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ABSTRACT 

 

Sharlene Dong: Epigenetic regulation of murine Stab2 expression in determining atherosclerotic 

susceptibility 

(Under the direction of Nobuyo Maeda) 

 

Atherosclerosis is a progressive disease characterized by the accumulation of lipids and 

fibrous elements in the arteries. In mice, the aortic arch and root show distinct patterns of lesion 

development. A quantitative trait locus (QTL) analysis of an intercross between apoE-null mice 

on 129S6 and DBA/2J backgrounds has revealed a significant locus on chromosome 10, Aath5, 

that affects plaque size in the arch. One candidate gene in the Aath5 locus is the Stab2 gene, 

which encodes a receptor for hyaluronan. The DBA allele of the Stab2 gene includes a unique 

intracisternal A-particle (IAP) retrotransposon inserted in reverse in the promoter region, which 

drives Stab2 expression. Methylation status of this region was analyzed through allele-specific 

bisulfite sequencing and correlated with ectopic Stab2 expression in the heart and kidneys. Thus, 

epigenetic regulation of this IAP element may play a role in regulating Stab2 expression and 

affect atherosclerotic susceptibility in the aortic arch. 
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CHAPTER I: INTRODUCTION 

 

1.1 Overview 

 

 Atherosclerosis is a systemic disease in which plaques, consisting of fat, cholesterol, 

calcium and other blood-soluble factors, build up inside the arteries, hardening and narrowing 

the vessels to reduce blood flow. Limiting the flow of oxygen-rich blood to vital organs can 

often cause heart attacks or strokes and lead to comorbidities such as coronary heart disease, 

peripheral artery disease and chronic kidney disease. Atherosclerosis is a major problem on both 

the national and global scale. In the United States, heart disease and stroke are the first and 

second causes of death respectively [1]. Globally, heart disease, stroke and other cardiovascular 

diseases cause one out of every three deaths [1]. There are many genetic predispositions to 

atherosclerosis as well as many lifestyle risk factors such as hypertension, tobacco smoking, 

diabetes and obesity. However, fully understanding the linkage between atherosclerosis and its 

underlying risk factors requires a clearer view of how atherosclerosis develops in humans. 

Consequently, understanding the molecular and genetic pathogenesis of atherosclerosis is key to 

developing a deeper understanding of the disease. 

 

1.2 Molecular Pathogenesis of Atherosclerosis  

 

 The development of atherosclerosis is a complex process that takes place throughout a 

person’s lifetime, typically from childhood onwards. Atherogenesis encompasses a continuum of 

changes in arterial tissue and arterial wall lesions from accumulation of cholesterol-rich lipids to 
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the accompanying inflammatory responses. Chronic inflammation at weakened or susceptible 

sites may cause fatty streaks to change into fibrous plaques, which could rupture and cause 

thrombosis or stenosis. This process of atherogenesis can typically be categorized into several 

stages defined by their underlying biological mechanisms [2].  

 During early fatty streak development, low density lipoprotein (LDL) levels increase in 

the bloodstream and accumulate in the arterial intima, which is the innermost layer of an artery 

or vein. LDL typically carries phospholipids, cholesterol, and triglycerides and distributes these 

lipids throughout the bloodstream to be taken up by the peripheral tissues and organs. LDL levels 

have been found to correlate positively with progression of atherosclerosis [3]. As LDL 

accumulates in the arterial wall, it can become oxidized into proinflammatory particles such as 

oxidized LDL. Oxidized LDL can react with tissue surroundings and lead to tissue damage. 

Overall, these changes stimulate inflammation pathways within the arterial tissue. Endothelial 

and smooth muscle cells (SMCs) begin to secrete adhesion molecules and chemokines, which 

then attract monocytes, lymphocytes, mast cells and neutrophils into the arterial wall. Monocytes 

can differentiate into macrophages which take up lipids and become foam cells. Some 

pathological standards define the start of atherosclerosis as when “lipid accumulation appears as 

confluent extracellular lipid pools and extracellular lipid cores with decreased cellularity” [2].  

 Following the development of a fatty streak, a fibroatheroma typically develops, which is 

an atheroma with a fibrous cap. The atheroma is caused by the accumulation of fatty deposits 

and scar tissue in the inner layer of the artery wall. Naturally, between the time when the first 

fatty streak develops and the time when the fibroatheroma develops, there is considerable cell 

necrosis caused by excessive lipid accumulation and the prolific death of macrophages and 

SMCs. This accumulation of necrotic debris eventually forms the atheroma. Meanwhile, 
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extracellular lipid continues to accumulate to form a lipid-rich core. When fibrous tissue forms to 

cover up this core, this complex will form the fibrous plaque lesion that will become the 

dominant lesion. As a person ages, this early stage fibroatheroma becomes a thin-cap 

fibroatheroma (TCFA). However, this fibrous cap is subject to many proteolytic enzymes and 

continuous degradation may cause it to rupture, leading to thrombus. As the plaque grows, the 

local arterial wall continuously undergoes remodeling to attempt to enlarge the arterial diameter 

to compensate for the compromised blood flow. However, this remodeling will typically stop 

when the plaque has grown to occupy approximately 40% of the area of the artery [4]. 

Throughout the entire process of atherogenesis, calcium deposits also form on the vessel walls, 

further hardening arteries. In complex lesions, the cycle of rupture, thrombosis and healing can 

occur multiple times, leading to many layers of tissue that obstruct blood flow 

 

1.3 Genetic Basis of Atherosclerosis  

 

 In the past few decades, much research has been directed towards studying the genetic 

basis of atherosclerosis. Atherosclerosis is common disease, meaning that the incidence and 

prevalence is very high in the general population and it is responsible for a significant portion of 

the morbidity, mortality and health care costs of the developing world. By understanding the 

genetic basis of such common disorders, the hope is that research will lead to better therapies and 

more accurate identification of at-risk populations [5].  

 Atherosclerosis is a heterogenous disease with many potential underlying causes. In some 

cases, single gene or Mendelian disorders can lead to many genetic contributions to the disease. 

Understanding these rare Mendelian disorders can give insight into mechanisms and pathways of 

atherogenesis. Typically, genetic diseases with a single mechanism tend to be due to 
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chromosomal disorders, such as abnormalities in chromosome number or structure, Mendelian 

disorders due to abnormalities in a single gene, or non-Mendelian disorders caused by other 

factors such as mitochondrial mutations [5]. Take for example, familial hypercholesterolemia 

(FH) and familial defective apolipoprotein B, which was later found to be due to mutations in the 

LDL receptor and apoB respectively [6-8]. 

 Although there has been significant success in understanding the genetic basis of rare, 

single gene disorders for atherosclerosis, little is known about the common, complex forms. In 

complex diseases, there may be a single gene involved, more than one major gene or a group of 

major genes and polygenes [5]. Polygenes are genes that have small effects on development of 

disease and are usually additive. In addition, complex diseases often also implicate gene-gene 

interactions and gene-environment interactions. Most all cases of atherosclerosis are due to 

“many genes with small effects that are modified by the environment and the effects of other 

genes, rather than of the single, highly penetrant gene” [9]. In other words, complex forms of 

atherosclerosis are due to “many little things” [10]. Studying the genetic etiology of complex 

diseases are difficult but can be aided by techniques such as candidate gene studies, linkage 

analysis, association studies and other methodologies using both forward and reverse genetics. 

Overall, the goal remains to identify the specific gene or genes involved in a disease and to 

identify the different variants of these genes that lead to the predisposition [5]. In this project, our 

lab focuses on quantitative trait locus (QTL) analysis. 
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1.4 Quantitative Trait Locus (QTL) Analysis  

 

 Quantitative Trait Locus (QTL) Analysis is a statistical method used to explain the 

genetic basis of variation in complex traits by linking phenotypic data, such as trait 

measurements, to genotypic data, such as molecular markers [11-13]. To do a QTL analysis, 

researchers first begin with two strains of organisms, such as mice, that differ genetically in the 

desired trait or at least contain two different alleles. For example, researchers could begin with 

two strains of mice with differing susceptibility to atherosclerosis. The trait of interest should be 

able to be characterized and measured, thus generating the phenotypic data to be linked. 

Genotypic data can be generated by molecular markers such as single nucleotide polymorphisms 

(SNPs), simple sequence repeats (SSRs), restriction fragment length polymorphisms (RFLPs) 

and transposable element positions [14-17]. The two different parental strains are crossed to 

generate a heterozygous F1 generation. The F1 generation can then be either crossed back to one 

of the parental strain (backcross) or crossed with each other (intercross). This unique mating 

scheme will generate genetically unique F2 animals due to the independent segregation of 

chromosomes and crossovers [18]. Finally, the phenotypes and genotypes of the F2 animals will 

be evaluated and scored. The molecular markers that are genetically linked to a locus that 

influences the trait of interest will segregate more frequently with the phenotypic trait while 

unlinked markers will not show any association [19]. A specific metric called the logarithm of 

odds (LOD) score is used to evaluate genetic linkage. Typically, a peak LOD score greater than 

2.8 is deemed to be suggestive evidence for linkage while a score greater than 4.3 is deemed to 

be significant evidence [20].  

 There are many advantages and limitations of using QTL analysis to discover genetic 

linkages. For example, QTL mapping in mice can be a very powerful method to map genes for 
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multigenic and complex traits and can be done by at least an order of magnitude greater than in 

human studies. QTL analysis is one of the most powerful methods to use in a mouse model [21]. 

Another advantage is that QTL mapping can provide a new way to identify novel genes that 

otherwise would not have been considered [21]. Thus, QTL mapping can also be used for 

hypothesis generation. This method has proven to be very useful for discovering genes possibly 

involved in atherosclerosis susceptibility. Many QTL studies have been conducted on many 

inbred strains of mice that have maintained on an atherogenic diet or bred onto a sensitized 

genetic background such as apoE-null or LDLR-null. The results, which are adapted from a 2003 

publication from Allayee et al, are shown in Table 1. Nevertheless, the QTL method is not 

without caveats. One limitation of QTL analyses is that they require extremely large sample 

sizes. For mice, this requires significant time and resources to uphold the mouse population. This 

method can only map differences captured between the initial parental strains and the overall 

goal is to identify loci rather than alleles. Because the loci captured by QTL often encompass 

several genes, it can be difficult to determine which genes are truly responsible for causing a 

certain phenotype. Others have criticized that the loci for atherosclerosis identified in mice do 

not alter clinical endpoints such as plasma lipid levels and blood pressure but instead only act at 

the cellular level [21]. To definitively prove causality, researchers must resort to methods such as 

positional cloning [22], targeted gene replacement [23], functional complementation [24] or 

deletion mapping [25]. Despite the limitations, QTL mapping has proved to be a useful and 

efficient ways for our approach to identify loci for atherosclerotic susceptibility in mice. 
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1.5 Identifying Aortic-Arch Specific QTL for Atherosclerosis  

 

 Previous work in the Maeda lab group has focused on the differences in genetic 

susceptibility for atherosclerosis at the aortic arch and at the aortic root. Location of lesion 

development is relevant because different risk profiles can correlate to specific patterns of 

atherogenesis which later impacts cardiovascular health. For example, smoking increases the risk 

of plaques only in the abdominal aorta without influencing right coronary artery lesions in people 

ages 25-34 [26]. Similarly, diabetes disproportionately increases risk of plaques in the lower 

limbs and hypertension impacts risk in the carotid artery [27]. Such distinct patterns suggest that 

the pathology of atherosclerosis can occur as distinct processes depending on the region.  

 Experiments have shown that patterns of lesion development differ between 

apolipoprotein E-knockout (Apoe-/-) on a C57BL6/J genetic background or a 129S6 background 

[28]. At the aortic root, plaque development is slower in the 129-apoE mice than in the B6-apoE 

mice. However, the opposite is true in the arch, where plaque development is much faster in the 

129-apoE mice compared to the B6-apoE mice. QTL mapping was used to determine the genetic 

loci that may be responsible for these variations. Using a cross between these 129-apoE and B6-

apoE mice, Kayashima et al revealed three loci (Aath1 and Aath2 on Chromosome 1 and Aath3 

on Chromosome 15) that may be responsible for determining susceptibility of the aortic arch to 

developing lesions [29]. Afterwards, a different cross, this time between DBA-apoE and 129-

apoE mice, was used and the genome wide scan showed two more significant loci that may 

affect plaque size in the arch (Aath4 on Chromosome 2 and Aath5 on Chromosome 10) [30]. The 

respective LOD score for the two loci are LOD = 7.0 and LOD = 5.1, which are shown in Figure 

1. Both scores were deemed to be above the threshold for significance. The DBA allele of Aath4 

is associated with increased plaque size on the aortic arch compared to the 129 allele while the 
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129 allele of Aath5 is associated with increased plaque size in the arch compared to the DBA 

allele [30]. In other words, the DBA allele of Aath5 is considered protective. In humans, the 

chromosomal regions that correlate to Aath4 and Aath5 include regions containing SNPS 

associated with stroke, plasma VLDL concentrations, heart rate, platelet count, blood pressure 

and stroke. To further investigate these loci, functional SNPs were analyzed using SHIFT [31] 

and Polyphen-2 [32] prediction programs. The major candidate gene for Aath5 was determined 

to be the Stab2 gene, which is the subject of extensive further investigation. Overall, better 

understanding of these loci in the mouse model could lead to improved therapies and diagnostics 

for humans. 

 

1.6 Significance of Stab2  

 

         The Stabilin-2 (Stab2) gene is a 166,827 bp protein coding gene found on Chromosome 10 

at position 43.14 cM [33]. The gene is sometimes also called FEEL-2 (Fasciclin, EGF-like, 

laminin-type, EGF-like and link domain-containing scavenger receptor 2) or HARE (Hyaluronic 

acid receptor for endocytosis). The Stab2 gene codes for the STAB2 protein, which is a 

transmembrane receptor protein that is expressed by sinusoidal endothelial cells in the human 

liver, spleen, lymph nodes and resident tissue macrophages. It acts as a receptor for clathrin-

mediated endocytosis for ligands such as hyaluronic acid (HA), acetylated LDL, apoptotic cells, 

heparin, bacteria and advanced glycation end products [34-37].  

 Hyaluronan has been implicated in atherogenesis but its definitive function has still not 

been clearly defined. Interestingly, research findings have supported both pro and anti-

atherogenic roles. On the one hand, hyaluronic acid may promote atherosclerosis because 

hyaluronan is a primary component of the extracellular matrix and of atherosclerotic plaques. 
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Hyaluronic acid also mediates leukocyte extravasation, smooth muscle cell migration and 

neointimal proliferation after vascular injury by binding to the hyaluronan mediated motility 

receptor (HMMR). Further supporting this hypothesis is a 2005 study by Chai et al that showed 

that smooth muscle-specific overexpression of hyaluronan promoted the development of aortic 

atherosclerosis in apoE-knockout mice [38]. On the other hand, the role of hyaluronan in 

atherogenesis may be context-dependent because hyaluronan also imparts certain viscoelastic 

properties to the vasculature that prevents leukocyte adhesion and can inhibit vascular smooth 

muscle cell (VSMC) growth [39]. If hyaluronan synthesis is blocked by a pharmaceutical agent 

in apoE-null mice, then atherosclerotic plaque development rapidly increases and leads to pro-

thrombotic states [40]. However, the model of a Stab2-null mouse does not show any specific 

phenotype except for higher than normal levels of circulating hyaluronan [41, 42].  

 Plasma hyaluronan was measured first in the inbred 129S6, DBA/2J and C57BL/6J 

inbred mice. The DBA mice were found to have ten times higher levels of plasma hyaluronan 

than the other strains and this difference was attributed to SNP genotypes near the Stab2 gene on 

Chromosome 10. Nevertheless, these differences in plasma hyaluronan could be due to many 

other differences besides differences in scavenger receptor uptake, such as variation in synthesis, 

degradation or interaction with other receptors [30]. The association between plasma hyaluronan 

level and various hyaluronan synthases, hyaluronidases, hyaluronan-related receptors were tested 

but none were found to be significant [30]. Expression level of Stab2 was also tested in various 

tissues and strains through real-time PCR, as shown in Figure 2. Understandably, Stab2 levels in 

the liver are high in all strains (129S6, DBA/2J and C57BL/6J) but are the highest in the DBA 

mouse, although the differences between the strains are not significant. Also, surprisingly, Stab2 

levels in the aorta, heart and kidneys were significantly greater in DBA mice compared to 129S6 
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and C57BL/6J strains, suggesting significantly greater ectopic Stab2 expression [30]. Thus, the 

significantly higher levels of plasma hyaluronan found in the DBA mice could be due to 

decreased hyaluronan clearance (ie. nonfunctional STAB2 protein), which could explain the 

DBA allele’s protective effects against atherosclerosis. However, this is only one possible theory 

since STAB2 binds many ligands and there are potentially many more complicating interactions 

at play. Nevertheless, experimental evidence suggests that Stab2 is a strong candidate gene for 

the Aath5 locus and should be further investigated thoroughly. 

 

1.7 Retrotransposon Activity and Impact  

 This ectopic expression of Stab2 in the heart, aorta and kidneys is attributed to a DBA-

specific insertion of a transposable element upstream of the Stab2 allele. Transposable elements 

(TEs), also known as “jumping genes” or “transposons”, are sequences of DNA that can “jump” 

from one area of the genome to another. TEs play an essential role in epigenetics because they 

are involved in silencing of gene expression, both at the level of a single gene and across wider 

chromosomal regions. In fact, TEs make up close to 50% of the entire human genome [43]. 

When active, TEs can become highly mutagenic, inserting into protein coding regions and 

disrupting normal protein translation and causing chromosomal breakage and genomic 

rearrangements. They can also impact the expression of neighboring genes by leading to 

alternative splicing, polyadenylation and enhancement of expression. Because of these myriad 

negative impacts, TEs are often called “selfish” or “parasitic elements” and their activity is 

typically negatively correlated with genomic stability or fitness of the organism. However, most 

TEs are not active and remain silent as cryptic elements. The genome has evolved many 

epigenetic silencing mechanisms to keep TEs in check, including but not limited to 
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heterochromatinization, post-transcriptional silencing by RNA interference, DNA methylation, 

and germline silencing [44]. Nevertheless, TEs are an important part of the “regulatory toolkit of 

the genome” [44].  

 There are two main categories of transposons, type I elements and type II elements. Type 

I elements, or retrotransposons, replicate through a reverse transcription step. Thus, their mode 

of propagation is called duplicative, or “copy and paste” transposition. Type I retrotransposons 

can be categorized into two groups, long terminal repeat (LTR) retrotransposons and non-LTR 

retrotransposons, based on whether the element contains direct repeats at the ends of the 

elements. Type II elements, or transposons, on the other hand, integrate directly into the genome 

without an additional reverse transcription step. Thus, the mode of propagation used by Type II 

transposons is called “cut and paste” transposition. Rather than reverse transcription, a 

transposase enzyme will recognize certain sequences that flank the element of interest, cut out 

the element and integrate it into the new position [44]. The transposon of interest in this project 

is a Type I retrotransposon, specifically an intracisternal A-particle (IAP) element. IAP elements 

are endogenous retrovirus-like mobile sequences and there are approximately 1000 copies in the 

mouse genome [45]. In IAP elements, the promoter regions of the LTRs can be especially 

influenced by other genetic or environmental factors [46]. Epigenetic modes of regulation such 

as methylation are only one such example. 

 

 

 

  

 



12 

 

 

 

   

CHAPTER II: EPIGENETIC REGULATION OF STAB2D GENE 

 

 The Stab2 gene is a protein-coding gene that is located on Chromosome 10. It is the 

major candidate gene of the Aath5 quantitative trait locus for atherosclerotic susceptibility at the 

aortic arch, which was determined from the F2 population of an intercross between DBA-apoE 

mice and 129-apoE mice [30]. The DBA allele for Stab2, hereby labeled as Stab2D, appears to 

confer resistance towards atherosclerotic lesions. Thus, the Stab2D is being explored as a possible 

causative gene for atheroprotective effects. 

 

2.1 Insertion of Intracisternal A-Particle (IAP) Within Promoter Region of Stab2D 

 

 Initial investigation, spearheaded by Prof. Nobuyo Maeda, sought to explore the 

structure-function relationship of the Stab2D gene. The inserted transposon sequence was first 

identified by comparing the promoter regions of the DBA/2J and C56BL/6J alleles of the Stab2 

gene using Sanger sequencing. A Southern blot analysis of the genomic DNA using probes 

flanking the insertion sites was used to deduce that the insert is about 5.6 kb in length. The 3’ 

stend of the insertion element was cloned and sequenced and found to be highly homologous to 

the 5’ LTR of an intracisternal A-particle. Therefore, the inserted element must have been 

inserted in a reverse orientation relative to the direction of transcription of the Stab2 gene. In 

addition to that, the sequence was further supported to be a 5’ LTR because it also contained 

characteristic sequences such as a CAT-box and TATA-box in the U3 domain to initiate 

transcription. The LTR sequences at either end of the insert are identical except for two 
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nucleotide differences at the 5’ LTR at the end of the U5 region. Because the Stab2 IAP element 

is flanked by two 6 bp direct repeats, AGATCT, at the insertion point, it is reasonable to 

conclude that the insertion was only a single event. The proposed model of the Stab2D gene is 

shown in Figure 3. 

 

2.2 CpG Methylation in 5’ LTR of Stab2D 

 Previous literature has shown that the 5’ LTR regions in retrotransposons may be subject 

to CpG dinucleotide methylation, which may induce transcriptional repression of nearby genes 

[citation]. A CpG dinucleotide is a cytosine separated by a guanosine by a phosphate bridge in a 

linear sequence of nucleotide bases. Cytosine can become methylated to form 5-methylcytosine 

and this consistent alteration will change gene expression. CpG islands, or regions with high 

prevalence of CpG dinucleotides, are often found in promoter regions, near the transcription start 

site of genes, such as in the case of Stab2. The 5’ LTR sequence of Stab2D contains 25 CpG 

dinucleotides. Bisulfite sequencing of genomic DNA was then used to assess the methylation 

status of this dinucleotide region.  

 Genomic DNA was extracted from various organs of male and female mice of many 

different strains to give a holistic view of methylation patterns. The current analysis focuses on 

genomic DNA from the liver of a DBA male, the liver of a F1 male from a DBA X B6 cross, the 

liver of a D9I male, the liver of a D9I female, the liver of a F1 male from a DBA X 129 cross, 

the liver of a F1 female from a DBA X 129 cross and the liver of a F1 female from a DBA X B6 

cross. The D9I mouse is a congenic strain that is homozygous for the Stab2D allele placed on a 

129S6 background. A shorthand guide for referencing the animals is included in Table 2. Stab2 

expression is the highest in liver for all strains of mice, which is why the liver is being assessed. 
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Although genomic DNA from the heart was also collected, the results will not be discussed in 

this project.  

 After isolating, purifying and suspending the genomic DNA, the DNA underwent 

bisulfite treatment, which converted cytosine residues into uracil but left 5-methylcytosines 

untouched. Bisulfite treatment essentially helps to distinguish between methylated and 

unmethylated CpG dinucleotides. The genomic DNA was PCR-amplified to amplify two 

different segments, a 300 bp and a 600 bp segment, in the 5’ LTR region of the IAP insert. The 

two segments were amplified using two different sets of primers, shown in Table 5, and 

temperature cycle conditions were optimized for maximum yield. The segments were cloned and 

grown up in culture. Once the DNA was isolated, a diagnostic cut using the AseI enzyme 

followed by gel visualization was used to confirm that the correct regions were amplified. The 

DNA was then sequenced using Sanger sequencing and the methylation status of the CpG 

dinucleotides was compared to the original sequence. This procedure was repeated numerous 

times to gather enough data to form conclusions.  

 The methylation status of the 5’ LTR of the inserted IAP of the various strains is shown 

in Figure 4. Several trends emerge. The methylation pattern of the DBA female liver is distinct 

from that of the DBA male liver. The U3 region of the 5’ LTR of the Stab2D gene in the female 

liver contains far fewer methylated CpG dinucleotides compared to the male liver. However, 

interestingly, there was no difference in Stab2 expression in the liver between male and female 

DBA mice. The methylation patterns between D9I male and female livers do not show any 

drastic differences. A majority of CpG dinucleotides are methylated in both sexes. This same 

trend holds true between the F1 male and female DBA X B6 livers. 
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CHAPTER III: TRANSIENT CHANGES IN GENE EXPRESSION INDUCED BY 

BACTERIAL ARTIFICIAL CHROMOSOME (BAC) 

 

3.1 Determining Gene Expression Driven by IAP Insert  

 

 The previous section discussed the presence of an IAP element inserted in the reverse 

orientation relative to the direction of transcription of the Stab2 gene. However, it was unclear 

whether the insert drove expression of Stab2. Several different configurations were tested using a 

luciferase reporter assay in human embryonic kidney (HEK293) cells with several different 

reporter plasmids, as shown in Figure 5. In this figure the top configuration shows luciferase 

gene expression being driven by a thymidine kinase (TK) promoter, to show the basal level of 

luciferase expression. Configurations 1 and 3 show a difference between presence and absence of 

a 500 bp fragment upstream of the luciferase gene. Upon removing this 500 bp segment, 

luciferase expression drops drastically, suggesting that perhaps there is a repressive gene element 

located within. Separation of the basal promoter from this repression due to the insertion of the 

IAP element may explain the extremely high levels of Stab2 expression in the liver as well as the 

ectopic expression in the heart, aorta and kidneys in DBA/2J animals. Previous reports indicate 

that the 5’ LTR is inserted in reverse orientation, thus validating the low expression found in 

configuration 12. As seen in the differences in configurations 6 and 13, the addition of a 500 bp 

Eco RI/Bgl II containing the 5’ LTR led to a 5-fold increase in expression over the 220 bp 

minimum Stab2 promoter. Although the IAP element is oriented in the reverse direction relative 

to transcription, previous reports have shown that a 5’ LTR can initiate reverse orientation 
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transcription and alter normal expression patterns of nearby genes. These experiments, 

spearheaded by technician and lab manager Sylvia Hiller, lead to strong conclusions that 

configuration 6 is the correct orientation. All subsequent experiments testing for epigenetic 

effects on the IAP element and Stab2 were carried out using plasmid 6.  

 The plasmid with configuration 6 was introduced into HEK293 cells with stable 

transfection. Several cell lines with this plasmid were expanded and qPCR was used to select for 

the lines with the lowest copy number based on puromycin copy number and genotype. For 

stable cell transfection, transfected cells were grown and expanded in the presence of puromycin. 

Data from qPCR is shown in Table 3. The final cell lines chosen for further experimentation 

included HEK 6-1, 6-3, 6-6, 13-6, TK-2 and TK-6. 

 

3.2 Selection of Appropriate BAC  

 

 The previous section discussed the possibility that transcription of the Stab2D allele was 

subject to epigenetic repression, notably methylation in the 5’ LTR sequence. In addition to 

methylation, there also may be significant gene-gene effects due to putative modifier genes in the 

129S6 and C57BL/6J mouse genomes. As shown in Figure 6, the F1 offspring from a DBA X 

129 cross experience nearly a 4-fold decrease in Stab2 expression compared to a wildtype DBA 

parent. There also may be significant parental effects in play because the F1 offspring from a 129 

X DBA cross experience an even more drastic decrease, a nearly 16-fold decrease, in Stab2 

expression. This data suggests that certain elements in the 129 genome may be repressing Stab2 

expression in the DBA mouse.  
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 Next, the 129 X DBA - F1 females were crossed with 129 males and B6 X DBA - F1 

females were crossed with B6 males. Stab2 expression from the heart was compared between the 

two groups. None of the B6-backcrossed mice showed any expression, suggesting that factors 

from the B6 genome may also dominantly repress expression. In the 129-backcrossed mice, 

expression was only detected in 5 out of 29 tested mice. This suggests that one modifier on the 

129 genome is necessary but not sufficient to completely repress Stab2 expression. In the 

literature, there are several reports of genetic modifiers located on chromosome 13 that regulate 

ectopic expression of retrovirus-like sequences. These two modifiers are the modifier of 

dactylaplasia, Mdac, which is mapped between 56 to 65 Mb on chromosome 13, [47] and the 

modifier of cleft-palate, Clef2, which is mapped between 64.95 and 67.9 Mb [48]. Thus, regions 

of chromosome 13 were also investigated for B6-derived genetic modifiers of Stab2 expression. 

Data on recombinant inbred strains between DBA and B6 were compared to heat maps of Stab2 

in adipose, aorta, heart, liver and macrophages, which were obtained from the Systems Genetics 

Resource database. Chromosomes of the individual lines were then compared based on the 

patterns of expression. Among the low Stab2-expressing lines, many of these lines carried the 

regions of chr13:50-80 Mb from the B6 genome while simultaneously carrying the Stab2D gene. 

After a more fine-grained analysis, this region was further clarified. Comparison of the 

recombinants showed that the modifier of the Stab2D gene was most likely to be found between 

59.7 and 73.0 Mb of chromosome 13 in the mouse genome.  

 To test the hypothesis of modifier genes in this range affecting Stab2 expression, a 

standard transfection experiment coupled with a luciferase reporter gene is suitable. However, 

because this range of 59.7 to 73.0 Mb is large, normal plasmids cannot accommodate these 

sequences. Bacterial artificial chromosomes (BACs) are far more suitable because the typical 
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insert size is far larger, ranging from 150 to 350 kbp [49]. The BAC is essentially a piece of 

bacterial DNA that can act as a vector to carry other DNA segments into the cell, where it can 

then be identified and copied. Many BAC libraries have been formed to sequence the genome of 

model organisms and can easily be accessed. Luckily, there were several BACs available that 

contained inserts within the range of interest on chromosome 13. These BACs are RP23-161C4, 

RP23-349F18, and RP23-30O22. Together, these 3 clones span the regions from 67 to 67.5 Mb. 

Characteristics of these BACs are listed in Table 4. The BACs were obtained from the Roswell 

Park Cancer Institute and after delivery, were subsequently confirmed and characterized. 

 

3.3 Characterization of BAC 

 

 The BAC clones were grown on LB agar plates with chloramphenicol antibiotic. After 

confirming growth, several colonies were sub-cultured and then subsequently grown up in liquid 

culture. DNA was isolated from these cultures and digested with EcoRI enzyme. Gel 

visualization showed distinct patterns between the 3 BAC clones that matched with a computer-

simulated restriction digest, as shown in Figure 7. A Southern transfer was done to preserve the 

DNA bands. 

  

3.4 Assessing Changes in Expression Patterns with Transfection of BAC  

 Initial experiments sought to determine which HEK293 cell line out of the 6 (6-1, 6-3, 6-

6, 13-6, TK-2 and TK-6) produced the highest expression. Because these cell lines already 

contained the plasmid carrying promoter elements and the luciferase gene, the cells could be 

plated into a standard 96 well plate and grown for up to 48 hours. Media was collected at 24 and 
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48 hours and the Cypridina luciferase assay was used to assess luciferase expression at these 

time points. The results are shown in Figure 8. From this figure, it is evident that the 6-6 cell line 

produces the highest expression, nearly twice the levels of even the second-highest expressing 

cell line (6-3). The HEK293 6-6 cell line is used in all subsequent experiments.  

 The next step was to determine what dosage of BAC DNA to transfect into the HEK293 

cells. Based on the literature, a range of dosages from 0 to 10.2 ug of DNA was used (0 ug, 0.4 

ug, 3.4 ug, 6.8 ug and 10.2 ug) [50]. The Gli2 BAC is used in this experiment because although 

it does not contain any sequences that may impact the luciferase gene or the upstream promoter 

elements, the size (approximately 200 kb) is comparable to that of the RP23-161C4, 30O22 and 

349F18 BAC clones. Adding varying amounts of Gli2 DNA and assessing its impact on gene 

expression will help to construct a dosage curve and help to determine at which levels toxicity 

occurs. A vehicle control consisting solely of transfection reagent is also used for comparison.  

 Approximately 10,000 cells from the HEK293 6-6 cell line were plated in a 96-well plate 

and the transfection mix was added to the wells. After incubation for 48 hours, luciferase levels 

were assessed with the Cypridina luciferase assay. The results are shown in Figure 9. At low and 

high concentrations of DNA (0, 0.4 and 10.2 ug of DNA), expression levels plateau at around 

75,000 relative light units (RLU). However, expression doubles to close to 200,000 RLU when 

increasing the DNA amount over 8-fold (from 0.4 ug to 3.4 ug). Expression then increases by 

about a third when doubling the DNA amount from 3.4 to 6.8 ug. The peak luciferase expression 

is achieved when transfecting with 6.8 ug of BAC DNA. At 10.2 ug, the luciferase expression 

falls drastically to nearly a sixth of its previous expression level at 6.8 ug. This finding 

determines that the upper limit of DNA to transfect is between 6.8 and 10.2 ug. The luciferase 
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expression level at 10.2 ug is comparable to that established by transfection of the vehicle 

control.  

 Next, the RP23 BAC clones (161C4, 30O22 and 349F18) were transfected into the 

HEK293 6-6 cells at the same dosage of 6.8 ug per well. The media was assayed for luciferase 

expression at 48 hours. The cells were washed afterward to eliminate excessive accumulation 

and then measured again 20 hours later. The results are shown in Figure 10. In the vehicle 

control, expression remained constant between 48 hours and the subsequent 20 hours. This is 

consistent with previous assumptions because the vehicle control should not interact at all with 

upstream promoter elements and therefore should not have any impact on luciferase gene 

expression. The same consistency between time points is also observed in the experimental 

groups transfected with 161C4 and 30O22 BAC clones. Curiously, transfection with the Gli2 

BAC clone led to extremely high levels of luciferase expression in the first 48 hours, nearly 

double that of the other groups. Although this expression decreased after washing, it remained 

higher than the other groups. Because expression levels by Gli2 differed so much from that 

induced by the BAC clones of interest, Gli2 may not be the appropriate negative control to be 

used for comparison. However, this experiment also yielded interesting results concerning the 

349F18 BAC clone. Although luciferase expression at 48 hours was comparable to the other 

BAC groups, expression significantly decreased by about a third of the initial luminescence at 20 

hours after washing. This is the only BAC experimental group that experienced decreased 

expression and could be indicative of late repressive effects on the upstream promoter elements 

of the Stab2D gene. 
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CHAPTER IV: TRANSIENT CHANGES IN GENE EXPRESSION INDUCED BY 

GENES RSL1 AND RSL2 
 

 The overall goal of these experiments is to determine whether certain elements of the B6 

genome can impact Stab2D expression. To this extent, a luciferase reporter construct containing 

the luciferase gene driven by a DBA-specific promoter sequence containing the IAP 

retrotransposon has been made. An established cell line (HEK293 6-6) has been made containing 

low copies of the construct and expressing luciferase. The best candidate locus on chromosome 

13 is a Kruppel-associated box domain-zinc finger protein (KRAB-ZFP) gene cluster. Since 

most of this region is covered by three BAC plasmids, transfection experiments have been 

carried out to introduce these plasmids into the HEK293 6-6 cell model. So far these tests have 

shown that transient transfection of one of these BAC plasmids, RP23-349F18, has led to 

decreased luciferase expression. This supports the hypothesis that elements in the B6 genome 

contained in this BAC plasmid can repress gene expression in DBA mice by affecting upstream 

promoter elements containing the IAP insert. 

 

4.1 Selection of Rsl1 and Rsl2 Genes  

 Although the data appear to suggest that regions of RP23-349F18 may be responsible for 

repressing Stab2D, this specific BAC clone contains a 200 kb insert which may contain dozens of 

potential genes of interest. To further investigate this problem, the genetic region of interest must 

first be further narrowed down. Within this 200 kb sequence, there are multiple zinc finger 

protein genes such as Rsl1 and Rsl2 (or Zfp429). Rsl1 is especially promising because 
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comparison of the coding sequences indicates that Rsl1 of 129 and DBA animals share the same 

amino acid sequence. Rsl2 (Zfp429) is also promising because the DBA sequence is different 

from 129 and B6.  

 Rsl1 and Rsl2 stand for regulator of sex-limitation and these two genes have been 

implicated in sexually dimorphic liver gene expression in mice [51]. This is significant because 

Stab2 expression is prominent in the liver and transcription of Stab2D is subject to epigenetic 

repression and the parental effect. Stab2 expression levels will depend on whether the DBA 

allele is inherited from the mother or father. Previous results have shown that if the DBA allele is 

inherited from the mother, Stab2 levels are four-fold greater than if the DBA allele were 

inherited from the father. It is possible that sexual dimorphism of gene expression could account 

for these changes.  

 Also, KRAB-ZFPs constitute the largest family of transcriptional repressors and their 

induced repression affects all cellular processes from apoptosis to proliferation to differentiation 

[52]. The regulatory functions of KRAB-ZFPs could also extend to affect Stab2 gene expression 

as well. Rsl1 and Rsl2 have been extensively studied by the Robins lab at the University of 

Michigan and their reports have also utilized BAC transgenic rescue to test functionality of the 

Rsl1 and Rsl2 genes. Thus, the previous use of BACS described in the previous section was 

justified. However, to assess which gene of interest may be responsible for the observed 

repressive effects, it is useful to move to transfection experiments using a smaller and more well 

defined plasmid for a more fine-grained analysis. 
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4.2 Assessing Changes in Expression with Transfection of Rsl1 and Rsl2  

 A similar protocol as the one used for BAC transfection was carried out to test changes in 

gene expression patterns due to the Rsl1 and Rsl2 genes. In the initial experiments, the total time 

frame for sampling extended to 72 hours. The experiment workflow is illustrated in Figure 11. 

Essentially, HEK293 6-6 cells were plated at 10,000 cells per well in a 96-well plate and grown 

for 24 hours. After the 24 hours, the wells were transfected with 0.50 ug of DNA per well. After 

48 hours, media was collected and assayed with the Cypridina luciferase assay. Then the cells 

were washed and the media was replaced. After another 24 hours, more media was collected and 

assayed again. The wash step was incorporated because it was suspected that after a total of 72 

hours, the accumulated levels of luciferase would mask slight changes in expression patterns. 

The results from this initial experiment are shown in Figure 12. In Figure 12, the control group 

is a vehicle control containing all the components of the transfection mix except for the DNA. 

The “Rsl1 Transfected” experimental group is the group transfected with 0.50 ug of Rsl1 

plasmid. Similarly, the “Rsl2 Transfected” group is transfected with 0.50 ug of Rsl2 plasmid. As 

seen in the figure, all experimental groups show similar levels of luciferase expression at 72 

hours. However, there is wide variation in expression within the first 48 hours. The expression 

level at 48 hours in the Control group is nearly five-fold compared to that of the Rsl1 and Rsl2 

groups. These results suggest that Rsl1 and Rsl2 may contribute to repressive effects on Stab2D. 

This data also shows that if there are any changes in expression, it would manifest within the first 

48 hours. Consequently, the protocol was altered slightly to decrease the total time and optimize 

procedures.  

 The adjusted protocol is shown in Figure 13. In this new procedure, cells were plated at 

80,000 cells/well in a 24 well plate instead of at 10,000 cells/well in a 96-well plate. The plate 
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configuration was altered to allow greater uptake of plasmid into the cells and to allow for more 

frequent sampling. If higher volumes of media were to be taken at more frequent intervals, the 

original well must contain more cells and media to begin with. In addition to these changes, a 

Gaussia plasmid control was also incorporated. The 80,000 cells/well were grown for 24 hours 

before being transfected with 0.50 ug of DNA. Afterwards, media was sampled and assayed 

every 8 hours for 48 hours. A cell proliferation assay was performed at the end of the experiment 

using the cell lysate to evaluate how many cells were present. Four experimental groups were 

used in this second experiment. The Control group contained only Gaussia plasmid. The Control 

and Empty Vector group contained Gaussia plasmid and an empty vector pCMV6. The Rsl1 and 

Rsl2 Transfected groups contain Gaussia plasmid and respectively Rsl1 and Rsl2 plasmids.  

 The trends in the Cypridina luciferase expression is shown in Figure 14A. The 

expression of all four groups begin at roughly 0 RLU. As time progresses, the expression of the 

Control and Control and EV groups rises at a more rapid rate compared to the Rsl1 and Rsl2 

groups. At 16 hours, the expression of Control and Control and EV groups reach approximately 

55,000 RLU while expression of Rsl1 and Rsl2 groups is slightly above 40,000 RLU. The 

difference is most accentuated at 16 hours. At 28 hours, the differences begin to decrease and all 

four groups begin to equilibrate at approximately 55,000 RLU. These results suggest that Rsl1 

and Rsl2 do, in fact, have repressive effects. Although these studies do not directly prove that the 

repressive effects are due to interaction with the upstream promoter elements of the Stab2D gene, 

this is the implied mechanism and further experiments must be carried out to confirm this.  

 In addition to the Cypridina assay, a Gaussia luciferase assay was also carried out. 

Gaussia expression patterns would indicate how much of the Gaussia plasmid was incorporated 

into the cell and could be used to normalize Cypridina luciferase expression levels. The trends in 
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Gaussia expression are shown in Figure 14B. From 0 to 8 hours, expression of all four 

experimental groups increased linearly and were consistent with each other. However, after 8 

hours, the Gaussia expression of the Control and Rsl2 groups increased at a faster rate than the 

Rsl1 group. Curiously, the expression level of the Control and EV group increased at a linear rate 

compared to the exponential rate of the other three groups. When the Cypridina expression levels 

are normalized by the Gaussia expression levels, slightly different trends emerge, as shown in 

Figure 14C. While the Cypridina expression levels suggested that both Rsl1 and Rsl2 groups had 

decreased expression, the newly normalized data suggest that only Rsl2 confers these effects. 

The expression levels of the Rsl1 group match closely to that of the Control group but are not 

significantly different. The same trends emerged when the expression patterns were normalized 

by cell number, which was determined by a terminal cell proliferation assay. However, another 

possibility is that the Rsl1 and Rsl2 groups should be compared against the Control and EV 

group instead of the Control group because the Control group contains less DNA in each well. 

Relative quantities of DNA are further elaborated in the following Materials and Methods 

section. 
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CHAPTER V: MATERIALS AND METHODS 

 

5.1 Identifying IAP Insert Upstream of Stab2D 

To clone the 3’ end of the insertion element, genomic DNA from a DBA/2J mouse was 

first digested with an Eco-RI enzyme and a 600 bp fragment was PCR amplified from this 

genomic DNA. The 600 bp fragment was self-ligated at a low concentration of 5 ng/uL using a 

reverse primer that corresponds to the sequence in the promoter region of Stab2 and a forward 

primer corresponding to the Eco-RI site in the intron 1 of Stab2.  

 

5.2 Assessing methylation profile in 5’ LTR of Stab2D 

Genomic DNA was extracted from the target tissue using the Qiagen DNeasy Blood and 

Tissue Kit. The genomic DNA was then purified using a chloroform extraction and suspended in 

Tris-EDTA buffer. Bisulfite conversion was done using the EpiTect Bisulfite Kit. The EpiTect 

Bisulfite Kit can convert 1 ng to 2 ug of DNA with equal efficiency so approximately 1.5 ug of 

genomic DNA was used each time. Analysis of the kit by the manufacturer shows over 99% 

conversion of unmethylated cytosines. The protocol used differed slightly from the listed 

protocol. The bisulfite reaction set up consisted of 1 uL of DNA (1.5-1.7 ug), 19 uL of RNase 

free H2O, 85 uL of bisulfite solution and 35 uL of DNA Protect Buffer to form a 140 uL 

solution. Cycle conditions were extended to allow for complete denaturation in CG rich regions. 

The final conditions are as follows: (1) denaturation at 95 degrees Celsius for 5 minutes, (2) 
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incubation at 60 degrees Celsius for 20 minutes (extended), (3) denaturation at 95 degrees 

Celsius for 5 minutes, (4) incubation at 60 degrees Celsius for 20 minutes, and finally (5) 

indefinite hold at 20 degrees Celsius. The cycling was followed by a cleanup of the converted 

DNA, following the protocol as prescribed by the EpiTect kit.  

The PCR reaction setup used a 50 uL reaction mixture consisting of 5 uL of dimethyl 

sulfoxide (DMSO), 2.5 uL of 20X Buffer, 1 uL of dNTP, 1 uL of DNA, 1 uL of each primer, 38 

uL of ddH2O and 0.5 uL of Taq polymerase added after heating at 93 degrees Celsius for 3 

minutes. A table of primers is shown in Table X. Temperature cycling conditions included (1) 

initialization at 93 degrees Celsius for 4 minutes with a hot start, (2) denaturation at 93 degrees 

Celsius for 30 seconds, (3) annealing at 58 degrees Celsius for 1 minute, (4) extension/elongation 

at 68 degrees Celsius for 30 seconds (with steps 2-4 undergoing 40 total cycles), (5) final 

elongation at 68 degrees Celsius for 5 minutes and (6) final hold at 25 degrees Celsius for an 

indefinite period. The PCR products were visualized on a 2% agarose gel made from a 1:1 ratio 

of agarose and SeaPlaque and 1X Helling’s solution. SeaPlaque agarose is used because it 

produces gels that can distinguish smaller bands and gives higher clarity. The correct bands were 

visualized, excised and then underwent gel purification. The 300 bp fragment was far easier to 

amplify compared to the 600 bp fragment so much of the subsequent analysis focused on the 

methylation status of the 300 bp fragment.  

The purified PCR product was then ligated into TaKaRa T-vector pMD20, a 2.7 kb 

plasmid with Ampicillin resistance. The ligation mix was composed of 1-2 uL of T-vector, 4 uL 

of the PCR fragment, 1 uL of 10X ligation buffer, 1 uL of T4 ligase, and 1 uL of ddH2O. This 

mix was stored at 4 degrees Celsius overnight before being mixed with DH5α competent cells, 

which had been previously stored at -80 degrees Celsius. The ideal ratio of T-vector to PCR 
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product insert was found to be 1:4. Typically, 30 uL of competent cells were mixed with 4 uL of 

ligation mix. The cells and ligation mix were plated onto a 2X Ampicillin NZY plate along with 

X-gal in dimethylformamide (DMF) for blue-white screening. The plates were grown for up to 

24 hours and the white colonies indicated successful plasmid uptake.  

The white colonies were then sub-cultured into a 2 mL liquid culture of LB broth with 1X 

Ampicillin. The liquid cultures were grown overnight for 12-16 hours at approximately 37 

degrees Celsius in a shaker rotating at 225 rpm. The DNA was isolated using a mini-prep 

procedure with home-made solutions of glucose Tris-EDTA, 0.4N NaCl, and 5M KOAc. 

Quantity and purity of DNA was assessed using the BioTek Gen5 microplate reader. Finally, the 

DNA from the liquid cultures were digested with NEB enzyme Ase I to confirm which cultures 

contained the correct plasmid. Correct inserts would yield a 400 bp fragment on a gel. The DNA 

for the successful clones would be sent to the UNC-Chapel Hill Genome Analysis Facility. The 

completed sequences could be manually checked to see whether the CpG dinucleotide sites were 

methylated or unmethylated.  

 

5.3 Characterizing Bacterial Artificial Chromosome (BAC)  

The BAC clones RP23-161C4, RP23-30O22 and RP23-349F18 were obtained from the 

Children’s Hospital Oakland Research Institute (CHORI). The RP23 (RPCI-23) BAC library was 

developed at the Roswell Park Cancer Institute and constructed by Kazutoyo Osoegawa and 

Minako Tateno [53]. All three BAC clones used in this experiment were derived from the pooled 

tissues of three 5-week old female C57BL/6J mice obtained from the Jackson Laboratory [53]. 

Mouse kidney and brain genomic DNA were isolated and partially digested with EcoRI and 

EcoRI Methylase enzymes. Selected EcoRI fragments were cloned into a pBACe3.6 vector, 
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which is 11,612 bp long. The average insert size for the RPCI-23 library is approximately 197 kb 

long, making the total product approximately 200 kb long [53]. The ligation products were 

transformed into DH10B electro-competent cells obtained from BRL Life Technologies. Upon 

arrival, the BAC clones were in LB agar stab culture form and were immediately plated on LB 

agar plates with 12.5 ug/mL of chloramphenicol antibiotic. The cultures were grown overnight at 

37 degree Celsius and were sub-cultured onto another plate the following day while the original 

plate was preserved in 4 degrees Celsius. Liquid cultures (5 mL) containing 12.5 ug/mL of 

chloramphenicol were grown overnight for 12-16 hours in a shaker rotating at 225 rpm. A 

portion of the liquid cultures were used to form frozen glycerol stocks which were stored at -80 

degrees Celsius. The remaining portion of the liquid culture was used as an initial subculture and 

expanded into 200 mL cultures. The large liquid cultures were grown in 500 mL flasks for 

sufficient aeration for 12-16 hours until exponential logarithmic growth phase. Because of the 

large size of BACs, DNA isolation can be difficult to achieve without shearing the DNA. 

Consequently, a specific rapid alkaline lysis mini prep method from BACPAC CHORI was used 

to assist in DNA isolation. This method is a modification of the standard Qiagen method but 

does not use any organic extraction or columns, which would cause DNA shearing. Quantity and 

purity of the BAC DNA was assessed using the BioTek Gen5 plate reader. The purified DNA 

was then concentrated using a Speed Vac centrifugal evaporator. Afterwards, the restriction 

digest of the BAC DNA was done using the EcoRI enzyme (from NEB) to excise the insert from 

the vector. The digest was run at three different concentrations (30 ug/lane; 50 ug/lane; 100 

ug/lane) on a 0.8% 4X Helling’s gel overnight at 20 V. For the Southern transfer, the DNA gel 

was placed into an alkaline NaOH solution to denature the DNA and the DNA was transferred 

onto a nitrocellulose membrane by capillary action using a 20X SSC buffer.  
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5.4 Transfecting HEK293 Cells with BAC  

Human embryonic kidney (HEK) 293 cells were purchased from Sigma-Aldrich. The 

HEK293 6-6 cell line was previously established by Sylvia Hiller by stably transfecting the cells 

with the luciferase reporter plasmid. The cell line was expanded at the fifth passage and stored as 

frozen stocks preserved in DMSO. Passage number can significantly affect cell behavior and 

uptake of foreign material so preserving stocks will ensure that all experiments begin with the 

same passage number. HEK293 cells are used in these experiments because they are easy to 

grow in culture and are readily transfectable. The cell line is grown in a 10% fetal bovine serum 

(FBS) Dulbecco’s Modified Eagle’s Medium (DMEM) with 0.1% penicillin streptomycin.  

The PierceTM Cypridina Luciferase Glow Assay Kit was used for all subsequent 

luciferase assays. This assay kit provides a very sensitive system for detecting secreted or 

intracellular luciferase activity in mammalian cell culture experiments. The assay is based on 

luminescence measurement and luminescence is produced from the oxidation of vargulin by 

Cypridina luciferase. The light produced is proportional to the activity of the promoter for 

Cypridina expression. The luciferase assay experiments were first carried out by plating 10,000 

cells per well in a 96 well plate. This analysis focused on secreted luciferase so media was 

sampled at select time points and frozen. Afterwards, a 10 uL sample of media was used for the 

assay and once the reagent or working solution was added, the luminescence signal could be 

immediately detected by the BioTeK Gen5 microplate reader. For transfection experiments, the 

FuGene® HD transfection reagent was used and proportions and volumes were calculated 

according to a FuGene® online protocol calculator [54].  
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5.5 Selecting Rsl1 and Rsl2 Genes  

The Rsl1 and Rsl2 plasmids were generously provided by Prof. Diane Robins of the 

Department of Human Genetics at the University of Michigan Medical School. The Robins lab 

has studied Rsl1 and Rsl2 extensively for many years and authored many publications on the 

genes’ role in sexual dimorphism in the liver of mice. Several plasmids were provided. Rsl1 and 

Rsl2 were cloned into expression vectors with 3 different epitope tags. Those with the 

hemagglutinin (HA) tag and the V5 epitope tag are contained in the pcDNA3 backbone while the 

constructs with the Flag tag are contained in the pCMV backbone. The plasmids were grown up 

in DH5α competent cells. Cultures were picked and grown in liquid culture with ampicillin 

resistance. DNA was isolated using an alkaline lysis method.  

 

5.6 Transfecting HEK293 with Rsl1 and Rsl2 

Transfection with the Rsl1 and Rsl2 plasmids was accomplished using the FuGene® HD 

transfection reagent. The ratio of Gaussia plasmid to Rsl1, Rsl2 or pCMV6 empty vector DNA 

was 1:3. The total amount of DNA added to the wells of all groups except for the Control group 

was 0.5 ug per well. The Control group contained less DNA because it only contained the same 

amount of Gaussia plasmid as was used in the other groups. The transfection mix was composed 

of DNA solution and Opti-MEM reduced serum medium. The same volume of FuGene® HD 

transfection reagent was then added to each mix and the final mixture of 155 uL was incubated at 

room temperature for 12-15 minutes. An aliquot of 25 uL was added to each well afterwards. 

The cells were consistently washed and the media was changed before transfection. At 8 hours 

after transfection, the cells were washed and the media was replaced again to remove the 

excessive plasmid and transfection mix in the media. Afterwards, media was collected at 8 hour 
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intervals. Other time intervals could have also been used but 8 hours was chosen for 

convenience. The Cypridina and Gaussia luciferase assays were done in opaque 96-well plates 

and luminescence was detected immediately with the BioTeK Gen5 microplate reader. The 

luminescence signal was normalized to 80,000 RLU to the highest well and all filter sets were 

changed to detect luminescence. The cell proliferation assay used was the CyQuant Cell 

Proliferation Assay Kit from Thermo Fisher which used a fluorometric dye that binds to the 

nucleic acid inside cells once the cells are lysed.  
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CHAPTER VI: CONCLUSION 

 Evaluating these collected data, it is possible that the genes Rsl1 and Rsl2 may be 

responsible for the repressive effects of BAC clone 349F18. Experiments introducing BAC 

clones into the HEK293 6-6 cell model have shown that while expression is not significantly 

different from that of the Control group, it is significantly different from that of the Gli2 empty 

vector group. For example, as shown in Figure 10, at 48 hours, expression levels from 161C4, 

349F18 and 30O22 are approximately the same level as the Control, hovering at around 80,000 

RLU, but are about a half of the level of expression from the Gli2 empty vector group. At 68 

hours, after a wash, expression from 161C4 and 30O22 are still the same as that of the Control 

but still lower than that of the Gli2 empty vector group. The 349F18 group is the only group that 

shows decreased expression after the wash that is significantly different from that of the Control 

(p=0.005259), 161C4 (p=0.017724), and Gli2 (p=0.017522), which could be indicative of more 

long term repression of target gene expression. The problem of whether the experimental group 

should be compared against the Control or against the Gli2 empty vector group is not resolved.  

If the groups are to be compared against the Control, only 349F18 at 68 hours would suggest 

repression. However, if the groups are compared against the Gli2 empty vector, potentially all 

the groups (at 48 hours) or at least 349F18 and 30O22 (at 68 hours) would suggest repression. 

The Gli2 BAC DNA was chosen because it is approximately the same size as the other BAC 

clones used (~200 kb) but is not reported to have any effect on Stab2 or nearby gene elements. In 

theory, introducing such a large fragment of DNA into a cell may cause significant intracellular 
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changes besides the intended repression effect. Therefore, the Gli2 BAC empty vector should 

serve as a more accurate control group than the vehicle control containing no DNA.  

 This question reappears during the experiments using transfection of Rsl1 and Rsl2 

plasmids. As shown in Figure 14A, the expression of the Control and Control and EV groups 

increases at a steady rate but the Rsl1 and Rsl2 groups show slightly dampened levels of 

expression. However, when the Cypridina expression levels are normalized to the Gaussia 

expression levels, the trend, shown in Figure 14C is not so clear. The expression of the Control 

and EV group peaks at 8 hours post-transfection, plateaus and then levels off after 16 hours post-

transfection. A similar trend manifests for the remaining groups (Control, Rsl1 and Rsl2) but the 

expression is roughly half the level of the Control and EV group. If the proper control for 

comparison is held to be the Control group, then only Rsl2 may have a chance of exhibiting 

repressive effects. However, if Control and EV is held to be the proper control, then both Rsl1 

and Rsl2 show significant repressive effects. Once again, the Control and EV group, containing 

both Gaussia plasmid and the pCMV6 empty vector, possesses the same amount of DNA 

compared to the Rsl1 and Rsl2 groups. Theoretically, the Control and EV group should be 

considered the appropriate control. Additionally, one other possibility for future work is to 

simply use another empty vector to replace Gli2 for BAC transfection experiments and pCMV6 

for Rsl1/Rsl2 transfection experiments. If the trend repeats, then the transient albeit elevated 

levels of expression is not endogenous to the sequence but rather the additional amounts of 

DNA.  

 Normalization poses another problem to this experiment setup. Currently, Cypridina 

expression levels are normalized to Gaussia expression levels. Gaussia plasmid serves as a 

control to indicate how much of the plasmid introduced can be incorporated into a cell. This is 
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only one of many ways to normalize expression levels. Another possibility is to normalize by 

cell count. Although normalizing Cypridina expression by cell number was done previously and 

did not show any differences in expression, this normalization was done by using the CyQuant 

cell proliferation assay measuring the cell number at the end of the experiment. Instead, 

expression levels should be normalized to the cell count at the time the media was collected for 

assay.  

 Overall, there are many technical uncertainties and unknowns associated with this 

experiment. First, the amount of DNA to introduce into the cell to induce changes in Stab2 gene 

expression is unknown. Although a dose response curve was constructed for BAC transfection 

and a threshold was determined to be approximately 6.8 ug/well (10,000 cells), the optimal 

amount of Rsl1 and Rsl2 plasmid to introduce is unknown. The current measures are taken from 

literature from the research group that provided the constructs but it is unclear whether the 

constructs given have significant differences from those previously used. The amount of Gaussia 

luciferase plasmid to Rsl1 or Rsl2 plasmid is also unknown. Currently, the ratio used is 3:1, 

recommended by Dr. Makhanova of the Maeda Lab, but different ratios have not been rigorously 

tested to find the optimal one. In addition, signal intensity of the luciferase assay differs widely 

depending on whether the measurements are taken initially, after ten minutes or after twenty 

minutes. Although best efforts were made to ensure measurements were consistent, slight 

inconsistencies can contribute significantly to noise in the data. Another unknown variable is 

how fine-tuned sample measurements should be. Previous experiments have shown that changes 

in gene expression ought to take place within 24 hours of transfection. This time frame was 

narrowed down from 48 hours in previous experiments. Subsequently, measurements were taken 

at 8 hour intervals. However, it is unclear whether these measurements are spaced out at 
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appropriate time intervals to capture subtle and minute changes in luciferase secretion before 

accumulation. Overall, transfection experiments with Rsl1 and Rsl2 must be replicated many 

more times to reach stronger conclusions. However, the established body of data suggests that 

there is a possible repressive effect on Stab2 expression.  

 For future work, it may be advisable to “reverse” the current methodology. The current 

experimental protocol dictates that the HEK293 cells are first stably transfected with the 

luciferase-expressing plasmid and then transfected with the BAC clone or the Rsl1 or Rsl2 

plasmids. It is also possibly to work “in reverse”, first stably transfecting with the plasmid or 

BAC and then introducing the luciferase plasmid with a transient transfection. If these results 

proved conclusive, then it would be worthwhile to further investigate the molecular mechanisms 

of the repressive effects mediated by Rsl1 or Rsl2. Because the two genes are zinc finger 

proteins, the molecular mechanism may be linked to transcriptional repression by the zinc finger 

machinery. Nevertheless, a deeper understanding of the transcriptional repression mediated by 

elements in the B6 genome on Stab2 expression in the DBA mouse can shed much light on 

atherogenesis in mouse models and humans. 
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Table 1: Atherosclerosis Loci Identified From QTL Studies in Mice* 

*Table adapted from [21]  

Ath indicates atherosclerosis susceptibility locus. Artles, arterial lesion locus, and Athsq, 

atherosclerosis susceptibility QTL, are not shown in this table. Also, not shown are Ath4, Ath5, 

Ath12, Ath14, and Ath15.  

 

Locus (Genes)  Chromosome Cross LOD Score Reference 

Ath1 (ApoA-II) 1 CXB and BXH RI 

strains  

--- [55,56] 

Ath2 Unmapped AXB and BXA RI 

strains 

--- [57]  

Ath3 7 AXB and BXA RI 

strains 

--- [58]  

Ath6 12 (B6-db/db X 

C57BLKS/J) F2 

2.6 [59, 60]  

Ath7 Unmapped SWXJ RI strains --- [61]  

Ath8 Unmapped NXSM RI strains 

and (SM X NZB) 

N2 

--- [62]  

Ath9 1 (B6.129-apoE-/- X 

FVB/NJ0.129-

apoE-/-) F2 

3.3 [63]  

Ath11 10 (B6-apoE-/- X 

FVB/NCr-apoE-/-) 

F2 and (B6.129-

apoE-/- X 

FVB/NJ0.129-

apoE-/-) F2 

7.8, 11.9  [63]   

Ath13 14 (B6-apoE-/- X 

FVB/NCr-apoE-/-) 

F2 and (B6.129-

apoE-/- X 

FVB/NJ0.129-

apoE-/-) F2 

3.2, 2.5 [63]   

Ath16 19 (B6-apoE-/- X 

FVB/NCr-apoE-/-) 

F2 

3.8  [63] 
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Table 2: Mice Strains and Tissues Used for Methylation Analysis 

 

*D9I is a congenic strain that is homozygous for the Stab2D allele placed on a 129S6 background  

 Several strains were chosen out of a larger repository of animals from various breeding 

schemes. The selection included both sexes and parental and F1 generations. Genomic DNA was 

extracted from these tissues and underwent bisulfite sequencing to assess methylation status of 

the promoter element (5’ LTR of IAP insert) upstream of the Stab2D allele. Although genomic 

DNA was also collected from the hearts of these animals, the data are not discussed in this 

project.  

 

 

 

 

 

 

Number  ID Strain  Generation Sex Tissue 

1 --- DBA P Male Liver 

2 --- DBA X B6 F1 Male Liver 

3 #4 D9I P Male Liver 

4 #1 D9I  P  Female Liver 

5 #5L DBA X 129 F1 Male Liver 

6 #1L DBA X 129  F1 Female Liver 

7 #6L DBA X B6 F1 Female Liver  
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Table 3: Selection of Appropriate HEK293 Cell Lines for Transfection Experiments 

 

 Several different cell lines of the HEK293 cells were established and transfected with 

different plasmids containing the luciferase gene and varying upstream promoter elements. For 

stable cell transfection, the transfected cells were grown and expanded in the presence of 

puromycin. Quantitative PCR (qPCR) was used to select for cell lines with the lowest copy 

numbers based on puromycin copy number and genotype. The final cells that were chosen to be 

used for further experiments are indicated in bold: HEK 6-1, 6-3, 6-6, 13-6, TK-2 and TK-6. 

 

 

 

 

Sample ID Puromycin Fam Ct dCt Puromycin Genotype  

HEK 6-1 26.64 0.89 Puro+ low copy  

HEK 6-2 27.71 1.83 Puro+ low copy 

HEK 6-3 27.87 2.48 Puro+ low copy 

HEK 6-4 25.07 -1.43 Puro+ high copy 

HEK 6-5 25.88 0.14 Puro+ med copy 

HEK 6-6 28.69 1.44 Puro+ low copy 

HEK 13-1 26.11 -3.11 Puro+ high copy 

HEK 13-2 27.87 -0.40 Puro+ med copy 

HEK 13-3 27.07 -1.75 Puro+ high copy 

HEK 13-4 27.85 -0.73 Puro+ med copy 

HEK 13-5 27.59 1.08 Puro+ low copy 

HEK 13-6 26.48 1.10 Puro+ low copy 

HEK TK-1 28.37 -1.09 Puro+ high copy 

HEK TK-2 27.16 0.37 Puro+ low copy 

HEK TK-3 25.76 -0.60 Puro+ med copy 

HEK TK-4 24.63 -0.51 Puro+ med copy 

HEK TK-5 26.43 0.23 Puro+ med copy 

HEK TK-6 27.41 0.98 Puro+ low copy 
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Table 4: BAC Clone Characterization  

BAC Clone Chromosome Location Insert  

Length 

Total Length 

RP23-161C4 13 66,996,049 – 

67,182,059 

186,010 bp 197,622 bp  

RP23-30O22 13 67,140,377 –  

67,361,207  

220,830 bp  232,442 bp  

RP23-349F18 13 67,319,608 –  

67,516,814 

197,206 bp 208,818 bp  

 

 The three BAC clones used in transfection experiments all contain inserts that are 

approximately 200 kb in length and are located on Chromosome 13. The inserts are contained 

with a pBACe3.6 vector, which is 11,612 bp long. The insert is inserted within this vector at 

EcoRI restriction sites. Calculated total length is the combined length of the plasmid, vector and 

insert.  
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Table 5: Primer Sequences for Amplifying Stab2D Promoter Sequences  

 

Primer  Length Sequence  

M1 27 bp TTT AAA GAG AAT AAT 

TAT TGT TTA GGG 

M2 25 bp CCA AAC TAA AAA ACC 

ACA AAA ACT C 

T 23 bp GTT TTG GTT TTG GAA 

TGA GGG AT 

 

 The following primers sequences are used to amplify a 300 and a 600 bp sequence within 

the Stab2D promoter sequence for subsequent methylation analysis of CpG dinucleotides. To 

amplify the 300 bp sequence, primer M1 is used as the left primer and primer M2 is used as the 

right primer. The product size is 304 bp with a melting temperature of 70.2 degrees Celsius and 

containing 10 CpG sites. To amplify the 600 bp sequence, primer T is used as the left primer and 

primer M2 is used as the right primer. However, much of the experiment relied on amplifying the 

300 bp fragment instead of the 600 bp fragment.  
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Figure 1: LOD Curves for Atherosclerotic Plaque Size at the Arch* 

 

 

*Adapted from Figure 2 from [30]  

 

 The LOD curves for the arch lesion are shown above. The black LOD curve uses sex as 

an additive covariate and the red LOD curve uses sex as an interactive covariate. The x-axis 

represents the chromosome number and the y-axis represents the LOD score. The horizontal 

dashed line represents the threshold for significant QTL (p=0.05) and suggestive QTL (p=0.63) 

in the sex-interactive model.  

 Two significant QTLs are found on chromosome 2 and 10, with LOD scores of 7.0 and 

5.1, respectively. A suggestive QTL is found on chromosome 19 with a LOD score of 3.2. In this 

discussion, the topic focuses on the QTL in chromosome 2 and attributes the observed effect to 

the candidate gene Stab2.  
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Figure 2: DBA-Allele Dependent Upregulation of Stab2* 

 

 

*Adapted from Figure 5 from [30]  

 

 The expression levels of Stab2 in various tissues from B6 (black filled bars), 129 (gray 

filled bars) and DBA (open bars) are shown in Figure 2. Expression is compared relative to the 

B6 liver (=100) and is assessed by quantitative RT-PCR. The DBA mouse expresses higher 

Stab2 in the liver compared to the 129 and B6 animals, although this difference is not 

statistically significant. Interestingly, the DBA animals show significantly greater ectopic Stab2 

expression in the aorta, heart and kidneys compared to the other strains. It is hypothesized that 

this ectopic expression may be driven by an insertion of an intracisternal A-particle (IAP) 

upstream of Stab2 in the DBA animal, which leads to an uncoupling of a repressor and promoter 

sequence.  

  **P<0.01, ***P<0.001 vs. B6; ##P<0.01, ###P<0.001 vs. 129 (one-way ANOVA 

followed by Tukey-Kramer’s HSD test). Data is shown as the mean ± SD. Sample numbers are 

indicated in the bars. 
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Figure 3: Stab2D and Upstream Promoter Region  

 

 

   

 Figure 3 shows the proposed model of the DBA allele of Stab2 with its accompanying 

upstream promoter elements. Sequencing the promoter region has unveiled an intracisternal A-

particle (IAP) insertion. An IAP is a type of transposable element (TE) that “jumps” from one 

region of the genome to the next through a “copy and paste” mechanism using reverse 

transcription. These insertions into the genome can dysregulate nearby gene expression. In 

addition, the 5’ LTR can reportedly initiate reverse orientation transcription. This current model 

of Stab2D shows that the insertion of the IAP leads to a longer transcript (indicated by the red 

line) compared to the normal transcript (blue line). A portion of the sequence of the IAP is also 

shown above.  
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Figure 4: Methylation Status of 5’ LTR Region of IAP Insert  
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Figure 5: 5’ LTR Sequence in Reverse Orientation Drives Stab2 Expression in HEK293 

Cells  

 

 

 

 Several plasmids with different promoter element configurations were tested in the 

human embryonic kidney (HEK293) cell line to test for variation in luciferase expression. A 

thymidine kinase (TK) promoter was used as a control for basal luciferase expression. The 

difference between configurations #1 and #3 suggest that decoupling a 500 bp segment from the 

200 bp segment immediately upstream of the luciferase gene may increase expression. Thus, the 

500 bp segment may contain a repressive element that is interrupted by IAP insertion, leading to 

ectopic expression. Configuration #6 shows the greatest relative luciferase expression, nearly 

twice that of any other. This indicates that the 5’ LTR region is separated from the luciferase 

gene by a 200 bp segment. Plasmids #6 and #13 were chosen for their high expression to be used 

in subsequent transfection experiments.  
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Figure 6: Transcription of Stab2D is Subject to Epigenetic Repression  

 

 Expression of Stab2D varied widely depending on whether the DBA allele was inherited 

maternally or paternally. Part of the variation may be due to parental effect and imprinting. If the 

DBA allele of Stab2 is inherited from the mother, the F1 progeny shows nearly four-fold 

expression of Stab2 compared to progeny that inherited the DBA allele of Stab2 from the father. 

Putative modifier genes in the 129 genome may also play a significant role in repressing Stab2 

expression. In addition, several B6 X DBA and DBA X B6 crosses were also established and 

Stab2 expression was also measured. These experiments (data not shown) also suggest that there 

may be elements in the B6 genome that have repressive effects. Whether these putative modifier 

genes are shared between B6 and 129 mice is unclear.  
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Figure 7: BAC Clone Gel Visualization and Characterization  

 

  

 To characterize the BAC clones, the BAC plasmids were grown up in DH5α 

electrocompetent cells, cultured and the DNA was collected and purified using an alkaline lysis 

mini-prep protocol. Afterwards, the DNA was digested with EcoRI enzyme. The fragments were 

run on a 0.8% 4X Helling’s solution gel at 20 V overnight and visualized under ultraviolet light. 

The bands on the gel are shown on the right. This image was compared to a simulated restriction 

digest and gel visualization, obtained using the Gene Compiler software. The ladder used is the 

Lambda DNA HindIII ladder. Each BAC clone is run on three lanes and from left to right, the 

concentrations of DNA loaded per well are 30 ug/lane, 50 ug/lane and 100 ug/lane. Consistent 

banding patterns within each BAC clone and different bands between BAC clones confirm the 

identity of the BAC clone.  
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Figure 8: HEK293 6-6 Cell Lines Produces Highest Luciferase Expression  

 

 This figure shows that of all six cell lines used, the HEK293 6-6 cell line produces the 

highest luciferase expression at both 24 hours and 48 hours. All cell lines have previously been 

stably transfected with a luciferase-expressing plasmid. The cells were plated 10,000 cells/well 

in a 96 well plate and media was sampled at the two time points to be assayed. The cell lines 6-1, 

6-3 and 6-6 are expanded cell lines all with the plasmid with promoter configuration #6, which 

produced the highest expression as shown in Figure 5. Expression for 6-3 and 6-6 are 

significantly greater than TK-2 and TK-6, which serve as controls with luciferase expression 

being driven by a TK promoter. Thus, this experiment determined that the 6-6 cell line should be 

used in all subsequent experiments and this cell line was then expanded. 

 



50 

 

Figure 9: Increasing Dosages of Transfected BAC Show Trends in Luminescence  

 

 

 Varying amounts of the Gli2 BAC was transfected into the HEK293 6-6 cell line to 

determine a dosage curve and possible thresholds for toxicity. Gli2 was chosen for its similar 

size (~200 kb) to the BAC clones of interest. The control group was a vehicle control consisting 

of all the components within the transfection mix except DNA. With increasing dosages up to 

6.8 ug, the luminescence from luciferase expression increased steadily, peaking at a level nearly 

three times (6.8 ug) that of the original dosage (0.4 ug). However, dosages above 6.8 (10.2 ug) 

lead to a sudden drop in expression, comparable to the control group. It is possible that a dosage 

in between 6.8 and 10.2 ug was the maximum threshold. Thus, 6.8 ug of BAC DNA transfected 

per 10,000 cells was determined to be the standard for transfection experiments involving the 

BAC clones 161C4, 30O22 and 349F18.  
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Figure 10: Transfection with BAC Clone 349F18 Suggest Repressive Effects  

 

 The HEK293 6-6 cell line was transfected with 6.8 ug of BAC DNA (161C4, 349F18, 

30O22, Gli2) and the Cypridina luciferase assay was used to assess changes in expression 

patterns. The Control group used is a vehicle control containing all the components of the 

transfection mix except DNA. Approximately 10,000 cells at passage 5 were plated per well. 

Time points measured included 48 hours, followed by a wash with PBS and then 20 hours later 

at 68 hours. The wash step was included to eliminate excessive luciferase secreted and 

accumulated in the media. Excessive accumulation could potentially mask smaller differences in 

expression. The 161C4 and 30O22 groups, at both time points, did not show significant 

differences compared to the control or but do show differences compared to the Gli2 empty 

vector (EV) group. The 349F18 group, on the other hand, shows decreased expression after the 

wash compared to Control (p=0.005259), 161C4 (p=0.017724), and Gli2 (p=0.017522), which 

could be indicative of more long term repression of target gene expression. Paired t-tests were 
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conducted at α=0.05 significance level to test for significance. ANOVA one-way analysis at 48 

hours shows that the expression of Gli2 is significantly different from that of the Control, 161C4, 

30O22 and 349F18 groups at a p-value of less than 0.0001. At 68 hours, Gli2 expression levels 

are significantly different from that of the 349F18 (p=0.0031) and 30O22 (p=0.0400) groups but 

not of the others. These results may indicate stronger repression in the 349F18 and 30O22 groups 

compared to the 161C4, if the experimental groups are to be compared against the Gli2 EV 

group instead of the standard Control group.  
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Figure 11: Initial Experimental Workflow for Transfection with Rsl1 and Rsl2  

 

 

 In the initial transfection experiment with Rsl1 and Rsl2 plasmids, the time course was 

extended to up to 72 hours after transfection, in accordance to the results shown in Figure 10. 

HEK293 6-6 cells were plated at 10,000 cells/well at passage 5 in a 96 well plate and allowed to 

grow for up to 24 hours. Before transfection, the cells were washed with PBS. After transfection 

with 0.50 ug of DNA per well (Rsl1 or Rsl2 plasmid), media was assayed for secreted luciferase 

at 48 hours. The cells were washed and media was assayed once again after another 24 hours, at 

the 72-hour time mark.  
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Figure 12: Transfection of HEK293 Cells with Rsl1 and Rsl2 May Alter Gene Expression  

 

 Following the experimental setup in Figure 11, both the Rsl1 and Rsl2 transfected groups 

showed significantly less expression compared to the control (vehicle control) at 48 hours. At 72 

hours, however, all the three groups showed similar levels of luciferase expression. This implies 

that if any changes in gene expression occur with the transfection of Rsl1 and Rsl2, it would 

likely be limited to the first 48 hours.  
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Figure 13: Modified Experimental Workflow for Transfection with Rsl1 and Rsl2 

 

 
 

 After the initial transfection experiments, the protocol was adjusted slightly. Instead of 

using a 96 well plate, the experiment was scaled up to a 24 well plate and 80,000 cells were 

plated per well. About 8 hours after transfection, the cells were washed and media was replaced, 

eliminating excess Rsl1 and Rsl2 plasmid in the media. Media was sampled every 8 hours 

afterwards until 48 hours. Later, this time was cut down to 24 hours, since expression patterns 

did not appear to change afterwards. At the end of the experiment, the cells were washed and 

frozen and a cell proliferation assay was done. The Gaussia plasmid, obtained from N. 

Makhanova from the Maeda Lab was also incorporated as an internal control. All experimental 

groups including the control contained the Gaussia plasmid. However, an additional control 

group also contained the empty vector pCMV6 so that the amount of DNA in the Control + EV, 

Rsl1 and Rsl2 groups was equal.  
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Figure 14: Trends in Gene Expression Upon Transfection with Rsl1 and Rsl2 

 

A.  

 

B.  
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C.  

 

 

A. Trends in Cypridina luciferase show that the Control and Control + EV groups exhibit 

higher expression levels compared to the Rsl1 and Rsl2 groups, up until 28 hours after 

transfection, when expression levels begin to converge.  

B. Trends in Gaussia luciferase show that three out of the four experimental groups 

(Control, Rsl1 and Rsl2) show consistent increases in Gaussia expression. However, the 

increase in expression is exponential not linear, as expected. The Control + EV group, on 

the other hand, does exhibit linear increase in Gaussia expression but is inconsistent with 

the other groups.  

C. Once the Cypridina signal is normalized by the Gaussia signal, the Control + EV group 

exhibits extremely elevated levels of luminescence. The Rsl2 group still shows slightly 

decreased expression compared to the Control group, which may suggest repressive 

effects. 
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