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ABSTRACT 
Lindsay Laura Dubbs: Persistence and potential causes of reduced net CH4 consumption 

under elevated CO2 in a temperate forest 
(Under the direction of Stephen C. Whalen)

 

 Impacts of the projected increase in atmospheric CO2 on other biogeochemical cycles 

are uncertain.  In a two-year study, Phillips et al. (2001) reported a 16 to 30% decrease in net 

consumption of atmospheric CH4 by soils in CO2-enriched plots in a temperate loblolly pine 

(Pinus taeda) forest.  Consumption by upland soils accounts for ~30 Tg CH4 y
-1 and is the 

only terrestrial sink for atmospheric CH4, which is a greenhouse gas with radiative forcing 

second only to CO2.  However, it is uncertain whether decreased atmospheric CH4 

consumption represents a transient or sustained response of forest-soil systems to elevated 

CO2. 

 This research focused on field observations aimed at investigating the strength and 

persistence of reduced atmospheric CH4 consumption by temperate forest soils under 

elevated CO2 at the same study site.  It further investigates the causes of this response by 

CH4 oxidizing and producing communities through field and laboratory experiments.  

 Rates of soil-atmosphere CH4 exchange were repeatedly measured over 3 y from 

permanently established sampling sites at the Free Air Carbon Dioxide (FACE) site in the 

Duke Forest, where CO2-enriched plots of a loblolly pine forest are maintained at 

approximately 200 mL L-1 above ambient concentrations (380 mL L-1), while control plots 

are exposed to ambient atmospheres.   Reduced net atmospheric CH4 consumption persisted 

in CO2-enriched plots, showing annual declines of 19, 10 and 8% relative to control plots. 
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 This study and previous work give a nearly continuous 8 y record of reduced net 

atmospheric CH4 consumption in CO2 -enriched plots that suggests this is likely a sustained 

negative feedback to increasing atmospheric CO2.  

  Causitive factors for the observed decrease in net CH4 consumption under elevated 

CO2 were difficult to identify because of high spatial and temporal variability in microbial 

activity and limited ability to collect soil samples. However, higher soil moisture and 

increased incidence and rates of CH4 production in CO2-enriched plots, along with transient 

inhibition by plant exudates and low overall soil diffusivity, begin to explain reduced rates of 

CH4 consumption and increased rates of CH4 production that result in long-term reduction in 

net CH4 consumption in these soils. 
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CHAPTER 1: INTRODUCTION

Elevated CO2 and temperate forests 

 The present-day atmospheric CO2 concentration of approximately 380 mL L-1 

(NOAA 2008), exceeds the highest concentration measured in ice core samples from before 

the Industrial Revolution by almost 100 mL L-1 (Barnola et al. 2003).  The atmospheric 

concentration of CO2 is expected to continue to increase, mainly as a result of fossil fuel 

emissions and destruction of vegetation (Forster et al. 2007).  Models project that 

atmospheric CO2 concentrations, by the end of the present century, will exceed the pre-

industrial concentration by up to 270% (Friedlingstein et al. 2006).  A rising atmospheric 

CO2 concentration is of concern because it is a long-lived greenhouse gas with a radiative 

forcing of 1.66 W m-2, exceeding the radiative forcing of all other trace atmospheric gases 

that control climate (Forster et al. 2007).  Increasing atmospheric CO2 is also of significance 

because it is continuously exchanged between the atmosphere, the ocean, and the terrestrial 

biosphere through biogenic processes such as photosynthesis and respiration (Schlesinger 

1997).  Rates of photosynthesis and respiration are further controlled by temperature and 

water availability, and changes in the concentrations of CO2 and other greenhouse gases are 

expected to elicit changes in air temperature and the hydrologic cycle that may vary 

regionally (Denman, K. L. et al. 2007).  While the atmospheric concentration and radiative 

forcing of CO2 are well understood (Forster et al. 2007), the impacts of the CO2-induced 

changes in atmospheric composition and climate on whole ecosystems and their components 
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are less clear.  An understanding of ecosystem responses at all levels to elevated CO2 is 

important to predicting future climates as they can, in turn, feed back to the biogeochemical 

cycling of CO2 and other greenhouse gases.   

 Attempts at understanding terrestrial biological and biogeochemical responses to 

elevated CO2 have ranged in size and complexity from individual potted plants, to open-top 

chambers containing a community of plants, to large scale manipulations of intact 

ecosystems designed to embrace the entire suite of interactions and feedbacks among plants, 

microbial communities and elemental cycles.  Each of these approaches has associated 

strengths and weaknesses.  Physiological studies conducted in small and simple modeled 

ecosystems have been ineffective at capturing the complexity of ecosystem component 

interactions and feedbacks.  On the other end of the spectrum, free-air CO2 exchange (FACE) 

technology has been employed to conduct ecosystem-level studies where tall vegetation and 

their surrounding ecosystems are exposed to elevated CO2 with minimal alterations of 

surrounding microenvironments (Hendrey et al. 1999b).  The primary criticism of FACE 

experiments is that they are initiated by exposing an ecosystem to an abrupt increase in 

atmospheric CO2, which may not fully represent how ecosystem components will react to the 

contemporary monotonic increase in the concentration of CO2 in the Earth’s atmosphere 

(Klironomos et al. 2005).  

 Nonetheless, FACE studies have proven to be useful in predicting ecosystem level 

changes in a range of terrestrial environments, among them, temperate forests.  Overall, 

temperate forests exposed to elevated CO2 using FACE technology show increases in tree 

growth and net primary production (DeLucia et al. 1999, Finzi et al. 2002, Hamilton et al. 

2002, DeLucia, E.H. et al. 2005, Norby et al. 2005, Finzi et al. 2006a), increased delivery of 
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C to roots, the forest floor and soils with a small increase in soil C storage (Allen et al. 2000, 

Matamala and Schlesinger 2000, Schlesinger and Lichter 2001, Jastrow et al. 2005, Lichter et 

al. 2005, Lichter et al. 2008, Pritchard et al. 2008, Hoosbeek and Scarascia-Mugnozza 2009), 

increased soil respiration (King et al. 2004, Bernhardt et al. 2006, Taneva et al. 2006), and 

variable changes in N cycling (Billings and Ziegler 2005, DeLucia 2005, Finzi et al. 2006a) 

and soil community composition (Larson et al. 2002, Billings and Ziegler 2005, Billings and 

Ziegler 2008).  The initial increase in net primary production in response to elevated CO2 is 

predicted to slow with time as ecosystems become more N-limited (Finzi et al. 2006b), 

although N-limitation has yet to appear in temperate forests after 6 y of CO2-enrichment 

using FACE technology (Finzi et al. 2006a).  

 However, observations (McMurtrie and Comins 1996) and ecosystem models 

(Newton et al. 2001) indicate that biological responses to elevated CO2 and biogeochemical 

feedbacks vary widely on different timescales.  For instance, down-regulation of 

photosynthesis has been commonly reported for CO2-fertilized model and intact forest 

ecosystems after as little as two years (reviewed by Amthor 1995, Leakey et al. 2009). Over 

longer time trajectories, initial response functions of all ecosystem components from trees to 

microbes can be expected to adjust physiologically and demographically on different time 

scales through modification of biogeochemical feedbacks (Korner 2000).  Thus short-and 

long-term responses to elevated atmospheric CO2 must be distinguished. 

 

Methane in the pedosphere 

 Methane is another greenhouse gas that is cycled through temperate forests and thus 

may be affected by CO2-induced changes to the ecosystem.  Methane is the simplest, most 
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reduced hydrocarbon, and a long-lived (9 to 15 y) greenhouse gas directly and indirectly 

contributing more than half of the radiative forcing of CO2 (0.9 and 1.6 W m-2, respectively; 

Schindell et al. 2005), through warming of the troposphere and its participation in the 

stratospheric chemistry of ozone and water vapor formation (Wuebbles and Hayhoe 2002).  

The global atmospheric CH4 concentration has more than doubled since the Industrial 

Revolution to reach a present-day average concentration of  ~1780 µL L-1 (NOAA 2008).  

Methane is spatially and temporally variable in the troposphere, with a higher concentration 

in the Northern Hemisphere where emissions are higher, and a minima corresponding to 

increased photochemical destruction during summer months.  

 While destruction by the hydroxyl radical in the atmosphere is the largest sink for 

CH4, the only known biological sink for CH4, and the largest natural source of CH4 are sited 

in the pedosphere.  The balance between rates of CH4 production (methanogenesis) and CH4 

consumption (methanotrophy) determines whether a soil is a net source or sink for 

atmospheric CH4, and the strength of that source/sink.  Methane production usually exceeds 

consumption in wetland environments, accounting for about 69% of emissions to the 

atmosphere from natural sources (Wuebbles and Hayhoe 2002).  Conversely, upland soils 

account for approximately 38 Tg of CH4 removal from the atmosphere annually (Ridgwell et 

al. 1999).  This net biological sink in upland soils includes atmospheric CH4 consumption by 

methanotrophic bacteria in the largely oxic soil profile, and consumption of endogenously 

produced CH4 by methanogenic bacteria in anoxic microsites (reviewed by Conrad 1996). 

 Methanotrophic bacteria oxidize CH4 for energy and as their sole source of carbon 

(C) for biosynthesis (Hanson and Hanson 1996).  Methanotrophs are responsible for both 

‘high affinity oxidation’ of CH4, which occurs at CH4 concentrations close to atmospheric 



 

 5

concentrations (< 12 mL L-1), such as in upland soils, and ‘low affinity oxidation’, which 

occurs at CH4 concentrations > 40 mL L-1, such as in the oxic zone of wetlands (Le Mer and 

Roger 2001).  Known controls on CH4 consumption by low affinity methanotrophs are water 

table position, which dictates the size of the oxic zone necessary for methanotrophy, pH, and 

temperature (reviewed by Whalen 2005).  Demonstrated controls on atmospheric CH4 

consumption by high affinity methanotrophs in upland soils include temperature (Crill 1991, 

Castro et al. 1995, Phillips et al. 2001a, Steinkamp et al. 2001), soils nitrogen (Schnell and 

King 1994, 1995), and rate of supply of CH4 to the subsurface aerobic zone of oxidation 

(King and Adamsen 1992, Dörr et al. 1993, King 1997).   

 Methane is produced by methanogenic Archaea through two different anaerobic 

metabolic processes, acetate splitting and CO2 reduction.  Of all metabolic pathways, 

methanogenesis yields the least free energy and methanogenic Archaea are typically out-

competed by microbes with alternative metabolic pathways (Schlesinger 1997), except when 

the redox potential is very low, such as in persistently anoxic wetlands.  The absence of 

oxygen, which is related to soil moisture, the availability of labile organic precursors, 

temperature, and pH are known controls on CH4 production.  Accordingly, wetlands and 

freshwater sediments, with low redox potentials and high levels of organic matter, provide 

natural environments favorable to methanogenesis.  Low redox environments with high 

availability of labile organic matter have also been observed in aggregates of clay-rich forest 

soils (Sexstone, A.J. et al. 1985, Ramakrishnan et al. 2000). Independent reports of anoxic 

microzones (Sexstone, Alan J. et al. 1985, Zausig et al. 1993) and methanogenic activity in 

macroscopically oxygenated soils (Yavitt et al. 1995, Saari et al. 1997, von Fischer and 

Hedin 2002, Teh et al. 2005) indicate that simultaneous CH4 production and consumption are 
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occurring in some well-drained upland soils.   Waterlogged aggregates support localized 

zones of methanogenesis and oxic sites support methanotrophy.  

 

Observed effects of elevated CO2 on CH4 dynamics in soils 

 Experiments examining the effect of elevated CO2 on net CH4 emissions from 

wetland soils unequivocally indicate that CH4 emissions increase when wetland plants, plant 

communities, or ecosystems are grown under elevated CO2. Increases in CH4 emissions from 

wetland soils ranged from 10.9% in a pot study of a rice cultivars grown under CO2 at 200 

mL L-1 above ambient concentrations (Lou et al. 2008) to 60% when rice fields were exposed 

to elevated CO2 (300 mL L-1 above ambient) in open-top chambers (Ziska et al. 1998). The 

increase in net CH4 emissions was markedly similar to the range (38 to 58%) seen in a 

Japanese rice paddy exposed to elevated CO2 via FACE technology (Inubushi et al. 2003).  

 Investigations of soil-atmosphere CH4 exchange in CO2-enriched ecosystems that 

normally function as atmospheric CH4 sinks are few and show mixed results.  Ambus and 

Robertson (1999) reported a 22% reduction in CH4 consumption by soils in model Populus 

tremuloides (deciduous forest) ecosystem exposed to elevated CO2, while Phillips et al. 

(2001a) showed annual reductions in CH4 consumption of 16% and 30% in CO2 fumigated 

plots (200 mL L-1) relative to plots exposed ambient atmospheres in a 2 y study in a 

temperate forest.  In grasslands, Ineson et al. (1998) observed that rates of atmospheric CH4 

uptake were three times greater in ambient CO2 soils relative to CO2-enriched plots in an N-

fertilized sward of Lolium perenne, but a subsequent investigation (Baggs and Blum 2004) 

found a significant interaction between N fertilizer application rate and CO2 on atmospheric 
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CH4 consumption.  Further, Mosier et al. (2002) saw no impact of CO2 level on rates of CH4 

exchange between soils and the atmosphere in a semi-arid, mixed grassland community.  

 If the observed CO2-induced increases in net CH4 emissions are extrapolated to the 

global scale, the wetland (natural and agricultural environments) source strength in the 

atmospheric CH4 budget will increase by 29 and 160 Tg annually with a 200 to 300 mL L-1 

increase in atmospheric CO2 concentration (Chen and Prinn 2005).  At the same time, models 

suggest that the annual forest sink of 24 Tg y-1 for CH4 (Ridgwell et al. 1999) can be 

expected to decline from between 3.8 to 7.2 Tg as atmospheric CO2 concentrations increase 

by 200 mL L-1.  However, more empirical data are needed before we can rely on these 

predictions of changes in CH4 source and sink terms with increasing atmospheric CO2.  The 

few extant observational records of < 2 y in forest ecosystems and < 3 y in wetlands are 

insufficient to distinguish between transient and equilibrium responses of forest and wetland 

ecosystems to elevated CO2 and the impact of those responses on CH4 cycling.  

 

Ecosystem-level changes that may influence CH4 dynamics in temperate forests 

 Several CO2-induced changes in temperate forest ecosystems may help to explain the 

observed decline in net CH4 consumption under elevated CO2. Changes in plant productivity, 

chemistry, and allocation of C under elevated CO2 impacts the quantity and quality of C in 

the ecosystem, and the supply and availability of C to soil organisms.  Some C compounds, 

such as phenolics, tannins and terpenes inhibit metabolism and growth by some soil 

microorganisms. Examples of enhanced delivery of C to the soil under elevated CO2 in 

FACE studies include increased labile dissolved organic C in throughfall, (Lichter et al. 

2000b), a small increase in the storage of C in forest soils (Matamala and Schlesinger 2000, 
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Lichter et al. 2008) and increased root productivity and mortality (Pritchard et al. 2008).  

Enhanced root exudation of organic acids has been observed in a pot study of Pinus echinata 

seedlings (Norby et al. 1987), while greater litter fall in  both FACE and microcosm studies 

(Allen et al. 2000, Lichter et al. 2005, Lichter et al. 2008, Liu et al. 2009) has been reported 

under elevated CO2.  Further, several researchers have seen changes in the abundance of 

secondary C compounds in tissues and root exudates between plants grown under elevated 

and ambient CO2 (Peñuelas and Estiarte 1998, Verburg et al. 1999, Tuchman et al. 2002, 

Billings and Ziegler 2005, Wetzel and Tuchman 2005a).  Secondary C compounds, such as 

phenolics and terpenes, inhibit metabolism and growth by broad groups of soil bacteria 

(Souto et al. 2000), and specifically, methanotrophs (Amaral and Knowles 1997, 1998). 

 Reduced net CH4 consumption under elevated CO2 in temperate forests may also be 

the result of higher soil moisture and the associated reduction in diffusion of atmospheric 

gases.  Reduced gas diffusivity has been demonstrated (Dörr et al. 1993) to control rates of 

CH4 supply to the usual subsurface locus of CH4 oxidation (e.g. Whalen and Reeburgh 

1992), which is itself substrate-limited in well-drained forest soils, based on kinetic 

considerations (Bradford et al. 2001).  Thicker leaf litter in forests exposed to elevated CO2 

(Allen et al. 2000, Lichter et al. 2005, Lichter et al. 2008, Liu et al. 2009) can result in higher 

soil moisture because of reduced evaporation from the soil surface.  Increased soil moisture 

in turn slows the transport of gases within the soil matrix (Suwa et al. 2004).  In fact, a direct 

link between increased soil moisture and diffusion-limitation of substrate to CH4 oxidizers is 

well established (Striegl 1993, Castro et al. 1995, Whalen and Reeburgh 1996).  The excess 

of litterfall under elevated CO2 additionally directly adds to diffusional resistance in soils, 

and experimental litter removal has been shown to increase rates of net atmospheric CH4 
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consumption in forest soils by as much as 43% (Dong et al. 1998, Brumme and Borken 

1999). 

 Finally, reduced diffusion of atmospheric O2, because of thicker leaf litter and higher 

soil moisture, along with higher soil respiration (Bernhardt et al. 2006, Taneva et al. 2006), 

and increased soil aggregation (Hoosbeek and Scarascia-Mugnozza 2009) under elevated 

CO2 may increase the incidence of anoxic microsites where anaerobic microbial metabolism, 

such as methanogenesis, is possible.  Since net CH4 consumption in upland soils is the net 

effect of CH4 consumption in the oxic soil profiles and CH4 production in anoxic microsites, 

increased incidence of anoxic loci can alter this balance, reducing rates of net CH4 

consumption or shifting localized areas to net CH4 sources.  Horn and Smucker (2005) found 

when soil aggregates were saturated with water, the redox potential decreased rapidly, 

making these soil aggregates transiently anoxic within an otherwise oxic profile. 

 

Research objectives 

 This is a follow-up study to previous research reported by Phillips et al. (2001a), who 

saw 16 and 30% annual reductions in rates of net CH4 consumption by soils in a temperate 

forest enriched with elevated CO2.  The cause(s) of the decline in rates of net CH4 

consumption were not identified and the persistence of such a reduction beyond 2 y was not 

determined.  Therefore, the purpose of this dissertation is to a) determine if reduced net CH4 

consumption by the same temperate forest soils is a sustained response to elevated CO2; and 

b) identify factor(s) contributing to the observed (Phillips et al. 2001a) decline in net CH4 

consumption under elevated CO2 at the Duke Forest FACE site.  Possible controls on CH4 

consumption resulting from elevated CO2 concentrations include negative impacts of altered 
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organic compounds from the surrounding forest ecosystem on CH4 oxidizing communities, 

higher soil moisture and an associated reduction in the supply of CH4 to the zone of CH4 

oxidation, or a shift in the rates of consumption and production by CH4 oxidizing and 

producing communities, respectively. 

 Model projections of future climates are strongly dependent on atmospheric 

concentrations of radiatively and chemically important trace gases, such as CH4.  Therefore, 

my intention is for this research to be used to improve model projections of future climates, 

with special attention to the feedbacks of elevated CO2 on ecosystem components that 

control CH4 dynamics within forest soils.  

 

Dissertation structure 

 This dissertation has been written as 5 chapters.  Chapters 2 through 4 were written 

with the intention of submitting each chapter as individual manuscripts.  Chapters 1 and 5 

introduce and conclude, respectively, the body of work.  Chapter 2 shows an extension of the 

previous 2 y record of soil-atmosphere exchange of CH4 in CO2-enriched and free-air 

(control) plots to establish the long-term response of atmospheric CH4 consumption under 

elevated CO2.  In Chapter 2, I also investigate if treatment-wise differences or interactions in 

environmental measures (soil moisture and temperature) account for reduced atmospheric 

CH4 consumption in CO2-enriched plots.  Chapter 3 investigates the possibility of plant 

exudate control on CH4 consumption in soils from the same study site.  Chapter 4 evaluates 

the depth distribution of CH4 in the soil profile, the effective diffusivity of CH4 through the 

soil, as well as the extent and activity of CH4 consuming and producing communities at the 

study site.  This structure may result in some repetition in introductory material and 
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discussion of results.   
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CHAPTER 2: REDUCED NET CH4 CONSUMPTION IS A SUSTAINED 

RESPONSE TO ELEVATED CO2 IN A TEMPERATE FOREST 

Abstract 

 We compared, from 2004 through 2006, rates of soil-atmosphere CH4 exchange at 

permanently established sampling sites in a temperate forest exposed to ambient (control 

plots; ~380 mL L-1) or elevated (ambient + 200 mL L-1) CO2 since August 1996. A total 

of 880 observations showed net atmospheric CH4 consumption (flux from the atmosphere 

to the soil) from all static chambers most of the time at rates varying from 0.02 mg m-2 d-1 

to 4.5 mg m-2 d-1. However, we infrequently found net CH4 production (flux from the soil 

to the atmosphere) at lower rates, 0.01 mg m-2 d-1 to 0.08 mg m-2 d-1. For the entire study, 

the mean rate of net CH4 consumption in control plots was higher than the mean for CO2-

enriched plots, 0.55 (± 0.03 SEM) versus 0.51 (± 0.03 SEM) mg m-2 d-1. Annual rates of 

184, 196 and 197 mg m-2 for net CH4 consumption at control plots during the three 

calendar years of this study were 19, 10 and 8% higher than comparable values for CO2 

enriched plots. Differences between treatments were significant (p <0.05) in 2004 and 

2005 and nearly significant (p=0.10) in 2006. Volumetric soil water content was 

consistently higher at CO2-enriched sites and a mixed effects model identified a 

significant soil moisture x CO2 interaction on net atmospheric CH4 consumption. 

Increased soil moisture at CO2-enriched sites likely increases diffusional resistance of 

surface soils and the frequency of anaerobic microsites supporting methanogenesis, 
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resulting in reduced rates of net atmospheric CH4 consumption. Our study extends 

previous observations of reduced net atmospheric CH4 consumption at CO2-enriched 

plots at this site to nearly 8 continuous years, suggesting that this is likely a sustained 

negative feedback to increasing atmospheric CO2.    

 

Introduction 

 The atmospheric concentration of CH4 has more than doubled since the Industrial 

Revolution to a present-day value of  ~1782 µL L-1 (Forster et al. 2007).  This 

generalized increase is of concern because CH4 is second only to CO2 among trace 

atmospheric constituents with respect to radiative forcing and is also chemically active in 

the atmosphere, playing an important role in stratospheric and tropospheric ozone 

chemistry (Denman et al. 2007). 

 The atmospheric concentration of CO2 has increased parallel to that of CH4, and is 

projected to reach 730 mL L-1 by 2100, a level that exceeds the preindustrial 

concentration by 260% (Forster et al. 2007).  Although the unprecedented rate of change 

in the atmospheric concentrations of CO2 and CH4 over the last 250 y and the influences 

on climate are well documented, the reasons for changing abundances are not entirely 

clear.  Model projections of future climate are strongly dependent on atmospheric 

concentrations of radiatively and chemically important trace gases.  Cycling of long-lived 

greenhouse gases such as CO2 and CH4 are dominated or supported by a biospheric 

component responsible for the production and consumption of these gases, and for 

modulating or mediating gas exchange between the pedosphere or hydrosphere and 

atmosphere.  However, improvements to current models require a comprehensive 
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understanding of the linkage between biogeochemical processes and the troposphere with 

respect to trace atmospheric constituents that influence climate, and further identification 

of the interactions between biogeochemical cycles that impact exchange of trace gases 

between soil or water and the atmosphere. 

 The balance between rates of CH4 production (methanogenesis) and consumption 

(methanotrophy) determines whether a soil is a net source or sink for atmospheric CH4. 

Methane production usually exceeds consumption in wetland environments, accounting 

for about 69% of emissions to the atmosphere from natural sources (Wuebbles and 

Hayhoe 2002).   In contrast, well-drained soils generally display net consumption of CH4, 

and constitute the only biological loss term in the atmospheric CH4 budget. Little is 

understood about the effect of elevated CO2 on biogeochemical processes affecting CH4 

cycling dynamics.  However, Phillips et al. (2001a) previously showed, in a short term (2 

y) study, annual reductions in CH4 consumption of 16% and 30% in CO2-fumigated plots 

relative to plots exposed to ambient atmospheres in an upland temperate forest.  Similar 

investigations on shorter time scales (weeks to 2 mo) report reduced atmospheric CH4 

consumption under elevated CO2 in a deciduous forest (Ambus and Robertson 1999), and 

give mixed results for a grassland (Ineson et al. 1998, Baggs and Blum 2004), although 

results in these studies include nitrogen x CO2 fertilization interactions.  In contrast, 

Mosier et al. (2002) reported no CO2-induced response in atmospheric CH4 consumption 

in a shortgrass steppe over 4 y. 

 A negative feedback on forest soil CH4 consumption by rising CO2 has important 

implications for the atmospheric CH4 budget. Sink strength estimates for upland soils 

center around 30 Tg y-1, or about 75% of the stratospheric sink of 40 Tg y-1 (Denman et 
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al. 2007).  The few extant observational records of < 2 y, however, are insufficient to 

distinguish between transient and equilibrium responses of forest ecosystems to elevated 

CO2 or to determine whether the observed response will be sustained.  Ecosystem models 

indicate that plant/community responses to elevated CO2 and biogeochemical feedbacks 

can change over time (Newton et al. 2001).  It is therefore critical to identify the long-

term trajectory of the sign and magnitude of change. 

 Our study was conducted in an aggrading temperate forest where experimental 

plots had been continuously fumigated with CO2.  Our objectives were to: (a) extend a 

previous 2 y record of soil-atmosphere exchange of CH4 in CO2-enriched and free-air 

(control) plots (Phillips et al. 2001a) to establish the long term response of atmospheric 

CH4 consumption under elevated CO2; and (b) relate environmental measures (soil 

moisture and temperature) to rates of gas exchange to determine if treatment-wise 

differences or interactions in these well known controls on soil methanotrophy may 

account for reduced atmospheric CH4 consumption in CO2 enriched plots.  A firmer 

understanding of the feedback between increasing atmospheric CO2 and the rates and 

controls on CH4 oxidation in forest soils will aid in the refinement of process-based 

models that contribute to larger efforts directed at predicting future climates. 

 

Methods 

Field site 

 Field measurements were conducted at the Duke Forest (North Carolina; USA) 

Free-Air CO2 Enrichment (FACE) experiment sited in an even-aged stand of loblolly 

pine (Pinus taeda L.) planted in 1983.  Soils are clay loam, Ultic Hapludalf’s of the Enon 
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Series (Oh and Richter 2005).  Average normal air temperature ranges from 3.6 ° C in 

January to 25.3 ° C in July and annual precipitation averages 1209 mm (State Climate 

Office of North State Climate Office of North Carolina 2003-2009).  Soil physical 

characteristics are similar between CO2 treatment plots, with the exception of soil organic 

matter, which averaged 4.6% in CO2-enriched plots, and only 3.4% in control plots.  

Averages for all control and elevated CO2 plots (0 to 20 cm depth zone) for soil particle 

density, bulk density, and pH were 2.5 g cm-3, 1.2 g cm-3, and 5.7 units, respectively.  

Soil texture was 9% clay, 42% silt, and 49% sand. 

 Site characteristics are fully documented in Hendrey et al. (1999a) and briefly 

described here.  The experiment consists of eight circular 30-m diameter plots.  Four 

treatment plots (referred to as “CO2-enriched”) are fumigated with CO2 to maintain 

atmospheric CO2 concentrations 200 mL L-1 above ambient levels, while three additional 

treatment plots are fumigated with ambient air to replicate micrometeorological effects 

associated with CO2 addition. A fourth is subjected to ambient air without fumigation. 

The latter four plots are referred to as “controls”.  Continuous (24 h d-1) fumigation was 

initiated in August 1996, but was reduced to daylight hours only from 2003 to present.  

 

Gas Flux Measurements 

 Each plot is partitioned into four quadrants for a total of 24 (2004 and 2005) and 

32 (2006) individual sectors.  Methane flux determinations within each sector were made 

~biweekly in the 2004, 2005, and 2006 calendar years using the static chamber technique 

(Whalen et al. 1992), yielding 12 (2004 and 2005) and 16 (2006) measurements in both 

control and enriched plots on each sampling date.  The polyvinyl chloride collars (20 cm 
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diameter x 11 cm height) permanently deployed in three plots of each treatment at the 

conception (1999) of our initial investigation remained intact and were revisited for this 

study.  Collars of similar design were deployed in each quadrant of two additional plots 

(one plot, each treatment) in 2006.  Polyvinyl chloride covers fitted with a sampling port 

and capillary bleed were emplaced on soil collars for CH4 flux determinations. 

Headspace samples were withdrawn into 10 mL gastight glass syringes at zero time and 

at 0.5 h intervals thereafter to 2 h. Collars were open to litterfall and rainfall between 

sampling sessions.  

 Gas samples were analyzed for CH4 by flame ionization detection gas 

chromatography (Shimadzu model GC 8 A; precision expressed as the coefficient of 

variation for 10 replicate injections of a 0.94 mL CH4 L
-1 standard was < 3%) within 10 h 

of collection, well within our predetermined holding time of 24 h.  Sample separation was 

accomplished on a 1-m length x 0.32 cm diameter molecular sieve 5A column with an 

ultrahigh purity N2 carrier gas (33 mL min-1).  Injector and detector temperatures were set 

at 90 oC and 140 oC. 

 

Soil Physicochemical Measurements 

 Volumetric soil moisture (mL H2O cm-3 soil) was continuously measured by time 

domain reflectometry using Campbell Scientific Model CS616 probes.  Probes were 

located randomly in each quadrant of each plot in calendar years 2004 and 2005 (Hyun 

unpublished) and within 30 cm of each soil collar in 2006.  The soil moisture probes 

integrate volumetric soil moisture from the soil surface to 30 cm depth at 30 s intervals, 

and average values over 24 h are recorded on Campbell Scientific Model CR200 
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dataloggers.  In conjunction with CH4 flux determinations, soil temperature was 

measured at 3 cm intervals from 1 cm to 19 cm depth with a multithermistor temperature 

probe. 

 

Calculations and statistics 

 Area-based rates of net CH4 consumption were calculated from chamber 

geometry and the time-linear change of CH4 concentration in chamber headspaces.  

Annual rates of net CH4 consumption were determined by integrating for the calendar 

year daily, area-based data from each sampling occasion.  Average soil temperature was 

calculated as the mean of equally spaced observations taken to 19 cm. 

 We analyzed for differences in CH4 flux between CO2 treatments with the same 

statistical model used in a previous study (Phillips et al. 2001a).  The mixed effects linear 

model considered CO2 treatment as the main effect, with soil moisture, temperature and 

time (continuous) as covariates.  The model was a nested, hierarchical design with plot 

nested inside CO2 and quadrant nested within plot.  Unequal sampling intervals required 

the use of a time-series covariance structure, where correlations decline as a function of 

time.  Only significant interactions remained in the model. The same model with a 

different nesting structure was used to analyze overall net CH4 flux and environmental 

variables, in which quadrant was nested within plot and CO2 was simply an effect. 

 Student t-tests were used to analyze for statistical differences between CO2 

treatment averages for environmental variables.  Treatment-wise differences between 

annual rates of net CH4 consumption were determined by confidence interval overlap.  

All statistical analyses were performed at α=0.05. 
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Results 

Environmental variables 

 Air temperatures averaged 15 °C or 16 °C annually for each calendar year.  Soil 

temperatures ranged from 4 °C to 25 °C (Fig. 2.1), closely tracking air temperatures (not 

shown) and showed an average of 16 °C for the entire study.  Overall, soil moisture 

varied from 0.16 to 0.49 mL H2O cm-3 soil, and averaged 0.27 mL H2O cm-3 soil.  

Calendar year means for CO2-enriched plots were consistently higher than means for 

control plots (Table 2.1).  Differences between treatment means for soil moisture were 

significant in 2004 and 2005, but not 2006.  Over the entire study (n = 68), the average 

soil moisture for the CO2-enriched treatment (0.28 mL H2O cm-3 soil) was significantly 

higher than for the control treatment (0.26 mL H2O cm-3 soil).   

 

Patterns in net CH4 flux 

 Net CH4 consumption (flux from the atmosphere to the soil) was generally found 

at all individual soil chambers and was always calculated for each plot if fluxes from all 

four quadrants were averaged.  However, net CH4 production (flux from the soil to the 

atmosphere) was also observed, from 17 individual quadrants on 16 separate dates, giving 

22 observations of net CH4 production in 880 total records.  Net CH4 production was 

found almost twice as often in CO2-enriched chambers as in control chambers (14 versus 

8 observations).  Rates of net CH4 production from individual chambers varied from 0.01 

mg m-2 d-1 to 0.08 mg m-2 d-1 while rates of net CH4 consumption from individual 

chambers were much higher, varying from 0.02 mg m-2 d-1 to 4.5 mg m-2 d-1.  Chamber-

wise analysis showed no pattern with respect to magnitude of flux, as no chamber 
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showed consistently high or low values.  Although there was no clear seasonal pattern, 

rates of net CH4 consumption were frequently higher in the summer than the winter 

months (Fig. 2.1). 

 There was a strong inverse relationship between soil moisture and plot-averaged 

rates of net CH4 consumption (Fig. 2.2).  At the chamber level, the mixed-effects model 

used to test the factors contributing to overall net CH4 fluxes showed that soil moisture 

was significantly related to net CH4 flux in 2006, when soil moisture probes were 

installed proximal to chamber collars, but not in 2004 and 2005 when probes were 

randomly located within quadrants.  Overall, net CH4 consumption decreased with 

increasing soil moisture. The model showed no relationship between soil temperature and 

net CH4 flux. 

 

Differences in net CH4 consumption between CO2 treatments 

 When the entire data were considered (880 observations; each treatment), the 

mean net rate of CH4 consumption in control chambers was 7.5% higher than in CO2-

enriched chambers, 0.55 (± 0.03 SEM) versus 0.51 (± 0.03) mg m-2 d-1.  The difference 

was significant.  The disparity in net CH4 consumption rates between treatments showed 

interannual variability.  Mean rates for controls in 2004, 2005 and 2006 were 0.53 (± 

0.06), 0.54 (± 0.06) and 0.56 (± 0.05) mg CH4 m
-2 d-1.  These values were higher by 10, 4 

and 9% than corresponding annual averages for CO2-enriched chambers.  There was no 

seasonal pattern in the relative difference in net CH4 consumption rates between 

treatments.   
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 The mixed-effects model used to test the factors contributing to the variability in 

net CH4 consumption between treatments indicated that CO2 significantly interacted with 

soil moisture.  Soils from CO2-enriched plots consumed less CH4 than soils from control 

plots, and the difference between CO2 treatments increased with increasing soil moisture.  

Soil temperature had no effect. 

  The time-integrated rates of net CH4 consumption in control plots were 184, 196 

and 197 mg m-2 y-1 in 2004, 2005, and 2006 (Fig. 2.3).  Comparable values for CO2-

enriched plots were lower by 19, 10, and 8% at 150, 175 and 181 mg m-2 y-1.  Differences 

between treatments were significant in 2004 and 2005 and nearly significant in 2006 

(p=0.10).   

 

Discussion 

Overall patterns of net CH4 consumption and environmental correlates 

 Consumption of atmospheric CH4 by well-drained forest soils is a common 

observation in all climatic zones of the world.  The mean net CH4 consumption rate of 

0.54 mg m-2 d-1 in the present study is consistent with the value of 0.6 mg m-2 d-1 reported 

by both our group (Phillips et al. 2001a) and others (McLain et al. 2002) for studies 

conducted roughly 6 y previously.  Mean rates of net CH4 consumption for this site falls 

toward the low end of worldwide reports for aerated temperate forest soils, which show 

averages ranging from 0.2 to 5.0 mg CH4 m
-2 d-1 and center around 1 mg CH4 m

-2 d-1 

(summarized by Smith et al. 2000a, Butterbach-Bahl et al. 2002).   The average annual 

rate of net CH4 consumption in control plots (192 mg m-2) was markedly similar to the 

average (187 mg m-2) for a previous study (Phillips et al. 2001a).  As with our average 
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day rate estimates of net CH4 consumption, these annual values are at the low end of 

estimates for North American temperate forests, which largely fall between 320 and 2560 

mg m-2 y-1, but have a strong New England bias (Smith et al. 2000b).  Gas diffusivity has 

been demonstrated (Dörr et al. 1993) to control rates of CH4 supply to the usual 

subsurface locus of CH4 oxidation (e.g. Whalen et al. 1992), which is itself substrate-

limited in well-drained forest soils, based on kinetic considerations (Bradford et al. 

2001).  Soil texture influences diffusivity (Ball et al. 1997), with clay soils showing net 

CH4 consumption rates an order of magnitude lower than sandy soils (Dörr et al. 1993).  

It is likely that the fine texture of soil at our study site limits transport of atmospheric 

CH4 down-profile, resulting in comparatively low area-based rated of net CH4 

consumption. 

 Net CH4 consumption showed no relationship with soil temperature when the 

entire data over the temperature range 4 to 25 oC were considered, in agreement with the 

general lack of seasonality in flux (Fig. 2.1).  However, this is at odds with the previous 

report of a significant, but weak temperature effect on net CH4 consumption at this site 

(Phillips et al. 2001a).  Other studies have frequently shown no or low influence of 

temperature on atmospheric CH4 consumption in forest soils (e.g. Borken and Brumme 

1997, Butterbach-Bahl and Papen 2002), an observation consistent with the dominance of 

diffusion limitation (substrate supply) over enzymatic limitation of methanotrophy that 

can be expected at typical atmospheric CH4 concentrations (King and Adamsen 1992).   

However, some north temperate forest soils show an increased influence of temperature 

on atmospheric CH4 consumption at values < 10 oC (Crill 1991, Castro et al. 1995, 

Steinkamp et al. 2001).  Examination of our data with respect to this threshold extends 



 

 31

the observations of the influence of low temperatures on CH4 consumption southward.   

The average net CH4 consumption rate of 0.39 mg CH4 m
-2 d-1 for the 12 of 68 sampling 

dates at soil temperatures < 10 oC was lower by 32% than the mean of 0.58 mg CH4 m
-2 

d-1 at higher temperatures.  Differences in the strength of the temperature-CH4 flux 

relationship at low temperatures between the past (Phillips et al. 2001a) and present 

investigations may have accounted for the disparity in the observed relationship between 

these variables when the entire data from each study were considered.    

 In contrast to temperature, we observed a strong (inverse) linear relationship 

between net CH4 consumption and soil moisture (Fig. 2.2), which explained 34% of the 

variability in the entire data, and proved significant in the mixed-effects model for the 

2006 data when moisture probes were sited in proximity to soil collars.  This confirms 

previous observations of reduced net CH4 consumption with increasing soil moisture at 

this site (Phillips et al. 2001a, McLain et al. 2002) and is consistent with other in situ 

seasonal studies in forest soils.  However, our site is apparently less sensitive than many 

others to changes in soil moisture, as this factor explained 59 to 88% of the variability in 

net CH4 consumption across a range of forest ecosystem types (Castro et al. 1994, 

Lessard et al. 1994, Steinkamp et al. 2001, Butterbach-Bahl and Papen 2002, Price et al. 

2004). 

  

Differences in net CH4 consumption between CO2 treatments 

 We found that CO2 enrichment resulted in a per annum decline in net atmospheric 

CH4 consumption of 8 to 19% relative to unamended controls, in accord with previous 

reports for this site (Phillips et al. 2001a, McLain et al. 2002).  Moreover, there is no 
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compelling evidence for a temporal decline in the magnitude of the reduction in net CH4 

consumption in CO2-enriched plots compared with controls when our entire data are 

considered (Table 1).  Investigations of soil-atmosphere CH4 exchange in CO2-enriched 

ecosystems that normally function as an atmospheric CH4 sink are few.  In the most 

directly comparable study to our own, Ambus and Robertson (1999) reported a 22% 

reduction in CH4 consumption by soils in model Populus tremuloides ecosystems 

exposed to elevated CO2.  Ineson et al. (1998) observed that rates of net atmospheric CH4 

uptake were three times greater in ambient CO2 soils relative to CO2-enriched plots in an 

N-fertilized sward of Lolium perenne.  However, a subsequent investigation (Baggs and 

Blum 2004) found a significant interaction between N fertilizer application rate and CO2 

on net atmospheric CH4 consumption.  Mosier et al. (2002) saw no impact of CO2 level 

on rates of CH4 exchange between soils and the atmosphere in a semi-arid, mixed 

grassland community.  

 This study adds to previous efforts (Phillips et al. 2001a, Whalen unpublished) to 

uniquely provide a nearly continuous 8 y record of reduced atmospheric CH4 

consumption under elevated CO2 at the same permanently installed soil collars in a 

representative southern forest.  Short-and long-term responses to elevated atmospheric 

CO2 must be distinguished.  For instance, down-regulation of photosynthesis has been 

commonly reported for CO2-fertilized model and intact forest ecosystems after as little as 

two years (reviewed byAmthor 1995).  Over longer time trajectories, initial response 

functions of all ecosystem components from trees to microbes can be expected to adjust 

physiologically and demographically on different time scales through modification of 

biogeochemical feedbacks (Korner 2000).  The lag of nearly 2 y between the initiation of 
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CO2 fumigation and initial sampling (Phillips et al. 2001a), consistently lower annualized 

rates of net CH4 consumption in soils from CO2-enriched plots relative to controls, and 

lack of strong evidence that the magnitude of the CO2 enrichment effect has declined 

with time all suggest that reduced net atmospheric CH4 consumption is a sustained, 

equilibrium response of this forest soil to elevated CO2.  

 

Potential reasons for reduced net CH4 consumption under elevated CO2 

 Although reduced net atmospheric CH4 consumption is likely a sustained negative 

feedback by soil to CO2-enrichment at our study site, causative factors are difficult to 

identify, as the destructive sampling necessary for process-level investigations is limited 

to maintain ecosystem integrity.  However, the significant moisture x treatment 

interaction in our mixed effects model indicates that site-wise differences in net CH4 

consumption are at least in part moisture-related.  Several demonstrated effects of CO2-

enrichment on above- and below-ground processes within forest ecosystems feed back on 

soil moisture and by extension soil CH4 cycling dynamics (Fig. 2.4).   

 The net soil-atmosphere CH4 flux represents the balance between methanogenesis 

and methanotrophy, and changes in soil moisture elicit offsetting responses in these two 

microbial processes.  Increased net primary production under elevated CO2  (Fig. 2.4, 

pathway B) at our site (DeLucia et al. 1999, Hamilton et al. 2002, DeLucia, E.H. et al. 

2005, Norby et al. 2005, Finzi et al. 2006a) is responsible for a continuous ~17% greater 

annual increment of litterfall since fumigation (Allen et al. 2000, Lichter et al. 2005, 

Lichter et al. 2008; with exception of the 2 y following a 2002 ice storm where litter fall 

increased regardless of CO2 treatment).  The associated insulating effect enhances 
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moisture conservation (Schäfer et al. 2003).  The direct link between increased soil 

moisture and diffusion-limitation to CH4 oxidizers is well established (Striegl 1993, 

Castro et al. 1995, Whalen and Reeburgh 1996).  Persistently higher moisture content and 

reduced net atmospheric CH4 consumption in CO2-enriched plots relative to controls 

(Table 2) is consistent with a reduction in substrate supply to methanotrophs (Fig. 2.4; 

pathway B).  The excess of litterfall under elevated CO2 also directly adds to diffusional 

resistance in soils within these plots.  Experimental litter removal has been shown to 

increase rates on net atmospheric consumption in forest soils by as much as 43% (Dong 

et al. 1998, Brumme and Borken 1999). 

 Independent reports of anoxic microzones (Sexstone et al. 1985, Zausig et al. 

1993) and methanogenic activity in macroscopically oxygenated soils (Yavitt et al. 1995, 

Saari et al. 1997, von Fischer and Hedin 2002, Teh et al. 2005) indicate that simultaneous 

CH4 production and consumption are occurring in some well-drained upland soils with 

anoxic aggregates supporting localized zones of methanogenesis and oxic sites 

supporting methanotrophy.  Increased soil moisture under elevated CO2 likely favored 

development of additional microsites supporting methanogenesis (Fig. 2.4; pathway B).  

Previously we found no evidence of methanogenic activity in sieved soils from this site 

(Phillips et al. 2001b), but a subsequent investigation (McLain and Ahmann 2008) 

reported CH4 production in intact soil cores, with stronger activity in soils from CO2-

enriched plots.  It was suggested (McLain and Ahmann 2008) that sieving in our earlier 

study destroyed anaerobic microsites. In the present study, our more frequent 

observations of net CH4 emission in CO2-enriched versus control chambers provide 

confirmatory evidence for at least episodic CH4 production under both treatments and 



 

 35

higher rates in CO2-enriched plots.  Increased respiration in CO2-enriched plots 

(Bernhardt et al. 2006) may have also directly provided additional substrate for 

methanogens, as the pathway in anoxic aggregates of forest soils appears to be CO2 

reduction rather than acetate cleavage (Teh et al. 2005).   

 Other feedbacks to CO2-enrichment beyond plant-mediated changes in soil 

moisture may also have impacted CH4 cycling dynamics in these soils.  Hoosbeek et al. 

(2009)  reported an increase in soil macro-aggregation (250–2000 µm) under elevated 

CO2 in a temperate Populus x euramericana plantation.  The soil aggregates contained 

higher concentrations of C and N, providing loci of microbial activity. Enhanced 

respiratory O2 consumption by microbes may increase the incidence of anoxic microsites 

favorable for methanogenesis (Fig. 2.4, pathway C).  Elevated CO2 also induces increased 

concentrations of secondary compounds such as phenolic and tannins in plant tissues 

(Gebauer et al. 1997, Peñuelas and Estiarte 1998, Wetzel and Tuchman 2005b; Fig. 2.4; 

pathway A) and enhances root exudation of organic acids (Norby et al. 1987).  

Methanotrophs characteristically localized in upper mineral layers of forest soils (Whalen 

et al. 1992) show a high sensitivity to phenolics, monoterpenes and bulk organics from 

the overlying O horizon at environmentally relevant levels (Amaral and Knowles 1997, 

1998).   Enhanced production of inhibitory chemicals delivered in a larger mass of 

litterfall and subsequently leached to upper mineral layers could have reduced 

methanotrophic activity in enriched CO2 plots. 

 It is unclear if this sustained reduction in net atmospheric CH4 consumption can 

be broadly extrapolated to other forested ecosystems.  Atmospheric CO2 enrichment 

experiments have demonstrated significant increases in net primary production of forest 
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vegetation (DeLucia et al. 1999, Hamilton et al. 2002, DeLucia et al. 2005, Norby et al. 

2005, Finzi et al. 2006a; Fig. 2.4; pathway B).  Any attendant increase in soil moisture 

could effect a decrease in net atmospheric CH4 consumption as observed here.  A 

process-based model of atmospheric CH4 consumption by soils indicates an aggregated 

forest sink of 24 Tg CH4 y
-1 (Ridgwell et al. 1999).  A decline in soil CH4 consumption of 

the magnitude observed here (~15%; Table 2.1) across all forest biomes gives a decrease 

of 3.6 Tg CH4 y
-1, a value that is not inconsequential as it represents 10% of the model 

estimate (Ridgwell et al. 1999) of 38 Tg CH4 y
-1  for the total soil sink.    

 Our field study of the relationship between CH4 flux, CO2 enrichment and soil 

moisture suggests that moisture sensitivity of net atmospheric CH4 results from diffusion 

limitation to methanotrophs and the availability of anaerobic microsites supporting 

methanogenic activity, although it yields no insights into the relative importance of these 

microbial processes or other potential controls on CH4 exchange at the air-soil interface.  

Improvement of mechanistic models of global consumption of CH4 by soils will require 

field and process-oriented laboratory studies across representative forest biomes and soil 

types to fully identify and quantify coupling mechanisms of net CH4 oxidation to CO2 

enrichment and plant metabolism.   
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Table 2.1. Annual time-integrated rates of net CH4 consumption and volumetric soil moisture for six nearly consecutive years in forest 
plots exposed to ambient or elevated levels of CO2. Annual time-integrated rates of net CH4 consumption were determined by 
integrating for the calendar year daily, area-based data from each sampling occasion. 
 

 
 

Year 

Annual net CH4 consumption 
(mg m-2 y-1) 

% Difference 
between 

treatments 

 
 

Source 

Volumetric soil moisture 
(mL H2O g soil-1) 

 
 

Source Control CO2-enriched Control CO2-enriched 

1998 183 156 16  * (Phillips et al. 2001a)  0.24 0.26     * (Schäfer et al. 2003) 

1999 191 136 30  * (Phillips et al. 2001a) 0.27 0.34     * (Schäfer et al. 2003) 

2002 204 181 13  * (Whalen unpubl.) 0.22 0.23     * (Hyun unpubl.) 

2004 184 150 19  * Present study 0.29 0.31     * (Hyun unpubl.) 

2005 196 175 10  * Present study 0.26 0.30     * (Hyun unpubl.) 

2006 197 181 8 Present study 0.23 0.24    n Present study 

 
*Differences between treatments significant at α=0.05.
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Figure 2.1.  (a) Time series for rates of net atmospheric CH4 consumption by forest soils 
under CO2-enriched and ambient atmospheres (control).  Each datum point represents the 
mean of 12 or 16 individual static chamber flux determinations for each treatment;  (b) Time 
series for changes in mean soil temperature (1 to 19 cm depth interval) and mean volumetric 
soil moisture to 30 cm (mL H2O cm-3 soil).  In all cases error bars are eliminated for clarity. 
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Figure 2.2.  Relationship between net atmospheric CH4 consumption and volumetric soil 
moisture to 30 cm depth for the entire study (r2 = 0.340).  Each datum point represents the 
mean of 24 (2004 and 2005) or 32 (2006) observations for a sampling date. 
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Figure 2.3. Annual time-integrated net CH4 consumption by temperate forest soils at the 
Duke FACE site under ambient (control) and elevated (CO2-enriched) concentrations of CO2 
for 2004 through 2006. Annual time-integrated rates of net CH4 consumption were 
determined by integrating for the calendar year daily, area-based data from each sampling 
occasion (n = 23). The differences between CO2 treatments were 19%, 10% and 8% for 2004, 
2005, and 2006, respectively. Differences were significant for 2004 and 2005. Error bars 
represent one standard error of the mean.  
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Figure 2.4. Conceptual model of the impact of forest ecosystem responses to elevated CO2 
that influence soil CH4 cycling dynamics. Up and down arrows within each response function 
indicate a positive or negative impact, respectively, of that factor on net atmospheric CH4 
consumption.  Response functions are either documented or hypothesized by the associated 
references.



 

 

CHAPTER 3: INHIBITION OF CH4 CONSUMPTION BY SECONDARY 

CARBON COMPOUNDS IN THE TISSUES AND EXUDATES OF TEMPERATE 

FOREST PLANTS EXPOSED TO ELEVATED CO2

Abstract 

 We previously showed a sustained reduction in net atmospheric CH4 consumption 

by temperate forest soils in response to elevated CO2 (Dubbs and Whalen submitted) and 

here report the influence of plant exudates on atmospheric CH4 consumption in soils from 

the same study site.  We examine the effect of root exudate acids and primary or 

secondary metabolites from plant exudates (throughfall, duff and leaf leachates) on CH4 

consumption.  Plant exudates from forest plots exposed to elevated CO2 since 1996 (~580 

mL L-1 CO2) or from control plots subjected to ambient conditions and acid root exudates 

from loblolly pines (Pinus taeda) grown under elevated CO2 were applied to soils.  Duff 

leachates occasionally inhibited CH4 consumption regardless of CO2 treatment, and 

levulinic acid inhibited CH4 consumption at a concentration of 100 µmol L-1, but not at 

50 µmol L-1.  All other tested exudates had no effect on rates of CH4 consumption.  While 

plant exudates may only assert transient and secondary control on CH4 consumption 

under elevated CO2, identification of temporal and spatial patterns of influence warrant 

further study because they otherwise confound the correlation between the primary 

drivers of CH4 consumption and measured rates of net CH4 consumption.  
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Introduction 

 The global atmospheric CO2 concentration has more than doubled since the 

Industrial Revolution (Forster et al. 2007).  Little is understood about how increasing 

atmospheric CO2 will affect the biogeochemical cycling of other greenhouse gases, 

including CH4, but we recently reported a sustained decrease in net atmospheric CH4 

consumption under elevated CO2 in a temperate loblolly pine (Pinus taeda) forest (Dubbs 

and Whalen submitted).  Our previous work showed that a sustained CO2-induced 

negative feedback on forest soil CH4 consumption could lead to a 15% reduction (3.6 Tg 

CH4 yr-1) in the current forest soil sink of 24 Tg yr-1(Ridgwell et al. 1999).  This negative 

feedback to increasing CO2 is of concern because consumption by upland soils is the only 

terrestrial sink for atmospheric CH4, which is a greenhouse gas with radiative forcing 

second only to CO2 among trace atmospheric gases (Forster et al. 2007). 

 The reasons for the observed decline in net atmospheric CH4 consumption by 

these soils under elevated CO2 were not entirely clear.  However, we postulated several 

pathways by which changes in a temperate forest ecosystem exposed to elevated CO2 

could lead to decreased CH4 consumption by methanotrophic bacteria and increased CH4 

production by methanogenesis (Fig. 3.1).  Rates of CH4 exchange between upland soils 

and the atmosphere are dependent upon the balance between methanotrophy in largely 

oxic soils and methanogenesis in anoxic microzones.  The resultant net CH4 consumption 

accounts for the observed sink strength of upland soils in the global CH4 budget (Forster 

et al. 2007).  

 Pathway A (Fig. 3.1) depicts a mechanism by which changes in the chemistry of 

forest plant tissues may contribute to the observed reduction in net CH4 consumption.  
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Ecosystem-scale elevated CO2 enrichment experiments, or free air carbon exchange 

(FACE) experiments, indicate that temperate forest responses to elevated CO2 include 

increased net primary production (DeLucia et al. 1999, Hamilton et al. 2002, DeLucia et 

al. 2005, Norby et al. 2005, Finzi et al. 2006a), litter fall (Allen et al. 2000, Lichter et al. 

2005, Liu et al. 2005, Lichter et al. 2008), and fine-root production (Norby et al. 2004).  

Changes in plant productivity, tissue chemistry, C allocation and plant-microbe 

interactions under elevated CO2 in turn impact the quantity and quality of C in the 

ecosystem.  For example, Lichter et al. (2000a) observed an increase in labile dissolved 

organic C in throughfall, and Matamala and Schlesinger (2000) observed a 5.6% increase 

in the storage of C in forest soils under elevated CO2.  Norby et al. (1987) found that 

elevated CO2 enhances root exudation of organic acids in a pot study of Pinus echinata 

seedlings.  Elevated CO2-induced changes in plants also increase the abundance of 

secondary C compounds in tissues and root exudates relative to plants exposed to 

ambient CO2 (Peñuelas and Estiarte 1998, Verburg et al. 1999, Tuchman et al. 2002, 

Billings and Ziegler 2005, Wetzel and Tuchman 2005a).  Secondary C compounds, such 

as phenolics and terpenes, inhibit metabolism and growth by broad groups of soil bacteria 

(Souto et al. 2000), and specifically, methanotrophs (Amaral and Knowles 1997, 1998). 

 Here we extend previous research, which indicated that reduced net CH4 

consumption by a temperate forest soil is a sustained response to elevated CO2 (Dubbs 

and Whalen submitted), by examining the influence of plant exudates on rates of CH4 

consumption in soils from the same study site (Fig. 3.1, Pathway A).  We investigate the 

effect of organic acids, found to be the most abundant organic component of 

photosynthates released from roots in the rhizosphere (Smith 1976), and the effects of 
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primary or secondary metabolites from exudates (throughfall, duff and leaf leachates) on 

CH4 consumption.   Plant exudates were collected from forest plots exposed to elevated 

CO2 since 1996 or from plots subjected to ambient conditions (~380 mL L-1 CO2; 

control), and applied to soils.  Additionally, organic acids identified to be major 

components of root exudates (Phillips and Bernhardt unpublished) from loblolly pine 

laboratory-grown under elevated CO2 were applied to soils individually and in mixed 

cocktails to evaluate the effects of these root exudate acids on CH4 consumption. Effects 

of plant exudates on rates of CH4 production were also determined and deemed 

negligible, and thus, are not discussed further in this manuscript.  

 

Methods 

Field site 

 Field measurements were conducted at the Duke Forest (North Carolina; USA) 

Free-Air CO2 Enrichment (FACE) experiment sited in an even-aged stand of loblolly 

pine (Pinus taeda L.) planted in 1983.  Soils are clay loam, Ultic Hapludalf’s of the Enon 

Series (Oh and Richter 2005).  Average normal air temperature ranges from 3.6 ° C in 

January to 25.3 ° C in July and annual precipitation averages 1209 mm (State Climate 

Office of North State Climate Office of North Carolina 2003-2009). 

 Site characteristics are fully documented in Hendrey et al. (1999a) and briefly 

described here.  The experiment consists of eight circular 30-m diameter plots.  Four 

treatment plots (referred to as “CO2-enriched”) are fumigated with CO2 to maintain 

atmospheric CO2 concentrations 200 mL L-1 above ambient levels, while three additional 

treatment plots are fumigated with ambient air to replicate micrometeorological effects 



 

52

 

associated with CO2 addition.  A fourth is subjected to ambient air without fumigation. 

The latter four plots are referred to as “controls”.  Continuous (24 h d-1) fumigation was 

initiated in August 1996, but was reduced to daylight hours only from 2003 to present.  

 

Plant exudate collection 

Throughfall  

 Throughfall collectors consisted of 4 L amber acid-washed glass bottles.  The 

necks of the bottles were plugged by rubber stoppers, which were penetrated by acid-

washed glass funnels (60° angle bowl and 100 mm stem).  The funnel stems were stuffed 

with Pyrex glass wool to exclude large particles.  One throughfall collector was randomly 

placed within each of the experimental plots (n=4 for each CO2-enriched and control 

treatments) within 48 h of a predicted precipitation event in June and November of 2004, 

and June of 2005.  Throughfall samples were transferred to amber HDPE wide-mouth 

bottles within 6 h of the conclusion of each discrete rainfall, and the contents were frozen 

at -10 °C.   Samples were thawed and applied to soils within 10 d of collection.  

 

Fresh leaf litter and duff collection and leaching 

 Approximately 5 g (wet weight) of freshly fallen Acer rubrum (red maple), 

Liquidambar styraciflua (sweetgum), Pinus taeda (loblolly pine), and Ulmus alata 

(winged elm) leaves were collected from each CO2-enriched and control plot (n=3 for 

each treatment) in June and October of 2005.  These species were chosen because there 

was at least one individual tree of each of these species in each experimental plot.  

Freshly fallen leaves were identified as green leaves lying on the boardwalks that divide 
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six of the eight experimental plots into quadrants.  Upon returning to the laboratory (~1 h 

after collection), wet mass was determined and leaves were placed in acid-washed 30 mL 

glass vials.  Leaves (by species) were submerged in 20 mL deionized water (DIW) while 

a vial filled with DIW served as a control throughout the leaching process and soil 

incubation.  Vials were covered by parafilm and leaves were allowed to leach in the dark 

at ~24 °C for 24 h (Mann and Wetzel 1996).  

 Duff was randomly collected from the forest floor of CO2-enriched and control 

plots (n=4 for each treatment) in October of 2006, and October, November, and 

December of 2007.  Duff is identified as partially decaying plant material on the forest 

floor surface.  Upon returning to the laboratory (~1 h after collection), 10 g of duff (wet 

mass) from each plot was placed in a 118 mL acid-washed glass jar. Duff was submerged 

in DIW (60 mL), and one jar without duff was filled with 60 mL of DIW, to serve as a 

control throughout the leaching process and soil incubation.  Jars were covered by 

parafilm, and duff was allowed to leach in the dark at ~24 °C for 24 h (Mann and Wetzel 

1996). 

 

Root exudate preparation 

 Several organic acids were identified as primary root exudates from loblolly pine 

trees grown under elevated CO2 in a glass bead rooting substitute by the Bernhardt lab at 

Duke University.  The primary root acid exudates that were identified included citric, 

malic, oxalic, maleic, fumaric, levulinic, succinic, shikimic, and protocatecuic acids.  

Solutions of individual acids and a cocktail of all acids were prepared at 100 µmol L-1 

concentrations in DIW used for incubation experiments in April and October of 2006.  
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Selected organic acid exudates were additionally prepared at 10 µmol L-1, 50 µmol L-1, 

100 µmol L-1, 500 µmol L-1, and 1000 µmol L-1and used in a companion experiment 

intended to identify a threshold concentration for inhibition of CH4 consumption.  

 

Soil assays and incubation 

 Soils from the 0 to 20 cm depth interval were collected at the research site from 

outside of the experimental plots with a hand trowel 1 d prior to initiation of 

experimentation.  Soils were collected from outside of experimental plots because 

destructive sampling within experimental plots is highly restricted.  Upon return to the 

lab, soils were immediately homogenized by sieving (4.75 mm mesh), and 10 g 

subsamples of field moist soil were placed into 120 mL glass serum bottles.  Twice the 

number of soil-filled bottles were prepared as were needed (n=3 for each treatment in leaf 

leachate and root exudates experiments, n=4 in throughfall and duff leachate 

experiments).  Bottles were allowed to equilibrate with laboratory air (~1.8 mL L-1 CH4) 

for 1 h before being capped with butyl rubber stoppers and crimp-sealed.  Headspace CH4 

concentrations were determined immediately upon sealing and 12 h later by removing 3 

mL of headspace gas with 5 mL plastic syringes.  The jars in which CH4 was consumed 

at the most similar rates were used for further experimentation.  

 Throughfall, leaf and duff leachates, and the organic acids identified to be primary 

root exudates were administered to chosen soil aliquots.  The amount of liquid added to 

soils depended upon extant soil moisture as liquid additions were intended to achieve a 

water holding capacity of approximately 50%.  An equal volume of DIW as added to soil 

samples as a control in all experiments.  Following liquid addition, soils were allowed to 
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equilibrate at the lab atmosphere for 12 to 15 h before jars were sealed and sampled as 

described above, except that at least 5 samples were collected at evenly-spaced intervals 

over 48 h incubation periods.  Headspace pressure was maintained at 1 atm by replacing 

removed headspace gas with an equivalent volume of ultrapure N2.  

 Gas samples were analyzed for CH4 by flame ionization detection gas 

chromatography (Shimadzu model GC 8 A; precision expressed as the coefficient of 

variation for 10 replicate injections of a 0.94 mL CH4 L
-1 standard was < 3%) within 10 h 

of collection, well within our predetermined holding time of 24 h.  Sample separation was 

accomplished on a 1-m length x 0.32 cm diameter molecular sieve 5A column with an 

ultrahigh purity N2 carrier gas (33 mL min-1).  Injector and detector temperatures were set 

at 90 oC and 140 oC. Headspace measurements from replicate bottles without soil ensured 

that changes in headspace CH4 concentrations did not result from gas exchange with 

butyl rubber stoppers. 

 

Statistical Analysis 

 Soil dry mass-based rates of CH4 consumption were calculated from the log-linear 

change of CH4 concentration in jar headspaces.  Rates or rate constants for CH4 

consumption were compared by paired t-tests.  A significance level of α=0.05 was used 

for all statistical comparisons.   

 

Results  

Throughfall and leaf leachates 
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Rate constants (k; d-1) for CH4 consumption by soils following application of throughfall 

or leaf leachates from several individual species of trees collected from control or CO2-

enriched plots were not significantly different on any of the three dates tested (Fig. 3.2).   

Similarly, values of k for CH4 consumption by soils to which plant exudates were added 

also were not significantly different from those of soils to which DIW was applied on 

either of the two dates tested (Fig. 3.3).   

 

Duff leachates 

 Application of duff leachates from either CO2-enriched or control plots in fall of 

2006 significantly reduced rates of CH4 consumption, by 34% (CO2-enriched) and 38% 

(control), relative to rates of CH4 consumption by soils to which DIW was added (Fig. 

3.4).  The rates of CH4 consumption for CO2-enriched and control plot treatments were 

not significantly different from each other.  This pattern of reduced CH4 consumption by 

soils to which duff leachate from both CO2-enriched and control treatment plots was 

added was not repeatable, however, in similar experiments conducted three times in the 

fall and winter of 2007 (Fig. 3.5).  In all cases, rates of CH4 consumption were not 

significantly different for any treatment in soils amended with DIW or duff leachate from 

control or CO2-enriched plots. 

 

Organic acids from root exudates 

 In general, rates of CH4 consumption in soils following the addition of individual 

organic acids or a cocktail of organic acids identified as primary components of root 
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exudates from loblolly pine trees grown under elevated CO2 were not significantly 

different from that of soils to which DIW was added (Fig. 3.6).  Levulinic acid was the 

exception as it significantly inhibited rates of CH4 consumption. A 100 µmol L-1 solution 

of levulinic acid reduced CH4 consumption in soils by 63% and 91% relative to DIW-

treated soils in October and April 2006 trials, respectively.  An experiment conducted to 

identify the concentration threshold for inhibition of CH4 consumption by levulinic acid 

revealed that CH4 consumption was not significantly reduced at concentrations below 

100 µmol L-1  (Fig. 3.7).  Rates of CH4 consumption were, however, significantly 

reduced at levels above 100 µmol L-1.  Further, CH4 consumption was completely 

inhibited when levulinic acid was added to soils at concentrations of 500 µmol L-1 or 

1000 µmol L-1. 

 

Discussion 

 Plants grown under elevated CO2 contain increased tissue concentrations of 

secondary C compounds (Gebauer et al. 1997, Peñuelas and Estiarte 1998, Wetzel and 

Tuchman 2005b; Fig. 3.1, pathway A), which have the potential to impact CH4 dynamics 

because they inhibit metabolism and growth by methanotrophs (Amaral and Knowles 

1997, 1998).  Indeed, we found evidence of transient inhibition of CH4 consumption by 

duff collected from CO2-enriched plots, as well as from control plots, and from an 

organic acid identified to be a primary root exudate of loblolly pine trees grown under 

elevated CO2.  However, neither throughfall nor leaf leachates from the four dominant 

tree species at the study site affected rates of CH4 consumption by forest soils, regardless 

of the CO2 treatment origins of the plant exudates.  
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 The inhibition of CH4 consumption by duff leachate from both CO2-enriched and 

control treatments on one occasion suggests that some chemical(s) released from fresh 

autumnal duff inhibits methanotrophy, but the inhibitory substances are independent of 

CO2 level. While we leached the same wet mass of duff from both CO2 treatments to 

conduct our leaching experiment, there is actually greater litter fall under elevated CO2 at 

our site (Allen et al. 2000, Lichter et al. 2005, Lichter et al. 2008), thus, perhaps higher 

concentrations of the inhibitory substances are leached from the larger mass of duff to the 

mineral soil in CO2-enriched plots, which would result in a stronger inhibitory affect. 

 There are several possible reasons why duff collected on one occasion in the fall 

of 2006 was inhibitory to CH4 consumption, while that collected on other occasions in 

the fall and winter of 2007 was not.  For instance, losses of secondary C compounds from 

leaf litter occurs rapidly (Yavitt and Fahey 1986, Amaral and Knowles 1997, Schofield et 

al. 1998, Kainulainen and Holopainen 2002), and the concentrations of secondary C 

compounds leached from leaf litter are influenced by environmental conditions (Harris 

and Safford 1996).  Yavitt and Fahey (1986) found that > 80% of the soluble phenolics 

and carbohydrates were lost from leaf litter in a lodgepole pine ecosystem in less than a 

year, and Amaral and Knowles (1997) reported that forest soil extracts only inhibited 

CH4 consumption for 3 to 5 d.  We may have collected duff in 2006 soon enough after 

leaf fall that inhibitory compounds in leachates were sufficiently concentrated to 

significantly reduce CH4 consumption, yet we may have missed the window between leaf 

fall and leachate losses in the 2007 experiments.  Timing of freeze/thaw cycles may have 

influenced the availability of inhibitory substances.  Harris and Safford (1996) observed 

that repeated freeze/thaw cycles pre- and post- leaf fall, among other factors, increased 
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the amount of water-soluble carbon leached from fallen leaves from a temperate forest.  

Indeed, the first freeze/thaw cycle at our study site in 2006 occurred the day before duff 

collection, whereas the first freeze/thaw cycle in 2007 did not occur until 2 d after duff 

collection for the November 2007 experiment and 25 d before duff collection for the 

December 2007 experiment.  This suggests that duff collection may have coincided with 

the maximum potential for leaching of inhibitory compounds in 2006, but not in 

subsequent experiments.  Nonetheless, the degree of inhibition was apparently 

independent of the CO2 level under which trees were grown. 

 Levulinic acid, a primary root exudate acid released from loblolly pines exposed 

to elevated CO2, was found here to inhibit CH4 consumption.  The threshold 

concentration for inhibition by levulinic acid lies within the range of 50 to 100 µmol L-1, 

which far exceeds the concentration of 0.5 µmol L-1 for all phenolic compounds found in 

pore water from centrifuged samples of the top 25 cm of soil from a coniferous forest 

(Gallet and Pellissier 1997).  Little is known about the presence and persistence of 

levulinic acid in forest soils.  However, its increased release by tree roots under elevated 

CO2 and significant and even complete inhibition of methanotrophy at concentrations 

between 50 and 100 µmol L-1 suggest that this compound could inhibit methanotrophy in 

the rhizosphere, and warrants further attention in attempts to understand the feedback 

between an increasing atmospheric CO2 concentration and a reduction in the forest soil 

sink strength for CH4. 

 Despite some transient inhibition of net CH4 consumption by forest soils by plant 

exudates reported here, the spatial and temporal patterns of in situ net CH4 consumption 

observed in our previous study indicate that the secondary compounds in plant exudates 
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produced under elevated CO2 are not the primary reason for the observed decrease in net 

CH4 consumption by temperate forest soils under elevated CO2 (Dubbs and Whalen 

submitted). The quantity and quality of plant exudates vary among plant species (Smith 

1976, Ström et al. 1994). Likewise, the quantity and chemistry of plant exudates from 

roots or leaf litter are typically seasonal (Kuzyakov and Cheng 2001, Muscolo and Sidari 

2006, Phillips et al. 2008). Saerte and Bååth (2000) reported “spatial patterns of the 

microbial community to be related to the positions of trees” in a mixed Norway spruce-

birch stand in Finland. We previously reported high spatial and temporal variability in net 

CH4 consumption at permanently established sampling locations in a temperate forest 

where there was not any specific site that consistently exhibited higher or lower rates of 

net CH4 consumption relative to other sites (Dubbs and Whalen submitted). Since the 

patterns in net CH4 consumption in the temperate forest at our study site do not 

correspond to specific locations or periods of time, it is only reasonable to conclude that 

then plant exudates do not exert the primary control on methanotrophy or 

methanogenesis. Consequently, our previous and present research indicates that despite 

transient inhibition of net CH4 consumption in forest soils by plant exudates, Pathway A 

(Fig. 1) is not the primary driver for reduced net CH4 consumption in soils under elevated 

CO2.  However, it does deserve further consideration since the transient influences of 

chemical inhibitors may weaken the correlation between standard influences on CH4 

consumption (soil moisture) and measured rates of net CH4 consumption. 

 Future work should focus on identifying inhibitory compounds in bulk leachates 

that show enhanced production by plants under elevated CO2 by high performance liquid 

chromatography.  Focus should also be placed on identifying the temporal and spatial 
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patterns of influence of these compounds on in situ net CH4 consumption.  Research in 

this area will help to refine models aimed predicting the upland soil sink strength for 

CH4.  
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Figure 3.1. Conceptual model of the impact of forest ecosystem responses to elevated 
CO2 that influence soil CH4 cycling dynamics. Up and down arrows within each response 
function indicate a positive or negative impact, respectively, of that factor on net 
atmospheric CH4 consumption.  Response functions are either documented or 
hypothesized by the associated references. 
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Figure 3.2. Mean first order rate constants (k; d-1) for CH4 consumption in temperate 
forest soils amended with deionized water or throughfall from CO2-enriched (n=3) or 
control (n=3) plots.  Error bars represent one standard error of the mean. 
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Figure 3.3. Mean first order rate constants (k; d-1) for CH4 consumption by temperate 
forest soils amended with leaf leachate from the four most dominant trees within the 
control (n=3) and CO2-enriched (n=3) plots.  Error bars represent one standard error of 
the mean. 
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Figure 3.4. Rates of CH4 consumption by forest soils amended with deionized water or 
duff leachates from CO2-enriched (n=4) or control (n=4) plots.  Error bars represent one 
standard error of the mean.   
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Figure 3.5. Rates of CH4 consumption by forest soils amended with duff leachates or 
deionized water.  Error bars represent one standard error of the mean (n=3). 
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Figure 3.6. Rates of CH4 consumption by forest soils amended with deionized water or 
representative organic acids (100 µmol L-1) determined to be primary root exudates from 
loblolly pine (Pinus taeda) trees grown under elevated CO2.  Rates of CH4 consumption 
by soils to which individual organic acids not shown here (citric, malic, maleic, fumaric, 
succinic, shikimic, and protocatecuic acids) was similar to that of soils to which oxalic 
acid and the cocktail of organic acids was added.  Error bars represent one standard error 
of the mean (n=3). 
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Figure 3.7. Rates of CH4 consumption by forest soils amended with deionized water or 
levulinic acid, an organic acid determined to be a primary root exudate from loblolly pine 
(Pinus taeda) trees grown under elevated CO2 for a February 2009 experiment.  Error 
bars represent one standard error of the mean (n=3).  
 



 

 

CHAPTER 4: REDUCED NET CH4 CONSUMPTION CAUSED BY CHANGES IN 

THE SOURCES AND TRANSPORT OF SOIL GASES IN A TEMPERATE FOREST 

EXPOSED TO ELEVATED CO2

Abstract 

 We previously reported a sustained reduction in net atmospheric CH4 consumption by 

temperate forest soils exposed to elevated CO2 since 1996 (~580 mL L-1 CO2; Dubbs and 

Whalen submitted).  Changes in the transport and supply of atmospheric gases within the soil 

profile under elevated CO2, and subsequent changes in locus or activity of the CH4 oxidizing 

and producing communities, may help to explain the decrease in net CH4 consumption. We 

examined the depth distribution of CH4 in the soil profile, the effective diffusivity of CH4 

through the soil, and the extent and activity of CH4 consuming and CH4 producing 

communities in CO2-enriched and control (ambient atmospheres) plots at the same study site.  

High spatial and temporal variability in net CH4 consumption and CH4 production rates and 

high error in diffusivity measurements, along with limited ability to collect soil samples, 

largely resulted in the inability to detect significant differences between CO2 treatments in 

rates of net CH4 consumption or CH4 production, depth profile CH4 concentrations, or 

effective diffusivity.  However, qualitative trends of low overall diffusivity and increased 

incidence and rates of CH4 production in elevated CO2 plots, supported by a long-term record 

of significantly higher soil moisture in CO2 plots, indicate that increased soil moisture along 
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with increased activity of methanogens under elevated CO2 in soils with low diffusivity at 

our study site contribute to the observed decline in CH4 oxidation under elevated CO2.  

 

Introduction 

 The atmospheric CH4 concentration has more than doubled from a pre-industrial level 

of about 750 µL L-1 to a present day concentration of about 1780 µL L-1 (NOAA 2008).  

Although CH4 is less abundant than CO2, additions of CH4 to the tropospheric reservoir 

cause more direct warming than CO2, both on a per molecule and a mass basis (Wuebbles 

and Hayhoe 2002).  Methane also indirectly contributes to global warming because of its role 

in the stratospheric chemistry of ozone and water vapor formation (Wuebbles and Hayhoe 

2002).  Thus, a complete understanding of the CH4 cycle as well as the feedbacks and 

interactions with other biogeochemical cycles are important to the accurate prediction of 

future climates.  

 Known sinks for tropospheric CH4 include reaction with the hydroxyl radical, which 

removes approximately 445 Tg of CH4 from the atmosphere annually; and mixing of 

tropospheric CH4 with the stratosphere accounts for another 40 Tg of CH4 removal annually 

(Forster et al. 2007).  Upland soils are the only known biological sink for atmospheric CH4, 

accounting for approximately 38 Tg of CH4.  This biological sink results from the net balance 

of CH4 consumption by methanotrophic bacteria in the largely oxic soil profile, and 

production by methanogenic bacteria in anoxic microsites (reviewed by Conrad 1996). 

 We recently reported a sustained reduction of ~15% in net atmospheric CH4 

consumption by temperate forest soils under elevated CO2 relative to plots exposed to 

ambient levels of CO2 (Dubbs and Whalen submitted).  We also proposed several pathways 
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whereby changes in other aspects of forest ecosystem function in response to elevated CO2 

could impact net CH4 consumption by these soils (Fig. 4.1).  Reduced gas diffusivity has 

been demonstrated (Dörr et al. 1993) to control rates of CH4 supply to the usual subsurface 

locus of CH4 oxidation (e.g. Whalen and Reeburgh 1992), which is itself substrate-limited in 

well-drained forest soils, based on kinetic considerations (Bradford et al. 2001).  Thus, 

factors that introduce diffusion resistance or increase the diffusional path will reduce rates of 

atmospheric CH4 consumption (Fig. 4.1, pathway B).  Similarly, reduced gas diffusivity 

slows the transport of O2 from the atmosphere and, paired with respiratory consumption of 

O2 within the soil matrix, may result in the formation of anoxic microsites, supporting 

methanogenesis (Fig. 4.1; pathway C).  In this circumstance, methantrophs are supported not 

only by atmospheric CH4, but also by endogenously produced substrate.   

 Soil moisture increases diffusional resistance because gases diffuse 103 to 104 times 

more slowly through water than air.  Schäfer et al. (2003) and more recently, we (Dubbs and 

Whalen submitted) reported higher soil moisture in CO2-enriched plots at a temperate forest 

study site, relative to plots exposed to ambient atmospheres.  Schäfer et al. (2003) attributed 

the higher soil moisture in elevated CO2 plots to increased leaf litter depth (Allen et al. 2000, 

Schlesinger and Lichter 2001) and topographic convergence.  Increased leaf litter depth is a 

manifestation of increased net primary production in temperate forests in response 

to elevated CO2 (DeLucia et al. 1999, Hamilton et al. 2002, DeLucia et al. 2005, Norby et al. 

2005, Finzi et al. 2006a) that ultimately inhibits evaporation from the soil surface and results 

in higher soil moisture (Fig. 4.1, pathway B) while topographic convergence is an inherent 

difference in the lateral flow of soil pore water unrelated to CO2 treatment. 



 

77

 

 Here we examine the transport of atmospheric CH4 in the soil profile, the effective 

diffusivity of CH4 through the soil, as well as the extent and activity of CH4 consuming and 

producing communities in a temperate forest exposed to elevated CO2.  Changes in the 

transport and source of atmospheric gases within the soil profile under elevated CO2, or a 

change in the locus of the CH4 oxidizing community, may help to explain the observed 

persistent decrease in net CH4 consumption under elevated CO2 and provide information 

useful to modeling efforts aimed at forecasting future climates. 

 

Methods 

Field site 

 Field measurements were conducted at the Duke Forest (North Carolina) Free-Air 

CO2 Enrichment (FACE) experiment sited in an even-aged stand of loblolly pine (Pinus 

taeda L.) planted in 1983.  Soils are clay loam, Ultic Hapludalf’s of the Enon Series (Oh and 

Richter 2005).  Average air temperature ranges from 3.6 °C in January to 25.3 °C in July and 

annual precipitation averages 1209 mm (State Climate Office of North State Climate Office 

of North Carolina 2003-2009).  

 Site characteristics are fully documented in Hendrey et al. (1999a) and briefly 

described here.  The experiment consists of eight circular 30-m diameter plots.  Four 

treatment plots (referred to as “CO2-enriched”) are fumigated with CO2 to maintain 

atmospheric CO2 concentrations 200 mL L-1 above ambient levels, while three additional 

treatment plots are fumigated with ambient air to replicate micrometeorological effects 

associated with CO2 addition. A fourth is subjected to ambient air without fumigation. The 

latter four plots are referred to as “controls”.  Each plot is divided into quadrats by a 
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boardwalk that minimizes the impact of foot traffic during sampling.  Continuous (24 h d-1) 

fumigation was initiated in August 1996, but was reduced to daylight hours only from 2003 

to present. 

 Soil physical characteristics are similar between CO2 treatment plots, with the 

exception of soil organic matter, which averaged 4.6% in CO2-enriched plots, and only 3.4% 

in control plots. Averages for all control and elevated CO2 plots (0 to 20 cm depth zone) for 

soil particle density, bulk density, and pH were 2.5 g cm-3, 1.2 g cm-3, and 5.7 units, 

respectively. Soil texture was 9% clay, 42% silt, and 49% sand. 

 

Soil gas sampling 

 Sets of soil gas wells were installed in 2005 within 30 cm of permanently emplaced 

static chambers utilized for soil-atmosphere CH4 exchange determinations made in another 

aspect of this research (Dubbs and Whalen submitted).  Wells were located at 5 cm depth 

intervals from 5 to 25 cm below the soil surface.  There were a total of five wells per set 

located in two quadrants of each of the eight FACE plots for a total of 16 well sets per 

treatment.  Each well consisted of 1 cm ID stainless steel tube, open and perforated at the 

bottom, and topped with Swagelock reducing union fitted with a septum for syringe 

sampling.  The sampling wells were installed vertically such that the open and perforated 

bottom allowed diffusion of gases only from the prescribed depth. 

 Soil gas wells were sampled 31 times between July 2005 and July 2007.  On each 

sampling date, wells were initially evacuated with a hand-operated vacuum pump  

(Handivac) and then allowed to equilibrate with soil air for approximately 0.5 to 1 h before 

sampling.  Headspace samples were collected from each soil gas well in 10 ml glass syringes. 
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 The atmosphere above the soil surface adjacent to wells was additionally sampled with 

similar syringes on each date.  

 

Soil cores 

 Two soil cores (5.5 cm diameter by 25 cm length) were collected randomly from 

within each of the eight experimental plots in July 2005, September 2006, and April 2007 

using a stainless steel soil core sampler (AMS, Inc) fitted with a slide hammer (AMS, Inc) 

and stainless steel liners (AMS, Inc).  For each core, soil was extracted from the liner and 

divided into 2 depth increments from 0 to 15 cm, and from 15 to 25 cm, in the field.  Soil 

core sections were then transported to the laboratory (<1 h) in Ziploc bags, sieved (4.75 mm 

mesh), and mixed.  

 One 10 g field moist aliquot of homogenized soil from each depth increment of each 

core was placed into a 120 mL glass serum bottle and allowed to equilibrate with laboratory 

air for 1 h.  Serum bottles were then sealed with butyl rubber stoppers, crimp sealed, and 

incubated in the dark at approximately 20 °C.  Headspace samples for net CH4 consumption 

measurements were withdrawn into 10 mL gastight glass syringes at zero time and every 2 to 

4 h interval thereafter for up to 3 d (n ≥ 4).  Atmospheric pressure was maintained in the 

serum bottles by replacing removed headspace gas with an equivalent volume of ultrapure 

N2.  Replicate bottles were also sealed without soil and sampled in conjunction with 

experimental vessels to ensure that changes in headspace CH4 concentrations did not result 

from exchange with butyl rubber stopper.  Upon completion of net CH4 consumption 

measurements, rates of CH4 production were determined on the same samples.  This was 

accomplished by addition of 50 Pa of difluoromethane (CH2F2), an inhibitor of 
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methanotrophy (Miller et al. 1998), to serum bottles, following the time course for CH4 

consumption in the serum vial headspace as described above. 

 

Methane sample measurements 

 All gas samples were analyzed for CH4 by flame ionization detection gas 

chromatography (Shimadzu model GC 8 A; precision expressed as the coefficient of 

variation for 10 replicate injections of a 0.94 mL CH4 L
-1 standard was < 3%) within 10 h of 

collection, well within our predetermined holding time of 24 h.  Sample separation was 

accomplished on a 1-m length x 0.32 cm diameter molecular sieve 5A column with an 

ultrahigh purity N2 carrier gas (33 mL min-1).  Injector and detector temperatures were set at 

90 oC and 140 oC. 

 

Diffusivity 

 We employed a 222Rn-based method (Born et al. 1990) to estimate effective 

diffusivity at soil collars within each of the eight experimental plots that we have used in 

previous research (Phillips et al. 2001a, Dubbs and Whalen unpublished).  The 222Rn-based 

method involves the simultaneous measurement of 222Rn flux from soil collars, using the 

static chamber method (Whalen et al. 1992), and measurement of soil air 222Rn and CH4 

concentrations at the soil surface and at a depth of 25 cm from our gas sampling wells. Two 

static chamber and well sets from each of the eight experimental plot were used for October 

2008 and February 2009 diffusivity experiments while one static chamber and well set from 

each plot was used for April 2008 and July 2008 diffusivity experiments.  
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  To initiate 222Rn and CH4 flux determinations, polyvinyl chloride covers fitted with a 

sampling port and capillary bleed were emplaced on soil collars.  Radon-222 samples were 

withdrawn into 50 mL syringes from the soil surface, the 25 cm gas sampling well, and the 

static chamber. These samples were then used to fill evacuated 170 mL (volume) counting 

cells (Lucas) through quick connect fittings equipped with Teflon septa.  Immediately 

following 222Rn sample collection, a 10 mL chamber headspace sample and a 5 mL sample 

from each gas sampling well, from 5 cm to 25 cm depths, were also withdrawn into 10 mL 

glass syringes for CH4 analysis.  Additional static chamber headspace samples were similarly 

collected ~24 h later for 222Rn and CH4 analysis.  Radon-222 activity was determined by 

scintillation counting of gas samples contained in Lucas cells using a portable radon monitor 

(Pylon Model AB-5).  Gas samples were analyzed for CH4 as described above.  

 

Environmental measurements 

 Soil temperature and soil moisture were measured on each sampling date.  Soil 

temperature was measured at 3 cm intervals from 1 cm to 19 cm depth with a multithermistor 

temperature probe.  Volumetric soil moisture (mL H2O cm-3 soil) was measured by time 

domain reflectometry on each sampling occasion using a hand-held portable soil 

reflectometry sensor (Campbell Scientific 620 with 20 cm-long probe rods). 

 

Calculations and Statistical Analysis 

 Rates of net CH4 consumption and CH4 production of core sections were calculated 

from the headspace volume of the bottles and log-linear or time-linear changes of CH4 
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concentrations, respectively.  Rates of net CH4 consumption and CH4 production in core 

sections from the soil surface to 15 cm, and those from 15 cm to 25 cm below the soil 

surface, were averaged for comparison of CO2 treatments.  Area-based rates of net CH4 

consumption determined commensurate to diffusivity observations were calculated from 

static chamber geometry and the log-linear change in the CH4 concentration in static chamber 

headspaces. 

 Soil 222Rn profiles and 222Rn chamber flux measurements were used to calculate the 

effective diffusivity of CH4 in the soil (PCH4) according to Dörr and Münnich (1990):  

PCH4=D0,CH4/D0,Rn * PRn 

where D0,CH4 and D0,Rn are the diffusion coefficients of CH4 (0.194 cm2 s-1 Lerman 1979) and 

Rn (0.1 cm2 s-1; Tanner 1964) in air and PRn is the permeability of Rn, which is the quotient 

of Rn flux divided by the concentration gradient of Rn in the soil profile.  The effective 

diffusivity of CH4 was then used to calculate the flux of CH4 (JCH4):  

JCH4= PCH4* ∆CCH4/∆zCH4 

where  ∆CCH4/∆zCH4 is the linear change in CH4 concentration (CCH4) with depth (zCH4).   

 Paired t-tests were used to analyze for statistical differences between CO2 treatment 

means for CH4 concentration.  Paired t-tests were likewise used to analyze for statistical 

differences between CO2 treatment averages of rates of net CH4 consumption or CH4 

production.  Differences in diffusivity between CO2 treatment plots were compared by 

student t-tests for each of the four observations.  All statistical analyses were performed at 

α=0.05. 
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Results 

Depth profiles of CH4 concentrations 

 Soil CH4 concentrations decreased sharply with depth from 5 to 20 cm below the soil 

surface.  The rate of decline in CH4 concentrations with depth decreased from 20 to 25 cm 

(Fig. 4.2).  The depth profiles of average CH4 concentrations in control and CO2-enriched 

plots were similar.  The average CH4 concentration in control plots was slightly higher (0.1 

mL L-1) than in CO2-enriched plots at 5 cm, but the average CH4 concentration was slightly 

higher (0.01 to 0.05 mL L-1) in CO2-enriched plots relative to control plots at all other depths.  

However, there was not any significant difference in CH4 concentrations between CO2 

treatments at any depth, nor for the whole soil profile, for any sampling date or for the entire 

data. 

 

Depth profiles of net CH4 consumption and CH4 production 

 Net CH4 consumption was observed in all core sections before addition of the CH2F2, 

at which point CH4 production or zero flux of CH4 was observed for the remainder of the 

observational period.  Rates of net CH4 consumption were similar in soils from both CO2 

treatments at each depth increment, ranging from 150 to 300 pg gDW
-1 h-1, (Fig. 4.3a and b).  

Methane production was more variable, spanning almost three orders of magnitude in soils 

from both the 0 to 15 cm,  (Fig. 4.4a; 0.5 to 450 pg gDW
-1 h-1) and 15 to 25 cm depth intervals 

(Fig. 4.4b; 0 to 880 pg gDW
-1 h-1). 

 The average rates of net CH4 consumption in control plot soils from 0 to 15 cm were 

up to 14% higher than, or nearly equivalent to, the average rates of net CH4 consumption in 
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soils from the CO2-enriched plots from the same depth (Fig. 4.3a).  In contrast, the average 

rates of CH4 production in CO2-enriched plots from 0 to 15 cm depths were up to two orders 

of magnitude higher than, or nearly equivalent to, the average rates of CH4 production from 

the same depth (Fig. 4.4a).  The patterns in rates of net CH4 consumption and CH4 

production in soils from 15 to 25 cm depths are less clear with regard to differences between 

CO2 treatments.  The experiment with the overall highest average rate of CH4 production 

among the 15 to 25 cm depth increments showed a value for for soils from CO2-enriched 

plots that exceeded that for control plots  (July 2005; Fig. 4.4b).   This corresponded with a 

higher average rate of net CH4 consumption in control plot soils (Fig. 4.3b).  The rates of 

CH4 production in soils from 15 to 25 cm core sections on both other sampling dates (Oct. 

2006 and April 2007; Fig. 4.4b) were between 40 and 100% lower than the corresponding 

rates of net CH4 consumption, and rates in soils from CO2-enriched plots were higher than 

rates in control plots.  The differences in rates of net CH4 consumption and CH4 production 

between CO2 treatments were not significant for either depth interval or for the whole core 

on any date. 

 

Effective diffusivity 

 There was not any consistent or significant difference in PCH4 between CO2 

treatments.  The effective diffusivity of CH4 was higher in control plots on two of four dates 

(Table 4.1), which also corresponded with higher overall PCH4 values.  There was not a clear 

relationship between PCH4 and soil moisture, or between PCH4 and JCH4 (Table 4.1).  The 

calculated flux of CH4 (JCH4) was more than 25% lower than measured CH4 flux for three out 

of four observations (Table 4.1).  The exception was in April 2008 when predicted (JCH4) and 
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measured CH4 fluxes were only different by 20 and 24 % in CO2-enriched and control plots, 

respectively.  Relatively good agreement between measured and predicted rates of net CH4 

flux in April corresponded with the highest PCH4 value. Soil moisture was higher in control 

plots relative to CO2-enriched plots on each date when diffusivity measurements were made 

(Table 4.1). 

 

Discussion 

 Methane concentrations at depth within the soil profile are determined by relative 

rates of diffusion from the atmosphere, consumption by methanotrophs, and/or production by 

methanogens.  Our values for effective diffusivity are on the low end of reported values for a 

multitude of European (Born et al. 1990; Dörr et al. 1993) and boreal forest soils (Whalen et 

al. 1992), which range from 2 to 1504 cm2 h-1.  The low effective diffusivity may in part by 

due to the clay loam texture of our soils as soil texture influences diffusivity (Ball et al. 

1997).  For example, clay soils show net CH4 consumption rates an order of magnitude lower 

than sandy soils (Dörr et al. 1993).  The low diffusivity of our soils was evident during the 

collection and measurement of 222Rn samples, as it was difficult to flush sample wells and 

subsequently collect sufficient sample for 222Rn analysis.  Further, soils produced 222Rn at 

such low rates that accurate zero time 222Rn determination (t1/2 = 3.85 d) was problematic for 

stored, synoptically collected samples after the first few samples had been assayed because 

each assay required 6 h of counting.  Therefore, the error associated with diffusivity 

measurements may overwhelm any treatment effect.  

 Nonetheless, decreased soil diffusivity, as a result of increased leaf litter depth and/or 

higher soil moisture, would reduce the substrate supply for methanotrophs, and could explain 
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the observed decline in net CH4 consumption under elevated CO2.  The deeper duff in CO2-

enriched plots at our study site (Allen et al. 2000, Schlesinger and Lichter 2001, Lichter et al. 

2005, Lichter et al. 2008; Fig. 4.1; pathway B) may be responsible for the observed reduction 

in net consumption of CH4 under elevated CO2.  Duff has been shown to reduce diffusion of 

atmospheric gases to the mineral soil occupied by methanotrophs (Borken and Brumme 

1997, Saari et al. 1997, Dong et al. 1998).  Dong et al. (1998) observed that the removal of 

the leaves and humus layer from the soil surface resulted in 17% higher rates of CH4 

consumption by temperate forest soils.  Similarly, we observed an increase of 6% in net CH4 

consumption when leaf litter was removed  (data not shown), suggesting that a CO2 treatment 

effect on leaf litter depth may contribute to reduced rates of net CH4 consumption under 

elevated CO2.  Further, a thicker duff layer can slow evaporation from the soil surface 

thereby causing higher soil moisture in CO2-enriched plots (Schäfer et al. 2003).  Schäfer et 

al. (2003) observed significantly higher soil moisture in CO2-enriched plots at our study site 

through 2002, although they proposed that the difference between CO2 treatment plots did 

not necessarily reflect a treatment effect.  We (Dubbs and Whalen unpublished) also found 

higher soil moisture in CO2-enriched plots during biweekly determination of soil-atmosphere 

CH4 exchange in 2004 and 2006, and that soil moisture explained 34% of the variability in 

rates of net CH4 consumption.  Higher soil moisture and associated reduction in diffusivity 

(Suwa et al. 2004) in CO2-enriched plots likely contributes to the observed decrease in rates 

of net CH4 consumption under elevated CO2, regardless of the cause of increased soil 

moisture.  

 Low overall effective diffusivity and high soil moisture in CO2-enriched plots would 

also slow the diffusion of atmospheric O2 into and within the mineral soil.  This reduced 
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supply of O2, paired with increased respiratory O2 consumption within the soil matrix under 

elevated CO2 (Bernhardt et al. 2006) may result in the formation of anoxic microsites.  

Independent reports of anoxic microzones (Sexstone et al. 1985, Zausig et al. 1993) and 

methanogenic activity in macroscopically oxygenated soils (Yavitt et al. 1995, Saari et al. 

1997, von Fischer and Hedin 2002, Teh et al. 2005) indicate that simultaneous CH4 

production and consumption are occurring in well-drained upland soils, with anoxic soil 

aggregates supporting localized zones of methanogenesis and oxic sites supporting 

methanotrophy.  In fact, Hoosbeek and Scarascia-Munozza (2009) saw increased macro-

aggregation (250–2000 µm) of soils under elevated CO2 in a temperate Populus x 

euramericana plantation (Fig. 4.4; pathway C), and further found that the soil aggregates 

contained higher concentrations of C and N.  Horn and Smucker (2005) found that the redox 

potential decreased rapidly, and thus the propensity for anoxia increased, when such soil 

aggregates were saturated by water.  While not explicitly determined here, such loci of 

microbial activity where respiratory consumption of O2 is enhanced and the development of 

anaerobic conditions are stimulated may explain the qualitative trend of increased CH4 

production under elevated CO2 observed here.  We previously reported episodic net CH4 

efflux from the soil (indicated net CH4 production) under both CO2 treatments, with nearly 

double the observations in CO2-enriched plots (Dubbs and Whalen unpublished).  We 

additionally measured gross CH4 production in all soils from a 0 to 15 cm depth increment in 

laboratory experiments where an inhibitor of methanotrophy was administered (Fig. 4.4).  

Further, in the 15 to 25 cm depth increment, high rates of CH4 production were clearly 

manifested by reduced rates of net CH4 consumption (July 2005; Figs. 4.3 and 4.4).  Finally, 

the depth profiles (Fig. 4.2) provide further evidence of methanogenesis at depth since there 
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were only 15 occasions out of 2480 observations, where the CH4 concentration was drawn 

below the widely acknowledged threshold of about 0.2 µl L-1 for high affinity methanotrophs 

(Bender and Conrad 1995), indicating a soil source of CH4 augments the atmospheric supply 

to methanotrophs. 

 While reduced diffusivity of CH4 in CO2-enriched plots was not expressed in depth 

profiles of CH4 concentrations, which showed no significant differences in CH4 

concentrations at any depth (Fig. 4.2), the depth profiles did suggest slightly higher CH4 

production in CO2-enriched plots. Methane concentrations at depths between 10 and 20 cm in 

CO2-enriched plots were slightly higher than those in control plots. Additionally, there was 

not any difference in CH4 concentrations between CO2 treatments at any depth (Fig. 4.2), nor 

was there a significant difference in net CH4 oxidizing activity between CO2 treatments at 

any depth (Fig. 4.3).  A down-profile shift in the locus of the CH4 oxidizing community in 

response to elevated CO2 would increase the diffusional path of atmospheric CH4 to the locus 

of CH4 oxidation.  Thus, this lack of difference in CH4 concentrations between CO2 

treatments indicate that the long-term pattern of reduced net CH4 consumption in soils 

exposed to elevated CO2 (Phillips et al. 2001a, b, McLain et al. 2002, Whalen unpublished, 

Dubbs and Whalen unpublished) is not the result of such a downprofile shift in the CH4 

oxidizing community. 

 High spatial variability in net CH4 consumption and CH4 production rates and 

diffusivity measurements, along with limited ability to collect soil samples hampered our 

ability to detect significant differences between CO2 treatments.  However, trends indicating 

low overall diffusivity and increased incidence and rates of CH4 production in elevated CO2 

plots relative to control plots.  This conclusion is supported by long-term repeated field 
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measures of soil moisture and net atmospheric CH4 consumption where significant, 

quantitative differences between CO2 treatments were observed with CO2-enriched plots 

showing higher soil moisture and lower rates of net atmospheric CH4 consumption (Dubbs 

and Whalen, submitted).  Thus, global changes that impact soil hydrology directly or through 

biological feedbacks (Denman et al. 2007) are useful predictors of the direction and rates of 

CH4 flux in upland soils. Factors that increase soil aggregation can also be expected to 

influence CH4 dynamics, although more research is needed regarding this pathway (Fig. 4.1, 

Pathway C).  
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Table 4.1.  Effective diffusivity (PCH4) and corresponding calculated net CH4 flux (JCH4; µg m-2 h-1), measured net CH4 flux (µg m-2 h-

1), and soil moisture in control and CO2 enriched plots (n=3, each treatment for July 2008 and April 2008; n=6, each treatment for 
Oct.2008 and Feb. 2009) at the Duke FACE site. 

Date CO2 treatment 
PCH4 

(cm2 h-1) 

JCH4 

(µg m-2 hr-1) 

Measured net CH4 

flux (µg m-2 hr-1) 

Soil moisture 

(mL H20 cm-3 soil) 

July ‘08 Control 2.8 1.3 1.7 0.32 

 Enriched 2.4 1.1 1.5 0.27 

April ‘08 Control 1.8 0.7 1.6 0.33 

 Enriched 1.3 0.5 1.6 0.31 

Oct. ‘08 Control 0.9 0.4 1.6 0.24 

 Enriched 1.1 0.4 1.8 0.24 

Feb. ‘09 Control 0.0 0.0 0.8 0.39 

 Enriched 0.5 0.1 0.6 0.34 
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Figure 4.1. Conceptual model of the impact of forest ecosystem responses to elevated CO2 
that influence soil CH4 cycling dynamics. Up and down arrows within each response function 
indicate a positive or negative impact, respectively, of that factor on net atmospheric CH4 
consumption.  Response functions are either documented or hypothesized by the associated 
references.  
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Figure 4.2. Composite depth profiles of CH4 in soils in forest plots exposed to elevated CO2 
or the ambient atmosphere (control).  Data for each depth represent the mean from 8 soil gas 
wells for each treatment over 31 dates.  Error bars are eliminated for clarity 
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Figure 4.3. Mean rates of net CH4 consumption in forest soils from plots exposed to elevated 
CO2 or the ambient atmosphere (control).  Data are mean rates for: a) 0 to 15 cm; and b) 15 
to 25 cm depth increments from 16 cores.  Error bars represent 1 standard error of the mean 
(n=8). 
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Figure 4.4. Mean rates of CH4 production in forest soils from plots exposed to elevated CO2 
or the ambient atmosphere (control).  Data are mean rates for: a) 0 to 15 cm; and b) 15 to 25 
cm depth increments from 16 cores.  Error bars represent 1 standard error of the mean (n=8).
 



 

 

CHAPTER 5: CONCLUSION

 My research suggests that reduced net CH4 consumption is a sustained, equilibrium 

response of this temperate forest soil to elevated CO2.  I observed lower annualized rates of 

net CH4 consumption in soils from CO2-enriched plots relative to controls for all 3 y of my 

study, extending the record from permanently emplaced soil collars at my study site (Phillips 

et al. 2001; Whalen and Fischer unpublished) to 8 nearly continuous years.  The average 

decrease in net CH4 consumption under elevated CO2 for all annual observations was ~15% 

and there was not any consistent change in the magnitude of the CO2 enrichment effect on 

the CH4 sink strength over the extended record. 

 A decline in soil CH4 consumption of the magnitude observed here (~15%) across all 

forest biomes with an estimated aggregated sink of 24 Tg CH4 y
-1 (Ridgwell et al. 1999), 

gives a decrease of 3.6 Tg CH4 y
-1.  This reduction represents 10% of the model estimate 

(Ridgwell et al. 1999) of 38 Tg CH4 y
-1  for the total soil sink.  

 Causative factors for the observed decrease in net CH4 consumption under elevated 

CO2 are difficult to identify, as the destructive sampling necessary for process-level 

investigations is limited to maintain ecosystem integrity at the Duke FACE site.  However, 

the modeled soil moisture x CO2 treatment interaction for 3 y of field measurements of net 

CH4 flux and corresponding environmental variables was significant, indicating that site-wise 

differences in net CH4 consumption are at least in part moisture-related.  The observation that 

soil moisture explains 34% of the variability in net CH4 measurements further supports soil 
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moisture control of net CH4 consumption where soil moisture is higher in elevated CO2 plots.  

However, soil moisture does not appear to be the only driver of the observed decline in net 

CH4 consumption under elevated CO2.  

 I found that some plant exudates from this forest ecosystem inhibit CH4 consumption, 

including levulinic acid, an organic acid that is released from plant roots in greater quantities 

under elevated CO2; and duff leachates from the duff of both CO2 treatment plots, but which 

is thicker under elevated CO2.  These leachates do not exert consistent control over rates of 

atmospheric CH4 consumption.  However, their temporal and spatial influence on net CH4 

consumption under elevated CO2 deserve further consideration since their transient 

influences may weaken the correlation between well-studied influences on CH4 consumption 

and measured rates of net CH4 consumption.  

 While high spatial variability and high error, along with limited ability to collect soil 

samples largely resulted in the inability to detect significant differences in rates of CH4 

consumption and CH4 production and soil diffusivity between CO2 treatments, qualitative 

trends showed low overall effective diffusivity of these soils and increased incidence and 

rates of CH4 production in elevated CO2 plots.  When these trends are viewed together with 

the contributions of soil moisture to explaining reduced net CH4 consumption under elevated 

CO2, it is apparent that increased activity of methanogens under elevated CO2 contribute to 

the observed decline in CH4 oxidation at this study site.  

 My research has identified several research needs.  These include further 

investigation of the spatial and temporal inhibitory influences of plant compounds produced 

under elevated CO2 that may influence rates of CH4 consumption, as well as determination of 

the factors that contribute to formation of anoxic microsites in upland soils under elevated 
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CO2. If my results can be broadly extrapolated, my research also suggests that a 200 ml L-1 

increase in present-day atmospheric CO2 concentrations can be expected to reduce the forest 

soil sink for CH4 of ~24 Tg y-1 by approximately 15%.  Further, the observed relationship 

between increasing soil moisture and the reduction in the forest sink for CH4 indicates that 

climate forecasting models can constrain the predicted upland sink for CH4 by relating it to 

soil hydrology.  
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