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ABSTRACT

HENNADIY LEONTYEV: Compositional Analysis Techniques For Multiprocessor Soft Real-Time
Scheduling.

(Under the direction of Prof. James H. Anderson)

The design of systems in which timing constraints must be met (real-time systems) is being affected

by three trends in hardware and software development. First, in the past few years, multiprocessor

and multicore platforms have become standard in desktop and server systems and continue to expand

in the domain of embedded systems. Second, real-time concepts are being applied in the design of

general-purpose operating systems (like Linux) and attempts are being made to tailor these systems to

support tasks with timing constraints. Third, in many embedded systems, it is now more economical

to use a single multiprocessor instead of several uniprocessor elements; this motivates the need to share

the increasing processing capacity of multiprocessor platforms among several applications supplied by

different vendors and each having different timing constraints in a manner that ensures that these

constraints were met. These trends suggest the need for mechanisms that enable real-time tasks to be

bundled into multiple components and integrated in larger settings.

There is a substantial body of prior work on the multiprocessor schedulability analysis of real-time

systems modeled as periodic and sporadic task systems. Unfortunately, these standard task models

can be pessimistic if long chains of dependent tasks are being analyzed. In work that introduces less

pessimistic and more sophisticated workload models, only partitioned scheduling is assumed so that

each task is statically assigned to some processor. This results in pessimism in the amount of needed

processing resources.

In this dissertation, we extend prior work on multiprocessor soft real-time scheduling and construct

new analysis tools that can be used to design component-based soft real-time systems. These tools

allow multiprocessor real-time systems to be designed and analyzed for which standard workload and

platform models are inapplicable and for which state-of-the-art uniprocessor and multiprocessor analysis

techniques give results that are too pessimistic.
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Chapter 1

Introduction

The goal of this dissertation is to extend prior work on multiprocessor real-time scheduling to enable soft

real-time schedulability theory to meet the expectations of system designers. The particular focus of this

work is sets of real-time tasks that need to be integrated as components in larger settings. Such settings

include stream-processing (multimedia) applications, systems where computing resources are shared

among multiple real-time applications, embedded systems, etc. Prior to the research in this dissertation,

scheduling in multiprocessor soft real-time systems has been mainly considered in standalone contexts.

In this dissertation, we extend prior work on multiprocessor soft real-time scheduling and construct new

analysis tools that can be used to design component-based soft real-time systems. Further, we present

novel validation procedures for several well-known scheduling algorithms that allow heterogeneous real-

time constraints to be tested in a uniform fashion.

To motivate the need for compositional analysis, we start with a brief introduction to real-time

systems. Next, we present the system model that is assumed in this dissertation. We then briefly review

prior work on multiprocessor soft real-time scheduling and compositional analysis and state the thesis

of this dissertation. Finally, we summarize this dissertation’s contributions and give an outline for the

remainder of the dissertation.

1.1 What is a Real-Time System?

As opposed to many computer systems, real-time systems have timing requirements that must be satis-

fied. Thus, a real-time system has a dual notion of correctness: the programs comprising such a system

should not only produce results in accordance with their functional specifications but should also have

these computations finish within specified time frames. The latter property is called temporal correct-



ness. Embedded systems such as automotive controllers and medical devices, some multimedia software,

radar signal-processing, and tracking systems are the examples of real-time systems.

Timing constraints are often specified in terms of deadlines for activities. Based on the cost of failure

associated with not meeting them, deadlines in real-time systems can be broadly classified as either hard

or soft. A hard real-time deadline is one whose violation can lead to disastrous consequences such as

loss of life or a significant loss to property. Industrial process-control systems and robots, controllers for

automotive systems, and air-traffic-control systems are some examples of systems with hard deadlines.

In contrast, a soft deadline is less critical; hence, soft deadlines can occasionally be violated. However,

such violations are not desirable, either, as they may lead to degraded quality of service. For example,

in an HDTV player, a new video frame must be created and displayed every 33 milliseconds. If a

frame is not processed on time (a deadline is missed), then there may be a perceptible disruption in the

displayed video. Another example of a soft real-time application is a real-time data warehouse. Such a

system periodically gathers data across a large-scale computer network and analyzes the data in order

to identify network performance problems (Golab et al., 2009). As long as most deadlines are met,

network problems can be properly detected and handled as they happen. Many multimedia systems

and virtual-reality systems also have soft real-time constraints (Block, 2008; Bennett, 2007; Bennett and

McMillan, 2005; Vallidis, 2002).

For a real-time system, it should be possible to ensure that all timing requirements can always be met

under the assumptions made concerning the system. In other words, the system should be predictable.

Ensuring a priori that timing requirements are met is the core of real-time systems theory and the

subject of concentration of this dissertation. In order to make such predictions, for complex real-time

systems in which global (resource-efficient) scheduling algorithms are used, appropriate analysis tools

are yet to be developed. This motivates the research addressed in this dissertation as explained in the

next section in greater detail.

1.2 Motivation

The main goal of this dissertation is to bridge the gap between the current state-of-the-art in multipro-

cessor soft real-time scheduling and real-world needs. Such needs are being impacted by three trends in

hardware and software development.

First, general-purpose operating systems (OSs) are becoming more “real-time capable” via the in-

troduction of “real-time” features such as high-resolution timers, short non-preemptable code segments,

2



and in-kernel priority-inheritance mechanisms (e.g., the RT-PREEMPT patch for the Linux kernel (RTp,

2009)). This trend has been driven by a growth in applications with timing constraints that developers

wish to host on such systems.

Second, new features are being introduced to support “co-hosted” applications. Though general-

purpose OSs are typically used to run several applications simultaneously, in some situations, one appli-

cation may occupy all available system resources and make the entire system unresponsive. To prevent

such behaviors, strong isolation mechanisms known as application containers have been introduced in

Linux (LVS, 2007; Eriksson and Palmroos, 2007; Lessard, 2003). Containers are an abstraction that

allows different application groups to be isolated from one another (mainly, by providing different name

spaces to different application groups for referring to programs, files, etc.). Containers are seen as a

lightweight way to achieve many of the benefits provided by virtualization without the expense of run-

ning multiple OSs. For example, quotas on various system resources such as processor time, memory

size, network bandwidth, etc., can be enforced for encapsulated applications.

Third, these OS-related developments are happening at a time when multicore processors are now

in widespread use. Additionally, reasonably-priced “server class” multiprocessors have been available

for some time now. One such machine can provide many functions, including soft real-time applications

like HDTV streaming and interactive video games, thus serving as a multi-purpose home appliance (In-

tel Corporation, 2006). The spectrum of settings where multicore architectures are being used even

includes handheld devices. The resulting increase in processing power on such devices enables MPEG

video encoding/decoding software to be deployed on them. These hardware-related developments are

profound, because they mean that multiprocessors are now a “common-case” platform that software

designers must deal with.

As the above discussion suggests, recent changes made in common hardware and OS architectures

motivate the problem of sharing the processing capacity of one multiprocessor machine among multiple

real-time applications in a predictable manner. Deploying multiple real-time applications on a multipro-

cessor platform can be seen as an aspect of the larger issue of composability. The increasing complexity

and heterogeneity of modern embedded platforms have led to a growing interest in compositional mod-

eling and analysis techniques (Richter et al., 2003; Chakraborty et al., 2003, 2006). In devising such

techniques, the goal is not only to analyze the individual components of a platform in isolation, but

also to compose different analysis results to estimate the timing and performance characteristics of the

entire platform. Such analysis should be applicable even if individual processing and communication

elements implement different scheduling/arbitration policies, have different interfaces, and are supplied
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by different vendors. These complicating factors often cause standard workload models and analysis

techniques to lead to overly pessimistic results. To enable efficient system design solutions and to reduce

design and verification costs, existing compositional frameworks need to be extended so that soft real-time

workloads can be efficiently supported on multiprocessor platforms.

Unlike most prior related efforts (see Chapter 2), we are mainly interested in supporting soft timing

constraints. There is growing awareness in the real-time-systems community that, in many settings, soft

constraints are far more common than hard constraints (Rajkumar, 2006). If hard constraints do exist,

then ensuring them efficiently on most multiprocessor platforms is problematic for several reasons. First,

various processor components such as caches, instruction pipelines, and branch-prediction mechanisms

make it virtually impossible to estimate worst-case execution times of programs accurately. (While

execution times are needed to analyze soft real-time systems as well, less-accurate empirically-derived

costs often suffice in such systems.) Second, while there is much interest in tailoring OSs like Linux to

support soft real-time workloads, such OSs are not real-time operating systems and thus cannot be used

to support “true” hard timing constraints.

Real-time programs are typically implemented as a collection of threads or tasks. A scheduling

algorithm determines which task(s) should be running at any time. A task model describes the pa-

rameters of a set of real-time tasks and their timing constraints. On the other hand, a resource model

describes the resources available on a hardware platform for executing tasks. The most basic analysis

of a real-time system involves running validation tests, which determine whether a real-time system’s

timing constraints will be met if a specified scheduling algorithm is used.

In the next section, we describe one of the real-time task models studied in this dissertation. In Sec-

tion 1.4, a resource model is presented. In Section 1.5, we present some important scheduling algorithms

and schedulability tests for them (more algorithms and tests are discussed in detail in Chapter 2).

1.3 Real-Time Task Model

In this section, we describe the sporadic task model and the timing constraints under it. Later, in

Section 1.6, we describe a generalization of the sporadic task model called the streaming task model,

which circumvents some of the limitations of the sporadic task model and is used for the analysis of

component-based systems.
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1.3.1 Sporadic Task Model

Many real-time systems consist of one or more sequential segments of code, called tasks, each of which is

invoked (or released) repeatedly, with each invocation needing to complete within a specified amount of

time. Tasks can be invoked in response to events in the external environment that the system interacts

with, events in other tasks, or the passage of time as determined by using timers. Each invocation of a

task is called a job of that task, and unless otherwise specified, a task is long-lived, and can be invoked

an infinite number of times, i.e., can generate jobs indefinitely.

In this dissertation, we consider a set of n sequential tasks τ = {T1, T2, . . . , Tn}. Associated with

each task Ti are three parameters, ei, pi, and Di: ei gives the worst-case execution time (WCET) of any

job of Ti, which is the maximum time such a job can execute on a dedicated processor; pi ≥ ei, called

the period of Ti, is the minimum time between consecutive job releases; and Di ≥ ei, called the relative

deadline of Ti, denotes the amount of time within which each job of Ti should complete execution after

its release.

The jth job of Ti, where j ≥ 1, is denoted Ti,j. A task’s first job may be released at any time t ≥ 0.

The arrival or release time of job Ti,j is denoted ri,j and its (absolute) deadline di,j is defined as ri,j+Di.

The completion time of Ti,j is denoted fi,j and fi,j − ri,j is called its response time. Task Ti’s maximum

response time is defined as maxj≥1(fi,j − ri,j). The execution time of job Ti,j is denoted ei,j .

For each job Ti,j , we define an eligibility time ǫi,j such that ǫi,j ≤ ri,j and ǫi,j−1 ≤ ǫi,j. The eligibility

time of Ti,j denotes the earliest time when it may be scheduled. A job Ti,j is said to be early-released if

ǫi,j < ri,j . An unfinished job Ti,j is said to be eligible at time t if t ≥ ǫi,j . The early-release task model

was considered in prior work on Pfair scheduling (Anderson and Srinivasan, 2004). As shown later in

Example 2.3 in Section 2.1.2, allowing early releases can reduce job response times.

If Di = pi (respectively, Di ≤ pi) holds, then Ti and its jobs are said to have implicit deadlines

(respectively, constrained deadlines). A sporadic task system in which Di = pi (respectively, Di ≤ pi)

holds for each task is said to be an implicit-deadline system (respectively, constrained-deadline system).

In an arbitrary-deadline system, there are no constraints on relative deadlines and periods. For brevity,

we often use the notation Ti(ei, pi, Di) to specify task parameters in constrained- and arbitrary-deadline

systems and Ti(ei, pi) in implicit-deadline systems.

In this dissertation, we consider schedules in which jobs are allowed to execute after their deadlines.

If a job Ti,j misses its deadline in a schedule S, then it is said to be tardy and the extent of the miss is

its tardiness. More generally, the tardiness of job Ti,j in schedule S is defined as tardiness(Ti,j ,S) =
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Figure 1.1: Example schedules of a sporadic task system from Example 1.1.

max(0, fi,j−di,j), and the tardiness of task Ti in schedule S is defined as tardiness(Ti,S) = maxj≥1(tardiness(Ti,j ,S)).

Because Ti is sequential, its jobs may not execute on multiple processors at the same time, i.e.,

parallelism is forbidden even if deadlines are missed. Further, a tardy job does not delay the releases of

later jobs of the same task.

A task with the characteristics as described is referred to as a sporadic task and a task system

composed of sporadic tasks is referred to as a sporadic task system. A periodic task Ti is a special case

of a sporadic task in which consecutive job releases are separated by exactly pi time units, and a task

system whose tasks are all periodic is referred to as a periodic task system. A periodic task system is

called synchronous if all tasks release their first jobs at the same time, and asynchronous, otherwise.

Example 1.1. An example sporadic task system with two implicit-deadline sporadic tasks T1(2, 4) and

T2(1, 3) and one periodic task T3(3, 7) running on two processors is shown in Figure 1.1(a). Figure 1.1(b)

shows the same task system except that job T2,3 is released early by one time unit. In this example,

we assume that jobs of T1 have higher priority than those of T2 and T3. In the rest of the dissertation,

up-arrows will denote job releases and down-arrows will denote job deadlines (if any).

Definition 1.1. The utilization of sporadic task Ti is defined as ui = ei/pi, and the utilization of the

task system τ as Usum(τ)=
∑

Ti∈τ ui.

The utilization of Ti is the maximum fraction of time on a dedicated processor that can be consumed

by Ti’s jobs over an interval during which a large number of Ti’s jobs are released. In Example 1.1, task

T1 can consume up to half of the available processing time on a dedicated processor.

1.3.2 Hard vs. Soft Timing Constraints

A sporadic task Ti is called a hard real-time (Hard Real-Time (HRT)) task if no job deadline should be

missed, i.e., tardiness(Ti,S) = 0 is required. A system solely comprised of HRT tasks is called a hard

real-time (HRT) system.
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Alternatively, if, for task Ti, deadline misses are allowed, then Ti is called a soft real-time (Soft

Real-Time (SRT)) task. The system containing one or more SRT tasks is called a soft real-time (SRT)

system. Because jobs in SRT systems may miss deadlines occasionally, there is no single notion of

SRT correctness. Some possible notions of SRT correctness include: bounded deadline tardiness (i.e.,

each job completes within some bounded time after its deadline) (Devi, 2006); a specified percentage

of deadlines must be met (Atlas and Bestavros, 1998); and m out of every k consecutive jobs of each

task complete before their deadlines (Hamdaoui and Ramanathan, 1995). In this dissertation, we are

primarily concerned with HRT systems and SRT systems with bounded deadline tardiness. Bounded

tardiness is important because each task with bounded tardiness can be guaranteed in the long run to

receive processor time proportional to its utilization.

With HRT and SRT correctness defined as above, HRT correctness is simply a special case of SRT

correctness. In both cases, we are concerned with whether a task’s response time occurs within a specified

bound. If a task’s maximum response time is required to be at most its relative deadline, then that task

is a HRT task. If it is required to be at most the relative deadline plus the maximum allowed tardiness,

then that task is a SRT task.

In Chapters 3 and 4, we will specify timing requirements in terms of deadlines and tardiness. In

Chapter 5, we will specify timing constraints in terms of maximum response times.

1.4 Resource Model

In this dissertation, we consider real-time task systems running on a platform comprised of a set of

m ≥ 2 identical unit-speed processors. Such a platform is called an identical multiprocessor platform.

In this setting, all processors have the same characteristics, including uniform access times (in the

absence of contention) to memory. Later, in Chapter 3, we also discuss how some of the results of this

dissertation can be applied to uniform multiprocessor platforms, in which processors can have different

speeds, i.e., different processors may execute instructions at different rates. Unless stated otherwise, in

this dissertation, we assume that the platform is an identical multiprocessor.

In identical multiprocessor platforms, a memory access is accomplished by the use of a centralized

shared memory. This type of multiprocessor is commonly referred to as a symmetric shared-memory

multiprocessor (SMP) (see Figure 1.2(a) for an illustration). Each processor can have one or more levels

of caches (instruction, data, and unified) to reduce memory access times. We assume that every task

can execute on every processor except that it cannot occupy more than one processor at any time. If a
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Figure 1.2: Symmetric multiprocessor architecture (a) without and (b) with a shared cache.

job (task) executes on different processors at different times, then we say that that job (task) migrates.

When a job migrates, it may be necessary to load task-related instructions and data into a local cache.

One of the ways to lower migration overheads is to restrict the execution of a task or a job to one or a

subset of processors. Another way is to use a multicore architecture with shared caches. As the name

suggests, the multicore chip has several processing cores on one die, which reduces power consumption

and production costs. In addition, different cores may share a cache at some level as illustrated in

Figure 1.2(b). Shared caches may reduce migration overheads, if task-related data and instructions

do not need to be loaded from memory after a migration. Task preemptions, context switches, task

migrations, and scheduler activity are system overheads that take processor time from the task system.

It is not possible to predict the behavior of the system without accounting for these overheads. This

problem is exacerbated in a platform with shared caches: due to cache interference, each individual

job’s execution time will depend on the job set being currently scheduled. Commonly, overheads are

accounted for by charging each external activity (e.g., a preemption, migration, or scheduler invocation)

to a unique job, and the WCET of each task is inflated by the maximum cumulative time required for

all the external activities charged to any of its jobs. Throughout this dissertation, we will assume that

system overheads are included in the WCETs of tasks using efficient charging methods (Devi, 2006).

The WCET of a task is therefore dependent on the implementation platform, application characteristics,

and the scheduling algorithm.

As noted in Section 1.2, the processing capacity of a multiprocessor platform often needs to be

shared among multiple task systems in a predictable manner. In this case, from the standpoint of a

single task system, the full capacity of one or more processors is not available to its constituent tasks. We

assume that such capacity restrictions are specified using service (supply) functions (Bini et al., 2009b;

Chakraborty et al., 2003; Mok et al., 2001).
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Figure 1.3: (a) Unavailable time instants and (b) service functions for processor 1 (denoted P1) in
Example 1.2.

Definition 1.2. The minimum guaranteed time that processor h can provide to τ in any time interval

of length ∆ ≥ 0 is characterized by the service function

βl
h(∆) = max(0, ûh · (∆− σh)), (1.1)

where ûh ∈ (0, 1] and σh ≥ 0.

In the above definition, ûh is the total long-term utilization available to the tasks in τ on processor

h and σh is the maximum length of time when the processor can be unavailable. These parameters

are similar to those in the bounded delay model (Mok et al., 2001) and multi-supply function abstrac-

tion (Bini et al., 2009b). We require ûh(∆) and σh to be specified for each h. Note that, if (unit-speed)

processor h is fully available to the tasks in τ , then βl
h(∆) = ∆.

Example 1.2. Consider a system with a processor that is not fully available. The availability pattern,

which repeats every eight time units, is shown in Figure 1.3(a); intervals of unavailability are shown as

black regions. For processor 1, the minimum amount of time that is guaranteed to τ over any interval

of length ∆ is zero if ∆ ≤ 2, ∆− 2 if 2 ≤ ∆ ≤ 4, and so on. Figure 1.3(b) shows the minimum amount

of time β∗(∆) that is available on processor 1 for soft real-time tasks over any interval of length ∆. It

also shows a service curve β1(∆) = max(0, û1(∆− σ1)), where û1 = 5
8 and σ1 = 2, which bounds β∗(∆)

from below. β1(∆) can be used to reflect the minimum service guarantee for processor 1.

There exist many settings in which individual processor service functions are not known and a lower

bound on the cumulative available processor time is provided instead. In this case, we let B(∆) be a

lower-bound on the cumulative processor time available over any interval of length ∆. In Chapters 3

and 4 we assume that individual processor supplies are known and, in Chapter 5, we assume that the

cumulative processor supply is known.
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1.5 Real-Time Scheduling Algorithms and Tests

The ultimate goal of real-time systems analysis is guaranteeing temporal correctness. That is verifying a

priori that no job deadline is ever missed or, if deadlines are allowed to be missed, then these misses are

by no more than certain amount of time. Temporal correctness depends on how jobs are scheduled. A

scheduling algorithm is used at runtime to determine which job to run next on the available processors.

Definition 1.3. A task system τ is concrete if the release and eligibility times of all of its jobs are

specified and is non-concrete otherwise.

The task set considered in Example 1.1 is a non-concrete task system, while the schedules considered

in this example are produced by two concrete instantiations of τ with different eligibility times for T2,3.

In the real-time systems literature, a concrete task system τ is feasible on a given platform if there

exists a schedule in which no job deadline is missed. A non-concrete task system τ is feasible on a given

platform if every concrete instantiation of τ is feasible.

A HRT system τ is called schedulable under scheduling algorithmA on a given platform if no deadline

is missed in the schedule produced by A for any concrete instantiation of τ . Alternatively, a SRT system

τ is schedulable under A if the maximum task tardiness is bounded. Often, tardiness bounds are specified

by system designers. Let Θi be the maximum allowed tardiness for task Ti. (Note that if Θi = 0 for

each task Ti, then the system is HRT.) In this case, τ is schedulable if these specified tardiness bounds

are not exceeded.

Associated with a scheduling algorithm is a procedure for verifying schedulability called a schedula-

bility test. In the rest of the section, we briefly describe the earliest-deadline-first (Earliest Deadline First

(EDF)) scheduling algorithm for uniprocessor and multiprocessor platforms and schedulability results

for it when considering implicit-deadline task systems. Other important scheduling algorithms, their

associated schedulability tests, and schedulability tests for EDF for constrained- and arbitrary-deadline

sporadic task systems are discussed in detail in Chapter 2. In the discussion below, we assume that all

processors are fully available.

1.5.1 Uniprocessor Scheduling

For uniprocessor systems, every feasible task system can be scheduled by the preemptive EDF algorithm,

which gives higher priority to jobs with smaller deadlines, so that all deadlines are met. This means

that EDF is optimal for uniprocessor scheduling.
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For an implicit-deadline task system τ , all deadlines can be met iff Usum(τ) ≤ 1 (Liu and Layland,

1973). In contrast, if Usum(τ) > 1, then some tasks in τ have unbounded deadline tardiness in certain

concrete instantiations of τ (e.g., when job releases are periodic). Therefore, the notions of HRT and

SRT schedulability are the same for implicit-deadline systems under uniprocessor EDF.

1.5.2 Partitioned Multiprocessor Scheduling

Similarly to uniprocessor scheduling, under multiprocessor scheduling, an implicit-deadline task system

τ is feasible on m processors iff Usum(τ) ≤ m (Anderson and Srinivasan, 2000; Baruah et al., 1996). If

τ is schedulable using an algorithm A on m′ processors, then the difference m′ − Usum(τ) is called the

utilization loss. We would like to minimize such loss while still be able to satisfy all timing requirements.

Most multiprocessor scheduling algorithms can be classified as either partitioned or global (or some

combination thereof). In partitioned algorithms, each task is permanently assigned to a specific processor

and each processor independently schedules its assigned tasks using a uniprocessor scheduling algorithm.

In global scheduling algorithms, tasks are scheduled from a single priority queue and may migrate among

processors.

The advantage of partitioned schedulers is that they enable uniprocessor schedulers to be used (on

each processor) and usually have low migration/preemption costs. The disadvantage of partitioned

schedulers is that they may require more processors to schedule a task system when compared to global

schedulers (as we will see later in this section). In this section, we consider the partitioned EDF (Parti-

tioned EDF (PEDF)) scheduling algorithm.

Because uniprocessor EDF is optimal, for implicit-deadline task systems, it suffices to construct a

partition of τ into the m subsets {τk} such that, for each k, Usum(τk) ≤ 1. This partitioning prob-

lem is related to the NP-complete bin-packing problem and becomes even more difficult for restricted-

and arbitrary-deadline systems. For these task systems, some sufficient schedulability tests have been

developed for partitioned EDF and static-priority scheduling (Baruah and Fisher, 2006, 2007). Unfor-

tunately, not all task sets can be successfully partitioned. In general, an implicit-deadline task system

τ with utilization Usum(τ) could require up to ⌈2 · Usum(τ) − 1⌉ processors in order to be schedulable

using PEDF. (This and a more accurate bound, which depends on the maximum per-task utilization,

are given in (Lopez et al., 2004).) In other words, up to half of the total available processor time can be

unused under PEDF in the long run.
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Figure 1.4: (a) Two- and (b) three-processor PEDF schedules in Example 1.3. (c) Preemptive and (d)
nonpreemptive GEDF schedules in Example 1.4.

Example 1.3. Consider an implicit-deadline task system τ = {T1(2, 3), T2(1, 7), T3(3, 8), T4(6, 8)},

which has total utilization Usum(τ) ≈ 1.93 ≤ 2. As mentioned at the beginning of Section 1.5.2, τ

is feasible on two processors. For any partitioning of this task set onto two processors, the total utiliza-

tion of the tasks assigned to one of the processors is greater than one. Therefore, τ cannot be scheduled

under PEDF on two processors so that all tasks meet their deadlines (or have bounded deadline tardi-

ness).

More concretely, suppose that tasks T1 and T4 are assigned to processor 1 and tasks T2 and T3 are

assigned to processor 2. An example schedule for τ on these two processors is shown in Figure 1.4(a).

In this schedule, processor 1 is overloaded because the arriving jobs of T1 and T4 request 34 execution

units every 24 time units while the processor can supply only 24 execution units. As a result, T4,1

misses its deadline by two time units and T1,3 misses its deadline by three time units. Overall, the

maximum deadline tardiness for T1 and T4 is unbounded if their jobs arrive periodically. In contrast,

if τ is scheduled on three processors, then all deadlines can be met, as shown in the example schedule

in Figure 1.4(b). However, in this case, the overall capacity equivalent to approximately one processor

remains unused in the long run.
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1.5.3 Global Multiprocessor Scheduling

In contrast to partitioned scheduling, some global schedulers incur no utilization loss in implicit-deadline

systems. Global algorithms can be further classified as either restricted or unrestricted. A scheduling

algorithm is considered to be restricted if the scheduling priority of each job (for any given schedule)

does not change once the job has been released. A scheduling algorithm is considered to be unrestricted

if there exists a schedule in which some job changes its priority after it is released.

In this section, we discuss two restricted global scheduling algorithms, preemptive global EDF (Global

EDF (GEDF)) and non-preemptive global EDF (Non-preemptive Global EDF (NPGEDF)); unrestricted

algorithms are considered later in Section 2.1.2. Under both GEDF and NPGEDF, tasks are scheduled

from a single priority queue on an EDF basis. The only difference between GEDF and NPGEDF is that

jobs can be preempted under GEDF and cannot be preempted under NPGEDF.

Example 1.4. Consider the task system τ from Example 1.3. An example GEDF schedule for τ on

two processors is shown in Figure 1.4(c). In this schedule, job T4,1 misses its deadline at time 8 by

one time unit. Note that, in this schedule, task T4 migrates between processors 1 and 2. Figure 1.4(d)

shows a NPGEDF schedule for τ . In this schedule, job T4,1 meets its deadline. However, job T1,2 misses

its deadline by one time unit because it is blocked by lower-priority jobs of T3 and T4 during the time

interval [3, 5).

Similarly to PEDF, GEDF may leave up to half of the system’s processing capacity unused if HRT

schedulability is required. Particularly, an implicit-deadline sporadic task system τ with total utiliza-

tion Usum(τ) and max(ui) ≤ 1/2 may need up to ⌈2 · Usum(τ) − 1⌉ processors in order to be HRT

schedulable (Baruah, 2003). (Even more processors may be needed if max(ui) > 1/2.)

In contrast, for purely SRT systems, utilization loss can be eliminated. According to Devi and

Anderson (2008b), for an implicit-deadline task system τ , bounded deadline tardiness is guaranteed

under GEDF and NPGEDF if Usum(τ) ≤ m. For the task system τ in Example 1.4, the maximum

deadline tardiness is at most 8.5 under GEDF (see Section 2.1.1 for details).

We conclude this section by briefly mentioning one unrestricted global scheduler, namely, the PD2

Pfair algorithm, which is one of the few optimal multiprocessor scheduling algorithms for implicit-

deadline task systems. Any such task system τ , where tasks have integral execution times and periods and

Usum(τ) ≤ m, is HRT schedulable by PD2 (Anderson and Srinivasan, 2004). Conversely, if Usum(τ) > m,

then τ is infeasible. Unfortunately, the usage of PD2 in practical settings may be limited due to its high

preemption and migration overheads (Brandenburg et al., 2008a). PD2 and other important unrestricted
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schedulers are discussed in greater detail later in Section 2.1.2.

1.6 Limitations of the Sporadic Task Model

Modern embedded systems are becoming complex and distributed in nature. Such complexity may

preclude efficient analysis using the periodic and sporadic models, thus making the schedulability results

described in the prior sections inapplicable.

In this section, we use an example to illustrate some of the critical limitations of the sporadic task

model that can arise during the analysis of a real application. We then briefly describe the streaming

task model and the associated real-time calculus analysis framework, which circumvents these limitations

and is widely used in the analysis of embedded systems.

Example 1.5. We consider an MPEG-2 video decoder application that has been studied previously

in (Chakraborty et al., 2006; Phan et al., 2008). The originally-studied application, shown in Fig-

ure 1.5(a), is partitioned and mapped onto two processors. Processor 1 runs the VLD (variable-length

decoding) and IQ (inverse quantization) tasks, while processor 2 runs the IDCT (inverse discrete cosine

transform) and MC (motion compensation) tasks. The (coded) input bit stream enters this system and

is stored in the input buffer B. The macroblocks (portions of frames of size 16 × 16 pixels) in B are

first processed by task T1 and the corresponding partially-decoded macroblocks are stored in the buffer

B′ before being processed by T2. The resulting stream of fully decoded macroblocks is written into a

playout buffer B′′ prior to transmission by the output video device. In the above system, the coded

input event stream arrives at a constant bit-rate.

Consider tasks T1 and T2, which are scheduled on separate processors. Suppose that jobs of T1 arrive

every p1 = 4 time units, odd-indexed jobs require three execution units, and even-indexed jobs require

one execution unit as shown in Figure 1.5(b). Such a situation is typical in MPEG decoding, where frames

of different types have substantially different decoding times and come in repeating patterns. Suppose

that jobs of T2 are released in response to the completions of T1’s jobs and require three execution units

each. Task T1 can be described using the sporadic task model because its jobs are released p1 time units

apart and its worst-case execution time satisfies e1 ≤ p1. However, T2 cannot be described using the

sporadic task model. As seen in Figure 1.5(b), the minimum inter-arrival time of T2’s jobs is two time

units, while its worst-case execution time is three time units. Nevertheless, the response-time of T2’s jobs

is bounded and is at most four time units. The sporadic task model also introduces pessimism when

estimating long-term task execution requirements. The utilization of T1 as defined by Definition 1.1
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Figure 1.5: (a) MPEG Player application and (b) example schedule of tasks T1 and T2 in Example 1.5.

is u1 = 0.75. However, task T1’s effective utilization is 0.5 as it consumes half of the capacity of one

processor over sufficiently long time intervals.

In the example above, the sporadic task model is insufficient because it does not capture the long-

term execution requirements of tasks or long-term job arrival patterns. The multiframe and periodic

with jitter task models have been proposed to include these features in task descriptions (Mok and

Chen, 1997). However, a more systematic approach to the analysis of communicating tasks such as

those in Example 1.5 was enabled with the introduction of the streaming task model and the real-time

calculus framework described next (Chakraborty et al., 2003, 2006).

1.7 Real-Time Calculus Overview

Real-time calculus is a specialization of network calculus, which was proposed by Cruz (1991a,b) and has

been widely used to analyze communication networks. Real-time calculus specializes network calculus

to the domain of real-time and embedded systems by, for example, adding techniques to model different

schedulers and mode/state-based information (e.g., see (Phan et al., 2008)). A number of schedulability

tests have also been derived based upon network calculus. We review some of these tests in Section 2.4.

In real-time calculus, jobs are invoked in response to external events. Timing properties of event

streams are represented using upper and lower bounds on the number of events that can arrive over any

time interval of a specified length. These bounds are given by functions αu(∆) and αl(∆), which

specify the maximum and minimum number of events, respectively, that can arrive at a process-

ing/communication resource within any time interval of length ∆ (or the maximum/minimum number

of possible task activations within any ∆). The service offered by a resource is similarly specified us-
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(a) (b)

Figure 1.6: (a) Computing the timing properties of the processed stream using real-time calculus.
(b) Scheduling networks for fixed priority and TDMA schedulers.

ing functions βu(∆) and βl(∆), which specify the maximum and minimum number of serviced events,

respectively, within any interval of length ∆. Given the functions αu(∆) and αl(∆) corresponding to

an event stream arriving at a resource, and the service βu(∆) and βl(∆) offered by it, it is possible to

compute the timing properties of the processed stream and remaining processing capacity, i.e., functions

αu′(∆), αl′(∆), βu′(∆), and βl′(∆), as illustrated in Figure 1.6(a), as well as the maximum backlog

and delay experienced by the stream. As shown in the same figure, the computed functions αu′(∆)

and αl′(∆) can then serve as inputs to the next resource on which this stream is further processed. By

repeating this procedure until all resources in the system have been considered, timing properties of the

fully-processed stream can be determined, as well as the end-to-end event delay and total backlog. This

forms the basis for composing the analysis for individual resources, to derive timing/performance results

for the full system.

Similarly, for any resource with tasks being scheduled according to some scheduling policy, it is also

possible to compute service bounds (βu(∆) and βl(∆)) available to its individual tasks. Figure 1.6(b)

shows how this is done for the fixed-priority (FP) and time-division-multiple-access (TDMA) policies. As

shown in this figure, for the FP policy, the remaining service after processing Stream A serves as the input

(or, is available) to Stream B. On the other hand, for the TDMA policy, the total service β(∆) is split

between the services available to the two streams. Similar so called scheduling networks (Chakraborty

et al., 2006) can be constructed for other scheduling policies as well. Various operations on the arrival

and service curves α(∆) and β(∆), as well as procedures for the analysis of scheduling networks on

uniprocessors (and partitioned systems) have been implemented in the RTC (real-time calculus) toolbox

(Wandeler and Thiele, 2006), which is a MATLAB-based library that can be used for modeling and
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Figure 1.7: A complex multiprocessor multimedia application under (a) partitioning and (b) global
scheduling.

analyzing distributed real-time systems.

1.8 Research Needed

With the needed background and concepts in place, we return to the subject of this dissertation, namely,

extending compositional techniques for the design and analysis of real-time systems on multiprocessors.

We motivate the open research questions in this area by looking at an example real-time multimedia

system.

Consider an application consisting of four MPEG decoders similar to that in Figure 1.5(a) that

process four video streams S1, . . . , S4 as shown in Figure 1.7(a). Tasks T1 and T2 process stream S1,

tasks T3 and T4 process stream S2, and so on. Suppose that each task requires 70% of the capacity

of a dedicated processor. If partitioning is used, then the entire application requires eight processors

to accommodate all tasks. However, since the cumulative utilization requirement is 0.7 · 8 = 5.6, six

processors may be sufficient if global scheduling is used. Additionally, suppose that we want to isolate

the tasks processing different groups of streams into containers as shown in Figure 1.7(b). Here, the

tasks are encapsulated into four containers C1, . . . , C4. Containers C1 and C3 are scheduled using the

first three processors and containers C2 and C4 are scheduled using the remaining three processors. Such

a setup would ensure isolation between two groups of streams if some tasks request more resources than

provisioned.

Using the real-time application just described as motivation, we now formulate several problems that

need to be solved in order for applications such as this to be analyzed and implemented successfully. We
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first note that, since each task has a utilization of 70%, each container has a utilization of 140%, which

requires the capacity of more than one processor. This poses the first problem.

(i) How can the processing capacity of a multiprocessor platform be allocated to a set of containers

some of which require more than one processor? How can the supply available to each of the

containers be characterized?

One potential solution, which is described and analyzed formally in Chapter 4, is to fully dedicate

processor 1 and 40% of the capacity of processor 2 to running tasks in C1. The remaining time on

processors 2 and 3 can be used for running tasks in C3. Containers C2 and C4 can be dealt with

similarly.

Given a characterization of the supply for each container, tasks can be viewed as being scheduled on a

set of partially-available processors. The problem of verifying timing constraints on a restricted-capacity

platform has received some recent attention. However, these efforts only consider sporadic tasks with

HRT constraints (Bini et al., 2009b; Anderson et al., 2006; Easwaran et al., 2009). We review this prior

work in greater detail in Chapter 2. Allowing timing constraints to be soft for some tasks poses the

second research problem.

(ii) Which scheduling algorithms can ensure SRT constraints (e.g., bounded tardiness or bounded

maximum task response times) for workloads scheduled on a set of partially-available processors?

Which such algorithms require the least processor supply?

Finally, we need to calculate the timing properties of the fully-processed streams, as well as the

end-to-end event delay and total backlog. This poses the third research problem.

(iii) How can the properties mentioned above be analyzed for a set of streaming tasks scheduled using

a global scheduler on a set of partially-available processors?

1.9 Thesis Statement

The main thesis of this dissertation, which attempts to answer the three research questions above, is the

following.

With the exception of static-priority algorithms, virtually all previously studied global real-time scheduling

algorithms ensure bounded deadline tardiness for implicit-deadline sporadic task systems. This property

is preserved even if the processing capacity of some processors is not fully available, provided that the
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long-term execution demand does not exceed the total available processing capacity. Well-studied global

schedulers such as GEDF and First-In-First-Out (First-In-First-Out (FIFO)) ensure bounded maximum

response times in systems with complex job arrival and execution patterns as described by the streaming

task model. The use of such algorithms enables component-based systems with predominantly soft timing

constraints to be built while incurring little or no utilization loss in settings where partitioning approaches

are too costly in terms of needed processing resources.

1.10 Contributions

In this section, we briefly describe the contributions of this dissertation.

1.10.1 Generalized Tardiness Bounds

The first contribution we discuss is a generalized job prioritization rule originally proposed in (Leontyev

and Anderson, 2008a, 2010) and tardiness bounds under it.

We found that the singular characteristic needed for tardiness to be bounded under a global scheduling

algorithm is that a pending job’s priority eventually (in bounded time) is higher than that of any future

job. Global algorithms that do not have this characteristic (and for which tardiness can be unbounded)

include static-priority algorithms such as the rate-monotonic (Rate-Monotonic (RM)) algorithm, and

impractical dynamic-priority algorithms such as the earliest-deadline-last (Earliest Deadline Last (EDL))

algorithm, wherein jobs with earlier deadlines have lower priority. Global algorithms that do have this

property include the EDF, FIFO, EDF-until-zero-laxity (Earliest Deadline Zero Laxity (EDZL)), and

least-laxity-first (Least Laxity First (LLF)) algorithms. (EDZL is described later in Section 2.1.2 and

LLF is described in Section 3.2.)

We establish a generalized tardiness result by considering a generic scheduling algorithm where job

priorities are defined by points in time that may vary as time progresses. All of the algorithms mentioned

above can be seen as special cases of this generic algorithm in which priorities are further constrained.

Even the PD2 Pfair algorithm (Anderson and Srinivasan, 2004), which uses a rather complex notion of

priority, is a special case. In this dissertation, we present a derivation of a tardiness bound that applies to

the generic algorithm if priorities are window-constrained : a job’s priority at any time must correspond

to a point in time lying within a certain time window. We also show that if this window constraint is

violated, then tardiness can be unbounded. It is possible to define window-constrained prioritizations

for EDF, FIFO, EDZL, LLF, and PD2, as well as the earliest-pseudo-deadline-first (Earliest Pseudo-
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Deadline First (EPDF)) Pfair algorithm, so these algorithms have bounded tardiness. (For EDF, EPDF,

and PD2, this was previously known.) For any other algorithm that may be devised in the future, our

results enable tardiness bounds to be established by simply showing that prioritizations can be expressed

in a window-constrained way (instead of laboriously devising a new proof).

The notion of a window-constrained priority is very general. For example, it is possible to describe

hybrid scheduling policies by combining different prioritizations, e.g., using a combination of EDF and

FIFO in the same system. Priority rules can even change dynamically (subject to the window con-

straint). For example, if a task has missed too many deadlines, then its job priorities can be boosted

for some time so that it receives special treatment. Or, if a single job is in danger of being tardy, then

its prioritization may be changed so that it completes execution non-preemptively (provided certain re-

strictions hold — see Section 3.4.5). Tardiness also remains bounded if early-release behavior is allowed

or if the capacity of each processor that is available to the (soft) real-time workload is restricted. In

simplest terms, the main message is that, for global scheduling algorithms, bounded tardiness is the com-

mon case, rather than the exception (at least, ignoring clearly impractical algorithms such as EDL). For

the widely-studied EDZL and LLF algorithms, and for several of the variants of existing algorithms just

discussed, this dissertation is the first to show that tardiness is bounded. The proposed formulation of

job priorities has been used by other researchers for the design and implementation of cache-aware mul-

tiprocessor real-time schedulers (Calandrino, 2009) and for devising new interrupt accounting techniques

on multiprocessors (Brandenburg et al., 2009).

1.10.2 Processor Bandwidth Reservation Scheme

The second major contribution of this dissertation is a new multiprocessor scheduling approach for

multi-level hierarchical containers that encapsulate sporadic SRT and HRT tasks. In this scheme, each

container is allocated a specified bandwidth, which it uses to schedule its children (some of which may

also be containers).

The bandwidth w(H) is allocated to container H by means of reserving ⌊w(H)⌋ processors for its

children plus (if the bandwidth is not integral) the time occasionally available on an additional processor

such that the total processor time supplied to H over a sufficiently long period of time ∆ is approximately

w(H) ·∆. The supply to the H ’s children is thus represented as a number of fully available processors

plus at most one processor that is partially available. Given this allocation scheme, H ’s child tasks

and containers are accommodated as follows. First, the set of child HRT tasks HRT(H) is encapsulated

in a container Chrt with an integral bandwidth w(Chrt) so that HRT(H) is schedulable using PEDF.
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Figure 1.8: Illustration to container allocation in Example 1.6.

Second, each child container Cj is given ⌊w(Cj)⌋ dedicated processors from the set of ⌊w(H)⌋ processors

dedicated toH . Third, for each child container Cj with a non-integral bandwidth, a server task Sj(ej , pj)

is created such that uj = w(Cj) − ⌊w(Cj)⌋. When task Sj is scheduled, tasks from Cj are scheduled.

The set of SRT tasks and server tasks is scheduled together on processors that are not reserved for

HRT tasks and child containers using an algorithm that ensures bounded tardiness for each task. Each

child container Cj thus receives processing time approximately proportional to its requested bandwidth.

Applying this strategy recursively, we can accommodate an entire container hierarchy.

Example 1.6. Consider the multimedia application introduced in Section 1.8. We define the bandwidth

of container C1 and C3 to be w(C1) = w(C3) = 1.4. Since the bandwidth is non-integral, for each of

the containers C1 and C3 we dedicate ⌊w(C1)⌋ = ⌊w(C3)⌋ = 1 processor and construct periodic server

tasks S1(4, 10) and S3(4, 10) with utilizations u1 = u3 = 0.4. Figure 1.8 shows an example schedule

in which processors 1 and 3 are dedicated to containers C1 and C3 and the server tasks are scheduled

using EDF on processor 2. Each container thus receives the capacity of approximately 1.4 processors

over sufficiently long time intervals.

Our scheme is novel in that, in a system with only SRT tasks, no utilization loss is incurred (assuming

that system overheads are negligible—such overheads will cause some loss in any scheme in practice).

This statement is true, provided the goal is to schedule SRT tasks so that their tardiness is bounded,

no matter how great the bound may be. The scheduling scheme we present also allows HRT tasks to

be supported. However, such support may incur some utilization loss. These tradeoffs are discussed in

detail in Section 4.5.

In addition to presenting our overall scheme, we also present the results of experiments conducted to

assess its usefulness. In these experiments, our scheme exhibited performance—in terms of both necessary

processing capacity and tardiness—comparable to that of schemes that exhibit good performance but

are oblivious to containers (and hence, do not provide any container isolation).
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1.10.3 Multiprocessor Extensions to Real-Time Calculus

The third major contribution is a framework for the analysis of multiprocessor processing elements

with streaming tasks where the constituent processors are managed according to a global multiproces-

sor scheduling algorithm. Such processing elements can be used for building complex applications that

cannot be analyzed using state-of-the-art multiprocessor scheduling techniques and that must be over-

provisioned, wasting processing resources, if analyzed using conventional real-time calculus. Sporadic

and streaming task sets under GEDF, and static-priority schedulers, can be analyzed in this framework.

Our work is different from prior efforts that assume implicit deadlines, full processor availability,

and non-zero tardiness for each task (Devi, 2006; Devi and Anderson, 2005, 2006). In one recent paper,

Bini et al. (2009a) presented a HRT schedulability test for GEDF for systems where processors can

be partially available. However their work also assumes that tasks are sporadic and have constrained

deadlines. In contrast, the task model and the scheduler assumed in our proposed framework are very

general.

The core of our framework is a procedure for checking that arbitrary pre-defined job response times

{Θ1, . . . ,Θn} are not violated under a restricted global scheduling algorithm on a platform with a min-

imum cumulative capacity B(∆). Note that, if relative deadlines and tardiness thresholds are specified

for tasks, then checking pre-defined job response times is equivalent to checking whether a job completes

within its relative deadline plus its tardiness threshold.

In settings where response-time bounds {Θ1, . . . ,Θn} are not known, they must be determined. In ad-

dition to giving a test that checks pre-defined response-time bounds, we propose closed-form expressions

for calculating response-time bounds directly from task and supply parameters for a family GEDF-like

schedulers such as GEDF and FIFO. The obtained expressions for response-time bounds are similar to

those for calculating tardiness bounds under GEDF proposed by Devi and Anderson (2008b). It is also

possible to refine the obtained response-time bounds by incrementally decreasing them and running the

aforementioned test procedure to see if the smaller bounds are also valid.

Once maximum job response-time bounds {Θ1, . . . ,Θn} are determined, we use them to characterize

the sequences of job completion events for each task Ti in terms of arrival functions αu
i
′(∆) and αl

i
′
(∆),

and the remaining cumulative processor supply B′(∆) (see Figure 1.9). The calculated stream and supply

outputs can serve as inputs to subsequent processing elements, thereby resulting in a compositional

technique.
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Figure 1.9: A multiprocessor element analyzed using multiprocessor real-time calculus.

1.11 Summary

In this chapter, we have motivated the research in this dissertation with the need to support component-

based systems on multiprocessor platforms. We have presented the widely-studied sporadic task model

and some important multiprocessor scheduling algorithms for it. We have also shown that this model

may be insufficient for describing workloads in component-based systems. After stating several open

research questions pertaining the design and analysis of multiprocessor component-based systems, we

gave a list of contributions of this dissertation addressing these questions.

The rest of the dissertation is organized as follows. In Chapter 2, we review prior work on multi-

processor soft real-time and hierarchical scheduling. In Chapter 3, we present our generalized tardiness

bound proof. In Chapter 4, we present our hierarchical scheduling framework. In Chapter 5, we present

multiprocessor extensions to real-time calculus. In Chapter 6, we summarize the work presented in this

dissertation and outline directions for future work.
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Chapter 2

Prior Work

In this chapter, we review prior work that is relevant to the focus of this dissertation on multiprocessor

schedulability analysis, hierarchical scheduling, and real-time calculus. In Section 2.1, we present some

schedulability results for implicit-deadline task systems under GEDF and NPGEDF and illustrate

other important multiprocessor scheduling algorithms. In Section 2.2, we review two recent approaches

for checking the schedulability of constrained-deadline task systems on fully-available multiprocessor

platforms by Baruah (2007) and Bertogna et al. (2008). In this dissertation, we extend the techniques

proposed by Baruah by incorporating more expressive task and processor supply models. However,

we adopt some ideas from Bertogna et al. as well. In Section 2.3, we present three multiprocessor

hierarchical scheduling frameworks for HRT and SRT tasks. One of these frameworks, proposed by

Bini et al. (2009a), is based upon the test by Bertogna et al. Another one, proposed by Easwaran

et al. (2009), is based upon Baruah’s test. In addition to presenting the ideas behind these frameworks,

we also compare them to the hierarchical scheduling scheme proposed in this dissertation. Finally, in

Section 2.4, we review prior work on real-time calculus.

2.1 Multiprocessor Scheduling

In this section, we discuss some results concerning HRT and SRT schedulability of implicit-deadline

sporadic task systems under GEDF, and present several unrestricted global multiprocessor schedulers.

2.1.1 GEDF Schedulability Results

One way to ensure task timing constraints in a SRT system is to treat all deadlines as hard (i.e., set

Θi = 0). Perhaps partly because of that, most prior work on GEDF has focused on hard real-time



schedulability tests (Baker, 2003; Baruah, 2007; Baruah and Baker, 2008; Bertogna et al., 2008). If such

a test passes, then each task is guaranteed zero tardiness. Unfortunately, ensuring zero tardiness under

GEDF may severely restrict system utilization. According to Goossens et al. (2003), an implicit-deadline

task system τ can be guaranteed to meet all deadlines on m processors under GEDF if

m ≥

⌈
Usum(τ) − 1

1−max(ui)

⌉
.

The task set from Example 1.3 in Section 1.5.3 may thus require m ≥
⌈
Usum(τ)−1
1−max(ui)

⌉
=
⌈
1.93−1
1−3/4

⌉
=

⌈3.72⌉ = 4 processors in order to meet all job deadlines. Because the total utilization is Usum(τ) ≈ 1.93,

half of the platform’s processing capacity will be unused in this case.

As mentioned earlier in Section 1.5.3, Devi and Anderson (2008b) showed that, for an implicit-

deadline task system τ , bounded deadline tardiness is guaranteed under GEDF and NPGEDF if Usum(τ) ≤

m. That is, for SRT systems, utilization loss can be eliminated. Let

λ =





Usum − 1 if Usum is integral,

⌊Usum⌋ otherwise.

Then deadline tardiness for task Ti under GEDF is at most

ei +
EL −min(ei)

m− UL
, (2.1)

where EL is the sum of λ largest task WCETs and UL is the sum of λ − 1 largest task utilizations.

Similar expression were obtained in (Devi and Anderson, 2008b) for NPGEDF and for the case when

tasks consist of interleaving preemptive and non-preemptive regions. If tardiness thresholds Θi are

specified, then we can calculate tardiness bounds Θ′
i using (2.1) and then verify that Θ′

i ≤ Θi holds

for each task Ti. Unfortunately, this method cannot be applied if some tardiness thresholds are small

because Θ′
i ≥ ei for each Ti ∈ τ . This precludes the analysis of systems with mixed HRT and SRT

constraints. Also, (2.1) is applicable only to implicit-deadline task systems.

For constrained- and arbitrary-deadline task systems, several HRT schedulability tests for GEDF

have been proposed (Baker, 2003; Baruah, 2007; Baruah and Baker, 2008; Bertogna et al., 2008). All of

these tests assume full processor availability and incur some utilization loss in order to guarantee hard

deadlines. Unfortunately, no research has been done yet concerning the calculation or verification of

tardiness bounds in constrained- and arbitrary-deadline task systems scheduled on multiprocessors.

25



One can argue that in order to verify pre-defined tardiness thresholds, task Ti’s relative deadline can

be set to Di +Θi, where Di is the old relative deadline and Θi is Ti’s allowed tardiness threshold, and

then the HRT schedulability of the modified system can be verified. Though this method is valid for the

verification of timing constraints, it changes the relative priority of jobs of different tasks, which may be

unacceptable.

Additionally, introducing tardiness thresholds allows a job’s timing constraint to be decoupled from its

scheduling priority. For example, an arbitrary-deadline task system τ with relative deadlines {D1, . . . , Dn}

that is not HRT schedulable under GEDF can be SRT schedulable for a different set of relative deadlines

{D′
1, . . . , D

′
n} and tardiness thresholds {Θ′

1, . . . ,Θ
′
n} such that D′

i + Θ′
i = Di for each i. The idea of

decoupling priorities and timing constraints is elaborated on in greater detail in Chapter 3.

2.1.2 Unrestricted Global Multiprocessor Scheduling

Unrestricted schedulers allow job priorities to change at runtime. In this section, we briefly present the

earliest-deadline-zero-laxity (EDZL), earliest-pseudo-deadline-first (EPDF), Pfair PD2, and least-local-

remaining-execution-first (Least Local Remaining Execution First (LLREF)) algorithms.

EDZL algorithm. EDZL, which was first proposed by Cho et al. (2002), is a conventional GEDF

algorithm with an added “safety rule.” Under EDZL, a job is prioritized by its deadline unless it is in

danger of missing its deadline. This moment is detected by calculating the job’s laxity, which is the

difference between the current time and the latest time when the job can be scheduled so that it meets

its deadline. Jobs with zero laxity are given the highest priority.

Example 2.1. Consider the task set from Example 1.4. An example EDZL schedule for it is shown in

Figure 2.1(a). In this schedule, at time 0, all jobs have positive laxity (i.e., if scheduled immediately, each

job will complete before its deadline). Therefore, jobs T1,1 and T2,1, which have the smallest absolute

deadlines are scheduled. At time 2, job T4,1 has zero laxity (i.e., if scheduled later, then it will miss

its deadline). By the zero laxity rule, its priority is raised and T4,1 executes uninterruptedly until its

deadline.

In the literature, several schedulability tests have been proposed for EDZL (Cirinei and Baker, 2007;

Piao et al., 2006; Wei et al., 2007). It has been shown that EDZL can schedule any task set that is schedu-

lable under GEDF (Cho et al., 2002). However, for any U such that U ≤ m and U > m · (1−1/e), where

e is Euler’s number, there exists at least one implicit-deadline task system τ such that Usum(τ) = U
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Figure 2.1: Example (a) EDZL and (b) EPDF schedules.

that is unschedulable by EDZL (Wei et al., 2007).

EPDF algorithm. Under the EPDF Pfair algorithm (Devi and Anderson, 2008a), task periods and

execution times are assumed to be integral, and each task Ti is represented by a sequence of unit-length

schedulable entities called subtasks, denoted T j
i , where j ≥ 1. Each subtask T j

i has two attributes

associated with it, a release time rji and a deadline dji . The interval [rji , d
j
i ) is called the window of

T j
i . Subtask T j

i becomes available for execution at time rji and has higher priority than subtask T y
x if

dji < dyx. Deadline ties are resolved arbitrarily but consistently.

Example 2.2. In considering EPDF scheduling examples, we assume (for simplicity) that jobs are

released in a synchronous periodic fashion, in which case rji = ⌊ i−1
ui

⌋ and dji = ⌈ i
ui
⌉ (see (Anderson and

Srinivasan, 2004)). Figure 2.1(b) shows an EPDF schedule for the task set τ from Example 1.3. In this

schedule, each subtask executes within its respective window, which is shown in bold. Thus, all tasks

meet their deadlines.

Allowing early releases can reduce job response times as the following example illustrates.

Example 2.3. Figure 2.2 shows two EPDF schedules of a task T1(3, 8). Inset (a) shows a schedule

in which early releases are not allowed. In this schedule, each subtask executes within its respective

window. The time between T1,1’s release and completion is six time units. A schedule in which early

releases are allowed is shown in Figure 2.2(b). In this schedule, each subtask executes immediately after

its predecessor completes. In this schedule, the response time of T1,1 is three time units.

It has been shown that EPDF correctly schedules any implicit-deadline task system τ (with inte-

gral execution times and periods) on m processors if Usum(τ) ≤ 3·m+1
4 (Devi and Anderson, 2008a).

27



T1

T1

1

T1

2
T1

3

T1

4

0            2             4            6            8            10          12

t

response time of T1,1

(a)

T1

T1

1

T1

2
T1

3

T1

4

0            2             4            6            8            10          12

t

response time of T1,1

(b)

Figure 2.2: EPDF schedules from Example 2.3 (a) without and (b) with early releases.

Additionally, EPDF ensures a maximum tardiness bound of q quanta if maxTi∈τ (ui) ≤ q+2
q+3 and

Usum(τ) ≤ m (Devi and Anderson, 2009).

PD2 and LLREF algorithms. PD2 differs from EPDF in that two special tie-breaking rules are used

in the event of a deadline tie. As mentioned earlier in Section 1.5.3, PD2 is one of the few optimal mul-

tiprocessor scheduling algorithms for implicit-deadline task systems. The LLREF scheduling algorithm,

which was proposed by Cho et al. (2006), is another example of an optimal multiprocessor scheduler.

Unfortunately, it is optimal only for periodic workloads as it requires that the arrival time of every job

be known a priori.

2.2 Multiprocessor Schedulability Tests

Most schedulability tests for global algorithms are based on a simple principle proposed by Baker (2003).

First, let job Tℓ,q be the first job (in some ordering) to miss its deadline. Second, calculate the minimum

amount of competing demand due to jobs of other tasks that is necessary for Tℓ,q to miss its deadline.

This gives a necessary condition for a deadline violation. Finally, calculate an upper bound on the

competing demand. Setting the lower bound to be greater than the upper bound gives a sufficient

condition for schedulability. Different tests, however, may have different time complexities, and may

also differ in predictive power, depending on the assumptions made when calculating the upper and

lower bounds on the competing demand.

2.2.1 SB-Test

The schedulability test and analysis techniques proposed by Baruah (2007) are important because their

introduction initiated a collection of new results about the schedulability of sporadic task sets (including

arbitrary-deadline task sets) under GEDF and several other algorithms on multiprocessor platforms. We

henceforth refer to this schedulability test as the “SB-test.”
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The test considers a constrained-deadline (Di ≤ pi) task system τ scheduled on m identical fully-

available processors. The test is derived by considering an interval [rℓ,q−Aℓ, rℓ,q+Dℓ], where Tℓ,q is the

problem job that misses its deadline, Aℓ is a parameter with range [0, Amax
ℓ ], and Amax

ℓ is a constant that

depends on the parameters of the tasks in τ , m, and the index ℓ. The length of the interval of interest

is thus Aℓ +Dℓ. During this interval, the demand due to competing equal-or-higher-priority jobs that

can interfere with Tℓ,q is considered. Then the following three steps are performed:

S1: The minimum execution demand due to tasks other than Tℓ and jobs of Tℓ that have higher

priority than Tℓ,q that is necessary for Tℓ,q to miss its deadline is computed. This demand is

m · (Aℓ +Dℓ − eℓ).

S2: An upper-bound on the competing demand M∗(Aℓ), which depends on τ , m, and Aℓ, is

calculated.

S3: The upper bound M∗(Aℓ) is compared with the lower bound m · (Aℓ +Dℓ − eℓ). If, for each

task Tk ∈ τ , M∗(Ak) ≤ m · (Ak + Dk − ek) holds for all Ak ∈ [0, Amax
k ], then no job misses its

deadline.

Example 2.4. Consider task system τ in Example 1.4 in Section 1.5.3. It has been shown that τ is

not HRT schedulable using GEDF on m = 2 processors. In this example, we show that SB-test will

fail for τ . Consider a schedule in Figure 2.3 in which the problem job Tℓ,q = T4,1 misses its deadline

by ǫ time units. Additionally, suppose that the execution time of job T1,2 is ε time units and the

execution time of job T3,1 is 2 + ε time units. We next set Aℓ = 0 and consider the problem interval

[rℓ,q, rℓ,q + Dℓ] = [0, 8]. For this interval, an upper-bound on competing demand M∗(Aℓ) is at least

the competing demand due higher-priority jobs T1,1, T1,2, T2,1, and T3,1, which is 2, ε, 1, and 1 + ε,

respectively. Note that even though the execution time of job T3,1 is 2+ ǫ, this job and the problem job

T4,1 execute in parallel during the interval [2, 3) so the competing demand due to job T3,1 is smaller. (In

Figure 2.3, the competing demand is shown with black.) The total competing demand is thus 4 + 2ε.

We thus have M∗(Aℓ) ≥ 4 + 2 · ε > m · (Aℓ +Dℓ − eℓ) = 2 · (0 + 8− 6) = 4, and hence, the SB-test will

fail for τ .

Theorem 2.1. (Proved in (Baruah, 2007).) The time complexity of the SB-test is pseudo-polynomial

if there exists a constant c such that Usum(τ) ≤ c < m.

After its introduction, the SB-test was extended in several ways. First, a test with somewhat lower

time complexity for the analysis of hard real-time arbitrary-deadline sporadic task systems under GEDF
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Figure 2.3: An application of SB-test in Example 2.4.

was proposed (Baruah and Baker, 2008). Second, Guan et al. (2008, 2009) used the proposed tech-

niques to derive new schedulability tests for arbitrary-deadline task systems under NPGEDF and static-

priority scheduling. Third, Leontyev and Anderson (2008b) independently derived schedulability tests

for arbitrary-deadline task systems with specified tardiness constraints under GEDF and NPGEDF.

(These tests were developed independently from those by Guan et al.) The distinguishing property of

the test proposed by Leontyev and Anderson is that task sets with mixed HRT and SRT constraints can

be analyzed. We later discovered that restricted-capacity systems and more general task models can also

be analyzed using the approach of the original SB-test. This, however, required significant modifications

to the original analysis as described in detail in Chapter 5.

2.2.2 BCL-Test

As mentioned earlier, the SB-test has pseudo-polynomial time complexity. However, if a task set fails

the test, it is not clear how “bad” is it, i.e., by how much deadlines can be missed. Also, the unmodified

SB-test is only applicable to fully preemptive GEDF. Bertogna et al. (2008) attempted to address these

issues by proposing a framework consisting of a family of schedulability tests that are applicable not only

to GEDF but also to fixed-priority scheduling and any general work-conserving scheduling algorithm.

We refer to this framework and its derivatives as the “BCL-test.” Similarly to the SB-test, the BCL-

test assumes constrained deadlines and full processor availability. Additionally, all time quantities are

assumed to be integral. The theorem below establishes a schedulability condition for GEDF.

Theorem 2.2. (Proved in (Bertogna et al., 2008).) A task set τ is schedulable under GEDF on

m processors if, for each task Tk ∈ τ ,

∑

i6=k

min(Ji,k, Dk − ek + 1) < m · (Dk − ek + 1), (2.2)
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where

Ji,k =

⌊
Dk

pi

⌋
· ei +min(ei, Di −

⌊
Dk

pi

⌋
· pi). (2.3)

The schedulability test in Theorem 2.2 has time complexity of O(n2), where n = |τ |. Bertogna et al.

also proposed a more accurate iterative version of the test, which has pseudo-polynomial time complexity

of O(n2 ·max(Di)).

Example 2.5. Consider the task system τ in Example 1.4 in Section 1.5.3. By Theorem 2.2 it is

schedulable on m = 3 processors. Consider, for example, task Tk = T1. For this task, the right-

hand side of (2.2) is m · (D1 − e1 + 1) = 3 · (3 − 2 + 1) = 6. We now calculate the left-hand side

of (2.2). By (2.3), J2,1 =
⌊
D1

p2

⌋
· e2 + min(e2, D2 −

⌊
D1

p2

⌋
· p2) =

⌊
3
7

⌋
· 1 + min(1, 7 −

⌊
3
7

⌋
· 7) = 1.

J3,1 = 3 and J4,1 = 6 are calculated similarly. Thus, if k = 1, then the left-hand side of (2.2) is

min(J2,1, D1−e1+1)+min(J3,1, D1−e1+1)+min(J4,1, D1−e1+1) = min(1, 2)+min(3, 2)+min(6, 2) = 5,

and hence (2.2) holds holds for k = 1. The other tasks can be tested similarly.

Experiments presented by Bertogna et al. (2008) showed that the BCL-test has greater accuracy than

previously-developed tests for GEDF and fixed-priority scheduling. However, the BCL- and SB-tests do

not dominate each other. That is, there exist task sets deemed schedulable by the BCL-test for which

the SB-test fails and visa versa.

2.3 Multiprocessor Hierarchical Scheduling

The schedulability tests for fully-available platforms can be modified to enable the analysis of restricted-

capacity platforms. This need arises during the design and analysis of virtually any hierarchically

scheduled system in which the processing capacity of a multiprocessor has to be shared among different

components. Depending on how the processing capacity available to a component is restricted, and

component tasks are scheduled within the available capacity, different hierarchical scheduling frameworks

can be constructed. In this section, we describe three multiprocessor hierarchical scheduling frameworks

developed recently. These frameworks will be illustrated using an example component-based system

below.

Example 2.6. Let C1, C2, and C3 be three components encapsulating implicit-deadline sporadic tasks

as shown in Figure 2.4. The total utilization of tasks within each component is 7/6, 4/3, and 3/2,
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Figure 2.4: A component-based system in Example 2.6.

respectively. Thus, each of the components would require the capacity of more than one processor when

scheduled on a multiprocessor platform. If each component is given two processors, then six processors

are needed in order for all encapsulated tasks to meet their deadlines (or have bounded tardiness).

2.3.1 Megatask Scheduling

The first hierarchical scheduling framework we discuss is megatask scheduling, which was originally

proposed by Anderson et al. (2006) in the context of cache-aware Pfair real-time scheduling. It can

also be straightforwardly used for component scheduling. In this framework, implicit-deadline tasks,

for which parallel co-scheduling needs to be discouraged are grouped into megatasks which become

schedulable entities. Each megatask γj is characterized by rational weight Wj ≥
∑

Tk∈γj
uk, which

represents the long-term processor share requested by the megatask. We let Ij = ⌊Wj⌋ be the integral

part of γj ’s weight and fj =Wj − Ij be the fractional part.

The proposed megatask scheduling scheme is a two-level hierarchical approach. The root-level sched-

uler is PD2, which schedules all megatasks and tasks that do not belong to any megatask (free tasks).

Pfair scheduling with megatasks is a straightforward extension to ordinary Pfair scheduling. For each

megatask γj , Ij processors are statically assigned to this megatask and a dummy or fictitious, syn-

chronous, periodic task Fj of weight fj is created. The remaining m−
∑

γj
Ij processors are allocated at

runtime to the fictitious tasks and free tasks by the root-level PD2 scheduler. Whenever task Fj is sched-

uled, an additional processor is allocated to γj . Within the time available to a megatask, a second-level

PD2 scheduler is used for the encapsulated tasks. However, second-level tasks may miss their deadlines

due to limited processor availability. Anderson et al. derived tardiness bounds for second-level tasks

and proposed to inflate megatask weights if the deadlines of the second-level tasks should be met.

Example 2.7. In the system from Example 2.6, we represent the components C1, C2, and C3 by

megatasks γ1, γ2, and γ3 with weights W1 = 7/6, W2 = 4/3, and W3 = 3/2. A schedule representing
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Figure 2.5: (a) Allocation of processor time to components (megatasks) and (b) a schedule of the tasks
encapsulated in C1 in Example 2.7.

processor time allocated to the three components is shown in Figure 2.5(a). In this schedule, each of

the first three processors is exclusively dedicated to the respective component and the fourth processor

is shared among the three components in accordance with the fractional parts of the megatask weights

(1/6, 1/3, and 1/2, respectively). As seen, in the long run, component C1 is given seven units of processor

allocation every six time units. Figure 2.5(b) shows a PD2 schedule of tasks T1 and T2 encapsulated in

C1. These tasks are scheduled using the time available to C1. Note that all deadlines are met in this

schedule. It can be shown that all tasks in this example system meet their deadlines when scheduled

using megatasks. (Deadline misses are likely to occur in systems with per-task utilizations at least 0.5.)

Megatask scheduling is very similar to the hierarchical scheme proposed in this dissertation in that

the execution requirement of each component is described by a single value that upper-bounds the long-

term utilization of constituent tasks. Also, the two schemes share the idea of minimizing execution

parallelism by allocating time using some integral number of processors plus at most one additional

processor, which is allocated at a certain rate. The megatask scheme is, however, limited only to two-

level task hierarchies, implicit-deadline tasks, and Pfair scheduling. The quantum-based nature of Pfair

scheduling also can incur significant scheduling overhead (Brandenburg et al., 2008a), which motivates

research on alternative techniques for component scheduling, one of which is presented in the next

section.
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2.3.2 Virtual Cluster Scheduling

As opposed to megatask scheduling, the virtual cluster (VC) scheduling framework proposed by Easwaran

et al. (2009) can use various scheduling policies for allocating processor time to components and for

scheduling tasks within components. The name of the framework comes from the way component

processor supply is specified. Each component is allocated time using a cluster of processors, some of

which may be partially available (hence the term virtual). This is a generalization of physical cluster

scheduling wherein components are scheduled on non-intersecting sets of physical processors (Calandrino

et al., 2007; Chuprat and Baruah, 2008). The supply required by a component is characterized as follows.

Definition 2.1. (Easwaran et al., 2009) (Multiprocessor periodic resource model (MPR)) A mul-

tiprocessor periodic resource model µ =< Π,Θ,m′ >, where Θ ≤ m′ · Π, specifies that an identical

multiprocessor platform collectively provides Θ units of execution in every Π time units with concur-

rency at most m′; at any time instant, at most m′ physical processors are allocated in this resource

model. Θ/Π denotes the resource bandwidth of model µ.

Example 2.8. Consider again Example 2.6. For components C1, C2, and C3, we specify resource models

as µ1 =< 6, 7, 2>, µ2 =< 3, 4, 2>, and µ3 =< 2, 3, 2>, respectively. (These parameters are also shown

in Figure 2.6(a).) For example, component C1 is supplied at least seven execution units every six time

units on at most two processors.

Given the execution requirements of individual first-level components as in the MPRmodel, Easwaran

et al. proposed the following method of allocating time on physical processors. For each component Ci

with resource model µi =< Πi,Θi,mi >, create a set of mi implicit-deadline periodic server tasks

{T
[i]
1 , . . . , T

[i]
mi} with the following parameters.

T
[i]
1 = T

[i]
2 = · · · = T

[i]
mi−1 = (Πi,Πi) T [i]

mi
= (Θi − (mi − 1) ·Πi,Πi) (2.4)

The server tasks from all first-level components are scheduled together on m physical processors.

Whenever task T
[i]
j is scheduled on a processor, a task that belongs to Ci is scheduled on that processor

using an internal scheduling policy. If server tasks of component Ci meet their deadlines, then Ci is

supplied processor time according to its model parameters. In this case, Ci is allocated time on mi − 1

fully available processors (via server tasks T
[i]
1 , . . . , T

[i]
mi−1) plus the time on an additional processor

allocated (via server task T
[i]
mi) at a rate equal to the fractional part of Ci’s requested bandwidth. This

allocation scheme is similar to that in megatask scheduling except that various schedulers can be used
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Figure 2.6: Virtual cluster scheduling in Examples 2.8 and 2.9.

for server tasks as long as their deadlines are met. To check the schedulability of component tasks under

GEDF, Easwaran et al. proposed a modification of the SB-test that incorporates restricted supply.

Example 2.9. In Example 2.8, for components C1, C2, and C3, we construct server tasks using (2.4).

Their parameters are shown in inset (a) of Figure 2.6. Inset (b) of Figure 2.6 shows a PD2 schedule of

the server tasks on four processors (so that their deadlines are met). As seen, component C1 receives 7

execution units every 6 time units involving at most 2 processors. Inset (c) of Figure 2.6 shows a GEDF

schedule of tasks T1 and T2 encapsulated in C1. In this schedule, all deadlines are met.

The VC framework provides several scheduling algorithms and analysis for checking the HRT schedu-

lability of constrained-deadline tasks organized into components. Thus, it can be seen as an alternative

to the hierarchical scheduling scheme proposed in this dissertation. However, there is significant dis-

tinction between the two frameworks. The current analysis of the VC framework supports only HRT

constrained-deadline tasks. The need to satisfy hard real-time constraints incurs some utilization loss.

Though the authors provide a procedure that can generate a resource model with minimum bandwidth

for a component based upon the parameters of its constituent tasks, the use of GEDF for intra-component

scheduling makes utilization loss unavoidable. This loss is further exacerbated if components are nested

within each other, though Easwaran et al. do not investigate this issue in their paper. In contrast, the

hierarchical scheduling framework proposed in this dissertation is focused on ensuring SRT constraints
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(bounded tardiness) so that GEDF can be used as the intra-component scheduler with no utilization

loss even for arbitrarily deep container hierarchies. (HRT tasks are also supported in our scheme though

some utilization can be lost if such tasks are present.) The two frameworks thus meet different needs.

2.3.3 Parallel-Supply Function Abstraction

The supply model proposed for virtual cluster scheduling conceals some information that may be useful

for analysis as illustrated in an example below.

Example 2.10. (Bini et al., 2009a) Suppose that the processor time on two identical unit-speed

processors is supplied to component C as shown in Figure 2.7(c). In this schedule, both processors

are not available during the interval [0, 2), processor 1 is available during intervals [2, 4) and [6, 8), and

processor 2 is available during the interval [4, 8). The availability pattern then repeats every eight time

units. When this supply is described in terms of the MPR resource model, it has budget Θ = 8, period

Π = 8, and maximum parallelism m′ = 2. Hence, this formalism loses the potentially useful information

that some processor is available for 6 units of time out of every 8 and two processors are available

simultaneously for 2 time units.

To expose more information about the restricted-capacity platform, the parallel-supply function

abstraction has been proposed by Bini et al. (2009a).

Definition 2.2. Let Yj(∆) be the minimum guaranteed amount of time available on at most j ≥ 1

processors over any interval of length ∆. The parallel-supply function for a platform consisting of m

processors is defined by the set {Y1(∆), . . . , Ym(∆)}.

Example 2.11. Figure 2.7(a) shows the available processor time for container C1 in Example 2.9.

Figure 2.7(b) shows the parallel-supply function {Y1(∆), Y2(∆)} for this container. During any time

interval one processor is always available, and hence, Y1(∆) = ∆. During the interval [0, 5), only one

processor is available, and hence, Y1(∆) = Y2(∆) for all ∆ ≤ 5. During the interval [5, 6), two processors

are available, and hence, Y2(∆) grows faster than Y1(∆) for ∆ ∈ [5, 6). As seen, the function Y1(∆)

captures the fact that one processor is always available to C1, and the existence of an additional available

processor is captured by Y2(∆). In general, Ym(∆) describes the cumulative processor time available on

the entire platform over any interval of length ∆.

Example 2.12. Now consider the supply from Example 2.10. Its parallel-supply function is shown in

Figure 2.7(d). As seen, the minimum guaranteed amount of time available during any interval of length
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Figure 2.7: Parallel-Supply Function abstraction in Examples 2.10–2.11.

at most 2 is zero, because both processors are not available during the intervals [0, 2) and [8, 10), which

are of length 2. During the intervals [2, 8) and [10, 16), one of the processors is available at each time,

and hence, Y1(∆) = ∆ − 2 for ∆ ≤ 8. within this interval. Two processors are available during the

interval [6, 8) and hence, within this interval, Y2(∆) grows faster than Y1(∆).

Using the newly-developed parallel-supply function abstraction, Bini et al. proposed two novel HRT

schedulability tests for constrained-deadline task systems scheduled using GEDF on a restricted-capacity

platform. Their work is relevant to the multiprocessor real-time calculus extensions described in Chap-

ter 5 in the following aspects. In Chapter 5, we study streaming task systems scheduled using a global

algorithm on a platform whose capacity is restricted. However, we use more general job arrival and

execution models and assume that the supply is described using only a cumulative supply function (i.e.,

Ym(∆)).

2.4 Schedulability Analysis using Real-Time Calculus

As mentioned earlier in Section 1.7, the streaming task model and real-time calculus framework cir-

cumvent some critical limitations of the sporadic task model and allow the analysis of component-based

systems to be performed in a more systematic way. In the real-time calculus framework, a component-

based system is decomposed into a collection of simple processing elements (PEs). For a PE, the timing

characteristics of its output event streams and remaining supply can be computed from the input arrival

and supply functions. The calculated outputs serve as inputs for subsequent PEs (see Figure 1.6(a)). In

this section, we briefly describe how the outputs can be calculated for FP and EDF scheduling.

Below, we will use the operators ⊗ and ⊘, called min-plus convolution and min-plus deconvolution,
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respectively, that extend the plus and minus operators on functions in the min-plus algebra (LeBoudec

and Thiran, 2001). The operators ⊗ and ⊘, called max-plus convolution and max-plus deconvolution,

respectively, play a similar role in the max-plus algebra. Using these operators in real-time calculus

allows the expressions for output streams to be written in a concise manner.

(f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆− λ) + g(λ)}

(f ⊘ g)(∆) = sup
λ≥0

{f(∆ + λ) − g(λ)}

(f ⊗ g)(∆) = sup
0≤λ≤∆

{f(∆− λ) + g(λ)}

(f ⊘ g)(∆) = inf
0λ≥0

{f(∆ + λ)− g(λ)}

Greedy processing component. A streaming task T with arrival curves αu(∆) and αl(∆) that is

exclusively scheduled on a partially-available processor with supply βu and βl as shown in Figure 2.8(a)

is one of the basic blocks in the real-time calculus framework. This configuration is called a Greedy

Processing Component (GPC). Assuming that βu and βl are given in terms of serviced jobs per time unit,

the output events for T and remaining supply functions for GPC can be calculated as follows (Wandeler,

2006).

αu′(∆) = min{((αu ⊗ βu)⊘ βl)(∆), βu(∆)}

αl′(∆) = min{((αl ⊘ βu)⊗ βl)(∆), βl(∆)}

βu′(∆) = ((βu − αl) ⊘ 0)(∆)

βl′(∆) = ((βl − αu) ⊗ 0)(∆)

A fixed-priority processing element is constructed by connecting several GPCs hierarchically as shown

in Figure 2.8(b).

EDF element. The analysis of an EDF-based processing element is slightly more tricky. In the EDF

case, each streaming task Ti is additionally characterized by the relative deadline Di and worst- and

best-case job execution times emax
i and emin

i , respectively. Additionally, under EDF, the supply functions

βu(∆) and βl(∆) are specified as available processor time over any interval of length ∆.

It should be noted that, if components with different supply representation are connected together,

then a conversion should be done. The details of conversions between event-based and time-based
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Figure 2.8: (a) Greedy, (b) FP, and (c) EDF processing elements in real-time calculus framework.

representations of supply can be found in Section 4.1 of (Wandeler, 2006).

The set of streaming tasks τ is schedulable under uniprocessor EDF if (2.5) below holds for each

∆ ≥ 0 (Wandeler and Thiele, 2006).

∑

Ti∈τ

αu
i (∆−Di) · e

max
i ≤ βl(∆) (2.5)

In (2.5), the left-hand side is the maximum processor time needed by jobs with release times and deadlines

within any interval of length ∆ to complete before their deadlines. The output supply curves for EDF

processing are be calculated similarly to those for the GPC (Wandeler and Thiele, 2006).

βu′(∆) = ((βu −
∑

Ti∈τ

emin
i · αl

i) ⊘ 0 )(∆)

βl′(∆) = ((βl −
∑

Ti∈τ

emax
i · αu

i ) ⊗ 0 )(∆)

The calculation of the output event streams is more involved. Each task Ti is treated as being executed

on a GPC with supply functions βu
i (∆) and βl

i(∆) defined below.

βu
i (∆) = βu(∆)/emin

i

βl
i(∆) =

((βl −
∑

Tj 6=Ti
emax
j · αu

j ) ⊗ 0)(∆)

emax
i
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Let αu
i
′′(∆) and αl

i
′′
(∆) be the output event functions calculated for Ti scheduled using a GPC with

supply βu
i (∆) and βl

i(∆). The output functions for Ti under EDF scheduling are

αu
i
′(∆) = min{αu

i (∆ +Di), ⌈α
u
i
′′(∆)⌉}

αl
i

′
(∆) = max{αl

i(∆−Di), ⌊α
l
i

′′
(∆)⌋}.

Example 2.13. In this example, we illustrate basic real-time calculus analysis using a variant of the

embedded automotive system from prior work (Wandeler, 2006). Figure 2.9 shows an integrated ra-

dio/navigation system running on processors CPU1 and CPU2 connected with a communication bus

BUS1. CPU1 runs graphical user interface and computational navigation tasks. CPU2 runs software

that receives music over the radio and monitors the traffic message channel (TMC). Task T1 is invoked

when the user wants to change the sound volume. There could be at most 32 such requests per second

(see the input labeled αvol in the figure). After the user’s request is processed by task T1, a four-byte

change-volume message is transmitted to task T3 by communication task C1 on BUS1. Task T3 changes

the sound volume and sends a four-byte message back to task T2 that updates the screen showing the

volume change.

Similarly, task T4 receives TMC messages (typically 300 messages per 15 minutes) with traffic infor-

mation over the radio (input αtmc). Task T4 performs initial decoding of these messages by extracting

feature and location information and passes this information using 64-byte messages to task T5. Task

T5 finishes the decoding, maps the features using location database, and displays relevant changes on

the screen.

We have analyzed the system using basic real-time calculus analysis. We have assumed strictly

periodic input event streams and system parameters as summarized in Table 2.1. We have found that

the delay between user input and screen update is at most 18ms and the delay between the receipt of a

TMC message and screen update is at most 218ms.

In recent papers, real-time calculus has been extended in several directions. First, some concepts

of timed automata have been incorporated into real-time calculus to improve the accuracy of the anal-

ysis (Huang et al., 2007; Phan et al., 2008). Second, the basic analysis was extended to allow cyclic

dataflow graphs (Thiele and Stoimenov, 2009). Third, the properties of some power-saving algorithms

have been investigated using real-time calculus techniques (Chen et al., 2009). Fourth, real-time in-

terfaces were introduced and procedures were proposed that allow assumptions on input streams and

supply to be calculated from assumptions on processed streams (Chakraborty et al., 2006). Real-time
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Figure 2.9: Scheduling network of an embedded automotive application in Example 2.13.

Table 2.1: System parameters in Example 2.13.

Number of instructions in T1 105

—//— T2 5× 105

—//— T3 105

—//— T4 106

—//— T5 5× 106

Message size of C1 4 bytes
—//— C2 4 bytes
—//— C3 64 bytes

CPU1 speed 100 MIPS
CPU2 speed 11 MIPS
BUS1 speed 72 kbps

interfaces enable easy checks of compatibility for any pair of connected components.

The ideas of describing the task workload and available processor time using general demand and

supply functions has been used for the analysis of network packet and task scheduling. In (Sariowan et al.,

1995; Cruz, 1995), the authors examine various scheduling policies (including EDF) that provide quality-

of-service guarantees to network packets transferred over a communication link. In (Wu et al., 2005),

the authors derive schedulability conditions for various task models under uniprocessor static-priority

scheduling. Our research differs from these prior efforts in that we consider task systems scheduled on

a multiprocessor using a global scheduler. We also made our framework compatible to real-time calculus

so that new analysis could be easily integrated into existing software tools.
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2.5 Summary

In this chapter, we have presented schedulability results for sporadic task systems scheduled under

GEDF on a multiprocessor platform with full processor availability. Some of these results were later

adopted for checking schedulability if processor availability is limited. The analysis of restricted-capacity

platforms is crucial for building frameworks for hierarchical scheduling. Three of such frameworks have

been presented in this chapter. We concluded this chapter by presenting real-time calculus analysis for

uniprocessor FP and EDF schedulers.
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Chapter 3

Generalized Tardiness Bounds

In this chapter1, we present generalized tardiness bounds for implicit-deadline task systems scheduled

on a multiprocessor.

This chapter is organized as follows. In Sections 3.1 and 3.2, we present some additional model

assumptions and our scheduling framework. Then, in Section 3.3, we present our tardiness-bound

derivation. In Section 3.4, we discuss some special cases and possible extensions to the analysis. As

discussed later, tardiness may be different under different scheduling algorithms. In Section 3.5, we

present results from experiments conducted to assess such differences. Section 3.6 concludes the chapter.

3.1 Preliminaries

We consider the problem of scheduling a set of implicit-deadline SRT tasks τ = {T1, . . . , Tn} as defined

in Section 1.3 on an m-processor platform as defined in Section 1.4. All time quantities considered in

this chapter are assumed to be real numbers. In addition to Usum(τ) ≤ m (see Section 1.5.2), we assume

Usum(τ) ≤
m∑

k=1

ûk, (3.1)

where ûk is the long-term utilization available on processor k (see Definition 1.2 in Section 1.4). Other-

wise, tardiness may grow unboundedly. In this chapter, we henseforth omit the parameter τ in Usum.

We assume that eligible jobs are placed into a single global ready queue. When choosing a new

job to schedule, the scheduler selects (and dequeues) the ready job of highest priority. As reiterated in

1Contents of this chapter previously appeared in the following paper:
Leontyev, H. and Anderson, J. (2009a). Generalized tardiness bounds for global multiprocessor scheduling. Real-Time

Systems. To appear.



Definition 3.3 in Section 3.3, a job is ready if it is eligible and its predecessor (if any) has completed

execution. Job priorities are determined as follows.

Definition 3.1. (prioritization functions) Associated with each job Ti,j is a function of time χ(Ti,j , t)

defined for t ≥ 0 and called its prioritization function. If χ(Ti,j , t) < χ(Tk,h, t), then the priority of Ti,j

is higher than the priority of Tk,h at time t. We assume that, when comparing priorities, any ties are

broken arbitrarily but consistently. That is, if, χ(Ti,j , t) = χ(Tk,h, t) and χ(Ti,j , t
′) = χ(Tk,h, t

′), where

t 6= t′, then the tie is broken in favor of Ti,j at time t iff it is broken in favor of Ti,j at time t′.

3.2 Example Mappings

We now show how to describe several well-known scheduling policies in our framework, using the two-

processor task set τ = {T1(1, 3), T2(2, 3), T3(1, 4), T4(3, 4)} executing on two fully-available processors as

an example. Unless stated otherwise, we assume ei,j = ei and ǫi,j = ri,j in these examples, for each job

Ti,j .

Example 3.1. Figure 3.1(a) shows a schedule for τ under the global EDF algorithm. In this case,

since jobs are prioritized by deadline, it suffices to define χ(Ti,j , t) = di,j for each Ti,j . In Figure 3.1(a),

the value of χ(Ti,j , t) is shown for each job Ti,j using a black circle labeled χi,j .

Example 3.2. Figure 3.1(b) shows a schedule for τ under the global RM algorithm. In this case, Ti,j

should have priority over Tk,h if i < k (since the tasks in τ are ordered by increasing periods). Thus, we

can simply define χ(Ti,j , t) = i for each job Ti,j , as shown.

Example 3.3. Figure 3.1(c) shows a schedule for τ under the global FIFO algorithm (which, by

definition, schedules jobs non-preemptively). In this case (assuming no early releases), it suffices to

define χi,j(t) = ri,j for each job Ti,j , as shown. (Note that, if early releases are allowed, then this

prioritization may not reflect the actual job arrival order.)

Example 3.4. Interestingly, the definition of χ(Ti,j , t) is flexible enough to allow combinations of

scheduling policies to be specified. For example, we can prioritize the jobs of T1, . . . , T3 on an EDF

basis and those of T4 on a FIFO basis by defining χ(Ti,j , t) = di,j for 1 ≤ i ≤ 3, and χ(T4,j , t) = r4,j .

A schedule for this hybrid policy is shown in Figure 3.1(d). It is also possible to mix RM and EDF

prioritizations (even though such a scheme would not have window-constrained priorities). For example,

if task T1 needs to be statically prioritized over all other tasks, then we can set χ(T1,j, t) = −1 for all

jobs of T1 and χ(Ti,j , t) = di,j for all jobs of other tasks.
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Figure 3.1: (a) Example 3.1 (GEDF). (b) Example 3.2 (global RM). (c) Example 3.3 (global FIFO).
(d) Example 3.4 (hybrid global scheduler).

Example 3.5. So far we have considered only fixed job-priority algorithms, wherein the priority χ(Ti,j , t)

is constant during job Ti,j ’s execution. We now consider a slightly more complicated example, namely

the global LLF scheduling algorithm (Liu, 2000). The laxity or slack of a job Ti,j at time t is defined as

slacki,j(t) = di,j − t− (ei − δi,j(t)), (3.2)

where δi,j(t) is the amount of time for which Ti,j has executed before t. If a job does not miss its

deadline, then its slack is always non-negative; if it does miss its deadline, then its slack becomes negative

at some time prior to its deadline. According to LLF, Ti,j has higher priority than Tk,h at time t if

slacki,j(t) < slackk,h(t). To capture this, we can simply define χ(Ti,j , t) = di,j−(ei−δi,j(t)) for each job

Ti,j . Because this definition depends on δi,j(t), χ(Ti,j , t) is not constant, as in the prior examples, but is

time-dependent. Assuming that it is updated only at integral points in time, χ(Ti,j , t+1) := χ(Ti,j , t)+1,

if Ti,j executes during the interval [t, t+ 1), and χ(Ti,j , t+ 1) := χ(Ti,j , t), otherwise.

Figure 3.2 shows an LLF schedule for τ where ties are broken in favor of jobs currently executing.

Because χ-values change with time, they are not shown in the schedule, as earlier, but are depicted

separately in Table 3.1. The table shows the value of χ(Ti,j , t) for the earliest pending job Ti,j of each

task Ti where 0 ≤ t ≤ 11.

Example 3.6. The EDZL algorithm introduced in Example 2.1 in Section 2.1.2, can be specified as well.
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Table 3.1: χ-values in Example 3.5.

Time t χ(T1,j , t) χ(T2,j , t) χ(T3,j , t) χ(T4,j , t)

0 2 1 3 1
1 2 2 3 2
2 2 − 3 3
3 5 4 3 −

4 5 5 7 5
5 5 − 7 6
6 8 7 7 7
7 8 8 7 −

8 8 − 11 9
9 11 10 11 10
10 11 11 11 11
11 11 − 11 −
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Figure 3.2: Example 3.5 (global preemptive LLF).

In this case, χ(Ti,j , t) is set to di,j (as in EDF) when Ti,j is released, and is reset to di,j−(ei−δi,j(t)) ≤ di,j

(as in LLF) when Ti,j ’s slack becomes zero, where δi,j(t) is as defined earlier. To our knowledge, EDZL

has not been considered previously in systems where deadlines can be missed. However, if no deadlines

are missed, then our definition yields priority comparisons that match exactly how EDZL has been

specified in prior work. It is possible that other variants could be defined that prioritize jobs differently

when deadlines are missed.

Example 3.7. The PD2 and EPDF Pfair algorithms can also be modeled using our framework. Consider

the EPDF algorithm introduced in Example 2.2 in Section 2.1.2. Again, we illustrate assuming jobs are

released in a synchronous periodic fashion. First, we represent each task Ti(ei, pi) by a task T ′
i with e

′
i = 1

and p′i =
1
ui
. The EPDF subtask T j

i then corresponds to the job T ′
i,j . Second, we define the eligibility

time of T ′
i,j as ǫi,j = rji . Third, we define the prioritization function for job T ′

i,j as χ(Ti,j , t) = dji . Note,

that χ(Ti,j , t) is always an integral number.

This mapping is illustrated in Figure 3.3 using the task set τ = {T1(3, 8), T2(3, 7), T3(3, 6), T4(1, 2)}

scheduled on two fully-available processors. Inset (a) shows an EPDF schedule for τ . Subtask windows

are shown in bold. Inset (b) shows a schedule for τ ′, which is constructed from τ in the way described

above. In this figure, the release time of each job T ′
i,j is denoted by an up arrow and its deadline is
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Figure 3.3: (a) An EPDF schedule for the task set τ from Example 3.7. (b) Equivalent schedule obtained
using prioritization functions.

denoted by a down arrow. χ-values are depicted as black circles.

PD2 differs from EPDF in that two special tie-breaking rules are used in the event of a deadline

tie. We can capture the effects of these tie breaks by slightly shifting the value of a job’s prioritization

function and letting it be non-integral.

3.3 Tardiness Bound

In this section, we show that any scheduling algorithm (specified according to Definition 3.1) has bounded

tardiness if its prioritization functions are “window-constrained,” as defined below in Definition 3.4. This

definition imposes two separate constraints on χ-values. We show that if either is violated, then tardiness

may become unbounded. In this section, we consider a system with partially available processors; later,

in Section 3.4, we consider the special case when all processors are fully available as well as some other

extensions to the analysis.

3.3.1 Definitions

The system start time is assumed to be zero. For any time t > 0, t− denotes the time t− v in the limit

v → 0+.

Definition 3.2. (pending jobs) Ti,j is pending at time t in a schedule S if Ti,j is eligible at time t

and Ti,j has not completed execution by t in S.

Definition 3.3. (ready jobs) A pending job Ti,j is ready at time t in a schedule S if all prior jobs of

Ti have completed execution by t in S.
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Definition 3.4. (window-constrained priorities) A scheduling algorithm’s prioritization functions

are window-constrained iff, for each task Ti, there exist constants φi and ψi such that, for each job Ti,j

of Ti and time t,

ri,j − φi ≤ χ(Ti,j , t) ≤ di,j + ψi. (3.3)

Note that (3.3) requires a job’s χ-values to lie within a window [ri,j − φi, di,j + ψi] that is defined

with respect to its release time and deadline. Note also that the constants φi and ψi may be positive or

negative; however, if negative, the interval [ri,j − φi, di,j + ψi] cannot be empty.

It is easy to see that, other than RM, all of the algorithms considered in Section 3.2 have prioritization

functions that satisfy (3.3). In contrast, the prioritization function specified for RM fails to be window-

constrained because it violates the required lower bound: as new jobs of each task Ti are released,

χ(Ti,j , t) < ri,j − φi will eventually hold for some job Ti,j for any choice of the constant φi. It can be

shown that the task system in Example 3.2 has unbounded tardiness. In particular, if the job-release

pattern in Figure 3.1(b) recurs repeatedly, then the processing capacity available to T4 every 12 time units

is the same as is depicted in Figure 3.1(b). This capacity is less than the amount of work generated by

T4 during the same interval. As a result, more and more work shifts to future intervals, causing tardiness

for T4 to grow unboundedly. (The fact that tardiness can be unbounded under RM was also established

by Devi (2006).)

It is possible to “fix” the prioritization functions for RM so that the required lower bounds are adhered

to, but then the upper bounds will be violated. For example, we could simply define χ(Ti,j , t) = i + t′,

where t′ is the time where the most recent job release occurred at or before t. This definition simply

shifts the χ-values defined earlier to future points in time as new jobs are released. However, we know

that tardiness for T4 in Example 3.2 is unbounded, so eventually χ(T4,j, t) > d4,j +ψ4 will hold for some

pending job T4,j of T4 for any choice of the constant ψ4. Intuitively, Inequality (3.3) ensures that any

job Ti,j eventually becomes the highest-priority job in the system and will execute until completion. We

summarize this discussion as follows. (Recall that any task set considered in this chapter is assumed to

satisfy (3.1).)

Observation: If either the lower or upper bound given in (3.3) is eliminated, then there exists a

prioritization scheme that satisfies the remaining condition for which tardiness is unbounded for some

task set.
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Figure 3.4: PS schedule for τ in Example 3.1.

Most of the rest of this chapter is devoted to showing that any scheduling algorithm A with window-

constrained prioritization functions has bounded tardiness. The tardiness bound established for A is

derived by comparing the allocations to a concrete task system τ in an ideal processor-sharing (Processor-

Sharing (PS)) schedule to those in a schedule produced by A. (We remind the reader that, in a concrete

task system, job release times, eligibility times, deadlines, and execution times are specified — see

Definition 1.3 in Section 1.5.)

In a PS schedule, each job of a task Ti is executed at a constant rate of ui,j =
ei,j
pi

≤ ui between its

release and deadline (Stoica et al., 1996). Figure 3.4 depicts an example. In this figure, the execution

of each job Ti,j is represented as a rectangle of length pi = di,j − ri,j and height ui,j . Therefore, the

allocation of each job between its release time and deadline in this schedule is ui,j · pi = ei,j .

Note that a PS schedule does not depend on processor availability. Also, in such a schedule, each

job completes exactly at its deadline. Thus, if a job misses its deadline, then it is “lagging behind”

the corresponding PS schedule — this concept of “lag” is instrumental in the analysis and is formalized

below. (A similar lag-based analysis was used by Devi and Anderson (2008b) to establish tardiness

bounds for preemptive and non-preemptive global EDF).

Definition 3.5. Let A(Ti,j , t1, t2,S) be the allocation of job Ti,j during the interval [t1, t2) in an arbitrary

schedule S. Let A(Ti, t1, t2,S) be the allocation of task Ti during the interval [t1, t2) in the schedule S.

The difference between the allocations to Ti,j up to time t in a PS schedule PS and an arbitrary

schedule S, termed the lag of Ti,j at time t in schedule S, is given by

lag(Ti,j , t,S) = A(Ti,j , 0, t,PS)− A(Ti,j , 0, t,S). (3.4)

Task lags can be similarly defined:

lag(Ti, t,S) =
∑

j≥1

lag(Ti,j , t,S) =
∑

j≥1

A(Ti,j , 0, t,PS)− A(Ti,j , 0, t,S). (3.5)
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Finally, the lag for a finite job set Φ at time t in the schedule S is defined by

LAG(Φ, t,S) =
∑

Ti,j∈Φ

lag(Ti,j , t,S) =
∑

Ti,j∈Φ

(A(Ti,j , 0, t,PS)− A(Ti,j , 0, t,S)). (3.6)

Since LAG(Φ, 0,S) = 0, the following holds for t′ ≤ t.

LAG(Φ, t,S) = LAG(Φ, t′,S) + A(Φ, t′, t,PS)− A(Φ, t′, t,S) (3.7)

The concept of lag is important because, if lags remain bounded, then tardiness is bounded as well.

Definition 3.6. A time interval [t1, t2) is busy for a job set Φ in schedule S if, at each time t ∈ [t1, t2),

all m processors execute jobs from Φ in this schedule, and is non-busy for Φ otherwise.

When using the above terminology, we will omit “for Φ” if the job set under consideration is clear.

According to the lemma below, the lag for a job set Φ cannot increase across a busy interval for Φ. This

fact was proved in the context of global EDF in (Devi et al., 2006). However, since the proof relies only

on the fact that the interval in question is busy, and not on how jobs are scheduled, it applies in our

context as well. Later, we will examine the behavior of the LAG function over an interval where some

processors are unavailable.

Lemma 3.1. For any interval [t1, t2) that is busy for Φ, LAG(Φ, t2,S) ≤ LAG(Φ, t1,S).

Proof. By (3.7),

LAG(Φ, t2,S) = LAG(Φ, t1,S) + A(Φ, t1, t2,PS)− A(Φ, t1, t2,S). (3.8)

Because the interval [t1, t2) is busy, m processors execute jobs from Φ throughout the interval, and thus

A(Φ, t1, t2,S) = m · (t2 − t1). In the ideal PS schedule PS, each job Ti,j executes with a constant rate

ui,j ≤ ui from its release to its deadline, and thus

A(Φ, t1, t2,PS) ≤
∑

Ti∈τ

∑

j>0

A(Ti,j , t1, t2,PS) ≤
∑

Ti∈τ

ui · (t2 − t1) = Usum · (t2 − t1).

Setting this inequality and A(Φ, t1, t2,S) = m · (t2 − t1) into (3.8) and applying Usum ≤
∑m

k=1 ûk ≤ m,

we get
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Figure 3.5: A schedule for τ in Example 3.8.

LAG(Φ, t2,S) = LAG(Φ, t1,S) + A(Φ, t1, t2,PS)− A(Φ, t1, t2,S)

≤ LAG(Φ, t1,S) + Usum · (t2 − t1)−m · (t2 − t1)

≤ LAG(Φ, t1,S).

We are interested in non-busy intervals (for a job set) because total lag (for that job set) can increase

only across such (non-busy) intervals, and such increases may lead to deadline misses. The following

example illustrates how lag can change across busy and non-busy intervals.

Example 3.8. Consider a two-processor system upon which a task set τ = {T1(1, 2), T2(2, 6), T3(2, 8),

T4(11, 12)} is to be scheduled, where the first jobs of T1, T2, T3, and T4 are released at times 2, 1, 0, and

0 respectively. The total utilization of the system is Usum = 1/2 + 2/6+ 2/8+ 11/12 = 2. Assume that

both processors are always available, i.e., û1 = û2 = 1 and σ1 = σ2 = 0, and A is the FIFO algorithm,

i.e., jobs are prioritized using χ(Ti,j , t) = ri,j (assume there are no early releases). Consider the schedule

for τ in Figure 3.5. Under A, T1,1 misses its deadline at time 4 by one time unit because it cannot

preempt T2,1 and T4,1, which have earlier release times and later deadlines.

Let Φ = {T1,1, . . . , T1,5, T2,1, T3,1, T4,1} be the set of jobs with deadlines at most 12. The interval

[4, 7) in Figure 3.5 is a busy interval for Φ, because all processors execute jobs from Φ throughout the

interval. By (3.7), LAG(Φ, 7,S) = LAG(Φ, 4,S) + A(Φ, 4, 7,PS) − A(Φ, 4, 7,S), where S is the schedule

under A. The allocation of Φ in the PS schedule PS during the interval [4, 7) is A(Φ, 4, 7,PS) =

3 · (u1 + u2 + u3 + u4) = 3/2+ 6/6+ 6/8+ 33/12 = 6. The allocation of Φ in S throughout [4, 7) is also

6. Thus, LAG(Φ, 7,S) = LAG(Φ, 4,S).

Now let Φ = {T1,1} be the set of jobs with deadlines at most 4. Because the jobs T2,1 and T4,1, which

have deadlines after time 4, execute within the interval [2, 4) in Figure 3.5, this interval is non-busy for Φ
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in S. By (3.6), LAG(Φ, 4,S) = A(Φ, 0, 4,PS)−A(Φ, 0, 4,S). The allocation of Φ in the PS schedule PS

throughout the interval [0, 4) is A(Φ, 0, 4,PS) = 2 ·1/2 = 1. The allocation of Φ in S is A(Φ, 0, 4,S) = 0.

Thus, LAG(Φ, 4,S) = 1− 0 = 1. Figure 3.5 shows that at time 4, T1,1 from Φ is pending. This job has

unit execution cost, which is equal to the amount of pending work given by LAG(Φ, 4,S).

3.3.2 Tardiness Bound for A

In this section, we first state the main result of the chapter as a theorem, and then derive specific

tardiness bounds thereby proving the theorem.

Theorem 3.1. The tardiness of any task Tk under a window-constrained scheduling algorithm A is

bounded, provided
∑

Ti∈τ ui ≤ m and
∑m

k=1 ûk − max(F − 1, 0) · max(uℓ) − UL > 0, where F is the

number of processors that may not be fully available to τ and UL is the sum of min(|τ |,m − 1) largest

total utilizations of tasks in τ .

Given an arbitrary non-concrete task system τN (where the eligibility times and release times of

jobs are not specified – see Definition 1.3), we want to determine the maximum tardiness of any job of

any task in any concrete instantiation of τN scheduled on m processors. The approach for doing this is

based on techniques from (Devi and Anderson, 2008b). Let τ be a concrete instantiation of τN . First,

we order the jobs in the concrete instantiation using the following rule: Ti,j ≺ Ta,b iff di,j < da,b or

(di,j = da,b) ∧ i < a.

Let

ρ = max

(
0,max

i6=a
(ψa + φi)

)
and µ = max

(
0,max

i6=a
(pa + ψa + φi)

)
(3.9)

Let Tℓ,q be a job of a task Tℓ in τ , let td = dℓ,q, and let S be a schedule, produced for τ by the

scheduling algorithm A. We assume that the schedule S has the following property.

(P) The tardiness of every job Tk,h such that Tk,h ≺ Tℓ,q is at most x+ ek, where x ≥ ρ ≥ 0.

Our goal is to determine the smallest x ≥ ρ such that the tardiness of Tℓ,q remains at most x+ eℓ. Such

a result would by induction imply a tardiness of at most x+ek for all jobs of every task Tk ∈ τ . Because

τ is arbitrary, the tardiness bound will hold for every concrete instantiation of τN .

The objective is easily met if Tℓ,q completes by its deadline, td, so assume otherwise. The completion

time of Tℓ,q then depends on the demand of the jobs that can compete with Tℓ,q after td and on the

amount of available processor time after td. Hence, a value for x can be determined via the following

steps.
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1. Compute an upper bound on the demand for jobs (including Tℓ,q) that can compete with Tℓ,q after

td.

2. Determine the amount of such demand necessary for the tardiness of Tℓ,q to exceed x+ eℓ.

3. Determine the smallest x ≥ ρ such that the tardiness of Tℓ,q is at most x + eℓ using the upper

bound in Step 1 and the necessary condition in Step 2.

To reason about the tardiness of Tℓ,q, we need to determine how other jobs delay its execution. To

do that, we first define a boolean function of two jobs Ti,k and Ta,b that will allow us to exclude certain

jobs from consideration:

LP(Ti,k, Ta,b) = (∀ t : da,b + ψa < χ(Ti,k, t)). (3.10)

Claim 3.1. If LP(Ti,k, Ta,b) holds for jobs Ti,k and Ta,b, then χ(Ta,b, t) < χ(Ti,k, t) for any time t.

Proof. We upper bound χ(Ta,b, t) as follows.

χ(Ta,b, t)

{by (3.3)}

≤ da,b + ψa

{by the condition of the claim and (3.10)}

< χ(Ti,k, t)

Claim 3.1 provides a sufficient condition for a job Ti,k to have lower priority (a larger χ-value) than

that of Ta,b at any time and therefore not compete with Ta,b for processor time. In the rest of the proof,

four job sets, d, DH, DLH, and DLL, are considered. d and DH are defined as follows.

d = {Ti,k :: di,k ≤ dℓ,q = td} (3.11)

DH = {Ti,k :: (di,k > td) ∧ (i 6= ℓ) ∧ (∃ Ta,b ∈ d : (a 6= i) ::¬LP(Ti,k, Ta,b))} (3.12)

In this notation, d and D denote, respectively, jobs with deadlines at most and greater than td. The

letter H in DH denotes that Ti,k’s priority at some time may be higher than that of a job of different
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task in d (refer to Claim 3.1). Note that, because dℓ,y ≤ dℓ,q = td,

(∀y : y ≤ q :: Tℓ,y ∈ d). (3.13)

The remaining two job sets are defined as follows.

DLH = {Ti,k :: (di,k > td) ∧ (i 6= ℓ) ∧ (∀ Ta,b ∈ d : (a 6= i) ::LP(Ti,k, Ta,b))

∧ (∃ Ta,b ∈ DH : (a 6= i) ::¬LP(Ti,k, Ta,b))} (3.14)

DLL = {Ti,k :: (di,k > td) ∧ (i 6= ℓ) ∧ (∀ Ta,b ∈ d : (a 6= i) ::LP(Ti,k, Ta,b))

∧ (∀ Ta,b ∈ DH : (a 6= i) ::LP(Ti,k, Ta,b))} (3.15)

If Ti,k is in DLH or DLL, then, for each job Ta,b ∈ d such that a 6= i, LP(Ti,k, Ta,b) holds, and hence,

Ti,k’s priority is always lower than that of any job in d of a different task. The second letter L in DLH

and DLL is intended to denote this. Similarly, the third letter H in DLH denotes that job Ti,k’s priority

may be higher than that of a job of a different task Ta that belongs to DH. Finally, the third letter L

in DLL denotes that job Ti,k’s priority is always lower than that of any job of a different task Ta that

belongs to DH.

Example 3.9. Consider the task set τ = {T1(1, 2), T2(1.5, 3), T3(5, 5)} and the PS schedule for it in

Figure 3.6. Job T1,1 is released at time 1, and jobs T2,1 and T3,1 are released at time 0. Consider the

job Tℓ,q = T1,1, which has a deadline at time 3. Assume that there are no early releases and jobs are

prioritized as follows. For task T1, χ(T1,j , t) = d1,j for all j. For task T2, χ(T2,j, t) = r2,j if j is even

and χ(T2,j , t) = d2,j if j is odd. For task T3, χ(T3,j , t) = r3,j for all j.

We thus have, φ1 = −p1, φ2 = φ3 = 0, ψ1 = 0, ψ2 = 0, and ψ3 = −p3. With respect to T1,1,

the four sets mentioned above are d = {T1,1, T2,1}, DH = {T3,1, T2,2}, DLH = {T3,2}, and DLL =

{T2,3, T2,4, T3,3}. The job T2,2 ∈ DH because χ(T2,2, t) = r2,2 = 3 ≤ d1,1 = 3, and hence, LP(T2,2, T1,1)

does not hold. The job T3,2 ∈ DLH because χ(T3,2, t) = r3,2 = 5 ≤ d2,2 = 6, and hence, LP(T3,2, T2,2)

does not hold. DLL would also include any jobs of tasks other than T1 released after time 12.

We now prove some important relationships between the priorities of jobs in the four sets mentioned

above.

Lemma 3.2. If Ta,b ∈ DH and Ti,k ∈ DLL, where a 6= i, then χ(Ta,b, t) < χ(Ti,k, t) for any time t.
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Figure 3.6: Job set partitioning.

Proof. If Ti,k in DLL, then, by (3.15), (∀Ta,b ∈ DH : (a 6= i) :: LP(Ti,k, Ta,b)). By the condition of the

lemma, this implies that LP(Ti,k, Ta,b) holds. The required result follows from Claim 3.1.

Lemma 3.3. If Ta,b ∈ d and Ti,k ∈ DLL ∪DLH, where a 6= i, then χ(Ta,b, t) < χ(Ti,k, t) for any time

t.

Proof. If Ti,k ∈ DLL ∪ DLH, then, by (3.14) and (3.15), (∀Ta,b ∈ d : (a 6= i) :: LP(Ti,k, Ta,b)) holds.

By the condition of the lemma, this implies that LP(Ti,k, Ta,b) holds. The required result follows from

Claim 3.1.

Lemma 3.4. If a job Ti,k ∈ DLL is scheduled at time t or there is an idle available processor at time

t, and Ta,b ∈ d ∪DH is ready at time t, where a 6= i, then Ta,b is scheduled at time t.

Proof. The case when an available processor is idle at time t is trivial so suppose that this is not the

case. If Ti,k and Ta,b are defined as in the statement of the lemma, and Ti,k is scheduled at time t, then

Ta,b is scheduled at time t as well since, by Lemmas 3.2 and 3.3, χ(Ta,b, t) < χ(Ti,k, t).

Lemma 3.5. If a job Ti,k ∈ DLH ∪DLL is scheduled at time t and Ta,b ∈ d is ready at time t, where

a 6= i, then Ta,b is scheduled at time t.

Proof. If Ti,k and Ta,b are defined as in the statement of the lemma, and Ti,k is scheduled at time t, then

Ta,b is scheduled as well, since by Lemma 3.3, χ(Ta,b, t) < χ(Ti,k, t).

Corollary 3.1. If a job Ti,k ∈ DLH ∪DLL is scheduled at time t ≥ td and job Tℓ,q is pending at time

t, then Tℓ is scheduled at t.

Proof. If Tℓ,q is pending at time t ≥ td, then the earliest pending job of Tℓ, Tℓ,y, where y ≤ q is ready at

time t. The required result follows from (3.13) and Lemma 3.5.

Determining an upper bound on competing demand. We are now ready to establish the upper

bound mentioned in the first step of the proof outline given earlier as a function of job sets d, DH,

DLH, and DLL.
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Definition 3.7. Let W (α) be the total allocation of jobs in the set α in schedule S after time td while

job Tℓ,q is pending.

We are interested in the allocation of jobs in d ∪ DH ∪ DLH because these jobs may delay the

execution of Tℓ,q. (By Lemma 3.4, jobs in DLL cannot delay Tℓ,q or prior jobs of Tℓ.) Their allocation

after td while Tℓ,q is pending, is

W (d ∪DH ∪DLH) =W (d) +W (DH ∪DLH). (3.16)

Because jobs from d have deadlines at most td, they do not execute in the PS schedule PS beyond

td. Thus, the allocation of jobs in d after time td is upper-bounded by the amount of pending work due

to jobs in this set at time td as given by LAG(d, td,S), which must be positive in order for Tℓ,q to miss

its deadline at td (by (3.13)). Therefore,

W (d) ≤ LAG(d, td,S). (3.17)

From (3.16) and (3.17), we have

W (d ∪DH ∪DLH) ≤ LAG(d, td,S) +W (DH ∪DLH). (3.18)

Thus, an upper bound on W (d∪DH∪DLH) can be obtained by determining bounds for LAG(d, td,S)

and W (DH ∪DLH) individually.

Upper bound on LAG(d, td,S). In deriving this bound, we assume that all busy and non-busy

intervals considered are with respect to d and the schedule S is produced by the scheduling algorithm

A.

To begin, note that, by Lemma 3.1, if no non-busy interval exists in [0, td), then LAG(d, td,S) ≤

LAG(d, 0,S) = 0. In that which follows, we consider the more interesting case wherein some non-busy

interval exists in [0, td). An interval could be non-busy for two reasons:

1. There are not enough ready jobs in d to occupy all available processors, so it is immaterial whether

jobs from DH, DLH, or DLL execute during the interval.

2. There are tasks with ready jobs in d that cannot execute because, within certain sub-intervals,

some processors are not available (because of capacity restrictions) or jobs in DH occupy one or
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more processors because they have higher priority. Note that, by Lemma 3.5, jobs in DLH and

DLL cannot execute at time instants when there are ready unscheduled jobs in d.

Jobs with deadlines after time td may prevent the execution of jobs in d before time td (if such jobs

become eligible before td) and hence increase the LAG for d.

Definition 3.8. (τDH) Let τDH be the set of tasks that have jobs in DH.

Definition 3.9. (δi) Let δi be the total allocation of task Ti’s jobs in DH in the schedule S by time

td.

In much of the rest of the analysis, we focus on a time tn defined as follows.

Definition 3.10. If there exists a time instant t such that there are at most m − 1 tasks with ready

jobs in d at time t− and all these tasks execute at time t−, then define tn to be the latest such time

instant at or before td; if no such t exists, then let tn = 0.

We express a bound on LAG(d, td,S) in terms of individual task parameters and processor availability

functions using Lemmas 3.6, 3.7, and 3.8, which are proved in an appendix. Lemma 3.7 establishes a

relationship between LAG(d, tn,S) and LAG(d, td,S). Lemmas 3.6 and 3.8 were initially proved in (Devi

et al., 2006) in the context of global EDF, for the case where all processors are fully available. The proof

of each lemma relies only on Property (P) and, for Lemma 3.7, the definition of tn. In particular, the

exact way in which jobs are scheduled does not arise.

Lemma 3.6: lag(Tk, t,S) ≤ x · uk + ek for any task Tk and t ∈ [0, td].

Lemma 3.7: LAG(d, td,S) ≤ LAG(d, tn,S) +
∑

Ti∈τDH
δi +

∑m
k=1 ûk · σk.

Definition 3.11. (U(τ, y) and E(τ, y)) Let U(τ, y) (E(τ, y)) be the set of at most min(|τ |, y) tasks

from τ of highest utilization (execution cost), where |τ | is the number of tasks in τ , and let

EL =
∑

Ti∈E(τ,m−1)

ei and

UL =
∑

Ti∈U(τ,m−1)

ui.

Lemma 3.8: LAG(d, tn,S) ≤ EL + x · UL.

Using Lemmas 3.7 and 3.8, we can upper bound LAG(d, td,S) in (3.18).

Lemma 3.9: LAG(d, td,S) ≤ EL + x · UL +
∑

Ti∈τDH
δi +

∑m
k=1 ûk · σk.
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Upper bound on W (DH∪DLH). The jobs in DH∪DLH may delay the execution of Tℓ,q because

some of these jobs may have higher priority than Tℓ,q at some time. We now upper-bound the total

execution demand due to jobs in DH∪DLH. Lemmas 3.10 and 3.11, which are proved in the appendix,

upper-bound the release times of jobs in DH ∪DLH using ρ and µ from (3.9).

Lemma 3.10. If Ti,k ∈ d ∪DH, then ri,k ≤ td + ρ.

Lemma 3.11. If Ti,k ∈ DLH, then ri,k ≤ td + ρ+ µ.

Similarly to Definition 3.8, we define the following task set.

Definition 3.12. (τDLH) Let τDLH be the set of tasks that have jobs in DLH.

Lemma 3.12. Task Ti ∈ τDH can have at most
⌈

ρ
pi

⌉
jobs in DH with release times after td. Task

Ti ∈ τDLH can have at most
⌈
ρ+µ
pi

⌉
jobs in DLH with release times after td.

Proof. Suppose that Ti,k ∈ DH∪DLH and ri,k > td. If Ti,k ∈ DH, then, by Lemma 3.10, ri,k ≤ td+ ρ.

If Ti,k ∈ DLH, then, by Lemma 3.11, ri,k ≤ td + ρ + µ. Because task Ti’s consecutive job releases are

separated by at least pi time units, the lemma follows.

Lemma 3.13: W (DH ∪DLH) ≤
∑

Ti∈τDH∪τDLH

((⌈
ρ+µ
pi

⌉
+ 1
)
· ei
)
−
∑

Ti∈τDH
δi

Proof. Consider Ti ∈ τDH ∪ τDLH. Each job Ti,k in DH∪DLH is released either at or before td or after

td. Because each job in DH∪DLH has a deadline after td, each Ti has at most one job in DH∪DLH

with a release time at or before td. The demand due to this job is at most ei. By Lemma 3.12, the

demand of jobs of Ti in DH ∪DLH released after td is at most
⌈
ρ+µ
pi

⌉
· ei. The allocation of task Ti’s

jobs in DH in schedule S before time td is δi, by Definition 3.9. Thus, the allocation of all jobs in

DH ∪DLH after time td in schedule S while Tℓ,q is pending is

W (DH ∪DLH)

≤
∑

Ti∈τDH∪τDLH

(⌈
ρ+ µ

pi

⌉
· ei + ei

)
−

∑

Ti∈τDH

δi

=
∑

Ti∈τDH∪τDLH

((⌈
ρ+ µ

pi

⌉
+ 1

)
· ei

)
−

∑

Ti∈τDH

δi

Upper bound on W (d ∪DH ∪DLH).

Definition 3.13. Let α(τ, ℓ) ≥
∑

Ti∈τDH∪τDLH

((⌈
ρ+µ
pi

⌉
+ 1
)
· ei
)
be a scheduling-algorithm-dependent

bound on the competing demand due to jobs in DH and DLH.
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From (3.18), Lemma 3.9, and Lemma 3.13 we have

W (d ∪DH ∪DLH)

{by (3.18)}

≤ LAG(d, td,S) +W (DH ∪DLH)

{by Lemmas 3.9 and 3.13}

≤ EL + x · UL +
∑

Ti∈τDH

δi +

m∑

k=1

ûk · σk

+
∑

Ti∈τDH∪τDLH

((⌈
ρ+ µ

pi

⌉
+ 1

)
· ei

)
−

∑

Ti∈τDH

δi

= EL + x · UL +

m∑

k=1

ûk · σk +
∑

Ti∈τDH∪τDLH

((⌈
ρ+ µ

pi

⌉
+ 1

)
· ei

)

{by Definition 3.13}

≤ EL + x · UL +

m∑

k=1

ûk · σk + α(τ, ℓ) (3.19)

Claim 3.2. The expression
∑

Ti∈τ\Tℓ

((⌈
ρ+µ
pi

⌉
+ 1
)
· ei
)
(conservatively) upper-bounds α(τ, ℓ) for any

window-constrained scheduler.

Proof. The claim follows from τDH ∪ τDLH ⊆ τ \ Tℓ.

In Section 3.4, we will discuss how to compute tighter bounds for α(τ, ℓ) for GEDF and FIFO

schedulers.

Necessary condition for tardiness to exceed x + eℓ. We now find the amount of competing work

that is necessary for Tℓ,q to miss its deadline by more than x+eℓ time units. Job Tℓ,q’s tardiness depends

on the amount of competing demand W (d∪DH∪DLH) and on the amount of processor time available

to τ after time td.

Definition 3.14. Let β∗
k ≥ βl

k(x+eℓ) be the amount of processor time available to tasks in τ during the

interval [td, td + x+ eℓ) on processor k in schedule S. Let R =
∑m

k=1(x+ eℓ − β∗
k) be the total amount

of processor time that is not available to τ during [td, td + x+ eℓ).

In the rest of this dissertation the following definition will be used.

Definition 3.15. Let F be the number of processors that are fully available, i.e., F = |k :: βl
k(∆) = ∆|.

Let F = m− F be the number of processors that may not be fully available.
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Lemma 3.14. If at most F tasks with ready jobs in d ∪ DH ∪ DLH are scheduled at time t∗ ∈

[td+ ρ, td+x+ eℓ), Tℓ,q is pending at t∗, and there is an idle available processor at time t∗ or a job from

DLL is scheduled at time t∗, then (i) task Tℓ is scheduled at t∗, and (ii) Tℓ is guaranteed uninterrupted

execution until the job Tℓ,q completes.

Proof. (i) follows from Corollary 3.1. To prove (ii), assume that the antecedent of the lemma holds.

Let A(t) (B(t)) be the number of tasks that have ready jobs in d (DH) at time t ≥ t∗. By Lemma 3.4,

all tasks with ready jobs in d ∪DH are scheduled at time t∗, and hence,

A(t∗) +B(t∗) ≤ F. (3.20)

Suppose, contrary to the statement of the lemma, that Tℓ executes uninterruptedly within [t∗, t′) but

is preempted at time t′ so that Tℓ,q is pending at t′. By Lemma 3.5, no job in DLH ∪ DLL can be

scheduled at time t′ (since Tℓ,q ∈ d). Therefore, at time t′, all available processors are occupied by tasks

with ready jobs in d ∪DH, and Tℓ has ready job (in d) at time t′ that is not scheduled. This implies

A(t′) +B(t′) > F , and, by (3.20),

A(t′) +B(t′) > A(t∗) +B(t∗). (3.21)

By Lemma 3.10, all jobs in d ∪DH are released at or before td + ρ. Therefore, the number of tasks

with ready jobs in d ∪ DH at time t′ > t∗, A(t′) + B(t′), cannot be higher than A(t∗) + B(t∗), i.e.,

A(t′) +B(t′) ≤ A(t∗) +B(t∗). This contradicts (3.21).

The following lemma establishes a lower bound on the competing demand for Tℓ,q.

Lemma 3.15. If the tardiness of Tℓ,q exceeds x+ eℓ, where x ≥ ρ, then

W (d ∪DH ∪DLH) +R > (m− (m− a) · uℓ) · x+ (1− a) · ρ+ eℓ, (3.22)

where a = min(m,F + 1).

Proof. Assume that

W (d ∪DH ∪DLH) +R ≤ (m− (m− a) · uℓ) · x+ (1 − a) · ρ+ eℓ (3.23)

holds and suppose, contrary to the statement of the lemma, that
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(T) the tardiness of Tℓ,q exceeds x+ eℓ.

In the rest of the proof, we say that a time instant t ≥ td (or an interval) is WR-occupied if each

processor either executes a job from d∪DH∪DLH or is unavailable; otherwise, we say that t is WR-free.

The prefix “WR” denotes that all processors contribute to the allocation W (d ∪DH ∪DLH) + R. If

the time instant t ≥ td is WR-free, then either at least one available processor is idle at t, or a job from

DLL is scheduled at time t. Because, by (T), Tℓ,q ∈ d is pending throughout the interval [td, td+x+eℓ),

the following property holds by Corollary 3.1:

(E) task Tℓ executes at each WR-free instant within [td, td + x+ eℓ).

By (P), the preceding job Tℓ,q−1 (if it exists) completes by time

t′ ≤ td − pℓ + eℓ + x ≤ td + x. (3.24)

Thus, td + x is the latest time at which Tℓ,q may become ready. If the latest WR-occupied instant in

the interval [td, td+ x+ eℓ) is at or before td+ x, then, by (E), Tℓ,q executes uninterruptedly after td+ x

and its tardiness is at most x+ eℓ,q ≤ x+ eℓ, contrary to (T). In the rest of the proof, we assume that

the latest WR-occupied instant in the interval [td, td + x+ eℓ) is after td + x.

Suppose that at most F processors execute jobs from d ∪ DH ∪ DLH at some WR-free instant

t∗ ∈ [td + ρ, td + x). In this case, because t∗ is WR-free, some processor is idle or a job in DLL is

scheduled there. Thus, by Lemma 3.14, Tℓ is guaranteed uninterrupted execution at or after time t∗

until Tℓ,q finishes. By (3.24), Tℓ,q−1 (if it exists) finishes its execution by time t′ ≤ td+x, so Tℓ,q finishes

by time t′ + eℓ,q ≤ td + x+ eℓ,q ≤ td + x+ eℓ, thereby having tardiness at most x+ eℓ, contrary to (T).

In the rest of the proof, we assume the following:

(N) at least a = min(m,F + 1) processors execute jobs from d ∪DH ∪DLH at each WR-free instant

in [td + ρ, td + x).

Let B1, B2, and B3 be the total length of WR-occupied intervals within [td, td + ρ), [td + ρ, td + x),

and [td + x, td + x + eℓ), respectively. (Recall, from (P), that x ≥ ρ.) Let B = B1 + B2 + B3. This is

illustrated in Fig. 3.7.

We now find a lower bound on B. Suppose first that B ≤ x − x · uℓ. In this case, the total length

of WR-free intervals during [td, td + x + eℓ) is x + eℓ − B ≥ x + eℓ − (x − x · uℓ) ≥ x · uℓ + eℓ. Thus,

by (E), Tℓ executes for at least x · uℓ + eℓ time units after time td within the interval [td, td + x + eℓ).

By Lemma 3.6, the total amount of pending work for Tℓ at time td, including work due to Tℓ,q, is at
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Figure 3.7: Structure of WR-occupied intervals in Lemma 3.15.

most x · uℓ + eℓ, and thus Tℓ,q completes by time td + x + eℓ and its tardiness is at most x + eℓ. This

contradicts (T). In the rest of the proof, we consider the other possibility, i.e.,

B = x− x · uℓ + v, (3.25)

where v > 0.

By (E), at least one processor executes a job from d at each WR-free instant within [td, td + ρ)

(because Tℓ executes at each such instant). The total length of all WR-free intervals within [td, td+ρ) is

L1 = ρ−B1. (3.26)

By (N), at least a processors execute jobs from d∪DH∪DLH at eachWR-free instant in [td+ρ, td+x).

The total length of all WR-free intervals within [td + ρ, td + x) is x − ρ−B2 = x− ρ− (B −B1 −B3).

Thus, the total processor allocation to jobs in d∪DH∪DLH in WR-free intervals within [td+ρ, td+x)

is at least

L2 = a · (x − ρ−B +B1 +B3). (3.27)

By (E), at least one processor executes a job from d at each WR-free instant within [td + x, td +

x + eℓ) (again, because Tℓ executes at each such instant). The total length of all WR-free intervals in

[td + x, td + x+ eℓ) is

L3 = eℓ −B3. (3.28)

By (3.25), the sum of the total allocation to jobs in d ∪DH ∪DLH and the unavailable processor
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time in all WR-occupied intervals in [td, td + x+ eℓ) is

Lb = m ·B = m · (x− x · uℓ + v). (3.29)

Let Z be the total allocation to jobs in d∪DH∪DLH within [td, td+x+eℓ). Because each processor

is either unavailable or executes a job from d ∪DH ∪DLH at every WR-occupied instant and at least

one processor executes Tℓ at every WR-free instant, summing the lengths of all WR-free intervals in

[td, td + ρ) and [td + x, td + x+ eℓ), given by (3.26) and (3.28), the allocation of jobs in d∪DH∪DLH

in WR-free intervals within [td + ρ, td + x), given by (3.27), and the total processor allocation and the

unavailable processor time in WR-occupied intervals in [td, td + x+ eℓ), given by (3.29), we have

Z +R ≥ L1 + L2 + L3 + Lb,

where R is defined earlier in Definition 3.14. From the inequality above, we have

Z +R ≥ L1 + L2 + L3 + Lb

{by (3.26), (3.27), (3.28), and (3.29)}

= ρ−B1 + a · (x − ρ−B +B1 +B3) + eℓ −B3 +m · (x− x · uℓ + v)

{setting B′ = B1 +B3 and B = x− x · uℓ + v, which follows from (3.25)}

= eℓ + ρ−B′ + a · (x · uℓ − v − ρ+B′) +m · (x− x · uℓ + v)

= eℓ + ρ−B′ + a · x · uℓ − a · v − a · ρ+ a · B′ +m · x−m · x · uℓ +m · v

= eℓ + (m− (m− a) · uℓ) · x+ (m− a) · v + (a− 1) · B′ + (1 − a) · ρ. (3.30)

By our assumption at the beginning of the proof, Tℓ,q’s tardiness exceeds x + eℓ. Because Tℓ,q ∈ d,

at time td + x + eℓ, there is therefore unfinished work on jobs in d ∪DH ∪DLH. Let Z ′ > 0 be this

remaining work. To find Z ′, we subtract Z + R from W (d ∪DH ∪DLH) +R.

Z ′ =W (d ∪DH ∪DLH) +R− Z −R

{by (3.23)}

≤ (m− (m− a) · uℓ) · x+ (1− a) · ρ+ eℓ − Z −R

{by (3.30)}
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≤ (m− (m− a) · uℓ) · x+ (1− a) · ρ+ eℓ − eℓ

− (m− (m− a) · uℓ) · x− (m− a) · v − (a− 1) ·B′ − (1 − a) · ρ

= (1− a) ·B′ − (m− a) · v.

By (N), 1 − a = 1 − min(m,F + 1) = max(−F, 1 − m) = −min(F,m − 1) ≤ 0 and m − a =

m−min(m,F + 1) = max(m− F − 1, 0) = max(F − 1, 0) ≥ 0, and thus Z ′ ≤ 0. Therefore, there is no

work pending at time td + x + eℓ for jobs in d ∪DH ∪DLH, which implies that Tℓ,q’s tardiness is at

most x+ eℓ, contrary to (T).

Deriving a tardiness bound. In that which follows, it is more convenient to use the following form

of (3.22):

W (d ∪DH ∪DLH) +R > (m−max(F − 1, 0) · uℓ) · x+max(F −m, 1−m) · ρ+ eℓ. (3.31)

This expression is obtained from (3.22) by replacing 1−a by max(F−m, 1−m) andm−a by max(F−1, 0).

Earlier, in (3.18), we established an upper bound on W (d∪DH∪DLH). Using Definition 3.14, we

can upper-bound R as follows.

R

{by Definition 3.14}

=

m∑

k=1

(x+ eℓ − β∗
k)

{by Definition 3.14}

≤
m∑

k=1

(x+ eℓ − βl
k(x + eℓ))

{ by (1.1) }

≤
m∑

k=1

(x+ eℓ − ûk · (x+ eℓ − σk)) (3.32)

To this point, x has only been constrained to be at least ρ. We now show that if x is further

constrained according to the definition below, then the tardiness of Tℓ,q is at most x+ eℓ.
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Definition 3.16. Let x = max(ρ, z), where

z =
EL +max(V (ℓ))∑m

k=1 ûk −max(F − 1, 0) ·max(uℓ)− UL

, (3.33)

and

V (ℓ) = eℓ ·

(
m∑

k=1

(1 − ûk)− 1

)
+ 2

m∑

k=1

ûk · σk + α(τ, ℓ) + min(m− F,m− 1) · ρ. (3.34)

Lemma 3.16. With x as defined in Definition 3.16, the tardiness of Tℓ,q is at most x+ eℓ provided the

denominator of (3.33) is positive.

Proof. Suppose that the denominator of (3.33) is positive and, contrary to the statement of the lemma,

that the tardiness of Tℓ,q exceeds x+ eℓ. By (3.19) and (3.32),

W (d∪DH ∪DLH) +R

≤ EL + x · UL +

m∑

k=1

ûk · σk + α(τ, ℓ) +

m∑

k=1

(x+ eℓ − ûk · (x+ eℓ − σk))

= EL + x · UL + 2

m∑

k=1

ûk · σk + α(τ, ℓ) + x ·

(
m−

m∑

k=1

ûk

)
+ eℓ ·

m∑

k=1

(1− ûk). (3.35)

Since, by our assumption, Tℓ,q’s tardiness is greater than x+ eℓ and x ≥ ρ, by Lemma 3.15, (3.31) holds.

From (3.35) and (3.31), we have

(m−max(F − 1, 0) · uℓ) · x+max(F −m, 1−m) · ρ+ eℓ

< EL + x · UL + 2

m∑

k=1

ûk · σk + α(τ, ℓ)

+ x ·

(
m−

m∑

k=1

ûk

)
+ eℓ ·

m∑

k=1

(1 − ûk).

Rearranging, we have

(m−max(F−1, 0) · uℓ) · x−m · x+ x ·
m∑

k=1

ûk − x · UL

< EL + 2

m∑

k=1

ûk · σk + α(τ, ℓ)−max(F −m, 1−m) · ρ+ eℓ ·

(
m∑

k=1

(1− ûk)− 1

)
,
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which implies

x·

(
m∑

k=1

ûk −max(F − 1, 0) · uℓ − UL

)

<EL + 2

m∑

k=1

ûk · σk + α(τ, ℓ) + min(m− F,m− 1) · ρ+ eℓ ·

(
m∑

k=1

(1− ûk)− 1

)
.

From this, we have

x <
EL + V (ℓ)∑m

k=1 ûk −max(F − 1, 0) · uℓ − UL

≤ max

(
ρ,

EL +max(V (ℓ))∑m
k=1 ûk −max(F − 1, 0) ·max(uℓ)− UL

)
,

where V (ℓ) is defined as in Definition 3.16. However, this contradicts the definition of x in Definition 3.16.

From the above reasoning, Theorem 3.2 below follows.

Theorem 3.2. The tardiness of any task Tk under a window-constrained scheduling algorithm A is at

most x+ ek, where x is as in Definition 3.16, provided the denominator of (3.33) is positive.

Theorem 3.1, stated earlier, is a corollary of Theorem 3.2.

3.4 Discussion

In this section, we discuss some implications of Theorem 3.2 and consider some extensions and im-

provements to the analysis given above, such as tightening the tardiness bound for specific scheduling

algorithms and processor configurations.

3.4.1 Relative Deadlines Different from Periods

First, note that, the definition of a prioritization function we have assumed is flexible enough to allow

task systems with relative deadlines different from periods to be analyzed. By Theorem 3.2 and the

definition of tardiness, each job Ti,j is guaranteed to complete within pi + ei + x time units after its

release time ri,j . We thus can compute a maximum tardiness bound with respect to an arbitrary relative

deadline.
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3.4.2 Implications of Theorem 3.2

The requirement to have the denominator of (3.33) to be positive implicitly restricts the maximum

per-task utilization the system is able to accommodate without having unbounded deadline tardiness.

(Recall that (3.1) is assumed to hold, and by our task model, |τ | = n.)

Corollary 3.2. Bounded tardiness is guaranteed if

(A) n ≤ F , or

(B)
∑m

k=1 ûk −max(F − 1, 0) ·max(uℓ)− UL > 0, or

(C) max(uℓ) <
∑m

k=1
ûk

max(F−1,0)+min(m−1,n)
, or

(D) m ≥ 2 and F ≥ m− 1.

Proof. (A) follows trivially from the fact that if tasks do not compete for available processors, then no

deadlines are missed. (B) ensures that the denominator of (3.33) is positive, and by Theorem 3.2 the

tardiness of any task in τ is bounded. To prove (C), suppose that

max(uℓ) <

∑m
k=1 ûk

max(F − 1, 0) + min(m− 1, n)
.

From this, we get
∑m

k=1 ûk > max(uℓ) ·max(F − 1, 0) + max(uℓ) ·min(m− 1, n) ≥ max(uℓ) ·max(F −

1, 0) + UL, where the last inequality follows from Definition 3.11. By (B), the required result follows.

As for (D), if it holds, then max(F − 1, 0) = max(m − F − 1, 0) = 0. By Definition 3.11 and (3.1),

UL <
∑m

k=1 ûk. The required result follows from (B).

The conditions of Corollary 3.2 are not necessary. Depending on the processor availability pattern,

it may be possible to schedule a task system for which some of the conditions from Corollary 3.2 do not

hold yet tardiness is still bounded as the following example illustrates.

Example 3.10. Consider a four-processor system, where the first processor is fully available, and all

other processors are available for one time unit every three time units as shown in Figure 3.8(a). For

these processors, û1 = 1, û2 = û3 = û4 = 1/3, σ1 = 0, and σ2 = σ3 = σ4 = 2. The total processing

capacity of the system is
∑4

k=1 ûk = 1+3 · 1/3 = 2. Suppose that the task set τ = {T1(3, 3), T2(3, 3)} is

scheduled. Applying Corollary 3.2 to this task system, we find that bounded deadline tardiness can be
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Figure 3.8: Task execution for different processor availability patterns.

guaranteed if

max(uℓ) <

∑m
k=1 ûk

max(F − 1, 0) + min(m− 1, n)

=
2

max(3− 1, 0) + min(3, 2)
= 2/4 = 1/2.

Though max(uℓ) = 1 > 1/2, jobs of T1 and T2 always meet their deadlines because at every time instant

two processors are available. However, if we attempt to schedule τ on a system with the availability

pattern shown in Figure 3.8(b), which is described by the same service functions as the pattern in

Figure 3.8(a), we indeed will have unbounded deadline tardiness, because the arriving jobs demand six

time units every three time units (assuming the job-arrival pattern continues as shown) but can utilize

only four time units.

Uniform multiprocessors. Service functions as defined by (1.1) can also be used to describe a uniform

multiprocessor platform, i.e., a platform where processors have different (constant) speeds. Particularly,

a service function for which σk = 0 describes a processor with speed ûk ≤ 1. This can be thought of as

a unit-speed processor that is unavailable in infinitesimally small time intervals. The following example

illustrates this approximation.

Example 3.11. Consider a processor that is available for two time units every six time units. The

amount of available service β∗[1](∆) is shown in Figure 3.9(a) with a solid line. The service function for

this processor is β[1](∆) = max(0, û · (∆− σ)), where û = 1/3 and σ = 4 as shown in Figure 3.9(a). The

superscript “[1]” denotes that this is a first approximation of a processor with speed 1/3. It is possible

to make processor availability more even, so that the processor is available for one time units every three

time units. The respective service curves, β∗[2](∆) and β[2](∆) = max(0, 1/3 · (∆ − 2)), are shown in

Figure 3.9(b). Continuing this process, we can approximate a processor with speed 1/3 by using the
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Figure 3.9: Approximating a slow processor with a unit-speed processor.

limiting service function βlim(∆) = ∆/3, shown in Figure 3.9(b), as the availability function.

In order to apply Theorem 3.2 to a uniform multiprocessor system, task execution times have to be

measured with respect to the fastest processor. The speeds of all processors must be scaled down so that

the fastest processor has unit speed. When considering a system with partially-available processors in

Section 3.3, we did not make any assumptions about the way that jobs are assigned to processors except

that these processors select at most m jobs of highest priority. Therefore, Corollary 3.2, under which

bounded tardiness is guaranteed, may be unnecessarily restrictive for uniform multiprocessors. This is

because Theorem 3.2 treats different-speed processors and partially-available unit-speed processors in a

unified fashion. In the case of a uniform multiprocessor, it may be more advantageous to assign jobs

with larger utilizations or execution times or higher priorities to faster processors in order to achieve

better performance. Alternatively, a partitioning scheme that restricts the set of processors where jobs

may execute can be employed (e.g., see (Leontyev and Anderson, 2007a)).

3.4.3 Systems With Full Processor Availability

In previous work on deriving tardiness bounds for different global scheduling algorithms (Devi and

Anderson, 2005; Devi et al., 2006; Leontyev and Anderson, 2007c), a system where all processors are

always available for scheduling soft real-time tasks from τ was considered. In this section, we instantiate

Theorem 3.2 for this important subcase.

If all processors are fully available to tasks in τ , then for each k, βk(∆) = ∆, F = 0, ûk = 1, and
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σk = 0. Setting these values into Theorem 3.2 we have the following corollary.

Corollary 3.3. If all processors are always available for scheduling the tasks in τ , then the tardiness of

any task Tk under a window-constrained scheduling algorithm A is at most max(ρ, z) + ek, where

z =
EL +max(V (ℓ))

m− UL
, (3.36)

and V (ℓ) = −eℓ + α(τ, ℓ) + (m− 1) · ρ.

Note that the denominator of (3.36) is always positive since UL < m holds, by Definition 3.11.

3.4.4 Tightening the Bound for Specific Algorithms

The bounds in Theorem 3.2 and Corollary 3.3 can be improved for particular algorithms by exploiting

the structure of the sets τDH and τDLH, and the way jobs are prioritized. (Indeed, it is difficult to

establish a tight bound when considering only very general properties of a scheduling algorithm.)

For example, for global EDF, χ(Ti,j , t) = di,j , so jobs with deadlines after td have lower priority than

Tℓ,q. Thus, φi = −pi, ψi = 0, and ρ = 0. By (3.12), we have DH = ∅, and hence, DLH = ∅, which by

Definitions 3.7 and 3.13, implies α(τ, ℓ) = 0. As a result, tardiness under global EDF for task Tk is at

most

ek +max

(
0,
EL + 2

∑m
k=1 ûk · σk +maxTh∈τ (eh · (

∑m
k=1(1 − ûk)− 1))∑m

k=1 ûk −max(F − 1, 0) ·max(uh)− UL

)
, (3.37)

provided the denominator of the second argument of max is positive.

If at most one processor is partially available, then F ≥ m− 1, F ≤ 1, ûk = 1 for each k except one,

and σk = 0 for each k except one. From this, we have

∑m
k=1 ûk = m− 1 + min(ûh),

∑m
k=1 ûk · σk = max(ûh · σh),

∑m
k=1(1− ûk)− 1 = −min(ûh),

max(F − 1, 0) ·max(uh) = 0.





(3.38)

Setting (3.38) into (3.37), we have a tardiness bound for task Tk under GEDF if at most one processor

is partially available:

ek +
EL + 2max(ûk · σk)−min(ûh) ·minTh∈τ (eh)

m− 1 + min(ûh)− UL
. (3.39)

Finally, if all processors are fully available, then max(ûh · σh) = 0, because σh = 0 for all h,
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and min(ûh) = 1, and hence, by (3.39), the tardiness under global EDF for task Tk is at most

ek +
EL−minTh∈τ (eh)

m−UL
. The latter tardiness bound was first established by Devi and Anderson (2005).

Under global FIFO, jobs are prioritized by their release times, i.e., χ(Ti,j , t) = ri,j . We thus have φi =

0 and ψi = −pi for each task Ti, and hence, by (3.9), ρ = 0 and µ = 0. Using these values and Claim 3.2,

we can upper-bound α(τ, ℓ) by
∑

Ti∈τ\Tℓ
ei. After setting these values into (3.36), from Corollary 3.3, the

maximum tardiness of task Tk under global FIFO is ek +
EL+maxℓ(

∑
Ti∈τ\Tℓ

ei−eℓ)

m−UL
. This bound is slightly

worse than that obtained in (Leontyev and Anderson, 2007c), which is ek +
EL+maxℓ(

∑
Ti : pi>pℓ

ei−eℓ)

m−UL
.

3.4.5 Non-Preemptive Execution

As shown in Section 3.2, the notion of window-constrained priorities allows a wide range of scheduling

algorithms to be described. Some of these algorithms, e.g., global FIFO, execute jobs non-preemptively.

Non-preemptivity is useful when overheads associated with rescheduling are high or when exclusive

access to shared resources is needed. Some simple but efficient resource access protocols require using

short non-preemptive code regions (Block et al., 2007).

Non-preemptive execution causes priority inversions when a lower-priority job is scheduled and a

higher-priority job is ready but not scheduled. In this section, we show how to model non-preemptivity

using window-constrained prioritization functions in a system where all processors are always available

for scheduling the tasks in τ ; we leave the analysis of non-preemptive execution under partial processor

availability as an open problem. (Indeed, it is not clear how to deal with the situation where a processor

becomes unavailable while a job is executing on it non-preemptively.) We assume some additional

constraints on the task system and the scheduler.

Definition 3.17. We call a task system restricted early-release if there exists a constant γ ≥ 0 such

that, for each job Ti,j ,

ǫi,j ≥ ri,j − γ. (3.40)

Definition 3.18. Let χA(Ti,j , t) be a prioritization function imposed by the scheduling algorithm A.

We call A eventually-monotonic if there exists a constant M ≥ 0 such that for each job Ti,j , for all

t ≥ di,j +M and v ≥ 0, χA(Ti,j , t) ≤ χA(Ti,j , t+ v).

From the above definition, any algorithm for which χA(Ti,j , t) is constant, e.g., global EDF, FIFO,

and RM, is eventually-monotonic. Also, it is easy to verify that LLF and EDZL, as specified as in

Examples 3.5 and 3.6, are eventually-monotonic. In the rest of this section, we concentrate on restricted

early-release task systems scheduled under an eventually-monotonic scheduler A assuming that (3.3)
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holds for χA(Ti,j , t). We show how to modify the prioritization functions of A in a window-constrained

way to ensure non-preemptive execution (if this is not ensured already).

Definition 3.19. Let φmax = maxTi∈τ (φi), pmax = maxTi∈τ (pi), and G = µ+γ+φmax+M+pmax+1.

As mentioned earlier, non-preemptive execution causes priority inversions when a low-priority job

Ti,j is scheduled and there is a ready high-priority job Ta,b that is not scheduled. This means that Ti,j ’s

priority is effectively higher than that of Ta,b for the duration of the non-preemptive region. We can

explicitly model this behavior by changing prioritization functions of A as follows.

If a ready job Ti,j is not executing within a non-preemptive region, then χ(Ti,j , t) = χA(Ti,j , t). If

Ti,j begins executing a non-preemptive region at time t1 and leaves that region at a later time t2, then we

“boost” its priority while it executes non-preemptively by setting χ(Ti,j , t) = ri,j −G for all t ∈ (t1, t2).

Theorem 3.3. (proved in the appendix) If A is an eventually-monotonic scheduling algorithm and

its prioritization functions are augmented as described above, then no job is preempted while executing

in a non-preemptive region.

The augmented prioritization function χ(Ti,j , t) remains window-constrained because ri,j − G ≤

χ(Ti,j , t) ≤ di,j −ψi holds, where G is constant. By Corollary 3.3, this implies that tardiness is bounded

for any restricted early-release task system under a window-constrained eventually-monotonic scheduler

on m fully available processors even if the tasks in τ have non-preemptive regions.

3.5 Experiments

As noted in Section 3.4, different algorithms to which Theorem 3.2 applies may exhibit very different

behavior in terms of tardiness. To provide a sense of how significant such differences can be, we present

here the results of some experiments that we conducted to compare observed tardiness under different

scheduling algorithms.

In these experiments, we examined m-procssesor systems for which task sets were randomly gen-

erated. Each task in such a task set was generated by selecting an integral execution time, uniformly

distributed over the range [1, 10], and a utilization, uniformly distributed over the range [umin, umax).

We considered three utilization ranges: [0.01, 0.05) (light), [0.05, 0.5) (medium), and [0.5, 0.9) (heavy).

For each utilization range, a seed task set τ of total utilization at least (m + 1)/2 was generated, and
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then additional task sets were successively generated by adding tasks to τ until total utilization ex-

ceeded m. This process was then repeated until a total of 500 seed task sets had been generated (for

that utilization range). For each resulting task set, we produced schedules (with job releases occurring

in a synchronous, periodic manner) for each of EDF, FIFO, LLF, and EDZL for min(20000, 20 ·max(pi))

time units. The selected interval lengths are not guaranteed to be larger than the least common multiple

of the periods of the tasks in each generated task set. However, for a subset of the generated task sets,

we simulated significantly longer schedules and found that tardiness did not grow significantly beyond

the min(20000, 20 ·max(pi)) threshold. In producing schedules, system and scheduling overheads were

taken to be negligible. For each schedule, the maximum observed tardiness was recorded.

Figure 3.10 shows the maximum observed tardiness values under EDF, FIFO, LLF, and EDZL as

a function of Usum for m = 4 for the light (inset (a)), medium (inset (b)), and heavy (inset (c)) uti-

lization ranges. These observed values are denoted O-GEDF, O-FIFO, O-LLF, and O-EDZL, respectively.

Additionally, for each task set, a maximum tardiness bound under LLF and EDZL was computed us-

ing Corollary 3.3 and assuming ψi = φi = 0 for each task Ti. This bound is denoted C-GEN (it is a

generalized bound, which is also applicable to FIFO and EDF). We also computed tighter bounds for

EDF and FIFO, denoted C-GEDF and C-FIFO, respectively, as discussed in Section 3.4.4. To compute

the maximum deadline tardiness under FIFO, we used the slightly improved bound mentioned earlier in

Section 3.4.4 from (Leontyev and Anderson, 2007c). Figure 3.11 depicts similar data for the case m = 8.

Of the four scheduling algorithms under consideration, observed tardiness under LLF and EDZL was

smaller than that under FIFO and EDF (much smaller than under FIFO). While LLF may be impractical

in reality because it preempts jobs frequently, EDZL could be a viable approach for scheduling soft real-

time workloads when tardiness is allowed.

The general tardiness bound obtained using Corollary 3.3 is five to six times larger than the maximum

task execution time, which seems quite reasonable, for the medium and heavy per-task utilization ranges

(see insets (b) and (c) of Figures 3.10 and 3.11). In contrast, for the light utilization range, the maximum

tardiness bound is about twenty times larger than the maximum per-task execution cost. However, the

observed tardiness under FIFO for that utilization range is also quite high so it is unlikely that the

general bound can be improved much (see inset (a) of Figures 3.10 and 3.11). Even though observed

tardiness under LLF and EDZL is practically zero, the tardiness bound given for them by Corollary 3.3

(C-GEN) is very pessimistic, due to the use of a conservative estimation for α(τ, ℓ) (from Claim 3.2).

Obtaining a better estimation for these algorithms is difficult, due to their dynamic nature.

The experiments also show that the FIFO bound improvement discussed in Section 3.4.4 is only a
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Figure 3.10: Maximum deadline tardiness observed and computed for (a) light, (b) medium, and (c)
heavy per-task utilization ranges for m = 4 processors.

slight improvement (C-GEN and C-FIFO do not differ much in any graph). In contrast, the improved

bound for EDF is significantly better. (Note that the improved bound for EDF is two to three times

larger than the maximum per-task execution time for all utilization ranges.) These results suggest that

it might be possible to improve the tardiness bound for each algorithm (particularly EDZL and LLF)

further. We leave the development of tighter bounds for these algorithms as open problems.
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Figure 3.11: Maximum deadline tardiness observed and computed for (a) light, (b) medium, and (c)
heavy per-task utilization ranges for m = 8 processors.

3.6 Summary
In this chapter, we have presented a general tardiness-bound derivation that applies to a wide variety

of global scheduling algorithms. Our results show that, with the exception of static-priority algorithms,

most global algorithms of interest in the real-time-systems community have bounded tardiness. When

considering new algorithms, the question of whether tardiness is bounded can be answered in the affir-

mative by simply showing that the required prioritization can be specified. Of course, a tardiness bound

that is tighter than that given by our results might be possible through the use of reasoning specific
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to a particular algorithm. Indeed, it is difficult to obtain a very tight bound when assuming so little

concerning the nature of the scheduling algorithm. Our goal in this chapter was not to produce the

tightest bound possible, but rather to produce a bound that could be widely applied. We leave as an

open question whether the existence of a window-constrained prioritization for a scheduling algorithm

is a necessary condition for bounded tardiness.

Several interesting avenues for further work exist. First, it would be interesting to investigate reactive

techniques that could be applied at runtime to lessen tardiness for certain jobs by redefining priority

points, as circumstances warrant. Such techniques might exploit the fact that our framework allows

priority definitions to be changed rather arbitrarily at runtime. Second, our experimental results suggest

that actual tardiness under EDZL is likely to be very low. It would be interesting to improve our analysis

as it applies to EDZL in order to obtain a tight tardiness bound.
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Chapter 4

A Hierarchical Bandwidth Reservation

Scheme with Timing Guarantees

Using the results from the previous chapter, in this chapter1, we design a multiprocessor scheduling

scheme for supporting hierarchical containers that encapsulate sporadic soft and hard real-time tasks.

The rest of this chapter is organized as follows. In Section 4.1, we present our container model.

In Section 4.2, we formally characterize the “supply” available to a container and propose a container

scheduling scheme. In Sections 4.3 and 4.4, we present methods for checking the schedulability of

real-time tasks within a container and for computing the supply available to its child containers (if

any). In Section 4.5, we discuss tradeoffs pertaining to having hard real-time tasks in containers. In

Section 4.6, we examine the extent to which temporal isolation is ensured in container hierarchies under

our scheduling scheme. In Section 4.7, we present our experimental results. We conclude the chapter in

Section 4.8.

4.1 Container Model

In order to support the scheduling of containers within an arbitrary hierarchy, it suffices to consider

the problem of scheduling a single container H on a set of M(H) unit-speed processors, where some

processors may not be available for execution during certain time intervals. The set of child containers

and real-time tasks encapsulated in H is referred to as succ(H). (Non-real-time tasks could be contained

1Contents of this chapter appeared previously in the following papers:
Leontyev, H. and Anderson, J. (2008a). A hierarchical multiprocessor bandwidth reservation scheme with timing guaran-
tees. In Proceedings of the 20th Euromicro Conference on Real-Time Systems, pages 191–200.
Leontyev, H. and Anderson, J. (2009b). A hierarchical multiprocessor bandwidth reservation scheme with timing guaran-
tees. Real-Time Systems, 43(1):60–92.
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Figure 4.1: A host container H that encapsulates another container C1 and four real-time tasks
T1, . . . , T4.

as well, but we do not consider such tasks in this dissertation.) At any time, the container may be

scheduled on several available processors. When the container is scheduled, some of its children are

selected for execution using some internal scheduling policy.

The set of implicit-deadline tasks encapsulated in the container H is denoted τ = {T1, . . . , Tn}. In

that which follows, we find it convenient to view a real-time task as a specialized container with no

nested children that can be scheduled on at most one processor at any time and that has hard or soft

deadlines.

Container bandwidth. Each container H is characterized by its bandwidth w(H) ≥ 0, which specifies

the processing capacity to which it is entitled. For a real-time task Ti, we define w(Ti)
∆
= ui. Since the

containers in succ(H) are scheduled when the parent container is scheduled, their allocation time cannot

exceed that of H . Therefore, we require

w(H) ≥
∑

Cj∈succ(H)

w(Cj). (4.1)

Example 4.1. In Figure 4.1, a host container H with bandwidth w(H) = 4 encapsulates a child

container C1 with bandwidth w(C1) = 4/3, two HRT tasks T1(1, 3) and T2(2, 3), and two SRT tasks

T3(1, 4) and T4(2, 4).

Overview of our approach. In the following sections, we solve the problem described at the beginning

of this section via a decomposition into two subproblems, each of which can be solved by applying

previously-published results. First, we split the bandwidth of each container, parent and child, into

integral and fractional parts and argue that the integral parts can easily be dealt with. The fractional

part of each child container is then handled by creating a special SRT server task with utilization equal

to that fractional portion. This leads to our first subproblem, which is that of scheduling within the

parent container, using the “supply” available to it, all child HRT and SRT tasks (where some of the

SRT tasks may be server tasks). We then deal with any HRT tasks by encapsulating them within a new

child container that schedules these tasks on an integral number of processors via a prior HRT scheduling
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scheme. This leaves us with our second subproblem, which is to schedule within the parent container

a collection of SRT tasks. We solve this problem by exploiting the fact that window-constrained global

scheduling algorithms ensure bounded tardiness, as shown in Chapter 3. So that our overall scheme

can be applied recursively in a container hierarchy, we finish our analysis by characterizing the supply

available to each child container.

4.2 Container Scheduling

The host container H receives processor time from M(H) individual processors. We now further con-

strain the manner in which any container C receives processor time by assuming the following.

(P) At any time, a container C can be scheduled on m(C)
∆
= ⌊w(C)⌋ or M(C)

∆
= ⌈w(C)⌉ processors.

This restriction minimizes the execution parallelism available to C so that, for any interval of length

∆, C’s allocation is within [⌊w(C)⌋∆, ⌈w(C)⌉∆]. For real-time tasks, this restriction holds implicitly,

because a real-time task Ti is scheduled on at most one processor at any time and w(Ti) = ui ≤ 1, so

⌈w(Ti)⌉ = 1 and ⌊w(Ti)⌋ = 0. We say that a processor is fully available to C, if it is dedicated exclusively

to C. Given Restriction (P), we can assume that m(C) processors are fully available to C.

As explained in detail later, there are two reasons for introducing Restriction (P). First, increasing

the amount of supply parallelism (the number of available processors) restricts the maximum per-task

utilization and the total system utilization if the long-term supply remains fixed. Second, maximizing

the number of processors fully available to C lessens deadline tardiness for any child real-time task.

Intuitively, this is because such tasks are sequential and thus may leave processors unused if parallelism

is increased too much.

Example 4.2. Consider a container H with bandwidth w(H) = 4/3 that encapsulates a task T1(5, 6),

as shown in Figure 4.2(a). Suppose that processor time is supplied as shown in Figure 4.2(b) so that

H occupies two processors for two time units every three time units. The supply available to H is

approximately 4·∆
3 for any sufficiently long interval ∆. However, H does not execute during the interval

[2, 3), so Restriction (P) is violated, because ⌊w(H)⌋ = ⌊4/3⌋ = 1. Task T1’s jobs demand five execution

units every six time units, but because they must execute sequentially, they can execute for only four

time units every six time units. Thus, task T1’s tardiness can be unbounded. In the schedule in

Figure 4.2(c), container H also receives four execution units every three time units, but in contrast to

Figure 4.2(b), Restriction (P) is satisfied. Because one processor is fully available to H , task T1 meets

all of its deadlines.
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Figure 4.2: Comparison of supply parallelism in Examples 4.2 and 4.3.

As one may suspect, enforcing Restriction (P) may sometimes have negative consequences. Indeed,

a task set with a large number of tasks may benefit from a larger number of available processors if all

deadlines have to be met.

Example 4.3. Consider the containerH from the previous example, except that it now encapsulates two

real-time tasks T1(2, 3) and T2(2, 3), as shown in Figure 4.2(d). In the schedule shown in Figure 4.2(e),

which is equivalent from the container’s perspective to that in Figure 4.2(b), jobs of T1 and T2 meet their

deadlines. However, in the schedule in Figure 4.2(f), where Restriction (P) is enforced as in Figure 4.2(c),

job T2,1 misses its deadline at time 3 because it cannot execute on two processors simultaneously during

the time interval [2, 3). Still, in this schedule, T2’s tardiness is only one time unit.

The two examples above illustrate that, while minimizing supply parallelism may negatively impact

timeliness, it allows the widest range of loads to be scheduled with bounded deadline tardiness, which

is in accordance with our focus on SRT tasks.

We now develop a scheduling policy that enforces Restriction (P) for child containers assuming that

it holds for the host container H . Given the latter, H is supplied time from M(H) processors, where

m(H) processors are always available for scheduling succ(H) and at most one processor is partially

available.

A child container Ci ∈ succ(H) must occupy at least m(Ci) processors at any time. By (4.1),

w(H) ≥
∑

Ci∈succ(H) w(Ci), and hence, m(H) = ⌊w(H)⌋ ≥ ⌊
∑

Ci∈succ(H) w(Ci)⌋ ≥
∑

Ci∈succ(H)⌊w(Ci)⌋

=
∑

Ci∈succ(H)m(Ci). Therefore, we can make m(Ci) processors fully available to each child container

Ci ∈ succ(H) by using them(H) processors fully available toH . Note that, for containers with w(Ci) < 1
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(including real-time tasks), m(Ci) = ⌊w(Ci)⌋ = 0. In any event, given this design decision, each child

container Ci receives at least m(Ci)∆ units of time over an interval of length ∆.

If a child container Ci is not a real-time task and m(Ci) < w(Ci), then it occasionally needs supply

from an additional processor. For this, we construct a SRT periodic server task Si(ei, pi), where ui =

ei/pi = w(Ci)−m(Ci) < 1. (The term periodic means that ri,j = (j − 1) · pi holds for each j ≥ 1.)

We denote the set of server tasks as τS = {S1, . . . , Sn}. Jobs of these tasks are scheduled together

with the jobs of encapsulated real-time tasks using the remaining m(H) −
∑

Cj∈succ(H)m(Cj) fully

available processors and at most one partially available processor. When task Si’s jobs are scheduled, an

additional processor is available to container Ci. Because server task Si is constructed only if w(Ci) >

m(Ci) = ⌊w(Ci)⌋, we have ⌈w(Ci)⌉ = m(Ci) + 1 = M(Ci). Thus, container Ci always occupies m(Ci)

processors, and M(Ci) processors are occupied when a job of Si is scheduled. Thus, Restriction (P) is

ensured for each child container.

Example 4.4. Consider container H from Example 4.1. For container C1, one processor is reserved

because ⌊w(C1)⌋ = ⌊4/3⌋ = 1. For this container, we also construct a SRT server task S1(1, 3), so that

⌊w(C1)⌋+ e1/p1 = 1+1/3 = w(C1). When jobs of S1 are scheduled, an additional processor is available

to container C1, as shown in Figure 4.3(b).

Let HRT(H) (respectively, SRT(H)) be the set of HRT (respectively, SRT) tasks encapsulated in

H . The remaining problem at hand, referred to as Subproblem 1, is that of scheduling tasks from the

sets HRT(H), SRT(H), and τS on some number of fully available processors and at most one partially

available processor.

4.3 Subproblem 1

To schedule the tasks in HRT(H), we encapsulate them into a child container Chrt with integral band-

width w(Chrt) = m(Chrt) = M(Chrt). Applying Restriction (P) to Chrt, m(Chrt) processors must be

reserved for this container. In this section, we consider two approaches for scheduling the remaining tasks

in SRT(H) and τS ; in the first approach, HRT and SRT tasks do not execute on the same processors,

and in the second approach, they may.

Basic approach. The tasks in HRT(H) can be scheduled within Chrt using a variety of approaches.

Given our emphasis on SRT tasks, we simply use the partitioned EDF (PEDF) algorithm for this purpose,

deferring consideration of other approaches to future work. Under PEDF, tasks are statically assigned
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Figure 4.3: Example 4.5. (a) Isolating HRT tasks. (b) A schedule with the two HRT tasks in a separate
container.

to processors and each processor schedules its assigned tasks independently on an EDF basis. Assume

that processor h is among the m(Chrt) processors reserved for container Chrt and let τh denote the set

of sporadic HRT tasks assigned to that processor. All task deadlines will be met on processor h if

Usum(τh) =
∑

Ti∈τh

ui ≤ 1, (4.2)

which is a well-known uniprocessor EDF schedulability test (Liu and Layland, 1973). This test, when

applied in a multiprocessor system, presumes a given assignment of tasks to processors. Such an assign-

ment (and correspondingly, the number of processors required for Chrt) can be determined using any

of various bin-packing heuristics. Further results concerning PEDF schedulability tests can be found

in (Baruah and Fisher, 2006, 2007; Chakraborty and Thiele, 2005; Liu, 2000).

As mentioned earlier in Sections 1.5.2 and 2.1.1, HRT policies may introduce utilization loss. For

PEDF, there exist task sets, for which the reserved processors could be underutilized. However, if HRT

tasks are relatively few in number, such loss will likely be small, compared to the total utilization of SRT

tasks. Loss is incurred when creating Chrt if its bandwidth (given by the number of processors required

for it) exceeds the sum of the utilizations of the HRT tasks it contains. If this is the case, then (4.1)

must be validated with the tasks in HRT(H) replaced by the container Chrt.

Example 4.5. Consider again container H from Example 4.1. In our approach, we encapsulate the two

HRT tasks T1(1, 3) and T2(2, 3) into a container Chrt, as shown in Figure 4.3(a). The total utilization of

these two tasks is Usum = u1+u2 = 1/3+2/3 = 1. By (4.2), these two tasks will meet their deadlines if

scheduled using uniprocessor EDF. We set w(Chrt) = 1, so the container Chrt will require one processor.

The total bandwidth of containerH ’s children is
∑

Ci∈succ(H) w(Ci) = w(C1)+w(Chrt)+w(T3)+w(T4) =
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4/3 + 1 + 1/4 + 2/4 = 37/12 < 4 = w(H), so (4.1) is satisfied. When scheduling the modified container

H on ⌈w(H)⌉ = 4 processors, as shown in Figure 4.3(b), one processor is reserved for the HRT container

Chrt and tasks T1 and T2 are scheduled on that processor. Note that no utilization loss is incurred by

HRT tasks. In Example 4.4, we reserved one processor for container C1 and constructed the server task

S1(1, 3). Jobs of this server task are scheduled with the jobs of tasks T3 and T4 on the two remaining

fully available processors.

Note that, if a system has a small number of processors, then it may not be possible to dedicate

an integral number of processors for a HRT container as described above. For example, if the parent

container H has fractional bandwidth, then its encapsulated HRT tasks may be required to execute on

a partially available processor. In this case, the HRT schedulability of these tasks can be checked using

a test such as that described in Section 2.3.3. However, if a system is purely SRT, an arbitrarily deep

hierarchy of SRT containers can be maintained even in the uniprocessor case.

In the case when it is possible to reserve an integral number of processors for HRT tasks, it may

not be possible to accommodate SRT tasks using the remaining bandwidth as the following example

illustrates.

Example 4.6. Consider Figure 4.4(a), which depicts a container H that is similar to that from Exam-

ple 4.1, except that T2 has a smaller execution time and there are two additional SRT tasks, T5(1, 2) and

T6(1, 2). In our approach, we encapsulate the two HRT tasks T1(1, 3) and T2(1, 3) into a container Chrt,

as shown in Figure 4.4(a). The total utilization of these two tasks is Usum = u1 + u2 = 1/3 + 1/3 =

2/3. By (4.2), these two tasks will meet their deadlines if scheduled using uniprocessor EDF. We set

w(Chrt) = 1, so the container Chrt requires one processor. When scheduling the modified container H on

⌈w(H)⌉ = 4 processors, as shown in Figure 4.4(b), one processor is reserved for the HRT container Chrt,

and tasks T1 and T2 are scheduled on that processor (inset (c) is considered later). As in Example 4.4,

we reserve one processor for container C1 and construct a server task S1(1, 3). Jobs of this server task

are scheduled with the jobs of tasks T3, . . . , T6.

Under the basic approach, the processor time that remains after scheduling T1 and T2 is unused (see

intervals [2, 3) and [5, 6) within Chrt in Figure 4.4(b)). Thus, the bandwidth available to tasks S1 and

T3, . . . , T6 is w(H)−m(Chrt)−m(C1) = 4− 1− 1 = 2. However, the total bandwidth required by tasks

S1 and T3, . . . , T6 is w(S1)+w(T3)+w(T4)+w(T5)+w(T6) = 1/3+1/4+2/4+1/2+1/2 = 25/12 > 2,

and hence, tasks S1 and T3, . . . , T6 will have unbounded deadline tardiness. Note that, in the schedule

in Figure 4.4(b), the ready job T6,2 is not scheduled during the interval [2, 3) even though there is an
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Figure 4.4: (a) Container considered in Examples 4.6 and 4.7. A schedule (b) with and (c) without
HRT time reclamation.

available processor. Similarly, the ready job T4,2 is not scheduled during the interval [5, 6).

Extended approach. In order to allocate the available bandwidth more efficiently, we can use the

time not allocated to HRT tasks on some of the m(Chrt) processors reserved for such tasks to schedule

tasks in SRT(H)∪ τS (in addition to the supplied time on other processors). We allow this approach to

be selectively applied by defining the parameter K(H) below.

Definition 4.1. Let K(H) ∈ [0,m(Chrt)] be the number of processors where tasks in HRT(H) and

SRT(H) ∪ τS are co-scheduled.

We assume that HRT tasks are statically prioritized over SRT and server tasks. Thus, HRT tasks

still execute as if an integral number of processors were dedicated to their exclusive use. After assigning

all HRT tasks to the m(Chrt) processors reserved for them and then selecting K(H), the utilization loss

due to partitioning is Ulost =
∑m(Chrt)

k=K(H)+1(1−Usum(τk)) (we assume that HRT-allocated processors are

numbered in order of increasing Usum(τk)). Though engaging additional processors for scheduling tasks

in SRT(H) ∪ τS (i.e., increasing K(H)) reduces utilization loss and sometimes is imperative in order

to accommodate all SRT tasks, a large value for K(H) may negatively impact SRT schedulability as

discussed later in Section 4.4; tradeoffs involved in selecting K(H) are discussed in Section 4.5. After

weighing such tradeoffs and selecting a value for K(H), (4.3) below must be validated to account for
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any lost bandwidth.

w(H) ≥
∑

Cj∈succ(H)

w(Cj) + Ulost (4.3)

Example 4.7. Consider container H from Example 4.6. A schedule where HRT processor time is

reclaimed (i.e., K(H) = 1) is shown in Figure 4.4(c). The bandwidth available to tasks S1 and T3, . . . , T6

is w(H) − w(T1) − w(T2) − m(C1) = 4 − 1/3 − 1/3 − 1 = 7/3, which is greater than the bandwidth

required by these tasks. Note that, in this schedule, the processors supplied to H are idle only if there

are not enough ready tasks to occupy all of them.

Having dispensed with any HRT tasks, we can complete our solution to Subproblem 1 by devising a

scheduling policy that ensures bounded tardiness for the remaining SRT tasks, some of which may be

server tasks.

Definition 4.2. (τs, Ms, and Subproblem 2) Let τs = SRT(H)∪τS . These tasks are to be scheduled

on Ms processors, of which m(H) −
∑

Cj∈succ(H)m(Cj) −m(Chrt) are fully available and K(H) + G,

where G ≤ 1, are partially available. Note that K(H) processors are partially available due to HRT tasks

internal to H and at most one additional processor is partially available because the supply provided by

H ’s parent is subject to Restriction (P).

We refer to this last remaining subproblem as Subproblem 2.

4.4 Subproblem 2

In solving Subproblem 2, restrictions on supplied processor time are of relevance. From Definition 4.2,

of the Ms processors under consideration, K(H) + G are partially available. We assume that these

Ms processors are indexed so that the supply from them can be described using Ms supply functions:

βl
k(∆) = max(0, ûk(∆ − σk)), where 0 < ûk ≤ 1 and σk ≥ 0, for 1 ≤ k ≤ K(H) +G; and βl

k(∆) = ∆,

for K(H) +G + 1 ≤ k ≤ Ms. If K(H) +G ≤ 1, i.e., at most one processor is partially available, then

we say that such a collection of functions is in Minimum Parallelism (MP) form. As explained later,

ensuring that supply is in MP form allows the widest range of SRT workloads to be supported without

incurring utilization loss.

Before continuing, note that if Ms = 1, i.e., all remaining SRT tasks are to be scheduled on one

processor, then EDF can be used on that processor. If this processor is fully available, then tardiness

will be zero for these tasks (due to the optimality of EDF), and if it is partially available, then it

can be easily shown to be bounded, using real-time calculus (Chakraborty and Thiele, 2005), provided
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Usum(τs) ≤ û1. In the remainder of this section, we concentrate on the more interesting case, Ms ≥ 2.

In this case, our approach leverages the results from Chapter 3. We next briefly remind the reader about

the relevant problem setup.

Let τ be a set of implicit-deadline SRT tasks scheduled on M ≥ 2 processors, with supply functions

βl
k(∆) = max(0, ûk(∆ − σk)), where 1 ≤ k ≤ M . (Note that τ was defined earlier in Section 1.3. Here,

we mean τ to denote any sporadic SRT task set. The distinction should be clear from the context.)

Assume

Usum(τ) ≤
M∑

k=1

ûk, (4.4)

i.e., the total system utilization is at most the total supplied bandwidth. Released jobs are placed into a

single global ready queue. When choosing a new job to schedule, the scheduler selects (and dequeues) the

ready job of highest priority. Job priorities are determined as defined in Definition 3.1 (see Section 3.3).

We assume that the scheduling algorithm’s prioritization function is window-constrained as defined in

Definition 3.4 (see Section 3.3). Below, we repeat a definition that will be often referred in the rest of

this chapter.

Definition 3.11 (see Section 3.3). (U(τ, y) and E(τ, y)) Let U(τ, y) (E(τ, y)) be the set of at most

min(|τ |, y) tasks from τ of highest utilization (execution cost), where |τ | is the number of tasks in τ , and

let

EL =
∑

Ti∈E(τ,m−1)

ei and (4.5)

UL =
∑

Ti∈U(τ,m−1)

ui. (4.6)

4.4.1 Minimizing the Tardiness Bound

In Section 3.3, we established Theorem 3.2, which gives maximum tardiness bounds for implicit-deadline

SRT task systems subject to (4.4) scheduled on a restricted-capacity platform. Given this theorem, we

now argue in favor of Restriction (P) and show how enforcing this restriction affects the tardiness bound

in Theorem 3.2. Consider the denominator of (3.33) (see Section 3.3 in Chapter 3; note that m =M):

M∑

k=1

ûk −max(F − 1, 0) · max
1≤ℓ≤|τ |

(uℓ)− UL. (4.7)
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The requirement for (4.7) to be positive implicitly restricts the maximum per-task utilization if F > 1,

i.e., if two or more processors are partially available. Note also that the value of x is minimized if

(4.7) is maximized. Suppose that the total supplied bandwidth W =
∑M

k=1 ûk is fixed. Then, (4.7)

will be maximized if either max(F − 1, 0) ·max1≤ℓ≤|τ |(uℓ) or UL or both are minimized. The value of

UL depends exclusively on task utilizations and the total number of processors M , as (4.6) suggests.

Therefore, UL will be minimized if the total number of processors M is minimized. The expression

max(F −1, 0) ·max1≤ℓ≤|τ |(uℓ) is minimized if F ≤ 1, that is, at most one processor is partially available.

Thus, if the total processor bandwidth W is fixed, then (4.7) is maximized by setting M = ⌈W ⌉ and

having ⌊W ⌋ processors fully available. The bandwidth of at most one partially available processor (if

any) is û1 =W − ⌊W ⌋.

The above discussion suggests that bounded tardiness among SRT and server tasks can be achieved

for the widest range of task utilizations if the supply to SRT(H) ∪ τS is given in MP form. This is the

case if either K(H) = 0, (e.g., when HRT(H) = ∅ or no spare HRT capacity is reused) or G = 0 and

K(H) ≤ 1 (i.e., when the bandwidth supplied to H is integral and HRT capacity is reused on at most

one processor). If K(H)+G > 1, then bounded tardiness may be guaranteed for certain SRT workloads.

Various tradeoffs are possible with regard to the selection of K(H). These tradeoffs are discussed in

Section 4.5. After applying Theorem 3.2 to Subproblem 2, we have the following.

Corollary 4.1. Let τs, Ms, K(H), and G be as defined in Definition 4.2. The tardiness of any task

Tk ∈ τs under a window-constrained scheduling policy is at most max(z, ρ) + ek, where

z =

EL + max
1≤ℓ≤|τs|

(V (ℓ))

Ms −K(H)−G+

K(H)+G∑

h=1

ûh −max(K(H) +G− 1, 0) max
1≤ℓ≤|τs|

(uℓ)− UL

, (4.8)

V (ℓ) = eℓ ·




K(H)+G∑

k=1

(1− ûk)− 1


+ 2 ·

K(H)+G∑

k=1

ûk · σk

+
∑

Tk∈τs\Tℓ

(⌈
ρ+ µ

pk

⌉
+ 1

)
· ek +min(Ms −K(H)−G,Ms − 1) · ρ

provided (4.4) holds (with M replaced with Ms and τ replaced with τs) and (4.9) below holds.

Ms −K(H)−G+

K(H)+G∑

h=1

ûh −max(K(H) +G− 1, 0) max
1≤ℓ≤|τs|

(uℓ)− UL > 0 (4.9)
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Proof. We prove the corollary using results from Section 3.3; henceforth, when such results are applied,

we assume that m is replaced with Ms and τ is replaced with τs. In the formulation of Subproblem 2,

K(H) + G supply functions βl
1(∆) may differ from ∆. Thus, F = K(H) + G. By Definition 3.15 (see

Section 3.3),

(∀k : K(H) +G+ 1 ≤ k ≤Ms :: σk = 0 ∧ ûk = 1). (4.10)

Thus,
Ms∑

h=1

ûh =

K(H)+G∑

h=1

ûh +

Ms∑

h=K(H)+G+1

ûh =

K(H)+G∑

h=1

ûh + (Ms −K(H)−G), (4.11)

(
Ms∑

k=1

(1 − ûk)− 1

)
=




K(H)+G∑

k=1

(1− ûk)− 1


 , (4.12)

and

2 ·
Ms∑

k=1

ûk · σk = 2 ·

K(H)+G∑

k=1

ûk · σk. (4.13)

Setting F = K(H) + G and substituting (4.12) and (4.13) into (3.34), we get V (ℓ) as defined in the

statement of the corollary. Finally, substituting (4.11) into (3.33), we get z as defined in the statement

of the corollary.

If GEDF is used for SRT tasks, then the tardiness bound in Corollary 4.1 can be further tightened

by setting V (ℓ) in (4.8) to eℓ · (
∑K(H)+G

k=1 (1 − ûk) − 1) + 2 ·
∑K(H)+G

k=1 ûk · σk, as shown in (3.37) in

Section 3.4.

The following lemma shows that providing supply in MP form allows the widest range of SRT

workloads to be supported.

Lemma 4.1. If the supply to the tasks in τs is in MP form, then (4.9) always holds.

Proof. If the supply to τs is in MP form, then K(H) +G ≤ 1. We thus have

Ms −K(H)−G+

K(H)+G∑

h=1

ûh =Ms − 1 + û1. (4.14)

Setting K(H) +G ≤ 1 and (4.14) into the left-hand side of (4.9) we have
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Ms −K(H)−G+

K(H)+G∑

h=1

ûh −max(K(H) +G− 1, 0) max
1≤ℓ≤|τs|

(uℓ)− UL

=Ms − 1 + û1 − UL. (4.15)

We now consider two cases depending on the number of tasks in τs.

Case 1: |τs| ≤Ms − 1. In this case, by (4.6), UL =
∑|τs|

i=1 ui ≤Ms − 1 < Ms − 1 + û1, where the latter

inequality follows from Definition 1.2.

Case 2: |τs| > Ms−1. In this case, by (4.6), UL < Usum(τs)
{by (4.4)}

≤
∑Ms

h=1 ûh =Ms−1+ û1, where the

latter equality follows from (4.10). The required result follows from (4.15) and the two cases above.

Corollary 4.2. If at most one processor is partially available to τs, then Corollary 4.1 only requires

that (4.4) holds. That is, bounded tardiness can be ensured with no utilization loss.

Note that, if all Ms ≥ 2 processors are fully available, then a HRT GEDF schedulability test

(e.g., (Baruah, 2007; Bertogna et al., 2008; Baruah and Baker, 2008)) can be applied to τ before calcu-

lating tardiness bounds. If this test passes, then maximum tardiness is zero.

4.4.2 Computing Next-Level Supply

The remaining issue is to compute the supply of each child container in MP form, so that our analysis

can be applied recursively in a container hierarchy. Note that we can do this regardless of whether the

basic or extended approach described in Section 4.3 is used. Ensuring that child-container supplies are

in MP form ensures that Property (P) holds for such containers.

If a server task Si(ei, pi) has bounded deadline tardiness, then the total guaranteed long-term supply

to container Ci will be proportional to the long-term supply of m(Ci) fully available processors, which

can be described by a set ofm(Ci) supply functions equal to ∆, plus that of a partially available processor

with bandwidth ui = ei/pi. We are left with characterizing the processor time that is available to Ci

when the server task Si is scheduled.

The supply guaranteed to the server task Si will depend on its parameters, ei and pi, and its tardiness.

The latter depends on the scheduling algorithm used for SRT and server tasks, their parameters, and
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(if extended approach is used) the amount of supply reclaimed on HRT-occupied processors. In the

derivation of guaranteed supply, we use a definition from Section 3.3, which we repeat below.

Definition 3.5. Let A(Ti,j , t1, t2,Q) be the allocation of job Ti,j during the interval [t1, t2) in the

schedule Q. Let A(Ti, t1, t2,Q) be the allocation of task Ti during the interval [t1, t2) in the schedule Q.

Lemma 4.2. Let Θi be the maximum deadline tardiness of the server task Si’s jobs in Q. Then, the

allocation A(Si, 0, t,Q) satisfies the following.

A(Si, 0, t,Q) ≤ ui · t+ ei · (1− ui) (4.16)

A(Si, 0, t,Q) ≥ ui · t− ui ·Θi − ei · (1− ui) (4.17)

Proof. We first prove (4.16). Let Si,k be the latest job of Si in schedule Q such that ri,k ≤ t. (Such a

job exists because Si is a periodic server task.) Then, by Definition 3.5, the allocation of Si in [0, t) is

A(Si, 0, t,Q)

{because Si,k’s successors do not execute before t in any schedule}

≤ A(Si,k, 0, t,Q) +
∑

j<k

A(Si,j , 0, t,Q)

{because the worst-case execution time of Si is ei}

≤ A(Si,k, 0, t,Q) +
∑

j<k

ei

{because Si,k is not scheduled before ri,k}

≤ min(ei, t− ri,k) +
∑

j<k

ei. (4.18)

The latter expression is maximized if the number of jobs of Si released before ri,k is maximized, as

shown in Figure 4.5(a). Therefore, (4.18) is maximized if k =
⌊

t
pi

⌋
+ 1 and ri,k = (k − 1) · pi. Setting

these values into (4.18), we have

A(Si, 0, t,Q) ≤ min

(
ei, t−

⌊
t

pi

⌋
· pi

)
+ ei ·

⌊
t

pi

⌋

90



0 pi
t

pi pi ei

Si,2Si,1 Si,k

ri,k 0 ri,k
t

pi qi
ei

di,k

Si,kSi,k-1

2pi

job release job deadline

(b)(a)

Figure 4.5: Server task’s (a) maximum and (b) minimum allocation scenarios.

{setting t
pi

= q}

= min (ei, (q − ⌊q⌋) · pi) + ei · ⌊q⌋

= min (ei, (q − ⌊q⌋) · pi) + ei · ⌊q⌋+ e · q − e · q

= min (ei · (⌊q⌋ − q + 1), (q − ⌊q⌋) · (pi − ei)) + ei · q

{setting q − ⌊q⌋ = z}

= min (ei · (1− z), z · (pi − ei)) + ei · q




the min(. . . ) summand is maximized when its two

arguments are equal, which is the case when z = ui





≤ min (ei · (1− ui), ui · (pi − ei)) + ei · q

{setting q = t
pi
}

= ui · t+ ei · (1 − ui).

We now prove (4.17). Let Si,k be the earliest job of Si such that di,k + Θi ≥ t. For this job, since

di,k = ri,k + pi, we have ri,k + pi +Θi ≥ t. Let

ri,k = t− pi −Θi + ε, (4.19)

where ε ≥ 0. By the selection of Si,k, for any job Si,j such that j < k, we have di,j +Θi < t. By the

statement of the lemma, each job of Si completes within Θi time units after its deadline. Therefore, all

jobs Si,j such that j < k complete by time t, i.e.,

A(Si,j , 0, t,Q) = ei for each j < k. (4.20)

The allocation A(Si,k, 0, t,Q) is minimized if A(Si,k, t, di,k + Θi,Q) is maximized. The latter is at

most min(ei, di,k +Θi − t), as illustrated in Figure 4.5(b). Thus,
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A(Si,k, 0, t,Q) = ei − A(Si,k, t, di,k +Θi,Q)

≥ ei −min(ei, di,k +Θi − t)

= max(0, ei − (di,k +Θi − t))

= max(0, ei − (ri,k + pi +Θi − t))

{by (4.19)}

= max(0, ei − ε). (4.21)

Since Si’s jobs are released periodically from time zero (since it is a server task), there are
ri,k
pi

jobs

released before job Si,k. Thus,

A(Si, 0, t,Q) = A(Si,k, 0, t,Q) +
∑

j<k

(A(Si,j , 0, t,Q))

{by (4.20)}

= A(Si,k, 0, t,Q) +
ri,k
pi

· ei

{by (4.21)}

≥ max(0, ei − ε) +
ri,k
pi

· ei

{by (4.19)}

= max(0, ei − ε) +
t− pi −Θi + ε

pi
· ei

= max(0, ei − ε) + ui · t− ui ·Θi − ei + ε · ui

= max(ui · ε− ei, ε · (ui − 1)) + ui · t− ui ·Θi




the max(. . . ) summand is minimized if its two

arguments are equal, which is the case when ε = ei





≥ max(ui · ei − ei, ei · (ui − 1)) + ui · t− ui ·Θi

= ui · t− ui ·Θi − ei · (1 − ui).

Example 4.8. Consider the schedule Q shown in Figure 4.3(b). In this schedule, jobs of the server task

S1(1, 3) execute in the intervals [0, 1), [3, 4), and [6, 7). By time 1, S1 has received one allocation unit,
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Figure 4.6: Server task allocation A(S1, 0, t,Q) in Example 4.8 and its linear upper bound G(t).

by time 4, its allocation is two units, and so on. The allocation A(S1, 0, t,Q) is shown in Figure 4.6 as

a function of t. The figure also shows the upper bound (4.16), which is G(t)
∆
= ui · t + ei(1 − ui) =

1/3 · t+ 1(1− 1/3) = 1/3 · t+ 2/3. It is easy to see that A(S1, 0, t,Q) ≤ G(t).

We now can find guarantees on the supplied processor time for server tasks for an arbitrary time

interval.

Theorem 4.1. Suppose that the scheduling algorithm used by the container H ensures a deadline tar-

diness bound of Θi for the server task Si(ei, pi). Then Si is guaranteed at least ηli(∆) = max(0, ui ·∆−

2 · ei · (1− ui)− ui ·Θi) time units during an interval of length ∆.

Proof. Our goal is to bound the allocation of Si during an interval [t1, t2) by a function of the length of

the interval ∆ = t2 − t1.

A(Si, t1, t2,Q) = A(Si, 0, t2,Q)− A(Si, 0, t1,Q)

{by (4.16) and (4.17)}

≥ ui · t2 − ui ·Θi − ei · (1− ui)− (ui · t1 + ei · (1 − ui))

= ui · (t2 − t1)− 2 · ei · (1− ui)− ui ·Θi

= ui ·∆− 2 · ei · (1 − ui)− ui ·Θi.

A(Si, t1, t2,Q) cannot be less than zero, thus A(Si, t1, t2,Q)≥max(0, ui ·∆−2·ei·(1−ui)−ui·Θi).

Corollary 4.3. The supply to container Ci, as defined above, is described by M(Ci) = ⌈w(Ci)⌉ avail-

ability functions in MP form, where m(Ci) = ⌊w(Ci)⌋ supply functions satisfy βl
j(∆) = ∆ and at most

one supply function satisfies βl
1(∆) = ηli(∆) as given by Theorem 4.1. The total supplied bandwidth for

Ci is w(Ci).
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4.4.3 Computing Available Supply on HRT-Occupied Processors

In the previous section, we computed the supply available to a child container provided the tardiness

bounds of tasks in τs are known. In order to calculate these tardiness bounds using Corollary 4.1,

we need to determine the supply available to τs on K(H) processors where HRT and SRT tasks are

co-scheduled (if HRT capacity is reclaimed) in addition to the supply provided by the parent of H .

We first compute an upper bound on the allocation of an HRT task over the time interval [t, t+∆).

Lemma 4.3. If jobs of Ti finish by their deadlines in the schedule Q, then A(Ti, t, t+∆,Q) ≤ ui ·∆+

2 · ei · (1− ui), for any t and ∆ ≥ 0.

Proof. Let Ti,k be job of Ti with smallest index k that executes within [t1, t2). If no such job exists,

then Ti’s allocation within [t, t + ∆) is zero and the required result holds trivially. Let fi,k be Ti,k’s

completion time. The allocation of Ti,k is thus

A(Ti,k, t, t+∆,Q) ≤ min(ei,∆, ε), (4.22)

where ε = fi,k − t, as illustrated in Figure 4.7. We consider two cases based upon the relationship

between ε and ∆.

Case 1: ε > ∆. In this case, Ti,k commences execution at or before t+∆ and finishes after t+∆. By

the selection of k, Ti,k is the only job of Ti that executes within [t, t+∆). Therefore, Ti’s allocation in

this interval cannot be greater than min(ei,∆). By (4.22) and the condition of Case 1, we have

A(Ti,k, t, t+∆,Q) ≤ min(ei,∆)

= ui ·min(ei,∆) + (1− ui) ·min(ei,∆)

≤ ui ·∆+ (1− ui) · ei

≤ ui ·∆+ 2 · (1 − ui) · ei.

Case 2: ε ≤ ∆. Because, by the condition of the lemma, Ti,k finishes by its deadline, fi,k ≤ di,k =

ri,k + pk ≤ ri,k+1. The allocation of Ti,k’s successor jobs in the interval [t, t+∆) is maximized if all of

these jobs are released as soon as possible after fi,k, as shown in Figure 4.7. Therefore,

∑

j>k

A(Ti,j , t, t+∆,Q) ≤ max

(
0,

⌊
t+∆− fi,k

pi

⌋
· ei +min(ei, (t+∆− fi,k) mod pi)

)
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{setting fi,k − t = ε}

= max

(
0,

⌊
∆− ε

pi

⌋
· ei +min(ei, (∆− ε) mod pi)

)
. (4.23)

By Definition 3.5 and the selection of k,

A(Ti, t, t+∆,Q) = A(Ti,k, t, t+∆,Q) +
∑

j>k

A(Ti,j , t, t+∆,Q)

{by (4.22) and (4.23)}

≤ min(ei,∆, ε) + max

(
0,

⌊
∆− ε

pi

⌋
· ei +min(ei, (∆− ε) mod pi)

)

{by the condition of Case 2}

= min(ei, ε) +

⌊
∆− ε

pi

⌋
· ei +min(ei, (∆− ε) mod pi)

{
setting

∆− ε

pi
= q

}

= min(ei, ε) + ⌊q⌋ · ei +min(ei, q · pi − ⌊q⌋ · pi)

= min(ei, ε) + q · ei − q · ei + ⌊q⌋ · ei +min(ei, q · pi − ⌊q⌋ · pi)

= min(ei, ε) + q · ei +min(ei · (⌊q⌋ − q + 1), (q − ⌊q⌋) · (pi − ei))

{setting q − ⌊q⌋ = z}

= min(ei, ε) + q · ei +min(ei · (1− z), z · (pi − ei))




min(ei · (1− z), z · (pi − ei)) is maximized if both its

arguments are equal, which is the case when z = ui





≤ min(ei, ε) + q · ei +min(ei · (1− ui), ui · (pi − ei))
{
setting q =

∆− ε

pi

}

= min(ei, ε) +
∆− ε

pi
· ei + ei · (1− ui)

= min(ei, ε) + (∆− ε) · ui + ei · (1− ui)

{maximized if ε = ei}

≤ ei + (∆− ei) · ui + ei · (1− ui)

= ui ·∆+ 2 · ei · (1 − ui).
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Figure 4.7: Maximum allocation scenario for a HRT task Ti.

Lemma 4.4. Let τh be the set of HRT tasks assigned to a fully available processor h such that Usum(τh) <

1. For any time interval of length ∆, at least βl
h(∆) = max(0, ûh · (∆ − σh)) time units are available,

where ûh = 1− Usum(τh) and σh =
2
∑

Ti∈τh
ei·(1−ui)

1−Usum(τh)
.

Proof. Consider an interval [t, t + ∆). By Definition 3.5, the time available after scheduling τh within

this interval is

max

(
0,∆−

∑

Ti∈τh

A(Ti, t, t+∆)

)

{setting t1 = t and t2 = t+∆ into Lemma 4.3}

≥ max

(
0,∆−

∑

Ti∈τh

(ui ·∆+ 2 · ei · (1− ui))

)

{by Definition 1.1}

≥ max

(
0,∆ · (1− Usum(τh))− 2 ·

∑

Ti∈τh

ei · (1 − ui)

)

{by the definition of ûh and σh in the statement of the lemma}

= max(0, ûh · (∆− σh)).

Definition 4.3. Let M(H) be the total number of processors that provide supply to H . Let Y =

M(H)−
∑

Cj∈succ(H)m(Cj)−m(Chrt) be the number of processors that are not reserved for HRT tasks

and child containers of H .

The following theorem summarizes the analysis discussed in the previous sections. In the statement

of the theorem, G, K(H), and τs are as defined earlier in Definitions 4.1 and 4.2, and Ms = Y +K(H).

Theorem 4.2. If the host container H’s supply is in MP form, then hard real-time schedulability for

HRT tasks and bounded deadline tardiness for SRT and server tasks encapsulated in H are guaranteed if

(4.4) holds (with M is replaced with Ms and τ is replaced with τs) and (4.9) holds. If deadline tardiness

is bounded for a server task, then the supply to the corresponding child container is in MP form and the
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Figure 4.8: Illustration of Theorem 4.2.

supplied bandwidth matches that specified for the child container.

Proof. We illustrate the proof using Figure 4.8. In this figure, the supply available to H is represented

as M(H) bins for which the height of the bin represents the available utilization on the respective

processor. We first dedicate an integral number of processors to supply the integral part of the child

containers’ bandwidths (these processors are shaded black). We then partition the tasks in HRT(H)

among m(Chrt) processors and find the number Y as defined in Definition 4.3. For each processor h

such that h ∈ [Y +1, Y +m(Chrt)], we find the unused bandwidth ûh = 1−Usum(τh) using Lemma 4.4, as

shown in Figure 4.8. After determining K(H), we find Ms = Y +K(H) and the bandwidth available to

SRT and server tasks (this bandwidth is shaded light gray in Figure 4.8). In order to apply Corollary 4.1,

we need to re-number the processors with indices 1 to Ms so that partially available processors are

listed first. Finally, we apply Corollary 4.1 to calculate tardiness bounds for the tasks in τs and use

Corollary 4.3 to find the supply functions for child containers. Each child container Cj ∈ succ(H) is

thus guaranteed supply from an integral number of fully available processors plus the time allocated

on an additional processor whenever the respective server task Sj is scheduled. By Corollary 4.3, this

allocation is proportional to Sj ’s utilization, which is the fractional part of Cj ’s bandwidth. Therefore,

the supplied bandwidth to each child container Cj is proportional to its required bandwidth and is in

MP form.

Applying the above theorem recursively, we can analyze the properties of a container hierarchy. Note

that the tardiness of SRT tasks may be higher as compared to a corresponding non-hierarchical approach,

where all tasks are scheduled at the same level because the degree of parallelism of the available supply

is lower under our approach. This is the price for having temporal isolation among containers. In

Section 4.6, we discuss in greater detail the conditions under which temporal isolation is guaranteed.
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Figure 4.9: Bandwidth allocation and utilization loss in Example 4.9.

4.5 Tradeoffs for HRT Tasks

If there are no HRT tasks in the system, then no utilization loss is incurred. If the system has HRT tasks,

then tradeoffs between the schedulability and tardiness of SRT tasks and utilization loss are possible, as

illustrated by the example below.

Example 4.9. Consider a container H encapsulating three HRT tasks T1, T2, and T3 with utilization

0.51 and six SRT tasks SRT(H) = {T4, . . . , T9} with utilization 0.5 as shown in Figure 4.9(a). H ’s

bandwidth of w(H) = 5.5 is supplied by a partially available processor 1 with û1 = 0.5 and five fully

available processors, as shown in Figure 4.9(b). In this figure, the processors are represented as six bins.

By (4.2), the HRT tasks require three dedicated processors since no two of these tasks can be assigned

to one processor without violating HRT constraints. These tasks are therefore assigned to processors

4–6. The bandwidth consumed by the HRT tasks is shaded. After the HRT tasks are allocated, the

total bandwidth provided by processors 1–3, which is 2.5, is insufficient to handle all SRT tasks, whose

total utilization is Usum(SRT(H)) = 3. We reclaim the unused bandwidth on processors 4 and 5 by

setting K(H) = 2 (see Definition 4.1). The supply available to the SRT tasks is now given by Ms = 5

processors with utilizations û1 = 0.49, û2 = 0.49, û3 = 0.5, û4 = 1.0, and û5 = 1.0, respectively. (Note

that processors are ordered by increasing utilizations. The first two utilization values were obtained using

Lemma 4.4.) The total supplied bandwidth is thus
∑Ms

k=1 ûk = 3.48, which exceeds the total utilization

of the SRT tasks, and hence, (4.4) holds. Because the supply to the SRT tasks is not in MP form (i.e.,

more than one processor is partially available), by Corollary 4.1, we have to test whether (4.9) holds in

order to check the schedulability of T4, . . . , T9. Setting the supply and task parameters into (4.9), we
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have

Ms −K(H)−G+

K(H)+G∑

h=1

ûh −max(K(H) +G− 1, 0) max
1≤ℓ≤|τs|

(uℓ)− UL





because Ms = 5, G = 1, K(H) = 2, max(uℓ) = 0.5,

and UL = (Ms − 1) · 0.5 = 2





= 5− 2− 1 + (0.49 + 0.49 + 0.5)−max(3 − 1, 0) · 0.5− 2

= 0.48

> 0.

Thus, bounded tardiness for the SRT tasks is guaranteed if K(H) = 2. Also, the utilization loss, which

is the bandwidth that is unused by HRT tasks and that is unavailable to SRT tasks, is 0.49 in this case

(this unused utilization is shaded black in Figure 4.9(b)). If we try to reduce the utilization loss even

further by setting K(H) to 3, then, even though the total utilization available to the SRT tasks becomes

3.97, (4.9) no longer holds.

The example above shows that the co-scheduling of HRT and SRT tasks may be necessary in or-

der to accommodate a workload using the supplied bandwidth. However, SRT schedulability can be

compromised for large K(H) due to (4.9). To find the maximum K(H) so that the tasks in τs remain

schedulable, we can apply Theorem 4.2 for each K(H) from m(Chrt) to zero.

From (4.9) and (4.6), we conclude that (4.9) is more likely to hold if K(H) or max1≤ℓ≤|τs|(uℓ) is

small. Therefore, reclaiming processor time can be successful if the maximum per-task utilization of

SRT and server tasks is small.

4.6 Misbehaving Tasks

We call a task Ti misbehaving if its worst-case execution time may exceed ei. In this section, we describe

the impact of misbehaving tasks on a system and show how to alleviate any adverse effects. Consider

the container configuration shown in Figure 4.10. In this figure, T1 is a misbehaving task and is denoted

by a star-shaped outline. In the configuration shown in Figure 4.10, the processor supplies of C1 and

C3 depend solely on the supply of H and the parameters of the server tasks S1 and S3, which cannot

be misbehaving since a server task is not scheduled when its budget is depleted. By Corollary 4.3, the

parameters of S3 and its deadline tardiness define the guaranteed supply of C3, and hence, the tardiness
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Figure 4.10: Container isolation.

of T5 and T6. Thus, the misbehaving task T1 does not affect the timeliness of tasks belonging to C3.

That is, the tasks in container C3 are temporally isolated from the misbehaving task. More generally,

any two tasks Ti ∈ succ(Ck) and Tj ∈ succ(Cl) are temporally isolated iff Ck is not a member of the

hierarchy rooted at Cl and Cl is not a member of the hierarchy rooted at Ck.

On the other hand, a misbehaving task Ti can affect the timeliness of tasks encapsulated in that

part of container hierarchy that is rooted at Ti’s parent. In our example, due to the misbehaving task

T1, task T2’s tardiness may exceed its computed bound. As a consequence, the tardiness of the server

task S2 of container C2 may exceed its computed bound thereby invalidating the bounds on processor

allocation for container C2. This, in turn, may affect the timeliness of the encapsulated tasks T3 and T4.

To prevent such problems, any potentially misbehaving task should be isolated in a container for which

a budget can be enforced.

4.7 Experiments

We now present the results of experiments conducted to compare our container-aware scheduling scheme

with conventional scheduling techniques. In these experiments, performance was compared using randomly-

generated task sets, which have both HRT and SRT tasks.

Task generation procedure. In order to gain intuition about the properties of a large multiprocessor

platform running multiple isolated components, we evaluated a three-level container hierarchy consisting

of a root container C0, four second-level containers, and then the contained tasks, as shown in Figure 4.11.

The i-th second-level container is denoted C
[i]
sys and its contained HRT and SRT tasks as τ

[i]
hrt and τ

[i]
srt,

respectively. Randomly-generated tasks were added to these sets while U(τ
[i]
hrt) is at most Uhrt ≤ 1 and

U(τ
[i]
srt) ≤ 3.5. Task utilizations were taken randomly from [0, 0.15) for HRT tasks and from [umin, umax)

for SRT tasks. We examined three HRT total utilization caps Uhrt and four SRT utilization ranges, as

described later. Integral task periods were taken randomly from [100, 1000] for HRT tasks and from
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Figure 4.11: Experimental setup.

[10000, 50000] for SRT tasks. Integral execution times were computed using periods and utilizations.

We compared our container-aware scheduling scheme (Container-Aware Scheduling (CA)) with PEDF

and a hybrid EDF-based scheme (Hard-Soft Scheduling (HS)), both of which are oblivious to containers.

The HS scheme, which is described later in this section, is a näıve combination of PEDF and GEDF.

PEDF was selected because it exhibits good timeliness, and HS was selected because it can satisfy the

requirements of HRT and SRT tasks using relatively few processors. However, HS and PEDF do not

provide any isolation among containers. In our experiments, we compared the tested schemes based on

the required number of processors (RNP) and deadline tardiness bound (TB). We did not consider any

system overheads or other container hierarchies. Such things are very application- and implementation-

specific, respectively, and our intent here is only to provide a basic sense of how our scheme compares

to the other implementation alternatives.

Defining RNP. Under PEDF, RNP is defined as the minimum number of processors required to par-

tition all real-time tasks using the first-fit heuristic. Under PEDF, all tasks have zero tardiness.

Under HS, HRT and SRT tasks run on disjoint processor sets, with all HRT tasks scheduled together

using PEDF with the first-fit heuristic, and all SRT tasks scheduled together using GEDF. RNP for the

SRT tasks is thus

Msoft =

⌈
4∑

i=1

Usum(τ
[i]
srt)

⌉
.

Letting Mhard denote the HRT RNP, overall RNP under HS is simply Mhard +Msoft.

Under CA, we set container C
[i]
sys’s bandwidth to w(C

[i]
sys) = WI +Wf where WI is the number of

required fully available processors, and Wf is the minimum utilization due to (at most one) partially

available processor. As explained next, WI and Wf were determined based upon whether it is possible

to reclaim bandwidth not used by HRT tasks (we illustrate this explanation with an example below).

Because U(τ
[i]
hrt) ≤ Uhrt ≤ 1, the HRT tasks of each second-level container require at most one processor.

We checked whether any bandwidth on this processor can be reclaimed for SRT tasks as follows. We set

Kr(H) = 1 (reclaiming is possible) if τ
[i]
srt is schedulable on

⌈
Usum(τ

[i]
hrt ∪ τ

[i]
srt)
⌉
processors such that one

processor has an available utilization of 1 − Usum(τ
[i]
hrt) and one processor has an available utilization

101



of frac(Usum(τ
[i]
hrt ∪ τ

[i]
srt)), where frac(x) is the fractional part of x. Otherwise, we set Kr(H) = 0 (i.e.,

reclaiming is not possible). After the degree of reclamation was determined, we set

WI =





⌊Usum(τ
[i]
srt ∪ τ

[i]
hrt)⌋ if Kr(H) = 1

⌊Usum(τ
[i]
srt)⌋+ 1 otherwise.

The fractional part of the bandwidth Wf was set to

Wf =





frac(Usum(τ
[i]
srt ∪ τ

[i]
hrt)) if Kr(H) = 1

frac(Usum(τ
[i]
srt)) otherwise.

Example 4.10. Consider container C
[1]
sys with HRT task T1(200, 300) and SRT tasks T2(100, 400), . . . ,

T4(100, 400), and T5(500, 800) as shown in Figure 4.12(a). (Note that these task parameters are not

allowed by out task generation method; however, allowing them simplifies the example.) For this task set,

Usum(τ
[1]
hrt) = 2/3, Usum(τ

[1]
srt) = 11/8, and Usum(τ

[1]
srt ∪ τ

[1]
hrt) = 49/24. We first check the schedulability

of T2, . . . , T5 on
⌈
Usum(τ

[1]
srt ∪ τ

[1]
hrt)

⌉
= 3 processors such that one processor is fully available and two

processors have available utilizations of 1/24 and 1/3 (see processors 1 and 3 in Figure 4.12(b)). It can

be shown that (4.9) does does not hold for this task system, and hence, we have to set K(H) = 0. With

this setting of K(H), we cannot co-schedule the HRT and the SRT tasks on processor 3. It can be

verified that the SRT tasks are schedulable on ⌈Usum(τ
[1]
srt)⌉ = 2 processors such that one processor is

fully available and one processor has an available utilization of frac(Usum(τ
[1]
srt)) = 3/8 (see processors 1

and 2 in Figure 4.12(b)). Therefore, we set WI = 2, since the HRT and the SRT tasks together require

two fully available processors, and Wf = 3/8, because the SRT tasks additionally need a bandwidth of

frac(Usum(τ
[1]
srt)) = 3/8.

The execution time ei and the period pi of the server task S
[i]
srt should be set such that ei/pi =Wf .

Once Wf has been determined and a value for ei is selected, pi is implicitly determined. However, a

tradeoff exists in selecting ei. On one hand, a smaller value of ei effectively reduces the server task’s

maximum tardiness, and correspondingly, the supply blackout time, as (4.8) and Theorem 4.1 suggest.

On the other hand, small server task execution times could lead to frequent context switches in a real

implementation. As a compromise, we set the execution time of each server task to be 100, which is close

to the average execution time of SRT tasks in H . Server tasks’ periods were set to
⌊
100
Wf

⌋
if Wf 6= 0, so

that the utilization of the server task is slightly higher than the fractional part of the required container
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Figure 4.12: Determining the required container bandwidth in Example 4.10.

bandwidth. The required container bandwidth C
[i]
sys was then inflated accordingly by

uS =





0 if Wf = 0

100
⌊100/Wf ⌋

−Wf otherwise,

where uS is the utilization loss associated with the choice of server task parameters.

As an example consider container C
[i]
sys from Example 4.10. Because Wf = 3/8, we set uS =

100
⌊100/(3/8)⌋ − 3/8 = 0.001.

Overall, RNP for CA is simply the bandwidth of the root container C0, w(C0) = ⌈
∑4

i=1 w(C
[i]
sys)⌉.

RNP results. Insets (a), (c), (e), and (g) of Figure 4.13 show RNP results for PEDF, HS, and CA,

for the SRT utilization ranges [0.01, 0.1) (light), [0.1, 0.5) (medium), and [0.5, 1) (heavy), respectively.

We also examined the SRT utilization range [0.5, 0.7) (extreme) as well, as it is an extreme case where

PEDF shows poor performance. The x axis in each inset corresponds to the HRT utilization cap, Uhrt.

For each utilization range, 100 task sets were generated and their RNP averaged. The figure also

shows the average total system utilization, so that we can estimate the utilization loss associated with

each scheme.

For the light and medium SRT per-task utilization ranges (insets (a) and (c)), all three schemes show

similar performance. This is because CA is able to minimize the bandwidth of individual second-level

containers by co-scheduling HRT and SRT tasks together. As SRT per-task utilization increases, RNP

for PEDF also increases because more processors are needed to bin-pack the SRT tasks. The extreme

case (inset (g)) is the utilization range [0.5, 0.7), where each SRT task requires a separate processor.

When SRT per-task utilizations are large (inset (e)), the difference between HS and CA is maximal,
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due to the utilization loss associated with HRT tasks in the containers. Under CA, the four HRT task

sets require four processors, while under HS, all HRT tasks may be packed onto a smaller number of

processors.

Tardiness. Insets (b), (d), (f), and (h) of Figure 4.13 show the average of the per-task-set tardiness

bounds under HS and CA for the task set categories discussed above (under PEDF, tardiness is zero).

For these two schemes, these tardiness bounds are comparable in most cases, with the tardiness under

CA being slightly higher due to uneven supply by the server tasks. Under CA, the maximum tardiness

bound is significantly higher when the maximum total utilization of HRT tasks is high (see the HRT

utilization cap of 0.9 in insets (b) and (d) of Figure 4.13). This is because CA attempts to reclaim

scarce processor supply available after scheduling HRT tasks within the container and use that supply

to schedule SRT tasks. However, even though the maximum task tardiness in these cases is higher, the

number of processors required by CA is lower (see insets (a) and (c) of Figure 4.13).

Overall, these experiments show that in some cases there is a price to be paid for temporal isolation

among containers, in the form of more required processors (if HRT tasks are present) or higher tardiness.

However, in our proposed scheme, this price is reasonable, when considering the performance of schemes

that ensure no isolation. As a final comment, we remind the reader that if no HRT tasks are present,

then our scheme incurs no utilization loss.

4.8 Summary

In this chapter, we have presented a multiprocessor bandwidth-reservation scheme for hierarchically

organized real-time containers. Under this scheme each real-time container can reserve any fraction of

processor time (even the capacity of several processors) to schedule its children. The presented scheme

provides temporal isolation among containers so that each container can be analyzed separately.

Our scheme is novel in that soft real-time components incur no utilization loss. This stands in sharp

contrast to hierarchical schemes for hard (only) real-time systems, where the loss per level can be so

significant, arbitrarily deep hierarchies simply become untenable.

The most important for future work is to enable dynamic container creation and the joining/leaving

of tasks. Also of importance is the inclusion of support for synchronization. It would also be interesting

to investigate other global scheduling algorithms such as Pfair algorithms to see whether a more accurate

analysis can be established for them.
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Figure 4.13: (a,c,e,g) Required number of processors and (b,d,f,h) maximum tardiness bounds for
randomly generated task sets (with 95% confidence intervals) for (a)–(b) light, (c)–(d) medium, (e)–
(f) heavy, and (g)–(h) extreme SRT utilization distributions.
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Chapter 5

Multiprocessor Extensions to Real-Time

Calculus

As mentioned in Section 1.7, the real-time calculus framework has been successfully used for the analysis

of distributed and embedded systems. Unfortunately, it is only applicable to systems where partitioned

scheduling algorithms are used. In this chapter, we present an extension of real-time calculus that

enables the analysis of streaming task sets scheduled on a symmetric multiprocessor where the constituent

processors are managed by a global scheduling algorithm.

The application of our results involves several theorems stated later and is illustrated in Figure 5.1.

The core of our framework is a pseudo-polynomial-time procedure that, given a collection of arrival

curves for input streams αu
i (∆) and αl

i(∆) (describing minimum and maximum number of arriving

events over an interval of length ∆), their execution requirements, and the available resource supply

B(∆), checks that event delays on such a multiprocessor reside within specified bounds. The set of delay

bounds {Θ1, . . . ,Θn}, where n is the number of streams, can be:

• specified (e.g., as relative deadlines) for individual tasks;

• calculated using Theorem 5.7 from the input if task deadlines are not specified or not feasible;

• determined by other means.

We should note that Theorem 5.7, which can be used to derive event-delay bounds from inputs, is

only applicable in settings in which fixed-job-priority schedulers such as EDF or FIFO are used. When

other schedulers are used, maximum delay bounds should be specified or found using alternative analysis

techniques.
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Figure 5.1: A multiprocessor PE analyzed using multiprocessor real-time calculus.

In terms of computational complexity, calculating delay bounds using Theorem 5.7 (where applica-

ble) and comparing those to specified deadlines is less costly than checking whether specified deadline

constraints are met using the pseudo-polynomial shedulability test.

As Theorem 5.7 gives somewhat conservative estimations of delay bounds, they might be further

tightened by iteratively decreasing them and applying the schedulability test. However, the details of

this tightening procedure are specific to a task set and running a schedulability test multiple times

might be time-consuming. In our case study (described later), tightening the bounds obtained using

Theorem 5.7 did not give much improvement.

Once the event delays are identified, we can compute arrival curves for the processed streams αu′(∆)

and αl′(∆) using Theorem 5.1. This is done by algebraic manipulations involving the specified input

curves. As a result, because the maximum event-delay is bounded, the long-term departure rate of

events is the same as the long-term arrival rate, i.e., the long-term growth rate of αu
i
′(∆) is the same as

that of αu
i (∆) for each task Ti.

Also, we can compute the remaining-total-service curve B′(∆) using Theorem 5.2. In this case, we

subtract the total execution demand of tasks within an interval of length ∆ from the total available

supply B(∆). The obtained output curves — as in the uniprocessor case — can in turn be used as input

for other resources, thereby resulting in a compositional framework (as shown in Figures 1.6(a) and 1.9).

The rest of the chapter is organized as follows. Section 5.1 presents our task model. In Sections 5.2

and 5.3, the timing characteristics of processed streams and the remaining supply are computed. In

Section 5.4, we present a basic response-time bound test. In Section 5.5, its time complexity is discussed.

In Section 5.6, we improve the basic test for the case when an EDF-like scheduler is used. In Section 5.7,

closed-form expressions for response-time bounds are derived. Section 5.8 presents a case study for our

analysis. Section 5.9 summarizes our contributions and discusses some directions for future work.
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Table 5.1: Model notation.

Input parameters
αu
i (∆) (αl

i(∆)) Max. (min.) number of job arrivals of Ti over ∆

γui (k) (γ
l
i(k)) Max. (min.) execution demand of any k consecutive jobs of Ti

B(∆) Min. guaranteed cumulative processor supply over ∆
Params. below can be found using the RTC Toolbox

Û Long-term avilable processor utilization
σtot Maximum blackout time
F Number of processors that are always available

A−1
i (k) Pseudo-inverse of αu

i

Ki Min. integer s.t. A−1(Ki) ≥ γui (Ki)
ei Ti’s average worst-case job execution time
vi Burstiness of the execution demand
Ri Long-term arrival rate of Ti’s jobs
Bi Burstiness of the arrival curve
ui Ti’s long-term utilization

Usum Total utilization
Θi below can be checked using the test in Section 5.4

Θi Ti’s response-time bound
Output calculated using the input and {Θi}

αu′
i(∆) (αl′

i(∆)) Max. (min.) number of job completions of Ti over ∆
B′(∆) Min. guaranteed unused processor supply over ∆

5.1 Task Model

In this chapter, we consider a streaming task set τ = {T1, . . . , Tn} (see Section 1.6). Each task has

incoming jobs that are processed by a multiprocessor defined as in Section 1.4. We also assume that all

time quantities except the interval length ∆ are integral.

As in prior work on real-time calculus, we wish to be able to accommodate very general assumptions

concerning job executions and arrivals and the available service. Most of the remaining definitions in

this section are devoted to formalizing the assumptions we require. Table 5.1 summarizes the notation

introduced in this section.

Definition 5.1. γui (k) (γli(k)) denotes an upper (lower) bound on the total execution time of any k

consecutive jobs of Ti. (We assume γui (k) = γli(k) = 0 for all k ≤ 0 and γui (k) ≤ γui (k + 1) and

γli(k) ≤ γli(k + 1).) These definitions are equivalent to the workload demand curves in (Maxiaguine,

2005).

Example 5.1. Suppose that task Ti’s job execution times follow a pattern 1, 5, 2, 1, 5, 2, . . . . Then,

γui (1) = 5, γui (2) = 7, γui (3) = 8, γui (4) = 13, etc. Also, γli(1) = 1, γli(2) = 3, γli(3) = 8, γli(4) = 9, etc.

Definition 5.2. The arrival function αu
i (∆) (αl

i(∆)) provides an upper (lower) bound on the number
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of jobs of Ti that can arrive within any time interval (x, x +∆], where x ≥ 0 and ∆ > 0 (Chakraborty

et al., 2006). (We assume αu
i (∆) = 0 for all ∆ ≤ 0.) αi(∆) denotes the pair (αu

i (∆), αl
i(∆)).

Example 5.2. The widely-studied periodic and sporadic task models are subcases of this more general

task model. In both models, each job of Ti requires at most emax
i execution units and consecutive job

arrivals are separated by at least pi time, where pi is the period of Ti. Therefore, for both models,

αu
i (∆) =

⌈
∆
pi

⌉
and γui (k) = k · emax

i .

Definition 5.3. Let A−1
i (k) = inf{∆ | αu

i (∆) > k}, where ∆ > 0. This function characterizes the

minimum length of the time interval (x, x +∆] during which jobs Ti,j+1, . . . , Ti,j+k can be released for

some j, assuming Ti,j is released at time x. We define A−1
i (0) = 0 and require that there exists Ki ≥ 1

such that

A−1
i (Ki) ≥ γui (Ki). (5.1)

We further require that there exists Ri > 0 and Bi ≥ 0, where Ri = lim∆→+∞
αu

i (∆)
∆ , such that

αu
i (∆) ≤ Ri ·∆+Bi for all ∆ ≥ 0. (5.2)

Also, we assume that there exists ei > 0 and vi ≥ 0, where ei = limk→+∞
γu
i (k)
k , such that

γui (k) ≤ ei · k + vi for all k ≥ 1. (5.3)

(5.1) is needed in order to prevent task Ti from overloading the system. In (5.2), Ri characterizes

the long-term arrival rate of task Ti’s jobs and Bi characterizes the degree of burstiness of the arrival

sequence. In (5.3), the parameter ei denotes the average worst-case job execution time of Ti.

Definition 5.4. Let ui = Ri · ei. This quantity denotes the average long-term utilization of task Ti.

We require that 0 < ui ≤ 1. Let Usum =
∑

Ti∈τ ui.

Example 5.3. Under the sporadic task model, Ri = lim∆→+∞

(⌊
∆
pi

⌋
+ 1
)
/∆ = 1

pi
and ei = emax

i , so

ui = Ri · ei =
emax

i

pi
.

Definition 5.5. Let supplyh(t,∆) be the total amount of processor time available to tasks in τ on

processor h in the interval [t, t + ∆), where ∆ ≥ 0. Let Supply(t,∆) =
∑m

h=1 supplyh(t,∆) be the

cumulative processor supply in the interval [t, t+∆).
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Though we desire to make our analysis compatible with the real-time calculus framework, which

requires that individual processor supplies be known, there exist many settings in which individual

processor supply functions are not known and a lower bound on the cumulative available processor time

is provided instead. (In uniprocessor real-time calculus, the available service is described as the number

of incoming events processed by a PE during a time interval.) Note that if individual processor supply

guarantees are known, a lower bound on the cumulative guaranteed supply can be computed easily.

Definition 5.6. Let B(∆) ≤ Supply(t,∆) be the guaranteed total time that all processors can provide

to the tasks in τ during any time interval [t, t+∆), where ∆ ≥ 0. We assume that

B(∆) ≥ max(0, Û · (∆− σtot)), (5.4)

where Û ∈ (0,m] and σtot ≥ 0. We let F be the number of processors that are always available at any

time. If all processors have unit speed (as we have assumed), then F = max{y | ∀∆ ≥ 0 :: B(∆) ≥ y ·∆}.

In the above definition, the parameters Û , which is the total long-term fraction of processor time

available to the tasks in τ on the entire platform, and σtot, which is the maximum duration of time when

all processors are unavailable, are similar to those in the bounded delay model (Mok et al., 2001).

Example 5.4. Consider the system from Example 1.2 in Section 1.4. The availability pattern for one

processor, which repeats every eight time units, is shown in Figure 5.2(a); intervals of unavailability are

shown as shaded regions. For processor 1, the minimum amount of time that is guaranteed to real-time

tasks over any interval of length ∆ is zero if ∆ ≤ 2, ∆− 2 if 2 ≤ ∆ ≤ 4, and so on. Figure 5.2(b) shows

the minimum amount of time B(∆) that is available on processor 1 for tasks over any interval [t, t+∆].

It also shows a lower bound max(0, Û(∆ − σtot)), where Û = 5
8 and σtot = 2, which bounds B(∆) from

below.

We require that (5.5) below holds for otherwise the system is overloaded and job response times

could be unbounded. This inequality is analogous to the utilization constraint in (3.1) in Section 3.1.

Usum ≤ Û (5.5)

We assume that released jobs are placed into a single global ready queue. When choosing a new job

to schedule, the scheduler selects (and dequeues) the ready job of highest priority. An unfinished job is
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Figure 5.2: (a) Unavailable time instants and (b) service function in Example 5.4.

pending if it is released. A pending job is ready if its predecessor (if any) has completed execution. Note

that, the jobs of each task execute sequentially. Job priorities are determined according to the following

definition, which is a specialization of Definition 3.1 (see Section 3.1).

Definition 5.7. (prioritization rules) Associated with each job Ti,j is a constant value χi,j . If

χi,j < χk,h or χi,j = χk,h ∧ (i < k ∨ (i = k ∧ j < h)), then the priority of Ti,j is higher than that of Tk,h,

denoted Ti,j ≺ Tk,h. Additionally, we assume j < h implies χi,j ≤ χi,h for each task Ti.

Example 5.5. As shown in Section 3.2, global earliest-deadline-first (GEDF) priorities can be defined

by setting χi,j = ri,j+Di for each job Ti,j , where Di is Ti’s relative deadline. Global first-in-first-out

(FIFO) priorities can be defined by setting χi,j=ri,j , and static priorities can be defined by setting χi,j

to a constant.

In this chapter, we study three problems. First, given a task set τ = {T1, . . . , Tn} and a multiprocessor

platform characterized by a cumulative guaranteed processor time B(∆), we develop a sufficient test that

verifies whether the maximum job response time of a task Ti ∈ τ , maxj(fi,j − ri,j), is at most Θi, where

Θi ≥ max
j≥1

(γui (j)−A−1
i (j − 1)). (5.6)

The right-hand side of (5.6) is the maximum job response time bound of Ti when it is scheduled on a

dedicated processor. Consider a sequence of j consecutive jobs Ti,a, . . . , Ti,a+j−1 scheduled on a dedicated

processor such that Ti,a starts its execution at ri,a and ri,k ≤ fi,k−1 for k ∈ [a+1, a+j−1]. The response

time of job Ti,a+j−1 is fi,a+j−1 − ri,a+j−1 = (fi,a+j−1 − ri,a)− (ri,a+j−1 − ri,a). Because the processor

is dedicated and jobs execute back-to-back, fi,a+j−1 − ri,a ≤ γui (j). Below, in Section 5.4 in Lemma 5.2,

we show that ri,a+j−1 − ri,a ≥ A−1
i (j − 1). Thus, fi,a+j−1 − ri,a+j−1 ≤ γui (j)−A−1

i (j − 1).
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If Θi equals the relative deadline of a job, then the proposed test will check whether the system

is hard-real-time schedulable. Alternatively, if deadlines are allowed to be missed and Θi includes the

maximum allowed deadline tardiness, then the test will check soft-real-time schedulability. Such a test

allows workloads to be considered that fundamentally require global scheduling approaches.

In settings where response-time bounds are not known, they must be determined. The second problem

we consider is a derivation of closed-form expressions for calculating response-time bounds directly from

task and supply parameters for a large class of scheduling algorithms. These response-time bounds can

be directly used for calculating stream and supply outputs. It is also possible to refine the obtained

response-time bounds by incrementally decreasing them and running the schedulability test to see if the

smaller bounds are also valid.

Finally, given per-task bounds on maximum job response times, we characterize the sequence of job

completion events for each task Ti by deriving the next-stage arrival functions αu
i
′(∆) and αl

i
′
(∆), and

the remaining processor supply B′(∆) (see Figure 1.9). These functions, in turn, can serve as inputs to

subsequent PEs, thereby resulting in a compositional technique.

5.2 Calculating αui
′ and αli

′

Let αu
i
′(∆) (αl

i
′
(∆)) be the maximum (respectively, minimum) number of job completions of task Ti

over an interval (x, x+∆], where x ≥ 0. Bounds on these functions can be computed using Theorem 5.1

below. The following definition is used in the statement of the theorem.

Definition 5.8. Let γl
−1
i (∆) = inf{k | k is integral and γli(k) ≥ ∆}, where ∆ > 0, be the pseudoinverse

function of the lower bound on the execution time function γli(k) (note that we use a non-strict inequality

because γli(k) is not defined for non-integral values of k). For ∆ = 0, we define γl
−1
i (0) = 0.

Example 5.6. The function γl
−1
i (∆) gives an upper bound on the number of jobs that can complete

over any interval (x, x+∆], where ∆ > 0. For example, if ∆ = γli(1), then at most one job can complete

over any interval (x, x + γli(1)]. Similarly, if ∆ = γli(k) for some k, then at most k jobs can complete

over any interval (x, x+ γli(k)].

Theorem 5.1. If the response time of any job of Ti is at most Θi, then αu
i
′(∆) ≤ min

(
γl

−1
i (∆),

αu
i (∆ + Θi − γli(1))

)
and αl

i
′
(∆) ≥ αl

i(∆−Θi + γli(1)).

Proof. We first prove the first inequality. Consider an interval (t1, t2] such that at least one job of Ti

completes within it and let ∆ = t2 − t1. Let N1, (N2) be the index of the first (last) job of Ti completed
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within (t1, t2]. Then,

fi,N1
> t1 and fi,N2

≤ t2. (5.7)

By the condition of the theorem, job Ti,j ’s response time fi,j − ri,j is at most Θi. By the definition of

response time and Definition 5.1, fi,j − ri,j is at least γli(1). From (5.7), we thus have ri,N1
> t1 − Θi

and ri,N2
≤ t2 − γli(1). Thus, the number of jobs completed within the interval (t1, t2], N2 −N1 + 1, is

at most the number of jobs released within the interval (t1 −Θi, t2 − γli(1)]. By Definition 5.2, we have

N2 −N1 + 1 ≤ αu
i (t2 − γli(1)− t1 +Θi) = αu

i (∆ + Θi − γli(1)). Moreover, from Definition 5.8, it follows

that at most γl
−1
i (∆) jobs can complete within an interval of length ∆ > 0.

We now prove the second inequality. Consider an interval (t1, t2] and let ∆ = t2 − t1. Let N1, (N2)

be the index of the last (respectively, first) job of Ti completed at or before time t1 (respectively, after

time t2). Then,

fi,N1
≤ t1 and fi,N2

> t2. (5.8)

By the condition of the theorem, job Ti,j ’s response time fi,j − ri,j is at most Θi. By the definition of

response time and Definition 5.1, fi,j − ri,j is at least γli(1). From (5.8), we thus have ri,N2
> t2 − Θi

and ri,N1
≤ t1 − γli(1). Thus, the number of jobs completed within the interval (t1, t2], N2 −N1 − 1, is

at least the number of jobs released within the interval (t1 − γli(1), t2 − Θi]. By Definition 5.2, we have

N2 −N1 − 1 ≥ αl
i(t2 −Θi − t1 + γli(1)) = αl

i(∆−Θi + γli(1)).

5.3 Calculating B′(∆)

We now calculate a lower bound B′(∆) on processor time that is available after scheduling tasks

T1, . . . , Tn. We first upper-bound the total allocation of jobs of Ti over any interval of length ∆.

Definition 5.9. Let A(Ti,y, I) (respectively, A(Ti, I)) be the amount of time for which job Ti,y (respec-

tively, task Ti) executes within the set of intervals I.

Lemma 5.1. If the response time of any job of Ti is at most Θi, then A(Ti, [t, t+∆)) ≤ min(∆, γui (α
u
i (∆+

Θi))).

Proof. Consider an interval [t, t+∆). The condition of the lemma implies that all of Ti’s jobs released at

or before time t−Θi complete by time t. Thus, the allocation of Ti within [t, t+∆), A(Ti, [t, t+∆)), is

upper-bounded by the maximum execution demand of Ti’s jobs released within the interval (t−Θi, t+∆].

By Definition 5.2, there are at most αu
i (∆ + Θi) such jobs, and by Definition 5.1, their total execution
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demand is at most γui (α
u
i (∆+Θi)). We thus have A(Ti, [t, t+∆)) ≤ γui (α

u
i (∆+Θi)). Also, A(Ti, [t, t+∆))

cannot exceed the length of the interval [t, t+∆).

Theorem 5.2. If, for each task Ti, the response time of any of its jobs is at most Θi, then at least

B′(∆) = sup
0≤y≤∆

(Z(y)) (5.9)

time units are available over any interval of length ∆ ≥ 0, where Z(y) = max
(
0, B(y)−

∑
Ti∈τ min(y, γui (α

u
i (y+

Θi))
)
. Additionally, (5.4) for B′(∆) holds with Û ′ = Û − Usum and σ′

tot = (Û · σtot +
∑

Ti∈τ (ui · Θi +

ei ·Bi + vi))/Û
′.

Proof. Consider an interval [t, t + y), where y ≤ ∆. Let Supply′(t, y) be the amount of supply that is

available after scheduling the tasks in τ in this interval. By Definitions 5.5 and 5.9, we have

Supply′(t, y) = Supply(t, y)−
∑

Ti∈τ

A(Ti, [t, t+ y))

{by Definition 5.6}

≥ max

(
0,B(y)−

∑

Ti∈τ

A(Ti, [t, t+ y))

)

{by Lemma 5.1}

≥ max

(
0,B(y)−

∑

Ti∈τ

min(y, γui (α
u
i (y +Θi)))

)

{by the definition of Z(y) in the statement of the theorem}

= Z(y). (5.10)

Additionally, Supply′(t,∆)≥sup0≤y≤∆(Supply
′(t, y)). From this inequality and (5.10), we have Supply′(t,∆) ≥

sup0≤y≤∆(Z(y)) = B′(∆).

We are left with finding coefficients Û ′ and σ′
tot such that (5.4) holds for B′(∆). Setting (5.4) (for

B(∆)) into the definition of Z(y), we have

Z(y) ≥ max

(
0,max(0, Û ·(y−σtot))−

∑

Ti∈τ

min(y, γui (α
u
i (y+Θi)))

)

≥ max

(
0, Û ·(y−σtot)−

∑

Ti∈τ

min(y, γui (α
u
i (y+Θi)))

)

{by (5.2) and (5.3)}
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≥ max

(
0, Û ·(y−σtot)−

∑

Ti∈τ

(ei · (Ri ·(y+Θi)+Bi)+vi)

)

{by Definition 5.4}

= max

(
0, Û ·(y−σtot)−

∑

Ti∈τ

(ui · y+ui ·Θi+ei ·Bi+vi)

)

= max

(
0, Û ·(y−σtot)−Usum ·y+

∑

Ti∈τ

(ui ·Θi+ei ·Bi+vi)

)

= max

(
0, (Û−Usum)·y−Û ·σtot−

∑

Ti∈τ

(ui ·Θi +ei ·Bi+vi)

)

{by the definition of Û ′ and σ′
tot in the statement of the theorem}

= max
(
0, Û ′ · (y−σ′

tot)
)
. (5.11)

Finally, by (5.9) and (5.11), B′(∆) ≥ sup0≤y≤∆

(
max

(
0, Û ′ ·(y−σ′

tot)
))

= max
(
0, Û ′ ·(∆−σ′

tot)
)
. Thus,

(5.4) holds with B′(∆), Û ′, and σ′
tot as defined.

5.4 Multiprocessor Schedulability Test

In this section, we present the core analysis of our framework in the form of a schedulability test (given

in Corollary 5.1 later in this section) that checks whether a pre-defined response-time bound Θi is not

violated for a task Ti.

As noted earlier, the way jobs are prioritized according to Definition 5.7 is similar to GEDF or

static priority scheduling. In this chapter, we extend techniques from (Baruah, 2007) (the “SB-test” in

Section 2.2.1) and (Leontyev and Anderson, 2008b) in order to incorporate more general job arrivals and

execution models.

Similarly to (Devi, 2006), we derive our test by ordering jobs by their priorities and assuming that

Tℓ,q is the first job for which fℓ,q > rℓ,q + Θℓ. We further assume that, for each job Ta,b such that

Ta,b ≺ Tℓ,q,

fa,b ≤ ra,b +Θa. (5.12)

We first derive a necessary condition for Tℓ,q to violate its response-time bound by considering an

interval that includes the time when Tℓ,q becomes ready and the latest time when Tℓ,q is allowed to

complete, which is rℓ,q + Θℓ. This interval is parametrized by a number k ∈ [1,Kℓ] (see Definition 5.3)

and δ (defined later in this section), which determine its length, δ + Θℓ. (The range of δ depends on

k and ℓ.) In essence, the parameter k defines the number of Tℓ,q’s predecessors (including Tℓ,q itself)
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that complete “too late” to warrant Tℓ,q’s timely completion in the presence of other tasks. During this

interval, we consider demand due to competing higher-priority jobs that can interfere with Tℓ,q or its

predecessors. We then perform the following three steps:

S1: Compute the minimum guaranteed supply B(δ +Θℓ) over the interval of interest.

S2: Given a finite upper boundM∗
ℓ (δ, τ,m) on the competing demand and a finite upper bound on

the unfinished work due to job Tℓ,q and its predecessors, E∗
ℓ (k), define a sufficient test for checking

whether Tℓ’s response-time bound is not violated by checking thatM∗
ℓ (δ, τ,m)+(m−1) · (E∗

ℓ (k)−

1) < B(δ +Θℓ) holds for each k ∈ [1,Kℓ] and δ defined with respect to k and ℓ.

S3: Calculate M∗
ℓ (δ, τ,m) and E∗

ℓ (k) as used in S2.

5.4.1 Steps S1 and S2

To avoid distracting “boundary cases,” we henceforth assume that the schedule being analyzed is

prepended with a schedule in which response-time bounds are not violated that is long enough to ensure

that all predecessor jobs referenced in the proof exist. We begin with the following definition.

Definition 5.10. Let α+
i (∆) = limǫ→+0 α

u
i (∆ + ǫ). This function provides an upper bound on the

number of jobs released within any interval [x, x+∆], where x ≥ 0 and ∆ ≥ 0. (We assume α+
i (∆) = 0

for all ∆ < 0.)

The next example illustrates the difference between the functions αu
i and α+

i .

Example 5.7. Consider a task Ti, whose jobs arrive periodically with period pi. The maximum number

of jobs that can arrive within an interval (x, x + 2 · pi] is thus αu
i (2 · pi) =

⌈
2·pi

pi

⌉
= 2. However, the

maximum number of jobs that can arrive within the interval [x, x+ 2 · pi] is α
+
i (2 · pi) = limǫ→+0 α

u
i (2 ·

pi + ǫ) = 3. In general, under the sporadic task model, α+
i (∆) =

⌊
∆
pi

⌋
+ 1.

We start the derivation by proving a lemma and several claims. The following lemma specifies the

minimum time between the arrivals of jobs Th,g and Th,g−i.

Lemma 5.2. rh,g − rh,g−i ≥ A−1
h (i).

Proof. Let ∆′ = rh,g − rh,g−i. Let

∆∗ = inf{∆ | α+
h (∆) ≥ i + 1}. (5.13)
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Because jobs Th,g−i, . . . , Th,g are released within the interval [rh,g−i, rh,g], by Definition 5.10, α+
h (∆

′) ≥

i+ 1. Therefore, by (5.13),

rh,g − rh,g−i = ∆′ ≥ ∆∗. (5.14)

We now consider two cases.

Case 1: αu
h(∆

∗) > i. In this case, ∆∗
{by Definition 5.10}

≥ inf{∆ | αu
h(∆) > i}

{by Definition 5.3}
= A−1

h (i). The

lemma follows from this and (5.14).

Case 2: αu
h(∆

∗) ≤ i. Because αu
h(∆) is non-decreasing, αu

h(∆
∗) ≤ i implies

αu
ℓ (∆) ≤ i for each ∆ ≤ ∆∗. (5.15)

Further, by (5.13),

α+
h (∆) < i+ 1, for each ∆ < ∆∗. (5.16)

Suppose that for some ∆′′ > ∆∗, αu
h(∆

′′) ≤ i. Because αu
h(∆) is non-decreasing, this implies αu

h(∆x) ≤ i

for each ∆x ∈ [∆∗,∆′′). The latter implies α+
h (∆x) = limǫ→+0 α

u
h(∆x + ǫ) ≤ i for each ∆x ∈ [∆∗,∆′′).

From this and (5.16), we have α+
h (∆) < i+1 for each ∆ < ∆′′. Since ∆′′ > ∆∗, we have a contradiction

to (5.13). Therefore, αu
h(∆) > i for each ∆ > ∆∗. From this and (5.15), we have ∆∗ = inf{∆ | αu

h(∆) >

i}
{by Definition 5.3}

= A−1
h (i). The lemma follows from this equality and (5.14).

The next two claims establish a lower bound on the maximum job response time and an upper bound

on the finish times of certain jobs that can be used in addition to (5.12).

Claim 5.1: Θi ≥ γui (1).

Proof. By (5.6), Θi ≥ maxj≥1(γ
u
i (j)−A−1

i (j−1)) ≥ γui (1)−A−1
i (0). By Definition 5.3, A−1

i (0) = 0.

Claim 5.2: fℓ,q−Kℓ
≤ rℓ,q +Θℓ − γuℓ (Kℓ).

Proof. By (5.12), for i ≥ 1,

fℓ,q−i ≤ rℓ,q−i +Θℓ

= rℓ,q−i − rℓ,q + rℓ,q +Θℓ

{by Lemma 5.2}
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≤ rℓ,q +Θℓ −A−1
ℓ (i). (5.17)

By (5.1), −A−1
ℓ (Kℓ) ≤ −γuℓ (Kℓ). Setting this and i = Kℓ into (5.17), we get the required result.

Job Tℓ,q can violate its response-time bound for the following reasons. If Tℓ,q−1 completes by time

rℓ,q +Θℓ−γuℓ (1), then Tℓ,q may finish its execution after rℓ,q +Θℓ if, after time max(fℓ,q−1, rℓ,q), higher-

priority jobs deprive it of processor time or one or more processors are unavailable. Alternatively, Tℓ,q−1

may complete after time rℓ,q +Θℓ − γuℓ (1), which can happen if the minimum job inter-arrival time for

Tℓ is less than γuℓ (1). In this situation, Tℓ,q could violate its response-time bound even if it executes

uninterruptedly within [fℓ,q−1, rℓ,q+Θℓ). In this case, Tℓ’s response-time bound is violated because Tℓ,q−1

completes “late,” namely after time rℓ,q (recall that, by Claim 5.1, Θℓ ≥ γuℓ (1)). However, this implies

that Tℓ is pending continuously throughout the interval [rℓ,q−1, rℓ,q+Θℓ), and hence, we can examine the

execution of jobs Tℓ,q−1 and Tℓ,q together. In this case, we need to consider the completion time of job

Tℓ,q−2. If fℓ,q−2 ≤ rℓ,q +Θℓ− γuℓ (2), then job Tℓ,q may exceed its response-time bound if this job and its

predecessor, Tℓ,q−1, experience interference from higher-priority jobs or some processors are unavailable

during the time interval [max(fℓ,q−2, rℓ,q−1), rℓ,q +Θℓ). On the other hand, if fℓ,q−2 > rℓ,q +Θℓ− γuℓ (2),

then Tℓ,q can complete after time rℓ,q +Θℓ even if Tℓ executes uninterruptedly within [fℓ,q−2, rℓ,q +Θℓ).

Continuing by considering predecessor jobs Tℓ,q−k in this manner, we will exhaust all possible reasons

for the response-time bound violation. Note that it is sufficient to consider only jobs Tℓ,q−1, . . . , Tℓ,q−Kℓ

since, by Claim 5.2, fℓ,q−Kℓ
≤ rℓ,q+Θℓ−γuℓ (Kℓ). Assuming that, for job Tℓ,q−k, fℓ,q−k ≤ rℓ,q+Θℓ−γuℓ (k),

we define the problem window for jobs Tℓ,q−k+1, . . . , Tℓ,q as [rℓ,q−k+1, rℓ,q + Θℓ). (This problem window

definition is a significant difference when comparing our analysis to prior analysis pertaining to periodic

or sporadic systems.)

Definition 5.11. Let λ ∈ [1,Kℓ] be the smallest integer such that fℓ,q−λ ≤ rℓ,q + Θℓ − γuℓ (λ). By

Claim 5.2, such a λ exists.

Claim 5.3. Tℓ is ready (i.e., has a ready job) at each instant of the interval [rℓ,q−k+1, rℓ,q + Θℓ) for

each k ∈ [1, λ].

Proof. To prove the claim, we first show that, for each k ∈ [1, λ], Tℓ is ready continuously within

[rℓ,q−k+1, fℓ,q). Because Tℓ is ready within the interval [rℓ,q, fℓ,q), this is true for k = 1. If k > 1 (in

which case λ > 1), then fℓ,q−j > rℓ,q + Θℓ − γuℓ (j) for each j ∈ [1, λ), by the selection of λ. From this,
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we have

fℓ,q−j > rℓ,q +Θℓ − γuℓ (j)

{because, by (5.6), Θℓ ≥ γuℓ (j)−A−1
ℓ (j − 1)}

≥ rℓ,q −A−1
ℓ (j − 1)

{by Lemma 5.2}

≥ rℓ,q−j+1.

Thus, the intervals [rℓ,q−j , fℓ,q−j) and [rℓ,q−j+1, fℓ,q−j+1), where consecutive jobs of Tℓ are ready, overlap.

Therefore, Tℓ is ready continuously within [rℓ,q−j , fℓ,q) for each j ∈ [1, λ), and hence, Tℓ is ready

continuously within [rℓ,q−k+1, fℓ,q) for each k ∈ [2, λ]. The claim follows from [rℓ,q−k+1, rℓ,q + Θℓ) ⊂

[rℓ,q−k+1, fℓ,q); to see this, note that fℓ,q > rℓ,q+Θℓ holds, since Tℓ,q violates its response-time bound.

Because Tℓ,q violates its response-time bound, after time rℓ,q−k+1, there are other higher-priority

jobs that deprive Tℓ of processor time or one or more processors are unavailable.

Definition 5.12. Let τp(t) = {Th | for some y, Th,y is ready at time t and Th,y � Tℓ,q}. (The subscript

p denotes the fact that these jobs have higher or equal priority.)

To indicate an excessive number of tasks with ready jobs of equal or higher priority at time t we will

use the following predicate.

IS HP(t)=(|τp(t)| ≥ m or fewer than |τp(t)| tasks from τp(t) execute at time t). (5.18)

Definition 5.13. Let t0(k) ≤ rℓ,q−k+1 be the earliest instant such that ∀t ∈ [t0(k), rℓ,q−k+1), IS HP(t)

holds. If such an instant does not exist, then let t0(k) = rℓ,q−k+1.

The definition below defines the jobs that can compete with Tℓ,q or its predecessors.

Definition 5.14. Let J be the set of jobs Ti,y such that (i) Ti,y � Tℓ,q or (ii) Ti,y ≻ Tℓ,q, i 6= ℓ,

and Ti,y executes at some time t ∈ [t0(k), rℓ,q + Θℓ) and IS HP(t) holds. (More informally, J includes

higher-or-equal-priority jobs and lower-priority jobs that cause non-preemptive blocking.) Note that J

does not contain Tℓ,q’s successors.

In this chapter, we are mainly concerned with fully preemptive scheduling (i.e., J contains only

higher-or-equal-priority jobs). However, the introduced definitions are constructed to support both fully
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Figure 5.3: Conditions for a response-time bound violation for λ = 1.

preemptive and non-preemptive execution. Unless stated otherwise, we do not distinguish between the

preemptive and non-preemptive cases. However, if non-preemptive execution is assumed, then we assume

that all processors are always available. We discuss other differences in the analysis of the non-preemptive

case in Section 5.4.3 and leave the consideration of non-preemptivity in the face of partial availability

to future work.

Definition 5.13 generalizes the well-known concept of an idle instant in uniprocessor scheduling with

respect to jobs in J , as illustrated in Figure 5.3, which shows the response-time bound violation for job

Tℓ,q assuming λ = 1.

Our schedulability test for task Tℓ is based upon summing the demand of competing jobs as defined

above in Definition 5.14 executing within the interval [t0(λ), rℓ,q+Θℓ), which has length rℓ,q−t0(λ)+Θℓ,

and the unavailable time within this interval (see Figure 5.3).

Definition 5.15. Let AJ (Ti, I) =
∑

Ti,y∈J A(Ti,y, I) be the allocation of task Ti’s jobs in J over a set

of intervals I.

Definition 5.16. Let Resh(I) be the amount of time that is not available on processor h at time instants

in the set of intervals I.

Definition 5.17. We call a processor J -busy at time t if it executes a job in J or is unavailable. The

total time for which processors are J -busy within a set of intervals I is called the J -allocation for I and

is defined as ÂJ (I) =
∑

Ti∈τ AJ (Ti, I) +
∑m

h=1 Resh(I).

The following definition is used to calculate ÂJ ([t0(λ), rℓ,q + Θℓ)).

Definition 5.18. Let Γλ ⊆ [rℓ,q−λ+1, rℓ,q +Θℓ) be the set of intervals where all processors are J -busy

as shown in Figure 5.3. Let Γλ = [rℓ,q−λ+1, rℓ,q + Θℓ) \ Γλ. We let |Γλ| (respectively, |Γλ|) denote the

total length of the intervals in Γλ (respectively, Γλ).

We next calculate the J -allocations for Γλ, [t0(λ), rℓ,q−λ+1), and Γλ. Because all processors are

J -busy within Γλ, ÂJ (Γλ) = m · |Γλ|. We now consider the interval [t0(λ), rℓ,q−λ+1).
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Claim 5.4. All processors are J -busy within [t0(λ), rℓ,q−λ+1); that is,

ÂJ ([t0(λ), rℓ,q−λ+1)) = m · (rℓ,q−λ+1 − t0(λ)).

Proof. Suppose that a processor is not J -busy at time t′ ∈ [t0(λ), rℓ,q−λ+1). Then it is either available

and idle or executes a job that is not in J . If the processor is idle at time t′, then, because the scheduler

being analyzed is work-conserving, all tasks in τp(t) execute at time t′ and thus |τp(t′)| ≤ m− 1. Thus,

by (5.18), IS HP(t′) is false, which violates Definition 5.13. Alternatively, if, at time t′, the processor

executes a job Tx,y 6∈ J , then, by Definition 5.14, Tx,y ≻ Tℓ,q and, by (5.18), IS HP(t′) is false, which

also violates Definition 5.13. The given expression for ÂJ ([t0(λ), rℓ,q−λ+1)) follows.

Finally, we consider the interval set Γλ.

Claim 5.5. Task Tℓ executes at each time t ∈ Γλ, and hence, AJ (Tℓ,Γλ) = |Γλ|.

Proof. Suppose to the contrary that Tℓ does not execute at some time t ∈ Γλ. By Definition 5.18,

there exists processor P that is not J -busy at time t. By Claim 5.3, task Tℓ is ready at each time

t ∈ [rℓ,q−λ+1, rℓ,q + Θℓ). If P is idle, then, because the scheduler is work-conserving, all tasks in τp(t),

including Tℓ execute at time t. If P executes job Tx,y 6∈ J , then, by Definition 5.14 and (5.18), IS HP(t)

is false, which implies that all tasks in τp(t), including Tℓ execute at time t. In either case, we have a

contradiction.

Lemma 5.3: ÂJ ([t0(λ), rℓ,q +Θℓ)) ≥ m · (rℓ,q−λ+1 − t0(λ)) +m · |Γλ|+ |Γλ|.

Proof. We sum up the J -allocations for intervals [t0(λ), rℓ,q−λ+1), Γλ, and Γλ (see Figure 5.3; note that

rℓ,q−λ+1 = rℓ,q here).

ÂJ ([t0(λ), rℓ,q +Θℓ))

= ÂJ ([t0(λ), rℓ,q−λ+1)) + ÂJ (Γλ) + ÂJ (Γλ)

{by Claim 5.4 and Definition 5.18}

= m · (rℓ,q−λ+1 − t0(λ)) +m · |Γλ|+ ÂJ (Γλ)

{by Definition 5.17}

≥ m · (rℓ,q−λ+1 − t0(λ)) +m · |Γλ|+ AJ (Tℓ,Γλ)

{by Claim 5.5}

= m · (rℓ,q−λ+1 − t0(λ)) +m · |Γλ|+ |Γλ|
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The values of |Γλ| and |Γλ| depend on the amount of competing work due to Tℓ,q’s predecessors

(including Tℓ,q itself), which is determined as follows.

Definition 5.19. Let W (Ti,y, t) denote the remaining execution time for job Ti,y (if any) at time t. Let

WJ (Ti, t) =
∑

Ti,y∈J W (Ti,y, t). In Figure 5.3, WJ (Tℓ, rℓ,q−λ+1) corresponds to the execution demand

of job Tℓ,q and the unfinished work of job Tℓ,q−1 at time rℓ,q.

Claim 5.6. (Proved in an appendix.) WJ (Tℓ, rℓ,q−λ+1) ≤ rℓ,q +Θℓ − rℓ,q−λ+1.

The following lemma establishes constraints on the total length of the intervals Γλ and Γλ.

Lemma 5.4. If the response-time bound for Tℓ,q is violated (as we have assumed), then |Γλ| = rℓ,q +

Θℓ − rℓ,q−λ+1 − WJ (Tℓ, rℓ,q−λ+1) + 1 + µ, where µ ≥ 0. (Note that, by Claim 5.6, this implies that

|Γλ| > 0). Additionally, |Γλ| = WJ (Tℓ, rℓ,q−λ+1)− 1− µ.

Proof. Suppose, contrary to the statement of the lemma, that the response-time bound for Tℓ,q is violated

and µ < 0, i.e.,

|Γλ| < rℓ,q +Θℓ − rℓ,q−λ+1 −WJ (Tℓ, rℓ,q−λ+1) + 1. (5.19)

Under these conditions, the total length of the intervals in Γλ, where at least one available processor is

not J -busy, is rℓ,q + Θℓ − rℓ,q−λ+1 − |Γλ|
{by (5.19)}

> WJ (Tℓ, rℓ,q−λ+1) − 1. Thus, this total length is at

least WJ (Tℓ, rℓ,q−λ+1), as time is integral. By Claim 5.5, job Tℓ,q or one of its predecessors executes at

each time t ∈ Γλ. Thus, job Tℓ,q completes by time rℓ,q + Θℓ, which is a contradiction. Hence, µ ≥ 0.

|Γλ| can be found as |Γλ| = rℓ,q +Θℓ − rℓ,q−λ+1 − |Γλ| = WJ (Tℓ, rℓ,q−λ+1)− 1− µ.

In the statement of Theorem 5.3, which defines a schedulability condition, the functions defined below

are used.

Definition 5.20. Let E∗
ℓ (k) be a finite function of k such that WJ (Tℓ, rℓ,q−λ+1) ≤ E∗

ℓ (λ).

Definition 5.21. Let M∗
ℓ (δ, τ,m) be a finite function of δ, τ , and m such that

∑

Ti∈τ

AJ (Ti, [t0(λ), rℓ,q +Θℓ)) ≤M∗
ℓ (rℓ,q − t0(λ), τ,m).

(As mentioned earlier at the beginning of Section 5.4, M∗
ℓ (δ, τ,m) and E∗

ℓ (k) are calculated in order

to test whether the response-time bound of Tℓ is not violated. Later, in Section 5.4.2, we explain how

M∗
ℓ (δ, τ,m) and E∗

ℓ (k) are calculated.)
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Definition 5.22. We require that there exists a constant Hℓ ≥ 0 such that, for all δ ≥ 0,

M∗
ℓ (δ, τ,m) ≤ Usum · δ +Hℓ. (5.20)

This requirement is reasonable because the growth rate of the total demand over the interval of interest,

which has length δ+Θℓ, cannot be larger than the total long-term utilization of the tasks in τ for large

values of δ. This also allows us to upper-bound our test’s computational complexity. Henceforth, we

omit the last two arguments of M∗
ℓ .

Definition 5.23. Let δmax
ℓ (k) =

⌊
(Hℓ + (m− 1) · (E∗

ℓ (k)− 1) + Û · σtot −Θℓ · Û)/(Û − Usum)
⌋
.

We next calculate an upper bound on Resh([t0(λ), rℓ,q + Θℓ)). For processor h and the interval

[t0(λ), rℓ,q +Θℓ), by Definition 5.5,

Resh([t0(λ), rℓ,q +Θℓ)) = (rℓ,q−t0(λ)+Θℓ)−supplyh(t0(λ), rℓ,q−t0(λ)+Θℓ). (5.21)

Summing (5.21) for all h, we have

m∑

h=1

Resh([t0(λ), rℓ,q +Θℓ))

=
m∑

h=1

(
(rℓ,q − t0(λ) + Θℓ)− supplyh(t0(λ), rℓ,q − t0(λ) + Θℓ)

)

{by Definition 5.5}

= m · (rℓ,q − t0(λ) + Θℓ)− Supply(t0(λ), rℓ,q − t0(λ) + Θℓ)

{by Definition 5.6}

≤ m · (rℓ,q − t0(λ) + Θℓ)− B(rℓ,q − t0(λ) + Θℓ). (5.22)

The following theorem will be used to define our schedulability test.

Theorem 5.3. If the response-time bound Θℓ is violated for Tℓ,q (as we have assumed), then, for k = λ

and some δ ∈ [A−1
ℓ (λ − 1), δmax

ℓ (λ)] (such that δ = rℓ,q − t0(λ)),

M∗
ℓ (δ)+(m−1) · (E∗

ℓ (k)−1) ≥ B(δ+Θℓ). (5.23)

Proof. Consider job Tℓ,q, k = λ, and time instants rℓ,q−λ+1 and t0(λ) as defined in Definitions 5.11
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and 5.13. To establish (5.23), we consider the total J -allocation within the interval [t0(λ), rℓ,q + Θℓ).

By Definition 5.17 and Lemma 5.3,

∑

Ti∈τ

AJ (Ti, [t0(λ), rℓ,q +Θℓ)) +

m∑

h=1

Res([t0(λ), rℓ,q +Θℓ))

≥ m · (rℓ,q−λ+1 − t0(λ)) +m · |Γλ|+ |Γλ|

{by Lemma 5.4}

= m·(rℓ,q−λ+1−t0(λ))+m·(rℓ,q+Θℓ−rℓ,q−λ+1−WJ (Tℓ, rℓ,q−λ+1)+1+µ)

+WJ (Tℓ, rℓ,q−λ+1)− 1− µ

= m · (rℓ,q − t0(λ) + Θℓ)− (m− 1) · (WJ (Tℓ, rℓ,q−λ+1)− 1) + (m− 1) · µ

{because µ ≥ 0}

≥ m · (rℓ,q−t0(λ)+Θℓ)−(m−1) · (WJ (Tℓ, rℓ,q−λ+1)−1). (5.24)

Setting (5.22) into (5.24), we have

∑

Ti∈τ

AJ (Ti, [t0(λ), rℓ,q +Θℓ)) +m · (rℓ,q − t0(λ) + Θℓ)− B(rℓ,q − t0(λ) + Θℓ)

≥ m · (rℓ,q − t0(λ)+Θℓ)− (m− 1) · (WJ (Tℓ, rℓ,q−λ+1)− 1).

Rearranging the terms in the above inequality, we have

∑

Ti∈τ

AJ (Ti, [t0(λ), rℓ,q+Θℓ))+(m−1)·(WJ (Tℓ, rℓ,q−λ+1)−1)

≥ B(rℓ,q−t0(λ)+Θℓ).

Setting E∗
ℓ (λ) and M

∗
ℓ (rℓ,q − t0(λ)) as defined in Definitions 5.20 and 5.21 into the inequality above, we

have

M∗
ℓ (rℓ,q−t0(λ))+(m−1)·(E∗

ℓ (λ)−1)≥B(rℓ,q−t0(λ)+Θℓ).

Setting rℓ,q−t0(λ) = δ into the inequality above, we get (5.23).

Our remaining proof obligation is to establish the stated range for δ. Note that, by Definition 5.13,

δ = rℓ,q − t0(λ) ≥ rℓ,q − rℓ,q−λ+1 ≥ A−1
ℓ (λ − 1), where the last inequality follows from Lemma 5.2. By
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(5.20) and (5.23), we have for k = λ,

Usum · δ +Hℓ + (m− 1) · (E∗
ℓ (k)− 1) ≥ B(δ +Θℓ). (5.25)

Applying (5.4) to (5.25), we have

Usum · δ +Hℓ + (m− 1) · (E∗
ℓ (k)− 1) ≥ max(0, Û · (δ + Θℓ − σtot))

≥ Û · (δ +Θℓ − σtot).

Solving the latter inequality for δ, we have δ ≤ (Hℓ+(m−1) · (E∗
ℓ (k)−1)+ Û ·σtot−Θℓ · Û)/(Û −Usum).

Because δ is integral (as rℓ,q and t0(k) are integral), by Definition 5.23, δ ≤ δmax
ℓ (k). The theorem

follows.

Corollary 5.1. (Schedulability Test) If, for each task Tℓ ∈ τ , (5.23) does not hold for each k ∈ [1,Kℓ]

and δ ∈ [A−1
ℓ (k−1), δmax

ℓ (k)], then no response-time bound is violated.

Proof. The corollary follows from Theorem 5.3 and Definition 5.11, which implies λ ∈ [1,Kℓ].

In Section 5.6, we improve the above schedulability test for fixed-job-priority preemptive schedulers

such as GEDF and FIFO by replacing the term (m − 1) · (E∗
ℓ (k) − 1) in (5.23) with a smaller term

proportional to max(m−F − 1, 0) ·E∗
ℓ (k), where F is the number of processors that are always available

(see Definition 5.6). This can be done because, under GEDF and FIFO, the problem job Tℓ,q and its

predecessors cannot be preempted by other jobs after a certain time point unless the competing demand

carried from previous time instants is sufficiently large.

5.4.2 Step S3 (Calculating M
∗

ℓ
(δ) and E

∗

ℓ
(k))

Note that we did not make any assumptions above about how jobs are scheduled except that the jobs of

each task execute sequentially and jobs are prioritized as in Definition 5.7. Therefore, Corollary 5.1 is

applicable to all fixed job-priority scheduling policies (these policies include preemptive variants of EDF,

FIFO, static-priority policies, and their various combinations; non-preemptive variants can be supported

similarly as discussed later in Section 5.4.3) provided the functions M∗
ℓ (δ) (and its linear upper bound

in Definition 5.22) and E∗
ℓ (k) are known. M

∗
ℓ (δ) and E

∗
ℓ (k) can be derived for a particular algorithm by

extending techniques from previously-published papers on the schedulability of sporadic tasks (Baruah,

2007; Leontyev and Anderson, 2008b) to incorporate more general arrival and execution patterns.
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In this section, we derive the functions E∗
ℓ (k) and M

∗
ℓ (δ) for a fully preemptive prioritization scheme

in which χi,j = ri,j +Di, where Di is a constant (preemptive global EDF and FIFO are the subcases of

this scheme). Note that in this case the set J only contains jobs with higher or equal priority than that

of Tℓ,q. We first prove some properties about jobs in the set J .

Definition 5.24. Let Ci,k = Di −Dk.

Lemma 5.5. If Tℓ,q violates its response-time bound and job Ta,b is in J , then Ta,b � Tℓ,q and ra,b ≤

rℓ,q + Cℓ,a.

Proof. Consider job Ta,b ∈ J .

Case 1: Ta,b � Tℓ,q. By Definition 5.7, ra,b + Da ≤ rℓ,q + Dℓ. The required result follows from

Definition 5.24.

Case 2: Ta,b ≻ Tℓ,q. By Definition 5.14, Ta,b executes at some time t ∈ [t0(λ), rℓ,q + Θℓ) and

IS HP(t) holds. By (5.18), since Ta,b executes at time t, there exists task Tx ∈ τp(t) such that job Tx,y

is ready at t, Tx,y � Tℓ,q ≺ Ta,b and Tx,y does not execute at t. This contradicts the assumption of full

preemptivity.

Derivation of M∗
ℓ (δ). To deriveM∗

ℓ (δ), we first note that, by Lemma 5.5, only jobs Ta,b � Tℓ,q belong

to J and can compete with Tℓ,q or its predecessors.

Definition 5.25. Let Th,bh be the earliest pending job of Th at time t0(k). We separate the tasks that

may compete with Tℓ,q into two disjoint sets:

HC = {Th :: (Th,bh exists)∧(rh,bh < t0(k))∧(Th,bh ∈ J )};

NC = {Th :: (rh,bh ≥ t0(k))∧(Th,bh ∈ J )}.

Here, HC denotes “high-priority carry-in” and NC denotes “non-carry-in”.

Claim 5.7: |HC| ≤ m− 1.

Proof. By Definitions 5.12 and 5.25, HC ⊆ τp(t0(k) − 1). By Definition 5.13, all tasks in τp(t0(k) − 1)

execute at t0(k)− 1 and |τp(t0(k)− 1)| ≤ m− 1. Thus, |HC| ≤ m− 1.
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Since the cumulative length of [t0(k), rℓ,q + Θℓ), depends on the difference rℓ,q − t0(k), we use

ANC(Ti, rℓ,q − t0(k)) and AHC (Ti, rℓ,q − t0(k)) to denote an upper-bound on AJ (Ti, [t0(k), rℓ,q + Θℓ))

for the case when Ti is in NC and HC, respectively. With this notation, we have

∑

Ti∈τ

AJ (Ti, [t0(λ), rℓ,q +Θℓ))

≤
∑

Ti∈HC

AHC(Ti, rℓ,q − t0(λ))+
∑

Ti∈NC

ANC(Ti, rℓ,q − t0(λ)). (5.26)

We provide expressions for computing ANC(Ti, δ) and AHC(Ti, δ) in the following two lemmas. Their

proofs can be found in the appendix.

Lemma 5.6: ANC(Ti, δ) = min(δ +Θℓ, γ
u
i (α

+
i (δ + Cℓ,i))).

Definition 5.26. Let Gi(S,X) = min(γui (S),max(0, X −A−1
ℓ (S − 1)) + γui (S − 1)).

Lemma 5.7: AHC(Ti, δ)=min(δ +Θℓ, Gi(α
u
i (δ + Cℓ,i +Θi), δ + Cℓ,i +Θi)).

To continue our derivation of M∗
ℓ (δ), we set

M∗
ℓ (δ) = max

( ∑

Ti∈HC

AHC(Ti, δ) +
∑

Ti∈NC

ANC(Ti, δ)

)
, (5.27)

where max is taken over each choice of HC and NC subject to the following constraints.

NC ∪HC ⊆ τ ∧NC ∩HC = ∅ ∧ |HC| ≤ m− 1 (5.28)

The constraint |HC| ≤ m − 1 follows from Claim 5.7. It is easy to check that 0 ≤ ANC(Ti, δ) and

0 ≤ AHC(Ti, δ) for each δ ≥ 0. Thus, the sets maximizing the value M∗
ℓ (δ) can be found by adding

at most m − 1 tasks with the largest positive value of AHC(Ti, δ) − ANC(Ti, δ) to HC and adding the

remaining tasks to NC.

By the selection of λ in Definition 5.11, (5.26), and (5.27), M∗
ℓ (rℓ,q − t0(λ)) upper-bounds

∑
Ti∈τ AJ (Ti, [t0(λ), rℓ,q + Θℓ)) so it complies with Definition 5.21. In order to use Corollary 5.1, we

are left with finding a constant Hℓ such that (5.20) holds, so that M∗
ℓ (δ) given by (5.27) complies with

Definition 5.22.

Definition 5.27. Let Li(X) = max(0, ui ·X + ei ·Bi) + vi for any X .

Lemma 5.8. (Proved in the appendix) For all δ ≥ 0, M∗
ℓ (δ) ≤ Usum · δ + Hℓ, where Hℓ =

∑
Ti∈τ Li(Cℓ,i) + U(m− 1) ·max(Θi) and U(y) is the sum of min(y, |τ |) largest utilizations.
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We finally briefly discuss how E∗
ℓ (k) can be calculated.

Definition 5.28. Let Qℓ(k) = max(0, γuℓ (k − 1)− 1) + Θℓ.

We set E∗
ℓ (k) as follows.

E∗
ℓ (k) = Gℓ(α

u
ℓ (Qℓ(k)), Qℓ(k)) (5.29)

In the lemma below, we show that E∗
ℓ (k) given by (5.29) complies with Definition 5.20.

Lemma 5.9. (Proved in the appendix) If E∗
ℓ (k) is given by (5.29), then E∗

ℓ (λ) ≥ WJ (Ti, rℓ,q−λ+1).

Using an expression for Hℓ given by Lemma 5.8, we can compute δmax
ℓ (k) in Definition 5.23 for any

given k. Given expressions for δmax
ℓ (k), M∗

ℓ (δ), and E∗
ℓ (k), we can apply Corollary 5.1 to check that

each task Tℓ ∈ τ meets its response-time bound. In Section 5.5, we identify conditions under which the

test is applicable and discuss its time complexity.

5.4.3 Analysis of Non-Preemptive Execution

As mentioned earlier, Corollary 5.1 is applicable if non-preemptive execution is allowed as well, provided

the functions M∗
ℓ (δ) (and its linear upper bound in Definition 5.22) and E∗

ℓ (k) are known. Additionally,

all processors have to be fully available to tasks in τ because the semantics of non-preemptivity is not

well-defined if a processor that executes a task in τ becomes unavailable. The derivation of M∗
ℓ (δ) and

E∗
ℓ (k) for the non-preemptive case would be similar to the procedures described above with the exception

that J now may contain some jobs Ti,y ≻ Tℓ,q.

5.5 Computational Complexity of the Test

According to Corollary 5.1, (5.23) needs to be checked for violation for all k ∈ [1,Kℓ] and δ ∈ [A−1
ℓ (k−1),

δmax
ℓ (k)].

Theorem 5.4. The time complexity of the presented test is pseudo-polynomial if there exists a constant

c such that Usum ≤ c < Û .

Proof. We start with estimating the complexity of checking (5.23). The values of αu
i (∆), γui (k), A

−1
i (k),

and B(∆) can be computed in constant time if αu
i (∆), γui (k), and B(∆) consist of an aperiodic and
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periodic piecewise-linear parts. These assumptions are used in prior work on the Real-Time Calculus

Toolbox (Wandeler and Thiele, 2006) and are sufficient for practical purposes. Under these assumptions,

M∗
ℓ (δ) for a given value of δ can be computed in O(n) time, where n is the number of tasks, in two

steps. First, for all tasks Ti, we calculate the values AHC(Ti, δ) and ANC(Ti, δ) in O(n) time. Second,

we calculate
∑

Ti∈τ ANC(Ti, δ) in O(n) time. Third, we select at most m − 1 largest positive values of

AHC(Ti, δ)− ANC(Ti, δ) in O(n) time using linear-time selection (Blum et al., 1973) and add their sum

to
∑

Ti∈τ ANC(Ti, δ). The cost of checking (5.23) is thus O(n).

For each task Tℓ, the inequality (5.23) needs to be checked for all k ∈ [1,Kℓ] and all integers in

[A−1
ℓ (k − 1), δmax

ℓ (k)]. By Definition 5.23, δmax
ℓ (k) is finite if its denominator is nonzero. By (5.5), we

have Usum ≤ Û . Therefore, δmax
ℓ (k) is finite if (5.5) is strict. Overall, (5.23) has to be checked at most

n ·maxTℓ∈τ
(Kℓ ·maxk≤Kℓ

(δmax
ℓ (k))) times, which implies the pseudo-polynomial time complexity.

Checking that (5.23) is violated for each integral value in [A−1
ℓ (k−1), δmax

ℓ (k)] can be computationally

expensive. A fixed-point iterative technique can instead be applied so that only a (potentially small)

subset of [A−1
ℓ (k− 1), δmax

ℓ (k)] is checked. In essence, we skip intervals where (5.23) does not hold. A

similar technique was used by Zhang and Burns (2009) for checking schedulability under uniprocessor

EDF. The important difference is that our procedure does not rely on the assumptions of the sporadic

task model and is applicable in multiprocessor systems.

In Definition 5.30 below, we define a sequence of values δ within the interval [A−1
ℓ (k − 1), δmax

ℓ (k)]

that need to be examined in order to check for a violation of (5.23) within this interval. We assume that

A−1
ℓ (k− 1) ≤ δmax

ℓ (k), for otherwise (5.23) does not hold trivially. We will need an additional definition

below.

Definition 5.29. Let B−1(y) = inf{∆ | B(∆) > y} be the pseudo-inverse function of the total processing

capacity of the system.

Example 5.8. In Example 1.2, B−1(2) = inf{∆ | B(∆) > 2} = 5.

Definition 5.30. Let ξ(δ) =
⌊
B−1(M∗

ℓ (δ) + (m− 1) · (E∗
ℓ (k)− 1))

⌋
− Θℓ. Let {x[n]} be the sequence

such that x[n+1] := ξ(x[n]) and x[1] = δmax
ℓ (k).

Because, by Definition 5.20, E∗
ℓ (k) upper-bounds a positive variable (which includes the demand of

the problem job Tℓ,q) and, by Definition 5.21, M∗
ℓ (δ) upper-bounds a non-negative variable, M∗

ℓ (δ) +

(m− 1) · (E∗
ℓ (k)− 1) is non-negative for each δ. Therefore, B−1(M∗

ℓ (δ) + (m− 1) · (E∗
ℓ (k)− 1)) (and in

turn ξ(δ)) is well-defined for each δ. We henceforth assume that
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(L) (5.23) does not hold for δ = δmax
ℓ (k) = x[1].

Otherwise, the test in Corollary 5.1 fails trivially, when the first evaluation interval is considered.

Claim 5.8. ξ(x) is a non-decreasing function of x.

Proof. The claim follows from the fact that M∗
ℓ (δ) and B−1(Y ) are non-decreasing functions of their

arguments.

Lemma 5.10: ξ(x[1]) ≤ x[1].

Proof. Consider Z1 = B−1(M∗
ℓ (x

[1]) + (m− 1) · (E∗
ℓ (k)− 1)). By Definition 5.29,

Z1 = inf{∆ | B(∆) > M∗
ℓ (x

[1]) + (m− 1) · (E∗
ℓ (k)− 1)}

{from (L), we have M∗
ℓ (x

[1]) + (m− 1) · (E∗
ℓ (k)− 1) < B(x[1] +Θℓ)}

≤ x[1] +Θℓ.

From the inequality above, we have

x[1] ≥ Z1 −Θℓ

{by the definition of Z1}

= B−1(M∗
ℓ (x

[1]) + (m− 1) · (E∗
ℓ (k)− 1))−Θℓ

≥
⌊
B−1(M∗

ℓ (x
[1]) + (m− 1) · (E∗

ℓ (k)− 1))
⌋
−Θℓ

= ξ(x[1]).

Lemma 5.11. x[n+1] ≤ x[n] for each n.

Proof. Base case: n = 1. Because, by Definition 5.30, x[2] = ξ(x[1]), the required result immediately

follows from Lemma 5.10.

Induction step: n > 1. By the induction hypothesis, x[n] ≤ x[n−1]. By Claim 5.8, we have ξ(x[n]) ≤

ξ(x[n−1]). By Definition 5.30, this implies x[n+1] ≤ x[n].

We next prove an auxiliary lemma.

Lemma 5.12. If y > B−1(y0), then B(y) > y0.

130



Proof. Let y∗ = inf{∆ | B(∆) > y0}. This implies that

B(y) ≤ y0 for each y < y∗. (5.30)

We now consider two cases.

Case 1: B(y∗) > y0. Because B(∆) is non-decreasing, by the condition of the case, for y > y∗,

B(y) ≥ B(y∗) > y0.

Case 2: B(y∗) = y0. Suppose, contrary to the statement of the lemma, that there exists y′ > y∗ such

that B(y′) ≤ y0. Then, because B(∆) is non-decreasing, B(∆) ≤ y0 for each ∆ ∈ [y∗, y′], and hence, by

(5.30), B(∆) ≤ y0 for each ∆ ≤ y′. Therefore, y∗ is not an infimum for the set where B(∆) > y0, which

contradicts the definition of y∗.

Lemma 5.13. If x[n+1]<x[n], then (5.23) does not hold for each non-negative integral δ∈(x[n+1], x[n]].

Proof. Consider a non-negative δ ∈ (x[n+1], x[n]]. We first lower-bound δ +Θℓ as follows.

δ +Θℓ > x[n+1] +Θℓ

{because x[n+1] = ξ(xn), by Definition 5.30}

=
⌊
B−1(M∗

ℓ (x
[n]) + (m− 1) · (E∗

ℓ (k)− 1))
⌋
−Θℓ +Θℓ

=
⌊
B−1(M∗

ℓ (x
[n]) + (m− 1) · (E∗

ℓ (k)− 1))
⌋

Because δ and Θℓ are integral, δ + Θℓ > B−1(M∗
ℓ (x

[n]) + (m − 1) · (E∗
ℓ (k) − 1)). By Lemma 5.12, the

last inequality implies

B(δ +Θℓ) > M∗
ℓ (x

[n]) + (m− 1) · (E∗
ℓ (k)− 1)

{by the selection of δ and M∗ being non-decreasing}

≥M∗
ℓ (δ) + (m− 1) · (E∗

ℓ (k)− 1).

The following theorem gives a method for checking (5.23) on the interval [A−1
ℓ (k−1), δmax

ℓ (k)] which

skips sub-intervals where (5.23) does not hold.

131



0

B(d+Q)
l

M ( )+ ( ( )-1)
*

l l
m E k

*
d

x
[1]

x
[2]

x
[3]

d

Figure 5.4: Iterative process for finding δℓ in Example 5.9.

Theorem 5.5. Let {x[n]} be the sequence defined in Definition 5.30. If x[n+1] < A−1
ℓ (k−1), then (5.23)

does not hold for each integral δ within the interval [A−1
ℓ (k−1), δmax

ℓ (k)].

Proof. The theorem follows from dividing the interval (x[n+1], δmax
ℓ (k)] into subintervals (x[i+1], x[i]] and

applying Lemma 5.13 to each of the subintervals.

We proved the above theorem for the case when time is integral. We defer consideration of continuous

time to future work. According to Theorem 5.5, we can apply Corollary 5.1 as follows. First, we check

whether (5.23) does not hold for δ = δmax
ℓ (k). Second, we construct the sequence {x[n]} as defined in

Definition 5.30. If a fixed point x[n] = x[n+1] is not found in the interval [A−1
ℓ (k − 1), δmax

ℓ (k)], then, by

Theorem 5.5, (5.23) does not hold for each δ ∈ [A−1
ℓ (k− 1), δmax

ℓ (k)]. If such a fixed point is found, then

we conservatively claim that the response-time bound Θℓ is violated.

Example 5.9. The iteration process described above can be illustrated graphically. Figure 5.4 shows

two functions of δ: B(δ + Θℓ) and M
∗
ℓ (δ) + (m − 1) · (E∗

ℓ (k)− 1), which are depicted with bold dotted

and solid lines, respectively. The iteration process starts with x[1] = δmax
ℓ (k). At this point, M∗

ℓ (x
[1]) +

(m − 1) · (E∗
ℓ (k) − 1) < B(x[1] + Θℓ). The next step is to set x[2] = ξ(x[1]) as shown. Similarly, x[3] is

computed. The process continues until a fixed point is found or x[n+1] < A−1
ℓ (k − 1) holds. Thus, the

iterations skip portions of the interval [A−1
ℓ (k − 1), δmax

ℓ (k)] where (5.23) is guaranteed to fail.

5.6 Schedulability Test for GEDF-like Schedulers

In this section, we improve Inequality (5.23) for a prioritization scheme in which χi,j = ri,j + Di,

where Di is a constant. We do this by more carefully estimating J -allocations within the intervals

[t0(λ), rℓ,q−λ+1) ∪ Γλ and Γλ. We divide these intervals into four non-intersecting sets and estimate

the J -allocations individually within these sets in Lemmas 5.14–5.17. Using the obtained results, we

establish Theorem 5.6, which gives a necessary condition for a response-time bound violation. This
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theorem is proved similarly to Theorem 5.3. Finally, Corollary 5.3 gives us an improved schedulability

test for GEDF-like schedulers.

Definition 5.31. Let Cℓ = maxTi∈τ (Dℓ −Di).

In Definition 5.32 and Lemmas 5.14–5.17 below, we assume that Θℓ > γuℓ (λ)+Cℓ holds. In this case,

we can improve Inequality (5.23) by replacing the term (m− 1) ·E∗
ℓ (k) with a smaller term proportional

to max(m− F − 1, 0) ·E∗
ℓ (k), where F is the number of fully available processors. (If Θℓ ≤ γuℓ (λ) +Cℓ,

then Theorem 5.3 can be applied to check for a response-time bound violation.)

Definition 5.32. Let Γ
[1]
λ = [rℓ,q−λ+1, rℓ,q + Cℓ) ∩ Γλ, Γ

[2]
λ = [rℓ,q + Cℓ, rℓ,q + Θℓ − γuℓ (λ)) ∩ Γλ, and

Γ
[3]
λ = [rℓ,q +Θℓ − γuℓ (λ), rℓ,q +Θℓ) ∩ Γλ, as shown in Figure 5.5.

Additionally, let Γλ
[1]

= [rℓ,q−λ+1, rℓ,q + Cℓ) ∩ Γλ, Γλ
[2]

= [rℓ,q + Cℓ, rℓ,q + Θℓ − γuℓ (λ)) ∩ Γλ, and

Γλ
[3]

= [rℓ,q +Θℓ − γuℓ (λ), rℓ,q +Θℓ) ∩ Γλ.

Note that, by Definition 5.32,

[t0(λ), rℓ,q +Θℓ) = [t0(λ), rℓ,q−λ+1) ∪ Γλ ∪ Γλ
[1]

∪ Γλ
[2]

∪ Γλ
[3]
. (5.31)

In the rest of this section we let µ be defined as in Lemma 5.4.

Lemma 5.14: ÂJ ([t0(λ), rℓ,q−λ+1)∪Γλ) = m · (rℓ,q − t0(λ)+Θℓ)−m · (WJ (Tℓ, rℓ,q−λ+1)− 1)+m ·µ.

Proof. By Definition 5.17, we have

ÂJ ([t0(λ), rℓ,q−λ+1) ∪ Γλ)

= ÂJ ([t0(λ), rℓ,q−λ+1)) + ÂJ (Γλ)

{by Definition 5.18 and Claim 5.4}

= m · (rℓ,q−λ+1 − t0(λ)) +m · |Γλ|

{by Lemma 5.4}

= m·(rℓ,q−λ+1−t0(λ))+m·(rℓ,q+Θℓ−rℓ,q−λ+1−WJ (Tℓ, rℓ,q−λ+1)+1+µ)

= m · (rℓ,q − t0(λ) + Θℓ)−m · (WJ (Tℓ, rℓ,q−λ+1)− 1) +m · µ.

Lemma 5.15: ÂJ (Γλ
[1]
) ≥ rℓ,q + Cℓ − rℓ,q−λ+1 − |Γ

[1]
λ |.

Proof. By Definitions 5.18 and 5.32, Γλ
[1]

= [rℓ,q−λ+1, rℓ,q + Cℓ) ∩ Γλ = [rℓ,q−λ+1, rℓ,q +Cℓ) \ Γλ =

[rℓ,q−λ+1, rℓ,q+Cℓ)\Γ
[1]
λ . By Claim 5.5, Tℓ executes at each instant within Γλ, and hence, at each instant
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Figure 5.5: Conditions for a response-time bound violation for λ = 1.

within [rℓ,q−λ+1, rℓ,q +Cℓ) \Γ
[1]
λ . Thus, AJ (Tℓ, [rℓ,q−λ+1, rℓ,q +Cℓ) \Γ

[1]
λ ) = rℓ,q +Cℓ − rℓ,q−λ+1 − |Γ

[1]
λ |.

The required result follows from Definition 5.17.

Lemma 5.16: ÂJ (Γλ
[3]
) ≥ γuℓ (λ)− |Γ

[3]
λ |.

Proof. By Definitions 5.18 and 5.32, Γλ
[3]

= [rℓ,q+Θℓ−γuℓ (λ), rℓ,q+Θℓ)∩Γλ = [rℓ,q+Θℓ−γuℓ (λ), rℓ,q+Θℓ)\

Γλ = [rℓ,q +Θℓ−γ
u
ℓ (λ), rℓ,q +Θℓ)\Γ

[3]
λ . By Claim 5.5, Tℓ executes at each instant within Γλ, and hence,

at each instant within [rℓ,q+Θℓ−γuℓ (λ), rℓ,q+Θℓ)\Γ
[3]
λ . Thus, AJ (Tℓ, [rℓ,q+Θℓ−γuℓ (λ), rℓ,q+Θℓ)\Γ

[3]
λ ) =

γuℓ (λ)− |Γ
[3]
λ |. The required result follows from Definition 5.17.

If Γ
[3]
λ = ∅, then, because by Definition 5.11, fℓ,q−λ ≤ rℓ,q + Θℓ − γuℓ (λ), jobs Tℓ,q−λ+1, . . . , Tℓ,q can

execute uninterruptedly within [rℓ,q + Θℓ − γuℓ (λ), rℓ,q + Θℓ). As their total execution time is at most

γuℓ (λ), Tℓ,q will finish by rℓ,q +Θℓ leading to a contradiction. We henceforth assume |Γ
[3]
λ | > 0.

From Lemma 5.5, the corollary below follows.

Corollary 5.2. No job in J is released after rℓ,q +maxTi∈τ (Dℓ −Di).

Proof. Consider job Ti,j ∈ J . By Lemma 5.5, ri,j ≤ rℓ,q + Cℓ,i. Thus, ri,j ≤ rℓ,q + Dℓ − Di ≤

rℓ,q +maxTi∈τ (Dℓ −Di).

Definition 5.33. Let a = min(F + 1,m). (Recall that F is the number of fully available processors as

defined in Definition 5.6.)

Lemma 5.17: ÂJ (Γλ
[2]
) ≥ a·(−Cℓ−γuℓ (λ)−rℓ,q+rℓ,q−λ+1+WJ (Tℓ, rℓ,q−λ+1)−1−µ)+a·(|Γ

[1]
λ |+|Γ

[3]
λ |).

Proof. We first note that, by Definitions 5.18 and 5.32, we have

Γλ
[2]

= [rℓ,q + Cℓ, rℓ,q +Θℓ − γuℓ (λ)) \ Γλ. (5.32)
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By Corollary 5.2 and Definition 5.31, nor job in J nor its predecessors can be released after rℓ,q + Cℓ.

If at most F available processors execute jobs in J at some time instant t′ ∈ [rℓ,q + Cℓ, rℓ,q + Θℓ −

γuℓ (λ)) \Γλ, then at each time t ≥ t′ all tasks in τp(t) with ready jobs in J can be accommodated using

F fully available processors. By Claim 5.3, this implies that jobs of Tℓ execute uninterruptedly within

[t′, rℓ,q +Θℓ). The completion time of Tℓ,q is thus

fℓ,q ≤ max(t′, fℓ,q−λ) + γuℓ (λ)

{by Definition 5.11}

≤ max(t′, rℓ,q +Θℓ − γuℓ (λ)) + γuℓ (λ)

{by the selection of t′}

≤ rℓ,q +Θℓ − γuℓ (λ) + γuℓ (λ)

= rℓ,q +Θℓ,

leading to a contradiction.

We henceforth assume that at least a = min(F +1,m) available processors execute jobs in J at each

time within [rℓ,q + Cℓ, rℓ,q +Θℓ − γuℓ (λ)) \ Γλ (see Figure 5.5). Thus,

ÂJ (Γλ
[2]
) ≥ a · |Γλ

[2]
|

{by (5.32)}

= a · |[rℓ,q + Cℓ, rℓ,q +Θℓ − γuℓ (λ)) \ Γλ|

= a · (Θℓ − γuℓ (λ) − Cℓ − (|Γλ| − |Γ
[1]
λ | − |Γ

[3]
λ |))

= a · (Θℓ − γuℓ (λ) − Cℓ − |Γλ|) + a · (|Γ
[1]
λ |+ |Γ

[3]
λ |)

{by Lemma 5.4}

= a · (Θℓ − γuℓ (λ) − Cℓ − (rℓ,q +Θℓ − rℓ,q−λ+1

−WJ (Tℓ, rℓ,q−λ+1) + 1 + µ)) + a · (|Γ
[1]
λ |+ |Γ

[3]
λ |)

= a · (−γuℓ (λ)− Cℓ − rℓ,q + rℓ,q−λ+1

+WJ (Tℓ, rℓ,q−λ+1)− 1− µ) + a · (|Γ
[1]
λ |+ |Γ

[3]
λ |).

Claim 5.9: rℓ,q − rℓ,q−λ+1 ≤ max(0, γuℓ (λ − 1) − 1). (Note that this result does not depend on the

scheduler being assumed.)
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Proof. If λ = 1, then rℓ,q − rℓ,q−λ+1 = 0. Alternatively, if λ > 1, then, by (5.12), rℓ,q−λ+1 + Θℓ ≥

fℓ,q−λ+1 > rℓ,q + Θℓ − γuℓ (λ − 1), where the last inequality follows from Definition 5.11. Therefore,

rℓ,q − rℓ,q−λ+1 ≤ γuℓ (λ− 1)− 1, as time is integral.

The following definition is used to define the schedulability test for GEDF-like schedulers in Theo-

rem 5.6 and Corollary 5.3 below.

Definition 5.34. Let

Zh(k) =





(m− 1) · (E∗
h(k)− 1) if Θh ≤ γuh(k) + Cℓ,

min
(
(m− 1) · (E∗

h(k)− 1),

(m− a) · (E∗
h(k)−1) +(a−1)·(γuh(k)+max(0, γuh(k−1)−1)+Ch)

)

otherwise,

where a is defined as in Definition 5.33.

Theorem 5.6. If the response-time bound Θℓ of Tℓ,q is violated (as we have assumed), then for some

k = λ and δ such that δ ≥ A−1
ℓ (k − 1) and δ ≤

⌊
(Hℓ + Zℓ(k) + Û · σtot − Θℓ · Û)/(Û − Usum)

⌋
, (5.33)

below holds.

M∗
ℓ (δ) + Zℓ(k) ≥ B(δ +Θℓ), (5.33)

Proof. Consider job Tℓ,q, k = λ, and time instants rℓ,q−λ+1 and t0(λ) as defined in Definitions 5.11

and 5.13. We let δ = rℓ,q − t0(λ). We consider two cases.

Case 1: Θℓ ≤ γuℓ (λ) + Θℓ. By Theorem 5.3, (5.34) below holds

M∗
ℓ (δ) + (m− 1) · (E∗

ℓ (λ)− 1) ≥ B(δ +Θℓ). (5.34)

Case 2: Θℓ > γuℓ (λ) + Θℓ. By Definition 5.17, we have,

∑

Ti∈τ

AJ (Ti, [t0(λ), rℓ,q +Θℓ)) +

m∑

h=1

Res([t0(λ), rℓ,q +Θℓ))

= ÂJ (Ti, [t0(λ), rℓ,q +Θℓ))

{by (5.31)}
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= ÂJ ([t0(λ), rℓ,q−λ+1) ∪ Γλ) + ÂJ (Γλ
[1]
) + ÂJ (Γλ

[2]
) + ÂJ (Γλ

[3]
)

{by Lemmas 5.14–5.17}

≥ m · (rℓ,q − t0(λ) + Θℓ)−m · (WJ (Tℓ, rℓ,q−λ+1)− 1) +m · µ

+ rℓ,q + Cℓ − rℓ,q−λ+1 − |Γ
[1]
λ |

+ a · (−Cℓ − γuℓ (λ) − rℓ,q + rℓ,q−λ+1 +WJ (Tℓ, rℓ,q−λ+1)− 1− µ)

+ a · (|Γ
[1]
λ |+ |Γ

[3]
λ |) + γuℓ (λ)− |Γ

[3]
λ |

= m · (rℓ,q − t0(λ) + Θℓ)− (m− a) · (WJ (Tℓ, rℓ,q−λ+1)− 1)

+ (m− a) · µ+ (a− 1) · (|Γ
[1]
λ |+ |Γ

[3]
λ |)

+ (1− a) · (γuℓ (λ) + Cℓ + rℓ,q − rℓ,q−λ+1)

{because µ ≥ 0 and |Γ
[1]
λ |+ |Γ

[3]
λ | ≥ 0}

≥ m · (rℓ,q − t0(λ) + Θℓ)− (m− a) · (WJ (Tℓ, rℓ,q−λ+1)− 1)

+ (1− a) · (γuℓ (λ) + Cℓ + rℓ,q − rℓ,q−λ+1). (5.35)

Setting (5.22) into (5.35), we have

∑

Ti∈τ

AJ (Ti, [t0(λ), rℓ,q +Θℓ))

+m · (rℓ,q − t0(λ) + Θℓ)− B(rℓ,q − t0(λ) + Θℓ)

≥ m · (rℓ,q − t0(λ) + Θℓ)− (m− a) · (WJ (Tℓ, rℓ,q−λ+1)− 1)

+ (1− a) · (γuℓ (λ) + Cℓ + rℓ,q − rℓ,q−λ+1).

Rearranging the terms in the above inequality, we have

∑

Ti∈τ

AJ (Ti, [t0(λ), rℓ,q +Θℓ))+(m−a)·(WJ (Tℓ, rℓ,q−λ+1)−1)

+(a−1)·(γuℓ (λ)+Cℓ+rℓ,q−rℓ,q−λ+1)

≥ B(rℓ,q−t0(λ)+Θℓ).

From Claim 5.9, we therefore have

∑

Ti∈τ

AJ (Ti, [t0(λ), rℓ,q +Θℓ)) + (m− a) · (WJ (Tℓ, rℓ,q−λ+1)− 1)
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+ (a− 1) · (γuℓ (λ) + Cℓ +max(0, γuℓ (λ− 1)− 1))

≥ B(rℓ,q−t0(λ)+Θℓ).

Setting E∗
ℓ (λ) and M

∗
ℓ (rℓ,q − t0(λ)) as defined in Definitions 5.20 and 5.21 into the inequality above, we

get

M∗
ℓ (rℓ,q − t0(λ))

+(m−a)·(E∗
ℓ (λ)−1)+(a−1)·(γuℓ (λ)+Cℓ+max(0, γuℓ (λ−1)−1))

≥ B(rℓ,q − t0(λ) + Θℓ).

Setting δ = rℓ,q − t0(λ) in the inequality above, we have

M∗
ℓ (δ)+(m−a)·(E∗

ℓ (λ)−1)+(a−1)·(γuℓ (λ)+Cℓ+max(0, γuℓ (λ−1)−1))

≥ B(δ +Θℓ). (5.36)

Additionally, (5.34) holds by Theorem 5.3. Combining (5.34) and (5.36) using Definition 5.34, we get

(5.33). The stated range for δ can further be found similarly to Theorem 5.3.

From Theorem 5.6, an improved schedulability test follows.

Corollary 5.3. (Improved Schedulability Test) Let δmax
h (k)

′
=
⌊
(Hh + Zh(k) + Û · σtot − Θh ·

Û)/(Û − Usum)
⌋
. If, for each task Th ∈ τ , M∗

h(δ) + Zh(k) < B(δ + Θh) for each k ∈ [1,Kh] and

δ∈[A−1
h (k−1), δmax

h (k)
′
], then no response-time bound is violated.

By Definition 5.34, for large values of the response-time bound Θh such that Θh > γuh(k)+Ch, Zh(k)

is min
(
(m− 1) · (E∗

h(k)− 1), (m− a) · (E∗
h(k)− 1)+ (a− 1) · (γuh(k) +max(0, γuh(k− 1)− 1)+Ch)

)
. This

value is smaller than (m− 1) · (E∗
h(k)− 1) for large values of Θh because E∗

h(k) is proportional to Θh by

Lemma 5.9. Thus, the schedulability test given in Corollary 5.3 is less pessimistic for large response-time

bounds than the test in Corollary 5.1. In the next section, we use the improved schedulability test to

derive closed-form expressions for response-time bounds.
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5.7 Closed-Form Expressions for Response-Time Bounds

Though the iterative procedure described in Section 5.5 can significantly reduce the time needed to check

response-time bounds using Corollaries 5.1 and 5.3, the verification time can still be large if the task

set is large and tasks have complex job arrival and execution-time patterns. In this section, we further

reduce the computation time by deriving closed-form expressions for the response-time bounds Θi under

GEDF-like schedulers. In Chapter 3, it has been shown that GEDF (and many other schedulers) ensures

a maximum response-time bound of x + pi + emax
i , where x ≥ 0, for each sporadic task Ti ∈ τ , if tasks

have implicit deadlines, all processors are fully available, and Usum ≤ m. In this chapter, we prove a

similar result for systems specified as in Section 5.1. We will be seeking response-time bounds of the

form Θi = x+γui (Ki)+Ci, where x > 0, and Ki and Ci are as defined in Definitions 5.3 and 5.31. In the

rest of this section, we derive x based upon the task parameters and resource availability. The derivation

process is similar to finding an upper bound on δ in Theorem 5.3. In Lemmas 5.18 and 5.19 below, we

first establish upper bounds on E∗
ℓ (k) and M

∗
ℓ (δ) as functions of x for the case when the response-time

bound is a function of x. We then set the obtained expressions into the schedulability test and solve the

resulting inequality for x.

Definition 5.35. Let Yℓ = Lℓ(max(0, γuℓ (Kℓ − 1)− 1) + γuℓ (Kℓ) + Cℓ), where L is defined as in Defini-

tion 5.27.

Lemma 5.18. (Proved in the appendix) If Θℓ = x + γuℓ (Kℓ) + Cℓ, then E∗
ℓ (k) ≤ Yℓ + uℓ · x for

k ∈ [1,Kℓ].

Definition 5.36. Let W be the sum of m− 1 largest values ui · (γui (Ki) + Ci).

Lemma 5.19. (Proved in the appendix) If Θi = x+ γui (Ki) +Ci for each task Ti and δ ≥ 0, then

M∗
ℓ (δ) ≤ Usum · δ+U(m− 1) ·x+W +

∑
Ti∈τ Li(Cℓ,i), where U(m− 1) is the sum of m− 1 largest task

utilizations.

Theorem 5.7. If Û − (m − a) · max(ui) − U(m − 1) > 0 and Usum ≤ Û , then, under a GEDF-like

scheduler, the maximum response time of any job of Ti is at most x+ γui (Ki) + Ci, where

x = max
Th∈τ

(
W+Û ·σtot+Vh+

∑
Ti∈τ Li(Ch,i)

Û−(m−a)·uh−U(m−1)

)
+ 1 (5.37)

and Vh = (m− a) · (Yh − 1) + (a− 1− Û) · (γuh(Kh) + Ch) + (a− 1) ·max(0, γuh(Kh − 1)− 1).
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Proof. Suppose to the contrary that task Tℓ violates its response-time bound Θℓ = x + γuℓ (Kℓ) + Cℓ.

Because x > 0, and γuℓ (Kℓ) ≥ γuℓ (k) for each k ∈ [1,Kℓ], we have

Θℓ > γuℓ (k) + Cℓ for each k ∈ [1,Kℓ]. (5.38)

By Theorem 5.6, for some k ∈ [1,Kℓ] (particularly, for k = λ as defined in Definition 5.11) and δ ≥ 0,

(5.33) holds. (Note that δ ≥ A−1
ℓ (k− 1) by Theorem 5.6 and A−1

ℓ (k− 1) ≥ 0 by Definition 5.3.) Setting

k = λ and the bound for B given by (5.4) into (5.33), we have

M∗
ℓ (δ) + Zℓ(λ) ≥ Û · (δ +Θℓ − σtot).

Because Θℓ > γuℓ (λ) + Cℓ by (5.38), from Definition 5.34 and the inequality above, we have

M∗
ℓ (δ)+(m−a)·(E∗

ℓ (λ)−1)+(a−1)·(γuℓ (λ)+Cℓ+max(0, γuℓ (λ−1)−1))

≥ Û · (δ +Θℓ − σtot).

By the selection of Θℓ,

M∗
ℓ (δ)+(m−a)·(E∗

ℓ (λ)−1)+(a−1)·(γuℓ (λ)+Cℓ+max(0, γuℓ (λ−1)−1))

≥ Û · (δ + x+ γuℓ (Kℓ) + Cℓ − σtot).

Setting the bounds on E∗
ℓ (λ) and M

∗
ℓ (δ) given by Lemmas 5.18 and 5.19 into the inequality above, we

have

Usum·δ+U(m− 1)·x+W+
∑

Ti∈τ

Li(Cℓ,i)+(m−a)·(Yℓ(λ)+uℓ ·x−1)

+(a−1)·(γuℓ (λ)+Cℓ+max(0, γuℓ (λ−1)−1))

≥ Û · (δ + x+ γuℓ (Kℓ) + Cℓ − σtot).

Because Usum ≤ Û by the statement of the theorem and δ ≥ 0, we have

U(m− 1) ·x+W+
∑

Ti∈τ

Li(Cℓ,i)+(m−a)·(Yℓ(λ)+uℓ ·x−1)

+ (a−1)·(γuℓ (λ)+Cℓ+max(0, γuℓ (λ−1)−1))
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≥ Û · (x+ γuℓ (Kℓ) + Cℓ − σtot).

After regrouping, we have

W+
∑

Ti∈τ

Li(Cℓ,i)+(m−a)·(Yℓ(λ)−1)

+(a−1)·(γuℓ (λ)+Cℓ+max(0, γuℓ (λ−1)−1))− Û · (γuℓ (Kℓ) + Cℓ − σtot)

≥ x · (Û − (m− a) · uℓ − U(m− 1)).

Solving the above inequality for x, we have

x ≤
W + Û · σtot + Vℓ(λ) +

∑
Ti∈τ Li(Cℓ,i)

Û − (m− a) · uℓ − U(m− 1)
, (5.39)

where Vℓ(λ) = (m − a) · (Yℓ − 1) + (a − 1) · (γuℓ (λ) + Cℓ + max(0, γuℓ (λ − 1) − 1) − Û · (γuℓ (Kℓ) + Cℓ).

From Definition 5.33, we have m − a ≥ 0 and a ≥ 1. Thus, since the function γuh(k) is non-decreasing,

Vh(k) ≤ Vh, where Vh is defined in the statement of the theorem. Maximizing the right-hand side of

(5.39) by task Tℓ, we have

x ≤ max
Th∈τ

(
W + Û · σtot + Vh +

∑
Ti∈τ Li(Ch,i)

Û − (m− a) · uh − U(m− 1)

)
.

This contradicts (5.37).

The result of Theorem 5.7 is closely related to the results of Devi (2006) and Theorem 3.1 in Chapter 3.

In particular, the requirement Û − (m− a) ·max(ui)− U(m− 1) to be positive is a sufficient condition

for maximum job response times (deadline tardiness) to be bounded.

5.8 Multiprocessor Analysis: A Case Study

Our analysis can be used to derive response-time bounds for workloads that partitioning schemes cannot

accommodate and for workloads that cannot be efficiently analyzed under the widely-studied periodic

and sporadic models. To illustrate this, we applied our analysis to a part of the MPEG-2 video decoder

application presented in Example 1.5 in Section 1.6.

Experimental setup. In our experiments, we considered two variants of the previously-studied system

shown in Figure 4.11(a) in which PE1 is a three-processor system running four identical VLD+IQ tasks,
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Figure 5.6: (a) A video-processing application. Experimental setup (b) without and (c) with containers.

T1, T2, T3, and T4. The two modified systems are illustrated in insets (b) and (c) of Figure 4.11 and

explained in further detail below. For conciseness, we refer to the systems in these three insets as the (a)-,

(b)-, and (c)-systems, respectively. To assess the usefulness of our analysis, we computed output curves

of the four tasks so that they can be used in further analysis. We assumed zero scheduling and system

overheads (the inclusion of such overheads in our analysis is beyond the scope of this dissertation).

The goal of our experiments was to compare different ways of implementing and analyzing the (b)- and

(c)-systems. As we shall see, both systems can be implemented on three processors if global scheduling

is used; in this case, they can be analyzed using the techniques of chapter but not using prior global

schedulability analysis methods. Moreover, if the system is instead partitioned (allowing uniprocessor

real-time calculus to be applied on each processor), then four processors are required.

In the analysis, we used a trace of 6 × 105 macroblock processing events obtained in prior work for

the VLD+IQ task during a simulation of the (a)-system using a SimpleScalar architecture (Chakraborty

et al., 2006; Phan et al., 2008).

We first determined execution times of macroblock instructions by examining a repeating pattern of

228,096 consecutive macroblock instruction lengths in the middle of the trace and assuming a 500 MHz

processor frequency. We found that all macroblock processing times in the trace are under 164µs and the

best-case macroblock processing time is 2µs. These values are comparable to characteristic preemption

and migration costs for multiprocessor systems measured in recent studies for architectures with higher
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processor frequencies (Brandenburg et al., 2008a; Brandenburg and Anderson, 2009). Therefore it is

not practical to invoke a job for each arriving macroblock. We thus assumed that a job is invoked

for processing a single frame, which consists of 1,584 macroblocks, and obtained γui (k) and γ
l
i(k) as in

Definition 5.1 for frames. We found that all frame processing times in the trace were under γui (1) = 70ms,

which we set to be the maximum job execution time (the best-case execution time is γli(1) = 18ms).

The function αu
i (∆) in Definition 5.2 was obtained by examining macroblock and frame arrival times.

We computed A−1
i (k) in Definition 5.3 as well as linear bounds for αu

i (∆) and γui (k) as in (5.2) and (5.3)

using the RTC Toolbox (Wandeler and Thiele, 2006).

In the (b)- and (c)-systems, three fully-available processors are used for scheduling tasks T1, . . . , T4.

However the scheduling algorithms in these two systems are different.

In the (b)-system, task T1 is statically prioritized over the other tasks. In such a system, task T1

can process a time-critical video stream and tasks T2, T3, and T4 can process low-priority video streams.

The remaining tasks T2, T3, and T4 are scheduled by GEDF using the supply from two fully-available

processors and that remaining on a third processor after accommodating task T1. In Figure 4.11(b),

down arrows are used to depict the long-term available utilization on each processor.

In the (c)-system, task T1 and tasks T2, . . . , T4 are encapsulated into two containers C1 and C2,

respectively, as shown in Figure 4.11(c). The available processor time is distributed among these two

containers as follows. Two processors are dedicated for scheduling tasks in C2. The time on the third

processor is allocated using periodic server tasks S1 and S2 with execution times e1 and e2 and periods

p1 and p2. The jobs of S1 and S2 are scheduled using uniprocessor EDF. When task S1 is scheduled, a

job of T1 is scheduled. Tasks T2, . . . , T4 are scheduled by GEDF using the supply from two fully-available

processor and the time available on the third processor when S2 is scheduled. To ensure schedulability

of the underlying tasks, the execution times and periods for server tasks should be selected as follows.

e1/p1 = Û1 ≥ u1, 2+ e2/p2 = Û2 ≥ u2 +u3 + u4, and e1/p1+ e2/p2 = 1. In Figure 4.11(c), down arrows

to the container boxes denote the long-term guaranteed utilization in the respective container. The

scheme described above is an application of the hierarchical scheduling scheme introduced in Chapter 4.

In contrast to the (b)-system, in the (c)-system, task T1 is temporally isolated from the other tasks.

Results. To show that existing analysis techniques are inapplicable or are too pessimistic in the given

setup, some of the properties of the input streams and the VLD+IQ task need to be emphasized.

First, for both (b)- and (c)-systems, the minimum job inter-arrival time is 18ms. Because the long-

term arrival rate is Ri = 0.025, the arriving stream cannot be re-shaped to achieve a minimum job

inter-arrival time greater than pi = 1/Ri = 40ms so that the long-term arrival rate is preserved.
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Second, while the long-term worst-case execution time is ei = 25.57ms (see Definition 5.1 and (5.3)),

the maximum processing time of a single frame is 70ms, so assuming that each job executes for its

worst-case execution time would result in heavy overprovisioning. The long-term per-task utilization is

ui = Ri · ei = 0.025 · 25.57 = 0.64. Finally, the total utilization is U =
∑4

i=1 ui = 2.56. Therefore, the

task set {T1, . . . , T4} cannot be partitioned onto three processors (four processors are needed, actually),

so global scheduling is required.

Because the worst-case job execution time is emax
i = γui (1) = 70ms and the minimum job inter-arrival

time is pi = 18ms, we have emax
i /pi = 3.88 > 1. Therefore, both (b)- and (c)-systems cannot be analyzed

using prior results for periodic and sporadic task models, which require pi > 0 and emax
i /pi ≤ 1.

Figure 5.7 depicts the job completion curve αu
1
′ for task T1 in the (a)- and (b)-systems, the curve

αu
2
′ for task T2 in the (b)-system, and the input curve αu

1 . (Note that, in the (b)- and (c)-systems, tasks

T1, . . . , T4 have the same input curve αu
1 , and the completion curves for T2, . . . , T4 are the same (within

the respective system).) Figure 5.8 shows the input and completion curves for tasks T1 and T2 in the

(c)-system.

Because task T1 is effectively scheduled on a dedicated processor in the (a)- and (b)-systems, the

output curves for T1 in these two systems were obtained using prior results in real-time calculus for

uniprocessor systems.

For the (b)-system, we calculated the maximum response time for T1 and then applied Theorem 5.2

to find the supply available to tasks T2, T3, and T4. We then calculated their response-time bounds Θ′
i

using Theorem 5.7. After that, we set Θi = ⌊Θ′
i · 0.83⌋ = 989ms, which is the minimum value such that

the conclusion of Corollary 5.3 still holds. The multiplier 0.83 was found by running a binary search

procedure. We then computed completion curves using Theorem 5.1.

For the (c)-system, we constructed two periodic server tasks S1 and S2 with execution times 7ms

and 3ms, respectively, and period 10ms. These values for execution times and periods are the smallest

multiples of a typical quantum length of 1ms that give an approximate task utilization of 0.64. We used

prior results to calculate the guaranteed processor time to each of the containers C1 and C2 (Leontyev

and Anderson, 2009).

Because, in the (c)-system, task T1 is effectively scheduled on one processor with limited availability,

we calculated the output curve for task T1 using prior results in uniprocessor real-time calculus. Given

the supply guaranteed to container C2, we calculated for tasks T2, T3, and T4 the response-time bound

Θi = 949ms and the completion curves similarly to those in the (b)-system.

The resulting curves have the same long-term completion rate in all the three systems. Task T1 has
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Figure 5.7: Job arrival curve αu and completion curves αu′ for tasks T1 and T2 in the (a)- and (b)-systems.
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Figure 5.8: Job arrival curve αu and completion curves αu′ for tasks T1 and T2 in the (c)-system.

the shortest possible maximum response time in both the (a)- and (b)-systems. However, the large job

response times of tasks T2, . . . , T4 in the (b)- and (c)-systems cause a larger degree of burstiness in the

output event streams. This burstiness is a result of conservatism in the analysis.

Overall, the (b)- and (c)-systems have the advantage of needing only three processors to accommodate

four video streams, while with partitioned scheduling, four dedicated processors are required. This

advantage in the number of processors comes at the expense of larger buffers for storing partially decoded

macroblocks for tasks T2, T3, and T4. (The additional buffer size is the maximum difference between the

output curves αu
1
′ in the (b)- and (c)- and (a)- systems.) The output buffer for tasks T2, . . . , T4 should

be at least 25 additional frames, which is 1 second worth of video.

We conclude this section with a few comments about the running time of the analysis procedures.

We have implemented these procedures as a set of MATLAB functions extending the RTC Toolbox.

Though the procedure presented in Section 5.4 has pseudo-polynomial time complexity (like many other
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schedulability tests presented elsewhere), the time needed to verify response times using Corollary 5.1

can be large, especially for complex arrival and execution-time patterns. In our experimental study

of the (b)- and (c)-systems, we found that the required response-time bounds could be calculated in

about a couple of minutes, by using Theorem 5.7 to obtain initial bounds, which were then refined using

Corollary 5.1 (on a 1.7 GHz single-processor desktop system).

5.9 Summary

In this chapter, we have studied a multiprocessor PE, where (partially available) processors are managed

by a global scheduling algorithm and jobs are triggered by streams of external events. This work is

of importance because it allows workloads to be analyzed for which existing schedulability analysis

methods are completely inapplicable (e.g., the system cannot be described efficiently using conventional

periodic/sporadic task models) and for which partitioning techniques are unnecessarily restrictive.

The research in this dissertation is part of a broader effort, the goal of which is to produce a practical

compositional framework, based on real-time calculus, for analyzing multiprocessor real-time systems.

Towards this goal, the contributions of this chapter are as follows. We designed a pseudo-polynomial-

time procedure that can be used to test whether job response times occur within specified bounds. Given

these bounds, we computed upper and lower bounds on the number of job completion events over any

interval of length ∆ and a lower bound on the supply available after scheduling all incoming jobs. These

bounds can be used as inputs for other PEs thereby resulting in a compositional analysis framework.

A number of unresolved issues of practical importance remain. First, efficient methods are needed

for determining response-time bounds when they are not specified — this is probably the most important

unresolved issue left. As a partial solution, we provided closed-form expressions for computing response-

time bounds, but we do not know how pessimistic they are. Second, the schedulability test itself could

possibly be improved by incorporating information about lower bounds on job arrivals and execution

times and upper bounds on supply. Third, real-time interfaces as in (Chakraborty et al., 2006) need to

be derived for the multiprocessor case to achieve full compatibility with uniprocessor real-time calculus.

Fourth, the inherent pessimism introduced by applying real-time calculus methods on multiprocessors

needs to be assessed.
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Chapter 6

Conclusion and Future Work

In this dissertation, we extended prior work on multiprocessor soft real-time scheduling to enable the

analysis of component-based systems, specifically by introducing extensions to real-time calculus and a

novel scheme for scheduling real-time containers on a multiprocessor.

Prior work on real-time calculus did not consider resource-efficient global schedulers, and prior work

in the area of global multiprocessor scheduling mostly considered workloads consisting of independent

sporadic tasks. In Chapters 4 and 5, we have presented the analysis of workloads described by sporadic

and streaming task models scheduled using global scheduling algorithms on a multiprocessor with po-

tentially restricted supply. These techniques significantly extend the assortment of building blocks to

be used for the design and analysis of embedded and distributed systems in addition to those offered by

conventional real-time calculus.

As multicore platforms have become standard within many domains, creating resource-efficient

scheduling policies and analysis methods for such platforms has become necessary to ensure provably

acceptable system performance.

6.1 Summary of Results

In Chapter 1, we formulated the thesis statement given below, which was to be supported by this

dissertation.

With the exception of static-priority algorithms, virtually all previously studied global real-time scheduling

algorithms ensure bounded deadline tardiness for implicit-deadline sporadic task systems. This property

is preserved even if the processing capacity of some processors is not fully available, provided that the

long-term execution demand does not exceed the total available processing capacity. Well-studied global



schedulers such as GEDF and FIFO ensure bounded maximum response times in systems with complex

job arrival and execution patterns as described by the streaming task model. The use of such algorithms

enables component-based systems with predominantly soft timing constraints to be built while incurring

little or no utilization loss in settings where partitioning approaches are too costly in terms of needed

processing resources.

In support to this thesis statement, in Chapter 3, we have presented a general tardiness-bound

derivation that applies to a wide variety of global scheduling algorithms for sporadic tasks. Our results

show that, with the exception of static-priority algorithms, most global algorithms of interest in the

real-time-systems community have bounded tardiness. When considering new algorithms, the question

of whether tardiness is bounded can be answered in the affirmative by simply showing that the required

prioritization can be specified. Bounded tardiness is preserved even if the capacity of each processor

that is available to the (soft) real-time workload is restricted (provided that the entire system is not

overloaded and maximum per-task utilizations are not too high).

Using these results about bounded tardiness on restricted-capacity platforms, in Sections 4.4 and 4.4.1,

we have identified conditions under which a restricted-capacity platform can be fully utilized without

constraining the maximum per-task utilization. These observations led to the development of a multi-

processor bandwidth-reservation scheme for hierarchically organized real-time containers in Chapter 4.

Under this scheme each real-time container can reserve any fraction of processor time (even the capac-

ity of several processors) to schedule its children. The presented scheme provides temporal isolation

among containers so that each container can be analyzed separately. Our scheme is novel in that soft

real-time components incur no utilization loss. This stands in sharp contrast to hierarchical schemes for

hard (only) real-time systems, where the loss per level can be so significant, arbitrarily deep hierarchies

simply become untenable.

Finally, understanding the behavior of soft real-time tasks on a globally-scheduled multiprocessor is

essential for the analysis of more sophisticated workloads. In Chapter 5, we have proposed a frame-

work for the analysis of multiprocessor processing elements with streaming tasks where the constituent

processors are managed according to a global multiprocessor scheduling algorithm. Such processing

elements can be used for building complex applications that cannot be analyzed using state-of-the-art

multiprocessor scheduling techniques, and that must be overprovisioned, wasting processing resources,

if analyzed using conventional real-time calculus. Sporadic and streaming task sets under GEDF, and

static-priority schedulers, can be analyzed in this framework. We showed its viability in a case study

considering a realistic multimedia application.
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6.2 Other Contributions

In this section, we briefly discuss other contributions by the author to the field of real-time systems that

are outside of the scope of this dissertation.

Multiprocessor scheduling on asymmetric platforms. In (Leontyev and Anderson, 2007b), we

proposed an approach for supporting sporadic soft real-time tasks running on an asymmetric multicore

platform. In such a platform, multiple processing cores are placed on one chip or several chips, and

all processing cores have same instruction set, but potentially different performance levels. As a result,

tasks can have different execution times when running on different types of cores. The usage of such a

platform can be beneficial if there is a need to accommodate both parallelizable and inherently-sequential

applications on the same platform.

In our work, we have presented a new algorithm, EDF-ms (EDF for multi-speed platforms), which

can be used for scheduling sporadic soft real-time task systems on asymmetric multicore platforms. To

our knowledge, our work is the first to propose a scheduling approach for such heterogeneous platforms

that is suitable for soft real-time workloads that require bounded deadline tardiness. Our algorithm is

capable of fully utilizing the processing capacity of the system, provided certain very slight restrictions

on task utilizations hold. This property comes at the price of needing to migrate tasks, as required in

global scheduling approaches such as GEDF.

Unified schedulability test for GEDF. In (Leontyev and Anderson, 2008b), we proposed a schedu-

lability test for the sporadic task model under preemptive and non-preemptive global EDF that treats

hard and soft real-time constraints uniformly. Particularly, each task Ti has a specified tardiness bound

Θi ≥ 0 so the test checks whether these bounds are met. The results presented in (Leontyev and An-

derson, 2008b) are closely related to those in this dissertation in Chapter 5 except that here we have

examined more general task and supply models.

Real-time synchronization protocols. The author participated in several group efforts that were

more implementation-oriented and were led by other researchers. Such efforts included a series of pa-

pers regarding real-time synchronization protocols. In (Devi et al., 2006), the hard and soft real-time

schedulability of sporadic task sets using spin-lock-protected and lock-free shared objects for synchro-

nization was studied. It was shown that using non-preemptive queue locks results in better schedulability.

In (Brandenburg et al., 2008b), blocking and non-blocking approaches to sharing objects among real-time

tasks were compared. The authors implemented spin-lock-protected, lock-free, and wait-free variants of
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several classic data structures and measured access times under different conditions. These access times

were later used in the schedulability analysis of randomly generated task sets. In (Block et al., 2007), the

authors proposed a new Flexible Multiprocessor Locking Protocol (FMLP), which is a hybrid blocking

synchronization protocol that uses spin-locks to protect short critical sections and semaphores to pro-

tect long critical sections. Schedulability conditions for tasks using the FMLP under various scheduling

algorithms were established.

LITMUSRT. In order to better understand how various global scheduling algorithms behave in prac-

tice, our research group constructed LITMUSRT (LInux Testbed for MUltiprocessor Scheduling in Real-

Time systems). LITMUSRT is an extension of the Linux kernel that allows Linux tasks to have timing

constraints, be managed using a user-defined scheduling algorithm, and use state-of-the-art real-time

synchronization mechanisms (Calandrino et al., 2006; Brandenburg et al., 2007). LITMUS
RT adds a

number of hooks into the original Linux scheduling code so that user-defined scheduling functions can

be called. For each scheduling algorithm implemented in LITMUSRT, these functions are bundled into

distinct plugins, which can be switched at runtime. LITMUSRT provides implementations of preemptive

and non-preemptive versions of GEDF, the PD2 Pfair algorithm, and PEDF. Also, in LITMUSRT, there

are a number of tracing and debugging tools that facilitate the development of new plugins as well as a

collection of probes for measuring various system and scheduling overheads.

Interrupt accounting schemes. The results concerning schedulability on multiprocessors from Chap-

ter 3 have been used to design novel methods for accounting for interrupts. Arriving interrupts take

processor time and are not subject to regular scheduling. Thus, they can affect the timeliness of other

real-time tasks in a system. Though system designers attempt to make interrupts as short as possible,

their presence has to be accounted for in schedulability analysis. One of the interrupt accounting schemes

presented in (Brandenburg et al., 2009) subtracts the total interrupt processing time from the full pro-

cessor supply and then treats soft real-time tasks as though they were running on a reduced-capacity

platform. In (Brandenburg et al., 2009), this and other interrupt accounting methods and interrupt

dispatching schemes are quantitatively evaluated using randomly generated task sets.

6.3 Future Work

There are several ways in which the work described in this dissertation could be extended, as we discuss

next.
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Deriving tight tardiness bounds and devising reactive tardiness-reduction techniques. Our

experimental results suggest that actual tardiness under EDZL is likely to be very low. It would be

interesting to improve our analysis as it applies to EDZL in order to obtain a tight tardiness bound.

Tardiness bounds for other algorithms, like GEDF, can likely be improved as well. Given that there

is interest in the Linux community for supporting similar scheduling algorithms, such theoretical work

would provide a solid foundation to support this choice. It would also be interesting to investigate

reactive techniques that could be applied at runtime to lessen tardiness for certain jobs by redefining

priority points, as circumstances warrant. Such techniques might exploit the fact that our framework

allows priority definitions to be changed rather arbitrarily at runtime.

Introducing dynamic containers. An important topic for future work is to enable dynamic con-

tainer creation and the joining/leaving of tasks. To achieve this goal, recent results on changing task

parameters such as execution times and periods at runtime could be helpful (Block et al., 2008). These

results show that, if bounded tardiness has to be supported, then tasks cannot change their parameters

at arbitrary times. Similar restrictions could pertain to containers if tasks are allowed to change their

parameters or migrate between containers. Also of importance is the inclusion of support for synchro-

nization. To implement shared objects, one needs to consider non-blocking synchronization protocols in

addition to lock-based alternatives. Finally, overheads need to be measured for an implementation of

the hierarchical scheduling framework within LITMUSRT.

Improving multiprocessor real-time calculus. The extensions to real-time calculus that we pre-

sented could be further extended in several directions. First, the inherent pessimism introduced by

applying real-time calculus methods on multiprocessors needs to be assessed. Second, methods with low

computational complexity are needed for determining response-time bounds when they are not specified.

As a partial solution, in Section 5.7, we provided closed-form expressions for computing response-time

bounds, but we do not know how pessimistic they are. Also, these closed-form expressions are applica-

ble only to EDF-like schedulers so similar bounds have to be derived for static-priority and unrestricted

dynamic-priority schedulers as well. Third, the schedulability test itself could possibly be improved by

incorporating information about lower bounds on job arrivals and execution times and upper bounds

on supply. Fourth, real-time interfaces as in (Chakraborty et al., 2006) need to be derived for the

multiprocessor case to achieve full compatibility with uniprocessor real-time calculus.
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Appendix A

Proofs for Lemmas in Chapter 3

The following claim is used in proving Lemma 3.6 and Lemma A.1.

Claim A.1.

(a) If, for job Ti,g, ri,g ≥ t, then A(Ti,j , 0, t,PS) = 0 for each j ≥ g.

(b) If, for job Ti,g, ri,g < t ≤ di,g, then A(Ti,j , 0, t,PS) = 0 for each j > g.

Proof. (a) follows from the fact that no job Ti,j such that ri,j ≥ t receives an allocation before its release

time in the PS schedule PS. If ri,g < t ≤ di,g, then j > g implies that ri,j ≥ ri,g + pi = di,g ≥ t, which,

by (a), implies (b).

Lemma 3.6: lag(Tk, t,S) ≤ x · uk + ek for any task Tk and t ∈ [0, td].

Proof. Let dk,j be the deadline of the earliest pending job of Tk, Tk,j , in the schedule S at time t. Let

γk,j < ek,j be the amount of time for which Tk,j executes before t in the schedule S. By (3.5) and the

selection of Tk,j ,

lag(Tk, t,S) =
∑

h≥1

lag(Tk,h, t,S)

=
∑

h≥j

lag(Tk,h, t,S)

=
∑

h≥j

(A(Tk,h, 0, t,PS)− A(Tk,h, 0, t,S))

= A(Tk,j , 0, t,PS)− A(Tk,j , 0, t,S) +
∑

h>j

A(Tk,h, 0, t,PS)−
∑

h>j

A(Tk,h, 0, t,S). (A.1)

We now bound each term in the equation above. Since the earliest pending job Tk,j executes for γk,j

time units before time t in the schedule S,

A(Tk,j , 0, t,S) = γk,j and
∑

h>j

A(Tk,h, 0, t,S) = 0. (A.2)
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Bounds for the remaining terms depend on the relationship between dk,j and t.

Case 1: dk,j < t. Since Tk,j does not execute before its release time and finishes at dk,j in PS, from

the condition of Case 1, it follows that

A(Tk,j , 0, t,PS) = A(Tk,j , rk,j , dk,j ,PS) = ek,j . (A.3)

Since the job Tk,j+1 cannot commence execution in PS earlier than time dk,j ,

∑

h>j

A(Tk,h, 0, t,PS) ≤ uk · (t− dk,j). (A.4)

Setting (A.2), (A.3), and (A.4) into (A.1), we get

lag(Tk, t,S) ≤ ek,j − γk,j + uk · (t− dk,j). (A.5)

Because dk,j < t ≤ td holds, by Property (P), Tk,j has tardiness at most x + ek. Let compl(Tk,j, t) be

the length of the interval after time t where Tk,j is pending. Then, t + compl(Tk,j , t) ≤ dk,j + x + ek,

and hence,

t− dk,j ≤ x+ ek − compl(Tk,j , t). (A.6)

Because Tk,j executes for γk,j time units before time t, compl(Tk,j, t) ≥ ek,j − γk,j . Setting the last

inequality into (A.6), we get t− di,j ≤ x+ ek − ek,j + γk,j . From (A.5), we therefore have

lag(Tk, t,S) ≤ ek,j − γk,j + uk · (t− dk,j)

≤ ek,j − γk,j + uk · (x+ ek − ek,j + γk,j)

= ek,j + uk · x+ γk,j · (uk − 1) + uk · (ek − ek,j)

≤ uk · x+ ek,j + uk · (ek − ek,j)

= uk · x+ ek,j · (1− uk) + uk · ek

{maximized if ek,j = ek}

≤ uk · x+ ek.

Case 2: dk,j ≥ t. In this case,

A(Tk,j , 0, t,PS) = A(Tk,j , rk,j , t,PS) ≤ uk,j · (t− rk,j) ≤ uk · (dk,j − rk,j) = uk · pk = ek. (A.7)
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By the condition of Case 2, for any job Tk,h such that h > j, rk,h ≥ t holds, and hence, by Claim A.1,

∑

h>j

A(Tk,h, 0, t,PS) = 0. (A.8)

Setting (A.2), (A.7), and (A.8) into (A.1) we get

lag(Tk, t,S) ≤ ek,j − γk,j ≤ ek + uk · x,

where the latter inequality trivially follows, since x ≥ ρ ≥ 0 (see (P)). The lemma follows.

Lemma 3.7: LAG(d, td,S) ≤ LAG(d, tn,S) +
∑

Ti∈τDH
δi +

∑m
k=1 ûk · σk.

Proof. By (3.7),

LAG(d, td,S) = LAG(d, tn,S)+A(d, tn, td,PS)−A(d, tn, td,S). (A.9)

To compute A(d, tn, td,PS)−A(d, tn, td,S), we split [tn, td) into b non-overlapping intervals

[tps
, tqs), 1 ≤ s ≤ b, such that tn = tp1

, tqs−1
= tps

, and tqb = td. These intervals are defined so that, for

each interval [tps
, tqs), if processor h is unavailable at time t ∈ [tps

, tqs), then it is unavailable throughout

the entire interval [tps
, tqs). We further assume that each interval [tps

, tqs) is defined so that if a job

Tk,j executes at some point in the interval in schedule S, then it executes continuously throughout the

interval in S. Note that such a job Tk,j does not necessarily execute continuously throughout [tn, td).

The allocation difference for d throughout the interval [tn, td) is thus

A(d, tn, td,PS)− A(d, tn, td,S) =
b∑

s=1

(A(d, tps
, tqs ,PS)− A(d, tps

, tqs ,S)) .

We now bound the allocation difference in the PS schedule PS and the schedule S across each of the

intervals [tps
, tqs). The sum of these bounds gives us a bound on the total allocation difference throughout

[tn, td). By the definition of a PS schedule,

A(d, tps
, tqs ,PS) ≤ Usum · (tqs − tps

). (A.10)

For each interval [tps
, tqs), we let αs ⊆ τDH denote those tasks that execute their jobs in DH

continuously throughout [tps
, tqs) in the schedule S. Due to selection of tn, within each interval [tps

, tqs)

in schedule S two alternatives are possible:
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1. m available processors are occupied by tasks with ready jobs in d.

2. Some tasks with ready jobs in d do not execute because some processors are unavailable and/or

other available processors execute tasks in αs. (Note that, by Lemma 3.5, jobs in DLH and DLL

cannot execute at time instants when there are ready unscheduled jobs in d.)

For each interval [tps
, tqs), we define κs to be the number of unavailable processors in that interval.

The number of available processors in [tps
, tqs) is thus m− κs. Therefore,

A(d, tps
, tqs ,S) = (tqs − tps

) · (m− |αs| − κs)

= − (tqs − tps
) · |αs|+ (tqs − tps

) · (m− κs). (A.11)

Subtracting (A.11) from (A.10), we get

A(d, tps
, tqs ,PS)− A(d, tps

, tqs ,S)

≤(tqs − tps
) · Usum − (−(tqs − tps

) · |αs|+ (tqs − tps
) · (m− κs))

=(tqs − tps
) · Usum + (tqs − tps

) · |αs| − (tqs − tps
) · (m− κs)

=(tqs − tps
) · Usum + (tqs − tps

) ·
∑

Ti∈αs

1− (tqs − tps
) · (m− κs). (A.12)

Summing (A.12) over all intervals [tps
, tqs), we have

A(d,tn, td,PS)− A(d, tn, td,S)

≤
b∑

s=1

(tqs − tps
) · Usum +

b∑

s=1

∑

Ti∈αs

(tps
− tqs)−

b∑

s=1

(tqs − tps
) · (m− κs)

=(td − tn) · Usum +

b∑

s=1

∑

Ti∈αs

(tps
− tqs)−

b∑

s=1

(tqs − tps
) · (m− κs). (A.13)

For each task Ti ∈ τDH, the sum of the lengths of the intervals [tps
, tqs), in which jobs of Ti from

DH execute continuously before time td is at most δi (see Definition 3.9). Thus,

b∑

s=1

∑

Ti∈αs

(tps
− tqs) ≤

∑

Ti∈τDH

δi. (A.14)

Now consider
∑b

s=1(tqs − tps
) · (m − κs). Since κs is the number of unavailable processors within

the interval [tps
, tqs), (m − κs) · (tqs − tps

) is the amount of processor time available to tasks in τ
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within [tps
, tqs). The sum of these times for all the intervals [tps

, tqs) is at least the total processor time

guaranteed within [tn, td), because each processor is either unavailable or executes a task from τ within

[tps
, tqs). Thus,

b∑

s=1

(m− κs) · (tqs − tps
) ≥

m∑

k=1

βl
k(td − tn). (A.15)

By (1.1) and (A.15), we have

b∑

s=1

(m− κs) · (tqs − tps
) ≥

m∑

k=1

βl
k(td − tn) ≥

m∑

k=1

ûk · (td − tn − σk). (A.16)

Substituting (A.14) and (A.16) into (A.13), we have

A(d, tn, td,PS)− A(d, tn, td,S) ≤ (td − tn)Usum +
∑

Ti∈τDH

δi −
m∑

k=1

ûk · (td − tn − σk)

= (td − tn)

(
Usum −

m∑

k=1

ûk

)
+

∑

Ti∈τDH

δi +

m∑

k=1

ûk · σk

{ by (3.1) }

≤
m∑

k=1

ûk · σk +
∑

Ti∈τDH

δi. (A.17)

By (A.17) and (A.9), the lemma follows.

The following definition and Lemmas A.1 and A.2 and used in proving Lemma 3.8.

Definition A.1. Let ξ = {Ti :: ∃Ti,j ∈ d such that Ti,j is ready at t−n in schedule S}.

Lemma A.1. If Ti 6∈ ξ, then
∑

Ti,j∈d lag(Ti,j , tn,S) ≤ 0.

Proof. Consider task Ti 6∈ ξ at time instant t−n . Let Ti,g be the latest job such that ri,g < tn. Then

tn ≤ ri,j for each j > g. By Claim A.1 (b),

∑

Ti,j :: Ti,j∈d∧j>g

A(Ti,j , 0, tn,PS) = 0. (A.18)

Also, in the PS schedule PS, Ti,g’s allocation cannot be larger than its actual execution time ei,g.

A(Ti,g, 0, tn,PS) ≤ ei,g. (A.19)

Because Ti 6∈ ξ, all jobs Ti,j such that Ti,j ∈ d and j < g complete by time t−n in both schedules S and
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PS, and hence,

A(Ti,j , 0, tn,PS) = A(Ti,j , 0, tn,S) for each j < g and Ti,j ∈ d. (A.20)

Also, all jobs with eligibility times at most tn, including job Ti,g, for which ǫi,g ≤ ri,g < tn, complete by

tn in schedule S. We thus have

A(Ti,g, 0, tn,S) = ei,g. (A.21)

By (3.6), we have

∑

Ti,j∈d

lag(Ti,j , tn,S) =
∑

Ti,j∈d

(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

{by (A.20)}

=
∑

Ti,j :: Ti,j∈d∧j≥g

(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

{by (A.19) and (A.21)}

≤
∑

Ti,j :: Ti,j∈d∧j>g

A(Ti,j , 0, tn,PS)−
∑

Ti,j :: Ti,j∈d∧j>g

A(Ti,j , 0, tn,S)

{by (A.18)}

≤ −
∑

Ti,j :: Ti,j∈d∧j>g

A(Ti,j , 0, tn,S)

≤ 0.

The lemma follows.

Lemma A.2. If Ti ∈ ξ, then
∑

Ti,j∈d lag(Ti,j , tn,S) ≤ lag(Ti, tn,S).

Proof. Because Ti ∈ ξ, there exists a job Ti,g such that di,g ≤ td and Ti,g is pending at t−n . Because jobs

of Ti execute sequentially, jobs of Ti with deadlines after di,g do not execute before time tn, and hence,

A(Ti,j , 0, tn,S) = 0 for each job Ti,j 6∈ d. (A.22)

We therefore have,

lag(Ti, tn,S)

{by (3.5)}
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=
∑

j≥1

(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

=
∑

(j≥1)∧Ti,j∈d

(A(Ti,j , 0, tn,PS)

− A(Ti,j , 0, tn,S)) +
∑

(j≥1)∧Ti,j 6∈d

(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

{by (3.6)}

=
∑

Ti,j∈d

lag(Ti,j , tn,S) +
∑

Ti,j 6∈d

(A(Ti,j , 0, tn,PS)− A(Ti,j , 0, tn,S))

{by (A.22)}

=
∑

Ti,j∈d

lag(Ti,j , tn,S) +
∑

Ti,j 6∈d

A(Ti,j , 0, tn,PS)

≥
∑

Ti,j∈d

lag(Ti,j , tn,S).

Lemma 3.8: LAG(d, tn,S) ≤ EL + x · UL.

Proof. If tn = 0, then LAG(d, tn,S) = 0 and the lemma holds trivially, so assume that tn > 0. By

Definition 3.10 and Definition A.1, all tasks in ξ execute at t−n , and hence, |ξ| ≤ m− 1. Therefore,

LAG(d, tn,S)

{by (3.6)}

=
∑

Ti,j∈d

lag(Ti,j , tn,S)

=
∑

Ti∈ξ

∑

Ti,j∈d

lag(Ti,j , tn,S) +
∑

Ti 6∈ξ

∑

Ti,j∈d

lag(Ti,j , tn,S)

{by Lemma A.1}

≤
∑

Ti∈ξ

∑

Ti,j∈d

lag(Ti,j , tn,S)

{by Lemma A.2}

≤
∑

Ti∈ξ

lag(Ti, tn,S)

{by Lemma 3.6}

≤
∑

Ti∈ξ

(x · ui + ei)
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{because |ξ| ≤ m− 1}

≤ EL + x · UL.

The following claim is used in proving Lemmas 3.10 and 3.11.

Claim A.2. If Ti,k ∈ DH, then χ(Ti,k, t
′) ≤ td + ψa for some a 6= i and time t′.

Proof. If Ti,k ∈ DH, then, by (3.12), there exists Ta,b ∈ d such that a 6= i and ¬LP(Ti,k, Ta,b) holds. By

(3.10), there exists t′ such that

χ(Ti,k, t
′) ≤ da,b + ψa

{because Ta,b ∈ d, by (3.11), da,b ≤ td }

≤ td + ψa.

The claim follows.

Lemma 3.10. If Ti,k ∈ d ∪DH, then ri,k ≤ td + ρ.

Proof. Because sets d and DH are disjoint we consider two cases.

Case 1: Ti,k ∈ d. In this case, ri,k ≤ di,k ≤ td ≤ td + ρ, since ρ ≥ 0.

Case 2: Ti,k ∈ DH. By the condition of Case 2 and Claim A.2, there exists a 6= i and t′ such that

χ(Ti,k, t
′) ≤ td + ψa. We thus have, for time t′,

ri,k

{by (3.3)}

≤ χ(Ti,k, t
′) + φi

≤ td + ψa + φi

{by (3.9)}

≤ td + ρ.

The lemma follows.

Lemma 3.11. If Ti,k ∈ DLH, then ri,k ≤ td + ρ+ µ.
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Proof. Suppose that Ti,k ∈ DLH. Then, by (3.14), there exists Ta,b ∈ DH such that a 6= i and

¬LP(Ti,k, Ta,b) holds. The latter implies that χ(Ti,k, t
′) ≤ da,b + ψa holds for some time t′. We thus

have, for time t′,

ri,k

{by (3.3)}

≤ χ(Ti,k, t
′) + φi

≤ da,b + ψa + φi

= ra,b + pa + ψa + φi

{by (3.9)}

≤ ra,b + µ

{by Lemma 3.10}

≤ td + ρ+ µ.

Theorem 3.3. If A is an eventually-monotonic scheduling algorithm and its prioritization functions

are augmented as described above, then no job is preempted while executing in a non-preemptive region.

Proof. Suppose, contrary to the statement of the theorem, that job Tk,h begins executing a non-

preemptive region at time t1 and, while still within that region, is preempted at time tp by job Ta,b

that is either ready but not scheduled at time t−p or becomes eligible at tp. Because Tk,h cannot be

scheduled earlier than ǫk,h, we have

ǫk,h ≤ t1 < t−p < tp. (A.23)

According to the priority augmentation rules, χ(Ta,b, tp) = χA(Ta,b, tp). Below, we show that either

χA(Ta,b, tp) > rk,h − G = χ(Tk,h, tp) holds or the tie-breaking between jobs Ta,b and Tk,h at times t−p

and tp is not consistent, and hence, job Ta,b cannot be scheduled at time tp as assumed. Let

rc = rk,h − µ− γ − pmax −M. (A.24)

Two cases are possible, based upon the release time of Ta,b.

Case 1: rc ≤ ra,b. In this case,

χA(Ta,b, tp)
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{by (3.3)}

≥ ra,b − φa

{by the condition of Case 1}

≥ rc − φa

{by (A.24)}

= rk,h − µ− γ − pmax −M − φa

{by Definition 3.19}

> rk,h −G

Case 2: ra,b < rc. In this case, we can show that da,b +M < ǫk,h holds.

da,b +M = ra,b + pa +M

{by the condition of Case 2}

< rc + pa +M

{by (A.24)}

= rk,h − µ− γ − pmax −M + pa +M

≤ rk,h − µ− γ

{by (3.40)}

≤ ǫk,h − µ

{because µ ≥ 0 (see (3.9))}

≤ ǫk,h (A.25)

Two subcases are possible, depending on whether job Ta,b is ready at time t−p .

Subcase 1: Ta,b is not ready at time t−p . In this case, by the selection of Ta,b, it becomes eligible at tp,

and hence, by (A.23),

ǫk,h < tp = ǫa,b. (A.26)

We can lower-bound χA(Ta,b, tp) as follows.

χA(Ta,b, tp)
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{by (3.3)}

≥ ra,b − φa

≥ ǫa,b − φa

{by (A.26)}

> ǫk,h − φa

{by (3.40)}

≥ rk,h − γ − φa

{by Definition 3.19}

> rk,h −G

Subcase 2: Ta,b is ready at time t−p . In this case, because Tk,h is scheduled at t−p and Ta,b is not

scheduled, we have

rk,h −G = χ(Tk,h, t
−
p ) ≤ χ(Ta,b, t

−
p ) = χA(Ta,b, t

−
p ). (A.27)

The latter equality holds because Ta,b is not scheduled at t−p and thus is not executing non-preemptively

then. By (A.23) and (A.25), da,b +M < t−p < tp. Therefore, by Definition 3.18, we have

χA(Ta,b, t
−
p ) ≤ χA(Ta,b, tp). (A.28)

By (A.27) and (A.28), we have rk,h−G ≤ χA(Ta,b, tp). If rk,h−G < χA(Ta,b, tp) holds, then Ta,b cannot

preempt Tk,h. If rk,h − G = χA(Ta,b, tp), then by (A.27) and (A.28), we have rk,h − G = χA(Ta,b, t
−
p ),

and hence, the tie-breaking between jobs Ta,b and Tk,h is not consistent.
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Appendix B

Proofs for Lemmas in Chapter 5

In this appendix, we prove Claim 5.6, Lemmas 5.6, 5.7, 5.8, 5.18, and 5.19. We first prove Claim 5.6.

Claim 5.6: WJ (Tℓ, rℓ,q−λ+1) ≤ rℓ,q +Θℓ − rℓ,q−λ+1.

Proof. Each job Tℓ,q−k, where k ≥ λ completes by fℓ,q−λ. Thus,

∑

k≥λ

W (Tℓ,q−k, rℓ,q−λ+1)

{by Definition 5.19}

≤ fℓ,q−λ − rℓ,q−λ+1

{by Definition 5.11}

≤ rℓ,q +Θℓ − γuℓ (λ)− rℓ,q−λ+1. (B.1)

Also, by Definition 5.19,

WJ (Tℓ, rℓ,q−λ+1)

=
∑

Tℓ,j∈J

W (Tℓ,j , rℓ,q−λ+1)

{because J does not contain Tℓ,q’s successors}

=
∑

k≥0

W (Tℓ,q−k, rℓ,q−λ+1)

=
∑

k≥λ

W (Tℓ,q−k, rℓ,q−λ+1) +
∑

k∈[0,λ−1]

W (Tℓ,q−k, rℓ,q−λ+1)

{by (B.1)}

≤ rℓ,q+Θℓ−γ
u
ℓ (λ)−rℓ,q−λ+1 +

∑

k∈[0,λ−1]

W (Tℓ,q−k, rℓ,q−λ+1)

{by Definitions 5.1 and 5.19}
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≤ rℓ,q +Θℓ − γuℓ (λ)− rℓ,q−λ+1 + γuℓ (λ)

= rℓ,q +Θℓ − rℓ,q−λ+1.

Because the allocation of a task over a set of intervals cannot exceed the cumulative length of these

intervals, the claim below follows.

Claim B.1: AJ (Ti, [t0(k), rℓ,q +Θℓ)) ≤ rℓ,q − t0(k) + Θℓ.

Lemma 5.6: ANC(Ti, δ) = min(δ +Θℓ, γ
u
i (α

+
i (δ + Cℓ,i))).

Proof. The competing demand due to Ti is upper-bounded by the demand due to Ti’s jobs in J (refer to

Definition 5.14). Because Ti ∈ NC, all such jobs released prior to t0(k) are completed by time t0(k). For

any Ti,j ∈ J , by Lemma 5.5, ri,j ≤ rℓ,q+Cℓ,i. Therefore, the allocation AJ (Ti, [t0(k), rℓ,q+Θℓ)) is upper-

bounded by the total execution time of Ti’s jobs released within [t0(k), rℓ,q +Cℓ,i]. From Definitions 5.1

and 5.10, we have

AJ (Ti, [t0(k), rℓ,q +Θℓ)) ≤ γui (α
+
i (rℓ,q + Cℓ,i − t0(k)))

= γui (α
+
i (rℓ,q − t0(k) + Cℓ,i)).

By Claim B.1 and the inequality above, ANC(Ti, δ) upper-bounds AJ (Ti, [t0(k), rℓ,q + Θℓ)) for δ =

rℓ,q − t0(k).

The following claim and a lemma will be used to prove Lemmas 5.7 and 5.9.

Claim B.2. The function Gi(S,X) as defined in Definition 5.26 is a non-decreasing function of the

integral argument S.

Proof. Suppose that S ≥ 1 is fixed. We compute Gi(S + 1, X). By Definition 5.26,

Gi(S + 1, X) = min(γui (S + 1),max(0, X −A−1
ℓ (S)) + γui (S))

{because γui (S) is a non-decreasing function}

≥ γui (S)

≥ min(γui (S),max(0, X −A−1
ℓ (S − 1)) + γui (S − 1))

= Gi(S,X).
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Lemma B.1. If tx ≤ rℓ,q, then

WJ (Ti, tx) ≤ Gi(α
u
i (rℓ,q−tx+Cℓ,i+Θi), rℓ,q−tx+Cℓ,i+Θi)

Proof. Let Ti,c ∈ J be the earliest job of Ti that is pending at or after time tx. Note that if Ti,c does not

exit, then WJ (Ti, tx) = 0. From the selection of Ti,c, we have fi,c > tx. If Ti,c 6= Tℓ,q, then Ti,c ≺ Tℓ,q,

which, by (5.12), implies

fi,c > tx ∧ ri,c +Θi > tx. (B.2)

If Ti,c = Tℓ,q, then

fi,c > tx ∧ ri,c +Θi − tx ≥ γui (1). (B.3)

The predicate above holds because tx ≤ rℓ,q by the condition of the lemma, and Θi ≥ γui (1) > 0 by

Claim 5.1. Note that (B.3) implies (B.2). We define the job set Ji as follows.

Let Ji = {Ti,y : y ≥ c ∧ Ti,y ∈ J }. (B.4)

To establish an upper-bound on WJ (Ti, tx), we first rewrite WJ (Ti, tx) as follows.

WJ (Ti, tx) =W (Ti,c, tx) +
∑

Ti,y∈J\Ti,c

W (Ti,y, tx)

=W (Ti,c, tx) +
∑

Ti,y∈Ji\Ti,c

W (Ti,y, tx) (B.5)

We now bound the W (Ti,c, tx) term in (B.5) by considering two cases.

Case 1: Ti,c = Tℓ,q. By (B.3), rℓ,q +Θℓ − tx ≥ γuℓ (1) ≥ eℓ,q, in which case W (Tℓ,q, tx) ≤ eℓ,q. Thus,

W (Tℓ,q, tx) ≤ min(eℓ,q, rℓ,q +Θℓ − tx). (B.6)

Case 2: Ti,c 6= Tℓ,q. By (B.2), Ti,c finishes its execution at time fi,c > tx, and hence,

W (Ti,c, tx) ≤ min(ei,c, fi,c − tx)

{if Ti,c ≺ Tℓ,q, by (5.12)}
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≤ min(ei,c, ri,c +Θi − tx). (B.7)

By (B.5), (B.6), and (B.7),

WJ (Ti, tx)

≤ min(ei,c, ri,c +Θi − tx) +
∑

Ti,y∈Ji\Ti,c

W (Ti,y, tx)

≤ min


ei,c +

∑

Ti,y∈Ji\Ti,c

W (Ti,y, tx), ri,c +Θi − tx +
∑

Ti,y∈Ji\Ti,c

W (Ti,y, tx)


 . (B.8)

Let

Si = |Ji|. (B.9)

Because the execution demand of job Ti,y cannot be greater than its execution time, by Definition 5.1,

we have the following.

ei,c +
∑

Ti,y∈Ji\Ti,c

W (Ti,y, tx) ≤ γui (Si) (B.10)

∑

Ti,y∈Ji\Ti,c

W (Ti,y, tx) ≤ γui (Si − 1) (B.11)

By (B.8), (B.10), and (B.11), we have

WJ (Ti, tx) ≤ min(γui (Si), ri,c+Θi−tx+γ
u
i (Si−1)). (B.12)

We next establish an upper bound on ri,c in (B.12). From (B.4) above and Lemma 5.5, we have

(R) If Ti,y ∈ Ji, then ri,y ∈ [ri,c, rℓ,q + Cℓ,i].

By (B.9), Ti,c+Si−1 is the latest job of Ti released within [ri,c, rℓ,q + Cℓ,i]. We upper bound ri,c as

follows.

ri,c = ri,c+Si−1 + ri,c − ri,c+Si−1
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{by the definition of Ti,c+Si−1}

≤ rℓ,q + Cℓ,i + ri,c − ri,c+Si−1

{by Lemma 5.2}

≤ rℓ,q + Cℓ,i −A−1
i (Si − 1)

From the inequality above, we have

ri,c +Θi − tx ≤ max(0, rℓ,q+Cℓ,i−A−1
i (Si−1)+Θi−tx)

= max(0, rℓ,q−tx+Cℓ,i+Θi −A−1
i (Si − 1)). (B.13)

By (B.12) and (B.13), we have

WJ (Ti, tx)

≤ min(γui (Si),max(0, rℓ,q − tx + Cℓ,i +Θi −A−1(Si − 1)) + γui (Si − 1))

= Gi(Si, rℓ,q − tx + Cℓ,i +Θi), (B.14)

where Gi(S,X) is defined as in Definition 5.26. By Claim B.2, the function Gi(S,X) is a non-decreasing

function of S. We thus can find an upper bound on WJ (Ti, tx) by setting an upper bound on Si into

(B.14).

By (R), Si = |Ji| is at most the number of jobs of Ti released within the interval [ri,c, rℓ,q + Cℓ,i],

which, by (B.2), is contained within (tx −Θi, rℓ,q +Cℓ,i]. We thus upper bound Si using Definition 5.2.

Si ≤ αu
i (rℓ,q − tx + Cℓ,i +Θi)

Setting this upper bound on Si into (B.14), we get the conclusion of the lemma.

Using the result of the lemma above, we next prove Lemma 5.7.

Lemma 5.7: AHC(Ti, δ) = min(δ+Θℓ, Gi(α
u
i (δ+Cℓ,i+Θi), δ+Cℓ,i+Θi)).

Proof. Consider Ti ∈ HC. The allocation of Ti’s jobs from J cannot exceed their cumulative demand.

167



From Definitions 5.15 and 5.19, we have

AJ (Ti, [t0(k), rℓ,q +Θℓ)) ≤ WJ (Ti, t0(k))

{by Lemma B.1}

≤ Gi(α
u
i (t0(k)−rℓ,q+Cℓ,i+Θi), t0(k)−rℓ,q+Cℓ,i+Θi)

{setting δ = t0(k)− rℓ,q}

= Gi(α
u
i (δ+Cℓ,i+Θi), δ+Cℓ,i+Θi).

By the inequality above and Claim B.1, AHC(Ti, δ) upper-bounds AJ (Ti, [t0(k), rℓ,q + Θℓ)) for δ =

rℓ,q − t0(k).

The following claims and lemma are used to prove Lemma 5.8.

Claim B.3: Li(X + Y ) ≤ Li(X) + ui · Y for all X and Y ≥ 0.

Proof. By Definition 5.4, ui > 0. By the condition of the claim, Y ≥ 0. Thus, by Definition 5.27,

Li(X + Y ) = max(0, ui · (X + Y ) + ei · Bi) + vi

≤ max(0, ui ·X + ei ·Bi) + vi + ui · Y

= Li(X) + ui · Y.

Claim B.4. α+
i (X) ≤ Ri ·X + Bi for X ≥ 0.

Proof. By Definition 5.10,

α+
i (X) = lim

ǫ→+0
αu
i (X + ǫ)

{by (5.2)}

≤ lim
ǫ→+0

Ri · (X + ǫ) +Bi

= Ri ·X +Bi.

Claim B.5: γui (α
u
i (X)) ≤ γui (α

+
i (X)) ≤ Li(X) for all X .

Proof. By Definition 5.2, αu
i (∆) is a non-decreasing function of ∆. Therefore, αu

i (∆) ≤ αu
i (∆ + ǫ) for

any ǫ > 0, which implies αu
i (∆) ≤ limǫ→+0 α

u
i (∆ + ǫ). The right-hand side of the latter inequality is
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α+
i (∆) by Definition 5.10. Thus, αu

i (∆) ≤ α+
i (∆). The first inequality of the claim therefore follows

from γui (k) being a non-decreasing function of k by Definition 5.1. We now prove the second inequality

by considering two cases.

Case 1: X < 0. In this case, by Definition 5.10, α+
i (X) = 0. By Definition 5.1, γui (α

+
i (X)) = 0. The

required result follows from Definition 5.27 and vi ≥ 0 (see (5.3)).

Case 2: X ≥ 0. By Definition 5.10, because α+
i (X) ≥ 0, we have

γui (α
+
i (X)) = γui (max(0, α+

i (X)))

{by (5.3)}

≤ ei · (max(0, α+
i (X))) + vi

{by Claim B.4}

≤ ei · (max(0, Ri ·X +Bi)) + vi

= max(0, ei ·Ri ·X + ei · Bi) + vi

{by Definition 5.4}

= max(0, ui ·X + ei · Bi) + vi

{by Definition 5.27}

= Li(X).

Lemma B.2: AHC(Ti, δ) ≤ Li(δ + Cℓ,i) + ui ·Θi and ANC(Ti, δ) ≤ Li(δ + Cℓ,i).

Proof. We prove the first inequality.

AHC(Ti, δ)

{by Lemma 5.7}

= min(δ+Θℓ, Gi(α
u
i (δ+Cℓ,i+Θi), δ+Cℓ,i+Θi))

≤ Gi(α
u
i (δ+Cℓ,i+Θi), δ+Cℓ,i+Θi)

{by Definition 5.26}

≤ γui (α
u
i (δ + Cℓ,i +Θi))

{by Claim B.5}

≤ Li(δ + Cℓ,i +Θi)
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{because Θi ≥ 0, by Claim B.3}

≤ Li(δ + Cℓ,i) + ui ·Θi

The second inequality is proved similarly.

ANC(Ti, δ)

{by Lemma 5.6}

= min(δ +Θℓ, γ
u
i (α

+
i (δ + Cℓ,i)))

≤ γui (α
+
i (δ + Cℓ,i))

{by Claim B.5}

≤ Li(δ + Cℓ,i)

Lemma 5.8. For all δ ≥ 0, M∗
ℓ (δ) ≤ Usum · δ +Hℓ, where Hℓ =

∑
Ti∈τ Li(Cℓ,i) + U(m− 1) ·max(Θi)

and U(y) is the sum of min(y, |τ |) largest utilizations.

Proof. Suppose that the sets HC and NC subject to (5.28) maximize the value of the right-hand side

of (5.27). By (5.27), we have

M∗
ℓ (δ) =

∑

Ti∈HC

AHC(Ti, δ) +
∑

Ti∈NC

ANC(Ti, δ)

{by Lemma B.2}

≤
∑

Ti∈HC

(Li(δ + Cℓ,i) + ui ·Θi) +
∑

Ti∈NC

Li(δ + Cℓ,i)

{since HC ∪NC ⊆ τ and Li(X) ≥ 0 for all X}

≤
∑

Ti∈τ

Li(δ + Cℓ,i) +
∑

Ti∈HC

ui ·Θi





because |HC| ≤ m− 1 by (5.28), and using the definition

of U(y) in the statement of the lemma





≤
∑

Ti∈τ

[Li(δ + Cℓ,i)] + U(m− 1) ·max(Θi)

{by Claim B.3 (note that, by the statement of the lemma, δ ≥ 0)}

≤
∑

Ti∈τ

[Li(Cℓ,i) + ui · δ] + U(m− 1) ·max(Θi)
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



by Definition 5.4 and the definition of Hℓ

in the statement of the lemma





= Usum · δ +Hℓ.

We now derive a lower bound for E∗
ℓ (λ) given by Lemma 5.9 and prove Lemma 5.18.

Lemma 5.9. If E∗
ℓ (k) is given by (5.29), then E∗

ℓ (λ) ≥ WJ (Ti, rℓ,q−λ+1).

Proof. By Definition 5.20, the function E∗
ℓ (λ) upper bounds WJ (Tℓ, rℓ,q−λ+1), which is the amount of

work due to unfinished jobs of Tℓ in J at time rℓ,q−λ+1. By Lemma B.1,

WJ (Tℓ, rℓ,q−λ+1)

≤ Gℓ(α
u
ℓ (rℓ,q − rℓ,q−λ+1 + Cℓ,ℓ +Θℓ), rℓ,q − rℓ,q−λ+1 + Cℓ,ℓ +Θℓ)

{because Cℓ,ℓ = 0 by Definition 5.24}

= Gℓ(α
u
ℓ (rℓ,q − rℓ,q−λ+1 +Θℓ), rℓ,q − rℓ,q−λ+1 +Θℓ)

{by Claim 5.9}

≤ Gℓ(α
u
ℓ (max(0, γuℓ (λ− 1)− 1) + Θℓ),max(0, γuℓ (λ − 1)− 1) + Θℓ)

{by (5.29)}

= E∗
ℓ (λ).

Lemma 5.18. If Θℓ = x+ γuℓ (Kℓ) + Cℓ, where x ≥ 0, then E∗
ℓ (k) ≤ Yℓ + uℓ · x for k ∈ [1,Kℓ].

Proof. By (5.29),

E∗
ℓ (k) = Gℓ(α

u
ℓ (Q(k)), Q(k))

{by Definition 5.26}

≤ γuℓ (α
u
ℓ (Q(k)))

{by Claim B.5}

≤ Lℓ(Q(k))

{by Definition 5.28}

= Lℓ

(
max(0, γuℓ (k − 1)− 1) + Θℓ

)
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{by the condition of the Lemma}

= Lℓ

(
max(0, γuℓ (k − 1)− 1) + x+ γuℓ (Kℓ) + Cℓ

)

{by Claim B.3}

≤ Lℓ

(
max(0, γuℓ (k − 1)− 1) + γuℓ (Kℓ) + Cℓ

)
+ uℓ · x





because Lℓ and γ
u
ℓ are non-decreasing

functions of their arguments





≤ Lℓ

(
max(0, γuℓ (Kℓ−1)−1)+γuℓ (Kℓ)+Cℓ

)
+uℓ ·x

{by Definition 5.35}

= Yℓ + uℓ · x.

Lemma 5.19. If Θi = x+ γui (Ki) +Ci for each task Ti and δ ≥ 0, then M∗
ℓ (δ) ≤ Usum · δ+U(m− 1) ·

x+W +
∑

Ti∈τ Li(Cℓ,i), where U(m− 1) is the sum of m− 1 largest task utilizations.

Proof. Suppose that the sets HC and NC subject to (5.28) maximize the value of the right-hand side

of (5.27). By (5.27), we have

M∗
ℓ (δ)

=
∑

Ti∈HC

AHC(Ti, δ) +
∑

Ti∈NC

ANC(Ti, δ)

{by Lemma B.2}

≤
∑

Ti∈HC

(Li(δ + Cℓ,i) + ui ·Θi) +
∑

Ti∈NC

Li(δ + Cℓ,i)

{since HC ∪NC ⊆ τ and Li(X) ≥ 0 for all X}

≤
∑

Ti∈τ

Li(δ + Cℓ,i) +
∑

Ti∈HC

ui ·Θi

{by the selection of Θi in the statement of the Lemma}

=
∑

Ti∈τ

Li(δ + Cℓ,i) +
∑

Ti∈HC

ui · (x + γui (Ki) + Ci)





because |HC| ≤ m− 1 by (5.28), and using the

definition of U(y) in the statement of the lemma





≤
∑

Ti∈τ

Li(δ + Cℓ,i) + U(m− 1) · x+
∑

Ti∈HC

ui · (γ
u
i (Ki) + Ci)
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{because |HC| ≤ m− 1 by (5.28), and by Definition 5.36}

≤
∑

Ti∈τ

Li(δ + Cℓ,i) + U(m− 1) · x+W





by Claim B.3

(note that, by the condition of the lemma, δ ≥ 0)





≤
∑

Ti∈τ

[Li(Cℓ,i) + ui · δ] + U(m− 1) · x+W

{by Definition 5.4}

= Usum · δ +
∑

Ti∈τ

Li(Cℓ,i) + U(m− 1) · x+W .
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