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ABSTRACT

KEVIN Z. SNOW: Identifying Code Injection and Reuse Payloads In Memory Error Exploits
(Under the direction of Fabian Monrose)

Today’s most widely exploited applications are the web browsers and document readers we

use every day. The immediate goal of these attacks is to compromise target systems by executing

a snippet of malicious code in the context of the exploited application. Technical tactics used to

achieve this can be classified as either code injection – wherein malicious instructions are directly

injected into the vulnerable program – or code reuse, where bits of existing program code are pieced

together to form malicious logic. In this thesis, I present a new code reuse strategy that bypasses

existing and up-and-coming mitigations, and two methods for detecting attacks by identifying the

presence of code injection or reuse payloads.

Fine-grained address space layout randomization efficiently scrambles program code, limiting

one’s ability to predict the location of useful instructions to construct a code reuse payload. To expose

the inadequacy of this exploit mitigation, a technique for “just-in-time” exploitation is developed.

This new technique maps memory on-the-fly and compiles a code reuse payload at runtime to ensure

it works in a randomized application. The attack also works in face of all other widely deployed

mitigations, as demonstrated with a proof-of-concept attack against Internet Explorer 10 in Windows

8. This motivates the need for detection of such exploits rather than solely relying on prevention.

Two new techniques are presented for detecting attacks by identifying the presence of a payload.

Code reuse payloads are identified by first taking a memory snapshot of the target application,

then statically profiling the memory for chains of code pointers that reuse code to implement

malicious logic. Code injection payloads are identified with runtime heuristics by leveraging

hardware virtualization for efficient sandboxed execution of all buffers in memory. Employing both

detection methods together to scan program memory takes about a second and produces negligible

false positives and false negatives provided that the given exploit is functional and triggered in the

target application version. Compared to other strategies, such as the use of signatures, this approach
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requires relatively little effort spent on maintenance over time and is capable of detecting never

before seen attacks. Moving forward, one could use these contributions to form the basis of a unique

and effective network intrusion detection system (NIDS) to augment existing systems.
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CHAPTER 1: INTRODUCTION

Interconnected devices like personal computers, phones, and tablets increasingly play a central

role in our daily lives. As a result, our private information (e.g., taxes, addresses, phone numbers,

photos, banking accounts, etc.) and activities (e.g., browsing habits, webcams, GPS, etc.) are

commonly accessible in digital form. Businesses not only house client information en-mass, but

also their own trade secrets. It comes as no surprise then that unsavory individuals and organizations

have clear motivation for pursuing access to this information. Once the domain of curiosity and

bragging rights, the impact of “hacking” continues to escalate, now raising concern over national

security. Indeed, the US Department of Justice recently indicted five Chinese military hackers for

cyber espionage, the first charges of this kind against nation-state actors1. The information leaked in

these campaigns, for example, is used for theft, blackmail, political motives, or to gain a competitive

edge in business. Further, even systems completely devoid of exploitable information hold value as a

stepping stone in gaining access to more systems.

The past two decades bare witness to a constantly changing computer security landscape. This

holds true in terms of the tactics of both attacker and defender. Today, the wide-spread proliferation

of document-based exploits distributed via massive web and email-based attack campaigns is an all

too familiar strategy. Figure 1.1 illustrates a common adversarial tactic dubbed a drive-by download.

The adversary compromises existing web sites and inserts a hidden snippet of code that directs

victim browsers to automatically load a secondary web page. Hence, a policy of only browsing to

well-known “safe” web sites only serves to give one a false sense of security that depends on those

sites being secured. The secondary page serves a “weaponized” document with embedded malicious

code. End-user document readers automatically load these files with, for example, Adobe Acrobat,

Flash Player, the Microsoft Office Suite, Silverlight, the Java Runtime, and other applications

installed on the victim’s machine. These document readers provide fertile ground for adversaries—

support for dynamic content like JavaScript and ActionScript significantly eases the exploitation

1Indictment against members of China’s military in May of 2014: http://www.justice.gov/iso/opa/
resources/5122014519132358461949.pdf
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of vulnerabilities found in their sizable, complex code bases. Largely, the immediate goal of these

attacks is to compromise target systems by executing arbitrary malicious code in the context of the

exploited application. Loosely speaking, the technical tactics used in these attacks can be classified

as either code injection — wherein malicious instructions are directly injected into the vulnerable

program — or code reuse attacks, which opt to inject references to existing portions of code within

the exploited program. In either case, these tactics are frequently used to subsequently download

malware from another web site, or extract the malware from embedded data within the weaponized

document.

Web Browser

Compromised 
Website

<iframe src='...' />

Exploit Kit 
Landing Page

Plugin Detection

Malware 
Distribution Site

Malicious
Document

Executable

➊

➋

➌

Redirect

Figure 1.1: “Drive-by” download attack.

Despite subtle differences in style and implementation over the years, the use of code injection

and reuse payloads has remained as a reliable tactic used by the adversary throughout the history of

computer security. Unfortunately, these payloads can be automatically constructed both uniquely

and such that they mimic the structure of benign code or information, seemingly making them less

than ideal as tell-tale identifiers of the exploitation of memory errors. Instead, detection has been

approached from other angles. Namely, one approach has been anomaly detection, wherein one

identifies out-of-place activities in either network communication or software running on a system.

Another strategy, given that a particular exploit vector has already been discovered through some
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other means, is to build signatures of a key element that embodies malicious nature of a particular

activity or content. These signatures are often expressed as large regular expression databases used

by anti-virus software. These approaches are invaluable when one has concrete a-priori knowledge

of benign or malicious activities, but require constant re-assessment in the quickly evolving security

landscape.

Beyond detecting invasive code and activity, a plethora of literature exists on strategies for

reducing the overall attack surface through compiler techniques, programming language paradigms,

instruction-set architectures, operating system mitigation, improved access control primitives, cryp-

tography, and reducing human error through training and more intuitive interfaces, among others.

For the most part, detection is complimentary to these techniques, as non-ubiquitous mitigations

reduce, but do not eliminate all attacks. Even ubiquitously deployed mitigations do not necessarily

dissuade a capable adversary. Code injection and reuse mitigations, for example, are deployed across

all major operating systems to-date, yet the use of these tactics is still widespread.

Thesis Statement

Static and dynamic analysis techniques offer an effective and long-lasting strategy for

detecting the code injection and reuse payloads used in the exploitation of application

memory errors in “weaponized” documents.

To support this assertion, the content of this dissertation first motivates the problem setting with

a new attack paradigm that demonstrates how code reuse can be leveraged to defeat deployed and

proposed defenses, then elaborates on novel methods to detect both code reuse and injection while

providing empirical evidence that these methods have effectively detected such attacks from 2008 to

2014 with minimal effort to keep pace with the changing attack landscape.

1.1 A Brief History of Exploitation and Mitigation

In the early days of exploitation, the lack of proper bounds checking was misused to overwrite

information on the stack (e.g., a function’s return address) and redirect the logical flow of a vulnerable

application to injected code (coined shellcode), an attack strategy which became known as smashing

the stack (Aleph One, 1996). To mitigate stack smashing, a so-called canary (i.e., a random value)

was introduced on the stack preceding the return value, and compilers added a verification routine to
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function epilogues that terminates programs when the canary is modified. As was to be expected,

attackers quickly adapted their exploits by overwriting alternative control-flow constructs, such as

structured exception handlers (SEH).

In response, a no-execute (NX) bit was introduced into the x86 architecture’s paging scheme

that allows any page of memory to be marked as non-executable. Data Execution Prevention

(DEP) (Microsoft, 2006) in Microsoft Windows XP SP2, and onward, leverages the NX bit to mark the

stack and heap as non-executable and terminates a running application if control flow is redirected to

injected code. Thus, it seemed that conventional code injection attacks had been rendered ineffective

by ensuring the memory that code is injected into is no longer directly executable. Instead, attackers

then added code reuse attacks to their playbook. This new strategy utilizes code already present in

memory, instead of relying on code injection. The canonical example is return-to-libc (Solar

Designer, 1997), in which attacks re-direct execution to existing shared-library functions. More

recently, this concept was extended by (Shacham, 2007) to chain together short instruction sequences

ending with a ret instruction (called gadgets) to implement arbitrary program logic. This approach

was dubbed return-oriented programming (ROP). To date, return-oriented programming has been

applied to a broad range of architectures (including Intel x86, SPARC, Atmel AVR, ARM, and

PowerPC).

This early form of code reuse, however, relies on gadgets being located at known addresses in

memory. Thus, address-space layout randomization (ASLR) (Forrest et al., 1997), which randomizes

the location of both data and code regions, offered a plausible defensive strategy against these attacks.

Code region layout randomization hinders code reuse in exploits; data randomization impedes the

redirection of control-flow by making it difficult to guess the location of injected code. Not to

be outdone, attackers soon reconciled with an oft neglected class of vulnerabilities: the memory

disclosure. Indeed, disclosing a single address violates fundamental assumptions in ASLR and

effectively reveals the location of every piece of code within the address region, thus re-enabling the

code reuse attack strategy.

1.2 Just-in-Time Code Reuse

Fine-grained address space layout randomization (Bhatkar et al., 2005; Kil et al., 2006; Pappas

et al., 2012; Hiser et al., 2012; Wartell et al., 2012) has been introduced as a method of tackling
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the deficiencies of ASLR (e.g., low entropy and susceptibility to information leakage attacks). In

particular, fine-grained randomization defenses are designed to efficiently mitigate the combination

of memory disclosures and code reuse attacks; a strategy used in nearly every modern exploit.

Chapter 3 introduces the design and implementation of a framework based on a novel attack strategy,

dubbed just-in-time code reuse, that undermines the benefits of fine-grained ASLR. Specifically, it

exploits the ability to repeatedly abuse a memory disclosure to map an application’s memory layout

on-the-fly, dynamically discover API functions and gadgets, and JIT-compile a target program using

those gadgets—all within a script environment at the time an exploit is launched. The power of

this framework is demonstrated by using it in conjunction with a real-world exploit against Internet

Explorer, and also by providing extensive evaluations that demonstrate the practicality of just-in-time

code reuse attacks. The findings suggest that fine-grained ASLR is not any more effective than

traditional ASLR implementations. This work serves to highlight that despite decades of work to

mitigate exploitation of memory errors, the ability to inject payloads to perform a code reuse attack

still persists. Further, there are no proposed defenses on the horizon that will completely eliminate

these attacks without significant architectural changes or unacceptable performance losses (Szekeres

et al., 2013).

1.3 Detecting Code Reuse Payloads

Return-oriented programming (ROP) and Just-in-Time ROP (JIT-ROP) offer a powerful tech-

nique for undermining state-of-the-art security mechanisms, including non-executable memory and

address space layout randomization. DEP, ASLR, and fine-grained ASLR, however, are all in-built

defensive mechanisms that benefit the most from ubiquitous deployed across machines and appli-

cations. Further, they do not necessarily detect attacks. Instead, these mitigations simply result in

application failure (i.e. a “crash”) with no insight into whether an attack took place or a bug was

encountered. The work in Chapter 4 instead focuses on detection techniques that do not require

any modification to end-user platforms. Such a system can analyze content directly provided by an

analyst, email attachments, or content extracted from web traffic on a network tap. Specifically, a

novel framework is proposed that efficiently analyzes documents (PDF, Office, or HTML files) and

detects whether they contain a return-oriented programming (including JIT-ROP) payload. To do

so, documents are launched in a sandboxed virtual machine to take memory snapshots of a target
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application, then those snapshots are efficiently transferred back to the host system. Operating on

the memory snapshots, novel static analysis and filtering techniques are used to identify and profile

chains of code pointers referencing ROP gadgets (that may even reside in randomized libraries). An

evaluation of over 7,662 benign and 57 malicious documents demonstrate that one can perform such

analysis accurately and expeditiously — with the vast majority of documents analyzed in about 3

seconds.

1.4 Detecting Code Injection Payloads

The vast majority of modern memory error exploits require one to employ some form of code

reuse (be it ret-to-libc, ROP, or JIT-ROP) to bypass DEP, which effectively prevents direct

execution of injected code. However, the use of code injection payloads still persists in hybrid

payload attacks. That is, the relative difficulty in crafting reliable code reuse payloads is high

compared to crafting code injection payloads. Thus, it is not uncommon for code reuse payloads

to consist of only enough gadgets to “turn off” DEP and redirect execution to a second payload —

injected code. One promising technique for detecting code injection payloads is to examine data (be

that from network streams or buffers of a process) and efficiently execute its content to find what

lurks within. Unfortunately, past approaches (Zhang et al., 2007; Polychronakis et al., 2007, 2006;

Cova et al., 2010; Egele et al., 2009) for achieving this goal are not robust to evasion or scalable,

primarily because of their reliance on software-based CPU emulators. Chapter 5 provides a novel

approach based on a new kernel, called ShellOS, built specifically to address the shortcomings of

previous analysis techniques. Unlike those approaches, the new design takes advantage of hardware

virtualization to allow for far more efficient and accurate inspection of buffers by directly executing

instruction sequences on the CPU, without the use of software emulation. In doing so, one also

reduces exposure to evasive attacks that take advantage of discrepancies introduced by software

emulation. Chapter 6 further evolves this new kernel to provide diagnostics of code injection payload

intent in addition to mere detection. The diagnostics provide the insights that enable network

operators to generate signatures and blacklists from the exploits detected. This chapter also presents

the results of a large-scale case study of those intents over several years.

1.5 Contributions

In summary, the contributions of this dissertation are as follows:
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1. Chapter 3 presents a new method of constructing code reuse payloads, dubbed JIT-ROP.

JIT-ROP is an evolution of the return-oriented programming (Shacham, 2007) paradigm

that eliminates “offline” computation of code snippets by leveraging a memory disclosure

vulnerability to construct the payload “on-the-fly”. It concretely demonstrates that code reuse

payloads are viable in face of widely deployed mitigations and proposed fine-grained ASLR

schemes. An early version of this work appeared in:

• Snow, K. Z., Davi, L., Dmitrienko, A., Liebchen, C., Monrose, F., and Sadeghi, A.-R.

(2013). Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space

Layout Randomization. IEEE Symposium on Security and Privacy.

2. Chapter 4 presents a new method for statically detecting code reuse payloads, including

JIT-ROP. First, the content within documents is “pulled apart”, enabling one to expose

code injection and reuse payloads for analysis. To do so, documents are launched with their

designated reader program (e.g. Adobe Acrobat, Internet Explorer, etc) to allow the program

itself to do the unpacking. Then, static code analysis “profiles” snippets of code in the payload

and identifies the combinations of profiles that enable meaningful computation. It provides a

practical method of detecting attacks that require code reuse for memory error exploitation.

An early version of this work appeared in:

• Stancill, B., Snow, K. Z., Otterness, N., Monrose, F., Davi, L., and Sadeghi, A.-R. (2013).

Check My Profile: Leveraging Static Analysis for Fast and Accurate Detection of ROP

Gadgets. Symposium on Recent Advances in Intrusion Detection.

3. Regarding code injection, Chapter 5 describes an evolution of the emulation-based detection

approach (Polychronakis et al., 2006) that improves runtime performance and reduces generic

evasion strategies, dubbed ShellOS. These benefits are realized by foregoing emulation

altogether and directly executing instruction sequences on the CPU by taking advantage of

hardware virtualization. It provides a practical method of detecting attacks that require code

injection for memory error exploitation. An early version of this work appeared in:

• Snow, K. Z., Krishnan, S., Monrose, F., and Provos, N. (2011). SHELLOS: enabling fast

detection and forensic analysis of code injection attacks. USENIX Security Symposium.
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4. Chapter 6 presents a novel tactic for diagnosing the intent of code injection payloads as well

as a large-scale case study of those intents. The diagnostics provide the insights that enable

network operators to generate signatures and blacklists from the exploits detected. An early

version of this work appeared in:

• Snow, K. Z. and Monrose, F. (2012). Automatic Hooking for Forensic Analysis of

Document-based Code Injection Attacks. European Workshop on System Security.
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CHAPTER 2: BACKGROUND

This chapter reviews the basics of important concepts that are vital to understanding the remainder

of this dissertation. It covers the logistics of memory error vulnerabilities, control-flow hijacking,

and constructing payloads (be it code injection or reuse) to perform arbitrary actions during the

exploitation phase. Before drilling down to these topics, however, one can benefit from familiarity

with their place relative to the ecosystem of attacks on client machines. Figure 2.1 presents an

overview of attack phases used to compromise a client.

The reconnaissance phase consists of a multitude of activities ranging from technical network

scans to contacting an organization over the phone to learn of the existence of machines and how they

are most likely to be compromised. Attacks targeting specific individuals or organizations make use

of extensive reconnaissance. Attacks that cast a wide net are more likely to simply target the most

popular applications for exploitation. The outcome of this phase, from the adversarial perspective,

are decisions about how to approach the exploitation phase.

The goal of the exploit phase is to run unrestricted arbitrary code on the victim device. One

way to do this, for example, is to simply ask the user to download and run an executable when

they browse to a web site controlled by the adversary. Storyboards used to convince one to do so

include claiming they need to download a specific video codec, operating system or browser plug-in

update, or antivirus software, to name a few. This tactic, dubbed social engineering, may only

be effective for a small percentage of targets, but nevertheless yields results for attack campaigns

targeting the masses. More relevant to the topic of this dissertation is the use of technical exploits to

achieve the goal of running arbitrary code. Technical exploits include anything from taking advantage

of a network file store misconfigured by the user (i.e. sharing a system drive with the world) to

manipulating a bug in the file sharing code that was introduced by the developer. This dissertation

focuses on a particular class of bug that enables the adversary to achieve the stated goal of arbitrary

code execution—memory errors. The logistics of these errors are further discussed in the next section,

but for now it is enough know that these errors have persisted for decades across operating systems,

architectures, software for networking services, and user-oriented applications such as web browsers
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Figure 2.1: Overview of attack phases.

and document readers. While these exploits do enable arbitrary code execution, the most widespread

code simply bootstraps running a so-called “egg” (i.e. an executable that defenders typically label

as malware, spyware, trojan, or a virus). To deliver data that exploits these vulnerabilities on a

victim machine the adversary can push exploit packets directly to exposed network services, force the

user to pull a file with embedded exploit when visiting a web site, or use a combination of pushing

so-called spam email en-mass which the user then pulls to open attachments or visit web links. The

widespread use of operating system memory protections and firewalls on network boundaries makes

exploiting network services far less effective than it was in the past. Thus, this dissertation primarily

focuses on “documents” (including web pages, spreadsheets, browser plug-ins, etc.) that contain

embedded exploits.

After using an exploit to execute the egg, then next step is to tighten the foothold on the victim

during the infection phase. This often consists of installing malware that persists across reboots and

adding hooks into the kernel (i.e. a rootkit) to mask the fact that specific executables are present and
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running on the system. Information may also be collected on the compromised system at this time.

While these events are commonplace, there exist innumerable possibilities for the adversary at this

point. Command and Control (C&C) is communication with external servers (e.g. via web, chat,

newsgroups, peer-to-peer protocols, etc.) that is used for notifying the adversary of success, receiving

malware updates, tunneling interactive remote sessions, exploring systems interconnected with the

victim, and a plethora of other activities. The heighten level of access is used by the adversary to

automatically (or interactively) collect desired information, archive it into one or more files, then

exfiltrate it all at once or slowly to avoid being noticed.

2.1 Memory Errors

A memory error is one type of software bug introduced, for instance, when the bounds of a

buffer are improperly handled. As a result, memory outside of the buffer may be read or written. The

infamous HeartBleed (CVE-2014-0160) bug in OpenSSL is one such memory error. In that case, the

OpenSSL service erroneously copies a buffer using a length specified by the client. The client can

supply a length value greater than the size of this buffer. As a result, the memory contents located

immediately after the buffer are sent back to the client. Memory errors that leak memory contents of

the exploited application are called memory disclosures. In the case of HeartBleed, the memory error

enables one to read adjacent memory, but does not enable reading arbitrary memory locations or to

write to memory. The capabilities endowed to an adversary are highly dependent on the specific code

containing the vulnerability.

In general, there are two types of memory error. This section uses the nomenclature given

by Szekeres et al. (2013). Heartbleed is an example of a so-called spatial memory error, while

the other type is called a temporal error. Figure 2.2 illustrates the contents of memory during the

execution of the two types of memory errors.

Spatial errors are those that cause a pointer to be set outside the bounds of the object (or buffer)

it references. A buffer overflow is the classic example of a spatial error. Figure 2.2 (left) shows a

partially filled buffer in step ¶. In step ·, the buffer has been written past the last address that was

allocated to it and modified the content of an adjacent buffer. Figure 2.3 depicts C source code that

could generate this behavior. In this code snippet, the ‘src’ variable is 15 characters (plus a null byte),

while ‘dest’ is only 5 bytes. The pointer used to iterate over ‘dest’ during the copy is invalidated
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Figure 2.2: Spatial memory error (left) and temporal memory error (right).

char src[] = "Buffer Overflow"; 1

char dest[5]; 2

memcpy(dest, src, strlen(src)); // spatial error 3

Figure 2.3: C source code with a spatial memory error.

and written to when it iterates past the end bound of the destination buffer. If the source buffer were

supplied by the adversary in this example, one could write arbitrary values into the memory adjacent

to the destination buffer.

Temporal errors, on the other-hand, result in dangling pointers, i.e. pointers to deleted objects.

Figure 2.2 (right) shows the memory of an object with several references in step ¶. Keeping multiple

references to a single object is a common practice, for example, when sharing an object across

different parts of the code, or even with basic data structures like doubly-linked lists. In step · the

object is deleted with one of the references, but the other reference to the object remains in use. A

different type of object is instantiated in step ¸, which happens to get allocated at the same address

the deleted object used to reside. At this point, dereferencing the dangling pointer of the original

object (Ref A), e.g. by accessing a member function or attribute, will erroneously access Object B

instead of the intended Object A. To further highlight the problem, consider the C++ source code

snippet in Figure 2.4. In this snippet of code a string is used after it was freed (called a use-after-free).

The ‘s2’ pointer is dangling after the delete because the underlying object memory has been freed.

However, ‘s2’ still points to the memory location where it resided and is later used to access the

object. Instead of calling the string object’s append method, a method of the C++ map will be called.

Hijacking Control Flow: A memory error can be exploited to hijack program control flow if

control-flow constructs in memory can be overwritten. Figure 2.5 depicts some common targets. A
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std::string *s1, *s2; 1

s1 = s2 = new std::string("Shared String"); 2

delete s1; 3

s1 = new std::map<int, int>; 4

s2->append("use-after-free"); // temporal error 5

Figure 2.4: C++ source code with a temporal memory error.

program stack stores function return addresses and structured exception (SE) handlers (SEH). Local

function variables are allocated on the stack. Thus, if a memory error involves a local buffer overflow,

one can write a new value into the return address or exception handler. When the function returns,

or an exception is triggered, control-flow is directed to wherever this new value points. Figure 2.6

shows this entire process in detail. The vulnerable code has a similar spatial memory error as that in

Figure 2.3. Any string with a length greater than 128 overflows the stack-allocated memory buffer

(variable x). More precisely, calling the function with a 140 byte string hijacks program control flow

by overwriting the return address of function foo with the address encoded by the last 4 bytes of the

string. For example, a string ending in ‘AAAA’ encodes the address 0x41414141 since 0x41 is

the hexadecimal representation of the ASCII encoded letter ‘A’. To arrive at this 140 byte string, one

can either derive the exploit input by examining the program memory layout, or deduce it through

multiple test inputs (called fuzzing). Taking the approach of examining program memory, Figure 2.6

depicts the stack memory layout before and after the call to strcpy. The gray portion of the diagram

represents data pushed to the stack by the code calling foo. The compiled function call translates to a

push instruction for argument passing and a call instruction to both store the returning address and

jump to the function code. The white portion is data pushed by foo itself by the compiler-generated

prologue. The prologue saves the calling function’s stack frame address on the stack, as well as any

exception handlers, then allocates 128 bytes of stack space for the local variable x. The “before”

diagram indicates precisely how one should structure an exploit buffer. For this example, 128 bytes

fills the space allocated for x, then 4 bytes for the SE handler address, 4 more bytes for the saved

stack frame address, then the next 4 bytes take the place of the return address pushed by the caller of

foo. When the function returns, control flow is redirected to whichever address is located in the RET

slot.
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Figure 2.5: Opportunities for control-flow hijacking.

Overwriting function return addresses, however, is just one of several strategies to hijack control

flow. Global objects, e.g. those allocated with new or malloc, are created on the heap. C++ Objects

on the heap each have a virtual method table (or vtable) that points to a lookup table of virtual

methods for that object. Exploits that target memory errors on the heap commonly overwrite the

vtable pointer, replacing it with a pointer to a new vtable controlled by the adversary. Control-flow is

hijacked when a method of that object is called and the overwritten vtable is used to perform the

method lookup. Further, all the aforementioned issues and techniques to exploit them are present

across all prominent operating systems, e.g. Windows, OSX, Linux, iOS, and Android, albeit with

slightly varying specifics.
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void foo(char *p){
  char x[128];
  strcpy(x, p);
}

Call foo with argument:
  ‘A’x(128+4+4+4)

Overwrites x, SE handler, 
previous frame, and RET

Vulnerable Code

Control Flow Hijacking

Figure 2.6: The classic “stack smashing” buffer overflow that hijacks control-flow by overwriting a
function’s return address.
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Exploiting Web Browsers and Document Readers: Memory errors may appear to be problem-

atic for only low-level services coded in languages without memory-safety primitives (like in-built

bounds checking). However, memory errors are routinely found and exploited using JavaScript,

ActionScript, and Java byte-code running in the context of document readers and web browsers. For

instance, CVE-2014-1776 is a use-after-free temporal memory error affecting Microsoft’s Internet

Explorer versions 6-11 and CVE-2013-2551 is a spatial memory error affecting versions 6-10. Both

of these vulnerabilities enable one to both read and write memory, which is used to hijack program

control flow. Further, all of this can be achieved with a single JavaScript supplied by the adversary

and interpreted in the victim’s browser.

This raises the question of how a memory error can occur in a “memory-safe” scripting language

like JavaScript. Indeed, memory safety (i.e. bounds checking) in JavaScript should prevent buffer

overflows, thus preventing an adversary from trivially supplying a script that exploits itself. However,

there are several instances where the memory safety of JavaScript (and the other “safe” languages)

does not apply. One such case results from the use of a design pattern called the proxy pattern.

Consider the use of the proxy pattern in Figure 2.7. The web browser uses a library to share some

core functionality between the HTML parser and JavaScript interpreter. Any JavaScript code that

manipulates the vector is transparently proxied to this library code, which is not within the scope

of the JavaScript interpreter. Thus, bugs in proxied interfaces become exploitable from JavaScript.

Internet Explorer, for example, shares more than 500 object interfaces between the HTML parser

and JavaScript interpreter1. Similarly, Java provides this functionality through the Java Native

Interface (JNI). From January to April of 2014 alone, Oracle reports that the standard edition of

Java experienced 37 vulnerabilities, 11 of which enabled arbitrary code execution2. Further, most

languages including Python, Ruby, PHP, and C# can access native interfaces through the Simplified

Wrapper and Interface Generator (SWIG)3 or other in-built mechanisms.

On the Longevity Memory Error Exploits: Beyond the anecdotal evidence given in this

chapter, Veen et al. (2012) provide a comprehensive overview of the past, present, and projected

1Proxied interfaces are enumerated in the documentation for the MSHTML library at http://msdn.microsoft.
com/en-us/library/hh801967(v=vs.85).aspx

2http://www.oracle.com/technetwork/topics/security/cpuapr2014verbose-1972954.
html#JAVA

3Languages supported by SWIG are listed at: http://www.swig.org/compat.html
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Vector

int Get(int i)
void Set(int i, int v)
void SetLength(int i)
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void SetLength(int i)
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int length
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JavaScript 
Client

Support Library (Helper.dll)Web Browser

JavaScript
(attacker controlled)

function exploit() {
  v = Vector();
  v.SetLength(-1);
  v.Set(0xfeedface, 12345);
  return;
}

Figure 2.7: Script-assisted web document based exploit.

future of memory error exploits. They analyzed the trend in both vulnerabilities reported and concrete

exploits made available publicly. The number of memory error vulnerabilities increased linearly from

1998 to 2007, at which point the trend completely reversed with an equally linear decline through

the end of the study in mid-2010. However, this data-point is misleading. One should not draw

the conclusion that less memory bugs exist. In fact, the study goes on to show that the number of

exploits continued to rise linearly each month, despite the decline of vulnerabilities reported. The

authors argue that one reason for this divergence is that public disclosure is becoming less common.

Instead, those who discover memory error vulnerabilities choose to keep the matter private in return

for sizable “bug bounty” rewards from large companies. Criminal enterprises, on the other-hand,

buy and sell exploits for unreported bugs (dubbed zero-day exploits) on underground marketplaces.

Reporting the bugs decreases the value and lifetime of those exploit sales. Whatever the reason,

memory errors continue to be exploited. Veen et al. (2012) further show that consistently since

2007 roughly 15% of all exploits are memory errors, with various web-based exploits (cross-site

scripting, SQL, and PHP) making up a large percentage of the remaining chunk. The overall attack

and goals for web-based exploits differ from those depicted in Figure 2.1. In short, the primary goal

of those web-based attacks is to both directly leak customer information stored by the web site’s

database, as well as to inject redirects (as in Figure 1.1) to serve exploits to end-users that browse to

the compromised website.
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On The State of Memory Error Mitigation: Unfortunately, the work of Veen et al. (2012)

offers little insight into why the torrent of mitigations proposed by industry and academia alike

fall short of preventing new exploits. Prior to exploring this topic, one should consider that CPU

instruction sets (be it on a CISC, e.g. x86-32 and x86-64, or RISC, e.g. ARM, architecture, etc.)

are designed to be versatile, i.e. they enable construction of arbitrary logic. Thus, the conditions in

which memory errors arise and are exploited are inherently enabled at the lowest levels of computing.

Mitigating memory errors is therefore an exercise in both educating developers to avoid mistakes

leading to memory errors, as well as standardizing aspects of higher level language design, compiler

primitives, and the way in which operating systems load and use programs. The ultimate goal would

be to ubiquitously permeate these mitigations throughout all applications, libraries, and operating

systems without incurring penalties in performance or functionality that are perceived as unacceptable.

The challenge of quantifying this insight is taken on by Szekeres et al. (2013). The authors evaluate

both deployed and proposed mitigations through the lens of the strength of protection afforded,

the cost in terms of memory and performance, and compatibility (e.g. applicability to source code,

binaries, and shared libraries). The results of their analysis suggest that the lack of strong protections

is not biggest problem. In fact, Microsoft provides a package called the “Enhanced Mitigation

Experience Toolkit” (EMET) that bundles a selection of these strong protections4. Instead, the

authors point to performance cost and the lack of compatibility as the widest barriers to adopt newly

proposed mitigations. Of the 15 approaches examined, only 4 are widely deployed (i.e. enabled by

default by major OS vendors)—stack canaries, ASLR, and read and execute page permissions (DEP).

These defenses are binary and library compatible (except for canaries, which require source code)

and all have 0% average performance overhead. In contrast, 9 of the 11 remaining mitigations have

compatibility problems with binaries and widely varying performance overheads from 5% to 116%

on average.

It may come as a surprise that several “classical” hardware-supported protections are not

mentioned in the study by (Szekeres et al., 2013)—memory segmentation and protection rings, for

example. Memory segmentation divides memory into data, code, and stack sections, with some

implementations (e.g. the Intel 80286 onwards) supporting memory protection (hence the term

4More information on EMET is available at http://www.microsoft.com/emet

18

http://www.microsoft.com/emet


“protected mode”). This scheme protects against code injection for “free” as the adversary cannot

write new code into the code segment or execute code injected into the data segment, similar to the

protection DEP provides with a paged memory scheme. However, segmented memory is now an

unused legacy model. All major operating systems simply segment memory as one all-encompassing

flat region with no protection5, and the Intel x86-64 architecture has started to phase-out the ability

to perform memory segmentation altogether. Thus protection using memory segmentation is no

longer relevant in practice. Protection rings, on the other-hand, are still relevant, but generally only

provide separation between “user” and “kernel” layers as well as a hypervisor layer where hardware

virtualization is supported. The exploitation of vulnerabilities discussed in this chapter, however, has

solely focused on exploitation within the “user” layer. That is, rings are designed to separate between

different levels of privilege, but the memory errors discussed in this dissertation occur within a single

privilege level, thus making rings an ineffective mitigation. Another way to think about this is that an

unprivileged user can check their email, browse, and read and write documents, etc., but an adversary

can also do all these actions with their user-level injected code running in the context of one of the

user’s applications. The rings do, however, prevent one from directly modifying the OS kernel (e.g.

installing a rootkit). To do so, the adversary would need to either compromise a user with sufficient

privileges, such as the “Administrator” or “root” accounts, or perform a so-called privilege escalation

exploit. Privilege escalation exploits are like any other memory error, except the vulnerable code is

running in the kernel instead of a user-level application, and the subsequently injected code must be

structured to run within that kernel environment. Thus, rings provide an additional barrier for an

adversary attempting to gain full system access, but is not a mitigation against the exploitation of

memory errors in and of itself.

Shadow stacks (Vendicator, 2000) are another well-known mitigation. The idea here is to protect

sensitive data, such as function return addresses, that usually reside on the stack by created a separate

’shadow’ stack. Function return addresses are pushed to this secondary stack, ensuring that other

operations do not overwrite them. Unfortunately, shadow stacks have a performance penalty of

5% on their own, which degrades to a 10x slowdown when adding protection for the shadow stack

itself (Szekeres et al., 2013). Further, shadow stacks only protect against stack-based exploits that

5That is, no protection from memory segmentation. Read, write, and execution protections are now afforded by memory
paging schemes instead.
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overwrite the return address, are not compatible with all programs, and do not work with exceptions

as-is.

In the 25 years that memory errors have been actively exploited, only a few mitigations have

stood the test of time. These protections stand, however, not for their superior protection, but

because they offer limited protection at a negligible cost. Stack canaries, unfortunately, only impact

a sub-class of spatial errors that take place on the program stack. Even then, they are only applied

under specific conditions (e.g. a certain compiler is used, a function contains a local buffer exceeding

a predefined length, etc.). DEP and ASLR, on the other-hand, do not directly prevent hijacking

control-flow, but rather hinder the successful execution of injected code and code reuse payloads,

respectively. Unfortunately, these mitigations also have limitations, even when fully deployed across

all applications and libraries.

The next sections detail how one translates a memory error into the execution of arbitrary code

despite these mitigations. Hijacking control flow is only the first step, which allows one to point

the program instruction pointer (IP) to a new (arbitrary) location. To execute arbitrary code after

hijacking the IP, one can either reuse snippets of existing code, or inject new buffers of code.

2.2 Code Reuse

“Beware of the Turing tar-pit in which everything is possible but nothing of interest is

easy.” -Alan Perlis in Epigrams on Programming (1982)

The general principle of any code reuse attack is to redirect the logical program flow to instruc-

tions already present in memory, then use those instructions to provide alternative program logic.

There exist countless methods of orchestrating such an attack, the simplest of which involves an

adversary redirecting the program execution to an existing library function (Solar Designer, 1997;

Nergal, 2001). More generally, Shacham (2007) introduced return-oriented programming (ROP)

showing that attacks may combine short instruction sequences from within functions, called gadgets,

allowing an adversary to induce arbitrary program behavior (i.e. Turing complete). This concept

was later generalized by removing the reliance on actual return instructions (Checkoway et al., 2010).

However, for simplicity, this section highlights the basic idea of code reuse using ROP in Figure 2.8.

First, the adversary writes a so-called ROP payload into the application’s memory space. In

particular, the payload is placed into a memory area that can be controlled by the adversary, i.e.,
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Figure 2.8: Basic overview of code reuse attacks.

the area is writable and the adversary knows its start address. For instance, an exploit that involves

JavaScript can allocate the payload as a string, which also enables one to include binary data by

using the JavaScript unescape function. The payload mainly consists of a number of pointers (the

return addresses) and any other data that is needed for running the attack (Step ¬). The next step is

to exploit a memory error vulnerability of the target program to hijack the intended execution-flow

(Step ­), as covered in the last section. In the example shown in Figure 2.8, the adversary exploits a

spatial error on the heap by overwriting the address of a function pointer with an address that points

to a so-called stack pivot sequence (Zovi, 2010). Once the overwritten function pointer is used by

the application, the execution flow is redirected to the stack pivot instructions (Step ®), which were

already present in the application’s memory.
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Loosely speaking, stack pivot sequences change the value of the stack pointer (esp) to a value

stored in another register. Hence, by controlling that register6, the attacker can arbitrarily change

the stack pointer. The most common strategy is to use a stack pivot sequence that directs the stack

pointer to the beginning of the payload (Step ¯). A concrete example of a stack pivot sequence is

the x86 assembler code sequence mov esp,eax; ret7. The sequence changes the value of the

stack pointer to the value stored in register eax and afterwards invokes a return (ret) instruction.

The x86 ret instruction simply loads the address pointed to by esp into the instruction pointer and

increments esp by one word. Hence, the execution continues at the first gadget (STORE) pointed to

by Return Address 1 (Step °). In addition, the stack pointer is increased and now points to Return

Address 2.

A gadget represents an atomic operation such as LOAD, ADD, or STORE, followed by a ret

instruction. For example, on the x86, a LOAD gadget can take the form of pop eax; ret, hence

loading the next value present on the stack into the eax register. Similarly, an ADD gadget could be

implemented with add eax,ebx; ret, among other possibilities. It is exactly the terminating

ret instruction that enables the chained execution of gadgets by loading the address the stack pointer

points to (Return Address 2) in the instruction pointer and updating the stack pointer so that it points

to the next address in the payload (Return Address 3). Steps ° to ² are repeated until the adversary

reaches her goal. To summarize, the combination of different gadgets allows an adversary to induce

arbitrary program behavior.

Randomization for Exploit Mitigation: As noted in the last section, a well-accepted counter-

measure against code reuse attacks is the randomization of the application’s memory layout. The

basic idea of address space layout randomization (ASLR) dates back to Forrest et al. (1997), wherein

a new stack memory allocator was introduced that adds a random pad for stack objects larger than 16

bytes. Today, ASLR is enabled on nearly all modern operating systems such as Windows, Linux,

iOS, or Android. For the most part, current ASLR schemes randomize the base (start) address of

segments such as the stack, heap, libraries, and the executable itself. This basic approach is depicted

in Figure 2.9, where the start address of an executable is relocated between consecutive runs of

6To control the register, the adversary can either use a buffer overflow exploit that overwrites memory areas that are
used to load the target register, or invoke a sequence that initializes the target register and then directly calls the stack pivot.

7The Intel assembly notation described by the Intel 64 and IA-32 Architectures Software Developer’s Manual (Volume
2) is used throughout this dissertation. In general, instructions take the form of instr dest,src.
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the application. As a result, an adversary must guess the location of the functions and instruction

sequences needed for successful deployment of a code reuse attack. The intent of ASLR is to hinder

such guessing schemes to a point wherein they are probabilistically infeasible within a practical

time-frame.
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Figure 2.9: Address Space Layout Randomization (ASLR)

Unfortunately, the realization of ASLR in practice suffers from two main problems: first, the

entropy on 32-bit systems is too low, and thus ASLR can be bypassed by means of brute-force

attacks (Shacham et al., 2004; Liu et al., 2011). Second, all ASLR solutions are vulnerable to memory

disclosure attacks (Sotirov and Dowd, 2008b; Serna, 2012b) where the adversary gains knowledge

of a single runtime address, e.g. from a function pointer within a vtable, and uses that information

to “de-randomize” memory. Modern exploits use JavaScript or ActionScript (hereafter referred to

as a script) and a memory-disclosure vulnerability to reveal the location of a single code module

(e.g., a dynamically-loaded library) loaded in memory. Since current ASLR implementations only

randomize on a per-module level, disclosing a single address within a module effectively reveals

the location of every piece of code within that module. Therefore, any gadgets from a disclosed

module may be determined manually by the attacker offline prior to deploying the exploit. Once

the prerequisite information has been gathered, the exploit script simply builds a payload from a

pre-determined template by adjusting offsets based on the module’s disclosed location at runtime.
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To confound these attacks, a number of fine-grained ASLR and code randomization schemes

have recently appeared in the academic literature (Bhatkar et al., 2005; Kil et al., 2006; Pappas et al.,

2012; Hiser et al., 2012; Wartell et al., 2012). These techniques are elaborated on later (in Chapter 3

§3.1), but for now it is sufficient to note that the underlying idea in these works is to randomize the

data and code structure, for instance, by shuffling functions or basic blocks (ideally for each program

run (Wartell et al., 2012)). As shown in Figure 2.10, the result of this approach is that the location

of all gadgets is randomized. The assumption underlying all these works is that the disclosure of a

single address no longer allows an adversary to deploy a code reuse attack.
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Figure 2.10: Fine-Grained Memory and Code Randomization

Chapter 3 thoroughly examines the benefits and limitations of fine-grained ASLR. In short,

however, these new mitigations offer no substantial benefit over existing ASLR schemes so long as

one can construct payloads “online” rather than rely on manually crafting ROP prior to exploitation.

Fortunately (for defenders), crafting code reuse payloads of interest is not easy, and each payload

is highly specific to the environment in which it runs. For these reasons, the trend has been to build

the simplest useful ROP payload—one that bootstraps execution of a code injection payload.
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2.3 Code Injection

The basic idea of code injection is straight-forward: bytes representing pre-compiled machine

code are placed into an executable (and writable) memory region of a running process. The instruction

pointer is then loaded with the address of the bytes via a control-flow hijack and it executes.

On the No-Execute Bit for Exploit Mitigation: DEP (Microsoft, 2006) was introduced to

prevent code injection attacks. This is done by leveraging the “no-execute” bit in the memory

management unit (MMU). Like the “read” and “write” bits that control which per-page chunks of

virtual memory can be accessed by the application, the no-execute bit controls which pages can

be executed. DEP, by default, allocates application stack and heap regions without the execute

permission, while application code has the execute permission, but not write permission. Without

DEP, one could replace the string of ‘A’s in Figure 2.6 with bytes representing instructions and

replace the expected RET with the starting address of that string. The function would return to that

injected code rather than the function that called it. DEP mitigates this exploit due to the fact that the

program stack will not be granted the execute permission.

This seemingly fool-proof mitigation, however, is defeated by several methods and circumstances.

First, application developers are not required to adhere to the default policy, creating a gap in

protection wherein end-users may be protected for one application, but not another. For example,

early just-in-time (JIT) compilers for JavaScript, ActionScript, and Java would allocate chunks of

memory as writable (to write the newly compiled code) and executable (to allow it to then run)

without subsequently removing the write permission. DEP is essentially “turned off” in those regions.

Continuing with the JIT example, another method of bypassing DEP is the so-called JIT-spray

attack (Blazakis, 2010). The basic concept of JIT-spraying is to massage the JIT-compiler into

unknowingly constructing the code injection payload on the adversary’s behalf. As an example, one

can create a JavaScript with a sequence of arithmetic operations. The JavaScript JIT engine compiles

these operations into instructions and marks them as executable. One can carefully construct the

arithmetic operands such that if one redirects program control-flow to the start of an operand it is

decoded as a valid instruction. Thus, an entire code injection payload may be encoded by “spraying”

a sequence of arithmetic operations in a script. JIT-spraying, of course, is highly architecture and

application specific.
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Due to the wide-spread adoption of DEP the most practiced method of executing code after a

control-flow hijack is ROP. However, the difficulty and specificity of ROP has led adversaries to

leverage code reuse merely for allocating a writable and executable region of memory to facilitate

a secondary code injection payload. Although not strictly required, this approach decreases the

adversary’s level-of-effort. Minimal, application specific, ROP payloads are used to disable DEP and

load platform-independent, reusable, code injection payloads. In turn, these code injection payloads

download and execute malware or perform other malicious actions (see Chapter 6).

Challenges Unique to Code Injection: When constructing code injection payloads, there are

several considerations that make their development difficult. One challenge stems from the fact that

injected code lacks the standard procedure of being loaded by the operating system loader routines.

These routines normally handle mapping of code and data virtual addresses, code and data relocation

fix-ups, and dynamic linking. Developers of code injection payloads must handle these problems by

managing their own code and data sections with custom schemes, using position-independent code

(PIC), and performing their own resolution of dynamic libraries and functions. Since no widely used

compiler supports all of these requirements, code injection payloads must be developed in assembly

language or with custom tools. Another challenge lies in the fact that, depending on the specifics

of a particular vulnerability, the content of the buffer of bytes may be restricted in which bytes are

“allowed”. The canonical example of this restriction are buffer overflow vulnerabilities that involve a

C string copy. In C, strings are terminated by a null (‘\0’) byte. Therefore, any null-bytes within a

payload used in such an exploit will result in only the portion of the payload before the null-byte

being copied, breaking execution of the injected code. The bytes allowed are application-specific,

but can range from allowing all bytes, to ASCII-only bytes, or only those bytes within the Unicode

character set, etc. To deal with this restriction, injected code must either be carefully written so as to

avoid restricted characters all-together, or polymorphic code can be used. A polymorphic payload

means that the code is encoded, e.g. by xor’ing it, etc. When a polymorphic payload is executed a

small bit of code will dynamically decode the injected code’s body before jumping to it. Polymorphic

payloads are used to meet any byte-value restrictions, but also make multiple instances of the same

payload unique and camouflage payloads to blend in with benign data. Mason et al. (2009), for
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example, demonstrate that fully functional arbitrary code injection payloads can take the form of

English text.

Unfortunately, polymorphism makes it impractical for defenders to statically decide if a particular

chunk of data represents injected code. Even without extreme examples like the use of English

text-based code, polymorphic payloads are well-known for being problematic for both signature

and learning-based intrusion detection systems (Song et al., 2010). Chapter 5 takes a more dynamic

approach to detecting these code injection payloads.
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CHAPTER 3: JUST-IN-TIME CODE REUSE

In light of the code reuse payload paradigm, whether return-oriented (Shacham, 2007), jump-

oriented (Bletsch et al., 2011), or some other form of “borrowed code” (Krahmer, 2005), skilled

adversaries have been actively searching for ever more ingenious ways to leverage memory disclo-

sures as part of their arsenal (Sotirov and Dowd, 2008b; Serna, 2012a; VUPEN Security, 2012; Larry

and Bastian, 2012). At the same time, defenders have been busily working to fortify perimeters

by designing “enhanced” randomization strategies (Bhatkar et al., 2005; Kil et al., 2006; Pappas

et al., 2012; Hiser et al., 2012; Wartell et al., 2012; Giuffrida et al., 2012) for repelling the next

generation of wily hackers. This chapter questions whether this particular line of thinking (regarding

fine-grained code randomization) offers a viable alternative in the long run. In particular, this chapter

examines the folly of recent exploit mitigation techniques, and shows that memory disclosures are

far more damaging than previously believed. Just as the introduction of SEH overwrites bypassed

protection provided by stack canaries, code reuse undermines DEP, and memory disclosures defied

the basic premise of ASLR, this chapter assails the assumptions embodied by fine-grained ASLR.

The primary contribution of this chapter is in showing that fine-grained ASLR for exploit

mitigation, even considering an ideal implementation, is not any more effective than traditional ASLR

implementations. Strong evidence for this is provided by implementing a framework wherein one can

automatically adapt an arbitrary memory disclosure to one that can be used multiple times to reliably

map a vulnerable application’s memory layout, then just-in-time compile the attacker’s program, re-

using (finely randomized) code. The workflow of the framework takes place entirely within a single

script (e.g., as used by browsers) for remote exploits confronting application-level randomization, or

a single binary for local privilege escalation exploits battling kernel-level randomization.

The power of this framework is demonstrated by using it in conjunction with a real-world

exploit against Internet Explorer, and also by providing extensive evaluations that demonstrate the

practicality of just-in-time code reuse attacks. In light of these findings, this chapter argues that the

trend toward fine-grained ASLR strategies may be short-sighted. It is hoped that, moving forward,
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this work spurs discussion and inspires others to explore more comprehensive defensive strategies

than what exists today.

3.1 Literature Review

As discussed in the previous chapter, exploit mitigation has a long and storied history. For

brevity, this section highlights the work most germane to the discussion at hand; specifically reviewed

are fine-grained memory and code transformation techniques. In general, these techniques can be

categorized into binary instrumentation-based or compiler-based approaches.

As the name suggests, binary instrumentation-based approaches operate directly on an application

binary. In particular, Kil et al. (2006) introduced an approach called address space layout permutation

(ASLP), that performs function permutation without requiring access to source code. Their approach

statically rewrites ELF executables to permute all functions and data objects of an application. Kil

et al. (2006) show how the Linux kernel can be instrumented to increase the entropy in the base address

randomization of shared libraries, and discuss how re-randomization can be performed on each run of

an application. However, a drawback of ASLP is that it requires relocation information, which is not

available for all libraries. To address this limitation, several proposals have emerged (Pappas et al.,

2012; Hiser et al., 2012; Wartell et al., 2012). Pappas et al. (2012), for example, present an in-place

binary code randomizer (ORP) that diversifies instructions within a basic block by reordering or

replacing instructions and swapping registers.

In contrast, instruction location randomization (ILR) (Hiser et al., 2012) randomizes the location

of each instruction in the virtual address space, and the execution is guided by a so-called fall-through

map. However, to realize this support, each application must be analyzed and re-assembled during

a static analysis phase wherein the application is loaded in a virtual machine-like environment at

runtime—resulting in high performance penalties that render the scheme impractical. Additionally,

neither ORP nor ILR can randomize an application each time it runs. That limitation, however, is

addressed by Wartell et al. (2012), wherein a binary rewriting tool (called STIR) is used to perform

permutation of basic blocks of a binary at runtime.

Giuffrida et al. (2012) presented a fine-grained memory randomization scheme that is specifically

tailored to randomize operating system kernels. The presented solution operates on the LLVM inter-

mediate representation, and applies a number of randomization techniques. The authors present an
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ASLR solution that performs live re-randomization allowing a program module to be re-randomized

after a specified time period. Unfortunately, re-randomization induces significant runtime overhead,

e.g., nearly 50% overhead when applied every second, and over 10% when applied every 5 seconds.

A bigger issue, however, is that the approach of Giuffrida et al. (2012) is best suited to micro-kernels,

while modern operating systems (Windows, Linux, Mac OSX) still follow a monolithic design.

With regard to compiler-based approaches, several researchers have extended the idea of software

diversity first put forth by Cohen (1993). Franz (2010) explored the feasibility of a compiler-based

approach for large-scale software diversity in the mobile market. An obvious downside of these

approaches is that compiler-based solutions typically require access to source code—which is rarely

available in practice. Further, the majority of existing solutions randomize the code of an application

only once, i.e., once the application is installed it remains unchanged. Finally, Bhatkar et al. (2005)

present a randomization solution that operates on the source code, i.e., they augment a program to

re-randomize itself for each program run.

More distantly related is the concept of JIT-spraying (Blazakis, 2010; Rohlf and Ivnitskiy, 2011)

which forces a JIT-compiler to allocate new executable memory pages with embedded code; a process

which is mitigated by techniques such as JITDefender (Chen et al., 2011). Also note that because

scripting languages do not permit an adversary to directly program x86 shellcode, the attacker must

carefully construct a script so that it contains useful ROP gadgets in the form of so-called unintended

instruction sequences, e.g., by using XOR operations (Blazakis, 2010). In contrast, the method

presented in this chapter does not suffer from such constraints, as it does not require the injection of

new ROP gadgets.

3.2 Assumptions and Adversarial Model

This section covers the assumptions and adversarial model used throughout the chapter. In

general, an adversary’s actions may be enumerated in two stages: (1) exercise a vulnerable entry

point, and (2) execute arbitrary malicious computations. Similar to previous work on runtime

attacks, e.g., the seminal work on return-oriented programming (Shacham, 2007), the assumptions

cover defense mechanisms for the second stage of runtime attacks, i.e., the execution of malicious

computations. Modern stack and heap mitigations (such as heap allocation order randomization)

do eliminate categories of attack supporting stage one, but these mitigations are not comprehensive
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(i.e., exploitable vulnerabilities still exist). Thus, one assumes the adversary is able to exercise one

of these pre-existing vulnerable entry points. Hence, a full discussion of the first stage of attack is

out of scope for this chapter. The interested reader is referred to (Johnson and Miller, 2012) for an

in-depth discussion on stack and heap vulnerability mitigations.

In what follows, the target platform is assumed to use the following mechanisms (see §2) to

mitigate the execution of malicious computations:

• Non-Executable Memory: The security model of non-executable memory (also called NX

or DEP) is applied to the stack and the heap. Hence, the adversary is not able to inject code

into the program’s data area. Further, the same mechanism is applied to all executables and

native system libraries, thereby preventing one from overwriting existing code.

• JIT Mitigations: A full-suite of JIT-spraying mitigations, such as randomized JIT pages,

constant variable modifications, and random NOP insertion. As just-in-time code reuse is

unrelated to JIT-spraying attacks, these mitigations provide no additional protection.

• Export Address Table Access Filtering: Code outside of a module’s code segment cannot

access a shared library’s export table (i.e. as commonly used by shellcode to lookup API

function addresses). As the approach described in this chapter applies code-reuse from existing

modules for 100% of malicious computations, this mitigation provides no additional protection.

• Base Address Randomization: The target platform deploys base address randomization by

means of ASLR and all useful, predictable, mappings have been eliminated.

• Fine-Grained ASLR: The target platform enforces fine-grained memory and code random-

ization on executables and libraries. In particular, a strong fine-grained randomization scheme,

which (i) permutes the order of functions (Bhatkar et al., 2005; Kil et al., 2006) and basic

blocks (Wartell et al., 2012), (ii) swaps registers and replaces instructions (Pappas et al.,

2012), (iii) randomizes the location of each instruction (Hiser et al., 2012), and (iv) performs

randomization upon each run of an application (Wartell et al., 2012).

Notice that the assumptions on deployed protection mechanisms go beyond what current plat-

forms typically provide. For instance, ASLR is not usually applied to every executable or library,
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thereby allowing an adversary to leverage the non-randomized code parts for a conventional code

reuse attack. Further, current systems do not enforce fine-grained randomization. That said, there is a

visible trend toward enabling ASLR for all applications, even for the operating system kernel (as

deployed in Windows 8). Furthermore, current thinking is that fine-grained randomization has been

argued to be efficient enough to be considered as a mechanism by which operating system vendors

can tackle the deficiencies of base address randomization.

Nevertheless, even given all these fortified defenses, one can show that the framework for

just-in-time code reuse attacks readily undermines the security provided by these techniques. In fact,

an adversary utilizing this framework— whether bypassing ASLR or fine-grained mitigations—will

enjoy a simpler and more streamlined exploit development process than ever before. As will become

apparent in the next section, the framework frees the adversary from the burden of manually piecing

together complicated code reuse payloads and, because the entire payload is built on-the-fly, it can

be made compatible with all OS revisions. To perform the attack, one must only assume that the

adversary can (1) use a memory disclosure vulnerability to repeatedly reveal values at targeted

absolute addresses, and (2) discover a single code pointer, e.g., as typically found via function

pointers described by a heap or stack-allocated object. These assumptions are quite practical, as

existing exploits that bypass standard ASLR have nearly identical requirements (Serna, 2012a).

Recall from §2.1 that a memory disclosure vulnerability occurs when one leverages a memory

error to read outside the bounds of a buffer. One strategy to enable repeatable disclosures is to

first write outside the bounds of a buffer to modify an existing object’s properties. For example,

overwriting the length property of a JavaScript string object allows one to subsequently disclose

memory beyond the end of the string by indexing into it with a large value. Specific addresses can

be targeted by first using the relative disclosure to determine the address of the string itself, then

offsetting absolute addresses with that address. A concrete example of a targeted, repeatable memory

disclosure is given in §3.4.

3.3 Method

The key observation is that exploiting a memory disclosure multiple times violates implicit

assumptions of the fine-grained exploit mitigation model. Using the just-in-time code reuse method

described in this chapter, this violation enables the adversary to iterate over mapped memory to search
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for all necessary gadgets on-the-fly, regardless of the granularity of code and memory randomization.

One could reasonably conjecture that if fine-grained exploit mitigations became common-place,

then attackers would simply modularize, automate, and incorporate a similar approach into existing

exploitation toolkits such as Metasploit (Maynor, 2007).

To evaluate the hypothesis that multiple memory disclosures are an effective means to bypass

fine-grained exploit mitigation techniques, a prototype exploit framework is designed and built that

aptly demonstrates one instantiation (called JIT-ROP) of the idea. The overall workflow of an

exploit using this framework is given in Figure 3.1. An adversary constructing a new exploit need

only conform their memory disclosure to the framework’s interface and provide an initial code

pointer in Step ¶, then let the framework take over in Steps · to º to automatically (and at exploit

runtime) harvest additional code pages, find API functions and gadgets, and just-in-time compile the

attacker’s program to a serialized payload usable by the exploit script in Step ».

The implementation is highly involved, and successful completion overcomes several challenges.

With that in mind, note that the current implementation of the framework represents but one instan-

tiation of a variety of advanced techniques that could be applied at each step, e.g., one could add

support for jump-oriented programming (Bletsch et al., 2011), use more advanced register allocation

schemes from compiler theory, etc. Nevertheless, §4.4 shows that the implementation of JIT-ROP

is more than sufficient for real-world deployment, both in terms of stability and performance. The

remainder of this section elaborates on the necessary components of the system, and concludes with

a concrete example of an exploit using the framework.

3.3.1 Mapping Code Page Memory

Prior to even considering a code reuse attack, the adversary must be made aware of the code

already present in memory. The first challenge lies in developing a reliable method for automatically

searching through memory for code without causing a crash (e.g., as a result of reading an unmapped

memory address). On 32-bit Microsoft Windows, applications may address up to 3 GB, while on

64-bit Microsoft Windows this can be several terabytes. Applications, however, typically use less than

a few hundred megabytes of that total space (see Chapter 4, §4.4.1). Thus, simply guessing addresses

to disclose is likely to crash the vulnerable application by invoking a page fault. Furthermore, the

assumptions in §3.2 forbid the framework from relying on any prior knowledge of module load
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Figure 3.1: Overall workflow of a code injection attack utilizing just-in-time code reuse against a
script-enabled application protected by fine-grained memory (or code) randomization.

34



Import Address Table

Code Page A
...
CALL [-0xFEED]
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Figure 3.2: Pages pointed to by relative control flow instructions are directly queued for the next
linear sweep, while indirect control flow instructions point to the Import Address Table (IAT), where
a memory disclosure is used to resolve the page of the function pointer.

addresses, which would be unreliable to obtain in face of fine-grained ASLR and non-continuous

memory regions.

To overcome this hurdle, one may note that knowledge of a single valid code pointer (e.g., gleaned

from the heap or stack) reveals that an entire 4 kilobyte-aligned page of memory is guaranteed to be

mapped. Step ¶ requires the exploit writer to conform the single memory disclosure to an interface

named DiscloseByte that, given an absolute virtual address, discloses one byte of data at that

address (see §3.4). One approach, therefore, is to use the DiscloseByte method to implement

a DisclosePage method that, given an address, discloses an entire page of memory data. The

challenge then is to enumerate any information found in this initial page of code that reliably identifies

additional pages of code.

One reliable source of information on additional code pages is contained within the control-flow

instructions of the application itself. Since code spans hundreds to thousands of pages, there must be

control-flow links between them. In Step ·, the framework applies static code analysis techniques

(in this case, at runtime) to identify both direct and indirect call and jmp control-flow instructions

within the initial code page. New code pages are gathered from instructions disassembled in the

initial code page. As depicted in Figure 3.2, direct control-flow instructions yield an immediate hint

at another code location, sometimes in another page of memory.

Indirect control-flow instructions, on the other hand, can point to other modules (e.g., as in a call

to another DLL function), and so they can be processed by disclosing the address value in the Import
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Figure 3.3 HarvestCodePages: given an initial code page, recursively disassemble pages and
discover direct and indirect pointers to other mapped code pages.

Input: P {initial code page pointer}, C {visited set}
Output: C {set of valid code pages}
if ∃(P ∈ C) {already visited} then

return
end if
C(P )← true {Mark page as visited}
~P = DisclosePage(P ) {Uses DiscloseByte() internally to fetch page data}
for all ins ∈ Disassemble(~P ) do

if isDirectControlFlow(ins) then
{e.g. JMP +0xBEEF}
ptr ← ins.offset+ ins.effective address
HarvestCodePages(ptr)

end if
if isIndirectControlFlow(ins) then
{e.g. CALL [-0xFEED]}
iat ptr ← ins.offset+ ins.effective address
ptr ← DisclosePointer(iat ptr) {Internally uses DiscloseByte() to fetch pointer data}
HarvestCodePages(ptr)

end if
end for

Address Table (IAT) pointed to by the indirect instruction (i.e., a DisclosePointer method is

implemented on top of DiscloseByte).

In practice, one may be able to derive additional code pointers from other entries found around

the address disclosed in the IAT, or make assumptions about contiguous code regions. However, the

framework described in this chapter does not to use this information, as imposed assumptions on the

application of ideal fine-grained randomization forbid this instantiation of the framework from doing

so. These assumptions are in place to ensure the framework design is as versatile as possible.

By applying this discovery technique iteratively on each code page found, one can map a

significant portion of the code layout of the application instance’s virtual address space. The

algorithm in Figure 3.3 is a recursive search over discovered code pages that results in the set

of unique code page virtual addresses along with associated data. The Disassemble routine

performs a simple linear sweep disassembly over the entirety of the code page data. As compilers

can embed data (e.g. a jump table) and padding (e.g. between functions) within code, disassembly

errors may arise. More deliberate binary obfuscations may also be used by a vulnerable program

to make this step more difficult, although obfuscations of this magnitude are not typically applied

by reputable software vendors. To minimize these errors, however, both invalid (or privileged)
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and valid instructions are filtered in the immediate vicinity of any invalid instruction. While more

advanced static analysis could certainly be employed (e.g. recursive descent), this approach has

proven effective in all tests in this chapter.

In short, as new code pages are discovered, static code analysis is applied to process and store

additional unique pages. Iteration continues only until all the requisite information to build a payload

has been acquired. That said, automatically building a practical payload requires obtaining some

additional information, which is elaborated on in the next sections.

3.3.2 API Function Discovery

The second challenge lies in the fact that an exploit will inevitably need to interact with operating

system APIs to enact any significant effect. The importance of this should not be understated: while

Turing-complete execution is not needed for a practical payload that reuses code, specialized OS

interoperability is required. One method of achieving this is through direct interaction with the

kernel via interrupt (int 0x80) or fast (syscall) system call instruction gadgets. Payloads

using hard-coded system calls, however, have been historically avoided because of frequent changes

between even minor revisions of an OS. The favored method of interacting with the OS is through

API calls (e.g., as in kernel32.dll), the same way benign programs interact, because of the

relative stability across OS revisions.

Thus, in Step ¸, the framework must discover the virtual addresses of API functions used in

the attacker-supplied program. Past exploits have managed this by parsing the Process Environment

Block (PEB), as in traditional code injection payloads, or by manually harvesting an application-

specific function pointer from the heap, stack, or IAT in ROP-based exploits. While one may consider

emulating the traditional PEB parsing strategy using gadgets (rather than newly injected code), this

approach is problematic because gadgets reading the PEB are rare, and thus cannot be reliably applied

to code reuse attacks. Moreover, requisite function pointers used in ROP-style exploits may not be

present on the stack or heap, and the IAT may be randomized by fine-grained exploit mitigations as

assumed in §3.2.

The code page harvesting in Step · gives one unfettered access to a large amount of application

code, which presents a unique opportunity for automatically discovering a diverse set of API

function pointers. Luckily, API functions desirable in exploit payloads are frequently used in
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Figure 3.4 VerifyGadget: Automatically match a sequence of instructions to a gadget’s semantic
definition.

Input: S {sequence of consecutive instructions}, D {gadget semantic definitions}
Output: G {gadget type, or null}
head← S(0) {first instruction in sequence}
if G← LookupSemantics(head) /∈ D {implemented as a single table-lookup} then

return null
end if
for i ∈ 1...|S| {ensure semantics are not violated by subsequent instructions} do

ins← S(i)
if HasSideEffects(ins) ‖ RegsKilled(ins) ∈ RegsOut(head) then

return null
end if

end for
return G {valid, useful gadget}

application code and libraries (see §3.5). On Windows, for example, applications and libraries

that re-use code from shared libraries obtain pointers to the desired library functions through the

combination of LoadLibrary (to get the library base address) and GetProcAddress (to get

the function address) functions. In this way, a running process is able to easily obtain the runtime

address of any API function. By finding these API functions, one would only need to accurately

initialize the arguments (i.e., the strings of the desired library and function) to LoadLibrary and

GetProcAddress to retrieve the address of any other API function.

The approach taken by JIT-ROP to find these API functions is to create signatures based on

opcode sequences for call sites of the API functions, then match those signatures to call sites in

the pages traversed at run-time. The prototype implementation uses static signatures, which are

generated a-priori, then matched at runtime during code page traversal. This implementation would

fail to work if individual instruction transformations were applied to each call site. However, just as

antivirus products use fuzzy or semantic signatures, the framework too may utilize such a technique

if code has been metamorphosed in this way by fine-grained exploit mitigations. Once a call site

has been identified, DisclosePointer is used to reveal the API function pointer in the IAT and

maintain the unique set of functions identified.

3.3.3 Gadget Discovery

Thus far JIT-ROP automatically mapped a significant portion of the vulnerable application’s

code layout and collected API function pointers required by the exploit writer’s designated program.

The next challenge lies in accumulating a set of concrete gadgets to use as building blocks for
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the just-in-time code reuse payload. Since fine-grained exploit mitigations may metamorphose

instructions on each execution, one does not have the luxury of searching for gadgets offline and

hard-coding the requisite set of gadgets for the payload. Hence, in contrast to previous works on

offline gadget compilers (Hund et al., 2009; Schwartz et al., 2011), JIT-ROP must perform the

gadget discovery at the same time the exploit runs. Moreover, it must be done as efficiently as

possible in practice because Steps ¶ through » must all run in real-time on the victim’s machine.

As time-of-exploit increases, so does the possibility of the victim (or built-in application watchdog)

terminating the application prior to exploit completion.

Unfettered access to a large number of the code pages enables one to search for gadgets not

unlike an offline approach would1, albeit with computational performance as a primary concern.

Thus, Step ¹ efficiently collects sequences of instructions by adapting the Galileo algorithm

proposed by Shacham (2007) to iterate over the harvested code pages from Step · and populate

an instruction prefix tree structure. As instruction sequences are added to the prefix tree, they are

tested to indicate whether they represent a useful gadget. The criteria for useful gadgets is similar to

Schwartz et al. (2011), wherein gadgets are binned into types with a unique semantic definition. Table

3.1 provides a listing of the gadget types used, along with their semantic definitions. Higher-order

computations are constructed from a composite of these gadget type primitives during compilation.

For example, calling a Windows API function using position- independent code-reuse may involve a

MovRegG to get the value of the stack pointer, an ArithmeticG to compute the offset to a pointer

parameter’s data, a StoreMemG or ArithmeticStoreG to place the parameter in the correct

position on the stack, and a JumpG to invoke the API call.

Unlike semantic verification used in prior work, JIT-ROP avoids complex program verification

techniques like weakest precondition, wherein a theorem prover is invoked to verify an instruction

sequence’s post-condition meets the given semantic definition (Schwartz et al., 2011). The idea of

so-called concrete execution is also discarded, wherein rather than proving a post-condition is met,

the instructions in the sequence are emulated and the simulated result is compared with the semantic

definition. These methods are simply too heavyweight to be considered in a runtime framework that

is interpreted in a script-based environment.

1See offline gadget tools such as mona (http://redmine.corelan.be/projects/mona) or ropc (http:
//github.com/pakt/ropc).
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Gadget Type Name Semantic Definition Example
MovRegG OutReg ← InReg mov edi,eax
LoadRegG OutReg ← const pop ebx

ArithmeticG OutReg ← InReg1 � InReg2 add ecx,ebx
LoadMemG OutReg ←M [InReg] mov eax,[edx+0xf]

ArithmeticLoadG OutReg �←M [InReg] add esi,[ebp+0x1]
StoreMemG M [InReg1]← InReg2 mov [edi],eax

ArithmeticStoreG M [InReg1] �←InReg2 sub [ebx],esi
StackPivotG ESP ← InReg xchg eax,esp

JumpG EIP ← InReg jmp edi
NoOpG NoEffect (ret)

Table 3.1: Semantic definitions for gadget types used in the framework. The � symbol denotes any
arithmetic operation.

Instead, one may opt for a heuristic (the algorithm in Figure 3.4) based on the observation that

a single instruction type (or sub-type) fulfills a gadget’s semantic definitions. For example, any

instruction of the form mov r32, [r32+offset]meets the semantic definition of a LoadMemG

gadget. Thus, for any instruction sequence, one performs a single table lookup to check if the first

instruction type in the sequence meets one of the gadget semantic definitions. If it does, add the gadget

to the unique set only if the initial instruction’s OutReg is not nullified by subsequent instructions,

and those instructions do not have adverse side-effects such as accessing memory from an undefined

register or modifying the stack pointer. For example, the sequence pop ebx; mov ebx, 1;

ret is not used because the second instruction nullifies the value of ebx. The sequence pop ebx;

add eax, [edx]; ret also goes unused because the second instruction has potential adverse

side-effects in accessing the memory address defined by edx. On the other hand, the sequence add

ecx, ebx; sub eax, 1; ret is acceptable because subsequent instructions neither cause

adverse side-effects or nullify the value of ecx. In practice, this heuristic finds mostly the same

gadget instruction sequences as the program verification approach.2

3.3.4 Just-In-Time Compilation

The final challenge lies in using the dynamically discovered API function pointers and collection

of concrete gadgets to satisfy the exploit writer’s target program (Step ¶ of Figure 3.1), then generate

a payload to execute (Step »). Since each instantiation of a vulnerable application may yield a

completely different set of concrete gadgets when fine-grained exploit mitigations are used, a dynamic

2Based on sample gadget output provided by Schwartz et al. (2011) and available at http://plaid.cylab.cmu.
edu:8080/˜ed/gadgets/
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compilation is required to ensure one can use a plethora of gadget types to build the final payload.

Fundamentally, a just-in-time gadget compiler is like a traditional compiler, except that compilation

is embedded directly within an exploit script, and one only has a subset of concrete instructions (and

register combinations) available for code generation. Syntax directed parsing is used to process the

exploit writer’s program, which is written in a simple custom grammar (see Step ¶ for example).

The grammar supports arbitrary sequences of API function calls with an arbitrary number of

parameters that may be static, dynamic, or pointers to data embedded in the payload. Pointers to

data (such as ‘kernel32’) are implemented with position independent gadgets. Using these primitives,

one can support a variety of payload types, including equivalents to Metasploit’s code injection-style

execute, download and execute, and message box payloads. An abstract syntax tree (AST) is extended

for each program statement, wherein each node corresponds to a set of gadget types (each with their

own child edges), any of which can implement the current grammar rule in terms of a tree of gadget

types represented by AST nodes. Therefore, each node is actually a set of AST subtrees, any of

which performs the same operation, but with different gadgets. This structure is used to efficiently

perform a lazy search over all possible gadget combinations that implement a program statement, as

well as a search over all schedules and register combinations. To do so, one can adapt the algorithms

from Schwartz et al. (2011) to suit the AST data structure.3

Lastly, the final payload is serialized to a structure accessible from the script, and control is

returned to the exploit writer’s code (Step »). As some individual gadgets that are not part of the final

payload are likely required to build the exploit buffer (e.g., StackPivotG, NoOpG), the framework

also makes those available to the exploit writer from the gadget collection. The NoOpG gadgets,

also called a ROP NOP, enable one to pad a payload in exploits where it is difficult to determine

the exact address of the payload. The StackPivotG is the first gadget to execute after redirecting

program control-flow. The stack pivot must pivot the program’s stack address (esp) to point to

the final payload, or somewhere in the range of the NoOpG’s. In general, the instructions needed

to perform this pivot are highly dependent on the specific exploit. The prototype implementation

assumes that the eax register points to the payload and thus only considers gadgets of the form

3While Schwartz et al. (2011) released source code, the ML language it is written in is incompatible with the de-
scribed framework and AST data structure. For the purpose of the prototype, the approach suggested in their paper is
reimplemented.
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xchg eax, esp; ret as StackPivotG’s. Implementing a catalog of useful stack pivots is

left as future work. The next section describes how one may architect the overall implementation,

which turns out to be a significant engineering challenge of its own.

3.4 Implementation

By now, the astute reader must have surely realized that accomplishing this feat requires a

non-trivial architectural design, whereby one disassembles code, recursively traverses code pages,

matches API function signatures, builds an instruction prefix tree and semantically verifies gadgets,

and just-in-time compiles gadgets to a serialized payload usable by the exploit—all performed at

runtime in a script environment. While true, one can use modern compiler infrastructures to help

with most of the heavy lifting. Figure 3.5 depicts the overall architecture of the implementation of

JIT-ROP. The framework is ∼ 3000 lines of new C++ code, and additionally uses the libdasm

library as a 3rd-party disassembler.
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Harvesting

Gadget Finding
JIT-Compiler
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3rd-Party 
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Platform-specific 
Bootstrap

Glue

framework.{js, swf, exe, pdf, doc, etc.}

Figure 3.5: Overall architecture. Multiple platforms are supported.

The Clang front-end to parses the code, and then processes it with the LLVM compiler infras-

tructure to generate library code in a variety of supported output formats. These tools can generate

an x86 (or ARM) version, as well as ActionScript and JavaScript. These scripting languages cover

support for the vast majority of today’s exploits, but one could also generate the framework library

for any output format supported by LLVM. The native binary versions could also be used to locally

bypass kernel-level fine-grained exploit mitigations. Each outputted format needs a small amount of

bootstrap code. For example, x86 code needs an executable to use the framework, and the JavaScript

output requires a small amount of interfacing code (∼ 230 lines). For the purposes of the evaluation
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in the next section, the end result of the compilation process is a single JavaScript file that can be

included in any HTML or document-format supporting JavaScript, such as Adobe’s PDF Reader.

Proof of Concept Exploit

To demonstrate the power of the framework, it is used to exploit Internet Explorer (IE) 8 running

on Windows 7 using CVE-2012-1876. The vulnerability is used to automatically load the Windows

calc application upon browsing a HTML page. A technical analysis of this vulnerability is available

for the interested reader (VUPEN Security, 2012), which provides details on construction of an

exploit that bypasses ASLR. Since the framework has similar requirements (albeit with more serious

implications), construction is straight-forward. The various steps in Figure 3.1 are accomplished as

follows.

First, one sets up the memory disclosure interface and reveals an initial code pointer (Step ¶).

To do so, one applies heap Feng Shui (Sotirov, 2007) to arrange objects on the heap in the following

order: (1) buffer to overflow, (2) string object, (3) a button object (specifically, CButtonLayout).

Next, perform an overflow to write a value of 232 into the string object’s length. This allows one to

read bytes at any relative memory address (e.g., using the charCodeAt() function). One uses the

relative read to harvest a self-reference from the button object, and implement a DiscloseByte

interface that translates a relative address to an absolute address. The JavaScript code sample in

Figure 3.6 begins with the implementation of DiscloseByte on line 6.

Following that, one defines a target program (in this case, one that launches calc with 100%

code reuse) in a simple high-level language on lines 15-21. Note that ‘@’ is a shorthand for

‘the last value returned’ in the JIT-ROP grammar, which may be referenced as a variable or

called as a function. Next, the first function pointer harvested from the button object is given

to HarvestCodePages (line 24), which automatically maps code pages (Step ·), finds the

LoadLibrary and GetProcAddress functions (Step ¸), and discovers gadgets (Step ¹).

Finally, the framework JIT-compiles the target program (Step º, line 29) inline with exploit

buffer construction. Program flow is redirected (Step ») using the same heap layout as in Step ¶. As

a result, one of the button object’s function pointers is overwritten with the stack pivot constructed

in line 31 of the exploit buffer. The StackPivotG switches the stack to begin execution of the
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Exploit Code Sample
// ... snip ... 1

// The string object is overwritten, and initial code 2

// pointer harvested prior to this snippet of code 3

4

// Step 1, implement DiscloseByte interface 5

framework.prototype.DiscloseByte = function(address) { 6

var value = this.string_.charCodeAt( 7

(address - this.absoluteAddress_ - 8)/2); 8

if (address & 1) return value >> 8; // get upper 9

return value & 0xFF; // value is 2 bytes, get lower 10

}; 11

12

// Define target program (’@’ is shorthand 13

// for ’last value returned’) 14

var program = 15

”LoadLibraryW(L’kernel32’);” + 16

”GetProcAddress(@, ’WinExec’);” + 17

”@(’calc’, 1);” + 18

”LoadLibraryW(L’kernel32’);” + 19

”GetProcAddress(@, ’ExitProcess’);” + 20

”@(1);”; 21

22

// Steps 2-4, harvest pages, gadgets, functions 23

framework.HarvestCodePages(this.initialCodePtr_); 24

25

// Step 5, 6 - jit-compile and build exploit buffer 26

var exploitBuffer = 27

repeat(0x19, framework.NoOpG()) + // Sled 28

unescape(framework.Compile(program)) + // Payload 29

repeat(0x12, unescape("%u4545%u4545")) + // Pad 30

repeat(0x32, framework.StackPivotG()); // Redirect 31

32

// overwrite with the exploit buffer 33

// ... snip ... 34
End Code

Figure 3.6: A JavaScript code sample from a proof of concept exploit illustrating each of the steps
from the workflow.
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NoOpG gadget sled, which in turn begins execution of the given program (lines 15-21) that was

JIT-compiled to a series of gadgets in line 29.

3.5 Evaluation

This section provides an evaluation of the practicality of just-in-time code reuse by using the

prototype JIT-ROP implementation in conjunction with the real-world exploit against Internet

Explorer in Windows 7 and a number of other applications. Also provided is an empirical evaluation

of components · through » in the workflow depicted in Figure 3.1.

3.5.1 On Code Page Harvesting

The success of the code reuse framework hinges on the ability to dynamically harvest memory

pages consisting of executable code, thereby rendering fine-grained randomization ineffective. As

alluded to earlier, the adversary provides a starting point for the code page harvesting algorithm by

supplying an initial pointer. In the proof of concept, this is accomplished via the CButtonLayout

object’s function pointers on the heap. Starting from this initial page, 301 code pages are harvested

from the Internet Explorer process (including those pages harvested from library modules). However,

since the final set of harvested pages differ based on the initial page, an offline empirical evaluation

is used to more thoroughly analyze the performance.

The offline evaluation allows one to test initial code pages that would not normally be found

by the proof of concept, since other exploits may indeed begin harvesting with those pages. To

perform the evaluation, memory snapshots are created using a custom library. This library enables

one to attach to an application process and store memory contents using the functionality provided

by the Windows debug library (DbgHelp). The snapshots contain all process memory, metadata

indicating if a page is marked as executable code, and auxiliary information on which pages belong

to the application or a shared library. Chapter 4 describes the memory snapshotting method in

detail. The native x86 version of the framework (see §3.4) is used to load the snapshots and test the

effectiveness of HarvestCodePages (the algorithm in Figure 3.3) by independently initializing

it from each individual code page within the snapshot. Since using snapshots gives one the ability to

evaluate applications without requiring an exploit-in-hand to setup a memory disclosure, framework’s

performance can be analyzed from many angles.
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Figure 3.7: Box and Whisker plot showing the number of unique code pages harvested from different
initial pages.

The boxplot in Figure 3.7 depicts the results on different popular applications. Each box

represents thousands of runs of HarvestCodePage, where each run uses a different initial code

page for harvesting. The results for Internet Explorer (msie8), for example, indicate that for over

half of the initial starting points harvest over 300 pages (i.e., nearly 2MB of code). The top 25th

percentile for FireFox (ff16) and Adobe Acrobat Pro X (acro x) harvest over 1000 pages. The logical

explanation for this variability is two-fold. First, code that is well connected (i.e., uses many API

calls) naturally yields better coverage. Second, compilers can insert data and padding into code

segments (e.g., specialized arrays for compiler optimizations). Therefore, if pages containing such

data are used as initialization points, the final set of pages will be lower since there would likely be

fewer calls that index into the IAT in those regions.

To gain additional insight on exactly what libraries the harvested code pages were from, auxiliary

information in the memory snapshot is used to map the coverage of a single average-case run (307

pages harvested total) of HarvestCodePages on Internet Explorer. Table 3.2 enumerates results
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Module No. Pages (% of library) No. Gadgets
gdi32.dll 36 (50%) 31
imm32.dll 16 (69%) 22
kernel32.dll 52 (26%) 61
kernelbase.dll 12 (17%) 22
lpk.dll 5 (83%) 0
mlang.dll 5 (16%) 8
msvcrt.dll 5 (3%) 6
ntdll.dll 109 (50%) 205
user32.dll 47 (45%) 57
uxtheme.dll 20 (35%) 23

Table 3.2: Location of code pages harvested in a single-run of HarvestCodePages on Internet
Explorer.

of the analysis. These results vary depending on the initial code pointer used, but this single instance

serves to highlight the point that pages are harvested from a variety of well-connected libraries.

3.5.2 On Gadget Coverage

The number of recovered code pages is only meaningful if the pages contain usable gadgets. To

evaluate how well the gadget discovery process works, one can examine the number of gadgets of

each type found in a particular set of harvested code pages. While all the gadgets that are required

(spanning 5 to 6 gadget types) for the proof of concept exploit are found, the experiment also

demonstrates that regardless of the initial code page used by a particular exploit, one can still usually

find enough gadgets to build a payload. In fact, one can generate a payload from 78% of the initial

code pages, and 67% of the initial starting points additionally yielded a StackPivotG, which is

required for many exploits.

Figure 3.8 depicts the number of each type of gadget discovered across multiple runs in an

offline evaluation. For brevity, only results from Internet Explorer are shown. Each of these runs is

initialized with one of the 7,398 different code pages in the snapshot. Gadgets are only considered

that (1) have at most 5 instructions in the sequence (excluding RET), and (2) pop at most 40 bytes off

the stack. The pop-limit is a matter of practicality—for each additional byte popped, the final payload

needs an equivalent amount of padding that increases payload size. The JIT-ROP framework uses

40 bytes (or 10 gadget slots), which one might consider a reasonable threshold, but this value can be

adjusted to accommodate other exploits.
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Figure 3.8: The number of gadgets (of each type) discovered in an Internet Explorer 8 process as
explored from 7,398 distinct starting pages. NoOpG and LoadRegG gadget types are not displayed
due to their abundance.

To reinforce the point that gadget discovery is not hindered by fine-grained mitigation techniques,

an experiment is conducted using the in-place binary code randomizer called ORP (Pappas et al.,

2012)4. ORP is designed as a practical (i.e., it does not require access to source code or debug

symbols) defense against code reuse attacks. ORP randomizes instructions within a basic block

by reordering or replacing instructions with various narrow-scope code transformations. Thus, a

gadget set created using the adversary’s instance of an application will be different than the victim’s

instance—thereby thwarting traditional code reuse attacks. Pappas et al. (2012) show they effectively

eliminate about 10%, and probabilistically break about 80%, of useful instruction sequences via their

code transformation technique.

ORP was used to randomize a number of applications, but unfortunately those applications

were unable to run afterwards due to runtime exceptions5. Nevertheless, the memory snapshotting

4ORP v0.2 is used, found at http://nsl.cs.columbia.edu/projects/orp/orp-0.2.zip.
5While the authors of ORP are aware of the issues encountered, unfortunately they have not been resolved.
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facility can instead be used to instrument a test. To do so, a test program is created that simply loads

any given set of libraries (via LoadLibrary). A subset of DLLs commonly loaded by Internet

Explorer is used that ORP is able to successfully randomize. There are 52 such DLLs in total. One

snapshot is taken on a run loading randomized DLLs, while the other uses the original unmodified

DLLs. The offline evaluation is then run on both scenarios (omitting any unrandomized system

DLLs). Ironically, the framework discovers slightly more gadgets in the randomized libraries than the

original unmodified DLLs, as code that ORP adjusts inadvertently adds new gadgets as old gadgets

are eliminated. This success does not come as a surprise since gadgets are discovered on-the-fly with

JIT-ROP and can therefore find even transformed or newly introduced gadgets — unlike the offline

gadget discovery tools against which ORP was originally evaluated.

3.5.3 On API Function Discovery

Without API calls to interact with the OS, a JIT-ROP payload would be nothing more than a

toy example. It is commonly assumed that the most direct way to undermine non-executable memory

is by calling VirtualProtect in a ROP exploit, then transferring control to a second-stage

payload composed of traditional shellcode. However, within the Internet Explorer 8 process memory

(including all libraries), there are only 15 distinct call sites to VirtualProtect. Therefore,

searching for a call-site of this function in face of fine-grained ASLR is will be unreliable.

On the other hand, call sites for LoadLibrary and GetProcAddress functions are read-

ily available within the Internet Explorer memory–391 instances of GetProcAddress and 340

instances of LoadLibrary. During code page harvesting, 10 or more instances of each function

are commonly found when starting from any initial address, and both are often found within 100

pages. Note that the code page traversal strategy may be tuned (e.g., depth vs. breadth-first ordering,

direct vs. indirect disclosure ordering, etc.) to possibly find API references in fewer code pages on a

per-exploit basis.

3.5.4 On Runtime Performance

Recall that every step of the framework occurs on-demand, at the time of exploitation. While

the evaluation thus far demonstrates that enough code pages and gadgets are obtained under most

circumstances, one also needs to explore how long it takes before a payload may be successfully

constructed.
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To assess runtime performance, five end-to-end tests of the framework are performed. The

first scenario uses the proof of concept exploit against Internet Explorer 8 to launch an arbitrary

sequence of commands on the victim’s machine; similar to most existing proof of concept exploits,

the Windows calculator program is opened. The second and third scenarios exploit a custom Internet

Explorer 10 plugin on Windows 8. As no IE proof of concept exploits (stage one) have been

publicly disclosed on this platform at the time of this writing, one can embed both a straightforward

ReadByte function into a plugin to disclose a byte of memory, as well as a buggy DebugLog

function that contains a format string vulnerability. The code causing this vulnerability uses the

secure family of printf functions6, produces no compiler warnings in Visual Studio 2012, and is

used by JIT-ROP to both read arbitrary memory via the %s modifier (see (Scut/team teso, 2001,

Section 3.3.2)) and obtain the initial code pointer by reading up the stack to obtain the return address.

Note that at the time of this writing the prevention mechanisms implemented in Windows only

protect against (uncontrolled) memory writes through a format string attack. The fourth scenario

uses a rudimentary document reader program, called doxreader, created to support testing during

development of the framework. The doxreader program contains embedded JavaScript support

provided by Chrome’s V8 engine. A memory disclosure vulnerability is also embedded within

doxreader that can be exploited to trigger code page harvesting. The fifth scenario demonstrates

the native performance of JIT-ROP, which is run as a Linux executable (as described in §3.5.1).

In these tests, the input to both IE and doxreader is a single JavaScript file that contains

the entire framework and exploit-specific bootstrap to setup the memory disclosures. As in the

offline tests, the input to the native executable is a memory snapshot of IE. For each end-to-end

experiment JIT-ROP produces a payload that launches the Windows calculator program, then exits

the exploited process via the ExitProcess API call. The payloads generated are 100% ROP

gadgets (i.e., no injected code or secondary shellcode payloads) based on the memory content at time

of exploit. Figure 3.9 depicts the results.

In the first scenario with Internet Explorer 8, code page harvesting is not very expeditious,

averaging only 3.3 pages/second. Regardless, JIT-ROP is able to locate a pivot within 10 pages,

all required APIs in 19 pages, and the requisite gadgets for a payload within 50 pages—a total

6For an overview of secure printf functions, see http://msdn.microsoft.com/en-US/library/
ce3zzk1k(v=vs.80).aspx
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Figure 3.9: Overall runtime performance for end-to-end tests.

running time of 22.5 seconds. In the second scenario (ie10/win8 (fmt string)), exercising

a format string vulnerability to disclose memory (e.g., swprintf s is invoked for every two bytes

disclosed) is a costly operation. In addition to requiring many more computations per byte disclosed,

non-printable byte values cannot be disclosed at all, resulting in more pages being traversed because

of missed gadgets and API call sites. Regardless, one can still see an increase in performance

over the IE8 scenario with an overall runtime of 15.4 seconds and memory traversal averaging

22.4 pages/second, primarily because the JavaScript engine of IE10 uses JIT and typed arrays7.

In comparison, when using the ReadByte disclosure in place of the format string vulnerability,

one can observe that the vast majority of overhead is caused by the type of memory disclosure

itself. Under the ie10/win8 (readbyte) case, the exploit completes in only 2.3 seconds while

traversing memory at an average of 84 pages/second. The doxreader exploit, using the V8 engine

without typed arrays, completes in just under 10 seconds. Finally, notice that the framework runs

incredibly fast when natively compiled—code pages are traversed, gadgets are collected, APIs are

7For more information on typed arrays, see http://msdn.microsoft.com/en-us/library/ie/
br212485(v=vs.94).aspx
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resolved, and a payload is compiled in a fraction of a second. While the exact performance of

JIT-ROP varies significantly between JavaScript engine and exploit details, the overall efficiency of

the approach demonstrates the realism of the threat posed by the just-in-time code reuse framework.

3.6 Real-world Applications

Beyond evaluating JIT-ROP across a number of popular programs, this section highlights

several case studies in which JIT-ROP has be used for purposes beyond mere academic exercise.

3.6.1 Drive-by Downloads

Shortly after the experiments in the previous section were conducted, a new exploit for IE10

in Windows 7 (CVE-2013-2551) was publicly disclosed through a Metasploit framework module.

This proof-of-concept exploit was adapted to make use of the JIT-ROP framework. While the

Metasploit module did not work in Windows 8, due to ASLR being applied throughout all modules,

it’s adaptation using JIT-ROP works in both Windows 7 and 8. Again, this is possible because

JIT-ROP builds the payload at runtime, rather than making assumptions about the location of

gadgets fixed in memory. The attack was publicly demonstrated at Black Hat Briefings in 20138.

This exhibition showed a user with a new installation of Windows 8 browsing to a web page that

includes the JIT-ROP framework and a script that uses it to exploit CVE-2013-2551. Within a

few seconds the JIT-ROP payload performed actions typical of a drive-by download attack: an

executable was downloaded and subsequently executed.

3.6.2 Remotely Leaking Password Manager Credentials

The framework has also been used to mount attacks that steal passwords from various “password

manager” products in the same style as a drive-by download. Password Managers have recently

gained favor as a convenient method of bolstering password strength. At their most basic level, these

utility programs provide storage and access for a collection of user login credentials. Unfortunately,

the trade-off made when using a password manager is that an adversary with the ability to execute

arbitrary code on an end-user system can now potentially obtain all user credentials stored in the

password manager immediately, whereas without a password manager the adversary must resort to the

8BlackHat is an industry-oriented information security conference. The JIT-ROP briefing can be found at https:
//www.blackhat.com/us-13/archives.html#Snow
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1 / / P r e v i o u s l y l o a d e d v a u l t c l i . d l l and r e s o l v e d i t ’ s e x p o r t e d f u n c t i o n s
2 / / Open t h e V a u l t ( i d p r e d e f i n e d )
3 Vaul tOpenVau l t (& id , 0 , &v a u l t ) ;
4 / / Get t h e c r e d e n t i a l i t em a r r a y
5 V a u l t E n u m e r a t e I t e m s ( v a u l t , 512 , &cnt , (DWORD*)&i t em ) ;
6 / / I t e r a t e ove r a c c o u n t s
7 f o r (DWORD j = 0 ; j < c n t ; j ++) {
8 / / P l a c e h o l d e r f o r decoded password
9 PVITEM pw = NULL;

10 / / Decode a c c o u n t password
11 V a u l t G e t I t e m ( v a u l t , &i t em [ j ] . id , i t em [ j ] . u r l ,
12 i t em [ j ] . u se r , 0 , 0 , 0 , &pw ) ;
13 / / P r i n t decoded c r e d e n t i a l
14 w p r i n t f ( L”\ n C r e d e n t i a l : %s\nURL : %s\nUsername : %s\nPassword : %s\n ” ,
15 pw−>cred , ( c h a r * )pw−>u r l +32 , ( c h a r * )pw−>u s e r +32 , ( c h a r * )pw−>pw+32) ;
16 }

Listing 3.1: A C-language code snippet that can be run in the context of any exploited application to
dump passwords stored in the standard Microsoft Windows credential store (called Vault).

use of a keylogger to collect passwords slowly, only as they are actively used by the victim. Initially,

the standard Microsoft Windows 8 credential store, dubbed the Vault, was examined. Listing 3.1

depicts a snippet of C-code that accesses and dumps Vault passwords. The vaultcli.dll library

contains exported functions that open, enumerate, and get credentials stored in the vault. These

functions handle accessing the passwords for the currently logged-in user without requiring any

password entry.

The LastPass (Version 2.0) password manager9 was also examined, which in Windows is a

browser plugin in the form of a DLL that is loaded in the same address-space as the browser when it

is started. The default configuration for all options was used during installation. Note that LastPass

claims to store credentials in a cryptographically secure data-format, which is “unlocked” when the

user opens their browser and enters their “master key”. The master key is valid for a configurable

period of time, although by default the session does not expire until a reboot. How to access the

credential-store programmatically was not immediately apparent, but since the user does not have to

re-enter their master password for each credential accessed, one can assume there must be a session

key. Rather than finding the session key, one can take an approach similar to that used for the Vault,

i.e., to use the LastPass code itself to access the credential-store on the adversary’s behalf. This

required understanding LastPass internals. A combination of dynamic and static analysis for reverse

9LastPass is available at http://lastpass.com
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1 / / L a s t P a s s ‘ g e t a c c o u n t s ’ e x p o r t
2 f nGe tAccoun t s GetAccounts = Ge tP rocAddres s ( hLpPlugin , ” g e t a c c o u n t s ” ) ) ;
3 / / L a s t P a s s ‘ l p d e c ’ e x p o r t
4 f n D e c r y p t A c c o u n t Decryp tAccoun t = Ge tP rocAddres s ( hLpPlugin , ” l p d e c ” ) ) ;
5 / / Get L a s t P a s s a c c o u n t s p o i n t e r
6 PACCOUNTS a c c o u n t s = GetAccounts ( ) ;
7 / / Get t h e a c c o u n t a r r a y
8 PACCOUNT * a c c o u n t = a c c o u n t s−>a c c o u n t ;
9 / / I t e r a t e ove r a c c o u n t s

10 f o r ( s i z e t i = 0 ; i < a c c o u n t s−>c o u n t ; i ++) {
11 / / Dec ryp t a c c o u n t password
12 LPCWSTR *pw = Decryp tAccoun t (
13 &a c c o u n t [ i ] , a c c o u n t [ i ]−>enc password , NULL / * s e s s i o n key * / , 0 ) ;
14 / / P r i n t d e c r y p t e d c r e d e n t i a l
15 w p r i n t f ( L”\nUsername : %s\nPassword : %s\n ” , a c c o u n t [ i ]−>username , *pw ) ;
16 }

Listing 3.2: Another C-language code snippet, this time enumerating passwords in LastPass‘s
encrypted credential-store. This code must be injected into a browser process after the LastPass
plugin subsystem has initialized.

engineering the plugin revealed that LastPass exports several functions that the LastPass toolbar

uses to fill in passwords when browsing to the appropriate page. Remarkably, the interface only

has small cosmetic differences with the Microsoft Vault interface. A snippet of C-code to dump

LastPass passwords is depicted in Listing 3.2. As the code snippet depicts, the LastPass plugin

exports functions that enumerate and decrypt credentials using the session key. Notably, it seems that

while the decrypt function does have a session key parameter, the adversary’s job is made easier by

the fact that if a NULL session key is provided, LastPass will lookup the correct session key.

After gaining the basic knowledge required to access both the Vault and LastPass programmaticly,

a JIT-ROP payload mimicking this behavior was constructed and paired with CVE-2013-2551 to

trigger the dumping of a victim’s passwords when they visit a web page. The current instantiation

of JIT-ROP, however, does not support generating code with the conditional control-flow logic

for loops. This problem was previously addressed in the past by Shacham (2007). Instead, this

requirement was bypassed by building a payload that instantiates a PowerShell script. The script is

instantiated by JIT-ROP and performs the aforementioned actions to dump the password stores. In

summary, JIT-ROP helped to demonstrate that once a particular password manager is understood,

dumping every password from an active user is possible. Prior to this effort the study of password
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manager security was underrepresented, but it has since been the subject of a number of academic

efforts with real-world implications (Florencio et al., 2014; Silver et al., 2014; Li et al., 2014).

3.7 Discussion

A knee-jerk reaction to mitigate the threat outlined in this chapter is to simply re-randomize

code pages at a high rate; doing so would render the attack ineffective as the disclosed pages

might be re-randomized before the just-in- time payload executes. While this is one way forward,

re-randomization costs (Wartell et al., 2012) would make such a solution impractical. In fact, re-

randomization is yet to be shown as an effective mechanism for user applications.

Another JIT-ROP mitigation strategy could be to fortify defenses that hinder the first stage (i.e.,

the entry point) of a runtime attack. For instance, the plethora of works that improve heap layouts

(e.g., by separating heap metadata from an application’s heap data) (Akritidis, 2010; Kharbutli

et al., 2006; Berger and Zorn, 2006), use sparse page layouts (Moerbeek, 2009; Lvin et al., 2008)

and heap padding (Bhatkar et al., 2003), use advanced memory management techniques (e.g.,

randomized (Valasek, 2012) and type-safe memory re-cycling (Dhurjati et al., 2003; Akritidis, 2010)),

heap canaries (Robertson et al., 2003; Zeng et al., 2011), or a combination of these countermeasures

in a single solution, which is exactly the approach taken by DieHard (Berger and Zorn, 2006) and

DieHarder (Novark and Berger, 2010). The proof of concept exploit (see §3.4), for example, would be

prevented by randomizing heap allocation order in such a way that heap feng shui is not possible. On

the other hand, there are a number of other heap and information leakage vulnerabilities10 that can be

exploited to instantiate JIT-ROP and execute arbitrary malicious computations. Moreover, format

string vulnerabilities, as demonstrated in §3.5.4, are a prominent class of attack that bypass these

stage one defenses. A more in-depth overview of modern exploits that enable memory disclosures

(in face of many of these defenses) is provided by Serna (2012b). While stage one defenses certainly

reduce the exposure of the initial vulnerable entry point, the functionality provided by JIT-ROP is

orthogonal in that it bypasses defenses against the execution of malicious computations (stage two).

Another potential mitigation technique is instruction set randomization (ISR) (Barrantes et al.,

2003; Kc et al., 2003), which mitigates code injection attacks by encrypting the binary’s code pages

with a random key and decrypting them on-the-fly. Although ISR is a defense against code injection,

10For instance, CVE-2012-2418, CVE-2012-1876, CVE-2010-1117, CVE-2009-2501, CVE-2008-1442 to name a few.
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it complicates code reuse attacks when it is combined with fine-grained ASLR. In particular, it can

complicate the gadget discovery process (see §3.3.3), because the entire memory content is encrypted.

On the other hand, ISR has been shown to be vulnerable to key guessing attacks (Sovarel et al.,

2005; Weiss and Barrantes, 2006)—that become more powerful in the face of memory disclosure

attacks like JIT-ROP,—suffers from high performance penalties (Barrantes et al., 2003), or requires

hardware assistance that is not present in commodity systems (Kc et al., 2003).

Besides randomization-based solutions, a number of techniques have been proposed to mitigate

the second stage of a runtime attack, namely the execution of malicious computations. However, most

of these solutions have deficiencies which impede them from being deployed in practice. For instance,

dynamic binary instrumentation-based tools used for taint analysis (Newsome and Song, 2005) or for

the sake of preventing code reuse attacks (Kiriansky et al., 2002; Chen et al., 2009; Davi et al., 2011)

can impose slow downs of more than 2x. On the other hand, compiler-based approaches against

return-oriented programming such as G-Free (Onarlioglu et al., 2010) or return-less kernels (Li et al.,

2010) induce low performance overhead, but require access to source code and a re-compilation

phase.

A more promising approach to prevent control-flow attacks is the enforcement of control-flow

integrity (CFI) (Abadi et al., 2009). CFI mitigates runtime attacks regardless of whether the program

suffers from vulnerabilities. To do so, CFI generates the control-flow graph of an application and

extends all indirect branch instructions with a control-flow check without requiring the application’s

source code. However, CFI still has practical constraints that must be addressed before it can gain

widespread adoption. For instance, the original CFI proposal requires debug symbols (which are not

always available), and was based on an instrumentation framework (“Vulcan”) that is not publicly

available. Moreover, compiler-based follow-up works such as HyperSafe (Wang and Jiang, 2010) or

BGI (Castro et al., 2009) require a recompilation phase and the source code. But most importantly,

prior work on CFI does not protect applications that deploy just-in-time code generation, which is the

standard case for all modern browsers. Nevertheless, it is hoped the work in this chapter encourages

others to explore new ways to provide practical control and data-flow integrity.

Key Take-Aways:
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1. The history of exploiting memory errors over the course of the last two decades is one attackers

and defenders racing to outdo one another. DEP, for instance, was perceived to prevent

exploitation by eliminating the ability to execute injected code. However, the adversary

responded by switching from using injected code to reusing existing snippets of code. ASLR,

on the other-hand, was thought to significantly hinder code reuse by randomizing the location

of those reused code snippets. In response, the adversary made use of a single memory

disclosure prior to exploitation to preemptively adjust the addresses of those code snippets.

2. Fine-grained ASLR is the most recent mitigation promoted as a solution to memory error

exploitation. Further, performance and compatibility properties make it an ideal candidate for

integration and deployment with major operating systems. Unfortunately, the attack technique

disclosed in this chapter serves to show that history has repeated itself once again. The repeated

disclosure of memory pages used in JIT-ROP defeats fine-grained ASLR using the same

requirements necessary to defeat standard ASLR.

3. Given the history that has played out over the last 20 years, the attack presented in this chapter

defeating the most promising up-and-coming mitigation, and the lack of any mitigation on the

horizon with sufficient performance and compatibility for widespread deployment, the near-

term prevention of all types of memory error exploitation across all platforms appears unlikely.

On the contrary, if the historical trend holds it is more likely that successful exploitation of

memory errors will slowly be made to require more effort from the adversary, but will not be

eliminated all-together in the long-term. Hence, from an operational point of view, techniques

for detection and diagnostics of these exploits are of the utmost importance both presently and

moving forward.
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CHAPTER 4: DETECTING CODE REUSE PAYLOADS

One obvious mitigation to code reuse attacks is address-space layout randomization (ASLR),

which randomizes the base address of libraries, the stack, and the heap. As a result, attackers can no

longer simply analyze a binary offline to calculate the addresses of desired instruction sequences.

That said, even though conventional ASLR has made code reuse attacks more difficult in practice, it

can be circumvented via guessing attacks (Shacham et al., 2004) or memory disclosures (Vreugdenhil,

2010; Serna, 2012b). Even more advanced fine-grained ASLR schemes (Pappas et al., 2012; Hiser

et al., 2012; Kil et al., 2006; Wartell et al., 2012) have also been rendered ineffective in face of

the just-in-time code reuse attacks presented in Chapter 3, where instructions needed to create the

payload are dynamically assembled at runtime. Therefore, until more comprehensive preventive

mechanisms for code reuse attacks take hold, techniques for detecting code reuse attacks remain of

utmost importance (Szekeres et al., 2013).

This chapter provides one such approach for detecting and analyzing code reuse attacks em-

bedded in various file formats (e.g., those supported by Adobe Acrobat, Microsoft Office, Internet

Explorer). Unlike prior work, this chapter focuses on detection (as a service) rather than in-built

prevention on end-user systems. In doing so, it fills an important gap in proposals for defenses

against code reuse attacks. More specifically, preventive defenses have yet to be widely deployed due

to performance and stability concerns, while the detection approach described in this chapter may be

used by network operators today, without changes to critical infrastructure or impacting performance

of end-user systems with kernel modifications or additional software. To achieve these goals, one

must pay particular attention to automated techniques that (i) achieve high accuracy in assigning

benign or malicious labels to each file analyzed, and (ii) provide a scalable mechanism for analyzing

files in an isolated environment (e.g., are cloud-capable).

This chapter presents a static analysis and filtering method that identifies and profiles chains of

code pointers referencing ROP gadgets (that may even reside in randomized libraries). An evaluation

of over 7,662 benign and 57 malicious documents demonstrate that one can perform such analysis

accurately and expeditiously — with the vast majority of documents analyzed in about 3 seconds.
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4.1 Literature Review

Most germane is the work of Polychronakis and Keromytis (2011), called ROPscan, which

detects return-oriented programming by searching for code pointers (in network payloads or memory

buffers) that point to non-randomized modules mapped to the address space of an application. Once

a code pointer is discovered, ROPScan performs code emulation starting at the instructions pointed

to by the code pointer. A return-oriented programming attack is declared if the execution results in a

chain of multiple instruction sequences. In contrast to the method presented in this chapter, ROPScan

only analyzes pointers to non-randomized modules which is quite limiting since exploits place no

restriction on the reliance of non- randomized modules; instead the adversary exploits memory

leakage vulnerabilities and calculates code pointers on-the-fly, thereby circumventing any detection

mechanism that only focuses on non-randomized modules. Moreover, the fact that execution must be

performed from each code pointer leads to poor runtime performance.

Davi et al. (2009) and Chen et al. (2009) offer methods for detecting the execution of ROP

payloads based solely on checking the frequency of invoked return instructions. Specifically, these

approaches utilize binary instrumentation techniques and raise an alarm if the number of instructions

issued between return instructions is below some predefined threshold. These techniques are fragile

and can easily be circumvented, for example, by invoking longer sequences in between return

instructions. Similarly, one might argue that since return instructions play a pivotal role in these

attacks, a natural defense is to monitor and protect return instructions to mitigate ROP, e.g. by

deploying a shadow stack to validate whether a return transfers the execution back to the original

caller (Frantzen and Shuey, 2001; Abadi et al., 2009; Davi et al., 2011). Even so, ROP without

returns is possible where the adversary only needs to search for instruction sequences that terminate

in an indirect jump instruction (Bletsch et al., 2011). Indeed, Checkoway et al. (2010) demonstrates

that a Turing-complete gadget set can be derived for this code reuse method.

To date, ROP has been adapted to numerous platforms, e.g., SPARC (Buchanan et al., 2008),

Atmel AVR (Francillon and Castelluccia, 2008), ARM (Kornau, 2009), and several real-world

exploits, e.g., against Adobe Acrobat Reader (jduck, 2010), iOS Safari (Gadgets DNA, 2010), and

Internet Explorer (Vreugdenhil, 2010), have been found that leverage this attack strategy. Hence,
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Figure 4.1: ROP Payload Example.

ROP offers a formidable code reuse strategy. This chapter presents one method for reliably detecting

the presence of such ROP payloads on the x86 architecture.

4.2 ROP Payload Example

Chapter 2 gives a basic overview of ROP payloads, while Chapter 3 discusses much more

complex code reuse payloads. This section instead covers the structure of ROP payloads commonly

used by the adversary in practice at the time of this writing. Figure 4.1 illustrates this particular

structure. In this case, the adversary’s goal is to execute the function WinExec(“calc.exe”) by

means of ROP. In Step ¬, the adversary issues several POP instruction sequences to load registers,

most notably, for loading ESI with the start address of WinExec(), and moving a pointer to a RET

instruction in EDI. After the four POP instruction sequences have been executed, control is redirected

to the PUSHA instruction sequence. This instruction sequence stores the entire x86 integer register

set onto the stack (Step ­), effectively overwriting nearly all pointers and data offsets used in the

previously issued POP instruction sequences. It also moves the stack pointer downwards. Hence,

when the PUSHA instruction sequence issues the final return instruction, the execution is redirected

to the pointer stored in EDI. Since EDI points to a single RET instruction, the stack pointer is simply

incremented and the next address is taken from the stack and loaded into the instruction pointer.

The next address on the stack is the value of ESI (that was loaded earlier in Step ¬ with address

of WinExec), and so the desired call to WinExec(“calc.exe”) is executed (Step ®). The detection

method described in the next section demonstrates how one is able to detect this, and other, dynamic

behavior of real-world attacks.
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4.3 Method

The design and engineering of a system for detecting and analyzing code reuse attacks embedded

in various file formats poses significant challenges, not the least of which is the context-sensitivity of

code reuse attacks. That is, exploit payloads can be built dynamically (e.g., via application-supported

scripting) as a file is opened and leverage data from the memory footprint of the particular instance

of the application process that renders the document1. Thus, any approach centered around detecting

such attacks must allow the payload to be correctly built. Assuming the payload is correctly built by

a script in the file, the second challenge is reliably identifying whether the payload is malicious or

benign. Part of this challenge lies in developing sound heuristics that cover a wide variety of ROP

functionality, all the while maintaining low false positives. For practical reasons, the end-to-end

analysis of each file must complete as quickly as possible.
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Figure 4.2: High-level abstraction of the detection approach

The approach taken to achieve these goals is highlighted in Figure 4.2. In short, code reuse

attacks are detected by: Ê opening a suspicious document in it’s native application to capture

memory contents in a snapshot, Ë scanning the data regions of the snapshot for pointers into the

code regions of the snapshot, Ì statically profiling the gadget-like behavior of those code pointers,

and Í profiling the overall behavior of a chain of gadgets. A use-case for these steps is envisioned

1Recall that ASLR shuffles the memory footprint of each instance.
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wherein documents are either extracted from an email gateway, parsed from network flows, harvested

from web pages, or manually submitted to an analysis system. In what follows, discussion of the

challenges and solutions for each step of the system is provided.

4.3.1 Unpacking Payload Containers

As defensive techniques have evolved, attackers have had to find new ways to exploit vulnerable

applications. In particular, the rise of DEP and ALSR made it difficult for attackers to directly

embed a payload in their target file format. To see why, recall that the combination of DEP and

ASLR prevents both traditional code injection and the hard-coding of gadget addresses in code

reuse attacks. This forces the adversary to first perform a memory disclosure attack (i.e., using

embedded JavaScript, ActionScript, etc.) to reveal gadget addresses, then to either adjust predefined

gadget offsets (Vreugdenhil, 2010; Serna, 2012b) or dynamically compile a payload on-the-fly (as

with JIT-ROP in Chapter 3). In practice the payload is often dynamically pieced together by an

embedded script, and the script itself is also encoded or obfuscated within a document. Thus, to

detect a document with an embedded malicious payload, the embedded payload must be given the

opportunity to unveil itself.

One approach to enable this unveiling is to write a parser for the document file format to extract

embedded scripts, then run them in a stand-alone scripting engine while simulating the environment of

the target application, e.g. (Egele et al., 2009; Cova et al., 2010; Tzermias et al., 2011). This approach

has the advantage of being able to quickly run scripts within multiple environments simulating

different versions of an application. However, document parsing and environment simulation has

practical limitations in that an adversary need only make use of a single feature supported by the real

target application that is unimplemented in the simulated environment (Overveldt et al., 2012).

Another approach is to render documents with their target application (e.g. Adobe Acrobat, etc.)

in a virtual machine, then extract a snapshot of application memory. The snapshots are extracted

either outside the virtual machine (with support from the hypervisor) or from inside the guest.

Snapshots taken with the hypervisor have the the semantic gap problem. In particular, the guest

OS cannot be used to collect auxilary information, only a simple page-level dump of memory is

available, and some portions of memory may be missing because the OS has not paged them into

memory at the time of the snapshot. To alleviate this problem, one may use an in-guest application for
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assistance. An in-guest helper can use the dbghelp library to generate a rich application snapshot,

called a minidump2. The minidump format not only contains the content of memory, but also

the meaning, e.g., which pages correspond to binary and library sections, the location of the TEB

data structure (which can be used to locate the stack and heap), etc. The minidump format also

combines adjacent memory pages with matching permissions into a single structure called a region.

One may generate a snapshot once the cpu goes idle, or time or memory exceeds some tunable

maximum threshold set by the operator. In the evaluations later in this chapter, an idle time of 2

seconds is used, as measured by the OS cpu idle time. A memory threshold of 200 megabytes is

set, which is not exceeded when opening benign documents. Those documents that do exceed this

threshold are due to a heap spray used in the exploit script. Finally, a total maximum run time of 20

seconds is used. As exploit scripts construct the payload, the used cpu cycles are observed by the

snapshot program. In the common case of benign documents, however, the document reader should

immediately idle after rendering and thus complete quickly.

This approach relies on the malicious payload being present in memory at the time the snapshot

is taken. This may not be the case, for example, if the malicious document requires user input

before constructing the payload, the payload is intentionally deleted from memory, or the payload

is destroyed as it executes (see Figure 4.1). While this is certainly a concern, in practice exploits

are executed with as little user-interaction as possible to maximize chances of success. Further,

multiple copies of the payload exist in memory for any observed real-world exploits due to either

heap spraying the payload, or pass-by-value function parameters.

Similar to Lindorfer et al. (2011), one can simultaneously launch the document in different

versions of the target application. While doing so may seem like a heavyweight operation, note that

simply opening an application is by no means cpu or io intensive. In theory, an alternative approach

would be to take advantage of the multi-execution approach suggested by Kolbitsch et al. (2012).

A significant bottleneck of the in-guest snapshot approach is the process of transferring the

memory snapshot, which may be hundreds of megabytes, from the guest OS to the host for analysis.

Typically, guest-host file sharing is implemented by a network file sharing protocol (e.g., Samba),

and transferring large snapshots over a network protocol (even with para-virtualization) can add tens

2For more information on dbghelp and minidump, see http://msdn.microsoft.com/en-us/library/
windows/desktop/ms680369(v=vs.85).aspx.
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of seconds of overhead. To solve the problem of the fast transfer of memory snapshots, a custom

guest-host shared memory driver was built on top of the ivshmem PCI device in qemu. The fast

transfer driver (and supporting userspace library) provides a file and command execution protocol on

top of a small shared memory region between host and guest. Using this driver, transferring large

files in (and out), as well as executing commands in the guest (from the host) incurs only negligible

latency as all data transfer occurs in-memory. Altogether, the memory snapshot utility and fast

transfer suite implementation is about 4, 600 lines of C/C++ code, and the virtual machine manager

is about 2, 200 lines of python code that fully automates document analysis. Thus, one can use

the fast-transfer driver to pull the application snapshot out of the guest, and onto the host system for

further analysis.

4.3.2 Efficient Scanning of Memory Snapshots

With a memory snapshot of the target application (with document loaded) in-hand, one can

now scan the snapshot to identify content characteristic of ROP. To do so, one first traverses the

application snapshot to build the set of all memory ranges a gadget may use, denoted the gadget

space. These memory ranges include any memory region marked as executable in the application’s

page table, including regions that are randomized with ASLR or allocated dynamically by JIT code.

Next, make a second pass over the snapshot to identify data regions, called the payload space. The

payload space includes all thread stacks, all heaps, and any other data that is dynamically allocated,

but excludes the static variable regions and relocation data used by each module3. The application

snapshots from step Ë provide all the necessary meta-information about memory regions. In short,

executable memory is considered gadget space, while writable memory is considered payload space.

Note that memory that is both writable and executable is considered in both spaces.

As one traverses the payload space, look for the most basic indicator of a ROP payload—namely,

32-bit addresses pointing into the gadget space. Traversal over the payload space is implemented as

a 4-byte (32-bit) window that slides 1-byte at a time. This is done because the initial alignment of a

payload is unknown. For each 4-byte window, check if the memory address falls within the gadget

space. Notice, however, that if the payload space is merely 25MB, that would require roughly 26.2

3An adversary would not typically control data at these locations, and thus one may assume a code reuse payload can
not exist there.
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million range lookups to scan that particular snapshot. A naive implementation of this lookup by

iterating over memory regions or even making use of a binary tree would be too costly. Instead, one

can take advantage of the fact that memory is partitioned into at least 4KB pages. Populate an array

indexed by memory page (i.e., the high-order 20-bits of an address) with a pointer to information

about the memory region that contains that page. Storing page information this way mimics hardware

page tables and requires only 4MB of storage. This allows one to achieve constant lookup time by

simply bit-shifting each address and using the resulting 20-bits as an index into the page table.

When a pointer to gadget space is encountered (deemed a gadget candidate), treat it as the start

of a potential gadget chain and start by profiling the behavior of the first gadget candidate in the

chain.

4.3.3 Gadget Candidate Profiling

A pointer from the application snapshot’s payload space that leads to code in the gadget space

has the potential makings of a ROP gadget, i.e. a discrete operation may be performed followed by a

return via any indirect branch instruction to the payload space to start execution of the next gadget.

The first challenge of gadget candidate profiling is to determine if a particular instruction sequence

has any potential to be used as a ROP gadget. To do so, label any instruction sequence ending with an

indirect branch, such as ret, jmp, or call instructions, as a valid gadget. However, an instruction

sequence may end before being labeled a valid gadget by encountering (i) an invalid instruction, (ii) a

privileged instruction (e.g., IO instructions), (iii) a memory operation with an immediate (hard-coded)

address that is invalid, (iv) a direct branch to an invalid memory location, (v) a register used in a

memory operation without first being assigned4, or (vi) the end of the code region segment. If any of

these conditions are encountered, stop profiling the gadget candidate and either return to step Ë if

this is the first gadget candidate in a potential gadget chain, or proceed to step Í to profile the overall

gadget chain if there exists at least one valid gadget.

In addition to deciding if a gadget is valid, one must also profile the behavior of the gadget.

Gadgets are labeled by the atomic operation they perform (see Chapter 2). In practice, individual

gadgets usually adhere to the concept of atomic operations due to the difficulty of accounting for

4One should track assignments across multiple gadgets and start with the assumption that eax is always assigned.
Real-world ROP chains can begin execution after a stack pivot of the form xchg eax,esp and subsequently use eax as
a known valid pointer to a writable data region.
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side effects of longer sequences. While one may experiment with many types of gadget profiles, only

a few prove useful in reliably distinguishing actual ROP payloads from benign ROP-like data. These

profiles are LoadRegG, and JumpG/CallG/PushAllG/PushG (this entire set is also referred to

as CallG) which precisely map to pop, jmp and jmpc, call, pusha, and push instruction

types. Thus, if one observes a pop, for example, the gadget is labeled as a LoadRegG, ignoring any

other instructions in the gadget unless one of the CallG instructions is observed, in which case the

gadget is labeled with CallG. More instructions could be considered (i.e. mov eax, [esp+10]

is another form of LoadRegG), but these less common implementations are left as future work.

Note that if a gadget address corresponds directly to an API call5, one should label it as such, and

continue to the next gadget. The usefulness of tracking these profiles should become apparent next.

4.3.4 ROP Chain Profiling

In the course of profiling individual gadgets, one should also track the requisite offset that would

be required to jump to the next candidate in a chain of gadgets — i.e., the stack pointer modifications

caused by push, pop, and arithmetic instructions. Using this information, profile each gadget as in

step Ì, then select the next gadget using the stack offset produced by the previous gadget. Continue

profiling gadgets in the chain until either an invalid gadget candidate or the end of the memory region

containing the chain is encountered. Upon termination of a particular chain, the task is to determine

if it represents a malicious ROP payload or random (benign) data. In the former case, trigger an alert

and provide diagnostic output; in the latter, return to step Ê and advance the sliding window by one

byte.

Unfortunately, the distinction between benign and malicious ROP chains is not immediately

obvious. For example, contrary to the observations of Polychronakis and Keromytis (2011), there may

be many valid ROP chains longer than 6 unique gadgets in benign application snapshots. Likewise, it

is also possible for malicious ROP chains to have as few as 2 unique gadgets. One such example is a

gadget that uses pop eax to load the value of an API call followed by a gadget that uses jmp eax

to initiate the API call, with function parameters that follow. Similarly, a pop/call or pop/push

chain of gadgets works equally well.

5Also consider calls that jump five bytes into an API function to evade hooks.
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That said, chains of length 2 are difficult to use in real-world exploits. The difficulty arises

because a useful ROP payload will need to call an API that requires a pointer parameter, such as a

string pointer for the command to be executed in WinExec. Without additional gadgets to ascertain

the current value of the stack pointer, the adversary would need to resort to hard-coded pointer

addresses. However, these addresses would likely fail in face of ASLR or heap randomization, unless

the adversary could also leverage a memory disclosure vulnerability prior to launching the ROP chain.

An alternative to the 2-gadget chain with hard-coded pointers is the pusha method of performing an

API call, as illustrated in Figure 4.1. Such a strategy requires 5 gadgets (for the WinExec example)

and enables a single pointer parameter to be used without hard-coding the pointer address.

The aforementioned ROP examples shed light on a common theme—malicious ROP payloads

will at some point need to make use of an API call to interact with the operating system and perform

some malicious action. At minimum, a ROP chain will need to first load the address of an API call into

a register, then actually call the API. A gadget that loads a register with a value fits the LoadRegG

profile, while a gadget that actually calls the API fits either the JumpG, CallG, PushAllG, or

PushG profiles. Thus, the primary heuristic for distinguishing malicious ROP payloads from those

that are benign is to identify chains that potentially make an API call, which is fully embodied by

observing a LoadRegG, followed by any of the profiles in the CallG set. This intuitive heuristic is

sufficient to reliably detect all known real-world malicious ROP chains. However, by itself, the above

strategy would lead to false positives with very short chains, and hence one must apply a final filter.

When the total number of unique gadgets is ≤ 2, one requires that the LoadRegG gadget loads

the value of a system API function pointer. Assuming individual gadgets are discrete operations

(as described in Chapter 2), there is no room for the adversary to obfuscate the API pointer value

between the load and call gadgets. On the other hand, if the discrete operation assumption is incorrect

payloads may be missed that are only 1 or 2 unique gadgets, which has not actually been observed

in real-world payloads. Empirical results showing the impact of varying the criteria used in this

heuristic versus the false positive rate, especially with regard to the number of unique gadgets, is

provided next.

Steps Ë to Í are implemented in 3803 lines of C++ code, not including a third party disassembly

library (libdasm).
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4.4 Evaluation

This section presents the results of an empirical analysis where the static ROP chain profiling

method is used to distinguish malicious documents from benign documents. The benign dataset

includes a random subset of the Digital Corpora collection6 provided by Garfinkel et al. (2009).

A total of 7, 662 benign files are analyzed that included 1, 082 Microsoft Office, 769 Excel, 639

PowerPoint, 2, 866 Adobe Acrobat, and 2, 306 html documents evaluated with Internet Explorer.

The malicious dataset spans 57 samples that include the three ideal 2-gadget ROP payloads (e.g.,

pop/push, pop/jmp, and pop/call sequences) embedded in PDF documents exploiting CVE-

2007-5659, the pusha example in Figure 4.1, 47 PDF documents collected in the wild that exploit

CVE-2010-{0188,2883}, two payloads compiled using the JIT-ROP framework (see Chapter 3)

from gadgets disclosed from a running Internet Explorer 10 instance, and four malicious html

documents with embedded Flash exploiting CVE-2012-{0754,0779,1535} in Internet Explorer 8.

The latter four documents are served via the Metasploit framework.

All experiments are performed on an Intel Core i7 2600 3.4GHz machine with 16GB of memory.

All analyzes are conducted on a single CPU.

4.4.1 On Payload and Gadget Space

Figures 4.3a and 4.3b show the cumulative distribution of each benign document’s snapshot

payload space size and gadget space size, respectively. Recall that payload space refers to any

data region of memory that an adversary could have stored a ROP payload, such as stack and heap

regions. The payload space varies across different applications and size of the document loaded.

Large documents, such as PowerPoint presentations with embedded graphics and movies result in a

larger payload space to scan. In this dataset, 98% of the snapshots have a payload size less than 21

MB, and the largest payload space is 158 MB. The number of bytes in the payload space is directly

related to the number of gadget space lookups one must perform in step Ë.

The gadget space size (i.e., the total amount of code in the application snapshot) is shown

in Figure 4.3b. The gadget space varies between different target applications, and also between

documents of the same type that embed features that trigger dynamic loading of additional libraries

(e.g., Flash, Java, etc). The results indicate that 98% of benign application snapshots contain less

6The dataset is available at http://digitalcorpora.org/corpora/files.
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(a) Payload Space (b) Gadget Space

Figure 4.3: Payload and gadget space size for the benign dataset.

than 42 MB of code. Note that if a malicious ROP payload is present, all of it’s gadgets must be

derived from the gadget space of that particular application instance.

4.4.2 On Gadgets and Runtime Performance

The static ROP chain profiling captures the interaction between the payload and gadget spaces of

an application snapshot. Each 4-byte chunk of data in the payload space that happens to correspond

to a valid address in the gadget space triggers gadget and chain profiling. Figure 4.4a depicts the

cumulative distribution of the number of times gadget candidate profiling is triggered over all benign

snapshots. Not surprisingly, one can observed that even within benign documents there exist a number

of pointers into gadget space from the payload space, with a median of about 32k gadget candidates

(or about 2% of the median payload space). The stack of each application thread, for example,

contains pointers into gadget space in the form of return addresses that are pushed by function calls.

The heap(s) of an application also contain function pointers used by the application—for example,

an array of function pointers that represent event handlers.

Figure 4.4b depicts the cumulative distribution of the total time to apply static ROP chain profiling

steps Ë to Í, which has a similar distribution as the total number of gadget candidates shown in

Figure 4.4a. The runtime demonstrates the efficiency of this method, with 98% of documents taking
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(a) Gadget Candidates (b) Runtime

Figure 4.4: Number of gadget candidates and their corresponding runtime for the benign dataset.

less than half a second to analyze. The average runtime for taking an application snapshot in step Ê

is about 3 seconds, with a worst case of 4 seconds.

4.4.3 On Accuracy

Using the heuristic described in §4.3, no false positives are experienced on any of the 7, 662

benign documents. However, it is instructive to provide a deeper analysis on the benign ROP chains

encountered that are not flagged as malicious. This analysis helps one to understand why there are no

false positives in relation to the rules used by the ROP-filter heuristic. To do so, one can relax

some of the criteria from steps Ì and Í to gauge the adverse impact on false positives that these

criteria are meant to prevent.

First, relax the criteria for ROP chains to be considered valid even if they read or write to memory

with a register that was not previously assigned (see §4.3 step Ì), deemed the assignment rule.

Second, discard the requirement of having a system call pointer used by LoadRegG in 2-gadget

chains (see §4.3 step Í). Also tested is the effect of conditionally applying the assignment and system

call rules depending on the total number of unique gadgets in the chain. The idea is that longer chains,

even if violating these criteria, are more likely to be malicious if they still meet overall profiling
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SysCall Rule Assignment Rule FP
disabled disabled 88.9%

nGadgets ≤ 2 disabled 49.5%
disabled nGadgets ≤ 2 88.9%
disabled nGadgets ≤ 3 84.1%
disabled nGadgets ≤ 4 36.8%

nGadgets ≤ 2 nGadgets ≤ 2 49.5%
nGadgets ≤ 2 nGadgets ≤ 3 49.5%
nGadgets ≤ 2 nGadgets ≤ 4 0.26%
nGadgets ≤ 2 nGadgets ≤ 5 0.00%

Table 4.1: An analysis of profiling rules that significantly impact false positives.

criteria (e.g., some real-world ROP chains assume specific values are pre-loaded into registers). The

results are organized in Table 4.1.

The results show the system call rule alone reduces the amount of false positives much more

drastically than the assignment rule by itself. In fact, when the number of unique gadgets is less than

2, the assignment rule alone does not help reduce the number of false positives. When utilizing both

rules, the system call rule overrides the effects of the assignment rule until the number of unique

gadgets for the assignment rule exceeds three. At this point the rules compliment each other and

reduce the number of false positives. Finally, 98% of the gadget chains in the entire dataset are

composed of 5 or less gadgets per chain, thus taking advantage of both these rules to filter benign

chains.

Malicious Documents: The heuristic precisely captures the behavior of ideal 2-gadget ROP payloads

and the pusha example (Figure 4.1), which are all identified successfully. To see why, consider that

ROP-filter is used to analyze the ROP chain given in Figure 4.5. In this example, a LoadRegG

is followed by a JumpG. The data loaded is also a system call pointer. This secondary check is only

required for chain lengths ≤ 2. Although this small example is illustrative in describing ROP and the

heuristic described in this chapter, real-world examples are much more interesting.

Of the 47 samples captured in the wild that exploit CVE-2010-{0188,2883} with a malicious

PDF document, 15 cause Adobe Acrobat to present a message indicating the file is corrupt prior

to loading in step Ê. Therefore, no ROP is identified in these application snapshots. It is possible

that an untested version of Adobe Acrobat would enable opening the document; however, selecting

the correct environment to run an exploit in is a problem common to any approach in this domain.
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LoadRegG: 0x28135098
--VA: 0x28135098 --> pop eax
--VA: 0x28135099 --> ret

data: 0x7C86114D
JumpG: 0x28216EC1

--VA: 0x28216EC1 --> jmp eax

Figure 4.5: 2-gadget ROP chain (from a malicious document) that calls the WinExec API

These 15 failed document snapshots are discarded. The heuristic triggers on all of the 32 remaining

document snapshots. The two JIT-ROP payloads trigger the heuristic multiple times. These

payloads make use of LoadLibrary and GetProcAddress API calls to dynamically locate the

address of the WinExec API call. In each case, this API call sequence is achieved by several blocks

of ROP similar to those used in CVE-2012-0754. Diagnostic output obtained from the ROP-filter

for the remaining detected ROP payloads is reviewed in the next section.

4.5 Diagnostics

Once ROP payloads are detected, one can provide additional insight on the behavior of the

malicious document by analyzing the content of the ROP chain. Figure 4.6 depicts sample output

provided by the static analysis utility when the ROP-filter heuristic is triggered by a ROP chain

in an application snapshot.

The first trace (left) is for a Flash exploit (CVE-2010-0754). Here, the address for the

VirtualProtect call is placed in esi, while the 4 parameters of the call are placed in ebx,

edx, ecx, and implicitly esp. Once the pusha instruction has been executed, the system call

pointer and all arguments are pushed onto the stack and aligned such that the system call will

execute properly. This trace therefore shows that VirtualProtect(Address*=oldesp, Size=400,

NewProtect=exec‖read‖write, OldProtect*=0x7c391897) is launched by this ROP chain. This pay-

load is detected because of the presence of LoadRegG gadgets followed by the final PushAllG. A

non-ROP second stage payload is subsequently executed in the region marked as executable by the

VirtualProtect call. Thus, this is an example of a hybrid payload utilizing both code reuse

and code injection.

The second trace (right) is for an Adobe Acrobat exploit (CVE-2010-0188). The trace shows

the ROP chain leveraging a Windows data structure that is always mapped at address 0x7FFE0000.

Specifically, multiple gadgets are used to load the address, read a pointer to the KiFastSystemCall
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CVE-2012-0754
LoadRegG: 0x7C34252C (MSVCR71.dll)

--VA: 0x7C34252C --> pop ebp
--VA: 0x7C34252D --> ret

data: 0x7C34252C
LoadRegG: 0x7C36C55A (MSVCR71.dll)

--VA: 0x7C36C55A --> pop ebx
--VA: 0x7C36C55B --> ret

data: 0x00000400
LoadRegG: 0x7C345249 (MSVCR71.dll)

--VA: 0x7C345249 --> pop edx
--VA: 0x7C34524A --> ret

data: 0x00000040
LoadRegG: 0x7C3411C0 (MSVCR71.dll)

--VA: 0x7C3411C0 --> pop ecx
--VA: 0x7C3411C1 --> ret

data: 0x7C391897
LoadRegG: 0x7C34B8D7 (MSVCR71.dll)

--VA: 0x7C34B8D7 --> pop edi
--VA: 0x7C34B8D8 --> ret

data: 0x7C346C0B
LoadRegG: 0x7C366FA6 (MSVCR71.dll)

--VA: 0x7C366FA6 --> pop esi
--VA: 0x7C366FA7 --> ret

data: 0x7C3415A2
LoadRegG: 0x7C3762FB (MSVCR71.dll)

--VA: 0x7C3762FB --> pop eax
--VA: 0x7C3762FC --> ret

data: 0x7C37A151
PushAllG: 0x7C378C81 (MSVCR71.dll)

--VA: 0x7C378C81 --> pusha
--VA: 0x7C378C82 --> add al,0xef
--VA: 0x7C378C84 --> ret

CVE-2010-0188
...snip...
LoadRegG: 0x070015BB (BIB.dll)

--VA: 0x070015BB --> pop ecx
--VA: 0x070015BC --> ret

data: 0x7FFE0300
gadget: 0x07007FB2 (BIB.dll)

--VA: 0x07007FB2 --> mov eax,[ecx]
--VA: 0x07007FB4 --> ret

LoadRegG: 0x070015BB (BIB.dll)
--VA: 0x070015BB --> pop ecx
--VA: 0x070015BC --> ret

data: 0x00010011
gadget: 0x0700A8AC (BIB.dll)

--VA: 0x0700A8AC --> mov [ecx],eax
--VA: 0x0700A8AE --> xor eax,eax
--VA: 0x0700A8B0 --> ret

LoadRegG: 0x070015BB (BIB.dll)
--VA: 0x070015BB --> pop ecx
--VA: 0x070015BC --> ret

data: 0x00010100
gadget: 0x0700A8AC (BIB.dll)

--VA: 0x0700A8AC --> mov [ecx],eax
--VA: 0x0700A8AE --> xor eax,eax
--VA: 0x0700A8B0 --> ret

LoadRegG: 0x070072F7 (BIB.dll)
--VA: 0x070072F7 --> pop eax
--VA: 0x070072F8 --> ret

data: 0x00010011
CallG: 0x070052E2 (BIB.dll)

--VA: 0x070052E2 --> call [eax]

Figure 4.6: ROP chains extracted from snapshots of Internet Explorer when the Flash plugin is
exploited by CVE-2012-0754, and Adobe Acrobat when exploited by CVE-2010-0188.

API from the data structure, load the address of a writable region (0x10011) and store the API

pointer. While interesting, none of this complexity negatively affects the heuristic developed in this

chapter; the last two gadgets fit the profile LoadRegG/CallG, wherein the indirect call transfers

control to the stored API call pointer.

4.6 Limitations in Face of a Skilled Adversary

The current implementation has a number of limitations. For one, the strategy described in

Step Ê will not detect exploits that fail to build a payload in the target environment. For example, an

exploit targeting an old version of a document reader would fail to perform the requisite memory

leak needed to properly construct the payload. Therefore, this detection technique is best suited to

operating on up-to-date versions of client software, or the version of software used by the majority of
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users in an enterprise at any given point in time. Other approaches, like signatures, can be used in

conjunction with the strategy described in this chapter for exploits that have been publicly disclosed

for some time. However, one should be aware that signatures also have their limitations. Instead of

attempting to identify the code reuse payload, a signature-based approach tries to statically extract

embedded scripts and match particular snippets of code, e.g. specific functions with known exploits,

or known obfuscation techniques (unescape, eval, etc.). This procedure can fail at several stages.

For one, a plethora of techniques may be used to confound the static deconstruction of a document7.

Even when documents can be deconstructed statically, embedded scripts can require execution to

“unpack” the final stage that includes calling vulnerable functions. In some cases only a couple

features, e.g. the presence a script and a known obfuscation technique, can be used to make a decision

using signatures. In any case, however, combining approaches forces the adversary to increase their

level-of-effort on all fronts to have hope of evading detection.

Regarding Step Ë, one may recognize that the criteria given for labeling a gadget as valid

is quite liberal. For example, the instruction sequence mov eax,0; mov [eax],1; ret;

would produce a memory fault during runtime. However, since the static analysis does not track

register values, this gadget is considered valid. While the approach for labeling valid gadgets could

potentially lead to unwanted false positives, it also ensures real ROP gadgets are not accidentally

mislabeled as invalid.

Finally, note that while the static instruction analysis is intentionally generous, there are cases

that static analysis can not handle. First, the method described in this chapter can not track a payload

generated by polymorphic ROP (Lu et al., 2011) with purely static analysis. However, polymorphic

ROP has not been applied to real-world exploits that bypass DEP and ASLR. Second, an adversary

may be able to apply obfuscation techniques (Moser et al., 2007) to confuse static analysis; however,

application of these techniques is decidedly more difficult when only reusing existing code (rather

than injecting new code). Regardless, static analysis alone cannot handle all cases of ROP payloads

that make use of register context setup during live exploitation. In addition, gadget profiling assumes

registers must be assigned before they are used, but only when used in memory operations. The

7For example, PDF obfuscation techniques have been widely studied by now, but gaining these in-
sights has taken years: http://www.sans.org/reading-room/whitepapers/engineering/
pdf-obfuscation-primer-34005
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results (in §4.4) show one can relax this assumption by only applying the assignment rule on small

ROP chains.

4.7 Architecture and OS Specificity

The approach described in §4.3 focuses on the Microsoft Windows operating system on the Intel

x86 architecture. However, the overall technique is portable with some caveats and additional work.

Program snapshots, whether using Windows, Linux, or OSX would remain similar, but require use of

native debugging and memory manipulation functionality. The gadget profiling would remain the

same, but the heuristic used to label a particular chain as malicious would need further exploration,

as ROP exploits on Linux and OSX directly make use of system call instructions rather than making

userspace API calls. A change of architecture, e.g. to ARM or x86-64, would require updating all of

the gadget profiling code, but the heuristic would remain the same. The caveat with porting to any

other OS or architecture is that new experiments would need to be conducted, and possibly some

more rules applied, to ensure the same low false positive rate as is achieved in this chapter.

4.8 Discussion and Lessons Learned

In closing, this chapter introduces a novel framework for detecting code reuse attacks, specifically

within malicious documents. Using the using newly developed static analysis techniques, one can

inspect application memory for ROP payloads. Several challenges were overcame in developing

sound heuristics that cover a wide variety of ROP functionality, all the while maintaining low false

positives. An evaluation spanning thousands of documents shows that the method described is also

extremely fast, with most analyses completing in a few seconds.

Key Take-Aways:

1. Chapter 3 highlights evidence that the exploitation of memory errors will not be fully resolved

in the near-term. In particular, the use of memory disclosures combined with payloads that

reuse existing snippets of application code enables one to bypass defenses such as ASLR and

fine-grained ASLR. As code reuse payloads are a necessary common component in exploiting

memory errors in face of these mitigations, techniques for identifying these payloads, if

effective, offer a generic method of detecting these attacks.
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2. The techniques in this chapter describe an exploit-agnostic method of detecting weaponized

documents, such as those used in drive-by downloads, by detecting code reuse payloads—

even those that are dynamically constructed in combination with a memory disclosure attack.

Compared to other strategies, such as signatures, this approach requires relatively little effort

spent on maintenance over time. That is, while signatures must constantly be updated as new

exploits are discovered in the wild, the method described in this chapter only requires updating

the document reader software used to obtain memory snapshots as new versions arise, staying

in sync with the protected systems. The technique can also detect unknown exploits since

these, too, will leverage code reuse.

3. While exploit payloads could feasibly morph in construction at some point in the future, history

has shown that the evolution exploit payloads is slow relative to the rapid rate of vulnerability

discovery. Indeed, the only other prominent category of payload are those constructed for code

injection. Thus, the method described in this chapter is relevant now and into the foreseeable

future.
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CHAPTER 5: DETECTING CODE INJECTION PAYLOADS

Code reuse payloads, such as those described in the previous chapter, are largely required

to exploit memory errors in modern applications. The widespread adoption of Data Execution

Prevention (DEP) mitigation has ensured that a code injection payload (or shellcode) alone is no

longer sufficient. However, the complexity and non-portability inherent in code reuse payloads

has led adversaries to primarily leverage code reuse only as a practical method of bootstrapping

traditional code injection. To do so, one constructs a minimal code reuse payload that simply marks

the region containing injected code as executable, then jumps to the start of that secondary payload.

While this is certainly not required, it reduces the adversary’s overall level-of-effort and so it is

preferred. Thus, techniques for detecting code injection payloads are still quite relevant. Detecting

code injection payloads enables one to detect attacks where DEP is not fully deployed (and hence

only code injection is used), but also presents an opportunity to detect code reuse attacks where

the ROP payload may have been missed, e.g. due to a current limitation resulting in the failure of

detecting a code reuse payload, such as the use of polymorphic ROP.

Similar in concept to the previous chapter, detecting weaponized documents by discovering the

injected code used to exploit them, whether used in conjunction with code reuse or not, provides a low

maintenance detection strategy that is agnostic of document-type and the specifics of any particular

memory error vulnerability. Detecting code injection payloads, however, is a significant challenge

because of the prevalent use of metamorphism (i.e., the replacement of a set of instructions by a

functionally-equivalent set of different instructions) and polymorphism (i.e., a similar technique that

hides a set of instructions by encoding—and later decoding—them), that allows the code injection

payload to change its appearance significantly from one attack to the next. The availability of

off-the-shelf exploitation toolkits, such as MetaSploit, has made this strategy trivial for the adversary

to implement in their exploits.

One promising technique, however, is to examine the input—be that network streams or buffers

from a process snapshot—and efficiently execute its content to find what lurks within. While this idea

is not new, prior approaches for achieving this goal are not robust to evasion or scalable, primarily
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because of their reliance on software-based CPU emulators. In this chapter, it is argued that the

use of software-based emulation techniques are not necessary. Instead, a new operating system

(OS) kernel, called ShellOS, is built specifically to address the shortcomings of prior analysis

techniques that use software-based CPU emulation. Unlike those approaches, the technique proposed

in this chapter takes advantage of hardware virtualization to allow for far more efficient and accurate

inspection of buffers by directly executing instruction sequences on the CPU. In doing so, one also

reduces exposure to evasive attacks that take advantage of discrepancies introduced by software

emulation. Also reported on is experience using this framework to analyze a corpus of malicious

Portable Document Format (PDF) files and network-based attacks.

5.1 Literature Review

Early solutions to the problems facing signature-based detection systems attempt to find the

presence of injected code (for example, in network streams) by searching for tell-tale signs of

executable code. For instance, Toth and Kruegel (2002) apply a form of static analysis, coined abstract

payload execution, to analyze the execution structure of network payloads. While promising, Fogla

et al. (2006) shows that polymorphism defeats this detection approach. Moreover, the underlying

assumption that injected code must conform to discernible structure on the wire is shown by several

researchers (Prahbu et al., 2009; Mason et al., 2009; Younan et al., 2009) to be unfounded.

Going further, Polychronakis et al. (2007) proposes the use of dynamic code analysis using

emulation techniques to uncover code injection attacks targeting network services. In their approach,

the bytes off the wire from a network tap are translated into assembly instructions, and a software-

based CPU emulator employing a read-decode-execute loop is used to execute the instruction

sequences starting at each byte offset in the inspected input. The sequence of instructions starting

from a given offset in the input is called an execution chain. The key observation is that to be

successful, the injected code must execute a valid execution chain, whereas instruction sequences

from benign data are likely to contain invalid instructions, access invalid memory addresses, cause

general protection faults, etc. In addition, valid malicious execution chains will exhibit one or more

observable behaviors that differentiate them from valid benign execution chains. Hence, a network

stream is flagged as malicious if there is a single execution chain within the inspected input that does

not cause fatal faults in the emulator before malicious behavior is observed. This general notion of
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network-level emulation proves to be quite useful (Zhang et al., 2007; Polychronakis et al., 2006;

Wang et al., 2008; Gu et al., 2010).

The success of such approaches decidedly rests on accurate emulation; however, the instruction

set for CISC architectures (x86 in particular) is complex by definition, and so it is difficult for software

emulators to be bug free (Martignoni et al., 2009). As a case-in-point, the QEMU emulator (Bellard,

2005) does not faithfully emulate the FPU-based Get Program Counter (GetPC) instructions, such

as fnstenv 1. Consequently, the highest rated Metasploit payload encoder, “shikata ga nai”, and

three other encoders, fail to execute properly because they rely on this GetPC instruction to decode

their payload. Instead, Polychronakis et al. (2010) and Baecher and Koetter (2007) use special-

purpose CPU emulators that suffer from a more alarming problem: large subsets of instructions are

unimplemented and simply skipped when encountered in the instruction stream. Any discrepancy

between an emulated instruction and the behavior on real hardware enables injected code to evade

detection by altering its behavior once emulation is detected (Paleari et al., 2009; Raffetseder et al.,

2007). Even dismissing these issues, a more practical limitation of emulation-based detection is that

of performance.

Despite these limitations, Cova et al. (2010) and Egele et al. (2009) extend the idea to protect

web browsers from so-called “heap-spray” attacks, where one coerces an application to allocate

many objects containing injected code in order to increase the success rate of an exploit that jumps to

locations in the heap (Sotirov and Dowd, 2008a). This method is particularly effective in browsers,

where one can use JavaScript to allocate many objects, each containing a portion of the injected

code (Ratanaworabhan et al., 2009; Charles Curtsigner and Seifert, 2011). Although runtime analysis

of payloads using emulation has been successful in detecting exploits in the wild (Polychronakis et al.,

2009), the very use of emulation makes it susceptible to multiple methods of evasion (Paleari et al.,

2009; Martignoni et al., 2009; Raffetseder et al., 2007). Moreover, as shown later, using emulation

for this purpose is not scalable. The objective in this chapter is to present a method that forgos

emulation altogether, along with the associated pitfalls, and explore the design and implementation

of components necessary for robust detection of code injection payloads.

1See the discussion at https://bugs.launchpad.net/qemu/+bug/661696, November, 2010.
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5.2 Method

Unlike prior approaches, the technique presented in this chapter takes advantage of the ob-

servation that the most widely used heuristics for detecting injected code exploit the fact that, to

be successful, the injected code typically needs to read from memory (e.g., from addresses where

the payload has been mapped in memory, or from addresses in the Process Environment Block

(PEB)), write the payload to some memory area (especially in the case of polymorphic code), or

transfer flow to newly created code (Zhang et al., 2007; Polychronakis et al., 2007; Pasupulati et al.,

2004; Polychronakis et al., 2006; Wang et al., 2008; Payer et al., 2005b; Polychronakis et al., 2010,

2009; Kim et al., 2007). For instance, the execution of injected code often results in the resolution

of shared libraries (DLLs) through the PEB. Rather than tracing each instruction and checking

whether its memory operands can be classified as “PEB reads,” the approach described herein enables

instruction sequences to execute directly on the CPU using hardware virtualization, and only trace

specific memory reads, writes, and executions through hardware-supported paging mechanisms. The

next sections detail how to leverage hardware virtualization for achieving this goal, the details of a

special-purpose guest OS required to support this analysis, and specifics that enable tracing memory

reads, writes, and executions within the guest OS to efficiently label execution chains.

5.2.1 Leveraging Hardware Virtualization

The design described in this section for enabling hardware-support to detect code injection

payloads is built upon a virtualization solution (Goldberg, 1974) known as Kernel-based Virtual

Machine (KVM). The KVM hypervisor abstracts Intel VT and AMD-V hardware virtualization

support. At a high level, the KVM hypervisor is composed of a privileged domain and a virtual

machine monitor (VMM). The privileged domain is used to provide device support to unprivileged

guests. The VMM, on the other hand, manages the physical CPU and memory and provides the guest

with a virtualized view of the system resources.

In a hardware virtualized platform, the VMM only mediates processor events (e.g., via instruc-

tions such as VMEntry and VMExit on the Intel platform) that would cause a change in the entire

system state, such as physical device IO, modifying CPU control registers, etc. Therefore, the actions

taken by each instruction are no longer emulated as with the approaches described in Section 5.1;

execution happens directly on the processor, without an intermediary instruction translation. This
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Figure 5.1: Architecture for detecting code injection attacks. The ShellOS platform includes the
ShellOS operating system and host-side interface for providing buffers and extending ShellOS
with custom memory snapshots and runtime detection heuristics.

section describes how to take advantage of this design to build a new kernel that runs as a guest OS

using KVM with the sole task of detecting code injection payloads. The high-level architecture of a

prototype platform following this design, dubbed ShellOS, is depicted in Figure 5.1.

ShellOS can be viewed as a black box, wherein a buffer is supplied by the privileged domain

for inspection via an API call. ShellOS performs the analysis and reports if injected code is

found, and its location in the buffer. A library within the privileged domain provides the ShellOS

API call, which handles the sequence of actions required to initialize guest mode via the KVM

ioctl interface. One notable feature of initializing guest mode in KVM is the assignment of guest

physical memory from a userspace-allocated buffer. One may use this feature to satisfy a critical
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requirement — that is, efficiently moving buffers into the guest for analysis. Since offset zero of

the userspace-allocated memory region corresponds to the guest physical address of 0x0, one can

reserve a fixed memory range within the guest address space where the privileged domain library

writes the buffers to be analyzed. These buffers can then be directly accessed by the guest at a

pre-defined physical address.

When the privileged domain first initializes the guest, it should complete its boot sequence

(detailed next) and issue a VMExit. When the ShellOS API is called to analyze a buffer, it is

copied to the fixed shared region before a VMEnter is issued. The guest completes its analysis and

writes the result to the shared memory region before issuing another VMExit, signaling that the

kernel is ready for another buffer. Finally, a thread pool is also built into the library where-in each

buffer to be analyzed is added to a work queue and one of n workers dequeues the job and analyzes

the buffer in a unique instance of ShellOS.

The next section details how this custom guest OS kernel should be constructed to enable

detection of code injection payloads.

5.2.2 Custom Kernel Requirements

To set up the guest OS execution environment, one should initialize the Global Descriptor Table

(GDT) to mimic, in this case, a Windows environment. More specifically, code and data entries are

to be added for user and kernel modes using a flat 4GB memory model, a Task State Segment (TSS)

entry shall be added that denies all usermode IO access, and a segment entry that maps to the virtual

address of the Thread Environment Block (TEB) should be added. One should set the auxiliary FS

segment register to select this TEB entry, as done by the Windows kernel. Therefore, regardless of

where the TEB is mapped into memory, code (albeit benign or malicious) can always access the data

structure at FS:[0]. This “feature” is used by injected code to find shared library locations (see

Chapter 2), and indeed, access to this region of memory has been used as a heuristic for identifying

injected code (Polychronakis et al., 2010).

Virtual memory shall implemented with paging, and should mirror that of a Windows process.

Virtual addresses above 3GB are reserved for the kernel. The prototype ShellOS kernel mirrors

a Windows process by loading an application snapshot, as described in Chapter 4, which contains

all the necessary information to recreate the state of a running process at the time the snapshot is
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taken. Once all regions in a snapshot have been mapped, one must adjust the TEB entry in the Global

Descriptor Table to point to the TEB location defined in the snapshot.

Control Loop Recall that the primary goal is to enable fast and accurate detection of input containing

injected code. To do so, one must support the ability to execute the instruction sequences starting at

every offset in the inspected input. Execution from each offset is required since the first instruction

of the injected code is unknown. The control loop is responsible for this task. Once the kernel is

signaled to begin analysis, the fpu,mmx, xmm, and general purpose registers shall be randomized to

thwart code that tries to hinder analysis by guessing fixed register values (set by the custom OS) and

end execution early upon detection of these conditions. The program counter is set to the address of

the buffer being analyzed. Buffer execution begins on the transition from kernel to usermode with

the iret instruction. At this point, instructions (i.e., the supplied buffer of bytes to analyze) are

executed directly on the CPU in usermode until execution is interrupted by a fault, trap, or timeout.

The control loop is therefore completely interrupt driven.

A fault is an unrecoverable error in the instruction stream, such as attempting to execute a

privileged instruction (e.g., the in al,0x7 instruction in Figure 5.1), or encountering an invalid

opcode. The kernel is notified of a fault through one of 32 interrupt vectors indicating a processor

exception. The Interrupt Descriptor Table (IDT) should point all fault-generating interrupts to a

generic assembly-level routine that resets usermode state before attempting the next execution chain.2

A trap, on the other hand, is a recoverable exception in the instruction stream (e.g., a page fault

resulting from a needed, but not yet paged-in, virtual address), and once handled appropriately, the

instruction stream continues execution. Traps provide an opportunity to coarsely trace some actions

of the executing code, such as reading an entry in the TEB. To deal with instruction sequences

that result in infinite loops, the prototype currently use a rudimentary approach wherein the kernel

instructs the programmable interval timer (PIT) to generate an interrupt at a fixed frequency. When

this timer fires twice in the current execution chain (guaranteeing at least 1 tick interval of execution

time), the chain is aborted. Since the PIT is not directly accessible in guest mode, KVM emulates

the PIT timer via privileged domain timer events implemented with hrtimer, which in turn uses

the High Precision Event Timer (HPET) device as the underlying hardware timer. This level of

2The ShellOS prototype resets registers via popa and fxrstor instructions, while memory is reset by copy-on-
write (COW).
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indirection imposes an unavoidable performance penalty because external interrupts (e.g. ticks from

a timer) cause a VMExit.

Furthermore, the guest must signal that each interrupt has been handled via an End-of-Interrupt

(EOI). The problem here is that EOI is implemented as a physical device IO instruction which

requires a second VMExit for each tick. The trade-off is that while a higher frequency timer allows

one to exit infinite loops quickly, it also increases the overhead associated with entering and exiting

guest mode (due to the increased number of VMExits). To alleviate some of this overhead, the

KVM-emulated PIT is put into auto-EOI mode, which allows new timeout interrupts to be received

without requiring a device IO instruction to acknowledge the previous interrupt. In this way, one

effectively cuts the overhead in half. Section 5.4.1 provides further discussion on setting appropriate

timer frequencies, and its implications for both runtime performance and accuracy.

The complete prototype ShellOS kernel, which implements the requirements described in this

section, is composed of 2471 custom lines of C and assembly code.

5.2.3 Detection

The guest kernel provides an efficient means to execute arbitrary buffers of code or data, but

one also needs a mechanism for determining if these execution sequences represent injected code.

The key insight towards realizing this goal is the observation that the existing emulation-based

detection heuristics do not require fine-grained instruction-level tracing, rather, coarsely tracing

memory accesses to specific locations is sufficient.

Indeed, a handful of approaches compatible with ShellOS are readily available for efficiently

tracing memory accesses; e.g., using hardware supported debug registers, or exploring virtual memory

based techniques. Hardware debug registers are limited in that only a few memory locations may

be traced at one time. The approach described in this section, based on virtual memory, is similar

to stealth breakpoints (Vasudevan and Yerraballi, 2005), which allows for an unlimited number of

memory traps to be set to support multiple runtime heuristics defined by an analyst.

Recall that an instruction stream is interrupted with a trap upon accessing a memory location

that generates a page fault. One may therefore force a trap to occur on access to an arbitrary virtual

address by clearing the present bit of the page entry mapping for that address. For each address

that requires tracing one should clear the corresponding present bit and set the OS reserved
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field to indicate that the kernel should trace accesses to this entry. When a page fault occurs, the

interrupt descriptor table (IDT) directs execution to an interrupt handler that checks these fields. If

the OS reserved field indicates tracing is not requested, then the page fault is handled according

to the region mappings defined in the application snapshot.

When a page entry does indicate that tracing should occur, and the faulting address (accessible

via the CR2 register) is in a list of desired address traps (provided, for example, by an analyst), the

page fault must be logged and appropriately handled. In handling a page fault resulting from a trap,

one must first allow the page to be accessed by the usermode code, then reset the trap immediately to

ensure trapping future accesses to that page. To achieve this, the handler should set the present bit

in the page entry (enabling access to the page) and the TRAP bit in the flags register, then return

to the usermode instruction stream. As a result, the instruction that originally causes the page fault is

now executed before the TRAP bit forces an interrupt. The IDT should then forward the interrupt to

another handler that unsets the TRAP and present bits so that the next access to that location can

be traced. This approach allows for the tracing of any virtual address access (read, write, execute),

without a predefined limit on the number of addresses to trap.

Detection Heuristics The method described in this section, by design, is not tied to any specific set

of behavioral heuristics. Any heuristic based on memory reads, writes, or executions is supported

with coarse-grained tracing. To highlight the strengths of the prototype ShellOS implementation,

the PEB heuristic proposed by Polychronakis et al. (2010) is used, which was originally designed to

be used in conjunction with emulation. That particular heuristic is chosen for its simplicity, as well

as the fact that it has already been shown to be successful in detecting a wide array of Windows code

injection payloads. This heuristic detects injected code that parses the process-level TEB and PEB

data structures in order to locate the base address of shared libraries loaded in memory. The TEB

contains a pointer to the PEB (address FS:[0x30]), which contains a pointer to yet another data

structure (i.e., LDR DATA) containing several linked lists of shared library information.

The detection approach given in (Polychronakis et al., 2010) checks if accesses are being made

to the PEB pointer, the LDR DATA pointer, and any of the linked lists. To implement this detection

heuristic within framework described in this section, one simply sets a trap on each of these addresses

and reports that injected code has been found when the necessary conditions are met. This heuristic
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fails to detect certain cases, but any number of other heuristics could be chosen instead, or used in

tandem. This is left as future work.

5.3 Optimizations

It is common for emulation-based techniques to omit processing of some execution chains as a

performance-boosting optimization (e.g., only executing instruction sequences that contain a GetPC

instruction, or skipping an execution chain if the starting instruction was already executed during a

previous execution chain). Unfortunately, such optimizations are unsafe, in that they are susceptible

to evasion. For instance, in the former case, metamorphic code may evade detection by, for example,

pushing data representing a GetPC instruction to the stack and then executing it.
begin snippet

0 exit:
1 in al, 0x7 ; Chain 1
2 mov eax, 0xFF ; Chain 2 begins
3 mov ebx, 0x30 ; Chain 2
4 cmp eax, 0xFF ; Chain 2
5 je exit ; Chain 2 ends
6 mov eax, fs:[ebx] ; Chain 3 begins

...
end snippet

Figure 5.2: Unsafe Optimization Example

In the latter case, consider the sequence shown in Figure 5.2. The first execution chain ends

after a single privileged instruction. The second execution chain executes instructions 2 to 5 before

ending due to a conditional jump to a privileged instruction. Now, since instructions 3, 4, and 5

were already executed in the second execution chain they are skipped (as a beginning offset) as a

performance optimization. The third execution chain begins at instruction 6 with an access to the

Thread Environment Block (TEB) data structure to the offset specified by ebx. Had the execution

chain beginning at instruction 3 not been skipped, ebx would be loaded with 0x30. Instead, ebx is

now loaded with a random value set at the beginning of each execution chain. Thus, if detecting an

access to the memory location at fs:[0x30] is critical to detecting injected code, the attack will

be missed.

Instead, two alternative “safe” optimizations are proposed in this section— the start-byte and

reaching filters. The guiding principle behind ensuring these optimizations are safe is to only skip

execution chains where one can be certain execution always faults or times out before a heuristic
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triggers. While straightforward in concept, designing effective filters is complicated by the large size

of the x86 instruction set, “unknowns” in terms of the results of operations without first executing

them, and the possibility of polymorphic and metamorphic code to dynamically produce new code at

runtime. Further, unlike emulation-based approaches which have the opportunity to examine each

new instruction at runtime (albeit with a large performance trade-off), the direct CPU execution

approach benefits from no such opportunity. Thus, the filtering step must be completed prior to

executing a chain.

The start-byte filter intuitively skips an execution chain if the instruction decoded at the starting

byte of that execution chain immediately generates a fault or timeout by itself. Specifically, these

instructions include privileged operations (I/O, starting or stopping interrupts, shutdown, etc.), invalid

opcodes, instructions with memory operands referencing unmapped memory, and unconditional

control-flow instructions that jump to themselves. Additionally, no-ops and effective no-ops can be

skipped, including any control-flow instruction that has no side-effects (e.g. no flags set or values

pushed as a result of execution). The no-op control flow instructions can be skipped due to the fact

that, eventually, their targets will be executed anyway as the start of another execution chain.

Due to the complexity of the x86 instruction set, however, one should not rely on existing

disassemblers to always produce a correct result. Thus, the implementation of this filter is based on a

custom disassembler that operates on a small subset of the full instruction set, the 256 single-byte

instructions. While this is only a small percentage of the total number of multi-byte x86 instructions,

normally distributed data will decode to a single-byte instruction most often, as only a few start-byte’s

serve to escape decoding multi-byte instructions (e.g. 0F, D0-DF). As a reminder, unlike emulation-

based approaches to detecting injected code, the failure to support decoding a specific instruction

does not result in skipping it’s execution and potentially missing the detecting of malicious code. To

the contrary, failure to decode an instruction results in that execution being guaranteed to run.

The reaching filter is a logical extension of the start-byte filter. Any instruction sequence that

reaches an instruction guaranteed to fault or timeout before a heuristic is triggered can be skipped.

To do so efficiently, a single backwards disassembly of every byte is performed. As bytes are

disassembled, information is stored in an array where each entry index stores the corresponding

instruction’s validity. As each new instruction is disassembled, its potential target next instruction(s)

are computed. For example, the next instruction for a conditional jump is located both at the current
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instruction index + instruction size, and at the index of the relative address indicated in the operand.

If all potential targets reached are invalid, then the current instruction is also marked invalid.

Combining these filters significantly reduces the number of execution chains that must be

examined dynamically and decreases the overall runtime of examining memory snapshots. The exact

effect of these filters, and other comprehensive evaluations, are presented in the next section.

5.4 Evaluation

In the analysis that follows, first examined are the performance benefits of the ShellOS

framework when compared to emulation-based detection. Experience using ShellOS to analyze

a collection of suspicious PDF documents is also reported. All experiments in this section are

conducted on an Intel Xeon Quad Processor machine with 32 GB of memory. The host OS is Ubuntu

with kernel version 2.6.35.

5.4.1 Comparison with Emulation

To compare the method described in this chapter with emulation-based approaches, e.g.,

Nemu (Polychronakis et al., 2010), Metasploit is used to launch attacks in a sandboxed environment.

For each payload encoder, hundreds of attack instances are generated by randomly selecting from 7

unique exploits, 9 unique self-contained payloads that utilize the PEB for shared library resolution,

and randomly generated parameter values associated with each type of payload (e.g. download URL,

bind port, etc.). Several payload instances are also encoded using an advanced polymorphic engine,

called TAPiON3. TAPiON incorporates features designed to thwart dynamic payload analysis. Each

of the encoders used (see Table 5.1) are self-contained (Polychronakis et al., 2006) in that they do not

require additional contextual information about the process they are injected into in order to function

properly. As the attacks launch, network traffic is captured for network-level buffer analysis.

Surprisingly, Nemu fails to detect payloads generated using Metasploit’s alpha upper encoder.

Since the payload relies on accessing the PEB for shared library resolution, one would expect both

Nemu and ShellOS to trigger this detection heuristic. One can only speculate that Nemu is

unable to handle this particular case because the instructions used in this encoder are not accurately

emulated—underscoring the benefit of directly executing the payloads on hardware.

3The TAPiON engine is available at http://pb.specialised.info/all/tapion/.
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Encoder Nemu ShellOS

countdown Y Y
fnstenv mov Y Y

jmp call additive Y Y
shikata ga nai Y Y

call4 dword xor Y Y
alpha mixed Y Y
alpha upper N Y

TAPiON Y* Y

Table 5.1: ShellOS vs Emulation Accuracy of Off-the-Shelf Payload Encoders.

More pertinent to the discussion is that while emulation approach is capable of detecting

payloads generated with the TAPiON engine, performance optimization limits its ability to do

so. The TAPiON engine attempts to confound runtime detection by basing its decoding routines

on timing components (namely, the RDTSC instruction) and uses FPU instructions in long loops

(e.g., over 60,000 instructions) to slow runtime-analysis. These long loops quickly reach Nemu’s

execution threshold (2048 instructions) prior to any heuristic being triggered. This is particularly

problematic because no PEB access or GetPC instruction is executed until these loops complete.

Furthermore, emulators by Polychronakis et al. (2010) and Baecher and Koetter (2007) treat the most

FPU instructions as NOPs. While TAPiON does not currently use the result of these instructions in

its decoding routine, it only requires minor changes to thwart detection (hence the “*” in Table 5.1).

ShellOS, on the other hand, supports all FPU instructions available on the CPU it is executed on.

More problematic, however, are the long execution chains. To compare the emulation-based

approach with that of ShellOS, 1000 benign inputs are randomly generated. The instructions

thresholds (in both approaches) are set to the levels required to detect instances of TAPiON payloads.

Since ShellOS cannot directly set an instruction threshold (due to the coarse-grained tracing

approach), the required threshold is approximated by adjusting the execution chain timeout frequency.

As the timer frequency increases, the number of instructions executed per execution chain decreases.

Thus, experimental runs determine the maximum frequency needed to execute TAPiON payloads that

required 10k, 16k, and 60k instruction executions are 5000HZ, 4000HZ, and 1000HZ, respectively.

Note that in the common case, ShellOS can execute many more instructions, depending on the

speed of individual instructions. TAPiON code, however, is specifically designed to use the slower
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Figure 5.3: ShellOS (without optimizations) vs Emulation Runtime Performance

FPU-based instructions. (ShellOS can execute over 4 million NOP instructions in the same time

interval that only 60k FPU-heavy instructions are executed.)

The results are shown in Figure 5.3. Note that optimizations described in section 5.3 are not

enabled for this comparison. The labeled points on the line plot indicate the minimum execution

chain length required to detect the three representative TAPiON samples. For completeness, the

performance of Nemu with and without unsafe execution chain filtering (see §5.3) is shown. When

unsafe filtering is used, emulation performs better than ShellOS on a single core at low execution

thresholds. This is not too surprising, as the higher clock frequencies required to support short

execution chains in ShellOS incur additional overhead (see §5.2). However, with longer execution

chains, the real benefits becomes apparent—ShellOS (on a single core) is an order of magnitude

faster than Nemu when unsafe execution chain filtering is disabled, while ShellOS on multiple

cores performs significantly better on all cases.

On Network Throughput: To compare throughput on network streams, a testbed consisting of

32 machines running FreeBSD 6.0 is built, which generates traffic using Tmix (Hernandez-Campos

et al., 2007). The network traffic is routed between the machines using Linux-based software routers.

The link between the two routers is tapped using a gigabit fiber tap, with the traffic diverted to the

detection appliance (i.e., running ShellOS or Nemu), as well as to a network monitor that records

throughput and losses. The experimental setup is shown in Figure 5.4.
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Figure 5.4: Experimental testbed with end systems generating traffic using Tmix. Using a network
tap, throughput is monitored on one system, while ShellOS or Nemu attempt to analyze all traffic
on another system.

Tmix synthetically regenerates TCP traffic that matches the statistical properties of traffic

observed in a given network trace; this includes source level properties such as file and object size

distributions, number of simultaneously active connections and also network level properties such

as round trip time. Tmix also provides a block resampling algorithm to achieve a target throughput

while preserving the statistical properties of the original network trace. In this case, it is supplied

with a 1-hour network trace of HTTP connections captured on the border links of UNC-Chapel Hill

in October, 20094. Using Tmix block resampling, two 1-hour experiments are run based on the

original trace where Tmix is directed to maintain a throughput of 100Mbps in the first experiment and

350Mbps in the second experiment. The actual throughput fluctuates as Tmix maintains statistical

properties observed in the original network trace. Tmix stream content is generated on the tap from

randomly sampled bytes following byte distributions of the content observed on the UNC border

network. Each experiment is repeated with the same seed (to generate the same traffic) using both

Nemu and ShellOS.

Both ShellOS and Nemu are configured to only analyze traffic from the connection initiator,

targeting code injection attacks on network services. Up to one megabyte of a network connection

(from the initiator) is analyzed, and an execution threshold of 60k instructions is set. To be clear,

4Updated with packet byte distributions collected in 2011.
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Figure 5.5: ShellOS (without optimizations) network throughput performance.

while the overall network throughput is 100-350Mbps, the traffic coming from the server is ignored

and only the first megabyte of client traffic is analyzed, so the raw throughput received by these

execution systems is far less. However, the goal here is to analyze the portion of traffic that may

contain a server exploit, hence the client-side bias, and relatively compare the two approaches.

Neither ShellOS or Nemu perform any instruction chain filtering (e.g. every position in every

buffer is executed) and use only a single core.

Figure 5.5 shows the results of the network experiments. The bottom subplot shows the traffic

throughput generated over the course of both 1-hour experiments. The 100Mbps experiment fluctuates

from 100-160Mbps, while the 350Mbps experiment nearly reaches 500Mbps at some points. The

top subplot depicts the number of buffers analyzed over time for both ShellOS and Nemu with

both experiments. Note that one buffer is analyzed for each connection containing data from the

connection initiator. The plot shows that the maximum number of buffers per second for Nemu

hovers around 75 for both the 100Mbps and 350Mbps experiments with significant packet loss
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observed in the middle subplot. ShellOS is able to process around 250 buffers per second in

the 100Mbps experiment with zero packet loss and around 750 buffers per second in the 350Mbps

experiment with intermittent packet loss. That is, ShellOS is able to process all buffers, without

loss, on a network with sustained 100Mbps network throughput, while ShellOS is on the cusp of

its maximum throughput on a network with sustained 350Mbps network throughput (and spikes up

to 500Mbps). In these tests, no false positives are received for either ShellOS or Nemu.

The experimental network setup, unfortunately, is not currently able to generate sustained

throughput greater than the 350Mbps experiment. Therefore, to demonstrate ShellOS’ scalability

in leveraging multiple CPU cores, an analysis of the libnids packet queue size in the 350Mbps

experiment is performed. The maximum packet queue size is fixed at 100k, then the 350Mbps

experiment is run 4 times utilizing 1, 2, 4, and 14 cores. When the packet queue size reaches the

maximum, packet loss occurs. The average queue size should be as low as possible to minimize the

chance of packet loss due to sudden spikes in network traffic, as observed in the middle subplot of

Figure 5.5 for the 350Mbps ShellOS experiment. Figure 5.6 shows the CDF of the average packet

queue size over the course of each 1-hour experiment run with a different number of CPU cores.

The figure shows that using 2 cores reduces the average queue size by an order of magnitude, 4

cores reduces average queue size to less than 10 packets, and 14 cores is clearly more than sufficient

for 350Mbps sustained network traffic. This evidence suggests that multi-core ShellOS may be

capable of monitoring links with much greater throughput than were generated in the experimental

setup.

However, the use of ShellOS goes beyond the notion of “network-level emulation”. Instead,

the primary use-case envisioned is one wherein documents are either extracted from an email gateway,

parsed from network flows, harvested from web pages, or manually submitted to an analysis system.

Indeed, ShellOS runs in parallel with the code reuse system described in Chapter 4. The next

section provides an evaluation for ShellOS’ aptitude at this task.

5.4.2 On Document Snapshot Performance

This section examines ShellOS performance in the context of scanning application memory

snapshots. Note that performance of analyzing benign documents is most important in an operational

setting, as the vast majority of documents transported through a network are not malicious. Hence,
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Figure 5.6: CDF of the average packet queue size as the number of ShellOS CPU cores is scaled.
ShellOS runs without optimizations in this experiment.

the experiments use 10 subset “threads”, each containing a randomly selected set of 1000 documents

from the freely available Govdocs1 dataset, for a total of 10,000 documents. These documents were

obtained by performing random word searches for documents on .gov domain web servers using

Yahoo and Google search. Experiments in this section scan Adobe PDF, Microsoft Word, Excel, and

HTML documents from this dataset. Each document is opened in an isolated virtual machine with

the corresponding document reader, and a full memory dump saved to disk, which is used for all

subsequent runs of experiments. All experiments in this section are conducted on one core of an Intel

Core i7-2600 CPU @ 3.40GHz. The host OS is 64-bit Ubuntu 12.04 LTS.

Performance without Optimizations: Figure 5.7a shows a CDF of the time to execute chains

starting from every byte of all executable regions in a single application snapshot. Each data point

in the lower subplot of Figure 5.7a depicts the total size and analysis time of ShellOS running

on a document snapshot. The sizes scanned range from near zero to almost 60 MB. The total

size of the memory snapshot may be much larger, but recall that only regions of memory that are

94



0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0 20 40 60 80 100 120 140
Runtime (sec)

0

10

20

30

40

50

60

Si
ze

 (M
B)

(a) CDF of ShellOS runtime per document snapshot (without optimizations).

0
20
40
60
80

100

#
UD

0
20
40
60
80

100

#
GP

0
20
40
60
80

100

#
PF

0 200000 400000 600000 800000 1000000 1200000 1400000
Execution Chains Per Second

0.0
0.5
1.0
1.5
2.0

Ti
m

eo
ut

(b) Plot of ShellOS Exceptions per document snapshot (without optimizations).

Figure 5.7: ShellOS performance on document snapshots without using optimizations.
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marked as both writable and executable need to be scanned for injected code. The CDF indicates

that about 95% of the documents complete within 25 seconds, but the average runtime is around

10 seconds. One outlier takes over 2 minutes to complete. To more closely examine the reason for

the slower execution times, Figure 5.7b shows the exception reason given by ShellOS for each

execution chain. Each point represents the percentage of a particular type of exception in the context

of all exceptions generated while scanning a single memory snapshot. The x-axis is the number

of execution chains per second—the throughput of ShellOS. This throughput will vary for each

document, depending on the size, distribution, and structure of the bytes contained in each snapshot.

This view of the data enables one to see any relationships between throughput and exception type.

Only invalid opcode exceptions (#UD), general protection faults (#GP), and page faults (#PF) are

shown, as well as the percentage of chains ending due to running for the maximum allotted time.

Other exceptions generated include divide-by-zero errors, bound range exceeded faults, invalid TSS

faults, stack segment faults, and x87 floating-point exceptions. However, those exception percentages

are consistently small compared to those depicted in Figure 5.7b. The plot shows that in slower

performing memory snapshots, invalid opcode exceptions tend to be more prevalent in place of chains

ending due to a page fault. Also, there tend to be more timeouts with snapshots associated with

lower throughput, although these exceptions represent no more than 2% of the total. A reasonable

explanation for these anomalies is that long chains of nop-like instructions eventually terminate with

one of these invalid opcodes. This seems more likely after realizing that many Unicode character

sequences translate into just such instructions. For example, the ‘p’ Unicode character decodes to an

instruction that simply moves to the next byte. Timeouts occur when these character sequences are

so long as to not complete before the terminating instruction, possibly also hindered by embedded

loops.

Optimized Performance: The benefits of any optimization must outweigh the cost of actually

computing those optimizations. Thus, Figure 5.8 shows the runtime performance of only the filtering

step of the optimizations presented in Section 5.3. Figure 5.8a depicts the CDF and runtime vs size

of memory scanned for the start-byte filter. The worst case runtime for only start- byte filtering is a

little more that half a second, while 99% of document snapshots apply the start-byte filtering step

with 0.3 seconds. As computing the start-byte filter is a prerequisite for computing the positions

skipped with the reaching filter, Figure 5.8b depicts the same information for the combination of
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(b) Reaching filter.

Figure 5.8: Runtime performance of optimization steps.
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Figure 5.9: ShellOS memory snapshot performance with start-byte optimization.
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Figure 5.10: ShellOS memory snapshot performance with all optimizations.
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both filters. As expected, the combination of filters take longer to compute overall, with a worst case

of about 1.2 seconds and 99% completing in around 0.6 seconds. Thus, the cost of performing these

optimizations is quite low compared with the average time of analyzing a document snapshot without

optimizations.

Figures 5.9 and 5.10 provide the same information as the baseline performance plot (Figure 5.7),

but with the start-byte and combination of start-byte and reaching filters enabled, respectively. The

key take-away of these plots is that average runtime is reduced from around 10 seconds to 3 seconds

with the start-byte filter alone, to less than a second with all optimizations enabled, and 99% of

document snapshots are scanned in less than 5 seconds with all optimizations. A deeper look reveals

that the start-byte filter alone eliminates the need to attempt execution of somewhere between 50-

100% of execution chains in any given document snapshot, while the reaching filter further extends

this with the majority of snapshots resulting in 80-100% of execution chains being skipped. The shear

number of chains now skipped accounts for the improved runtime. However, one can also observe

that the large number of invalid opcode exceptions present in the unoptimized runs (Figure 5.7) has

now disappeared. This makes sense, as the start-byte filter serves to ignore any chain that starts

with an invalid opcode, while the reaching filter attempts to skip any chain that one can be certain

ends with an invalid opcode. Timeouts are somewhat reduced, but the reaching filter is not able to

eliminate all loops. Indeed, further experiments reveal that the majority of remaining timeouts are

not even eliminated with an excessively long maximum allotted runtime. The issue of timeouts is

further discussed in Section 5.5

5.4.3 On Accuracy

The accuracy of ShellOS is measured in terms of false positives (FP), e.g. benign documents

mistakenly labeled as malicious, and false negatives (FN), e.g. malicious documents mistakenly

labeled as benign. ShellOS provides a verdict for every execution chain, and labels a document as

malicious if any execution chain triggers the PEB heuristic while executing. Similarly, a document is

labeled benign if none of the execution chains produce a malicious verdict. In terms of false positives,

ShellOS produced 9 malicious verdicts for documents in the aforementioned set of 10,000 benign

documents. After further investigation, all of these “false positives” are known malicious documents

that happen to be included in the dataset by mistake, as a result of their collection “from-the-wild”
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method. So, in fact, ShellOS produced no false positives after accounting for these cases. Further,

no false positives were encountered in any of the network-level tests in Section 5.4.1.

Chapter 6 provides a detailed description and analysis of a separate data set of 10,000 documents

labeled as malicious. In short, these documents are collected from several sources and were all

labeled as malicious at some point between 2008 and 2011 by an antivirus engine. A leading antivirus

engine labeled documents in this set with 150 distinct signature labels, demonstrating variability

in the dataset. ShellOS produced 908 benign verdicts, a 9.08% false negative rate. All of these

errors are produced on Adobe PDF documents. After further investigation, the reason for these false

negatives is accounted for by 3 distinct circumstances. First, 29 of these documents contain code

injection payloads constructed with the wrong byte-order, a common mistake when translating code

bytes into an unescaped JavaScript string to embed into a document. After correcting these adversary

errors, a malicious verdict is produced. Next, 570 documents contain embedded JavaScript that is

broken. Specifically, the broken JavaScript contains code to unpack and execute a second phase of

JavaScript that contains the exploit and unescaped code injection payload. The unpacking routine

performs a split operation on a large string before further processing and unpacking. However, the

code splits the string on every dash (‘-’) character, while the string itself is divided by a different set

of characters (either ‘mz’ or ‘xyz’). Again, ShellOS produces a malicious verdict on these samples

once this error is corrected. Note that while a malicious verdict is not produced on broken exploits,

these exploits would not successfully execute on any end-user’s system. Thus, whether these cases

represent a true FN is a matter of semantics. Lastly, 309 are labeled benign due to the fact that the

embedded JavaScript only attempts the exploit when a specific version of Adobe Reader is detected.

A quick workaround that addresses this issue for the data set at hand is, in addition to executing

from every byte position in the memory snapshot, one can automatically identify escaped JavaScript

strings in memory, then unescape them prior to scanning. However, this will not work in case of

highly obfuscated code injection buffers that are dynamically constructed only after such a version

check. Past work has addressed this issue by simultaneously launching the document in different

versions of the target application (Lindorfer et al., 2011) or forcing the execution of all JavaScript

fragments (Cova et al., 2010). That said, the use of ShellOS in an operational setting benefits most

from configuring application versions to match those used in the enterprise environment in which it

is used.
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5.5 Limitations in Face of a Skilled Adversary

Code injection payload detection based on run-time analysis, whether emulated or supported

through direct CPU execution, generally operates as a self-sufficient black-box wherein a suspicious

buffer of code or data is supplied, and a result returned. ShellOS attempts to provide a run-time

environment as similar as possible to that which the injected code expects. That said, one cannot

ignore the fact that payloads designed to execute under very specific conditions may not operate

as expected (e.g., non-self-contained (Mason et al., 2009; Polychronakis et al., 2007), context-

keyed (Glynos, 2010), and swarm attacks (Chung and Mok, 2008)). Note, however, that by requiring

more specific processor state, the attack exposure is reduced, which is usually counter to the desired

goal — that is, exploiting as many systems as possible.

More specific to the framework described in this chapter is that the prototype currently employs

a simplistic approach for loop detection. Whereas software-based emulators are able to quickly

detect and exit an infinite loop by inspecting program state at each instruction, ShellOS only has

the opportunity to inspect state at each clock tick. At present, the overhead associated with increasing

timer frequency to inspect program state more often limits the ability to exit from infinite loops

more quickly. That said, the approach described in this chapter is already much more performant

than emulation-based detection. Ideally one could inspect a long running loop, decide the outcome

of that loop (i.e., its effect on program state), then either terminate the execution chain for infinite

(or faulting) loops or update the program state to the computed outcome. Unfortunately, it is

computationally infeasible compute loop outcomes for all possible loops. This limitation applies to

any dynamic detection approach that must place limits on the computational resources allowed for

each execution. As placing a cap on the maximum run time of each execution chain is a fundamental

limitation of dynamic approaches, and code can be constructed to make deciding the outcome of

a loop computationally infeasible, one would benefit most from focusing future efforts towards

developing heuristics for deciding whether sustained loops are potentially malicious, perhaps through

examining properties of the code before and after the loop construct.

Finally, while employing hardware virtualization to run ShellOS provides increased trans-

parency over previous approaches, it may still be possible to detect a virtualized environment through

the small set of instructions that must still be emulated. However, while ShellOS currently uses
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hardware virtualization extensions to run along side a standard host OS, only implementation of

device drivers prevents ShellOS from running directly as the host OS. Running directly as the

host OS could have additional performance benefits in detecting code injection for network services.

Another plausible strategy is to add-in ShellOS functionality to an existing OS kernel rather than

build a kernel from scratch. This is left for future work.

5.6 Architecture and OS Specificity

The approach described in this chapter can be adapted to other architectures and operating

systems. In terms of adapting to other operating systems, the environment, i.e. memory layout and

registers, needs to be setup appropriately. Further, the heuristics used to decide when code execution

represents malicious code would need further exploration. The core contribution of this chapter

is a framework for fast code execution, with modular support for any heuristic based on memory

reads, writes, or executions. Adapting to other architectures, such as ARM or x86-64, would require

rewriting the assembly-level parts of ShellOS (about 15%) and appropriately updating the lower-level

initialization, fault handling, and I/O specific routines. One idea to aid in portability is to build the

ShellOS functionality in a standard Linux kernel module or modification, which could be used on

any architecture supported by Linux.

5.7 Discussion and Lessons Learned

In summary, this chapter proposes a new framework for enabling fast and accurate detection of

code injection payloads. Specifically, the approach takes advantage of hardware virtualization to

allow for efficient and accurate inspection of buffers by directly executing instruction sequences on

the CPU. ShellOS allows for the modular use of existing run-time heuristics in a manner that does

not require tracing every machine-level instruction, or performing unsafe optimizations. In doing so,

the framework provides a foundation that defenses for code injection payloads can build upon. The

next chapter aptly demonstrates the strengths of this framework by using it in a large-scale empirical

evaluation, spanning real-world attacks over several years.

Key Take-Aways:
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1. While code reuse is largely required to exploit applications, its inherent complexity and non-

portability has led adversary’s to often incorporate injected code as a secondary payload (as

observed in all of the 10,000 malicious documents examined in this chapter).

2. The framework presented in this chapter improves upon prior execution-based strategies for

detecting injected code by moving away from emulation and developing a method for safely

sandoxing execution of arbitrary code directly on the CPU using hardware virtualization,

improving performance and reducing errors introduced by incomplete emulation.

3. Compared to other approaches, such as signatures, detecting code injection requires relatively

little effort spent on maintenance over time, and can be used to detect unknown exploits since

these, too, leverage code injection as a secondary payload. Further, the method produces no

false positives and no false negatives provided that the exploit is functional and triggered in

the target application version.
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CHAPTER 6: DIAGNOSING CODE INJECTION PAYLOADS

Beyond merely detecting injected code and tracing the instructions executed using dynamic code

analysis, the sequence of Windows API calls executed, along with their parameters, are particularly

useful to a network operator. A network operator could, for example, blacklist URLs found in injected

code, compare those URLs with network traffic to determine if a machine is actually compromised, or

provide information to their forensic team such as the location of malicious binaries on the file system.

This chapter presents a method to aid in the diagnostic analysis of malicious documents detected

using the dynamic code analysis method described in the last chapter. The approach described

herein provides an API call trace of a code injection payload within a few milliseconds. Also

presented are the results of an empirical analysis of 10,000 malicious PDFs collected “in the wild”.

Surprisingly, 90% of code injection payloads embedded in documents make no use of machine-code

level polymorphism, in stark contrast to prior payload studies based on samples collected from

network-service level attacks. Also observed is a heavy-tailed distribution of API call sequences.

6.1 Literature Review

Most relevant is the open source libemu emulator (Baecher and Koetter, 2007), which provides

API call traces by loading a hard-coded set of DLLs to emulator memory, then emulating API func-

tionality when the program counter moves to one of the predefined routine addresses. Unfortunately,

this approach requires implementation of a handler for each of these routines. Thus, it cannot easily

adapt to support the myriad of Windows API calls available. Further, additional third-party DLLs are

loaded by the application being analyzed. It is not uncommon, for example, that over 30,000 DLL

functions are present in memory at any time.

As an alternative to emulation-based approaches, simply executing the document reader appli-

cation (given the malicious document) inside Windows, all the while tracing API calls, may be the

most straightforward approach. In fact, this is exactly how tools like CWSandbox (Willems et al.,

2007) operate. Instead of detecting payloads, these tools are based on detecting anomalies in API,

system, or network traces. Unfortunately, payloads have adapted to evade API hooking techniques
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(called in-line code overwriting) used by tools like CWSandbox by jumping a few bytes into API

calls (i.e., bypassing any hooks in the function prologue). Furthermore, the resulting traces make it

exceedingly difficult to separate application-generated events from payload-generated events.

Fratantonio et al. (2011) offer an approach called Shellzer that focuses solely on recovering

the Windows API call sequence of a given payload that has already been discovered and extracted

by other means, e.g., using libemu, Nemu (Polychronakis et al., 2010), the method described in

Chapter 5, or some other detection approach. The approach they take is to compile the given payload

into a standard Windows binary, then execute it in debug mode and single-step instructions until the

program counter jumps to an address in DLL-space. The API call is logged if the address is found in

an external configuration file. The advantage here over libemu is that Shellzer executes code in

a real Windows OS environment allowing actual API calls and their associated kernel-level calls to

complete. However, this comes at a price — the analysis must be run in Windows, the instruction

single-stepping results in sub-par performance (∼15 second average analysis time), and well-known

anti-debugging tricks can be used to evade analysis.

To alleviate these problems, this chapter develops a method based on the ShellOS architecture

(Chapter 5) for automatically hooking all methods exported by DLLs, without the use of external

DLL configuration files. Also provided is a method for automatically generating code to simulate

each API call, where possible.

6.2 Method

Although efficient and reliable identification of code injection attacks is an important contribution

(Chapter 5), the forensic analysis of the higher-level actions of these attacks is also of significant

value to security professionals. To this end, a method is needed to provide for reporting forensic

information about a buffer where injected code has been detected. In particular, the list of API calls

invoked by the injected code, rather than a trace of every assembly-level instruction, provides the

analyst with a small, comprehensible list of actions taken. The approach described herein is similar

to that of libemu in that individual handlers are implemented for the most common APIs, allowing

one to provide the greatest level of forensic detail for these routines. That is, one can place traps on

API addresses, and then when triggered, a handler for the corresponding call may be invoked. That

handler shall pop function parameters off the stack, log the call and parse the supplied parameters,
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perform actions needed for the successful completion of that call (e.g., allocating heap space), and

then return to the injected code.

Unlike previous approaches, however, the addresses of the APIs are determined by the given

application snapshot. Thus, the approach described next is portable across OS and application

revisions. Further, since injected code will inevitably invoke an API for which no handler has been

implemented, the approach described in this section describes how to intercept all APIs, regardless

of whether handlers are implemented, then perform the actions required to return back to the injected

code and continue execution. As shown later, one is able to provide a wealth of diagnostic information

on a diverse collection of code injection payloads using this method.

6.2.1 Detecting API Calls from Injected Code

To tackle the problem of automatically hooking the tens of thousands of exported DLL functions

found in a typical Windows application, one can leverage ShellOS memory traps along with

the application snapshot that accompanies an analysis with ShellOS. As described in detail in

Chapter 5, ShellOS initializes its execution environment by exactly reconstructing the virtual

memory layout and content of an actual Windows application through an application snapshot. These

application snapshots are configured to record the entire process state, including the code segments

of all dynamically loaded libraries1.

Thus, the snapshot provides ShellOS with the list of memory regions that correspond to DLLs.

This information should be used to set memory traps (a hardware supported page-level mechanism)

on the entirety of each DLL region, per §5.2.3. These traps guarantee that any execution transfer to

DLL-space is immediately caught by ShellOS, without any requirement of single-stepping each

instruction to check the program counter address. Once caught, one should parse the export tables of

each DLL loaded by the application snapshot to match the address that triggered the trap to one of the

loaded DLL functions. If the address does not match an exact API call address, one can simply note

the relation to the nearest API call entry point found ≤ the trapped address in the format: function +

offset. In this way, one discovers either the exact function called, or the offset into a specific function

that was called, i.e., to handle payloads bypassing in-line code overwriting.

1http://msdn.microsoft.com/en-us/library/windows/desktop/ms679309(v=vs.85)
.aspx
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6.2.2 Call Completion and Tracing

Automated hooking alone can only reveal the last function that injected code tried to call before

diagnostic analysis ends. This certainly helps with rapidly prototyping new API calls. However, the

most benefit comes with automatically supporting the simulation of new API calls to prevent, where

possible, constantly updating ShellOS manually. One approach is to skip simulation altogether, for

example, by simply allowing the API call code to execute as it normally would. Since ShellOS

already maps the full process snapshot into memory, all the necessary DLL code is already present.

Unfortunately, Windows API calls typically make use of kernel-level system calls. To support this

without analyzing the injected code in a real Windows environment would require simulating all of

the Windows system calls – a non-trivial task.

Instead one can generate a best-effort automated simulation of an API call on-the-fly. The idea

is to return a valid result to the caller2. Since injected code does not often make use of extensive

error checking, this technique enables analysis of payloads using API calls not known a-priori to run

to completion. The main complication with this approach, however, is the assembly-level function

calling convention used by Windows API calls (the stdcall convention). The convention

declares that the API call, not the caller, must clean up the function parameters pushed on the stack

by the caller. Therefore, one cannot simply return to the calling instruction, which would result

in a corrupted stack. Instead, one needs to determine the size of the parameters pushed onto the

stack for that specific function call. Unfortunately, this function parameter information is not readily

available in any form within an application snapshot3. However, the original DLL code for the

function is accessible within the application snapshot, and this code must clean up the stack before

returning. This can be leveraged by disassembling instructions, starting at the trapped address, until

one encounters a ret instruction. The ret instruction optionally takes a 2-byte source operand

that specifies the number of bytes to pop off the stack. This information is used to automatically

adjust the stack, allowing code to continue execution. The automated simulation would fail to work

in cases where code actually requires an intelligent result (e.g. LoadLibrary must return a valid DLL

load address). An astute adversary could therefore thwart diagnostic analysis by requiring specific

2Windows API functions place their return value in the eax register, and in most cases indicate a success with a value
≥ 1

3Function parameter information could be obtained from external sources, such as library definitions or debug symbols,
but these may be impossible to obtain for proprietary third-party DLLs
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Figure 6.1: Timeline of Malicious Documents.

results from one of these automatically simulated API calls. The automated API hooking described,

however, would at least identify the offending API call.

For cases where code attempts to bypass in-line code overwriting-based function hooking by

jumping a few bytes into an API call, one should simply adjust the stack accordingly, as also noted

by Fratantonio et al. (2011), and either call the manually implemented function handler (if it exists),

or do on-the-fly automated simulation as described above.

6.3 Results

In what follows, an in-depth forensic analysis of document based code injection attacks is

performed. The capabilities of the ShellOS framework are used to exactly pinpoint no-op sleds

and payloads for analysis, and then examine the structure of Windows API call sequences, as well as

the overall behavior of the code injected into the document.

The analysis is based on 10,000 distinct PDF documents collected from the wild and provided

through several sources4. Many of these were submitted directly to a submission server (running the

ShellOS framework) available on the University of North Carolina campus. All the documents

used in this analysis had previously been labeled as malicious by antivirus engines, so this subsequent

4These sources have provided the documents with the condition of remaining anonymous.
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analysis focuses on what one can learn about the malicious code, rather than whether the document

is malicious or not.

To get a sense of how varied these documents are (e.g., whether they come from different

campaigns, use different exploits, use different obfuscation techniques, etc.), a preliminary analysis

is performed using jsunpack (Hartstein, 2010) and VirusTotal5. Figure 6.1 shows that the set

of PDFs spans from 2008, shortly after the first emergence of malicious PDF documents in 2007, up

to July of 2011. Only 16 of these documents were unknown to VirusTotal when queries were

submitted in January of 2012.
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Figure 6.2: Results from jsunpack showing (a) known vulnerabilities and (b) exploits per PDF

Figure 6.2(a) shows the Common Vulnerabilities and Exposure (CVE) identifiers, as reported by

jsunpack. The CVEs reported are, of course, only for those documents that jsunpack could

successfully unpack and match signatures to the unpacked Javascript. The percentages here do not

sum to 100% because most documents contain more than one exploit. Of the successfully labeled

documents, 72% of them contain the original exploit that fueled the rise of malicious PDFs in 2007

— namely, the collab.collectEmail exploit (CVE-2007-5659). As can be seen in Figure 6.2(b), most

of the documents contain more than one exploit, with the second most popular exploit, getAnnots

(CVE-2009-1492), appearing in 54.6% of the documents.

5http://www.virustotal.com
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6.3.1 On Payload Polymorphism

Polymorphism has long been used to uniquely obfuscate each instance of a payload to evade

detection by anti-virus signatures (Song et al., 2010; Talbi et al., 2008). A polymorphic payload

contains a few decoder instructions, followed by the encoded portion of the payload.

The approach one can use to analyze polymorphism is to trace the execution of the first n

instructions in each payload (n = 50 is used in this evaluation). In these n instructions, one can

observe either a decode loop, or the immediate execution of non-polymorphic code. ShellOS

detects code injection payloads by executing from each position in a buffer, then triggering on

a heuristic, such as the PEB heuristic (Polychronakis et al., 2010). However, since payloads are

sometimes prepended by a NOP sled, tracing the first n instructions would only include execution of

those sled instructions. Therefore, to isolate the NOP sled from the injected code, one executes each

detected payload several times. The first execution detects the presence of injected code and indicates

the buffer offset of both the execution start position (e.g., most likely the start of the NOP sled) and

the offset of the instruction where the heuristic is triggered (e.g., at some location inside the payload

itself). One then executes the buffer multiple times, starting at the offset the heuristic is originally

triggered at and moves backwards until the heuristic successfully triggers again (of course, resetting

the state after each execution). This new offset indicates the first instruction required by the injected

code to properly function, and the following analysis begins the n instruction trace from here.

Figure 6.3 shows the number of code injection payloads found in each of the 220 unique starting

sequences traced. Uniqueness, in this case is rather strict, and is determined by exactly matching

instruction sequences (including opcodes). Notice the heavy-tailed distribution. Upon examining the

actual instruction sequences in the tail, it is apparent that the vast majority of these are indeed the

same instruction sequence, but with varying opcode values, which is indicative of polymorphism.

After re-binning the unique sequences by ignoring the opcode values, the distribution remains similar

to that shown in Figure 6.3, but with only 108 unique starting sequences.

Surprisingly, however, 90% of payloads analyzed are completely non-polymorphic. This is

in stark contrast to prior empirical studies of code injection payloads (Polychronakis et al., 2009;

Zhang et al., 2007; Payer et al., 2005a). One plausible explanation of this difference may be that

prior studies examined payloads on-the-wire (e.g. network service-level exploits). Network-level
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exploits operate in plain-view of intrusion detection systems and therefore require obfuscation of

the payloads themselves. Document-based exploits, such as those in this data set, have the benefit

of using the document format itself (e.g. object compression) to obfuscate the injected code, or the

ability to pack it at the Javascript-level rather than machine code-level.

The 10% of payloads that are polymorphic represent most of the heavy tail in Figure 6.3. Of the

payloads in this set, 11% use the fstenv GetPC instruction. The remaining 89% used call as

their GetPC instruction. Of the non-polymorphic sequences, 99.6% begin by looking up the address

of the TEB with no attempt to obfuscate these actions. Only 7 payloads try to be evasive in their

TEB lookup; they first push the TEB offset to the stack, then pop it into a register via: push byte

0x30; pop ecx; mov eax,fs:[ecx].

6.3.2 On API Call Patterns

To test the effectiveness of the automatic API call hooking and simulation described in this

chapter, each payload in the data set is allowed to continue executing in ShellOS. The average

analysis time, per payload API sequence traced, is ∼ 2 milliseconds. The following is one example

of an API trace provided to the analyst by the diagnostics:

This particular example downloads a binary to the affected machine, then executes it. Of

particular interest to an analysis is the domain (redacted in this example), which can subsequently be
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begin snippet

LoadLibraryA("urlmon")
LoadLibraryA("shell32")
GetTempPathA(Len = 64, Buffer = "C:\TEMP\")
URLDownloadToFile(

URL = "http://(omitted).php?spl=pdf_sing&s=0907...(omitted)...FC2_1&fh=",
File = "C:\TEMP\a.exe")

ShellExecuteA(File = "C:\TEMP\a.exe")
ExitProcess(ExitCode = -2),

end snippet

added to a blacklist. Also of interest is the obvious text-based information pertinent to the exploit

used, e.g. spl=pdf sing, which identifies the exploit used in this attack as CVE-2010-2883.

Other payloads contain similar identifying strings as well, e.g. exp=PDF (Collab), exp=PDF

(GetIcon), or ex=Util.Printf – presumably for bookkeeping in an overall diverse attack

campaign.

Overall, automatic hooking handles a number of API calls without corresponding handler

implementations, for example: LoadLibraryA Õ GetProcAddress Õ URLDownloadToFile Õ [FreeL-

ibrary+0] Õ WinExec Õ ExitProcess. In this example, FreeLibrary is an API call that has no handler

implementation. The automatic API hooking discovered the function name and that the function is

directly called by payload, hence the +0 offset. Next, the automatic simulation disassembles the

API code to find a ret, adjusts the stack appropriately, and sets a valid return value. The new API

hooking techniques also identify a number of payloads that attempt to bypass function hooks by

jumping a few bytes into the API entry point. The payloads that make use of this technique only apply

it to a small subset of their API calls. This hook bypassing is observed for the following functions:

VirtualProtect, CreateFileA, LoadLibraryA, and WinExec. In the following API call sequence, the

method described in this chapter automatically identifies and handles hook bypassing in 2 API calls:

GetFileSize6 Õ GetTickCount Õ ReadFile Õ GetTickCount Õ GlobalAlloc Õ GetTempPathA Õ

SetCurrentDirectoryA Õ [CreateFileA+5] Õ GlobalAlloc Õ ReadFile Õ WriteFile Õ CloseHandle

Õ [WinExec+5] Õ ExitProcess. In this case, the stacks are automatically adjusted to account for the

+5 jump into the CreateFileA and WinExec API calls. After the stack adjustment, the API calls are

handled as usual.

6A custom handler is required for GetFileSize and ReadFile. The handler reads the original document file to provide
the correct file size and contents to the payload.
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Table 6.1: Code Injection Payload API Trace Patterns
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Typically, an exploit will crash or silently terminate an exploited application. However, several

interesting payloads observed make an effort to mask the fact that an exploit has occurred on the

end-user’s machine. Several API call sequences first load a secondary payload from the original

document: GetFileSize Õ VirtualAlloc Õ GetTickCount Õ ReadFile. Then, assembly-level code

decodes the payload (typically xor-based), and transfers control to the second payload, which goes

through another round of decoding itself. The secondary payload then drops two files extracted from

the original document to disk – an executable and a PDF: GetTempPathA Õ GetTempFileNameA Õ

CreateFileA Õ [LocalAlloc+0] Õ WriteFile Õ CloseHandle Õ WinExec Õ CreateFileA Õ WriteFile

Õ CloseHandle Õ CloseHandle Õ [GetModuleFileNameA+0] Õ WinExec Õ ExitProcess. An

executable is launched in the background, while a PDF is launched in the foreground via ’cmd.exe

/c start’.

Overall, over 50 other unique sequences of API calls are found in the data set. Table 1 only

shows the full API call sequences for the 15 most frequent payloads. As with observations of the

first n assembly-level instructions, the call sequences have a heavy-tailed distribution.

6.4 Operational Benefits

Beyond mere interest in the commonly used techniques and API call sequences, the sequence

of Windows API calls extracted using the techniques described in this chapter, along with their
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parameters, are particularly useful as diagnostic information. The vast majority of code injection

payloads make use of an API call to download a “malware” executable, e.g.URLDownloadToFile or

URLDownloadToCacheFile. The most immediate benefit when running along side a network tap is

to compare the URLs given in the API call parameters with live network traffic to determine if the

machine that downloaded the document is actually compromised. To do so, one simply observes

whether the client requested the given URL in the injected code. This is useful for prioritizing

incident response. Further, the API traces indicate the location the file was saved, aiding the

response team, or automatic tool, in clean-up. Taking it one step further, domains are automatically

extracted from the given URL parameters and their IP addresses are looked up, providing automatic

domain and IP blacklist generation to preemptively stop completion of other attacks using those

distribution sites. Most existing NIDS, such as Snort 7, support referencing IP, domain, and URL

path regular expressions. An organization that keeps historical logs of visited top-level domains can

also identify previously compromised machines post-facto when newly exploited clients reference

shared distribution sites. Lastly, whether the intended victim downloads the secondary malware

payload or not, one can use the URL to automatically download the malware and perform further

analysis. Minimally, the malware hash can be computed and compared with future downloads.

6.5 Discussion and Lessons Learned

The automatic hooking and simulation techniques presented in this chapter aid in the analysis of

both known and unknown code injection payloads. The empirical analysis shows that the properties

of network-service level exploits and their associated payloads, such as polymorphism, do not

necessarily translate to document-based code-injection attacks. Additionally, the API call sequence

analysis has revealed diversity in code injection payloads, plausibly due to the multitude of exploit kits

available. The diagnostics provide the insights that enable network operators to generate signatures

and blacklists from the exploits detected — further underscoring the usefulness of the payload

diagnostics presented in operational settings.

Key Take-Aways:

7Snort is freely available at http://www.snort.org
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1. An added benefit of honing in on exploit payloads is that it can be leveraged to provide much

more diagnostic information about the exploit than whether or not it is malicious. All of the

malicious documents examined contain injected code.

2. The techniques described in this chapter process code injection payloads in a few milliseconds.

The study found that less polymorphic code is found than was observed in past studies of

injected code in network streams, possibly due to the fact that document and script-level

constructs enable obfuscation at a more accessible level. Further, a heavy-tailed distribution of

API call sequences is observed, yet the ultimate intent of the vast majority of injected code is

to simply download a “malware” executable and then run it.

3. The diagnostics provided through payload analysis are particularly useful to network operators

where the information gained can be used to automatically seed domain, IP, URL, and file-

signature blacklists, as well as to determine whether an attack is successful.
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CHAPTER 7: DISCUSSION

This chapter discusses the context of memory error exploits and their associated code injection

and reuse payloads in the overall security landscape, personal opinions on mitigations and attacks,

and a proposed way forward for the security research community.

7.1 On the Security Landscape and Alternative Attacks

The payloads used in memory error exploits enable one to execute arbitrary code in the context

of the exploited application. These exploits have been used for decades to compromise servers via

web, email, file sharing, and other publicly accessible services. The use of firewalls, OS defenses

like DEP and ASLR, and more proactive patching of security vulnerabilities has made exploiting

those vulnerabilities less productive. Instead, document reader applications began providing the

ability embed scripts within a document that are automatically run when the document is opened.

The use of scripting enables one to bypass ASLR by leveraging a memory disclosure vulnerability

and to disable DEP by reusing existing snippets of code. Firewalls have not been effective in limiting

the spread of these exploits because they are distributed over standard channels accessible to most

end-users, e.g. through web browsing and reading email. Further, complexity of the applications and

exploits coupled with obfuscation of document content reduce the ability to distribute timely patches

to end-user systems. Hence, memory error exploits are widely used today.

While memory errors and their corresponding payloads play a role in the security landscape,

they do not comprise the entire picture. The traditional model of computer security encompasses

confidentiality, integrity and availability (CIA). Payloads used in memory error exploits compromise

integrity by enabling attackers to execute arbitrary code. Memory errors used for memory disclosure

compromise confidentiality of the targeted application’s memory. Memory error exploits can also

compromise availability by crashing the targeted application. Consider how the security landscape

would look, however, if the problem of application security and memory error exploits were perma-

nently solved. One would instead look towards weaknesses in poor configurations, authentication,

access control, encryption, and human factors.
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Social Engineering. Towards the goal of executing code in the context of the targeted user,

social engineering draws many parallels to the technical strategy of using a payload with an exploit.

Rather than exploit a software bug, social engineering aims at exploiting the human factor. The most

direct of these attacks is to simply email the target user a malware executable. More realistic and

persuasive email content presumably increases the chance of a user deciding to open that executable.

A social engineering attack such as this requires less skill of the adversary. The benefit of ‘human

hacking‘ is the relative ease of deploying the attack, but the downside is the unpredictable result. In

practice, a mix of technical and social engineering attacks is observed, perhaps due to adversaries

of various skill levels. There also exist periods of time when no un-patched or unreported exploits

(called zero-days) are known by attackers. Besides using social engineering for the purpose of

executing malicious code, one could also convince their target to modify or disclose information

by impersonating another individual. If technical exploits, as discussed in this dissertation, were

completely mitigated then this type of social engineering would see a significant uptrend.

Authentication. Exploiting weak authentication is another strategy for gaining remote code

execution. While one could search for inherent flaws in an authentication protocol, a commonly

used approach is to simply guess the targeted user’s private token or password. To do so en masse,

usernames and email addresses are first scraped from the web using a crawler. Next, automated

scripts attempt to login with these names repeatedly using a dictionary of frequently used passwords.

This password cracking provides code execution for certain protocols like the secure shell (ssh) in

Linux and the remote desktop protocol (rdp) in Windows. In other cases, guessed credentials provide

access to public-facing web services such as email, online retailers, cloud file storage, and banking

accounts. This time-tested strategy would continue in prominence without the aid of memory error

exploits.

Misconfiguration. A broader category of attack that can be leveraged towards achieving the

goal of remote code execution is that of exploiting misconfigurations. Poorly configured software

creates a gamut of opportunities. For instance, failing to change default account passwords in remote

access software gives the adversary an easy entry point. The adversary only needs to script scanning

a range of addresses and known services to find these misconfigurations. Another configuration

born issue arises when one improperly uses access control lists. For example, many users share a

University or enterprise server and each user is responsible for setting their own file permissions.
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Failing to restrict write permission on an executable script allows an attacker to modify it and insert

their own malicious script. Configuration issues and solutions come on a case-by-case basis which

makes them difficult to exploit en masse, but also difficult to mitigate altogether. In general, if

memory error exploits no longer existed, the exploitation of configuration issues would still remain

constant for those reasons.

Input Validation. Interestingly, the root cause of exploitable memory errors is the failure to

properly validate input derived from the user. This root cause holds true for other types of technical

exploits as well. One prominent example of this is SQL injections. Web sites have backends that

interface with databases using query strings derived from user input, e.g. a word one types into a

search engine, or a product name searched on an online retailer web site. If that input is not properly

validated before being used in a query it enables one to inject new SQL commands or produce

unintended queries to leak information. This leaked information, perhaps a database of user accounts

or identifying information, is later used in other attacks or directly used to steal funds in the case of

leaked credit card information.

It is apparent that the adversary has a plethora of approaches to leverage in gaining access to

their target system. This section has only covered those approaches in broad strokes. The adversary

will use whichever strategy is most effective for the least level of effort at any particular point in time.

Memory error exploits require a high level of effort initially, but are then packaged in toolkits and

made available for a nominal fee. They are attractive to adversaries because they require little skill

of those who deploy the end-product, have little reliance on the human factor, can be targeted in

email or massively deployed on the web or via publicly-facing services, and can execute any arbitrary

payload one requires. For these reasons, I believe research towards thwarting these attacks adds value

to the security research community and practical value that can be leveraged immediately to protect

individuals and organizations.

7.2 On the Inadequacy of Mitigations

The reality is that the problem of mitigating memory errors and their associated code injection

and reuse payloads is not solved. The reason for this, in my opinion, is attributed to several factors.

One problem is that academic efforts lose sight of the requisite goals. That is, too much emphasis is

placed on a certain mitigation breaking an attack technique, or even only a specific attack instance.
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One must also consider the consequences suffered in using that mitigation—namely, efforts must

both report runtime and memory performance under realistic loads and work towards the goal of

near-zero loss of runtime performance. Second, one should provide in-depth threat modeling and

analysis. Those claiming to develop comprehensive mitigations should assume the most sophisticated

attacker, while those developing an attack should assume the most effective defenses are in place. If

less than comprehensive mitigation is the goal, e.g. defending against specific instances of an attack

or a weaker adversary, then this should be clearly stated and the assumptions should be commensurate

with those goals.

For example, the approach described by Backes and Nürnberger (2014) claims to be the first

to mitigate the attack proposed in Chapter 3 by rewriting code to store function call pointers in a

protected region called the rattle. Unfortunately, it can be defeated with no changes to the JIT-ROP

core library. To do so, one ignores the fact that JIT-ROP recursively collects pointers from already

discovered code—it will no longer collect that info when (Backes and Nürnberger, 2014) is used, but

JIT-ROP will also not fault while collecting gadgets as usual. Instead, one simply collects code

pointers off the call stack or from C++ object vtables, both of which are completely unprotected

by the code rewriting and the ’rattle’. Any proposed mitigations should remain conservative by

assuming one can leak this information, which that work failed to do. Further, no testing was done

on web browsers or document readers, which are the primary target of such attacks.

Interestingly, another approach described by Backes et al. (2014) is also described as the first

general mitigation for the attacks described in Chapter 3. The idea is to mark memory pages as

executable, but not readable, thus making it impossible for JIT-ROP to traverse pages and find

gadgets dynamically. The implementation works by marking memory pages as inaccessible until

they need to be executed. Unfortunately, this work also fails to run adequate experiments with web

browsers and document readers, and so the performance is unclear. An attacker could also actively

force pages to be marked readable, one at a time, by calling functions from an adversary controlled

script. Real applications also legitimately read from their code sections, which is a problem for this

approach. The main point here in revisiting the work of Backes et al. (2014) is to highlight the earlier

points that failure to evaluate real-world performance and perform in-depth threat modeling and

analysis significantly reduces the practical value of the research.
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7.3 Way Forward

Looking towards the future, I propose an effective path forward for the security research

community. The end goal is to increase the difficulty of executing both code injection and reuse

payloads such that exploiting memory errors is no longer a practical method of attack.

DEP is already an adequate mitigation against code injection under the following assumptions:

(1) the attacker cannot execute existing code that disables DEP, and (2) the attacker can not influence

the generation of new code, i.e. JIT-compiled scripts are not in use, which are vulnerable to JIT-

spraying (Blazakis, 2010). The first assumption is met if code reuse payloads can be completely

mitigated, which is addressed next. The second assumption, however, is unreasonable due to the

increased demand for dynamic content. In other words, we must consider JIT-compiled scripts as a

first-class citizen in designing all future application exploit mitigations. I would direct researchers

towards in-depth investigation of existing JIT compiler security properties, as the ability to generate

executable code in the target process is a powerful new tool for the attacker that has not yet been

fully explored. A set of principles regarding JIT compilers should be established and shared with a

reference implementation.

Mitigating code reuse is a more difficult problem. With that said, the proposed approach of

control-flow integrity (CFI) provides a theoretically solid strategy (Abadi et al., 2009). The idea is to

enforce all control-flow instructions to only branch to targets intended in the original source code.

For example, if only function foo calls function bar in the original source code, then function baz can

not call bar at run time. It follows that short instruction snippets, or gadgets, can no longer be cherry-

picked and chained together with such enforcement. The problem with existing implementations

of CFI is that they only approximate the security properties of this enforcement in a best effort to

reduce runtime performance overhead. Instead, I would direct researchers to investigate architectural

features at the hardware-level to achieve that goal. The idea is to add a check at every branch

instruction (e.g., call, jmp, etc) in hardware. The check will verify that the branch instruction at

that address is allowed to transfer control to each specific target address. A number of problems

must be dealt with in this approach—one must deal with how to handle code randomization if it

has been used, and design hardware to efficiently support this operation, especially considering the

fact that a one-to-many mapping should be supported. This can be done with assistance from the
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compiler: during compilation, each binary is given an additional section that provides mappings

between branch instructions and their allowed targets. If the CPU supports this new enforcement

mechanism, then the program loader uses the information in this new section to initialize the branch

enforcement mappings. If the feature is not supported, the failure is graceful as that section will

simply be ignored.

While requiring CPU and compiler support appears to be a long road towards a practical

mitigation, it is necessary. From past lessons, we have seen DEP succeed as a hardware feature,

and ASLR succeeded as a compiler flag modification. The key factor of their success is the fact

that once those options were available they provided completely transparent defenses to software

developers as these features are enabled by default and require no additional manual effort. The

experience for end users also does not suffer in any way due to performance overhead or crashes

caused by compatibility problems if this solution is fully integrated from compiler to CPU. Achieving

the goal of hardware-supported CFI will require close collaboration between the areas of computer

engineering and the security community to ensure all goals are met. One must also ensure that JIT

compilers also incorporate CFI into their generated code. The major challenges and milestones of

such a project are to first research and plan CPU, compiler, and OS program loader modification

components that must all work together. Next, the hardware can be deployed and major compilers

release mainstream versions of their software with the additions. After this period, observation is

needed to identify practical problems, produce minor revisions, then finally enable hardware-CFI by

default in CPUs, compilers, and operating systems. Large software vendors could then begin shipping

the hardware-CFI protected versions of their programs. I estimate that such a feature can be widely

deployed within 10 years. In the meantime, faster to deploy mitigations that lack in completeness,

but have good runtime performance, still provide practical value to individuals and organizations.

Unfortunately, even if such a large project succeeded tomorrow, the research community still

needs to dedicate significant time and effort to the alternative vectors of attack discussed in §7.1.

Social engineering, in particular, is the likely candidate to replace the use of memory error exploits.

Already, social engineering is used in lieu of a technical exploit being available. However, it is likely

that highly technical exploits of a different category will also see a surge in the next 5-10 years as

exploiting memory errors becomes more difficult—namely, data-overwrite attacks. The idea is to

reuse existing program code, but in a different way than existing code reuse payloads. Rather than
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chaining together scattered snippets of code, the existing code is used exactly as it was intended

in terms of program control-flow, thus it is unaffected by any CFI mitigation. Instead, in-memory

program data is modified to gain some unintended privilege. Consider, for example, that JavaScript in

a web browser can read and write ’cookies’ stored on disk. If the cookie storage location is dynamic

(i.e., not stored in a read-only section of memory), the adversary can overwrite that location. To

gain code execution one could change that location to point to system programs and use the store

privilege to rewrite those programs. In that example, the intended program control-flow is adhered

to, but the malicious logic will execute in another process when that system program is invoked.

Attacks like this have not been observed in the wild or in discussed academia to the best of my

knowledge. My understanding is that data-overwrites are application-specific and convoluted to

exploit—easy alternatives like code injection and reuse offer a more direct approach. However, as

those payloads are harder to execute due to CFI and other mitigations, data-overwrites will become

more commonplace. The research community should initially investigate these attacks with research

that highlights real-world examples with impactful results such as gaining full code execution.

Following that, researchers have some grounding to investigate the fundamental issues that enable

these data-overwrite attacks.
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CHAPTER 8: CONCLUSION AND FUTURE WORK

In short, the work presented in this dissertation identified a problem—the inadequacy of memory

error exploit mitigations, which was exemplified by techniques for bypassing existing and proposed

defenses (Chapter 3)—motivating the need for detection of such exploits rather than solely relying

on prevention. It was observed that existing and widely used detection techniques, such as the use

of signatures, can be effective in scenarios where attacks have been previously observed. However,

the rapid rate of vulnerability discover coupled with the ease of exploit obfuscation challenges the

effectiveness of such systems, especially within the context documents and web content whose reader

and browser applications provide copious amounts of methods for encoding embedded data. Indeed,

maintaining signatures over time entails a great deal of resources for constantly identifying emerging

threats and delicately creating signatures with a difficult balance of generality versus specificity.

Instead, it was observed that memory error exploits require the use of either a code injection or reuse

payload to perform the adversary’s intended malicious actions during exploitation. Further, history

has shown the evolution of these payloads to be slow relative to the rate of exploit discovery, perhaps

due to the difficulty of crafting both code injection and reuse payloads. Thus, effectively detecting

these payloads provides a long-lasting strategy for detecting memory error exploits in general. To

do so, static techniques for detecting ROP-style code reuse payloads are given in Chapter 4, while

a fully dynamic approach to detecting code injection payloads is given in Chapter 5. Employing

both strategies together in the context of a weaponized document’s memory snapshot takes about a

second, produces no false positives, and no false negatives provided that the exploit is functional

and triggered in the target application version. Compared to other strategies, such as signatures, this

approach requires relatively little effort spent on maintenance over time. That is, it only requires

updating the document reader software used to obtain memory snapshots as new versions arise,

staying in sync with the protected systems. The technique is also useful for detecting unknown

exploits since these, too, will leverage either code injection, code reuse, or both. An added benefit

of honing in on the exploit payloads is that it can be leveraged to provide much more diagnostic

information about the exploit than whether or not it is malicious. Chapter 6 provided techniques

124



for such analysis, which benefits network operators by providing information that can be used to

automatically seed domain, IP, URL, and file-signature blacklists, as well as to determine whether an

attack is successful.

Moving forward, one could use the components described in this dissertation to form the basis

of a unique network intrusion detection system (NIDS) to augment existing systems. For example,

one can envision multiple collection points on an enterprise network wherein documents are either

extracted from an email gateway, parsed from network flows, harvested from web pages, or manually

submitted to an analysis system. Such a system is not without it’s limitations, however. For example,

the extraction of application snapshots and the dynamic approach to detecting code injection payloads

share limitations with other dynamic approach, namely how to deal with documents or payloads

designed to exhaust ones resources prior to revealing it’s malicious intent. As this appears to be a

fundamental limitation of such approaches, future efforts to minimize the usefulness of this tactic

should likely focus on heuristic techniques for detecting attempts to maliciously exhaust a resource.

Further, while Chapter 4 provides static detection of ROP payloads, which are presently prominent,

other useful forms of code reuse exist. For example, return-to-libc style code reuse has the potential

to be as effective as ROP, yet little research exists on detecting it. Finally, while the focus of this

dissertation is on the detection of memory error exploits, there is still much more to be done in the

area of mitigation. One should not be discouraged by the fact that existing approaches are “broken”

by some exploit technique. Instead of a single approach, the “silver-bullet” in the long term will

be multiple imperfect, but compatible and efficient, mitigations that make exploitation much more

difficult than it is today.
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