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ABSTRACT  

Corinne M. Henk: Longitudinal Mediation of Within-Person Changes 
(Under the direction of Laura Castro-Schilo) 

 

Mediation analysis concerns the discovery of mechanisms that transmit an effect from 

one variable to another. At times, social scientists propose hypotheses involving mediation of 

within-person changes (e.g., do within-person changes in cognitive ability mediate the relation 

between changes in depression and changes in disability?) The current manuscript introduces an 

approach within the latent change score (LCS) modeling framework to test such hypotheses. This 

approach is compared to existing methods, including the cross-lagged panel model (CLPM; Cole 

& Maxwell, 2003) and the LCS mediation model (Selig & Preacher, 2009). Results from (1) a 

single-replication simulation and (2) an empirical example utilizing data from the Health and 

Retirement study are presented.  
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CHAPTER 1: INTRODUCTION 

Mediation analyses are ubiquitous in the social sciences; at the time of writing, the term 

mediation generated 1.43 million results in a Google scholar search. Increasingly, psychologists 

seek to understand not just whether two constructs are related, but why the relation exists. While 

cross-sectional data were once considered sufficient for conducting sound mediation analyses, 

researchers now recognize that longitudinal data are preferable for gleaning insight into 

unfolding mediation processes. Indeed, repeated measures afford researchers the opportunity to 

draw stronger inferences about the nature of relations over time (e.g., Shadish, Cook, & 

Campbell, 2002).  

 When working with longitudinal data, hypotheses about change predicting future change 

often emerge (Baltes & Nesselroade, 1979). As an example, researchers hypothesize that 

increases in lateral ventricle size predict subsequent declines in memory performance among 

older adults (Grimm, An, McArdle, Zonderman, & Resnick, 2012). Research questions involving 

associations among changes are central to longitudinal research; in fact, Grimm and colleagues 	

(2012, p. 268) posit that a key goal of developmental science is to “[understand] the dynamic 

interplay between two (or more) constantly changing constructs.” Hypotheses involving 

change—as a predictor, mediator, and/or outcome—are becoming more common in 

psychological research. Indeed, researchers interested in modeling change as both a predictor and 

an outcome will find that the “change-to-change” literature is expanding (e.g., Grimm et al., 

2012; Henk & Castro-Schilo, 2015; Selig & Preacher, 2009; Smith et al., 2013).  
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Importantly, these change-to-change hypotheses are qualitatively and quantitatively 

distinct from other types of research questions, such as those that involve the level or status on a 

variable as a predictor of change in another variable (i.e., level-to-change hypotheses). To clarify 

the qualitative differences, consider two examples. First, a level-to-change hypothesis may posit 

that older adults with the highest levels of depression will show the most declines in cognitive 

ability later in life. In contrast, a change-to-change hypothesis may be that as individuals become 

more depressed (increase on depression), they will show either gains or less rapid declines in 

cognitive ability. In this case, change is the mechanism by which the relation operates. One does 

not have to search far and wide in psychology to find unique examples of level-to-change and 

change-to-change hypotheses. Each type of hypothesis demands a quantitative strategy that will 

appropriately test the associations of interest, yet strategizing is not always straightforward.  

Compounding the task of selecting an optimal modeling strategy is the issue of whether 

the motivating hypothesis entails tests of within-person effects, between-person effects, or both 

(e.g., Curran & Bauer, 2011). Somewhat vexingly, level-to-change and change-to-change 

hypotheses can be focused on any combination of within- or between-person associations. A 

researcher’s analytic choices determine which types of effects are tested. For example, consider 

again the level-to-change hypothesis that individuals who are more depressed have more drastic 

declines in cognitive ability. If interest lies in the between-person effect, one appropriate 

modeling strategy could be to use a parallel process latent growth model (Cheong, MacKinnon, 

& Khoo, 2003), with the intercept of depression predicting the slope of cognitive ability. 

Similarly, if interest lies in the between-person effect when considering the change-to-change 

hypothesis that changes in depression are linked to changes in cognitive ability, a parallel 

process growth model could be parameterized with a regression among the slopes. Using the 
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means of the slopes to aid interpretation, a researcher could conclude that on average, increases 

in depression are associated with decreases in cognitive ability (assuming the means were 

positive and negative for depression and cognitive ability, respectively). Results would inform 

the degree to which relations held between-persons. 

However, when interest lies in within-person change-to-change effects, a correlation or 

regression among parallel process slopes will not be informative, and it becomes necessary to 

consider alternate modeling strategies. Researchers may formulate a within-person change-to-

change research question to understand, for example, whether a particular individual who has 

decreasing severity of depression will subsequently experience changes in her cognitive ability. 

These hypotheses have major implications and ramifications for individual-targeted interventions 

and individualized medicine, where interest lies in whether changes in one variable will produce 

changes in another variable at the individual level. A key goal of the current work is to clarify 

best practices for testing hypotheses regarding within-person change-to-change relations, as 

these types of hypotheses have received relatively little attention in the quantitative psychology 

literature. 

 Although many mediation hypotheses fundamentally posit within-person change as a 

predictor and an outcome, the most common approach for testing longitudinal mediation—the 

cross-lagged panel model (CLPM; Cole & Maxwell, 2003)—focuses on within-person level-to-

change associations (Preacher, 2015). Unfortunately, within-person change-to-change 

hypotheses cannot be tested using the CLPM, as this model can only accommodate change as an 

outcome—not as a predictor. Testing within-person change-to-change hypotheses requires 

explicit specification of change in statistical models. Belonging to the structural equation 

modeling (SEM) family, the latent change score (LCS) framework is apt for investigating 
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patterns, causes, and consequences of intraindividual change (e.g., Castro-Schilo, Ferrer, 

Hernández, & Conger, 2015; Ferrer & McArdle, 2010; Grimm, Castro-Schilo, & Davoudzadeh, 

2013; McArdle, 1994; McArdle, 2001; McArdle, 2009; McArdle & Hamagami, 2001, McArdle 

& Nesselroade, 1994). In this framework, within-person changes are explicitly represented as 

latent variables, a feature that enables change to be specified as a predictor, criterion, or both. 

Selig and Preacher (2009) capitalized on the LCS framework and introduced the LCS mediation 

model (LCS-MM) for testing mediational hypotheses rooted in within-person changes. However, 

a major setback of the LCS-MM is that its setup precludes testing competing patterns of 

causality.  

To illustrate this point and to foreshadow an empirical example that will be presented 

later in this project, consider a hypothesis positing that for an aging adult, the relation between 

his/her changes in depression (X) and changes in disability (Y) is mediated by changes in 

cognitive ability (M). A competing causal hypothesis would consist of switching the roles of 

these variables, treating changes in disability as the exogenous predictor (X) and changes in 

depression as the outcome (Y), yet testing this hypothesis with the LCS-MM would result in two 

non-nested models that are not easily comparable. Another competing hypothesis could include 

bidirectional effects (e.g., changes in depression and changes in disability having reciprocal 

relations)—but such effects cannot be specified in the LCS-MM. As such, researchers relying on 

the LCS-MM may inadvertently engage in confirmation bias because this approach is designed 

to test only the a priori hypothesis. Thus, the goal of this project is to introduce a model, which I 

term the cross-lagged LCS (CL-LCS) model, that allows for more rigorous tests of within-person 

change-to-change mediation. 

The remainder of this paper is organized as follows: First, I describe the CLPM in detail 
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and explicate its key advantages relative to cross-sectional approaches to assessing mediation. I 

then present the LCS-MM and CL-LCS models, and compare their appropriateness for assessing 

longitudinal mediation among intraindividual changes.  I show analytically that results and 

significance tests from the CL-LCS model will necessarily differ from the CLPM approach. I 

also enumerate some of the limitations of the CLPM approach and provide further rationale for 

using the CL-LCS model in applications in which data exhibit systematic mean changes over 

time. Next, I present a small simulation study as a proof of concept; that is, when data are 

generated to follow a CL-LCS process, the model appears identified and can be estimated with 

reasonable parameter estimates. Then, using an empirical example of data from the Health and 

Retirement Study (HRS), I fit the CL-LCS model to test the hypothesis that within-person 

changes in depression lead to changes in cognitive ability, which in turn lead to changes in 

disability. Henk and Castro-Schilo (2015) found support for this hypothesis using just two waves 

of data; here I test the hypothesis using four waves of data, which provides potential for stronger 

internal validity. I conclude by enumerating strengths and limitations of the suggested CL-LCS 

approach and provide future directions for research on this newly developed model. 

The Cross-Lagged Panel Model 

 The CLPM can be specified with observed or latent variables in the SEM framework; 

here, I consider the latter as doing so will facilitate discussion of other models that rely on latent 

variables. Figure 1 depicts a specification of the CLPM with three constructs, x, m, and y. For 

simplicity, each construct is measured with just one indicator across four time-points (i.e., X1, … 

X4, M1… M4, Y1…Y4), although multiple-indicators could be included to define common 

factors.  

With at least four repeated measures, single-indicator latent variables can be specified by 
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fixing factor loadings to 1, such that measurement error can be estimated and parsed from true 

score variability (Jöreskog, 1978),  

     Xit = xit + δxit       (1)  

     xit = Xit – δxit        (2) 

where Xit is the observed variable for individual i at time t, xit is the latent true score for 

individual i at time t, and δxit is the measurement error for individual i at time t and is ~N(0, θx) 

and assumed to be uncorrelated with Xit. For identification, these error variances are fixed to 

equality across time (although with enough waves of data, some equality constraints in error 

variances may be relaxed; see Jöreskog, 1978). Equations (1) and (2) operate identically for the 

m and y process. The latent variables at the first wave of assessment are exogenous and freely 

allowed to correlate. All other latent variables (i.e., after Wave 1) are described by an 

autoregressive (AR) process such that a given variable is a function of its true score at the 

previous time-point, plus a disturbance:  

     xit = βx (xit-1) + ξxit   for t > 1 (3) 

where βx is the AR parameter quantifying the rank-order stability over time for xit, xit-1 is 

individual i’s latent factor score at the previous point in time, and ξxit is a time-specific residual 

assumed to be ~N(0, Θx) and uncorrelated with the initial score xit-1, and all other terms are as 

defined above. In Figure 1, the m process is defined to be a function of itself and x at the prior 

time-point,  

mit = βm (mit-1)  + βmx (xit-1) + ξmit for t > 1 (4) 

where βm is the AR parameter, mit-1 is individual i’s latent factor score at the previous point in 

time, βmx is the cross-lagged effect capturing the effect of x on m, and ξmit is a time-specific 

residual assumed to be ~N(0, Θm) and uncorrelated with the initial score mit-1 as well as xit-1. 
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Similarly, the y process is governed by an AR and cross-lagged process: 

yit = βy (yit-1)  + βym (mit-1) + ξyit for t > 1 (5) 

where βy is the AR parameter, yit-1 is individual i’s latent factor score at the previous point in 

time, βym is the cross-lagged parameter, and ξyit is a time-specific residual assumed to be ~N(0, 

Θy) and uncorrelated with the initial score yit-1, mit-1, and xit-1. All other terms are as defined 

above. Importantly, Figure 1 represents just one potential specification of the CLPM; other 

specifications are important for systematic assessment of mediation, such as the inclusion of 

direct effects from x to y, bidirectional effects, or competing models of causality (e.g., y predicts 

m, which predicts x). Moreover, it is worth noting that Equations 3-5 do not include an intercept 

because the CLPM assumes data are centered; that is, no stable between-person differences exist 

(Hamaker, Kuiper, & Grasman, 2015).   

Interpretation of the AR parameters (e.g., βx and βy in Figure 1) is straightforward; these 

represent rank-order stability in the construct over time. An AR coefficient of 1 indicates the 

construct under study is perfectly stable over time. Here, the term stable refers to a lack of 

interindividual differences in within-person change; either no one is changing, or every 

individual experiences the same amount of change with respect to magnitude and direction. An 

AR parameter estimated at 1 suggests the rank ordering of individuals remains unchanged over 

time (e.g., Person A has the highest depression at all waves of assessment; Person B has the 

lowest scores on depression at all waves of assessment), assuming the disturbances do not 

disrupt the rankings. Generally, however, AR coefficients are estimated at some value less than 

1.  

The cross-lagged coefficients (e.g., βmx and βym in Figure 1), also called coupling 

parameters, are interpreted as level-to-change effects. Strictly speaking, βym represents the 
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expected shift in yit given a 1-unit increase in mit-1, controlling for the prior level of y (i.e., yit-1). 

Because the effect of yi1 on yi2 is partialed out, the coupling parameter can be interpreted as a 

prediction of change in y. Thus, the CLPM is equipped to model change as an outcome, but not 

as a predictor. At best, relations among changes in different constructs can be captured in the 

CLPM through estimation of within-time correlations among residual variances, although this 

specification would not be informative of structured (e.g., lead-lag) relations among changes. In 

sum, specification of the CLPM is most informative for hypotheses about lead-lag relations 

among the level (or status) of variables, but cannot speak to change-to-change hypotheses. 

Advantages of the CLPM 

The CLPM is widely used for evaluating longitudinal mediation in the social sciences; 

according to a Google Scholar search, it had been cited over 1,200 times at the time of writing 

this paper. Given that this model was explicitly developed to address shortcomings of the cross-

sectional causal steps approach (Baron & Kenny, 1986), a brief description of that model 

follows. Then, the advantages of the CLPM are discussed in detail. 

The causal steps approach involves testing three regression models: (1) the regression of 

the dependent variable (Y) on the independent variable (X)1; (2) the regression of the mediator 

(M) on X; and (3) the multiple regression of Y on both X and M. If a mediation process is 

underway, the first two models will yield significant regression coefficients, signaling that X has 

a direct effect on Y, and that X has a direct effect on M. Moreover, the effect of X on Y should 

diminish once the effect of M is accounted for (i.e., when comparing the relevant coefficients 

from the first and third regression models); this is termed partial mediation. In the case of full 

mediation, the effect of X on Y will drop to zero when M is accounted for.  

Notably, the causal steps approach is often used for testing cross-sectional mediation 
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among variables. However, Sobel (1990) argued that for true mediation to hold, M “must truly 

be a dependent variable relative to X, which implies that X must precede [M] in time; and [M] 

must be a truly independent variable relative to Y, implying that [M] precedes Y in time” (Cole 

& Maxwell, 2003, p. 561). As such, researchers have emphasized the importance of using 

longitudinal data to conduct more rigorous tests of mediation. Indeed, Cole and Maxwell (2003) 

made a critical contribution to this literature when they expanded the causal steps approach with 

the cross-lagged panel model (CLPM), which can accommodate tests of longitudinal mediation. 

There are four key advantages of the CLPM as compared to the causal steps approach. (1) 

Accounting for prior values of endogenous variables leads to unbiased estimates of cross-lagged 

effects. (2) The CLPM allows estimation and testing of overall indirect effects. (3) Alternate 

lagged effects may be tested. (4) Alternate models of causal direction can be tested (e.g., perhaps 

Y has an effect on X that is mediated by M, rather than X affecting Y through M). In this section, 

I will explain each of these advantages in detail.  

The key difference between the CLPM and Baron and Kenny’s (1986) causal steps 

approach of testing mediation is that the former accounts for prior values of each endogenous 

variable. Cole and Maxwell (2003, p. 560) call these prior values an “almost ubiquitous third 

variable confound” because, as is well known within the context of the general linear modeling 

(GLM) framework, regression coefficients will be biased if important predictors are omitted 

from the model. The reason is that these coefficients are partial regression weights; thus, their 

values change depending on the other predictors in the model and the degree to which those 

predictors correlate (i.e., share variance) with each other. Two variables measured at the same 

time-point (e.g., X1 and M1) are likely to be correlated, if for no other reason than by virtue of 

being assessed at the same occasion. Thus, to obtain an unbiased estimate of the cross-lagged 
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effect of X1 to M2, M1 must be included as a covariate. Failing to control for prior values of an 

endogenous variable—as in the causal steps approach—will almost always lead to inflated 

estimates of the direct and indirect effects. Figure 2 displays two models that could be assessed 

with the causal steps approach for testing mediation: (a) a cross-sectional mediation model and 

(b) a mediation model with temporal separation. Notably, although Figure 2b incorporates 

longitudinal data, it too will lead to biased estimates of β’mx and β’ym. Temporal separation of 

the independent variable, mediator, and outcome is not sufficient for obtaining accurate 

coefficients; it is critical to control for prior values of each endogenous variable (Cole & 

Maxwell, 2003). 

In addition to controlling for prior values of endogenous variables—thus yielding more 

accurate estimates—the CLPM includes a simultaneous test of overall indirect effects, whereas 

the causal steps approach tests each time-specific indirect effect. The overall indirect effect 

captures the total extent to which the independent variable transmits an effect on the outcome 

through the mediator, across the entire duration of the study. Consider the specification of Figure 

1. The overall indirect effect that x has on y is equal to the sum of all indirect effects across 

waves: 

(a) x1 à  x2 à  m3 à  y4   = (βx • βmx • βym) 

(b) x1 à  m2 à m3à  y4   = (βmx • βm • βym) 

(c) x1à  m2 à  y3 à  y4    = (βmx • βym • βy) 

Overall Indirect Effect = βx • βmx • βym + βmx • βm • βym + βmx • βym • βy 

    = βmx(βx • βym + βm • βym + βym • βy) 

    = βmx(βym(βx + βm + βy))    (6) 

Note that any single indirect effect will not be representative of the overall indirect effect.2 This 
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point is particularly important because mediation is usually conceived of as an ongoing, 

unfolding process as opposed to a one-time occurrence; thus, differentiating time-specific 

indirect effects from the overall indirect effect is key (Cole & Maxwell, 2003). Moreover, if a 

researcher has gone through the process of collecting longitudinal data, it behooves him or her to 

make full use of every wave of data. Ultimately, more waves of data provide a more accurate 

estimate of the overall indirect effect.  

 The third advantage of the CLPM is that it allows for tests of alternate autoregressive 

relations. Figures 1 and 2 only have lag-1 relations (i.e., each construct is predicted by itself at 

the prior time-point), but in some research settings it may be appropriate to include lag-2 paths. 

Cole and Maxwell (2003, p. 571) suggest that these “wave-skipping paths” may indicate 

“interesting nonlinear relations: The system may not be stationary, causal relations may be 

accelerating or decelerating, or the selected time lag between waves might not be optimal to 

represent the full causal effect of one variable on another.” Testing the need for additional lagged 

effects can be done using a series of likelihood ratio tests (LRT) as the reduced set (e.g., lag-1) is 

nested within the larger model. If there is a significant increment in fit when additional lags are 

included, these paths should be retained.  

Lastly, and perhaps most importantly, the CLPM allows for tests of alternate patterns of 

causality, which is a critically important step in SEM underscored by MacCallum, Wegender, 

Uchino, and Fabrigar (1993). In their seminal paper, the notion of equivalent models was 

introduced. That is, there may exist alternative models that are mathematically equivalent (i.e., 

provide identical model fit) to the proposed/hypothesized model. The authors conducted a 

literature review and showed that many applications of SEM neglect to consider alternate, 

equivalent models. As a result, MacCallum and colleagues concluded “the existence of any (let 
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alone many) equivalent models presents a serious challenge to the inferences typically made by 

researchers using [SEM]” (p. 196). Potential solutions of this serious issue include 

experimentally manipulating key variables and/or using longitudinal designs. Both of these 

approaches allow researchers to safely rule out at least some alternative models. In the case of 

longitudinal designs, equivalent models that involve effects moving backward in time (e.g., X at 

Time 2 predicting M at Time 1) are not plausible and can thus be ruled out. 

Most applications of the causal steps approach involve testing mediation with cross-

sectional data (see Figure 2a), which precludes testing the directionality of effects. Theory may 

suggest a model wherein x predicts m, which then predicts y, but the “true” model may be such 

that y is exogenous with respect to m, and m is exogenous with respect to x. These two models 

are indistinguishable using the causal steps method,3 but can be tested in the CLPM. Namely, 

LRTs can be conducted to distinguish the directionality of effects based on model fit. A full 

CLPM can be specified to include bidirectional effects, such that (a) x predicts m, which predicts 

y, and (b) y predicts m, which predicts x. Removing paths in part (a) or (b) allows for LRTs; if 

significant, the LRT suggests the fit of the model significantly worsens with the removal of these 

paths, and thus relevant effects should be retained in the model. Even in longitudinal applications 

of the causal steps approach, however, testing alternate patterns of causality is not 

straightforward, as each construct is represented at one and only one point in time (see Figure 

2b). Thus, respecifying the model to test an alternate causal process (e.g., Y predicting M, 

predicting X) requires a different set of data wherein Y is measured at Time 1, M at Time 2, and 

X at Time 3. 

Recall the motivating hypothesis that the relation between changes in depression and 

changes in disability is mediated by changes in cognitive health. At issue here are two 
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possibilities: equivalent models (i.e., that provide identical model fit) and alternate models that 

posit a different structure of causality but do not provide identical fit (i.e., Y predicts M, which 

predicts X, instead of the a priori hypothesis that X leads to M, which leads to Y). Fitting the 

CLPM is not a panacea for the problem of equivalent models; equivalent models will still be 

present. However, the setup of this model does allow researchers to test alternate structures of 

causality. In fact, Cole and Maxwell (2003) encouraged researchers to evaluate the tenability of 

different models of causality, and termed the pathways in these alternative models “theoretically 

backward effects.” To avoid confusion with backward-in-time effects, I use the term “alternative 

models of causality.” Ultimately, testing alternative models of causality helps researchers to 

avoid engaging in confirmation bias. To the extent that one alternate model of causality provides 

better fit to the data than the a priori model—and makes sense from a theoretical standpoint—it 

may be warranted to conduct future studies and/or revise the original hypothesis. 

In sum, the CLPM offers many advantages over the traditional causal steps approach, and 

is held in high esteem for this reason. However, when a researcher’s motivating theory includes 

within-person change as a predictor of subsequent change, it is necessary to move to an alternate 

framework. 

The Latent Change Score Mediation Model 

The LCS framework affords great flexibility in using intraindividual change as an 

outcome, predictor, or both. Before delving into the LCS-MM, I begin by presenting some basic 

latent change score concepts. First, to specify a latent change score, “true” scores are separated 

from their imperfectly measured observed variable counterparts, exactly as was done in 

Equations (1) and (2). Then, as implied in the following equation, 

xit = 1 (xit-1) + Δxit   for t > 1 (7) 
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creation of latent change scores relies on the imposition of unit-weighted autoregressive effects, 

which imply that a latent score (i.e., level) at time t is exactly equal to itself at time t – 1 plus the 

change that occurred between time t – 1 and t. (Note that the subscripts of the change scores 

begin at 2 because at least two waves of data must be collected before changes can be modeled).  

Contrast this expression with that of Equation (3), which expresses the “level” equation for x in 

the CLPM. At first glance, the LCS formulation may appear to be a subset of the CLPM with the 

autoregressive effect fixed to 1, yet these models are not nested. The “residual” in the LCS 

framework is the within-person change (Δxit) and is allowed to correlate with or be regressed on 

xit. The rationale for estimating this correlation/regression is that in many research contexts, 

initial levels of a construct are associated with how much change takes place. In contrast, the 

residual in the CLPM (and in any traditional regression model)—by definition—is assumed to 

have zero correlation with the predictors (see Figure 3 for a path diagram of the latent change 

score basic building block that maps onto Equation 6). 

 Importantly, the imposition of perfect autoregressive effects allows for the explicit 

representation of within-person change as a latent variable, which lends itself to testing different 

structural relations among the changes. Indeed, a variety of structures can be imposed on the 

latent change scores (see McArdle, 2009 for a description of common LCS model 

specifications). Most LCS specifications include level-to-change predictive paths, within- and 

across-constructs. To my knowledge, Selig and Preacher (2009) introduced the first change-to-

change specification with the LCS-MM, although others had been exploring change-to-change 

models in substantive fields prior to that (e.g., Hertzog et al., 2003). 

A path diagram of the LCS-MM is displayed in Figure 4. To achieve temporal separation, 

Selig and Preacher (2009) modeled each construct in the mediation chain at staggered time-
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points such that x is modeled only at Time 1 and 2, m is modeled at Time 2 and 3, and y is 

modeled at Time 3 and 4. I uphold this convention for clarity, although the spacing of 

assessments could vary in practice. Because the latent changes are the outcomes of primary 

interest, I present these equations below: 

∆xi2 = βx (xi1) + ξ∆xi2      (8) 

∆mi3 = βm (mi2) + βmx (xi1) + β∆m∆x (∆xi2) + ξ∆mi3  (9) 

∆yi4 = βy (yi3) + βym (mi2) + βyx (xi1) + β∆y∆m (∆mi3)  

+ β∆y∆x (∆xi2) + ξ∆mi4    (10) 

In the LCS-MM, changes in x in the first interval (∆xi2) for person i are a function only of the 

initial level of x plus a disturbance, ξ∆xi2. Changes in m are modeled in the second interval (∆mi3), 

and are structured as a function of the level of m at Time 2, the level of x at Time 1, the change 

in x between Time 1 and 2, and a disturbance ξ∆mi3. Finally, changes in y are modeled in the third 

interval (∆yi4), and are a function of the level of y at Time 3, the level of m at Time 2, the level of 

x at Time 1, changes in m that occurred between Time 2 and 3, changes in x that occurred 

between Time 1 and 2, and a disturbance ξ∆yi4.  

 When comparing aspects of the LCS-MM to the standards put forth by Cole and Maxwell 

(2003), there are several discrepancies worth noting. First, Cole and Maxwell (2003) established 

the need to control for prior values of endogenous variables through use of autoregressive 

effects. In the LCS-MM, interest primarily lies in the cross-construct change-to-change effects, 

which suggests that within-construct prior changes should be accounted for. Stated differently, if 

a researcher is interested in predicting changes in m between Time 2 and 3 from changes in x 

between Time 1 and 2, an unbiased estimate of this effect will only be obtained if the effect of 

changes in m between Time 1 and 2 is partialed out. Again, by virtue of occurring over the same 
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interval (i.e., between Time 1 and 2), it is likely that changes in x and changes in m will be 

correlated; thus, it is requisite to include prior changes in m as a predictor. However, given that 

the LCS-MM has only one change score per construct, this specification is not possible.  

Importantly, the LCS-MM does control for prior levels of x, m, and y. Consider again the 

case in which the motivating hypothesis is that changes in x (∆x) predict changes in m (∆m), 

which subsequently predict changes in y (∆y). The partial regression weights β∆m∆x and β∆y∆m will 

inform this hypothesis. Namely, β∆m∆x will represent the effect ∆x has on ∆m, accounting for 

prior levels of m. Whether prior levels should be controlled for is the concern of Lord’s Paradox 

(Lord, 1967). Lord’s Paradox was introduced in the context of an experimental design with two 

groups. The paradox refers to the fact that researchers draw discrepant results and conclusions 

depending on whether they (a) use the grouping variable (i.e., control versus experimental) to 

predict the Time 2 post-test, while controlling for the Time 1 pre-test (e.g., in an ANCOVA), or 

(b) predict change (i.e., Time 2 post-test minus Time 1 pre-test) from the grouping variable (e.g., 

in a difference/change score model). Recent work has explored the issue of Lord’s Paradox and 

clarified a number of aspects: (1) it is not limited to experimental designs with a categorical 

grouping variable, but rather pertains in the context of a continuous predictor as well; (2) 

ANCOVA and difference/change models make different assumptions about the data, and these 

assumptions are untestable; and (3) difference/change score models are preferable over 

ANCOVA models in the context of observational studies, whereas ANCOVA is preferable when 

randomization is part of the study design (van Breukelen, 2013; Castro-Schilo & Grimm, in 

press). Analogous to ANCOVA, the LCS-MM controls for previous levels of x, m, and y, but this 

practice might only be ideal in experimental studies. Instead, controlling for prior changes in x, 

m, and y might be preferable to obtain unbiased estimates of the change-to-change effects. 
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 There is another aspect of the LCS-MM that will be troublesome in most if not all 

applications. First, recall that one of the benefits of the CLPM is the ability to test alternate 

structural relations among processes (e.g., lag-2). Unfortunately, the variety of structures that can 

be tested using the LCS-MM is limited by the fact that there is just one change score per 

construct. As a result, this setup prohibits testing different autoregressive structures among the 

changes. Similarly, it is not possible to test different patterns of causality (e.g., ∆y predicting ∆m, 

predicting ∆x) in the LCS-MM because each downstream latent change is modeled at a later 

point in time than the upstream change scores. In the context of the depression, cognitive ability, 

and disability hypothesis, the LCS-MM would require changes in depression to be modeled 

between Time 1 and 2, changes in cognitive health between Time 2 and 3, and changes in 

depression between Time 3 and 4. Thus, it would be impossible to test a model wherein changes 

in disability lead to changes in cognitive health, which then lead to changes in depression. Such a 

model would test temporally backward effects, unless a different set of data was used. Thus, the 

setup of the LCS-MM may lead researchers to engage in confirmation bias with increased 

frequency. This unfortunate consequence of the LCS-MM is the major impetus for the 

development of an expanded LCS model suited for testing mediation among changes.  

The Cross-Lagged Latent Change Score Model 

 At each time-point and for each construct, the measurement model of the CL-LCS model 

is expressed as in Equation (1). For maximum benefits, each level/status of the constructs across 

time should be modeled as multiple indicator latent factors so that the factors capture common 

variance and can be purged from measurement error. However, for simplicity I consider the case 

of only one indicator per construct, fixing the residuals of the manifest variables to equality as 

was shown in the CLPM section. Using latent variables with single indicators (and estimating the 
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residuals of the indicators) is preferable over taking the differences of observed variables 

because the factors are corrected for unreliability of the manifest variables. Moreover, a 

fundamental advantage of the LCS modeling framework is to be able to purge difference/change 

scores from measurement error, as traditional criticisms of difference/change scores no longer 

apply when these are perfectly reliable (Castro-Schilo & Grimm, under review; Henk & Castro-

Schilo, 2015).  

For the structural specification of the CL-LCS model, each process has two exogenous 

variables: the initial level (i.e., at Time 1) and the first latent change score. After the first time-

point, the level for each construct is defined as a function of the previous time-point plus the 

within-person change, exactly as was done in Equation (6).  

The hallmark of the CL-LCS model is its ability to flexibly incorporate various structural 

associations among the change scores. Here, I consider one potential specification; that is, the 

case whereby the effect that ∆x has on ∆y is fully mediated through ∆m (see Figure 5). For the x 

process, each change score after the first interval is specified as a function of the prior change 

score:  

    Δxit = γ∆x (∆xit-1) + ζ∆xit    for t > 1  (11) 

where Δxit is the latent change that occurred between time t – 1 and t, γ∆x is the autoproportion 

effect capturing the influence of prior change on current change,  ∆xit-1 is the prior change in x, 

and ζ∆xit is a random disturbance for individual i at time t. In this specification, I set γ∆x to be 

invariant across time, although this assumption may be relaxed. The m and y processes operate 

similarly, except each has an additional term in its equation to capture the cross-construct 

change-to-change effects:  

  Δmit = γ∆m (∆mit-1) + γ∆m∆x (Δxit-1)  + ζ∆mit    for t > 1   (12) 
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  Δyit = γ∆y (∆yit-1) + γ∆y∆m (Δmit-1) + ζ∆yit    for t > 1 (13) 

where γ∆m∆x is the change-to-change effect of prior ∆xit on Δmit, ζ∆xit is a random disturbance for 

individual i at time t, γ∆y∆m is the change-to-change effect of ∆m at the previous time-point on 

∆y, and ζ∆yit is a random disturbance for individual i at time t. All disturbances are uncorrelated 

with one another and with all other latent variables in the model. However, this assumption can 

be relaxed to accommodate within-time covariances among the residuals of the change scores. 

Incorporation of these covariances implies there are omitted causal effects that explain shared 

residual variance in the change scores. Notice that unlike Equations (8) and (9), the change score 

equations here do not include levels as predictors.  

In many ways, the CL-LCS model can be considered an extension of the LCS-MM. 

Specifically, the CL-LCS expands upon the LCS-MM so that changes in each construct can be 

modeled at every time-point, rather than only at pre-selected waves. Contrast Figure 5, which 

contains a path diagram of the CL-LCS model, with Figure 4; with four time-points of data, the 

CL-LCS model contains nine latent change score variables—three per construct—as opposed to 

the LCS-MM, which includes just one latent change per construct. Importantly, inclusion of 

multiple latent changes for each construct in the CL-LCS model allows researchers to conduct 

more rigorous tests of longitudinal mediation (Cole & Maxwell, 2003). 

In sum, the CL-LCS model specification has several key advantages over the LCS-MM 

approach. The CL-LCS controls for prior values of each endogenous latent change, which yields 

unbiased cross-construct change-to-change effects. Moreover, the CL-LCS allows for tests of 

overall change-to-change indirect effects (provided there are four or more waves of data), 

whereas the LCS-MM allows for tests of overall indirect effects, but the change-to-change 

indirect effect is purely time-specific (e.g., changes in x between Time 1 to 2, changes in m 
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between Time 2 and 3, changes in y between Time 3 and 4). Finally, the CL-LCS allows 

researchers to test different structures of causality. A full CL-LCS model can be specified so that 

(a) changes in x predict changes in m, which predict changes in y and (b) changes in y predict 

changes in m, which predict changes in x. Removal of paths in (a) or (b) will yield a nested 

model that can be compared to the full model using an LRT. Importantly, this specification 

represents a fully mediated process, and in practice it would be advantageous to test for the direct 

effect from changes in x to changes in y.  

Ultimately, the CL-LCS model allows researchers to make full use of their data, which 

results in increased accuracy of model estimates, whereas the LCS-MM requires researchers to 

truncate their data such that each construct is represented by just two measurement occasions. In 

the next section I briefly highlight differences between the CLPM and CL-LCS model to further 

argue for consideration of relations among changes.  

Relations Among Structural Parameters in the CLPM and CL-LCS Model 

 At first glance, the CLPM and CL-LCS appear quite similar; the former concerns 

relations among levels of variables while the latter concerns relations among changes. A 

comparison of Figure 1 with Figure 6 highlights the conceptual similarities between these two 

approaches. However, the following example shows how these models differ with respect to the 

structure placed on observed variables. Consider the mediator process and, more specifically, the 

CLPM model-predicted value of m at Time 3 for individual i. Using Equation (4), the level of m 

is  

mi3 = βm (mi2)  + βmx (xi2) + ξmi3    (14)  

In contrast, Equation (13) of the CL-LCS model dictates what the structure of the change in m 

should be at Time 3 for individual i: 
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Δmi3 = γ∆m (∆mi2) + γ∆m∆x (Δxi2)  + ζ∆mi3   (15) 

In this example, the changes can be re-written as the differences between adjacent levels. Solving 

for mi3 yields  

    mi3 – mi2 = γ∆m(mi2 – mi1) + γ∆m∆x(xi2 – xi1) + ζ∆mi3   

mi3  = γ∆m(mi2 – mi1) + mi2 + γ∆m∆x(xi2 – xi1) + ζ∆mi3  

mi3  = mi2(γ∆m + 1) – γ∆m (mi1) + γ∆m∆x(xi2 – xi1) + ζ∆mi3   (16) 

Examination of Equations (15) and (17) make it clear that the CL-LCS model implicitly places a 

structure on the levels of the variables that is quite different from that of the CLPM. As variables 

further downstream are considered (e.g., the y process at Time 4), the equations become more 

complicated. However, the general pattern remains: the CL-LCS model imposes a different 

structure on a set of data and indeed tests a different theory as compared to the CLPM. 

Moreover, the CL-LCS model does not inherit all the methodological limitations of the CLPM. 

This is particularly important in light of recent work by Hamaker and colleagues (2015) and is 

the topic of the following section.	

Limitations of the CLPM  

 Although the CLPM is “the most often used mediational model for longitudinal data” 

(Preacher, 2015, p. 831), Hamaker and colleagues (2015) recently pointed out some of its 

limitations. Notably, the model requires a stationary process and is not suited for constructs that 

exhibit patterns of stable, trait-like individual differences. The requirement of stationarity limits 

the utility of the CLPM if systematic mean trends over time are expected. In contrast, the CL-

LCS model should be able to model processes with linear trends over time, because an advantage 

of taking first-order differences –which the latent change scores in the CL-LCS model represent– 

is that some forms of nonstationary data (e.g., data following a linear trend) become stationary 
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(Shumway & Stoffer, 2010). For example, consider a process that follows a linear trajectory:  

yit  = β0 +  β1(time) + εit    (17) 

where yit is the score of individual i at time t, and time is coded as 0, … t. Taking the difference 

of two adjacent time-points (often referred to as “differencing”) yields 

     yit – yit-1 = β0 +  β1(time) + εit – [β0 +  β1(time – 1) + εit-1] 

       = β0 +  β1(time) + εit – β0  –   β1(time – 1) –  εit-1 

       = β0 +  β1(time) + εit – β0  –   β1(time) + β1 –  εit-1 

       = β1 + εit –  εit-1    (18) 

Thus, the linear effect of time drops out, and we are left with a stationary process.  

 Another assumption of the CLPM is that it assumes that stability of constructs over time 

is not due to trait-like individual differences (Hamaker et al., 2015). If there is between-person 

variance that is attributable to stable traits, the CLPM will yield biased estimates of the cross-

lagged effects. This limitation is particularly noteworthy since many—if not most—

psychological constructs are likely characterized in part by individual differences. For example, 

although a person’s anxiety levels may fluctuate, some individuals in general are more anxious 

than others. Again, differencing provides a solution to this problem; by definition the effect of 

stable between-person differences are removed from a change score. In the above example, the 

stable part of anxiety falls out when differencing two adjacent time points. As such, the CL-LCS 

model provides pure estimates of within-person effects, whereas the CLPM may lead to 

estimates that conflate within- and between-person variation. 

In sum, there are two major motivations for the development of the CL-LCS model: (1) 

to provide a method for making stronger change-to-change causal inferences than can be drawn 

from existing methods and (2) to adhere to rigorous standards for testing longitudinal mediation. 
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CHAPTER 2: METHOD 

Proof of Concept 

 To support the notion of identifiability of the CL-LCS model, and to demonstrate 

recovery of population parameters, I simulated two datasets with N = 100,000 and fit the CL-

LCS model to each4. In each dataset, I simulated four waves of yearly data. Single indicators 

were generated to represent three processes—depression, cognitive ability, and disability—over 

time, drawing upon existing literature (e.g., Henk & Castro-Schilo, 2015). The original 

correlation matrix of the exogenous variables and all autoregressive and change-to-change βs 

remained invariant across the two conditions. The differentiating characteristic of the two 

datasets was that one was generated with a stable mean across time and the other had a linear 

trend.  

All population parameters used to generate the trend and no-trend data are listed in the 

first column of Tables 1 and 2, respectively. In the no-trend dataset, all intercepts were zero (see 

Table 2), whereas in the trend dataset, the intercepts changed over time. Namely, depression was 

specified in the population to increase on average by 2 units per year, cognitive ability was 

specified to decrease by 1 unit per year, and disability was specified to increase by 1.5 units per 

year.  

The rationale for simulating datasets with and without trends comes from the similarities 

between the CL-LCS model and the CLPM. In other words, it is intuitive to assume the CL-LCS 

model would require data that do not exhibit trends over time, as does the CLPM. However, the 
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specification of within-person changes in the CL-LCS model is equivalent to taking first-order 

differences of factor scores. For this reason, linear trends in data are eliminated and should not 

pose a threat to the accuracy of estimates in the CL-LCS model. I generated the data by 

specifying the model equations in R and I fit the models using Mplus Version 7.11 (Muthén & 

Muthén, 1998-2010). All code used for the proof of concept simulation can be found in the 

Appendix. 

 In sum, the purpose of the proof of concept was to elucidate the extent to which the CL-

LCS model is appropriate for data with and without a linear trend, and to gain preliminary 

insight into the identifiability, parameter estimate recovery, and model fit under ideal (albeit 

unrealistic) conditions of no model misspecification and no missing data. Importantly, parameter 

estimate recovery can only be discussed on a descriptive level given the design of the proof of 

concept, as there is no way of understanding sampling variability in the case of a single 

replication.    

Participants and Procedures 

 To illustrate a systematic model-building strategy for the CL-LCS approach, I used the 

publically available RAND version of the Health and Retirement Study (HRS) data (RAND 

HRS, 2013). The HRS is a nationally representative study of aging Americans conducted 

through the University of Michigan. The study began in 1992 and the full dataset currently 

comprises over 37,000 Americans aged 50 or older who are contacted for interviewing every 2 

years. The HRS also enrolls new participants every 6 years to replenish the dataset (Karp, 2007). 

Following previous guidelines for excluding participants (McArdle, Fisher, & Kadlec, 2007), 

individuals in the current analyses were omitted from analyses if they (1) were not the primary 

respondent, (2) had no data on gender or age, or (3) had a sampling weight of zero, indicating 
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they lived in a nursing home as opposed to the community. To account for within-wave age 

heterogeneity, I further limited my analyses to one cohort—the early baby boomers, who were 

born between 1948 and 1953. This group was first interviewed for the HRS in 2004; the current 

analyses utilized data from four of the most recent available waves (2004, 2006, 2008, and 2010; 

from here on, I refer to these as waves 1 through 4, respectively). The sample size used in the 

current analyses consisted of 2,687 elders. Demographically, the sample was 46.60% female and 

had a mean age of 65.3 years; moreover, 70.86% identified as White/Caucasian, 17.60% as 

Black/African American, and 11.54% identified as Other.  

 Sampling weights are available in the HRS dataset to account for oversampling of 

Blacks, Hispanics, households in the state of Florida, unequal selection probabilities in 

geographical areas, and response rate group differences by race and geographical location (see 

Karp, 2007 for more details). There are both household sampling weights and individual 

sampling weights. In the current analyses, individual sampling weights from 2004 were included 

in all analyses; as such, parameters were estimated by maximizing a weighted log-likelihood 

function and standard errors were computed using a sandwich estimator (Muthén & Muthén, 

1998-2010). This was achieved in Mplus using the maximum likelihood robust (MLR) estimator. 

Measures 

 Depression. The HRS includes 8 items from the Center for Epidemiologic Studies 

Depression Scale (CES-D; Radloff, 1977) to assess participants’ depression; each item is scored 

as a binary (yes = 1, no = 0) variable. Six negatively-worded items prompt the participant to 

answer whether he or she experienced the following sentiments all or most of the time: felt 

depressed, everything is an effort, sleep is restless, felt alone, felt sad, and could not get going. 

There were also two positively worded items (felt happy, enjoyed life), but to maintain a 
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unidimensional measure of depression, these items were not included in the current analyses. To 

arrive at a single indicator with a continuous measurement scale, I fit two parameter item 

response theory (2PL-IRT) models to the six negatively worded items at each of the four time-

points and estimated   using the first wave as the calibration sample. Higher values in the 

resulting factor scores indicate more depression.  

 Cognitive Ability. I used an immediate recall scale and a delayed recall scale to 

operationalize cognitive ability (Chien et al., 2013). The immediate recall task consisted of a list 

of 10 nouns.  Respondents could recall the words in any order and were given 1 point for each 

correctly recalled word. The delayed recall task consisted of the same 10 nouns; respondents 

were asked to recall these words after a delay of about five minutes spent answering other survey 

questions. Across waves, respondents were randomly assigned to different lists of nouns, such 

that they were not recalling the same set of words at every visit. 

To arrive at a single indicator of cognitive ability, I fit confirmatory factor analyses to 

two indicators—immediate recall and delayed recall—at each time-point. To identify the models, 

the factor loadings were fixed to equality. As was the case with depression, I used the first wave 

as the calibration sample for estimating factor scores that I used in subsequent analyses, with 

higher factor scores indicating better cognitive ability. 

 Disability. I also estimated factor scores for disability by fitting IRT models to two scale 

scores, the Activities of Daily Living Scale (ADLS) and the Instrumental Activities of Daily 

Living Scale (IADLS). The ADLS includes five tasks (bathing, eating, dressing, walking across 

a room, and getting in or out of bed). The IADLS includes three tasks (using a telephone, taking 

medication, and handling money). Each item is scored as a binary variable, with 1 indicating that 

the participant endorsed having some difficulty with the given task and 0 indicating no difficulty. 
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Again, to identify the models, equality constraints were placed on the factor loadings (akin to a 

Rasch model). Higher values in the resulting factor scores indicate more disability.  

Data Analysis 

 In addition to providing the theoretical rationale for the development of the CL-LCS 

model, a major task of this project was to put forth a systematic model-building strategy for 

selecting the optimal specification, as longitudinal mediation can unfold in a variety of ways. To 

simplify the discussion of model building, assume that a researcher hypothesizes that the relation 

between changes in x and changes in y is mediated through changes in m—from here on, I refer 

to this causal mechanism as the “downstream” paths (note that in Figure 6 these paths are 

represented by downward pointing one-headed arrows). The downstream paths also include the 

direct effect from changes in x to changes in y. The competing hypothesis is that changes in y 

predict changes in m, which predict changes in x—I refer to these as the “upstream paths.” The 

upstream paths also include the direct effect from changes in y to changes in x. One 

recommended model-building strategy is as follows (note that alternative strategies are possible). 

 First, a series of models that include both upstream and downstream effects should be fit 

to the data; I refer to all such models as Models 1a through 1e. The first step is to fit Model 1a to 

the data, which is a fully-freed CL-LCS model. That is, all autoregressive and cross-lagged 

effects among the changes are freely estimated, as are the residual variances of the change scores 

and the within-time covariances among the change scores. The only equality constraints over 

time are on the residual variances of the manifest variables, which must be included to identify 

the model when single indicators are used.  

 In Model 1b, I argue for placing equality constraints on the autoregressive effects within 

each construct across time. A likelihood ratio test (LRT) should then be performed between 
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Model 1a and 1b. Because Model 1b is nested within Model 1a, if the LRT is significant, it 

suggests that Model 1b significantly decrements the fit to the data. In that event, the researcher 

would need to free the autoregressive effects for each construct, one at a time, and perform 

additional LRTs to determine which, if any, processes can be described by unchanging 

autoregressive effects across time.  

 In Model 1c, equality constraints should be placed on all cross-lagged effects that link the 

same two constructs. For example, the cross-lagged effect from changes in x1 to changes in m2 

would be set to equality with the cross-lagged effect from changes in x2 to changes in m3. Again, 

an LRT should be conducted to compare Model 1c to Model 1b; if nonsignificant, the researcher 

can move on to Model 1d. If the LRT is significant, the researcher must free the cross-lagged 

effects—one process at a time—to determine which, if any, can remain equal over time without 

significantly reducing the fit of the model.  

 In Model 1d, equality constraints are placed on the residuals of the endogenous latent 

changes within-construct. Again, an LRT should then be computed to determine which, if any, of 

these residuals can be fixed to equality without sacrificing model fit. Finally, in Model 1e, 

equality constraints should be placed on the within-time covariances among the latent change 

residuals (e.g., the residual covariance of changes in x1 and changes in m1 would be fixed to 

equal the residual covariance of changes in x2 and changes in m2). If the LRT is not significant, 

the equality constraints do not worsen the fit of the model and should be retained; otherwise, 

they must be freed one process at a time to determine which, if any, can be fixed to equality over 

time.  

 After the Model 1 series, which determines whether the downstream and upstream paths 

should be equal over time, is fit to the data, the researcher can move on to test the need for paths 



 29 

that are not supportive of the motivating hypothesis. Namely, in Model 2, the upstream paths 

should be removed. If the LRT is not significant, it suggests that the upstream paths are not 

needed. Then, to test the alternate pattern of causality, in Model 3 the downstream paths should 

be removed; like Model 2, this model is nested within Model 1. If this LRT is significant, it 

suggests the downstream paths should not be removed. If Model 2 is selected as the optimal 

model, the motivating hypothesis is supported. If Model 3 is selected, the researcher must 

reconsider the original hypothesis and perhaps conduct additional studies to better understand the 

direction of effects. In some cases, it may be that neither Model 2 or Model 3 are selected; if one 

of the sub-models of Model 1 fits the data significantly better, then the researcher should 

conclude that there are bidirectional effects at play.    

 In the next section, I present results from the proof of concept and I demonstrate this 

model-building strategy using the HRS dataset. 
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CHAPTER 3: RESULTS 

Proof of Concept 

 Spaghetti plots of the simulated no-trend and trend processes can be found in Figures 7 

and 8, respectively. In both figures, there is considerable variability in individuals’ trajectories. 

However, only in Figure 8 are there mean trends over time. Results from fitting the CL-LCS 

model to data without and with trends are located in Tables 1 and 2, respectively. In each of 

these tables, the first numerical column contains the data-generating parameters and the second 

column contains the estimated parameters. As each condition had just one replication, these 

results cannot be generalized to inform raw or relative bias. However, several conclusions can be 

drawn from this replication. Importantly, under ideal conditions including no misspecification 

and no missing data, the CL-LCS model seemed to adequately reproduce population parameters 

with decent accuracy in the case of both no-trend and trend data (see Tables 1 and 2). Note that 

these estimates are subject to sampling error, and only through a more comprehensive simulation 

study—which was not the goal of the current project— could accuracy of parameter recovery be 

discussed at length. In addition to fairly accurate parameter estimates, model fit indices reflect 

excellent fit to the data, as was expected. For the no-trend dataset, the model fit the data well, 

χ2(46) = 38.054, p = .79, RMSEA = 0.000, SRMR = .002, BIC = 3,674,596.64. Likewise, for the 

trend data, the model also fit well, χ2(46) = 39.015, p = .76, RMSEA = 0.0, SRMR = .002, BIC = 

3,676,128.09.  

In sum, the proof of concept supports the usefulness of the CL-LCS model for evaluating 
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change-to-change hypotheses, regardless of whether the constructs of interest show trends over 

time. 

Illustration: Descriptive Statistics 

 For simplicity, changes in depression, changes in cognitive ability, and changes in 

disability are notated as ∆depression, ∆cognitive ability, and ∆disability, respectively. Table 3 

contains the MLR estimated means, standard deviations, and correlations among the factor 

scores that were used as indicators in all subsequent models. The MLR estimator accounts for 

missing data and sampling weights, and was thus preferred over traditionally estimated 

descriptive statistics. As can be seen in Table 3, average depression levels fluctuated over the 

course of the study—means ranged from 0.138 at the second wave to .070 at the fourth wave, 

whereas standard deviations were fairly consistent across time. Cognitive ability also fluctuated 

over time, and the mean increased between waves 1 and 2, before consistently declining to M =   

-.065 at wave 4. Standard deviations of cognitive ability increased slightly over time, suggesting 

greater between-person heterogeneity as individuals aged. Finally, disability increased 

consistently over time, from M = 0 to M = 0.063 over the course of the four waves. Standard 

deviations were relatively stable over time. Within-construct correlations over time were 

positive. Correlations among depression over time ranged from 0.50 to 0.56. Cognitive ability 

correlations over time were between 0.47 and 0.49. Finally, disability over time correlated 

between 0.46 and 0.61. Interestingly, although decreasing correlations are often observed as time 

lags increase in longitudinal data, in a few instances, this pattern was not observed in these data. 

Cross-construct correlations were in the expected directions, but fairly small. Depression 

was negatively correlated with cognitive ability, with r in the -.20 range. Depression was 

positively correlated with disability, with r ranging from .29 to .43. Finally, cognitive ability and 



 32 

disability were negatively correlated, with r ranging from -.16 to -.23. Importantly, these 

descriptive results showcase between-person associations. For example, individuals with higher 

depression tended to have higher disability. These means and correlations do not inform the 

substantive hypothesis regarding within-person changes, however. Spaghetti plots of factor 

scores over time for a random subset of 100 individuals are plotted in Figures 9 through 11 for 

depression, cognitive ability, and disability. For each process, there is considerable heterogeneity 

in trajectories, yet the mean trajectories are fairly stable over time.  

Illustration: CL-LCS Model Results 

Because the MLR estimator was used to estimate CL-LCS model parameters, likelihood 

ratio tests could not be performed using a simple chi-square difference test (as the difference 

between two scaled chi-squares for nested models is not distributed as chi-square). Thus, for 

comparison of all nested models, I computed the Satorra-Bentler scaled chi-square difference test 

(Satorra & Bentler, 2001).  

 Although residual variances of single indicators can be fixed to equality across time and 

estimated (e.g., Joreskog, 1978; also see results from proof of concept), models fit to this 

particular set of data either failed to converge after 60,000 iterations when specified this way, or 

resulted in non-positive definite psi matrices. To overcome these convergence issues, I fixed the 

residual variances of the manifest variables (which were factor scores) to zero in all subsequent 

analyses. Importantly, this solution imposes the unrealistic assumption that the factor scores are 

perfect reliable. I consider the implications of this solution further in the Discussion section. 

  First, I fit the fully-freed CL-LCS model (Model 1a). This model provided less than 

adequate fit to the data, χ2(29) = 1291.86, p < .01, RMSEA = 0.12, CFI = .79, SRMR = .16. 

Although each subsequent model in the model-building strategy is more parsimonious than 
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Model 1a—and thus cannot drastically improve model fit—I pursued the search for the optimal 

model for illustrative purposes.  

 The next step was to fit Model 1b, in which the autoregressive effects among the changes 

are fixed to equality across time. This model did not significantly decrement the fit of the model. 

The chi-square difference test revealed ∆χ2(3) = 1.18, p > .05, suggesting that equating these 

effects over time did not significantly decrease the fit of the model. In Model 1c, I fixed the 

cross-lagged effects to equality over time, and again, the difference test suggested that these 

constraints did not decrement the fit of the model significantly, ∆χ2(4) = 2.66, p > .05 

 Next, I fit Model 1d to the data, which imposed equality constraints on the residual 

variances of the endogenous latent change scores. When compared to Model 1c, again, this 

model did not significantly reduce model fit, ∆χ2(3) = 1.76, p > .05. The last model incorporating 

both upstream and downstream effects was Model 1e, in which I imposed equality constraints on 

the within-time residual covariances among the latent change scores. The chi-square difference 

test favored Model 1e over Model 1d, ∆χ2(3) = 1.11, p > .05. 

 To test the need for the upstream paths, which were not theory-motivated, in Model 2 I 

omitted the effects from ∆disability to ∆cognitive ability, from ∆cognitive ability to ∆depression, 

and from ∆disability to ∆depression. Model 2 did not fit significantly worse than Model 1e, 

∆χ2(3) = 1.02, p > .05. Although Model 2 thus appeared to be an optimal model, it was important 

to test alternate patterns of causality. Thus, in Model 3 I omitted the downstream effects and 

included the upstream effects. Model 3 also did not fit significantly worse than Model 1e, ∆χ2(3) 

= 1.72, p > .05. 

 Taken together, these results suggested the possibility that neither the upstream nor the 

downstream paths were required. To investigate this possibility, I fit a final model, Model 4, that 
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included no cross-lagged effects among any of the changes. This model did not fit significantly 

worse than Model 1e, ∆χ2(6) = 2.62, p > .05, and was thus retained as the optimal model. 

However, the overall fit of the model was still poor, χ2(48) = 1249.28, p < .01, RMSEA = 0.10, 

CFI = .80, SRMR = .16, which precludes serious interpretation of model results. For illustrative 

purposes only, parameter estimates from Model 1d are located in Table 4. All autoregressive 

effects among the changes were negative and significant, suggesting that changes in a given 

construct are significantly related to subsequent changes. Moreover, the within-time residual 

covariances among ∆depression and ∆cognitive ability, as well as those among ∆depression and 

∆disability, were significant, suggesting omitting causes in the model that, if included, would 

explain covariation among these change processes.  
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CHAPTER 4: DISCUSSION 

 The purpose of this project was two-fold: to introduce a new approach for testing 

mediation when the motivating hypothesis predicts associations among within-person changes, 

and to demonstrate how to fit the model using a systematic model-building strategy. As was 

discussed at length, the CLPM is not suited for mediation hypotheses involving change as a 

predictor or mediator. The LCS-MM can be used to test change-to-change hypotheses, but its 

specification does not promote testing alternate patterns of causality. The newly developed CL-

LCS model combines the best features of both these approaches.  

Aside from providing both the theoretical and analytic details motivating the 

development of the CL-LCS model, there were two additional objectives of this project. First, I 

conducted a small single-replication simulation to serve as a proof of concept. This simulation 

was important to support the identifiability of the model and provide preliminary evidence of its 

suitability for data that exhibit and do not exhibit trends over time. Indeed, in both conditions, 

the CL-LCS approach converged to what appeared to be reasonable parameter estimates, and 

traditional fit indices indicated excellent fit. The second objective of this project was to fit the 

CL-LCS model to a real empirical dataset to showcase the utility of the model for testing 

theoretically motivated change-to-change hypotheses. I hypothesized that among this population, 

the relation between within-person changes in depression and changes in disability is mediated 

by changes in cognitive ability.  

 Fitting the CL-LCS model to real data from the HRS was an invaluable exercise, as a 
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number of issues were brought to attention. The final model that I selected failed to find any 

significant effects among changes in depression, changes in cognitive ability, and changes in 

disability—although each of these constructs had autoregressive effects operating among the 

within-person changes. Thus, the extent to which an individual changed on a given construct in 

one interval affected how much change the person experienced in the next interval on that same 

construct. Although the cross-lagged effects were not significant, the within-time correlations 

among the residual variances of the change scores were significant. Substantively, these 

correlations imply existence of omitted causes from the model; in other words, there is some 

unknown factor that contributes to changes in depression, cognitive ability, and disability. Future 

work in the aging literature should be conducted to better understand what these omitted causes 

may be.  

Notably, I failed to replicate prior findings that changes in cognitive health mediate the 

relation between changes in depression and changes in disability (e.g., Henk & Castro-Schilo, 

2015). However, there are several reasons why the cross-lagged effects may not have been 

significant—even if these processes truly are linked in the population. First, Henk and Castro-

Schilo (2015) specified a latent change score mediation model with multiple indicator common 

factors. Specifying latent change scores with residual variances fixed to zero is equivalent to 

taking raw-score differences of the scale scores. Thus, the measurement error in the change 

factors of the current illustration is likely high and could potentially obscure true associations 

across processes. Although I made efforts to improve the measures I used (by using advanced 

psychometric techniques for obtaining factor scores), the measurement of the constructs could 

still have been improved if (1) I opted to use multiple indicator latent variables, or (2) had looked 

for further empirical data that have better measurement properties. I explored both of these 
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options in several preliminary analyses not reported in this paper. With regard to the first option, 

a myriad of issues surfaced when I tried to specify such complex models. For example, the 

indicators for depression and disability had to be modeled as binary, plus each of these two 

constructs had numerous indicators (8 items each), which increased the complexity of the models 

in a way that I believe distracted from the purpose of this project. Moreover, specifying common 

factors required factorial invariance tests for each of the three processes and, again, discussion of 

those results was tangential to the scope of this project. With regard to the second option, other 

scales in the HRS dataset did not exhibit better measurement properties. Despite the difficulty 

involved in the two options I outlined, in future work, I believe both of these must be explored 

further so applied researchers can use the CL-LCS model in an optimal way. 

Another key issue to consider when modeling within-person change is how best to 

capture change at the intraindividual level. Many psychological instruments were developed to 

capture between-person differences and may not be sensitive enough to capture small but 

meaningful changes within an individual (e.g., Cranford et al., 2006). To the extent that the 

measures used in the empirical example are better suited to capture stable interindividual 

differences, power to detect relations among within-person changes may be diminished.  

 Indeed, much work remains to be done to understand the complexities of the CL-LCS 

model. For example, when autoregressive and cross-lagged effects are equated across time, more 

precise estimates can be obtained—as more information tends to yield smaller standard errors. A 

comprehensive simulation study is required to gain insight into the effects of fewer versus more 

waves of data and at what point accurate autoregressive and cross-lagged effects may be 

obtained through fewer equality constraints. From a theoretical perspective, for example, a 

researcher may hypothesize linkages among changes that begin after a critical point in the 
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study—thus, it might be ideal to have equality constraints on parameters before that point but not 

after. Other unknown aspects of the CL-LCS model include its power to find effects among 

changes as a function of the reliability of the measures, as well as its ability to discriminate 

between processes linked in terms of level/status versus processes truly linked through within-

person changes. It would be interesting to run a simulation with two population-generating 

models (the CLPM and the CL-LCS model), to see how parameter estimates, significance tests, 

and fit indices come out when the wrong model is fit to the data. It would also be interesting in 

future research to compare the CL-LCS model results to those from a latent curve model with 

structured residuals (LCM-SR; Curran, Howard, Bainter, Lane & McGinley, 2014). In the 

current context, the latter model would capture how an individual’s deviation from his/her 

average level on, say, depression, predicts subsequent deviations from his/her average cognitive 

ability level. There are subtle yet distinct differences in the types of hypotheses these models 

map onto; only the CL-LCS model explicitly models change-to-change relations. Moreover, both 

approaches separate the between-person effects from what is of primary interest—the within-

person effects. The CL-LCS model accomplishes this through differencing, whereas the LCM-

SR does so through estimating mean and variance parameters of the trajectory (similar to de-

trending).  

 Finally, as it was presented here, the CL-LCS model is suited for observational data, yet 

mediation hypotheses are fundamentally about causation. The most fool-proof methods for 

understanding cause and effect rely on experimental manipulation (Shadish, Cook, & Campbell, 

2002). A full discussion of the relative strengths and weaknesses of experimental versus 

observational designs in psychology (e.g., external versus internal validity) is beyond the scope 

of the current work, but there is—without question—great value in using experimental designs 
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for assessing mediation (Spencer, Zanna, & Fong, 2005; MacKinnon & Fairchild, 2009; 

Preacher, 2015). Longitudinal, experimental designs for studying mediation may be the best 

course of action for ruling out equivalent models (e.g., MacCallum et al., 1993). Another future 

direction for the CL-LCS model involves outlining how this model may be applied to data 

collected in the context of an experiment.  

In summary, the newly developed CL-LCS model allows for tests of change-to-change 

hypotheses, which cannot be accomplished by the causal steps approach or the CLPM. 

Moreover, the CL-LCS model overcomes important limitations of both the CLPM and the LCS-

MM. This project certainly does not address all aspects of the CL-LCS model. However, it does 

represent a solid first step to better match psychological theories of within-person change with an 

appropriate modeling technique, particularly when those theories are focused on uncovering 

mechanisms by which relations among changes operate.  
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Table 1.  
Unstandardized Results: CL-LCS Model, No Linear Trend Simulation 
 

Parameter Population  Estimate SE 
Autoregressions 

   ∆DEP_t ON ∆DEP_t-1 0.30 0.3 0.006 
∆COG_t ON ∆COG_t-1 -0.40 -0.395 0.004 
∆DIS_t ON ∆DIS_t-1 0.20 0.197 0.006 
Cross Construct Regressions 

	 	∆COG_t ON ∆DEP_t-1 -0.20 -0.201 0.003 
∆DIS_t ON ∆COG_t-1 0.30 0.302 0.004 
Exogenous Covariances 

   LDEP1, ∆DEP1 -0.40 -0.405 0.007 
LDEP1, LCOG1 -0.30 -0.296 0.005 
LDEP1, LDIS1 0.25 0.251 0.005 
LDEP1, ∆COG1 -0.08 -0.082 0.005 
LDEP1, ∆DIS1 0.10 0.091 0.005 
∆DEP1, LCOG1 -0.10 -0.098 0.005 
∆DEP1, LDIS1 0.10 0.094 0.005 
∆DEP1, ∆COG1 -0.30 -0.298 0.006 
∆DEP1, ∆DIS1 0.25 0.268 0.005 
LCOG1, LDIS1 0.40 0.401 0.004 
LCOG1, ∆COG1 -0.20 -0.191 0.006 
LCOG1, ∆DIS1 -0.15 -0.152 0.005 
LDIS1, ∆COG1 -0.20 -0.193 0.005 
LDIS1, ∆DIS1 -0.10 -0.105 0.006 
∆COG1, ∆DIS1 -0.20 -0.207 0.005 
Intercepts  

   MV_DEP1 0.00 -0.004 0.004 
MV_DEP2 0.00 0 0.004 
MV_DEP3 0.00 0 0.005 
MV_DEP4 0.00 0.008 0.006 
MV_COG1 0.00 -0.006 0.004 
MV_COG2 0.00 -0.004 0.004 
MV_COG3 0.00 -0.007 0.005 
MV_COG4 0.00 -0.002 0.005 
MV_DIS1 0.00 -0.011 0.004 
MV_DIS2 0.00 -0.007 0.005 
MV_DIS3 0.00 -0.008 0.005 
MV_DIS4 0.00 -0.003 0.006 
Variances 
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LDEP1 1.00 1.003 0.008 
LCOG1 1.00 0.993 0.007 
LDIS1 1.00 1.003 0.007 
∆DEP1 1.00 1.003 0.011 
∆COG1 1.00 0.993 0.01 
∆DIS1 1.00 1.01 0.01 
Residual Variances 

   MV_DEP1 0.64 0.638 0.004 
MV_COG1 0.36 0.362 0.004 
MV_DIS1 0.36 0.358 0.003 
∆DEP_t 0.49 0.496 0.008 
∆COG_t 0.42 0.419 0.006 
∆DIS_t 0.25 0.248 0.006 
 
*note: DEP = depression; COG = cognitive health; DIS = disability; trailing numbers indicate 
the time-point (e.g., 1-4); trailing “t” indicates parameter invariant across time; ∆DEP indicates 
change score for depression; LDEP indicates the status/level of depression; IDEP1 through 
IDEP4 indicates the indicator for depression at waves 1 through 4, respectively. ∆COG indicates 
change score for cognitive ability; LCOG indicates the status/level of cognitive ability; ICOG1 
through ICOG4 indicates the indicator for cognitive ability at waves 1 through 4, respectively. 
∆DIS indicates change score for disability; LDIS indicates the status/level of disability; IDIS1 
through IDIS4 indicates the indicator for disability at waves 1 through 4, respectively.  
N = 100,000. 
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Table 2.  
Unstandardized Results: CL-LCS Model, Linear Trend Simulation 
 

Parameter Population  Estimate SE 
Autoregressions 

   ∆DEP_t ON ∆DEP_t-1 0.30 0.306 0.006 
∆COG_t ON ∆OCG_t-1 -0.40 -0.399 0.004 
∆DIS_t ON ∆DIS_t-1 0.20 -0.399 0.004 
Cross Construct Regressions 

  ∆COG_t ON ∆DEP_t-1 -0.20 -0.2 0.003 
∆DIS_t ON ∆COG_t-1 0.30 0.306 0.004 
Exogenous Covariances 

   LDEP1, ∆DEP1 -0.40 -0.395 0.007 
LDEP1, LCOG1 -0.30 -0.301 0.005 
LDEP1, LDIS1 0.25 0.249 0.005 
LDEP1, ∆COG1 -0.08 -0.086 0.005 
LDEP1, ∆DIS1 0.10 0.106 0.005 
∆DEP1, LCOG1 -0.10 -0.103 0.005 
∆DEP1, LDIS1 0.10 0.107 0.005 
∆DEP1, ∆COG1 -0.30 -0.295 0.006 
∆DEP1, ∆DIS1 0.25 0.247 0.005 
LCOG1, LDIS1 0.40 0.399 0.004 
LCOG1, ∆COG1 -0.20 -0.198 0.006 
LCOG1, ∆DIS1 -0.15 -0.146 0.005 
LDIS1, ∆COG1 -0.20 -0.203 0.005 
LDIS1, ∆DIS1 -0.10 -0.097 0.006 
∆COG1, ∆DIS1 -0.20 -0.207 0.005 
Intercepts  

   MV_DEP1 10.00 10.000 0.004 
MV_DEP2 12.00 12.001 0.004 
MV_DEP3 14.00 14.000 0.005 
MV_DEP4 16.01 16.007 0.006 
MV_COG1 10.00 9.997 0.004 
MV_COG2 9.00 8.999 0.004 
MV_COG3 8.00 7.997 0.005 
MV_COG4 7.00 7.002 0.005 
MV_DIS1 10.00 9.997 0.004 
MV_DIS2 11.50 11.502 0.005 
MV_DIS3 13.00 13.001 0.005 
MV_DIS4 14.51 14.506 0.006 
Variances 
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LDEP1 1.00 1.006 0.008 
LCOG1 1.00 1.003 0.007 
LDIS1 1.00 1.007 0.007 
∆DEP1 1.00 0.991 0.011 
∆COG1 1.00 0.996 0.01 
∆DIS1 1.00 0.995 0.01 
Residual Variances 

   MV_DEP1 0.64 0.644 0.004 
MV_COG1 0.36 0.361 0.004 
MV_DIS1 0.36 0.360 0.003 
∆DEP_t 0.49 0.482 0.008 
∆COG_t 0.42 0.421 0.006 
∆DIS_t 0.25 0.243 0.006 
 
*note:  DEP = depression; COG = cognitive health; DIS = disability; trailing numbers indicate 
the time-point (e.g., 1-4); trailing “t” indicates parameter invariant across time; ∆DEP indicates 
change score for depression; LDEP indicates the status/level of depression; IDEP1 through 
IDEP4 indicates the indicator for depression at waves 1 through 4, respectively. ∆COG indicates 
change score for cognitive ability; LCOG indicates the status/level of cognitive ability; ICOG1 
through ICOG4 indicates the indicator for cognitive ability at waves 1 through 4, respectively. 
∆DIS indicates change score for disability; LDIS indicates the status/level of disability; IDIS1 
through IDIS4 indicates the indicator for disability at waves 1 through 4, respectively. 
N = 100,000. 
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Table 3.  
Descriptive Statistics: Indicators of Depression, Cognitive Ability, and Disability  
 
  1 2 3 4 5 6 7 8 9 10 11 12 

 
M 0.114 0.138 0.096 0.070 -0.002 0.056 0.004 -0.065 0.000 0.013 0.018 0.063 

 
SD 0.713 0.728 0.713 0.710 0.940 0.998 1.022 1.023 0.515 0.539 0.536 0.603 

1 IDEP1 1 
           2 IDEP2 0.52 1 

          3 IDEP3 0.50 0.53 1 
         4 IDEP4 0.51 0.53 0.56 1 

        5 ICOG1 -0.20 -0.19 -0.18 -0.19 1 
       6 ICOG2 -0.21 -0.18 -0.19 -0.21 0.47 1 

      7 ICOG3 -0.21 -0.17 -0.21 -0.18 0.47 0.47 1 
     8 ICOG4 -0.20 -0.18 -0.22 -0.22 0.47 0.49 0.48 1 

    9 IDIS1 0.39 0.34 0.34 0.34 -0.20 -0.19 -0.17 -0.19 1 
   10 IDIS2 0.34 0.40 0.35 0.34 -0.19 -0.20 -0.19 -0.23 0.57 1 

  11 IDIS3 0.29 0.33 0.41 0.35 -0.18 -0.18 -0.18 -0.21 0.48 0.55 1 
 12 IDIS4 0.33 0.35 0.36 0.43 -0.16 -0.20 -0.18 -0.23 0.46 0.54 0.61 1 

 
*note: Means, standard deviations, and correlations among indicators used in the empirical 
example. IDEP1 through IDEP4 are the factor scores for depression at waves 1 through 4, 
respectively. COG1 through ICOG4 are the factor scores for cognitive ability at waves 1 through 
4, respectively. IDIS1 through IDIS4 are the factor scores for disability at waves 1 through 4, 
respectively. N = 2,687.  
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Table 4.  
Results: Final Selected Model 
 

	
Estimate SE Estimate / SE p  

Autoregressive Effects 
    ∆DEP -0.48 0.015 -32.506 < 0.001 

∆COG -0.526 0.014 -37.554 < 0.001 
∆DIS -0.429 0.024 -18.059 < 0.001 

     Exogenous Covariances 
    LDEP1, DDEP1 -0.242 0.013 -18.971 < 0.001 

LDEP1, LCOG1 -0.136 0.015 -9.222 < 0.001 
LDEP1, LDIS1 0.144 0.01 13.708 < 0.001 
LDEP1, DCOG1 -0.01 0.016 -0.631 0.528 
LDEP1, DDIS1 -0.013 0.01 -1.213 0.225 
DDEP1, LCOG1 0.009 0.015 0.612 0.54 
DDEP1, LDIS1 -0.015 0.008 -1.844 0.065 
DDEP1, DCOG1 0.004 0.016 0.233 0.816 
DDEP1, DDIS1 0.04 0.009 4.409 < 0.001 
LCOG1, LDIS1 -0.094 0.012 -7.892 < 0.001 
LCOG1, DCOG1 -0.448 0.027 -16.847 < 0.001 
LCOG1, DDIS1 -0.001 0.013 -0.076 0.939 
LDIS1, DCOG1 -0.003 0.012 -0.245 0.807 
LDIS1, DDIS1 -0.108 0.01 -10.791 < 0.001 
DCOG1, DDIS1 -0.009 0.013 -0.702 0.482 

     Within-Time Residual 
Covariances 

    ∆DEP, ∆COG -0.018 0.009 -1.991 0.046 
∆DEP, ∆DIS 0.045 0.006 7.993 < 0.001 
∆COG, ∆DIS -0.009 0.007 -1.173 0.241 

     Intercepts 
    IDEP1 0.113 0.015 7.409 < 0.001 

IDEP2 0.138 0.016 8.588 < 0.001 
IDEP3 0.099 0.016 6.127 < 0.001 
IDEP4 0.074 0.016 4.529 < 0.001 
ICOG1 -0.001 0.02 -0.038 0.97 
ICOG2 0.056 0.022 2.51 0.012 
ICOG3 -0.005 0.023 -0.233 0.815 
ICOG4 -0.082 0.024 -3.427 0.001 
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IDIS1 0 0.01 0 < 0.001 
IDIS2 0.014 0.011 1.178 0.239 
IDIS3 0.017 0.012 1.458 0.145 
IDIS4 0.062 0.013 4.651 < 0.001 

     Variances 
    LDEP1 0.506 0.014 37.13 < 0.001 

LCOG1 0.882 0.029 30.497 < 0.001 
LDIS1 0.265 0.015 17.74 < 0.001 
DDEP1 0.504 0.02 25.704 < 0.001 
DCOG1 1 0.038 26.37 < 0.001 
DDIS1 0.24 0.015 15.54 < 0.001 

     Residual Variances 
    ∆DEP 0.354 0.011 32.233 < 0.001 

∆COG 0.792 0.023 34.783 < 0.001 
∆DIS 0.212 0.011 19.552 < 0.001 
 
*note: ∆DEP indicates change score for depression; LDEP indicates the status/level of 
depression; IDEP1 through IDEP4 indicates the indicator for depression at waves 1 through 4, 
respectively. ∆COG indicates change score for cognitive ability; LCOG indicates the status/level 
of cognitive ability; ICOG1 through ICOG4 indicates the indicator for cognitive ability at waves 
1 through 4, respectively. ∆DIS indicates change score for disability; LDIS indicates the 
status/level of disability; IDIS1 through IDIS4 indicates the indicator for disability at waves 1 
through 4, respectively. 
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Figure 1. Path diagram of one specification of Cole and Maxwell’s (2003) CLPM with latent 
variables. Direct effects from x to y omitted for simplicity.  
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(a)	  (b)  

 

Figure 2. (a) Causal steps cross-sectional model. (b) Causal steps model with temporal 
separation. For simplicity, measurement model and direct effect paths (i.e., x à y) are omitted.  
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(a)	  (b)	  

 

Figure 3. (a) Basic LCS building block with the initial level-to-change association specified as a 
regression. (b) Basic LCS building block with the initial level-to-change association specified as 
a correlation.  
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Figure 4. Path diagram of Selig and Preacher’s (2009) LCS-MM. Observed variables omitted for 
simplicity.    
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Figure 5. Path diagram of a fully mediated process using the CL-LCS. All unlabeled paths are 
fixed to 1. All exogenous variables are allowed to covary freely.  
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Figure 6. Conceptual diagram of the CL-LCS in the case of full mediation.   
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Figure 7. Random selection of 100 simulated trajectories governed by no trend across 4 waves.  
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Figure 8. Random selection of 100 simulated trajectories governed by a linear trend across 4 
waves.  
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Figure 9. Individual trajectories of a random sample of 100 HRS participants’ factor scores on 
depression over time. Dotted line represents the mean trajectory in the full sample. Darker lines 
represent overlap in trajectories.  
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Figure 10. Individual trajectories of a random sample of 100 HRS participants’ factor scores on 
cognitive ability over time.  Dotted line represents the mean trajectory in the full sample. Darker 
lines represent overlap in trajectories.  
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Figure 11. Individual trajectories of a random sample of 100 HRS participants’ factor scores on 
disability over time.  Dotted line represents the mean trajectory in the full sample. Darker lines 
represent overlap in trajectories.  
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APPENDIX A: R CODE FOR SIMULATING CL-LCS DATA 

######################################### 
#     STATIONARY (all means are zero)   #   
######################################### 
 
set.seed(6424235) 
sig = matrix(c(1, -.3, .25, -.4,-.08,  .1, 
             -.3,   1,  .4, -.1, -.2,-.15, 
             .25,  .4,   1,  .1, -.2, -.1, 
             -.4, -.1,  .1,   1,-.3, .25, 
            -.08, -.2, -.2,  -.3,  1,-.2,  
              .1,-.15, -.1,  .25, -.2, 1), byrow=TRUE, ncol=6) 
 
my.names <- c("ldep1", "lcog1", "ldis1", "ddep1", "dcog1", "ddis1") 
colnames(sig) = my.names 
 
library(MASS) 
myexogenous = mvrnorm(n = 100000, mu = rep(0,6), Sigma = sig, empirical = 
FALSE) 
mydf = data.frame(myexogenous) 
names(mydf) = my.names 
head(mydf) 
cor(mydf) 
set.seed(123) 
 
#Depression LVs 
 mydf$ldep2 = mydf$ldep1 + mydf$ddep1 
 mydf$ddep2 = .3*mydf$ddep1 + rnorm(n = 100000, sd = .7) 
 mydf$ldep3 = mydf$ldep2 + mydf$ddep2 
 mydf$ddep3 = .3*mydf$ddep2 + rnorm(n = 100000, sd = .7) 
 mydf$ldep4 = mydf$ldep3 + mydf$ddep3 
 
#Cognitive ability LVs 
 mydf$lcog2 = mydf$lcog1 + mydf$dcog1 
 mydf$dcog2 = -.4*mydf$dcog1 + ((-.2)*mydf$ddep1) + rnorm(n = 100000, sd = 
.65) 
 mydf$lcog3 = mydf$lcog2 + mydf$dcog2 
 mydf$dcog3 = -.4*mydf$dcog2 + ((-.2)*mydf$ddep2) + rnorm(n = 100000, sd = 
.65) 
 mydf$lcog4 = mydf$lcog3 + mydf$dcog3 
 
#Disability LVs 
 mydf$ldis2 = mydf$ldis1 + mydf$ddis1 
 mydf$ddis2 = .2*mydf$ddis1 + (.3*mydf$dcog1) + rnorm(n = 100000, sd = .5) 
 mydf$ldis3 = mydf$ldis2 + mydf$ddis2 
 mydf$ddis3 = .2*mydf$ddis2 + (.3*mydf$dcog2) + rnorm(n = 100000, sd = .5) 
 mydf$ldis4 = mydf$ldis3 + mydf$ddis3 
 
#Function to figure out theta-delta 
 thde = function(loading){ 
      loadsq = loading^2 
      itemvar = 1-loadsq 
      thesd = sqrt(itemvar) 
      return(thesd) 
 } 
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#Depression MVs (idep_wave#_item#) 
 mydf$idep11 = mydf$ldep1 + rnorm(n = 100000, sd = .8) 
 mydf$idep21 = mydf$ldep2 + rnorm(n = 100000, sd = .8) 
 mydf$idep31 = mydf$ldep3 + rnorm(n = 100000, sd = .8) 
 mydf$idep41 = mydf$ldep4 + rnorm(n = 100000, sd = .8) 
 
#Cognitive ability MVs (icog_wave#_item#) 
 mydf$icog11 = mydf$lcog1 + rnorm(n = 100000, sd = .6) 
 mydf$icog21 = mydf$lcog2 + rnorm(n = 100000, sd = .6)  
 mydf$icog31 = mydf$lcog3 + rnorm(n = 100000, sd = .6) 
 mydf$icog41 = mydf$lcog4 + rnorm(n = 100000, sd = .6)  
 
#Disability MVs (idis_wave#_item#) 
 mydf$idis11 = mydf$ldis1 + rnorm(n = 100000, sd = .6) 
 mydf$idis21 = mydf$ldis2 + rnorm(n = 100000, sd = .6) 
 mydf$idis31 = mydf$ldis3 + rnorm(n = 100000, sd = .6) 
 mydf$idis41 = mydf$ldis4 + rnorm(n = 100000, sd = .6) 
 
head(mydf) 
 
#Export file for Mplus 
which(names(mydf)=="idep11") 
mymv = mydf[,22:33] 
 
write.table(mymv, file = "apr24_stationary_largeN.csv", col.names = F, 
row.names = F, sep=",") 
names(mymv) 
 
 
######################################### 
#     NON-STATIONARY (LINEAR TREND)     # 
######################################### 
 
set.seed(2674663) #different seed from above 
 
sig = matrix(c(1, -.3, .25, -.4,-.08,  .1, 
             -.3,   1,  .4, -.1, -.2,-.15, 
             .25,  .4,   1,  .1, -.2, -.1, 
             -.4, -.1,  .1,   1,-.3, .25, 
            -.08, -.2, -.2,  -.3,  1,-.2,  
              .1,-.15, -.1,  .25, -.2, 1), byrow=TRUE, ncol=6) 
 
my.names <- c("ldep1", "lcog1", "ldis1", "ddep1", "dcog1", "ddis1") 
colnames(sig) = my.names 
 
#library(Matrix) 
#sig2 = nearPD(sig, corr = TRUE, keepDiag = T, eig.tol = .001) 
#sig2 = sig2$mat 
library(MASS) 
myexogenous = mvrnorm(n = 100000, mu = rep(0,6), Sigma = sig, empirical = 
FALSE) 
mydf = data.frame(myexogenous) 
names(mydf) = my.names 
head(mydf) 
 
set.seed(123) 
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#Add means to relevant variables outside of mvrnorm 
 mydf$ldep1 = mydf$ldep1 + 10 
 mydf$lcog1 = mydf$lcog1 + 10 
 mydf$ldis1 = mydf$ldis1 + 10 
  
#Depression LVs (depression is increasing by 2 units every wave) 
 mydf$ldep2 = 2 + mydf$ldep1 + mydf$ddep1 
 mydf$ddep2 = .3*mydf$ddep1 + rnorm(n = 100000, sd = .7) 
 mydf$ldep3 = 2 + mydf$ldep2 + mydf$ddep2 
 mydf$ddep3 = .3*mydf$ddep2 + rnorm(n = 100000, sd = .7) 
 mydf$ldep4 = 2 + mydf$ldep3 + mydf$ddep3 
 
#Cognitive ability LVs (cogab is declining by 1 unit every wave --
irrespective of depression) 
 mydf$lcog2 = -1 + mydf$lcog1 + mydf$dcog1 
 mydf$dcog2 = -.4*mydf$dcog1 + ((-.2)*mydf$ddep1) + rnorm(n = 100000, sd = 
.65) 
 mydf$lcog3 = -1 + mydf$lcog2 + mydf$dcog2 
 mydf$dcog3 = -.4*mydf$dcog2 + ((-.2)*mydf$ddep2) + rnorm(n = 100000, sd = 
.65) 
 mydf$lcog4 = -1 + mydf$lcog3 + mydf$dcog3 
 
#Disability LVs (disability is increasing by 1.5 units every wave --
irrespective of cogab and dep) 
 mydf$ldis2 = 1.5 + mydf$ldis1 + mydf$ddis1 
 mydf$ddis2 = .2*mydf$ddis1 + (.3*mydf$dcog1) + rnorm(n = 100000, sd = .5) 
 mydf$ldis3 = 1.5 + mydf$ldis2 + mydf$ddis2 
 mydf$ddis3 = .2*mydf$ddis2 + (.3*mydf$dcog2) + rnorm(n = 100000, sd = .5) 
 mydf$ldis4 = 1.5 + mydf$ldis3 + mydf$ddis3 
 
#Function to figure out theta-delta 
 thde = function(loading){ 
      loadsq = loading^2 
      itemvar = 1-loadsq 
      thesd = sqrt(itemvar) 
      return(thesd) 
 } 
 
#Depression MVs (idep_wave#_item#) 
 mydf$idep11 = mydf$ldep1 + rnorm(n = 100000, sd = .8) 
 mydf$idep21 = mydf$ldep2 + rnorm(n = 100000, sd = .8) 
 mydf$idep31 = mydf$ldep3 + rnorm(n = 100000, sd = .8) 
 mydf$idep41 = mydf$ldep4 + rnorm(n = 100000, sd = .8) 
 
#Cognitive ability MVs (icog_wave#_item#) 
 mydf$icog11 = mydf$lcog1 + rnorm(n = 100000, sd = .6) 
 mydf$icog21 = mydf$lcog2 + rnorm(n = 100000, sd = .6)  
 mydf$icog31 = mydf$lcog3 + rnorm(n = 100000, sd = .6) 
 mydf$icog41 = mydf$lcog4 + rnorm(n = 100000, sd = .6)  
 
#Disability MVs (idis_wave#_item#) 
 mydf$idis11 = mydf$ldis1 + rnorm(n = 100000, sd = .6) 
 mydf$idis21 = mydf$ldis2 + rnorm(n = 100000, sd = .6) 
 mydf$idis31 = mydf$ldis3 + rnorm(n = 100000, sd = .6) 
 mydf$idis41 = mydf$ldis4 + rnorm(n = 100000, sd = .6) 
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which(names(mydf)=="idep11") 
mymv.nonst = mydf[,22:33] 
 
#Export file for Mplus 
write.table(mymv.nonst, file = "apr24_nonstationary_largeN.csv", col.names = 
F, row.names = F, sep=",") 
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APPENDIX B: EXAMPLE MPLUS CODE FOR FITTING CL-LCS MODEL 

TITLE: One-Indicator Model - Masters - Large N; 
DATA: FILE IS "Z:\apr24_nonstationary_largeN.csv"; 
VARIABLE:   NAMES = 
    idep11 idep21 idep31 idep41 
    icog11 icog21 icog31 icog41 
    idis11 idis21 idis31 idis41; 
 
MISSING = .; 
 
USEVARIABLES = 
    idep11 idep21 idep31 idep41 
    icog11 icog21 icog31 icog41 
    idis11 idis21 idis31 idis41; 
 
ANALYSIS:    
ESTIMATOR = ML; 
ITERATIONS = 15000; 
MODEL = NOCOVARIANCES; 
 
MODEL: 
      !Make all MVs LVs 
      !Depression 
           ldep1 BY idep11@1; 
           ldep2 BY idep21@1; 
           ldep3 BY idep31@1; 
           ldep4 BY idep41@1; 
      !Cog health 
           lcog1 BY icog11@1; 
           lcog2 BY icog21@1; 
           lcog3 BY icog31@1; 
           lcog4 BY icog41@1; 
      !Disability 
           ldis1 BY idis11@1; 
           ldis2 BY idis21@1; 
           ldis3 BY idis31@1; 
           ldis4 BY idis41@1; 
 
      !LVs' variances 
           ldep1*; ldep2@0; ldep3@0; ldep4@0; 
           lcog1*; lcog2@0; lcog3@0; lcog4@0; 
           ldis1*; ldis2@0; ldis3@0; ldis4@0; 
 
      !Estimate res vars and set to equality to identify 
           idep11 idep21 idep31 idep41 (RV1); 
           icog11 icog21 icog31 icog41 (RV2); 
           idis11 idis21 idis31 idis41 (RV3); 
 
      !Deltas 
           ddep1 BY ldep2@1; 
           ddep2 BY ldep3@1; 
           ddep3 BY ldep4@1; 
 
           dcog1 BY lcog2@1; 
           dcog2 BY lcog3@1; 
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           dcog3 BY lcog4@1; 
 
           ddis1 BY ldis2@1; 
           ddis2 BY ldis3@1; 
           ddis3 BY ldis4@1; 
 
      !Deltas' variances 
           ddep1*; dcog1*; ddis1*; 
 
           ddep2*(V1); 
           ddep3*(V1); 
 
           dcog2*(V2); 
           dcog3*(V2); 
 
           ddis2*(V3); 
           ddis3*(V3); 
 
      !LV Covariances 
          ldep1 WITH ddep1 lcog1 ldis1 dcog1 ddis1; 
          ddep1 WITH lcog1 ldis1 dcog1 ddis1; 
          lcog1 WITH ldis1 dcog1 ddis1; 
          ldis1 WITH dcog1 ddis1; 
          dcog1 WITH ddis1; 
 
       !Perfect (1) Autoregressive effects 
          ldep4 ON ldep3@1; 
          ldep3 ON ldep2@1; 
          ldep2 ON ldep1@1; 
 
          lcog4 ON lcog3@1; 
          lcog3 ON lcog2@1; 
          lcog2 ON lcog1@1; 
 
          ldis4 ON ldis3@1; 
          ldis3 ON ldis2@1; 
          ldis2 ON ldis1@1; 
 
      !Change predicting change (Autoregressions) 
          ddep2 ON ddep1(B1); 
          ddep3 ON ddep2(B1); 
 
          dcog2 ON dcog1(B2); 
          dcog3 ON dcog2(B2); 
 
          ddis2 ON ddis1(B3); 
          ddis3 ON ddis2(B3); 
 
      !Change predicting change (Crosslags) 
          dcog2 ON ddep1(B4); 
          dcog3 ON ddep2(B4); 
 
          ddis2 ON dcog1(B5); 
          ddis3 ON dcog2(B5); 
 
      !Intercepts 
        [idep11 idep21 idep31 idep41]; 
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        [icog11 icog21 icog31 icog41]; 
        [idis11 idis21 idis31 idis41]; 
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ENDNOTES 
 
1 More recently, some researchers have argued that it is not necessary to test the y on x regression 
because the effect size may be small or suppression effects may be operating (Shrout & Bolger, 
2002). 
 
2 The reason these are indistinguishable explanations can be illustrated most simply in the 
context of bivariate regression. Consider fitting two models: Model A treats X as the predictor 
and Y as the outcome, and Model B treats Y as the predictor and X as the outcome. Model A and 
Model B will yield the exact same R2 and provide the same fit to the data.  
 
3 With three waves of data, there is exactly one time-specific indirect effect, which is equivalent 
to the overall indirect effect; in this case, there is little need to distinguish between the two. 
 
4 To verify that the parameters are in fact unbiased, one would need to include multiple 
replications. However, this was not the purpose of the current project.  
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