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ABSTRACT
Laura L. Hester: Patterns and Prediction of Competing Causes of Mortality in Older Adults
Diagnosed with Indolent Non -Hodgkin Lymphoma
(Under the direction Jennifer L. Lund)

Non-Hodgkin lymphoma (NHL) consists of heterog eneous hematological
malignancies that are broadly categorized into aggressive or indolent tumor growth groups.
In the past two decades, there have been notable increases in the proportion of NHL
diagnoses aged>65 and cancerspecific survival with the aging US population and
improvements in NHL treatments. These population changes have important implications
for non-cancer mortality, particularly for indolent NHL subtypes, which display remitting -
relapsing patterns and a slower progression. This dissertation sought to address gaps in
knowledge about non-cancer mortality in NHL by providing foundational evidence on: 1)
cancer-specific and non-cancer mortality patterns in NHL subtypes and 2) characteristics of
indolent NHL patients at greatest risk of non -cancer mortality.

We identified adults aged >66 at diagnosis with a first, primary NHL diagnosis from
2004 -2011 using a database linking the USSurveillance, Epidemiology, and End Results
(SEER) cancer registry with Medicare health insurance claims.

Using death certificate data and Fine-Gray competing risks methods, Aim 1
estimated the 5-year cumulative incidence of NHL -specific and non-cancer mortality by
prognostic factors (subtype, age, comorbidity level) in 26,809 NHL patients. Among
aggressive subtypesNHL -specific mortality exceeded non-cancer mortality across all ages
and comorbidity levels. In indolent subtypes, non -cancer mortality was similar to or

exceeded NHL-specific mortality for patients with older ages, higher comorbidity burdens,



or specific subtypes. The results support development of tools predicting non-cancer
mortality in older indolent NHL patients.

In Aim 2, we developed and internally validated risk prediction models for short - and
long-term mortality outcomes in 9789 indolent NHL pati ents. We created 16 elastic net
penalized regression models predicting  and 5-year all-cause and noncancer mortality
(four models per outcome) in 100 randomly resampled training sets. In 100 validation sets,
we compared average performance statistics ofthe elastic net to those from comorbidity
score models. For all outcomes, the elastic net models had a higher discrimination and lower
false-positive rate than comorbidity score models. However, differences were not statistically
significantly.

This proj ect supports development of personalized prediction models integrated into
electronic medical records that can be used to inform physicians and patients on non-cancer

mortality risk in treatment decision -making.
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CHAPTE R 1: STUDY OBJECTIVE, SPECIFIC AIMS AND RATIONALE

In the first five years after diagnosis with cancer, individuals can experienceone of
three outcomes: death from cancer, death from a cause other thancancer, or survival. The
probability of experiencing each of theseoutcomesis partially determined bythe i ndi vi dual 6 s
physiological condition at diagnosis. Individuals with pre-existing comorbid conditions or
frailty at cancerdiagnosis have ahigher risk of dying from a non-cancer causethan those
without these conditions, even after considering age, sex, and cancer stagé® Non-cancer
mortality is particularly a concern among older adults because they have digher burden of
comorbidities and frailty at diagnosis than their younger counterparts . When making first -
line treatment decisions for older adults, the benefits of a cancer treatment should be
weighed againsta p a t unéerlytn@ reon -cancer prognosis.As the US cancer population
agesand the proportion of cancer patients diagnosed at age>65 increases® we can make
more informed treatment decisions in older patients with cancer by understanding their
patterns of non-cancer mortality and by developing more advancedtools for predicting non -
cancer mortality risk.

Patients with i ndolent subtypes of non-Hodgkin lymphoma (NHL) have attri butes
that potentiall y place them at a higherrisk of dying from causes other than their lympho ma
than from the lymphoma itself. Indolent subtypes, which accountfor 57% of NHL, 7 are
characterized by slow growth and remitting -relapsing patterns.8°® Advancements in
treatment have increased lymphoma specific survival.19 The longer thesepatients live
without dying of their NHL , the higher their risk of dying from a competing non -cancer
cause. Repeated exposure to treatment for relapsesnay placeolder patients with indolent

NHL at a higher risk of experiencing comorbidity exacerbation s, lapses in appropriate



comorbidity management, or adversenon-cancer events than patients with more aggressive
subtypes.

Although individuals diagnosed with indolent NHLs have characteristics that place
them at a higher risk of non-cancer mortality , limited information is available on 1) how the
risk of death from non-cancer causes compres to death from cancerin these subtypes 2)
when non-cancerrisk is greatestafter diagnosis for each subtype,or 3) who is most at risk of
dying from competing non-cancer causes.Traditional comorbidity scores have been
suggestedas atool for identify ing who is at risk for non -cancer deaths, which can aid
treatment decisions.*However, these simple scores have multiple limitations that
potentially decrease their utility for the indolent NHL population. Notably, the scoreswere
developedin populations that may not reflect the indolent NHL population and use weights
from models predicting less relevant short-term (1-year) mortality that do not account for
potential interactions between comorbidities or frailty characteristics . Risk prediction
models built in an indolent NHL population using machine learning methods could address
these limitations and provide better identification of older patients with a high risk of non -
cancer mortality for informing treatment decisions. Ultimately, b y preventing non-cancer
adverse events,an enhanced risk prediction tool could improve the quality of life and life
expectancy among patients faced withslow-growing cancers.

The objective of the  proposed research is 1) to provide evidence on
patterns of cause -specific mortality in older adults with indolent and aggressive
NHL subtypes and 2) to develop and internally validate models that address
limitations of traditional comorbidity scores and pro vide better prediction of
non -cancer mortality  for older adults diagnosed with indolent NHL subtypes.

We sought to achievethis objective through the following aim s:



A. Specific Aim 1: Patterns of Non -Cancer Mortality by NHL Subtype

Aim 1 seeks to desciibe patterns of all-cause, cancerspecific, and non-cancer
mortality by NHL subtype, age group, comorbidity level, histologic stage, and time since
diagnosis in Medicare beneficiaries newly diagnosed with NHL at age >66 while living in
SEER areas.
Aim 1 Ra tionale

Aim 1 will provide the first published estimates of the cumulative incidence of non -
cancer mortality for older adults by NHL subtype . This analysis specifically seeks to provide
evidence for the hypothesis that non-cancer mortality is a more substantial concern in
indolent NHL subtypes than in aggressivesubtypes. If true, these findings will support
targeted interventions focusedon care coordination and comorbidity management in
indolent NHL. By providing stratified cumulative incidence estimates by age, comorbidity
level and stage, we caridentify the NHL patient subgroups that are most likely to benefit
from these interventions. These estimates also support identification of patient
subpopulation s in which NHL treatment benefits should be weighe d with the risk of
mortality from non -cancer causesIn addition, o ur analytic approach will account for
competing risks, and therefore, will provide realistic prognosis estimates acknowledging that
patients can die of more than one cause at cancer diagnas. By examining the patterns in
the cumulative incidence of non-cancer mortality over time, we can identify when the risk of
non-cancer mortality exceeds the risk of cancerspecific mortality and inform optimal timing
of comorbidity interventions in the ¢ ancer care trajectory. Our analysis will provide a
descriptive foundation for future development of prognosis tools that generate patient-
specific estimates ofcancer or non-cancer mortality based onapate nt 6 s t umor

gender, and other measuresof health status.

’
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B. Specific Aim 2: Predicting Non -Cancer Mortality in Indolent NHL

Aim 2 sought to use penalized regression methods to develop and interndly validate
a series ofindolent NHL risk models predicting short- and long-term non-cancer mortality
to improve upon traditional comorbidity scores.
Aim 2 Rationale

Aim 2 will contribute to the evidence base by providing the first population -based
prevalence estimates of individual comorbidities at indol ent NHL diagnosis. The goal of this
aim is to develop a model that improves prediction of non -cancer mortality and could be
used within clinic al settings to inform risk -benefit decisions in cancer treatment selection.

Prediction of non-cancer mortality is important for informing indolent NHL
treatment decisions. Conventional treatments for indolent NHL subtypes include
chemotherapy combinations with rituximab. However, due to the slow growth of these
malignancies, patients may not benefit from aggressive treatment until their symptoms arise
and their disease progressesin particular, aggressive treatment may not provide a benefit
that outweighs the risk of a non-cancer death among patients with a poor non-cancer
prognosis at diagnosis. Patientlevel non-cancer risks can be used as one source of evide®
when deciding whether to give an older patient a less-aggressive treatment, such asa watch-
and-wait strategy or rituximab monotherapy , over more aggressive chemoimmunotherapies.

The risk prediction models developed in this aim seek to address limitations of
traditional comorbidity scores, the current tools available for non-cancerrisk stratification
in treatment decisions. This aim will use advanced machine learning algorithms to select
comorbidities that are most relevant for older patients with indo lent NHL . In addition, this
aim will assess howrisk predicti on changes when examining morelong-term mortality
outcomes (5 years)that are more relevant for slow-growing indolent NHLs than short-term
mortality (1 year) assessed in traditional comorbidity scores. The model will also explore

how risk prediction improves when assessing non-cancer mortality instead of using an all-



cause mortality outcome in which the influence of comorbidities and other non -cancer
predictors may be diluted by the presence of @ncer deaths. Despite thecomplex health
profiles of many older adults that include both multimorbidity and frailty, traditional
comorbidity scores do not account for the effect of co-occurring comorbidities or frailty. The
risk models developed in thisaim will address this gap byassesing comorbidity interactions
and by adding claims-based indicators of frailty. The performance of the more complex
machine learning risk scores will be compared with that of a traditional comorbidity score

using discriminat ion, reclassification and calibration metrics.



CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

A. Older Adults and C  ancer

Cancerwas diagnosed in approximately 1.7 million US individuals and caused
589,430 deaths in 2015, making it the second deadliest disease in the nation and a major
public health issue.12With the population from the baby boomer generation reaching older
ages and 60% of cancer diagnoses among adults aged 65 and over, the proportion of new
cancer diagnoses among older adults isncreasing.1314 Simultaneously, advances in the
effectiveness and safety ofcancertreatments are allowing older adults to live longer after
cancer diagnosis® As a result, an estimated 75% of cancer survivors will be aged 65 and older
by 2040. As the prevalence of older patients with cancer grows, research is needed to
address the complex health needs that place older patients at a high risk of adverse
outcomes, a poor quality -of-life, and early mortality during cancer care and survivorship.
B. Complex Non -Cancer Health Profiles in Older Adults a t Cancer Diagnosis

At diagnosis with cancer, dder adults are more likely than their younger
counterparts to have one or more non-cancer conditions, called comorbidities, or syndromes
that increase vulnerability to health stressors, called frailty .58 An estimated 40% of US
adults aged>66 with cancer have at least one preexisting comorbidity. > This percentage
increases with age, withup to 85% of adults aged 80 and older diagnosed with at least one
pre-existing comorbidity. 18 Among the comorbidities managed by older adults with cancer,
approximately half are considered moderate-to-severe, including diabetes, chronic
obstructive pulmonary disease (COPD), andcongestive heart failure (CHF).

Frailty, a state of vulnerability that affects recovery after a stressng physiologic

event, is another prevalent issue faced ly older adults.1%21 Comorbidities and disability



overlap with the frailty phenotype. An estimated 42% of older cancer patients are considered
frail or pre -frail at cancer diagnosis.??

Frailty and comorbidities add complexity to cancer care and decisionmaking for
older adults. Both cancer and its systemic treatments are significant stressorsthat can
exacerbate existing comorbidities and lead to development of new comorbiditi es. They also
canchallengeafrail p at i phydioldgical reserveto the point where a patient may not
recover after treatment .22 Ongoing treatment for comorbid conditions may result in drug
interactions with chemotherapy. Characteristics of other diseasesmay also alter the
pharmacokinetics and pharm acodynamics of chemotherapes andresult in greater
toxicities .23 Hematologist/oncologists and patients have to consider whether the benefit of
cancertreatment is worthwhile given the potential impact of treatmentonap at i qualityd s
of life or non-cancer prognosis.

Although the risk of having non-cancer conditions at cancer diagnosis generally
increases with age, there is a large amount of heterogeneity in the prevalence and severity of
these conditions in older adults across agesAt cancer diagnosis, an 88year-old may have
one comorbidity but otherwise display adequate physical functioning . In contrast, a 70-year-
old may have three cooccurring severe comorbidities and be dependent on a wheelchair.
Althou gh age is an important predictor of cancer outcomes, simply making treatment
decisions based on age may lead tandertreatment in older adults with less comorbidities
and lower frailty and overtreatment in younger adults with more non -cancer conditions .24
Treatment decisions that incorporate information on a patient 6 snderlying non -cancer
prognosis can lead to a higher quality of cancer care.

As the population of clinically complex older adults living with cancer increases,
there is a critical need to identify how non-cancer conditions vary in the cancer population
and how these patterns impact outcomes during cancer.Tools are also needed thaican

improve ris k stratification of older patients with complex health profiles .



C. Effect of Non -Cancer Conditions 0 n Cause -Specific Mortality

Multiple studies across different cancer sites suggest thatfrail older adults or those
living with a high comorbidit y burden at cancer diagnods have a higher risk of early
mortality compare d to those without frailty or comorbidities. +417.25Prior evidence suggests
that non-cancer conditions are as important as stage in predicting all-cause mortality.26 In
order to understand why these conditions affect mortality and to develop the best informed
interventions, it is important to first understand h ow these conditions separately influence
cancer and non-cancer causes of death.
Cancer -Specific and Non -Cancer Mortality

After a cancer diagnosis, patients canl) survive, 2) die of their first, primary cancer,
called cancerspecific mortality, or 3) die of another cause (e.g. secondary malignancies,
comorbidities, acute infections, treatment toxicities, accidents, and starvation), generally
termed non-cancer mortality. 27 Cancerspecific mortality risk is a popular outcome measure
used by hematologist/oncologists to decide how aggressively to treat cancer patients. This
measure is also used by resehers and policy-makers to examine which interventions
should be recommended for improving cancer outcomes.28 Non-cancer mortality risk is n ot
a common outcome used in the cancerepidemiology literature , but provides important
information for identifying risks of cancer treatments and gaps in the care for non -cancer
conditions. 27 The importance of studying non-cancer mortality has increased over the past
two decadeswith the aging population and improvements in cancer prevention, screening,
and treatment that have lengthened cancer-specific survival.?°
Addressing Competing Risks in Prognosis Measures

Before estimating cause specific mortality, such as non-cancer mortality or cancer-
specific mortality, it is important to consider how competing risks will be addressed in the
analysis. A competing risk is another outcome that precludes the patient from experiencing

the outcome of interest.3° For example, when assessing cancespecific mortality, the



competing risk i s death from a non-cancer cause. WWhen assessing noncancer mortality, the
competing risk is death from cancer.

There are two ways that competing risks can be addressed when calculating mortality
(or the inverse of mortality, survival). 31fiNe t 0 me of suwvivad calculate the probability
of surviving cancer in the absence of other causes of deathmeaning that they censor the
competing risk from the analysis. These measures include relative survival, which compares
the proportion of observed survivors in a cancer cohort with t he proportion of expected
survivors in a comparable cohort without cancer. These measures also includecause specific
estimates calculated with Cox proportional hazards models, in which the competing risks are
removed from t he analegdfdesth, alsoCallad dumolatiye inciderecd i | i t i
functions in the statistical literature, are calculated using the Fine-Gray subdistribution
hazards model or other statistical methods.32 The subdistribution hazards model addresses
inflation of cause-specific estimatesby retaining individua Is who have experienced a
competing risk in the at-risk or survivor group.33 Figure 2.1 outlines the four methods for
analyzing and addressing competing risks in cancer mortdlity or survival data.

Net measures that ignore competing risks are not influenced by changes in mortality,
and therefore, are useful for tracking mortality (or survival) across time or making
comparisons between groups3! Crude probabilities (or cumulative incidence functions) are
better measures for communicating apatienté s a grdgnosid. This is because, &
diagnosis, a patient will have a probability of dying of cancer, dying of a non-cancer cause or
surviving over a settime period . By addressing canpeting risks, these three probabilities will
add to 100%, but if competing risks are not addressed, as in the net measures, the
probabilities may add to an unrealistic value >100%. Therefore, crude (or cumulative
incidence) measures accounting for competing risks are the best measures to use when
assessing patterns of cancerspecific and non-cancer mortality to understand prognosis

patterns and identify risk groups.



Impact of Non -Cancer Conditions on Cause -Specific Mortality

Evidence from multiple cancer sites suggest that comorbidities affect both cancer-
specific and non-cancer mortality among older adults. However, the impact of comorbidities
on each of these outcomes occurs through different mechanisms?34 Older adults who have
comorbidities are less likely to receive curative or more aggressive treatments, which in turn
increases their risk of cancer-specific mortality. 3543 Cancer treatment may also exacerbate
pre-existing comorbid conditions or cause new disease, affecting compliance to or
continuation of subsequent rounds of cancer treatment and increasing the likelihood of a
cancer death#4-51|n turn, cancer care may impact appropriate comorbidity management 52-55
or exacerbate comorbidities,56:57 resulting in increased risk for non-cancer mortality.

Frailty is alsoindependently associated with increased allcause mortality (5-year
hazard ratio (HR) 1.87, 95%Cl: 1.36i 2.57).2258 Treatment complications are more frequent
in those with frailty, including intolerance to cancer treatment (adjusted odds ratio 4.8 6,
95% CI 2.19 10.78).224859 |ntolerance to chemotherapies can result in non-cancer mortality.
Similar to comorbidities, patients with frailty can experience treatment complications that
result in them being channeled away from or discontinuing more aggressive effective
treatment, potentially impacting their cancer-specific mortality.

The framework in Figure 2. 2 summarizesthe evidence from the literature on the
impact of comorbidity and frailty on cancer-specific and non-cancer mortality.

The effect of comorbidities and frailty on both cancer-specific and non-cancer
mortality among older adults varies dependingupon t he i ndi vidual 6s
comorbidity, and tumor characteristics. Cancer site is one of the most important factors in
the relationship between comorbidities and mortality since other moderating characteristics
(e.g. average patient age, rate of progression, average stage at diagnosis, and treatments)
vary according to cancer site? Interventions focused on reducing deaths from competing

causesadds a layer of complexity to cancer care for older adults. In order to maximize
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resources for addressing thenegative consequences otomorbidity on mortality,
interventions should be prioritized for cancer sites in which patients have a higher risk of
comorbidity , frailty , and non-cancer mortality.

D. Impact of Non -Cancer Conditions on Mortality i n Indolent Non -Hodgkin
Lymphoma ( NHL )

Chronic Hematological Malignancies

Chronic hematologic malignancies are a growing group of relapsing-remitting
cancers that have characteristics making them particularly important target s for
comorbidity -related interventions .8 With improvements in treatments, p atients diagnosed
with these malignancies are now living longer with their cancer. From 1999-2007, the 5-year
cancer-specific relative survival for these cancers rose 1620% among the three main chronic
hematological cancers1040 In the same period, the 5-year relative cancerspecific survival for
all cancer sites only increased 3.8%.As cancer-specific survival increases the prevalence of
survivors living with these relapsing -remitting diseases is also increasirg. Due to their slow-
growth and relapsing-remitting disease, non-cancer mortality may be a particularly

important issue for theseincreasingly prevalent malignancies.

Epidemi ology of Indolent NHL

The most common chronic hematologic malignancy in the United States is indolent
non-Hodgkin lymphoma (NHL). ¢! Indolent NHL is also one of the 10 most prevalert cancers
among older adults in the United States; approximately 1 in 173 US patients aged 65 years
and older were living with indolent NHL in 2013. %1 The NHL subtypes considered to be
indolent are follicular, marginal zone, chronic/ small lymphocytic lymphoma (CLL/SLL),
lymphoplasmacytic lymphoma/Waldenstr ém macroglubulinemia, and mycosis fungoides.®2
Theseindolent NHL subtypes compose 47% of NHL diagnoses and largely affect older
adults, with an average age between 63 (follicular lymphoma) and 72 (lymphoplasmacytic

lymphoma). 62
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As observed in other chronic hematologic malignancies, cancerspecific survival is
high in indolent NHLs. In 2007, the 5 -year relative cancer-specific survival for indolent NHL
was 87%, which is higher than the 68% 5-year relative cancer-specific survival of aggressive
NHLs.®3 |t is estimated that the average survival among indolent NHL patients is now 15-20
years postdiagnosis due tothe introduction of the anti -CD20 rituximab, the reintroduction
of bendamustine, and improvements in bone marrow transplantation. 64
Rationale for Studying Non -Cancer Mortality i n Indolent NHL

Indolent NHLs have unique characteristics and exposures, which place them at a
higher risk of anon-cancer death than patients with aggressive subtypes of NHL265 First,
indolent NHLs are slow-growing. Evidence suggests that individuals with slower-
progressing cancers have a lower likelihood ofinitially dying from their cancer. 66.67
Additionally, NHL -specific survival is lengthening as more effective first- and secondline
treatments are being introduced. 68-70 The longer a patient lives without dying from their
indolent NHL , the greater their risk of dying from comorbidities or having a poor response
to a physiologic stressor.”1In addition, there is evidence that individuals with indolent NHL
have a lower overall and non-cancer survival than individuals without cancer. 72 For a 65-
year-old indolent NHL patient diagnosed in 2007, the estimated 5 -year non-cancer survival
was 67.3% (95% CI: 66.4%68.2%), which was significantly lower than the expected 5-year
non-cancer survival of 82.0% in a population withou t cancer.83 This evidence suggests that
indolent NHL patients are at a greater risk of dying due to their comorbidities and frailty
than the general population, warranting a greater focus on comorbidity management and
supportive care in this population.

Indolent NHL patients also face continual relapses, whichmay contribute to a higher
risk of non-cancer mortality compared to patients with aggressive NHL or the general
population . Due to their recurring disease patients with indolent subtypesface more

treatment over their lifetime than cancer siteswith a higher likelihood of cure , including
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aggressive NHL subtypes®® Repeated exposure to chemotherapies may exacerbate existing
comorbidities or stimulate development of new comorbidities, increasing the risk of non-
cancer mortality. 73 In addition, comorbidities may become exacerbatedafter repeated
exposure to toxic or invasive treatments, leading to discontinuation , or failure of effective
cancer treatments.4274 Patients who are frail may not have the physiological reserves to
recover after being exposed to chemotherapy stressorsAnother negative side effect of
relapses is that they require ongoing surveillance and retreatment, which consumes
resources and time that would have otherwise been spent on comorbidity management’>
Gaps in comorbidity management could lead to comorbidity exacerbations that result in
non-cancer deaths.Finally, the burden of constant cancer care may preventindolent NHL
patients from connecting with healthcare providers other than their
hematologist/oncologists, resulting in suboptimal comorbidity management. 5254.76

The average ageat diagnosis of patients with indolent NHL is 69 years, setting this
group apart from other cancers with a lower average age at diagnosis (e.g., breast2 years,
prostate: 66 years).61 With a greater number and severity of comorbidities among older
patients than younger patients,517.27indolent NHLs are expected to have a greater burden of
comorbidities and frailty at diagnosis, and thus, a greater risk of comorbidity-related death
than other cancer sites. As the older population increases, so too will therisk of non-cancer
mortality in this population . Therefore, non-cancer mortality will become increasingly
important to consider when making indolent NHL treatment decisions and prioritizing
which subpopulations should receive supportive care for comorbidities.
Gaps in Evidence on Non -Cancer Conditions and Mortality in Indolent NHL

Despite the unique risks for comorbidity exacerbations and non -cancer death faced
by patients with indolent NHL, limited research has explored comorbidity or frailty patterns
in this population . No studies have examined patterns of noncancer mortality among these

patients. One reason for these gaps is that populationbased estimatesof comorbidity and
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frailty are not available in indolent NHL cohort studies. For example, the National
Lymphocare Cohort of follicular lymphoma patients is largely representative of th e US but
does not collect comorbidity data at diagnosis.”” The University of lowa/Mayo Clinic NHL
cohort collects data on select comorbidities but the population is not representative of the
United States and has notyet published collected comorbidity data. 78 The InterLymph Non -
Hodgkin Lymphoma Subtype Project, which pools case-control data from around the globe,
focuses on risk factors for cancer diagnosis rather than clinical characteristics of patients at
diagnosis.”™ The prevalence of comorbidity has not beenreported in large, longitudinal
clinical trials, which mostly exclude patients with higher comorbidity burdens and specific
comorbidities, including renal disease, liver disease, HIV, and hepatitis B or C80.81

Six studies have reported the comorbidity burden among indolent NHL patients ,
which are reported in Table Al .1 in Appendix 1. Three studies conducted in the SEER
Medicare data reported the Charlson comorbidity score or NCI comorbidity score for
indolent NHL subtypes; in these studies approximately 30 -50% of patients had at least one
comorbidity. 70.82-84 One population-level study has described comorbidity severity among
indolent NHL patients (subtypes not specified) diagnosed from 19932004 in the Southern
Netherlands Eindhoven Cancer Registry study 2 finding that 34% of patients aged >60 had
high-impact comorbidities (heart -related conditions, COPD, diabetes, and previous cancer).
Another study in an Italian cancer center found that 85% of older indolent NHL patients
(follicular, marginal zone, lymphoplasmacytic) diagnosed between 1990-2012 had one or
more comorbidities, and 25% had a severe score on the Cumulative lliness Rating Scale
Geriatrics (CIRS-G).86 However, no known studies have described patterns of individual and
co-occurring comorbidities in indolent NHL or the impact of these comorbidity patterns on

non-cancer mortality.
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E. Identifying Risk of Non -Cancer Mortality in Older Adults w ith Indolent NHL

In order to prevent comorbidity exacerbations and early non -cancer deaths among
older patients with indolent NHL , hematologist/oncologists need tools to id entify who may
be at risk of dying of a non-cancer cause.These tools can inform decisions on whether a
treatment for indolent NHL isbenef i ci al gi ven a -paacerip®gnos8.s
Traditional ~ Comorbidity Scores

A handful of tools are available for stratifying patients into risk groups according to
their comorbidity. These include smple measures ofcomorbidity burden, including number
of comorbidities or binary variable s representing the presence or absence of a comorbidity*
Comorbidity scores provide a more complex method for calculating comorbidity and
represent the number and impact of common comorbidities on an outcome (usually 1-year
all-cause mortality) using a simple integer value. A comorbidity score is calculated by
assigning an indicator variable to patients given the presence (1) or absence (0) of selected
conditions, which is the n weighted by an integer representing the rounded effect of the
condition on an outcome. 8788 Weights are summed across conditions for each patient to
obtain a score.

The most widely used comorbidity scores are by Charlson et a® and Elixhauser et
al.?0 The Charlson comorbidity score was developed to predict year mortality among
patients admitted to an acute care hospital in the 1980s. The score assigns empirically
derived weights to 1719 investigator-defined, clinically important conditions. In contrast,
the Elixhauser comorbidi ty score was developed to predict hospital discharges, length of
stay, and in-hospital mortality using an inpatient population. The 30 conditions included in
the Elixhauser were selected because they are considered to influence hospitalization but are
not the primary reason for hospitalization. Multiple variants of these scores have been

developed, including different ways to identify comorbidity codes in claims data. °-9
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The comorbidities used in the Charlson and the Elixhauser comorbidity scores have
minimal overlap, with important conditions potentially missing from either or both scores.
For example, the Charlson focuses almost exclusively on chronic conditions, excluding acute
conditions important for hospital ization risk and mortality. The Elixhauser score uses
conditions listed as a secondary diagnosis at hospital discharge, which leads to the exclusion
of many common causes of hospitalization and comorbidity burden among older adults,
such as myocardial infarction. To address these differences, he combined comorbidity score
was developed using a more contemporary, general older adult population from US
Medicare claims and a subset of comorbidities from the Charlson and Elixhauser to predict
l-year all-causemortality. 93

Comorbidity indices can approximateap at i ent 6s ri sk of an outcon
term mortality and be used toidentify patients who may respond poorly to more toxic
treatments or who should receive more intensive comorbidity care during cancer
treatment. % Another benefit of comorbidity scores is that they can be integrated into clinical
treatment guidelines or prognostic indices and used to standardize treatment decisions for
patients with comorbidities across physicians, clinics, and regions.7

Despite the simplicity and clinical utility of traditional comorbidity scores, these
tools have limitations for predicting non -cancer mortality in older adults with indolent NHL
Prior studies have found that the comorbidities and weights in traditional comorbidity
scores are not bethe same as those idatified in specific cancer populations.®® This may also
be true for the indolent NHL population , which may have a different comorbidity mix and
outcome prevalencethan the general Medicare population used to calculatethe combined
comorbidity score. Most traditional comorbidity scores were created to assess dyear all-
cause mortality. Short-term mortality may not be an applicable outcome for indolent NHL
given the longer survival of these individuals. Due to these differences,important

comorbidities may not be considered in the score calculation and weights may provide a
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poor reflection of the given c¢omor Traditional y 6 s

comorbidit y scores also consider each comorbidity to be an independent predictor of the
mortality outcome. However, among older indolent NHL pa tients with multiple non -cancer
conditions, the presence of one condition on a mortality outcome may modify the effect of
another condition. 9919 Prior research has found that interactions between comorbidities
result in a higher predicted risk of short -term mortality. 9191 Therefore, by including
interactions between conditions in a risk prediction tool, we may improve prediction of non -
cancer mortality. A final limitation of traditional comorbidity scores is that they do not
consider frailty, and therefore, only capture a portion of predictors important for non-cancer
mortality.
Building Risk Prediction Models with Machine Learning

Risk prediction models developed using machine learning can be used toaddress
limitations of traditional comorbidity scores and offer a potentially improved prediction of
mortality. 1°2 Machine learning is a branch of artificial intelligence in which computers
employ statistical, probabilistic, and optimization techniques to learn about outcomes and
hard-to-detect patterns.193 Penalized regression is a type of machine learning method that
applies a penalty to parametric regression methods, which shrinks lessinformative predictor
coefficients towards zero.102 This is a powerful method for balancing model bias and
variance, and can be used in situations whereoverfitting may occur in regular situation s due
to large numbers of predictors (>10). These methods may be especially useful in creating
risk prediction models from multiple non -cancer predictors and their interactions.
Importance  of Predicting Risk of Non -Cancer Mortali  ty

As we improve treatments for indolent NHL and other ¢ hronic hematologic
malignancies and as the proportion of older adults in the indolent NHL population grows,
we need to identify ways to improve the experience and outcomes of olderpatients during

long-term management of their disease. This planning needs to start at diagnosis, when the
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hematologist/oncologist is identifying the optimal treatments. Comorbidities and frailty may
have a profound effect on the qudtharefore slonldd | engt F

be a key component considered in first-line treatment decisions.

Method of Addressing
Competing Risks

Net Crude
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Figure 2. 1 Two-by-two table outlining the different methods for analyzing survival and
mortality data which account for (crude me thods) or do not account for (net methods)
competing risks
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Figure 2 .2 Framework displaying the impact of comorbidities on cancer -specific and
non-cancer mortality in chronic hematologic malignancies
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CHAPTER 3 : METHODS

In this chapter, w e describe thedata source used forboth aims 1 and 2 Then, we
specifically describe the study populations and methods unique to each aim.For Aim 1, we
used the Fine-Gray subdistribution hazards model to calculate the cancer-specific and non-
cancer mortality risk by N HL subtype, age group, comorbidity level, stage, and time since
diagnosis. For Aim 2, we used elastic net machine learning methods to conduct penalized
logistic regressions predicting 1- and 5-year all-cause and noncancer mortality. We
compared the discrimination, reclassification, and calibration metrics from the resulting
models to those from a model with the combined comorbidity index to assess how our
models improved upon traditional comorbidity scores.

This research protocol was approved bythe Insti tutional Review Board and the
Office of Human Research Ethics at the University of North Carolina.
A. Data Source

For this analysis, we used data fromtheNat i onal Cancer18lUBst i t ut e 0 s
Surveillance, Epidemiology, and End Results (SEER) cancer rgistries linked with Medicare
health insurance claims. SEER registries cover approximately 28% of the US and provide
information on NHL diagnosis and mortality that are representative of those observed in the

general US population, except for a slightly higher proportion of individuals from urban
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areas or who were foreign born.1®4 Medicare is a federally funded program providing health
insurance to persons aged>65 that consists of Part A (hospital, skilled -nursing facility) and
Part B (physician and outpatient services, durable medical equipment) fee-for-service
coverage.Almost all (93%) Medicare beneficiaries are enrolled in either Part A or Part B. 105

SEER-Medicare claims are organized into a series d files. The Patient Entitlement
and Diagnosis Summary File (PEDSF) contains a record for each individual diagnosed in a
SEER area who has been matched to Medicare claims. Approximately, 93% of older adults
(age>65) in the PEDSF are matched to Medicare chims.1% The PEDSF includes
demographic, clinical, tumor, and census tract-level socioeconomic status data for each
individual with an incident cancer diagnosis. The Medicare claims files include inpatient
hospitalizations claims (MEDPAR) , outpatient hospital services claims (OUTSAF), durable
medical equipment claims (DME), and carrier claims. The MEDPAR claims file includes
data on inpatient service dates, diagnoses, procedures, and injected agentswhich are
identified with International Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9 CM) diagnosis and procedure codes.Similarly, the OUTSAF claims include ICD -9
CM diagnosis and procedure codes conducted in outpatient setting. The DME claims file
contains HCPCS, which can beused to identify markers of frailty, including home hospital
beds, home oxygen use, and wheelchair useCarrier claims include ICD-9 CM diagnosis
codes andHCPCS.Additional information about filesused in SEER Medicare can be found
at the SEER-Medicare website
(https://healthcaredelivery.cancer.gov/seermedicare/aboutdata/ ).
B. Methods for Aim 1
Study Population

The study selection flowchart for Aim 1 is provided in Figure 3.1 . We identified
patients aged >66 years at diagnosis with first, primary NHL between January 1, 2004 and

December 31, 2011. Eligible patients were required to have continuous Medicare Parts A and
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B and no managed care coverage for the 12 months before the diagnosis date (set to the first
day of the diagnosis month). Our study started in 2004 after the 1997 FDA approval and
dissemination of rituximab to ensure that most patients in the study population had a
similar opportunity to experience survival advantages from this drug. 69107 B- and T-cell NHL
subtypes were defined using the International Lymphoma Epidemiology Consortium
(InterLymph) categories 1% based on the 2008 World Health Organization (WHO)
classification system for hematological and lymphoid tissue malignancies.1% Using clinical
expertise, we further excluded malignancies with unspecified/unknown subtypes that
primarily affected non -lymphoid tissue or that occurred in precu rsor or plasma cells
(lymphoblastic leukemia/lymphomas (ICD -0O-3 98119818, 9837), plasma cell/myelomas
(ICD-0-3 97319732, 9734, 9762), and precursor lymphomas (ICD-O-3 9724-9729, 9735).
Patients aged <65 at Medicare enrollment (qualifying due to end-stagerenal disease or
disability) or diagnosed at autopsy or death were also excluded.See Table Al. 2 in Appendix
1for histology codes.
Exposure Variables

We grouped NHL into indolent and aggressive subtypes based on clinical expertise
and prior knowledge about survival. 85110.111Aggressive subtypes included diffuse large Bcell
lymphoma (DLBCL), peripheral T -cell lymphoma (PTCL) and Burkitts lymphoma. Although
subpopulations of mantle cell ymphoma have exhibited ind olent tumor growth, 68 this
subtype was categorized as aggressive since it displays an higher NHispecific mortality
than observed in typical indolent NHL. 12|Indolent subtypes included follicular lymphoma,
marginal zone lymphoma (MALT extranodal, nodal, and splenic), chronic lymphocytic
leukemia/small lymphocytic lymphoma (CLL/SLL), lymphoplasmacyti c/Waldenstrom
macroglobulinemia, and mycosis fungoides. We removed Sezary syndrome due to small

numbers preventing stable stratification.
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For the cohort description, we assigned patients to an age group according to their
age at diagnosis (6074, 7584, 85+ years). We also identified sex, race (white, black,
Hispanic, other), and Ann Arbor cancer stage (I/11, 11I/1V) in the SEER data to further
describe the population. The presence or absence of 16 comorbidities were identified in the
12 months before NHL diagnosis, and a Charlson comorbidity score was calculated using
weights developed by Mariotto et al.1°® We used comorbidity categories from Cho et al. to
stratify patients into no comorbidity, low or moderate comorbidity, and high comorbidity
groups.2’

Outcome Variables

We followed patients from NHL diagnosis until death or the end of follow -up on
December 31, 2012 Deathswere identified using state death certificate data compiled by the
National Center for Health Statistics and linke d to SEER records!*¥We linked deaths to
individuals with SEER data regardless of whether they died within or outside of a SEER
registry.

Deaths were defined by major sitegroups on death certificates based on 3digit ICD -
10 codes. We used a definition of cancer death developed by th&lCl that adjusts for
potential misattribution of NHL -specific deaths by considering tumor site, origin, and order,
as well as secondary malignancies and comorbidities that commonly occur with NHL (e.g.
HIV/IAIDS). 2Any death not <classified as acawancer deat
deat h. o
Statistical Analysis

For each NHL subtype, we calculated cumulative risks of alkcause mortality as the
complement of overall survival probabilities from Cox proportional hazards models. We
used the Fine-Gray subdistribution hazards regression model3? to estimate the cumulative
incidence of NHL -specific and other-cause mortality by subtype, age and comorbidity level.

The formula for the subdistribution ha zardsis presented in Equation 3.1
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Equation 3.1

Where 0is the time point up to which the person has survived, 0 Qndicates whether the
event of interest or the competing risk is egimated. In continuous time, this model is
estimating the probability of experiencing the event of interest Cat time “Y= 6 given that the
person has survived to time oor that the person experienced the competing event 0 "Q
before time o.

The Fine-Gray subdistribution hazards model accounts for competing causes of
death precluding patients from experiencing the event of interest. When calculating the
cumulative incidence of NHL -specific mortality, NHL death was the event of interest, and
death dueto other causes was the competing event. For the cumulative incidence of other
cause mortality, deaths from causes other than NHL were the events of interest, and NHL
death was the competing event. We calculated 95% confidence intervals for cumulative
incidence estimates using lootstrapping with 1000 replicates.

We estimated 5-year cumulative incidence functions and cumulative incidence
curves of NHL-specific and other-cause mortality for each subtype, age group comorbidity
level, and stage,which were graphed using stacked bar charts We also developed sacked
cumulative incidence curves to show change in causespecific mortality risk over the five
years postdiagnosis. The top ofthe stacked curves represented cumulative altcause
mortality. The area above the curves represented the overall survival probability at each time
point after NHL diagnosis. Analyses were conducted using SAS 9.4 statistical software (SAS

Inc., Cary, NC).
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C. Methods for Aim 2
Study Population

The study selection flowchart for Aim 2 is provided in Figure 3.2 . We required
patients to be aged>66 years at diagnosis with a first, primary indolent NHL diagnosis from
January 1, 2004 through December 31, 2011. Diagnosis was set to the first day of the
diagnosis month. Patients were required to have continuous enroliment in Medicare Parts A
and B without managed care coverage during the 12 months before indolent NHL diagnosis
so that we could identify pre-existing comorbid conditions and frailty indicators. Patients
aged <65 at Medicare errollment (qualifying due to end -stage renal disease or disability) or
diagnosed at autopsy or death were excludedPatients were also excluded if they had zero
months of follow -up and no date of death. The study period was selected to reflect a time
period when all patients generally had the same opportunity to receive and experience
survival advantages from the anti-CD20 biologic, rituximab. 69.107

NHL subtypes were defined using the InterLymph 198 categories based on the 2008
WHO classification system for hematological and lymphoid tissue malignancies.1°° Using
clinical expertise, we further restricted to indolent B-and T-cell subtypes, which were
defined as those with a 5year relative survival >70% that were not leukemias or plasma cell
malignancies.”114The final indolent subtypes in our analysis were follicular lymphoma,
mar ginal zone | ymphoma ( MZL), |l ymphopl asmacytic/
chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and mycosis
fungoides. SeeTable A1.2 in Appendix 1 for histology codes.
Potential Predictors

Age and sexwere included in all models. We defined age using 5year age groups (66
69, 70-74, 7579, 80-84, 85+). We also described the population by race/ethnicity (non -
Hispanic white, non -Hispanic black, Hispanic, other), subtype, and Ann Arbor cancer stage

(i, mNv).  Only subtype was included in the final prediction model.
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For each patient, we identified the presence or absence of 36 comorbidities in the 12
mont hs before the patient 6% CMdodegfomPart&a usi ng val.i
hospitalization, Part B physician/supplier, outpatient, and durable medical equipment
claims data. To mirror comorbidity definitions used to create the combined comorbidity
index, we included comorbidities from the Romano adaptation of the Charlson Comorbidity
Index8%91 and the Quan/van Walvaren adaptation of the Elixhauser Comorbidity
Index.®0.92115When the same conditions were included in both scores, we chose the
definition with more patients. We also identified comorbidities associated with NHL
prognosis, including anxiety and hepatitis B and C using established ICD-9 diagnosis
codes6Finally, using ICD -9 diagnosis codes and HCPCS, we identified claimsbased
markers of frailty as defined by Faurot et al.117that had not been listed as a comorbidity in
our analysis. These variables served as frailty proxies in our model.

Outcome Variable

Our outcomes of interest were t and 5-year all-cause and noncancer mortality. The
ICD-10 codes identifying cause of death were obtained by SEER from state death certificate
data provided by the National Center for Health Statistics. 13Deaths were cagured through
December 31, 2011regardless of whether the death occurred within a SEER registry area.

One-year mortality enabled comparison of our model results with most traditional
comorbidity scores. Death within 5 years represented long-term mortality, which is more
relevant for indolent NHL. We developed models predicting both all -cause and noncancer
mortality to observe whether type of outcome changed the predictors and performance of
our model. All -cause mortality was defined as death from any cause and is the most common
outcome used to define traditional comorbidity scores. Indolent NHL -specific deaths were
identified using the criteria established by the NCI,2” which adjusts for potential

misattributi on of NHL -specific deaths by considering tumor site, tumor origin, tumor order,
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secondary malignancies and comorbidities that commonly occur with NHL. Non -cancer
deaths were defined as those not due to an indolent NHL.
Statistical A nalysis

We described the demographic, cancer, comorbidity, and frailty characteristics of
older patients with indolent NHL. Models assessing 1-year mortality included all eligible
patients. Models assessing 5year mortality only included individuals diagnosed from
January 1, 2004 through December 31, 2007 to allow patients to have at least five years
between their diagnosis and the end of follow-up during which mortality could be identified.

To address small sample sizes, we randomly resampled an 80% training set and a
20% validation set in each cohort 100 times usingconsecutive new seed valuesl-100. In
each training set, we fit five logistic regression models predicting 1- and 5-year all-cause and
non-cancer mortality. Table 3.1 describes each model. The first model included he
combined comorbidity index, age group, and sex. This model was considered the
comparison model since our goal was to assess how well our new prediction models
improved upon traditional comorbidity scores. The second through the fifth models (Models
A-D) each added a component addressing a limitation of traditional comorbidity scores.

Models A-D were developed using elastic net machine learning methods The
eqguation for the elastic net is presented in Equation 3. 2. The elastic net applies two types

of penalization, the L1-norm penalty and the L2-norm penalty . The L1-norm penalty

(L B 1 generates a sparse matrix in which most of the variables that are considered

uninformative are shrunk to zero. However, if the L1 -norm is used alone, then it will only
select one variable out of a group of higHy correlated variables and shrink the rest of the
variable coefficients to zero. The strengths of the Ltnorm penalty is that is allows for
simultaneous selection from the large numbers of potential predictors and their interactions
while shrinking those that are generally less informative towards zero (essentially removing

them from the model). 118 This method balances model predictive ability and parsimony and
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selects comorbidities that are most relevant to indolent NHL and to the outcome being
assessedThe quadratic L2-norm part of the model (_ B 7T allows for a greater

number of predictors to be selectedand encouragesa grouping effect, which retains or
removes strongly correlated predictors from the model as a group. The grouping effect is
important since many comorbi dity and frailty predictors are collinear . Notably, the
conditions commonly grouped as cardiovascular diseases are often correlated, including
arrhythmias, congestive heart failure, hypertension, and valvular disease We used 10fold
cross-validation to id entify the tuning parameter s of each penalty, _ and _ , that minimized

the mean square error.
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Equation 3.2

In the first elastic net model (Model A), we included t he age group, sexand 36 non-
cancercomorbidities from the Charlson and Elixhauser comorbidity scores (which were
considered when developing the combined comorbidity index) . The second elastic net model
(Model B) added two-way interactions between the 10most prevalent comorbidities in
addition to age group, sex and the 36 previously assessed comorbidities. The third elastic
net model (Model C) included variables in Model B plus the 12 claims-based indicators of
frailty. The final elastic net model (Model D) added indolent NHL subtypes to assess
whether characteristics related to cancer prognosis were also predictive of noncancer
mortality.

We tested the five models in the 100 validation sets and calculated the average model
coefficients, predicted probability of 1- and 5-year all-cause and noncancer mortality , and
performance metrics in the 100 resamples. Thevalues at the 97.5 and 2.5 percentiles of the
performance metric distribution s from the 100 resamples were used to calculate 95%

confidence intervals.
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We assessed the ability of the five models to discriminate each mortality outcome
using the area under the receiver operating characteristicscurve, also known as the AUC.
The receiver operating characteristics (ROC) curve assesseghe change inthe true positive
rate (sensitivity) and the false positive rate (1-specificity) for various cut -points in the
predicted probabilities. Changes in average AUC between each maal were assessed.

We calculated the average continuous Net Reclassificationimprovement (NRI) (also
called the category-free net reclassification index) and the Integrated Discrimination
Improvement (IDI) indices to compare true - and false-positive rates of the four elastic net
models versusthose of the combined comorbidity index model. 119.120

The continuous NRI, shown in Equation 3. 3, assesses the degree to which an index
model (i.e., one of the four elastic net models) correctly reclassifies events and norevents
versus a comparison model (i.e.,the combined comorbidity index model). The purpose of
the NRI is to assess whether a more effective model increases predicted risks for events and
decreases predicted risks or risk categories for noneventslt is not in itself a proportion but
is composedof four proportions.

0 YO0 OROVLQE D QL VRLQE W QEVEEEQIQEORE € £ QU QE O

Equation 3.3

In equation 3.3, the P(up|event) represents the proportion of individuals who
actually experience the event who are corectly shifted to a higher risk of the eventin the
elastic net model versus the canbined comorbidity index model. When the models have the
same classification, this value equals 0.50.P(down| event) is the proportion that are
mistakenly shifted to a lower risk of the event in the elastic net model versus the comorbidity
model. The difference in P(up|event) and the P(down|event) is the NRI eyvent, Which is the net
proportion of events assigned to a higher risk. Similarly, the P(down|nonevent) represents
the proportion of indi viduals who actually do not experience the event who are correctly

shifted to a lower risk of the event in the elastic net model versus the combined comorbidity
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index model. The P(up|nonevent) is the proportion of non -events that are mistakenly shifted
to a higher risk of the event in the elastic net model versus the comorbidity model. Again, a
value of 0.5 for these proportions represents no difference. The difference in
P(down|nonevent) and the P(up|nonevent) is the NRI nonevent, Which is the net proportio n of
nonevents assigned to a lower risk.

The IDI, shown in Equation 3. 4, assesses the change in sensitivity minus the
change in Especificity of the index versus the comparison model over all possible cutoff
valuesfor the predicted probabilities .

000Nk 3V U U
Equation 3.4

In equation 3.3, Dis the average of the estimated probabilities for all individuals who
are actual events(i.e. die in 1 or 5 years) or all individuals who are actual non-events (i.e. do
not die in 1 or 5 years).In the case of this research, the new model is the elastic net model
while the old model is the model with the combined comorbidity score. This value can also
be interpreted as the difference in the change in sensitivity minus 1-specificity, which is the
same as the difference inthe discrimination slope between the elastic net and comorbidity
score models.t21

Finally, we assessed model fit using calibration plots. The calibration plots compared
observed probabilities, which were binary mortality variables estimated as continuous values
using locally-weighted smoothing (loess),'22and predicted probabilities from each model.123
Well-calibrated models follow the 45-degree line representing perfect alignment between the
observed and predicted probabilities. All analyses were conducted using theglmnet, pROC,

rms, and ggplot2 packages in R.
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First, primary non-Hodgkin lymphoma
cancer based on 2008 WHO
classification with valid diagnosis date
in SEER registry area before death,
2004-2011
N=68,732

v
Age 66+ at diagnosis
n=47,893

Exclude:
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n=20,839

h 4
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Parts A/B in 12 months before
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Non-continuous enrollment in
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Exclude:
Managed care enrollment 12
months before diagnosis
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International Lymphoma
Epidemiology Consortium NHL
classification
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Exclude:
Leukemias (other than CLL),
leukemia/lymphomas, plasma

cell/myelomas, precursor
lymphomas, prolymphocytic
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Figure 3.1 Study selection flowchart for Aim 1 study population

30




First, primary non-Hodgkin lymphoma
cancer based on 2008 WHO
classification with valid diagnosis date
in SEER registry area before death,
2004-2011
N=68,732

Age 66+ at diagnosis
n=47,893

Exclude:
Ages <65
n=20,839

4

Continuous enrollment in Medicare
Parts A/B in 12 months before
diagnosis
n=42,165

Exclude:
Non-continuous enroliment in
Parts A & B 12 months before

diagnosis

n=5509

4

No managed care enrollment 12
months before diagnosis
n=30,090

Exclude:
Managed care enrollment 12
months before diagnosis
n=12,075

International Lymphoma
Epidemiology Consortium NHL
classification

Exclude:
Leukemias (other than CLL),
leukemia/lymphomas, plasma

cell/myelomas, precursor
lymphomas, prolymphocytic
leukemias, Sezary syndrome,
heavy chain, plasmablastic

(DLBCL, PTCL, mantle cell, follicular, n=5509
marginal zone, CLL/SLL,
lymphoplasmacytic, mycosis
fungoides)
n=24,581
Exclude:
Aggressive NHLs
n=14,792
Indolent NHLs
n=9789

Figure 3.2 Study selection flowchart for Aim 2 study population
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Table 3.1 Characteristics of the combined comorbidity index comparator model and

elastic net index models (A-D) in Aim 2

Model

Model Components

Combined Comorbidity
Index Model

Elastic n et Model A
Elastic net Model B

Elastic net Model C

Elastic net Model D

Combined comorbidity index + age (categorical) + sex

36 comorbidi ties+ age (categorical) + sex

36 comorbidit ies + age (categorical) + sex +interactions
between 10 most prevalent comorbidities

36 comorbidities + age (categorical) + sex +12 frailty
indicat ors + interactions between 10 most prevalent
comorbidities

36 comorbidities + age (categorical) + sex +12 frailty
indicators + interactions between 10 most prevalent
comorbidities + indolent NHL subtype (proxy for cancer
prognosis)
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CHAPTER 4 : RESULTS OF AIM 1: CAUSE -SPECIFIC MORTALITY AMONG
MEDICARE BENEFICIARIES WITH NEWLY DIAGNOSED NON -HODGKIN
LYMPHOMA SUBTYPES IN THE RITUXIMAB ERA
A. Introduction
Non-Hodgkin lymphoma (NHL) is the sixth most diagnosed cancer and eighth
leading cause of cancer death among US men and women, with an estimated 72,580 new
diagnoses and 20,150 deaths in 2016.124 The demographic compaosition and survival of the
NHL population has changed markedly over the past two decades. Notably, the proportion
of new NHL diagnoses among older adults has risen since the late 1990s with the aging US
population. 7 By 2030, two-thirds of new NHL diagnoses are expected to be aged65.14 The
aging NHL population brings unique challenges to NHL treatment decision -making. Older
patients are more susceptible to cancer treatment toxicities and have a greater number and
severity of comorbidities than younger patients, which increases the likelihood that they will
die from causes other than NHL.43485 As the NHL population has grown older, the NHL -
specific mortality has decreased’114The decreasing mortality in NHL is largely attributable
to the introduction of rituximab, a monoclonal antibody against CD20, and other effective
second- and third -line treatments. 125> As patients live longer with their NHL, their risk of
dying from other causes increases. Going forward, treatment decision-making for older
patients with NHL may benefit from information about the risk of mortality from causes
other than NHL.
The importance of competing causes of mortality in treatment decisions likely varies

across NHL subtypes, which have heterogeneous demographic, clinical, and tumor
characteristics that differentially influence NHL -specific prognosis.11%1120One important

prognostic factor that varies between subtypes is the speed of tumor growth. Patients
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diagnosed with subtypes exhibiting an aggressive growth have a higher likelihood of NHL-
specific mortality and cure after first -line treatment th an indolent subtypes.11°In contrast,
indolent subtypes are characterized by patterns of disease remission and relapse requiring
long-term management of the cancer, such as additional treatment that can lead to adverse
events 126 Taken together, deaths from causes other than NHL may be more of a concern for
treatment decisions among indolent subtypes than aggressive subtypes.

As mortality from competing causes becomes more important among patients with
NHL, cause-specific prognosis estimates are needed to inform discussions on the value of
NHL treatments given the risks of death from other causes. In the cancer literature, the most
commonly reported measures of causespecific prognosis are net cancerspecific mortality
risks, which remove patients from an analytic cohort after they die of causes other than the
cancer 31 Net cancer-specific mortality risks are used to isolate the effect of interventions on
cancer mortality and to compare cancer mortality across time or populations . However,
these measures assume that patients only die of NHL. In real clinical settings, newly
diagnosed patients have a probability of dying from NHL, dying from other causes, and
surviving. 3t In order for these three probabilities to add up to 100%, it is necessary to
acknowledge that a patient may die of a cause other than NHL and to estimate causespecific
mortalities that account for competing risks. These risks are commonly called crude
measures in the surveillance literature or cumulative incidence functions in the statistical
literature. 31.32127Cumulative incidence functions that account for competing risks retain
patients in the denominator population after they die of a competing cause, which prevents
inflation of prognosis estimates.32:33 Though not commonly reported, the cumulative
incidenceofcauses peci fic mortality provides the best re

prognosis and the most useful measure for informing individual treatment decisions.
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This study sought to describe patterns in the cumulative incidence of NHL -specific
and non-cancer mortality by prognostic factors for older patients with NHL, including
subtype, age and comorbidity level.

B. Methods
Data Source and Study Population

For this analysis, we used data from the 18 US Surveillance, Epidemiology, and End
Results (SEER) cancer registries linked with Medicare insurance claims. SEER registries
cover approximately 28% of the US and provide information on NHL diagnosis and
mortality that are generally representative of those observed in the general US population.104
Medicare is a federally funded program providing health insurance to persons aged>65 that
consists of Part A (hospital, skilled-nursing facility, hospice, home health care) and Part B
(physician and outpatient services) fee-for-service coverage.

We identified patients aged >66 years at diagnosiswith first, primary NHL between
January 1, 2004 and December 31, 2011. Eligible patients were required to have continuous
Medicare Parts A and B and no managed care coverage for the 12 months before the
diagnosis date (set to the first day of the diagnoss month). Our study started in 2004 after
the 1997 FDA approval and dissemination of rituximab to ensure that most patients in the
study population had a similar opportunity to experience survival advantages from this
drug.%9107 B- and T-cell NHL subtypes were defined using the International Lymphoma
Epidemiology Consortium (InterLymph) categories 1% based on the 2008 WHO classification
system for hematological and lymphoid tissue malignancies.19® Using clinical expertise, we
further excluded malignancies with unspecified/unknown subtypes that primarily affected
non-lymphoid tissue or that occurred in precursor or pl asma cells (lymphoblastic
leukemia/lymphomas (ICD -O-3 98119818, 9837), plasma cell/myelomas (ICD-0O-3 9731

9732, 9734, 9762), and precursor lymphomas (ICD-O-3 9724-9729, 9735). Patients aged
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<65 at Medicare enroliment (qualifying due to end -stage renal disease or disability) or
diagnosed at autopsy or death were also excluded.
Demographic and Clinical Variables

We grouped NHL into indolent and aggressive subtypes based on clinical expertise
and prior knowledge about survival. 85110.111Aggressive subtypes included diffuse large Bcell
lymphoma (DLBCL), peripheral T -cell lymphoma (PTCL) and Burkitts lymphoma. Although
supbpopulations of mantle cell lymphoma have exhibited indolent tumor growth, 68 this
subtype was categorized as aggressive since it displays an higher NHispecific mortality
than observed in typical indolent NHL. 12|Indolent subtypes included follicular lymphoma,
marginal zone lymphoma (MALT extranodal, nodal, and splenic), chronic lymphocytic
leukemia/small lymphocytic lymphoma (CLL/SLL), lymphoplasmacytic/Waldenstrom
macroglobulinemia and mycosis fungoides. We removed Sezary syndrome due to small
numbers preventing stable stratification.

For the cohort description, we assigned patients to an age group according to their
age at diagnosis (6074, 7584, 85+ years). We also identified sex, race (white black,
Hispanic, other), and Ann Arbor cancer stage (I/11, 11I/1V) in the SEER data to further
describe the population. The presence or absence of 16 comorbidities were identified in the
12 months before NHL diagnosis, and a Charlson comorbidity score wa calculated using
weights developed by Mariotto et al.1%0 We also used comorbidity categories from Cho et al.
to stratify patients into no ¢ omorbidity, low or moderate comorbidity, and high
comorbidity. 27
Cause of Death

We followed patients from NHL diagnosis until death or the end of follow -up on
December 31, 2012. We identified deaths using state death certificate data compiled by the

National Center for Health Statistics and linked to SEER records.113Deaths were linked to
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individuals with SEER data regardless of whether they died within or outside of a SEER
registry.

Deaths were defined by major site groups on death certificates based on 2digit
International Classification of Disease (ICD) version 10 codes. We used a definition & cancer
death developed by the NClthat adjusts for potential misattribution of NHL -specific deaths
by considering tumor site, origin and order, as well as secondary malignancies and
comorbidities that commonly occur with NHL (e.g. HIV/AIDS). 28 Any death not classified as
an NHL death was -camenrs i dleateld. @ fnon
Statistical Analysis

For each NHL subtype, we calculated cumulative risks of allcause mortality as the
complement of overall survival probabilities from Cox proportional hazards models. We
used the Fine-Gray subdistribution hazards regression model32 to estimate the cumulative
incidence of NHL -specific and non-cancer mortality by subtype, age and comorbidity level.
The Fine-Gray model accounts for competing causes of death preventing patients from
experiencing the event of interest. When calculating the cumulative incidence of NHL -
specific mortality, NHL death was the event of interest, and death due to other causes was
the competing event. For the cumulative incidence ofnon-cancer mortality, deaths from
causes other than NHL were the events of interest, and NHL death was the competing event.
We calculated 95% confidence intervals for cumulative incidence estimates using
bootstrapping with 1000 replicates.

We calculated 5year cumulative incidences and cumulative incidence curves of
NHL -specific and non-cancer mortality for each subtype, age group and comorbidity level,
which were graphed using stacked bar charts and stacked cumulative incidence curves over
the five years postdiagnosis. The top of the stacked curves represented cumulative alicause

mortality. The area above the curves represented the overall survival probability at each time
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point after NHL diagnosis. Analyses were conducted using SAS 9.4 sttistical software (SAS
Inc., Cary, NC).
C. Results

From 2004 -2011, 26,809 eligible adults aged 66+ were newly diagnosed with mature
B- or T-cell NHL in the SEER-Medicare database (Figure 1). Of these individuals, 40% had
indolent subtypes and 60% had aggressive subtypes. The most common subtype was DLBCL
(47.4%), followed by follicular (22.5%) and marginal zone lymphoma (13.4%).

Table 4.1a Table 4.1b display the characteristics of older adults newly diagnosed
with aggressive and indolent NHL subtypes, respectively. In general, patients diagnosed
with indolent subtypes were more likely to be younger, female, white, and have less
advanced disease than patients diagnosed with aggressive subtypes. We observed some
variation in NHL subtype characteristics within the same tumor growth group. Among
aggressive subtypes, the percentage of patients diagnosed at age 85+ years ranged from 14%
in Burkitts to 19% in DLBCL. Patients with marginal zone and lymphoplasmacytic
lymphoma were generally older than patients with o ther indolent subtypes. More than half
of patients with follicular, CLL/SLL and lymphoplasmacytic lymphoma were diagnosed in
advanced stages, while early stage diagnoses were more common among patients with
marginal zone lymphoma and mycosis fungoides.

Tab le 4.2 reports the number of deaths from cancer and other causes in the study
period and the 5-year NHL -specific and non-cancer mortality by subtype. There were 12,684
deaths among newly diagnosed patients from 2004-2012. Thirty -three percent of newly
diagnosed patients died of NHL (n=8761), while 15% died of other causes (h=3923). The
percentage of patients with aggressive subtypes who died of NHL was higher than the
percentage of patients with indolent subtypes (44% vs. 19%). In contrast, the percentage ®

patients with indolent subtypes dying of other causes slightly exceeded the percentage
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among patients with aggressive subtypes (16% vs. 14%). Within tumor growth groups, the
percentage of newly diagnosed patients dying from NHL and other causes varied bysubtype.

Patients diagnosed with indolent subtypes had a lower cumulative incidence of NHL-
specific mortality (19% vs. 45%) and higher cumulative incidence of nhon-cancer mortality
(18% vs. 16%) at five years postliagnosis than aggressive subtypes. Indoént marginal zone
and mycosis fungoides subtypes had a higher cumulative incidence ofnon-cancer mortality
than NHL mortality at five years.

Figure 4.1 illustrates the cumulative incidence of NHL -specific mortality, non-
cancer mortality, and survival at fi ve years by subtype, age group, and comorbidity level.
Five-year NHL -specific mortality was larger for every age and comorbidity level in
aggressive subtypes than indolent subtypes. Among aggressive subtypes,-$ear NHL -
specific mortality rose with increas ing age but changed little with increasing comorbidity
level. In contrast, 5-year non-cancer mortality increased with age and comorbidity level and
was highest among older patients with indolent subtypes.

Figure 4.2 presents cumulative incidence curves fa non-cancer mortality stacked
on those for NHL -specific mortality over the five years post-diagnosis for each age group and
subtype. Cumulative incidence curves for NHL-specific and non-cancer mortality varied
across NHL subtypes, though similar patterns were observed among subtypes with the same
speed of tumor growth. Among aggressive subtypes, NHL-specific mortality exceeded non-
cancer mortality throughout the five years post -diagnosis, regardless of age group. NHI-
specific mortality increased rapidly in the first year among aggressive subtypes; this incline
became steeper as patients aged. Cumulative incidence curves fanon-cancer mortality also
rose more quickly for older than younger age groups. Cumulative incidence curves for
mantle cell lymphoma dis play a unique, hybrid pattern, with a higher NHL -specific
mortality at each time point after diagnosis than indolent subtypes but a slower rate of

increase in NHL -specific mortality than aggressive subtypes.
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Cumulative incidence curves of non-cancer mortality increased more rapidly in older
patients diagnosed with indolent subtypes than for aggressive subtypes. Notably, among
older patients diagnosed with the indolent marginal zone and mycosis fungoides subtypes,
non-cancer mortality exceeded NHL -specific mortality for patients surviving three or more
years postdiagnosis.

Figure 4 .3 displays the stacked cumulative incidence curves for NHL-specific and
non-cancer mortality in the five years post -diagnosis stratified by subtype and comorbidity
level. Compared to patients diagnosed with aggressive subtypes with no or low/moderate
comorbidity at diagnosis, patients with a high comorbidity level have a greater increase in
non-cancer mortality over the five years. This increase is most notable among indolent
subtypes.

Figure 4.4 shows that cumulative incidence curves for NHL -specific mortality
generally increase at a faster greater rate in advanced stages than early stages among
aggressive subtypes. In contrast,non-cancer mortality increased at a slightly faster rate in
early versus advanced stages. Similar patterns were observed among indolent subtypes.
D. Discussion

In this population -based study, we explored the risks of NHL-specific and non-
cancer mortality among older Medicare beneficiaries diagnosed with NHL during the
rituximab era by subtype, age group, comorbidity level, and time since diagnosis. Our
findings suggest that, for most subtypes, NHL-specific mortality increases with age, while
non-cancer mortality generally increases with age and comorbidity level. Similar patterns
have been observed in other cancer sites:?7.31.127At five years postdiagnosis, NHL -specific
mortality is higher for aggressive subtypes compared to indolent subtypes. In contrast, the
cumulative incidence of non-cancer mortality is higher in indolent subtypes than aggressive

subtypes, especially for patients diagnosed with marginal zone lymphoma and mycosis

40



fungoides. Patterns in indolent subtypes mirror those previously reported for ear ly stage,
solid tumor cancers, which are also slower growing527.128.129

Prior population -based studies of patients with NHL have also observed variation in
overall survival110.114.130gnd net NHL -specific mortality estimates 112.114.130.13xcross subtypes,
age groups, and comorbidity levels. However, overall survival estimates do not provide
specific information about the cumulative incidence of death from NHL or other causes, and
net survival measures do not account for competing causes of deatt#! By exploring patterns
of NHL -specific and non-cancer mortality, our results contribute unique, population -level
evidence about the impact of competing risks on survival in older NHL patients.

A strength of this study is use of the linked SEER-Medicare data, which is generally
representative of the US population.32 Therefore, patterns of crude cause specific mortality
risks observed in the SEER Medicare data are expected to reflect patterns among all older
adults in the US. The SEERMedicare data alsoprovide an opportunity to measure comorbid
conditions present at the time of diagnosis, which are important, but often underreported,
prognostic factors for older adults newly diagnosed with NHL. ® Cancer registries generally
do not collect comorbidity data, while clinical trials generally exclude individuals with higher
comorbidity levels, affecting our ability to t ranslate prognostic trends observed by
comorbidity levels in clinical trials to those expected in the general population. Another
strength of this analysis is that we explore the cumulative incidence of causespecific
mortality by NHL subtype, which to our knowledge, have not been explored previously and
are important given the potential importance of competing risks in some subtypes. Finally,
this study provides information on mortality trends from a time period in which
contemporary first -line treatment p aradigms with rituximab were used for most patients
with the two most common subtypes, follicular lymphoma 132 and DLBCL.134

However, there are also limitations of this analysis. SEER-Medicare data only

provide information on patients with NHL who are aged >65 years. Eighty-nine percent of
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these patients are missing the International Prognostic Index, 13>which is a score widely used
by oncologists to inform treatment decisions. Components of this score are also unavailable
in the data, including performance status, number of extranodal sites, and lactate
dehydrogenase levels. Future studies should exjfore how cumulative incidence of NHL -
specific and non-cancer mortality vary by these prognostic variables. Despite use of the
refined NCI cause-specific death variable, cause of death may still be misclassified and lead
the cumulative incidence of NHL -spedfic mortality to falsely appear higher or lower than
non-cancer mortality across subtypes and time periods.28.136 Additionally, several NHL
subtypes cannot be separated exclusively into an indolent and aggressive ategory. Notably,
while mantle cell ymphomas have a low median overall survival, a subset of these
malignancies demonstrate slow-growth and characteristics similar to indolent NHLs. 137
Finally, the 5-year crude mortality risks reflect death in the presence of treatments available
for the patient at the time of their diagnosis from 2004 -2011. There have been advances in
NHL treatmen t since 2004, such as improvements in stem-cell transplants and increased
use of rituximab. Due to treatment advances, 5year crude mortality risks may look different
for patients diagnosed in 2004 than those diagnosed in 2011. Although prior studies have
shown mortality rates plateauing during this time period, 14relative measures utilizing
expected survival data from life tables may be better for exploring time trends in NHL
prognosis.st

Our findings describe population -level patterns in the cumulative incidence of NHL -
specific and non-cancer mortality. These population -level results suggest that treatmert
decision-making for patients with indolent subtypes who are older or have higher
comorbidity levels may benefit from information on the cumulative incidence of non -cancer
mortality compared to NHL -specific mortality. However, to improve outcomes among older
NHL patients, individual -level estimates of the cumulative incidence of cancerspecific and

non-cancer mortality are needed, as well as tools that predict these outcomes according to a
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patientdés specific charactericadtesmnternagdanalr ent NHL
Prognostic Index35and Fallicular Lymphoma Prognostic Index, 138 were developed to inform
providersonapat i ent 6s probability of overall mortality
context regar di n g-speciiemopatity risks im thé pesence bf campeting

risks, nor do they inform providers on the risk of death from causes other than NHL.

Currently, the NCI is developing the SEER*CSC tool for prostate, breast, colorectal, and

head-and-neck cancers, which will provide nomograms for predicting the cumulative

incidence of surviving or dying from cragecer or
race, gender, and other measures of health status39140Qur study informs the development

of predictive tools like the SEER*CSC nomogram for NHL, which would generate highly

personalized, actual prognosismeasures for informing treatment discussions between

providers and older patients with NHL.
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Table 4.1 Individual demographic characteristics by aggressive non -Hodgkin lymphoma subtype in the linked Surveillance,
Epidemiology, and End Results cancer regist ry and Medicare claims database

Characteristics Total Total Aggressive DLBCL PTCL Mantle Cell Burkitts
(n=26,809) (n=14,773) (n=11,657) (n=1518) (n=1367) (n=231)
n % n % n % n % n % n %
Age Group
66-74 10912 40.7 5646 27.7 4326 37.1 641 42.2 592 43.3 87 37.7
75-84 8453 315 3380 22.9 5168 44.3 662 43.6 576 42.1 111 48.1
85+ 7444 27.8 5747 38.9 2163 18.6 215 14.2 199 14.6 33 14.3
Sex
Male 12831 47.9 7317 49.5 5496 47.1 806 53.1 890 65.1 125 54.1
Female 13978 52.1 7456 50.5 6161 52.9 712 46.9 477 34.9 106 45.9
Race/Ethnicity
White, non -Hispanic 22459 84.5 12167 82.9 9619 83.0 1179 78.8 1189 87.8 180 78.3
Black, non -Hispanic 1169 4.4 626 4.3 438 3.8 128 8.6 47 3.5 13 5.7
Hispanic 1693 6.4 1027 7.0 833 7.2 91 6.1 83 6.1 20 8.7
Other 1250 4.7 857 5.8 706 6.1 99 6.6 35 2.6 17 7.4
Stage
I 7581 30.5 3933 28.4 3278 29.8 459 33.7 155 12.1 41 18.8
I 3949 15.9 2403 17.4 2097 19.1 154 11.3 114 8.9 38 17.4
I 4397 17.7 2404 17.4 1845 16.8 304 22.3 235 18.4 20 9.2
Y] 8923 35.9 5098 36.8 3763 34.3 444 32.6 772 60.5 119 54.6
Comorbidity Level
None 10566 39.4 5600 37.9 4343 37.3 588 38.7 587 42.9 82 35.5
Low/moderate 5019 18.7 2784 18.8 2203 18.9 291 19.2 239 17.5 51 22.1
High 11224 41.9 6389 43.2 5111  43.8 639 42.1 541 39.6 98 42.4
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Table 4.2 Individual demographic characteristics by aggressive non-Hodgkin lymphoma subtype in the linked Surveillance,
Epidemiology, and End Results cancer registry and Medicare claims database

Characteristics Total Total Follicular Marginal CLL/SLL Lympho - Mycosis
(n=26,809) Indolent (n=5523) Zone (n=2221) plasmacytic fungoides
(n=12,036) (n=3301) (n=527) (n=464)
n n % n % n % n n % n %
Age Group
66-74 10912 40.7 5266 43.8 2594 47.0 1324 40.1 233 233 198 37.6 233 50.2
75-84 8453 315 5073 421 2264 41.0 1406 42.6 172 172 244 46.3 172 37.1
85+ 7444 27.8 1697 141 665 12.0 571 17.3 59 59 85 16.1 59 12.7
Sex
Male 12831 47.9 5514 458 2445 443 1389 42.1 244 244 258 49.0 244  52.6
Female 13978 521 6522 54.2 3078 b55.7 1912 57.9 220 220 269 51.0 220 474
Race/Ethnicity
White, non -Hispanic 22459 84.5 10292 86.5 4853 88.5 2734 83.8 356 356 449 87.5 356 82.8
Black, non -Hispanic 1169 44 543 4.6 156 2.8 151 46 39 39 13 25 39 9.1
Hispanic 1693 6.4 666 5.6 314 5.7 215 6.6 22 22 31 6.0 22 5.1
Other 1250 4.7 393 3.3 161 29 164 5.0 13 13 20 3.9 13 3.0
Stage
| 7581 305 3648 33.1 1562 30.5 1388 46.3 254 254 55 11.0 254 77.4
Il 3949 159 1546 14.0 922 18.0 336 11.2 31 31 11 2.2 31 9.5
I 4397 17.7 1993 18.1 1294 25.2 194 65 19 19 26 5.2 19 5.8
Iv 8923 359 3825 347 1348 26.3 1080 36.0 24 24 408 81.6 24 7.3
Comorbidity Level
None 10566 39.4 4966 41.3 2396 434 1294 39.2 195 195 207 39.3 195 42.0
Low/moderate 5019 18.7 2235 18.6 1053 19.1 589 17.8 91 91 88 16.7 91 19.6
High 11224 419 4835 40.2 2074 37.6 1418 43.0 178 178 232 44.0 178 38.4
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Table 4.3 Five-year cumulative incidence of all -cause mortality, non-Hodgkin lymphom a-specific mortality and other -cause

mortality by tumor growth groups and subtypes for cases in diagnosed from 2004

and End Results-Medicare data

-2012 in the linked Surveillance, Epidemiology

Deaths in5 -years

5-year all -cause

5-year cancer -

5-year other -

Group (n(%)) (N:ggsé%sg) (n=12,684) mortality specific mortality cause mortality
' Cancer Non -cancer CID (%) 95% ClI CID (%) 95% ClI CID (%) 95% ClI
Aggressive Subtypes 14773 6452 (42.6) 2057 (13.9) 61.6 60.7,62.4 45.5 44.7,46.3 16.2 15.6,16.8
Diffuse large B-cell lymphoma 11657 4971 (42.6) 1648 (14.1) 60.4 59.4,61.3 441  43.3,44.9 16.4 15.7,17.2
Peripheral T-cell ymphoma 1518 726 (47.8) 215 (14.2) 65.6 63.1,68.4 49.6 47.2,52.2 16.0 14.2,18.0
Mantle cell lymphoma* 1367 602 (44.0) 174 (12.7) 65.5 62.5,68.4 50.1 47.1,53.3 155  13.4,18.0
Burkitts lymphoma 231 153 (66.2) 20 (8.7) 75.0 69.0,80.8 64.5 59.1,70.1 10.2 6.9,15.0
Indolent Subtypes 12036 2309 (19.2) 1866 (15.5) 39.3 38.4,40.4 21.1 20.3,21.8 18.3 17.6,18.7
Follicular lymphoma 5523 1093 (19.8) 710 (12.6) 37.7 36.3,39.1 22.0 20.8,23.1 15.8 14.8,16.9
Marginal zone lymphoma 3301 458 (13.9) 538 (16.3) 36.0 34.0,38.0 16.0 14.7,17.5 20.0 18.6,21.7
CLL/SLL 2221 583 (26.2) 448 (20.2) 46.4 44.2,48.7 26.4 24.5,28.3 20.2 18.3,22.2
Lymphoplasmacytic 527 112 (21.3) 95 (18.0) 47.9 42.9,53.5 24.4 20.7,28.6 23.7 19.8,28.3
Mycosis fungoides 464 63 (13.6) 75 (16.2) 37.7 35.0,39.7 16.6 13.3,20.7 21.2 17.4,25.9

CID=cumulative incidence of death; Cl=confidence interval; CLL/SL L=chronic lymphocytic leukemia/small lymphocytic lymphoma; *Mantle cell ymphoma can

be classified as aggressive or indolent but is considered aggressive in this analysis.
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Figure 4.1 Bar charts displaying NHL -specific and other cause mortality a nd survival



Figure 4.2 Stacked cumulative NHL -specific (dark blue) and other cause (light blue)
mortality curves over five years from NHL diagnos is by subtype and age group
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