
TOWARDS OPEN-UNIVERSE IMAGE PARSING WITH BROAD COVERAGE

Joseph P. Tighe

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in

the Department of Computer Science.

Chapel Hill
2013

Approved by:

Svetlana Lazebnik

Jan-Michael Frahm

Stephen Pizer

Marc Niethammer

Derek Hoiem

c© 2013

Joseph P. Tighe

ALL RIGHTS RESERVED

ii

ABSTRACT

JOSEPH P. TIGHE: TOWARDS OPEN-UNIVERSE IMAGE PARSING
WITH BROAD COVERAGE.

(Under the direction of Svetlana Lazebnik .)

One of the main goals of computer vision is to develop algorithms that allow the

computer to interpret an image not as a pattern of colors but as the semantic relationships

that make up a real world three-dimensional scene. In this dissertation, I present a system

for image parsing, or labeling the regions of an image with their semantic categories, as

a means of scene understanding. Most existing image parsing systems use a fixed set

of a few hundred hand-labeled images as examples from which they learn how to label

image regions, but our world cannot be adequately described with only a few hundred

images. A new breed of “open universe” datasets have recently started to emerge. These

datasets not only have more images but are constantly expanding, with new images and

labels assigned by users on the web.

Here I present a system that is able to both learn from these larger datasets of labeled

images and scale as the dataset expands, thus greatly broadening the number of class

labels that can correctly be identified in an image. Throughout this work I employ a

retrieval-based methodology: I first retrieve images similar to the query and then match

image regions from this set of retrieved images. My system can assign to each image

region multiple forms of meaning: for example, it can simultaneously label the wing of a

crow as an animal, crow, wing, and feather. I also broaden the label coverage by using

iii

both region and detector based similarity measures to effectively match a broad range to

label types. This work shows the power of retrieval-based systems and the importance

of having a diverse set of image cues and interpretations.

iv

TABLE OF CONTENTS

LIST OF FIGURES .viii

LIST OF TABLES .x

CHAPTER 1: INTRODUCTION .1

1.1 Outline of Contributions .4

CHAPTER 2: RELATED WORK AND MY WAY FORWARD .8

2.1 Early work using grammars .8

2.2 Image parsing methods based on random fields . 10

CHAPTER 3: SCALABLE NONPARAMETRIC IMAGE PARSING

WITH SUPERPIXELS . 19

3.1 System Description. 21

3.1.1 Retrieval Set . 22

3.1.2 Superpixel Features . 23

3.1.3 Local Superpixel Labeling. 24

3.1.4 Contextual Inference . 26

3.1.5 Simultaneous Classification of Semantic and Geometric Classes. 29

3.2 Image Parsing Results. 31

3.2.1 SIFT Flow Dataset. 32

3.2.2 LM+SUN Dataset. 35

3.2.3 Detailed System Evaluation . 38

v

3.3 Video Parsing . 53

3.3.1 System Description. 55

3.3.2 Results . 57

3.4 Discussion . 62

CHAPTER 4: UNDERSTANDING SCENES ON MANY LEVELS 64

4.1 Multi-Level Inference. 65

4.2 Experiments. 69

4.2.1 Barcelona Dataset. 69

4.2.2 CORE Dataset . 74

4.3 Discussion . 80

CHAPTER 5: IMAGE PARSING WITH REGIONS AND

PER-EXEMPLAR DETECTORS . 82

5.1 Method. 83

5.1.1 Local Data Terms . 84

5.1.2 SVM Combination and MRF Smoothing. 86

5.2 Evaluation. 89

5.2.1 Datasets. 89

5.2.2 Experiments. 89

5.2.3 Running Time. 95

5.3 Discussion . 97

CHAPTER 6: DISCUSSION . 99

6.1 Future directions . 99

vi

BIBLOGRAPHY . 102

vii

LIST OF FIGURES

1.1 Overview of my core system .5

2.1 Grammar based parsing .9

3.1 System overview . 20

3.2 Contextual edge penalty . 29

3.3 Joint semantic/geometric MRF. 31

3.4 SIFT Flow: per-label bar chart . 33

3.5 SIFT Flow: example parsing results . 36

3.6 LM+SUN: per-label bar chart . 37

3.7 LM+SUN: example parsing results . 39

3.8 Indoor/outdoor retrieval set example . 43

3.9 Superpixels vs ground truth segments bar chart . 45

3.10 Superpixel feature evaluation . 47

3.11 Likelihood smoothing evaluation. 49

3.12 MRF smoothing evaluation . 51

3.13 Timing plot. 52

3.14 Still image vs. video segmentation example . 56

3.15 CamVid: example parsing results. 61

4.1 Sample ground truth labeling. 66

4.2 Multi-level Example . 66

viii

4.3 Illustration of my multi-level MRF (equation 4.1). 67

4.4 Inter-label set penalties . 69

4.5 Barcelona: example parsing result . 73

4.6 CORE: example parsing result . 76

4.7 CORE: per-label bar graph . 78

4.8 CORE: foreground masks. 79

4.9 CORE: example parsing results. 81

5.1 Finding Things Overview . 83

5.2 Detector based data term. 85

5.3 SIFT Flow: per-label bar chart . 92

5.4 LM+SUN: per-label bar chart . 92

5.5 LM+SUN: example object result . 93

5.6 LM+SUN: example parsing results . 94

5.7 CamVid: example parsing results. 97

6.1 Example of separating object instances . 101

ix

LIST OF TABLES

3.1 A complete list of features used in my system . 23

3.2 SIFT Flow: classification performance. 34

3.3 LM+SUN: classification performance . 37

3.4 Global image feature evaluation . 40

3.5 Retrieval set size evaluation . 41

3.6 Label “shortlist” evaluation . 42

3.7 Indoor/outdoor retrieval set evaluation . 44

3.8 Nearest neighbor vs. boosted decision tree evaluation . 50

3.9 System component run-times . 53

3.10 CamVid: classification performance . 59

3.11 CamVid: per-class performance . 60

4.1 Barcelona dataset label sets.. 70

4.2 Barcelona dataset results . 72

4.3 CORE dataset label sets. 75

4.4 CORE dataset results . 77

5.1 Comparison of different data terms . 90

5.2 Comparison of different SVM kernels . 91

5.3 SIFT Flow: comparison to state-of-the-art . 95

5.4 LM+SUN: comparison to state-of-the-art . 95

x

5.5 CamVid: per-class performance . 96

xi

CHAPTER 1: INTRODUCTION

In the last decade there has been great success in specific computer vision tasks, such as

face recognition, object tracking, camera pose estimation, and 3D reconstruction from

multiple images. However, the ultimate goal of computer vision research is to have the

computer fully “understand” the visual world, which many believe will require truly

intelligent machines, or artificial intelligence, to be invented. Before we can start to talk

about how to achieve such a goal, we must define what it means for the computer to

“understand” visual data. I use the notion of parsing, borrowed from natural language

processing, as a model of “understanding”; thus, this work focuses on the problem of

“image parsing.”

The term “image parsing” can be interpreted a number of ways. “Image” for our

purposes refers to a color image taken with a standard digital camera. Images are rep-

resented by a 2D grid of pixels in some color space, typically RGB (red, green, blue).

More generally an “image” can vary not only by dimension (a 3D image that repre-

sents 3D space, a 2D video where the 3rd dimension is time, or even a 3D video where

time is the 4th dimension) but also by modality (medical images such as ultrasound or

magnetic-resonance imaging, or hyper-spectral imaging).

The term “parsing” typically refers to the process of breaking a string of symbols into

semantically meaningful parts (words) and then deriving a meaning from the string by

relating the semantic parts to one another. To parse an image then, we must determine

what the semantically meaningful parts are and relate them to one another. Again there

are a wide range of choices that can be made here. Image parts can be defined either as

pixels or as regions (groups of pixels) in the image. Then some semantic meaning must

be assigned to each image part. Typically a single semantic label is assigned, but labels

of various types may be used. For example, an image part could be assigned both a class

label, such as “bird,” and a material label, such as “feather.” Finally, the parts should

be related to each other in some manner. The relationship between the parts may be

simple; in a 2D image, for example, the parts above, below, and next to one another could

simply be connected to form this relationship. However, more complex relationships can

also be considered, such as hierarchies, depth ordering, or a full 3D environment.

In this work I define image parsing using the following criteria:

1. Image parts are defined as either single pixels or regions (groups of pixels) in the

image.

2. Image parts are assigned different forms of semantic meaning: a semantic label

representing an object category as well as other label modalities, such as material

type or surface orientation.

3. Image parts are related in 2D by examining the likelihood for two classes to share

a boundary with one another.

I use this definition and focus my efforts on designing a simple and scalable system

that parses images from a diverse set of scenes with a broad range of label types.

A common approach to building an image parsing system as I have defined it is to train

2

a local appearance model from a corpus of labeled images (known as the training set) to

return a score for each label at each image part in a query (test) image. Such a model often

takes the form of a classifier. Then the scores returned by the local model are plugged into

a global contextual model, such as a Markov random field (MRF) or conditional random

field (CRF), to infer a global labeling for the entire test image. This approach works

well when the training set is small and fixed, but it can be computationally infeasible

as the training set size increases. Recently a new generation of image parsing datasets

has emerged; these datasets have no pre-defined set of class labels and are constantly

expanding as people upload new photos or add annotations to current ones. I refer

to these new datasets as “open-universe” and the traditional small, fixed datasets as

“closed-universe”. An example of an open-universe dataset is LabelMe (Russell et al.,

2008), which consists of complex, real-world scene images that have been segmented

and labeled by multiple users (sometimes incompletely or noisily). To cope with such

datasets, vision algorithms must have much faster training and testing times, and they

must make it easy to continuously update the visual models with new classes and/or new

images.

The main contribution of this thesis is an image parsing system that is designed to be

simple and scalable, which can serve as a baseline as more researchers start working on

open-universe datasets. My approach provides a rich form of scene understanding that

infers multiple types of labels with broad coverage of classes.

3

1.1 Outline of Contributions

My work on image parsing focuses on systems that can handle large scale data sets. In

Chapter 3, I discuss my core parsing system that uses a retrieval-based methodology to

assign a single semantic label to each region in the image (Tighe and Lazebnik, 2010,

2013b). An overview of my core parsing system is show in Figure 1.1. The motivation

behind this system is to provide a nonparametric solution to image parsing that is as

straightforward and efficient as possible and that relies only on operations that can easily

be scaled to large image collections and sets of labels. My system requires no training

(just some basic computation of dataset statistics) and uses a retrieval set of scenes whose

content is used to interpret the test image. While the idea of a retrieval set has been

used for various tasks, such as scene completion (Hays and Efros, 2007) and even image

parsing (Liu et al., 2011a), my system is the first to use the retrieval set to transfer labels

at the level of superpixels (Ren and Malik, 2003), or coherent image regions produced by

a bottom-up segmentation method. The label transfer is accomplished with a fast and

simple nearest-neighbor search algorithm, and it allows for more variation between the

layout of the test image and the images in the retrieval set.

The system relates the neighboring superpixels by the label co-occurrences in the

training set and performs inference using a Markov Random Field (MRF). I then extend

this system to label regions simultaneously with two label types: semantic and geometric

classes. Here, semantic classes refer to basic-level category names, such as grass, moun-

tain, car, and building, while geometric classes are the surface orientations from Hoiem

4

(a) Query Image (b) Retrieval set of similar images

(d) Per-class likelihood

Building

Road

Sky

Car

(c) Superpixels

Building

Car

Road

Sky (e) Semantic Classes

Figure 1.1: Overview of my core image parsing system, which is described in Chapter 3.
Given a query image (a): retrieve similar images (b) from the dataset. Next, divide the
query into superpixels (c) and compute a per-superpixel score (d) for each class based on
matches from the retrieval set. These scores are smoothed with a MRF model to give a
dense labeling of the query image (e).

et al. (2007): horizontal, vertical, and sky. Gould et al. (2009) performed a similar simul-

taneous labeling but did not show that it improved classifications accuracy. I am the first

to show performing semantic and geometric labeling simultaneously to be a significant

form of context, with each label type correcting errors in the other.

In Chapter 4, I extend my core system to work on an arbitrary number of label types

with arbitrary relationships (Tighe and Lazebnik, 2011). The geometric and semantic

label types represent a strict hierarchy, but more complex relationships exist. For exam-

5

ple, a car can be made of glass, painted metal, or rubber, but these materials are not

exclusive to cars. My multi-level parsing system learns these many-to-many relationships

in a novel way from simple dataset statistics. I then propose an novel, efficient multi-level

inference system to infer labels simultaneously across multiple label types.

Finally, in Chapter 5, I return to the problem of assigning a single semantic label

to each pixel but focus on achieving broader coverage of class labels—the ability to

recognize hundreds or thousands of object classes that commonly occur in everyday

street scenes and indoor environments. While the parsing system I describe in Chapter

3 performs quite well, it tends to be more accurate for “stuff” classes (Adelson, 2001)

that are characterized by local appearance rather than overall shape – classes such as

road, sky, tree, and building. To improve performance on “thing” classes such as car, cat,

person, and vase, I incorporate the per-exemplar detectors of Malisiewicz et al. (2011)

that model the overall object shape with my region-based system. Detectors are trained

on individual object instances, and the same retrieval-based methodology is used to select

which exemplar detectors are run on a query image. While detectors have been shown to

increase the accuracy for parsing systems (see section 2.2 for examples), my system is the

first to transfer detection masks rather than bounding boxes, providing greater pixel level

accuracy, while maintaining its open-universe compatibility. By incorporating detectors,

this parsing system greatly increases the coverage of correctly classified classes.

In summary the novel contributions presented in this thesis are as follows:

1. An efficient, retrieval-based parsing system capable of working with open-universe

datasets (Chapter 3);

6

2. A method for joint inference of both semantic and geometric labels that is shown

to improve parsing performance for both label types (Section 3.1.5);

3. A framework to learn relationships and simultaneously infer labels across multi-

label sets that have many-to-many relationships (Chapter 4);

4. A parsing system that incorporates detectors in an elegant and scalable manner by

transferring object masks from per-exemplar detectors (Chapter 5).

7

CHAPTER 2: RELATED WORK AND MY WAY FORWARD

2.1 Early work using grammars

Early vision researchers attempted to build image parsing systems that were based on

grammars. This work, known as syntactic pattern recognition, was an active area of

research from the late 1970s to early 1980s (Fu and Albus, 1982). Syntactic approaches

were often built on a block world (Roberts, 1965), depicted in Figure 2.1(a). The parsing

problem in this scenario is to first break an image into regions representing the individual

faces of the blocks in the scene and then to relate the faces to each other using a formal

grammar. The grammar used by Fu and Albus (1982) is depicted in Figure 2.1(b). The

vertical edges represent a scene decomposition from the full scene down to the individual

block faces. Other relationships, such as support between objects and surfaces as well as

face adjacency, could also be represented using horizontal edges.

Other work at the time used similar grammar-based approaches on natural scenes

(Ohta et al., 1978; Hanson and Riseman, 1978; Ohta, 1985). Unfortunately, accurately

splitting a natural scene into its rudimentary parts proved to be very challenging, and

without accurate segmentation the parsing grammar was not very effective. Generating

robust label predictions in the absence of powerful appearance descriptors or statistical

learning techniques also presented insurmountable difficulties. In the mid-1980s, this line

of research mostly stopped as researchers focused on sub-problems like segmentation and

object d
object e

f
g

h
i

j

�oor l

wall k
scene a scene a

objects b background c

d e l k

g h i jf

adjacency

support

Figure 2.1: The parsing grammar tree for a block world scene as proposed by (Fu and
Albus, 1982). Circles are the faces of the blocks in the scene, squares represent block
objects, and rectangles larger groupings. Horizontal connections represent relationships
such as face adjacency or object support, while vertical connections represent the scene
decomposition in to object and parts.

feature extraction that were required before accurate parsing could be feasible.

In the early 2000s, as computer vision and machine learning techniques began to

effectively tackle some of these simpler tasks, researchers again started to look at the

problem of grammar-based image parsing (Zhu and Mumford, 2006; Zhao and Zhu, 2011;

Socher et al., 2011). Tu et al. (2005) even proposed a system that explicitly combined

many of the advances developed since the grammar-based image parsing was abandoned

in the late 1980s, including segmentation, detection, feature extraction, and classification.

Much of the work on grammar-based parsing involves learning or encoding and then

enforcing these grammatical relationships, which can be difficult if the grammatical struc-

ture is not known or there are too few samples for each class, which is common with

open-universe datasets. In this thesis, I focus first on labeling the regions of the image

and only learn simple, pairwise relationships with soft constraints. To this end I model

the image parsing problem using a random field model, rather than a grammar-based

9

model.

2.2 Image parsing methods based on random fields

A common framework emerged in the early 2000s for image parsing with Markov random

fields (MRFs) or conditional random fields (CRFs). Most systems roughly followed the

same pipeline, borrowed from other popular tasks at the time, such as image restoration

(Geman and Geman, 1984):

1. For each pixel of each image in the training set extract features from a patch

centered around that pixel.

2. Given this set of features and ground truth labels, train a local model to produce

a compatibility score for each feature and each label.

3. Run the trained classifier on a query image and use the output as the unary term

of an MRF or CRF.

4. Define a smoothing prior as the binary term of the MRF, where typically a 4-

or 8-connected graph is defined over the pixels of the image, or optionally train

parameter of the MRF or CRF.

5. Perform maximum a posteriori (MAP) inference on the MRF.

Following this pipeline, He et al. (2004) expanded the domain of the classifier to

include both region and global image classification. Shotton et al. (2008) proposed a

10

parsing system that used boosted classifiers to represent the local spatial layout of tex-

tures corresponding to different classes. It also incorporated a per-image color model as

well as location priors to improve the discriminative power of the local model. Later,

Shotton et al. (2009) showed how to adapt this technique to random forest classifiers

that were able to parse a scene in real time. More recently, convolutional neural nets

have also been shown to achieve real-time speed but with higher accuracy and without

requiring features to be engineered by hand (Farabet et al., 2012).

Context

Going beyond simple smoothing in the MRF model, context emerged as an important

factor. The idea was to learn contextual relationships; for instance, cars are supported

by the road, and bikes do not float in the sky. Because these relationships require

understanding the 3D structure of the scene, they are hard to encode, so systems often

settled for simpler relationships. Rabinovich et al. (2007) learn contextual relationships

of the dataset, like boats occur with water and cars with roads, by simple co-occurrence

statistics in the training set. These relationships are then incorporated into a CRF as

penalty terms. This trend continues with systems using multiple forms of context based

on co-occurrence, location, and appearance (Galleguillos et al., 2008, 2010). Ladický

et al. (2010b) even showed how to efficiently incorporate a global context penalty, i.e.,

penalizing unlikely pairs of labels from being assigned anywhere in a image.

The “Auto-context” work of Tu (2008) avoided using a heuristic by learning a cascade

of classifiers, where the output of the classifier from one round was sparsely sampled

11

around the pixel being classified and fed as the input to the classifier for the next round.

The classifier at each round would choose which sparse locations were informative for

the classification task and thus learn positional context and smoothing. Lazebnik and

Raginsky (2009) presented work in a similar vein, learning contextual smoothing directly

from the images.

In Chapter 3 I explore simple contextual constraints based on label co-occurrence

counts. I use a pairwise term in my MRF formulation to model simple “next-to” rela-

tionships between labels. This term penalizes classes being assigned to adjacent regions

if they are rarely or never seen next to one another.

Region-based approaches

As bottom-up segmentation methods became more accurate and efficient, researchers

started to use these methods to generate an oversegmentation of the image. Then the re-

gions from this oversegmentation were used as the rudimentary parts instead of individual

pixels . I refer to these methods as region-based methods. Since the number of regions, or

superpixels, is much smaller than the total number of image pixels, more computationally

complex inference methods could be used. Hoiem et al. (2007) tested multiple segmen-

tations to find the most feasible configuration. Malisiewicz and Efros (2008) learned a

separate distance function for each region in the training set, which would be computa-

tionally infeasible if using pixels. Regions were not only used for efficiency; Ladický et al.

(2009) also combined pixel and region classifier outputs in a hierarchal CRF to gener-

ate more plausible object boundaries. Because the regions were generated by advanced

12

bottom-up segmentation, they tended to have more natural boundaries than the ones

generated by simple smoothing heuristics in an MRF.

My core parsing system (described in Chapter 3) is a region-based method. I have

found that not only does matching regions instead of individual pixels greatly reduce

the computational complexity but matching regions improves the classification accuracy

versus matching smaller patches around each pixel.

Three-dimensional scene interpretation

If our data is in the form of image sequences taken by a video camera, structure from

motion techniques can be used to estimate the 3D geometry of the scene, and this ge-

ometry can be used to help in image parsing. Brostow et al. (2008) compute a sparse

point cloud from a video sequence and then extract features based on both this point

cloud and on appearance features derived from the color frames. They demonstrate that

spatial features can provide complementary cues to appearance-based features, boosting

the parsing accuracy. Sturgess et al. (2009) continue this line of research with a bet-

ter inference method, and Zhang et al. (2010) demonstrate that dense depth maps can

generate even more powerful cues. With Microsoft Kinect popularizing depth sensors,

systems started to extract additional features from dense depth maps directly produced

by such devices (Silberman and Fergus, 2011). Silberman et al. (2012) use the depth cues

not only to boost their parsing system’s pixel level performance but also to infer support

relationships in 3D.

Other image parsing methods attempt to reason in the scene’s 3D space rather than

13

just the 2D image plane. Work by Hoiem et al. (2005, 2007) estimates both the 3D

orientations of surfaces in an outdoor scene and the basic support relationships. Gupta

et al. (2010) returns to the 3D block worlds of Roberts (1965), but instead of working in a

simplistic world built of only wooden blocks, they decompose an outdoor scene into block

primitives and infer 3 dimensional relationships between these primitives. A similar line

of research focuses on indoor scenes. Hedau et al. (2010) estimate a 3D box that defines

the gross structure of a room. Lee et al. (2010) build on this notion, adding volumes for

objects that occupy space in the estimated 3D box, while Gupta et al. (2011) predict

both likely objects with which people could interact and likely positions a person would

take in the room.

In this work, I do not take advantage of 3D geometric cues, though the parsing system

of Chapter 3 would make it straightforward to add depth features if they were available,

say, from RGBD images.

Nonparametric approaches

Recently, a few researchers have begun advocating nonparametric, data-driven approaches

suitable for open-universe datasets (Hays and Efros, 2008; Torralba et al., 2008; Liu et al.,

2011a,b). Such approaches avoid training altogether. Instead, for each new test image,

they try to retrieve the most similar training images and transfer the desired information

from the training images to the query. Liu et al. (2011b) have proposed a nonparametric

label transfer method based on estimating “SIFT flow,” i.e., a dense deformation field

between images. Unfortunately, the optimization problem for finding the SIFT flow is

14

fairly complex and expensive to solve. Moreover, matching scenes by estimating a dense

per-pixel flow field may not necessarily match our intuitive understanding of scenes as

collections of discrete objects defined by their spatial support and class identity.

In Chapter 3 I describe my nonparametric parsing system, the base system for all of

the work presented herein. My system leverages the concept of a retrieval set to efficiently

and accurately parse scenes while easily scaling with an expanding open-universe dataset.

This system has already been extended by a number of other researchers (Eigen and

Fergus, 2012; Singh and Košecká, 2013).

Multiple labelings

Most existing image parsing systems (He et al., 2004; Liu et al., 2011a; Rabinovich et al.,

2007; Shotton et al., 2009) perform a single-level image labeling according to basic-level

category names. Coarser labelings, such as natural/manmade, are sometimes considered,

as in Kumar and Hebert (2006). Hoiem et al. (2007) were the first to propose geometric

labeling. Having a geometric label assigned to each pixel is valuable as it enables tasks

like single-view reconstruction. Gould et al. (2009) have introduced the idea of using two

different label types; they assign one geometric and one semantic label to each pixel. I also

investigate geometric/semantic context in a similar manner. Namely, for each superpixel

in the image, I simultaneously estimate two different label types—a semantic label (e.g.,

building, car, person) and a geometric label (sky, ground, or vertical surface)—while

ensuring the consistency of both labels assigned to the same region (e.g., a building has

to be vertical, a road horizontal, and so on). My experiments show that enforcing this

15

coherence improves the performance of both labeling tasks.

In Chapter 4 I generalize this idea to handle an arbitrary number of label types. There

has been a lot of interest in visual representations that allow for richer forms of image

understanding by incorporating context (Divvala et al., 2009; Rabinovich et al., 2007),

geometry (Gould et al., 2009; Gupta et al., 2010; Hoiem et al., 2007), attributes (Farhadi

et al., 2010; Kumar et al., 2011; Lampert et al., 2009), hierarchies (Deng et al., 2010;

Griffin and Perona, 2008; Marszalek and Schmid, 2007), and language (Gupta and Davis,

2008; Kulkarni et al., 2013; Ordonez et al., 2011). My work follows in this vein by

incorporating a new type of semantic cue: the consistency between different types of

labels for the same region. In my framework, relationships between two different types

of labels may be hierarchical (e.g., a car is a vehicle) or many-to-many (e.g., a wheel

may belong to multiple types of vehicles, while a vehicle may have many other parts

besides a wheel). I show how to formulate the inference problem to enforce agreement

between different types of labels. My results show that simultaneous multi-level inference

performs better than treating each label set in isolation.

Parsing with detectors

As discussed in the introduction, to cover a broader range of labels one must focus on

correctly classifying the “thing” classes—people, cars, dogs, mailboxes, vases, and stop

signs. To improve performance on “things,” a few recent image parsing approaches (Ar-

belaez et al., 2012; Floros et al., 2011; Guo and Hoiem, 2012; Heitz and Koller, 2008;

Ladický et al., 2010b) have attempted to incorporate sliding window detectors. Many

16

of these approaches rely on detectors like histogram of oriented gradients (HOG) tem-

plates (Dalal and Triggs, 2005) and deformable part-based models (DPMs) (Felzenszwalb

et al., 2008), which produce only bounding box hypotheses. However, attempting to infer

a pixel-level segmentation from a bounding box is a complex and error-prone process.

More sophisticated detection frameworks like implicit shape models (Leibe et al., 2008)

and poselets (Bourdev and Malik, 2009) provide a better way to do per-pixel reason-

ing, but they tend to require a lot of extensively annotated positive training examples.

Ladický et al. (2010b) overcame this limitation by inferring a mask from a bounding

box detection using GrabCut (Rother et al., 2004). This automatic segmentation step

can sometimes fail; moreover, it does not leverage the learned detection model, only the

final bounding box. Floros et al. (2011) extended the work of Ladický et al. (2010b)

by replacing the GrabCut step with the Implicit Shape Model top-down segmentation

system (Leibe et al., 2008), improving their bounding box to segment conversion but

failing to achieve state-of-the-art performance. Arbelaez et al. (2012) leverage poselet

detectors that are trained on semantically meaningful parts and have a fairly stable av-

erage segmentation mask. They directly transfer the mean poselet masks and thus avoid

the automatic segmentation step. Guo and Hoiem (2012) do not predict a mask from a

bounding box but instead use auto-context (Tu, 2008) to directly incorporate the detec-

tor responses into their pixel-level parsing system. None of these schemes are well suited

for handling large numbers of sparsely-sampled classes with high intra-class variation.

Instead, in Chapter 5 I build an image parsing system that integrates region-based

cues with the promising novel framework of per-exemplar detectors or exemplar-SVMs (Mal-

17

isiewicz et al., 2011). Per-exemplar detectors are more appropriate than traditional slid-

ing window detectors for classes with few training samples and wide variability. They

also meet my need for pixel-level localization: when a per-exemplar detector fires on a

test image, I can take the segmentation mask from the corresponding training exemplar

and transfer it into the test image to form a segmentation hypothesis.

In summary, my core parsing system is most closely related to the non-parametric

method of Liu et al. (2011b), but my system performs matching at the level of superpixels

and simultaneously infers multiple types of labels. My detector-based component is most

similar to the work of Ladický et al. (2010b), but my method can scale to hundreds of

classes with relatively few training examples and does not rely on automatic segmentation

to obtain pixel-level localization.

18

CHAPTER 3: SCALABLE NONPARAMETRIC IMAGE PARSING

WITH SUPERPIXELS

This chapter details my retrieval-based image parsing system, which will be basis for all

work presented in this dissertation. Figure 3.1 gives an overview of my system.

My parsing system is based on a lazy learning philosophy, meaning that (almost) no

training takes place offline; given a test image to be interpreted, my system dynamically

selects the training exemplars that appear to be the most relevant and proceeds to transfer

labels from them to the query. The following is a summary of the steps taken by the

system for every query image.

1. Find a retrieval set of images similar to the query image (Section 3.1.1, Figure

3.1b).

2. Segment the query image into superpixels and compute feature vectors for each

superpixel (Section 3.1.2, Figure 3.1c).

3. For each superpixel and each feature type, find the nearest-neighbor superpixels

in the retrieval set according to that feature. Compute a likelihood score for each

class based on the superpixel matches (Section 3.1.3, Figure 3.1d).

4. Use the computed likelihoods together with pairwise co-occurrence energies in a

Markov Random Field (MRF) framework to compute a global labeling of the image

(Section 3.1.4, Figure 3.1e). Alternatively, with modifications, the MRF framework

(a) Query Image (b) Retrieval set of similar images

(d) Per-class likelihood

Building

Road

Sky

Car

Sky
Vertical

Horizontal

(c) Superpixels

Building

Car

Road

Sky (e) Semantic Classes (f) Geometric Classes

Figure 3.1: System overview. Given a query image (a): retrieve similar images (b) from
the dataset using several global features. Next, divide the query into superpixels (c)
and compute a per-superpixel likelihood ratio score (d) for each class based on nearest-
neighbor superpixel matches from the retrieval set. These scores, in combination with a
contextual MRF model, give a dense labeling of the query image in terms of semantic
(e) and geometric (f) labels.

can simultaneously solve for both semantic and geometric class labels (Section 3.1.5,

Figure 3.1f).

My system exceeds the results reported in Liu et al. (2011b), which was the state-of-

the-art at the time, on a dataset of 2,688 images and 33 labels. Moreover, to demonstrate

the scalability of my method, I present results on a subset of the LabelMe (Russell et al.,

2008) and SUN (Xiao et al., 2010) datasets totaling 45,676 images and 232 labels. To

my knowledge, I was the first to report complete recognition results on a dataset of this

size. Thus, one of the contributions of this work was to establish a new benchmark for

20

large-scale image parsing. Note that unlike other popular benchmarks for image parsing

(e.g., Gould et al. (2009); Hoiem et al. (2007); Liu et al. (2011b); Shotton et al. (2009)), my

LabelMe+SUN dataset contains both outdoor and indoor images. As will be discussed in

Section 3.2.3, indoor imagery currently appears to be much more challenging for general-

purpose image parsing systems than outdoor imagery, due in part to the greater diversity

of indoor scenes, as well as to the smaller amount of training data available for them.

As another contribution, I extend my parsing approach to video and show how to take

advantage of motion cues and temporal consistency to improve performance. Existing

video parsing approaches (Brostow et al., 2008; Zhang et al., 2010) use structure from

motion to obtain either sparse point clouds or dense depth maps, and extract geometry-

based features that can be combined with appearance-based features or used on their

own to achieve greater accuracy. I take a simpler approach and only use motion cues

to segment the video into temporally consistent regions (Grundmann et al., 2010), or

supervoxels. This helps to better separate moving objects from one another especially

when there is no high-contrast edge between them. My results in Section 3.3 show that

the incorporation of motion cues from video can significantly help parsing performance

even without the explicit reconstruction of scene geometry. This work was originally

published in Tighe and Lazebnik (2010) and Tighe and Lazebnik (2013b).

3.1 System Description

This section presents the details of all the components of my parsing system.

21

3.1.1 Retrieval Set

Similarly to several other data-driven methods (Hays and Efros, 2008; Liu et al., 2011b,a;

Russell et al., 2007), the first step in parsing a query test image is to find a relatively small

retrieval set of training images that will serve as the source of candidate superpixel-level

matches. This is done not only for computational efficiency, but also to provide scene-level

context for the subsequent superpixel matching step. A good retrieval set will contain

images that have similar scene types, objects, and spatial layouts to the query image.

In the attempt to indirectly capture this kind of similarity, three types of global image

features are used (Table 3.1(a)): spatial pyramid (Lazebnik et al., 2006), gist (Oliva

and Torralba, 2006), and color histogram. For each feature type, all training images are

ranked in increasing order of Euclidean distance from the query. Then the minimum

of the per-feature ranks is taken to get a single ranking for each image, and the top-

ranking K images are used as the retrieval set (a typical value of K in my experiments is

200). Empirically, this method gives an improvement of 1-2% over other schemes, such

as simply averaging the ranks. Intuitively, taking the best scene matches from each of

the global descriptors leads to better superpixel-based matches for region-based features

that capture similar types of cues as the global features (Table 3.1b).

I examine the contributions of different global features and the effect of changing the

retrieval set size K in the experiments of section 3.2.3.

22

(a) Global features for retrieval set computation (Section 3.1.1)
Type Name Dimension

Global
Spatial pyramid (3 levels, SIFT dictionary of size 200) 4200
Gist (3-channel RGB, 3 scales with 8, 8, & 4 orientations) 960
Color histogram (3-channel RGB, 8 bins per channel) 24

(b) Superpixel features (Section 3.1.2)

Shape
Mask of superpixel shape over its bounding box (8× 8) 64
Relative bounding box width/height 2
Superpixel area relative to the area of the image 1

Location
Mask of superpixel shape over the image 64
Top height of bounding box relative to image height 1

Texture
Texton histogram, dilated by 10 pix texton histogram 100× 2
Quantized SIFT histogram, dilated by 10 pix. 100× 2
Left/right/top/bottom boundary quantized SIFT hist. 100× 4

Color
RGB color mean and std. dev. 3× 2
Color hist. (RGB, 11 bins per channel), dilated by 10 pix. 33× 2

Appearance
Color thumbnail (8 × 8) 192
Masked color thumbnail 192
Grayscale gist over superpixel bounding box 320

Table 3.1: A complete list of features used in my system

3.1.2 Superpixel Features

I wish to label the query image based on the content of the retrieval set, but assigning

labels on a per-pixel basis as in He et al. (2004) and Liu et al. (2011a,b) tends to be too

inefficient. Instead, like Hoiem et al. (2007), Malisiewicz and Efros (2008) and Rabinovich

et al. (2007), I choose to assign labels to superpixels, or regions produced by bottom-up

segmentation. This not only reduces the complexity of the problem, but also gives better

spatial support for aggregating features that could belong to a single object than, say,

fixed-size square windows centered on every pixel in the image. Superpixels are computed

by using the fast graph-based segmentation algorithm of Felzenszwalb and Huttenlocher

23

(2004) 1 and describe their appearance using 20 different features similar to those of

Malisiewicz and Efros (2008), with some modifications and additions. A complete list of

the features is given in Table 3.1(b). In particular, the system computes histograms of

textons2 and dense SIFT descriptors over the superpixel region, as well as a version of that

region dilated by 10 pixels. For SIFT features, which are more powerful than textons, I

have found it useful to compute left, right, top, and bottom boundary histograms. To

do this, I find the boundary region as the difference between the superpixel dilated and

eroded by 5 pixels, and then obtain the left/right/top/bottom parts of the boundary

by cutting it with an “X” drawn over the superpixel bounding box. All of the features

are computed for each superpixel in the training set and stored together with their class

labels. A class label is assigned to a training superpixel if 50% or more of the superpixel

overlaps with a ground truth segment mask of that label.

3.1.3 Local Superpixel Labeling

Having segmented the test image and extracted the features of all its superpixels, the

system computes a log likelihood ratio score for each test superpixel (si) and each class

(c) that is present in the retrieval set. Making the Naive Bayes assumption that features

1I set K = 200 and σ = .8

2Code: http://www.robots.ox.ac.uk/˜vgg/research/texclass /filters.html

24

(fki) are independent of each other given the class, the log likelihood ratio is defined as

L(si, c) = log
P (si|c)
P (si|c̄)

= log
∏
k

P (fki |c)
P (fki |c̄)

=
∑
k

log
P (fki |c)
P (fki |c̄)

,

(3.1)

where c̄ is the set of all classes excluding c. Each likelihood ratio P (fki |c)/P (fki |c̄) is

computed with the help of nonparametric density estimates of features from the required

class(es) in the neighborhood of fki . Specifically, let D denote the set of all superpixels

in the training set, and N k
i denote the set of all superpixels in the retrieval set whose

kth feature distance from fki is below a fixed threshold tk. Then we have

P (fki | c)
P (fki | c̄)

=
(n(c,N k

i) + ε)/n(c,D)

(n(c̄,N k
i) + ε)/n(c̄,D)

=
n(c,N k

i) + ε

n(c̄,N k
i) + ε

× n(c̄,D)

n(c,D)
,

(3.2)

where n(c,S) is the number of superpixels in set S with class label c, n(c̄,S) is the number

of superpixels in set S with class label not c, and ε is a constant added to prevent zero

likelihoods and smooth the counts. In my implementation, I use the `2 distance for all

features, and set each threshold tk to the median distance to the T th nearest neighbor

for the kth feature type over the dataset. Interestingly, the radius threshold tk does not

seem to have a large influence on the performance of my system, though using a radius

instead of taking a fixed number of nearest neighbors was very important to achieve high

performance. I use a target number of near neighbors T = 80 for all experiments in this

chapter. I examine the effect of changing the smoothing constant (ε) in section 3.2.3.

25

The superpixel neighbors N k
i are found by linear search through the retrieval set. While

approximate nearest neighbor techniques could be used to speed up this search, at my

current scale this is not the computational bottleneck of my system as will be discussed

in Section 3.2.3.

Note that my density estimates are normalized by counts over the entire training set

(D), instead of over the retrieval set, as might perhaps be expected. This is because the

majority of feature points removed from the retrieval set are far from the query point

fki and nearby points are removed roughly in proportion to the density of that class.

Therefore, my likelihood estimates are proportional to the true likelihoods across the

whole dataset.

At this point, a labeling of the image can be obtained by simply assigning to each

superpixel the class that maximizes equation 3.1. As shown in Table 3.2, the resulting

classification rates already come within 2.5% of those of Liu et al. (2011b). I am not

aware of any comparably simple scoring scheme reporting such encouraging results for

image parsing problems with highly, unequally distributed labels. In particular, my

score successfully combines multiple features without relying on learned feature weights

or distance functions, which are often held to be crucial for integrating heterogeneous

cues to recognize many diverse classes (Malisiewicz and Efros, 2008).

3.1.4 Contextual Inference

Next, I would like to enforce contextual constraints on the image labeling – for example,

a labeling that assigns “water” to a superpixel completely surrounded by “sky” is not

26

very plausible. Many state-of-the-art approaches encode such constraints with the help

of conditional random field (CRF) models (Galleguillos and Belongie, 2010; Gould et al.,

2009; He et al., 2004; Nowozin et al., 2011; Rabinovich et al., 2007). However, CRFs

tend to be very costly both in terms of learning and inference. In keeping with my

nonparametric philosophy and emphasis on scalability, I restrict myself to contextual

models that require minimal training and that can be solved efficiently. Therefore, I

formulate the global image labeling problem as minimization of a standard MRF energy

function, which I have found to be comparable to CRF models in terms of accuracy as

long as the unary term is strong enough. The MRF is defined over the field of superpixel

labels c = {ci}:

J(c) =
∑
si∈SP

Edata(si, ci) + λ
∑

(si,sj)∈A

Esmooth(ci, cj) , (3.3)

where SP is the set of superpixels, A is the set of pairs of adjacent superpixels and λ is

the smoothing constant. I define the data term as:

Edata(si, ci) = −wiσ(L(si, ci)), (3.4)

where L(si, ci) is the likelihood ratio score from equation 3.1, σ(t) = 1/(1 + exp(−γt)) is

the sigmoid function3 and wi is the superpixel weight (the size of si in pixels divided by

3Note that my original system (Tighe and Lazebnik, 2010) did not use the sigmoid nonlinearity, but
in my subsequent work (Tighe and Lazebnik, 2011) I found it necessary to successfully perform more
complex multi-level inference. Without the sigmoid, extremely negative classifier outputs, which often
occur on the more rare and difficult classes, end up dominating the multi-level inference, “converting”
correct labels on other levels to incorrect ones. I have also found that the sigmoid is a good way of
making the output of the nonparametric classifier comparable to that of other classifiers, for example,
boosted decision trees (see Section 3.2.1).

27

the mean superpixel size). The smoothing term Esmooth is defined based on probabilities

of label co-occurrence:

Esmooth(ci, cj) = − log
(P (ci|cj) + P (cj|ci))

2
× δ[ci 6= cj] , (3.5)

where P (c|c′) is the conditional probability of one superpixel having label c given that its

neighbor has label c′, estimated by counts from the training set. I use the two conditionals

probabilities P (c|c′) and P (c′|c) instead of the joint probability P (c, c′) because they have

better numerical scaling. I average them to obtain a symmetric quantity. Multiplication

by δ[ci 6= cj] is necessary to ensure that this energy term is semi-metric as required by

graph cut inference (Boykov et al., 2001). Qualitatively, I have found equation 3.5 to

produce very intuitive edge penalties. As can be seen from the examples in Figure 3.2, it

successfully flags improbable boundaries. Quantitatively, results with equation 3.5 tend

to be about 1% more accurate than with the constant Potts penalty δ[ci 6= cj]. MRF

inference is performed using the efficient graph cut optimization code of Boykov and

Kolmogorov (2004); Boykov et al. (2001); Kolmogorov and Zabih (2004). On my large

datasets, the resulting labelings improve the accuracy by 2-4% (Tables 3.2 and 3.3).

I have also experimented with a contrast-sensitive per-pixel MRF similar to that of Liu

et al. (2011b), but have found that the per-superpixel formulation is faster, and achieves

the same per-pixel and per-class performance. One reason for this may be that the per-

superpixel MRF makes it easier to converge to a better minimum by flipping labels over

larger areas of the image. A per-pixel MRF does however produce more visually pleasing

28

TreeSkySeaSandRoad

RiverMountainGrassFieldDesert SkyRoad
72.1 90.2

88.4 93.7

(c) Initial
Labeling

(e) MRF
Labeling

(f) Final Edge
Penalties

(a) Query (b) Ground
Truth Labels

(d) Initial Edge
Penalties

Figure 3.2: Contextual edge penalty before and after the MRF optimization. The top
row shows my contextual model successfully flags improbable boundaries between “sea”
and “road” and the second row shows it flags “Desert” and “Field” since in the data set
only they never occur next to each other.

labelings, but I chose to use the superpixel-based MRF due to its superior speed.

3.1.5 Simultaneous Classification of Semantic and Geometric Classes

To achieve more comprehensive image understanding and to explore a higher-level form

of context, I consider the task of simultaneously labeling regions into two types of classes:

semantic and geometric (Gould et al., 2009). The notion of parsing an image into ge-

ometric primitives was introduced by Hoiem et al. (2007) and shown to be useful for

a variety of tasks, such as rough 3D modeling (Hoiem et al., 2005) and object location

prediction (Hoiem et al., 2006). Like Hoiem et al. (2007) and Gould et al. (2009), I

use three geometric labels – sky, horizontal, and vertical – although the set of semantic

labels in my datasets are much larger. In this chapter, I make the assumption that each

semantic class is associated with a unique geometric class (e.g., “building” is “vertical,”

29

“river” is “horizontal,” and so on) and specify this mapping by hand. This is a bit re-

strictive for a few classes (e.g., I force “rock” and “mountain” to be vertical), but for the

vast majority of semantic classes, a unique geometric label makes sense. In chapter 4 I

generalize this idea and learn the relationship from the data. I jointly solve for the fields

of semantic labels (c) and geometric labels (g) by minimizing a cost function that is a

simple extension of equation 3.5:

H(c,g) = J(c) + J(g) + µ
∑
si∈SP

ϕ(ci, gi), (3.6)

where ϕ is the term that enforces coherence between the geometric and semantic labels.

It is 0 when the semantic class ci is of the geometric class type gi and 1 otherwise.

The constant µ controls how strictly the coherence is enforced (I use µ = λ = 1 in all

experiments). Note that it is possible to enforce the semantic/geometric consistency in a

hard manner by effectively setting µ =∞, but I have found that allowing some trade-off

produces better results. Equation 3.6 is in a form that can be optimized by the α/β-swap

algorithm (Boykov and Kolmogorov, 2004; Boykov et al., 2001; Kolmogorov and Zabih,

2004). The inference takes nearly the same amount of time as for the MRF setup of the

previous section. Figure 3.3 shows an example where joint inference over semantic and

geometric labels improves the accuracy of the semantic labeling. More generally, as will

be shown by the quantitative results of Section 3.2, joint inference tends to improve both

labelings simultaneously.

30

53.2 67.9 68.7

97.8 97.6 97.6

Sidewalk

Window
Door

SignBuilding
Balcony

Staircase
Person

RoadAwning

Horz
Vert
Sky

(c) Initial
Labeling

(e) Joint Semantic
and Geometric

(a) Query (b) Ground
Truth Labels

(d) Semantic
MRF

Figure 3.3: In the contextual MRF classification, the road gets replaced by “building,”
while “horizontal” is correctly classified. By jointly solving for the two kinds of labels, the
system manages to recover some of the “road” and “sidewalk” in the semantic labeling.
Note also that in this example, my method correctly classifies some of the windows that
are mislabeled as doors in the ground truth, and incorrectly but plausibly classifies the
windows on the lower level as doors.

3.2 Image Parsing Results

Sections 3.2.1 and 3.2.2 give an overview of results on the two large datasets, SIFT Flow

and LM+SUN. State-of-the-art performance is shown in Tables 3.2. Section 3.2.3 gives

a thorough evaluation of all the major components of the system. The retrieval set

selection is evaluated by looking at the features used (Table 3.4), the size of the retrieval

set (Table 3.5), and the scene type in the retrieval set (Figure 3.8,Table 3.7). Then the

superpixle classification is evaluated by looking at the segmentation used (Figure 3.9),

the features (Figure 3.10), and the classifier (Table 3.8). Finally runtime is broken down

by the individual components of the system (Table 3.9)

31

3.2.1 SIFT Flow Dataset

The first dataset used to test the system, referred to as “SIFT Flow dataset” in the

following, comes from Liu et al. (2011b). It is composed of the 2,688 images that have

been thoroughly labeled by LabelMe users. Liu et al. (2011b) have split this dataset

into 2,488 training images and 200 test images and used synonym correction to obtain

33 semantic labels; this training/test split is used in all experiments.

The frequencies of different labels on this dataset are shown in Figure 3.4(a). It is

clear that they are very non-uniform: a few classes like building, mountain, tree, and

sky are very common, but there is also a “long tail” of relatively rare classes like person,

sign, boat, and bus. To give a fair idea of my system’s performance on such unbalanced

data, I evaluate accuracy using not only the per-pixel classification rate, which is mainly

determined by how well the system can label the few largest classes, but also the un-

weighted average of the per-pixel rates over each of the classes, which is referred to as the

average per-class rate. As will be shown in Table 3.6, a system that classifies all pixels

into the top few most common classes would have a relatively high per-pixel rate, but a

catastrophically low average per-class rate.

As explained in Section 3.1.5, my system labels each superpixel by a semantic class

(the original 33 labels) and a geometric class of sky, horizontal, or vertical. Because the

number of geometric classes is small and fixed, I have trained a boosted decision tree

(BDT) classifier as in Hoiem et al. (2007) to distinguish between them. I use a tree

depth of 8 and train 100 trees for each class. This classifier outputs a likelihood ratio

32

(b) SIFT Flow Dataset Per-Class Rates

(a) SIFT Flow Dataset Label Frequencies

0%

20%

40%

60%

80%

100%

Pe
r-

cl
as

s R
at

e

1

10

100

1,000

10,000

100,000

Tr
ai

ni
ng

 S
up

er
pi

xe
ls

Figure 3.4: Label frequencies for the superpixels in the training set and the classification
rate broken down by class for my full system on the SIFT Flow dataset.

score that is comparable to the one produced by my nonparametric scheme (equation

3.1), but that gets about 2% higher accuracy for geometric classification (Section 3.2.3

will present a detailed comparison of nearest-neighbor classifiers and BDT). Apart from

this, Local and MRF classification for geometric classes proceeds as described in Sections

3.1.3 and 3.1.4, and I also put the semantic and geometric likelihood ratios into a joint

contextual classification framework as described in Section 3.1.5.

Table 3.2 reports per-pixel and average per-class rates for semantic and geometric

classification of local superpixel labeling (section 3.1.3), separate semantic and geometric

MRF (section 3.1.4), and joint semantic/geometric MRF (section 3.1.5). As compared to

the local baseline, the contextual MRF improves overall per-pixel rates on the SIFT Flow

dataset by about 2%. The average per-class rate for the MRF drops due to “smoothing

away” some of the smaller classes, while joint semantic/geometric MRF improves the

33

Semantic Geometric
Local Labeling 74.1 (30.2) 90.2 (88.7)
MRF 76.2 (29.1) 90.6 (88.9)
Joint 77.0 (30.1) 90.8 (89.2)
Liu et al. (2011b) 76.7 NA
Farabet et al. (2012) 78.5 (29.6) NA
Eigen and Fergus (2012) 77.1 (32.5) NA

Table 3.2: Performance on the SIFTFlow dataset for my system and three state-of-the-art
approaches. Per-pixel classification rate is listed first, followed by the average per-class
rate in parentheses.

results for both per-pixel and average per-class rates. Figure 3.4(b) shows classification

rates for the 33 individual classes. Similarly to most other image labeling approaches that

do not rely on object detectors, my system gets much weaker performance on “things”

(people, cars, signs) than on “stuff” (sky, road, trees).

My final system on the SIFT Flow dataset achieves a classification rate of 77.0%.

Thus, it outperformed the state-of-the-art at the time Liu et al. (2011b), who report a

rate of 76.7% on the same test set with a more complex pixel-wise MRF (without the

pixel-wise MRF, their rate is 66.24%). Liu et al. (2011b) also cite a rate of 82.72% for

the top seven object categories; my corresponding rate is 84.7%. Table 3.2 also reports

results of two other approaches (Eigen and Fergus, 2012; Farabet et al., 2012) that build

on and compare to the earlier version of my system (Tighe and Lazebnik, 2010). Eigen

and Fergus (2012) are able to improve on my average per-class rate, while Farabet et al.

(2012) are able to improve on the overall rate through the use of more sophisticated

learning techniques.

Sample output of my system on several SIFT Flow test images can be seen in Figure

34

3.5.

3.2.2 LM+SUN Dataset

My second dataset (“LM+SUN” in the following) is derived by combining the SUN

dataset (Xiao et al., 2010) with a complete download of LabelMe (Russell et al., 2008) as

of July 2011. I culled from this dataset any duplicate images and any images from video

surveillance (about 10,000), and use manual synonym correction to obtain 232 labels.

This results in 45,676 images of which 21,182 are indoor and 24,494 are outdoor. I split

the dataset into 45,176 training images and 500 test images by selecting test images at

random that have at least 90% of their pixels labeled and at least 3 unique labels (a

total of 13,839 images in the dataset meet this criteria). Apart from its bigger size, the

inclusion of indoor images makes this dataset very challenging.

As shown in Figure 3.6(a), the LM+SUN dataset has unbalanced label frequencies just

like SIFT Flow. Table 3.3 shows the performance for the three versions of my system

(local maximum likelihood labeling, separate semantic and geometric MRF, and joint

semantic/geometric MRF) on the entire dataset, as well as on outdoor and indoor images

separately. The overall trend is the same as for SIFT Flow: separate MRF inference

always increases the overall accuracy over the local baseline though it can sometimes over-

smooth, decreasing the average per-class rate. As for joint semantic/geometric inference,

it not only gives the highest overall accuracy in all cases, but is also much less prone to

over-smoothing.

The final system achieves a classification rate of 54.9% across all scene types (as

35

Initial
Labeling

Contextual MRF
Labeling

Final Joint
Labeling

Geometric
Labeling

Query Ground
Truth Labels

Building
Mountain
Sand
Sea
Sky
Sun

Car
Road
Sign
Sky
Tree

Balcony
Building
Door
Road
Sky
Window

Field
Mountain
Sky
Tree

Desert

Field
Grass
Mountain
Road
Sky
Tree

Building
Car
Plant
Road
Sidewalk
Sky
Streetlight
Tree

Building
Mountain
Person
Rock
Sky

HorizontalVerticalSky

85.1 97.3 97.4

97.5 98.7 99.2

76.1 75.4 98.1

82.2 98.2 99.3

94.0 96.9 97.2

82.7 81.3 93.8

83.1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

80.7

97.5

75.4

98.2

93.9

82.4

85.6 81.3 83.0

Figure 3.5: Example results from the SIFT Flow test set (best viewed in color). The
number under each result image is the percentage of pixels labelled correctly. In (a), joint
geometric/semantic inference removes the spurious classification of the sun’s reflection in
the water. In (c), the system finds some windows (some of which are smoothed away by
the MRF) and plausibly classify the arches at the bottom of the building as doors. In
(d), “field” and “desert” never co-occur so “field” wins and “desert” is removed.

36

1

10

100

1,000

10,000

100,000

1,000,000

Tr
ai

ni
ng

 S
up

er
pi

xe
ls

0%

20%

40%

60%

80%

100%

Pe
r-

cl
as

s R
at

e

Outdoor Indoor

Outdoor Indoor(b) LM+SUN Per-Class Rates

(a) LM+SUN Label Frequencies

Figure 3.6: Label frequencies for the superpixels in the training set and the classification
rate broken down by class for my full system on the LM+SUN dataset. Only the 50 most
common classes are shown.

All Outdoor Indoor
Semantic Geometric Semantic Geometric Semantic Geometric

Local 50.6 (7.1) 79.8 (85.6) 56.7 (7.7) 83.0 (87.5) 27.0 (4.9) 67.8 (74.6)
MRF 54.4 (6.8) 82.6 (86.8) 60.4 (7.6) 85.2 (88.6) 31.2 (4.5) 72.6 (76.1)
Joint 54.9 (7.1) 85.9 (86.8) 60.8 (7.7) 88.3 (89.3) 32.1 (4.8) 76.6 (74.0)

Table 3.3: Performance on the LMSun dataset broken down by outdoor and indoor test
images. Per-pixel classification rate is listed first, followed by the average per-class rate
in parentheses.

compared to 77% for SIFT Flow); the respective rates for outdoor and indoor images

are 60.8% and 32.1%. Figure 3.6(b) gives a breakdown of rates for the 50 most common

classes, and Figure 3.7 shows the parsing output on a few example images. It is clear

that indoor scenes are currently much more challenging than outdoor ones, due at least

in part to their greater diversity and sparser training data. In fact, parsing of indoor

scenes has become of great interest; most existing work dealing with indoor scenes uses

specialized geometric information and focuses on only a few target classes. For example,

Hedau et al. (2009) infer the “box” of a room and then leverage the geometry of that

37

box to align object detectors to the scene (Hedau et al., 2010). Gupta et al. (2011) infer

the possible use of a space rather than directly labeling the objects. There has also been

a recent interest in indoor parsing with the help of structured light sensors (Silberman

and Fergus, 2011; Janoch et al., 2011; Lai et al., 2011) as a way to combat the ambiguity

present in cluttered indoor scenes. It is clear that my system, which relies on generic

appearance-based matching, cannot currently achieve very high levels of performance

on indoor imagery. However, my reported numbers can serve as a useful baseline for

more advanced future approaches. The challenges of indoor classification will be further

studied in Section 3.2.3.

3.2.3 Detailed System Evaluation

This section presents a detailed evaluation of various components of my system. Un-

less otherwise noted, the evaluation is conducted on both the SIFT Flow dataset and

LM+SUN, no MRF smoothing is done, and only semantic classification rates are re-

ported.

Retrieval set selection

The initial step of my system is retrieval set selection. Table 3.4 shows the performance of

different global features used for this step. Similarly to Hays and Efros (2008), I find that

combining global features of complementary descriptive power gives better scene matches.

The last line in this table, “Maximum Label Overlap,” is meant to be an upper bound on

the performance of the retrieval set. Here the retrieval set is found by ranking training

38

52.7 61.1 73.9

56.9(a)

(b)

(c)

(d)

(e)

72.2 90.3

65.5 71.6 72.0

19.1 16.8 93.5

72.3 79.1 90.3

(f) 95.1 96.4 96.8

(g) 67.7 89.5 98.5

Initial
Labeling

Final
Labeling

Geometric
Labeling

Query Ground
Truth Labels

HorizontalVerticalSky

Books
Bookshelf
Cabinet
Chair
Desk
Floor
Screen
Wall
Window

Cabinet
Ceiling
Door
Floor
Light
Person
Picture
Wall

Building
Car
Plant
Road
Sky
Tree
Wheel
Window

Cloud
Hill
Mountain
Road
Sky
Snow

Animal
Bison
Field
Sky
Tree

Bookself
Building
Cabinet
Ceiling
Floor
Wall
Wardrobe

Bed
Ceiling
Curtain
Floor
Picture
Wall
Window

Figure 3.7: Example results from the LM+SUN test set (best viewed in color). For
indoor images the geometric label of “sky” corresponds to the semantic label of “ceiling.”
Examples (a-c) show the best performance the system can achieve on indoor scenes: it
gets wall, ceiling, floor and even gets some chairs, bookshelves, beds and desks. Example
(d) shows how a retrieval set of mixed indoor and outdoor images can produce incorrect
labels. Examples (e-g) show the variety of images the system can work on. In (f), it even
corrects the ground truth label “animal” to the more specific class “bison.”

39

Global Descriptor SIFT Flow LMSun

Gist (G) 70.8 (29.7) 45.6 (7.0)
Spatial Pyramid (SP) 69.6 (23.1) 47.9 (6.3)
Color Hist. (CH) 66.9 (24.6) 43.5 (5.7)
G + SP 72.3 (27.9) 50.6 (6.9)
G + SP + CH 74.1 (30.2) 50.6 (7.1)
Maximum Label Overlap 80.2 (33.6) 66.0 (13.2)

Table 3.4: Evaluation of global image features for retrieval set generation (retrieval set
size 200). “Maximum Label Overlap” is the upper bound that I get by selecting retrieval
set images that are the most semantically consistent with the query (see text).

images in terms of the number of pixels their ground truth label maps share with the

label map of the query, the logic being that the perfect retrieval set will have images with

the correct classes in the correct locations. The big gap in accuracy between this “ideal”

retrieval set and the one obtained by global appearance-based matching underscores the

shortcomings of global image features in terms of finding scenes semantically consistent

with the query.

Table 3.5 examines the effect of retrieval set size. Interestingly, using all of the

SIFT Flow training set as the retrieval set (last row of Table 3.5) drastically reduces

performance. This quantitatively confirms the intuition that the retrieval set is not just

a way to limit the computational complexity of superpixel matching, but is also a form

of scene-level context. By restricting the superpixel matches to come from a small subset

of related scenes, the system can produce a better interpretation of the image. Also

note that while on the SIFT Flow dataset the performance degrades once the retrieval

set reaches a size greater than 400, the performance on the LM+SUN dataset continues

to rise even with a retrieval set size of 1,600: with more than 45,000 images in that

40

Retrieval Set Size SIFT Flow LM+SUN
50 73.0 (32.2) 47.3 (8.1)
100 73.7 (30.1) 48.9 (7.4)
200 74.1 (30.2) 50.6 (7.1)
400 73.0 (28.7) 51.0 (7.6)
800 72.1 (28.1) 51.5 (7.5)
1,600 69.9 (26.2) 51.2 (8.1)
Entire training set 68.4 (23.2) N/A

Table 3.5: Effect of retrieval set size on local superpixel labeling. Note that the entire
LM+SUN training set is too large for my hardware to store in memory.

dataset, there are usually still 1,600 images that are of a sufficiently similar scene type.

Thus, it appears that the right retrieval set size depends in a complex way on the size

of the dataset and on the distribution of scene types contained in it. Despite this, in

all other experiments a retrieval set size of 200 is used for both datasets, primarily for

efficiency: the system must read the descriptor data from disk for each query image on

the LM+SUN dataset, which becomes prohibitively slow with larger retrieval set sizes.

However this experiment does suggest that retrieval set selection is a subtle and crucial

step that deserves further study.

While the total number of labels in the LM+SUN datasets is quite high, any single

image only contains a small subset of all possible labels. The retrieval set defines not

only the set of training images that can be used to interpret the test image, but also

the “shortlist” of all possible labels that can appear in the test image. By default, this

shortlist is composed of all the classes present in the retrieval set. Table 3.6 examines

the effect of restricting these shortlists in various ways. The first row corresponds to

the default shortlist (the same one that is used in the experiments of the previous two

41

Shortlist SIFTFlow LM+SUN
Classes in retrieval set 74.1 (30.2) 50.6 (7.1)
10 most common classes 74.9 (21.4) 51.0 (3.1)
Perfect shortlist 81.4 (35.4) 61.7 (11.1)

Table 3.6: Accuracy of local superpixel labeling obtained by restricting the set of possible
classes in the test image to different “shortlists” (see text).

sections). To demonstrate the effect of long-tail class frequencies, the second row shows

the performance obtained by classifying every superpixel in every test image to the ten

most common classes in the dataset. This slightly increases the overall per-pixel rate, but

lowers the average per-class rate dramatically. On the other hand, it is worth observing

that the average per-class rate can be inflated upwards by good performance on a few

very rare classes (e.g., there are only two “suns” in the SIFT Flow test set, and both are

correctly classified). Finally, the third row of Table 3.6 shows the results produced by

restricting the shortlist to the ground truth labels in the query image, giving an upper

bound for the performance of superpixel matching. Just like the “maximum label overlap”

retrieval set of Table 3.4, a perfect shortlist “oracle” would give a significant boosts in

overall per-pixel rate and average per-class rate on both datasets. This suggests that to

further improve system performance, it is important to work on more accurate scene-

level label prediction and better scene-level matching for generating the retrieval sets.

In fact, I have observed that in many of the unsuccessfully labeled images, incompatible

scene classes with strong local support over large regions vie for the interpretation of the

image, and neighborhood context, though it may detect the conflict, has no plausible

path towards resolving it (Figure 3.7(d) is one example of this).

42

Building
Church
Door
Floor
House
Plant
Rock
Wall

Bed
Ceiling
Cupboard
Curtain
Floor
Table
Wall

Image
Base Retrieval Set Local Labeling

Ground Truth Labels

Indoor Only Retrieval Set Local Labeling
30.4

63.7

Figure 3.8: Effect of drawing the retrieval set from the entire training set (“base retrieval
set”) vs. drawing it from the correct scene type (“indoor only retrieval set”). With the
base retrieval set, the local labeling result has a mix of indoor (floor, wall) and outdoor
(building, rock) classes. On the other hand, if the retrieval set is restricted to consist
only of indoor images, the parsing output is much cleaner – in particular, most of the
bed is correctly labeled.

The LM+SUN dataset has two obvious sub-classes: indoor and outdoor. However,

retrieval set selection based on low-level features does not do a very good job of separating

them: for an indoor query image there are often outdoor images in the retrieval set and

vice versa (see Figure 3.8 for an illustration). To get an idea of how much this confusion

hurts performance, ground truth knowledge is used to force the retrieval set to have only

images of the correct scene type – that is, an indoor query image would only be matched

against indoor images and likewise for an outdoor one (this is equivalent to splitting the

LM+SUN dataset into two separate indoor and outdoor datasets). Table 3.7 (line 2)

shows the resulting improvement in overall performance. Most of this gain is with the

indoor images as they tend to have retrieval sets with more outdoor images and more

43

All Outdoor Indoor
Local labeling 50.6 (7.1) 56.7 (7.7) 27.0 (4.9)
Ground truth 54.4 (7.8) 59.1 (8.3) 36.6 (5.6)
Classifier 52.7 (7.3) 57.4 (8.2) 34.4 (5.5)

Table 3.7: Effect of indoor/outdoor separation on the accuracy of local superpixel labeling
on LM+SUN. “Local labeling” corresponds to the default system with no separation
between outdoor and indoor training images (the numbers are the same as in line 1 of
Table 3.3). “Ground truth” uses the ground truth label for the query image to determine
if the retrieval set should consist of indoor or outdoor images, while “Classifier” uses a
trained indoor/outdoor SVM classifier (see text).

confusion with outdoor classes in general. To get most of this gain without “cheating,” an

indoor/outdoor classifier is trained using a linear SVM on all the global image features

concatenated and normalized by the standard deviation along each dimension. This

classifier achieves a rate of 92% on my test set. The last row of Table 3.7 shows the

performance of my system when this classifier is used to determine which set of training

images to draw the retrieval set from. As expected, the accuracy is somewhere in-between

that of “perfect” indoor-outdoor classification and no classification altogether.

Note that performing automatic indoor/outdoor image classification and then using

the inferred scene type to constrain the interpretation of the image is conceptually anal-

ogous to performing a geometric labeling of the image and using the inferred geometric

classes of regions to constrain the semantic classes. In both cases I am taking advan-

tage of the high accuracy that can be achieved on relatively easier two- and three-class

problems to improve the accuracy on a harder many-class problem.

44

Bottom-up Segmentation Ground Truth SegmentsSIFT Flow Dataset Per-Class Rates

0%

20%

40%

60%

80%

100%

Pe
r-

cl
as

s R
at

e

Figure 3.9: Per-class classification rates on the SIFT Flow dataset for superpixels (blue)
versus ground truth object polygons (maroon). With the ground truth segmentation, an
overall per-pixel rate of 82.3 and average class rate of 46.0 is obtained, showing that even
with correct knowledge of object shape, the system still has a hard time classifying many
of the classes.

Superpixel classification

After retrieval set selection, the next stage of my system is superpixel classification.

One of the most important factors affecting the success of this stage is the quality of

the bottom-up segmentation, or how well the spatial support of the superpixels reflects

true object boundaries. To see what would happen with perfect segmentation, I use

the ground truth object polygons to create segments for the SIFT Flow dataset and then

apply my local classification scheme to these segments. Figure 3.9 compares the per-class

rates of my system with bottom-up segmentation and to those of ground truth segments.

We can see that ground truth segmentation significantly helps with many classes such

as car, window, balcony, and crosswalk. However, performance on many of the “thing”

classes such as person, boat, and streetlight is still quite poor. Thus, even if one could

obtain perfect object segmentation, the task of classifying many of the rarer classes would

remain quite challenging.

Next we look at the contributions of the multiple superpixel-level features (refer back

45

to Table 3.1(b) for a list of these features). Figure 3.10 plots the classification rate of the

system on both datasets with superpixel features added consecutively in decreasing order

of their contribution to performance. Note that this evaluation is carried out on the test

set itself (as opposed to a separate validation set), as my goal is simply to understand

the behavior of the chosen representation, not to tune performance or to perform feature

selection. The experiment starts with the single superpixel feature that has the highest

per-pixel classification rate, and then adds one feature at a time, always choosing the

one that gives the largest boost in per-pixel classification rate. At each step the overall

and average per-class rates for local, MRF and joint geometric/semantic labeling are

shown. One observation is that SIFT histograms constitute three or four of the top ten

features selected. The dilated SIFT histogram, which already incorporates some context

from the superpixel neighborhood, is the single strongest feature for both datasets, and

it effectively makes the non-dilated SIFT histogram redundant. After SIFT Histogram

Dilated, the order of the features selected for both datasets is quite different, though Top

Height and Mean Color show up in the top five in both cases, confirming that location and

color cues add important complementary information to texture. Another observation is

that while adding features does sometimes hurt performance, it does so minimally. One

could combat this effect by learning feature weights as in Eigen and Fergus (2012) but

this would make the system more prone to over-fitting and introduce an off-line learning

component that I would like to avoid.

It is also interesting to compare the curves for three versions of my system: local

superpixel labeling, separate semantic and geometric MRF, and joint semantic/geometric

46

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Local - Per-Pixel

MRF - Per-Pixel

Joint - Per-Pixel

Local - Average Per-Class

MRF - Average Per-Class

Joint - Average Per-Class

SIFT Flow LM+SUN

Figure 3.10: The classification rate of my system computed by consecutively adding su-
perpixel features in decreasing order of their contribution. Interestingly, the best features
for one dataset are not necessarily the best for the other one. The rates for the MRF and
joint solvers are also plotted. Notice that the MRF and joint solver are more effective
when the classifier is weaker, and that the joint solver consistently outperforms the MRF
for the average per-class rate, correcting for the over-smoothing that occurs due to the
MRF.

47

MRF. Consistent with the results reported in Tables 3.2 and 3.3, the separate MRF tends

to lower the average per-class rate due to over-smoothing and then the joint MRF brings

it back up. More surprisingly, Figure 3.10 reveals that both of my contextual models

have a much greater impact when they are applied on top of a relatively weak local

model, i.e., one with fewer features. As more local features are added, the improvements

afforded by non-local inference gradually diminish. The important message here is that

“local features” and “context” are, to a great degree, interchangeable. For one, many of

the features are not truly “local” since they include information from outside the spatial

support of the superpixel. But also, it seems that contextual inference can fix relatively

few labeling mistakes that cannot just as easily be fixed by a more powerful local model.

This is important to keep in mind when critically evaluating contextual models proposed

in the literature: a big improvement over a local baseline does not necessarily prove that

the proposed form of context is especially powerful – the local features may simply not

be strong enough.

Next, Figure 3.11 shows the effect of the smoothing constant ε in the likelihood ratio

equation (equation 3.2). As noted in Eigen and Fergus (2012), increasing ε biases the

classifier toward the rarer classes. In turn, this tends to decrease the overall per-pixel

rate and increase the average per-class accuracy. I found the value of ε = 1 to achieve a

good trade-off and use it in all other experiments.

Further, I wish to examine how well my nonparametric scheme is doing compared

to offline discriminative learning techniques. To this end, I train boosted decision trees

(BDT) for all 33 labels in the SIFT Flow dataset the same way I train them for the

48

40%

45%

50%

6.5% 7.5% 8.5%

65%

70%

75%

28% 30% 32% 34%

Sift Flow

LM+SUN

1.8.4.2

2

4

8

1.8.4.2

2

4

8

Per-Class Rate

Pe
r-

Pi
xe

l R
at

e

Figure 3.11: Results on SIFT Flow and LMSun dataset for local superpixel labeling with
different values for the likelihood smoothing constant ε (section 3.1.2, equation 3.2). The
constant adjusts the tradeoff between average class rate and per-pixel rate.

geometric classes (Section 3.1.5). I use 100 trees with a depth of 8 for each one-versus-

all classifier. Table 3.8 compares my nearest neighbor (NN) scheme and BDT on both

semantic and geometric labels (note that a retrieval set is not used with BDT). On the

semantic classes which have a very unbalanced class distribution, the per-pixel rate is

higher for BDT but the average per-class rate is lower. On the other hand, BDT easily

outperforms the NN classifier for the geometric classes, which have a much more even

class distribution. This validates the implementation choice discussed in Section 3.2.1,

namely, using NN for semantic classes and BDT for geometric ones. Indeed, comparing

the joint NN/NN and BDT/BDT results in the last line of Table 3.8 to the hybrid

49

Nearest Neighbor Boosted Decision Trees
Semantic Geometric Semantic Geometric

Local labeling 74.1 (30.2) 88.4 (86.1) 75.4 (26.7) 90.2 (88.7)
MRF 76.2 (29.1) 89.0 (86.2) 77.0 (26.4) 90.6 (88.9)
Joint 76.5 (29.3) 89.1 (86.9) 76.9 (26.4) 90.7 (88.9)

Table 3.8: Comparison of my nearest neighbor classifier to boosted decision trees. While
the boosted decision trees constantly perform better on the relatively balanced geometric
labels, they have worse per-class rates on semantic labels with heavily skewed label counts.

NN/BDT result in Table 3.2, we can see that the latter one offers the best performance.

Similarly to the likelihood ratio smoothing constant ε, the MRF smoothing constant

λ (equation 3.3) gives a trade-off between per-pixel and per-class accuracy, as shown in

Figure 3.12. After λ = 1 both drop off, so I use that value for both datasets.

Running time

Finally, I analyze the computational requirements of my system. My current implemen-

tation is mostly in unoptimized and un-parallelized MATLAB (with some outside C code

for feature extraction and MRF optimization), and all my tests are run on a single PC

with Xeon 3.33 GHz six-core processors and 48 GB RAM. Table 3.9 shows a breakdown

of the main stages of the computation. On the SIFT Flow dataset, feature extraction

and image parsing takes less than 10 seconds. In comparison, as reported in (Liu et al.,

2011b), to classify a single query image, the SIFT Flow system required 50 alignment

operations that took 31 seconds each, or 25 minutes total without parallelization.

As can be inferred from Figure 3.13, my algorithm complexity is approximately

quadratic in the average number of superpixels per image in the dataset due to the

need to exhaustively match every test superpixel to every retrieval set superpixel. On

50

Sift Flow

LM+SUN
11.28

.64
.32
.16
.08

.04
.02

0

2.56

1
1.28

.64
.32

.16
.08

.04
.02

0

2.56

Per-Class Rate

Pe
r-

Pi
xe

l R
at

e

74%

75%

76%

77%

25% 26% 27% 28% 29% 30% 31%

50%

51%

52%

53%

54%

55%

5.5% 6.0% 6.5% 7.0% 7.5%

Figure 3.12: The effect of MRF smoothing parameter λ from equation 3.3. After λ = 1
the performance drops off rapidly so I use λ = 1.

the other hand, given a fixed retrieval set size, this time is independent of the overall num-

ber of training images. The big O complexity of my full system is O(n2t2p2l) (see table

3.9 for variable definitions). For the datasets used, retrieval and inference are fairly fast;

these steps are represented by O(t2p2l), which is small compared to O(n2) (the super-

pixel matching step). For LM+SUN, the main bottleneck of the system is not superpixel

search, but file I/O for loading retrieval set superpixel descriptors from disk. However,

it should be possible to overcome this bottleneck with appropriate hardware, paralleliza-

tion, and/or data structures for fast search. As the dataset grows computing the retrieval

51

SIFT Flow Dataset

LM+SUN

Se
co

nd
s

0 100 200 300 400 500
0

10

20

30

40

50

60

Number of Superpixels

Figure 3.13: Query time vs. number of superpixels in the query image. Notice that for
small images in the LM+SUN dataset, the retrieval set query time is the only part of the
system that takes longer than on the SIFT Flow dataset and thus the total processing
time remains similar.

52

SIFT Flow LM+SUN

Training set size (t) 2,488 45,176
Image size (p) 256× 256 800× 600
Avg. # superpixels (n) 63.9 178.2
Number of labels (l) 33 232

Feature extraction 1.5 ± 0.5 5.2 ± 1.8

Retrieval set search 0.04 ± 0.0 3.5 ± 0.51
Superpixel search 3.75 ± 1.8 13.1 ± 11.2
MRF solver 0.005 ± 0.003 .009 ± .006
Total (excluding features) 4.4 ± 2.3 16.6 ± 11.7

Table 3.9: The average timing in seconds of the different stages in my system (excluding
file I/O). While the runtime is significantly longer for the LM+SUN dataset, this is
primarily due to the change in image size and not the number of images.

set will require a more significant amount of computation. Approximate nearest neighbor

approaches, such as locality sensitive hashing (Indyk and Motwani, 1999; Gionis et al.,

1999), can be used to reduce the computational complexity of finding the retrieval set

with very little impact on performance as the retrieval set does not need to be exact.

On a more fundamental research level, the dependence of running time on image resolu-

tion deserves some attention. The problem of efficiently parsing megapixel images while

deriving additional recognition cues from the higher resolution is currently wide open

and extremely challenging. Curiously, even as the sizes of datasets used in recognition

research have increased dramatically in recent years, the resolution of individual images

has not.

3.3 Video Parsing

This section presents the extension of my system to video. Video sequences provide richer

information, which should be useful for better understanding scenes. Intuitively, motion

53

cues can improve object segmentation, and being able to observe the same objects in

multiple frames, possibly at different angles or scales, can help build a better model of

the objects’ shape and appearance. On the other hand, the large volume of video data

makes parsing very challenging computationally.

Previous approaches have tried a variety of strategies for exploiting the cues contained

in video data. Brostow et al. (2008), Sturgess et al. (2009), and Zhang et al. (2010) extract

3D structure (sparse point clouds or dense depth maps) from the video sequences and

then use the 3D information as a source of additional features for parsing individual

frames. Xiao and Quan (2009) run a region-based parsing system on each frame and

enforce temporal coherence between regions in adjacent frames as a post-processing step.

The video is segmented using a spatiotemporal segmentation method (Grundmann

et al., 2010) that gives 3D regions or supervoxels that are spatially coherent within each

frame (i.e., have roughly uniform color and optical flow) as well as temporally coherent

between frames. The hope is that these regions will contain the same object from frame

to frame. They system then computes local likelihood scores for possible object labels

over each supervoxel, and finally, constructs a single graph for each video sequence where

each node is a supervoxel and edges connect adjacent supervoxels. Inference on this graph

is performed using the same MRF formulation as in Section 3.1.5. Section 3.3.1 will give

details of my video parsing approach, and Section 3.3.2 will show that this approach

significantly improves the performance compared to parsing each frame independently.

54

3.3.1 System Description

I wish to take advantage of the motion cues in video without explicitly adding motion

or geometric features to my system. I do this by using the hierarchical video segmenta-

tion method of Grundmann et al. (2010), which Xu and Corso (2012) show to be quite

effective at capturing the boundaries of objects in video. I run all videos through the

segmentation website of Grundmann et al. (2010)4 with default parameters to obtain a

hierarchy of segmentation volumes and use the lowest level of the hierarchy as supervox-

els.5 Figure 3.14 contrasts the outputs of still image and video segmentation, showing

that the supervoxel boundaries tend to better adhere to boundaries of objects such as

cars.

Once supervoxels are computed for a video sequence, the data term Edata(vi, c) for

each supervoxel vi and each class label c needs to be computed. In principle, this could

be done directly by extracting spatiotemporal features from each vi, but to simplify the

extension of the system from still images, I have chosen to combine scores computed over

2D time slices of vi. Specifically, given a class c and the slice of supervoxel vi in the jth

frame, denoted sji , a log likelihood ratio score L(sji , c) is computed. This can be done

with either my NN scheme (equation 3.1) or with BDTs (Section 3.2.1), though in the

experiments of the next section I use only BDTs. For combining the per-frame scores,

I have tried a number of approaches and found the following heuristic to give the best

4http://videosegmentation.com/

5Since the videos were taken from a forward-moving camera, I have found the segmentation results to
be better if I run the videos through the system backwards.

55

Spatiotemporal Segmentation

Still Image Segmentation

Frames

Figure 3.14: A comparison of still image segmentation of Felzenszwalb and Huttenlocher
(2004) (second row) to the spatiotemporal segmentation of Grundmann et al. (2010)
(third row). Shown are only the segments required to cover the foreground cars in each
frame. The still image segmentation is not able to separate the lower parts of the cars
from the road, while the spatiotemporal segmentation does not suffer from the same
problem.

performance:

Edata(vi, c) = −max
j

[wjiσ(L(sji , c))], (3.7)

where wji is the relative size of sji and σ(·) is a normalizing sigmoid function as in equation

3.4. In other words, each per-frame score is weighted by the size of the region in that

frame (the idea being that frames in which the supervoxel is larger give better evidence

56

about its class identity) and take the maximum of the weighted scores over all the frames

in which the supervoxel appears (intuitively, the frame in which the weighted score is

highest is the one in which we got the best “look” at the object and were the most

confident about its identity).

Finally, an MRF is constructed for the entire video sequence where nodes represent

supervoxels and edges connect pairs of supervoxels that are spatially adjacent in at least

one frame. I define the edge energy term in the same way as in the 2D case, using equation

3.5. I do this for both semantic and geometric classes and solve for them simultaneously

using the same joint formulation as in equation 3.6. For the video sequences in my

experiments, which range from 1,500 to 4,000 frames, I typically obtain graphs of 10,000

to 30,000 nodes, which are very tractable.

3.3.2 Results

I test the video segmentation on the standard CamVid dataset (Brostow et al., 2008),

which consists of daytime and dusk videos taken from a car driving through Cambridge,

England. There are a total of five video sequences. I follow the training/test split

of Brostow et al. (2008), with two daytime and one dusk sequence used for training, and

one daytime and one dusk sequence used for testing. The sequences are densely labeled

at one frame per second with 11 class labels: Building, Tree, Sky, Car, Sign-Symbol,

Road, Pedestrian, Fence, Column-Pole, Sidewalk, and Bicyclist. There are a total of 701

labeled frames in the dataset with 468 used for training and 233 for testing. Note that

while I evaluate the accuracy of the output on only the labeled testing frames, the system

57

does obtain dense labels for all frames in the test video.

Table 3.10(a) shows baseline performance using the still image parsing approach that

segments and labels each frame independently. Table 3.10(b) shows results with spa-

tiotemporal segmentation used in two different ways. The first variant, “temporally in-

coherent,” just uses the segmentation to generate the regions in each frame; each frame is

still parsed independently, and regions belonging to the same supervoxel are not required

to have the same label from frame to frame. The second variant, “temporally coherent,”

combines the per-frame likelihood scores as described in Section 3.3.1 to assign a single

label to each supervoxel. Both methods give a significant improvement over still image

parsing. Note that even though the temporally coherent method has a similar accuracy

to the incoherent one, the output video is much more visually pleasing in the former case,

since the labeling “flickers” much less over time (see Figure 3.3.2 for examples).

The sixth and seventh rows of Table 3.10(b) show the performance of the tempo-

rally coherent setup following contextual MRF smoothing and joint semantic/geometric

inference. Somewhat disappointingly, both versions of the MRF give a very minimal

improvement. This is likely due to a number of factors. First, MRF energy minimization

on the spatiotemporal graph appears to be a harder problem, and the solutions tend

to show a much greater tendency to oversmooth. Second, I gain a big improvement in

object boundaries by incorporating motion cues into the segmentation, and this is likely

diminishing the subsequent power of the MRF. Recall that in Section 3.2.3 we have seen

a similar effect: as the local appearance model became more powerful by adding features,

the improvement afforded by the MRF diminished (Figure 3.10). Finally, joint seman-

58

Semantic Geometric

(a)

Still Image Parsing
Local Labeling 76.9 (44.3) 91.6 (92.0)
MRF 77.4 (43.5) 91.6 (91.9)
Joint 77.6 (43.8) 91.7 (92.1)

(b)

Spatiotemporal Parsing
Temporally Incoherent 82.6 (51.2) 94.6 (94.8)
Temporally Coherent 82.6 (51.3) 94.2 (94.8)
MRF 83.0 (51.0) 94.2 (94.4)
Joint 83.3 (51.2) 94.2 (94.7)

(c)

Brostow et al. (2008) 69.1 (53.0)
Sturgess et al. (2009) 83.8 (59.2)
Zhang et al. (2010) 82.1 (55.4)
Ladický et al. (2010a) 83.8 (62.5)

Table 3.10: CamVid dataset results. (a) Still image segmentation baseline. (b) Results
with spatiotemporal segmentation (see text). (c) Competing state-of-the-art approaches.
As before, per-pixel classification rate is followed by the average per-class rate in paren-
theses.

tic/geometric inference introduces very few new constraints, since the CamVid dataset

has only three non-vertical classes (sky, road, and sidewalk).

For reference, Table 3.10(c) shows the performance of recent state-of-the-art meth-

ods on the CamVid dataset. My system beats Brostow et al. (2008) and comes close

to Ladický et al. (2010a), Sturgess et al. (2009) and Zhang et al. (2010). Table 3.11

gives a more detailed class-by-class comparison. By comparing the first two lines of the

table, we can see that spatiotemporal segmentation gives the biggest improvements on

the smaller moving object classes such as car, pedestrian, and bicyclist. In absolute

terms, however, the system does not do well on these classes, just as it did not do well on

them in my still image datasets. Interestingly, spatiotemporal segmentation also gives a

significant boost on “sidewalk,” which happens to be similar to the effect I got by using

59

B
u
il
d
in

g

T
re

e

S
k
y

C
ar

S
ig

n
-S

y
m

b
ol

R
oa

d

P
ed

es
tr

ia
n

Still image parsing
(joint sem./geom.) 84.8 65.1 94.7 47.5 24.6 96.2 8.3
Spatiotemporal parsing
(joint sem./geom.) 87.0 67.1 96.9 62.7 30.1 95.9 14.7
Brostow et al. (2008) 46.2 61.9 89.7 68.6 42.9 89.5 53.6
Sturgess et al. (2009) 84.5 72.6 97.5 72.7 34.1 95.3 34.2
Zhang et al. (2010) 85.3 57.3 95.4 69.2 46.5 98.5 23.8
Ladický et al. (2010a) 81.5 76.6 96.2 78.7 40.2 93.9 43.0

F
en

ce

C
ol

u
m

n
-P

ol
e

S
id

ew
al

k

B
ic

y
cl

is
t

P
er

-c
la

ss

P
er

-p
ix

el

Still image parsing
(joint sem./geom.) 9.1 3.4 43.7 3.9 43.8 78.6
Spatiotemporal parsing
(joint sem./geom.) 17.9 1.7 70.0 19.4 51.2 83.3
Brostow et al. (2008) 46.6 0.7 60.5 22.5 53.0 69.1
Sturgess et al. (2009) 45.7 8.1 77.6 28.5 59.2 83.8
Zhang et al. (2010) 44.3 22.0 38.1 28.7 55.4 82.1
Ladický et al. (2010a) 47.6 14.3 81.5 33.9 62.5 83.8

Table 3.11: Per-class performance on the CamVid (Brostow et al., 2008) dataset.

ground truth segmentation on the SIFT Flow dataset (Figure 3.9). Thus, it is plausible

that the video segmentation gets closer to the true object boundaries.

Note that I use the motion information in video only to improve the segmentation,

not to change the features. By contrast, Brostow et al. (2008), Sturgess et al. (2009)

and Zhang et al. (2010) use features derived from 3D point clouds or depth maps, while

Ladický et al. (2010a) incorporate sliding window object detectors. Overall, my experi-

ments on video confirm the flexibility and broad applicability of my image parsing frame-

60

Bicyclist Building Car Column-Pole PedestrianFence Road Sidewalk Sky Tree

PedestrianFence Road Sidewalk Sky Tree

40 64.3 80.0 77.7 89.5

HorizontalVerticalSky

Bicyclist Building Car Column-Pole HorizontalVerticalSky

Still Image
Segmentation

Temporally
Incoherent

Temporally
Coherent

Geometric
Labeling

Frame
(number)

Ground
Truth Labels

70 54.3 80.1 76.9 90.2

100 58.9 74.6 75.1 90.5

120

79.290 80.6 81.2 95.2

150

72.3 79.0 79.3 95.3

180

79.6 74.6 76.1 94.4

210

74.8 75.0 75.3 96.6

60.1 80.8 81.0 97.1

Sequence 2

Sequence 1

Figure 3.15: Example results from the CamVid test set (best viewed in color). Still image
parsing (third column) is very unstable, with both the superpixels and their inferred
labels changing incoherently from one frame to the next. Temporally incoherent parsing
(fourth column) uses spatiotemporal segmentation, which corrects most of these issues
but can still be inconsistent in time as shown in frames 70 and 100. The final system
(fifth column) has temporally consistent segments and labels.

61

work, and give me additional insights into its strengths and weaknesses that complement

my findings on still image datasets. While I did not outperform current state-of-the-art

methods on the CamVid dataset here, I show how to boost this performance to the state-

of-the-art in Chapter 5 by incorporating object detectors into my parsing framework.

3.4 Discussion

In this chapter I have presented a superpixel-based approach to image parsing that can

take advantage of datasets consisting of tens of thousands of images annotated with

hundreds of labels. My underlying feature representation, based on multiple appearance

descriptors computed over segmentation regions, is simple and allows new features to be

easily incorporated. I also use efficient MRF optimization to capture label co-occurrence

context, and to jointly label regions with semantic and geometric classes.

My system has demonstrated state-of-the-art results on the SIFT Flow and LM+SUN

datasets with a nonparametric version of my system based on a two-stage approach

(global retrieval set matching followed by superpixel matching). This framework does not

need any training, except for computation of basic statistics such as label co-occurrence

probabilities, and it relies on just a few constants that are kept fixed for all datasets. In

principle, it is applicable to “open universe” datasets where the set of training examples

and target classes may evolve over time. In particular, my results on the LM+SUN

dataset, which has 45,676 images and 232 labels, constitute an important baseline for

future approaches. To my knowledge, it is currently the largest dense per-pixel image

parsing dataset and, unlike most other general-purpose image parsing benchmarks, it

62

includes both outdoor and indoor images. As I have shown, the latter pose severe recog-

nition challenges, and deserve more study in the future.

Besides the nonparametric “open universe” regime, my system has the flexibility to

operate with offline pre-trained classifiers, such as boosted decision trees. The use of

these may be preferable for static datasets with smaller numbers of classes and a more

balanced class distribution.

Finally, I have demonstrated an extension of my system to video. This extension

segments the video into spatiotemporal “supervoxels” and uses a simple heuristic to

combine local appearance cues across frames. The resulting approach does not exploit

all the motion information that is potentially available in video (in particular, it does not

attempt to extract 3D geometry), but it still affords a big improvement over incoherent

frame-by-frame parsing.

Through the extensive analysis of Section 3.2.3, I have identified two major limita-

tions of my system. First, the scene matching step for obtaining the retrieval set suffers

from an inability of low-level global features such as GIST to retrieve semantically similar

scenes, resulting in incoherent interpretations (e.g., indoor and outdoor class labels mixed

together). Second, my reliance on bottom-up segmentation really hurts my performance

on “thing” classes. Traditionally, such classes are handled using sliding window detectors,

and there exists work (e.g., Ladický et al. (2010a)) attempting to incorporate such detec-

tors into region-based parsing. I explore the idea of per-exemplar detectors (Malisiewicz

et al., 2011) to complement my superpixel-based approach in Chapter 5.

63

CHAPTER 4: UNDERSTANDING SCENES ON MANY LEVELS

This chapter examines the question of what labeling to use to best represent the structure

and semantics of a scene. We can label image regions with basic-level category names

such as grass, sheep, cat, and person, as has been done thus far. Of course, coarser

superordinate-level labels can be assigned, such as animal, vehicle, manmade object,

natural object, etc. We can continue to assign geometric labels such as horizontal, vertical

and sky. We can also assign material labels such as skin, metal, wood, glass, etc. Further,

some regions belonging to structured, composite objects may be given labels according

to their part identity: if a region belongs to a car, it may be a windshield, a wheel, a side

door, and so on.

The goal of this chapter is to understand scenes on multiple levels: rather than

assigning a single label to each region, multiple labels will be assigned simultaneously,

such as a basic-level category name, a superordinate category name, material, and part

identity. First I obtain datasets with different overlapping sets of labels assigned to pixels.

Then by inferring all the labelings jointly, the system can take into account constraints

of the form “roads are horizontal,” “cars are made of metal,” “cars have wheels” but

“horses have legs,” leading to an improved interpretation of the image.

In the previous chapter I jointly inferred labels from two label types that formed a

strict hierarchy. In this chapter I generalize this idea to an arbitrary number of label

types with arbitrary relationships. Relationships between two different label types may

be hierarchical (e.g., a car is a vehicle) or many-to-many (e.g., a wheel may belong to

multiple types of vehicles, while a vehicle may have many other parts besides a wheel).

I show how to formulate the inference problem so that agreement between different

types of labels is enforced and apply this formulation to two large-scale datasets with

very different characteristics (Figure 4.1). My results show that simultaneous multi-level

inference gives a higher performance than treating each label set in isolation. Figure 4.2

illustrates the source of this improvement. In this image, the basic-level object labeling

is not sure whether the object is an airplane or a bird. However, the superordinate

animal/vehicle labeling is confident that it is a vehicle, and the materials labeling is

confident that the object is made (mostly) of painted metal. By performing joint inference

over all these label sets, the correct hypothesis, airplane, is allowed to prevail. This work

was originally published in ICCV (Tighe and Lazebnik, 2011).

4.1 Multi-Level Inference

I begin with my core, single-level image parsing system presented in Section 3.1.4 and

extend it to an arbitrary number of label types. I extend the single-level MRF objective

function (3.3) to perform simultaneous inference over multiple label sets. If I have n

label sets, then I want to infer n labelings c1, . . . cn, where cl = {cli} is the vector of

labels from the lth set for every region ri ∈ R. I can visualize the n labelings as being

“stacked” together vertically as shown in Figure 4.3. “Intra-set” edges connect labels of

neighboring regions in the same level just as in the single-level setup of Section 3.1.4,

and “inter-set” edges connect labels of the same region from two different label sets. The

65

eagle

background
vertical

horizontal

stu�

building tree

car

sidewalk

motorbiketra�c light window

door

wheel headlight

windshield

road

thing
manmade

natural

foreground

animal

feathers

wing
torso

head
eye

beak

feet

tail

foreground/background

animal/vehicle object

material part

geometric

stu�/thing natural/manmade

object object+attached

CORE Dataset Barcelona Dataset

Figure 4.1: Sample ground truth labelings from my two datasets (see Section 4.2 for
details).

vehicle

crow

airplane

painted metal

painted metal

feathers

animal wing

vehicle wing

landing gear

eagle airplane

vehicle

animal/vehicle object material part

Figure 4.2: It’s a bird, it’s a plane! First row: single-level MRF inference for each label set
in isolation. Second row: joint multi-level MRF inference. Animal/vehicle and material
labelings are strong enough to correct the object and part labelings.

66

label set m

...

label set l

Eintra(cl, cl)

ri rj

Einter(cl, cm)

Edata(ri, cl)i i j

j j

Figure 4.3: Illustration of my multi-level MRF (equation 4.1).

MRF energy function on the resulting field is

E(c1, . . . , cn) =
∑
l

∑
ri∈R

Edata(ri, c
l
i)

+λ
∑
l

∑
(ri,rj)∈A

Eintra(c
l
i, c

l
j)

+µ
∑
l 6=m

∑
ri∈R

Einter(c
l
i, c

m
i),

(4.1)

where Edata(ri, c
l
i) is the data term for region ri and label cli on the lth level, Eintra(c

l
i, c

l
j)

is the single-level smoothing term, Einter(c
l
i, c

m
i) is the term that enforces consistency

between the labels of ri drawn from the lth and mth label sets. Finally, the constants λ

and µ control the amount of intra-set and inter-set smoothing.

Edata and Eintra are defined in the same way as in Section 3.1.4. As for the cross-level

penalty Einter, it is defined very similarly to to the within-level penalty (3.5), based on

67

cross-level co-occurrence statistics from the training set:

Einter(c
l
i, c

m
i) = − log[(P (cli|cmi) + P (cmi |cli))/2] . (4.2)

Note that there is no need for a δ[cl 6= cm] factor here as in (3.5) because the labels

in the different label sets are defined to be distinct by construction. Intuitively, Einter

can be thought of as a “soft” penalty that incorporates information not only about

label compatibility, but also about the frequencies of different classes. If cl and cm co-

occur often as two labels of the same region in the training dataset, then the value of

Einter(c
l, cm) will be low, and if they rarely or never co-occur, then the value will be

high. For example, buildings are very common manmade objects, so the value of Einter

for “building” and “manmade” would be low. Traffic lights are also manmade objects,

but there are fewer “traffic light” regions in the training set, so the penalty between

“traffic light” and “manmade” would be higher. I have found (4.2) to work well for both

many-to-many and hierarchical relationships between label sets. Figure 4.4 shows a few

of the Einter values for objects and parts on the CORE dataset (Section 4.2.2).

Finally, before performing graph cut inference, I linearly rescale all the values of

Eintra and Einter to the range [0, 1] (note that Edata is already in the range [0, 1] due to

the application of the sigmoid).

68

bus
se

mi
carria

ge

car
moto

rcycle

bicycle

sn
owmobile

airp
lane

hovercr
aft

boat
sh

ip
jetsk

i
blim

p
allig

ato
r

liz
ard

eagle
crow

bat
penguin

camel

elephant

cat
dog

monkey

elk cow
whale

dolphin

torso .99 1 .99 .97 .98 .99 .95 .96 .96 .96 .98 .97 .96 .16 .17 .18 .21 .20 .12 .16 .18 .13 .15 .20 .17 .13 .12 .14

leg .98 .99 .98 .96 .97 .98 .94 .96 .95 .95 .97 .96 .95 .18 .18 .35 .23 .27 .32 .12 .13 .17 .15 .18 .16 .14 .93 .92

animal wing .96 .96 .95 .94 .95 .95 .92 .94 .93 .94 .95 .94 .93 .94 .93 .09 .13 .07 .16 .94 .95 .94 .94 .93 .93 .93 .91 .91

ear .90 .90 .89 .89 .89 .89 .88 .89 .88 .89 .89 .89 .88 .89 .88 .88 .87 .21 .88 .34 .14 .19 .18 .28 .29 .23 .87 .87

horn .87 .87 .87 .86 .86 .87 .85 .86 .86 .86 .87 .86 .86 .86 .86 .86 .85 .86 .86 .86 .86 .86 .86 .86 .04 .42 .85 .85

nose .82 .82 .82 .82 .82 .82 .81 .11 .82 .82 .82 .82 .82 .34 .45 .81 .81 .30 .81 .34 .30 .31 .25 .40 .40 .27 .45 .34

wheel .21 .18 .07 .15 .12 .06 .31 .27 .96 .96 .98 .97 .96 .97 .96 .95 .93 .97 .95 .97 .97 .97 .97 .96 .96 .96 .93 .93

hull .98 .98 .97 .96 .97 .97 .94 .95 .95 .06 .06 .07 .95 .96 .95 .94 .93 .96 .94 .96 .96 .96 .96 .95 .95 .95 .92 .92

windshield .09 .21 .52 .16 .26 .94 .15 .92 .92 .92 .94 .26 .92 .93 .92 .92 .91 .93 .92 .93 .93 .93 .93 .92 .92 .92 .90 .90

cabin .94 .09 .14 .92 .93 .93 .91 .92 .92 .25 .18 .92 .25 .92 .92 .92 .90 .92 .91 .92 .93 .93 .92 .92 .92 .92 .90 .90

windows .07 .92 .91 .90 .91 .91 .89 .26 .23 .31 .19 .90 .90 .90 .90 .90 .89 .90 .90 .91 .91 .91 .90 .90 .90 .90 .88 .88

handlebars .90 .91 .90 .89 .16 .13 .19 .89 .89 .89 .90 .14 .89 .89 .89 .89 .88 .89 .89 .90 .90 .90 .90 .89 .89 .89 .88 .87

Figure 4.4: A sample of Einter penalties (equation 4.2) for the “object” and “part” label
sets on the CORE dataset (only 12 of the 66 parts are shown). The values are rescaled
to [0, 1]. From the table, I can see, for example, that elk almost always have horns (a
very small penalty of .04), cows sometimes have horns (a moderate penalty of .42), and
all other classes have no horns. As another example, legs have a slightly higher penalty
for birds than for the other animals, because they are visible less often.

4.2 Experiments

4.2.1 Barcelona Dataset

My first dataset is the “Barcelona” dataset from Tighe and Lazebnik (2010) (originally

from LabelMe (Russell et al., 2008)). It consists of 14,592 training images of diverse

scene types, and 279 test images depicting street scenes from Barcelona.

For this dataset, I create five label sets (Table 4.1) based on the synonym-corrected

annotations from Tighe and Lazebnik (2010). The largest label set is given by the 170 “se-

mantic” labels from Tighe and Lazebnik (2010). Here, I call this set “objects+attached”

because it includes not only object names such as car, building, and person, but also

69

Label set Labels Sample labels in set
Geometric 3 sky, vertical, horizontal
Stuff/thing 2 stuff, thing
Natural/manmade 2 natural, manmade
Objects 135 road, car, building, ...
Objects+attached 170 window, door, wheel, ...

Table 4.1: Barcelona dataset label sets.

names of attached objects or parts such as wheel, door, and crosswalk. Note that ground-

truth polygons in LabelMe can overlap; it is common, for example, for an the image

region covered by a “wheel” polygon to also be covered by a larger “car” polygon. In

fact, polygon overlap in LabelMe is a very rich cue that can even be used to infer 3D

structure (Russell and Torralba, 2009). I want my automatically computed labeling to

be able to reflect overlap and part relationships, e.g., that the same region can be labeled

as “car” and also “wheel”, or “building” and also “door.” To accomplish this, I create

another label set consisting of a subset of the “objects+attached” labels corresponding

to stand-alone objects. The 135 labels in this set have a many-to-many relationship with

the ones in the “object+attached” set: a wheel can belong to a car, a bus or a motorbike,

while a car can have other parts besides a wheel attached to it.

The remaining three label sets represent different groupings of the “object+attached”

labels. One of these is given by the “geometric” labels (sky, ground, vertical) from Tighe

and Lazebnik (2010). The other two are “natural/manmade” and “stuff/thing.” “Stuff”

(Adelson, 2001) includes classes like road, sky, and mountain; “things” include car, per-

son, sign, and so on. Just as the “geometric” assignments from Section 3.1.5, these

assignments are done manually, and are in some cases somewhat arbitrary: I designate

70

buildings as “stuff” because they tend to take up large portions of the images, and their

complete boundaries are usually not visible. Once the multi-level ground truth labelings

are specified, the cross-level co-occurrence statistics are automatically computed and used

to define the Einter terms as in equation 4.2.

To obtain the Edata terms for the different label sets, I train boosted decision tree

classifiers on the smaller “geometric,” “natural/manmade,” and “stuff/thing” sets, and

use the nonparametric nearest-neighbor classifiers from Chapter 3 on the larger “ob-

jects” and “objects+attached” sets. This is consistent with the system of in Chapter 3,

which used the decision trees for “geometric” classes and the nonparametric classifiers

for “semantic” classes.

The scores output by the decision trees and the nonparametric classifiers have different

ranges, roughly [−5, 5] and [−50, 50]. I set the respective scale parameters for the sigmoid

in (3.4) to γ = 0.5 and γ = 0.05. As for the smoothing constants from (4.1), I use λ = 8

and µ = 16 for all the experiments. Even though these values were set manually, they

were not extensively tuned, and I found them to work well on all label sets and on both

of my datasets, despite their very different characteristics.

Table 4.2 shows the quantitative results for multi-level inference on the Barcelona

dataset. I report both the overall classification rate (the percentage of all ground-truth

pixels that are correctly labeled) and the average of the per-class rates. The former

performance metric reflects primarily how well I do on the most common classes, while

the latter one is more biased towards the rare classes. What I would really like to see

is an improvement in both numbers; in my experience, even a small improvement of this

71

Base Single-level MRF Multi-level MRF Two-level MRF
(Edata only) (eq. 3.3) (eq. 4.1) (eq. 3.6)

Geometric 91.7 (87.6) 91.4 (86.5) 91.8 (87.6) 91.5 (86.8)
Stuff/thing 86.9 (66.7) 89.2 (64.2) 90.3 (66.8)
Natural/manmade 87.6 (81.8) 88.4 (81.0) 88.9 (81.8)
Objects 66.1 (9.7) 68.2 (8.6) 69.3 (9.9)
Objects+attached 62.3(7.4) 64.4 (6.5) 65.2 (7.4) 65.0 (7.3)

Table 4.2: Barcelona dataset results. The first number in each cell is the overall per-pixel
classification rate, and the second number in parentheses is the average of the per-class
rates. The base system classifies each region according to the label with the lowest Edata

term, single-level MRF performs separate inference in each label set using equation 3.3,
and multi-level MRF performs inference using equation 4.1. For reference, the far right
column shows the performance of the system from section 3.1.5, based on joint inference
of only the “geometric” and “objects+attached” label sets.

kind is not easy to achieve and tends to be an indication that “You’re doing someting

right.” Compared to a baseline that minimizes the sum of Edata terms (first column of

Table 4.2), separately minimizing the MRF costs of each level (second column) tends to

raise the overall classification rate but lower the average per-class rate. This is due to

the MRF smoothing out many of the less common classes. By contrast, the joint multi-

level setup (third column) raises both the overall and the average per-class rates for every

label set. In addition, performing inference over my five label sets simultaneously gives

slightly higher results than the two-level geometric/semantic setup from section 3.1.5

(last column of table). Thus, adding extra levels contributes some useful information to

the overall image interpretation problem.

Figure 4.5 shows the output of my system on a few images. In these examples, the

system is able to partially identify attached objects such as doors, crosswalks, and wheels.

On the whole, though, my system does not currently do a great job on attached objects: it

correctly labels only 13% of the door pixels, 11% of the crosswalks, and 4% of the wheels.

72

93.8(b)

(d)

(c)

94.4 91.1 81.6 73.9

92.5 96.3 99.5 91.9 89.7

85.1 96.5 88.8 69.9 54.3

(a) 93.6 94.6 91.2 83.1 73.2

thingstu� natural manmade carbuilding
treesidewalk

road crosswalk wheeldoorhorizvertsky
geometric stu�/thing natural/manmade object object+attached

Figure 4.5: Output of the five-level MRF on sample images from the Barcelona dataset.
The number under each image shows the percentage of pixels labeled correctly. Notice
that I am able to correctly classify a wheel (b), parts of the crosswalk (a,c) and a door
(d).

While my multi-level setup ensures that only plausible “attached” labels get assigned

to the corresponding objects, I don’t yet have any specific mechanism for ensuring that

“attached” labels get assigned at all—for example, a wheel on the “objects+attached”

level can still be labeled as “car” without making much difference in the objective func-

tion. Compounding the difficulty is the fact that my system performs relatively poorly

on small objects: they are hard to segment correctly and MRF inference tends to smooth

them away. Nevertheless, the preliminary results confirm that my framework is at least

expressive enough to support “layered” labelings.

73

4.2.2 CORE Dataset

My second set of experiments is on the Cross-Category Object Recognition (CORE)

dataset from Farhadi et al. (2010). This dataset consists of 2,780 images and comes with

ground-truth annotation for four label sets.1 Figure 4.1 shows a sample annotated image

and Table 4.3 lists the four label sets. The “objects” set has 28 different labels, of which

15 are animals and 13 are vehicles. The “animal/vehicle” label set designates each object

accordingly. The “material” set consists of nine different materials and the “part” set

consists of 66 different parts such as foot, wheel, wing, etc. Each CORE image contains

exactly one foreground object, and only that object’s pixels are labeled in the ground

truth. The “material” and “part” sets have a many-to-many relationship with the object

labels; both tend to be even more sparsely labeled than the objects (i.e., not all of an

object’s pixels have part or material labels). Finally, because this is an object-centric

dataset, only the object pixels are labeled. To account for this, I introduce a special

“foreground/background” label set. This set is not included in the multi-level inference,

but is used separately to produce a foreground mask that can be superimposed on the

results of the joint inference of the other four layers.

I create validation and test sets of 224 images each by randomly taking eight images

each from the 28 different object classes. To obtain the data terms, a boosted decision

tree classifier is trained for each label in each set. For example, a “leg” classifier is

1There are also annotations for attribute information, such as “can fly” or “has four legs,” which I do
not use. Note that I use the CORE dataset differently than Farhadi et al. (Farhadi et al., 2010), so
I cannot compare with their results. The representation of (Farhadi et al., 2010) is based on sliding
window detectors, and does not produce dense image labelings. Moreover, while (Farhadi et al., 2010)
focuses on cross-category generalization, I focus on exploiting the context encoded in the relationships
between object, material, and part labels.

74

Label Set Labels Sample labels in set
Foreground/background∗ 2 foreground, background
Animal/vehicle 2 animal, vehicle
Objects 28 airplane, alligator, bat, bus, ...
Material 9 fur/hair, glass, rubber, skin, ...
Parts 66 ear, flipper, foot, horn, ...

Table 4.3: The CORE dataset label sets. ∗The foreground/background set is excluded
from multi-level inference. It is used separately to generate a mask that is applied to the
results of the other four levels as a post-process (see text).

trained using as positive examples all regions labeled as “leg” regardless of their object

class (elk, camel, dog, etc.); all the regions from the “parts” level that have any label

except “leg” are used as negative examples. Note that unlabeled regions are excluded

from the training. The sigmoid parameter in the data term is γ = 0.5, the same as for

the decision trees on the Barcelona dataset.

Figure 4.6 shows the output of four-level inference on an example image. One problem

becomes immediately apparent: my approach, of course, is aimed at dense scene parsing,

but the CORE dataset is object-centric. My inference formulation knows nothing about

object boundaries and all the data terms are trained on foreground regions only, so

nothing prevents the object labelings from getting extended across the entire image. At

the end of this section, I will present a method for computing a foreground/background

mask, but in the meantime, I quantitatively evaluate the multi-level inference by looking

at the percentage of pixels with ground-truth labels (i.e., foreground pixels) that I label

correctly. The first three rows of Table 4.4 show a comparison of the overall and per-

class rates on each label set for the baseline (data terms only), separate single-level MRF

inference, and joint multi-level inference. Even though CORE is very different from the

75

animal

torso

leg

fur/hair

elk

horn

foreground

foreground/background animal/vehicle

object material part

Figure 4.6: The output of my multi-level MRF on the CORE dataset. The ground truth
foreground outline is superimposed on every label set. Note the “objects” level contains
numerous small misclassified regions. They could be eliminated with stronger smoothing
(higher value of λ in (4.1)), but that would also eliminate many “small” classes, lowering
the overall performance on the dataset.

Barcelona dataset, the trend is exactly the same: multi-level inference improves both the

overall and the average per-class rate for every label set.

Next, one can observe that each CORE image has only a single foreground object,

so it can contain only one label each from the “animal/vehicle” and “object” sets. To

introduce this global information into the inference, a one-vs-all SVM classifiers is trained

for the 28 object classes and a binary SVM for animal/vehicle. The classifiers are based

on three global image features: gist (Oliva and Torralba, 2006), a three-level spatial

pyramid (Lazebnik et al., 2006) with a dictionary size of 200, and an RGB color his-

togram, the same features used to generate the retrieval set. A Gaussian kernel is used

for GIST and histogram intersection kernels (Barla et al., 2003) are used for the other

76

Animal/vehicle Object Material Part

Base 86.6 (86.6) 34.4 (33.4) 51.8 (36.0) 37.1 (11.2)
Single-level MRF 91.1 (91.0) 43.2 (41.7) 54.1 (34.3) 42.6 (11.7)
Multi-level MRF 91.9 (92.0) 44.5 (43.1) 54.9 (35.9) 42.7 (11.9)

Base + SVM 92.8 (92.9) 43.5 (41.8) 51.8 (36.0) 37.1 (11.2)
Single-level MRF + SVM 92.8 (92.9) 53.2 (50.5) 54.1 (34.3) 42.6 (11.7)
Multi-level MRF + SVM 92.8 (92.9) 53.9 (51.0) 56.4 (36.7) 43.9 (12.3)

Table 4.4: CORE dataset results. The first number in each cell is the overall per-pixel
classification rate, and the number in parentheses is the average of the per-class rates.
All rates are computed as the proportion of ground-truth foreground pixels correctly
labeled. The bottom three rows show results for using global SVM classifiers to reduce
the possible labels in the animal/vehicle and object label sets (see text).

two features, then the kernel outputs are averaged. The classifiers are rebalanced on

the validation set by setting their threshold to the point yielding an equal error rate on

the ROC curve. Then, given a query image, a “shortlist” of labels is created of positive

SVM responses. The multi-level inference is then restricted to using only those labels.

For the animal/vehicle set, only one label is selected (since the classifier is binary), but

for the object set, multiple labels can be selected. I have found that selecting multiple

labels produces better final results than winner-take-all, and it still allows my superpixel

classifier to have some influence in determining which object is present in the image.

The last three rows of Table 4.4 show that the SVMs add 3.3% to the accuracy of the

“animal/vehicle” level and 6.0% to “object.” More significantly, the joint inference is

able to capitalize on these improvements and boosts performance on materials and parts,

even though the SVMs do not work on them directly. Figure 4.7 shows final classification

rates for a selection of classes.

There still remains the issue of distinguishing foreground from background regions.

To do this, I first train a boosted decision tree classifier using all the labeled (respectively

77

0%
25%
50%
75%
100%

0%
25%
50%
75%
100%

Figure 4.7: The per-class rates of the 28 objects, 9 materials, and top 18 parts in the
CORE dataset. The labels are ordered by classification rate. As on the Barcelona dataset,
the system does worse on the parts that tend to be small: nose, ear, beak (not shown),
and on materials that have few examples for training: wood, rubber, bare metal.

unlabeled) training image regions as positive (respectively negative) data. This classifier

correctly labels 64.7% of foreground pixels and 94.3% of background pixels. The resulting

foreground masks are not very visually appealing, as shown in Figure 4.8. To improve

segmentation quality I augment the foreground/background data term obtained from

this classifier with an image-specific color model based on GrabCut (Rother et al., 2004).

The color model (a Gaussian mixture with 40 centers in LAB space) is initialized in

each image from the foreground mask output by the classifier and combined with the

78

Figure 4.8: Example of foreground masks my color model generates on the CORE dataset.
The second column shows the likelihood map from my foreground region classifier; the
third column shows the foreground mask resulting from that classifier; and the fourth
column shows the foreground map obtained with a GrabCut-like color model. The color
model generally improves reasonable initial foreground estimates (first two rows), but
makes bad initial estimates worse (last row).

foreground/background data term in a pixelwise graph cut energy:

E(c) =
∑
pi

[αEcolor(pi, ci) + Edata(pi, ci)]

+λ
∑

(pi,pj)∈A

Esmooth(ci, cj) ,

(4.3)

where pi and pj are now pixels, A is the set of all adjacent pixels (I use eight-connected

neigborhoods), Ecolor is the GrabCut color model term (see Rother et al. (2004) for

details), Edata is the foreground/background classifier term for the region containing the

given pixel (not weighted by region area), and Esmooth is obtained by scaling my previous

smoothing penalty (3.5) by a per-pixel contrast-sensitive constant (see, e.g., Shotton et al.

79

(2009)). Finally, α is the weight for the GrabCut color model and λ is the smoothing

weight. I use α = 8 and λ = 8 in the implementation.

After performing graph cut inference on (4.3) I update the color model based on the

new foreground estimate and iterate as in Rother et al. (2004). After four iterations,

the foreground rate improves from 64.7% to 76.9%, and the background rate improves

from 94.3% to 94.4%. In addition, as shown in Figure 4.8, the subjective quality of the

foreground masks generated with this approach becomes much better. Figure 4.9 shows

the output of the four-level solver on a few test images with the estimated foreground

masks superimposed.

Unfortunately, the role played by foreground masks in my present system is largely

cosmetic. Due to the fact that (4.1) and (4.3) are defined on different domains (regions

vs. pixels) and use different types of inference, I have not found an easy way to integrate

the multi-level labeling with the iterative GrabCut-like foreground/background segmen-

tation. Unifying the two respective objectives into a single optimization is subject for

my future work.

4.3 Discussion

This chapter has presented a multi-level inference formulation to simultaneously assign

multiple labels to each image region while enforcing agreement between the different label

sets. My system is flexible enough to capture a variety of relationships between label sets,

including hierarchies and many-to-many. The interaction penalties for different label sets

are computed automatically based on label co-occurrence statistics. I have applied the

80

foreground

98.5(a)

(b)

(d)

100 98.3 94.8 77.3

97.1 100 100 96.4 73.1

torso

car

ship

wheel

window windshield

headlight
painted metal

painted metal

hull

cabin row of windows

glass

fur/hair head

leg

96.1 100 96.8 73.4 92.5

(c) 95.1 100 96.5 100 85.2

foreground vehicle

vehicle

dogforeground animal

eagleforeground animal wingfeathers

foreground/background animal/vehicle object material part

Figure 4.9: The output of my multi-level MRF on the CORE dataset after masking the
label sets with my estimated foreground masks. The number under each image is the
percentage of ground-truth pixels I label correctly. Note that I am able to correctly
classify a number of parts (b,c,d) though those parts do have a tendency to spill into
nearby regions of the image.

proposed framework to two challenging and very different datasets and have obtained

consistent improvements across every label set, thus demonstrating the promise of a new

form of semantic context.

Thus far my parsing system has been purely superpixel based, which works well for

more common “stuff” classes as it can reliably capture the texture components that

differentiate such classes. “Thing” classes are usually better described by their overall

shape, and thus the superpixel representation can not take advantage of key cues for these

types of objects. The following chapter presents a method to increase parsing accuracy

for “things” by modeling the shape of such classes.

81

CHAPTER 5: IMAGE PARSING WITH REGIONS AND

PER-EXEMPLAR DETECTORS

This chapter returns to the problem of assigning a single semantic label to each pixel but

focuses on achieving broader coverage of class labels—the ability to recognize hundreds

or thousands of object classes that commonly occur in everyday street scenes and indoor

environments. Unfortunately the frequency with which classes appear in realistic scenes

is highly non-uniform, making it very hard to correctly classify any but the most common

classes. A small number of classes—mainly ones associated with large regions or “stuff,”

such as road, sky, trees, and buildings (Adelson, 2001)—constitute most image pixels and

object instances in the dataset. But a much larger number of “thing” classes—people,

cars, dogs, mailboxes, vases, and stop signs–occupy a small percentage of image pixels

and have relatively few instances each.

“Stuff” categories have no consistent shape but fairly consistent texture, so they

can be adequately handled by image parsing systems based on pixel- or region-level

features. However, these systems have difficulty with “thing” categories, which are better

characterized by overall shape than local appearance. In order to improve performance

on “things,” I propose an image parsing system that integrates region-based cues with

the promising novel framework of per-exemplar detectors or exemplar-SVMs (Malisiewicz

et al., 2011).

My proposed method is outlined in Figure 5.1. It combines the region-based parser

Sky Tree

Bus Car

Sky Tree

Bus Car

(b) Region-based data term(a) Test image

(e) Detector-based data term(d) Run per-exemplar detectors

(g) Combined result (82.6%)

(f) Detector parsing result (38.3%)

(c) Region-based parsing result (68.8%)

Sky

Tree

Bus
Car

RoadGrass

Building

Pole

Figure 5.1: Overview and sample result of the combined region- and detector-based
approach of this chapter. The test image (a) contains a bus – a relatively rare “thing”
class. The region-based parsing system from Chapter 3 computes class likelihoods (b)
based on superpixel features, and it correctly identifies “stuff” regions like sky, road, and
trees, but is not able to get the bus (c). To find “things” like bus and car, per-exemplar
detectors (Malisiewicz et al., 2011) are run on the test image (d) and transfer masks
corresponding to detected training exemplars (e). Since the detectors are not well suited
for “stuff,” the result of detector-based parsing (f) is poor. However, combining region-
based and detection-based data terms (g) gives the highest accuracy of all and correctly
labels most of the bus and part of the car.

from Chapter 3 with a novel parser based on per-exemplar detectors. Each parser pro-

duces a score or data term for each possible label at each pixel location, and the data

terms are combined using a support vector machine (SVM) to generate the final label-

ing. This scheme produces state-of-the-art results on the three challenging datasets. This

work has first appeared in CVPR 2013 (Tighe and Lazebnik, 2013a).

5.1 Method

This section presents my hybrid image parsing method as illustrated in Figure 5.1. Sec-

tion 5.1.1 describes the region- and detector-based data terms, and Section 5.1.2 details

83

the proposed combination method.

5.1.1 Local Data Terms

For each pixel p and class c, the system produces a region- and a detector-based data

term, denoted as ER(p, c) and ED(p, c), respectively. The region-based data term is

defined as

ER(p, c) = L(sp, c) , (5.1)

where L(sp, c) comes from equation 3.1 and sp is the region containing p.

The novel part of the approach of this section is the computation of the detector-based

data term ED(p, c), which is derived from the per-exemplar framework of Malisiewicz

et al. (2011). Following this framework, I train a per-exemplar detector for each labeled

object instance in my dataset. While it may seem intuitive to only train detectors for

“thing” categories, I train them for all categories, including ones seemingly inappropriate

for a sliding window approach, such as “sky.” As my experiments will demonstrate, this

actually yields the best results for the combined region- and detector-based system. I

follow the detector training procedure of Malisiewicz et al. (2011), with negative mining

done on all training images that do not contain an object of the same class. For the largest

LM+SUN dataset I only do negative mining on 1,000 training images most similar to the

positive exemplar’s image (I have found that using more does not increase the detection

accuracy). An alternative training method that relies on linear discriminant analysis

(LDA) (Hariharan et al., 2012) could be used in place of the exemplar SVM approach of

84

Figure 5.2: Computation of the detector-based data term. For each positive detection
(green bounding box) in the test image (middle row) I transfer the mask (red polygon)
from the associated exemplar (top) into the test image. The data term for “car” (bottom)
is obtained by summing all the masks weighted by their detector responses.

Malisiewicz et al. (2011) to greatly reduce training time and is an area for future work.

At test time, given an image that needs to be parsed, first a retrieval set of globally

similar training images is obtained as in Section 3.1.1. Then the detectors associated

with the first k instances of each class in that retrieval set are run (the instances are

ranked in decreasing order of the similarity of their image to the test image, and different

instances in the same image are ranked arbitrarily). Restricting the number of detectors

per class to k is done purely to reduce computation; all experiments use k = 100. Next, all

detections that are above a given threshold td are considered positive(I use the negative

margin or td = −1 as suggested in Malisiewicz et al. (2011)). For each detection the

85

associated object mask is projected into the detected bounding box (Figure 5.2). The

detector-based data term ED for a class c and pixel p is computed as the sum of all

detection masks from that class weighted by their detection scores:

ED(p, c) =
∑
d∈Dp,c

(wd − td) , (5.2)

where Dp,c is the set of all detections for class c whose transferred mask overlaps pixel p

and wd is the detection score of d. Figure 5.1(e) shows some detector-based data terms

for the test image of Figure 5.1(a).

Note that the full training framework of Malisiewicz et al. (2011) includes computa-

tionally intensive calibration and contextual pooling procedures that are meant to make

scores of different per-exemplar detectors more consistent. In my implementation, I have

found these steps to be unnecessary, as they are at least partially superseded by the

combined region- and detector-based inference scheme described next.

5.1.2 SVM Combination and MRF Smoothing

For each pixel p and each class c in a test image, the parsing systems of Sections 3.1.3

and 5.1.1 produce two data terms, ER(p, c) and ED(p, c), as defined by eqs. (5.1) and

(5.2). For a dataset with C classes, concatenating these values gives us a 2C-dimensional

feature vector at each pixel. Next, C one-vs-all SVMs are trained, each of which takes

as input the 2C-dimensional feature vectors and returns final per-pixel scores for a given

class c.

86

Training data for each SVM is generated by running region- and detector-based pars-

ing on the entire training set using a leave-one-out method: for each training image a re-

trieval set of similar training images is obtained, regions are matched to generate ER(p, c),

and the per-exemplar detectors from the retrieval set are run to generate ED(p, c). Un-

fortunately, the resulting amount of data is huge: my largest dataset has over nine billion

pixels, which would require 30 terabytes of storage. To make SVM training feasible, the

data must be subsampled—a tricky task given the unbalanced class frequencies in my

many-category datasets.

The data could be subsampled uniformly (i.e., reduce the number of points by a fixed

factor without regard to class labels). This preserves the relative class frequencies, but

in practice it heavily biases the classifier towards the more common classes. Conversely,

subsampling the data so that each class has a roughly equal number of points produces

a bias towards the rare classes. I have found that combining these two schemes in a 2:1

ratio achieves a good trade-off on all my datasets. That is, 67% of the training data is

obtained by uniform sampling and 33% by even per-class sampling. All SVMs are trained

on 250,000 points—using more did not significantly improve performance for any of my

setups.

For training one-vs-all SVMs, each feature dimension is normalized by its standard

deviation and fivefold cross-validation is used to find the regularization constant. Another

important aspect of the implementation is the choice of the SVM kernel. As will be

shown in Section 5.2, the linear kernel already does quite well, but I can obtain further

improvements with the radial basis function (RBF) kernel. Since it is infeasible to train a

87

nonlinear SVM with the RBF kernel on my largest dataset, I approximate it by training

a linear SVM on top of the random Fourier feature embedding (Rahimi and Recht, 2007).

The dimensionality of the embedding is set to 4,000 and the kernel bandwidth is found

using fivefold cross-validation. Experiments on my two smaller datasets confirm the

quality of the approximation (Table 5.2).

The resulting SVMs produce C responses at each pixel. Let ESVM(pi, ci) denote the

response of the SVM for class ci at pixel pi. To obtain the final labeling, the highest-

scoring label at each pixel can be assigned to that pixel, but this produces noisy results.

Instead, the labeling is smoothed with an MRF energy function similar to Liu et al.

(2011b) and Shotton et al. (2008) defined over the field of pixel labels c:

J(c) =
∑
pi∈I

max[0,M − ESVM(pi, ci)]

+λ
∑

(pi,pj)∈ε

Epix smooth(ci, cj) ,

(5.3)

where I is the set of all pixels in the image, ε is the set of adjacent pixels, M is the highest

expected value of the SVM response (about 10 on my data), λ is a smoothing constant (I

set λ = 16), and Epix smooth(ci, cj) imposes a penalty when two adjacent pixels (pi, pj) are

similar but are assigned different labels (ci, cj) (see equation 8 in Liu et al. (2011b)). MRF

inference is performed using α-expansion (Boykov and Kolmogorov, 2004; Kolmogorov

and Zabih, 2004).

88

5.2 Evaluation

5.2.1 Datasets

I perform experiments on the three datasets detailed in Sections 3.2.1, 3.2.2 and 3.3.2:

SIFT Flow (Liu et al., 2011b), LM+SUN (Tighe and Lazebnik, 2013b), and CamVid (Bros-

tow et al., 2008).

While CamVid is not my target dataset type, I use it for comparison with a number

of recent approaches (Brostow et al., 2008; Floros et al., 2011; Ladický et al., 2010b;

Sturgess et al., 2009; Zhang et al., 2010). Unlike SIFT Flow and LM+SUN, CamVid

does not have object polygons, only per-pixel labels. For training detectors, I fit a

bounding box and a segmentation mask to each connected component of the same label

type. Thus, if multiple object instances (e.g., cars) overlap, they are treated as one

exemplar. Following my video parsing system from Section 3.3, I segment the video using

the method of Grundmann et al. (2010), and use boosted decision tree classifiers instead

of nonparametric likelihood estimates. To obtain training data for the SVM, I compute

the responses of the boosted decision tree classifiers on the same images on which they

were trained (I have found this to work better than cross-validation on this dataset). I

do not enforce any spatio-temporal consistency in the final labeling as described in 3.3.1.

5.2.2 Experiments

First, I analyze the contributions of individual components of my system. In particular,

one may wonder whether the power of the approach of this chapter truly lies in combining

89

SIFT Flow LM+SUN CamVid
Detector ML 65.1 (25.8) 33.0 (14.1) 61.2 (45.5)
Detector SVM 62.5 (25.4) 46.1 (12.0) 61.4 (47.0)
Detector SVM MRF 71.1 (26.7) 52.5 (11.3) 63.8 (47.3)
Region ML 74.1 (30.2) 51.5 (7.5) 82.7 (51.2)
Region SVM 75.0 (35.9) 56.3 (6.7) 81.4 (55.7)
Region SVM MRF 77.7 (32.8) 58.3 (5.9) 83.5 (55.7)
Region + Thing SVM 74.4 (36.9) 58.5 (14.1) 82.4 (60.0)
Region + Thing SVM MRF 77.5 (35.7) 60.0 (12.9 84.2 (59.5)
Combined SVM 75.6 (41.1) 59.6 (15.5) 82.3 (62.1)
Combined SVM MRF 78.6 (39.2) 61.4 (15.2) 84.0 (62.2)

Table 5.1: Comparison of different data terms. Per-pixel classification rate is listed first,
followed by the average per-class rate in parentheses. All SVMs use the approximate RBF
embedding. Detector ML and Region ML directly assign the highest-scoring label at each
pixel based on the respective data terms, while Detector SVM and Region SVM use SVM
outputs trained on the individual data terms. Region + Thing uses the SVM trained
on the full region data term and the subset of the detector data term corresponding to
“thing” classes.

detector- and region-based cues, or whether most of the performance gain comes from

the extra layers of SVM and MRF inference. Table 5.1 shows the performance of various

combinations of region- and detector-based data terms with and without SVM training,

with and without MRF smoothing. The region-based data term obtains higher per-

pixel accuracy than the detector-based one on all three datasets, and higher per-class

accuracy on SIFT Flow and CamVid. On the LM+SUN dataset, which has the largest

number of rare “thing” classes, the detector-based data term actually obtains higher

per-class accuracy than the region-based one. While the SVM can sometimes improve

performance when applied to the individual data terms, applying it to their combination

gives by far the biggest and most consistent improvements. As observed in Chapter 3,

MRF inference further raises the per-pixel rate, but often lowers the per-class rate by

90

SIFT Flow LM+SUN CamVid
Linear 75.4 (40.0) 57.2 (16.6) 82.4 (60.7)
Linear MRF 77.5 (40.2) 59.5 (15.9) 83.8 (60.7)
Approx. RBF 75.6 (41.1) 59.6 (15.5) 82.3 (62.1)
Approx. RBF MRF 78.6 (39.2) 61.4 (15.2) 83.9 (62.5)
Exact RBF 75.4 (41.6) N/A 82.3 (61.9)
Exact RBF MRF 77.6 (42.0) N/A 84.0 (62.2)

Table 5.2: Comparison of different SVM kernels. Per-pixel classification rate is listed
first, followed by the average per-class rate in parentheses. The RBF kernel has a slight
edge over the linear kernel, and the approximate RBF embedding of (Rahimi and Recht,
2007) has comparable performance to the exact nonlinear RBF. Note that training the
exact RBF on the largest LM+SUN dataset was computationally infeasible.

smoothing away some of the smaller objects.

Because part of my motivation for incorporating detectors is to improve performance

on the “thing” classes, I want to know what will happen if I train detectors only on

“things”—if detectors are completely inappropriate for “stuff,” then not using them on

“stuff” may improve accuracy, not to mention speed up the system considerably. The

“Region + Thing” section of Table 5.1 shows the performance of the SVM trained on the

full region-based data term and the subset of the detector-based data term corresponding

only to “thing” classes (specified manually). Interestingly, the results for this setup are

weaker than those of the full combined system using both “thing” and “stuff” detectors.

Next, Table 5.2 compares SVMs with the linear kernel, approximate RBF embed-

ding (Rahimi and Recht, 2007), and exact nonlinear RBF. The linear kernel may be a

better choice if speed is a concern, but the approximate and exact RBF are able to boost

performance by 1-2%. All subsequent figures and tables will report only the SVM results

with the approximate RBF.

91

0%
20%
40%
60%
80%
100%

Region Detector Combined

Figure 5.3: Classification rates of individual classes (ordered from most to least frequent)
on the SIFT Flow dataset for region-based, detector-based, and combined parsing. All
results include SVM and MRF smoothing.

0%
20%
40%
60%
80%

100%
Region Detector Combined

...

Figure 5.4: Classification rates of the most common individual classes (ordered from
most to least frequent) on the LM+SUN dataset for region-based, detector-based, and
combined parsing. All results include SVM and MRF smoothing.

Figures 5.3 and 5.4 show the per-class rates of my system on the most common classes

in the SIFT Flow and LM+SUN datasets, respectively. As expected, adding detectors

significantly improves many “thing” classes (including car, sign, and balcony) but also

some “stuff” classes (road, sea, sidewalk, fence). Figure 5.5 gives a close-up look at

my performance on many small object categories, and Figure 5.6 shows several parsing

examples on the LM+SUN dataset.

Table 5.3 compares my combined system to a number of state-of-the-art approaches

on the SIFT Flow dataset. The system outperforms them, in many cases beating the

average per-class rate by up to 10% while maintaining or exceeding the per-pixel rates.

The one exception is the system of Farabet et al. (2012) when tuned for balanced per-

class rates, but their per-pixel rate is much lower than my result in this case. When their

92

fire hydrant 249 / 3 93.7% motorbike 551 / 17 83.7% flower 1759 / 27 63.7% license plate 852 / 26 59.5%

manhole 390 / 11 50.8% faucet 425 / 8 46.4% lamp 2055 / 28 39.5% bicycle 692 / 21 34.3%

sofa 1188 / 17 30.8% torso 2357 / 36 30.1% coffee maker 252 / 6 26.2% screen 1752 / 35 22.9%

van 840 / 26 21.7% vase 780 / 16 16.5% chair 7762 / 143 13.7% boat 1311 / 14 7.6%

Figure 5.5: Examples of “thing” classes on LM+SUN. For each class I show a crop of an
image, the SVM combined output, and the smoothed final result. The caption for each
class shows: (# of training instances of that class) / (# of test instances) (per-pixel rate
on the test set)%. Best viewed in color.

system is tuned to a per-pixel rate similar to mine, their average per-class rate drops

significantly below mine.

On LM+SUN, which has an order of magnitude more images and labels than SIFT

Flow, the only previously reported results are from my base region-based system (Chapter

3). As Table 5.4 shows, by augmenting the region-based term with a novel detector-based

data term and SVM inference, the system is able to raise the per-pixel rate from 54.9%

to 61.4% and the per-class rate from 7.1% to 15.2%.

Table 5.5 compares my per-class rates on the CamVid dataset to a number of recent

methods. When compared to my region-based system (Chapter 3), performance is im-

proved for every class except for building and sky, towards which the region-based parser

seems to be overly biased. Furthermore, this system is able to match the state-of-the-

art method of Ladický et al. (2010b), which incorporates DPM detectors, bounding box

93

Query & Ground Truth

(a) taxi car

Region/Detector/Combined Dataterms

building

67.2%

Initial Region/Detector

50.8% 92.5%

Combined System
taxi
car
building
road
sky
fence
sidewalk
streetlight
truck
person
mailbox
van
window
trash can
manhole
traffic light

(b) car window wheel

59.7%

31.6% 77.3%

car
window
wheel
building
road
sky
tree
sidewalk
tail light
parking meter
headlight
door
fence
column
wall
sign
windshield

(c) bed picture wall

19.4%

61.5% 74.0%

bed
picture
wall
sea
mountain
curtain
window
sky
ceiling
painting
floor
pillow

(d) toilet plate wall

30.9%

24.8% 69.4%

toilet
plate
wall
floor
mirror
person
pot
glass
cup
tree
painting
counter top
towel
trash can

Figure 5.6: Example results on the LM+SUN dataset (best viewed in color). First
column: query image (top) and ground truth (bottom). Second through fourth columns:
region-based data term (top), detector-based data term (middle), and SVM combination
(bottom) for three selected class labels. Fifth column: region-based parsing results (top)
and detector-based parsing results (bottom) without SVM or MRF smoothing. Right-
most column: smoothed combined output.

94

SIFT Flow Per-Pixel Per-Class
Combined MRF 78.6 39.2
Tighe and Lazebnik (Tighe and Lazebnik, 2013b) 77.0 30.1
Liu et al. (Liu et al., 2011b) 76.7 N/A
Farabet et al. (Farabet et al., 2012) 78.5 29.6
Farabet et al. (Farabet et al., 2012) balanced 74.2 46.0
Eigen and Fergus (Eigen and Fergus, 2012) 77.1 32.5
Myeong et al. (Myeong et al., 2012) 77.1 32.3

Table 5.3: Comparison to state-of-the-art on the SIFT Flow dataset.

LM+SUN Per-Pixel Per-Class
Combined MRF 61.4 15.2

Outdoor Images 65.5 15.3
Indoor Images 46.3 12.2

Base system 54.9 7.1
Outdoor Images 60.8 7.7
Indoor Images 32.1 4.8

Table 5.4: Comparison to my base system on the LM+SUN dataset with results broken
down by outdoor and indoor test images.

segmentation, and a complex CRF model. Figure 5.7 shows the output of my system on

example CamVid images.

5.2.3 Running Time

Finally, I examine the computational requirements of my system on my largest dataset,

LM+SUN, by timing my MATLAB implementation (feature extraction and file I/O ex-

cluded) on a six-core 3.4 GHz Intel Xeon processor with 48 GB of RAM. There are a

total of 354,592 objects in the training set, and a per-exemplar detector is trained for

each of them. The average training time per detector is 472.3 seconds; training all of

them would require 1,938 days on a single CPU, but instead training is performed on a

95

B
u
il
d
in

g

T
re

e

S
k
y

C
ar

S
ig

n
-S

y
m

b
ol

R
oa

d

P
ed

es
tr

ia
n

Combined MRF 83.1 73.5 94.6 78.1 48 96 58.6
Chapter 3 87.0 67.1 96.9 62.7 30.1 95.9 14.7
Brostow et al. (2008) 46.2 61.9 89.7 68.6 42.9 89.5 53.6
Sturgess et al. (2009) 84.5 72.6 97.5 72.7 34.1 95.3 34.2
Zhang et al. (2010) 85.3 57.3 95.4 69.2 46.5 98.5 23.8
Floros et al. (2011) 80.4 76.1 96.1 86.7 20.4 95.1 47.1
Ladický et al. (2010a) 81.5 76.6 96.2 78.7 40.2 93.9 43.0

F
en

ce

C
ol

u
m

n
-P

ol
e

S
id

ew
al

k

B
ic

y
cl

is
t

P
er

-c
la

ss

P
er

-p
ix

el

Combined MRF 32.8 5.3 71.2 45.9 62.5 83.9
Chapter 3 17.9 1.7 70.0 19.4 51.2 83.3
Brostow et al. (2008) 46.6 0.7 60.5 22.5 53.0 69.1
Sturgess et al. (2009) 45.7 8.1 77.6 28.5 59.2 83.8
Zhang et al. (2010) 44.3 22.0 38.1 28.7 55.4 82.1
Floros et al. (2011) 47.3 8.3 79.1 19.5 59.6 83.2
Ladický et al. (2010a) 47.6 14.3 81.5 33.9 62.5 83.8

Table 5.5: Per-class performance on the CamVid (Brostow et al., 2008) dataset.

512-node cluster in approximately four days. Leave-one-out parsing of the training set

(see below for average region- and detector-based parsing times per image) takes 939

hours on a single CPU, or about two hours on the cluster. Next, training a set of 232

one-vs-all SVMs takes a total of one hour on a single machine for the linear SVM and

ten hours for the approximate RBF. Note that the respective feature dimensionalities

are 464 and 4,000; this nearly tenfold dimensionality increase accounts for the tenfold

increase in running time. Tuning the SVM parameters by fivefold cross-validation on the

cluster only increases the training time by a factor of two.

96

(a)

Test Image Ground Truth

74.9%

Region Based

64.0%

Detector Based

85.7%

Combined System
Tree
Sky
Road
Car
Building
Sidewalk
Pedestrian
Column−Pole

(b) 75.0% 63.0% 79.4%

Road
Tree
Building
Sky
Car
Sidewalk
Fence
Sign−Symbol

(c) 76.0% 63.2% 81.7%

Building
Road
Sidewalk
Sky
Tree
Column−Pole
Sign−Symbol
Pedestrian

Figure 5.7: Example results on the CamVid dataset. The region- and detector-based
results are shown without SVM or MRF smoothing; the final output has both. Notice
how the detectors are able to complete the car in (a) and (b). In (c) I are able to correctly
parse a number of pedestrians and signs.

At test time, the region-based parsing takes an average of 27.5 seconds per image.

The detector-based parser runs an average of 4,842 detectors per image in 47.4 seconds

total. The final combination (SVM testing) step takes an average of 8.9 seconds for the

linear kernel and 124 seconds for the approximate RBF (once again, the tenfold increase

in feature dimensionality and the overhead of computing the embedding account for the

increase in running time). MRF inference takes only 6.8 seconds per image.

5.3 Discussion

The combined system presented in this chapter achieves very promising results, but at

a considerable computational cost. Reducing this cost is an important future research

direction. To speed up training of per-exemplar detectors, I plan to try the whitened

97

HOG method of Hariharan et al. (2012). At test time, I would like to to reduce the

number of detectors that need to be run per image. As shown in Table 5.1, doing this

naively, e.g., by running only “thing” detectors, lowers the accuracy. Instead, I want to

develop methods for dynamically selecting detectors for each test image based on context.

Also, SVM testing with the approximate RBF embedding imposes a heavy overhead in

my current implementation. However, this is a nuisance that can be resolved with better

choice of embedding dimensionality and more optimized code.

Ultimately, I want my system to function on open universe datasets, such as La-

belMe (Russell et al., 2008), that are constantly evolving and do not have a pre-defined

list of classes of interest. The region-based component of my system from Chapter 3

already has this property. In principle, per-exemplar detectors are also compatible with

the open-universe setting, since they can be trained independently as new exemplars

come in. The SVM combination step (Section 5.1.2) is the only one that relies on batch

offline training (including leave-one-out parsing of the entire training set). In the future,

I plan to investigate online methods for this step.

98

CHAPTER 6: DISCUSSION

I have presented a retrieval-based image parsing methodology as a more scalable and

accurate alternative to image parsing methods based on offline training. My approach

provides a rich form of scene understanding that infers multiple types of labels with

broad coverage of classes. My novel retrieval-based system was outlined in Section 3.1,

with the retrieval method described in Section 3.1.1 and the superpixel-level matching

described in Section 3.1.3. I described my novel method to simultaneously label both

semantic and geometric label types in Section 3.1.5. I then presented a novel technique

to learn the relationships between an arbitrary number of label types with many-to-

many relationships and presented a efficient inference framework once such relationships

are learned (Section 4.1). Finally in Section 5.1, I greatly broadened the coverage of

classes my system successfully identifies by presenting a new, elegant, per-exemplar based

approach to incorporate detectors in an image parsing system, which, unlike previous

methods, can easily scale to hundreds of classes.

6.1 Future directions

While I have been successful in improving the accuracy and scalability of image parsing

systems, I have not “solved” the image parsing problem by any means. In this section I

will discuss directions for future work in image parsing.

All of my work relies on a retrieval-based methodology, but I have only explored some

of the simplest forms of retrieval sets: those based on nearest neighbors according to a

fixed set of global image features. My system analysis in Section 3.2.3 showed that a more

accurate retrieval set would also greatly improve the parsing performance. To that end,

exploring more advanced methods for obtaining a retrieval set could be quite beneficial.

One could learn per-exemplar distance functions for each image in the training set, or

one could learn a better feature representation from a convolution neural network. In

general, it seems feasible that from the high level of supervision available in the training

set more powerful matching criteria could be learned.

One of the limitations of my multi-level inference in Chapter 4 was the poor clas-

sification accuracy for attached objects. However, my work in Chapter 5 boosted the

performance of ”thing” classes, including those corresponding to attached objects (e.g.,

wheels, windows). It might be interesting then to combine the systems from Chapter

4 and Chapter 5 as it would seem they would be complementary. Pushing the idea of

multiple label types further, it would be interesting examining image parsing using even

more complex label structures, like the noun hierarchy of WordNet (Fellbaum, 1998). In

this case, instead of discrete sets of labels, where each region must be assigned a single

label from each set, a region would be assigned a label somewhere down the hierarchy

depending on the evidence available similar to Deng et al. (2012).

Scene understanding does not stop at inferring labels in the 2D images plane. The

work I have presented may be able to correctly label the car pixels in an image, but

if there are multiple overlapping cars there is no mechanism for my parsing systems to

indicate which is in front of the other, or even where the boundary between the two cars

100

Query & Ground Truth Initial Parse & Objects Final Parse & Objects Occlusion Ordering

car
building
bus
road
sky
bridge
pole
sidewalk
fence
tree
streetlight

a c e

b d

Figure 6.1: Example of separating object instances. Starting with the output from the
system of Chapter 5 (a) we could separate the car blob into individual instances (b).
These predicted object instance could be used to refine the pixel labels (c), and those
labels could be used to refine the instance predictions (d). Finally, it would be beneficial
to infer the occlusion ordering of the car objects (e).

lies. In the future I plan to investigate parsing a scene into its coherent objects and

assigning a depth ordering to the inferred objects. I hope I can use the fairly accurate

object silhouettes found by the per-exemplar detectors to split object instances apart. A

illustration of how this could work and why this would be useful can be seen in Figure

6.1. By inferring objects and their depth ordering, we would be one step closer to true

scene understanding.

The ultimate goal for computer vision is to determine the full 3D structure of the

scene, all the objects and parts it decomposes into, and the interactions between these

parts. Many researchers believe that to create a system with these capabilities we must

solve the more general problem of artificial intelligence. It is yet to be seen if by solving

the computer vision problem we will create artificial intelligence, but I am very excited

to continue exploring these possibilities with my fellow researchers.

101

BIBLOGRAPHY

Adelson, E. (2001). On seeing stuff: The perception of materials by humans and ma-
chines. In Proceedings of the SPIE, number 4299, pages 1–12.

Arbelaez, P., Hariharan, B., Gu, C., Gupta, S., and Bourdev, L. (2012). Semantic
segmentation using regions and parts. In Proceedings IEEE Conference Computer
Vision and Pattern Recognition.

Barla, A., Odone, F., and Verri, A. (2003). Histogram intersection kernel for image clas-
sification. In Proceedings International Conference on Image Processing, volume 3.
IEEE.

Bourdev, L. and Malik, J. (2009). Poselets: Body part detectors trained using 3d human
pose annotations. In Proceedings IEEE International Conference Computer Vision.

Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(9):1124–37.

Boykov, Y., Veksler, O., and Zabih, R. (2001). Efficient approximate energy minimization
via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(12):1222–1239.

Brostow, G. J., Shotton, J., Fauqueur, J., and Cipolla, R. (2008). Segmentation and
recognition using structure from motion point clouds. In Proceedings European Con-
ference Computer Vision.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.
In Proceedings IEEE Conference Computer Vision and Pattern Recognition.

Deng, J., Berg, A., Li, K., and Fei-Fei, L. (2010). What does classifying more than 10,000
image categories tell us? In Proceedings European Conference Computer Vision.

Deng, J., Krause, J., Berg, A. C., and Li, F.-F. (2012). Hedging your bets: Optimizing
accuracy-specificity trade-offs in large scale visual recognition. In Proceedings IEEE
Conference Computer Vision and Pattern Recognition.

Divvala, S. K., Hoiem, D., Hays, J. H., Efros, A. A., and Hebert, M. (2009). An empirical
study of context in object detection. In Proceedings IEEE Conference Computer
Vision and Pattern Recognition.

Eigen, D. and Fergus, R. (2012). Nonparametric image parsing using adaptive neighbor
sets. In Proceedings IEEE Conference Computer Vision and Pattern Recognition.

Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2012). Scene parsing with mul-
tiscale feature learning, purity trees, and optimal covers. In Proceedings of the
International Conference on Machine Learning.

Farhadi, A., Endres, I., and Hoiem, D. (2010). Attribute-centric recognition for cross-
category generalization. In Proceedings IEEE Conference Computer Vision and Pat-
tern Recognition.

102

Fellbaum, C. (1998). Wordnet: An electronic lexical database. In Cambridge, MA: MIT
Press.

Felzenszwalb, P., Mcallester, D., and Ramanan, D. (2008). A discriminatively trained
, multiscale , deformable part model. In Proceedings IEEE Conference Computer
Vision and Pattern Recognition.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient graph-based image segmen-
tation. International Journal of Computer Vision, 2(2):1–26.

Floros, G., Rematas, K., and Leibe, B. (2011). Multi-class image labeling with top-down
segmentation and generalized robust pn potentials. In Proceedings of the British
Machine Vision Conference.

Fu, K. S. and Albus, J. E. (1982). Syntactic pattern recognition and applications, vol-
ume 4. Prentice-Hall Englewood Cliffs, NJ.

Galleguillos, C. and Belongie, S. (2010). Context based object categorization: A critical
survey. Computer Vision and Image Understanding, 114(6):712–722.

Galleguillos, C., Mcfee, B., Belongie, S., and Lanckriet, G. (2010). Multi-class object
localization by combining local contextual interactions. In Proceedings IEEE Con-
ference Computer Vision and Pattern Recognition.

Galleguillos, C., Rabinovich, A., and Belongie, S. (2008). Object categorization using
co-occurrence, location and appearance. In Proceedings IEEE Conference Computer
Vision and Pattern Recognition.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6:721–741.

Gionis, A., Indyk, P., and Motwani, R. (1999). Similarity search in high dimensions via
hashing. In Proceedings of the 25th Very Large Database.

Gould, S., Fulton, R., and Koller, D. (2009). Decomposing a scene into geometric and
semantically consistent regions. In Proceedings IEEE International Conference Com-
puter Vision.

Griffin, G. and Perona, P. (2008). Learning and using taxonomies for fast visual catego-
rization. In Proceedings IEEE Conference Computer Vision and Pattern Recognition.

Grundmann, M., Kwatra, V., Han, M., and Essa, I. (2010). Efficient hierarchical graph-
based video segmentation. In Proceedings IEEE Conference Computer Vision and
Pattern Recognition.

Guo, R. and Hoiem, D. (2012). Beyond the line of sight: labeling the underlying surfaces.
In Proceedings European Conference Computer Vision.

Gupta, A. and Davis, L. S. (2008). Beyond nouns: Exploiting prepositions and compar-
ative adjectives for learning visual classifiers. In Proceedings European Conference
Computer Vision.

103

Gupta, A., Efros, A. A., and Hebert, M. (2010). Blocks world revisited: Image un-
derstanding using qualitative geometry and mechanics. In Proceedings European
Conference Computer Vision.

Gupta, A., Satkin, S., Efros, A. A., and Hebert, M. (2011). From 3d scene geometry to
human workspace. In Proceedings IEEE Conference Computer Vision and Pattern
Recognition.

Hanson, A. R. and Riseman, E. M. (1978). Visions: A computer system for interpreting
scenes. Computer vision systems, 78.

Hariharan, B., Malik, J., and Ramanan, D. (2012). Discriminative decorrelation for
clustering and classification. In Proceedings European Conference Computer Vision.

Hays, J. and Efros, A. A. (2007). Scene completion using millions of photographs. ACM
Transactions on Graphics (SIGGRAPH 2007), 26(3).

Hays, J. and Efros, A. A. (2008). Im 2 gps : estimating geographic information from a
single image. In Proceedings IEEE Conference Computer Vision and Pattern Recog-
nition.

He, X., Zemel, R. S., and Carreira-Perpinan, M. A. (2004). Multiscale conditional random
fields for image labeling. In Proceedings IEEE Conference Computer Vision and
Pattern Recognition.

Hedau, V., Hoiem, D., and Forsyth, D. (2009). Recovering the spatial layout of cluttered
rooms. In Proceedings IEEE International Conference Computer Vision.

Hedau, V., Hoiem, D., and Forsyth, D. (2010). Thinking inside the box: Using appearance
models and context based on room geometry. In Proceedings European Conference
Computer Vision.

Heitz, G. and Koller, D. (2008). Learning spatial context: Using stuff to find things. In
Proceedings European Conference Computer Vision.

Hoiem, D., Efros, A. A., and Hebert, M. (2005). Automatic photo pop-up. In ACM
SIGGRAPH.

Hoiem, D., Efros, A. A., and Hebert, M. (2006). Putting objects in perspective. In
Proceedings IEEE Conference Computer Vision and Pattern Recognition.

Hoiem, D., Efros, A. A., and Hebert, M. (2007). Recovering surface layout from an
image. International Journal of Computer Vision, 75(1).

Indyk, P. and Motwani, R. (1999). Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of 30th Symposium on Theory of Computing.

Janoch, A., Karayev, S., Jia, Y., Barron, J. T., Fritz, M., Saenko, K., and Darrell,
T. (2011). A category-level 3-d object dataset : Putting the kinect to work. In
Proceedings IEEE International Conference Computer Vision Workshop.

104

Kolmogorov, V. and Zabih, R. (2004). What energy functions can be minimized via
graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(2):147–59.

Kulkarni, G., Premraj, V., Ordonez, V., Dhar, S., Li, S., Choi, Y., Berg, A. C., and Berg,
T. L. (2013). Babytalk: Understanding and generating simple image descriptions.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Kumar, N., Berg, A., Belhumeur, P. N., and Nayar, S. (2011). Describable visual at-
tributes for face verification and image search. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 33(10):1962–1977.

Kumar, S. and Hebert, M. (2006). Discriminative random fields. International Journal
of Computer Vision, 68(2):179–201.

Ladický, L., Russell, C., Kohli, P., and Torr, P. H. (2009). Associative hierarchical crfs for
object class image segmentation. In International Conference on Computer Vision.

Ladický, L., Russell, C., Kohli, P., and Torr, P. H. (2010a). Graph cut based inference
with co-occurrence statistics. In European Conference on Computer Vision.

Ladický, L., Sturgess, P., Alahari, K., Russell, C., and Torr, P. H. (2010b). What, where
& how many? combining object detectors and crfs. In European Conference on
Computer Vision.

Lai, K., Bo, L., Ren, X., and Fox, D. (2011). A scalable tree-based approach for joint
object and pose recognition. In Twenty-Fifth Conference on Artificial Intelligence.

Lampert, C. H., Nickisch, H., and Harmeling, S. (2009). Learning to detect unseen
object classes by between-class attribute transfer. In Proceedings IEEE International
Conference Computer Vision.

Lazebnik, S. and Raginsky, M. (2009). An empirical bayes approach to contextual re-
gion classification. In Proceedings IEEE Conference Computer Vision and Pattern
Recognition.

Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In Proceedings IEEE Conference
Computer Vision and Pattern Recognition.

Lee, D. C., Gupta, A., Hebert, M., and Kanade, T. (2010). Estimating spatial layout of
rooms using volumetric reasoning about objects and surfaces. In Advances in Neural
Information Processing Systems.

Leibe, B., Leonardis, A., and Schiele, B. (2008). Robust object detection with inter-
leaved categorization and segmentation. International Journal of Computer Vision,
77(13):259289.

Liu, C., Yuen, J., and Torralba, A. (2011a). Nonparametric scene parsing via label trans-
fer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12):2368–
2382.

105

Liu, C., Yuen, J., and Torralba, A. (2011b). Sift flow: dense correspondence across
scenes and its applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(5):978–94.

Malisiewicz, T. and Efros, A. A. (2008). Recognition by association via learning per-
exemplar distances. In Proceedings IEEE Conference Computer Vision and Pattern
Recognition.

Malisiewicz, T., Gupta, A., and Efros, A. A. (2011). Ensemble of exemplar-SVMs for
object detection and beyond. In ICCV.

Marszalek, M. and Schmid, C. (2007). Semantic hierarchies for visual object recognition.
In Proceedings IEEE Conference Computer Vision and Pattern Recognition.

Myeong, H. J., Chang, Y., and Lee, K. M. (2012). Learning object relationships via
graph-based context model. Proceedings IEEE Conference Computer Vision and
Pattern Recognition.

Nowozin, S., Carsten Rother, Bagon, S., Sharp, T., Yao, B., and Kohli, P. (2011). Deci-
sion tree fields. In Proceedings IEEE International Conference Computer Vision.

Ohta, Y. (1985). Knowledge-based interpretation of outdoor natural color scenes, vol-
ume 4. Morgan Kaufmann.

Ohta, Y., Kanade, T., and Sakai, T. (1978). An analysis system for scenes containing ob-
jects with substructures. In Proceedings of the Fourth International Joint Conference
on Pattern Recognitions, pages 752–754.

Oliva, A. and Torralba, A. (2006). Building the gist of a scene: the role of global image
features in recognition. Visual Perception, Progress in Brain Research, 155:23–36.

Ordonez, V., Kulkarni, G., and Berg, T. L. (2011). Im2text: Describing images us-
ing 1 million captioned photographs. In Proceedings Neural Information Processing
Systems.

Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., and Belongie, S. (2007).
Objects in context. In Proceedings IEEE International Conference Computer Vision.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. In
Proceedings Neural Information Processing Systems.

Ren, X. and Malik, J. (2003). Learning a classification model for segmentation. In
Proceedings IEEE International Conference Computer Vision.

Roberts, L. (1965). Machine perception of 3-d solids.

Rother, C., Kolmogorov, V., and Blake, A. (2004). Grabcut: Interactive foreground
extraction using iterated graph cuts. In ACM SIGGRAPH.

Russell, B. C. and Torralba, A. (2009). Building a database of 3d scenes from user anno-
tations. In Proceedings IEEE Conference Computer Vision and Pattern Recognition.

106

Russell, B. C., Torralba, A., Liu, C., Fergus, R., and Freeman, W. T. (2007). Object
recognition by scene alignment. In Proceedings Neural Information Processing Sys-
tems.

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). Labelme
: a database and web-based tool for image annotation. International Journal of
Computer Vision, 77(1-3):157–173.

Shotton, J., Johnson, M., and Cipolla, R. (2008). Semantic texton forests for image
categorization and segmentation. In Proceedings IEEE Conference Computer Vision
and Pattern Recognition.

Shotton, J., Winn, J. M., Rother, C., and Criminisi, A. (2009). Textonboost for image
understanding: Multi-class object recognition and segmentation by jointly modeling
texture, layout, and context. International Journal of Computer Vision, 81(1):2–23.

Silberman, N. and Fergus, R. (2011). Indoor scene segmentation using a structured light
sensor. In Proceedings IEEE International Conference Computer Vision Workshop.

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation and
support inference from rgbd images. In Proceedings European Conference Computer
Vision.

Singh, G. and Košecká, J. (2013). Nonparametric scene parsing with adaptive feature
relevance and semantic context. Proceedings IEEE Conference Computer Vision and
Pattern Recognition.

Socher, R., Lin, C. C.-Y., Ng, A. Y., and Manning, C. D. (2011). Parsing natural
scenes and natural language with recursive neural networks. In Proceedings of the
International Conference on Machine Learning.

Sturgess, P., Alahari, K., Ladicky, L., and Torr, P. H. S. (2009). Combining appearance
and structure from motion features for road scene understanding. British Machine
Vision Conference.

Tighe, J. and Lazebnik, S. (2010). SuperParsing: Scalable nonparametric image parsing
with superpixels. In Proceedings European Conference Computer Vision.

Tighe, J. and Lazebnik, S. (2011). Understanding scenes on many levels. In Proceedings
IEEE International Conference Computer Vision.

Tighe, J. and Lazebnik, S. (2013a). Finding things: Image parsing with regions and per-
exemplar detectors. In Proceedings IEEE Conference Computer Vision and Pattern
Recognition.

Tighe, J. and Lazebnik, S. (2013b). SuperParsing: Scalable nonparametric image parsing
with superpixels. International Journal of Computer Vision, 101(2):329–349.

Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 million tiny images: a large data
set for nonparametric object and scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(11):1958–1970.

107

Tu, Z. (2008). Auto-context and its application to high-level vision tasks. In Proceedings
IEEE Conference Computer Vision and Pattern Recognition.

Tu, Z., Chen, X., Yuille, A. L., and Zhu, S.-C. (2005). Image parsing: Unifying seg-
mentation, detection, and recognition. International Journal of Computer Vision,
63(2):113–140.

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010). Sun database:
Large-scale scene recognition from abbey to zoo. In Proceedings IEEE Conference
Computer Vision and Pattern Recognition.

Xiao, J. and Quan, L. (2009). Multiple View Semantic Segmentation for Street View
Images. In Proceedings IEEE International Conference Computer Vision.

Xu, C. and Corso, J. J. (2012). Evaluation of super-voxel methods for early video pro-
cessing. Proceedings IEEE Conference Computer Vision and Pattern Recognition.

Zhang, C., Wang, L., and Yang, R. (2010). Semantic segmentation of urban scenes using
dense depth maps. In Proceedings European Conference Computer Vision.

Zhao, Y. and Zhu, S.-C. (2011). Image parsing via stochastic scene grammar. In Advances
in Neural Information Processing Systems.

Zhu, S. and Mumford, D. (2006). A stochastic grammar of images. Foundations and
Trends in Computer Graphics and Vision, 2(4):259–362.

108

