
METHODS OF ENSEMBLE DATA ASSIMILATION ON ADAPTIVE
MOVING MESHES

Colin Guider

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Mathematics in the College of Arts and Sciences.

Chapel Hill
2019

Approved by:

Chris K. R. T. Jones

Amarjit Budhiraja

Alberto Carrassi

Katie Newhall

Christian Sampson

c© 2019
Colin Guider

ALL RIGHTS RESERVED

ii

ABSTRACT

Colin Guider: Methods of Ensemble Data Assimilation on Adaptive
Moving Meshes

(Under the direction of Chris K. R. T. Jones)

Numerical models solved on adaptive moving meshes have become increasingly prevalent in recent

years. In particular, neXtSIM is a 2D model of sea-ice that is numerically solved on a Lagrangian

mesh that does not conserve the number of mesh points. In this dissertation, we present two

novel approaches to the formulation of ensemble data assimilation for models with this underlying

computational structure. Specifically, we map ensemble members onto a common reference mesh,

where the Ensemble Kalman Filter (EnKF) can be performed. Numerical experiments are carried

out using 1D prototypical models: Burgers and Kuramoto-Sivashinsky equations, with both Eulerian

and Lagrangian synthetic observations assimilated. One of the approaches is very effective, while

the other is significantly less so.

We also present a novel approach in the formulation of the Local Ensemble Transform Kalman

Filter (LETKF) on a conservative moving mesh model. This is also achieved by mapping the

ensemble members onto a common reference mesh, but it done in a significantly different manner

than from the previous two approaches. Specifically, the common mesh is formed by taking an

equidistributing mesh for the previous output of the algorithm. The preliminary results of this

method from an application to Burgers equation are encouraging.

iii

To Mom, Dad, Lauren, Sam, Neil, and Maddie

iv

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Chris Jones. He took me on as a student at a time when

I was unsure of which direction I wanted to take in my research, and gave me a very interesting

problem that I think has real-world applicability. Chris stuck with me through my ups and downs,

and I really appreciate that.

I would also like to thank my collaborators: Alberto Carrassi, Ali Aydogdu, Matthias Rabatel,

and Pierre Rampal from the Nansen Center; Cassidy Krause and Erik Van Vleck at the University

of Kansas; Nikhil Shankar at the University of Michigan; and John Maclean and Christian Sampson

here at UNC - Chapel Hill. This work would not have been possible without them.

I would also like to acknowledge Colin Grudzien, Paul Cornwell, and Claire Kiers for great

advice given to me along the way.

I want to thank everyone at the Nansen Center in Bergen, Norway for the warm hospitality and

wonderful time I spent there. I would also like to thank everyone here in the math department here

at UNC.

I would like to thank Chris, Alberto, Amarjit, Katie, and Christian for serving on my committee.

Finally, I would like to thank all of my family and friends for their support on this long journey.

v

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . xi

CHAPTER 1: INTRODUCTION . 1

1.1 The Field of Data Assimilation . 2

1.2 Adaptive Mesh Refinement . 2

1.3 The Problem at Hand . 4

CHAPTER 2: DATA ASSIMILATION . 5

2.1 What is Data Assimilation? . 5

2.2 Filtering . 6

2.3 Derivation of the Kalman Filter . 7

2.4 The Ensemble Kalman Filter . 9

2.4.1 Stochastic Ensemble Kalman Filter . 10

2.4.2 Local Ensemble Transform Kalman Filter . 10

2.5 The Particle Filter . 11

2.5.1 A Basic Particle Filter . 12

2.5.2 A Particle Filter with Resampling . 12

2.6 Summary . 13

CHAPTER 3: PHYSICAL MODELS ON ADAPTIVE MOVINGMESHESWITH
REMESHING . 14

3.1 Introduction . 14

3.1.1 Adaptive mesh models . 14

3.1.2 Data assimilation for adaptive mesh models: the issue 14

3.1.3 Motivation: the Lagrangian sea-ice model neXtSIM 16

vi

3.1.4 Goal and Outline . 17

3.2 The physical model and its integration . 18

3.3 A one-dimensional, non-conservative, velocity-based adaptive moving mesh 20

3.3.1 The mesh features and its setup . 20

3.3.2 The remeshing procedure . 22

3.4 The model state and its evolution . 23

3.5 The Numerical Models . 25

3.6 Summary . 27

CHAPTER 4: THE FIRST APPROACH TO THE ADAPTIVE MESH ENKF:
INTERPOLATION . 29

4.1 The ensemble Kalman filter for an adaptive moving mesh model 29

4.1.1 Fixed reference meshes . 31

4.1.2 Mapping onto a fixed reference mesh . 32

4.1.3 Observation operator . 33

4.1.4 Analysis using the ensemble Kalman filter . 34

4.1.5 From a fixed reference mesh to an adaptive moving mesh 36

4.2 Experimental setup . 38

4.3 Results . 39

4.3.1 Modified EnKF for adaptive moving mesh models - Burgers’ equation 39

4.3.2 Modified EnKF for adaptive moving mesh models - Kuramoto-Sivashinsky
equation . 42

4.3.3 Impact of observation type: Eulerian versus Lagrangian 46

4.4 Conclusions . 47

CHAPTER 5: THE SECOND APPROACH TO THE ADAPTIVE MESH ENKF:
NO INTERPOLATION . 50

5.1 Introduction . 50

5.2 The EnKF for an adaptive moving mesh model - second version 51

5.2.1 The fixed reference mesh . 51

5.2.2 Projecting onto the high-resolution fixed reference mesh 51

5.2.3 Observation operator . 52

vii

5.2.4 Analysis using the ensemble Kalman filter . 52

5.3 Experimental Setup . 55

5.4 Results . 55

5.5 Conclusions . 58

CHAPTER 6: ADAPTIVE MESH ENKF ON A MOVING REFERENCE MESH 60

6.1 Introduction . 60

6.2 Adaptive Mesh Movement in 1D . 61

6.3 The Local Ensemble Transform Kalman Filter (LETKF) for a Conservative Adaptive
Moving Mesh Model . 62

6.3.1 The model state and its evolution . 63

6.3.2 Mapping onto a fixed reference mesh . 63

6.4 Experimental Setup . 64

6.5 Results . 65

6.6 Conclusions . 66

CHAPTER 7: SUMMARY OF RESULTS AND FUTURE DIRECTIONS 67

REFERENCES . 69

viii

LIST OF FIGURES

2.1 Dependency structure for nonlinear state space model 7

3.1 A simple illustration of the remeshing process with δ1 = 0.2 and δ2 = 0.5: invalid
mesh (a) remove z2(tk) which violates δ1 (b) and insert z∗(tk) not to violate δ2 (c) 23

3.2 An illustration of adaptive moving mesh over time solving Burgers’ equation until
t = 1 on a domain z=(0,1]. In this example, the remeshing criteria are based on
δ1 = 0.02 and δ2 = 0.05. There are 40 initial adaptive moving mesh nodes and 27 at
t = 1; these are shown in green and red, respectively. 24

3.3 Solutions of Burgers’ and Kuramoto-Sivasinsky equations. These solutions on a
uniform mesh represent the truth from which to sample the observations. Their
implementations on an adaptive moving mesh are used as forecast models of the
ensemble. 27

3.4 Observations sampled from the truth (Fig. 3.3a) in Eulerian (a) and Lagrangian (b)
sense mimicking geo-stationary satellite and buoy measurements, respectively. 28

4.1 Illustration of the analysis cycle in the proposed EnKF method for adaptive moving
mesh models. In S1, adaptive meshes are mapped onto the fixed reference mesh.
The ensemble is updated on the fixed reference mesh at step S2 (i.e. the analysis).
Then, in S3, the updated ensemble members are mapped back to the corresponding
adaptive moving meshes. The full process is illustrated in Figure 4.2 for one ensemble
member. See text in Sect. 4.1 for full details on the individual process steps S0, S1,
S2, and S3. 30

4.2 Schematic illustration of the DA cycle on the high resolution (a) and low resolution
(b) fixed reference mesh where only u is updated. AMM and FRM stands for adaptive
moving mesh and fixed reference mesh, respectively. Dark and pale blue/red lines
are forecast/analysis on adaptive moving mesh and fixed reference mesh, respectively.
Gray circles are the observations. Following the arrows: S1 is the mapping the adaptive
moving mesh on to the fixed reference mesh, S2 is the update of the ensemble member,
S3 is the backward mapping on the adaptive moving mesh (see Fig. 4.1). 37

4.3 Time evolution of the forecast RMSE (solid line) and the spread (σ, dashed line) of
DA-free ensemble run using BGM. Dark and light lines represent the HR and LR,
respectively. 40

4.4 Time-mean of the RMSE of the analysis ensemble mean (solid line) and ensemble
spread (σ, dashed line) of BGM for different ensemble size N e (a); inflation factor, α
(b); and initial mesh size, N0 (c). Dark and light red show the HR and LR, respectively. 41

4.5 Time evolution of the RMSE (solid line) and spread (σ, dashed line) for BGM until
t = 2. Dark and light lines represent the HR and LR, respectively. Blue and red
show forecast and analysis, respectively. 43

4.6 Same as Figure 4.3 but using KSM. 44

4.7 Same as Figure 4.4 but using KSM. 44

4.8 Same as Figure 4.5 but using KSM. 45

4.9 . 46

ix

5.1 Plot of forecast and analysis ensemble members at Time = 0.15, after three data
assimilation steps. Forecast ensemble members are in green, analysis are in black. . . 55

5.2 Plot of forecast and analysis ensemble members at Time = 0.30, after the fourth data
assimilation step. Forecast ensemble members are in green, analysis are in black. We
can clearly see here how the analysis overestimates the state along the shock. 56

5.3 Plot of forecast and analysis ensemble members at Time = 0.45, after nine data
assimilation steps. Forecast ensemble members are in green, analysis are in black. . . 57

5.4 Plot of forecast, analysis, and observation root mean square error. 58

6.1 Illustration of projection onto the common mesh for the data assimilation update.
Two ensemble members are shown in blue; a common mesh is computed from their
ensemble mean, which is shown in red. 64

6.2 Plot of the analysis root mean square error and the RMSE of a free run for the
conservative adaptive mesh case. The horizontal axis shows the time step. 65

x

LIST OF TABLES

4.1 Experimental setup parameters: ν is the viscosity, δ1 and δ2 are the remeshing
criteria, N1 and N2 the number of nodes in the HR and LR fixed reference mesh, T
the duration of the experiments, ∆t the analysis interval, dEUL and dLAG0 the number
of Eulerian observations and the initial number of Lagrangian observations. 39

4.2 Ensemble size (N e), inflation factor (α), and initial mesh size (N0) chosen from
the sensitivity experiments in Figure 4.4 to perform the experiment in Figure 4.5.
Resulting time mean of the RMSE and spread (σ) for the HR and LR using BGM
between t = 0 and 2 are also listed. 42

4.3 Same as Table 4.2 but using KSM deduced from experiments in Figure 4.7. 45

xi

CHAPTER 1

Introduction

Physical models are ubiquitous in environmental science [1, 2, 3]. They are key in our un-

derstanding of the underlying physical processes; from basic models that can be easily analyzed

and understood, but are drastic simplifications of much more complicated physical phenomena, to

much more complex ones, such as global climate models, that attempt to capture all aspects of

the environment, but are much too large to fully understand. Of course, no matter how complex a

model is, no matter how many parameters it has or how many equations are involved, it will never

be able to perfectly represent the world we observe.

We then turn to the data for more information. With the the rise of big data in the past few

decades, it has become more important than ever to be able to make use of the vast quantity of

information available to us. This is a daunting endeavor: it is difficult to even comprehend the

amount of data available. How can we hope to find even basic patterns in all of this, to find a signal

in the noise? In many fields, like economics and political science, it is quite difficult to understand

the underlying processes. There is a vast amount of data available, but it can be extremely difficult

to find underlying trends.

The advantage in the physical sciences, particular in environmental science and climate, is that

the physics involved is fairly well-understood. This, combined with the wealth of observations of

various aspects of the atmosphere, suggests combining both of these approaches. We can begin

with a physical model, usually a system of partial differential equations, that approximates some

geophysical process like the greenhouse effect [2] or the evolution of a hurricane [4]. Of course, we

have observations of many aspects of these two situations. For example, we have centuries worth

of records of atmospheric carbon and global temperature measurements, and we can look back

at hundreds of past hurricanes to track their paths, precipitation, and wind-speed. Our goal is

to combine these data with our physical models to improve our knowledge of these phenomena.

Generally, the objective is to use past and current observations to better predict what will happen

1

in the future, whether to project the global average temperature given various emissions scenarios

or to make an informed decision as to which areas to evacuate given a hurricane’s current trajectory.

The field that combines physical models with observations is known as data assimilation.

1.1 The Field of Data Assimilation

We give a more thorough description of the basic techniques of data assimilation in Chapter 2,

but we give a brief overview here. Generally, the goal is to estimate the value of some state variable

x, that evolves over time. The problem is that the variable x is not observed, at least not directly.

However, we do have some idea of how the state variable evolves over time. This is given by a

state evolution model, denoted by M, which can depend on time and is often represented by a

computational solution of a partial differential equation (PDE) model.

While we do not observe x, we do observe a variable y, that has some relationship with x. This

relationship is represented by

y = H(x), (1.1)

where H is known as the observation operator ; this can also depend on time.

A key assumption underlying most situations where data assimilation is applicable is the presence

of noise, both in the state model and observational model. Typically, this noise is taken to be

Gaussian with zero-mean. This is where uncertainty is introduced into the situation, and is what

makes the problem non-trivial. The variance in each of these noise terms is often unknown, but

can be approximated using an ensemble-based process. This is the approach we take throughout.

The problem of estimating the state given observations is fairly straightforward when the state and

observational model are linear; the state models we consider later are exclusively nonlinear. This

raises an issue we can also mitigate using ensemble-based methods.

In the next chapter, we detail the basic probabilistic data assimilation algorithms in use. In

particular, we derive the Kalman Filter, and the Ensemble Kalman Filter (EnKF), its ensemble-based

version. It is the the EnKF that is the basis for the algorithms developed in later chapters of this

work. We also include the particle filter and hybrid filter, for completeness.

1.2 Adaptive Mesh Refinement

Models of the atmosphere and of specific atmospheric processes are generally represented by

systems of partial differential equations. These equations will almost never have analytic solutions,

2

so there is no function we can find into which we can plug in the relevant state, location, and time

and which will output the desired quantity. We take a numerical approach to these models. Using

finite difference or finite element methods, we approximate solutions to these systems at various

points in our spatiotemporal domain. For example, Global Climate Models (GCMs) "grid up" the

atmosphere of the Earth into several million evenly distributed points, and the model equations are

solved numerically at these grid points.

Large models are extremely computationally expensive; they must be run on clusters of computers.

This is due to the number of mesh points on which the equations must be solved, in addition to

the quantity of variables and equations involved. It may be desirable to reduce the complexity of

the model in some way to reduce the computational cost needed to effectively run these models.

One approach is to simplify some of the underlying geophysical processes, which would reduce the

number of variables and equations in the model. Another approach, the one that is of interest to

us here, is to find a way to use fewer mesh points. In order to be successful in such a method, we

should strive to place more mesh points in regions of large variation and fewer points in other areas

of the domain. Since the regions of variation will change over time, this leads us to the idea of mesh

adaptivity.

Some of the existing literature [5] examines the scenario in which the number of mesh points is

fixed in time. The mesh point advection is governed by a computational PDE that the mesh point

velocities must satisfy. However, mesh points are not removed or inserted. For our purposes, we

will refer to such meshes as conservative, in the sense that the number of mesh points is conserved

throughout time. The idea is that the density of mesh points is higher where there is more variation

in the variable(s) of interest, and the points move throughout the process to regions of higher

variation as needed. In the one-dimensional case (we do not consider higher dimensions here), this

is accomplished by equidistributing some function ρ(x), such that its integral between consecutive

mesh points is kept constant. This equidistribution condition can be reformulated as a partial

differential equation that the adaptive mesh points must satisfy.

We will also consider adaptive meshes where the number of mesh points is allowed to change

over time; we refer to such meshes as non-conservative. In this scenario, the mesh points move over

time, but not according to an equidistribution condition as in the conservative mesh case. This lack

of equidistribution can lead to meshes that are significantly distorted, and thus are unsuitable for

3

solving the relevant equations. To rectify this, a remeshing process is implemented in regions of

significant distortion in the mesh. In general, mesh points are removed when the distance between

mesh points becomes too small, and mesh points are added when the distance between them becomes

too large. This remeshing process does not preserve the total number of mesh points, a significant

deviation from the conservative case.

1.3 The Problem at Hand

The goal of this dissertation is to develop data assimilation algorithms suitable for adaptive

moving mesh models. Data assimilation in general is discussed at length in Chapter 2. Since

observations are becoming more and more ubiquitous in this age of big data, this is a problem

relevant to several scientific areas, particularly in the geosciences.

Two different situations are considered here. The first is that of a non-conservative adaptive

moving mesh model, such as that employed in neXtSIM. The framework for a non-conservative

mesh in one dimension is developed in Chapter 3. One approach for a data assimilation method is

employed in Chapter 4, and another in Chapter 5. The second is that of a conservative adaptive

moving mesh model. An application of the Local Ensemble Transform Kalman Filter in this scenario

is developed and analyzed in Chapter 6. The main ideas and future directions of this research are

explored further in Chapter 7.

4

CHAPTER 2

Data Assimilation

2.1 What is Data Assimilation?

The problem of data assimilation can be approached using variational methods or probabilistic

methods. Here, we take a probabilistic approach, since we prefer to construct approximate densities

using an ensemble-based method. In this approach, we will repeatedly apply Bayes’ Theorem to a

prior density for the model and likelihood function to get a posterior density for the model state.

We represent the true state and the observations by a sequence of random variables {(Xn, Yn)}Nn=0

that describe a two-component Markov chain. Thus, at time instant tn, Xn is the true state of the

system and Yn is the observation. We use lower case variables xn, yn to denote realizations of these

random variables Xn, Yn, respectively. Observations are only encountered as realizations of random

variables, so these will always be denoted in lower case. The underlying state process {Xn}Nn=0 is

unobservable, so we must conduct all inference based on the observations {Yn}.

Because the state and observation are indexed by time, it is natural to pursue an "online" data

assimilation algorithm; i.e., one that updates the state estimate as new observations come along.

We achieve this using a Bayesian approach.

It will be helpful to simplify the notation. We denote the sets of state variables and observations by

X0:n = {X0, X1, . . . , Xn} and Y1:n = {Y1, . . . , YN}, respectively. We similarly define the realizations

of these random variables by x0:n and y1:n. Then an application of Bayes’ Theorem gives

p (x0:n|y1:n) ∝ p (y1:n|x0:n) p (x0:n) . (2.1)

In accordance with the preferred nomenclature, p (x0:n|y1:n) is referred to as the posterior density,

p (y1:n|x0:n) as the likelihood density of the observtions y1:n given the state x0:n, and p (x0:n) as the

prior density.

Repeated application of (2.1) would require updating the joint distribution of X0:n in order to

5

assimilate the observation yn for each n. We would also have to calculate the joint likelihood of every

observation Y1:n. Rather than working with joint densities, which would be overly cumbersome, we

formulate the filtering problem, in which natural assumptions regarding the structure of the model

and obserations allows us to rewrite (2.1) so that we can recursively update the probability density

function (pdf) for just the current state Xn at time instant tn, instead of updating the joint density

of X0:n. We then consider more specialized scenarios: we first describe the general Kalman filter,

and then a statistical method known as the Ensemble Kalman Filter (EnKF). Useful versions of the

EnKF include the Stochastic EnKF and the Local Ensemble Transform Kalman Filter (LETKF),

which are both used in the adaptive mesh scenarios discussed in later chapters. Then, we describe a

basic formulation of the Particle Filter.

2.2 Filtering

We make two key assumptions, which are both justified and significantly simplify things. First,

we assume that the distribution of Yn given {Yk}n−1
k=0 and Xn depends only on Xn. Second, we assume

that the distribution of Xn given Xn−1 and {Yk}n−1
k=0 depends only on Xn−1. This dependency

structure is shown in Figure 2.1. Given these assumptions, we can rewrite (2.1) as

p (xn|y1:n) ∝ p (yn|xn) p (xn|y1:n−1) , (2.2)

where the forecast density is p (xn|y1:n−1) and the posterior density is p (xn|y1:n). The question of

computing the posterior density p (xn|y1:n) is the filtering problem, and methods that accomplish

this task are called filtering methods or filters. In order to compute the forecast density p (xn|y1:n−1),

one must integrate the posterior density p (xn−1|y1:n−1) from the previous time step, as follows:

p (xn|y1:n−1) =
∫
p (xn|xn−1) p (xn−1|y1:n−1) dxn−1. (2.3)

This is the probabilistic analogue of a forecast model in the case of noiseless state dynamics. Once

the forecast density is computed, the posterior density is then:

p (xn|y1:n) = p (yn|xn) p (xn|y1:n−1) . (2.4)

6

Figure 2.1: Dependency structure for nonlinear state space model

One advantage the probabilistic approach gives is that a posterior density is obtained, rather than

simply a point estimate. Such estimates of what we term the analysis xan can be given by the mean

(or other measures of centrality such as the median and mode, depending on the context) of the

posterior density p (xn|y1:n).

In the general case, we will not be able to produce a closed form expression for the integral in

(2.4). Thus, we cannot obtain such expressions for the forecast and posterior distributions; this

is because the state space models and observation functions will usually be nonlinear. It will be

helpful to begin from a situation in which a closed-form expression can be derived, and from there

progress to more sophisticated scenarios. In the most basic setting we consider, the filter we derive

is known as the classical Kalman Filter.

2.3 Derivation of the Kalman Filter

Suppose that the state-observation Markov process had the dependence structure shown in

Figure 2.1. Further, we suppose that the state model is linear with Gaussian errors; this means we

can write it in the form

Xn ∼ N (Mnxn−1,Qn) , (2.5)

where Xn, xn ∈ RM and Mn,Qn ∈ RM×M . In addition, we assume the observations are sampled

independently and with Gaussian errors from the linear observation operator Hn, with

Yn ∼ N (Hnxn,Rn) , (2.6)

where Yn ∈ Rm, Hn ∈ Rm×M , and Rn ∈ Rm×m. Namely, the conditional distribution of

(X0:n−1, Y0:n−1) is normal with conditional mean MnXn−1 and conditional variance Qn. Also,

7

the conditional distribution of Yn given (X0:n, Y0:n−1) is normal with conditional mean HnXn

and conditional variance Rn. We assume that the initial state is normally distributed with some

background covariance; that is, X0 ∼ N (0,B).

It is relatively straightforward to verify that the linear, Gaussian form of the model and

observations imply that the prior, likelihood, and posterior densities in (2.1) are all Gaussian. This

means that we can completely specify each of these distributions by their first and second moments,

i.e., their mean and covariance. To further simplify the notation, we denote the mean of the prior

density p (xn|yn−1) to be xn|n−1 and its covariance by Pn|n−1. Similarly, we denote the mean of

the posterior density p (xn|y1:n) by xn|n and its covariance by Pn|n. This notation refers back to

the Bayesian formulation of the filtering problem. The first subscript represents the present time

step, and the second subscript represents the time step of the most recent observation on which

we condition. Using this notation in the model (2.5), we see that the forecast step in the data

assimilation algorithm consists of updating the mean by way of the equation

xn|n−1 = Mnxn−1|n−1 (2.7)

and covariance

Pn|n−1 = MnPn−1|n−1MT
n + Qn. (2.8)

One can use (2.5) - (2.8), along with Bayes’ Theorem, to determine that the posterior density is

also Gaussian. Its mean and covariance are given by

xn|n = Pn|n
(
HT
nR−1

t + P−1
n|n−1xn|n−1

)
,

Pn|n =
(
HT
nR−1

t Hn + P−1
n|n−1

)−1
.

The mean can be rewritten as

xn|n = xn|n−1 + Kn

(
yn −Hnxn|n−1

)
, (2.9)

8

while the covariance can be written as

Pn|n = (I −KnHn) Pn|n−1, (2.10)

where I is the identity matrix and the matrix Kn, known as the Kalman gain, is given by

Kn = Pn|n−1HT
n

(
HnPn|n−1HT

n + Rn

)−1
. (2.11)

Equations (2.7) - (2.11) fully describe the forecast and analysis cycle for the Kalman filter at time

step n.

2.4 The Ensemble Kalman Filter

The tractability and simplicity of the Kalman Filter has led to its widespread use, even in

scenarios where the model conditions for its validity are not satisfied. One common example of such

a setting is where the linear state model Mnx and linear observation operator Hnx are replaced by

general nonlinear functions mn(x) and hn(x), respectively.

One approach to attempt to bypass linearization of the function mn is what is known as the

Ensemble Kalman Filter (EnKF). In this case, one uses the full nonlinear state equation

xn = mn (xn−1) + τn (2.12)

to simulate state values that are used to approximate the forecast density. More specifically, having

obtained a Gaussian approximation for the posterior distribution at time step n− 1, one takes L

samples from this distribution, hereafter labeled as {Xn−1}Li=1. Using this and L realizations
{
τ in
}

of the state noise, one uses the nonlinear state equation to produce the "forecast ensemble"
{
Xi
n

}
according to the equation

Xi
n = mn

(
Xi
n−1

)
+ τ in, (2.13)

where i ∈ {1, . . . , L}. Assuming a Gaussian forecast density (which may not be valid in the case

of a nonlinear model), we can use our forecast ensemble to approximate the mean of the forecast

density pfn by the sample mean

xn|n−1 = 1
L

L∑
i=1

Xi
n. (2.14)

9

We approximate the forecast covariance by the ensemble covariance, given by the formula

(
Pn|n−1

)
ij

= 1
L− 1

L∑
i=1

(
Xi
n − xn|n−1

) (
Xi
n − xn|n−1

)T
. (2.15)

The forecast distribution is used to produce a Gaussian posterior density by linearizing the observation

function hn and using a modified form of equations (2.9) - (2.10). An alternative to this is to use

an "observation operator-free" version of the EnKF; this will prove useful in Chapter 4.

2.4.1 Stochastic Ensemble Kalman Filter

It turns out that simply using the ensemble-analogues of the Kalman Filter equations for the

analysis step will result in the analysis covariance being underestimated by a factor of (I −KnHn)T.

The stochastic Ensemble Kalman Filter provides an adjustment to avoid this difficulty. An instance

of the observational noise is inserted into the update step for each ensemble member. Thus, the

update equations become

Xi
n|n = Xi

n|n−1 + Kn

(
yn + ein −HnX

i
n|n−1

)
, (2.16)

where i ∈ {1, . . . , L}. The Kalman gain takes on the expected form, while we have

ein ∼ N (0,Rn) .

As mentioned, adding these noise terms ein ensures that the analysis distribution has the proper

spread. If these noise terms are not added, then the analysis ensemble spread will be too small. We

can then approximate the analysis covariance by

Pn|n = 1
L− 1

L∑
i=1

(
Xi
n|n − xn|n

) (
Xi
n|n − xn|n

)T
. (2.17)

2.4.2 Local Ensemble Transform Kalman Filter

In Chapter 6, we will make use of the Local Ensemble Transform Kalman Filter (LETKF),

introduced by [6]. The main characteristic of this algorithm is that it is a deterministic algorithm,

unlike the stochastic EnKF. Domain localization is used here to reduce the dimensionality of

the analysis. This is based on the (often reasonable) idea that the system is low-dimensional in

10

sufficiently small neighborhoods, and is primarily driven by the dynamics of nearby regions. Using

this assumption, the analysis step is performed using different linear combinations of the ensemble

members in different regions. In this way, a lower-dimensional, less computationally-intensive

analysis can be used to explore a much higher-dimensional space.

The general idea is that the LETKF maps a background ensemble
{
Xi
n|n−1

}L
i=1

to an analysis

ensemble
{
Xi
n|n

}L
i=1

by using local observations at time instant tn. We consider an observation of

this system as a triple (yn, hn,Rn), in which yn is the observation, hn is the (non-linear) observation

operator, and Rn is the observation error covariance matrix. We assume observations have been

truncated to only include those chosen for local analysis. We expect

yn = hn(xn) + εn,

where εn is a Gaussian random variable with distribution N (0,Rn).

The goal is to infer which state xn produced the observations, and take that as the analysis

mean xn|n. This can be rephrased as minimizing the following cost function

J(xn) =
[
xn − xfn

]T (
Cfn

)−1 [
xn − xfn

]
+ [yn − hn(xn)]T R−1

n [yn − hn(xn)] , (2.18)

where
(
Cfn

)−1
is the inverse restricted to the column space of Cfn , which in turn requires that

xn − xfn is an element of the column space [reference].

We use a modified version of the LETKF throughout our numerical experiments in Chapter 6.

The modifications are designed to produce a useful definition of the analysis mean and covariance,

given the utilization of adaptive mesh refinement.

2.5 The Particle Filter

To avoid relying on the linearity of the observation operator and/or of the state model, or to

avoid using a linearity approximation, we can instead turn to a particle-based method. Here, we

replace the high-dimensional integrals in (2.3) with suitable Monte-Carlo averages. Instead of using

probability densities to describe the distributions we use discrete probability measures supported on

finitely many points. These points and their wights will evolve in time to give the forecast measure

Πf
n and a posterior measure Πn for different values of n One can then compute the analysis mean

11

xan by computing an integral with respect to the measure Πn.

2.5.1 A Basic Particle Filter

Suppose that Πn−1 is presented as a discrete probability measure supported on the points{
X1
n−1, . . . , X

L
n−1

}
with corresponding weights

{
p1
n−1, . . . , p

L
n−1

}
. Here, L represents the number of

particles used in each step to approximate the distribution Πn−1. The two key steps in the data

assimilation algorithm proceed as follows:

1. (Prediction Step) We propagate each of the particles Xi
n−1 → X̂i

n using the nonlinear state

dynamics (2.12). This requires simulating L noise random varialbes τ in, i = 1, . . . , L. Given

such random variables, the forecast ensemble members are defined by

X̂i
n = mn

(
Xi
n−1

)
+ τ in. (2.19)

Thus, we now have the forecast probability distribution Πf
n as a discrete probability measure

concentrated at L points
{
X̂i
n

}L
i=1

with weights
{
pin−1

}L
i=1.

2. (Filtering Step) We update the weights
{
pin−1

}L
i=1 using the observation yn at time tn by

setting pin = cpin−1

(
X̂i
n, Yn

)
, where

R(x, y) := exp
{
−1

2
(
yn − h

(
X̂i
n

))T
R−1
n

(
yn − h

(
X̂i
n

))}
. (2.20)

The posterior distribution Πn is then defined as the discrete measure with support points{
Xi
n

}L
i=1 and weights

{
pin
}
.

2.5.2 A Particle Filter with Resampling

The main idea here is to periodically resample from the discrete distribution Πn, with replacement,

to obtain a uniform distribution of weights. Of course, resampling introduces extra noise the

approximating scheme, so it is important not to resample too frequently. We fix a resampling

lag indicator α ∈ N. This parameter specifies the number of time steps between successive

resampling steps. Suppose that Πn−1 is given as a discrete probability measure supported on points{
X1
n−1, . . . , X

L
n−1

}
with corresponding weights

{
p1
n−1, . . . , p

L
n−1

}
. If α does not divide n, then the

posterior distribution is given exactly as before in (??). Otherwise, we further modify the discrete

12

probability measure Πn. To do this, we take a random sample of size L from the discrete distribution

{(
X1
n, p

1
n

)
, . . . ,

(
XL
n , p

L
n

)}

and relabel the new points as (
X1
n, . . . , X

L
n

)
.

The posterior distribution is then given as the discrete distribution on the points
{
X1
n, . . . , X

L
n

}
with all of the weights set equal to 1/L.

2.6 Summary

In this chapter, we introduced the filtering problem and derived the forecast and analysis

distributions given the prior and likelihood distributions. We did this using Bayes’ theorem, which

is fitting due to the probabilistic framework we have chosen. Since the integrals present in these

distributions generally cannot be evaluated analytically, we turn to ensemble-based formulations of

the data assimilation algorithms. In particular, we looked at a basic particle filter with resampling

and two formulations of the Ensemble Kalman Filter: the stochastic EnKF and the LETKF.

One algorithm, not discussed in detail here, used by the author in work on inertial particle

DA is the hybrid particle-ensemble Kalman filter, developed in [7]. The idea here is that certain

models are both high dimensional and very nonlinear. The high dimensionality causes issues with a

standard particle filter, while the nonlinearity and non-Gaussian posterior distributions can lead

a standard EnKF to fail. A hybrid filter will take advantage of each of the individual methods

where appropriate, while avoiding many of the pitfalls. It is shown in [7] that the hybrid filter

performs much better than the EnKF, and about as well as the particle filter, with significantly

fewer particles.

The stochastic EnKF is what we turn to in Chapter 4 and Chapter 5, while we make use of

the LETKF in Chapter 6. These are the algorithms we modify to suit the adaptive moving mesh

problems of interest. However, we must first develop the theory behind adaptive moving meshes,

particularly those which do not conserve the number of mesh points. We do this in the next chapter.

13

CHAPTER 3

Physical Models on Adaptive Moving Meshes with Remeshing

3.1 Introduction

3.1.1 Adaptive mesh models

The computational model of a physical phenomenon is typically based on solving a particular

partial differential equation (PDE) with a numerical scheme. Numerical techniques to solve PDEs

evolving in time are most often based on a discretization of the underlying spatial domain. The

resulting mesh is generally fixed in time, but the needs of a given application may require for the

mesh itself to change as the system evolves, adapting to the underlying physics [8]. We consider

here the impact of such a numerical approach on data assimilation.

Two reasons that may lead to the use of an adaptive mesh are: (1) for fluid problems, it is

sometimes preferable to pose the underlying PDEs in a Lagrangian, as opposed to Eulerian, frame,

or (2) the model produces a specific structure, such as a front, shock wave, or overflow that is

localized in space. In case (1), the Lagrangian solver will naturally move the mesh with the evolution

of the PDE [9]. For case (2), the idea is to improve computational accuracy by increasing the mesh

resolution in a neighborhood of the localized structure (see, e.g. [10]). This may be compensated by

the decrease in resolution elsewhere in the domain. Adapting the mesh can prove computationally

efficient in that an adaptive mesh generally requires fewer points than a fixed mesh to attain the

same level of accuracy [5]. Some important application areas where adaptive meshes have been used

are: groundwater equations [11], and thin film equations [12], as well as large geophysical systems

[13, 14].

3.1.2 Data assimilation for adaptive mesh models: the issue

Data assimilation (DA) is the process by which data from observations are assimilated into a

computational model of a physical system. There are numerous mathematical approaches, and

associated numerical techniques, for approaching this issue [15]. We use the term DA to refer to

14

the collection of methods designed to obtain an estimate of the state and parameters of the system

of interest using noisy, usually unevenly distributed, data and an, inevitably approximate, model

of its evolution [16]. There had been considerable development of DA methods in the field of the

geosciences, particularly as a tool to estimate accurate initial conditions for numerical weather

prediction models; a review of the state-of-the-art DA for the geosciences can be found in [17].

Mesh adaptation brings significant challenges to DA. In particular a time-varying mesh may

introduce difficulties in the gradient calculation within variational DA [18]. In an ensemble DA

methodology [19, 20], the challenge arises from the need to compare different ensemble members

in the analysis step. With a moving mesh that depends on the initialization, different ensemble

members may be made up of physical quantities evaluated at a different set of spatial points.

There is another variation that is key to our considerations here, and that is relevant in both cases

described above. The issue is that the nodes in the mesh may become too close together, or too far

apart. Both situations can lead to problems with the computational solver. Some adjustment of

the mesh, based on some prescribed tolerance, may then be preferable, and even necessary. We

are particularly interested in the implications for DA when this adjustment involves the insertion

or deletion of nodes in the mesh. The size of the mesh may then change in time, which has the

consequence that the state vectors at different times may not have the same dimension. In other

words, the state space itself is changing in dimension with time. Consequently, individual ensemble

members, each of them representing a possible realization of the state vector, can even have different

dimensions. In this situation, it is not possible to compute the ensemble-based mean and error

covariances in a straightforward manner, a problem as these are at the core of the ensemble DA

methods [19]. Dealing with and overcoming this situation is the main aim of this chapter and the

following two chapters.

Two specific pieces of work can be viewed as precursors of our methodology. Bonan et al [21]

study an ice sheet that is moving and modeled by a Lagrangian evolution, but without remeshing.

The paper by Du et al. [22] develops DA on an unstructured adaptive mesh. Their mesh is adapted

to the underlying solution to better capture localized structures with a procedure that is akin to

the remeshing in neXtSIM. The challenge we address here is the development of a method that will

address models that are based on Lagrangian solvers and involve remeshing.

15

3.1.3 Motivation: the Lagrangian sea-ice model neXtSIM

This work is further motivated by a specific application, namely performing ensemble-based

DA for a new class of computational models of sea-ice [23]. In particular, the set-up we develop is

based on the specifications of neXtSIM, which is a stand-alone finite element model employing a

Maxwell elasto-brittle rheology [3, 24] to simulate the mechanical behavior of the sea ice. In this new

rheological framework, the heterogeneous and intermittent character of sea ice deformation [25, 26]

is simulated via a combination of the concepts of elastic memory, progressive damage mechanics, and

viscous-like relaxation of stresses. This model has been applied to simulate the long-term evolution

of the Arctic sea ice cover, with significant success when compared to satellite observations of sea ice

concentration, thickness, and drift [24]. It has also been recently shown how crucial this choice for

the ice rheology is in order to improve the model capabilities, e.g., to reproduce sea ice trajectories.

This makes neXtSIM a powerful research numerical tool, not only to study polar climate processes,

but also for operational applications; e.g., to assist search and rescue operations in ice-infested

waters in the polar regions [27].

neXtSIM is solved on a 2-dimensional unstructured triangular adaptive moving mesh based on

a Lagrangian solver that propagates the mesh of the model in time along with the motion of the

sea ice [28]. Moreover, a mesh adaptation technique, referred to as remeshing, is implemented. It

consists of a local mesh adaptation, a specific feature offered by the BAMG library that is included

in neXtSIM (http://www.ann.jussieu.fr/hecht/ftp/bamg/bamg.pdf). The advantages of a local

mesh modification is that it is efficient, introduces very low numerical dissipation [29], and also

allows local conservation [30]. The remshing algorithm operates on the edges of the triangular

elements to avoid tangling or distortion of the mesh, as well as inserting, or removing, nodes on

the mesh in case it is needed to prevent exceedingly sharp refinements resulting in an excessive

computational burden.

The specific DA methodology we develop for adaptive mesh problems is driven by the consider-

ations of neXtSIM. The remeshing in neXtSIM, and the consequent change in the state vector’s

dimension, is addressed in our assimilation scheme by the introduction of a reference mesh. The

latter represents a common mesh for forming the error covariance matrix from the ensemble members.

The question then arises as to whether this common mesh is used to propagate each individual

ensemble member forward in time. From the viewpoint of neXtSIM, however, continuing with

16

the reference mesh, common to all members, could throw away valuable physical information. In

fact, the use of a Lagrangian solver in neXtSIM assures that the mesh configurations are naturally

attuned to the physical evolution of the ice. For this reason, we make the critical methodological

decision to map back to the meshes of the individual ensemble members after the assimilation step.

The Lagrangian solver in the model is thus the primary determinant of the mesh configuration used

in each forecast step. The reference mesh is only used in a temporary capacity to afford a consistent

update at the assimilation step.

3.1.4 Goal and Outline

In this chapter, we proceed towards constructing a 1-dimensional setup designed to capture the

core issues that neXtSIM presents for the applications of an ensemble-based DA scheme. We perform

experiments using both Eulerian (where the observation locations are fixed) and Lagrangian (where

observation locations move with the flow) observations. We test the strategy for two well-known

PDEs: the viscous Burgers and Kuramoto-Sivashinsky equation, whose associated computational

models we refer to as BGM and KSM, respectively. The Burgers’ equation, which can be viewed as

modeling a one-dimensional fluid, is a canonical example for which a localized structure, in this

case a shockwave, develops and an adaptive moving mesh will get denser near the shock front. The

Kuramoto-Sivashinsky equation exhibits chaotic behavior and this provides a natural test-bed for

DA in a dynamical situation that is very common in physical science, and particularly in the DA

applications in the geosciences (see Section 5.2 of [17]).

Our core strategy is to introduce a fixed reference mesh onto which the meshes of the individual

ensemble members are mapped. A key decision is how refined the fixed reference mesh be made.

There are two natural choices here: (a) one that has at most one node of an adaptive moving mesh

in each of its cells, or (b) a reference mesh in which any adaptive moving mesh that may appear has

at least one node in each cell of the fixed reference mesh. We refer to the former as a high-resolution

fixed referenced mesh (HR) and the latter a low-resolution fixed reference mesh (LR). A natural

guess would be that the high-resolution mesh will behave more accurately. Although this turns out

to generally be ture, we will show that the low-resolution mesh may result in a better estimate

when the ensemble is appropriately tuned.

There have been other recent studies aimed at tackling the issue of DA on adaptive and/or

moving meshes. [31] studied a methodology to deal with a moving mesh model of an ice-sheet in a

17

variational DA framework. [21] extended the study and provided a comparison between a three

dimensional variational assimilation (3D-Var) [] and an ensemble transform Kalman filter (ETKF)

[]. The mesh they use adapts itself to the flow of the ice-sheet but, in contrast to our case, the total

number of nodes on the mesh is conserved.

[22] approach the issue in an ensemble DA framework using a three dimensional unstructured

adaptive mesh model of geophysical flows [14, 32]. They adopt a fixed reference mesh on which

the analysis is carried out. Each ensemble member is interpolated on a fixed reference mesh

conservatively using a method called supermeshing developed in [33]. In [34], a similar methodology

is used for a tsunami application which exploits adaptive mesh refinement on a regular mesh. Instead

of using a fixed reference mesh, they use the union of meshes of all the ensemble members to perform

the analysis. In summary, [21] addresses the issues that arise with a Lagrangian solver without any

remeshing, whereas the approach in [22] is developed for a model that has the remeshing as part

of its numerical algorithm, but uses an otherwise static mesh. The numerical solver underlying

neXtSIM has both features and thus requires a methodology that differs from these two approaches.

This work thus goes beyond existent works in developing a scheme that addresses the case of a

moving mesh with non-conservative mesh adaptation.

In this chapter, we detail the problem of interest, describe the nature of the adaptive moving

mesh methodologies in one dimension, and describe a remeshing process that is implemented

intermittently. We also describe the model state and its evolution on the adaptive, non-conservative,

1D mesh. In Chapters 4 and 5, we introduce the EnKF using an adaptive moving mesh model in

two different ways.

3.2 The physical model and its integration

This and the following chapters focus on a physical model describing the evolution of a scalar

quantity u (e.g. the temperature, pressure, or one of the velocity components of a fluid) on a

one-dimensional (1D) periodic domain [0, L). We assume that a model of the temporal evolution of

u is available in the form of a partial differential equation

∂u

∂t
= f

(
u,
∂u

∂z
, . . . ,

∂iu

∂zi
, . . .

)
where i ∈ N, 0 ≤ z ≤ L, 0 < t0 < t (3.1)

18

with initial and boundary conditions

u(t0, z) = u0(z), u(t, 0) = u(t, L), (3.2)

and with f being, in general, a nonlinear function. Realistic models of geophysical fluids incorporate

(many) more variables, and expressed as a coupled system of PDEs. A notable example in the

field of geosciences, and fluid-dynamics in general, is the system of Navier-Stokes equations; the

fundamental physical equations in neXtSIM have the same form [24]. In this work, we consider the

simpler 1D framework as a proxy of the 2D one in neXtSIM but, as will be made clear below, we

formulate the 1D problem to capture many of the key numerical features of neXtSIM. Some of the

challenges and issues for the higher dimensional case are discussed later.

Solving (3.1) numerically, with initial and boundary conditions (3.2), would usually involve

the following steps: first, discretizing the original PDE in the spatial domain (e.g. using a central

finite difference scheme), and then integrating, forward in time, the resulting system of ordinary

differential equations (ODEs) using an ODE solver (e.g. an Euler or Runge Kutta method). The

standard approach to numerically solving a PDE is appropriate when it is cast in an Eulerian

frame. A key point about neXtSIM, however, is that it is solved in a Lagrangian frame. The use

of a Lagrangian solver is a particular case of a class of techniques that is known as velocity-based

methods in the adaptive mesh literature (see e.g. [9], and references therein). The dynamics of the

adaptive mesh are given, in this case, by using u coming from the PDE (3.1) as the velocity field for

the mesh points. [5] gives a comprehensive and detailed treatment of the case of adaptive meshes.

A further key feature of neXtSIM as a computational model is that it incorporates a remeshing

procedure. As a result, it is different from the usual problems considered in the adaptive mesh

literature [?]. In particular, it entails that, in general, no mapping exists from a fixed mesh to the

adaptive mesh that is continuous in time. We call such an adaptive mesh non-conservative as the

number of mesh points will change in time. It is this characteristic that we see as presenting the

greatest challenge to a formulation of DA for neXtSIM, and addressing it in a model situation as

the main contribution of this work, and one that makes it stand apart from previous work in the

area of DA for computational models with non-standard meshes.

19

3.3 A one-dimensional, non-conservative, velocity-based adaptive moving mesh

3.3.1 The mesh features and its setup

We build here a 1D periodic adaptive moving mesh that retains the key features of neXtSIM’s

2D mesh in being Lagrangian and including remeshing.

For a fixed time, a mesh is given by a set of points {z1, z2, . . . , zN} with each zj ∈ [0, L). The zj

are referred to as the mesh nodes, or points, and we assume they are ordered as follows:

0 ≤ z1 < · · · < zj < · · · < zN < L. (3.3)

To guide the remeshing, we define the notion of a valid mesh in which the mesh nodes are neither

too close nor too far apart. To this end, we define two parameters: 0 < δ1 < δ2 < L. A mesh

{z1, z2, . . . , zN} is a valid mesh if:

δ1 ≤ |zj+1 − zj | ≤ δ2 for all j ∈ N : 1 ≤ j < N − 1, and δ1 ≤ |1 + L− zN | ≤ δ2. (3.4)

It is further assumed that δ2/δ1 ≥ 2 and that δ2 and δ1 are both divisors of L. The former hypothesis

is related to the remeshing procedure and will be discussed in Section [], while the latter is useful in

our DA approach and will be discussed in Section []. When condition (3.4) does not hold, the mesh

is called an invalid mesh.

The mesh will evolve following the Lagrangian dynamics associated with the solution of the

PDE (3.1). Each zj will therefore satisfy the equation

żj = u(t, zj), (3.5)

where =̇ d
dt , and u(t, zj) is the velocity. The physical model (3.1), together with the mesh model

(3.5), constitute a set of coupled equations that can be solved either simultaneously, or alternately

[5]. In the former case, the mesh and physical models are solved at the same time, which strongly

ties them together. A drawback of the simultaneous numerical integration is that the larger coupled

system of equations arising by joining the mesh and the physical models is often more difficult to

solve and may not conserve some features of the original physical model.

20

The neXtSIM model adopts an alternative strategy that bases the prediction of the mesh at

time t+ ∆t, where ∆t is the computational time step, on the mesh and the velocity field at the

current time, t, and then subsequently obtain the physical solution on the new mesh at time t+ ∆t.

As a consequence, the mesh is adjusted to the solution at one time-step earlier. This can cause

imbalance, especially for low-resolution time discretization and rapidly changing systems, but it

offers the advantage that the mesh generator can be coded as a separate module to be incorporated

alongside the main PDE solver for the physical model. This facilitates the possible addition of

conditions or constraints on the mesh adaptation and evolution. Having this ability is key to the

remeshing procedure in neXtSIM.

In neXtSIM, the coupled system, which includes the mesh and the physical model, is solved

in three successive steps: (1) The mesh solver is integrated to obtain the mesh points at t + ∆t

based on the mesh and the physical solution at time t; (2) It is then checked whether the new mesh

points satisfy the requisite condition and, if not, the remeshing procedure is implemented; (3) The

physical solution is then computed at time t+ ∆t on the (possibly remeshed) mesh at t+ ∆t.

In the first step, the movement of the mesh nodes is determined by the behavior of the physical

model, which is a special case of the mesh being adaptive. In particular, the dynamics of the physical

model can lead to the emergence of sharp fronts or other localized structures. These features can

then be better resolved through the finer grid that now covers the relevant region, which is the usual

motivation behind the use of adaptive meshes in general. This may result, however, in the allocation

of a significant quantity of the total number of nodes to a small portion of the computational domain.

Such a convergence of multiple modes in a small area can lead to a reduction of the computational

accuracy in other areas of the model domain and to the increase of the computational cost as smaller

time steps will be required. In the case of a mesh made up of triangular elements, as in neXtSIM,

those may get too distorted, leading again to a reduction of the numerical accuracy of the finite

element solution [35].

Adaptive mesh methods often invoke a mesh density function in (3.5) to control the mesh

evolution [5]. In some cases, such as at a fluid-solid interface, large distortions may not be easily

handled by moving mesh techniques alone, nor addressed by a mesh density function [36]. In

these cases, a remeshing is performed (step (2) above) in order to distribute the nodes in the

mesh consistently with the numerical accuracy and the computational constraints. In neXtSIM, an

21

analogous situation occurs due to the rheology that generates and propagates fractures or leads

breaking the sea ice. For computational efficiency, a local remeshing is performed in the vicinity of

a triangular element, called a cavity, when an element is too distorted. For example, [24] considers

a triangular element distorted if it has a node with internal angle less than or equal to 10deg.

The remeshing procedure involves adding new nodes and removing old ones if needed, as well as

triangulation in the cavity to generate a suitable new mesh.

In the 1D models described later, the former challenge appears due to the nature of the physical

system they describe. For instance, in Burgers’ equation, the formation of a sharp shock-like front

causes a convergence of mesh points. A suitable remeshing procedure is then applied.

We now view the mesh points zj = zj(t) as evolving in time according to (3.5), and the

computational time step ∆t is chosen small enough so that the ordering given in (3.3) is preserved;

the smallness of ∆t has thus afforded the use of a low-order, straightforward Euler scheme to evolve

the PDE forward in time. At each computational time step starting at, say, t = tk, i.e., at each

t = tk + i∆t, remeshing may be performed according to the procedure given below.

3.3.2 The remeshing procedure

When an invalid mesh is encountered as a result of the advection process, a new valid mesh

is created that preserves as many of these nodes as possible. A validity check is made at each

computational time step. The remeshing is accomplished by looping through the nodes zj at time

tk to check if the next node zj+1 satisfies (3.4) based on the parameters δ1 and δ2. Recall that we

assume δ2 ≥ 2δ1.

For each j, if the mesh node zj+1 is too close to zj in that the left inequality in condition (3.4)

is violated, then zj+1 is deleted. Similarly, if node zj+1 is too far from zj , then a new node z∗ is

inserted in between zj and zj+1 at z∗ = zj+1+zj

2 . Further, if z1 + L− zN is either too large or too

small, a similar procedure is implemented. We can understand now what motivates the choice of

setting δ2 ≥ 2δ1; if δ2 � 2δ1, then the insertion of a new node at the midpoint of the considered

mesh points would create an invalid mesh.

The result of the remeshing will be a new mesh re-ordered according to (3.3) and the mesh

will be valid in that (3.4) is satisfied. Note that any newly introduced node in the last step of the

procedure may end up as either the first or last in the ordered set of mesh nodes. Further, a node

that survives the remeshing may have a new index because of other new nodes or the deletion of

22

Figure 3.1: A simple illustration of the remeshing process with δ1 = 0.2 and δ2 = 0.5: invalid mesh
(a) remove z2(tk) which violates δ1 (b) and insert z∗(tk) not to violate δ2 (c)

old nodes. The number of nodes in a mesh may change after a remeshing. This has the implication

that the dimension of the state vector will not be constant in time. It is this feature that makes the

situation so different from standard DA and challenges us to create a new formulation.

The remeshing algorithm, with δ1/δ1 = 0.2/0.5, is illustrated in Figure 3.1, for the node z1(tk)

at a particular time t = tk of the integration. The node z2(tk) has a distance of 0.15 from z1(tk),

which is smaller than δ1: therefore, z2(tk) is removed (Figure 3.1(a)). The next node, now z3(tk),

has distance 0.55 from z1(tk), which exceeds δ2 (Figure 3.1(b)): therefore a new node z∗(tk) is

introduced at the midpoint between z1(tk) and z3(tk) (Figure 3.1(c)).

Figure 3.2 shows and example of this remeshing procedure applied to a velocity-based adaptive

moving mesh using Burgers’ equation (see SECTION for details) as a physical model. We see how

the nodes, oriented along the horizontal axis, follow a moving front. In particular, the mesh, which

initially has 40 equally distributed nodes ends up having only 27 unevenly distributed nodes, as a

result of the remeshing procedure.

3.4 The model state and its evolution

Since both the physical value(s) representing the system and the mesh on which the PDE is

solved are evolved, we represent them both in the state vector The dimension of the state vector is

then 2N , where N is the number of mesh nodes:

x = (u1, u2, . . . , uN , z1, z2, . . . , zN) ∈ RN × [0, L)N , (3.6)

where the zi are viewed as the mesh nodes and ui the values of the physical variable u at zi.

The model will encompass all the algebraic relations of the computation, including the mesh

23

Figure 3.2: An illustration of adaptive moving mesh over time solving Burgers’ equation until t = 1
on a domain z=(0,1]. In this example, the remeshing criteria are based on δ1 = 0.02 and δ2 = 0.05.
There are 40 initial adaptive moving mesh nodes and 27 at t = 1; these are shown in green and red,
respectively.

advancement and remeshing. It will not be defined for every x ∈ RN × [0, L)N . Indeed, the

mesh nodes will need to satisfy (3.3). We therefore introduce VN ⊂ [0, L)N by the condition that

z = (z1, z2, . . . , zN) ∈ VN when (3.3) holds.

The model will be operating between observation times. If we set t = tk as an observation time

and t = tk+1 as the next time at which observations will be assimilated, the model will be integrated

with an adapting mesh, including Lagrangian evolution and possible multiple remeshings, from tk

to tk+1 If xk = x(tk), then we set this model evolution as a map

xk+1 =M(xk). (3.7)

Note that if the original PDE (3.1) is nonautonomous, i.e., f depends on t directly, thenM will

depend on k and we would writeM =Mk. For convenience, we assume tk+1 − tk is a multiple of

the computational time step. Moreover, we begin and end each integration between observation

times with a remeshing if the given mesh is invalid. In this way, we guarantee that both zk and

zk+1 can be taken to correspond to valid meshes. In principle, we can then applyM to any element

24

x ∈ RN × VN . Because of the tolerances of δ1 and δ2 there are, however, constraints on N . Since

they are both divisors of L, we can introduce N1 and N2 by

L = N1δ1 = N2δ2, (3.8)

and we can restrict N2 ≤ N ≤ N1. We can then viewM as acting on a larger space that puts all

of its possible domains together. To this end, we set XN = RN × VN and, viewing each XN as a

distinct space, define

X =
N1⋃

N=N2

XN , (3.9)

and castM as a mapping from X to itself, i.e.,M : X → X. We note again that N may change

under this map, i.e., N may be different for xk and xk+1. In other words, if xk ∈ XNk
, then we will

have for the next iteration xk+1 ∈ XNk+1 with, in general, Nk 6= Nk+1.

3.5 The Numerical Models

When testing the modified EnKF methodology described in the following chapters, we use two

numerical models and two types of synthetic observations: Eulerian and Lagrangian.

The first numerical model is the diffusive form of Burgers’ equation [1]

∂u

∂t
+ u

∂u

∂z
= ν

∂2u

∂z2 , z ∈ [0, 1), t ∈ (0, T] (3.10)

with periodic boundary conditions u(0, t) = u(1, t). In our experiments, we set the viscosity ν =

0.08; the model (3.10) is hereafter referred to as BGM. Given that Burgers’ equation can be solved

analytically, it has been used in several DA studies (see, e.g. Cohn, 1993; [37], [38]).

As a second model, we use an implementation of the Kuramoto-Sivashinsky equation ([39])

∂u

∂t
+ ν

∂4u

∂z4 + ∂2u

∂z2 + u
∂u

∂z
= 0, z ∈ [0, 2π), t ∈ (0, T], (3.11)

which is also given periodic boundary conditions, and is referred to as KSM throughout this work.

Concentration waves, flame propagation, and free surface flows are among the problems for which this

equation is used. The higher order viscosity, ν, is chosen as 0.027 which makes (3.11) display chaotic

behavior ([39]). Both numerical models are discretized using finite central differences and integrated

25

with an Eulerian time-stepping scheme. We integrate them using very small time-steps, 10−3 and

10−5 for BGM and KSM, respectively, since the equations are propagated forward explicitly.

Two "natural runs" are obtained, one for each model, by integrating them on a high resolution

fixed uniform mesh. The size of the mesh for the natural run for BGM is 100 (corresponding to a

resolution of 0.01), while it is 120 for KSM (equivalent to a resolution of about 0.052).

We have limited the time length of the simulations in BGM to T = 2 as the viscosity tends to

dominate over longer times and dampen the wave motion. Figure 3.3a shows the natural run for

BGM until T = 2 with the initial condition

u(z, 0) = sin(2πz) + 1
2 sin(πz). (3.12)

The figure shows clearly how the amplitude of the wave, picking around z = 0.5 for the initial time,

is almost completely dampened out at the final time.

With the given choice of the viscosity, KSM is not as dissipative as BGM and simulations can

be run for much longer. KSM is initialized using

u(z, 0) = − sin(2πz) (3.13)

as the initial condition. Then, it is spun-up until T = 20 and the solution at T = 20 is used

as the initial condition for the DA experiments. Figure 3.3b shows the KSm natural run until

t = 5 after re-initialization of the model following the spin-up (i.e. the actual simulation time

being T + t = 25); the chaotic behavior of the KSM solution can be qualitatively identified by the

random-like oscillations.

Synthetic Eulerian and Lagrangian observations are sampled from the natural run. Eulerian

observations are always collected at the same, fixed-in-time, locations of the domain. We assume

that Eulerian observers are evenly distributed along the one-dimensional domain (i.e. observations

are at equally spaced locations) and their total number is constant, so the number of observations

at time step tk, dEUL(tk) = dEULk = d for all k > 0. The locations of the Lagrangian observations,

on the other hand, change in time: the data are sampled by following the trajectories, solutions of

the model. Being advected by the flow, Lagrangian observations may eventually concentrate within

26

(a) BGM (b) KSM

Figure 3.3: Solutions of Burgers’ and Kuramoto-Sivasinsky equations. These solutions on a uniform
mesh represent the truth from which to sample the observations. Their implementations on an
adaptive moving mesh are used as forecast models of the ensemble.

a small area of the model domain; they can thus be more spatially localized compared to Eulerian

observations. In our experiments with Lagrangian observations, if two observations come within the

threshold distance, 10−3, the one closer to the upper boundary of the spatial domain is omitted

from the assimilation at that and all future observation times so as not to over-sample a specific

location. As a result, the total number of Lagrangian observations will tend to decrease in time. An

illustration of the different spatial coverage provided by the Eulerian and Lagrangian observations

is given in Figure 3.4, for the BGM model with dEUL = dLAG0 = 10 on the mesh of the nature run.

3.6 Summary

In this chapter, we introduced the sea ice model neXtSIM as motivation for implementing

data assimilation on an adaptive moving mesh model. The mesh is non-conservative due to the

remeshing process, meaning it does not conserve the number of mesh points. We wanted to consider

a one-dimensional analogue of the two-dimensional problem that preserved the essential features

of neXtSIM, which we did in Section 3.3. We described the remeshing process implemented when

mesh points become too close together or too far apart.

We also introduced periodic Burgers’ and Kuramoto-Sivashinsky equations, denoted by BGM

and KSM, respectively. We saw that with the initial conditions given, the solution of BGM consists

27

(a) Eulerian Observations (b) Lagrangian Observations

Figure 3.4: Observations sampled from the truth (Fig. 3.3a) in Eulerian (a) and Lagrangian (b)
sense mimicking geo-stationary satellite and buoy measurements, respectively.

of a moving front that dissipates, while KSM exhibits chaotic behavior. The former gives a simple

model to test on, while the latter allows us to see whether our algorithm is robust.

28

CHAPTER 4

The First Approach to the Adaptive Mesh EnKF: Interpolation

4.1 The ensemble Kalman filter for an adaptive moving mesh model

We will introduce a modification of the EnKF [19] suitable for numerical models integrated on

an adaptive moving mesh. The discussion herein pertains to the stochastic version of the EnKF [40],

but the approach can be straightforwardly extended to deterministic EnKFs (see e.g. [41]) without

major modifications. A recent review on EnKF-like methods and their applications to atmospheric

circulation models can be found in [20]. The work here can also be found in [42].

The challenge of implementing an EnKF on adaptive moving mesh model with remeshing is

that the dimension of the state vector will be potentiailly different for each ensemble member. This

is addressed by [22] in which the idea of a fixed reference mesh, called the observation mesh, is

introduced, which has higher resolution around the predefined observations. We will adopt this

approach here but introduce a new variant in utilizing meshes of different resolutions. In particular,

we will work with a high- and a low-resolution mesh. We see these as representing the extremes which

should bracket the possible results of using meshes of various resolutions. They are, respectively

associated with the two tolerance parameters δ1 and δ2, therefore linked directly to the mesh of

the models while giving us the flexibility of assimilating any type of observations without prior

information so as is generally the case in realistic applications. In addition, in our approach, the

analyzed states are mapped back onto the adaptive moving meshes to preserve the mesh resolving

fine scale structures generated by the dynamics of the models.

The location of the nodes and their total number are bound to change with time and across

ensemble members: each member will now provide a distinct discrete representation of the underlying

continuous physical process, based on a different number of differently located sample points. The

individual ensemble members have to be intended now as as samples from a different partition of

the physical system’s state space and they do not provide a statistically consisten sampling of the

discrete-in-space uncertainty distribution. This is reflected in practice by the fact that the members

29

Figure 4.1: Illustration of the analysis cycle in the proposed EnKF method for adaptive moving
mesh models. In S1, adaptive meshes are mapped onto the fixed reference mesh. The ensemble
is updated on the fixed reference mesh at step S2 (i.e. the analysis). Then, in S3, the updated
ensemble members are mapped back to the corresponding adaptive moving meshes. The full process
is illustrated in Figure 4.2 for one ensemble member. See text in Sect. 4.1 for full details on the
individual process steps S0, S1, S2, and S3.

can no longer be stored column-wise to form ensemble matrices, and thus the matrix computations

involved in the EnKF analysis to evaluate the ensemble-based mean and covariance cannot be

performed.

On the other hand, on the reference mesh, on the reference mesh, the members are all samples

from the same discrete distribution and can thus be used to compute the ensemble-based mean and

covariance. The entire EnKF analysis process is carried out on this fixed reference mesh, and the

results are then mapped back to the individual ensemble meshes. This procedure amounts to the

addition of two steps on top of those in the standard EnKF. First, we map each ensemble member

from its adaptive moving mesh to an appropriate fixed uniform mesh, and perform the analysis.

Then, the updated ensemble members are mapped back to their adaptive moving meshes, providing

the ensemble for the next forecast step.

The process is summarized schematically in Figurer̃effig:flow. Steps S0 and S2, integration of

the modelM to compute prior statistics, and the analysis step, respectively, are common in an

EnKF. At step S1, before the analysis, the forecast ensemble on adaptive moving meshes is mapped

onto the fixed uniform mesh, while step S3 amounts for the back mapping from the fixed to the

individual adaptive meshes. In the following sections, we give the details of processes in S1, S2, and

S3 following their respective order in the whole DA cycle.

30

4.1.1 Fixed reference meshes

We divide the physical domain [0, L) into M cells of equal length, ∆γ:

[0, L) = L1 ∪ L2 ∪ · · · ∪ LM , (4.1)

where Li = [γi, γi+1). It follows that γ1 = 0 and γi = (i − 1)∆γ for each i, and that γM+1 = L.

Because of the periodicity, we identify 0 and L in the fixed mesh; in other words, γM+1 = γ1 modulo

L. The points γi are the mesh nodes of the fixed reference mesh.

While we are, in principle, free to choose the fixed reference mesh arbitrarily, it makes sense

to tailor it to the application under consideration. We choose to define the resolution of this fixed

uniform mesh based on the maximum and minimum possible resolution of the individual adaptive

moving meshes in the ensemble. The resolution range in the adaptive moving mesh reflects the

computational constraints adapted to the specific physical problem: it therefore behooves us to

bring these constraints into the definition of the fixed mesh for the analysis.

The high resolution fixed reference mesh (HR) will be obtained by setting M = N1 and the low

resolution fixed reference mesh (LR) by setting M = N2. We will focus on these two particular fixed

meshes, although the methodology described below could be adapted to working with any fixed

reference mesh. Recalling that L = N1δ1 = N2δ2, and the criteria for a valid mesh is given by (3.4),

it can be seen that any valid mesh {z1, z2, . . . , zN} will have at most one node in each cell Li of an

HR, and at least one node in each cell of an LR. In this chapter, we take the approach of using

interpolation to fill in empty cells in the HR case; in the next chapter, we will use an alternative

method. The LR case will average physical values at nodes that share a cell. It may seem that the

higher resolution mesh would always be preferable, but a key finding of this work is that this is not

always true.

Note that they hypothesis L = N1δ1 = N2δ2, i.e. the tolerances δ1 and δ2 are divisors of the

domain length L, does not need to be assumed. The computational/physical constraints of the

model may suggest δ1 and δ2 not satisfying this condition; it would be a technical change in our

method to accommodate such a situation.

31

4.1.2 Mapping onto a fixed reference mesh

The mapping will take a state vector x = (u1, u2, . . . , uN , z1, z2, . . . , zN), where {z1, z2, . . . , zN}

is a valid mesh, onto a vector in XM = RM × VM with M = N1 (HR) or M = N2 (LR). The state

vector to which the map is applied should be thought of as an ensemble member at the forecast

step, so that it has gone through remeshing after its final model evolution step. Thus, N may be

any integer between N1 and N2. This is Step S1 in the scheme of Figure 4.1.

We denote the mapping as Pj : X→ XM , with M = N1 for j = 1 (HR) or M = N2 for j = 2

(LR) as above. Recalling that the γi are nodes of the fixed reference mesh, the image of a specific

x ∈ XN has the form

Pj(x) = (ũ1, ũ2, . . . , ũM , γ1, γ2, . . . , γM). (4.2)

The physical value ũi is viewed as the value of u at mesh node γi the tilde is used hereafter to refer

to quantities on the fixed reference mesh.

To set the u-values, we introduce a shifted mesh as follows: set L̃i = [γi − δ/2, γi + δ/2) for

i = 2, . . . ,M where δ = δ1 or δ = δ2 and again M = N1 or M = N2, respectively. Further, set

L̃1 = [0, δ/2) ∪ [L− δ/2, L). We view L̃1 as an interval since we identify 0 and L. The procedure is

now separated into the high and low resolution cases.

Case 1 - HR: Taking x ∈ XN as above, if there exists zk ∈ L̃i, then set ũi = uk. If there is not

zk ∈ L̃i but there exists xk < γi, then find k such that zk < γi < zk+1 and set

ũi = uk + uk+1
2 . (4.3)

If there is no such zk, then set

ũi = u1 + uN1

2 . (4.4)

underlineCase 2 - LR: For each i find all k such that zk ∈ L̃i. Denote these by zki
, . . . , zki+ni

. Then

set

ũi = 1
ni

ki+ni∑
j=ki

uj . (4.5)

The map Pj is now well-defined, in both the HR and LR cases, for each x ∈ XN .

32

For the EnKF, we also require the map that omits the mesh points in the fixed reference mesh:

P̃j(x) = (ũ1, ũ2, . . . , ũM), (4.6)

where again M = N1 or N2 for HR or LR, respectively.

In the EnKF analysis, we will denote by P̃j(x) by ũ and work with this reduced state vector,

which consists only of the physical values and not the mesh points. A consequence is that we will

not be updating the mesh locations, but rather re-mapping the analysis back onto the original

adaptive mesh for each ensemble member. We will discuss the possibility of updating the mesh

locations in the conclusions.

4.1.3 Observation operator

The observations will be of physical values (u) at specific locations (zo). Assuming there

are d observations, the observation operator will be a mapping on reduced state vectors ũ =

(ũ1, ũ2, . . . , ũM) given as y = H(ũ), i.e., H : RM → Rd with M = N1 or N2. Each component of

H(ũ) is the estimate the state vector ũ gives of the observations at locations zo. For the explicit

representation of the observation operator, let us consider one observation at once, so that for all

1 ≤ j ≤ d we consider the j-th observation and find i such that zoj ∈ Li; then the j-th component of

the observation operator reads:

hj(ũ) = ũi +
zoj − γi
γi+1 − γi

(ũi+1 − ũi) . (4.7)

Since γi ≤ zoj < γi+1, this is the natural linear interpolation between the values of u at γi and γi+1.

The full observation operator is then

H(ũ) = (h1(ũ), h2(ũ), . . . , hd(ũ)) , (4.8)

where each hj(ũ) has the above form of an observation value at their respective observation locations

zoj .

33

Thus, we can eventually define the state vector on Γ̃ as

w̃(t) =

x̃(t)

z̃(t)

 = [x̃1(t) x̃2(t) . . . x̃M−1(t) x̃M (t) z̃1(t) z̃2(t) . . . z̃M−1(t) z̃M (t)]T . (4.9)

4.1.4 Analysis using the ensemble Kalman filter

After mapping all the ensemble members onto the dedicated fixed reference mesh (either the

high- or low-resolution one), the stochastic EnKF can be applied in the standard way. This is Step

S2 in our scheme. The mapped forecast ensemble members can be stored as columns of the forecast

ensemble matrix

Ef =
[
ũf1 . . . ũfNe

]
∈ RM×N

e
, (4.10)

with M = N1 or M = N2 for HR and LR reference meshes, respectively, with N e being the ensemble

size. To simplify the notation, the time index and the tilde from the matrices are omitted: all terms

entering the analysis update operations are defined at the same analysis time onto the fixed, either

HR or LR, mesh. The forecast ensemble mean is computed as

¯̃uf = 1
N e

Ne∑
n=1

ũfn, (4.11)

while the normalized forecast anomaly matrix Xf is formed by subtracting the forecast ensemble

mean from each of the ensemble members as

Xf = 1√
N e − 1

[
ũf1 − ¯̃uf . . . ũfNe − ¯̃uf

]
. (4.12)

Model outputs are confronted with the observations at the end of every analysis interval, and

are stored in the observation vector, y ∈ Rd. The observations are related to the system state via

the (generally nonlinear) observational model

y = H(ũ) + ε (4.13)

and are assumed affected by a Gaussian, zero-mean white-in-time noise ε with covariance R ∈ Rd×d,

ε ∼ N (0,R). In the experiments described later in this chapter, we directly observe the model

34

physical variables (onto the fixed reference mesh), ũ, so that the observation operator only involves

a linear interpolation, and is thus linear. Nevertheless, the approach herein described is suitable to

work with nonlinear H subject to minor modifications.

In the stochastic EnKF [40], the observations are treated as random variables, so that each

ensemble member assimilates a different perturbed observations vector

yn = y + εn, 1 ≤ n ≤ N e, (4.14)

with εn ∼ N (0,R). We can now compute the normalized anomaly ensemble of the observations

Yo = 1√
N e − 1

[y1 − y . . . YNe − y]

= 1√
N e − 1

[ε1 . . . εNe] ,
(4.15)

and define the ensemble-based observational error covariance matrix,

Re = Yo (Yo)T , (4.16)

and the observed ensemble-anomaly matrix,

Y := H
(
Ef
)
−H

(
Ēf
)
, (4.17)

with Ēf = ¯̃uf1 and 1 = [1 . . . 1]T ∈ RM . The forecast ensemble members are then individually

updated according to

ũan = ũfn + K
[
yn −H

(
ũfn
)]
, 1 ≤ n ≤ N e, (4.18)

where

K = XfYT
[1
N e − 1YYT + Re

]−1
(4.19)

is the ensemble-based Kalman gain matrix. It is worth recalling that in the limit, N e → ∞,

Re → R and the Kalman gain, K, converges to that of a classical, full rank Kalman filter if both

the dynamical and the observational models are linear and all of the errors are Gaussian.

When applied to large dimensional systems, for which N e �M as typical in the geosciences,

35

the success of the EnKF is related to the use of localization and inflation (see e.g. Section 4.4 of [17]

for a review). In this work localization is not used, but the covariance multiplicative scalar inflation

([43]) is adopted, so that the ensemble-based forecast anomaly matrix is inflated as

Xf 7→ αXf (4.20)

with α ≥ 1, before Xf is used in the analysis update (4.18). Multivariate multiplicative inflation or

more sophisticated adaptive inflation procedures exist and could have been implemented here, but

this is not of great importance in this work, and the scalar coefficient α has been properly tuned. A

recent review of adaptive inflation methods can be found in [44].

The update analysis ensemble in (4.18) is then used to initialize the next forecast step. However,

prior to this, we need to map back each individual analysis member on their respective adaptive,

non-uniform, mesh; the process is described in the next section.

4.1.5 From a fixed reference mesh to an adaptive moving mesh

After the analysis, the update on the fixed reference mesh has to be mapped back on the

individual adaptive moving meshes of the ensemble members. In the forward mapping step S1 (see

Figure 4.1), the mapping indices associating the nodes in the adaptive moving mesh with nodes in

the reference mesh, are stored in an array. These are the indices resulting from the projections on

the HR or the LR reference mesh as previously described.

Each analysis ensemble member ũan will thus retrieve its adaptive mesh z1, z2, . . . , zN(n) from the

stored array. In the reverse mapping step S3 (Figure 4.1), the updated solution is projected to the

adaptive moving meshes by locating each zj in an interval L̃m and assigning the m-th component of

ũan to be the i-th component of u in the vector xk that will initialize the model after the analysis

time step.

In summary, each ensemble member after the analysis step will have the form

xk = (u1 u2 . . . uN z1 z2 . . . zN) (4.21)

where if zi ∈ L̃m, then ui = ũ(γm). The backward mapping procedure is the same for both HR and

LR cases, although it will provide different results.

36

Figure 4.2: Schematic illustration of the DA cycle on the high resolution (a) and low resolution
(b) fixed reference mesh where only u is updated. AMM and FRM stands for adaptive moving
mesh and fixed reference mesh, respectively. Dark and pale blue/red lines are forecast/analysis on
adaptive moving mesh and fixed reference mesh, respectively. Gray circles are the observations.
Following the arrows: S1 is the mapping the adaptive moving mesh on to the fixed reference mesh,
S2 is the update of the ensemble member, S3 is the backward mapping on the adaptive moving
mesh (see Fig. 4.1).

The process steps S1 → S2 → S3 are illustrated in Figure 4.2, representing HR/LR cases,

respectively, for one ensemble member, and using the Burgers’ equation as a model ([1]); the

experimental setup is described in the next section.

Let us first consider the HR case of Figure 4.2 (a). In S1, the forecasted physical quantity uf on

the adaptive moving mesh (dark blue with large circles) is mapped to the fixed reference mesh nodes

(light blue with small circles) at γm−1 = 0.68 andγm+1 = 0.70. The fixed mesh’s node γm = 0.69 is

left empty; thus, a value is assigned by interpolation from the adjacent nodes γm−1 and γm+1. This

provides the forecast physical quantity, ũf , on the full reference mesh and completes step S1. In the

next step, S2, ũf is updated using the stochastic EnKF as described in the previous section to get

the analysis field ũa (light red line and small circles). Finally, in step S3, ũa is mapped back to the

adaptive moving mesh so as to get ua (dark red line with large circles). We note that the physical

quantity on the interpolated node γm in the fixed reference mesh is not mapped back (as that node

"did not exist" in the original adaptive mesh), yet it was required during step S2 to perform the

analysis.

Similarly, Figurer̃effig:aflow (b) describes the LR case. In this situation, however, the forecasted

physical quantity on the adaptive moving mesh nodes at 0.672 and 0.686 are averages (step S1) in

order to associate a vlue on the fixed reference mesh node γm = 0.68 before the analysis. After the

update (step S2), in step S3 the analysis ũm at γm = 0.68 is used to provide the analyses on both of

37

the original nodes (at 0.672 and 0.686) on the adaptive mesh; this means they will have the same

analyzed value. As a result, we observe that the anlysis is better than the forecast (in the sense of

being closer to the truth: compare dark blue/red circles, respectively, for forecast and analyses) at

node z =0.672 but worse at node z =0.686. In the latter case, in fact, the overestimate of the truth

passes from about 0.15 to more that 0.3 for the forecast and analysis, respectively. On the other

hand, at node z =0.672 the forecasted overestimate of about 0.2 is reduced to a slight understimate

of about 0.04.

We make a remark on a key aspect of our methodological choice: the ratio of the remeshing

criteria δ2
δ1

exerts a control on the relation between the adaptive moving meshes and the fixed

reference mesh. In fact, δ2
δ1

is the upper bound of the number of nodes that will be interpolated

in the HR case, and averaged in the LR case respectively, since it represents the maximum ratio

between the dimension of the fixed reference mesh and that a moving mesh can never reach.

4.2 Experimental setup

In the experiments that follow, we have chosen to deploy as many Lagrangian observers at t0

as Eulerian ones and to place them at the same locations, i.e. d0 = d. The number of Eulerian

observations, and the initial number of Lagrangian observations, is set to dEUL = dLAG0 = 10 and

dEUL = dLAG0 = 20 for BGM and KSM, respectively. Gaussian, white-in-time, spatially uncorrelated

noise is added to these observations; the observational error covariance matrix is diagonal, so that

R = σ2
oI, with σo being the observational error standard deviation and I the identity matrix. These

synthetic observations are assimilated with the modified EnKF we presented, and the specifications

of its implementation, namely the number of initial ensemble members, initial mesh size, and

inflation, are provided in Section. The analysis interval is set to ∆t = 0.05 time units in all the DA

experiments and for both models and observation types. A summary of the experimental setup is

given in Table 4.1.

The experiments are compared by looking at the root mean square error (RMSE) of the ensemble

mean (with respect to the natural run) and the ensemble spread. Since the analysis is performed

on either the HR or the LR fixed mesh, the computation of the RMSE and spread is done on the

mesh resulting from their intersection. Given that we have chosen the remeshing criteria in both

models such that δ1 is half of δ2, the intersection mesh is the LR mesh itself. Finally, in all of the

experiments, the time-mean of the RMSE and spread are computed after T = 1 time units, unless

38

Table 4.1: Experimental setup parameters: ν is the viscosity, δ1 and δ2 are the remeshing criteria,
N1 and N2 the number of nodes in the HR and LR fixed reference mesh, T the duration of the
experiments, ∆t the analysis interval, dEUL and dLAG0 the number of Eulerian observations and the
initial number of Lagrangian observations.

Model ν δ1/δ2 N1/N2 T ∆t d/d0 σ0
BGM 0.008 0.01/0.02 100/50 2 0.05 10 0.01
KSM 0.027 0.02π/0.04π 100/50 5 0.05 20 0.78

stated otherwise.

4.3 Results

We present the results in three subsections. In the first two subsections, we investigate the

modified EnKF with fixed reference mesh (either HR or LR), for the BGM and KSM, respectively,

using Eulerian observations. In these sections, we also present the tuning of the EnKF with respect

to the ensemble size (N e), inflation factor (α), and initial adaptive moving mesh size (N0). The

combination of these parameters giving the best performance with BGM is then kept and used

in the next section, where the comparison between Eulerian and Lagrangian observation cases is

described.

4.3.1 Modified EnKF for adaptive moving mesh models - Burgers’ equation

In this section, the experiments using BGM are presented. In order to calculate the base

error due to the choice of the specific fixed reference mesh, HR or LR, and the resulting mapping

procedures, we first perform and ensemble run without assimilation. This DA-free ensemble run

is subject to all of the steps described in Figure 4.1 except for S2, in which the analysis update is

performed. Given that DA is not carried out, the difference between the HR and LR experiments (if

any) can only be due to the mapping procedure. Recall that this procedure differs in that it involves

interpolation or averaging in the HR or LR cases, respectively. For consistency, the mapping to/from

the fixed reference mesh is performed every ∆t = tk+1 − tk, i.e. the time between the assimilation

of observations.

Figure 4.3 displays the RMSE and the ensemble spread for the HR and LR in these DA-free

ensemble runs. We see that the RMSE is slightly larger in the LR than in the HR case, indicating

that averaging introduces larger errors than interpolation in this specific model scenario. This

can be interpreted in terms of the sharpness of the Burgers’ solution that might not be accurately

39

Figure 4.3: Time evolution of the forecast RMSE (solid line) and the spread (σ, dashed line) of
DA-free ensemble run using BGM. Dark and light lines represent the HR and LR, respectively.

described using the LR mesh. Furthermore, this is also consistent with the previous observation

that the LR analysis was deteriorating the forecast in some instances. After an initial faster error

growth in the LR case, at about t = 0.4, the difference between LR and HR almost stabilizes, with

the two error curves having the same profile. The ensemble spread is initially slightly larger in the

HR case, but then it attains similar values for both HR and LR after t = 0.6, suggesting that the

spread does not depend critically on the type of mapping and resolutions of the fixed reference mesh.

While this appears to be a reasonable basis for building the EnKF, Figure 4.3 also highlights the

undesirable small spread of values compared with the RMSE. We will come back to this point in

the DA experiments to follow.

In the DA experiments, we study the sensitivity of the EnKF to the ensemble size, inflation

factor, and initial size of the adaptive moving meshes. Recall that the ensemble members are

all given the same uniform mesh at the initial time; however, these meshes will then inevitably

evolve into a different, generally non-uniform mesh for each member. We remark that the three

parameters under consideration are all interdependent and a proper tuning would involve varying

them all simultaneously, which would make the number of experiments grow too much. To reduce

the computational burden, we have opted instead to vary only one at a time, while keeping the

other two fixed.

The results of this tuning are displayed in Figure 4.4, showing the RMSE of the EnKF analysis

40

Figure 4.4: Time-mean of the RMSE of the analysis ensemble mean (solid line) and ensemble spread
(σ, dashed line) of BGM for different ensemble size N e (a); inflation factor, α (b); and initial mesh
size, N0 (c). Dark and light red show the HR and LR, respectively.

(the ensemble mean), and the spread, as a function of the ensemble size, inflation factor, and initial

mesh size, respectively, in panels a, b, and c. The RMSE and spread are averaged in space and

time, after the initial spin-up period T = 1. For reference, we have also plotted the observational

error standard deviation (horizontal black dashed line).

In the case of the sensitivity to the ensemble size (Figure 4.4(a)), N e is varied between 10 and

90, while the initial mesh size is kept to 70 for both HR and LR cases, and inflation is not used (i.e.,

α = 0). The RMSE in the HR case is generally lower than in the LR case, which are respectively

slightly below and above the observational error standard deviation. In both cases, however, the

RMSE approximately converges to quasi-stationary values as soon as N e ≥ 30. This phenomenon,

that we also observe for KSM in the next section, is reminiscent of the behavior in a chaotic system,

where the EnKF error converges when N e is larger or equal to the dimension of the unstable-neutral

subspace of the dynamics ([]).

We therefore set N e = 30 and study the sensitivity to the inflation factor in Figure 4.4(b)

(the initial mesh size is still kept to 70). Inflation is expected to mitigate the difference (the

underestimation) between the RMSE and spread shown in Figure 4.4(a). By looking at Figure 4.4(b),

this actually seems to be the case and in the LR case, the RMSE decreases and the spread increases

by increasing the inflation factor α. In the HR case, the RMSE is already lower than the observational

standard deviation and the inflation has only a small effect; the increase of spread is not accompanied

by a similar decrease of error. Based on this, we hereafter set the inflation to α = 1 for HR and

α = 1.45 for LR.

41

Table 4.2: Ensemble size (N e), inflation factor (α), and initial mesh size (N0) chosen from the
sensitivity experiments in Figure 4.4 to perform the experiment in Figure 4.5. Resulting time mean
of the RMSE and spread (σ) for the HR and LR using BGM between t = 0 and 2 are also listed.

BGM N e α N0 RMSEf RMSEa σf σa
HR 30 1.0 70 0.025 0.023 0.026 0.015
LR 30 1.45 70 0.018 0.017 0.023 0.014

Finally, in Figure 4.4(c), we consider the initial mesh size; recall that the ensemble size is set to

N e = 30. Also recall that the size of the individual ensemble member’s adaptive moving mesh size,

N , is controlled by the remeshing tolerances δ1 = 0.01 and δ2 = 0.02, and can vary throughout the

integration between 50 and 100. In the set of experiments depicted in Figure 4.4(c), we initialize the

ensemble on an adaptive moving mesh of size N0 ranging from 50 to 90. Interestingly, the EnKF

does not exhibit great sensitivity to N0 and the differences between HR and LR appear to be very

small and not systematic. The fact that LR kept the the RMSE at the level of the HR case is the

result of successful tuning. We saw, in fact, that the mapping error in the LR case is larger (cf

Figure 4.3). Nevertheless, this initial disadvantage of the LR has been largely compensated by the

inflation. In the experiments that follow, we have chosen to fix N0 = 70 for both HR and LR.

The results of the tuning experiments in Figure 4.7 and selected value of the parameter are

reported in Table 4.2, and are used in the experiments of Figure 4.5 that shows the forecast/analysis

RMSE and spread for both HR and LR as a function of time. Notably, the HR and LR perform

quite similarly for t > 1.2, when the solution of the model is possibly of small amplitude due to the

viscous damping. Nevertheless, for t ≤ 1.2, LR is often as good as (t < 0.4) or better (0.4 ≤ t ≤ 1.2)

than HR, making LR a viable, computationally more economic, solution. The time-averaged RMSE

and spread of these experiments are included in Table.

4.3.2 Modified EnKF for adaptive moving mesh models - Kuramoto-Sivashinsky equa-
tion

This section shows the same type of results as in the previous section, this time applied to the

KSM. We begin by evaluating the errors relating to the mapping on the HR and LR case by running

a DA-free ensemble; results are shown in Figure 4.6.

As opposed to what is observed in Figure 4.3, we see now that the different mapping procedures

in the HR and LR cases induce similar errors and impact the spread in a similar way. This difference

42

Figure 4.5: Time evolution of the RMSE (solid line) and spread (σ, dashed line) for BGM until
t = 2. Dark and light lines represent the HR and LR, respectively. Blue and red show forecast and
analysis, respectively.

is certainly due to the different dynamical behavior in BGM and KSM, with the solution of the latter

displaying oscillations over all of the model domain. These can be, in some instances, well represented

(i.e., less affected) by the averaging procedure in the LR case, in others by the interpolation in the

HR case. Another remarkable difference with respect to BGM is that tnow the ratio spread/RMSE

is larger, meaning that the spread is underestimating the RMSE relatively less than for BGM.

Figure 4.7 shows the same set of experiments as in Figure 4.4, this time using KSM. The

time-mean of the RMSE and spread are again considered after t = 1, but experiments are run until

t = 5 since KSM is not as dissipative as BGM with chosen values for the viscosity. Furthermore,

all values are normalized using an estimate of the internal model variability based on the spin-up

integration from t = 0 to t = T = 20.

In Figure 4.4(a), the analysis RMSE and spread are shown against the ensemble size, N e. No

inflation is applied and the initial mesh size is chosen to be 80 in both the HR and LR cases. The

analysis RMSE passes below the observation error standard deviation as soon as N e = 30 in the HR

case, but an ensemble as large as N e = 50 is required in the LR case. Based on these results, we

have chosen to use N e = 40 for both cases as a trade-off between computational cost and accuracy,

given that the RMSE in the LR case is very close to observational accuracy. Notably, the spread

is quite large in both cases, even larger than the RMSE in the HR configuration. With N e = 40,

the impact of inflation is considered in Figure 4.4(b). We see here how the spread is consistently

43

Figure 4.6: Same as Figure 4.3 but using KSM.

Figure 4.7: Same as Figure 4.4 but using KSM.

44

Table 4.3: Same as Table 4.2 but using KSM deduced from experiments in Figure 4.7.

KSM N e α N0 RMSEf RMSEa σf σa
HR 40 1.2 80 1.30 0.51 2.96 0.85
LR 40 1.3 80 1.25 0.78 1.83 0.71

Figure 4.8: Same as Figure 4.5 but using KSM.

increased by increasing the inflation factor α and the corresponding RMSEs decrease until α = 1.3

and increase afterward, possibly as a consequence of too much spread. The selected values for the

inflation factor are α = 1.2 and 1.3 for the HR and LR cases, respectively. Figure 4.7(c) studies the

sensitivity to the initial mesh size, N0. Similarly as to what is observed for the BGM in Figure 4.4(c),

the performance of the EnKF does not show a marked sensitivity to N0: it is arguable that the

mesh size of the individual members quickly adjust to the values with little memory of the initial

dimension. In the experiments that follow, the initial mesh size is set to N0 = 80 in both HR and

LR configurations. Overall, Figure 4.7 indicates that, as opposed to BGM, with KSM the EnKF on

the HR reference mesh is always superior to the LR fixed mesh. The selected optimal values of N e,

α, and N0 are reported in Table 4.3.

Figure 4.8 shows the time evolution of the forecast and analysis RMSE and spread for HR and

LR until t = 5 using these selected values. First, we observe that the analysis RMSE is always

lower than the corresponding RMSE of the forecast in both the HR and LR cases. Remarkably, the

spread of the forecast is also larger than the RMSE of the forecast, in both configurations, indicating

healthy performance of the EnKF. As for the comparison between HR and LR, we see that now the

former is systematically better than the latter, suggesting that in the KSM, the benefit of performing

45

Figure 4.9

the analysis on HR are larger compared to BGM. Nevertheless, the LR case also performs well,

and it could well be preferred when computational constraints are taken into consideration. The

time-averaged RMSEs and spreads are reported in Table.

4.3.3 Impact of observation type: Eulerian versus Lagrangian

Up to this point, we have solely utilized Eulerian observations. Using the optimal setup presented

in the previous section, we now assess the impact of different observations types, i.e. Eulerian

or Lagrangian (see Figure 3.4(a) and Figure 3.4(b)). We consider there only the BGM with the

LR configuration for the fixed reference mesh and the values for the experimental parameters are

those in Table (first three columns of the second row). Results (not shown) with the KSM using

Lagrangian observations indicate that the EnKF was not able to track the true signal, possibly as a

consequence of the Lagrangian observers ending trapped within only few of the many fronts of the

KSM solution (see Figure 3.3(b)): the number of observations and their distribution then becomes

insufficient.

Figure 4.9 shows the forecast and analysis RMSE as a function of time, for both Eulerian and

Lagrangian data. As for previous figures, the observation error standard deviation is superimposed

as a reference, but the number of Lagrangian observers is now included (right y-axis). Recall that

Lagrangian data are bound to decrease with time (cf. Section and Figure b) and that their initial

number and locations are the same as for the Eulerian observations, i.e., dEUL = dLAG0 = 10 and

they are equally spaced.

At first sight, one can infer from Figure 4.9 that overall Lagrangian data are approximately as

effective as their Eulerian counterparts, even though they are fewer in number. This is reminiscent

46

of a known advantage of Lagrangian observations that has been documented in a number of studies

(see, e.g., [], [], [], [], and references therein); although the actual positions at which the observations

are made are assimilated in these pieces of work. A closer inspection of Figure 4.9 reveals also other

aspects. For instance, it is remarkable that in the time interval 0.2 ≤ t ≤ 0.4, the assimilation

of 5 ≤ dLAGobs ≤ 10 = dEULobs Lagrangian observations is superior to using dEULobs = 10 fixed, evenly

distributed Eulerian ones. On the other hand, when t ≥ 1.3, the assimilation of Eulerian data

is always bettern than Lagrangian, a behavior possibly due to the fact that dLAGobs ≤ 3 and that,

despite their dynamically guided locations, they are not as many as required to keep the error

low. It is finally worth pointing out that the episode of very high analysis RMSE (higher than the

corresponding forecast RMSE) occurring at t = 1.5; the assimilation in that case was very clearly

detrimental. Nevertheless, the EnKF was able to recover quickly and the RMSE was reduced to

much smaller values, close to the observation error.

4.4 Conclusions

In this chapter, we proposed a novel methodology to perform ensemble data assimilation with

computational models that use a non-conservative adaptive moving mesh. Meshes of this sort are

said to be adaptive because their node locations adjust to some prescribed rule that is intended to

improve model accuracy. We have focused here on models with a Lagrangian solver, in which the

nodes move following the model’s velocity field. They are said to be non-conservative because the

total number of nodes in the mesh can itself change when the mesh is subject to remeshing. We

have considered the case in which remeshing avoids having nodes too close or too far apart than

given tolerance distances; in practice the tolerances define the set of valid meshes. When an invalid

mesh occurs throughout the integration, it is then remeshed and a valid one is created.

The major challenge for ensemble data assimilation stands in that the dimensions of the state

space changes in time and differs across ensemble members, impeding the normal ensemble-based

operations (i.e, matrix computations) at the analysis update. To overcome this issue, we have added

in our methodology one forward and one backward mapping step before and after the analysis,

respectively. This mapping takes all the ensemble members onto a fixed, uniform reference mesh.

On this mesh, all ensemble members have the same dimension and are defined on the same spatial

mesh, thus the assimilation of data can be performed using standard EnKF approaches. We have

used the stochastic EnKF, but the approach can be easily adapted to the use of a square-root EnKF.

47

After the analysis, the backward mapping returns the updated values to the individual, generally

different, and non-uniform meshes of the respective ensemble members.

We consider two cases: a high resolution and a low resolution fixed uniform reference mesh.

The essential property is that their resolution is determined by the remeshing tolerances δ1 and δ2,

such that the high- and low-resolution fixed reference meshes are the uniform meshes that bound,

from above and below respectively, the resolution of all relevant adaptive meshes. While one can in

principle use a fixed reference mesh of arbitrary resolution, our choice connects the resolution of

the reference mesh to the given physical and computaitonal constraints, reflected by the tolerance

values in the model design. This in practice means that our reference mesh cell will contain at

most, or at least, one node of the ensemble member mesh, in either the high- or low-resolution cases

respectively. Hence, using this characterization, we can avoid excessive smoothing or interpolation

at the mapping stages. Depending on whether the tolerances are divisors of the model domain

dimension, the reference meshes can also be themselves valid meshes; nevertheless, this condition is

not required for the applicability of our approach.

We tested our modified EnKF using two 1D models, the Burgers and Kuramoto-Sivashinsky

equations. A set of sensitivity tests are carried through some key model and DA setup parameters:

the ensemble size, inflation factor, and initial mesh size. We have considered two types of observations:

Eulerian and Lagrangian. We have shown that, in general, a high resolution fixed reference mesh

improves the estimate more than a low resolution fixed reference mesh. Whereas this might indeed

by expeted, our results also show that a low-resolution reference mesh affords a very high level of

accuracy if the EnKF is properly tuned for the context. The use of a low-resolution fixed mesh has

the obvious advantage of a lower computational burder, given that the size of the matrix operations

to be implemented at the analysis step scales with the size of the fixed reference mesh.

We then examined the impact of assimilating Lagrangian observations compared with Eulerian

ones and have seen, in the context of Burgers’ equation, that the former improves the situation as

much as the latter. The effectiveness of Lagrangian observers, despite being fewer in number that

for the case of fixed, Eulerian observations, comes from their concentrating where their information

is most useful, i.e., withing the sharp single (shock-like) front of the Burgers solution.

In this chapter, we have focused on the design of the strategy and, for the sake of clarity, have

focused only on updating the physical quantities, while the locations of the ensemble mesh nodes

48

were left unchanged. A natural extension of this is to subject both the model physical variables and

the mesh locations to the assimilation of data. Both would then be updated at this time, and this

is currently under investigation.

49

CHAPTER 5

The Second Approach to the Adaptive Mesh EnKF: No Interpolation

5.1 Introduction

As seen in the previous chapter, one of the key difficulties in developing an ensemble-based data

assimilation method for use in an adaptive moving mesh was that the ensemble meshes were quite

different. The mesh points, in general, are not at the same location for each ensemble member.

Further, the number of mesh points differed for each ensemble member. To rectify this, each ensemble

member was projected onto a reference mesh, for which there were two cases: high-resolution (HR)

and low-resolution (LR). In the HR case, each cell was guaranteed at most one mesh point for each

ensemble member; in the LR case, each cell contained at least one mesh point of each ensemble

member. In the HR case, for a given ensemble member, cells that did not contain mesh points were

filled in by interpolating from adjacent cells containing mesh points. In the LR case, cells containing

more than one mesh point had their values averaged. This resulted in each cell containing exactly

one mesh point [42], corresponding to exactly one physical value, in both the HR and LR cases.

The interpolation and averaging justified using the exact ensemble size N e when computing the

ensemble statistics in the formulation of the EnKF.

This previous method, while successful, somewhat avoids the issue that not exactly N e ensemble

members are present in each cell. If there are fewer than N e members present, as is possible in

the HR case, mesh points are created based on information in surrounding cells; we are making a

key assumption about the behavior of the ensemble member where we do not have a mesh point.

Generally, the HR reference mesh is of sufficiently high resolution, and the ensemble members

are well-behaved enough, that this assumption is not unreasonable. However, it is an assumption

nonetheless, and it is possible that it could present an issue in more complicated models like

Kuramoto-Sivashinsky (KSM).

We develop an alternative approach, applicable to the HR case, in this chapter that avoids the

discussed interpolation. Cells without mesh points are left empty, and only the present ensemble

50

members contribute to the ensemble statistics. This requires a modification to the formulation of

the version of the EnKF given in the previous chapter. In particular, the quantity N e must be

allowed to vary among cells. We give the formulation of this method here. We then apply this

method to Burgers’ equation (BGM). We run experiments with the same parameters as before, so

as to make possible a direct comparison between the method with interpolation and the method

without.

5.2 The EnKF for an adaptive moving mesh model - second version

5.2.1 The fixed reference mesh

As before, we divide the physical domain [0, L) into M cells of equal length, ∆γ:

[0, L) = L1 ∪ L2 ∪ · · · ∪ LM , (5.1)

where Li = [γi, γi+1). We will assume periodic boundary conditions, so we identify 0 and L as

before. For this formulation, we will only be working on the high resolution fixed reference mesh

(HR). Thus, we will assume M = N1 and L = N1δ1.

5.2.2 Projecting onto the high-resolution fixed reference mesh

We use the word "projecting" here, as opposed to "mapping" in the previous chapter, to indicate

the difference between the processes. We begin with a state vector x = (u1, u2, . . . , uN , z1, z2, . . . , zN),

where {z1, z2, . . . , zn} is a valid mesh, and we wish to embed it in a state vector XM = RM × VM ,

with M = N1 since we are on the high-resolution reference mesh. As before, N can be any integer

between N1 and N2.

We will denote the projection by P ′j : X→ XM , with M = N1, recalling that the γi are nodes of

the fixed reference mesh. Then the image of a specific x ∈ XM has the form

P ′j(x) = (ũ′1, ũ′2, . . . , ũ′M , γ1, γ2, . . . , γM). (5.2)

The physical value ũ′i should be thought of as the value of the physical variable u at the mesh mode

γi, if the mesh point is present in the corresponding cell Li.

Setting the u-values is a fundamentally different process here. We again introduce the shifted

mesh L̃i = [γi − δ1/2, γi + δ1/2) for i = 2, . . . , N1; set L̃1 = [0, δ1/2)∪ (L− δ1/2, L), where we again

51

view L̃1 as an interval due to periodicity. Taking x ∈ XN1 as above, if there exists zk ∈ L̃i, then set

ũ′i = uk, as in the previous method. However, if there is no zk ∈ L̃i, then we do not set ũ′i to any

value; we leave the corresponding entry vacant.

5.2.3 Observation operator

As in the previous chapter, the observations will be of physical values (u) at specific locations

(zo). We again assume there are d observations, so the observation operator will be a mapping H :

RN1 → Rd Let ũ′ be the state vector embedded in RN1 with vacant entries, so that y = H (ũ′) ∈ Rd.

We cannot, however, use the same explicit representation as before, due to the vacant entries in the

state vector.

Let us consider one observation, so that for all 1 ≤ j ≤ d we consider the j-th observation

and find i such that zoj ∈ Li. Let i1 = i if cell Li is non-vacant; otherwise, let i1 be the index of

the nearest nonvacant cell to the left of cell Li. Similarly, let i2 = i+ 1 if cell Li+1 is nonvacant;

otherwise, let i2 be the index of the nearest nonvacant cell to the right of cell Li. Then the j-th

component of the observation operator reads:

hj
(
ũ′
)

= ũ′i1 +
zoj − γi1
γi2 − γi1

(
ũ′i2 − ũ

′
i1

)
. (5.3)

5.2.4 Analysis using the ensemble Kalman filter

After projecting all the ensemble members onto the high-resolution fixed reference mesh, we can

apply a modified version of the stochastic EnKF. The projected forecast ensemble members can be

stored as columns of the forecast ensemble matrix

Ef ′ =
[
ũf
′

1 . . . ũf
′

Ne

]
∈ RN1×Ne

, (5.4)

with N e being the ensemble size. Note that this matrix will have several vacant entries, namely,

those corresponding to the cells with missing mesh points for each ensemble member. Thus, this

52

matrix will appear in the form of

Ef ′ =

ũf
′

11 ũf
′

12 ? . . . ũf
′

1Ne

ũf
′

21 ? ũf
′

23 . . . ũf
′

2Ne

? ũf
′

32 ũf
′

33 . . . ?

. . .

ũf
′

N1 ? ũf
′

N3 . . . ũf
′

NNe

, (5.5)

where ? denotes a missing entry.

We will need to introduce some new notation to compute the ensemble statistics for this method.

For each 1 ≤ j ≤ N1, let

Ij = {n | xn has a mesh point in cell Lj} . (5.6)

Then let N e
j = |Ij |. Then we can compute the forecast ensemble mean by

¯̃uf ′ =

1
Ne

1

∑
n∈I1 ũf

′

1j

1
Ne

2

∑
n∈I2 ũf

′

2j

. . .

1
Ne

N

∑
n∈IN

ũf
′

Nj

(5.7)

We will let ¯̃uf
′

j denote the j-th component of ¯̃uf ′ .

The vacant entries in Ef ′ mean we cannot compute the anomaly matrix directly, as before. The

vacant entries must be filled by something in order to subtract the mean matrix. If an entry in the

j-th row of Ef ′ is vacant, then we replace it with the mean of the existing entries from the j-th row.

The ensemble matrix then takes the form

Ẽf ′ =

ũf
′

11 ũf
′

12 ¯̃uf
′

1 . . . ũf
′

1Ne

ũf
′

21 ¯̃uf
′

2 ũf
′

23 . . . ũf
′

2Ne

¯̃uf
′

3 ũf
′

32 ũf
′

33 . . . ¯̃uf
′

3

. . .

ũf
′

N1 ¯̃uf
′

N ũf
′

N3 . . . ũf
′

NNe

(5.8)

53

This is the key difference between the method described in this chapter and that described in

the previous chapter. In the HR case in the previous method, we interpolated to fill in the vacant

entries. In this way, each ensemble member contributed to every entry of the ensemble matrix,

matrix of means, and anomaly matrix; some just did so indirectly, through interpolation. In this

method, we avoid contributions to cell Lj of ensemble members without mesh points present in cell

Lj . This introduces an interesting tradeoff: either we "create" information using interpolation, and

thus are justified in dividing by the full ensemble size N e at each step of the process; or we do not

fill in using interpolation. We fill in vacant entries using the mean of the present ensemble members,

but this does not create any new information because the corresponding entries will vanish in the

anomaly matrix. Ensemble members not present in cell Lj do not contribute to the mean, and

therefore to the ensemble or anomaly matrix, for cell Lj . We must divide by the correct ensemble

size for each row, which complicates the filter calculations and raises questions relating to linearity;

we will explore these below.

Let Ẽf ′ denote the ensemble matrix, with vacant entries filled in with the means. Then the

matrix of anomalies can be computed as before, by subtracting the matrix of means from the matrix

of ensemble members. However, we must scale each row by the correct ensemble size. Thus, the

scaled anomaly matrix takes the form

Xf ′ =

1√
Ne

1−1

(
ũf
′

11 − ¯̃uf
′

1

)
1√
Ne

1−1

(
ũf
′

12 − ¯̃uf
′

1

)
. . . 1√

Ne
1−1

(
ũf
′

1Ne − ¯̃uf
′

1

)
1√
Ne

2−1

(
ũf
′

21 − ¯̃uf
′

2

)
0 . . . 1√

Ne
2−1

(
ũf
′

2Ne − ¯̃uf
′

2

)
0 1√

Ne
3−1

(
ũf
′

32 − ¯̃uf
′

3

)
. . . 0

. . .

1√
Ne

N−1

(
ũf
′

N1 − ¯̃uf
′

N

)
0 . . . 1√

Ne
N−1

(
ũf
′

NNe − ¯̃uf
′

N

)

(5.9)

We then proceed with the stochastic ensemble Kalman filter (EnKF). We use the anomaly

matrix to compute the forecast covariance and spread. In order to compute the Kalman gain, we

must normalize the rows of the ensemble matrix and matrix of means by corresponding ensemble

sizes N e
j before applying the observation operator to each of them. This introduces the linearity

issue: the observation operator is nonlinear, but we must divide by the effective ensemble sizes

before we apply the observation operator. We believe this negatively affects the results of the EnKF

54

Figure 5.1: Plot of forecast and analysis ensemble members at Time = 0.15, after three data
assimilation steps. Forecast ensemble members are in green, analysis are in black.

to a large extent.

5.3 Experimental Setup

We use essentially the same setup for Burgers’ equation as we did in the previous chapter. Here,

however, we perform data assimilation at every t = 0.05 and run the experiment up to final time

T = 0.5. We use Ne = 100 ensemble members; this is significantly higher than in the previous

chapter, but it turns that this is necessary in order to have even somewhat reasonable results.

5.4 Results

The most striking result is the presence of a growing error near the shock. For the first few time

steps, everything proceeds as planned. The analysis does an excellent job of estimating the truth,

with the analysis spread narrower than the forecast spread. This is shown in Figure 5.1.

At the next assimilation step, the method starts to go awry. We can see in Figure 5.2 that along

most of the spatial domain, the analysis mean satisfactorily estimates the true state and has a

55

Figure 5.2: Plot of forecast and analysis ensemble members at Time = 0.30, after the fourth data
assimilation step. Forecast ensemble members are in green, analysis are in black. We can clearly see
here how the analysis overestimates the state along the shock.

narrower spread than the forecast, as expected. This is not the case near the shock. We can see

that the analysis significantly overestimates the true state in this region.

This effect seems to continue. Looking at a future time in Figure 5.3, the analysis error is

significantly more pronounced. The analysis overestimates the truth towards the left side of the

shock, and underestimates near the right side of the shock. In addition, we can see some areas away

from the shock where the analysis does a worse job of estimating the truth than before.

These results lend credence to the idea that filling in the gaps in the ensemble members using

interpolation, as was done in Chapter 4, is a more promising method than the one employed in this

chapter. We suspect that part of the issue is the varying number of ensemble members present in

each cell.

The observation, forecast, and analysis plots are shown in Figure 5.4. We can see that both

the forecast and analysis RMSE are significantly higher throughout the experiment than the

56

Figure 5.3: Plot of forecast and analysis ensemble members at Time = 0.45, after nine data
assimilation steps. Forecast ensemble members are in green, analysis are in black.

57

Figure 5.4: Plot of forecast, analysis, and observation root mean square error.

observational error. We also see that it is not in general true that the analysis error is below the

forecast error, so assimilating the observations does necessarily help the forecast. These show that

the varying ensemble sizes have a large negative impact on the accuracy of this algorithm.

5.5 Conclusions

The method in this chapter is ineffective, unlike the interpolation method from Chapter 4, which

worked very well. Interpolating to fill in the gaps in the ensemble members is a much better option

than not interpolating and using different effective ensemble sizes. It is likely that this failure is

due to the nonlinear nature of the observation operator, and it is possible that a scenario with a

linear observation operator, or one where the effective ensemble sizes did not vary so much, would

produce better results.

One remedy is increasing the ensemble size will improve the performance of this algorithm.

However, in the experiment we look at, we already used a very large ensemble size. It is unlikely

that increasing the ensemble size will have much of an impact, and this is supported by preliminary

58

results. In fact, a drawback to this is that it may introduce even more variation in the effective

ensemble sizes being used at the analysis step, which we believe to be a main source of error already.

This method needs to be refined much more in order to be effective. Making the remeshing criteria

smaller, which means more mesh points will be present in each ensemble member, would make the

algorithm more effective.

59

CHAPTER 6

Adaptive Mesh EnKF on a Moving Reference Mesh

6.1 Introduction

Thus far, the models we have encountered have had a non-conservative adaptive mesh. This was

motivated by the characteristics of the neXtSIM model; the number of mesh points is not conserved,

introducing an issue that must be addressed. We have discussed two methods for performing

ensemble DA on non-conservative adaptive moving mesh models, both of which can be extended to

higher-dimensional scenarios.

However, most adaptive moving mesh models involve conservative adaptive moving meshes; that

is, the number of mesh points does not change over time, as there is no inserting or removing of

mesh points [5]. This is a simpler scenario, and one that has been addressed [21]. Specifically, the

dimension of the state space is constant, allowing for a consistent analysis update without the need

to project onto a reference mesh, as we have done in the non-conservative case. We deviate from

[21] in that we still project onto a reference mesh, which is derived from the previous analysis mean.

For the data assimilation methods developed in this chapter, the movement of the mesh will be

driven by an equidistribution condition of a suitable monitor function. A typical example, and the

one that we use in the one-dimensional case, is to move the mesh points so that the arc-length of the

solution is equal for each pair of consecutive mesh points. This arc-lenth is computed using a spline

interpolation of each ensemble member. Thus, the physical and mesh variables are coupled, as was

the case for the non-conservative mesh; however, the mesh points here are not Lagrangian. Their

velocity is not given simply by the value of the physical variable, but instead by a function of the

arc length. We also use Dirichlet boundary conditions, as opposed to periodic boundary conditions.

In this chapter, we describe an implementation of the Local Ensemble Transform Kalman Filter

(LETKF) to a conservative adaptive moving mesh model [6]. Use of the LETKF introduces a key

localization aspect to our DA algorithm, one that was not present in the non-conservative mesh

case. In particular, one parameter that we tune is the "localization radius" of our DA algorithm.

60

We still keep many of the aspects of our previous experiments, but the use of a conservative mesh

and established DA method allow for more aspects of the approach to be tested, i.e. localization

radius, rather than just the ones for the interpolation and no-interpolation methods.

6.2 Adaptive Mesh Movement in 1D

The type of mesh movement we describe here is conservative; that is, the number of mesh

points for the truth (and for each ensemble member in the DA scheme) does not change over time.

Non-conservative adaptive moving meshes are much less common, and are generally used for very

specific purposes. Conservative meshes are more versatile, although do not capture the properties

of neXtSIM that motivated the work in Chapter 4 and Chapter 5.

We proceed by describing the principles behind adaptive mesh movement as in [5]. The main

question that must be answered is this: to most efficiently approximate a function u(x) from its

values at a finite number of points, what is the best way to choose the locations of these points? The

general answer is to choose a mesh density function, ρ(x), that is somehow related to the numerical

error in approximating u, and choose the mesh points so that this density function is equidistributed.

The result is that we place the mesh points in such a way that the distance between them is small

where the value of ρ(x) is large, and vice versa. We choose the mesh density function ρ(x) in a way

so as to minimize interpolation error.

More specifically, for a continuous function ρ(x) > 0 on an interval [a, b], and a specified number

of mesh points N > 1, equidistribution entails finding a mesh x1 = a < x2 < · · · < xN = b that

evenly distributes ρ along the subintervals (xi−1, xi) determined by the mesh points, so that

∫ x2

x1
ρ(x)dx = · · · =

∫ xN

xN−1
ρ(x)dx. (6.1)

In other words, we want the area under ρ(x) to be the same over each subinterval. The square of

this function ρ is referred to as the monitor function, and the function ρ itself is called the mesh

density function. There are several choices for such a function, but we choose arc length, which is

quite commonly used [5].

It can be shown that for a given integer N > 0, there exists a unique mesh satisfying (6.1).

It can also be shown that an adaptive mesh satisfying the equidistribution condition satisfies

certain optimality conditions [5]. Even though we can guarantee theoretical existence of this

61

equidistributing mesh, we often cannot find it in practice because the integrals in (6.1) cannot be

computed analytically. Thus, we must rely on numerical methods to compute the mesh.

Using a coordinate transformation, we can transform the equidistribution condition into a

partial differential equation that the moving mesh must satisfy, referred to as the moving mesh

PDE (MMPDE) [5]. Standard numerical methods for solving partial differential equations (finite

difference, finite element) can be used to solve the MMPDE and advect the moving mesh forward in

time. Thus, the equidistribution condition can be satisfied and the optimality of the adaptive mesh,

in that arc length is equidistributed, can be approximately preserved throughout the process.

6.3 The Local Ensemble Transform Kalman Filter (LETKF) for a Conservative
Adaptive Moving Mesh Model

The adaptive mesh we have just described is conservative; i.e., the number of mesh points is

preserved throughout. We now describe an algorithm for performing ensemble data assimilation

where the ensemble members have physical values defined on conservative adaptive meshes. This is

a natural fit for the problem of estimating the true state of a model also defined on a conservative

adaptive moving mesh. We implement a version of the LETKF to introduce localization to the

process. The fact that all of the ensemble members will have the same number of mesh points at

all times avoids many of the complications that arise when dealing with non-conservative meshes.

Specifically, the dimension of the state space in the data assimilation problem is constant in the

case of a conservative mesh.

Data assimilation is performed by projecting all of the ensemble members onto a common mesh.

This mesh is generated as the optimal, equidistributing mesh for the ensemble mean of the previous

step. The analysis update is then performed on this common mesh, after which the ensemble

members are projected back onto their original meshes. The common mesh for the next analysis step

is then computed from the new analysis ensemble mean. Because the common mesh is computed

using the equidistribution condition, it is of course adaptive and will evolve over time.

We suppose that the adaptive mesh is defined in the domain [0, L], and that the endpoints are

always the first and last points of the mesh; they are fixed in time, and are the only such mesh

points.

62

6.3.1 The model state and its evolution

The model is solved on a conservative adaptive mesh, whose evolution is coupled with that of

the physical value(s) defined at those mesh points. Thus, it is natural to augment the adaptive mesh

points to the physical values in the state vector. If there are N mesh points, then the dimension of

the state vector will be 2N :

x = (u1, u2, . . . , uN , z1, z2, . . . , zN) ∈ RN × [0, L]N , (6.2)

where the zi are the adaptive mesh points and the ui are the physical values defined at the zi. It is

key to remember here that N is constant, as there is no remeshing process at work.

The model operates between observation times, and will depend on time if the PDE underlying

the model is non-autonomous. We consider both the PDE that the physical values must satisfy and

the moving mesh PDE as part of the model evolution. Thus, the model applies to the entire state

vector x, both the ui and the zi. If xk = x(tk), then we can write the model evolution from time tk

to time tk+1 as the mapping

xk+1 =M(xk). (6.3)

Again, this modelM will implement the MMPDE, but will not implement any remeshing process

as in the other chapters.

6.3.2 Mapping onto a fixed reference mesh

Given a state vector x = (u1, u2, . . . , uN , z1, z2, . . . , zN) ∈ XN = RN × [0, L]N , we define a map

P : XN → XN that projects each ensemble member (and the truth) onto a common mesh. At each

time step, this common mesh is the equidistributing mesh of the analysis mean of the previous time

step. Specifically, the adaptive mesh is mapped to the common reference mesh, and the physical

values are interpolated from the adaptive mesh points to the common mesh points.

A basic case, in which only two ensemble members are used for illustration, is shown in Figure 6.1.

The reference mesh on which the analysis mean is computed is taken as the common equidistributing

mesh of the ensemble mean, which is computed from the analysis ensemble members of the previous

time step. This does introduce a "lag" in the common mesh, as it is working from the previous time

step instead of the current time step. This lag does seem to have an impact on the data assimilation

63

Figure 6.1: Illustration of projection onto the common mesh for the data assimilation update. Two
ensemble members are shown in blue; a common mesh is computed from their ensemble mean, which
is shown in red.

effectiveness, at first, but it appears to be resolved fairly quickly, as we see below. A method that

computes the reference mesh a different way, namely as the intersection of metric tensors, is the

subject of other work [45].

We do not update the mesh points in the analysis step, so we work on a reduced state vector û

of dimension N . Because the first and last mesh points are fixed throughout time, and because

the mesh from the previous time step is integral to the process, it does not make much sense to

consider updating the mesh points here. The case for updating mesh points is more intriguing when

the boundary is not fixed [21], as then there is more to estimate (i.e., the boundary location).

6.4 Experimental Setup

To test the efficacy of this data assimilation algorithm, we again consider Burgers’ equation,

with the same initial condition as in Chapter 3. However, this time we take the boundary conditions

to be Dirichlet. We let our observations be Eulerian, i.e., the observation locations are fixed in

64

Figure 6.2: Plot of the analysis root mean square error and the RMSE of a free run for the
conservative adaptive mesh case. The horizontal axis shows the time step.

time. We use 61 adaptive mesh points for each ensemble member, and make observations at 10

fixed locations. We take the observation error to be 5% and the initial perturbation to be 20%. We

take an ensemble size of just 5 members and run the experiment up to time T = 2, with time 0.1

between observations. The inflation factor used is ρ = 1.5. The localization radius is taken to be 3.

6.5 Results

The results of this experiment are shown in Figure 6.2, in which the analysis RMSE and the

RMSE for a "free" run are shown, that is, one in which no observations are assimilated. We see that

assimilating the Eulerian observations does perform better overall than the DA-free run. It does

take some time for the analysis RMSE to pass below the DA-free RMSE, but it seems to perform

better after about the eighth time step. This is because of the lag in the common mesh. There does

seem to be an uptick in the RMSE late in the process. It may be that the increasing sharpness of

the moving front may be hard for the algorithm to follow.

65

6.6 Conclusions

This adaptation of the LETKF to a conservative adaptive moving mesh model works quite well.

It makes sense to use an LETKF for this problem, as the physical values at adjacent locations

are likely to be highly correlated. There are several parameters that need to be tuned, including

localization radius and inflation factor. It also needs to be tested on models of higher complexity.

An application of this method to the two-dimensional Fitzhugh-Nagumo equation is in progress.

One possible direction to take is to compute the reference mesh differently. In ongoing work in

[46], the common mesh is computed using a metric tensor, instead of as an equidistributing mesh

for the previous analysis. A significant advantage this could offer is eliminating the lag introduced

by using a common mesh computed using a previous time step.

Another interesting direction to take is to try to adapt the LETKF for a non-conservative

adaptive moving mesh model. This introduces much more difficulty; the methods used in this

chapter have only been developed for meshes with a fixed number of mesh points. It would be a

significant challenge to combine these two aspects, but it may be worthwhile to do so in order to

take advantage of the LETKF.

66

CHAPTER 7

Summary of Results and Future Directions

The common thread among the data assimilation methods developed here is their suitability

for implementation on adaptive moving meshes; indeed this is built into their structure. They do,

however, vary significantly in their methodology, implementation, and efficacy.

Based on the results of the interpolation method from Chapter 4 and the no-interpolation

method from Chapter 5, it is clear that the interpolation method should be the method of choice

moving forward. It introduces far less error than the method with no interpolation and handles the

nonlinearity much more effectively. This is what should be used going forward in higher-dimensional

models, particularly neXtSIM.

The differences in the implementations of an adaptive moving mesh EnKF for the interpolation

method and no-interpolation method have large consequences. It is possible that the no-interpolation

method could be suitable for a model that is both much more linear and does not have much

variation in the effective ensemble sizes being used. The difference in effective ensemble sizes leads

to significant variation in the scaling factors for the anomaly matrix. It is the evolution of the sharp

shock in Burgers’ equation that leads to the differing effective ensemble sizes. Thus, it is natural

that an equation where the physical values do not exhibit such a shock may be called for.

The method from Chapter 4 does work very effectively for both Burgers’ equation and the

Kuramoto-Sivashinsky equation. Testing on a model like KSM was necessary, as the form of

Burgers’ equation we used was dissipative, meaning the data assimilation problem would not remain

interesting for very long. The parameter values we used for KSM led the model to exhibit chaotic

behavior, which the keeps the data assimilation problem from being trivial indefinitely.

Extending the method from Chapter 4 to a two-dimensional model, and then to neXtSIM, is

a natural progression of this work. Some issues that could arise are sparsity of mesh points and

increased computational complexity. The framework of the algorithm extends naturally to higher

dimensions; the issues we encounter in this leap are more practical.

67

The method in Chapter 6 exhibits promising results for Burgers’ equation. The implementation

discussed here is for conservative mesh models. This was achieved because it incorporates the

equidistribution concept, which leads to a conservative mesh model in the literature. It would

certainly be interesting to apply this to higher-order models. Another challenging direction would be

combine this method with that of Chapter 4, which would combine the LETKF with a nonconservative

adaptive moving mesh model.

68

REFERENCES

[1] J. Burgers, “A mathematical model illustrating the theory of turbulence,” vol. 1 of Advances
in Applied Mechanics, pp. 171 – 199, Elsevier, 1948.

[2] H. Stommel, “Thermohaline convection with two stable regimes of flow,” Tellus A: Dynamic
Meteorology and Oceanography, vol. 13, no. 2, pp. 224–230, 1961.

[3] V. Dansereau, J. Weiss, P. Saramito, and P. Lattes, “A maxwell elasto-brittle rheology for sea
ice modelling,” The Cryosphere, vol. 10, no. 3, pp. 1339–1359, 2016.

[4] K. Emanuel, “Tropical cyclones,” Annual Review of Earth and Planetary Sciences, vol. 31,
pp. 75–104, 2003.

[5] W. Huang and R. D. Russell, Adaptive moving mesh methods, vol. 174. Springer Science &
Business Media, 2010. ISBN:978-1-4419-7916-2.

[6] B. Hunt, E. Kostelich, and I. Szunyogh, “Efficient data assimilation for spatiotemporal chaos:
A local ensemble transform kalman filter,” Physica D, vol. 230, pp. 112–126, 2007.

[7] L. Slivinski, E. Spiller, A. Apte, and B. Sandstede, “A hybrid particle-ensemble kalman filter
for lagrangian data assimilation,” Monthly Weather Review, vol. 143, pp. 195–210, 2015.

[8] H. Weller, T. Ringler, M. Piggott, and N. Wood, “Challenges facing adaptive mesh modeling of
the atmosphere and ocean,” Bulletin of the American Meteorological Society, vol. 91, pp. 105–108,
2010.

[9] M. J. Baines, M. E. Hubbard, and P. K. Jimack, “Velocity-based moving mesh methods for
nonlinear partial differential equations,” Communications in Computational Physics, vol. 10,
no. 3, pp. 509–576, 2011.

[10] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential
equations,” Journal of Computational Physics, vol. 53, no. 3, pp. 484 – 512, 1984.

[11] W. Huang, L. Zheng, and X. Zhan, “Adaptive moving mesh methods for simulating one-
dimensional groundwater problems with sharp moving fronts,” International Journal for
Numerical Methods in Engineering, vol. 54, no. 11, pp. 1579–1603, 2002.

[12] A. Alharbi and S. Naire, “An adaptive moving mesh method for thin film flow equations with
surface tension,” Journal of Computational and Applied Mathematics, vol. 319, pp. 365 – 384,
2017.

[13] C. Pain, M. Piggott, A. Goddard, F. Fang, G. Gorman, D. Marshall, M. Eaton, P. Power, and
C. de Oliveira, “Three-dimensional unstructured mesh ocean modelling,” Ocean Modelling,
vol. 10, no. 1, pp. 5 – 33, 2005. The Second International Workshop on Unstructured Mesh
Numerical Modelling of Coastal, Shelf and Ocean Flows.

[14] D. R. Davies, C. R. Wilson, and S. C. Kramer, “Fluidity: A fully unstructured anisotropic
adaptive mesh computational modeling framework for geodynamics,” Geochemistry, Geophysics,
Geosystems, vol. 12, no. 6, 2011.

[15] A. Budhiraja, E. Friedlander, C. Guider, C. Jones, and J. Maclean, “Assimilating data into

69

models,” 2018.

[16] M. Asch, M. Bocquet, and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications.
Fundamentals of Algorithms, SIAM, Philadelphia, 2016. ISBN:978-1-611974-53-9.

[17] A. Carrassi, M. Bocquet, L. Bertino, and G. Evensen, “Data assimilation in the geosciences:
An overview of methods, issues, and perspectives,” Wiley Interdisciplinary Reviews: Climate
Change, vol. 9, no. 5, p. e535, 2018.

[18] F. Fang, M. Piggott, C. Pain, G. Gorman, and A. Goddard, “An adaptive mesh adjoint
data assimilation method,” Ocean Modelling, vol. 15, no. 1, pp. 39 – 55, 2006. The Third
International Workshop on Unstructured Mesh Numerical Modelling of Coastal, Shelf and
Ocean Flows.

[19] G. Evensen, Data Assimilation: The Ensemble Kalman Filter. Springer-
Verlag/Berlin/Heildelberg, second ed., 2009. ISBN:978-3-642-03711-5.

[20] P. L. Houtekamer and F. Zhang, “Review of the ensemble kalman filter for atmospheric data
assimilation,” Monthly Weather Review, vol. 144, no. 12, pp. 4489–4532, 2016.

[21] B. Bonan, N. K. Nichols, M. J. Baines, and D. Partridge, “Data assimilation for moving mesh
methods with an application to ice sheet modelling,” Nonlinear Processes in Geophysics, vol. 24,
no. 3, pp. 515–534, 2017.

[22] J. Du, J. Zhu, F. Fang, C. Pain, and I. Navon, “Ensemble data assimilation applied to an
adaptive mesh ocean model,” International Journal for Numerical Methods in Fluids, vol. 82,
no. 12, pp. 997–1009, 2016.

[23] S. Bouillon, P. Rampal, and E. Olason, “Sea ice modelling and forecasting,” in New Frontiers
in Operational Oceanography (E. P. Chassignet, A. Pascual, J. Tintoré, and J. V. (Eds.)n, eds.),
ch. 15, pp. 423–444, GODAE OceanView, 2018.

[24] P. Rampal, S. Bouillon, E. Ólason, and M. Morlighem, “nextsim: a new lagrangian sea ice
model,” Cryosphere, vol. 10, no. 3, 2016.

[25] D. Marsan, H. L. Stern, R. Lindsay, and J. Weiss, “Scale dependence and localization of the
deformation of Arctic sea ice,” Phys. Rev. Lett., vol. 93, p. 178501, Oct. 2004.

[26] P. Rampal, J. Weiss, D. Marsan, R. Lindsay, and H. Stern, “Scaling properties of sea ice
deformation from buoy dispersion analysis,” Journal of Geophysical Research: Oceans, vol. 113,
no. C3, 2008. C03002.

[27] M. Rabatel, P. Rampal, A. Carrassi, L. Bertino, and C. K. Jones, “Impact of rheology on
probabilistic forecasts of sea ice trajectories: application for search and rescue operations in
the arctic.,” Cryosphere, vol. 12, no. 3, 2018.

[28] S. Bouillon and P. Rampal, “Presentation of the dynamical core of nextsim, a new sea ice
model,” Ocean Modelling, vol. 91, pp. 23 – 37, 2015.

[29] G. Compère, J.-F. Remacle, J. Jansson, and J. Hoffman, “A mesh adaptation framework for
dealing with large deforming meshes,” Int. J. Numer. Meth. Engng., vol. 82, pp. 843–867, 2009.

70

[30] G. Compère, J. F. Remacle, and E. Marchandise, “Transient mesh adaptivity with large rigid-
body displacements,” in Proceedings of the 17th International Meshing Roundtable (R. Garimella,
ed.), (Berlin), pp. 213–230, Springer, 2008.

[31] D. Partridge, Numerical modelling of glaciers: moving meshes and data assimilation. PhD
thesis, University of Reading, 2013.

[32] J. Maddison, D. Marshall, C. Pain, and M. Piggott, “Accurate representation of geostrophic and
hydrostatic balance in unstructured mesh finite element ocean modelling,” Ocean Modelling,
vol. 39, no. 3, pp. 248 – 261, 2011.

[33] P. Farrell, M. Piggott, C. Pain, G. Gorman, and C. Wilson, “Conservative interpolation between
unstructured meshes via supermesh construction,” Computer Methods in Applied Mechanics
and Engineering, vol. 198, no. 33, pp. 2632–2642, 2009.

[34] P. K. Jain, K. Mandli, I. Hoteit, O. Knio, and C. Dawson, “Dynamically adaptive data-driven
simulation of extreme hydrological flows,” Ocean Modelling, vol. 122, pp. 85–103, 2018.

[35] I. Babus̆ka and A. Aziz, “On the angle condition in the finite element method,” SIAM Journal
on Numerical Analysis, vol. 13, no. 2, pp. 214–226, 1976.

[36] P. H. Saksono, W. G. Dettmer, and D. Perić, “An adaptive remeshing strategy for flows
with moving boundaries and fluid-structure interaction,” International Journal for Numerical
Methods in Engineering, vol. 71, no. 9, pp. 1009–1050, 2007.

[37] M. Verlaan and A. W. Heemink, “Nonlinearity in data assimilation applications: A practical
method for analysis,” Monthly Weather Review, vol. 129, no. 6, pp. 1578–1589, 2001.

[38] O. Pannekoucke, M. Bocquet, and R. Ménard, “Parametric covariance dynamics for the nonlinear
diffusive burgers equation,” Nonlinear Processes in Geophysics, vol. 25, no. 3, pp. 481–495,
2018.

[39] D. T. Papageorgiou and Y. S. Smyrlis, “The route to chaos for the kuramoto-sivashinsky
equation,” Theoretical and Computational Fluid Dynamics, vol. 3, no. 1, pp. 15–42, 1991.

[40] G. Burgers, P. Jan van Leeuwen, and G. Evensen, “Analysis scheme in the ensemble kalman
filter,” Monthly weather review, vol. 126, no. 6, pp. 1719–1724, 1998.

[41] P. Sakov and P. R. Oke, “A deterministic formulation of the ensemble Kalman filter: an
alternative to ensemble square root filters,” Tellus, Ser. A, vol. 60, no. 2, pp. 361–371, 2008.

[42] “Data assimilation using adaptive, non-conservative, moving mesh models,”

[43] J. L. Anderson and S. L. Anderson, “A monte carlo implementation of the nonlinear filtering
problem to produce ensemble assimilations and forecasts,” Monthly Weather Review, vol. 127,
no. 12, pp. 2741–2758, 1999.

[44] P. N. Raanes, M. Bocquet, and A. Carrassi, “Adaptive covariance inflation in the ensemble
kalman filter by gaussian scale mixtures,” arXiv preprint arXiv:1801.08474, 2018.

[45] C. Guider, C. Krause, N. Shankar, and E. Van Vleck, “Data assimilation with adaptive moving

71

meshes: An interpolation approach,” 2019.

[46] W. Huang, C. Krause, D. Mechem, E. Van Vleck, and M. Zhang, “A metric tensor approach to
data assimilation on adaptive moving meshes,” 2019.

72

