
Generalized fiducial inference for mixed linear models

Jessi Cisewski

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Statistics and Operations Research.

Chapel Hill
2012

Approved by:

Jan Hannig

Chuanshu Ji

Shu Lu

Haipeng Shen

Richard L. Smith



c© 2012
Jessi Cisewski

ALL RIGHTS RESERVED

ii



ABSTRACT
JESSI CISEWSKI: Generalized fiducial inference for mixed linear models.

(Under the direction of Jan Hannig.)

Fiducial inference was proposed by R.A. Fisher in 1930 to overcome what he perceived as

a deficiency in Bayesian methodology – assuming a prior distribution without prior knowl-

edge. Due to some controversy, fiducial inference quickly fell into disfavor by the statistical

community and was left undeveloped by Fisher. There were several attempts over the sub-

sequent decades to revive fiducial inference. Eventually a connection was drawn between

fiducial inference and generalized inference, called generalized fiducial inference (GFI). Under

the GFI paradigm, inference is performed by considering the generalized fiducial distribution

on the parameter space with a flexibility similar to a posterior distribution in the Bayesian

framework.

GFI can be thought of as a transference of probability from the model space to the param-

eter space, and a generalized fiducial distribution is defined for the unknown parameters of the

model. In this dissertation, we apply the generalized fiducial framework to the normal linear

mixed model setting and to logistic models with mixed effects. GFI is a computationally-

based mode of inference, and we develop sequential Monte Carlo algorithms to obtain samples

from the generalized fiducial distribution on the parameter space. In the normal linear mixed

model setting, the proposed method is found to be competitive or better when evaluated based

on frequentist criteria of empirical coverage and average length of confidence intervals. In the

logistic setting with mixed effects setting, the simulation study reveals that the generalized

fiducial approach tends to have correct empirical coverage, along with providing finite con-

fidence intervals in cases where competing methods have disjoint, infinite, or non-calculable

intervals.

For the final part of this dissertation, we developed a methodology for classifying an un-

known powder as a particular harmful substance (Bacillus anthracis spores) or not. A wavelet

transformation was incorporated to allow for possible thresholding or standardization, and
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then a linear model technique using the known elemental structure of the harmful substance

was used for dimension reduction, and finally a support vector machine approach was em-

ployed for the final classification of the substance. The method was applied to real-data

produced from a laser-induced breakdown spectroscopy device.

Keywords: generalized fiducial inference; normal linear mixed model; random effects; vari-

ance components; logistic regression; sequential Monte Carlo; variance component; classi-

fication; support vector machine; wavelet; dimension reduction; laser induced breakdown

spectroscopy
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“Praise the LORD.

Praise God in his sanctuary; praise him in his mighty heavens.

Praise him for his acts of power; praise him for his surpassing greatness.

Praise him with the sounding of the trumpet, praise him with the harp and lyre,

praise him with timbrel and dancing, praise him with the strings and pipe,

praise him with the clash of cymbals, praise him with resounding cymbals.

Let everything that has breath praise the LORD.

Praise the LORD.” Psalm 150 (NIV)
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Chapter 1

Background

1.1 Introduction

This dissertation includes three main contributions discussed in Chapters 2, 3, and 4. In

Chapters 2 and 3, the focus is on using the framework of generalized fiducial inference in

the normal linear mixed model and logistic mixed model settings. Because generalized fidu-

cial inference is a computationally-based methodology, the development of computational

algorithms was required. For both model forms, sequential Monte Carlo algorithms were de-

signed, implemented and tested. Generalized fiducial inference and sequential Monte Carlo

methodology are introduced in Chapter 1.

Chapter 4 is not related to generalized fiducial inference and can be read independently

of the other chapters. The methodology developed in Chapter 4 was motivated and derived

using real data provided by researchers at the US Environmental Protection Agency.

Supplementary material is included for completeness in appendices.

Except where noted or obvious, the notational convention that will be used for matrices,

vectors, and single values will be, respectively, bold and capital letters for matrices, capital

letters for vectors, and lowercase letters for single values (e.g. A, A, a). The acronym ‘i.i.d.’

will be used for independent and identically distributed random variables.



1.2 Generalized fiducial inference

Fiducial inference was introduced by R.A. Fisher (Fisher, 1930) to rectify what he saw as a

weakness in the Bayesian philosophy when a prior distribution is assumed without sufficient

prior knowledge. In Fisher (1930), Fisher writes that inverse probability (i.e. posterior

probability) is “fundamentally false and devoid of foundation.” Fisher expounds his concerns

with the idea of noninformative priors when he wrote the following paragraph in the same

manuscript:

The underlying mental cause is not to be confused with the various secondary

errors into which one is naturally led in deriving a formal justification of a false

position, such as for example Laplace’s introduction into his definition of prob-

ability of the unelucidated phrase “equally possible cases” which, since we must

be taken to know what cases are equally possible before we know that they are

equally probable, can only lead to the doctrine, known as the “doctrine of in-

sufficient reason,” that cases are equally probably (to us) unless we have reason

to think the contrary, and so reduces all probability to a subjective judgement.

[Emphasis Fisher’s]

While Fisher made several attempts at justifying his definition of fiducial inference (Fisher,

1933, 1935), it was not developed to the point of acceptance by the statistical community.

In particular, fiducial inference fell into disrepute when it was discovered that some of the

properties Fisher claimed did not hold (Lindley, 1958; Zabell, 1992). The main concerns

with Fisher’s fiducial inference were related to its nonexactness (in the frequentist sense)

and nonuniqueness. Over the subsequent decades, a number of other papers appeared with

attempts to revitalize fiducial inference by incorporating more structure (Dempster, 1968;

Dawid and Stone, 1982; Fraser, 1961b,a, 1966, 1968; Barnard, 1995), but still the ideas did

not seem to fully catch the attention of the statistical community.

In Tsui and Weerahandi (1989), generalized p-values were introduced generalizing the

notion of classical p-values leading to the development of generalized inference. Generalized

inference generalizes the notions of classical statistics providing a framework that allows
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classical approaches in problems that were otherwise not manageable in that framework (e.g.

in the presence of nuisance parameters). More recently, Hannig et al. (2006) connects Fisher’s

fiducial inference to generalized inference introduced in Tsui and Weerahandi (1989) and

Weerahandi (1993). Hannig et al. (2006) defines a subclass of generalized pivotal quantities,

which the call fiducial generalized pivotal quantities (FGPQ), outline a recipe for constructing

confidence intervals using FGPQ’s, and prove the asymptotic exactness of these intervals.

A thorough introduction to generalized fiducial inference can be found in Hannig (2009b).

The main idea of fiducial inference is a transference of randomness from the model space to the

parameter space. For a simple illustration of the fiducial argument, let y be a realization of a

random variable Y ∼ N(µ, 1) (where N(µ, 1) represents a normal distribution with unknown

mean µ and standard deviation 1). The random variable Y can be represented as Y = µ+Z

where Z ∼ N(0, 1). Given the observed value y, the fiducial argument solves this equation

for the unknown parameter µ to get µ = y − Z (e.g. suppose y = 4.8, then µ = 4.8 − Z

would suggest µ ∼ N(4.8, 1)). While the actual value of the realization of Z is unknown,

the distribution of Z is fully known and can be used to frame a distribution on the unknown

parameter µ. This distribution on µ is called the fiducial distribution.

The generalized fiducial recipe starts with a data-generating equation, also referred to as

the structural equation, which defines the relationship between the data and the parameters.

Let Y be a random vector indexed by parameter(s) ξ ∈ Ξ, then assume Y can be represented

as

Y = G(ξ, U), (1.1)

where G is a jointly measurable function indicating the structural equation, and U is a random

element with a fully known distribution (void of unknown parameters). In Chapter 2, the

function G will take the form of a normal linear mixed model, and the random components

U will be standard normal random variables (see Equation (2.2)). Following the fiducial

argument, we define a set-valued function, the inverse image of G, as Q(y,u) = {ξ : y =

G(ξ,u)}, where y is the observed data vector and u is an arbitrary realization of U . The set-

function Q(y,u) is then used to define the fiducial distribution on the parameter space. Since
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the distribution of U is completely known, independent copies of U , U∗, can be generated to

produce a random sample of Q(y,u∗) for the given data y (where u∗ is a realization of U∗).

There are several sources of nonuniqueness in this framework. In particular, nonuniqueness

could occur if Q has more than one element, if Q is empty, or due to the definition of the

structural equation. Nonuniqueness due to the definition of the structural equation will not

be addressed here as we assume the form of the model is known (i.e. normal linear mixed

model and logistic regression with mixed effects). To resolve the case when there is more than

one element in Q, we can define a rule, call it V , for selecting an element of Q. Furthermore,

since the parameters ξ are fixed but unknown, there must be some realization of the random

variable U such that y = G(ξ,u) has occurred (i.e. {Q(y,u) 6= ∅}). The generalized fiducial

distribution of ξ is defined as

V (Q(y, U∗)) | {Q(y, U∗) 6= ∅}. (1.2)

A random element having the distribution of (1.2) is denoted as Rξ and called the gen-

eralized fiducial quantity (GFQ). The generalized fiducial density of Rξ is defined in Hannig

(2009b) assuming the structural equation of (1.1) can be factorized as Yi = gi(ξ,U) for

i = 1, . . . , n, and letting G = (g1, . . . , gn). If p is the dimension of the unknown parameter(s)

vector ξ, define Yi = (Yi1 , . . . , Yip) and Ui = (Ui1 , . . . , Uip) so that Yi = Gi(ξ,Ui) (where

i = (i1, . . . , ip) is an arbitrary selection of p of n equations, with Yic , Uic and Gic representing

the components of Y, U and G, respectively, not selected). Assuming the Gi are invertible

and differentiable for each Ui, then the generalized fiducial density is defined as

fRξ(ξ) =
fY(y|ξ)J(y, ξ)∫

Ξ fY(y|ξ′)J(y, ξ′)∂ξ′
, (1.3)

where

J(y, ξ) =
(
n

p

)−1 ∑
i=(i1,...,ip)

∣∣∣∣∣ det
(
∂
∂ξG

−1
i (yi, ξ)

)
det
(

∂
∂yi

G−1
i (yi, ξ)

)∣∣∣∣∣.
Note that p ≤ n equations of G are selected to solve the structural equation for ξ, and the

remaining n − p equations of G are then conditioned on the first p equations being correct.
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Since the p equations selected are arbitrary, J(y, ξ) is an average over all possible selections

of p equations. The theoretical validation of equation (1.3) is presented in Hannig (2009b).

Though the form of the generalized fiducial distribution displayed in Equation (1.3) is visibly

similar to a Bayesian posterior distribution with the J(y, ξ) term acting as a prior, J(y, ξ)

would need to be decomposable into two measurable functions: one a function only of the

data (i.e. independent of the parameters), and the other a function of the parameters. The

decomposition does not hold in general. In fact, Grundy (1956) provides a one-parameter

example where no prior distribution can be found that would produce the fiducial distribution.

Defining the generalized fiducial distribution as (1.2) leads to a potential source of

nonuniqueness due to conditioning on events with zero probability (i.e. if P ({Q(y,u) 6=

∅}) = 0). This is known as the Borel Paradox (e.g. Casella and Berger, 2002). Fortunately

this can be resolved by noting that most data has some degree of known uncertainty due, for

example, to the resolution of the instrument collecting the data or computer storage. Because

of this, instead of considering the value of a datum, an interval around the value can be used

(Hannig, 2009a; Hannig et al., 2007). For example, suppose the datum value is y = 1.632

meters measuring the height of a woman. If the resolution of the instrument used to measure

the woman is 0.001 m (i.e. 1 mm), then her actual height is between 1.631 m and 1.632 m

(or between 1.632 m and 1.633 m depending on the practice of the measurer).

By considering interval data, the issue of nonuniqueness due to the Borel Paradox is

resolved since the probability of observing our data will never be zero since P (Q((a, b], U∗) 6=

∅) ≥ P (Y ∈ (a, b]) > 0 where a < b are the endpoints of the interval.

To illustrate how discretized data will be used in the context of generalized fiducial infer-

ence, consider the following structural equation

Y = µ+ σZ

where Z ∼ N(0, 1), and (µ, σ) are unknown parameters. Suppose we observe Y = (y1, y2, y3)′ =

(0.32, 0.75, 1.37)′, but due to the precision of the measuring device, we actually only know

the following:
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0.3 < y1 ≤ 0.4, 0.7 < y2 ≤ 0.8, 1.3 < y3 ≤ 1.4.

To find the set Q, we simulate Z = (z1, z2, z3)′ such that

0.3 < µ+ σz1 ≤ 0.4, 0.7 < µ+ σz2 ≤ 0.8, 1.3 < µ+ σz3 ≤ 1.4.

Since this is a system of three equations with two unknowns (p = 2), we can use the first

two inequalities to simulate any values for z1 and z2 (with the only requirement that z1 6= z2,

which has probability zero), and then generate z3 so that Q is non-empty. Figure 1.1(a)

and Figure 1.1(b) illustrate this idea geometrically. Figure 1.1(a) does not produce a viable

sample of Z as (z1, z2, z3) does not satisfy the system of inequalities. The generated of Z’s in

Figure 1.1(b) does satisfy the system of inequalities.
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Figure 1.1: (a) The solid lines reflect the discretized data values for x1 = 0.32 and x2 = 0.75 with
sampled standard normal values z1 = −0.9040 and z2 = −0.2544 and z3 = 1.8080, and the
set Q is the bold parallelogram formed by the intersection of these two sets of parallel
lines. (b) The setting is the same as (a) except with a new sample of (z1, z2, z3) =
(−0.5115,−0.2022, 0.2880), which does solve the system of inequalities. The bold interior
polygon is the new set Q.

Asymptotic results for interval data using generalized fiducial inference can be found in

Hannig (2009a). Asymptotic theory was addressed for the case when the sample size is fixed,

but the fatness (i.e. the width of the interval) decreases to zero, and when the fatness is

fixed, but the sample size increases. An assumption in both settings is that the data are

independent.
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Interval data are not explicitly required for generalized fiducial inference, but is useful

in the proposed setting of normal linear mixed models. Generalized fiducial inference has a

number of other applications in various settings such as wavelet regression (Hannig and Lee,

2009), confidence intervals for extremes (Wandler and Hannig, In press), metrology (Hannig

et al., 2007), and variance component models (E et al., 2008), which applies the generalized

fiducial framework to unbalanced normal mixed linear models with two variance components.

1.3 Sequential Monte Carlo methods

As previously noted, generalized fiducial inference is a computationally-based mode of in-

ference, and we employ sequential Monte Carlo (SMC) methods in Chapters 2 and 3. The

framework of SMC is introduced in this section. When integrals of interest are very complex

or unsolvable by analytical methods, simulation-based methods can be used. SMC, or particle

filters, is a collection of simulation methods used to sample from an evolving target distri-

bution (i.e. the distribution of interest) accomplished by propagating a system of weighted

particles through time or some other index. A solid introduction and applications of SMC

methods can be found in Doucet et al. (2001). There are many dimensions to the theory

and uses of SMC algorithms (e.g. Chopin (2002, 2004); Del Moral et al. (2006); Douc and

Moulines (2008); Kong et al. (1994); Liu and Chen (1998); Liu and West (2001) ), but a basic

introduction to the methodology is presented below.

SMC has its roots in importance sampling (IS). Given a (possibly vector) random variable

Z with probability density function π supported on the set Z, it is often of interest to find

the expected value of some measurable function φ, which is

Eπ(φ(Z)) =
∫
z∈Z

φ(z)π(z)dz. (1.4)

If this integral cannot be solved analytically, but a random sample from π is obtainable, one

can estimate the expected value in (1.4) under some assumptions by invoking the law of large
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numbers using the estimator

Êπ(φ(Z)) =
1
N

N∑
J=1

φ(z(J))

where z(J) is sampled from π. Then as N −→∞, Êπ(φ(Z)) −→ Eπ(φ(Z)). If it was not easy,

or possible, to directly sample from π, IS can be used to generate the sample.

The idea of IS is to find a proposal density π̃ such that it is possible to obtain a random

sample from it, and then re-weight the values back to the target density π using the following

relation

Eπφ(Z) =
∫
z∈Z

φ(z)π(z)dz =
∫
z∈Z

φ(z) · π(z)
π̃(z)

· π̃(z)dz = Eeπ(φ(Z) · π(Z)
π̃(Z)

)
,

which can then be approximated by

Êeπφ(z) =
∑N

J=1 φ(z(J))W (J)∑N
K=1W

(K)
,

where W (J) are the unnormalized importance weight π(zJ))eπ(z(J))
, J = 1, . . . , N .

An acceptable proposal distribution is one such that its support contains the support

of the target distribution, it should have the same shape as the target distribution, and, of

course, it should be possible to obtain a random sample from it. It can also desirable for the

proposal distribution to have heavier tails than the target distribution (Geweke, 1989).

If the data arrive sequentially, IS would not be an efficient method since all the importance

weights would need to be recomputed upon the arrival of new data. Sequential importance

sampling (SIS) is an iterative alternative to IS, and allows the importance weights to be

updated sequentially. The framework is slightly more complicated than presented above for

IS. Consider the case where we have data arriving sequentially as Y1:t = (y1, . . . , yt)T with an

underlying, unobservable signal Z0:t = (z0, . . . , zt)T .1 (For simplicity, think of yi = µ + σzi

where zi ∼ N(0, 1), then the vector Y1:t is the observed data, but the Z1:t is unobservable.)

The goal, then is to obtain a sample of the Z0:t given the observable Y1:t, and hence target the
1The hidden process Z0:t starts with 0 rather than 1 in order to initiate the process. This is often used in

the Bayesian context, but will not be necessary later for the proposed generalized fiducial method.
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distribution π1:t(Z0:t|Y1:t). If it is not possible to sample from π1:t, then a proposal distribution

π̃1:t can be selected. The proposal distribution is defined in a manner so that the importance

weights π1:t/π̃1:t can be updated recursively with the arrival of a new data point yt+1. In the

IS setting, the unnormalized importance weight at time t for particle J = 1, . . . , N would be

written

W1:t(Z
(J)
0:t ) =

π1:t(Z
(J)
0:t |Y1:t)

π̃1:t(Z
(J)
0:t |Y1:t)

.

Rather than throw out the previously generated values at each new time step, the weights can

be determined recursively by noting the following relationships. First, the target distribution

at time t+ 1, π1:t+1 can be written in terms of a marginal and conditional distribution as

π1:t+1(Z0:t+1|Y1:t+1) = π1:t(Z0:t|Y1:t) · πt+1|1:t(Zt+1|Z0:t, Y1:t).

A similar formulation can be applied to the proposal distribution, resulting in importance

weights at time t+ 1 as

W1:t+1 = W1:t ·
πt+1|1:t(Zt+1|Z0:t, Y1:t)
π̃t+1|1:t(Zt+1|Z0:t, Y1:t)

. (1.5)

The importance weights of (1.5) can be simplified even further under additional assumptions

such as if the hidden process, Z0:t, is Markovian. See the introductory chapter of Doucet

et al. (2001) for more details about this formulation. Liu and Chen (1998) also discusses the

ideas of SIS.

The generated values of Z(J)
0:t , for J = 1, . . . , N are typically referred to as particles.

With their associated normalized importances weights, {Z(J)
0:t , Ŵ

(J)
1:t }NJ=1 is called the particle

system, where Ŵ (J)
1:t = W1:t(Z

(J)
0:t )PN

K=1W1:t(Z
(K)
0:t )

.

Unfortunately, this method will fail as t increases because the importance weights de-

generate to a single particle (i.e. one particle has a normalized importance weight equal to

one, the rest zero). The degeneracy of the particle system is often measured by the effective

sample size (ESS), which is a measure of the distribution of the weights of the particles. Kong

et al. (1994) presents the ESS as having an inverse relation with the coefficient of variation of

9



the particle weights, and proved that this coefficient of variation increases as the time index

increases (i.e. as more data becomes available) in the SIS setting. The ESS at time t is often

estimated

ESSt =
( N∑
J=1

W
(J)
1:t

)2
×
( N∑
K=1

(W (K)
1:t )2

)−1
, (1.6)

with unnormalized importance weights, W1:t as defined in (1.5). The desire is for the ESS

to be as close to N as possible, but as noted above, it can drop fairly quickly to one. An

intuitive explanation of ESS, and a rejuvenation procedure can be found in Liu and Chen

(1995), which lead to sequential importance sampling resampling procedures, and ultimately

SMC methodology.

SMC builds on ideas of sequential importance sampling (SIS) by incorporating a resam-

pling step to resolve issues with the degeneracy of the particle system. Once the ESS for the

particle system has dropped below some designated threshold or at some pre-specified time,

the particle system is resampled removing inefficient particles with low weights and replicating

the particles with higher weights (Liu and Chen, 1995). There are various methods for re-

sampling with the most basic being multinomial resampling, which resamples particles based

on the normalized importance weights (see Douc et al. (2005) or Liu and Chen (1998) for a

comparison of several resampling methods). The resampling method employed throughout

the work presented in this dissertation comes from the appendix of Kitagawa (1996) due to

its computational efficiency requiring the generation of only a single random number. It is a

form of deterministic, residual resampling where a completely randomized resampling scheme

would select each resampled particle according to its importance weight. After resampling,

all the particles are assigned an importance weight of W (J)
1:t = N−1 for J = 1, . . . , N .

Examples of general SMC algorithms can be found in Del Moral et al. (2006) or Jasra et al.

(2007). The main idea of SMC methods is to iteratively target a sequence of distributions

{πt|1:t−1}t∈Z+ , where πt|1:t−1 is often some distribution based on the data available up to

time t. The algorithm comprises three main sections after the initialization step: sampling,

correction, and resampling. The sampling step arises at a new time step t when particles are

sampled from some evolving conditional proposal distribution π̃t|1:t−1. The correction step
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is concerned with the calculation of the weights and the idea of reweighting the particles to

target the desired conditional distribution at time t, πt|1:t−1. The resampling step is performed

when the ESS of the particle system falls below some desired threshold T (e.g. T = N/2).

The asymptotic correctness for SMC algorithms can be found in Chopin (2004) and Douc

and Moulines (2008).
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Chapter 2

Normal linear mixed models

2.1 Summary

While normal linear mixed modeling methods are foundational concepts introduced in any

statistical education, adequate general methods for inference involving models with more than

a few variance components are lacking, especially in the unbalanced setting. Generalized fidu-

cial inference provides a possible framework that accommodates this dearth of methodology.

Under the fabric of generalized fiducial inference along with sequential Monte Carlo methods,

we present an approach for inference for both balanced and unbalanced Gaussian linear mixed

models. We compare the proposed method to classical and Bayesian results in the literature

in a simulation study of two-fold nested models and two-factor crossed designs with an in-

teraction term. The proposed method is found to be competitive or better when evaluated

based on frequentist criteria of empirical coverage and average length of confidence intervals.

A MATLAB implementation of the proposed algorithm is available.

2.2 Introduction

Inference on parameters of normal mixed linear models has an extensive history (see Khuri

and Sahai (1985) for a survey of variance component methodology, or Chapter 2 of Searle

et al. (1992) for a summary). There are many inference methods for variance components

such as ANOVA-based methods Satterthwaite (1941, 1946); Burdick and Graybill (1992);



Hernandez et al. (1992); Hernandez and Burdick (1993); Jeyaratnam and Graybill (1980),

maximum likelihood estimation (MLE) and restricted maximum likelihood (REML) Hartley

and Rao (1967); Searle et al. (1992) along with Bayesian methods Gelman (2006); Gelman

et al. (2004); Wolfinger and Kass (2000). Many of the ANOVA-based methods become quite

complex with complicated models (e.g. due to nesting or crossing data structures), and are

not guaranteed to perform adequately when the designs become unbalanced.

With notable optimality properties for point estimation, MLE and REML methods are

less useful when it comes to confidence interval estimation for small samples because the

asymptotic REML-based confidence intervals tend to be liberal (Burch, 2011; Burdick and

Graybill, 1992; Searle et al., 1992; Khuri and Sahai, 1985). Bayesian methods, in particular,

hierarchical modeling, can be an effective resolution to complicated models, but the delicate

question of selecting appropriate prior distributions must be addressed.

There are numerous applications of normal mixed linear models related to topics such as

animal breeding studies (Burch and Iyer, 1997; E et al., 2008), multilevel studies (O’Connell

and McCoach, 2008)), longitudinal studies (Laird and Ware, 1982), but many methods do not

go beyond two variance components or are designed for a very specific setting. We propose

a solution based on generalized fiducial inference that easily allows for inference beyond two

variance components and for the general normal linear mixed model settings.

A typical form of a normal mixed linear model is

Y = Xβ + VZ + ε, (2.1)

where Y is an n×1 vector of data, X is a known n×p fixed effects design matrix, β is a p×1

vector of unknown fixed effects, VZ =
∑r−1

i=1 ViZi, where Zi is a vector of effects representing

each level of random effect i such that E(Zi) = 0 and var(Zi) = σ2
i Ili where li is the number

of levels of random effect i, Vi is the known design matrix for random effect i, and ε is an

n × 1 vector representing the error and E(ε) = 0 and var(ε) = σ2
ε In. Note that there are r

total random components in this model. It is often assumed that Z and ε are independent,
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Z ∼ N(0,D), where

D =


σ2

1 · Il1
. . .

σ2
r−1 · Ilr−1

 ,

and ε ∼ N(0, σ2
ε In), thus, Y ∼ N(Xβ,

∑r−1
i=1 σ

2
iViVT

i + σ2
ε In).

An unbalanced design occurs when the number of observations, nij , j = 1, . . . , li and

i = 1, . . . , r, falling within each level of a given effect are not all equal (nij 6= nik for some

j 6= k with j, k = 1, . . . , li).

The focus of this chapter is the construction of confidence intervals for the unknown pa-

rameters of (2.1), with emphasis on the variance components σ2
i for i = 1, . . . , r − 1 and σ2

ε .

Inferences are derived from the generalized fiducial distributions of the unknown parameters,

and we propose a sequential Monte Carlo (SMC) algorithm to obtain these samples. Like a

Bayesian posterior without assuming a prior, this procedure produces a distribution on the

parameter space. We evaluate the quality of the simulated generalized fiducial distribution

based on the quality of the confidence intervals. We introduce the proposed method using

a simple model with two unknown parameters, then explain how it generalizes to all nor-

mal linear mixed models, and state and prove a theorem concluding the convergence of the

algorithm. To demonstrate small sample performance, we perform a simulation study on

two different types of models (two-fold nested models and two-factor cross-classification with

interaction models), and include a real-data application for each model.

2.3 Method

In this section, we discuss how the generalized fiducial framework introduced in Section 1.2

can be applied to the normal linear mixed model setting. The proposed generalized fiducial

approach is designed specifically for interval data (e.g. due to the measuring instrument’s

resolution, rounding for storage on a computer, or bid-ask spread in financial data). There are

several reasons to consider interval data. First, there are many examples where it is critical

(or required per the regulations outlined in GUM (1995)) to incorporate all known sources of
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uncertainty (e.g. Elster, 2000; Frenkel and Kirkup, 2005; Hannig et al., 2007; Lira and Woger,

1997; Taraldsen, 2006; Willink, 2007). Secondly, our simulation results for the normal linear

mixed model show that even when considering this extra source of uncertainty, the proposed

method is competitive or better than classical and Bayesian methods that assume the data

are exact (see Section 2.4). (The proposed method is also appropriate for noninterval, or

standard, data simply by artificially defining a narrow interval around each datum; Hannig

(2009a) proves that as the interval width decreases to zero the generalized fiducial distribu-

tion converges to the generalized fiducial distribution for exact data.) Finally, on a purely

philosophical level, all continuous data has some degree of uncertainty, as noted previously,

due to the resolution of the measuring instrument or truncation for storage on a computer.

Note that we are not suggesting that all methods should incorporate this known uncertainty;

however, we were able to appeal to this known uncertainty for the computational aspect of

the proposed method.

The form of the normal mixed linear model from equation (2.1) is adapted to work in the

generalized fiducial inference setting as

Y = Xβ +
r∑
i=1

σi

li∑
j=1

Vi,jzi,j , (2.2)

where X is a known n×p fixed-effects design matrix, β is the p×1 vector of fixed effects, Vi,j

is the n× 1 design vector for level j of random effect i, li is the number of levels per random

effect i, σ2
i is the variance of random effect i, and the zi,j are i.i.d. standard normal random

variables. The error variance σ2
ε from (2.1) is equivalent to σ2

r in this model, and Vr,j is a

vector of zeros with a one at j for j = 1, . . . , lr = n (i.e. Vr is the identity matrix). We will

derive a framework for estimation for the unknown parameters (β and σi, i = 1, . . . , r) of this

model, which will be applicable to both the balanced and the unbalanced case. The design

is balanced if there is an equal number of observations in each level of each effect, otherwise

the design is unbalanced. The unbalanced case is especially important because the classical

methods are no longer exact when the designs are unbalanced.

Consider the following examples illustrating the connection between (2.1) and (2.2).
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Example 1: One-way random effects model. A one-way random effects model is con-

ventionally written as

yij = µ+ αi + εij , i = 1, . . . , a, j = 1, . . . , ni, (2.3)

with unknown mean µ, random effect α ∼ N(0, σ2
α) where σ2

α is unknown, a is the number of

levels of α, ni is the number of observations in level i, and error terms εij ∼ N(0, σ2
ε ) where

σ2
ε is also unknown, and α and ε are independent (Jiang, 2007). This can be structured in

the form of equation (2.2) as

Y = Xβ + σ1

l1∑
j=1

V1,jz1,j + σ2

n∑
j=1

V2,jz2,j ,

where β = µ is the overall mean, X = 1n (an n × 1 vector of ones), l1 = a is the number

of levels for the first random effect and V1,j indicates which observations are in level j with

random effect variance σ2
1 = σ2

α. The second random effect corresponds to the error, and

hence V2,· = In with σ2
ε as the error variance component. The z1,· and z2,· are i.i.d. standard

normal random variables.

Example 2: Discretely observed Brownian motion model. Consider the model

Yt = a+ bt+ σWt, (2.4)

where a, b and σ are unknown parameters, and Wt is a discretely observed standard Brownian

motion (W (0) = 0 and W (s + t) −W (s) ∼ N(0, t) for all s, t ≥ 0) with discretely observed

time points at t = t1, . . . , tn (i.e. {Yt}t≥0 is a Brownian motion with a drift). This design has

been used to model many physical phenomena, and contributed to the development of the

famous Black-Scholes model for option pricing. In the generalized fiducial framework, (2.4)

is written as

Y = Xβ + σ

n∑
j=1

V1,jz1,tj ,
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where

X =



1 t1

1 t2
...

...

1 tn


,

β = (a, b)T , and V1,j is a column vector with j−1 zeros followed by j terms equal to
√
tj − tj−1

for j = 1, . . . , n letting t0 = 0.

The SMC algorithm presented in this section is seeking a weighted sample of particles

{Z(J)
1:t ,W

(J)
1:t }NJ=1 (where W (J)

1:t is the unnormalized importance weight for particle Z(J)
1:t ) from

the generalized fiducial distribution of the unknown parameters in the normal mixed linear

model. Once this sample of N weighted particles is obtained, inference procedures such

as confidence intervals and parameter estimates can be performed on any of the unknown

parameters or functions of parameters. For example, parameter estimates can be determined

by taking a weighted average or the median of the particles with the associated (normalized)

weights. A C% confidence interval can be found easily for each parameter by ordering the

particles and finding the particle values θL and θU such that the sum of the normalized weights

for the particles between θL and θU is C%. The weighted approximation of the generalized

fiducial distribution on the parameter space has a flexibility similar to a posterior distribution

in the Bayesian setting.

2.3.1 Basic model

The proposed method is first introduced using a simple special case of (2.2), and then is

generalized in the next section. The purpose of the presented algorithm is to obtain a sample

from the generalized fiducial distribution of the unknown parameters. The basic model has

the following structural equation Y = µ + σZ where Y is the data vector, Z is a vector of

i.i.d normal random variables, and µ and σ are unknown parameters. As discussed earlier,

the data Y are not observed exactly, but rather the interval version a < Y ≤ b with a and

b, as n × 1 vectors, determined by the level of uncertainty of the measurement (e.g. due to
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the resolution of the instrument used). The idea is to generate Z∗ such that

a < µ+ σZ∗ ≤ b. (2.5)

where Z∗ are independent copies of Z. For the interval data (a,b] = {(ai, bi], i = 1, . . . , n},

we want to generate z∗i such that ai < µ+ σz∗i ≤ bi for i = 1, . . . , n. The distribution on the

parameter space will be derived from the set function Q((a,b], Z∗) = {(µ, σ) : ai < µ+σz∗i ≤

bi, i = 1, . . . , n}. Hence the generalized fiducial distribution – the target distribution of the

simulation – can be defined as

V (Q((a,b], Z∗)) | {Q((a,b], Z∗) 6= ∅}. (2.6)

We develop an SMC algorithm where one particle is one realization of Q from (2.6), and

{Z(J)
1:t ,W

(J)
1:t }NJ=1 is a collection of N weighted particles where W (J)

1:t is the unnormalized im-

portance weight for particle Z(J)
1:t = (z(J)

1 , . . . , z
(J)
t )T . Note that for this basic model, each

datum has only one random component and, hence, only one zi, i = 1, . . . , t, associated with

it. We also note here that capital and unbolded Z is the vector, and lowercase z is a single

realization; furthermore, though the a and b are lowercase and bold, they each represent a

vector.

The actual algorithm for the basic model progresses by iteration between the steps listed

in Table 2.1, and the steps are described in detail in this section.
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Step Description Do

FOR J = 1, . . . , N

0 Initialization t = 1, 2 Draw z
(J)
t ∼ π1:2 (see Equation (2.7))

Set W (J)
1:2 = 1

Go to step 1

WHILE t ≤ n, t > 2

1 Sampling Draw z
(J)
t ∼ π̃t|1:t−1 (see Equation (2.8))

Go to step 2

2 Calculate weights W
(J)
1:t = π1:t(Z

(J)
1:t )/π̃1:t(Z

(J)
1:t )

Go to step 3

3 Calculate ESSt See equation (1.6)

If ESSt < threshold, go to step 4

Else, set t = t+ 1 and go to step 1

4 Resampling Resample particle system

Set W (J)
1:t = N−1

Go to step 5

5 Alteration Alter particle system according to Section 2.3.2

Set t = t+ 1 and go to step 1

Table 2.1: Algorithm for the basic model.

As an illustration of the basic algorithm, a sample of N = 5000 weighted particles were

simulated from a data set generated from the basic model of (2.5) with n = 20, µ = 0, and

σ = 2. In order to maintain some sense of weight, or importance, of the generated particles,

1000 of the 5000 generated particles were randomly selected based on normalized importance

weights and are displayed in Figure 2.1(a) with a single particle shown in Figure 2.1(b). Each

particle is represented by a polygon in the figures indicating the possible values of µ and σ

based on the sampled Z∗.

The proposal distribution used is the standard Cauchy distribution due to improved com-

putational efficiency of sampling in the tails over the more natural choice of a standard normal
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Figure 2.1: (a) A sample of 5000 weighted particles were simulated from a data set generated from
the basic model of (2.5) with n = 20, µ = 0, and σ = 2. One thousand of the the 5000
generated particles were randomly selected based on weight and are displayed in this plot;
(b) A single particle selected from (a).

distribution. Recalling our target distribution of (2.6), we want a sample J = 1, . . . , N of

Z
(J)
1:t |Z

(J)
1:t ∈ Ct, where Ct = {Z(J)

1:t : ai < µ + σz
(J)
i ≤ bi, i = 1, . . . , t} is the region of Z(J)

1:t

such that the set Q(J)
t is not empty (Q(J)

t is defined below). The target density at time t can

be written as

π1:t(Z
(J)
1:t ) = π1:t(Z

(J)
1:t |(a,b]1:t) ∝ exp(−

t∑
i=1

(z(J)
i )2/2) · ICt(Z

(J)
1:t ) (2.7)

where (a,b]1:t = ((a1, b1], (a2, b2], . . . , (at, bt]), Z
(J)
1:t = (z(J)

1 , z
(J)
2 , . . . , z

(J)
t ) and ICt(·) is an

indicator random variable for the set Ct.

Define Q
(J)
t (Z(J)

1:t ) = {(µ, σ) : ai < µ + σz
(J)
i ≤ bi, i = 1, . . . , t} as the set containing

the values of the parameters that satisfy equation (2.5) given the data and generated Z∗

up to time t for particle J with J = 1, . . . , N . In order to efficiently locate the regions

of z(J)
t for which Q

(J)
t is non-empty, define mt(Z

(J)
1:t−1) = min(at−µσ , (µ, σ) ∈ Q

(J)
t−1(Z(J)

1:t−1))

and Mt(Z
(J)
1:t−1) = max( bt−µσ , (µ, σ) ∈ Q(J)

t−1(Z(J)
1:t−1)), which are the minimum and maximum

possible values of z(J)
t that satisfy the inequalities of (2.5) up to time t− 1. That is, for this

basic model, the values mt(Z
(J)
1:t−1) and Mt(Z

(J)
1:t−1) are found easily by considering the vertices

of the interior polygon at time t − 1, Q(J)
t−1, and the lower and upper constraints on the new
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data at time t, at and bt.

The initial z1 and z2 are sampled from a standard normal distribution without restriction,

then the remaining particles Zt, t > 2, are sampled from a standard Cauchy truncated to

(mt(Z
(J)
1:t−1),Mt(Z

(J)
1:t−1)). Hence the proposal density at time t is

π̃1:t(Z1:t|(a,b]1:t) = π̃1:t(Z1:t) ∝
exp(−((z(J)

1 )2 + (z(J)
2 )2)/2)

∏t
i=3[I

(mi(Z
(J)
1:t−1),Mi(Z

(J)
1:t−1))

(z(J)
i )]∏t

i=3[(1 + (z(J)
i )2)(F (Mi(Z

(J)
1:t−1))− F (mi(Z

(J)
1:t−1)))]

,

where F is the cumulative distribution function of a standard Cauchy distribution. This also

results in the conditional proposal distribution

π̃t|1:t−1(zt|(a,b]1:t) = π̃t|1:t−1(zt) ∝
I

(mt(Z
(J)
1:t−1),Mt(Z

(J)
1:t−1))

(z(J)
t )

(1 + (z(J)
t )2)(F (Mt(Z

(J)
1:t−1))− F (mt(Z

(J)
1:t−1)))

. (2.8)

At time t, the unnormalized importance weights are defined as W1:t = π1:t(Z1:t)/π̃1:t(Z1:t),

and are discussed further in Section 2.3.3.

2.3.2 Basic alteration

Standard SMC resampling finds particles according to the distribution of weights at a given

time step, copies the particle, and then assigns the resampled particles equal weight. By

copying particles in this setting, it is unlikely we would end up with an appropriate distribution

on the parameter space. Intuitively, this is because after each time step, each particle contains

the set, or geometrically a polygon, of possible values of (µ, σ) given the generated Z
(J)
1:t ,

J = 1, . . . , N . If the particles are copied, the distribution of polygons will be concentrated

in a few areas due to particles with initially higher weight, and will not be able to move

from those regions. Hence rather than copy the selected particles exactly, we alter them

in a certain way in order to retain properties of heavy particles while still allowing for an

appropriate sample of {Q(J)
t }NJ=1. This alteration is performed in such a way that it still

solves the system of inequalities up to time t using some known properties of the sampled

particles. Below we explain the alteration step for the simple model, but more details are

presented in the discussion of the general model.
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An illustration of the alteration step is found in Figure 2.2. Figure 2.2(a) displays the

original particle selected to be altered, and Figure 2.2(b) displays the particle post-alteration.
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(a) Original particle.
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(b) Altered particle.

Figure 2.2: This is an illustration of the alteration step of the algorithm for the basic model. Plot
(a) displays the original particle, and plot (b) is the result of the alteration step on the
original particle. The red and blue lines represent the upper and lower bound on the
fattened datum for the current time step. The right figures are close ups of the interior
polygon of the figure to its left.
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Suppose particle Z(L) = Z
(L)
1:t is to be copied k times at time step t (i.e. due on the weight

of particle L, the resampling scheme designated this particle to be replicated k times). Define

Z(L) = 1t · Z̄(L) + ||Z(L) − Z̄(L)|| · Z(L) − Z̄(L)

||Z(L) − Z̄(L)||
= 1t ·C + D · τ, (2.9)

where Z̄(L) = 1
t

∑t
i=1 z

(L)
i , ||·|| is the L2 norm, 1t is a t×1 vector of ones, then C = Z̄(L), D =

||Z(L)− Z̄(L)||, and τ = Z(L)−Z̄(L)

||Z(L)−Z̄(L)|| . This decomposition of Z(L) breaks it into the orthogonal

projection onto the vector 1t and the part that is orthogonal to 1t, where 1t is the space of

fixed effects (in this case, the overall mean). Furthermore, C and D are independent by design,

and C ∼ N(0, 1) and D ∼
√
χ2
t−1. The alteration will result from sampling a new C and a

new D (denoted C̃ and D̃, respectively). The resampled Z(L) is thus Z̃(l) = 1tC̃(l) + D̃(l) · τ,

for l = 1, . . . , k− 1 (where k is the number of times the particle is resampled), and C̃(k) = C

and D̃(k) = D. Furthermore, the set Q(L)
t = {(µ, σ) : ai < µ + σz

(L)
i ≤ bi, i = 1, . . . , t} can

be adjusted noting that if (µ, σ) solves ai < µ + σ
(
1t ·C + D · τ

)
≤ bi for i = 1, . . . , t, then

(µ̃(l), σ̃(l)) can be found such that ai < µ̃(l) + σ̃(l)
(
1t · C̃(l) + D̃(l) · τ

)
≤ bi for i = 1, . . . , t and

l = 1, . . . , k − 1. The relation between (µ, σ) and (µ̃, σ̃) is

µ̃ = µ+ σ · 1t ·
(
C− (D/D̃) · C̃

)
(2.10)

σ̃ = σ ·
(
D/D̃

)
. (2.11)

The relations (2.10) and (2.11) follow because a < µ + σZ∗ ≤ b must hold for the altered

particle. The desire is to find (µ̃, σ̃) so that

µ+ σZ = µ+ σ
(
1t ·C + τD

)
= µ̃+ σ̃

(
1t · C̃ + τD̃

)
= µ̃+ σ̃Z̃.

Because the decomposition of (2.9) breaks the particle into the orthogonal projection onto 1t

and a part that is orthogonal to 1t, we can consider each piece independently. Considering

the orthogonal parts first, στD = σ̃τD̃ imples that τ
(
σD− σ̃D̃

)
= 0. Hence, the updated σ̃

can be found simply as σ̃ = σ
(
D/D̃

)
.

The relation between µ̃ and µ follows from the remaining portion. We want µ+σ
(
1t ·C

)
=
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µ̃+ σ̃
(
1t · C̃

)
. It is then straightforward to see that µ̃ = µ+

(
σ1t ·C− σ̃1t · C̃

)
, and so µ̃ is

calculated as µ̃ = µ+ σ1t ·
(
C−D/D̃ · C̃

)
.

2.3.3 General model

In this section, we generalize the ideas of the method presented in Section 2.3.1 for the

general normal linear mixed model of Equation (2.2). Again, the goal of the algorithm is to

obtain a generalized fiducial sample for the unknown parameters of normal mixed models. As

discussed earlier, the data Y are not observed exactly, but rather intervals around the data

are determined by the level of uncertainty of the measurement (e.g. due to the resolution of

the instrument used). The structural equation formed as interval data for t = 1, . . . , n with

i = 1, . . . , r random effects is

at < Yt = Xtβ +
r∑
i=1

σi

li∑
j=1

vi,j,tzi,j ≤ bt, (2.12)

where the random effect design vector component vi,j,t indicates the jth level of a random

effect i for the tth element of the data vector, Xt is the tth row of the fixed effect design matrix

X, and is zi,j is a standard normal random variable for level j of random effect i. Each datum

can have one or more random components and so we write Z1:t = (Z1, . . . , Zt) with capital

letters to indicate the possible vector nature of each Zk for k = 1, . . . , t with Z1:t bolded.

In the case that r > 1, Z1:t is vectorized so that the mathematical operations make sense

(i.e. Z1:t is a
∑r

i=1 li × 1 vector). Also, for notational convenience, Zk will represent all zi,j

for i = 1, . . . , r and j = 1, . . . , li that are not present or shared with any datum less than k,

which will always at least include the error effect denoted zk,r. It will be necessary at times

to reference the non-error random effects, and they will be denoted Zk,1:r−1 representing all

the non-error random effects first introduced at time k. The goal is to generate a sample of

the zi,j for i = 1, . . . , r and j = 1, . . . , li such that at < Yt ≤ bt for t = 1, . . . , n.

Similar to Table 2.1, Table 2.2 displays the algorithm for the general model with the

differences being the form of the particles, the proposal and target distributions, and the

referenced sections and equations.
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Step Description Do

FOR J = 1, . . . , N

0 Initialization t = 1, . . . , p+ r Draw Z(J)
1:p+r,1:r ∼ π1:p+r (see Equation (2.14))

Set W (J)
1:p+r = 1

Go to step 1

WHILE t ≤ n, t > p+ r

1 Sampling Draw Z
(J)
t ∼ π̃t|1:t−1 (see Equation (2.16))

Go to step 2

2 Calculate weights W
(J)
1:t = π1:t(Z

(J)
1:t )/π̃1:t(Z

(J)
1:t )

Go to step 3

3 Calculate ESSt See equation (1.6)

If ESSt < threshold, go to step 4

Else, set t = t+ 1 and go to step 1

4 Resampling Resample particle system

Set W (J)
1:t = N−1

Go to step 5

5 Alteration Alter particle system according to Section 2.3.4

Set t = t+ 1 and go to step 1

Table 2.2: Algorithm for normal linear mixed models.

The generalized fiducial distribution on the parameter space is written as

V (Q((a,b],Z))|{Q((a,b],Z) 6= ∅}. (2.13)

where we define the set function Q
(J)
t as the set containing the values of the parameters

that satisfy equation (2.12) given the data and generated Z(J)
1:t up to time t for particle J ,

J = 1, . . . , N . Generating a sample from (2.13) is equivalent to simulating the Z(J) such that
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the set Q(J) is non-empty, and this results in the target distribution at time t written as

π1:t(Z1:t|(a,b]1:t) = π1:t(Z1:t) ∝ exp(−(ZT1:t · Z1:t)/2) · ICt(Z1:t). (2.14)

where ICt(·) is an indicator random variable for the set Ct, with Ct as the set of Z1:t such

that Qt is not empty. This is equivalent to Ct = {Z1:t : ak < Xkβ +
∑r

i=1 σi
∑li

j=1 vi,j,kzi,j ≤

bk, k = 1, . . . , t}. As with the basic model, the restriction that Q(J)
t is non-empty in the general

setting can be translated into truncating the possible values of the particle corresponding to

the error random effect to the interval defined by

mt(Z
(J)
1:t−1,Z

(J)
t,1:r−1) =

min

(
a

(J)
t −

(
Xtβ +

∑r−1
i=1 σi

∑li
j=1 vi,j,tz

(J)
i,j

)
σr

, (β, σ) ∈ Q(J)
t−1

)
,

Mt(Z
(J)
1:t−1,Z

(J)
t,1:r−1) =

max

(
b
(J)
t −

(
Xtβ +

∑r−1
i=1 σi

∑li
j=1 vi,j,tz

(J)
i,j

)
σr

, (β, σ) ∈ Q(J)
t−1

)
,

where that σ = (σ1, . . . , σr)T . Verbally, mt(Z
(J)
1:t−1, Z

(J)
t,1:r−1) and Mt(Z

(J)
1:t−1, Z

(J)
t,1:r−1) are the

minimum and maximum possible values of z(J)
t,r . As with the basic model, the proposal

distribution uses the Cauchy distribution and the full proposal distribution at time t is

π̃1:t ∝ exp(−(ZT1:p+r · Z1:p+r)/2)×
t∏

i=p+r+1

(
exp(−(ZTi,1:r−1 · Zi,1:r−1)/2) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)

(1 + z2
i,r)(F (Mi)− F (mi))

)
(2.15)

where the ? in I?(Zt,1:r−1) indicates the lack of restriction to a specific set of values for

Zt,1:r−1,F is the cdf of the standard Cauchy distribution and mt = mt(Z1:t−1, Zt,1:r−1) and

Mt = Mt(Z1:t−1, Zt,1:r−1). Note that the reference to p+r (i.e. the dimension of the parameter

space) in Equation (2.15) is because the first p+ r sampled Z’s are not restricted and can be

freely generated from a standard normal distribution (p+ r equations solve p+ r unknowns).
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And the conditional proposal distribution at time t is

π̃t|1:t−1 ∝
exp(−(ZTt,1:r−1 · Zt,1:r−1)/2) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)

(1 + z2
r,t)(F (Mt)− F (mt))

(2.16)

where F is the standard Cauchy cdf.

The proposed algorithm targets the generalized fiducial distribution of the unknown pa-

rameters of a normal mixed linear model of (2.13) displayed more explicitly in (2.14). Using

the derivation of the proposal and target distributions above, and noting that

ICt(Z1:t) = ICt−1(Z1:t−1) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r). (2.17)

Equation (2.17) can easily be understood by considering the case when r = 1 (i.e. the basic

model with only the error random effect) by noting that (i) if Z1:t ∈ Ct, then Z1:t−1 ∈ Ct−1

and mt ≤ Zt ≤ Mt, and (ii) if Z1:t−1 ∈ Ct−1 and mt ≤ Zt ≤ Mt, then Z1:t ∈ Ct. Then the

marginal target distribution at time t is

π̂1:t−1 =
∫
π1:t(Z1:t)dZt =

∫
exp(−(ZT1:t · Z1:t)/2) · ICt(Z1:t)

Ω1:t
dZt

=
∫ exp(−(ZT1:t · Z1:t)/2) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)

Ω1:t
dZt

=
exp(−(ZT1:t−1 · Z1:t−1)/2)

Ω1:t

∫
exp(−(ZTt · Zt)/2) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)dZt

=
π1:t−1 · Ω1:t−1

Ω1:t

∫
exp(−(ZTt · Zt)/2) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)dZt

∝ π1:t−1 · (Φ(Mt)− Φ(mt)), (2.18)

where Φ is the standard normal cumulative distribution functions, and Ω1:t is the normaliza-

tion factor at time t. The extra Φ(Mt) − Φ(mt) term in (2.18) makes the marginal of the

target distribution at time t different from the target distribution at time t − 1, and con-

tributes to the extra steps that are needed in the proof of Theorem 2.3.1. It then follows that
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the conditional target distribution at time t is

πt|1:t−1 =
π1:t(Z1:t)
π̂1:t(Z1:t)

∝
exp(−(ZTt · Zt)/2) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)

Φ(Mt)− Φ(mt)
.

Finally, the derivation of the weights at time t is

W1:t =
π1:t

π̃1:t
=
πt|1:t−1 · π̂1:t−1

π̃t|1:t−1 · π̃1:t−1
∝

exp(−z2
t,r/2)(1 + z2

t,r)(F (Mt)− F (mt)) ·
π1:t−1

π̃1:t−1
∝Wt ·W1:t−1,

where Wt is the sequential update factor.

2.3.4 General alteration

The same issue with resampling addressed for the basic model holds in this general setting:

due to the nature of the generalized fiducial framework and the inference goals, the particles

selected to be resampled cannot simply be copied. By copying particles in this setting, we

would not end up with an appropriate distribution on the parameter space because all the

sets Q(J), J = 1, . . . , N , would end up in the same location. An extra step to alter the

particles must be incorporated into the algorithm after reampling. If the particles are simply

copied, the distribution of the sets Q(J), J = 1, . . . , N , or geometrically the polyhedrons,

will be concentrated in a few areas on the parameter space due to particles with initially

higher weight. There would be no way to move the particles from those regions because

subsequent particles would continue to define subsets of the copied polyhedrons as outlined

in the algorithm presented above. The alteration procedure described below is a conceptually

similar to the alteration step presented in Section 2.3.2 for the basic model: the particle to

be resampled is decomposed into an orthogonal projection onto a certain space and a part

orthogonal to that space, and then distributional properties that arise from the decomposition

are used to alter the resampled particle. The procedure can be thought of as a Gibbs-sampling

step in a non-coordinate direction determined by the selected particle.

We begin by defining terms that will be used in describing the methodology. Consider
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some subspace A ⊂ Rt with orthogonal basis vectors V = {V1, . . . , Vd}. Any vector Y ∈ Rt

can be written in terms of a projection onto A plus a projection onto A⊥ (the subspace

orthogonal to A). That is, for any Y ∈ Rt, Y = ΠAY + ΠA⊥Y where ΠAY ∈ A is the

projection of Y onto A, and ΠA⊥Y ∈ A⊥ with ΠA⊥Y = Y −ΠAY . The projection of Y onto

A is

ΠAY =
Y · V1

V1 · V1
V1 + . . .+

Y · Vd
Vd · Vd

Vd = V(VTV)−1VTY.

Of course if the basis vectors are orthonormal (VTV = Id), then projection of Y onto A can

be written ΠAY = VVTY. The null space of a t × d matrix A is defined as N (A) = {X :

X ∈ Rd and AX = 0}. Also note that the rank(A) + dim(N (A)) = d.

The alteration step of the proposed algorithm is performed in such a way that it still

solves the system of inequalities of (2.12) up to time t using the following idea (to ease the

notational complexity, we do not include the dependence of the variables on t). Suppose

particle L is selected to be resampled (for an L between 1 and N). For each random effect,

e, let

Y = X′β′ + σVeZ
(L),

where X′ = [X, {
∑li

j=1 Vi,jz
(L)
i,j }i 6=e], β′ = (β, {σi}i 6=e)′, σ = σe, and VeZ

(L) =
∑le

j=1 Ve,jz
(L)
e,j .

That is, other than random effect e, the random effects design matrices and sampled values

are concatenated with the fixed effects.

In order to alter Z(L), we first find the basis vectors, η, for the null space of the matrix

A = [−X′,Ve]. Let the basis vectors of N (A) = {η : Aη = 0}. Furthermore, let η = (η1, η2)T

such that (i) X′ · η1 + Ve · η2 = 0, and (ii) ηT2 · η2 = I (i.e. η2 is orthonormal). The matrix

A is defined as [−X′,Ve] because we want the alteration to be such that, after resampling

the particles according to the decomposition defined below in Equation (2.19), the result of

the changes in the “fixed” (i.e. not random effect e parameters) and changes in σ to have a

canceling effect. Since −X′η1 + Veη2 = 0, working with the basis for the null space of A will

have that desired consequence.
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We perform the following decomposition of the particle Z(L) selected to be resampled:

Z(L) = ΠZ(L) + ||Z(L) −ΠZ(L)|| · Z(L) −ΠZ(L)

||Z(L) −ΠZ(L)||
(2.19)

where ΠZ(L) is the projection onto the null space N (A) (i.e. ΠZ(L) = η2 · ηT2 ·Z(L)), and || · ||

is the L2 norm. Define C = ηT2 · Z(L) (so that, η2 ·C = ΠZ(L)), D = ||Z(L) − ΠZ(L)||, and

τ = Z(L)−ΠZ(L)

||Z(L)−ΠZ(L)|| so that Z(L) = η2C + D · τ . Then if Z(L) is standard normal, C ∼ Nle(0, I)

where le is the number of levels of random effect e of Z(L) to be resampled at time t, and

D ∼
√
χ2
le−d where d = rank(N (A)); C and D are independent by design. The alteration of

Z(L) is accomplished by sampling new values of C and D (denoted C̃ and D̃, respectively)

according to their distributions determined by the decomposition of Equation (2.19), and the

altered particle is

Z̃ = η2 · C̃ + D̃ · τ. (2.20)

Notice that if Z(L) is a standard normal conditioned on Ct, then so is Z̃.

Furthermore, the set Q(L) = {(β′, σ) : a < X′β′ + σV(L)
Z ≤ b} can be easily updated

by noting that if (β′, σ) solves a < X′β′ + σVe(η2 · C + D · τ) ≤ b, then (β̃′, σ̃) can be

found such that a < X′β̃′ + σ̃Ve(η2 · C̃ + D̃ · τ) ≤ b by considering X′β′ + σVeZ
(L) =

Xβ′ + σVe

(
η2 ·C + τD

)
= X′β̃′ + σ̃Ve

(
η2 · C̃ + τD̃

)
= X′β̃′ + σ̃VZ̃.

Examining the orthogonal parts first, σVe(τD) = σ̃Ve(τD̃) implies that Vτ
(
σD−σ̃D̃

)
=

0 so that

σ̃ = σ
(
D/D̃

)
.

The relation between β̃ and β′ follows from the remaining portion as

X′β′ + σVe

(
η2 ·C

)
= X′β̃′ + σ̃Ve

(
η2 · C̃

)
implies

X′(β̃′ − β′) + σVeη2

(
C̃ ·D/D̃−C

)
= 0. (2.21)

Noting by definition −X′η1 + Veη2 = 0, then

−X′ση1

(
C̃ ·D/D̃−C

)
+ σVeη2

(
C̃ ·D/D̃−C

)
= 0. (2.22)
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By combining (2.21) and (2.22), we see that β̃ − β′ = −ση1 ·
(
C̃ ·D/D̃−C

)
, and hence

β̃ = β′ − ση1 ·
(
C̃ ·D/D̃−C

)
.

Hence the sets Q(J)
t (Z(J)

1:t ) are easily updated to Q(J)
t (Z̃(J)

1:t ). This procedure is repeated for

each random effect e = 1, . . . , r.

2.3.5 Convergence of algorithm

The proposed algorithm targets the generalized fiducial distribution of the unknown parame-

ters of a normal linear mixed model of (2.13) displayed more explicitly in (2.14). The following

theorem confirms that the weighted particle system from the proposed algorithm achieves con-

sistency of the weighted particles as the particle sample size N approaches infinity. One of

the difficulties with convergence for the weighted particles of an SMC algorithm is due to the

heavy interaction, and thus dependence, of the particles throughout the algorithm. Douc and

Moulines (2008) provide a nice general result for the consistency of weighted particle systems,

which were adapted and applied to work in our generalized fiducial setting. We begin by

stating the theorem, then discuss more details about our generalized fiducial methodology,

present a brief introduction to the relevant ideas of Douc and Moulines (2008), and finish this

section with the proof of the theorem.

Theorem 2.3.1. Given a weighted sample {Z(J)
1:n,W

(J)
1:n }NJ=1 obtained using the algorithm

presented above targeting (2.14), then for any bounded, measurable function f ,

( N∑
I=1

W
(I)
1:n

)−1
N∑
J=1

f(Z(J)
1:n)W (J)

1:n
P−→
∫
f(Z1:n)π1:n = π1:nf(Z1:n), as N −→∞.

This result holds for slightly weaker conditions, which are addressed below in the proof. The

proof of the convergence of the proposed SMC algorithm follows from ideas presented in

Douc and Moulines (2008). Theorem 2.3.1 will follow from proving the convergence of the

generated particles after each stage of the algorithm: sampling, resampling, and alteration.

The development of the particle system using the proposed algorithm does not follow the
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traditional SMC algorithm as presented in Douc and Moulines (2008, Section 2), and requires

some extra steps to validate the result.

Notation and definitions The proof uses the full, conditional and marginal proposal and

target distributions derived earlier in this section, and the following notation and definitions.

A particle system is defined as {Z(J)
1:t ,W

(J)
1:t }NJ=1 with Z(J)

1:t sampled from the proposal distribu-

tion π̃1:t of Equation (2.15) and un-normalized weights W (J)
1:t with normalizing factor at time

t defined as Ωt =
∑N

J=1W
(J)
1:t . The following definitions are from Douc and Moulines (2008)

with modification for our notation and proposed algorithm. First, we define two sigma-fields

F0 , σ({Z(J)
1:t−1}NJ=1, (a, b]1:t) and FJ , F0 ∨ σ({Z(K)

1:t }1≤K≤J , (a, b]1:t), for J = 1, . . . , N .

That is, we have a sigma field of all the generated particles up to time t− 1 and all the data

up to time t, and a triangular array of sigma fields of the particles generated up to time t

after sampling Zt from the conditional proposal distribution along with the data to time t.

Though the sigma fields are dependent on t, we suppress the notation because the focus is

on the transition from t − 1 to t for sampling, and then at t for resampling and alteration.

Specifically, the current state of the particle system will be at time t − 1 and the concern

is for what happens going from time t − 1 to time t. At time t − 1, the particle system

is targeting probability measure π1:t−1 on (Θ1:t−1,B(Θ1:t−1). This measure is approximated

by our particle system, {Z(J)
1:t−1,W

(J)
1:t−1}NJ=1. Furthermore, Z(J)

1:t−1 ∈ Θ1:t−1 and W
(J)
1:t−1 ≥ 0

such that Ωt−1
∑N

J=1W
(J)
1:t−1 = 1. Note that π will, with the appropriate subscript indexing

the time, be used to denote both the measure and density. The importance sampling step

transforms the current particle system to one that is targeting π1:t on (Θ1:t,B(Θ1:t)), denoted

by {Z(J)
1:t ,W

(J)
1:t }NJ=1.

We will also use the notion of a proper set from (Douc and Moulines, 2008, Section 2.1).

They define a proper set to be a subset B of a general state space X where (i) B is a linear

space (closed under addition and scalar multiplication), (ii) if some function g ∈ B with

measurable function f such that |f | ≤ |g|, then it follows that |f | ∈ B, and (iii) all constants
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are in B. We define the proper set Bt , {f ∈ L1(Θ1:t, π1:t), F (·, |f |) ∈ Bt−1}, where

F (Z1:t−1, f) =∫
Θt

f(Z1:t−1, Zt) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)(Φ(Mt)− Φ(mt))πt|1:t−1(dZt) (2.23)

and can be thought of as the transition kernel from time t− 1 to t.

The following definition is from Douc and Moulines (2008), which defines the notion of

weighted sample consistency that will be used in the proof.

Definition 2.3.1. A weighted sample {Z(J)
1:t ,W

(J)
1:t }NJ=1 is consistent for the probability

measure π1:t and the proper set Bt if, for any f ∈ Bt, Ω−1
t

∑N
J=1W

(J)
1:t f(Z(J)

1:t ) P−→∫
f(Z1:t)π1:t(dZ1:t) , π1:t(f), and Ω−1

t maxNJ=1W
(J)
1:t

P−→ 0.

We see that this definition includes a weighted law of large numbers for the particle system,

and a restriction on the asymptotic contribution of the individual weights.

The theorem needed from Douc and Moulines (2008) is reproduced below as Theorem 2.3.2

for the convenience of the reader with minor modifications for our notation. Note that

{UN,J}NJ=1 is a triangular array of random variables, and will be used in the proof as our

weighted particle system. A triangular array of sub-sigma field of the general sigma field F

is defined as {FJ}NJ=1 such that (i) FJ−1 ⊂ FJ , and (ii) UN,J is measurable with respect to

FJ . We note that ideas of our proof follow from ideas from the proofs of Douc and Moulines

(2008) adapted for our setting.

Theorem 2.3.2. (Douc and Moulines, 2008, Theorem A.1)

Assume that E[|UN,J ||FJ−1] <∞ P-a.s. for any N and any J = 1, . . . , N , and

sup
N
P
( N∑
J=1

E[|UN,J ||FJ−1] ≥ λ
)
→ 0 as λ→∞ (2.24)

N∑
J=1

E[|UN,J | · 1{|UN,J | ≥ ε}|FJ−1] P−→ 0 for any ε > 0 (2.25)

Then, max1≤I≤N |
∑I

J=1 UN,J −
∑I

J=1E[UN,J |FJ−1]| P−→ 0.
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Sampling The first step in proving the asymptotic consistency of the algorithm is to show

that the importance sampling scheme is asymptotically consistent, which is the statement

of Lemma 2.3.1. The importance sampling step in the algorithm maintains the following

relation. Given f ∈ Bt,

E(W (J)
1:t f(Z(J)

1:t )|FJ−1) = W
(J)
1:t−1E(W (J)

t f(Z(J)
1:t )|FJ−1)

= W
(J)
1:t−1 ·

∫
f(Z(J)

1:t , Zt) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)Wtπ̃t|1:t−1(dZt)

= W
(J)
1:t−1 ·

∫
f(Z(J)

1:t , Zt) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)(Φ(M (J)
t )− Φ(m(J)

t ))πt|1:t−1(dZt)

= W
(J)
1:t−1 · F (Z1:t−1, f), (2.26)

for J = 1, . . . , N .

Lemma 2.3.1. (Sampling) Assume that the weighted sample {Z(J)
1:t−1,W

(J)
1:t−1}NJ=1 is con-

sistent for (π1:t−1, Bt−1) and that F (Θ1:t, ·) belongs to Bt−1 where F is defined in Equa-

tion (2.23). Then the set Bt defined above is a proper set, and for f ∈ Bt, the weighted

sample {Z(J)
1:t ,W

(J)
1:t }NJ=1 defined above is consistent for (π1:t, Bt).

Proof. First to show Bt is a proper set. If a and b are constants and functions f, g ∈ Bt,

then af + bg ∈ Bt since f, g ∈ Bt implies that
∫
|f |dπ1:t < ∞ and

∫
|g|dπ1:t < ∞. It follows

that
∫
|af + bg|dπ1:t < |a|

∫
|f |dπ1:t + |b|

∫
|g|dπ1:t < ∞ by the triangle inequality. Next, if

function g ∈ Bt with measurable f such that |f | < |g|, then
∫
|f |dπ1:t <

∫
|g|dπ1:t < ∞, so

f ∈ Bt. Because π1:t(Θ1:t) = 1, all constants ∈ Bt.

Because {Z(J)
1:t−1,W

(J)
1:t−1}J=1,...,N is consistent for (π1:t−1, Bt−1), f ∈ Bt, and the function
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F (·, f) ∈ Bt−1, then for any f ∈ Bt,

Ω−1
t−1

N∑
J=1

E[f(Z(J)
1:t )W (J)

1:t |FJ−1]

= Ω−1
t−1

N∑
J=1

W
(J)
1:t−1F (Z(J)

1:t−1, f) by Equation (2.26)

−→
∫
· · ·
∫
f(Z1:t)I?(Zt,1:r−1)I(mt,Mt)(zt,r)πt|1:t−1(dZt)π1:t−1(dZ1:t−1)

, π1:t−1F (·, f), (2.27)

where the last step follows because {Z(J)
1:t−1,W

(J)
1:t−1}J=1,...,N is consistent for (π1:t−1, Bt−1),

and F (·, f) ∈ Bt−1.

We next show the following holds

max
1≤I≤N

∣∣∣Ω−1
t−1

I∑
J=1

{W (J)
1:t f(Z(J)

1:t )− E[f(Z(J)
1:t )W (J)

1:t |FJ−1]}
∣∣∣ P−→ 0. (2.28)

by appealing to Theorem 2.3.2. Beginning with Condition (2.24), let UN,J = Ω−1
t−1W

(J)
1:t f(Z(J)

1:t )

for J = 1, . . . , N , then

N∑
J=1

E[|UN,J ||FJ−1]

= Ω−1
t−1

N∑
J=1

E(|W (J)
1:t f(Z(J)

1:t )||FJ−1)

= Ω−1
t−1

N∑
J=1

W
(J)
1:t−1F (Z1:t−1, |f |)

P−→ π1:t−1F (·, |f |). (2.29)

The tightness condition, Condition (2.24), follows because F ∈ L1(Θ1:t−1, π1:t−1).

Next we show that Condition (2.25) holds. For any ε > 0, consider∑N
J=1E[|UN,J |1{|UN,J | ≥ ε}|FN,J−1], where UN,J = Ω−1

t−1W
(J)
1:t f(Z(J)

1:t ) for J = 1, . . . , N (same

as above). Define R(Z1:t−1, f) ,
∫
f(Z1:t−1, Zt) ·I?(Zt,1:r−1) ·I(mt,Mt)(zt,r)dπ̃t|1:t−1(Zt), which

is analogous to F (Z1:t−1, f), but the integral is with respect to the proposal measure. For

K > 0, R(Z1:t−1,Wt · |f |1{Wt · |f | ≥ K}) ≤ R(Z1:t−1,Wt · |f |) = F (Z1:t−1, |f |) because
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Wtπ̃t|1:t−1 = (Φ(Mt)−Φ(mt))πt|1:t−1 so that R(Z1:t−1,Wt · |f | · 1{Wt · |f | ≥ K}) ∈ Bt−1. For

ε > 0,

N∑
J=1

E[|UN,J |1{|UN,J | ≥ ε}|FJ−1] · 1{Ω−1
t−1 max

1≤I≤N
W

(I)
1:t−1 ≤ ε/K}

=
N∑
J=1

E[|Ω−1
t−1W

(J)
1:t · f(Z(J)

1:t )| · 1{Ω−1
t−1W

(J)
1:t · |f(Z(J)

1:t )| ≥ ε}|FJ−1]

× 1{Ω−1
t−1 max

1≤I≤N
W

(I)
1:t−1 ≤ ε/K}

= Ω−1
t−1

N∑
J=1

W
(J)
1:t−1 ·

∫
W

(J)
t · |f(Z(J)

1:t−1, Zt)| · 1{Ω
−1
t−1W

(J)
1:t · |f | ≥ ε}

× 1{Ω−1
t−1 max

1≤I≤N
W

(I)
1:t−1 ≤ ε/K} · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)dπ̃t|1:t−1(Zt)

≤ Ω−1
t−1

N∑
J=1

W
(J)
1:t−1 ·

∫
W

(J)
t · |f(Z(J)

1:t−1, Zt)| · 1{Ω
−1
t−1W

(J)
1:t · |f | ≥ Ω−1

t−1 max
1≤I≤N

W
(I)
1:t−1 ·K}

× I?(Zt,1:r−1) · I(mt,Mt)(zt,r)dπ̃t|1:t−1(Zt)

= Ω−1
t−1

N∑
J=1

W
(J)
1:t−1

∫
W

(J)
t · |f(Z(J)

1:t−1, Zt)| · 1

{
W

(J)
1:t

max1≤I≤N W
(I)
1:t−1

· |f | ≥ K

}

× I?(Zt,1:r−1) · I(mt,Mt)(zt,r)dπ̃t|1:t−1(Zt)

≤ Ω−1
t−1

N∑
J=1

W
(J)
1:t−1

∫
W

(J)
t · |f(Z(J)

1:t−1, Zt)| · 1{W
(J)
t · |f | ≥ K} · I?(Zt,1:r−1)

× I(mt,Mt)(zt,r)dπ̃t|1:t−1(Zt)

= Ω−1
t−1

N∑
J=1

W
(J)
1:t−1 ·R(Z(J)

1:t−1,W
(J)
t · |f | · 1{W (J)

t · |f | ≥ K})

P−→
∫
R(Z1:t−1,W

(J)
t · |f | · 1{Wt · |f | ≥ K})dπ1:t−1.

Now we have

N∑
J=1

E[|Ω−1
t−1W

(J)
1:t · f(Z(J)

1:t )| · 1{Ω−1
t−1W

(J)
1:t · |f(Z(J)

1:t )| ≥ ε}|FJ−1] · 1{Ω−1
t−1 max

1≤I≤N
W

(I)
1:t−1 ≤ ε/K}

P−→
∫
R(Z1:t−1,Wt · |f | · 1{Wt · |f | ≥ K})dπ1:t−1.
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In order for Condition (2.25) to be satisfied, (i)
∑N

J=1E[|Ω−1
t−1W

(J)
1:t · f(Z(J)

1:t )| · 1{Ω−1
t−1W

(J)
1:t ·

|f(Z(J)
1:t )| ≥ ε}|FJ−1] · 1{Ω−1

t−1 max1≤I≤N W
(I)
1:t−1 ≤ ε/K} P−→

∑N
J=1E[|Ω−1

t−1W
(J)
1:t · f(Z(J)

1:t )| ·

1{Ω−1
t−1W

(J)
1:t · |f(Z(J)

1:t )| ≥ ε}|FJ−1] and (ii)
∫
R(Z1:t−1,Wt · |f | ·1{Wt · |f | ≥ K})dπ1:t−1

P−→ 0.

Point (i) holds by noting that since Ω−1
t−1 max1≤J≤N W

(J)
t−1

P−→ 0 by assumption, so it follows

that 1{Ω−1
t−1 max1≤J≤N W

(J)
1:t−1 ≤ ε/K}

P−→ 1. Point (ii) holds by the Dominated Convergence

Theorem as K −→∞ since the integral is bounded by an L1 function.

Since both Conditions (2.24) and (2.25) of Theorem 2.3.2 hold, so Equation (2.28) follows.

Also recalling Equation (2.27), we conclude that

Ω−1
t−1

N∑
J=1

f(Z(J)
1:t )W (J)

1:t
P−→ π1:t−1F (·, f). (2.30)

Next note, by assumption, F ∈ Bt−1, and as a proper set, Bt−1 includes the constant

function f ≡ 1, which implies

Ω−1
t−1Ωt = Ω−1

t−1

N∑
J=1

W
(J)
1:t

P−→
∫
· · ·
∫

Θt

I?(Zt,1:r−1) · I(mt,Mt)(zt,r)(Φ(Mt)− Φ(mt))πt|1:t−1(dZt)π1:t−1(dZ1:t−1)

= π1:t−1F (·, 1). (2.31)

Combining Equations (2.30) and (2.31) and noting that π1:t = (Φ(Mt)−Φ(mt))·πt|1:t−1·π1:t−1,

we get our desired result

Ω−1
t

N∑
J=1

f(Z(J)
1:t )W (J)

1:t =
Ω−1
t−1

∑N
J=1 f(Z(J)

1:t )W (J)
1:t

ΩtΩ−1
t−1

P−→ π1:t−1F (·, f)
π1:t−1F (·, 1)

=

∫
· · ·
∫
f(Z1:t−1, Zt) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)(Φ(Mt)− Φ(mt))πt|1:t−1(dZt)π1:t−1(dZ1:t−1)∫
· · ·
∫
·
∫

Θt
I?(Zt,1:r−1) · I(mt,Mt)(zt,r)(Φ(Mt)− Φ(mt))πt|1:t−1(dZt)π1:t−1(dZ1:t−1)

=

∫
· · ·
∫
f(Z1:t−1, Zt) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)π1:t(dZ1:t)∫
· · ·
∫

I?(Zt,1:r−1) · I(mt,Mt)(zt,r)π1:t(dZ1:t)

= π1:tf.
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That is,

Ω−1
t

N∑
J=1

f(Z(J)
1:t )W (J)

1:t
P−→ π1:tf.

The final step of the proof for this lemma – showing that Ω−1 maxNJ=1W
(J)
1:t

P−→ 0 – follows

directly from the result in Douc and Moulines (2008).

Resampling The purpose of this section is to prove that the particle system is still consis-

tent after the resampling step of the algorithm. After resampling, the unnormalized impor-

tance weights are set to one.

Lemma 2.3.2. (Resampling) Assume that the weighted sample {(Z(J)
1:t ,W

(J)
1:t )}NJ=1 is consis-

tent for (π1:t, Bt). Then, the uniformly weighted sample {(Z̃(J)
1:t , 1)}NJ=1 obtained using multi-

nomial or deterministic-plus-residual multinomial resample is consistent for (π1:t, Bt).

Proof. This holds directly from (Douc and Moulines, 2008, Theorem 3).

Alteration The final step of the proof of Theorem 2.3.1 is to prove the consistency of the

particle system after the alteration step. The lemma is stated below followed by the proof.

Lemma 2.3.3. (Alteration) Assuming the uniformly weighted sample {(Z(J)
1:t , 1)}NJ=1 is con-

sistent for (π1:t, Bt), then the altered uniformly weighted sample {(Z̃(J)
1:t , 1)}NJ=1 is consistent

for (π1:t, B̃t) (B̃t defined below).

Proof. Note that the {(Z̃(J)
1:t , 1)}NJ=1 is the altered particle system, while {(Z(J)

1:t , 1)}NJ=1 are

the resampled particles from Lemma 2.3.2. Letting f ∈ Bt with C̃, D̃, and projection matrix

Π as defined below Equation (2.19), we define the following conditional expectation

E[f(Z̃(J)
1:t )|F̃J−1] =

∫
f
(
η2 · C̃ + D̃

(Z(J)
1:t −ΠZ(J)

1:t )

||Z(J)
1:t −ΠZ(J)

1:t ||

)
dπ eC, eD

=
∫
f(η2 · C̃ + D̃τ

(J)
1:t )dπ eC, eD , hf (Z(J)

1:t ),

where F̃J , F̃0 ∨ σ({Z̃(K)
1:t }1≤K≤J , (a, b]1:t), and F̃0 , σ({Z(J)

1:t }NJ=1, (a, b]1:t) for J = 1, . . . , N .

That is, hf (Z̃(J)
1:t ) is the conditional expectation of the altered particles with respect to the
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joint distribution of C̃ and D̃ denoted π eC, eD. We note that hf is a function of Z1:t because

τ1:t is a function of Z1:t, and, at times, it will be necessary to write τ (J)
1:t = τ1:t(Z

(J)
1:t ). Recall

that C and D are defined by a decomposition of the original particle, call it L, selected to be

resampled, Z(L)
1:t , and are independent by design. The C̃ and D̃ are the random variables to

be resampled according to the target distributions of C and D with the τ (J)
1:t considered fixed

so that Z̃1:t = η2 · C̃ + D̃τ1:t.

The lemma will follow once we show

N−1
N∑
J=1

E[f(Z̃(J)
1:t )|F̃J−1] = N−1

N∑
J=1

hf (Z(J)
1:t )

−→
∫
hf (Z1:t)dπ1:t(Z1:t) =

∫
f(Z1:t)dπ1:t(Z1:t).

This is because trivially E[f(Z̃(J)
1:t )|F̃J−1] = f(Z̃(J)

1:t ), so all that is needed is

for (i) N−1
∑N

J=1 hf (Z(J)
1:t ) −→

∫
hf (Z1:t)dπ1:t(Z1:t) and (ii)

∫
hf (Z1:t)dπ1:t(Z1:t) =∫

f(Z1:t)dπ1:t(Z1:t). The proof of Lemma 2.3.1 required more steps because the importance

weights were not all N−1 as is the case here. The goal is to show that after the alteration to

the particle system as described in Section 2.3.4, the altered particle system still targets the

correct distribution π1:t.

First, let us consider point (i). For hf to be in Bt, f must be selected so that the following

two conditions hold for any direction Z1:t:

∫
|hf (Z̃1:t)|dπ1:t =

∫ ∣∣∣ ∫ f(η2 · C̃ + D̃τ1:t)dπ eC, eD
∣∣∣dπ1:t <∞, and (2.32)

F (Z1:t−1, hf ) =

=
∫

Θt

hf (Z1:t−1, Zt) · I?(Zt,1:r−1) · I(mt,Mt)(zt,r)(Φ(Mt)− Φ(mt))dπt|1:t−1(Zt)

=
∫

Θt

(∫
f
(
η2 · C̃ + D̃τ1:t(Z1:t−1, Zt)

)
dπ eC, eD

)
· I?(Zt,1:r−1)×

I(mt,Mt)(zt,r)(Φ(Mt)− Φ(mt))dπt|1:t−1(Zt) <∞. (2.33)

These conditions are requiring that f is picked so that hf ∈ Bt; let B̃t be the set of f ∈ Bt such

that (2.32) and (2.33) hold. Then, B̃t ⊂ Bt, and since, for example, all bounded functions
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would satisfy (2.32) and (2.33), B̃t is non-empty. An example of an unbounded function f that

satisfies the conditions, since t is finite, is the identity function f(x) = x. Since hf would then

be taking an expected value of two variables with finite expected values – C̃, which follows

a normal distribution centered at zero, and D̃, which follows a chi-squared distribution with

degrees of freedom, and hence a mean, connected to the number of levels of the random effect

being resampled – it would exist on Bt. This will be finite as long as t <∞. (More precisely,

as long as the number of levels within the random effects is finite.)

Now we only need to show that point (ii) that
∫
hf (Z1:t)dπ1:t(Z1:t) =

∫
f(Z1:t)dπ1:t(Z1:t).

This follows because

∫
hf (Z1:t)dπ1:t =

∫
h∗f (τ1:t)dπτ =

∫ (∫
f(η2 · C̃ + D̃τ1:t)dπ eC, eD

)
dπτ

=
∫ (∫

f(η2 · C +Dτ1:t)dπC,D
)
dπτ =

∫
f(η2 · C +Dτ1:t)dπC,D × dπτ

=
∫
f(Z1:t)dπ1:t = Eπ1:t [f(Z1:t)].

where h∗f (τ1:t) = hf (Z1:t), the equality from line one to line two follows because τ(Z1:t) =

τ(Z̃1:t), and the equality in the second line follows by Fubini’s Theorem because C̃ and D̃ are

independent of τ .

2.4 Simulation study and applications

This simulation study has two parts. In the first part, we consider balanced and unbalanced

designs for the two-fold nested model with model designs selected from Hernandez et al.

(1992). In the second part, we use balanced and unbalanced two-factor crossed designs with

an interaction term with model designs selected from Hernandez and Burdick (1993); both

sets of designs include varying levels of imbalance. In addition to the classical, ANOVA-

based methods proposed in Hernandez et al. (1992) and Hernandez and Burdick (1993), we

compare the performance of our method to a Bayesian method proposed in Gelman (2006).

The purpose of this study is to compare the performance of the proposed method with cur-

rent methods using models with varying levels of imbalance. The proposed, classical and
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Bayesian methods were compared using frequentist repeated sampling properties. Specif-

ically, performance was compared based on empirical coverage of confidence intervals and

average confidence interval length of the variance components. We focus on the confidence

intervals of the variance components because that is where the classical methods have some

issues when the designs become imbalanced, which are discussed below.

It is understood that the selection of a prior distribution influences the behavior of the

posterior; the priors were selected based on recommendations in the literature for normal

mixed linear models (Gelman, 2006). While Bayesian methods do not necessarily maintain

frequentist properties, many practitioners interpret results from Bayesian analyses as approx-

imately frequentist (i.e. they expect repeated-sampling properties to approximately hold) due

to Bernstein-von Mises Theorem (Le Cam, 1986; van der Vaart, 2007), and so performing well

in a frequentist sense has appeal. There are a number of examples investigating frequentist

performance of Bayesian methodology such as Diaconis and Freedman (1986b), Diaconis and

Freedman (1986a), Ghosal et al. (2000), and Mossman and Berger (2001).

It is important to note that the proposed method and the Bayesian methods are not

restricted to the model designs selected for this study, and can be applied to any normal

linear mixed model that satisfies the assumptions from previous sections, while the included

ANOVA methods were developed specifically for the model designs used in this study. A more

efficient algorithm than the proposed method may be possible for specific model designs, but

one of our goals was to present a mode of inference for a general normal linear mixed model

design. This is particularly helpful for a non-statistician practitioner who may not be familiar

with the best way of selecting an appropriate approximate ANOVA method for an unbalanced

design, or how to select a prior and implement a computational algorithm to approximate

the posterior distribution.

As presented below, the proposed method tends to be conservative with comparable or

shorter intervals than the classical and Bayesian methods used in the study.
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2.4.1 Two-fold nested model

For the first part of the simulation study, we consider the unbalanced two-fold nested linear

model

yijk = µ+ αi + βij + εijk (2.34)

for i = 1, . . . , I, j = 1, . . . , Ji, and k = 1, . . . ,Kij , where µ is an unknown constant and

αi ∼ N(0, σ2
α), βij ∼ N(0, σ2

β), and εijk ∼ N(0, σ2
ε ).

Table 2.3 displays the model designs used in this part of the simulation study. Five model

designs of Hernandez et al. (1992) were selected to cover different levels of imbalance both in

the number of nested groups (Ji) and the number of observations within each group (Kij).

The parameters φ1 and φ2 reflect the degree of imbalance due to Ji and Kij , respectively.

The measures of imbalance listed is based on methods presented in Khuri (1987) where values

range from 0 to 1, and smaller values suggest a greater degree of imbalance. The parameters

values used in this part of the study are displayed in Table 2.4 with µ = 0.

Design φ1 φ2 φ I Ji Kij n
MI - 1 0.9000 0.8889 0.8090 5 2,1,1,1,1 4,4,2,2,2,2 16
MI - 2 0.7778 0.7337 0.6076 3 4,2,1 1,5,5,5,1,5,1 23
MI - 3 1.0000 1.0000 1.0000 3 3,3,3 2,2,2,2,2,2,2,2,2 18
MI - 4 0.4444 1.0000 0.4444 6 1,1,1,1,1,7 2,2,2,2,2,2 24

2,2,2,2,2,2
MI - 5 1.0000 0.4444 0.4444 3 2,2,2 1,1,1,1,1,7 12

Table 2.3: Model designs used in the two-fold nested model of (2.34).

NOTE: φ1 and φ2 reflect the degree of imbalance due to Ji and Kij ,
respectively, and φ = φ1 · φ2 is an overall measure of imbalance. See
(2.34) for definitions of I, Ji, and Kij ; note sample size (n) =

∑
i

∑
jKij .

Design Parameter values (σ2
α, σ

2
β, σ

2
ε )

PI -1 (0.2, 0.1, 0.7)
PI -2 (0.4, 0.3, 0.3)
PI -3 (0.2, 0.7, 0.1)
PI -4 (25, 4.0, 16)
PI -5 (1.0, 1.0, 1.0)

Table 2.4: Model designs used in the two-fold
nested model of (2.34).
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For each model and parameter design combination, 2000 independent data sets were gen-

erated, and 5000 particles were simulated for the proposed method.

ANOVA-based methods

Hernandez et al. (1992) present two methods for determining confidence intervals for σ2
α and

σ2
β. In fact, they propose a third method for σ2

β, but we do not include it because there

is not an analogous method for σ2
α. The first method proposed by Hernandez et al. (1992)

uses, what they refer to as, the unweighted sum of squares. This is denoted as USS. This

decomposition for the unbalanced two-fold nested model has been employed in other model

settings noted in their manuscript. The other method proposed by Hernandez et al. (1992)

relies on a decomposition that they developed from Ting et al. (1990)’s exact method for

balanced designs. This is denoted by TYPEI. In general for unbalanced designs, these

decompositions do not result in independent nor chi-squared random variables; however, for

certain model designs, USS and TYPEI do have these desired properties. They also note

that the performance of these methods will depend, for better or for worse, on the ratios

σ2
α/(σ

2
α + σ2

β + σ2
ε ) or σ2

α/σ
2
ε for the intervals on σ2

α, and σ2
β/σ

2
ε for the intervals on σ2

β.

Bayesian method

A Bayesian method is also considered for comparison. Bayesian hierarchical models provide

a means of constructing confidence intervals for random effects models. Part of the art of

the Bayesian methodology is in selecting appropriate prior distributions for the unknown

parameters. For inference on the unknown variance component parameters when there is

not prior information available (i.e. when seeking a noninformative prior), Gelman (2006)

recommends employing a uniform prior distribution on the standard deviation parameters

when there are a sufficient number of groups; otherwise, a half-t distribution is suggested.

Gelman (2006) notes that often an inverse-gamma prior (IG(ε, ε) as ε −→ 0) is considered,

but that limiting posterior distribution is not, in fact, proper. Gelman shows that if the

variance component is close to 0, the resulting posterior becomes dependent on this prior.

Gelman also points out that the uniform prior on the standard deviation parameter, as long
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as there are more than two levels, results in a proper limiting posterior distribution; however,

he notes that if the scale parameter a is truly finite, considering a −→∞ results in a positive

miscalibration of the posterior mean (i.e. a positive bias). Gelman attributes this to the

fact that the variance components must be positive, which he says is similar to the issue the

classical methods face with the possibility of negative estimators of the variance components.

Per the recommendation of Gelman (2006), both uniform and half-t priors are consid-

ered (denoted BAY11.5 and BAY13, and BAY21.5 and BAY23, respectively, where the

subscripts 1.5 and 3 specify the prior scale variable). The R package ‘rjags’ was used to im-

plement the Bayesian methods used in the simulation study and applications. Gelman (2006)

suggests using a uniform prior (i.e. U(0, a)) on the standard deviation parameters when there

are at least 5 groups and explains that fewer than 3 groups results in an improper posterior

distribution. Calibration is necessary in selecting the parameter a in the prior distribution;

we use 1.5 and 3 times the range of the data (per the recommendation in Gelman (2006,

p. 528) to use a value that is “high but not off the scale”), which appears reasonable when

reviewing the resulting posterior distributions. For example, the hierarchical model for the

two-fold nested model of (2.34) for BAY11.5 and BAY13 is

Yijk ∼ N(µ+ αi + βij , σ
2
ε ), i = 1, . . . , I, j = 1, . . . , Ji, k = 1, . . . ,Kij

αi ∼ N(0, σα), i = 1, . . . , I, βij ∼ N(0, σβ), j = 1, . . . , Ji,

σα ∼ U(0, a), σβ ∼ U(0, a), µ ∼ N(0, 108)

For the second Bayesian method, a similar hierarchical model is used. Instead of a uniform

distribution on the non-error variance components, a half-Cauchy distribution with scale

parameter a set as 1.5 or 3 times the range of the data is used. Six thousand particles were

generated with the first 1000 discarded (i.e. a “burn-in” of 1000 particles).

Results

Performance is based on the empirical coverage of (1−α)100% confidence intervals and average

interval length for the parameters of interest θ. We define a lower-tailed (1−α)100% confidence
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interval on θ as the interval (−∞, Uα] such that P (−∞ < θ ≤ Uα) = 1 − α, an upper-tailed

(1−α)100% confidence interval on θ as the interval [Lα,∞) such that P (Lα ≤ θ <∞) = 1−α,

and a two-sided equal-tailed confidence interval on θ as the interval [Lα/2, Uα/2] such that

P (Lα/2 ≤ θ ≤ Uα/2) = 1−α. Based on the normal approximation to the binomial distribution,

we will consider empirical coverage between 94% and 96% appropriate for 95% two-sided

confidence intervals.

The simulation results for Model (2.34) are displayed in Figures 2.3 - 2.10 with the corre-

sponding five-number summaries displayed in Tables A.1 - A.4 in the appendix. The results

are also summarized in Appendix A.1 as box plots for 95% two-sided confidence intervals

and average lengths combined for parameters σ2
α and σ2

β. Though there are some differences

in performance for each model and particular variance component, the box plots in the Ap-

pendix provide a convenient summary for each model used in the study. One point in each

box plot represents a model and parameter combination from Tables 2.4 and 2.3. We note

that Hernandez et al. (1992) focuses on confidence intervals for the non-error variance com-

ponents and do not derive confidence intervals for µ or σ2
ε , so there are not results for USS

or TYPEI for Figures 2.7, 2.8, 2.9, or 2.10.

The focus of the study is on the performance of the non-error variance components σ2
α

and σ2
β. The results for σ2

α are found in Figures 2.3 and 2.4. Overall, USS and TYPEI

tend to maintain the stated coverage. BAY11.5, BAY13, BAY21.5, BAY23, and FID are

conservative for the two-sided intervals, and very conservative for the one-sided lower con-

fidence intervals. BAY11.5, BAY13, BAY21.5, and BAY23 range from mildly liberal to

very conservative for the upper confidence intervals with median coverages that are mildly

conservative. FID is conservative to very conservative for the upper confidence intervals.

Overall, FID tends to be conservative to very conservative. However, even given its conser-

vative performance, the average interval lengths for FID are competitive with USS, TYPEI,

and BAY11.5, but beats BAY13, BAY21.5, and BAY23. The fact that the average interval

lengths of σ2
α for BAY11.5 performs better than the other Bayesian intervals is somewhat

surprising. A similar result appears for σ2
α and σ2

β, for the two-way crossed with interaction

model discussed in Section 2.4.2, which are analogous parameters to σ2
α of the two-fold nested
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model of this section in that they are the main random effects (i.e. not nested). For model

designs MI - 1 and 4, all the Bayesian interval lengths are comparable; however, it is with

model designs MI - 2, 3, and 5 that BAY11.5 has the shortest average interval lengths among

the Bayesian intervals. The reason this is rather surprising is that designs MI - 2, 3, and 5

have only three levels for the main random effect (I = 3), and Gelman (2006) suggests the

use of a uniform prior when the number of levels is at least 5.

The results for σ2
β are found in Figures 2.5 and 2.6. USS and TYPEI tend to maintain

the stated level of coverage for all the confidence intervals. BAY11.5, BAY13, BAY21.5,

BAY23, and FID have similar conservative empirical coverages for all the confidence inter-

vals with FID slightly more conservative for the upper confidence intervals. Several of the

average interval lengths of USS and TYPEI for σ2
β are much wider than BAY11.5, BAY13,

BAY21.5, BAY23, and FID. These wide intervals are from MI - 1 (revealed in the middle

plot of Figure 2.5). This appears to be due to the model design; the derivation of the confi-

dence intervals results in the degrees of freedom of 1 for the nested factor. We note that the

wide confidence intervals for σ2
β also appear in the simulation results for model MI-1 in Her-

nandez et al. (1992). BAY11.5, BAY13, BAY21.5, BAY23, and FID do not appear to have

this issue. Also, BAY11.5, BAY13, BAY21.5, and BAY23 have very similar performances

unlike with σ2
α where BAY11.5 had shorter intervals than the other Bayesian methods.

BAY11.5, BAY13, BAY21.5, BAY23, and FID all tend to have conservative coverage for

the two-sided confidence intervals for µ as displayed in Figures 2.7 and 2.8, but FID has the

shortest average confidence interval lengths. FID tends to be within the stated coverage for

σ2
ε as displayed in Figures 2.9 and 2.10, with BAY11.5, BAY13, BAY21.5, BAY23 having

correct coverage for the two-sided confidence intervals, liberal to conservative coverage for

the upper confidence intervals, and slightly conservative coverage for the lower confidence

intervals. Overall for σ2
ε , FID has the shortest confidence intervals.

The proposed method, while maintaining conservative coverage, has average interval

lengths that are competitive or better than the other methods used in this part of the study.

The proposed method offers an easily generalizable framework and provides intervals for fixed

effects and the error variance component, unlike the methods presented in Hernandez et al.
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(1992). Furthermore, Hernandez et al. (1992) can have intervals that become excessively wide

with certain model designs as seen in the middle plot of Figure 2.5. While the conservative

coverage for the Bayesian methods can be deemed acceptable, their average interval lengths

tend to be wider than the proposed method.
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Figure 2.3: Simulation results for σ2
α from the two-fold nested model of (2.34). The top plot is the

empirical coverage probabilities for 95% two-sided confidence intervals. The bottom plot
is the average interval lengths divided by the average interval lengths of FID. Each value
used in a box plot corresponds to a particular model design and parameter combination.

Application

In addition to the simulation study, we consider the application of Model (2.34) presented in

Hernandez et al. (1992) concerning the blood pH of female mice offspring. Fifteen dams were

mated with 2 or 3 sires where each sire was only used for one dam (i.e. 37 sires were used in

the experiment), and the purpose of the study was to determine if the variability in the blood

pH of the female offspring is in part due to the variability in the mother. There is imbalance

in the data due to the number of sires mated with each dam (2 or 3); also note the natural

imbalance in the data resulting from the number of female offspring.

The 95% confidence intervals based on the real data are presented in Table 2.5. An

example of the generalized fiducial distribution for σ2
α is displayed in Figure 2.11. This
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Figure 2.4: Simulation results for σ2
α from the two-fold nested model of (2.34). The top plot is the

empirical coverage probabilities for 95% one-sided upper confidence intervals. The bottom
plot is the empirical coverage probabilities for 95% one-sided lower confidence intervals.
Each value used in a box plot corresponds to a particular model design and parameter
combination.

highlights one of the advantages of the proposed method over classical methods (and shared

with Bayesian methods), which is a distribution on the parameter space allowing for inferences

similar to those made using Bayesian posterior distributions.

In order to evaluate the empirical coverage of the proposed method in this real-data

example, we perform a simulation study using the REML estimates for all the parameters

(µ = 44.92, σ2
α = 8.90, σ2

β = 2.65, and σ2
ε = 24.81). Simulating 2000 independent data

sets with the noted parameter values, we find the empirical coverage using USS, TYPEI,

BAY11.5, BAY13, BAY21.5, BAY23, and FID, and the average lengths of the two-sided

intervals. The results of the simulation study are also found in Table 2.5.

The third column of Table 2.5 displays the 95% two-sided confidence intervals based on

the real data. The remaining columns display the results based on the 2000 independent data

sets generated using the REML estimates. The empirical coverage of the intervals for σ2
α are

within the stated coverage for all the methods, but we see that FID has the shortest interval

lengths. The intervals for σ2
β are within the stated coverage to conservative, with BAY11.5,
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Figure 2.5: Simulation results for σ2
β from the two-fold nested model of (2.34). The top plot is the

empirical coverage probabilities for 95% two-sided confidence intervals. The middle plot
is the average interval lengths divided by the average interval lengths of FID on the log10

scale. The bottom plot is the average interval lengths divided by the average interval
lengths of FID cutting out the outliers of USS and TYPEI displayed in the middle plot.
Each value used in a box plot corresponds to a particular model design and parameter
combination.
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Figure 2.6: Simulation results for σ2
β from the two-fold nested model of (2.34). The top plot is the

empirical coverage probabilities for 95% one-sided upper confidence intervals. The bottom
plot is the empirical coverage probabilities for 95% one-sided lower confidence intervals.
Each value used in a box plot corresponds to a particular model design and parameter
combination.
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Figure 2.7: Simulation results for µ from the two-fold nested model of (2.34). The top plot is the
empirical coverage probabilities for 95% two-sided confidence intervals. The bottom plot
is the average interval lengths divided by the average interval lengths of FID. Each value
used in a box plot corresponds to a particular model design and parameter combination.
The paper proposing USS and TYPEI (Hernandez et al., 1992) focuses on confidence
intervals for the non-error variance components and do not derive confidence intervals for
µ.
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Figure 2.8: Simulation results for µ from the two-fold nested model of (2.34). The top plot is the
empirical coverage probabilities for 95% one-sided upper confidence intervals. The bottom
plot is the empirical coverage probabilities for 95% one-sided lower confidence intervals.
Each value used in a box plot corresponds to a particular model design and parameter
combination. The paper proposing USS and TYPEI (Hernandez et al., 1992) focuses on
confidence intervals for the non-error variance components and do not derive confidence
intervals for µ.
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Figure 2.9: Simulation results for σ2
ε from the two-fold nested model of (2.34). The top plot is the

empirical coverage probabilities for 95% two-sided confidence intervals. The bottom plot
is the average interval lengths divided by the average interval lengths of FID. Each value
used in a box plot corresponds to a particular model design and parameter combination.
The paper proposing USS and TYPEI (Hernandez et al., 1992) focuses on confidence
intervals for the non-error variance components and do not derive confidence intervals for
σ2

ε .
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Figure 2.10: Simulation results for σ2
ε from the two-fold nested model of (2.34). The top plot is the

empirical coverage probabilities for 95% one-sided upper confidence intervals. The bottom
plot is the empirical coverage probabilities for 95% one-sided lower confidence intervals.
Each value used in a box plot corresponds to a particular model design and parameter
combination. The paper proposing USS and TYPEI (Hernandez et al., 1992) focuses on
confidence intervals for the non-error variance components and do not derive confidence
intervals for σ2

ε .
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Figure 2.11: The generalized fiducial distribution of 5000 generated particles for σ2
α using the real

data described in Section 2.4.1. The solid line is the normal kernel density estimate
of the distribution with a point mass at zero. The two vertical dashed lines represent
the lower and upper bounds for 95% confidence intervals based on the weights of the
generated particles.
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BAY13, and BAY21.5, BAY23 having the most conservative coverage. Again, we see that

FID has the shortest overall intervals.

Var. comp. Method 95% 2-sided C.I. 2-sided/ave.len. Upper/lower
σ2
α USS (2.30, 28.56) 0.953/25.1 0.949/0.958

TYPEI (1.94, 26.23) 0.950/25.2 0.949/0.957
BAY13 (1.51, 30.21) 0.956/37.2 0.948/0.962
BAY23 (1.76, 30.04) 0.955/27.5 0.950/0.961
BAY11.5 (1.73, 30.72) 0.955/29.2 0.948/0.959
BAY21.5 (1.56, 30.02) 0.955/27.3 0.948/0.960
FID (1.53, 26.67) 0.948/24.5 0.958/0.947

σ2
β USS (0.00, 11.56) 0.961/10.9 0.952/0.952

TYPEI (0.00, 11.26) 0.964/12.4 0.953/0.953
BAY13 (0.04, 12.55) 0.980/11.3 0.959/0.996
BAY23 (0.01, 11.92) 0.983/11.3 0.958/0.995
BAY11.5 (0.17, 11.81) 0.976/11.2 0.956/0.994
BAY21.5 (0.01, 12.49) 0.982/11.3 0.958/0.994
FID (0.19, 10.54) 0.974/10.2 0.951/0.986

Table 2.5: Two-fold nested model: real data example

NOTE: The 95% intervals are based on the actual data while the remaining
information are the empirical results from 2000 independently generated
data set using the REML estimates for each parameter. The results are the
empirical coverage and average interval lengths of 95% confidence intervals.

2.4.2 Two-factor crossed design with interaction

In this part of the simulation study, we consider the two-factor crossed designs with interaction

written as

Yijk = µ+ αi + βj + (αβ)ij + εijk (2.35)

for i = 1, . . . , I, j = 1, . . . , J , and k = 1, . . . ,Kij , where µ is an unknown constant and

αi ∼ N(0, σ2
α), βj ∼ N(0, σ2

β), (αβ)ij ∼ N(0, σ2
αβ), and εijk ∼ N(0, σ2

ε ), all independent of

each other.

Table 2.6 displays the model designs used in this part of the study, and, again, the overall

measure of imbalance (φ) proposed in Khuri (1987) is displayed for each design. The model

designs are taken from Hernandez and Burdick (1993), where they propose an ANOVA-based

approach for confidence intervals on the variance components. The parameters values used
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in this part of the study are µ = 0, and the following combinations displayed in Table 2.7.

Design φ I J Kij n
MII - 1 .8768 4 3 2, 1, 3/ 2, 1, 1/ 2, 2, 2/ 1, 2, 3 22
MII - 2 .6667 3 3 4, 1, 1/ 4, 1, 1/ 4, 1, 1 18
MII - 3 .6667 3 3 4, 4, 4/ 1, 1, 1/ 1, 1, 1 18
MII - 4 .4011 3 4 8, 1, 1/ 1, 1, 1, 1/ 1, 1, 1, 1 19
MII - 5 .7619 5 3 1,2,2/5,2,7/2,2,2/2,4,2/3,2,2 40
MII - 6 1.000 3 3 2,2,2/2,2,2/2,2,2 18

Table 2.6: Model designs used in the two-factor crossed design with
interaction model of (2.35).

NOTE: The parameter φ is an overall measure of imbalance
of the model. See (2.35) for definitions of I, J , and Kij ; note
sample size n =

∑
i

∑
jKij .

Design Parameter values (σ2
α, σ

2
β, σ

2
αβ, σ

2
ε )

PII -1 (0.1, 0.5, 0.1, 0.3)
PII -2 (0.1, 0.3, 0.1, 0.5)
PII -3 (0.1, 0.1, 0.3, 0.5)
PII -4 (0.1, 0.1, 0.5, 0.3)
PII -5 (1.0, 1.0, 1.0, 1.0)

Table 2.7: Parameter values used in the two-factor
crossed design with interaction model of
(2.35).

For each design and set of parameter values, 2000 independent data sets were generated,

and 5000 particles were simulated for the proposed method. As before, performance is based

on the empirical coverage of (1− α)100% confidence intervals and average interval length for

the parameter of interest θ. Based on the normal approximation to the binomial distribution,

we will consider empirical coverage between 94% and 96% appropriate for 95% two-sided

confidence intervals.

ANOVA-based method

The ANOVA-based method of Hernandez and Burdick (1993) is based on what they refer

to as the unweighted sum of squares in order to construct confidence intervals for σ2
α, σ2

β,

and σ2
αβ. (Note that this is the same unweighted sum-of-squares approach used in Hernandez

et al. (1992) for the two-fold nested model.) The method they propose is based on intervals
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for balanced designs presented by Ting et al. (1990). The usual issues with the ANOVA-based

methods occur with this design when the data are unbalanced: non-unique partitioning of the

total sum-of-squares, lack of independence, and lack of desired distributions (no chi-squared

random variables). The claim they make is that the lack of independence has a “canceling

effect” with the lack of chi-squaredness. In the simulation study, this method will be called

HB.

Bayesian method

The same prior distributions were used for the two-factor crossed design with interaction

as with the two-fold nested model. The details of the Bayesian method are found in Gel-

man (2006), and outlined above in Section 2.4.1. As with Model (2.34), BAY11.5, BAY13,

BAY21.5, and BAY23 are used to denote the results using the Bayesian framework.

Results

The simulation results for Model (2.35) are displayed in Figures 2.12 - 2.21 with correspond-

ing five-number summaries displayed in Tables A.5 - A.9 found in the appendix. As with

Model (2.34), the results are further summarized in Appendix A.1 as box plots for 95% two-

sided confidence intervals and average interval lengths combined for parameters σ2
α, σ2

β, and

σ2
αβ. Though there are some differences in performance for each model and particular vari-

ance component, the box plots in the Appendix provide a convenient summary for each model

used in the study. One point in each box plot represents a model and parameter combination

from Tables 2.7 and 2.6. We note that Hernandez and Burdick (1993) focuses on confidence

intervals for the non-error variance components and do not derive confidence intervals for µ

or σ2
ε , so there are not results for HB for Figures 2.18 - 2.21.

HB maintains correct empirical coverage for the 95% confidence two-sided, upper and

lower interval coverage on σ2
α, σ2

β, and σ2
αβ as displayed in Figures 2.12 - 2.17.

BAY11.5, BAY13, BAY21.5, BAY23 and FID have comparable empirical coverages for

the two-sided intervals on σ2
α with FID having slightly more conservative intervals. For the

upper confidence intervals, FID remains conservatives, but the BAY11.5, BAY13, BAY21.5,
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and BAY23 are within the stated coverage to conservative. The lower confidence interval

empirical coverages are very conservative for BAY11.5, BAY13, BAY21.5, BAY23 and FID.

The performance for BAY11.5, BAY13, BAY21.5, BAY23 and FID for σ2
β is very similar

to that of σ2
α except the empirical coverage on the upper confidence intervals for BAY11.5,

BAY13, BAY21.5, and BAY23 range from slightly liberal to correct coverage, and FID is

less conservative.

BAY11.5, BAY13, BAY21.5, BAY23 and FID for σ2
αβ have conservative two-sided

intervals, moderately conservative upper confidence intervals, and correct to very conservative

coverage on the lower intervals.

The average interval lengths for HB are competitive with FID for σ2
α and σ2

β, but other-

wise FID tends to have the shortest average confidence intervals for σ2
α, σ2

β, and σ2
αβ.

The empirical coverage for all the intervals on µ for BAY11.5, BAY13, BAY21.5, BAY23,

and FID tend to be conservative as displayed in Figures 2.18 and 2.19. However, the average

interval lengths on µ for FID are shorter than the average interval lengths for BAY11.5,

BAY13, BAY21.5, and BAY23.

The empirical coverage of all intervals on σ2
ε for FID tend to be within the stated coverage,

while the intervals for BAY11.5, BAY13, BAY21.5, and BAY23 range from within the stated

coverage for the two-sided intervals to slightly liberal for the upper intervals and slightly

conservative for the upper intervals. FID produces the shortest average confidence intervals

for σ2
ε .

As with the previous simulation study, FID, while maintaining conservative coverage, has

average interval lengths that are generally competitive or better than the competing methods

used in this study.

Application

An application of Model (2.35) is discussed in Khuri and Littell (1987) where they analyze

the variation in fusiform rust due to the family (classified by the female parent) and test

location in Southern pine tree plantations. The data are the proportion of trees from each

family and test location that has fusiform rust, and the variance stabilizing transformation
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Figure 2.12: Simulation results for σ2
α for the two-factor crossed design with interaction. The top

plot is the empirical coverage probabilities for 95% two-sided confidence intervals. The
bottom plot is the average interval lengths divided by the average interval lengths of FID.
Each value used in a box plot corresponds to a particular model design and parameter
combination.
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Figure 2.13: Simulation results for σ2
α for the two-factor crossed design with interaction. The top plot

is the empirical coverage probabilities for 95% one-sided upper confidence intervals. The
bottom plot is the empirical coverage probabilities for 95% one-sided lower confidence
intervals. Each value used in a box plot corresponds to a particular model design and
parameter combination.
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Figure 2.14: Simulation results for σ2
β for the two-factor crossed design with interaction. The top

plot is the empirical coverage probabilities for 95% two-sided confidence intervals. The
bottom plot is the average interval lengths divided by the average interval lengths of FID.
Each value used in a box plot corresponds to a particular model design and parameter
combination.
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Figure 2.15: Simulation results for σ2
β for the two-factor crossed design with interaction. The top plot

is the empirical coverage probabilities for 95% one-sided upper confidence intervals. The
bottom plot is the empirical coverage probabilities for 95% one-sided lower confidence
intervals. Each value used in a box plot corresponds to a particular model design and
parameter combination.
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Figure 2.16: Simulation results for σ2
αβ for the two-factor crossed design with interaction. The top

plot is the empirical coverage probabilities for 95% two-sided confidence intervals. The
bottom plot is the average interval lengths divided by the average interval lengths of FID.
Each value used in a box plot corresponds to a particular model design and parameter
combination.
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Figure 2.17: Simulation results for σ2
αβ for the two-factor crossed design with interaction. The top plot

is the empirical coverage probabilities for 95% one-sided upper confidence intervals. The
bottom plot is the empirical coverage probabilities for 95% one-sided lower confidence
intervals. Each value used in a box plot corresponds to a particular model design and
parameter combination.

60



HB BAY1_3 BAY2_3 BAY1_{1.5} BAY2_{1.5} FID
0.
92

0.
94

0.
96

0.
98

1.
00

Em
pir

ica
l c

ov
er

ag
e

HB Bayes1_3 Bayes2_3 Bayes1_{1.5} Bayes2_{1.5}

0.
5

1.
0

1.
5

2.
0

2.
5

Method

Av
e.

 le
n.

/F
ID

 a
ve

. le
ng

.

Figure 2.18: Simulation results for µ for the two-factor crossed design with interaction. The top
plot is the empirical coverage probabilities for 95% two-sided confidence intervals. The
bottom plot is the average interval lengths divided by the average interval lengths of FID.
Each value used in a box plot corresponds to a particular model design and parameter
combination.
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Figure 2.19: Simulation results for µ for the two-factor crossed design with interaction. The top plot
is the empirical coverage probabilities for 95% one-sided upper confidence intervals. The
bottom plot is the empirical coverage probabilities for 95% one-sided lower confidence
intervals. Each value used in a box plot corresponds to a particular model design and
parameter combination.
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Figure 2.20: Simulation results for σ2
ε for the two-factor crossed design with interaction. The top plot

is the empirical coverage probabilities for 95% two-sided upper confidence intervals. The
bottom plot is the average interval lengths divided by the average interval lengths of FID.
Each value used in a box plot corresponds to a particular model design and parameter
combination.
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Figure 2.21: Simulation results for σ2
ε for the two-factor crossed design with interaction. The top plot

is the empirical coverage probabilities for 95% one-sided upper confidence intervals. The
bottom plot is the empirical coverage probabilities for 95% one-sided lower confidence
intervals. Each value used in a box plot corresponds to a particular model design and
parameter combination.
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for proportions, the inverse sine of the square root of the data, has been taken for the data

set. At each test location, data were collected for trees with female parents from different

families with one to four measurements for each family and test combination.

Table 2.8 lists 95% confidence intervals for HB, BAY11.5, BAY13, BAY21.5, BAY23,

and FID based on the actual data. In order to evaluate the empirical coverage of these

methods, we perform a simulation study using the REML estimates for all the parameters

(µ = 0.9349, σ2
α = 0.0224, σ2

β = 0.0274, σ2
αβ = 0.000, and σ2

ε = 0.0340). Simulating 2000

independent data sets with the noted parameter values, we find the empirical coverage using

HB, BAY11.5, BAY13, BAY21.5, BAY23, and FID, and the average lengths of the two-

sided intervals. These results are also presented in Table 2.8. All 95% intervals based on

the real data capture the REML estimates to two decimal places of rounding. The issue

with the Bayesian methods for a variance component at, or very close to, zero is that the

possible simulated values will be bounded away from zero unless an adjustment is made to

the algorithm. An adjustment such as an MCMC algorithm allowing for point masses at zero

would be necessary to alleviate this problem.

HB is within the stated coverage except it becomes slightly liberal for the upper intervals

for σ2
α and the lower intervals for σ2

β. BAY11.5, BAY13, BAY21.5, and BAY23 within the

stated coverage for the two-sided intervals on σ2
α and σ2

β, liberal for the upper intervals, and

very conservative for the lower intervals. Because the REML estimate for σ2
αβ was zero, the

empirical coverage for the Bayesian intervals would not be expected to perform well without

a special adjustment to the simulation procedure (adding the possibility of a point mass

at zero). FID is within the stated coverage for all intervals except it is slightly liberal for

the lower intervals on σ2
α, and liberal for the upper interval on σ2

αβ, which is not surprising

with the value of zero on a parameter restricted to be nonnegative. This also highlights

the importance of model selection since it is unlikely the interaction term should have been

included in the model. Model selection is not addressed in this dissertation, but is a subject of

future research. BAY11.5, BAY13, BAY21.5, and BAY23 have the longest average interval

lengths. HB and FID have comparable average interval lengths for σ2
αβ, FID is shortest for

σ2
α and HB is shortest for σ2

β.
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Var. comp. Method 95% 2-sided C.I. 2-sided./ave. len. Upper/lower
σ2
α HB (0.007, 0.528) 0.940/0.420 0.918/0.958

BAY13 (0.004, 0.330) 0.963/0.513 0.932/0.996
BAY13 (0.004, 0.461) 0.965/0.495 0.937/0.993
BAY11.5 (0.005, 0.337) 0.963/0.427 0.934/0.993
BAY21.5 (0.005, 0.312) 0.965/0.382 0.936/0.994
FID (0.004, 0.184) 0.961/0.162 0.963/0.937

σ2
β HB (0.0002, 0.186) 0.957/0.206 0.976/0.931

BAY13 (0.008, 1.465) 0.957/1.845 0.914/1.000
BAY23 (0.007, 1.023) 0.959/1.630 0.919/0.999
BAY11.5 (0.008, 0.723) 0.958/1.018 0.918/0.999
BAY21.5 (0.007, 0.683) 0.961/1.029 0.921/1.000
FID (0.006, 0.426) 0.968/0.331 0.963/0.953

σ2
αβ HB (0.000, 0.043) 0.967/0.030 0.942/1.000

BAY13 (1.41× 10−6, 0.030) 0.000/0.031 0.000/1.000
BAY23 (5.21× 10−6, 0.029) 0.000/0.031 0.000/1.000
BAY11.5 (1.10× 10−5, 0.025) 0.000/0.031 0.000/1.000
BAY21.5 (4.62× 10−6, 0.028) 0.000/0.031 0.000/1.000
FID (0.000, 0.022) 0.945/0.026 0.887/1.000

Table 2.8: Two-factor crossed with interaction model: real data example

NOTE: The 95% intervals are based on the actual data while the remaining
information are the empirical results from 2000 independently generated data
set using the REML estimates for each parameter. The results are the empirical
coverage and average interval lengths of 95% confidence intervals.
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2.5 Conclusion and future research

Even with the long history of inference procedures for normal linear mixed models, a good-

performing, unified inference method is lacking. ANOVA-based methods offer, what tends

to be, model-specific solutions that may not perform well if the design is unbalanced. While

Bayesian methods allow for solutions to very complex models, determining an appropriate

prior distribution may not be straightforward, and can be confusing for the non-statistician

practitioner. In addition, for the models considered in the simulation study and the priors

selected based on recommendations in the literature, the Bayesian interval lengths were not

generally competitive with the other methods used in the study. The proposed method allows

for confidence interval estimation for all parameters of balanced and unbalanced normal mixed

linear models. It is interesting to note that even though more variation was incorporated into

the data for the proposed method due to its acknowledgement of known uncertainty using

intervals, in the simulation study, the proposed method tended to have conservative coverage,

but the average interval lengths were comparable or shorter than the other methods that

assumed the data were observed exactly. The currently implemented algorithm is suitable for

9 or fewer parameters, but the method does not limit the number of parameters.

When the data are i.i.d (e.g. when the error effect is the only random component), the

confidence intervals based on the generalized fiducial distribution are asymptotically correct

(Hannig, 2009a). When the data are not i.i.d., previous experience and simulation results

suggests that the generalized fiducial method presented above still leads to asymptotically

correct inference as the sample size n increases. This is a topic of future research, and requires

a Bernstein-von-Mises type result. To the best of our knowledge, an analogous Bayesian result

for the normal linear mixed model setting is not currently available in the literature.

Some other interesting extensions of this work would be to consider spatial dependence

in the data. The current algorithm relies on the linearity of the variance components and

random effects (see Equation (2.2)). A similar algorithm could be developed where, rather

than considering interior polyhedrons of intersecting hyperplanes, we would need to consider

hypersurfaces. Another extension would be to allow more choices for the distribution of the
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random effects. The main difficulty in implementing a model with non-Gaussian random

effects would be in determining an appropriate alteration method.
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Chapter 3

Logistic regression with mixed effects

3.1 Summary

In this chapter, the generalized fiducial framework is applied to logistic regression models with

both fixed and random effects. After introducing the model and outlining the methodology, a

simulation study is described to compare the performance of the proposed methodology with

competing methodology.

3.2 Introduction

The logistic regression model is a special case of the generalized linear model introduced in

Nelder and Wedderburn (1972) when the response is binary. The logistic regression model

has many uses such as inference on the median lethal dose of a drug (Williams, 1986; Harris

et al., 1999), prediction of failure (Dalal et al., 1989), and animal mating studies (Schall,

1991). The focus of this chapter is on the logistic regression model with additional random

effects of the form,

logit(p) = Xβ + VZ (3.1)

with binary response vector Y = (y1, . . . , yn)T where p = (p1, . . . , pn)T is a vector of unknown

probabilities of success corresponding to the observations with logit(p) = log
( p

1−p
)
, X is the

n × f fixed effects design matrix, β is the f -dimensional vector of unknown fixed effects,

VZ =
∑r

i=1 ViZi, where Zi is an li-dimensional vector representing each level of random



effect i such that E(Zi) = 0 and, for example, var(Zi) = σiIli where li is the number of levels

of random effect i, Vi is the random effects design matrix corresponding to random effect i.

It is often assumed that the random effects, Zi, i = 1, . . . , r are independent and normally

distributed (Jiang, 2007). We have developed the proposed generalized fiducial methodology

using the canonical link function, the logit link, but generalized fiducial inference would be

applicable to other link functions.

In this chapter, we propose a generalized fiducial approach for inference on the unknown

parameters of the equation

logit(p) = Xβ +
r∑
i=1

σi

li∑
j=1

Vijzij (3.2)

following the notation as Equation (3.1) except that the zij are i.i.d. N(0, 1) and Vij is the

random effects design vector corresponding to level j of random effect i. As in the previ-

ous chapter, the application of the generalized fiducial paradigm in this setting requires a

computational algorithm to obtain a sample from the fiducial distribution of the unknown

parameters β and σ = (σ1, . . . , σr)T . In the following sections, we introduce the generalized

fiducial framework and the computational methodology developed, prove the asymptotic con-

sistency of the algorithm, perform a simulation study, and finish with concluding remarks.

The simulation study compares the proposed fiducial methodology with competing method-

ology found in the literature.

3.3 Method

3.3.1 Basic model: estimation of p

In order to understand the generalized fiducial methodology for logistic regression, we begin

by introducing one of the main ideas employed by considering the probability of success for a

binomial random variable (a special case of Equation (3.2)). Suppose y is a Bernoulli random

variables with success probability p ∈ [0, 1]. Then y can be written as y = I[0,p)(u) where

IA is the indicator random variable for the set A, and u is a uniform random variable on the
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interval from 0 to 1 (written U(0, 1)). If we now have n i.i.d. y’s, this can be represented as

yi = I[0,p)(ui)

for i = 1, . . . , n where the ui’s are i.i.d. U(0, 1). If Y = (y1, . . . , yn) is a realization of y with

s =
∑n

i=1 yi as the observed number of successes, we note that the true, unobserved p must

be within the interval [us:n, us+1:n] where ui:m is the ith of m ordered values. More precisely,

and following the ideas presented in Example 2, Section 4 of Hannig (2009b), we define the

sets Q(y, u) as

Q(y, u) =



[0, u1:n] if s = 0 (no successes),

(un:n, 1] if s = n (all successes),

(us:n, us+1,n] if 0 < s < n,

with
∑n

i=1 I(yi = 1)I[0,us:n](ui) = s,

∅ otherwise.

The proposed methodology will rely on generating independent copies of the u’s so that the

sets Q(y, u) are not empty.

3.3.2 General model: logistic regression with mixed effects

The purpose of the following methodology is to develop an algorithm of which to obtain an

approximation to the generalized fiducial distribution of the unknown parameters of Equa-

tion (3.2). We use the sequential Monte Carlo framework introduced in Section 1.3. The

structural equation for the general model is

logit(pk) = Xkβ +
r∑
i=1

li∑
j=1

σivijkzij , and

yk = I[0,pk)(uk), (3.3)

for k = 1, . . . , n, Xt is the kth row of fixed effects design matrix X, and vijk is the coefficient

of the random effects design matrix corresponding to level j of effect i for the kth observation,
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zij ∼ N(0, 1), and uk ∼ U(0, 1). Rather than explicitly generating the uk’s, we will use the

distribution of ak = logit(uk) to obtain our particle approximation. Since ak = log( uk
1−uk )

with uk ∼ U(0, 1), the density of ak is fa(x) = ex

(1+ex)2
.

The goal is to sample the the zij ’s and ak’s so that the structural equation holds. That

is, sample A
(J)
1:t = (a(J)

1 , . . . , a
(J)
t ) and Z(J)

1:t = (Z(J)
1 , . . . , Z

(J)
t ), for J = 1, . . . , N so that

Equation (3.3) is satisfied. Using the set notation developed in the previous chapter, we are

seeking a sample of the sets

Q
(J)
t (Y1:t, A

(J)
1:t ,Z

(J)
1:t ) =

{
(β, σ) :

logit(pk) = Xkβ +
r∑
i=1

li∑
j=1

σivijkz
(J)
ij , and a

(J)
k

 ≤ logit(pk) if yk = 1

> logit(pk) if yk = 0
, for k = 1, . . . , t

}

such that Q(J)
t , J = 1, . . . , N are non-empty and letting σ = (σ1, . . . , σr).

At time t, the full target distribution can be written as

π1:t ∝
t∏
i=1

{
eat

(1 + eat)2

}
· e−

1
2
ZT1:t·Z1:t · ICt(A1:t,Z1:t) (3.4)

where Ct is the set of A1:t and Z1:t such that there is a solution to the structural equation of

(3.3). Since we do not know Ct, we cannot sample directly from our target distribution and

must define a proposal distribution. Noting that the Z1:t can be sampled without restriction,

our full proposal distribution at time i is

π̃1:t ∝ e−
1
2
ZT1:t·Z1:t

f+r∏
j=1

{
eaj

(1 + eaj )2

}
t∏

k=f+r+1

{
eak

(1 + eak)2
·
[I(−∞,Mk](ak)]yk · [I[mk,∞)(ak)]1−yk

[Fa(Mk)]yk · [1− Fa(mk)]1−yk

}

where Fa is the cdf of ak’s, Mt = max(γt) and mt = min(γt) with

γt =
{
Xtβ +

r∑
i=1

li∑
j=1

σivijtzij : (β, σ) ∈ Qt−1

}
.
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The conditional proposal distribution at time t is

π̃t|1:t−1 ∝ e−
1
2
ZTt ·Zt · eat

(1 + eat)2
·

(
I(−∞,Mt](at)
Fa(Mt)

)yt
·

(
I[mt,∞)(at)
1− Fa(mt)

)1−yt

.

The marginal target distribution at time t is

π̂1:t−1 =
∫
π(A1:t,Z1:t)d(at, Zt) ∝ π1:t−1 · (Fa(at))yt · (1− Fa(at))1−yt ,

and it follows that the conditional target distribution at time t is

πt|1:t−1 =
π1:t

π̂1:t−1
∝ e−

1
2
ZTt ·Zt · eat

(1 + eat)2
·

(
I(−∞,Mt](at)
Fa(Mt)

)yt
·

(
I[mt,∞)(at)
1− Fa(mt)

)1−yt

.

The resulting importance weights at time t are

W1:t =
π1:t

π̃1:t
=
πt|1:t−1 · π̂1:t−1

π̃t|1:t−1 · π̃1:t−1

=
π1:t−1

π̃1:t−1
·
πt|1:t−1(Fa(Mt))yt · (1− Fa(mt))1−yt

π̃t|1:t−1

= W1:t−1 · (Fa(Mt))yt · (1− Fa(mt))1−yt = W1:t−1 ·Wt.

3.3.3 General alteration

After each step of the algorithm, the ESSt from Equation (1.6) is calculated and checked to

see if it falls below the designated threshold T (e.g. T = N/2). If ESSt is under the threshold,

the particle system is resampled, and the particles are selected for resampling based on their

normalized importance weight. Each particle will have a designated number of replications

from 0 to N such that the total number of replications assigned to the particle system is N

(particles with higher weights are more likely to be replicated). Suppose particle L is selected

to be resampled K times.

We begin by defining a decomposition analogous to the decomposition of the particles in

the normal linear mixed model setting defined in Equation (2.19). The particle A1:t (sup-
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pressing the dependency on J) is decomposed as

A1:t = P (P TA1:t) + (A1:t − PP TA1:t) = P (P TA1:t) +Q(QTA1:t) = PB +Qτ, (3.5)

where P is the orthogonal basis of D = [X1:t,
∑r

i=1 ViZi] that spans the subspace A. Then

PP T is the orthogonal projection onto A with QQT as the projection onto the subspace

orthogonal to A. The goal of the alteration step is to resample the variable B = P TA1:t

conditional on τ = QTA1:t. The desired sampling distribution is then

fB|τ (B|τ) =
fB,τ (B, τ)
fτ (τ)

∝ fB,τ (B, τ),

where fG is the density for the variable G. Noting that

 B

τ

 =

 P T

QT

A1:t,

so that

A1:t =

 P T

QT


−1 B

τ

 =
(
P Q

) B

τ

 = PB +Qτ

since  P T

QT


−1

=
(
P Q

)
(3.6)

because P and Q are orthogonal. Hence, the density of B|τ can be written

fB|τ ∝ fB,τ (B, τ) ∝ fA1:t((P,Q) · (B, τ)T |det(P,Q)| = fA1:t(PB +Qτ). (3.7)

The fact that |det(P,Q)| = 1 follows from two properties of determinants: (i) det(X) =

det(XT ), and (ii) det(X) = 1/det(X−1) (when the inverse exists). Because of Equation (3.6),

the result follows.

Now A1:t can be altered by generating a new B, say B̃, from the density of Equation (3.7)
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by a Monte Carlo sampling method such as importance sampling. Using importance sampling

requires the generation of a sample of B̃ from some proposal distribution, and then selecting

a new B̃ according to the determined importance weights. For example, if B̃ is generated

from a Cauchy distribution, the unnormalized importance weight for particles K = 1, . . . , N∗

would be

W (K) =
(
eP

eB(K)+Qτ/(1 + eP
eB(K)+Qτ )2

)(
1 + (PB̃(K) +Qτ)2

)
,

where P , Q, and τ are known from the decomposition of Equation (3.5).

After an updated A1:t is selected, denoted Ã1:t = PB̃ +Qτ , the parameters (β, σ) can be

updated to (β̃, σ̃) using (β̃, σ̃)T = (β, σ)T − (DTD)−1DTP (B − B̃). This easily follows by

D · (β, σ)T −A1:t = D · (β̃, σ̃)T − Ã1:t

D · (β, σ)T − PB −Qτ = D · (β̃, σ̃)T − PB̃ −Qτ

D · (β, σ)T − PB + PB̃ = D · (β̃, σ̃)T

(β, σ)T − (DTD)−1DTP (B − B̃) = (β̃, σ̃)T ,

where D = [X1:t,
∑r

i=1 ViZi] as above. For particle, J = 1, . . . , N , after resampling the A(J)
1:t ,

the random effects Z(J)
j , j = 1, . . . , r are resampled in the same manner as the particles in

the normal linear mixed model setting described in Section 2.3.4.

3.3.4 Convergence of algorithm

The proposed algorithm targets the generalized fiducial distribution of the unknown param-

eters of the logistic regression with mixed effects model of (3.2) with the target distribution

displayed in (3.4). The following theorem confirms that the weighted particle system from

the proposed algorithm is consistent as the particle sample size N approaches infinity. The

proof relies on the ideas employed in the proof of Theorem 2.3.1 from Chapter 2.

Theorem 3.3.1. Given a weighted sample {A(J)
1:t ,Z

(J)
1:n,W

(J)
1:n }NJ=1 obtained using the algorithm
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presented above targeting (3.4), then for any bounded, measurable function f ,

( N∑
I=1

W
(I)
1:n

)−1
N∑
J=1

f(A(J)
1:n,Z

(J)
1:n)W (J)

1:n
P−→
∫
f(A1:n,Z1:n)π1:n = π1:nf(A1:n,Z1:n),

as N −→∞.

Notation and definitions The following assumes the notation developed in Section 3.3.2.

Because this result is analogous to Theorem 2.3.1, we begin by modifying some definitions used

previously. First, we define two sigma-fields F0 , σ({A(J)
1:t−1,Z

(J)
1:t−1}NJ=1, Y1:t) and FJ , F0 ∨

σ({A(K)
1:t ,Z

(K)
1:t }1≤K≤J , Y1:t), for J = 1, . . . , N . Though the sigma fields are dependent on t, we

suppress the notation because the current state of the particle system will be at time t. At time

t− 1, the particle system is targeting probability measure π1:t−1 on (Θ1:t−1,B(Θ1:t−1)). This

measure is approximated by our particle system, {A(J)
1:t ,Z

(J)
1:t−1,W

(J)
1:t−1}NJ=1 for J = 1, . . . , N .

Furthermore, (A(J)
1:t ,Z

(J)
1:t−1) ∈ Θ1:t−1, and W

(J)
1:t−1 ≥ 0 and such that Ωt−1

∑N
J=1W

(J)
1:t−1 = 1.

Note that π will, with the appropriate subscript indexing the time, be used to denote both the

measure and density. The importance sampling step transforms the current particle system

to one that is targeting π1:t on (Θ1:t,B(Θ1:t)), denoted by {A(J)
1:t ,Z

(J)
1:t ,W

(J)
1:t }NJ=1.

We define the proper set Bt , {f ∈ L1(Θ1:t, π1:t), F (·, |f |) ∈ Bt−1}, where

F (A1:t−1,Z1:t−1, f)

=
∫

Θt

f(A1:t−1, At,Z1:t−1, Zt) · I?(Zt)×

[I(−∞,Mt](at)]
yt [I[mt,∞)(at)]

1−yt · [Fa(Mt)]yt · [1− Fa(mt)]1−ytd(at, Zt)

where I? indicates the lack of restriction on the Zt’s.

We must show that the particle system is consistent after each stage of the algorithm:

sampling, resampling, and alteration. Consistency after sampling and resampling follow for

the same reasons as in Lemma’s 2.3.1 and 2.3.2, so here we focus on proving consistency after

the alteration step described in Section 3.3.3.

Proof. Let the altered particles be represented as {Ã(J)
1:t , Z̃

(J)
1:t , 1}NJ=1 and {A(J)

1:t ,Z
(J)
1:t , 1}NJ=1
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as the “original” particles after resampling the system. Furthermore, since the alteration of

the Z(J)
1:t is completed in the same way as addressed in Lemma 2.3.3, and the two alteration

steps are done independently, we only have left to prove consistency after altering the A(J)
1:t ’s,

J = 1, . . . , N ; reference to the altered and unaltered Z1:t is suppressed for the remainder of

this proof.

Letting f ∈ Bt with B̃, P , Q, and τ as defined below Equation (3.5), we define the

following conditional expectation

E[f(Ã(J)
1:t )|F̃J−1] =

∫
f
(
PB̃ +QQTA1:t

)
dπ eB|τ =

∫
f
(
PB̃ +Qτ

)
dπ eB|τ , hf (A(J)

1:t ),

where F̃J , F̃0∨σ({Ã(K)
1:t }1≤K≤J , Y1:t), and F̃0 , σ({A(J)

1:t }NJ=1, Y1:t) for J = 1, . . . , N . That is,

hf (Ã(J)
1:t ) is the conditional expectation of the altered particles with respect to the conditional

distribution of B̃|τ denoted π eB|τ . Recall that B is defined by a decomposition of the original

particle, call it L, selected to be resampled, A(L)
1:t . The B̃ is a random variable to be resampled

according to the target distribution of B|τ with the τ
(J)
1:t considered fixed so that Ã1:t =

PB̃ +Qτ1:t.

The proof will follow once we show

∫
hf (A1:t)dπ1:t(A1:t) =

∫
f(A1:t)dπ1:t(A1:t), (3.8)

because everything else, including how to pick f , will follow as before given the updated

definitions. Relation (3.8) holds because

∫
hf (A1:t)dπ1:t =

∫
h∗f (τ1:t)dπτ =

∫ (∫
f(PB̃ +Qτ1:t)dπ eB|τ

)
dπτ

=
∫ (∫

f(PB +Qτ1:t)dπB|τ
)
dπτ =

∫
f(PB +Qτ1:t)dπB|τ × dπτ

=
∫
f(A1:t)dπ1:t = Eπ1:tf(A1:t).

where h∗f (τ1:t) = hf (A1:t).
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3.4 Simulation study and applications

We have performed a short simulation study to reveal some of the benefits of the methodology

outlined in the previous section. First we consider a logistic dose-response model for inference

on the median lethal dose. We compare the empirical performance of two-sided confidence

intervals using the generalized fiducial method with several popular, competing methods

analyzed in the literature (Williams, 1986; Sitter and Wu, 1993; Harris et al., 1999; Huang

et al., 2002; Huang, 2001). We also consider two models each with two fixed effects and one

random effect.

3.4.1 Median lethal dose

The median lethal dose (LD50) is the amount of a substance, such as a drug, that is expected

to kill half of its users. This measure is important when studying the level of toxicity in

biological experiments that are attempting to understand the effects a drug or other substance

has on some defined living population. Trevan (1951) has a brief account of the early history

of toxicity experiments including the introduction of the study of the LD50 in quantal assays,

which are studies with a death or survival response. In fact, the LD50 was introduced in

Trevan (1927), in which it was first suggested to use the LD50 rather than other measures

of toxicity. To underscore the relevance of inference on the LD50, Kreger (1992), which is a

special reference brief on how these tests can be administered, lists over 250 citations where

the LD50 or an alternative was studied (including citations addressing animal testing laws)

between January of 1980 and March of 1992.

The results of LD50 experiments can be studied and modeled using logistic regression as

logit(pi) = β1(xi − µ) (3.9)

where pi is the probability of a response (e.g. death) at a particular dose administration xi

for i = 1, . . . , k, and µ is the median lethal dose (i.e. the dosage, xj , such that pj = 0.5). The

xi, i = 1, . . . , k are known while β1 and µ are fixed effects that are unknown. This can be
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written in the form of Equation (3.1) as

logit(pi) = β0 + β1xi (3.10)

for i = 1, . . . , k where the LD50 is µ = −β0/β1.

In this section, we study the performance of 95% two-sided confidence intervals on the

median lethal dose using the proposed generalized fiducial method compared to three com-

peting methods found in the literature. The generalized fiducial method will be denoted by

FID, and the three competing methods for defining two-sided confidence intervals used in

this study are the delta method (DELTA), Fieller’s method (FIELLER), and the likelihood

ratio method (LR). As Faraggi et al. (2003) notes, these methods tend to be the recom-

mended approaches for confidence intervals on the LD50. Intervals based on adjustments to

the competing methods, including the Bartlett adjustment to the likelihood ratio method,

selected for our study have also been attempted by others, but have not been found to have a

significant impact on performance (Harris et al., 1999; Huang et al., 2002). A bootstrapping

procedure was studied in Huang (2001), but found to be liberal for small sample sizes, and

an approximate bootstrap procedure was analyzed in Faraggi et al. (2003), but found to be

overly conservative. In this simulation study, we do not compare the proposed method to a

bootstrapping procedure, but is a future interest to find a better performing bootstrapping

procedure.

The model form of Equation (3.10) will be used to find 95% two-sided confidence intervals

on the LD50, µ, explicitly defined in Equation (3.9). DELTA and FIELLER use maximum

likelihood estimators in order to define their confidence intervals. Let β̂0 and β̂1 represent

the maximum likelihood estimates for β0 and β1, respectively, when they exist. Define µ̂ =

−β̂0/β̂1. Let v11 = var(β̂0), v22 = var(β̂1), and v12 = cov(β̂0, β̂1) represent the asymptotic

variances and covariance of the corresponding estimators.
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Delta method (DELTA)

A 100(1−α)% two-sided confidence interval using the delta method is constructed using the

relation µ̂ = g(β̂0, β̂1) = −β̂0/β̂1, where var(µ̂) = var(g(β̂0, β̂1)) is approximated using a first

- order Taylor series approximation. This results in the interval

µ̂± z1−α/2β̂
−2
1 (v22 + 2µ̂v12 + µ̂2v22)

where zc is the c-th quantile of the standard normal distribution.

Fieller’s method (FIELLER)

Fieller’s Theorem (Fieller, 1954) provides a method for constructing confidence regions on

the ratio of normal variables. Since µ̂ is the ratio of two maximum likelihood estimators,

Fieller’s Theorem can be used as an approximate procedure. The resulting confidence region

is defined as the set {
µ0 :

∣∣∣∣∣ β̂0 − β̂1µ0

v22 + 2µ0v12 + µ2
0v22

∣∣∣∣∣ < z1−α/2

}
, (3.11)

which is derived from noting the equivalence of the null hypothesis H0 : µ = µ0 to H0 :

β0 + β1µ0 = 0. This can be implemented by following Huang (2001)’s notation for the set in

Equation (3.11) as

µ̂+ gv12/v22

1− g
±

z1−α/2

β̂1(1− g)

(
v11 + 2µ̂v12 + µ̂2v22 − g(v11 − v2

12/v22)
)2

where g = z2
1−α/2v22/β̂

2
1 .

Likelihood ratio method (LR)

Letting L0 be the likelihood of the data under the null hypothesis H0 : µ = µ0, and L1 be

the likelihood of the data under the alternative hypothesis H1 : µ 6= µ0, then −2 log
(
L0
L1

)
=

−2 log(L0)+2 log(L1) = D(µ0)−D(µ) converges to a chi-squared distribution with one degree
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of freedom. A 100(1− α)% confidence region can then be defined as

{
µ0 : D(µ0)−D(µ) < z2

1−α/2

}
.

For a given dataset, D(µ) = D(µ̂), and then determining the confidence regions requires some

form of a grid-search algorithm as noted in Williams (1986).

Existence of confidence intervals

Special case 1: partial responses As previously noted, DELTA and FIELLER require

the existence of the maximum likelihood estimates in order to define their confidence intervals

on µ. Unfortunately, maximum likelihood estimates do not exist if there are zero or one partial

responses. To define a partial response, let si be the number of successes out of ni for a given

dose xi, i = 1, . . . , k. A partial response occurs if 0 < si < ni for some i = 1, . . . , k. A single

partial response occurs if 0 < sj < nj and si = 0 or ni for i = 1, . . . , j − 1, j + 1, . . . , k. This

issue tends to occur for small samples when the slope of the dose-response curve (the inverse

logit curve where the doses are allowed to vary) is very steep. This will be referred to as

special case 1.

Special case 2: Wald test If a standard Wald test of the hypothesis H0 : β1 = 0 versus

H1 : β1 6= 0 is not rejected at a level α for a given dataset, Fieller’s confidence regions end up

as either disjoint intervals or the entire real line. This will be called special case 2.

Special case 3: LR test Similar to special case 2, if the likelihood ratio test is not able

to reject the hypothesis H0 : β1 = 0 versus H1 : β1 6= 0, LR does not provide a confidence

region that is an interval. This will be referred to as special case 3.

Williams (1986) advocated the use of the likelihood ratio method for confidence intervals

on the median lethal dose. To illustrate the issues with relying on Fieller’s Theorem to define

confidence intervals, Williams (1986) picked six data set examples as listed in Table 3.1.

Each data set has 5 observations within each dose level of (−2,−1, 0, 1, 2). Example A has

no special cases and so the intervals are displayed for DELTA, FIELLER, LR and FID.
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Special case 2 happens in both example B and C resulting in the whole real line and disjoint

intervals, respectively, for FIELLER. Example D has special case 2 and 3 resulting in disjoint

intervals for FIELLER and LR. Finally, examples E and F have special cases 1 and 2 and

so no intervals are produced for DELTA and FIELLER.

Intervals for FID are displayed in Table 3.1 using 2,500, 5,000, 7,500, 10,000, and 20,000

particles, and does not appear to be affected by the special cases, and produces finite intervals.

We note this as a benefit of FID over DELTA, FIELLER, and LR. From Table 3.1, we see

that in examples A, E, and F, even 1,000 particles seems to be enough to produce a converged

confidence interval as evidenced by the small discrepancy between the 1,000-particle intervals

and the corresponding 20,000-particle intervals. Example B the intervals defined using 2,500

to 20,000 particles are reasonably similar; however the interval constructed with 1,000 particles

is clearly distinct suggesting that the algorithm had not yet converged. Example C seems to

fluctuate a bit among the confidence intervals defined using varying number of particles, but

the fluctuations are not too drastic. In Example D, like with Example B, 1,000 particles is

not sufficient, but the intervals are reasonably stable for the larger particle sample sizes. The

overall message seems to be that, in practice, one should try at least two different particle

sample sizes to gauge convergence until a better methodology is developed for determining

an appropriate particle sample size.

Simulation study design

A simulation study has been run in order to compare the frequentist performance of 95%

two-sided confidence intervals on µ defined using the proposed method, FID, with the per-

formance of the competing methods DELTA, FIELLER, and LR. Performance is based

on the empirical coverage of (1− α)100% two-sided confidence intervals and median interval

length for the median lethal dose, µ. We define a two-sided equal-tailed confidence interval

on µ as the interval [Lα/2, Uα/2] such that P (Lα/2 ≤ θ ≤ Uα/2) = 1− α.

For each model and parameter design combination, 1,000 independent data sets were

generated, and 5,000 particles were simulated for the proposed method. Based on the normal

approximation to the binomial distribution, we will consider empirical coverage between 93.6%
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Ex. Deaths µ̂ DELTA FIELLER LR FID N

A 1, 3, 2, 4, 5 -0.61 (-1.66, 0.44) (-3.36, 0.75) (-2.63, 0.49) (-2.94, 0.68) 1,000
(-2.95, 0.71) 2,500
(-2.87, 0.74) 5,000
(-2.84, 0.75) 7,500
(-2.95, 0.77) 10,000
(-3.02, 0.70) 20,000

B 2, 2, 4, 3, 5 -1.02 (-2.49, 0.45) (-∞, 0.59)∪ (-12.34, 0.33) (-0.23, 1.77) 1,000
(62.76, ∞) (-8.13, 1.77) 2,500

(-6.94, 1.64) 5,000
(-7.49, 1.57) 7,500
(-7.04, 2.00) 10,000
(-7.06, 1.53) 20,000

C 1, 3, 2, 4, 4 -0.46 (-1.86, .95) (−∞, ∞) (-11.59, 1.65) (-4.51, 2.78) 1,000
(-4.56, 2.41) 2,500
(-6.54, 3.56) 5,000
(-4.96, 4.08) 7,500
(-4.93, 3.20) 10,000
(-5.54, 2.93) 20,000

D 3, 2, 3, 4, 5 -1.45 (-3.33, 0.44) (∞, 0.16)∪ (-∞, 0.01)∪ (-21.65, 10.58) 1,000
(6.42, ∞) (24.80, ∞) (-12.74, 8.56) 2,500

(-14.21, 8.91) 5,000
(-13.41, 9.04) 7,500
(-11.92, 7.75) 10,000
(-14.20, 8.36) 20,000

E 0, 0, 4, 5, 5 NA Indetermin. Indetermin. (-0.70, 0.11) (-0.91, 0.26) 1,000
(-0.89, 0.30) 2,500
(-0.90, 0.26) 5,000
(-0.88, 0.28) 7,500
(-0.91, 0.24) 10,000
(-0.90, 0.24) 20,000

F 0, 0, 5, 5, 5 NA Indetermin. Indetermin. (-1.00, 0.00) (-0.99, -0.04) 1,000
(-0.98, -0.01) 2,500
(-1.00, -0.01) 5,000
(-1.00, -0.01) 7,500
(-1.00, -0.02) 10,000
(-1.01, -0.02) 20,000

Table 3.1: The 95% two-sided confidence intervals based on designs from Williams (1986). Each
example uses doses (−2,−1, 0, 1, 2) with 5 observations per dose level. The intervals for
FID are displayed with varying number of particles to illustrate the variation in intervals
as the number of particles increases. The values listed under µ̂ are the maximum likelihood
estimates for the corresponding example data set.
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and 96.4% appropriate for 95% two-sided confidence intervals.

The model designs selected for this study are displayed in Table 3.2. Designs 1 and 2 were

first defined in Williams (1986), and also used in Harris et al. (1999) and Huang (2001). The

dose levels of Designs 3, 4, and 5 were selected from Huang et al. (2002). The dose levels

used in Design 6 were first presented in Abdelbasit and Plackett (1983) for experiments on

the toxicity of oil to Sitophilus Granarius. The same dose levels were subsequently used in

Sitter and Wu (1993), Harris et al. (1999), Huang (2001), Huang et al. (2002).

Design β1 µ xi
1 2.0 3.0 1, 2, 3, 4, 5
2 1.0 4.0 1, 2, 3, 4, 5
3 2.0 5.1 2.056, 3.233, 4.411

5.589, 6.767, 7.944
4 1.0 4.9 2.056, 3.233, 4.411

5.589, 6.767, 7.944
5 1.0 2.0 0.000, 0.463, 3.045

3.296, 3.584, 3.932
4.394, 5.142

6 7.0 0.1 -0.3098, -0.2147, -0.1487
-0.0809, -0.0362, 0.0864
0.1523, 0.2304, 0.2810

Table 3.2: Model designs used in the simulation
study for the LD50 as displayed in Equa-
tion (3.9).

Simulation study results

The number of occurrences of the three special cases are listed in Table 3.3. Designs 1, 2,

and 3 have the greatest number of occurrences of special cases when the cluster size is low.

The empirical coverage of DELTA, FIELLER. and LR tend to have very liberal coverage

for the smaller cluster sizes when the special cases are included as displayed in Figures 3.1

and 3.2. In those scenarios, FID is within the stated coverage to slightly conservative. When

the cluster size is 20 and the special cases are included, DELTA, FIELLER. and LR better

maintain the stated coverage with DELTA becoming liberal in two settings as displayed in

Figure 3.3 while FID is within the stated coverage.
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When the special cases are all excluded from the summary (i.e. the independent data sets

that produced one or more of the three special cases were removed from the analysis for all

methods), the performance of the methods are analyzed based on empirical coverage of the

95% two-sided confidence intervals and on the median lengths of those intervals. The results

are displayed in Figures 3.4, 3.5, and 3.6 for cluster sizes 6, 10, and 20, respectively. DELTA

still tends to be the most liberal of all the methods in this study for the smaller cluster sizes,

but its empirical coverage improves as the cluster size increases. Not surprisingly, DELTA

also has the shortest median interval lengths. FIELLER tends to be conservative for the

smaller cluster sizes, but is within the stated coverage for the largest cluster size. FIELLER

tends to have the longest median intervals for a cluster size of 6 and 10, but then is comparable

in length to FID when the cluster size is 20. LR has acceptable empirical coverage for all

cluster sizes with a couple instances of liberal coverage. LR’s median interval lengths are, in

general, shorter than FIELLER and FID. FID is slightly conservative when the cluster size

is 6, but then tends to maintain correct coverage when the cluster size is 10 or 20. The median

lengths for FID are generally longer than DELTA and LR, but shorter than FIELLER

except when the cluster size is 20 where the median interval lengths of FID and FIELLER

are comparable.

Throughout this simulation study, the competing methods do not consistently provide

acceptable coverage for 95% two-sided confidence intervals except when the sample size is

large. Additionally, a confidence interval may not even be calculable or finite. Though FID

does not have the overall shortest median interval lengths, it does consistently provide correct,

or mildly conservative, coverage along with a solution for all the designs.

3.4.2 Mixed effects design

In this section, a simulation study using two different designs of Model (3.3) are considered.

Both designs have two fixed effects and one normally distributed random effect.

The performance of the proposed method, FID, is analyzed on two levels. First, we

compare the empirical coverage of 95% lower, upper, and two-sided confidence intervals and

median interval lengths with a Maximum likelihood (ML) approach (discussed below). A
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Design Cluster size Case 1 Case 2 Case 3
1 6 179 173 0

10 41 41 0
20 1 1 1

2 6 16 147 92
10 0 22 16
20 0 0 0

3 6 289 281 0
10 71 70 0
20 4 4 0

4 6 8 9 2
10 0 0 0
20 0 0 0

5 6 5 17 0
10 0 1 0
20 0 0 0

6 6 0 11 7
10 0 0 0
20 0 0 0

Table 3.3: Count of special cases per model design and
cluster size of Table 3.2 for the LD50 using
1000 independent data sets.
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Figure 3.1: Simulation results summary for Designs 1 - 6 of Table 3.2 with a cluster size of 6. This
summary includes the special cases The plot displays the empirical coverage of 95% two-
sided confidence intervals on the median lethal dose, µ.
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Figure 3.2: Simulation results summary for Designs 1 - 6 of Table 3.2 with a cluster size of 10. This
summary includes the special cases The plot displays the empirical coverage of 95% two-
sided confidence intervals on the median lethal dose, µ.
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Figure 3.3: Simulation results summary for Designs 1 - 6 of Table 3.2 with a cluster size of 20. This
summary includes the special cases The plot displays the empirical coverage of 95% two-
sided confidence intervals on the median lethal dose, µ.
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Figure 3.4: Simulation results summary for Designs 1 - 6 of Table 3.2 with a cluster size of 6. This
summary excludes the special cases The top plot is the empirical coverage of 95% two-sided
confidence intervals on the median lethal dose, µ. The bottom plot is the corresponding
median confidence interval length divided by the median confidence interval length of FID.
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Figure 3.5: Simulation results summary for Designs 1 - 6 of Table 3.2 with a cluster size of 10. This
summary excludes the special cases The top plot is the empirical coverage of 95% two-sided
confidence intervals on the median lethal dose, µ. The bottom plot is the corresponding
median confidence interval length divided by the median confidence interval length of FID.
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Figure 3.6: Simulation results summary for Designs 1 - 6 of Table 3.2 with a cluster size of 20. This
summary excludes the special cases The top plot is the empirical coverage of 95% two-sided
confidence intervals on the median lethal dose, µ. The bottom plot is the corresponding
median confidence interval length divided by the median confidence interval length of FID.
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lower-tailed (1−α)100% confidence interval on θ is the interval (−∞, Uα] such that P (−∞ <

θ ≤ Uα) = 1−α, an upper-tailed (1−α)100% confidence interval on θ as the interval [Lα,∞)

such that P (Lα ≤ θ < ∞) = 1 − α, and a two-sided equal-tailed confidence interval on θ as

the interval [Lα/2, Uα/2] such that P (Lα/2 ≤ θ ≤ Uα/2) = 1−α. The second level of the study

is to compare estimates to a ML-based approach introduced below. ML methods tend to

have good optimality properties when it comes to point estimation, and so box plots of point

estimates are produced to compare performance of the FID point estimates (determined as

the median of the weighted particles) with the ML approach.

To implement the ML approach, the statistical package hglm for R (R Development Core

Team, 2011) was used. The function hglm() is used for fitting hierarchical generalized linear

models, and, hence, can be used to fit generalized linear mixed models; more information

on this package can be found in Rönnegard et al. (2010). Background on the methodology

can be found in Lee et al. (2006), which also relies on the hierarchical likelihood, or h-

likelihood approach of Lee and Nelder (1996). The h-likelihood is particular way to extend

the likelihood of the data to include the distribution(s) of the random effect(s). This approach

will be denoted as HGLM.

Design 1

Using the notation of the logistic regression with mixed effects model as displayed in (3.3),

the first model design has β1 = 0, β2 = 5, σ2 = 2, xij = i/15, l1 = 10, nj = 15, n = 150,

i = 1, . . . , nj and j = 1, . . . , l1. This design was found in McCulloch (1997).

Design 2

Design 2 first appeared in McGilchrist and Aisbett (1991), and had subsequent appearances

in McGilchrist (1995) and Kuk (1995). The parameter values were set as β1 = 0.2, β2 = 0.1,

and σ = 1, l1 = 15, nj = 12, n = 180, i = 1, . . . , nj and j = 1, . . . , l1. The fixed effects design

matrix has a column of ones, followed by xi1 = 2i−16 and xi2 = 2i−15 for i = 1, . . . , 15. That

is, for each level i of the random effect, there are six observations of xi1 and six observations

of xi2. In McGilchrist (1995), the simulation study compared the BLUP, ML, and REML
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estimates with a focus on the variance component. It was found that all the methods produced

negatively biased estimates of σ2 with the BLUP estimator having the largest bias and the

REML estimate having the smallest; however, BLUP had the lowest standard error and

REML had the highest standard error.

Results

In this study, 100 independent data sets were generated. For Design 1, 5,000, 10,000, and

15,000 particles were generated for FID; Design 2 used 5,000, 8,000, 10,000, and 20,000 parti-

cles for FID. Based on the normal approximation to the binomial distribution, we will consider

empirical coverage between 90.7% and 99.3% appropriate for 95% confidence intervals.

Table 3.4 contains the empirical coverage of 95% lower, upper, and two-sided confidence

intervals under Design 1 for FID and HGLM along with their median interval lengths. One

of the datasets for HGLM did not converge and was removed from the summary in Table 3.4

for HGLM only. The lower confidence intervals on β1 are on the liberal end of acceptable

coverage for FID and HGLM, but improves for FID as the number of particles increases.

The lower intervals on β2 are on the conservative end of acceptable coverage for both FID and

HGLM, but not does change with increasing particle sample size. FID and HGLM have

very conservative coverage for the lower confidence intervals on σ2. The upper confidence

intervals are acceptable for both methods and all parameters except HGLM’s coverage of σ2

is mildly liberal. The two-sided intervals are within the stated coverage for FID and HGLM.

HGLM has shorter median interval lengths than FID.

Figure 3.7 displays box plots of the estimated parameters using FID and HGLM. The

FID estimates were determined by the medians of the weighted particle systems. Both

FID and HGLM have median fixed effects estimates very close to the true parameter value

(indicated by the horizontal dashed line). The estimates of the σ2 are positively biased under

FID. For HGLM, one of the 100 independent data sets did not converge, and so that data

set was removed from the results displayed in Figure 3.7 for both methods.
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Design Method N Parameter Lower Upper Two-sided Median length

1 FID 5,000 β1 0.91 0.99 0.96 2.41

β2 0.98 0.93 0.96 5.60

σ2 1.00 0.96 0.97 3.95

10,000 β1 0.92 0.99 0.97 2.46

β2 1.00 0.93 0.96 5.82

σ2 1.00 0.95 0.97 4.86

15,000 β1 0.94 0.99 0.98 2.49

β2 0.98 0.93 0.97 5.59

σ2 1.00 0.95 0.97 5.03

HGLM β1 0.90 0.99 0.98 0.98

β2 0.97 0.97 0.97 5.09

σ2 1.00 0.89 0.93 1.99

Table 3.4: The performance of 95% confidence intervals for FID based on Design 1 described in
Section 3.4.2. One hundred independent data sets were generated, and based on the
normal approximation to the binomial distribution, empirical coverage between 90.7%
and 99.3% appropriate for 95% confidence intervals.

Table 3.5 contains the empirical coverage of 95% lower, upper, and two-sided confidence

intervals under Design 2 for FID and HGLM along with their median interval lengths. The

empirical coverage for the intervals on β1 are on the low end of correct coverage for FID and

HGLM with slight improvement for FID as the particle sample size increases. The intervals

on β2 tends to be slightly liberal for FID except the lower confidence interval coverage tends

to improve with increasing particle sample size while HGLM tends to have empirical coverage

within the acceptable bounds. Interestingly, the lower intervals on σ2 for FID are slightly

liberal with improvement at 20,000 particles, and within the stated coverage for the upper

and two-sided intervals (but on the low end of correct coverage for the two-sided intervals).

HGLM, on the other hand, is rather liberal for the lower and two-sided intervals, and within

the stated coverage for the upper intervals.

Figure 3.8 displays box plots of the estimated parameters using FID and HGLM. As

before, the FID estimates were determined by the medians of the weighted particle systems.
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Figure 3.7: Simulation results for Design 1. The top box plot is of the estimates of β1; the middle plot
is of the estimates of β2; the bottom plot is of the estimates of σ2. The red dashed line
indicates the location of the true parameter value used in the simulations study.
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Both FID and HGLM have median fixed effects estimates very close to the true parameter

value. The estimates of the σ2 are slightly negatively biased under FID and HGLM except

for FID with 20,000 particles; this negative bias was also observed in McGilchrist (1995).

Design Method N Parameter Lower Upper Two-sided Median length
2 FID 5,000 β1 0.92 0.93 0.90 1.28

β2 0.91 0.90 0.86 0.12
σ2 0.88 0.95 0.90 2.84

8,000 β1 0.92 0.95 0.92 1.29
β2 0.93 0.85 0.87 0.13
σ2 0.88 0.95 0.90 2.90

10,000 β1 0.92 0.93 0.92 1.32
β2 0.91 0.88 0.87 0.13
σ2 0.88 0.96 0.91 3.04

20,000 β1 0.95 0.93 0.93 1.33
β2 0.95 0.87 0.89 0.14
σ2 0.90 0.94 0.90 3.20

HGLM β1 0.92 0.92 0.91 1.16
β2 0.94 0.97 0.95 0.13
σ2 0.83 0.97 0.86 1.89

Table 3.5: The performance of 95% confidence intervals for FID based on Design 2 described in
Section 3.4.2. One hundred independent data sets were generated, and based on the
normal approximation to the binomial distribution, empirical coverage between 90.7%
and 99.3% appropriate for 95% confidence intervals.

3.5 Conclusion and future research

In this chapter, we introduced methodology for inference on the parameters of a logistic re-

gression model with both fixed and random effects. The model is specified in Equation (3.3).

The methodology is based on the ideas of generalized fiducial inference, and the implemen-

tation required the development of an SMC algorithm. Inference is based on the generalized

fiducial distribution approximated by the generated particle system, and can be used, for

example, for point estimation and confidence intervals.

Extensions to the proposed method in this chapter are similar to the extensions listed

for the normal linear mixed model (e.g. spatial dependence, non-Gaussian random effects,

etc.). There are a number of other topics that would be interesting for future research such as

considering other link functions, or applying the methodology to more complicated real-data

examples such as the famous salamander mating data set (Shun, 1997; Karim and Zeger,
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Figure 3.8: Simulation results for Design 2. The top box plot is of the estimates of β1; the middle plot
is of the estimates of β2; the bottom plot is of the estimates of σ2. The red dashed line
indicates the location of the true parameter value used in the simulations study.
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1992). Including other methods in the simulation study, such as a Bayesian method, would

be interesting. Furthermore, we would like to develop a methodology for applying generalized

fiducial inference to any generalized linear mixed model. The natural next step is to consider

the log-linear model where the response is count data.
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Chapter 4

Classification of suspect powders using

spectral data

4.1 Summary

Classification of suspect powders, using Laser Induced Breakdown Spectroscopy (LIBS) spec-

tra, to determine if they could contain Bacillus anthracis spores is difficult due to variability

both in the composition of the spores and the LIBS analysis. We developed a method that

builds a support vector machine classification model for such spectra relying on the known

elemental composition of the Bacillus spores. A wavelet transformation was incorporated in

this method to allow for possible thresholding or standardization, and then a linear model

technique using the known elemental structure of the spores was incorporated for dimension

reduction, and a support vector machine approach was employed for the final classification of

the substance. The method was applied to real-data produced from a LIBS device. Several

methods used to test the predictive performance of the classification model revealed promising

results. This project was completed in collaboration with Emily Snyder and Lukas Oudejans

from the US Environmental Protection Agency’s Office of Research and Development.

4.2 Introduction

When a large building, complex or area has been contaminated with a powder substance

that may contain Bacillus spores (causative agent for anthrax), it is crucial to determine if



the substance is potentially harmful quickly and efficiently. These powder substances could

be non-hazardous hoaxes (e.g. dust, chalk, or sugar), or they could be or contain Bacillus

anthracis (B. anthracis). Laser Induced Breakdown Spectroscopy (LIBS) devices have the

capability of generating sample spectra that can aid in determining if a substance is or contains

a spore material like B. anthracis. In LIBS, a laser is focused onto a sample producing a-

plasma. This plasma atomizes, ionizes and subsequently excites the interrogated sample. The

light emitted from the plasma is collected generating a characteristic wavelength spectrum.

LIBS is an attractive technique for field analysis of suspect powders because it does not

require preparation of samples, yields spectra in real time and is easily made man-portable.

In this chapter, a new statistical technique is presented for distinguishing B. anthracis

surrogate spore powders from other innocuous suspect powders using LIBS spectra. The

proposed method exploits a known property of the B. anthracis and its surrogate spores to aid

in classification. Specifically, there are eight elements typically detected in B. anthracis and

their surrogate spores (Gibb-Snyder et al., 2006). The principal idea of the proposed technique

is, after preprocessing the data using wavelets, to determine the combination pattern of the

LIBS spectra for those eight elements that form the LIBS spectra of B. anthracis spores and

other innocuous powders using linear regression. The combination pattern is then used to

build a classification model using a support vector machine approach to classify the substance

as harmful (i.e. B. anthracis spores), or not.

A discussion of the LIBS systems and materials used in this project is included in Ap-

pendix B.

The idea after preprocessing the data was to reduce the dimension of the data using known

structural information about B. anthracis spores and linear models, and build a support vector

machine classification model using the dimension-reduced data. The statistical analysis begins

with preprocessing of the LIBS spectra produced for the substances described in Section 4.3.1.

The first step in preprocessing was to remove outlying spectra followed by a logarithmic

transformation and a wavelet transformation. Wavelet transformations are described below

along with an introduction to support vector machines, which were used for the classification

model. A description of the proposed method follows these introductions, which is then
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followed by an analysis and discussion of the performance of the model. The statistical

analysis was completed using the statistical software R (R Development Core Team, 2011)

with packages kernlab (Karatzoglou et al., 2004) and e1071 (Dimitriadou et al., 2011). A

comparison of these packages can be found in Karatzoglou et al. (2006).

4.2.1 Wavelets

The wavelet transformation is a methodology useful in modeling data characterized by sharp

peaks, or spikes, and other local features using a set of wavelet basis functions (Nason, 2008).

There are several wavelet families, and among the most popular are the Daubechies wavelets,

which form an orthonormal basis in the space of square-integrable functions. In modeling, the

mother wavelet ψ is dilated and translated (i.e. stretched/squeezed and shifted) to represent

some function f where, in this analysis, f is a LIBS spectrum. The general form of the

representation of using a wavelet basis is

f(x) = c00φ0(x) +
∞∑
j=0

∞∑
k=−∞

djkψji(x) (4.1)

where φ0 is referred to as the father wavelet, or the scaling function, with coefficients c00,

and ψjk(x) = 2
j
2φ(2jx − k) with integers j and k indexing the dilations and translations,

respectively, of the mother wavelet. The dilation can be thought of as the window width of

the wavelet. The wavelet coefficient (WC) at level j and location k, is defined as

djk =
∫
f(x)ψjk(x)dx. (4.2)

In practice, f is observed at discretized points so Equation (4.2) is replaced by an approxima-

tion, and the range of the indices of the summations in Equation (4.1) are truncated based

on values computed by the available data. Specifically, the sum indexed by j is truncated to

log2(n)− 1, where n is the number of observations of the function f , and k = 0, 1, . . . , 2j − 1.

In the proposed methodology, a wavelet transformation was taken of each spectrum, and

only the estimated WC, called the discrete wavelet coefficients (DWC), were retained for the

classification model. Including a wavelet transformation in the framework provides flexibility
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when more preprocessing of the data are required (e.g. for noisy data). More details about

the wavelet transformation used in the proposed methodology can be found in Section 4.3.1.

4.2.2 Support vector machines

Support vector machines have many uses in statistics, in particular for classification. An

overview of the methods can be found in Shawe-Taylor and Cristianini (2000) or Hastie

et al. (2001). The main idea for Support Vector Machine (SVM) classification is to find the

hyperplane that best separates the data into two classes by maximizing the margin between

the closest points in each class.

Consider a data set {xi,yi} where i = 1, . . . , n, yi = {−1, 1}, and xi ∈ Rd where d is the

dimension of the data set. For simplicity, suppose d = 2. Then there is a two-dimensional

vector of n data points, and each point is assigned into class -1 or class 1. The goal is to find

the hyperplane, which for d = 2 is the line, that best separates the two classes. Specifically,

one needs to find variable b and vector w that defines the hyperplane

(xi ·w + b)yi ≥ 1 for i = 1, . . . , n (4.3)

where the hyperplane is such that it is as far as possible from the closest data points of each

class. That is, the goal is to maximize the margin between the two classes. The distance

between the hyperplane of Equation (4.3) and the support vectors of each class is equal to

||w||−1, where the w is orthogonal to the hyperplane. Hence the distance between the two

classes (i.e. the margin) is equal to 2||w||−1. In order to maximize the margin, one can mini-

mize ||w|| subject to the constraints defined in Equation (4.3). To make this computationally

easier, 1
2 ||w||

2 is minimized with the same constraints. The variable b is the offset from the

origin of the hyperplane.

Because most data will not be perfectly linearly separable, Equation (4.3) is modified

to allow for misclassifications (data points on the wrong side of the separating margin) as

follows:

(xi ·w + b)yi ≥ 1− ξi, ξi ≥ 0 for i = 1, . . . , n. (4.4)
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This now allows for some values to be misclassified, and the objective function is modified to

min
(

1
2
||w||2 + C

n∑
i=1

ξi

)
(4.5)

subject to the constraints of Equation (4.4). The parameter C is chosen to reflect the degree

to which misclassifications are penalized and is referred to as the cost parameter, and the

variables ξi are measures of the degree of the misclassification of xi. A non-zero ξi suggests

that the observation xi is on the “wrong” side of the hyperplane resulting in the application

of a penalty.

The SVM classification model is completely defined by the vector w and b where a new

point x∗ is classified by the sign of w · x∗ + b. If there is asymmetry in the number of obser-

vations falling into each class, there are procedures for reducing the impact of the imbalance

(Tang et al., 2004).

The above derivation assumes that the data are linearly separable, but this is not always

the case (e.g. one of the classes could be circumscribed by the other class). However, the

data can be transformed using a kernel function (determined by the data) onto feature space

in order to improve linear separability (Shawe-Taylor and Cristianini, 2000).

For the proposed methodology, the x are a measure of the presence of the eight elements

typically detected in B. anthracis spores (described in detail below), and the y indicate if the

substance is a spore powder or not.

4.3 Methodology

The overall idea of the model is first to regularize the data via wavelets, then reduce the

dimension of the samples using a linear model, and finally build a classification model that

will categorize an unknown substance as a B. anthracis spore, or not, using support vector

machines.
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4.3.1 Data pre-processing

This section addresses the steps for pre-processing the data followed by the SVM classification

model. The data used in the analysis were the spectra (intensity at different wavelengths)

collected from the LIBS system and the substances described in Appendix B, and listed in Ta-

ble 4.1. The spectra used to build the model had 13,701 data points (one for each wavelength

at which the system recorded a measurement). A sample spectrum of B. stearothermophilus

(ATCC 12979) and Dipel 150 Dust are displayed in Figure 4.1.

Substance Type Number of observations
B. stearothermophilus (ATCC 12979) spore 21
B. thuringiensis (ATCC 51912) spore 21
B. cereus (ATCC 14603) spore 23
B. atrophaeus (ECBC) spore 29
Blank steel plate confusant 18
Flour confusant 25
Arm & Hammer detergent confusant 26
Baking powder confusant 25
Baking soda confusant 24
BC powder confusant 25
Crayola chalk confusant 25
Dipel confusant 25
Equal confusant 25
Gain laundry detergent (LD) confusant 25
Ibuprofen confusant 25
Johnson’s baby powder (BP) confusant 25
Powdered sugar confusant 25
Sugar confusant 25
Sweet ‘n low confusant 25
Tide LD confusant 25
Tylenol gel cap confusant 26

Table 4.1: The spores and confusant substances used in the analysis.

In addition to the LIBS spectra for Bacillus spore powders and other innocuous powders

described in Appendix B, LIBS spectra for the eight elements typically detected in B. anthracis

spores - sodium (Na), potassium (K), magnesium (Mg), manganese (Mn), silicon (Si), carbon

(C), calcium (Ca), and iron (Fe) were considered. Each element has a characteristic spectrum

with peaks at known wavelengths, and the characteristic elemental spectra were used in the

analysis to aid in dimension reduction of the other LIBS spectra along with providing a way to
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Figure 4.1: A spectrum generated by a LIBS system of (a) a sample of B. stearothermophilus (ATCC
12979), and (b) a sample of Dipel 150 Dust.
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focus on the wavelengths of the spectra where peaks are expected when B. anthracis surrogate

spores are present.

The first step in the analysis was to remove obvious outliers in the data. To locate

suspected outliers, each set of spectra for each substance was analyzed in the following manner.

For each substance (e.g. Sweet ’n Low spectra), a mean spectrum and median spectrum were

defined. The sum of the absolute difference between each sample and the mean spectrum

and between each sample and the medium spectrum were calculated along with noting the

samples minimum and maximum intensities. Four plots were generated to compare these four

values between the samples. If a samples point for any of the plots did not follow a pattern

similar to the majority of the other points, its spectrum was visually compared to the mean

and median spectra. In the few cases where the spectra were clear outliers (e.g. no peaks

were appearing at any wavelength or for large portions of wavelength ranges), the associated

samples were removed from the analysis (less than 0.6% of the sample spectra were removed

as outliers).

After removing outlying spectra, a logarithmic transformation was taken of all the remain-

ing data. There are a few points to note about the sample spectra displayed in Figure 4.1.

First, the spectra have slightly irregular patterns tracing their bases (the irregularities are

more pronounced after the logarithmic transformation); second, the spectra have a number of

sharp peaks; lastly, the top spectrum in Figure 4.1 has peaks in locations and at heights dif-

ferent from the spectrum in the bottom of Figure 4.1. For these reasons, along with potential

for thresholding and other forms of regularization, a wavelet transformation was employed

rather than another functional representation of the data. While a wavelet transformation of

the LIBS spectra was not required for use of the proposed classification model, the irregular

base pattern was removed by only retaining the DWCs, i.e. the estimated djk from Equa-

tion (4.2), and discarding the information related to the scaling function, while preserving

information about the peaks. The type of wavelet filter selected for the analysis was the

Daubechies 4 filter, which has two vanishing moments. Symmetric boundary conditions were

selected because it was reasonable to assume the unobserved signal to the right of the domain

would be better represented as a continuation of the right part of the spectrum (rather than
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the left part of the spectrum), and vice versa for the region to the left of the domain. Only

9 of the 13 possible levels, i.e. dilations of the mother wavelet, of coefficients were needed to

capture the required detail of the spectra. The DWCs for each spectrum were vectorized and

replaced the raw spectra as the data.

Next, a linear regression model was used to determine the combination pattern of the char-

acteristic elemental spectra for the Bacillus spores’ and the other substances’ LIBS spectra.

The components of the linear model are described below next.

For e = 1, . . . , 9,

Ee = vector of DWCs for chemical element e (4.6)

where the ninth element included is boron due to its role in obtaining the elemental LIBS

spectra. Including boron in the determination of the combination pattern, but not including

it in the classification model, kept the presence of the boron in the elemental spectra from

influencing classification. In addition to the Ee’s, indicators for the seven CCDs (see Ap-

pendix B), defined by wavelength ranges, were carried through the wavelet transformation.

The seven indicator vectors initially contained 1 for wavelengths within the range of the cor-

responding CCD and 0 everywhere else. The wavelength ranges are disjoint between the 7

CCDs and therefore for every wavelength there is only one column with the corresponding en-

try 1. These indictors were then subjected to the same wavelet transformation as the sample

spectra, and vectorized as above, then defined for measuring device i = 1, . . . , 7 as

Ii = vector of DWCs for measuring device indicator i. (4.7)

The Iis account for any overall inconsistencies between the ranges of each measuring device.

Every sample spectrum was transformed onto the wavelet domain using the same wavelet

transformation with the DWCs retained. Each collection of DWCs was vectorized and defined

as Ysj = vector of DWCs, for substance s = 1, . . . , S and sample j = 1, . . . , Js (each substance

had 18 to 25 sample spectra).
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The combination pattern of the elemental spectra for each substance is called its loadings.

To get the loadings for every sample of each substance, the following linear model was fit:

Ysj = Xβsj + ε. (4.8)

X is a matrix composed of a column of ones, followed by Ii, i = 1, . . . , 6 defined in Equa-

tion (4.7) (only six of the seven CCDs were used because of the multicollinearity that would

result, and thus non-identifiability of parameters; this is a mathematical issue and does not

impact the results), and Ee, e = 1, . . . , 9 as defined in Equation (4.6). Furthermore, β is the

unknown 16 dimensional parameter vector for sample j of substance s, and ε is the unknown

error in the model (note that normality of the data is not assumed). The loadings vector is

defined as part of the least-squares estimates, β̂sj , where β̂sj = (XTX)−1XTYsj . The loading

vector is denoted as β̃sj for sample j of substance s, where this only includes the values from

β̂sj , corresponding to the eight elements (i.e. excluding boron).

In summary, each sample of each substance had an eight dimensional loading vector

associated with it. The dimension of data was reduced from 13,701 to 8 by focusing on the

locations of the spectra where the signature elements of Bacillus spores were found to have

peaks. The loadings for the Bacillus spores (the particular combination of the elemental

spectra for each sample) are displayed in Figures 4.2. The behavior of the loadings for each

of the surrogates appears to be similar suggesting that these elemental spectra do combine

in a similar way to form the Bacillus spores spectra, while the loadings for two examples

of innocuous substances, baking soda and baking powder (see Figure 4.2), clearly follow a

different pattern. These 8-dimensional loading vectors were used in the classification model

described in the next section.

4.3.2 Classification model

Support vector machines were used to develop a classification model using the loadings as-

sociated with the data described in Appendix B. The two classes were Bacillus spores and

other non-biological confusant substances. As noted in the Section 4.2.2, the goal of SVM
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Figure 4.2: Box plots of the loadings for Bacillus spores (a) B. stearothermophilus (ATCC 12979),
(b) B. thuringiensis (ATCC 51912), (c) B. atrophaeus (ECBC) and (d) B. cereus (ATCC
14603), and confusant substances (e) baking soda and (f) baking powder. The horizontal
axis displays the eight elements typically detected in Bacillus spores, and the values along
the vertical axis are the corresponding loading values for each sample summarized as a
box plot. There were 21 - 29 samples used for each plot.
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was to minimize Equation (4.5) subject to the constraints of Equation (4.4). In this anal-

ysis, yi = 1 for spores, yi = −1 for other substances and the corresponding vectors x were

the 8-dimensional loading vectors defined above. In addition to our confusant powders, we

included loadings for the spectra of the eight elements in the non-Bacillus group (yi = −1).

Including these elemental loadings helped to guard against an unknown confusant sub-

stance being misclassified as Bacillus spores simply because it was made up of only one or

several of these elements. For support vector machines, disproportionate class sizes, if not

accounted for, can lead to incorrect classification (Shin and Cho, 2003; Wu and Chang, 2005).

Because of the imbalance between the number of spores samples and other samples (94 sam-

ple spore spectra were used compared to 419 confusant substances), the substances were

adjusted to alleviate the disproportion (to diminish the effect of asymmetric class sizes) using

the class.weights option in the R packages mentioned previously. This option allows the user

to mitigate the class size imbalance between the two classes by assigning a higher weight to

the class with fewer samples and a lower weight to the samples with more samples.

The model was built using 70 percent of the data (randomly selected for each substance),

and then verified using the remaining 30 percent. Because the data appeared to be linearly

separable, the linear kernel was sufficient for this model, i.e. a hyperplane, or flat surface,

separated the two classes of data and no additional transformation was needed. Figures 4.3

and 4.4 provide some validation of the claim to linear separability. In Figure 4.3, the median

loading values for each substance are displayed. We see that the spore loadings tend to

group together for each element, and are at an extreme for Si, K, Fe, and C. This has an

aroma of linear separability in the eight-dimensional space that the loading vectors live in,

which is further corroborated when considering the two-dimensional projections displayed in

Figure 4.4.

During the construction of the classification model, the cost parameter C was set using

a grid search over a specified range of values. The final C was chosen based on 10-fold

cross validation error over the grid. The performance based on model error and 10-fold cross

validation error was low for all C’s presented in the grid. While all of the values considered for

C performed well, the grid-search algorithm used for tuning parameters of SVM selected C = 2
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as the best value based on 10-fold cross validation. Once the model was built, the remaining

30% of the data was put into the classification model. Misclassifications, or prediction error,

occurred if the outcome of the model did not accurately predict the class of the substance, i.e.

if a surrogate powder was classified as a confusant powder, or vice versa. Table 4.2 displays

the results of the prediction error of the fitted model using the 30 percent of the data not

included in the model selection and parameter tuning.

Confusant powders Bacillus spore powders
0.6% 3.3%

Table 4.2: Prediction error using cost parameter C = 2.
The prediction error was determined by the fre-
quency of misclassifications of the 30 percent of
the data values not used in model selection.

In order to further test the model, sample spectra of two different Bacillus spores not

used to build the model were classified using the model: B. thuringiensis (ATCC51912) (8

spectra) and B. stearothermophilus (ATCC12979) (5 spectra). All 13 spectra were correctly

classified.

To further verify the performance, and due to the limited data available, a leave-one-out

method was employed. The model was built using spectra from only three of the four Bacillus

spores samples, (i.e. one Bacillus spores sample was left out of the model building stage).

Seventy percent of the three remaining Bacillus spores samples and confusant powder samples

were randomly selected to build the model. The models predictive power was tested on the

Bacillus spores sample left out and the remaining 30% of the data. This was repeated for each

Bacillus spore sample, and the results of this test are displayed in Table 4.3. The prediction

error was between 0.0% and 3.4%.

A similar procedure was done by randomly selecting five non-Bacillus spore samples to

be left out of building the model. The four confusant substances selected were baking soda,

Gain Laundry Detergent (Gain LD), sugar, and Tide Laundry Detergent (Tide LD); the

blank stainless steel spectra were also randomly selected. These five substances were grouped

together in the determination of the prediction error. The results are also listed as the last

row in Table 4.3. The prediction error was 0.9% and 3.3% for confusant powders and Bacillus
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spores, respectively.

Testing substance left out Confusant powders Bacillus spore powders
B. stearothermophilus (ATCC 12979) 0.0% 0.0%
B. thuringiensis (ATCC 51912) 1.3% 0.0%
B. cereus (ATCC 14603) 0.6% 0.0%
B. atrophaeus (ECBC) 0.0% 3.4%
Confusant 0.9% 3.3%

Table 4.3: Prediction error of model built with all samples except the samples listed under “Testing
substance left out”. B. stearothermophilus (ATCC 12979), B. thuringiensis (ATCC 51912),
B. cereus (ATCC 14603), and B. atrophaeus (ECBC) are spores. The category “Confusant”
includes stainless steel, baking soda, GainLD, sugar, and TideLD.

4.4 Conclusion and future research

The proposed methodology provides a way to classify suspect powders, like Bacillus spores,

from other substances using LIBS spectra generated using the same LIBS system. Several

statistical techniques were brought together to produce the classification model. A wavelet

transformation was used to reduce irregularities in the LIBS spectra and focus the classifica-

tion analysis on the peaks. Regressing the DWCs of the spores and other substances on the

DWC of the eight elements helped to both reduce the dimension of the data, and focus on

the regions of a spectrum where peaks were expected if spores are present in the substance.

Finally, the output loadings vectors were then used to build the classification model using a

SVM approach.

The overall classification model performed well for the data and setting presented. More

complex classification goals would require an increased number of samples of Bacillus spores,

and investigation of a non-linear relationship between spores spectra and the elemental spec-

tra. In order to generalize this method to other LIBS systems, random effects could be

incorporated to account for the variation differences between LIBS systems. For example,

random effect could be included at the LIBS system level and at the operator level. The

usefulness of incorporating random effects would be assessed by comparing the results of the

method outlined in this chapter with the results of the same method proposed above except

using a mixed linear model to determine the loading vectors rather than the linear model
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used in Equation (4.8).

The analysis was completed using pure spores and pure confusants. An interesting and

very relevant next step would be to see how the method performs when the spores are mixed

with confusant substances at varying concentrations. In practice, this would be the more

likely situation, and could have important national defense implications. More analysis could

also be done on selecting which elements should be used in the classification model. We used

all eight elements that are typically detected in B. anthracis surrogate spore powders, but

perhaps fewer are necessary for good classification results. This would be an interesting issue

to investigate using mixed, impure powders.

Finally, though the proposed methodology was implemented in the specific setting of B.

anthracis surrogate spore classification, it could be used in other cases where one of the classes

has some known elemental structure.
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Appendix A

Normal linear mixed model results by

model design

A.1 Simulation results: five-number summaries

In this section, the five-number summaries corresponding to the box plots in Chapter 2 are

displayed.

A.1.1 Two-fold nested model of Equation (2.34)
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σ2
α Method Min Q1 Q2 Q3 Max

Two-sided CI Empirical coverage
USS 0.9385 0.9465 0.9510 0.9550 0.9700
TYPEI 0.9245 0.9465 0.9515 0.9555 0.9650
BAY13 0.9665 0.9780 0.9880 0.9975 1.0000
BAY23 0.9660 0.9790 0.9895 0.9970 1.0000
BAY11.5 0.9665 0.9765 0.9875 0.9965 1.0000
BAY21.5 0.9695 0.9805 0.9885 0.9975 1.0000
FID 0.9830 0.9880 0.9915 0.9985 1.0000

Average length/ average length of FID
USS 0.7717 0.9415 0.9863 1.0138 1.1239
TYPEI 0.6795 0.8678 0.9507 0.9863 1.0509
BAY13 1.5641 1.7756 2.0990 2.6156 3.7342
BAY23 1.6367 2.1150 2.3545 2.9533 6.7196
BAY11.5 0.4829 0.6083 0.9450 1.6855 1.9474
BAY21.5 1.0649 1.4059 1.5177 1.6983 2.4726
FID 1.0000 1.0000 1.0000 1.0000 1.0000

Upper CI Empirical coverage
USS 0.9420 0.9505 0.9535 0.9580 0.9870
TYPEI 0.9290 0.9480 0.9545 0.9655 0.9845
BAY13 0.9275 0.9420 0.9645 0.9850 1.0000
BAY23 0.9295 0.9500 0.9670 0.9845 1.0000
BAY11.5 0.9345 0.9505 0.9675 0.9835 0.9995
BAY21.5 0.9370 0.9530 0.9690 0.9890 1.0000
FID 0.9620 0.9745 0.9815 0.9950 1.0000

Lower CI Empirical coverage
USS 0.9385 0.9455 0.9480 0.9515 0.9575
TYPEI 0.9270 0.9385 0.9430 0.9455 0.9575
BAY13 0.9980 1.0000 1.0000 1.0000 1.0000
BAY23 0.9970 1.0000 1.0000 1.0000 1.0000
BAY11.5 0.9960 1.0000 1.0000 1.0000 1.0000
BAY21.5 0.9965 1.0000 1.0000 1.0000 1.0000
FID 0.9625 0.9950 0.9995 1.0000 1.0000

Table A.1: Two-fold nested model: five-number summaries for 95%
confidence intervals on σ2

α of Figures 2.3 and 2.4.
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σ2
β Method Min Q1 Q2 Q3 Max

Two-sided CI Empirical coverage
USS 0.9385 0.9455 0.9475 0.9515 0.9535
TYPEI 0.9235 0.9425 0.9480 0.9515 0.9580
BAY13 0.9445 0.9800 0.9855 0.9880 0.9915
BAY23 0.9405 0.9795 0.9845 0.9880 0.9930
BAY11.5 0.9425 0.9770 0.9840 0.9870 0.9895
BAY21.5 0.9400 0.9815 0.9855 0.9890 0.9935
FID 0.9420 0.9800 0.9870 0.9910 0.9945

Average length/ average length of FID
USS 0.9950 1.1581 1.5359 1.7280 131.1739
TYPEI 0.8201 1.1314 1.5359 1.6826 131.1739
BAY13 1.2282 1.3299 1.3955 1.9938 2.1843
BAY23 1.2184 1.2982 1.3204 1.7752 2.0739
BAY11.5 1.2258 1.2969 1.3183 1.4948 1.8172
BAY21.5 1.1356 1.2008 1.2421 1.3638 1.5267
FID 1.0000 1.0000 1.0000 1.0000 1.0000

Upper CI Empirical coverage
USS 0.9335 0.9470 0.9515 0.9525 0.9570
TYPEI 0.9315 0.9465 0.9510 0.9525 0.9560
BAY13 0.9260 0.9600 0.9695 0.9735 0.9775
BAY23 0.9285 0.9625 0.9675 0.9740 0.9785
BAY11.5 0.9285 0.9595 0.9645 0.9730 0.9775
BAY21.5 0.9290 0.9605 0.9715 0.9760 0.9790
FID 0.9585 0.9705 0.9780 0.9820 0.9890

Lower CI Empirical coverage
USS 0.9340 0.9445 0.9480 0.9515 0.9540
TYPEI 0.9345 0.9445 0.9470 0.9505 0.9540
BAY13 0.9595 0.9890 1.0000 1.0000 1.0000
BAY23 0.9560 0.9885 1.0000 1.0000 1.0000
BAY11.5 0.9570 0.9860 0.9995 1.0000 1.0000
BAY21.5 0.9565 0.9855 1.0000 1.0000 1.0000
FID 0.9160 0.9645 0.9955 1.0000 1.0000

Table A.2: Two-fold nested model: five-number summaries on 95%
confidence intervals for σ2

β of Figures 2.5 and 2.6.
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µ Method Min Q1 Q2 Q3 Max
Two-sided CI Empirical coverage

BAY13 0.9770 0.9925 0.9995 1.0000 1.0000
BAY23 0.9780 0.9915 0.9990 0.9995 1.0000
BAY11.5 0.9770 0.9895 0.9930 0.9965 1.0000
BAY21.5 0.9755 0.9885 0.9940 0.9965 0.9995
FID 0.9650 0.9805 0.9920 0.9970 0.9990

Average length/ average length of FID
BAY13 1.1498 1.3229 1.4824 1.5965 1.9567
BAY23 1.1396 1.2751 1.5533 1.6491 2.4609
BAY11.5 0.8569 1.0596 1.1698 1.2419 1.3922
BAY21.5 0.8921 1.1367 1.1790 1.2157 1.5327
FID 1.0000 1.0000 1.0000 1.0000 1.0000

Upper CI Empirical coverage
BAY13 0.9745 0.9880 0.9970 0.9980 1.0000
BAY23 0.9685 0.9865 0.9960 0.9980 1.0000
BAY11.5 0.9705 0.9820 0.9905 0.9925 1.0000
BAY21.5 0.9655 0.9855 0.9880 0.9925 0.9980
FID 0.9580 0.9750 0.9795 0.9895 0.9975

Lower CI Empirical coverage
BAY13 0.9720 0.9885 0.9965 0.9985 0.9995
BAY23 0.9690 0.9875 0.9960 0.9980 0.9995
BAY11.5 0.9690 0.9855 0.9900 0.9935 0.9995
BAY21.5 0.9705 0.9830 0.9890 0.9940 0.9990
FID 0.9555 0.9735 0.9815 0.9915 0.9980

Table A.3: Two-fold nested model: five-number summaries on
95% confidence intervals for µ of Figures 2.7 and 2.8.
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σ2
ε Method Min Q1 Q2 Q3 Max

Two-sided CI Empirical coverage
BAY13 0.9360 0.9460 0.9565 0.9595 0.9675
BAY23 0.9355 0.9490 0.9555 0.9585 0.9690
BAY11.5 0.9345 0.9480 0.9550 0.9585 0.9655
BAY21.5 0.9330 0.9470 0.9565 0.9605 0.9675
FID 0.8955 0.9505 0.9530 0.9575 0.9615

Average length/ average length of FID
BAY13 0.8886 1.0697 1.0862 1.0999 1.2970
BAY23 0.8438 1.0588 1.0822 1.0899 1.2959
BAY11.5 0.8867 1.0686 1.0851 1.0981 1.3046
BAY21.5 0.8909 1.0602 1.0831 1.0938 1.3109
FID 1.0000 1.0000 1.0000 1.0000 1.0000

Upper CI Empirical coverage
BAY13 0.9090 0.9225 0.9370 0.9520 0.9665
BAY23 0.9085 0.9235 0.9375 0.9525 0.9665
BAY11.5 0.9105 0.9250 0.9370 0.9510 0.9635
BAY21.5 0.9095 0.9230 0.9365 0.9525 0.9665
FID 0.8605 0.9415 0.9565 0.9655 0.9760

Lower CI Empirical coverage
BAY13 0.9440 0.9640 0.9705 0.9735 0.9820
BAY23 0.9455 0.9630 0.9705 0.9740 0.9820
BAY11.5 0.9475 0.9640 0.9690 0.9745 0.9820
BAY21.5 0.9470 0.9635 0.9695 0.9735 0.9830
FID 0.9295 0.9450 0.9515 0.9660 0.9730

Table A.4: Two-fold nested model: five-number summaries on 95%
confidence intervals for σ2

ε of Figures 2.9 and 2.9.
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A.1.2 The two-factor crossed with interaction of Equation (2.35)

σ2
α Method Min Q1 Q2 Q3 Max

Two-sided CI Empirical coverage
HB 0.9405 0.9490 0.9523 0.9550 0.9645
BAY13 0.9685 0.9785 0.9850 0.9900 0.9930
BAY23 0.9675 0.9790 0.9855 0.9915 0.9940
BAY11.5 0.9680 0.9775 0.9848 0.9885 0.9930
BAY21.5 0.9710 0.9810 0.9853 0.9910 0.9960
FID 0.9815 0.9890 0.9943 0.9965 0.9990

Average length/ average length of FID
HB 0.2714 0.9030 0.9865 1.0237 1.0365
BAY13 0.6182 3.0159 3.6835 3.9085 4.4357
BAY23 0.6059 3.2548 3.6505 4.6360 5.7224
BAY11.5 0.5877 1.3033 1.6039 2.2952 2.7000
BAY21.5 0.5086 2.0343 2.2739 2.4848 2.7559
FID 1.0000 1.0000 1.0000 1.0000 1.0000

Upper CI Empirical coverage
HB 0.9415 0.9510 0.9530 0.9565 0.9600
BAY13 0.9330 0.9480 0.9575 0.9670 0.9785
BAY23 0.9350 0.9515 0.9593 0.9685 0.9790
BAY11.5 0.9355 0.9485 0.9588 0.9665 0.9800
BAY21.5 0.9405 0.9530 0.9628 0.9700 0.9795
FID 0.9610 0.9750 0.9838 0.9875 0.9940

Lower CI Empirical coverage
HB 0.9360 0.9445 0.9495 0.9515 0.9605
BAY13 1.0000 1.0000 1.0000 1.0000 1.0000
BAY23 0.9995 1.0000 1.0000 1.0000 1.0000
BAY11.5 0.9995 1.0000 1.0000 1.0000 1.0000
BAY21.5 0.9995 1.0000 1.0000 1.0000 1.0000
FID 0.9790 1.0000 1.0000 1.0000 1.0000

Table A.5: Two-way crossed with interaction model: five-number
summaries on 95% confidence intervals for σ2

α of Fig-
ures 2.12 and 2.13.
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σ2
β Method Min Q1 Q2 Q3 Max

Two-sided CI Empirical coverage
HB 0.9450 0.9490 0.9520 0.9535 0.9635
BAY13 0.9220 0.9605 0.9743 0.9835 0.9925
BAY23 0.9280 0.9630 0.9758 0.9850 0.9940
BAY11.5 0.9270 0.9625 0.9773 0.9830 0.9905
BAY21.5 0.9325 0.9645 0.9783 0.9865 0.9925
FID 0.9710 0.9850 0.9898 0.9960 0.9985

Average length/ average length of FID
HB 0.8897 0.9758 0.9994 1.0215 1.0414
BAY13 2.0614 2.8717 3.4176 4.0489 6.0724
BAY23 2.5869 3.2937 4.3123 4.8400 6.6194
BAY11.5 0.6731 0.9853 1.3007 1.7788 2.4014
BAY21.5 1.5087 1.9015 2.1036 2.4251 3.5400
FID 1.0000 1.0000 1.0000 1.0000 1.0000

Upper CI Empirical coverage
HB 0.9390 0.9510 0.9538 0.9575 0.9635
BAY13 0.8650 0.9230 0.9353 0.9520 0.9710
BAY23 0.8725 0.9270 0.9388 0.9525 0.9715
BAY11.5 0.8715 0.9275 0.9385 0.9535 0.9725
BAY21.5 0.8760 0.9320 0.9460 0.9650 0.9730
FID 0.9480 0.9650 0.9758 0.9840 0.9950

Lower CI Empirical coverage
HB 0.9350 0.9445 0.9465 0.9535 0.9580
BAY13 1.0000 1.0000 1.0000 1.0000 1.0000
BAY23 0.9995 1.0000 1.0000 1.0000 1.0000
BAY11.5 1.0000 1.0000 1.0000 1.0000 1.0000
BAY21.5 0.9990 1.0000 1.0000 1.0000 1.0000
FID 0.9615 0.9960 1.0000 1.0000 1.0000

Table A.6: Two-way crossed with interaction model: five-number
summaries on 95% confidence intervals for σ2

β of Fig-
ures 2.14 and 2.15.
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σ2
αβ Method Min Q1 Q2 Q3 Max

Two-sided CI Empirical coverage
HB 0.9435 0.9485 0.9508 0.9535 0.9620
BAY13 0.9600 0.9840 0.9878 0.9900 0.9955
BAY23 0.9595 0.9850 0.9888 0.9905 0.9955
BAY11.5 0.9570 0.9810 0.9863 0.9890 0.9925
BAY21.5 0.9600 0.9845 0.9883 0.9900 0.9960
FID 0.9445 0.9855 0.9910 0.9940 0.9975

Average length/ average length of FID
HB 1.1395 1.3342 1.4998 1.6228 1.9391
BAY13 1.1172 1.1654 1.2204 1.3624 1.4333
BAY23 1.1026 1.1472 1.2025 1.2917 1.3745
BAY11.5 1.1105 1.1479 1.2072 1.3118 1.3849
BAY21.5 0.9536 1.1248 1.1629 1.1839 1.2811
FID 1.0000 1.0000 1.0000 1.0000 1.0000

Upper CI Empirical coverage
HB 0.9440 0.9470 0.9513 0.9560 0.9620
BAY13 0.9565 0.9705 0.9738 0.9800 0.9870
BAY23 0.9595 0.9725 0.9743 0.9800 0.9880
BAY11.5 0.9585 0.9680 0.9725 0.9780 0.9860
BAY21.5 0.9570 0.9720 0.9750 0.9795 0.9895
FID 0.9595 0.9780 0.9823 0.9875 0.9945

Lower CI Empirical coverage
HB 0.9395 0.9455 0.9490 0.9530 0.9570
BAY13 0.9490 0.9905 0.9990 1.0000 1.0000
BAY23 0.9485 0.9900 0.9988 1.0000 1.0000
BAY11.5 0.9480 0.9860 0.9975 1.0000 1.0000
BAY21.5 0.9450 0.9865 0.9985 1.0000 1.0000
FID 0.9235 0.9700 0.9950 1.0000 1.0000

Table A.7: Two-way crossed with interaction model: five-number
summaries on 95% confidence intervals for σ2

αβ of Fig-
ures 2.16 and 2.17.
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µ Method Min Q1 Q2 Q3 Max
Two-sided CI Empirical coverage

BAY13 0.9975 0.9995 1.0000 1.0000 1.0000
BAY23 0.9970 0.9995 1.0000 1.0000 1.0000
BAY11.5 0.9895 0.9975 0.9988 1.0000 1.0000
BAY21.5 0.9890 0.9975 0.9988 0.9995 1.0000
FID 0.9805 0.9945 0.9975 0.9995 1.0000

Average length/ average length of FID
BAY13 1.7155 1.7631 1.8151 1.9477 2.1148
BAY23 1.7002 1.7864 1.8298 1.9473 2.0953
BAY11.5 1.1219 1.2070 1.2793 1.3721 1.5267
BAY21.5 1.1959 1.2828 1.3330 1.4153 1.5603
FID 1.0000 1.0000 1.0000 1.0000 1.0000

Upper CI Empirical coverage
BAY13 0.9940 0.9990 0.9995 1.0000 1.0000
BAY23 0.9900 0.9985 0.9995 1.0000 1.0000
BAY11.5 0.9840 0.9950 0.9980 0.9995 1.0000
BAY21.5 0.9805 0.9950 0.9970 0.9990 1.0000
FID 0.9695 0.9895 0.9935 0.9975 0.9995

Lower CI Empirical coverage
BAY13 0.9935 0.9985 0.9995 1.0000 1.0000
BAY23 0.9925 0.9985 0.9995 1.0000 1.0000
BAY11.5 0.9855 0.9955 0.9965 0.9990 1.0000
BAY21.5 0.9845 0.9940 0.9975 0.9985 1.0000
FID 0.9720 0.9880 0.9933 0.9975 1.0000

Table A.8: Two-way crossed with interaction model: five-number
summaries on 95% confidence intervals for µ of Fig-
ures 2.18 and 2.19.
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σ2
ε Method Min Q1 Q2 Q3 Max

Two-sided CI Empirical coverage
BAY13 0.9450 0.9510 0.9553 0.9575 0.9640
BAY23 0.9445 0.9510 0.9553 0.9590 0.9625
BAY11.5 0.9460 0.9510 0.9555 0.9565 0.9620
BAY21.5 0.9455 0.9515 0.9553 0.9570 0.9620
FID 0.9415 0.9515 0.9565 0.9615 0.9645

Average length/ average length of FID
BAY13 1.0466 1.0537 1.0750 1.0808 1.1096
BAY23 1.0441 1.0536 1.0746 1.0810 1.1079
BAY11.5 1.0428 1.0493 1.0722 1.0783 1.1084
BAY21.5 1.0002 1.0499 1.0726 1.0788 1.1047
FID 1.0000 1.0000 1.0000 1.0000 1.0000

Upper CI Empirical coverage
BAY13 0.9170 0.9340 0.9390 0.9470 0.9665
BAY23 0.9160 0.9325 0.9398 0.9470 0.9670
BAY11.5 0.9185 0.9325 0.9395 0.9480 0.9655
BAY21.5 0.9170 0.9320 0.9398 0.9490 0.9650
FID 0.9330 0.9480 0.9568 0.9635 0.9730

Lower CI Empirical coverage
BAY13 0.9510 0.9605 0.9655 0.9745 0.9810
BAY23 0.9505 0.9600 0.9660 0.9745 0.9815
BAY11.5 0.9505 0.9610 0.9660 0.9740 0.9800
BAY21.5 0.9505 0.9600 0.9655 0.9750 0.9810
FID 0.9315 0.9460 0.9535 0.9670 0.9715

Table A.9: Two-way crossed with interaction model: five-number
summaries on 95% confidence intervals for σ2

ε of Fig-
ures 2.20 and 2.21.
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A.2 Simulation results: summarized by model design

In this section, the simulation results from Chapter 2 are summarized by model design.

The results include empirical coverage of the 95% two-sided confidence intervals and average

interval length for the non-error variance components.

A.2.1 Two-fold nested model of Equation (2.34)
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Figure A.1: Combined simulation results for 95% two-sided confidence intervals on σ2
α and σ2

β for the
two-fold nested model of Equation (2.34) using model design MI - 1 of Table 2.3. The top
plot is of the empirical coverage probabilities of the intervals, and the bottom plot is of
the base 10 logarithm of average interval lengths divided by the average interval lengths
of FID.
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Figure A.2: Combined simulation results for 95% two-sided confidence intervals on σ2
α and σ2

β for the
two-fold nested model of Equation (2.34) using model design MI - 2 of Table 2.3. The top
plot is of the empirical coverage probabilities of the intervals, and the bottom plot is of
the average interval lengths divided by the average interval lengths of FID.
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Figure A.3: Combined simulation results for 95% two-sided confidence intervals on σ2
α and σ2

β for the
two-fold nested model of Equation (2.34) using model design MI - 3 of Table 2.3. The top
plot is of the empirical coverage probabilities of the intervals, and the bottom plot is of
the average interval lengths divided by the average interval lengths of FID.
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Figure A.4: Combined simulation results for 95% two-sided confidence intervals on σ2
α and σ2

β for the
two-fold nested model of Equation (2.34) using model design MI - 4 of Table 2.3. The top
plot is of the empirical coverage probabilities of the intervals, and the bottom plot is of
the average interval lengths divided by the average interval lengths of FID.
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Figure A.5: Combined simulation results for 95% two-sided confidence intervals on σ2
α and σ2

β for the
two-fold nested model of Equation (2.34) using model design MI - 5 of Table 2.3. The top
plot is of the empirical coverage probabilities of the intervals, and the bottom plot is of
the average interval lengths divided by the average interval lengths of FID.
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A.2.2 Two-factor crossed with interaction of Equation (2.35)
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Figure A.6: Combined simulation results for 95% two-sided confidence intervals on σ2
α, σ2

β , and σ2
αβ for

the two-factor crossed design with interactionl of Equation (2.35) using model design MII
- 1 of Table 2.6. The top plot is of the empirical coverage probabilities of the intervals, and
the bottom plot is of the average interval lengths divided by the average interval lengths
of FID.
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Figure A.7: Combined simulation results for 95% two-sided confidence intervals on σ2
α, σ2

β , and σ2
αβ for

the two-factor crossed design with interactionl of Equation (2.35) using model design MII
- 2 of Table 2.6. The top plot is of the empirical coverage probabilities of the intervals, and
the bottom plot is of the average interval lengths divided by the average interval lengths
of FID.
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Figure A.8: Combined simulation results for 95% two-sided confidence intervals on σ2
α, σ2

β , and σ2
αβ for

the two-factor crossed design with interactionl of Equation (2.35) using model design MII
- 3 of Table 2.6. The top plot is of the empirical coverage probabilities of the intervals, and
the bottom plot is of the average interval lengths divided by the average interval lengths
of FID.
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Figure A.9: Combined simulation results for 95% two-sided confidence intervals on σ2
α, σ2

β , and σ2
αβ for

the two-factor crossed design with interactionl of Equation (2.35) using model design MII
- 4 of Table 2.6. The top plot is of the empirical coverage probabilities of the intervals, and
the bottom plot is of the average interval lengths divided by the average interval lengths
of FID.
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Figure A.10: Combined simulation results for 95% two-sided confidence intervals on σ2
α, σ2

β , and σ2
αβ

for the two-factor crossed design with interactionl of Equation (2.35) using model design
MII - 5 of Table 2.6. The top plot is of the empirical coverage probabilities of the
intervals, and the bottom plot is of the average interval lengths divided by the average
interval lengths of FID.
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Figure A.11: Combined simulation results for 95% two-sided confidence intervals on σ2
α, σ2

β , and σ2
αβ

for the two-factor crossed design with interactionl of Equation (2.35) using model design
MII - 6 of Table 2.6. The top plot is the of empirical coverage probabilities of the
intervals, and the bottom plot is of the average interval lengths divided by the average
interval lengths of FID.
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Appendix B

Supplementary material: classification of

suspect powders

This information in this appendix was provided by Emily Snyder and Lukas Oudejans, and

is included for completeness. They explain other procedures that have been developed for

classification of LIBS data, the LIBS system and the materials used in the statistical analysis.

B.1 Background

Differentiation of B. anthracis spore powder LIBS spectra from LIBS spectra of other innocu-

ous powders via classification methods can be difficult due to the inhomogeneity of the spore

powder itself and the variability typically associated with LIBS spectra. This variability is

seen even when employing the same LIBS system and is due to a range of factors including

the following: pulse-to-pulse variations in the laser energy and profile, sample topography

(directly affects the distance of the plasma to the collection lens which subsequently impacts

the distance from the plasma to the collection fiber), creation of sampling craters (can be

avoided by moving to a fresh spot for each laser shot), physical and chemical characteristics

of the sample (surface adsorption, reflection and thermal conductivity which are determined

by the composition, roughness, color and moisture content of the sample) and matrix effects

(Tognoni et al., 2006; Rai and Thakur, 2007; Wisbrun et al., 1994; Tognoni et al., 2007; Led-

nev et al., 2010). Normalization methods, such as use of other emission lines from elements in

the surrounding gas or reference elements in the matrix, and use of excitation temperatures

and/or electron temperatures are often applied to correct for these matrix effects (Tognoni

et al., 2006). However, these corrections frequently are not an option with heterogeneous
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samples and/or when ungated (non-intensified) charge coupled device (CCD) detectors are

used. These ungated CCDs are found on less expensive and portable LIBS systems.

Statistical methods have been implemented to overcome this issue, particularly in the area

of analysis of biological agent powders. Using Partial Least Squares Discriminant Analysis

(PLS-DA), Gottfried and coworkers were able to differentiate stand-off LIBS spectra inten-

sity ratios of pure spore powders and other powders such as talcum powder, sugar, dust

and flour on aluminum and glass substrates (Gottfried et al., 2008). Previously, biological

agent surrogate spectra were classified using linear and rank correlation (Gibb-Snyder et al.,

2006). These statistical techniques had difficulty distinguishing spore spectra, specifically B.

atrophaeus spectra, in mixtures of potentially interfering compounds such as urban particu-

late matter. Munson and coworkers explored the use of soft independent modeling of class

analogies (SIMCA) for classification of three Bacillus species, molds, Arizona road dust, and

pollens as well as a mixture of Arizona road dust and B. globigii. They found that SIMCA

models could be used to distinguish between spores in mixtures of the road dust and the

road dust itself (Munson et al., 2005). PLS-DA was also able to distinguish between spores

in mixtures of the road dust and the road dust itself (Gottfried et al., 2008). Employing

these statistical methods still did not sufficiently resolve the issues of false positives for some

materials (fertilizer and outdoor air particulate matter).

Other statistical methods have also been employed for classification of LIBS spectra of

heterogeneous samples. Rehse et al. (2009) used discriminant function analysis (DFA) to

discriminate LIBS spectra of one genus of bacteria, applied as a thin smear on an agar plate,

from another and obtained greater than 90% accuracy regardless of the nutrient medium in

which the bacteria were cultured (Rehse et al., 2009). Hierarchical cluster analysis, artificial

neural networks (ANN) and PLS-DA were used to classify LIBS spectra of chicken tissue

samples (kidney, lung, liver, brain, muscle and spleen) (Singh et al., 2009). ANNs were also

employed to classify rocks and soils, and average classification accuracy of 78% was observed

when spectra that were not used to train the original model were classified (including some

spectra of unknown rock and soil materials) (Koujelev et al., 2010).
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B.2 LIBS System

Data were collected on a bench-top LIBS system that consisted of a CFR400 Nd-YAG laser

(Big Sky, Bozeman, Montana) operating at the fundamental wavelength of 1064 nm, a pulse

duration of 8 ns, and maximum pulse energy of 400 mJ, a series of focusing and collection

optics, and a LIBS 2000 broadband (200 to 980 nm with 0.1 nm resolution) spectrometer

(Ocean Optics, Dunedin, Florida). During operation, a single laser pulse (≈65 mJ/pulse)

from the laser is triggered by the LIBS software. This beam passes through a pierced parabolic

mirror and is focused onto the sample surface with a 5 cm lens, producing the LIBS plasma.

The resulting plasma emission is reflected by the pierced mirror to a 10 cm focal length lens

that focuses the plasma emission onto a fiber optic bundle consisting of seven fibers. The fiber

bundle delivers light to a broadband spectrometer that contains seven charge coupled devices

(CCDs). Throughout operation of the system, the laser and the spectrometer are controlled

by the Ocean Optics, Incorporated LIBS (OOILIBS) software. All spectra were taken at a

delay time (time after plasma initiation) of 1.5 µs. Collection of plasma emission at this

delay time optimizes the ratio of elemental emission lines to background plasma continuum

emission.

B.3 Materials

Pellets (2.54 cm diameter, 2-4 mm thickness - depending on substance) were made using

a pellet press (XPRESS 3630, SPEX Sample Prep Metuchen, NJ) that applied 20 tons of

pressure for 30 seconds. The non-biological powder pellets analyzed via the bench-top LIBS

system were: Food Lion Brand flour, Arm & Hammer Detergent, Rumford Baking Powder,

Arm & Hammer Baking Soda, BC Powder, Crayola Chalk, DiPel 150 Dust, Equal artificial

sweetener, Gain Laundry Detergent, Advil Ibuprofen tablets, Johnsons Baby Powder, Food

Lion Brand Powdered Sugar, Food Lion Brand Sugar, SweetN Low artificial sweetener, Tide

Laundry Detergent and Tylenol Acetaminophen Capsules. The 5% elemental standard pow-

der pellets were made from the following powders: magnesium sulfate (99%, Sigma Aldrich

yields magnesium spectral lines), sodium chloride (99.999%, Sigma Aldrich yields sodium
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spectral lines), potassium iodide (≥99.0%, Sigma Aldrich yields potassium spectral lines)

ferric sulfate hydrate (97%, Sigma Aldrich yields iron spectral lines), manganese(II) sul-

fate monohydrate (≥98.0%, Sigma Aldrich - yields manganese spectral lines), sand (white

quartz 50 + 70 mesh, Sigma Aldrich - yields silicon spectral lines), graphite ( 99.99% 100

mesh powder, Sigma Aldrich -yields carbon spectral lines), calcium chloride (≥99%, Sigma

Aldrich- yields calcium spectral lines)), and boron oxide (99.999% Alfa Aesar has minimal

spectral features). Boron oxide was used as the diluent for the elemental standards because

of its inertness and low spectral background. Spectral lines from the other component of

the elemental standard (sulfur, iodine, chlorine) were not observed but hydrogen, nitrogen

and oxygen spectral lines (due to the ambient air surrounding the sample) were observed in

all samples except the graphite (which absorbs some emitted light from the plasma due to

its color). The analyzed anthrax spore surrogate powders were B. atrophaeus (U.S. Army

Dugway Proving Ground, Dugway, Utah), B. cereus (ATCC 14603), B. thuringiensis (ATCC

51912), B. stearothermophilus (ATCC 12979). All ATCC spores were used as received from

ATCC. The B. atrophaeus was prepared as an 80:20 mixture of dry spores to fumed silica

particles by mass (Brown et al., 2007). Spectra were also taken of a stainless steel coupon

blank, used as the pellet backing during analysis. Note that DiPel 150 Dust has traces (less

that 0.065%) of B. thuringiensis; however, because the LIBS system would not detect this

low concentration of B. thuringiensis, we include DiPel 150 Dust as a confusant sample rather

than a spore surrogate powder.
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