app

)
.

Note that if akl is fixed at zero, then the term
∂wi

q

∂akl
will be excluded in

∂wi
q

∂A .

3.3.2 Jacobian

With a complex form of Jacobian (3.13), finding the GFD of A is not trivial. We start with

two simple cases and close this subsection with discussions on how to work with the general

case.

• Special Case I: No element of A is fixed at zero, i.e. the parameter space is Rp×p.
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∂Wi

∂A
=



B1 B2 · · · Bp

R1 (A−1Yi1)T

R2 (A−1Yi1)T

...
. . .

Rp (A−1Yi1)T

...
...

...
...

...

R(p−1)p+1 (A−1Yip)T

R(p−1)p+2 (A−1Yip)T

...
. . .

Rp2 (A−1Yip)T



= Qi. (3.14)

Here the matrix ∂Wi
∂A = Qi consists of p blocks, B1, · · · , Bp, each of dimension p2 × p.

Every row of Qi, R1, · · · , Rp2 , has non-zero entries in only one block. By swapping

rows in the matrix Qi, we can achieve matrix Pi:

Pi =



B′1 · · · B′p

(A−1Yi1)T

...

(A−1Yip)T

. . .

(A−1Yi1)T

...

(A−1Yip)T



=



B′1 · · · B′p

Ui

. . .

Ui

, (3.15)

where Ui = (A−1Yi1 ; · · · ;A−1Yip)T = Vi(A
−1)T , Vi = (Yi1 ; · · · ;Yip)T .

Since swapping rows does not change the absolute value of the determinant of a matrix,

the Jacobian (3.13) can be expressed with matrix Pi:

J(Y, A) =

n
p


−1 ∑

i=(i1,··· ,ip)
1≤i1<···<ip≤n

|det (Pi)| . (3.16)
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Therefore, in the case when all entries of A are not identically zero, we have

J(Y, A) =

n
p


−1 ∑

i=(i1,··· ,ip)
1≤i1<···<ip≤n

|det (Ui)|p = C(Y)|det(A)|−p, (3.17)

where

C(Y) =

n
p


−1 ∑

i=(i1,··· ,ip)
1≤i1<···<ip≤n

|det (Vi)|p , (3.18)

By (3.12), the GFD is proportional to

r(A|Y) ∝ C(Y)(2π)−
np
2 |det(A)|−(n+p) exp

[
−1

2
tr{nSn(AAT )−1}

]
. (3.19)

Transforming GFD of A, we conclude that the GFD of Σ = AAT has the inverse

Wishart distribution with n degrees of freedom and parameter nSn.

• Special Case II: Clique model.

Now suppose that A is a block diagonal matrix. Assume that the coordinates of Y

are broken into cliques; i.e. coordinates i and j are correlated if i, j belong to the

same clique and independent otherwise. Equivalently, ai,j = 0 if i and j are not in the

same clique. The Minimum Description Length (MDL) (Rissanen, 1978) for model A

with k cliques with sizes g1, · · · , gk respectively is

q(A) =
1

2

(
k∑
i=1

g2
k

)
log n+ (p+ 1) log k (3.20)

Denote Sin the gi × gi sample covariance matrix of the ith clique and Ci(Y) the

constant in the Jacobian function computed only using the coordinates in clique i.

Applying MDL penalty and using the facts from the Wishart distribution to integrate

out (3.19), we have the GFD of the model is proportional to∏k
i=1

[
Γgi
(
n
2

)
Ci(Y)(2π)

gi(gi−1)

2

∣∣detSin
∣∣−n

2

]
exp

{
1
2

(∑k
i=1 g

2
i

)
log n+ (p+ 1) log k

} (3.21)
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where Γgi
(
n
2

)
is the multivariate gamma function.

• General Case: Possible fixed zero elements in A.

The assumption of some fixed zero elements in A enables covariance estimation in large

dimension low sample size scenarios. There are many possible biological applications

for the set-up. One application is to model the relationship between metabolism and

gene expression levels.

Denote the ijth entry of A as Aij . Let B′ij be the jth column of block B′i. Define a

set of paired indices Si by

Si = {(i, j) : Aij ≡ 0, j = 1, · · · , p}, i = 1, · · · , p. (3.22)

The set Si indicates which entries of A in the ith row are identically zero. The union

of all Si’s, S0 = ∪pi=1Si, consists of the indices of all fixed zeros in the covariate matrix

A. Denote that total number of non-fixed-zeros in A as pA = p2 − |S0|. Let R be a

set of column vectors such that

R = {B′ij : (i, j) ∈ S0} = {B′ij : Aij ≡ 0}. (3.23)

Then equation (3.13) becomes

J(Y, A) =

n
p


−1 ∑

i=(i1,··· ,ip), 1≤i1<···<ip≤n,
r=(r1,··· ,rpA ), 1≤r1<···<rpA≤p

2.

∣∣∣det
(
Pi,[:,−R]

)
r

∣∣∣ , (3.24)

where Pi,[:,−R] is the largest submatrix of Pi without the columns included in R.

In order to have nonzero det
(
Pi,[:,−R]

)
r
, the index vector r has to include pi number

of nonzero rows of block B′i. The integer pi is the number of nonzero entries in the

ith row of A. Hence, the Jacobian (3.24) can be reduced to

J(Y, A) =

n
p


−1 ∑

i=(i1,··· ,ip), 1≤i1<···<ip≤n,
ri=(ri,1,··· ,ri,pi ), 1≤ri,1<···<ri,pi≤p.

p∏
i=1

∣∣∣det (Ui,i)ri

∣∣∣ . (3.25)
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Here each Ui,i is the largest submatrix of Ui without the columns in Si, i.e. Ui,i =

Ui,[:,−Si].

When the dimension of A and sample size become large, direct calculation of the

Jacobian can be infeasible with the formula (3.25). Notice that for each i, we sum

over total
∏p
i=1

 p

pi

 determinant products. It can be shown by induction that above

equation is equivalent to the following:

J(Y, A) =

n
p


−1 ∑

i=(i1,··· ,ip)
1≤i1<···<ip≤n

p∏
i=1

 p

pi

∣∣∣det (Ui,i)ri

∣∣∣, (3.26)

where
∣∣∣det (Ui,i)ri

∣∣∣ denote the average absolute determinant of all possible expressions

of (Ui,i)ri for a fixed index vector i and a row number i.

Therefore, in the general case, the GFD is proportional to

exp
[
−1

2tr{nSn(AAT )−1}
]

|det(A)|n

n
p


∑

i=(i1,··· ,ip)
1≤i1<···<ip≤n

p∏
i=1

 p

pi

∣∣∣det (Ui,i)ri

∣∣∣ (3.27)

3.4 Theoretic results

In general, there is no one-to-one correspondence between the covariance matrix Σ and the

covariate matrix A. This leads to the identifiability issue from Σ to A. However, if A is

assumed to be sparse with the sparse locations known, then the identifiability problem often

vanishes. In this section we show that, if there is one-to-one correspondence between Σ and

A, then the GFD defined by (3.27) achieves the Fiducial Bernstein-von Mises Theorem,

which provides theoretical guarantees of asymptotic normality and asymptotic efficiency

for GFD (Sonderegger and Hannig, 2012).

The results here are derived based on FM-distance, a metric for comparing covariance

matrices suggested by Förstner and Moonen (Förstner and Moonen, 1999). For two symmet-

ric positive definite matricesM andN , with the eigenvalues λi(M,N) from det(λH−C) = 0,
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the FM-distance between the two matrices M and N is

d =

√√√√ n∑
i=1

ln2 λi(M,N). (3.28)

This distance measure is a metric and invariant with respect to both affine transformations

of the coordinate system and an inversion of the matrices (Förstner and Moonen, 1999).

More details on FM-distance can be found in the appendix.

The particular choice of the distance measure for covariance matrices is not crucial in

proving the consistency of GFD.

Definition 3.1. For a fixed covariate matrix A0 and δ ≥ 0, define the δ-neighborhood of

A0 as the set B(A0, δ) = {A : d(AAT , A0A
T
0 ) ≤ δ}.

Before presenting the theorem on consistency of the GFD, we need to establish some

regularity condition on the likelihood function and Jacobian formula (Propositions 3.1, 3.2,

3.3). The proofs can be found in the appendix.

Proposition 3.1. For any δ > 0 there exists ε > 0 such that

PA0

{
sup

A 6∈B(A0,δ)

1

n
(Ln(A)− Ln(A0)) ≤ −ε

}
→ 1,

where Ln(A) = log f(Y, A) =
∑n

i=1 log f(Yi, A).

Proposition 3.2. Let Ln(·) be as above. Then for any δ > 0

inf
A 6∈B(A0,δ)

min i={i1,··· ,ip}
1≤i1<···<ip≤n

log f(A,Yi)

|Ln(A)− Ln(A0)|
A0−−→ 0.

Proposition 3.3. Let Y0 = (Y1, Y2, · · · , Yp) and π(A) = EA0J(Y0, A). Assume that there

is a one-to-one correspondence between A and Σ = AAT . Then the Jacobian function

J(Y, A)
a.s.−−→ π(A) uniformly on compacts in A.

The Bernstein-von Mises Theorem provides conditions under which the Bayesian pos-

terior distribution is asymptotically normal (van der Vaart 1998, Ghosh 2003). The fiducial

Bernstein-von Mises Theorem is an extension that includes a list of conditions under which

the GFD is asymptotically normal (Sonderegger and Hannig, 2012). Those conditions can

be divided into three parts to ensure each of the following:
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(a) the Maximum Likelihood Estimator (MLE) is asymptotically normal

(b) the Bayesian posterior distribution becomes close to that of the MLE

(c) the fiducial distribution is close to the Bayesian posterior

It is clear that the MLE of f(Y, A) is asymptotically normal. Under our model, the condi-

tions for (b) holds due to Proposition (3.1) and the construction of the Jacobian formula;

the conditions for (c) are satisfied by Propositions (3.2, 3.3). Closely following (Sonderegger

and Hannig, 2012), we arrive at Theorem (3.1).

Theorem 3.1. (Consistency) Let RA be an observation from the fiducial distribution

r(A|Y) and denote the density of B =
√
n(RA− Ân) by π∗(B,Y), where Ân is a maximum

likelihood estimator. Let I(A) be the Fisher information matrix. Under the assumption that

there is one-to-one correspondence from the covariance matrix Σ to the covariate matrix A,∫
Rp×p

∣∣∣∣∣π∗(B,Y)−
√

det|I(A0)|√
2π

exp{−YT I(A0)Y/2}

∣∣∣∣∣ dB PA0−−→ 0 (3.29)

Detailed proof can be found in Section 3.8.

3.5 Reversible jump Markov chain Monte Carlo

With the GFD derived in the two special cases, Gibbs sampler can be applied to estimate the

covariance matrix Σ = AAT . The GFD approach works well on finding sparse structure in

the clique model. However, outside the special models, the GFD is not based on the inverse

Wishart distribution. Although the GFD for the general situation is rather complicated,

the simplification for the Jacobian from (3.13) to (3.25) and the approximation (3.26) make

sampling methods feasible, even for p large. We propose to utilize an adaptive reversible

jump Markov chain Monte Carlo (RJMCMC) method to efficiently sample from the GFD,

with sparsity assumption on A and under a high dimension parameter space frame work.

RJMCMC is an extension of standard Markov chain Monte Carlo methods that allows

simulation of the target distribution on spaces of varying dimensions. It was first intro-

duced by Peter J. Green (Green, 1995). The “jumps” refers to moves between models with
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possibly different parameter spaces. To maintain detailed balance of a irreducible and ape-

riodic chain that converges to the correct target distribution, the moves are required to be

reversible. Among many others, Richardson and Green (Richardson and Green, 1997), Del-

laportas et al.(Dellaportas et al., 2002), Robers et al.(Robers et al., 2001), Troughton and

Godsill (Troughton and Godsill, 1998), Insua and Müller (Insua and Müller, 1998), Barbi-

eri and O’Hagon (Barbieri and O’Hagan, 1996) and Huerta and West (Huerta and West,

1999) applied RJMCMC to mixture models, variable selection, curve fitting, autoregressive

models, neural networks, autoregressive moving average models and component structure

in autoregressive models, respectively. Since the number of fixed zeros in the matrix A,

the property of jumping between parameter spaces with different dimension is desired for

estimate Σ.

3.5.1 Algorithm flow

Let the set of possible models be M = {M1,M2, · · · }. Write model Mk = (Ak, dk),

where dk is the dimension of model Mk, i.e. the number of non fixed zero elements in

the covariate matrix Ak. Denote the GFD of model Mk as r(Mk). Similar to maximum

likelihood estimation, GFI tends to favor models with more parameters over one with fewer

parameters. Therefore an outside penalty accounting for our preference toward parsimony

needs to be incorporated in the model. Denote a suitable penalty as h(M). Then the

RJMCMC method involve Metroplolis-Hastings (MH) algorithm that move a simulation

analysis between Mk = (Ak, dk) and Mk′(Ak′ , dk′) can be described as follows:

1. Propose a visit to model Mk′ from model Mk with probability pdk→dk′ .

2. Sample u from a proposal density q(u|Ak, dk, dk′).

3. Set (Ak′ , u
′) = gdk,dk′ (Ak, u), where the jump mapgdk,dk′ (·) is a bijection between

(Ak, u) and (Ak′ , u
′), where u and u′ play the role of matching the dimensions of

models Mk and Mk′ .

4. Accept model Ak′ , dk with rate α(Ak, Ak′), which is

min

{
1,
r(Mk′)h(Mk′)

r(Mk)h(Mk)

pdk′→dkq(u
′|Ak′ , dk, dk′)

pdk→dk′ q(u|Ak, dk, dk′)

∣∣∣∣∂gdk,dk′ (Ak, u)

∂(Ak, u)

∣∣∣∣} .
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Here r(·) denotes the GFD of a model, pda→db is the probability of moving from a

parameter space da to a model space with db. Looping through the four steps generates a

Markov chain that enables the estimation of covariance matrix Σ = AAT . Similar to the

clique model, we apply an MDL type penalty:

h(Mk) =

p∑
i=1

1

2
pi log(np) + log

 p

pi


 (3.30)

where Ak is a p × p matrix with pi many non-fixed-zero elements in its ith row, and n is

the number of observations.

3.5.2 Jump map

The choice of Jump map is rather tricky. The ideal jumps would be constrained upon

minimum changes in AkA
T
k , sparsity, and computational efficiency. We defined the jump

map gdk,dk′ (·, ·) by allowing only the following three types of moves:

• Update

The update move is essentially the same as the moves in standard MCMC, where the

Markov chain moves between two spaces of the same dimension. Here we refer it

to changing one non-zero entry in Ak to another non-zero value while other entires

remain the same.

• Birth

If birth move occurs, the dimensionality of the parameter space, i.e. the number of

non-zeros in Ak, increases by one. One of the zero entries of matrix Ak gets to be

replaced by a non-zero entry while other entires remain the same.

• Death

Death move decreases the dimension of parameter space by one. It changes a non-zero

entry to zero in matrix Ak while other entires remain the same.

At each iteration of the Markov chain, a type of move is randomly chosen taking account

of the assumed dimension restrictions. The probability of choosing a move is taken to be
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independent of which element of matrix A gets proposed to be updated. Table 3.1 shows

the assigned probabilities for the moves at each state.

Move dk=MinDim dk=MaxDim MinDim < dk<MaxDim

Update 1/2 1/2 1/2
Birth 1/2 0 1/4
Death 0 1/2 1/4

Table 3.1: Probabilities of assigning each move, pdk→dk′ . MinDim and MaxDim are the minimum
and maximum dimension allowed for covariate matrix A (model M), respectively.

The probability of choosing “update” is always 1
2 . If the model is at maximum dimen-

sion allowed, death is also proposed each with probability 1
2 ; if the model is at minimum

dimension allowed, birth is proposed with probability 1
2 ; if neither, birth and death each

has 1
4 of a chance to be selected. When an entry aij is picked to be updated, a new value

ãij is generated according to the move type. In the case of death, ãij = 0; for update and

birth, ãij is sampled from N(aij , s
2
1) and N(a′ij , s

2
2), respectively. Consequently, the term∣∣∣∣∂gdk,dk′

(Ak,u)

∂(Ak,u)

∣∣∣∣ reduces to 1 for all moves. The parameters s2
1, a′ij and s2

2 can be selected

adaptively to achieve good acceptance ratio and efficiency. Currently, s2
1 is chosen a priori;

a′ij is the optimizer that maximizes the fiducial likelihood; s2
2 is chosen adaptively using the

zeroth-order method in (Brooks et al., 2003). See Section 3.5.3 for further discussion on

zeroth-order method. The proposal procedure is summarized in Table 3.2.

Move Entry to update (aij,k) Proposed value (ãij)

Update randomly choose one from Update Set ãij ∼ N(aij,k, s
2
1)

Birth randomly choose one from Birth Set ãij ∼ N(a′ij , s
2
2)

Death choose one from Death Set according to its likelihood ãij = 0

Table 3.2: Covariate proposal detail. Update Set, Birth Set, and Death Set are lists keeping track
of which entries in Ak allow update, birth, and death moves, respectively. The variances s21 and s22
are predetermined. The center for birth, a′ij , is chosen to be the one either maximizes the normal
likelihood of proposed covariate matrix.

3.5.3 Zeroth-order method

The zeroth-order method is a simple and easy-to-implement method for automatically choos-

ing proposal scales (Brooks et al., 2003). It ensures that the acceptance probability equals

one for centered jumps between Ak and Ãk′ , where Ãk′ is almost identical to Ak with aij
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replaced by its center a′ij ,

i.e. α(Ak, Ãk′) ≡ 1 (3.31)

Denote the dimensions of Ak and Ãk′ as dk and dk′ , respectively. The proposal standard

deviation s2 is the solution to the equation 3.31 when dk′ = dk + 1. More precisely,

r(Ak)h(Mk)pdk→dk′ q(a
′
ij |Ak, dk, dk′)

r(Ãk′)h(Mk′)pdk′→dk
= 1

⇒ s2 =
r(Ak)h(Mk)pdk→dk′

r(Ãk′)h(Mk′)pdk′→dk
(2π)−

1
2

The zeroth-order method adaptively proposes a value nearby the likelihood optimizer,

enhances the acceptance rate for the proposals, and increases the efficiency of the RJM-

CMC.

3.6 Implementation

3.6.1 Special Case I: No fixed zero entries in A

With the assumption that none of the entries in A is fixed at zero, the GFD of Σ follows

the inverse Wishart distribution with n degrees of freedom and parameter nSn (see Section

3.3). Sampling from the GFD becomes straight forward and it can be done through one

of the inverse Wishart random generation functions, e.g. InvWishart (MCMCpack, R) or

iwishrnd (Matlab).

When p is small and n is large, the estimation of Σ can always be done through this

setting, regardless if there are zero entries in A. The concept of having entries of A fixed at

zero is to impose sparsity structure and allow estimation under a high dimensional setting

without requiring large number of observations.

3.6.2 Special Case II: Clique model

Estimation of cliques is closely related to applications in network analysis, such as cliques of

people in social networks and gene regulatory network. Under the clique model introduced
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in Section 3.3,

r(M) ∝

∏k
i=1

[
Γgi
(
n
2

)
Ci(Y)(2π)

gi(gi−1)

2

∣∣detSin
∣∣−n

2

]
exp

{
1
2

(∑k
i=1 g

2
i

)
log n+ (p+ 1) log k

}
Assuming that both the number of cliques k and the clique sizes gk’s are unknown,

the clique structure can be estimated via Gibbs sampler. Example 1, 2, 3, below show the

simulation results for a small, a medium, and a large covariance matrix. For each example,

the ijthe entry of Σ satisfies that

Σij =


1 , i = j

0.5 , i & j belong to the same clique

0 , otherwise

Total 10 Gibbs sampler Markov chains with random initial states were implemented simulta-

neously. Results from each parallel Markov chain Monte Carlo (MCMC) were consolidated

post verification of convergence.

• Example 1 Small Σ : k = 3, p = 10, n = 50.

In the first clique model example we consider a block 10×10 covariance matrix. From

top down, left to right, Figure 3.1 shows the trace plot for r(M) without normalizing

constant, and the heat maps for true covariance Σ, sample covariance Sn, and the

fiducial probability of the estimated cliques based on the 10 chains. Besides each heat

map, the interpretation of the gray scale is provided. The trace plot indicates good

mixing. In the last panel, the three true cliques present fiducial probabilities approxi-

mate to 1. The gray stripes around the two large cliques correspond to relatively high

value in the same entries of sample covariance matrix.

• Example 2 Medium Σ : k = 5, p = 50, n = 100.

The second clique example has similar setup as before. The trace plot in the top left

of Figure 3.2 indicates good mixing. There are five cliques. In the bottom right panel,

the heat map of fiducial probability of pairwise coordinates belong to the same clique,

The general shape of the five cliques matches the truth. The larges clique appears to

be more sparse. The smaller values are likely caused by the small entries in Sn.
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• Example 3 Large Σ : k = 10, p = 100, n = 200. In this example, the cyan chain

might have been stuck at a local optima. The 10 chains do not mix well as previous

clique models. However, the estimated clique structure matches the true Σ while

underestimated the probabilities for some coordinate pairs in the larger cliques.

3.6.3 General case with sparsity known

In the general case,

r(A) ∝
exp

[
−1

2tr{nSn(AAT )−1}
]

|det(A)|n

n
p


∑

i=(i1,··· ,ip)
1≤i1<···<ip≤n

p∏
i=1

 p

pi

∣∣∣det (Ui,i)ri

∣∣∣

Assuming that there are fixed zeros in A, then for a p×p matrix A, the number needed

to be estimated is less than p2. If there are many fixed zeros, then this number is much

smaller, hence the estimation is feasible even if the number of observations n is less than

p. In other words, the sparsity assumption on A allows estimations under a large p small n

setting. Suppose the zero entry locations of A are known. The rest of A can be obtain via

standard MCMC techniques, such as Metroplis.

To access the sampling result, we examine the following six statistics: GFD of A without

normalizing constant (figure titled GFD), number of nonzeros in A (Dim), distance between

each estimated covariance Σ̂ and the sample covariance (D2Sn), distance from Σ̂ to true

covariance (D2Sig), determinant of Σ on the log scale (LogD), largest eigenvalue (Eig1), ratio

between the largest two eigenvalues (Eig1/Eig2), angle between the leading eigenvector of

Σ̂ and the leading eigenvector of Σ (Eigvec angle), and the condition number of Σ̂ (Cond).

With a family of samples from each Markov chain, we plotted the confidence curve

for each statistic. Suppose the empirical cumulative density function is fecdf , then the

confidence curve function fcc is defined as the following:

fcc(x) =

 1− fecdf (x), if fecdf (x) ≥ 0.5,

2fecdf (x), otherwise.
(3.32)

The confidence curve provides a more direction visualization for confidence regions.
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The simulations shown here each consist of five different initial states: a square-root of

sample covariance matrix with entries replaced by 0 if the corresponding entry in A is zero

(SnPa, in blue), a diagonal matrix with the diagonal of lower Cholesky decomposition on

the diagonal (dcho, in red), a diagonal matrix with the diagonal of square-root of sample

covariance matrix (diag, in yellow), a random matrix with the same sparsity structure as

A (rand, in magenta), and A (true, in green). In the plots for GFD, Dim, D2Sn, LogD,

Eig1, Eig1/Eig2, Eigvec angle, and cond, oracle is shown in cyan vertical lines. For D2Sig,

the oracle is 0. The cyan line plotted indicates the distance between sample covariance and

true covariance.

Example 1 Small Σ : p = 4, n = 20, (Figure 3.4).

All six chains have converged. The peaks of the confidence curves in GFD, D2Sn,

LogD, Eig1, Eigvec angle panels are close to the oracle; all estimated covariate have

the correct number of nonzeros as shown in the Dim panel; the peaks of distance to Σ

are slightly larger than the distance between Sn and Σ; the ratios of the largest two

eigenvalues peak on the slight left of the oracle; the condition number of estimated

covariance matrices are better than the truth.

Example 2 Medium Σ : p = 50, n = 50, (Figure 3.5).

Although the chain rand has reached the correct dimension for A like the others, it

has not converged. This is not surprising since the random starting points is likely

far away from the truth. With a larger parameter space, the time needed to reach

convergence can be very long. For the other five Markov chains, the confidence curves

in panels GFD, D2Sn, Eig1 concentrate around the oracles. Panel D2Sig shows that,

including rand, the samples from all six chains recorded are closer to Σ than Sn. The

determinant of estimated covariance and the ratios of the leading eigenvalues peak on

the slight left of the oracle. Once again, the samples collected have higher condition

number than the true covariance matrix.

Example 3 Large Σ : p = 100, n = 100, (Figure 3.6).

Similar to previous example, all chains but rand has converged. All the samples

recorded are closer to Σ comparing to Sn as shown in the D2Sig panel and the Eigvec
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angle panel, while the chains either all over-estimated or all under-estimated in panels

LogD, Eig1, and Eig1/Eig2. In the Eigvec angel panel, all confidence curves are on

the left hand side of the cyan vertical line, indicating that comparing to the leading

vector of Sn, the estimated leading eigenvectors have closer direction to the leading

vector of Σ.

3.6.4 General case with sparse locations unknown

In the general case with sparse locations unknown, we further assume that there is a maxi-

mum number of nonzeros per column allowed, denoted as maxC. This additional constraint

can be viewed as each predictor only contribute to few tuples of the multivariate response.

This assumption has been implemented to reduce the search space for RJMCMC.

For each example below, we consider five Markov chains started with: a sample covari-

ance matrix with only the smallest p −maxC entries per column replaced by 0 (MaxC,

in blue), a lower Cholesky decomposition matrix with the furthest p −maxC off-diagonal

entries replaced by 0 (chol, in red), and as before, dcho (in yellow), diag (in magenta),

and true (in green).

• Example 1 Small Σ : p = 4, n = 20,maxC = 2, (Figure 3.7).

The GFD panel shows that the confidence curves of all chains concentrate on the left

hand side of the truth; The estimated dimensions are slightly larger than the truth;

the estimated covariances have similar distance to Sn and Σ; the comparisons in the

LogD, Eig1, Eig1/Eig2. Eigvec angle, and Cond panels indicate that the estimates

present similar statistics in these categories comparing to oracle/Sn.

• Example 2 Moderate Σ : p = 15, n = 30,maxC = 3, (Figure 3.8).

Similar to the previous example, in the GFD panel the estimates concentrate on

the slight left of the truth and the estimated dimensions are slightly larger than the

truth. Panels D2Sn, D2Sig, and Eigvec angle show that comparing to Sn the estimated

covariances behave more similar to Σ. In the LogD and the Eig1/Eig2 panels, the

peaks of the curves are on slight right of the truth. In the last panel, we see that the

estimated covariances have better condition number than Σ.
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• Example 3 Medium Σ : p = 50, n = 50,maxC = 5, (Figure 3.9)

The estimated covariate matrices have smaller GFD than the truth. The estimators

have larger dimension than the truth. Base on the D2Sn and the D2Sig panels, the

estimated covariance matrices are closer to Σ than Sn to Σ in terms of the FM-

distance.

3.7 Discussion

In this chapter we approach covariance estimation via the generalized fiducial inference

perspective. For two special cases and the general scenario, we derive the GFD for the

covariance matrix. Considering a sparse covariate structure, we explore the asymptotic

property of the GFD and showed that it satisfies the Fiducial Bernstein von-Mises Theorem.

Notice that, like maximum likelihood estimation, the GFD tend to favor models with larger

dimensions. We chose a MDL type penalty to discourage the models in a larger parameter

space.

To sample from the GFD, we suggest to use MCMC methods. When the sparsity

structure of the covariate matrix is unknown, a RJMCMC procedure is needed. With larger

parameter search space, the standard algorithm can be infeasible. We propose an adaptive

RJMCMC algorithm that incorporates the zeroth-order method to improve the efficiency.

Our simulation results show that in general, the MDL penalty might be slightly liberal, but

the resulting fiducial estimators behave at least as good as the sample covariance matrix.

As the dimension of the parameter space grows, comparing to the sample covariance, the

fiducial samples are much closer to the truth.

The family of estimators enable the definition of confidence regions. We will continue

this project towards to producing meaningful confidence regions for covariance matrices.
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3.8 Proofs

3.8.1 Proof of Proposition 3.1

Let Σ = AAT , Σ0 = A0A
T
0 . Denote Sn as the sample covariance matrix as before, n ∈ N.

Since Sn is the maximum likelihood estimator, we have

Sn
PA0−−→ Σ0,

i.e. ∀r > 0, PA0({ω : d(Sn(ω),Σ0) ≥ r})→ 0.

Define Lδ,n = {ω : d(Sn(ω),Σ0) < δ/2}. For an arbitrary ω ∈ Lδ,n, assume that λ†i ’s

and λ∗i ’s are the eigenvalues of Sn(ω)Σ−1 and Sn(ω)Σ−1
0 , respectively. Suppose that A 6∈

B(A0, δ), then

δ < d(Σ,Σ0) ≤ d(Σ, Sn(ω)) + d(Sn(ω),Σ0) < d(Σ, Sn(ω)) + δ/2

⇒ d(Σ, Sn(ω)) =

√√√√ p∑
i=1

ln2 λ†i > δ/2

So there exists k ∈ {1, 2, · · · , p}, such that ln2 λ†k >
δ2

4p , then

lnλk − λk < max

{
δ

2
√
p
− exp

(
δ

2
√
p

)
,− δ

2
√
p
− exp

(
− δ

2
√
p

)}
:= mδ,

due to the fact that the function g(λ) = lnλ − λ is concave with unique maxima λ = 1;

g(1) = −1.

Meanwhile,

1

n
(Ln(A)− Ln(A0))(ω)

= − ln |det(A)| − 1

2
tr{Sn(ω)Σ−1}+ ln |det(A0)|+ 1

2
tr{Sn(ω)Σ−1

0 }

=
1

2
ln(Sn(ω)Σ−1)− 1

2
tr{Sn(ω)Σ−1} − 1

2
ln(Sn(ω)Σ−1

0 ) +
1

2
tr{Sn(ω)Σ−1

0 }

=
1

2

{
p∑
i=1

(lnλ†i − λ
†
i )−

p∑
i=1

(lnλ∗i − λ∗i )

}

<
1

2
{−(p− 1) +mδ + p}

=
1

2
(mδ + 1)
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⇒ sup
A 6∈B(A0,δ)

1

n
(Ln(A)− Ln(A0))(ω) ≤ 1

2
(mδ + 1) < 0.

Let ε = −1
2(mδ + 1), Uδ,n =

{
ω : supA 6∈B(A0,δ)

1
n(Ln(A)− Ln(A0))(ω) ≤ −ε

}
. Then Lδ,n ⊆

Uδ,n. Notice that

1 = lim
n→∞

PA0(Lδ,n) = lim inf
n→∞

PA0(Lδ,n) ≤ lim inf
n→∞

PA0(Uδ,n) ≤ lim sup
n→∞

PA0(Uδ,n) ≤ 1,

Therefore, limn→∞ PA0(Uδ,n) = 1.

3.8.2 Proof of Proposition 3.2

Note that

inf
A 6∈B(A0,δ)

min i={i1,··· ,ip}
1≤i1<···<ip≤n

log f(A,Yi)

|Ln(A)− Ln(A0)|
≤

infA 6∈B(A0,δ) min i={i1,··· ,ip}
1≤i1<···<ip≤n

log f(A,Yi)

infA 6∈B(A0,δ) |Ln(A)− Ln(A0)|

For any A 6∈ B(A0, δ), denote Σ = AAT , Σ0 = A0A
T
0 and let t > 0, we have

PA0

 min
i={i1,··· ,ip}

1≤i1<···<ip≤n

log f(A,Yi) ≤ −t log n


≤ PA0

(
min

i=1,··· ,n
log f(A, Yi) ≤ −

t log n

p

)
= 1−

[
1− PA0

(
− log f(A, Yi) ≥ −

t log n

p

)]n
≤ 1−

[
1− pEA0(− log f(A, Yi))

t log n

]n
(Markov inequality)

= 1−
[
1− p(log(2π) + log det(Σ) + tr{Σ−1Σ0})

2t log n

]n
→ 0, as n→∞.

So the numerator goes to −∞ at most as fast as −t log n. Meanwhile, for a fixed n and any

ω ∈ Lδ,n = {ω : d(Sn(ω),Σ0) < δ/2},

inf
A 6∈B(A0,δ)

|Ln(A)− Ln(A0)| = − sup
A 6∈B(A0,δ)

Ln(A)− Ln(A0) ≥ εn

By Proposition (3.1),

lim
n→∞

PA0

(
inf

A 6∈B(A0,δ)
|Ln(A)− Ln(A0)| ≥ εn

)
= 1,
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i.e. the denominator goes to infinity at least as fast as εn.

3.8.3 Proof of Proposition 3.3

This proposition states that the Jacobian function is a U-statistic. By Theorem 1 of Yeo

and Johnson (Yeo and Johnson, 2001), it suffices to show the following:

Set

Jj((y1, · · · , yj), A) = EA0J((y1, · · · , yj , Yj+1, · · · , Yp), A)

j = 1, · · · , p.

(3.3a) There is an integrable and symmetric kernel g(·) and compact space B̄(A0, δ) such

that, for all A, and y0 = (y1, · · · , yp) ∈ Rp×p,

|J(y0, A)| ≤ g(y0).

(3.3b) There is a sequence SpM of measurable sets such that

P

(
Rp×p −

∞⋃
M=1

SpM

)
= 0

(3.3c) For each M and for all j = 1, · · · , p, Jj((y1, · · · , yj), A) is equicontinuous in A for

(y1, · · · , yj) ∈ SjM , where SpM = SjM × S
p−j
M .

Denote

Wj =



(A−1
0 y1)T

...

(A−1
0 yj)

T

(A−1
0 Yj+1)T

...

(A−1
0 Yp)

T


=



zT1
...

zTj

ZTj+1

...

ZTp


.

Then

U0 =


(A−1y1)T

...

(A−1yp)
T

 = W0(A−1A0)T .
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For simplicity, let
∑

ri
be short for

∑
ri=(ri,1,··· ,ri,pi ),

1≤ri,1<···<ri,pi≤p.
, which sums over all pi-tuples of

ordered indices between 1 and p, ri.

⇒ J(y0, A) =

p∏
i=1

{∑
ri

∣∣∣det (U0,i)ri

∣∣∣}

=

p∏
i=1

{∑
ri

∣∣∣det
(
[W0(A−1A0)T ](:,−Ri)

)
ri

∣∣∣}

=

p∏
i=1

{∑
ri

∣∣det
(
[W0(A−1A0)T ](ri,−Ri)

)∣∣}

Using Cauchy-Binet formula,

det
(
[W0(A−1A0)T ](ri,−Ri)

)
=
∑
r̃i

det
(
[W0](ri,r̃i)

)
det
(
[A−1A0](−Ri,r̃i)

)
.

Therefore,

J(y0, A)

=

p∏
i=1

∑
ri

∣∣∣∣∣∣
∑
r̃i

det
(
[W0](ri,r̃i)

)
det
(
[A−1A0](−Ri,r̃i)

)∣∣∣∣∣∣


≤
p∏
i=1

∑
r̃i

[∣∣det
(
[A−1A0](−Ri,r̃i)

)∣∣∑
ri

∣∣det
(
[W0](ri,r̃i)

)∣∣]
≤

p∏
i=1


 p

pi

max
{∣∣∣det

(
[W0](ri,r′i)

)∣∣∣}∑
r̃i

∣∣det
(
[A−1A0](−Ri,r̃i)

)∣∣


Given an ordered index vector r = (r1, · · · , rl), let Er = (er1 ; · · · ; erl), where each erj

is a 1× p vector with 1 in the rjth tuple and 0 everywhere else. Define Ir = EryoE
T
r to be

the matrix similar to an identity matrix but with the kkth entry being 0 if k 6∈ {r1, · · · , rl}.

∑
r̃i

∣∣det
(
[A−1A0](−Ri,r̃i)

)∣∣
=

∑
r̃i

∣∣det
(
ET−Ri

(A−1A0)Er̃i

)∣∣
=

∑
r̃i

√
det
[
ET−Ri

(A−1A0)Ir̃i(A
−1A0)TE−Ri

]
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By Hadamard’s inequality,

det
[
ET−Ri

(A−1A0)Ir̃i(A
−1A0)TE−Ri

]
≤

∏
k/∈Ri

[
(A−1A0)Ir̃i(A

−1A0)T
]
kk

≤
∏
k/∈Ri

[
(A−1A0)(A−1A0)T

]
kk

Furthermore, recall that A ∈ B̄(A0, δ), i.e. d(A,A0) ≤ δ. Then ∀k,

[
(A−1A0)(A−1A0)T

]
kk

= eTk (A−1A0)(A−1A0)T ek

= eTkA
T (Σ−1Σ0)(A−1)T ek

≤ λ1

≤ e
√

ln2 λ1

≤ eδ

where λ1 is the leading eigenvalue of Σ−1Σ0.

⇒ J(y0, A)

=

p∏
i=1

{∑
ri

∣∣det
(
[W0(A−1A0)T ](ri,−Ri)

)∣∣}

≤
p∏
i=1


 p

pi

max
{∣∣∣det

(
[W0](ri,r′i)

)∣∣∣}∑
r̃i

∣∣det
(
[A−1A0](−Ri,r̃i)

)∣∣


≤
p∏
i=1


 p

pi


2

eδpi/2 max
{∣∣∣det

(
[W0](ri,r′i)

)∣∣∣}


:= g(y0)

It is clear that g(y0) is integrable and symmetric.

Note that

Jj((y1, · · · , yj), A) = EA0J((y1, · · · , yj , Yj+1, · · · , Yp), A)
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= E

{
p∏
i=1

{∑
ri

∣∣det
(
[Wj(A

−1A0)T ](ri,−Ri)

)∣∣}}

= E

{
p∏
i=1

{∑
ri

∣∣det
(
EriWj(A

−1A0)TE−Ri

)∣∣}}

can be viewed as a polynomial function of entries of A−1 with coefficients being polynomial

functions of y1, · · · , yj .

Let SpM = {(y1, · · · , yp) : |yi| ≤ M, ∀i}, where M is a positive integer. It is clear

that SpM ’s are measurable. By construction, P
(
Rp×p −

⋃∞
M=1 S

p
M

)
= 0. For each fixed

M , if (y1, · · · , yj) ∈ SjM , then the coefficients of Jj((y1, · · · , yj), A) are bounded, hence

Jj((y1, · · · , yj), A) is equicontinuous in A.

3.8.4 Proof of Theorem 3.1

Proposition 3.3 and the uniform strong law of large numbers for U-statistics imply that

π(A) is continuous,

sup
A∈B(A0,δ)

|J(Y, A)− π(A)| → 0 a.s. PA0

π∗(B,Y) =
J
(
Y, Ân + B√

n

)
f
(
Y|Ân + B√

n

)
∫
Rp×p J

(
Y, Ân + C√

n

)
f
(
Y|Ân + C√

n

)
dC

=
J
(
Y, Ân + B√

n

)
exp

[
Ln

(
Ân + B√

n

)
− Ln(Ân)

]
∫
Rp×p J

(
Y, Ân + C√

n

)
exp

[
Ln

(
Ân + C√

n

)
− Ln(Ân)

]
dC

Notice that

H = − 1

n

∂2

∂A∂A
(Ân)→ I(A0) a.s. PA0 .

It suffices to show that∫
Rp×p

∣∣∣∣J (Y, Ân +
C√
n

)
exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
−π(A0) exp

[
−CT I(A0)C

2

]∣∣∣∣ dC PA0−−→ 0

(3.33)

Let Cx be the ijth entry of C, where x = i+ (p− 1)j. By Taylor Theorem,

Ln

(
Ân +

C√
n

)
= Ln(Ân) +

p2∑
x=1

(
Cx√
(n)

)
∂

∂Ax
Ln(Ân)
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+
1

2

p2∑
x=1

p2∑
y=1

(
CxCy

(
√

(n))2

)
∂2

∂Ax∂Ay
Ln(Ân)

+
1

6

p2∑
x=1

p2∑
y=1

p2∑
z=1

(
CxCyCz

(
√

(n))3

)
∂3

∂Ax∂Ay∂Az
Ln(A′)

= Ln(Ân)− CTHC

2
+Rn

for some A′ ∈
[
Ân, Ân + C√

n

]
. Notice that Rn = Op(n−3/2||C||). Given any 0 < δ < δ0 and

t > 0, the parameter space Rp×p can be partitioned into three regions:

S1 = {C : ||C|| < t log
√
n}

S2 = {C : t log
√
n < ||C|| < δ

√
n}

S3 = {C : ||C|| > δ
√
n}

On S1 ∪ S2, ∫
S1∪S2

∣∣∣∣J (Y, Ân +
C√
n

)
exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
−π(A0) exp

[
−CT I(A0)C

2

]∣∣∣∣ dC
≤

∫
S1∪S2

∣∣∣∣J (Y, Ân +
C√
n

)
− π

(
Ân +

C√
n

)∣∣∣∣
× exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
dC

+

∫
S1∪S2

∣∣∣∣π(Ân +
C√
n

)
exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
−π(A0) exp

[
−CT I(A0)C

2

]∣∣∣∣ dC
Since π(·) is a proper prior on the region S1 ∪ S2, the second term goes to zero by the

Bayesian Bernstein-von Mises Theorem (see the proof of Theorem 1.4.2 in (Ghosh and

Ramamoorthi, 2003)).

Next we notice that ∫
S1∪S2

∣∣∣∣J (Y, Ân +
C√
n

)
− π

(
Ân +

C√
n

)∣∣∣∣
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× exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
dC

≤ sup
C∈S1∪S2

∣∣∣∣J (Y, Ân +
C√
n

)
− π

(
Ân +

C√
n

)∣∣∣∣
×
∫
S1∪S2

exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
dC

Since
√
n
(
Ân −A0

)
D−→ N

(
0, I(A0)−1

)
, we have

PA0

[{
Ân +

C√
n

; C ∈ S1 ∪ S2

}
⊂ B(A0, δ0)

]
→ 1.

Furthermore,

Ln

(
Ân +

C√
n

)
− Ln

(
Ân

)
= −C

THC

2
+Rn,

so the integral converges in probability to 1. Since maxC∈S1∪S2 ≤ δ and Jn → π, the therm

goes to 0 in probability.

Turning our attention to S3, notice that∫
S3

∣∣∣∣J (Y, Ân +
C√
n

)
exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
−π(A0) exp

[
−CT I(A0)C

2

]∣∣∣∣ dC
≤

∫
S3

J

(
Y, Ân +

C√
n

)
exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
dC

+

∫
S3

π(A0) exp

[
−CT I(A0)C

2

]
dC

The last integral goes to zero in PA0 because minA3 ||C|| → ∞. As for the first integral,∫
S3

J

(
Y, Ân +

C√
n

)
exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
dC

=
1

n

n∑
i=1

∫
S3

J

(
Yi, Ân +

C√
n

)
exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]
dC

=
1

n

n∑
i=1

∫
S3

J

(
Yi, Ân +

C√
n

)
f

(
Yi|Ân +

C√
n

)
× exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)− log f

(
Yi|Ân +

C√
n

)]
dC
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By Proposition 3.2, the exponent goes to −∞. Because J(·) is a probability measure, the

integral converges to 0 in probability. Having shown Eq 3.33, we now follow Ghosh and

Ramamoorthi (Ghosh and Ramamoorthi, 2003) and let

Dn =

∫
Rp×p

∣∣∣∣J (Y, Ân +
C√
n

)
exp

[
Ln

(
Ân +

C√
n

)
− Ln(Ân)

]∣∣∣∣ dC
Then the main result to be proven (Eq 3.29) becomes

D−1
n

{∫
Rp×p

∣∣∣∣J (Y, Ân +
B√
n

)
exp

[
Ln

(
Ân +

B√
n

)
− Ln(Ân)

]
−Dn

√
det(I(A0))√

2π
exp

(
−B

T I(A0)B

2

)∣∣∣∣∣
}
dB

PA0−−→ 0

(3.34)

Because ∫
Rp×p

J(Y, Ân) exp

(
−B

T I(A0)B

2

)
dB

= J(Y, Ân)

∫
Rp×p

exp

(
−B

T I(A0)B

2

)
dB

= J(Y, Ân)

√
2π√

det(H)

a.s.−−→ π(A0)

√
2π√

det(H)

and Eq 3.33 implies that Cn
P−→ π(A0)

√
2π√

det(H)
, it is enough to show that the integral in Eq

3.34 goes to 0 in probability. This integral is less than I1 + I2, where

I1 =

∫
Rp×p

∣∣∣∣J (Y, Ân +
B√
n

)
exp

[
Ln

(
Ân +

B√
n

)
− Ln(Ân)

]
−J

(
Y, Ân

)
exp

(
−B

T I(A0)B

2

)∣∣∣∣ dB
and

I2 =

∫
Rp×p

∣∣∣∣J (Y, Ân

)
exp

(
−B

THB

2

)
−Dn

√
det(I(A0))√

2π
exp

(
−B

T I(A0)B

2

)∣∣∣∣∣ dB
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Eq 3.33 shows that I1 → 0 in probability.

Since

J(Y, Ân)
P−→ π(A0)

Dn
P−→ π(A0)

√
2π√

det(I(A0))

we have

I2 =

∣∣∣∣∣J (Y, Ân

)
−Dn

√
det(I(A0))√

2π

∣∣∣∣∣
∫
Rp×p

exp

(
−B

THB

2

)
dB

P−→ 0.

3.9 Appendix

3.9.1 Förstner-Moonen distance (FM-distance)

As a basic task in mensuration design, the idea of comparing covariance matrices dates

back to 1973, when Baarda compared the variances of arbitrary functions f = eTx on one

hand determined with a given covariance matrix C and on the other hand determined with

a reference or criterion matrix H. One requirement would be the variance σ
2(C)
f of f when

calculated with C to be always smaller than the variance σ
2(C)
f of f when calculated with

H. In other words,

eTCe ≤ eTHe for all e 6= 0,

or the Raleigh ratio

0 ≤ λ(e) =
eTCe

eTCe
≤ 1 for all e 6= 0.

The maximum λ from 1/2∂λ(e)/∂e = 0 ↔ λHe − Ce = (λH − C)e = 0 results in the

maximum eigenvalue λmax(CH−1) from the generalized eigenvalue problem

det(λH − C) = 0. (3.35)

Note that

λeTHe− eTCe = eT (λH)e = 0 for e 6= 0 only if (3.35) holds.
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The eigenvalues of (3.35) are non-negative if the two matrices C and H are positive semidef-

inite. Follow this idea Förstner and Moonen suggested a metric for covariance matrices

comparison in 1999 (Förstner and Moonen, 1999). For two symmetric positive definite ma-

trices M and N , with the eigenvalues λi(M,N) from det(λH −C) = 0, the matrix distance

between the two matrices M and N is

d =

√√√√ n∑
i=1

ln2 λi(M,N).

This distance measure is a metric and invariant with respect to both affine transformations

of the coordinate system and an inversion of the matrices (Förstner and Moonen, 1999).

We will use this metric to compare estimated matrices of the RJMCMC and validate the

estimated covariance matrices.
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Figure 3.1: Clique result for k = 3, p = 10, n = 50. The panels are trace plot for r(M) without
normalizing constant and the heat maps for Sigma, Sn, and fiducial probability of pairwise coordi-
nates belong to the same clique, from top to bottom, left to right. The fiducial probabilities of the
coordinates in the same true clique that belong to a clique are all close to 1.
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Figure 3.2: Clique result for k = 5, p = 50, n = 100. The fiducial probabilities of the coordinates
in the same true clique that belong to a clique are generally consistent with the sample covariance
matrix. Outside of the diagonal blocks, almost all other entries are at zero. The larges diagonal
block appears to be sparse. The low fiducial probabilities are likely caused by the small Sn values
at the same locations.
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Figure 3.3: Clique result for k = 10, p = 100, n = 200. The fiducial probabilities of the coordinates
in the same true clique that belong to a clique are generally consistent with the sample covariance
matrix.
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Figure 3.4: Confidence curve plots for p = 4, n = 20, burnin = 1000. All six chains provide good
estimations comparing to the oracles.

Figure 3.5: Confidence curve plots for p = 50, n = 50, burnin = 100000. All six chains but rand
provide good estimations comparing to the oracles. The chain rand has not yet converged.
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Figure 3.6: Confidence curve plots for p = 100, n = 100, burnin = 200000. Similar to previous
example, all chains but rand has converged. All the samples recorded are closer to Σ comparing
to Sn, while the chains either all over-estimated or all under-estimated in panels LogD, Eig1, and
Eig1/Eig2.

Figure 3.7: Confidence curve plots for RJMCMC with p = 4, n = 20, maxC = 2, burnin = 1000.
Overall, the sampled covariances concentrate near the oracle/Sn.
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Figure 3.8: Confidence curve plots for RJMCMC with p = 15, n = 30, maxC = 3, burnin =
50000. Although the many of the estimated covariates have few more nonzeros than A, and the
GFD’s appear to peak at values smaller than the truth, comparing to Sn the estimated covariances
behave more similar to Σ.

Figure 3.9: Confidence curve plots for RJMCMC with p = 50, n = 50, maxC = 5, burnin =
100000. The estimated covariates are less sparse than A, but the FM-distance to Σ are much shorter
than from Sn to Σ.
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CHAPTER 4

Phylogenetically dependent gene expressions study

4.1 Introduction

RNA is a critical intermediate between the genetic information encoded in the DNA of

a gene and the phenotypes shaped by that gene. Changes in the levels or types of RNA

molecules produced by a gene have profound biological effects. For example, changes in the

RNA expression patterns of key developmental genes - the Hox, Pax6, and the Wnt family

genes - are thought to have been events during the evolution of morphological diversity of

animals. Similarly, mis-expression of some gene’s RNA can have profound effects, such as

promoting tumor formation and cancer.

A gene’s RNA does not act alone; it is part of the RNA transcriptome. The tran-

scriptome is comprised of RNA molecules transcribed from the genome: some code for

proteins, others have structural, catalytic, or regulatory functions. High-throughput RNA

sequencing technologies (RNA-seq) such as the Illumina HiSeq 2000 can now sample the

transcriptome at unprecedented depth. This and related technologies have been primarily

used for expression profiling, that is, identifying genes that change RNA expression levels

in response to a treatment. RNA-seq quantitatively measures gene expression as counts,

and typically involves isolating a subject’s mRNA, converting to cDNA, and sequencing.

Sequencing reads are then computationally mapped to loci of interest (e.g. genes or exons),

and the number of reads associated with each locus is stored in a p-loci by n-individuals

matrix. Matrices built from individuals representing phenotypically different populations

may then be compared in order to correlate differences in gene expression with phenotype.

A number of statistical methods exist for analyzing these data (Anders and Huber, 2010;

McCarthy et al., 2012; Robinson and Smyth, 2007; ?)



Figure 4.1: A simple three species phylogeny with known branch lengths taj , tap, tpk, tpi.

A phylogeny describes the relatedness between species. When comparing related species,

it is important to take account of their phylogenetic dependency. For two species that are

less related, it is not surprising to see the homologs expressed more differently compared

to the more related species. For the purpose of detecting differentially expressed genes and

change points along the phylogeny, it is crucial to factor in the relatedness of species.

In this chapter, we will provide a brief review of stochastic models used for related gene

expression levels. The rest of the chapter is arranged as follows: Section 4.2 introduces

the stochastic models have been used for describing the evolutionary process of continuous

traits. In Section 4.3 we present some simulation results. Finally, in Section 4.4 we give a

discussion.

4.2 Stochastic models for phylogenetically dependent gene expressions

How the expression level of a gene evolve over time is a stochastic event. It is natural to

consider known stochastic processes for describing its evolutionary process. In the past

decades, the Brownian motion (BM) model, the Ornstein-Uhlenbeck (OU) model, and the

Lévy model has been used for capturing the evolutionary processes of a continuous trait,

especially gene expressions, along a given phylogeny. A collection of stochastic processes of

the same type (OU, BM, or general Lévy) has been used to model the evolutionary history

along each of the tree branch. We will first illustrate the three models with the simply

phylogeny in Figure 4.1.

In this simple example, we consider three leaf nodes (species i, j, k), an internal node

p, and a root node a. The branch length between two nodes are denoted by t·,· with the two
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Figure 4.2: Multiple trace plots (n=100) of the same BM process. It does not have a stationary
state.

node labels in the subscript. Since the observations are only available for the leaf nodes,

an important first task is accessing the marginal joint likelihood of gene expression levels

at the the leaves taking account of the phylogeny structure.

4.2.1 Brownian motion (BM)

A BM process can be defined by the following stochastic differential equation:

dXt = σdWt, X0 = θ (4.1)

The BM process describes the random motion of particles suspended in a fluid resulting

for their collision with the quick atoms or molecules in the gas or liquid. Mathematically,

it can be formulated as Eq 4.1. With the same initial state, a BM particle moves randomly

to either direction (up & down) in Figure 4.2. The trace plot of 100 particles of the same

BM process shows that, as time goes by, these particles are further apart.

The mathematical model of BM has numerous real-world applications, especially in

finance when model stock market fluctuations. Its setup for the simple phylogeny (Figure

4.1) is shown in Eq 4.2.
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xj |xa ∼ N(xa, σ
2
j taj), xp|xa ∼ N(xa, σ

2
ptap),

xk|xp ∼ N(xp, σ
2
ktpk), xi|xp ∼ N(xp, σ

2
i tpi).

(4.2)

Conditioning on its latest ancestor’s expression level xa, the measurement at species j,

xj , follows a normal distribution, centered at xa, with variance proportional to the branch

length from species a to j. Similarly for the other species. This simple setup leads to a

normal joint likelihood of xi, xj , xk. Since we assume BM model, conditioning on the latest

common ancestor, the expression levels for those two spices are independent. Namely,

conditioning on xa, xj |= xk, xj |= xj ; conditioning on xp, xk |= xi. Often time, we assume

that σj = σp = σk = σi. The computation for the joint likelihood is therefore straight

forward and the parameters can be estimated via the maximum likelihood method.

The BM model (Eq 4.2) was in the earlier microarray studies (e.g. (Gu and Gu, 2002;

Bedford and Hartl, 2009)). One of the advantages of microarray data is that all the mi-

croarray plates are design to have same sets of transcriptomes of interest, and one can

assume independence between the plates. In other words, the number of replicates for

each species/transcriptome are the same. Independent and identical (iid) samples are as-

sumed to be available. We extended the basic BM model for unbalanced sequencing data

by introducing a within species sampling variance.

4.2.2 Ornstein-Uhlenbeck (OU)

Because of its simplicity, the BM model involves relatively easy computation. However, the

divergent trace plot in Figure 4.2 contradicts to biology conservation. A different stochastic

process, OU, that includes a directional drift, was then brought to the game. An OU process

can be defined as the following:

dXt = α(θ −Xt)dt+ σdWt (4.3)

The OU process describes the velocity of a massive Brownian particle under the influence

of friction. Figure 4.3 shows the trace plot for 100 particles that follow the same process

and started at various initial states. Regardless of the starting point, as time goes by, each
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Figure 4.3: Multiple trace plots (n=100) of the same OU process.

particle is pulled closer and closer to its long time mean, at θ = 0 in the example. How

soon the curves started far away from θ get to close to it depends on the drift parameter

α; how wide the band for the later part of the graph depends on the standard deviation σ.

Conditioning on its ancestor, the expression at a node follows a normal distribution.

Given the information of its latest ancestor, taking xi as an example,

E(xi) = E(xp)e
−αitpi + θi(1− e−αitpi),

V ar(xi) =
σ2
i

2αi
(1− e−2αitpi) + V ar(xp)e

−2αitpi .

(4.4)

The covariance between two leaf nodes is

Cov(xi, xj) = V ar(xa)e
−(αptap+αitpi+αjtaj). (4.5)

The joint likelihood of xi, xj , xk1 again follows a normal distribution, and the compu-

tation is relatively easy as under BM model. The OU model includes drifts towards to a

particular state. The stationary distribution of xi is N
(
θi,

σi
2αi

)
. The OU model is therefore

suitable for conservation.

For multiple samples per species, there is the mean model, that takes the sample mean

at the leaf nodes (e.g. (Brawand et al., 2011; Gu et al., 2013)). To incorporate sampling

variation, Rohlf, et al. proposed the variance model (?). The variance model includes

within species variation, which is similar to our extended BM model.
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4.2.3 Lévy processes

Both BM and OU processes belong to a class called Lévy processes, which can be decom-

posed into three processes as stated in Lévy-Khinchine Representation Theorem (Gardiner,

1985).

Theorem 4.1 (Lévy-Khinchine Representation Theorem). All Lévy processes have char-

acteristic functions of the form

φ(k; t) = exp

{
t(αik − σ2k2/2 +

∫
(eikj − 1− ikjI|j|<1)ν(dj)

}
Any Lévy process can be decompose into

1. A constant directional drift (or trend) with rate a

2. A Brownian motion with rate σ2

3. A pure-jump process that draws jumps from the measure ν(·)

The BM and the OU processes only concern the second and the first two parts of the

decomposition, respectively. They do not include a pure-jump process component, hence,

it does not allow abrupt changes in the processes. In reality, events like massive gene

duplication can happen. It does not occur in a continuous manner and causes a jump in the

expression level. If a more comprehensive process, that includes jumps, is considered, the

joint likelihood of xi, xk, xi is no longer normal. In fact, many Lévy processes do not have

a closed distribution form. Maximum likelihood estimation is not applicable. To estimate

the process parameters, a Markov chain Monte Carlo (MCMC) procedure is often needed.

Landis, et al. (Landis et al., 2013) proposed the framework:

p(Θ,J|D) ∝ L(D|Θ,J)p(J|Θ)p(Θ),

p(J|Θ) =
∏
i

P (J
(i)
ti

= j(i)|J0 = 0,Θ),

p(Θ|D) =

∫
p(Θ,J|D)dJ.

(4.6)

where D denotes the expression data, J are the sizes of pure jump, Θ includes the jump

process parameters, i indicates each branch with length taj , tap, tpk, tpi.
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The jump sizes, J, can be different along each branch, hence the number of parameters

grows quickly when a new species is added to the phylogeny. In addition, MCMC process

can take a long time to converge when the parameter space is large. The sampling process

tends to be computationally intensive. In (Landis et al., 2013), the authors considered three

types of Lévy processes that are combinations of a pure jump and BM.

4.2.4 Parametric bootstrap

Once a stochastic model is selected for describing the gene expression level evolutionary his-

tory, one can proceed to check the Gaussianity of the data, identify differentially expressed

genes and/or detect break points along the phylogeny. In general, for hypothesis testing,

we propose to use the following parametric bootstrap approach instead of a chi-square test:

1. Obtain the MLEs under H0&H1, Θ0&Θ1, with observed data using the quasi-Newton method.

2. Compute the LRT statistics LRTobs.

3. Simulate 1000 synthetic data using Θ0 and compute their LRT statistics LRTi.

4. Derive thresholds using both the bootstrapped data and χ2
1.

Set LRTboot = quantile(LRTi, .95), LRTχ2
1

= qchisq(.95, df = 1). Reject H0 if LRTobs >

thresholds.

In the past, the chi-square threshold, LRTχ2
1
, has been used. However, the likelihood ra-

tio statistics does not follow a chi-square distribution due to the non-independence between

the species. The LRTχ2
1

cutoff tends to be too conservative. The parametric bootstrap

threshold, LRTboot, is more appropriate.

4.3 Implementation

To illustrate some of the methods, we applied them to a nine mammalian species dataset

(chimp, bonobo, human, gorilla, orangutan, macaque, mouse, platypus, and chicken). The

phylogeny was built with the RNA-seq data of a list of conservative homologs. Two out-

group species, fish and frog, were added to enhance the quality of the tree (Figure 4.4).

The branches shown are proportional to the evolutionary distances between nodes on the

phylogeny.
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Figure 4.4: A mammalian species tree constructed with RNA-seq data of conservative homologs.
Short branches between the primates indicate close relatedness comparing to mouse, platypus, and
chicken.
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4.3.1 Multi-species multi-tissues Mammalian data

The expression level of 5320 genes were collected for each species from six different tissues.

At least two samples were obtained per species. This list of genes does not include the

homologs used to build the phylogeny. The complete expression data are visualized via

a heat map in Figure 4.5. The cold color (blue) indicates high level of gene expression

while the hot color (red) denotes low level. Each row is an individual sample from a tissue.

The color bar on the left indicates the tissue types: brain (purple), cerebellum (cyan),

heart (orange), kidney (green), liver (burgundy), and testies (navy). The genes have been

reordered to enhance the clustering of samples based on Ward distance between samples

without considering the phylogeny structure. The color blocks in the tissue color bar shows

that the gene expression levels differ more from tissue to tissue. This is not surprising since

many genes tissue-specific and they are largely conserved (Merkin et al., 2012). The amount

that a gene expressed can differ a lot even within the same individual.

Within a tissue, taking brain tissue as an example (Figure 4.6), the Direct Ward distance

clustering shows good separation between the primates and the others. Since the primates

are connected with short branches, meaning they are closely related. Comparing to the less

related mouse, platypus, and chicken, it is less easy to distinguish among the primates. The

dendrogram based on Ward distance is relatively consistent with our constructed phylogeny,

where mouse, platypus and chicken are separated from the primates.

Figure 4.7 is a simulated multiple dimensional scaling (MDS) result for the leaf node

species. A break point was simulated to occur on the chimp branch (yellow). The top two

panels are direct comparisons; the bottom two have been adjusted for the phylogeny. The

two columns from left to right are for single gene and multiple genes, respectively. Only

with adjustment for the phylogenetic dependency, the break point on the chimp branch

was identified. When multiple related genes were used, the separation between chimp and

the rest of the group was enhanced. It is important to model the evolutionary processes

with stochastic models. In addition, we can borrow power across related genes for detecting

break points along the evolutionary history.
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Figure 4.5: The heat map of the expression data for nine mammalian species from six tissues.
Direct Ward distance clustering separates tissue types well.
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Figure 4.6: The heat map of the expression data for nine mammalian species from brain tissues.
The relatedness of species determines affects the gene expression level comparison.

4.3.2 BM vs OU

Because of the tissue-specific effect, when applying one of the stochastic models discussed in

Section 4.2, the gene expressions from different tissue type should be modeled individually.
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Figure 4.7: MDS plot for simulation with a break point on the chimp branch. Top two panels
ignored the phylogeny structure; the bottom two incorporated the phylogenetic relatedness using
the Brownian motion model. The panels on the left and right are for single gene and multiple related
genes. Top two panels failed to separate chimp from others. When multiple genes were used, the
separation in the bottom right is more clear than when single gene was used.
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Figure 4.8: Test for BM model based on the top 10 highly expressed genes. There is a strong
evidence against that the underlying model is BM.

To overcome the tissue-specific complexity, Merkin, et al. suggested to analyze alternative

splicing instead (Merkin et al., 2012). Since our focus here is stochastic modeling for

continuous traits, we will restrict ourselves to gene expression data for now. Among the

5320 homologs in the dataset, most are conservative, i.e. relatively consistent across species,

but at different levels. Instead looking at all 5320 genes at once, we suggest to select a subset

of related genes, such as a pathway or highly expressed genes, to apply the stochastic models.

Here we use the top 10 highly expressed genes in the data from brain tissue and test

which of BM and OU models is more appropriate (Figure 4.8). The observed likelihood

statistic is indicated as a red vertical line, the chi-square distribution and its threshold are

in purple, the bootstrapped pseudo likelihood and the corresponding threshold are in blue.

The observed value lies on the far right of both thresholds. It presents strong evidence

against the underlying model being BM.
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Figure 4.9: Test for single branch mean shift on the mouse branch based on the top 10 highly
expressed genes.

4.3.3 Mean shift test

Assuming the OU model, we proceed to check mean shifts on the mouse branch as an

example. Similar to before, the observed likelihood ratio statistic is indicated with the

red vertical line; the chi-square distribution and its 95th percentile are in purple; the boot-

strapped pseudo likelihood and the corresponding 95th percentile are in blue. The chi-square

threshold is more liberal in this case. Since the observed statistic lies on the left hand side

of the thresholds, we do not reject the null hypothesis that there is no mean shift along the

mouse branch.

4.4 Discussion

Despite progress in the development of methods for comparing gene expression levels be-

tween two or more transcriptomes using RNA-seq data, a key problem has been ignored:

many current methods assume that the samples investigated are genetically independent.
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This issue becomes problematic when samples are drawn from a related family group (pedi-

gree), different ethnic groups, or among phylogentically related species.

The earliest stochastic models used in phylogenetic analysis for continuous traits are

BM models. We extended a microarray based BM method to RNA-seq expression data by

introducing an additional variance component that captures sampling variation. The BM

models do not have a stationary distribution, hence, they are not suitable for modeling

conservation. For this reason, the OU models were utilized for phylogenetic analysis in the

last decade. With a directional drift, the OU model pulls the particle towards its long term

mean. It, therefore, is suitable for conservation. Most of the OU model applications to

phylogenies are mean models. The sample means are taken for each species. Few studies

have considered the OU variance model, which incorporate sampling variance within species.

The variance model is similar to our BM extension model. The OU variance model and our

BM extension models capture the sampling variance. However, for the phylogenetic data

where very few replicates are available, the gain of variance model might not be significant.

By testing the existence of the drift parameter, one can distinguish between OU and

BM models. Both BM and OU processes are special cases of Levy processes, which can

be decomposed to a BM process, a constant directional drift, and a pure-jump process.

Change of expression level does not have to be a continuous event. For instance, massive

gene duplication can cause abrupt changes in the expression level. To allow such events,

a jump process is needed. The big drawback of jump processes, in general, is that the

joint likelihood for the leaf nodes is no longer Gaussian. Maximum likelihood method is

not suitable for estimating the process parameters. Instead, the parameters need to be

estimated through Markov chain Monte Carlo (MCMC) methods. With jump processes,

each branch allows a different jump size. The number of parameters quickly increases as

the phylogeny grows. Likely because of this issue, so far only one study has proposed jump

processes (Landis et al., 2013), and the Lévy processes discussed are a combination of BM

and a pure-jump. In that study, the directional drift was assumed to be zero. Therefore,

those jump models are also not suitable for conservation. Much work remains to improve the

MCMC methods and to make general Lévy processes feasible for gene expression modeling.
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Currently, the most popular stochastic models in the area of dependent gene expression

analysis are the OU mean models. While they are suitable for conservation and are easy to

compute, they do not allow for abrupt changes. The direct application of jump processes

has proven to be computationally challenging. The study of these models has been very

helpful for us to understand the current state of the research area and perhaps point us to

step back and try to visualize/model the related expression data differently.
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