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ABSTRACT

Eunbyung Park: Learning to Adapt from Few Examples
(Under the direction of Alexander C. Berg)

Despite huge progress in artificial intelligence, the ability to quickly learn from few exam-

ples is still far short of that of a human. With the goal of building machines with this capability,

learning-to-learn or meta-learning has begun to emerge with promising results. I present the ef-

fectiveness and techniques that improve existing meta-learning methods in the context of visual

object tracking, few-shot classification, and few-shot reinforcement learning setup.

The visual object trackers that use online adaptation are improved. The core contribution is an

offline meta-learning-based method to adjust the initial deep networks used in online adaptation-

based tracking. The meta learning is driven by the goal of deep networks that can quickly be

adapted to robustly model a particular target in future frames. Ideally the resulting models fo-

cus on features that are useful for future frames, and avoid overfitting to background clutter,

small parts of the target, or noise. Experimental results on standard benchmarks, OTB2015 and

VOT2016, show that the meta-learned trackers improve speed, accuracy, and robustness.

It is observed that learning curvature information can achieve better generalization and fast

model adaptation. Based on the model-agnostic meta-learner (MAML), learning to transform

the gradients in the inner optimization such that the transformed gradients achieve better gener-

alization performance to a new task. For training large scale neural networks, the decomposition

of the curvature matrix into smaller matrices are proposed and this capture the dependencies of

the model’s parameters with a series of tensor products. Experimental results show significant

improvements on classification tasks and promising results on reinforcement learning tasks. Fi-

nally, an analysis that explains better generalization performance with the meta-trained curvature

is presented.
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Generative models given few examples are explored in the context of novel 3D view synthesis—

given a single view of an object in an arbitrary pose, the goal is to synthesize an image of the

object after a specified transformation of viewpoint. Instead of taking a ‘blank slate’ approach, in-

formation presented in an input image is used. First, the parts of the geometry visible both in the

input and novel views are explicitly inferred, and then the remaining synthesis problem becomes

image completion task. In addition to the new network structure, training with a combination of

adversarial and perceptual loss results in a reduction in common artifacts of novel view synthesis

such as distortions and holes, while successfully generating high frequency details and preserving

visual aspects of the input image. Both qualitative and quantitative results show the proposed

method achieves significantly better results compared to existing methods.
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CHAPTER 1: AUTOMATIC MACHINE LEARNING (META-LEARNING)

Deep learning has played a key role to make remarkable progress on artificial intelligence

(AI) over the last decade. It has been successfully used on a variety of tasks in AI, e.g. image

recognition (116) and generation (41), speech recognition and generation (140) , machine trans-

lation, playing challenging games (92; 126), and so on. There have been many enabling factors

behind this incredible success, such as large amount of data (116), powerful computations, some

of algorithmic breakthroughs (48; 55), and open sourcing efforts from both academia and indus-

tries (3; 104).

Thanks to this collective efforts toward building AI systems, we hear a myriads of successful

stories. However, developing and applying current deep learning techniques to many real world

problems is still challenging task itself and in most cases it requires the knowledge from human

experts on this domain. Furthermore, human experts very often depends on the trial-and-error

approach, which is time consuming and tedious repetitive process. Automatic machine learning

(or meta-learning) has emerged from this motivation.

A typical machine learning practice is follows. First, you collect a large scale dataset for

your task. Based on your dataset and task, you define or search network architectures, objective

functions, optimization algorithms, hyperparameters for optimization algorithms and objective

functions, and so on. Once you determine all training configurations, you initialize the parame-

ters of the networks with well known initialization methods. Then, you train the networks until

convergence on training dataset (cross-validation is popular scheme to find best hyperparameters

or training configurations). After training convergence, we observe the performance on validation

dataset, and we adjust the configurations and train the networks again. We keep repeating this

process up until our validation performance are saturated. This process, one training episode, re-
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quires often more than a day or week and there are too many factors that would potentially affect

the eventual performance.

The most distinctive feature of meta-learning is that it aims to achieve better generalization

in a principled way. Instead of resting on empirical intuition to adjust training configurations

through cross-validation, we define a meta-objective function, which maximizes the generaliza-

tion performance, to find the best training configurations. As opposed to optimization methods

that usually aim to reach to the best training loss value, meta-learning’s main objective is the

model’s generalization ability and less focus on training loss.

In this chapter, we introduce recent progress on this domain and provide high-level overview.

We also provide in-depth introduction of gradient-based meta-learning, which will be used for

later chapters.

1.1 Meta-learning

1.2 Categorization

This is an emerging field in machine learning community and many recent works have slightly

different purpose and training setups. In this section, we categorize them into few representative

meta-training algorithms and training setups.

1.2.1 Training algorithm

1.2.1.1 Bayesian optimization

Bayesian optimization has been one of the most powerful techniques algorithms for finding

the best hyperparameters in deep network training. Since training deep networks has been known

to be a blackbox system, it is not straightforward to extract explicit knowledge from the training

process. One notable example (128) employs gaussian processes to model the target function

for estimating the uncertainty and determine which point to evaluate next by considering trad-
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ing off exploration and exploitation. It has been very effective, especially for low dimensional

hyperparameters, e.g. learning rate and this obtained new state-of-the-art results in tuning hy-

perparameters for image classification tasks (58). However, it is still early stage to apply for

high-dimensional hyperparameters, e.g. initialization of the network parameters. For in-depth

introduction to this, we refer to the tutorial (125).

1.2.1.2 Reinforcement learning

To scale up high-dimensional hyperparameters, the reinforcement learning has been success-

fully used to find a network architecture (158; 159). We can optimize a network architecture that

maximize validation performance and we can treat validation losses as negative rewards and we

typically use policy gradients to optimize the meta-network that generates the network architec-

ture. It also has an advantage over gradient-based methods. It does not have to unroll the large

number of training steps in gradient descent steps. Thanks to recent advances in deep reinforce-

ment learning, it obtained new state-of-the-art results on variety of tasks with the architecture

founded and it gave us interesting aspects of designing network architecture.

1.2.1.3 Evolutionary method

Evolution Strategies (ES) is a set of optimization methods that can reliably use for black-box

optimization. Recently, ES has been successfully adopted to train deep neural networks (42).

In a nutshell, it resembles to bayesian black-box optimization. It starts with some random pa-

rameters and keeps repeating to adjust the parameters. We observe the final performance with

tweaked parameters and gives higher probability to those that gave better performance. The most

useful property of ES is that we can massively parallelize this process up to even thousands of

populations if computations permitted. It has been adopted to find hyperparameters of the train-

ing setups, e.g. learning rate, entropy-cost coefficient in reinforcement learning (87). Recently,

the network architectures produced by evolution algorithms have reached the accuracy of those

directly designed by human experts or founded by reinforcement learning (30).
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1.2.1.4 Gradient-based methods

Thanks to recent advances in automatic differentiation techniques, it has been popular choice

to obtain gradient through unrolling gradient descent steps. Although it has potential issues such

as short-horizon bias (153) and computational complexity for large unrolling steps (84), it has

been successfully used in hyperparameter search (84) and meta-training initialization of the net-

works for few-shot classification and reinforcement learning setup (31). Throughout this disserta-

tion, we explore and discuss the effectiveness of gradient-based methods focusing on learning the

initialization of the parameters and how to adapt the gradients for better generalization and faster

convergence.

1.2.2 Training setup

In meta-training, we collect few training episodes, a.k.a mini-batches in usual training setup,

and construct the batches to optimize for meta-objective functions. We can differentiate the ex-

isting meta-learning works into two different scenarios. First, we can provide different tasks for

every training episodes. In this case, we are optimizing training configurations for the tasks from

a task distribution. We hope the resulting configurations or hyperparameters will generalize well

for a new task, which can be quite different than the tasks in the meta-training.

For example, (? 101) have suggested to learn a optimizer instead of resting on hand-crafted

optimizers such as SGD, ADAM, RMSProp, to name a few. Every training episodes, it provides

a different task, e.g. different categories, different number of classes, different network architec-

tures, and so on. They aim to learn a optimizer that can cover a variety of training setups so that

resulting meta-trained optimizer can be applied to a new task or network architecture. Few-shot

learning meta-training also falls into this category, (31; 109). They sample a task from a task

distribution for every training episodes. For example, we have a large meta-dataset consisting of

100 categories and 600 images per category and we sample a 5-way 5-shot classification task by

randomly sampling 5 categories and 5 images per category. Therefore, every training episode, we

see different categories and images, which can be interpreted as different tasks, but from a task
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distribution. The resulting meta-trained model can be effectively used for similar tasks but unseen

categories and images.

Second, there has been many works that optimize the training configurations for a particular

task. In this setup, we provide same task for every training episodes, which aims to learn an op-

timal training configuration that optimize generalization performance for the task. For example,

hyperparameter optimization (128; 84) can fall into this category. Every training episodes, they

look at the validation loss, it determines which hyperparameters and how to adjust values based

on uncertainty in the hyperparameter space through gaussian process (128) or gradients from the

validation loss (84).

1.3 Model-agnostic meta-learning (MAML)

MAML aims to find a transferable initialization (a prior representation) of any model such

that the model can adapt quickly from the initialization and produce good generalization perfor-

mance on new tasks. It is general and model-agnostic, which it can be directly applied to any

learning problem and model that is trained with a gradient descent algorithm. The meta-objective

is defined as validation performance after one or few step gradient updates from the model’s ini-

tial parameters. By using gradient descent algorithms to optimize the meta-objective, its training

algorithm usually takes the form of nested gradient updates: inner updates for model adaptation

to a task and outer-updates for the model’s initialization parameters. More formally,

min
θ

Eτi [L
τi
val

(
θ − α∇Lτitr (θ)︸ ︷︷ ︸

inner udpate

)
], (1.1)

where Lτival(·) denotes a loss function for a validation set of a task τi, and Lτitr (·) for a training set,

or Ltr(·) for brevity. The inner update is defined as a standard gradient descent with fixed learning

rate α. For conciseness, we assume as single adaptation step, but it can be easily extended to

more steps.
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Starting from randomly initialized model parameters θ0, the model parameters after after one

gradient descent step can be written as

θ1 = θ0 − α∇θLtr(θ0) (1.2)

In order to optimize meta-objective function that minimize validation loss, we can take the

gradient of validation loss w.r.t the initial parameters θ0. Once we have this gradient (also called

as meta-gradient), we update the initial model’s parameters θ0 with gradient descent algorithms.

Therefore, simple update rules for meta-training model’s initial parameters with a single gradient

steps in inner update can be written as follows.

θ0 = θ0 − β∇θ0Lval(θ1) (1.3)

= θ0 − β∇θ0Lval(θ0 − α∇θLtr(θ0)) (1.4)

= θ0 − β∇θLval(θ1)(I− α∇2
θLtr(θ0)) (1.5)

where, β and α are the learning rates for outer loop and inner loop respectively. This meta-

gradients requires the gradients of the gradient, which has higher order gradient terms, e.g. sec-

ond order gradients in this example. It is not scalable to compute this gradients manually. In

addition, computing higher order gradients are often infeasible especially for large deep neural

networks that have millions of model parameters. However, we do not have to explicitly compute

or maintain the second order gradients here because eventually we will be computing matrix-

vector product ∇θLval(θ1)∇2
θLtr(θ0), and we can use trick from (106) that allows us to easily

compute this by using automatic differentiation software packages (3; 104).

Several variations of inner update rules were suggested. Meta-SGD (78) suggested coordinate-

wise learning rates, θ−α◦∇Ltr, where α is the learnable parameters and ◦ is element wise product.

Recently, (8) proposed a learnable learning rate per each layers for more flexible model adapta-
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tion. To alleviate computational complexity, (98) suggested an algorithm that do not require

higher order gradients.
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CHAPTER 2: BACKGROUND

In this chapter, we present some of background materials that are useful to formalize and

understand the proposed methods in the chapter 4. First, we review the tensor algebra to formal-

ize the proposed method. Tensor algebra is a great mathematical tool to translate complicated

tensor operations into concise notation. In addition, there are many properties that we can easily

use to understand the proposed methods. Secondly, we introduce some second-order optimiza-

tion algorithms that are commonly used in training deep neural networks. This will be useful to

understand the relationship between the proposed method and existing optimization algorithms.

2.1 Tensor Algebra

We review basics of tensor algebra that will be used to formalize the proposed method. We

refer the reader to (67) for a more comprehensive review. Throughout the paper, tensors are

defined as multidimensional arrays and denoted by calligraphic letters, e.g. N th-order tensor,

X ∈ RI1×I2×···×IN . Matrices are second-order tensors and denoted by boldface uppercase, e.g.

X ∈ RI1×I2 .

2.1.1 Fibers

Fibers are a higher-order generalization of matrix rows and columns. A matrix column is a

mode-1 fiber and a matrix row is a mode-2 fiber. For a third order tensor X , the mode-1 fibers of

X are denoted as X:,j,k, where Xi,j,k to denote (i, j, k) elements and a colon is used to denote all

elements of a mode.
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2.1.2 Tensor unfolding

Also known as flattening (reshaping) or matricization, is the operation of arranging the el-

ements of an higher-order tensors into a matrix. The mode-n unfolding of a N th-order tensor

X ∈ RI1×I2×···×IN , arranges the mode-n fibers to be the columns of the matrix, denoted by

X[n] ∈ RIn×IM , where IM =
∏

k 6=n Ik. The elements of the tensor, Xi1,i2,...,iN are mapped to

X[n]in,j , where j = 1 +
∑N

k 6=n,k=1(ik − 1)Jk, with Jk =
∏k−1

m=1,m 6=n Im.

2.1.3 n-mode product

It defines the product between tensors and matrices. The n-mode product of a tensor X ∈

RI1×I2×···×IN with a matrix M ∈ RJ×In is denoted by X ×n M and computed as

(X ×n M)i1,...,in−1,j,in+1,...,iN =
In∑
in=1

Xi1,i2,...,iNMj,in . (2.1)

More concisely, it can be written as (X ×n M)[n] = MX[n] ∈ RI1×···×In−1×J×In+1×···×IN . Despite

cumbersome notation, it is simply n-mode unfolding (reshaping) followed by matrix multiplica-

tion.

2.1.4 Tucker decomposition

We can decompose a tensor X ∈ RI1×I2×···×IN into a low rank core G ∈ RR1×R2×···×RN

through projection along each of its modes by projection factors (U(0), · · · ,U(N)), with U(k) ∈

RRk×Ik , k ∈ (0, · · · , N). Formally, it can be written as

X = U ×1 U
(1) ×2 U

(2) · · · ×N U(N). (2.2)

Typically, this decomposition is obtained by solving a least squares problem. For more details,

we refer to (67).
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2.2 Gradient descent methods

We also review of basics of gradient descent methods. We refer the reader to (99) for a more

comprehensive review. Gradient descent methods, more specifically stochastic variations, have

dominated for training large scale deep neural networks. With reverse-mode automatic differenti-

ation technique, a.k.a back-propagation algorithm, we can easily compute the gradients and apply

simple mini-batch stochastic gradient descent algorithm. It turns out stochastic variations have a

great generalization performance compared to batch gradient descent (98).

2.2.1 First order methods

The most notable example of first order methods for deep learning is the stochastic gradient

descent with momentum. First order methods cannot capture the higher-order dependencies

between the parameters (by definition), and it focuses on the history of gradients for individual

components. With momentum, it computes the gradients based on exponential average over

certain amount of history for each elements of gradients. Therefore, some local gradient with

specific mini-batch gave a bad direction, it has a chance to fix this based on the history of the

gradients. ADAM (66) combines second order information to accelerate the convergence speed.

It maintains the history of inverse of square of gradients for every elements, which then will

be used to multiply the current gradients. We can interpret this as a diagonal approximation of

online natural gradient descent algorithm, which will be discussed in the next section.

2.2.2 Second order methods

The biggest motivation of second order methods is that first-order optimization such as stan-

dard gradient descent performs poorly if the Hessian of a loss function is ill-conditioned, e.g.

a long narrow valley loss surface. There are a plethora of works that try to accelerate gradient

descent by considering local curvatures. Typical mechanic of second order methods is to approx-

imate loss function at θt with surrogate quadratic function, and minimize this surrogate function
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at θt instead of original loss function. We provide two representative algorithms, Newton method

and natural gradient method.

2.2.2.1 Newton method

We perform second-order taylor approximation of loss function at θt.

L(θt + d) ≈ L(θt) +∇L(θt)
>d+

1

2
d>∇2

θL(θt)d, (2.3)

where d is the direction we take to minimize the loss. Then, we minimize this surrogate quadratic

function w.r.t d instead of original loss function. We take the gradient w.r.t d and set it to zero, we

obtain analytic solution

−∇2
θL(θt)

−1∇θL(θt) = argmin
d

L(θt) +∇L(θt)
>d+

1

2
d>. (2.4)

And we can recover well-known newton update rule

θt+1 = θt − α∇2
θL(θt)

−1∇θL(θt). (2.5)

2.2.2.2 Natural gradient method

Natural gradient method was invented in (6) and it has been widely adopted in training deep

neural networks. It finds a steepest descent direction in distribution space rather than parame-

ter space by measuring KL-divergence as a distance metric. For example, if we define the loss

function as negative log likelihood, e.g. a supervised classification task L(θ) = E(x,y)∼p(x,y)[

− log p(y|x; θ)], then the empirical Fisher information matrix can be defined as F = E(x,y)∼p(x,y)[

∇θ log p(y|x; θ)∇θ log p(y|x; θ)>]. Let us consider a constrained optimization problem

argmin
d

L(θt + d) s.t. KL(pθt ||pθt+d) = c. (2.6)
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In this optimization problem, we seek to find a direction d such that it minimize the loss value

after an update with the constraint preventing from you deviating too much from the current iter-

ation. It is encoded by setting a maximum KL divergence of a certain constant c. We can form a

Lagrangian to convert into unconstrained optimization problem and perform local approximation.

argmin
d

L(θt) +∇θL(θt)
>d+ λ(KL(pθt||pθt+d)− c) (2.7)

≈ argmin
d

L(θt) +∇θL(θt)
>d+ λ(

1

2
d>Fd− c). (2.8)

Equation 2.8 comes from the fact that we perform second order approximation of KL divergence

(Note that the Hessian of KL divergence between two different distribution is Fisher information).

Similar to the derivation of Newton method, if we take the gradient w.r.t. d and set it to zero, we

can obtain the solution of this surrogate function and we reach to natural gradient update rule

θt+1 = θt − αF−1∇L(θt). (2.9)

2.2.2.3 Kronecker-factored approximate curvature

In large scale deep learning, it is not uncommon to have millions of parameters. Therefore,

it is not feasible to compute inverse of gigantic matrix and even store the second order matrix.

There have been many approximation methods to reduce these costs, the notable example is

ADAM optimizer (66) who performs an online diagonal approximation of Fisher matrix. How-

ever, it is limited in terms of dependency modeling between the parameters and many existing

works, e.g. block-diagonal or tri-diagonal approximations, have not successfully achieved better

convergence than first order methods. Recently, (85; 45) proposed Kronecker-factored approxi-

mate curvature (K-FAC), which approximates the Fisher matrix by the Kronecker product, e.g.

F ≈ A ⊗G, where A is computed from the activation of input units and G is computed from

the gradient of output units. By using Kronecker product’s properties, it can efficiently invert the

approximated the Fisher information matrix.
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CHAPTER 3: META-TRACKER: FAST AND ROBUST ONLINE ADAPTATION FOR
VISUAL OBJECT TRACKERS

In this chapter, we improve the state-of-the-art visual object trackers with meta-learning

strategies. Visual object tracking is a task that locates target objects precisely over a sequence of

image frames given a target bounding box at the initial frame. In contrast to other object recogni-

tion tasks, such as object category classification and detection, in visual object tracking, instance-

level discrimination is an important factor. For example, a target of interest could be one particu-

lar person in a crowd, or a specific product (e.g. coke can) in a broader category (e.g. soda cans).

Therefore, an accurate object tracker should be capable of not only recognizing generic objects

from background clutter and other categories of objects, but also discriminating a particular target

among similar distractors that may be of the same category. Furthermore, the model learned dur-

ing tracking should be flexible to account for appearance variations of the target due to viewpoint

change, occlusion, and deformation.

One approach to these challenges is applying online adaptation. The model of the target

during tracking, e.g. DCF (discriminative correlation filter) or binary classifier (the object vs

backgrounds), is initialized at the first frame of a sequence, and then updated to be adapted to

target appearance in subsequent frames (96; 129; 22; 19; 50; 82; 62; 14). With the emergence of

powerful generic deep-learning representations, recent top performing trackers now leverage the

best of both worlds: deep learned features and online adaptation methods. Offline-only trackers

trained with deep methods have also been suggested, with promising results and high speed, but

with a decrease in accuracy compared to state-of-the-art online adaptive trackers (13; 49; 132),

perhaps due to difficulty finely discriminating specific instances in videos.

A common practice to combine deep learning features and online adaptation is to train a

target model on top of deeply learned features, pre-trained over a large-scale dataset. These pre-
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trained features have proven to be a powerful and broad representation that can recognize many

generic objects, enabling effective training of target models to focus on the specified target in-

stance. Although this type of approach has shown the best results so far, there remain several

important issues to be resolved.

First, very few training examples are available. We are given a single bounding box for the

target in the initial frame. In subsequent frames, trackers collect additional images, but many

are redundant since they are essentially the same target and background. Furthermore, recent

trends towards building deep models for target appearance (96; 129) make the problem more

challenging since deep models are known to be vulnerable to overfitting on small datasets. As a

consequence, a target model trained on top of deeply learned features sometimes suffers because

it overfits to background clutter, small parts or features of the target, or noise. Many recent stud-

ies have proposed various methods to resolve these issues. Some include using a large number

of positive and negative samples with aggressive regularizers (96), factorized convolution (19),

spatio-residual modules (129), or incorporating contextual information (94).

Second, most state-of-the-art trackers spend a significant amount of time on the initial train-

ing stage (96; 129; 19). Although many works have proposed fast training methods (19; 50), this

still remains a bottleneck. In many practical applications of object tracking, such as surveillance,

real-time processing is required. Depending on the application, falling behind on the initial frame

could mean failure on the whole task. On the other hand, an incompletely trained initial target

model could affect performance on future frames, or in the worst case, result in failures on all

subsequent frames. Therefore, it is highly desirable to obtain the robust target model very quickly

at the initial frame.

We propose a generic and principled way of tackling these challenges. Inspired by recent

meta-learning (learning to learn) studies (31; 109; 7; 119; 78; 4), we seek to learn how to obtain

the target model. The key idea is to train the target model in a way that generalizes well over

future frames. In all previous works (96; 129; 22; 19; 50; 82; 62; 14), the target model is trained

to minimize a loss function on the current frame. Even if the model reaches an optimal solution,
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it does not necessarily mean it would work well for future frames. Instead, we suggest to use

error signals from future frames. During the meta-training phase, we aim to find a generic initial

representation and gradient directions that enable the target model to focus on features that are

useful for future frames. Also, this meta-training phase helps to avoid overfitting to distractors in

the current frame. In addition, by enforcing the number of update iterations during meta-training,

the resulting networks train significantly faster during the initialization.

Our proposed approach can be applied to any learning based tracker with minor modifications.

We select two state-of-the-art trackers, MDNet (96), from the classifier based tracker (tracking-

by-detection) category, and CREST (129), a correlation based tracker. Experimental results show

that our meta-learned version of these trackers can adapt very quickly—just one iteration—for

the first frame while improving accuracy and robustness. Note that this is done even without em-

ploying some of the hand engineered training techniques, sophisticated architectural design, and

hyperparameter choices of the original trackers. In short, we present an easy way to make very

good trackers even better without too much effort, and demonstrate its success on two different

tracking architectures, indicating potentially general applicability.

3.1 Meta-Learning for Visual Object Trackers

In this section, we explain the proposed generalizable meta-training framework for visual

object trackers. The details for applying this to each tracker are found in Section 3.2.

3.1.1 Motivation

A typical tracking episode is as follows: The tracking model is adapted to a specified bound-

ing box around the target in the initial frame of a sequence. Aggressive regularizers and fast

optimization techniques are adopted to allow this adaptation/training to be done quickly so that

the resulting model is robust to target variations and environment changes. Then, the tracking

model is used to predict the target location in subsequent frames. Predicted target locations and
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Figure 3.1: Our meta-training approach for visual object tracking: A computational graph for
meta-training object trackers. For each iteration, it gets the gradient with respect to the loss
after the first frame, and a meta-updater updates parameters of the tracker using those gradients.
For added stability and robustness a final loss is computed using a future frame to compute the
gradients w.r.t parameters of meta-initializer and meta-updater. More details in Section 3.1.

images are then stored in the database, and the models are regularly updated with collected data

according to their own strategies.

A key motivation is to incorporate these actual tracking scenarios into the meta-learning

process. The eventual goal of trackers is to predict the target locations in future frames. Thus,

it would be desirable to learn trackers with this eventual goal. For example, if we could look at

variations in future frames, then we could build more robust target models and prevent them from

overfitting to the current target appearance or background clutter. We can take a step back and

observe trackers running on videos, see if the trackers generalize well, and find a reason why they

become distracted and adjust the adaptation procedure accordingly.

3.1.2 A general online tracker

This formulation of online tracking is made general in order to apply to a variety of track-

ers. Consider the key operation in a tracker, ŷ = F (x, θ), that takes an input x, e.g. image

patches around the target or a cropped image centered on putative target from an image I , and
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Algorithm 1 Meta-training object trackers algorithm
Input : Randomly initialized θ0 and α, training dataset D
Output : θ∗0 and α∗

1: while not converged do
2: gradθ0 , gradα = ~0 . Initialize to zero vector
3: for all k ∈ {0, . . . , Nmini − 1} do
4: S, j, δ ∼ p(D) . Sample a training example
5: θ00 = θ0
6: for all t ∈ {0, . . . , T − 1} do
7: ŷj = F (xj, θ

t
0)

8: θt+1
0 = θt0 − α�∇θt0

L(yj, ŷj; θ
t
0)

9: θ1 = θT0
10: ŷj+δ = F (xj+δ, θ1) . Apply to a future frame
11: gradθ0 = gradθ0 +∇θ0L(yj+δ, ŷj+δ) . Accumulate the gradients
12: gradα = gradα +∇αL(yj+δ, ŷj+δ)

13: θ0 = Optimizer(θ0, gradθ0) . Update θ0
14: α = Optimizer(α, gradα) . Update α

the tracker parameters θ and produces an estimate ŷ of the label, e.g. a response map or a loca-

tion in the frame that indicates the target position. For initialization, x0 from the initial frame

I0 with specified y0, we (approximately) solve for θ1(x0, y0), or θ1 for brevity, with respect to a

loss, L (F (x0, θ1) , y0), measuring how well the model predicts the specified label. For updates

during tracking, we take the parameters θj from frame j − 1 and find ŷj = F (xj, θj), then find θj+1

with respect to a loss. Then, we may incorporate transforming ŷj into a specific estimate of the

target location as well as temporal smoothing, etc. We can write the tracking process initialized

with x0 and y0 in an initial frame and then proceeding to track and update for frames I1 . . . In

as Track (θ1(x0, y0), I1, . . . , In) and its output as ŷn, an estimate of the label in the nth frame

(indicating target position) and θn+1, the model parameters after the nth frame.

3.1.3 Meta-training algorithm

Our meta-training approach has two goals. One is that initialization for a tracker on a se-

quence can be performed by starting with θ0 and applying one or a very small number of itera-
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tions of a update function M parameterized by α. Another goal is that the resulting tracker be

accurate and robust on later frames.

The gradient-descent style update function M is parameterized by α:

M(θ,∇θL;α) = θ − α�∇θL , (3.1)

where α is the same size as the tracker parameters θ (78), L is a loss function, and � is element-

wise product. α could be a scalar value, which might be either learnable (4) or manually fixed (31).

We empirically found that having per parameter coefficients was the most effective in our set-

tings.

Our meta-training algorithm is to find a good θ0 and α by repeatedly sampling a video, per-

forming initialization, applying the learned initial model to a frame slightly ahead in the se-

quence, and then back-propagating to update θ0 and α. Applying the initial model to a frame

slightly ahead in the sequence has two goals, the model should be robust enough to handle more

than frame-to-frame variation, and if so, this should make updates during tracking fast as well if

not much needs to be fixed.

After sampling a random starting frame from a random video, we perform optimization for

initialization starting with θ00 = θ0 given the transformed input and output pair, (xj, yj). A step of

optimization proceeds as

θi+1
0 = M(θi0,∇θi0

L(yj, F (xj, θ
i
0))) . (3.2)

This step can be repeated up to a predefined number of times T to find, θ1(xj, yj) = θT0 . Then, we

randomly sample a future frame Ij+δ and evaluate the model trained on the initial frame on that

future frame to produce: ŷj+δ = F (xj+δ, θ1).

The larger δ, the larger target object variations and environment changes are incorporated into

training process. Now, we can compute the loss based on the future frame and trained tracker
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parameters. The objective function is defined as

θ∗0, α
∗ = argmin

θ0,α
ES,j,δ[L(yj+δ, ŷj+δ)] . (3.3)

We used the ADAM (66) gradient descent algorithm to optimize. Note that θ0 and α are fixed

across different episodes in a mini-batch, but θ10, . . . , θ
T
0 are changed over every episode. To

compute gradients of the objective function w.r.t θ0 and α, it is required to compute higher-order

gradients (the gradients of function of gradients). This type of computation has been exploited

in recent studies (31; 84; 89). We can easily compute this thanks to automatic differentiation

software libraries (pyt). More details are explained in Algorithm 1.

3.1.4 Update rules for subsequent frames.

Most online trackers, including the two trackers we meta-train (Section 3.2), update the target

model regularly to adjust to new examples collected by itself during tracking. We could simply

use meta-trained α to update the model, θj = θj−1 − α � ∇θj−1
L (only one iteration presented

for brevity). However, it often diverges on longer sequences or the sequences that have very small

frame-to-frame variations. We believe this is mainly because we train α for fast adaptation at the

initial frame, so the values of α are relatively large, which causes unstable convergence behavior

(A similar phenomenon was reported in (4) albeit in a different context). Since α is stable when it

teams up with θ0, we could define the update rules for subsequent frames as θj = θ0−α�∇θ0L, as

suggested in (4). We could also combine two strategies, θj = β(θj−1−α�∇θj−1
L)+(1−β)(θ0−

α�∇θ0L). Although we could resolve unstable convergence behavior with these strategies, none

of these performed better than simply searching for a single learning rate. Therefore, we find a

learning rate for subsequent frames and then use existing optimization algorithms to update the

models as was done in the original versions of the trackers.
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(a) MetaCREST (b) MDNet vs MetaSDNet

3.2 Meta-Trackers

In this section, we show how our proposed meta-learning technique can be realized in state-

of-the-art trackers. We selected two different types of trackers, one from correlation based track-

ers, CREST (129), and one from tracking-by-detection based trackers MDNet (96).

3.2.1 Meta-training of correlation based tracker

3.2.1.1 CREST

A typical correlation filter objective is defined as follows.

argmin
f
||y − Φ(x) ∗ f ||2 + λ||f ||2 , (3.4)

where f is the correlation filter, ∗ is the convolution operation, and Φ is a feature extractor, e.g.

CNN. x is a cropped image centered on the target, and y ∈ RH×W , is a gaussian shaped response

map, where H and W are height and width, respectively. The cropped image is usually larger

than the target object so that it can provide enough background information. Once we have the

correlation filter trained, target localization at a new future frame is simply finding the coordi-

nates (h,w) that has the maximum response value.
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argmax
(h,w)

ŷ(h,w) , (3.5)

where ŷ = Φ(xnew) ∗ f , and ŷ(h,w) represents the element of ŷ in (h,w) coordinates. CREST

used a variation of the correlation filter objective, defined as

∑
(h,w)∈P

1

|P |
(ey(h,w)|y(h,w)− ŷ(h,w)|)2 + λ||f ||2 , (3.6)

where P = {(h,w) | |y(h,w) − ŷ(h,w)| > 0.1}. This would encourage the model to focus on

parts that are far from the ground truth values.

By reformulating the correlation filter as a convolutional layer, it can be effectively integrated

into an CNN framework (129). This allows us to add new modules easily, since the optimization

can be nicely done with standard gradient descent in end-to-end fashion. They inserted spatio-

temporal residual modules to avoid target model degradation by large appearance changes. They

also devised sophisticated initialization, learning rates, and weight decay regularizers, e.g. 1000

times larger weight decay parameter on spatio-temporal residual modules. Without those bells

and whistles, we aim to learn a robust single layer correlation filter via proposed meta-learning

process. There are two important issues for plugging CREST tracker into proposed meta-training

framework, and we present our solutions in following sections.

3.2.1.2 Meta-learning dimensionality reduction

CREST used PCA to reduce the number of channels of extracted CNN features, from 512

to 64. This not only reduces computational cost, but also it helps to increase robustness of the

correlation filter. PCA is performed at the initial frame and learned projection matrix are used for

the rest of the sequence. This becomes an issue when meta-training the correlation filter. We seek

to find a global initialization of the correlation filter for the all targets from different episodes.

However, PCA would change the basis for every sequences, which makes impossible to obtain

a global initialization in projected feature spaces that are changing every time. We propose to
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learn to reduce dimensions of the features. In CREST, we can insert 1x1 convolution layer right

after the feature extraction, the weights of this layer are also meta-learnable and jointly trained

during the meta-learning process along with the correlation filter. θ0 in proposed meta-training

framework, therefore, consists of θ0d and θ0f , the parameters of dimensionality reduction and the

correlation filter, respectively.

3.2.1.3 Canonical size initialization

The size of the correlation filter varies depending on the target shape and size. In order to

meta-train a fixed size initialization of the correlation filter θ0f , we should resize all objects to

the same size and same aspect ratio. However, it introduces distortion of the target and has been

known to degrade recognition performance (79; 112). In order to fully make use of the power of

the correlation filter, we propose to use canonical size initialization and its size and aspect ratio

are calculated as a mean of the objects in the training dataset. Based on canonical size initial-

ization, we warp it to the specific size taylored to the target object for each tracking episodes,

θ̃0f = Warp(θ0f ). We used differentiable bilinear sampling method (57) to pass through gradients

all the way down to θ0f .

Putting it all together, F (xj, θ) in our proposed meta-training framework for CREST, now

takes an input a cropped image xj from an input frame Ij , pass it through a CNN feature extractor

followed by dimensionality reduction (1x1 convolution with the weight θ0d). Then, it warps the

correlation filter θ0f , and finally apply warped correlation filter θ̃0f to produce a response map ŷj

(Figure 3.2a).

3.2.2 Meta-training of tracking-by-detection tracker

3.2.2.1 MDNet

MDNet is based on a binary CNN classifier consisting of a few of convolutional layers and

fully connected layers. In the offline phase, it uses a multi-domain training technique to pre-train
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the classifier. At the initial frame, it randomly initializes the last fully connected layer, and trains

around 30 iterations with a large number of positive and negative patches (Figure 3.2b). Target

locations in the subsequent frames are determined by average of bounding box regression outputs

of top scoring positive patches. It collects positive and negative samples during the tracking pro-

cess, and regularly updates the classifier. Multi-domain pre-training was a key factor to achieve

robustness, and they used an aggressive dropout regularizer and different learning rates at differ-

ent layers to further avoid overfitting to current target appearance. Without those techniques (the

multi-domain training and regularizers), we aim to obtain robust and quickly adaptive classifier

solely resting on the proposed meta-learning process.

3.2.2.2 Meta-training

It can be also easily plugged into the proposed meta-leraning framework. F (xj; θ) takes

as input image patches xj ∈ RN×D from an input frame Ij (and yj ∈ {0, 1}N is the corre-

sponding labels), where D is the size of the patches and N is the number of patches. Then,

the patches go through a CNN classifier, and the loss function L is a simple cross entropy loss

−
∑N

k=1 y
k
j log(F k(xj; θ)).

3.2.2.3 Label shuffling

Although a large-scale video detection dataset contains rich variation of objects in videos, the

number of objects and categories are limited compared to other still image datasets. This might

lead a deep CNN classifier to memorize all object instances in the dataset and classify newly seen

objects as backgrounds. In order to avoid this issue, we adopted the label shuffling trick, sug-

gested in (119). Every time we run a tracking episode, we shuffle the labels, meaning sometimes

labels of positive patches become 0 instead of 1, negative patches become 1 instead of 0. This

trick encourages the classifier to learn how to distinguish the target objects from background by

looking at current training examples, rather than memorizing specific targets appearance.
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3.3 Related Work

3.3.1 Online trackers

Many online trackers use correlation filters as the back-bone of the algorithms due to compu-

tational efficiency and discriminative power. From the early success of the MOSSE tracker (14),

a large number of variations have been suggested. (50) makes it more efficient by taking ad-

vantage of circulant matrices, further improved by resolving artificial boundary issues (21; 36).

Many hard cases have been tackled by using context information (94; 156), short and long-term

memory (83; 54), and scale-estimation (20), just to name a few. Recently, deep learning features

have begun to play an important role in correlation filters (96; 129; 22; 19; 82; 139; 76). On the

other hand, tracking-by-detection approaches typically learn a classifier to pick up the positive

image patches wrapping around the target object. Pioneered by (62), many learning techniques

have been suggested, e.g. multiple instance learning (9), structured output SVMs (46), online

boosting (43), and model ensembles (10). More recently, MDNet (96), with deep features and a

deep classifier, achieved significantly higher accuracy.

3.3.2 Offline trackers

Several recent studies have shown that we can build accurate trackers without online adapta-

tion (13; 49; 132) due to powerful deep learning features. Siamese-style networks take a small

target image patch and a large search image patch, and directly regress the target location (49) or

generate a response map (13) via a correlation layer (33). In order to consider temporal informa-

tion, recurrent networks have also been explored in (61; 37; 42; 152).

3.3.3 Meta-learning

This is an emerging field in machine learning and its applications. Although it is not a new

concept (120; 121; 52; 134), many recent works have shown very promising results along with

deep learning success. (7; 16; 148; 77) attempted to replace hand-crafted optimization algorithms
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with meta-learned deep networks. (109) took this idea into few shot or one shot learning prob-

lem. It aimed to learn optimal update strategies based on how accurate a learner can classify test

images with few training examples when the learner follows the strategies from the meta-learner.

Instead of removing existing optimization algorithms, (31) focuses on learning initialization that

are most suitable for existing algorithms. (78) further learns parameters of existing optimization

algorithms along with the initialization. Unlike approaches introduced above, there also have

been several studies to directly predict the model parameters without going through the optimiza-

tion process (152; 12; 145).

3.4 Experiments

3.4.1 Experimental setup

3.4.1.1 VOT2016

It contains 60 videos (same videos from VOT 2015 (69)). Trackers are automatically reini-

tialized once it drifts off the target: zero overlap between predicted bounding box and the ground

truth. In this reset-based experiments, three primary measures have been used, (i) accuracy, (ii)

robustness and (iii) expected average overlap (EAO). The accuracy is defined as average overlap

during successful tracking periods. The robustness is defined as how many times the trackers fail

during tracking. The expected average overlap is an estimator of the average overlap a tracker is

expected to attain on a large collection of short-term sequences.

3.4.1.2 OTB2015

It consists of 100 fully annotated video sequences. Unlike VOT2016, the one pass evaluation

(OPE) is commonly used in OTB dataset (no restart at failures). The precision plots (based on

the center location error) and the success plots (based on the bounding box overlap) are used to

access the tracker performance.
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3.4.1.3 Dataset for meta-training

We used a large scale video detection dataset (116) for meta-training both trackers. It con-

sists of 30 object categories, which is a subset of 200 categories in the object detection dataset.

Since characteristics of the dataset are slightly different from the object tracking dataset, we sub-

sampled the dataset. First, we picked a video frame that contains a target object whose size is

not larger than 60% of the image size. Then, a training video sequence is constructed by sam-

pling all subsequent frames from that frame until the size of the target object reaches 60%. We

ended up having 718 video sequences. In addition, for the experiments on OTB2015 dataset, we

also used an additional 58 sequences from object tracking datasets in VOT2013,VOT2014,and

VOT2015 (70), excluding the videos included in OTB2015, following MDNet’s approach (96).

These sequences were selected in the mini-batch selection stage with the probability 0.3. Sim-

ilarly, we used 80 sequences from OTB2015, excluding the videos in VOT2016 for the experi-

ments on VOT2016 dataset.

3.4.1.4 Baseline implementations

We selected two trackers, MDNet (96) and CREST (129). For CREST, we re-implemented

our own version in python based on publicly released code written in MATLAB. We meta-trained

our version. For MDNet, the authors of MDNet provide two different source codes, written in

MATLAB and python, respectively. We used the latter one and called it as pyMDNet or pySD-

Net, depending on pre-training methods. We meta-trained pySDNet, and call it as MetaSDNet.

Note that overall accuracy of pyMDNet is lower than MDNet on OTB2015 (.652 vs .678 in suc-

cess rates with overlap metric). For fair comparison, we compared our MetaSDNet to pyMDNet.

3.4.1.5 Meta-training details

In MetaSDNet, we used the first three conv layers from pre-trained vgg16 as feature extrac-

tors. During meta-training, we randomly initialized the last three fc layers, and used Adam as
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Table 3.1: Quantitative results on VOT2016 dataset. The numbers in legends represent the num-
ber of iterations at the initial frame. EAO (expected average overlap) - 0 to 1 scale, higher is
better. A (Accuracy) - 0 to 1 scale, higher is better. R (Robustness) - 0 to N, lower is better. We
ran each tracker 15 times and reported averaged scores following VOT2016 convention.

EAO Acc R
MetaCREST-01 0.317 0.519 0.932
CREST 0.283 0.514 1.083
CREST-Base 0.249 0.502 1.383
CREST-10 0.252 0.509 1.380
CREST-05 0.262 0.510 1.298
CREST-03 0.262 0.514 1.283
CREST-01 0.259 0.505 1.277

(a) The results of MetaCREST

EAO Acc R
MetaSDNet-01 0.314 0.526 0.934
pyMDNet-30 0.304 0.540 0.943
pyMDNet-15 0.299 0.541 0.977
pyMDNet-10 0.291 0.535 0.989
pyMDNet-05 0.254 0.523 1.198
pyMDNet-03 0.184 0.488 1.703
pyMDNet-01 0.119 0.431 2.733

(b) The results of MetaSDNet

the optimizer with learning rate 1e-4. We only updated the last three fc layers for the first 5,000

iterations and trained all layers for the rest of iterations. The learning rate was reduced to 1e-5

after 10,000 iterations, and we trained up to 15,000 iterations. For α, we initialized to 1e-4, and

also used Adam with learning rate 1e-5, then was decayed to 1e-6 after 10,000 iterations. We

used mini-batch size Nmini = 8. For the meta-update iteration T , larger T gave us only small

improvement, so we set to 1. For each training episode, we sample one random future frame

uniformly from 1 to 10 ahead. In MetaCREST, we randomly initialized θ0 and also used Adam

with learning rate 1e-6. For α, we initialized to 1e-6, and learning rate of Adam was also set to

1e-6. Nmini = 8 and meta-training iterations was 10,000 (at 50,000 iterations, the learning rate

was reduced to 1e-7). We used same hyper-parameters for both OTB2015 and VOT2016 exper-

iments. For other hyper-parameters, we mostly followed the ones in the original trackers. For

more details, the code and raw results will be released.

3.4.2 Experimental results

3.4.2.1 Quantitative evaluation

Table 3.1 shows quantitative results on VOT2016. In VOT2016, EAO is considered as the

main metric since it consider both accuracy and robustness. Our meta-trackers, both MetaCREST
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Figure 3.3: Precision and success plots over 100 sequences in OTB2015 dataset with one-pass
evaluation (OPE). For CREST (top row),The numbers in legends represent the number of itera-
tions at the initial frame, and all used 2 iterations for the subsequent model updates. For MDNet
experiments (bottom row), 01-15 means, 1 training iterations at the initial frame and 15 training
iterations for the subsequent model updates.

and MetaSDNet, consistently improved upon their counterparts by significant margins. Note that

this is the improvement without their advanced techniques, e.g. pyMDNet with specialized multi-

domain training and CREST with spatio-temporal residual modules. The performances of the

accuracy metric are not very different than the original trackers. Because it computes the average

overlap by only taking successful tracking periods into account, we did not change other factors

that might affect the accuracy in the original trackers, e.g. scale estimation. Quantitative results

on OTB2015 are depicted in Figure 3.3. Both of MetaSDNet and MetaCREST also improved
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Table 3.2: Speed and performance of the initialization: The right table shows the losses of es-
timated response map in MetaCREST. The left table shows the accuracy of image patches in
MetaSDNet. B (Before) - the performance of the initial frame before training, A (After) - the
performance of the initial frame after training, LH (Lookahead) - the performance of next 5
frames after training, Time - wall clock time to train in seconds

B A LH Time(s)
MetaCREST-01 0.48 0.04 0.05 0.090
CREST-01 0.95 0.82 0.87 0.395
CREST-03 0.95 0.62 0.75 0.424
CREST-05 0.95 0.45 0.63 0.550
CREST-10 0.95 0.24 0.40 0.668
CREST-20 0.95 0.18 0.31 1.048
CREST-65 0.95 0.01 0.30 1.529

B A LH Time(s)
MetaSDNet-01 0.50 0.98 0.97 0.124
pyMDNet-01 0.51 0.56 0.56 0.123
pyMDNet-03 0.51 0.79 0.78 0.373
pyMDNet-05 0.51 0.84 0.84 0.656
pyMDNet-10 0.51 0.95 0.93 1.171
pyMDNet-15 0.51 0.97 0.97 1.819
pyMDNet-30 0.51 0.99 0.98 3.508

upon their counterparts in both precision and success plots with only one iteration for initializa-

tion. Detailed results of individual sequences in both of VOT2016 and OTB2015 are presented in

Appendix.

We require only one iteration at the initial frame to outperform the original trackers. We also

performed the experiments with more than one iteration, but the performance gain was not signif-

icant. On the other hand, MDNet takes 30 iterations to converge at the initial frame as reported

in their paper, and fewer iterations caused serious performance degradation. This confirms that

getting a robust target model at the initial frame is very important for subsequent frames. For

CREST, performance drop was not significant as MDNet, but it was still more than 10 iterations

to reach to its maximum performance. MDNet updates the model 15 iterations for subsequent

frames at every 10 frames regularly (or when it failed, meaning its score is below a predefined

threshold).

3.4.2.2 Speed and performance of the initialization

We reported the wall clock time speed at the initial frame in Table 3.2, on a single TITAN-X

GPU. In CREST, in addition to feature extraction, there are two more computational bottlenecks.

The first is the convolution with correlation filters. Larger objects means larger filters and more

computations. We reported average time across all 100 sequences. Another heavy computation

29



Figure 3.4: Visualizations of response maps in CREST: Left three columns represents the image
patch at the initial frame, response map with meta-learned initial correlation filters θ0f , response
map after updating 1 iteration with learned α, respectively. The rest of seven columns on the right
shows response maps after updating the model up to 10 iterations.

comes from PCA at the initial frame. It also depends on the size of the objects. Larger objects

lead to larger center cropped images, features, and more computation in PCA.

MDNet requires many positive and negative patches, and also many model update iterations

to converge. A large part of the computation comes from extracting CNN features for every

patch. MetaSDNet needs only a few training patches and can achieve 30x speedup (0.124 vs

3.508), while improving accuracy. If we used more compact CNNs for feature extractions, the

speed could have been in the range of real-time processing. For subsequent frames in MDNet,

model update time is of less concern because MDNet only updates the last 3 fully connected lay-

ers, which are relatively faster than feature extractors. The features are extracted at every frame,

stored in a database, and update the model every 10 frames. Therefore, the actual computation is

well distributed across every frames.

We also showed the performance of the initialization to see the effectiveness of our approach

(in Table 3.2. We measured the performance with learned initialization. After initial training, we

measure the performance on the first frame and 5 future frames to see generalizability of trackers.

MetaSDNet achieved very high accuracy after only one iteration, but accuracy of pyMDNet after

one iteration was barely above guessing (guessing is 50% and all negative prediction is 75% ac-

curacy since sampling ratio was 1:3 between positive and negative samples). The effectiveness

is more apparent in MetaCREST. MetaCREST-01 without any updates gave already close per-
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Figure 3.5: Qualitative examples: tracking results at early stage of MotorRolling (top) and Bolt2
(bottom) sequences in OTB2015 dataset. Color coded boxes: ground Truth (Red), MetaCREST-
01 (Green) and CREST (Blue).

formance to CREST-05 after training (0.48 vs 0.45). In original CREST tracker, they train the

model until it reaches a loss of 0.02, which corresponds to an average 65 iterations. However, its

generalizability at future frames is limited compared to ours (.05 vs .30). Although this is not

directly proportional to eventual tracking performance, we believe this is clear evidence that our

meta-training algorithm based on future frames is indeed effective, as also supported by overall

tracking performance.

3.4.2.3 Visualization of response maps

We visualized response maps in MetaCREST at the initial frame (Figure 3.4). A meta-learned

initialization, θ0 should be capable of learning generic objectness or visual saliency. At the same

time, it should not be instance specific. It turns out that is the case. The second column in Fig-

ure 3.4 shows response maps by applying correlation filters to the cropped image (first column)

with θ0. Without any training, it already generates high response values on some locations where

there are objects. But, more importantly, there is no clear maximum. After one iteration, the max-
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imum is clearly located at the center of the response map. In contrast to MetaCREST, CREST

consumes more iterations to produce high response values on the target.

3.4.2.4 Qualitative examples of robust initialization

In Figure 3.5, we present some examples where MetaCrest overcomes some of the issues

in the original CREST. In MotorRolling sequence (top row), CREST was distracted by a hori-

zontal line from the forest in the background. CREST easily reached to 0.0000 loss defined in

Equation 3.6 at the initial frame, as opposed to 0.1255 in MetaCREST. This is a strong evidence

that an optimal solution does not necessarily mean good generalizability on future frames. In

contrast, MetaCREST, generalizes well to future frames, despite not finding an optimal solution

at the current frame. In Bolt2 sequence (bottom row), CREST also reached to 0.0000 loss (vs

0.0534 in MetaCREST). In a similar way, a top left part in the bounding box was the distractor.

MetaCREST could easily ignore the background clutter and focused on the object in the center of

the bounding box.
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CHAPTER 4: META-CURVATURE

Despite huge progress in artificial intelligence, the ability to quickly learn from few examples

is still far short of that of a human. We are capable of utilizing prior knowledge from past expe-

riences to efficiently learn new concepts or skills. With the goal of building machines with this

capability, learning-to-learn or meta-learning has begun to emerge with promising results.

One notable example is model-agnostic meta-learning (MAML) (31; 98), which has shown

its effectiveness on various few-shot learning tasks. It formalizes learning-to-learn as a meta

objective function and optimizes it with respect to a model’s initial parameters. Through the

meta-training procedure, the resulting model’s initial parameters become a very good prior rep-

resentation and the model can quickly adapt to new tasks or skills through one or more gradient

steps with a few data examples. Although this end-to-end approach, using standard gradient de-

scent as the inner optimization algorithm, was theoretically shown to approximate any learning

algorithm (32), recent experiments indicate that the choice of the inner-loop optimization algo-

rithm affects performance (78; 8; 44).

Given the sensitivity to the inner-loop optimization algorithm, second order optimization

methods (or preconditioning the gradients) are worth considering. They have been extensively

studied and have shown their practical benefits in terms of faster convergence rates (99), an im-

portant aspect of few-shot learning. In addition, the problems of computational and spatial com-

plexity for training deep networks can be effectively handled thanks to recent approximation

techniques (85; 115). Nevertheless, there are issues with using second order methods in its cur-

rent form as an inner loop optimizer in the meta-learning framework. First, they do not usually

consider generalization performance. They compute local curvatures based on training losses and

move along the local curvatures as far as possible. This can be very harmful, especially in the
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few-shot learning setup, because it can overfit easily and quickly. In addition, it may be computa-

tionally more expensive since third order derivatives are needed for the outer loop optimizations

when the second order derivatives are presented in the inner loop.

In this work, we propose to learn a curvature for better generalization and faster model adap-

tation in the meta-learning framework, we call meta-curvature. The key intuition behind MAML

is that there are some representations are broadly applicable to all tasks. In the same spirit, we hy-

pothesize that there are some curvatures that are broadly applicable to many tasks. Curvatures are

determined by the model’s parameters, network architectures, loss functions, and training data.

Assuming new tasks are distributed from the similar distribution as meta-training distribution,

there may exist common curvatures that can be obtained through meta-training procedure. The

resulting meta-curvatures that are represented by a second-order tensor (matrix), coupled with

the simultaneously meta-trained model’s initial parameters, will transform the gradients by mul-

tiplying the curvature matrix, such that the updated model has better performance on new tasks

with fewer gradient steps. In order to efficiently capture the dependencies between all gradient

coordinates for large networks, we design a multilinear mapping consisting of a series of tensor-

products to transform the gradients. It also considers layer specific structures, e.g. convolutional

layers, to effectively reflects our inductive bias. In addition, meta-curvature can be easily plugged

into existing meta-learning frameworks like MAML without additional, burdensome higher-order

gradients.

We demonstrate the effectiveness of our proposed method on the few-shot learning tasks done

by (143; 109; 31). Experimental results show consistent improvements on few-shot classification

tasks on MiniImagenet datasets. In the most extreme few-shot learning setup, which is one-shot

one-gradient step, the proposed method outperformed the baselines by a large margin. We also

found that it gave us much faster convergence rates of the meta-training. In addition, we perform

few-shot reinforcement learning experiments and show promising results compared to its strong

baselines.
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4.1 Method

First, we present a simple and efficient form of the meta-curvature computation through the

lens of tensor algebra. Then, we present a matrix-vector product view to provide intuitive idea of

the connection to the second order matrices. And, we discuss the relationships to other methods

in computational aspects.

4.1.1 Tensor product view

We consider neural networks as our models. With a slight abuse of notation, let the model’s

parametersW l ∈ RCl
out×Cl

in×dl and its gradients of loss function Gl ∈ RCl
out×Cl

in×dl , at each

layers l. To avoid cluttered notation, we will omit the superscript l. We choose superscripts and

dimensions with convolutional layers in mind, but the method can be easily extended to other

layers, e.g. recurrent layers. Cout, Cin, and d are the number of output channels, the number

of input channels, and the filter size respectively. d is height × width in convolutional layers

and 1 in fully connected layers. We also define meta-curvature matrices, Mo ∈ RCout×Cout ,

Mi ∈ RCin×Cin , and Mf ∈ Rd×d. Now a meta-curvature function takes a multidimensional tensor

as an input and has all meta-curvature matrices as learnable parameters.

MC(G) = G ×3 Mf ×2 Mi ×1 Mo. (4.1)

Figure 4.1 (top) shows an example of computational illustration with an input tensor G ∈ R2×3×d.

The main motivation of this structure is to capture the second-order dependencies between all

model’s parameters with minimal computational and space overhead. First, it performs linear

transformations for all 3-mode fibers of G. In other words, Mf captures the parameter depen-

dencies between the elements within a 3-mode fiber, e.g. all gradient elements in a channel of

a convolutional filter. Secondly, the 2-mode product models the dependencies between 3-mode

fibers computed from the previous stage. All 3-mode fibers are updated by linear combinations

of other 3-mode fibers belonging to the same output channel (linear combinations of 3-mode

35



Figure 4.1: An example of meta-curvature computational illustration with G ∈ R2×3×d. Top: ten-
sor algebra view, Bottom: matrix-vector product view.
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fibers in a convolutional filter). Finally, the 1-mode product is performed in order to model the

dependencies between the gradients of all convolutional filters. Similarly, the gradients of all

convolutional filters are updated by linear combinations of gradients of other convolutional filters.

A useful property of n-mode products is the fact that the order of the multiplications is irrel-

evant for distinct modes in a series of multiplications. For example, G ×3 Mf ×2 Mi ×1 Mo =

G ×1 Mo ×2 Mi ×3 Mf . Thus, the proposed method indeed examines the dependencies of the

elements in the gradient all together.

4.1.2 Matrix-vector product view

We can also view the proposed meta-curvature computation as a matrix-vector product anal-

ogous to that from other second order methods. We can expand the meta-curvature matrices as

follows.

M̂o = Mo ⊗ ICin
⊗ Id, (4.2)

M̂i = ICout ⊗Mi ⊗ Id, (4.3)

M̂f = ICout ⊗ ICin
⊗Mf , (4.4)

where ⊗ is the Kronecker product, Ik is k dimensional identity matrix, and the three expanded

matrices are all same size M̂o, M̂i, M̂f ∈ RCoutCind×CoutCind. Now we can transform the gradi-

ents with the meta-curvature as

vec(MC(G)) = Mmcvec(G), (4.5)

where Mmc = M̂oM̂iM̂f . Unlike the normal matrices do not hold commutative property, the

expanded matrices satisfy, e.g. M̂oM̂iM̂f = M̂fM̂iM̂o. Thus, Mmc models the dependencies of

the model parameters all together. Note that we can also write Mmc = Mo ⊗Mi ⊗Mf with the

tensor algebra notations, but this is non-commutative, Mo ⊗Mi ⊗Mf 6= Mf ⊗Mi ⊗Mo.
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Figure 4.1 (bottom) shows a computational illustration. M̂fvec(G), which is equivalent com-

putation to G ×3 Mf , can be interpreted as a giant matrix-vector multiplication with block diagonal

matrix, where each block shares same meta-curvature matrix Mf . It resembles the block diagonal

approximation strategies in some second-order methods for training deep networks, but as we are

interested in learning meta-curvature matrices, no approximation is involved. And matrix-vector

product with M̂o and M̂i are used to capture inter-parameter dependencies and are equivalent to

2-mode and 3-mode products of Eq. 4.1.

4.1.3 Relationship to other methods

We note that the suggested method is computationally related to Tucker decomposition (67),

which decomposes a tensor into low rank cores with projection factors and aims to closely recon-

struct the original tensor. We maintain full rank gradient tensors, however, and our main goal is to

transform the gradients for better generalization. Recently, (68) proposed to learn the projection

factors in Tucker decomposition for fully connected layers in deep networks. Again, their goal

was to find the low rank approximations of fully connected layers for saving computational and

spatial cost.

We also note that the computation of meta-curvature is closely related to Kronecker-factored

Approximate Curvature (K-FAC) (85; 45), which approximates the Fisher information matrix

by the Kronecker product, e.g. F ≈ A ⊗ G, where A is computed from the activation of

input units and G is computed from the gradient of output units. Its main goal is to approxi-

mate the Fisher such that matrix vector products between its inversion and the gradient can be

computed efficiently. However, especially in convolutional layers, we found that maintaining

A ∈ RCind×Cind was quite expensive both computationally and spatially even for smaller net-

works. In addition, when we applied this factorization scheme to meta-curvature, it tends to easily

overfit to meta-training set. On the contrary, we maintain two separated matrices, Mi ∈ RCin×Cin

and Mf ∈ Rd×d, which allows us to avoid overfitting and heavy computation. More importantly,

we learn meta-curvature matrices to improve generalization instead of directly computing them
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Algorithm 2 Training MAML with the meta-curvature for few-shot supervised learning
Input : task distribution p(T ), learning rate α, β

1: Initialize Mo,Mi,Mf = I
2: while not converged do
3: Sample batch of tasks τi ∼ p(T )
4: for all τi do do
5: θτi = θ − αMmc∇Lτitr (θ) . Assuming one gradient step
6: θ ← ADAM

(
θ, β,∇θ

∑
τi
Lτival(θ

τi)
)

7: Mo ← ADAM
(
Mo, β,∇Mo

∑
τi
Lτival(θ

τi)
)

8: Mi ← ADAM
(
Mi, β,∇Mi

∑
τi
Lτival(θ

τi)
)

9: Mf ← ADAM
(
Mf , β,∇Mf

∑
τi
Lτival(θ

τi)
)

from the activation and the gradient of training loss. Also, we do not require expensive matrix

inversions.

4.1.4 Meta-training

We follow a typical meta-training algorithm and replace the gradients in the inner update rule

with the projected gradient. We initialize all meta-curvature matrices as identity matrices so that

the projected gradients are equal to the original ones at the beginning. We used the ADAM (66)

optimizer for the outer loop optimization and update the model’s initial parameters and meta-

curvatures simultaneously. To avoid cluttered notation, we assumed the model has only one layer.

It is straightforward to extend to multiple layers (Alg. 2).

4.2 Analysis

In this section, we will explore how a meta-trained matrix Mmc, or M for brevity, can operate

for better generalization. Let us take the gradient of meta-objective w.r.t M for a task τi. With the

inner update rule θ − αM∇θLτitr (θ), and by applying chain rule,

∇MLτival(M) = −α∇θLτival(θ
τi)∇θLτitr (θ)>, (4.6)
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where θτi is the parameter for the task τi after the inner update. It is the outer product between

the gradients of validation loss and training loss. Note that there is a significant connection to the

Fisher information matrix. For a task τi, if we define the loss function as negative log likelihood,

e.g. a supervised classification task Lτi(θ) = E(x,y)∼p(τi)[− logθ p(y|x)], then the empirical Fisher

information matrix can be defined as F = E(x,y)∼p(τi)[∇θ logθ p(y|x)∇θ logθ p(y|x)>]. There are

three clear distinctions. First, the training and validation sets are treated separately in the meta-

gradient∇MLτival, while the empirical Fisher is computed with only training set (validation set

is not available during training). Secondly, the gradient of the validation set is evaluated at new

parameters θτi after the inner update in the meta-gradient. Finally, the Fisher information matrix

is positive semi-definite by construction, but it is not the case for the meta-gradient. This is an

attractive property since it guarantees that the transformed gradient is always a descent direction.

However, we mainly care about generalization performance in this work and the descent direction

of the training loss gradient does not necessarily mean it would decrease the validation loss.

Hence, we rather not force this property in this work, but leave it for future work.

Now let us consider what the meta-gradient can do for good generalization performance.

Given a fixed point θ and a meta training set T = {τi}, standard gradient descent from an initial-

ization M0, gives the following update.

MT = M0 − β
|T |∑
i=1

∇MLτival(Mi−1) (4.7)

= M0 + αβ

|T |∑
i=1

∇θLτival(θ
τi(Mi−1))∇θLτitr (θ)>, (4.8)

where θτi(Mi−1) = θ − αMi−1∇θLτitr (θ), (4.9)

or θτi for brevity. α and β are fixed inner/outer learning rates respectively. Here, we assume a

standard gradient descent for simplicity. But the argument extends to other advanced gradient

algorithms, such as momentum and ADAM, since we can replace the gradients with some expo-

nentially weighted moving averages according to the methods.
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Note that this has close connection to online natural gradient (102; 115), e.g. Ft−1 = (1 −

γ)Ft−1 + γgtg
>
t , where gt is the gradient at the t-th iteration. It is also related to the rank-1 update

in quasi-Newton methods, such as the SR1 method (99). In short, meta-training aims to update M

for each meta-training batch.

We apply MT to the gradients of a new task, giving the transformed gradients

MT∇θLτnew
tr (θ) =

(
M0 + αβ

|T |∑
i=1

∇θLτival(θ
τi)∇θLτitr (θ)>

)
∇θLτnew

tr (θ) (4.10)

= M0∇θLτnew
tr (θ) + β

|T |∑
i=1

(
∇θLτitr (θ)>∇θLτnew

tr (θ)
)
α∇θLτival(θ

τi) (4.11)

= M0∇θLτnew
tr (θ) + β

|T |∑
i=1

(
∇θLτitr (θ)>∇θLτnew

tr (θ)︸ ︷︷ ︸
A. Gradient similarity

)(
α∇θLτival(θ) +O(α2)︸ ︷︷ ︸

B. Taylor expansion

)
.

(4.12)

Given M0 = I, the second term in the R.H.S. of Eq. 4.12 can represent the transformed

gradient direction for the new task. For Eq. 4.12, we used the Taylor expansion of vector-valued

function,∇θLτival(θ
τi) ≈ ∇θLτival(θ) +∇2

θL
τi
val(θ)(θ − αMi−1∇θLτitr (θ)− θ).

The term A of Eq. 4.12 is the inner product between the gradients of meta-training losses and

new test losses. We can simply interpret this as how similar the gradient directions between two

different tasks. This has been explicitly used in continual learning or multi-task learning setup to

consider task similarity (27; 80; 113). When we have a loss function in the form of finite sums,

this term can be also interpreted as a kernel similarity between the respective sets of gradients

(see Eq. 4 of (93)).

With the first term in B of Eq. 4.12, we compute a linear combination of the gradients of

validation losses from the meta-validation set. Its weighting factors are computed based on the

similarities between the tasks from the meta-training set and the new task as explained above.

Therefore, we essentially perform a soft nearest neighbor voting to find the direction among the

validation gradients from the meta-validation set. Given the new task, the gradient may lead the

model to overfit (or underfit). However, the proposed method will extract the knowledge from
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the past experiences and find the gradients that gave us good validation performance during the

meta-training process.

4.3 Related Work

4.3.1 Meta-learning

Meta-learning’s most distinctive feature is that it aims to achieve better generalization in a

principled way. (158; 159) learns to search neural architectures so that the generated architectures

can maximize the accuracy of held-out sets. (88) trains optimizers such that trained optimizers

can train child neural networks minimizing generalization error. Learning hyperparameters are

also explored to find the best hyperparameters to maximize the validation performance (84; 81).

Model-agnostic meta-learning (MAML) highlighted the importance of the model’s initial parame-

ters for better generalization (32) and there have been many extensions to improve the framework,

e.g. for continuous adaptation (5), better credit assignment (114), and robustness (65). In this

work, we improve the inner update optimizers by learning a curvature for better generalization

and fast model adaptation.

Meta-SGD (78) suggests to learn coordinate-wise learning rates. We can interpret it as an

diagonal approximation to meta-curvature in a similar vein to recent adaptive learning rates

methods, such as (135; 66; 28), performing diagonal approximations of second-order matrices.

Recently, (8) suggested to learn layer-wise learning rates through the meta-training. However,

both methods do not consider the dependencies between the parameters, which is our main focus

of this work.

4.3.2 Few-shot classification

As a good test bed to evaluate few-shot learning, huge progress has been made in the few-

shot classification task. Triggered by (143), many recent studies have focused on discovering

effective inductive bias on classification task. For example, network architectures that perform
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nearest neighbor search (143; 127) were suggested. Some improved the performance by model-

ing the interactions or correlation between training examples (90; 38; 131; 103; 95). In order to

overcome the nature of few-shot learning, the generative models have been suggested to augment

the training data (124; 144) or generate model parameters for the specified task (117; 107). The

state-of-the-art results are achieved by additionally training 64-way classification task for pre-

training (107; 117; 103) with larger ResNet models (107; 117; 95; 90). In this work, our focus

is to improve the model-agnostic few-shot learner that is broadly applicable to other tasks, e.g.

reinforcement learning setup.

4.3.3 Learning optimizers

Our proposed method may fall within the learning optimizer category (109; 7; 149). They

also take as input the gradient and transform it via a neural network to achieve better convergence

behavior. However, their main focus is to capture the training dynamics of individual gradient co-

ordinates (109; 7) or to obtain a generic optimizer that is broadly applicable for different datasets

and architectures (149; 7). On the other hand, we meta-learn a curvature coupled with the models

initialization parameters. We focus on a fast adaptation scenario requiring a small number of

gradient steps. Therefore, our method does not consider a history of the gradients, which enables

us to avoid considering a complex recurrent architecture. Finally, our approach is well connected

to existing second order methods while learned optimizers are not easily interpretable since the

gradient passes through nonlinear and multilayer recurrent neural networks.

4.4 Experiments

We evaluate the proposed method on a synthetic data few-shot regression task, few-shot

image classification tasks on Omniglot and MiniImagenet datasets, and few-shot reinforcement

learning tasks. We test two variants of the meta-curvature. The first one, named as MC1, we

fixed the Mo = I in Eq 4.1. The second one, named as MC2, we learn all three meta-curvature

matrices. We also report results on few-shot reinforcement learning in appendices.
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Table 4.1: Few-shot regression results on sinusoidal functions.

Method 5-shot 10-shot 20-shot

MAML 0.686 ± 0.070 0.435 ± 0.039 0.228 ± 0.024
Meta-SGD 0.482 ± 0.061 0.258 ± 0.026 0.127 ± 0.013
LayerLR 0.528 ± 0.068 0.269 ± 0.027 0.134 ± 0.014
MC1 0.426 ± 0.054 0.239 ± 0.025 0.125 ± 0.013
MC2 0.405 ± 0.048 0.201 ± 0.020 0.112 ± 0.011

4.4.1 Few-shot regression

To begin with, we perform a simple regression of sinusoidal functions following (31; 78).

During the meta-training process, sinusoidal functions are sampled, where the amplitude and

phase are varied within [0.1, 5.0] and [0, π] respectively. The network architecture and all hyper-

parameters are same as (31) and we only introduce the suggested meta-curvature. We reported

the mean squared error with 95% confidence interval after one gradient step in Figure 4.1.

Experimental setup We used the same experimental setups in (31). During training and

testing, the amplitude and the phase vary within [0.1, 5.0] and [0, π] respectively, and data points

are sampled from uniform distribution [−5, 5]. We used one gradient step with the fixed learning

rate 0.01 and Adam was used for meta-training with the outer loop learning rate 0.001. We used

the same network architecture, which has two 40 dimension fully connected layers with ReLU

activation. We randomly sampled 25 tasks for every iterations and trained 70000 iterations. We

reported the performance from the trained model that had the minimum meta-training loss value.

(31) reported the MSE for 5-shot setting, and we could reproduced the results. (78) has slightly

different settings, so the MSE are not directly comparable to theirs.

Qualitative results: We provide qualitative results of few-shot regression task on sinusoidal

functions in Figure 4.2. The star shape markers are the few data points for training, and we draw

the curves based on each methods, MAML, Meta-SGD, and the proposed MC2. The left column

is 5-shot and the right column is 10-shot experiments.
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Table 4.2: Few-shot classification results on Omniglot dataset. † denotes 3 model ensemble.

5-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

SNAIL (91) 99.07 ± 0.16 99.78 ± 0.09 97.64 ± 0.30 99.36 ± 0.18
GNN (39) 99.2 99.7 97.4 99.0

MAML 98.7 ± 0.4 99.9 ± 0.1 95.8 ± 0.3 98.9 ± 0.2
Meta-SGD 99.53 ± 0.26 99.93 ± 0.09 95.93 ± 0.38 98.97 ± 0.19
MAML++† (8) 99.47 99.93 97.65 ± 0.05 99.33 ± 0.03
MC1 99.47 ± 0.27 99.57 ± 0.12 97.60 ± 0.29 99.23 ± 0.08
MC2 99.77 ± 0.17 99.79 ± 0.10 97.86 ± 0.26 99.24 ± 0.07
MC2† 99.97 ± 0.06 99.89 ± 0.06 99.12 ± 0.16 99.65 ± 0.05

4.4.2 Few-shot classification on Omniglot

The Omniglot dataset consists of handwritten characters from 50 different languages and

1632 different characters. It has been widely used to evaluate few-shot classification performance.

We follow the experimental protocol in (31) and all hyperparameters and network architecture

are same as (31). We used the same experimental setups in (31). The N-way K-shot Omniglot

task setup is as follows. We pick N unseen character classes out of entire dataset, and randomly

sample K training images belonging to each character classes. Therefore, one training task would

be to have NK images in total. The goal of the task is to classify images that are not part of train-

ing images out of N categories. Out of 1623 characters, we used 1100 characters for training,

100 characters for validation, and remaining 423 characters for testing. The network architecture

is 4 convolutional layers with 64 filters and 1 fully connected layer for the final classification.

We only used one inner gradient step with 0.4 learning rate for all meta-curvature experiments

for training and testing. The batch size was set to 32 (5-way) and 16 (20-way), and outer loop

learning rate is 0.001 and we trained 60000 iterations.

Except 5-shot 5-way setting, our simple 4 layers CNN with meta-curvatures outperform all

MAML variants and also achieve state-of-the-art results without additional specialized architec-

tures, such as attention module (SNAIL (91)) or relational module (GNN (39)). We provide the

training curves in Figure 4.4 and our methods converge much faster and achieve higher accuracy.
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4.4.3 Few-shot classification on miniImagenet and tieredImagenet

Datasets: The miniImagenet dataset was proposed by (143; 109) and it consists of 100 sub-

classes out of 1000 classes in the original dataset (64 training classes, 12 validation classes, 24

test classes). The tieredImagenet dataset (111) is a larger subset, composed of 608 classes and

reduce the semantic similarity between train/val/test splits by considering high-level categories.

baseline CNNs: We used 4 layers convolutional neural network with the batch normalization

followed by a fully connected layer for the final classification. In order to increase the capacity of

the network, we increased the filter size up to 128. We found that the model with the larger filter

seriously overfit (also reported in (31)). To avoid overfitting, we applied data augmentation tech-

niques suggested in (18; 23). For a fair comparison to (8), we also reported the results of model

ensemble. Throughout the meta-training, we saved the model regularly and picked 3 models that

have the best accuracy on the meta-validation dataset. We re-implemented all three baselines and

performed the experiments with the same settings.

Fig. 4.4 and Table 4.3 shows the results of baseline CNNs experiments on miniImagenet.

MC1 and MC2 outperformed all other baselines for all different experiment settings. Surpris-

ingly, not only do MC reaches to higher accuracy at convergence, but also both showed much

faster convergence rates of the meta-training. Our methods share the same benefits as second or-

der methods although we do not approximate any Hessian or Fisher matrices. Also our methods

are very robust to hyperparameter settings while we had to extensively perform hyperparameter

search to make other MAML variants work. Usually, MC2 outperforms MC1 because the more

fine-grained meta-curvature enable us to effectively increase the model’s capacity.

WRN-28-10 features and MLP: To the best of our knowledge, (117; 107) are current state-

of-the-art methods that use pretrained WRN-28-10 (155) network (Wide Resiaul Network). They

found that 5-way or 20-way classification was not good enough to obtain good features, so they

first pre-trained 64-way classification task on entire meta-training set as a feature extractor net-

work. And, they fine-tuned the network top of the feature extractor following few-shot classifi-

cation experimental setup. We evaluated our methods on this setting by adding one hidden layer
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Table 4.3: Few-shot classification results on miniImagenet test set (5-way classification) with
baseline 4 layer CNNs. * is from the original papers. † denotes 3 model ensembles.

1-shot 5-shot

Inner steps 1 step 5 step 1 step 5 step

*MAML · 48.7 ± 1.84 · 63.1 ± 0.92
*Meta-SGD 50.47 ± 1.87 · 64.03 ± 0.94 ·
*MAML++† 51.05 ± 0.31 52.15 ± 0.26 · 68.32 ± 0.44

MAML 46.28 ± 0.89 48.85 ± 0.88 59.26 ± 0.72 63.92 ± 0.74
Meta-SGD 49.87 ± 0.87 48.99 ± 0.86 66.35 ± 0.72 63.84 ± 0.71
LayerLR 50.04 ± 0.87 50.55 ± 0.87 65.06 ± 0.71 66.64 ± 0.69
MC1 53.37 ± 0.88 53.74 ± 0.84 68.47 ± 0.69 68.01 ± 0.73
MC2 54.23 ± 0.88 54.08 ± 0.93 67.94 ± 0.71 67.99 ± 0.73
MC2† 54.90 ± 0.90 55.73 ± 0.94 69.46 ± 0.70 70.33 ± 0.72

MLP followed by a softmax classifier and our method again improved MAML variants by a large

margin. Despite our best attempts, we could not find a good hyperparameters to train original

MAML in this setting. Although our main goal is to push how much a simple gradient trans-

formation in the inner loop optimization can improve general and broadly applicable MAML

frameworks, our methods performs favorably against state-of-the-art methods. Our methods out-

perform task dependent weight generating approach suggested in (107). We also note that our

results are also very competitive with the very latest state of the art using WRN-28-10 features,

LEO (117). However, LEO uses many other components (e.g. a relation net, weight generator,

etc.) which we do not incorporate for simplicity. (75) recently achieved the best result on miniIm-

agenet dataset. It is not directly comparable since they used different backbone network, 15-shot

meta-training scheme, and many regularization and augmentation techniques.

4.4.4 Visualization

Fig. 4.5 is a visualization of meta-trained meta-curvature matrices for 5-way 1-shot classi-

fication task. To visualize the full matrix, Mmc, we picked up the matrices from the first con-

volutional layer in the small model (filter size 64). Therefore with the 3 color input channels,
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Table 4.4: The results on miniImagenet and tieredImagenet with WRN-28-10 features. ‡ indicates
that both meta-train and meta-validation are used during meta-training.

miniImagenet tieredImagenet

(107)‡ 59.60 ± 0.41 73.74 ± 0.19 · ·
LEO (center)‡ (117) 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09
LEO (multiview)‡ (117) 63.97 ± 0.20 79.49 ± 0.70 · ·
MetaOptNet-SVM‡† (75) 64.09 ± 0.62 80.00 ± 0.45 65.81 ± 0.74 81.75 ± 0.53

Meta-SGD (center) 56.58 ± 0.21 68.84 ± 0.19 59.75 ± 0.25 69.04 ± 0.22
MC2 (center) 61.22 ± 0.10 75.92 ± 0.17 66.20 ± 0.10 82.21 ± 0.08
MC2 (center)‡ 61.85 ± 0.10 77.02 ± 0.11 67.21 ± 0.10 82.61 ± 0.08
MC2 (multiview)‡ 64.40 ± 0.10 80.21 ± 0.10 · ·

Mf ∈ R9×9, Mi ∈ R3×3, Mo ∈ R64×64, and Mmc ∈ R1728×1728. The diagonal elements are high

values, mostly > 0.5. Interestingly, there are also a lot of off-diagonal elements > 0.5 or < −0.5.

Thus, they capture the dependencies between the gradients.

4.4.5 Few-shot reinforcement learning

The goal of few-shot learning in reinforcement learning (RL) is that an agent can quickly

adapt to a new task with little prior experience. A distinct feature from the few-shot supervised

learning task is that the RL objective is not generally differentiable. Therefore, we use policy

gradient methods to estimate the gradient both for inner and outer loop gradients. In addition,

policy gradient methods are generally on-policy, which means that the training data depends on

the agents initial policy. Therefore, the initial policy (with the meta-learned initial parameters)

needs to explore as diverse experiences as possible to get proper feedback from a new task. We

described the method and interpretation with respect to supervised classification tasks, but it can

be easily modified to RL setting.

4.4.5.1 Experimental setup

We tested our method on complex high-dimensional locomotion tasks with the MuJoCo

simulator (136). Most of the settings are based on (31) for fair comparison. We consider two
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simulated robots (HalfCheetah and Walker2d) and two types of task environments (to run in a

forward/backward direction or a particular velocity). The network architecture is two hidden

layers of size 100 with ReLU activations for both. We used the standard linear feature baseline

estimator. We evaluated the performance after one policy gradient step with 20 trajectories. We

compare against MAML-TRPO and MAML-PPO. In the original MAML, TRPO (122) was used

as the outer loop optimizer but we found out that using PPO (123) consistently outperformed the

TRPO. MAML-PPO is also computationally more efficient since MAML-TRPO requires third-

order gradients (or computed by hessian-vector product instead). To the best of our knowledge,

MAML-PPO has not been tested on this setup. We evaluated two variations of meta-curvature

similar to the classification setup, MC1 and MC2, and used PPO as the meta-optimizer.

4.4.5.2 Experimental results

Fig. 4.6 shows the rewards obtained after one step policy gradient update. In the HalfChee-

tahDir experiment, our methods outperformed both strong baselines. MC1-PPO reached the

same performance of a strong baseline, MAML-PPO three times faster. In HalfCheetahVel and

Walker2dDir experiments, both MC2-PPO and MAML-PPO reached nearly the same perfor-

mance, but in a more sample efficient manner. For Walker2dVel, MAML-TRPO showed the

fastest convergence at the earlier meta-training stage, but our meta-curvatures outperformed

eventually. In this setting, most of the rewards come from the survival reward (the agent gets

1.0 reward for every step if they do not fall over). All methods were able to survive throughout

the episode, but our methods run better at a given velocity. One thing we noticed that it stops

obtaining more rewards and starts to degrade the performance in Walker2dDir experiment. The

recently proposed approach (114) may alleviate this issue through better credit assignment in the

meta-gradients. Combining it would be interesting direction to be explored.
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Figure 4.2: Qualitative results of few-shot regression on sinusoidal functions. The left column - 5
shot, The right column - 10 shot
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Figure 4.3: Experimental results of one-shot classification. Top row - training accuracy after the
model update (1 or 5 steps). Bottom row - validation accuracy after the model update (1 or 5
steps). Y-axis: accuracy. X-axis: meta-training iterations.
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Figure 4.4: Experimental results of one-shot classification. Top row - training accuracy after the
model update (1 or 5 steps). Bottom row - validation accuracy after the model update (1 or 5
steps). Y-axis: accuracy. X-axis: meta-training iterations.
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Figure 4.5: Visualization of meta-curvature matrices. We clipped the values [−1, 1] for better
visualization (Best viewed in color)
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Figure 4.6: Reinforcement learning experimental results. Y-axis: rewards after the model updates.
X-axis: meta-training steps. We performed at least three runs with random seeds and the curves
are averaged over them.
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CHAPTER 5: LEARNING TO GENERATE GIVEN FEW EXAMPLES

In this chapter, we explore generative models given few examples. We consider the problem

of novel 3D view synthesis—given a single view of an object in an arbitrary pose, the goal is to

synthesize an image of the object after a specified transformation of viewpoint. It has a variety of

practical applications in computer vision, graphics, and robotics. As an image-based rendering

technique (63), it allows placing a virtual object on a background with a desired pose or manip-

ulating virtual objects in the scene (64). Also, multiple generated 2D views form an efficient

representation for 3D reconstruction (133). In robotics, synthesized novel views give the robot

a better understanding of unseen parts of the object through 3D reconstruction, which will be

helpful for grasp planning (142).

This problem is generally challenging due to unspecified input viewing angle and the am-

biguities of 3D shape observed in only a single view. In particular inferring the appearances of

unobserved parts of the object that are not visible in the input view is necessary for novel view

synthesis. Our approach attacks all of these challenges, but our contributions focus on the later

aspect, dealing with disoccluded appearance in novel views and outputting highly-detailed syn-

thetic images.

Given the eventual approach we will take, using a carefully constructed deep network, we

can consider related work on dense prediction with encoder-decoder methods to see what makes

the structure of the novel 3D view synthesis problem different. In particular, there is a lack of

pixel-to-pixel correspondences between the input and output view. This, combined with large

chunks of missing data due to occlusion, makes novel view synthesis fundamentally different

than other dense prediction or generation tasks that have shown promising results with deep

networks (100; 25; 60). Although the input and desired output views may have similar low-level
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image statistics, enforcing such constraints directly is difficult. For example, skip or residual

connections, are not immediately applicable as the input and output have significantly different

global shapes. Hence, previous 3D novel view synthesis approaches (151; 133) have not been

able to match the visual quality of geometry-based methods that exploit strong correspondence.

The geometry-based methods are an alternative to pure generation, and have been demon-

strated in (53; 64; 110). Such approaches estimate the underlying 3D structure of the object and

apply geometric transformation to pixels in the input (e.g. performing depth-estimation followed

by 3D transformation of each pixel (40)). When successful, geometric transformation approaches

can very accurately transfer original colors, textures, and local features to corresponding new

locations in the target view. However, such approaches are fundamentally unable to hallucinate

where new parts are revealed due to disocclusion. Furthermore, even for the visible geometry pre-

cisely estimating the 3D shape or equivalently the precise pixel-to-pixel correspondence between

input and synthesized view is still challenging and failures can result in distorted output images.

In order to bring some of the power of explicit correspondence to deep-learning-based gen-

eration of novel views, the recent appearance flow network (AFN) (157) trains a convolutional

encoder-decoder to learn how to move pixels without requiring explicit access to the underly-

ing 3D geometry. Our work goes further in order to integrate more explicit reasoning about 3D

transformation, hallucinate missing sections, and clean-up the final generated image producing

significant improvements of realism, accuracy, and detail for synthesized views.

To achieve this we present a holistic approach to novel view synthesis by grounding the gen-

eration process on viewpoint transformation. Our approach first predicts the transformation of

existing pixels from the input view to the view to be synthesized, as well as a visibility map, ex-

ploiting the learned view dependency. We use the transformation result matted with the predicted

visibility map to condition the generation process. The image generator not only hallucinates the

missing parts but also refines regions that suffer from distortion or unrealistic details due to the

imperfect transformation prediction. This holistic pipeline alleviates some difficulties in novel

view synthesis by explicitly using transformation for the parts where there are strong cues.
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Figure 5.1: Results on test images from 3D ShapeNet dataset (15). 1st-input, 2nd-ground truth.
From 3rd to 6th are deep encoder-decoder networks with different losses. (3rd-L1 norm (133),
4th-feature reconstruction loss with pretrained VGG16 network (60; 74; 137; 73), 5th-adversarial
loss with feature matching (41; 108; 118; 24), 6th-the combined loss). 7th-appearance flow
network (AFN) (157). 8th-ours(TVSN).
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We propose an architecture composed of two consecutive convolutional encoder-decoder

networks. First, we introduce a disocclusion aware appearance flow network (DOAFN) to pre-

dict the visibility map and the intermediate transformation result. Our second encoder-decoder

network is an image completion network which takes the matted transformation as an input and

completes and refines the novel view with a combined adversarial and feature-reconstruction

loss. A wide range of experiments on synthetic and real images show that the proposed technique

achieves significant improvement compared to existing methods.

Our main contributions are:

• We propose a holistic image generation pipeline that explicitly predicts how pixels from

the input will be transformed and where there is disocclusion in the output that needs to be

filled, converting the remaining synthesis problem into one of image completion and repair.

• We design a disocclusion aware appearance flow network that relocates existing pixels in

the input view along with predicting a visibility map.

• We show that using loss networks with a term considering how well recognition-style

features are reconstructed, combined with L1 loss on pixel values during training, improves

synthesized image quality and detail.

5.1 Transformation-Grounded View Synthesis

Novel view synthesis could be seen as a combination of the following three scenarios: 1)

pixels in the input view that remain visible in the target view are moved to their corresponding

positions; 2) remaining pixels in the input view disappear due to occlusions; and 3) previously

unseen pixels are revealed or disoccluded in the target view. We replicate this process via a neural

network as shown in Figure 5.2. Specifically, we propose a disocclusion-aware appearance flow

network (5.1.1) to transform the pixels of the input view that remain visible. A subsequent gen-

erative completion network (5.1.2) then hallucinates the unseen pixels of the target view given

these transformed pixels.
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Figure 5.2: Transformation-grounded view synthesis network(TVSN). Given an input image
and a target transformation (5.1.1), our disocclusion-aware appearance flow network (DOAFN)
transforms the input view by relocating pixels that are visible both in the input and target view.
The image completion network, then, performs hallucination and refinement on this intermediate
result(5.1.2). For training, the final output is also fed into two different loss networks in order to
measure similarity against ground truth target view (5.1.2.1).

5.1.1 Disocclusion-aware Appearance Flow Network

Recently proposed appearance flow network (AFN) (157) learns how to move pixels from an

input to a target view. The key component of the AFN is a differentiable image sampling layer

introduced in (56). Precisely, the network first predicts a dense flow field that maps the pixels

in the target view, It, to the source image, Is. Then, sampling kernels are applied to get the pixel

value for each spatial location in It. Using a bilinear sampling kernel, the output pixel value at

spatial location I i,jt equals to:

∑
(h,w)∈N

Ih,ws max(0, 1− |F i,j
y − h|) max(0, 1− |F i,j

x − w|), (5.1)

where F is the flow predicted by the deep convolutional encoder-decoder network (see the first

half of Figure 5.2). F i,j
x and F i,j

y indicate the x and y coordinates of one target location. N de-

notes the 4-pixel neighborhood of (F i,j
y , F i,j

x ).

The key difference between our disocclusion aware appearance flow network (DOAFN) and

the AFN is the prediction of an additional visibility map which encodes the parts that need to

be removed due to occlusion. The original AFN synthesizes the entire target view, including

the disoccluded parts, with pixels of the input view, e.g. 1st row of AFN results in Figure 5.1.

However, such disoccluded parts might get filled with wrong content, resulting in implausible

results, especially for cases where a large portion of the output view is not seen in the input view.
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Figure 5.3: Visibility maps for different rotations: the first column in the first row is an input
image. Remaining columns show output images and corresponding masks for rotations from 20
to 340 degrees in 20 degree intervals. The second, third and fourth rows show visibility maps
Mvis, symmetry-aware visibility maps Ms-vis, and background masks Mbg, respectively. The input
image is in the pose of 0 elevation and 20 azimuth. The visibility maps for the rotations from
160 to 340 show the largest difference between Mvis and Ms-vis. For example, Ms-vis shows the
opposite side of the car as visible and allows it to be filled in by the network based on the visible
side.

Such imperfect results would provide misleading information to a successive image generation

network. Motivated by this observation, we propose to predict a visibility map that masks such

problematic regions in the transformed image:

Idoafn = Iafn �Mvis, (5.2)

where Mvis ∈ [0, 1]H×W . To achieve this, we define the ground truth visibility maps according to

the 3D object geometry as described next.

5.1.1.1 Visibility map

Let Mvis ∈ RH×W be the visibility map for the target view, given source image Is and desired

transformation parameter θ. The mapping value for a pixel in the target view corresponding to a

spatial location (i, j) in Is is defined as follows:

M
(PR(θ)x

(i,j)
s )h,(PR(θ)x

(i,j)
s )w

vis =


1 c>R(θ)n

(i,j)
s > 0

0 otherwise
(5.3)

x
(i,j)
s ∈ R4 is the 3D object coordinates and n

(i,j)
s ∈ R4 is the surface normal corresponding to

location (i, j) in Is, both represented in homogeneous coordinates. Since we use synthetic render-
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ings of 3D CAD models, we have access to ground truth object coordinates and surface normals.

R(θ) ∈ R3×4 is the rotation matrix given the transformation parameter θ and P ∈ R3×3 is the

perspective projection matrix. The superscripts h and w denote the target image coordinates in

y and x axis respectively after perspective projection. c ∈ R3 is the 3D camera center. In order

to compute the target image coordinates for each pixel in Is, we first obtain the 3D object coordi-

nates corresponding to this pixel and then apply the desired 3D transformation and perspective

projection. The mapping value of the target image coordinate is 1 if and only if the dot product

between the viewing vector and surface normal is positive, i.e. the corresponding 3D point is

pointing towards the camera.

5.1.1.2 Symmetry-aware visibility map

Many common object categories exhibit reflectional symmetry, e.g. cars, chairs, tables etc.

AFN implicitly exploits this characteristic to ease the synthesis of large viewpoint changes. To

fully take advantage of symmetry in our DOAFN, we propose to use a symmetry-aware visibil-

ity map. Assuming that objects are symmetric with respect to the xy-plane, a symmetry-aware

visibility map Msym is computed by applying Equation 5.3 to the z-flipped object coordinates and

surface normals. The final mapping for a pixel in the target view corresponding to spatial location

(i, j) is then defined as:

M i,j
s-vis = 1

[
M i,j

sym +M i,j
vis > 0

]
(5.4)

5.1.1.3 Background mask

Explicit decoupling of the foreground object is necessary to deal with real images with natu-

ral background. In addition to parts of the object being disoccluded in the target view, different

views of the object occlude different portions of the background posing additional challenges.

For example, transforming a side view to be frontal exposes parts of the background occluded by

the two ends of the car. In our approach, we define the foreground as the region that covers pixels

of the object in both input view and output view. The rest of the image belongs to the background
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and should remain unchanged in both views. We thus introduce a unified background mask,

M i,j
bg = 1

[
Bi,j

s +Bi,j
t > 0

]
, (5.5)

where Bs and Bt are the background masks of the source and target images respectively. Ground

truth background masks are easily obtained from 3D models. Examples of background masks are

presented in Figure 5.3.

When integrated with the (symmetry-aware) visibility map, the final output of DOAFN be-

comes:

Idoafn = Is �Mbg + Iafn �Ms-vis (5.6)

5.1.2 View Completion Network

Traditional image completion or hole filling methods often exploit local image information

(29; 11; 147) and have shown impressive results for filling small holes or texture synthesis. In

our setting, however, sometimes more than half of the content in the novel view is not visible

in the input image, constituting a big challenge for local patch based methods. To address this

challenge, we propose another encoder-decoder network, capable of utilizing both local and

global context, to complete the transformed view inferred by DOAFN.

Our view completion network is composed of an “hourglass” architecture similar to (97), with

a bottleneck-to-bottleneck identity mapping layer from DOAFN to the hourglass (see Figure 5.2).

This network has three essential characteristics. First, being conditioned on the high-level fea-

tures of DOFAN, it can generate content that have consistent attributes with the given input view,

especially when large chunk of pixels are dis-occluded. Second, the output of DOAFN is already

in the desired viewpoint with important low-level information, such as colors and local textures,

preserved under transformation. Thus, it is possible to utilize skip connections to propagate this

low-level information from the encoder directly to later layers of the decoder. Third, the view

completion network not only hallucinates disoccluded regions but also fixes artifacts such as

62



distortions or unrealistic details. The output quality of DOAFN heavily depends on the input

viewpoint and desired transformation, resulting in imperfect flow in certain cases. The encoder-

decoder nature of the image generation network is well-suited to fix such cases. Precisely, while

the encoder is capable of recognizing undesired parts in the DOAFN output, the decoder refines

these parts with realistic content.

5.1.2.1 Loss networks

The idea of using deep networks as a loss function for image generation has been proposed in

(74; 137; 60; 24). Precisely, an image generated by a network is passed as an input to an accom-

panied network which evaluates the discrepancy (the feature distance) between the generation

result and ground truth. We use the VGG16 network for calculating the feature reconstruction

losses from a number of layers, which is referred as perceptual loss.

We tried both a pre-trained loss network and a network with random weights as suggested

in (47; 138). However, we got perceptually poor results with random weights, concluding that the

weights of the loss network indeed matter.

On the other hand, adversarial training (41) has been phenomenally successful for training the

loss network at the same time of training the image generation network. We experimented with a

similar adversarial loss network as in (108) while adopting the idea of feature matching presented

in (118) to make the training process more stable.

We realized that the characteristics of generated images with these two kinds of loss networks,

perceptual and adversarial, are complementary. Thus, we combined them together with the stan-

dard image reconstruction loss (L1) to maximize performance. Finally, we added total variation

regularization term (60), which was useful to refine the image:

− logD(G(Is)) + αL2(FD(G(Is)), FD(It)))+

βL2(Fvgg(G(Is)), Fvgg(It)) + γL1(Is, It) + λLTV (G(Is)) (5.7)
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Is, G(Is) and It is the input, generated output and corresponding target image, respectively.

log(D) is log likelihood of generated image G(Is) being a real image, estimated by adversari-

ally trained loss network, called discriminator D. In practice, minimizing − logD(G(Is)) has

shown better gradient behaviour than minimizing logD(1−G(Is)).

FD and Fvgg are the features extracted from the discriminator and VGG16 loss networks

respectively. We found that concatenated features from the first to the third convolutional layers

are the most effective. L1 and L2 are `1 and `2 norms of two same size inputs divided by the size

of the inputs. In sum, both generated images G(Is) and ground truth image It are fed into D and

VGG16 loss networks, and we extract the features, and compute averaged euclidean distance

between these two.

The discriminator D is simultaneously trained along with G via alternative optimization

scheme proposed in (41). The loss function for the discriminator is

− logD(Is)− log(1−D(G(Is))) (5.8)

We empirically found that α = 100, β = 0.001, γ = 1, and λ = 0.0001 are good hyper-

parameters and fixed them for the entire experiments.

5.2 Experiments

5.2.1 Training Setup

We use rendered images of 3D models from ShapeNet (15) both for training and testing. We

use the entire car category (7497 models) and a subset of the chair category (698 models) with

sufficient texture. For each model, we render images from a total of 54 viewpoints corresponding

to 3 different elevations (0, 10, and 20) and 18 azimuth angles (sampled in the range [0, 340]

with 20-degree increments). The desired transformation is encoded as a 17-D one-hot vector

corresponding to one of the rotation angles between input and output views in the range [20, 340].

Note that we did not encode 0 degree as it is the identical mapping. For each category, 80% of
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Table 5.1: We compare our method (TVSN(DOAFN)) to several baselines: (i) a single-stage
encoder-decoder network trained with different loss functions: L1 (L1), feature reconstruction
loss using VGG16 (VGG16), adversarial (Adv), and combination of the latter two (VGG16+Adv),
(ii) a variant of our approach that does not use a visibility map (TVSN(AFN)).

car chair
L1 SSIM L1 SSIM

L1(133) .168 .884 .248 .895
VGG .228 .870 .283 .895
Adv .208 .865 .241 .885
VGG+Adv .194 .872 .242 .888
AFN(157) .146 .906 .240 .891
TVSN(AFN) .132 .910 .229 .895
TVSN(DOAFN) .133 .910 .230 .894

3D models are used for training, which leaves over 5 million training pairs (input view-desired

transformation) for the car category and 0.5 million for the chair category. We randomly sample

input viewpoints, desired transformations from the rest 20% of 3D models to generate a total of

20, 000 testing instances for each category. Both input and output images are of size 256×256×3.

We first train DOAFN, and then the view completion network while DOAFN is fixed. After

the completion network fully converges, we fine-tune both networks end-to-end. However, this

last fine-tuning stage does not show notable improvements. We use mini-batches of size 25 and

15 for DOAFN and the completion network respectively. The learning rate is initialized as 10−4

and is reduced to 10−5 after 105 iterations. For adversarial training, we adjust the update sched-

ule (two iterations for generator and one iteration for discriminator in one cycle) to balance the

discriminator and the generator.

5.2.2 Results

We discuss our main findings in the rest of this section and refer the reader to the supplemen-

tary material for more results. We utilize the standard L1 mean pixel-wise error and the structural

similarity index measure (SSIM) (146; 86) for evaluation. When computing the L1 error, we

normalize the pixel values resulting in errors in the range [0, 1], lower numbers corresponding to
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Figure 5.4: Results on synthetic data from ShapeNet. We show the input, ground truth output
(GT), results for AFN and our method (TVSN) along with the L1 error. We also provide the
intermediate output (visibility map and output of DOAFN).
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better results. SSIM is in the range [−1, 1] where higher values indicate more structural similar-

ity.

5.2.2.1 Comparisons

We first evaluate our approach on synthetic data and compare to AFN. Figure 5.4 shows quali-

tative results.1 We note that while our method completes the disoccluded parts consistently with

the input view, AFN generates unrealistic content (front and rear parts of the cars in the 1st and

2nd rows). Our method also corrects geometric distortions induced by AFN (3rd and 4th rows)

and better captures the lighting (2nd row). For the chair category, AFN often fails to generate thin

structures such as legs due to the small number of pixels in these regions contributing to the loss

function. On the other hand, both perceptual and adversarial loss help to complete the missing

legs as they contribute significantly to the perception of the overall shape. In order to evaluate the

importance of the visibility map, we compare against a variant of our approach which directly

provides the output of AFN to the view completion network without masking. (For clarity, we

will refer to our method as TVSN(DOAFN) and to this baseline as TVSN(AFN).) Furthermore,

we also implement a single-stage convolutional encoder-decoder network as proposed in (133)

and train it with various loss functions: L1 loss (L1), feature reconstruction loss using VGG16

(VGG16), adversarial loss (Adv), and combination of the latter two (VGG16+Adv). We provide

quantitative and visual results in Table 5.1 and Figure 5.1 respectively. We note that, although

commonly used, L1 and SSIM metrics are not fully correlated with human perception. While our

method is clearly better than the L1 baseline (133), both methods get comparable SSIM scores.

We observe that both TVSN(AFN) and TVSN(DOAFN) perform similarly with respect to

L1 and SSIM metrics demonstrating that the view completion network in general successfully

refines the output of AFN. However, in certain cases severe artifacts observed in the AFN output,

especially in the disoccluded parts, get smoothly integrated in the completion results as shown

1 The results from the original AFN (157) paper are not directly comparable due to the different image size. In
addition, since the complete source code was not available at the time of paper submission, we re-implemented this
method by consulting the authors.

67



Figure 5.5: When a visibility map is not utilized (TVSN(AFN)), severe artifacts observed in
the AFN output get integrated into the final results. By masking out such artifacts, our method
(TVSN(DOAFN)) relies purely on the view completion network to generate plausible results.

in Figure 5.5. In contrast, the visibility map masks out those artifacts and thus TVSN(DOAFN)

relies completely on the view completion network to hallucinate these parts in a realistic and

consistent manner.

5.2.2.2 Evaluation of the Loss Networks

We train our network utilizing the feature reconstruction loss of VGG16 and the adversar-

ial loss. We evaluate the effect of each loss by training our network with each of them only and

provide visual results in Figure 5.6. It is well-known that the adversarial loss is effective in gen-
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Figure 5.6: We evaluate the effect of using only parts of our system, VGG16 in
TVSN(VGG16), and adversarial loss in TVSN(Adversarial), as opposed to our method,
TVSN(VGG16+Adversarial) that uses both.

erating realistic and sharp images as opposed to standard pixel-wise loss functions. However,

some artifacts such as colors and details inconsistent with the input view are still observed. For

the VGG16 loss, we experimented with different feature choices and empirically found that the

combination of the features from the first three layers with total variation regularization is the

most effective. Although the VGG16 perceptual loss is capable of generating high quality images

for low-level tasks such as super-resolution, it has not yet been fully explored for pure image

generation tasks as required for hallucinating disoccluded parts. Thus, this loss still suffers from

the blurry output problem whereas combination of both VGG16 and adversarial losses results in

the most effective configuration.

5.2.3 360 degree rotations and 3D reconstruction

Inferring 3D geometry of an object from a single image is the holy-grail of computer vision

research. Recent approaches using deep networks commonly use a voxelized 3D reconstruction

as output (17; 150). However, computational and spatial complexities of using such voxelized
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representations in standard encoder-decoder networks significantly limits the output resolution,

e.g. 323 or 643.

Inspired by (133), we exploit the capability of our method in generating novel views for re-

construction purposes. Specifically, we generate multiple novel views from the input image to

cover a full 360 rotation around the object sampled at 20-degree intervals. We then run a multi-

view reconstruction algorithm (35) on these images using the ground truth relative camera poses

to obtain a dense point cloud. We use the open source OpenMVS library (ope) to reconstruct a

textured mesh from this point cloud. Figure 5.7 shows multi-view images generated by AFN and

our method whereas Figure 5.8 demonstrates examples of reconstructed 3D models from these

images. By generating views consistent in terms of geometry and details, our method results in

significantly better quality textured meshes.

5.2.4 3D Object Rotations in Real Images

In order to generalize our approach to handle real images, we generate training data by com-

positing synthetic renderings with random backgrounds (130). We pick 10, 000 random images

from the SUN397 dataset(130) and randomly crop them to be of size 256×256×3. Although this

simple approach fails to generate realistic images, e.g. due to inconsistent lighting and viewpoint,

it is effective in enabling the network to recognize the contours of the objects in complex back-

ground. In Figure 5.9, we show several novel view synthesis examples from real images obtained

from the internet.

While our initial experiments show promising results, further investigation is necessary to

improve performance. Most importantly, more advanced physically based rendering techniques

are required to model complex light interactions in the real world (e.g. reflections from the en-

vironment onto the object surface). In addition, it is necessary to sample more viewpoints (both

azimuth and elevation) to handle viewpoint variations in real data. Finally, to provide a seamless

break from the original image, an object segmentation module is desirable so that the missing
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pixels in background can be separately filled in by alternative methods, such as patch-based in-

painting methods (11) or pixel-wise autoregressive models (141).

5.3 Related Work

5.3.1 Geometry-based view synthesis

A large body of work benefits from implicit or explicit geometric reasoning to address the

novel view synthesis problem. When multiple images are available, multi-view stereo algo-

rithms (35) are applicable to explicitly reconstruct the 3D scene which can then be utilized to

synthesize novel views. An alternative approach recently proposed by Flynn et al. (34) uses deep

networks to learn to directly interpolate between neighboring views. Ji et al. (59) propose to

rectify the two view images first with estimated homography by deep networks, and then syn-

thesize middle view images with another deep networks. In case of single input view, Garg et

al. (40) propose to first predict a depth map and then synthesize the novel view by transforming

each reconstructed 3D point in the depth map. However, all these approaches only utilize the

information available in the input views and thus fail in case of disocclusion. Our method, on the

other hand, not only takes advantage of implicit geometry estimation but also infers the parts of

disocclusion.

Another line of geometry-based methods utilize large internet collections of 3D models which

are shown to cover wide variety for certain real world object categories (64; 110). Given an input

image, these methods first identify the most similar 3D model in a database and fit to the image

either by 3D pose estimation (110) or manual interactive annotation (64). The 3D information is

then utilized to synthesize novel views. While such methods generate high quality results when

sufficiently similar 3D models exist, they are often limited by the variation of 3D models found in

the database. In contrast, our approach utilizes 3D models only for training generation networks

that directly synthesize novel views from an image.
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5.3.2 Image generation networks

One of the first convolutional networks capable of generating realistic images of objects

is proposed in (26), but the network requires explicitly factored representations of object type,

viewpoint and color, and thus is not able to generalize to unseen objects. The problem of gen-

erating novel views of an object from a single image is addressed in (151; 71; 133) using deep

convolutional encoder-decoder networks. Due to the challenges of disentangling the factors from

single-view and the use of globally smooth pixel-wise similarity measures (e.g. L1 or L2 norm),

the generation results tend to be blurry and low in resolution.

An alternative to learning disentangled or invariant factors is the use of equivariant representa-

tions, i.e. transformations of input data which facilitate downstream decision making. Transform-

ing auto-encoders are coined by Hinton et al. (51) to learn both 2D and 3D transformations of

simple objects. Spatial transformer networks (56) further introduce differentiable image sampling

techniques to enable in-network parameter-free transformations. In the 3D case, flow fields are

learned to transform input 3D mesh to the target shape (154) or input view to the desired output

view (157). However, direct transformations are clearly upper-bounded by the input itself. To

generate novel 3D views, our work grounds a generation network on the learned transformations

to hallucinate disoccluded pixels.

Recently, a number of image generation methods introduce the idea of using pre-trained

deep networks as loss function, referred as perceptual loss, to measure the feature similarities

from multiple semantic levels (60; 74; 137; 73). The generation results from these works well

preserve the object structure but are often accompanied with artifacts such as aliasing. At the

same time, generative adversarial networks (41; 108), introduce a discriminator network, which

is adversarially trained with the generator network to tell apart the generated images from the

real ones. The discriminator encapsulates natural image statistics of all orders in a real/fake label,

but its min-max training often leads to local minimum, and thus local distortions or painting-

stroke effects are commonly observed in their generated images. Our work uses a combined loss
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function that takes advantages of both the structure-preserving property of perceptual loss and the

rich textures of adversarial loss (See Fig. 5.1).

Deep networks have also been explored for image completion purposes. Examples of pro-

posed methods include image in-painting with deep networks (105) and sequential parts-by-parts

generation for image completion (72). Such methods assume the given partial input is correct and

focus only on completion. In our case, however, we do not have access to a perfect intermediate

result. Instead, we rely on the generation network both to hallucinate missing regions and also

refine any distortions that occur due to inaccurate per-pixel transformation prediction.
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Figure 5.7: Results of 360 degree rotations
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Figure 5.8: We run a multi-view stereo algorithm to generate textured 3D reconstructions from
a set of images generated by AFN and our TVSN approach. We provide the reconstructions
obtained from ground truth images (GT) for reference.

Figure 5.9: We show novel view synthesis results on real internet images along with the predicted
visibility map and the background mask.
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CHAPTER 6: APPENDICES

6.1 Meta-Trackers

6.1.1 More visualizations of response maps in MetaCREST

Figure 6.1.

6.1.2 Detailed results on VOT2016

We present detailed results of MetaCREST (Table 6.1 and 6.2) and MetaSDNet (Table 6.3

and 6.4) on VOT2016 dataset. Both accuracy and robustness table are generated from VOT2016

toolkit. For original CREST tracker, we could not get the same results as reported in their paper

(the performance we could get is lower). In the main text, we reported the results from their paper

and we omitted detailed results of CREST since they are not available. We provided other results,

CREST-Base, CREST-10, CREST-05, CREST-03, and CREST-01.

6.1.3 Detailed results on OTB2015

We present detailed results of MetaCREST (Table 6.5 and 6.6) and MetaSDNet (Table 6.7

and 6.8) on OTB2015 dataset. It shows the results of individual sequences in success plots.
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Figure 6.1: More visualizations of response maps in MetaCREST: Left three columns represents
a cropped image centered on the target at the initial frame, response map with meta-learned initial
correlation filters θ0, response map after updating 1 iteration with meta-learned α, respectively.
The rest of six columns on the right shows response maps of CREST after updating the model up
to 10 iterations.

77



Table 6.1: Detailed results of MetaCREST on VOT2016 — Accuracy.

MetaCREST-01 CREST-Base CREST-10 CREST-05 CREST-03 CREST-01
bag 0.45 0.45 0.45 0.41 0.37 0.31
ball1 0.8 0.8 0.8 0.81 0.8 0.8
ball2 0.44 0.31 0.38 0.3 0.47 0.45
basketball 0.6 0.55 0.55 0.6 0.62 0.61
birds1 0.52 0.53 0.52 0.5 0.53 0.53
birds2 0.29 0.28 0.32 0.28 0.28 0.28
blanket 0.58 0.61 0.61 0.64 0.62 0.61
bmx 0.24 0.42 0.42 0.42 0.43 0.42
bolt1 0.52 0.66 0.67 0.67 0.68 0.68
bolt2 0.56 0.48 0.57 0.58 0.58 0.57
book 0.41 0.39 0.38 0.39 0.37 0.46
butterfly 0.45 0.4 0.4 0.41 0.4 0.41
car1 0.74 0.74 0.75 0.76 0.75 0.74
car2 0.77 0.73 0.74 0.75 0.77 0.78
crossing 0.71 0.69 0.69 0.7 0.71 0.71
dinosaur 0.41 0.29 0.28 0.32 0.32 0.43
fernando 0.38 0.35 0.32 0.4 0.41 0.42
fish1 0.43 0.4 0.42 0.53 0.52 0.52
fish2 0.34 0.42 0.39 0.34 0.34 0.33
fish3 0.6 0.61 0.61 0.59 0.58 0.58
fish4 0.46 0.43 0.31 0.42 0.43 0.43
girl 0.63 0.68 0.68 0.69 0.69 0.69
glove 0.52 0.52 0.53 0.51 0.53 0.55
godfather 0.48 0.48 0.48 0.48 0.48 0.48
graduate 0.38 0.47 0.48 0.49 0.46 0.47
gymnastics1 0.37 0.38 0.36 0.37 0.39 0.39
gymnastics2 0.5 0.5 0.49 0.52 0.5 0.5
gymnastics3 0.29 0.39 0.35 0.37 0.33 0.29
gymnastics4 0.5 0.44 0.43 0.42 0.43 0.44
hand 0.43 0.4 0.38 0.42 0.41 0.44
handball1 0.6 0.57 0.6 0.62 0.62 0.57
handball2 0.46 0.49 0.52 0.52 0.54 0.44
helicopter 0.38 0.51 0.51 0.49 0.47 0.47
iceskater1 0.51 0.52 0.52 0.56 0.56 0.54
iceskater2 0.58 0.53 0.53 0.53 0.55 0.54
leaves 0.39 0.13 0.13 0.3 0.3 0.29
marching 0.74 0.75 0.75 0.74 0.74 0.75
matrix 0.66 0.55 0.55 0.61 0.61 0.54
motocross1 0.47 0.42 0.42 0.42 0.39 0.39
motocross2 0.45 0.42 0.42 0.49 0.48 0.54
nature 0.46 0.3 0.3 0.32 0.29 0.32
octopus 0.4 0.32 0.33 0.44 0.43 0.37
pedestrian1 0.73 0.68 0.72 0.7 0.69 0.68
pedestrian2 0.3 0.45 0.49 0.38 0.37 0.34
rabbit 0.41 0.23 0.33 0.32 0.41 0.29
racing 0.52 0.42 0.42 0.4 0.4 0.41
road 0.58 0.58 0.57 0.62 0.64 0.67
shaking 0.66 0.64 0.69 0.73 0.76 0.68
sheep 0.49 0.5 0.5 0.5 0.52 0.53
singer1 0.6 0.65 0.68 0.61 0.57 0.41
singer2 0.69 0.65 0.6 0.54 0.66 0.64
singer3 0.4 0.23 0.25 0.16 0.15 0.15
soccer1 0.52 0.48 0.53 0.53 0.55 0.51
soccer2 0.56 0.6 0.57 0.57 0.57 0.57
soldier 0.39 0.37 0.36 0.36 0.37 0.4
sphere 0.49 0.46 0.44 0.41 0.39 0.41
tiger 0.71 0.68 0.68 0.67 0.68 0.66
traffic 0.79 0.79 0.8 0.8 0.76 0.73
tunnel 0.52 0.67 0.68 0.43 0.41 0.38
wiper 0.62 0.65 0.65 0.64 0.65 0.65

mean 0.51 0.5 0.51 0.51 0.51 0.5
weighted mean 0.52 0.52 0.52 0.52 0.52 0.52
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Table 6.2: Detailed results of MetaCREST on VOT2016 — Robustness (The number of failures).

MetaCREST-01 CREST-Base CREST-10 CREST-05 CREST-03 CREST-01
bag 0 0 0 0 0 0
ball1 0 0 0 0 0 0
ball2 1 0 0 0 1 1
basketball 1 2 1.9 1 1 1
birds1 1 1 2 2 1 1
birds2 0 0 1 0 0 0
blanket 0 0 0 0 0 0
bmx 1 0 0 0 0 0
bolt1 0 1 1.1 2 2 2
bolt2 0 0 1 1 1 2
book 2 4 6 3 3.2 5
butterfly 0 1 1 1 1 1
car1 1 1 1 1 1 1
car2 0 0 0 0 0 0
crossing 1 1 1 1 1 1
dinosaur 3 4 4 3 3 3
fernando 0.87 1 0 1 1 1
fish1 2.6 3 3.2 2 2 2
fish2 3.93 4 4 5 4 4
fish3 0 0 0 0 0 0
fish4 0 0 2 0.6 0.2 0
girl 1 1 1 1 1 1
glove 2 2 2 2 2 2
godfather 0 0 0 0 0 0
graduate 0 3 3.2 1.1 1.3 3
gymnastics1 1.67 1 2.9 2.3 5.2 5.1
gymnastics2 3 2 2 3 2 2
gymnastics3 1.53 3 2.9 2 3 3
gymnastics4 0 0 0 0 0 0
hand 7 8 7 7 7 6
handball1 0 1 0 0 0 0
handball2 3.27 5 3.4 3 3 2.9
helicopter 0 1 1 1 1 1
iceskater1 0 0 0 0 0 0
iceskater2 0.8 2 2.2 1.4 1.2 1.3
leaves 1 3 3 3 3 3
marching 0 0 0 0 0 0
matrix 1 2 2 2 2 1
motocross1 0.2 3 3 3 3 3
motocross2 0 1 0.8 0.3 0.9 0
nature 1.93 4 4 4 4 4
octopus 0 0 0 1 1 0
pedestrian1 1.87 2 1.2 1 1 2
pedestrian2 0 1 1 1 1 1
rabbit 3 5 4 4.2 3 4.1
racing 0 0 0 0 0 0
road 0 0 0 0 0 0
shaking 0 0 1 1 1 0
sheep 0 0 0 0 0 0
singer1 0 0 0 0 0 0
singer2 0 1 1 2 1 1
singer3 1.93 0 0 1 1 1
soccer1 2.93 3 2 2 1 1
soccer2 2 5 2 4 4 2
soldier 1 1 1 1 1 1
sphere 0 0 0 0 0 0
tiger 0 0 0 0 0 0
traffic 0 0 0 0 0 0.2
tunnel 0 0 0 0 0 0
wiper 0.4 0 0 0 0 0

mean 0.93 1.38 1.38 1.3 1.28 1.28
weighted mean 0.84 1.36 1.45 1.26 1.25 1.29
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Table 6.3: Detailed results of MetaSDNet on VOT2016 — Accuracy.

MetaSDNet-01 pyMDNet-30 pyMDNet-15 pyMDNet-10 pyMDNet-05 pyMDNet-03 pyMDNet-01
bag 0.49 0.52 0.51 0.49 0.47 0.43 0.38
ball1 0.77 0.79 0.78 0.79 0.78 0.77 0.75
ball2 0.33 0.46 0.47 0.38 0.46 0.45 0.5
basketball 0.62 0.62 0.63 0.61 0.63 0.57 0.53
birds1 0.51 0.48 0.5 0.48 0.49 0.47 0.45
birds2 0.35 0.33 0.34 0.35 0.34 0.31 0.33
blanket 0.6 0.58 0.56 0.56 0.51 0.54 0.49
bmx 0.19 0.41 0.43 0.43 0.37 0.4 0.35
bolt1 0.51 0.52 0.53 0.54 0.58 0.6 0.56
bolt2 0.54 0.55 0.57 0.57 0.57 0.58 0.42
book 0.45 0.46 0.44 0.4 0.38 0.31 0.33
butterfly 0.36 0.29 0.34 0.3 0.39 0.38 0.29
car1 0.75 0.77 0.77 0.77 0.76 0.75 0.61
car2 0.71 0.75 0.75 0.75 0.72 0.7 0.5
crossing 0.67 0.69 0.67 0.67 0.65 0.67 0.56
dinosaur 0.57 0.62 0.61 0.62 0.58 0.36 0.42
fernando 0.45 0.43 0.43 0.44 0.42 0.38 0.33
fish1 0.46 0.44 0.44 0.43 0.43 0.42 0.37
fish2 0.32 0.32 0.33 0.32 0.31 0.29 0.24
fish3 0.6 0.64 0.65 0.63 0.6 0.54 0.38
fish4 0.36 0.37 0.38 0.41 0.32 0.33 0.32
girl 0.69 0.69 0.67 0.7 0.69 0.67 0.6
glove 0.49 0.52 0.49 0.5 0.48 0.38 0.38
godfather 0.46 0.45 0.45 0.45 0.44 0.4 0.4
graduate 0.51 0.53 0.52 0.52 0.49 0.43 0.4
gymnastics1 0.43 0.51 0.53 0.42 0.51 0.42 0.43
gymnastics2 0.44 0.49 0.49 0.46 0.45 0.46 0.42
gymnastics3 0.25 0.25 0.26 0.25 0.26 0.26 0.23
gymnastics4 0.46 0.48 0.49 0.47 0.45 0.43 0.36
hand 0.51 0.5 0.5 0.5 0.51 0.49 0.45
handball1 0.55 0.58 0.58 0.58 0.55 0.55 0.52
handball2 0.55 0.57 0.56 0.56 0.55 0.53 0.51
helicopter 0.57 0.49 0.5 0.49 0.44 0.4 0.37
iceskater1 0.53 0.54 0.52 0.54 0.53 0.5 0.49
iceskater2 0.55 0.55 0.54 0.53 0.48 0.49 0.42
leaves 0.29 0.32 0.32 0.4 0.31 0.28 0.28
marching 0.72 0.72 0.7 0.71 0.59 0.52 0.43
matrix 0.5 0.54 0.55 0.54 0.54 0.56 0.55
motocross1 0.47 0.48 0.48 0.47 0.47 0.46 0.39
motocross2 0.49 0.58 0.58 0.59 0.56 0.45 0.42
nature 0.49 0.44 0.43 0.39 0.43 0.4 0.42
octopus 0.57 0.59 0.58 0.58 0.59 0.56 0.47
pedestrian1 0.71 0.71 0.71 0.71 0.66 0.61 0.65
pedestrian2 0.37 0.44 0.48 0.51 0.45 0.5 0.4
rabbit 0.3 0.33 0.3 0.28 0.33 0.27 0.25
racing 0.48 0.45 0.45 0.45 0.43 0.41 0.34
road 0.45 0.47 0.47 0.45 0.48 0.47 0.45
shaking 0.6 0.58 0.54 0.58 0.59 0.59 0.57
sheep 0.53 0.54 0.53 0.53 0.48 0.45 0.47
singer1 0.58 0.57 0.6 0.56 0.58 0.59 0.5
singer2 0.59 0.64 0.64 0.65 0.64 0.57 0.48
singer3 0.28 0.26 0.27 0.26 0.28 0.28 0.26
soccer1 0.53 0.57 0.59 0.58 0.57 0.54 0.56
soccer2 0.59 0.62 0.58 0.59 0.62 0.53 0.49
soldier 0.45 0.52 0.51 0.52 0.48 0.46 0.34
sphere 0.5 0.55 0.54 0.54 0.55 0.56 0.52
tiger 0.68 0.66 0.67 0.65 0.62 0.59 0.57
traffic 0.78 0.8 0.79 0.8 0.77 0.58 0.54
tunnel 0.84 0.84 0.83 0.84 0.84 0.74 0.39
wiper 0.71 0.7 0.7 0.7 0.68 0.6 0.44

mean 0.52 0.54 0.53 0.53 0.52 0.49 0.44
weighted mean 0.54 0.55 0.55 0.54 0.53 0.5 0.45

80



Table 6.4: Detailed results of MetaSDNet on VOT2016 — Robustness (The number of failures).

MetaSDNet-01 pyMDNet-30 pyMDNet-15 pyMDNet-10 pyMDNet-05 pyMDNet-03 pyMDNet-01
bag 0 0.07 0 0 0.07 0.13 0.2
ball1 0.4 0.07 0.13 0 0.2 0.33 1.6
ball2 0.67 2.27 2.33 2.67 2.67 3.07 3.33
basketball 1.27 1.07 1.27 1.33 1.8 3 5.73
birds1 0.47 2.2 1.73 1.47 1.33 2.33 3.13
birds2 0.4 0.27 0.4 0.13 0.13 0.47 0.6
blanket 0 0 0 0 0.13 0.33 1
bmx 0.87 0.13 0 0 0.13 0.2 0.47
bolt1 0.13 0 0.07 0.13 0.67 1.4 2.27
bolt2 0 0.27 0.73 0.6 0.4 1.4 1.87
book 3.4 3.53 3.27 3.53 4.73 4.47 7.4
butterfly 0.13 0 0.13 0.13 0.6 0.8 1.6
car1 1.73 2.27 2.33 1.87 2.07 2.93 2.87
car2 0 0 0 0 0.2 0.53 1
crossing 0 0.07 0.07 0.07 0.07 0.13 0.47
dinosaur 0.6 0 0 0 0.47 3.6 4.67
fernando 0.67 0.67 1.33 0.73 0.93 1.4 3.47
fish1 2.73 2.8 2.67 2.8 3.13 3.2 4.47
fish2 2.4 3 2.73 3 3.2 4.8 7.2
fish3 0.27 0.87 0.67 0.73 0.73 0.87 0.8
fish4 0.67 0.13 0.4 0.6 0.8 1.47 1.2
girl 0.07 0.07 0.13 0 0 0.33 1.53
glove 2.8 2.47 2.4 2.73 3.13 3.87 4.67
godfather 0 0 0 0 0.47 0.47 1.47
graduate 0 0.13 0.07 0.07 0.2 0.93 1.8
gymnastics1 1.53 0.67 0.6 0.87 0.73 1.13 2.93
gymnastics2 1.87 1.4 1.73 1.67 1.53 3.07 4.27
gymnastics3 1.2 1.07 1.4 1.4 1.4 2.2 3.93
gymnastics4 0.13 0 0 0.07 0.13 0.33 1.33
hand 2.53 0.8 1.53 0.93 1.2 4.07 6.6
handball1 0.93 0.6 0.93 0.73 1.93 2.13 3
handball2 1.93 2.27 2.47 2.67 2.73 3.67 7.53
helicopter 1 0.27 0.33 0.4 0.27 0.2 0.87
iceskater1 0.07 0.27 0.2 0.07 0.4 0.2 1.6
iceskater2 0.47 0 0.07 0.4 1.2 2.93 7.8
leaves 4.4 4.4 4.67 4.73 4.2 4.27 4.67
marching 0 0.13 0.2 0.33 1.27 1.6 2.27
matrix 1.8 1.53 1.4 1.4 1.87 1.6 3.53
motocross1 0.13 0 0 0 0 0.13 2.07
motocross2 0.07 0 0 0 0.07 0.73 0.93
nature 2.47 2.4 2.2 1.8 2.73 3.53 4.8
octopus 0 0 0 0 0 0.07 0.27
pedestrian1 1.2 1.07 1 1.27 1.07 1.47 2.67
pedestrian2 0 0 0.13 0 0.07 0.13 0.67
rabbit 3.2 4.27 4.67 5.07 4.53 5.27 6.53
racing 0 0 0 0 0.13 0.73 1.07
road 0 0 0 0 0 0.07 0.4
shaking 0.07 0.07 0.07 0.13 0.33 0.33 0.53
sheep 0.07 0 0 0.27 0.53 0.73 0.87
singer1 0 0 0 0 0 0.2 0.8
singer2 0.73 0.33 0.2 0.2 0.47 1.07 3.27
singer3 0.4 0.33 0.53 0.27 0.33 0.53 1
soccer1 0.73 1.47 0.93 0.8 1.47 1.27 1.73
soccer2 7.4 10.4 9.8 10.53 11.87 12.6 12.8
soldier 0.93 0.07 0.2 0.47 0.53 0.93 2
sphere 0 0 0 0 0.07 0.4 0.87
tiger 0.6 0.07 0 0 0.2 0.47 2.47
traffic 0.07 0.07 0.13 0 0 0.33 0.87
tunnel 0 0 0 0 0 0.8 1.2
wiper 0.47 0.33 0.33 0.27 0.33 0.53 1.07

mean 0.93 0.94 0.98 0.99 1.2 1.7 2.73
weighted mean 0.78 0.74 0.77 0.74 0.97 1.51 2.62
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Table 6.5: Detailed results of MetaCREST on OTB2015 (BasketBall — Girl).

MetaCREST-01 CREST CREST-Base CREST-20 CREST-10 CREST-05 CREST-01
BasketBall 0.658588 0.7194 0.7105 0.7286 0.7274 0.7302 0.7401
Biker 0.262911 0.3414 0.3417 0.3451 0.3484 0.2495 0.2482
Bird1 0.053922 0.3103 0.3306 0.3166 0.419 0.3757 0.3825
Bird2 0.822511 0.7638 0.7605 0.7595 0.7874 0.7937 0.8278
BlurBody 0.685201 0.6818 0.6829 0.6932 0.7039 0.6806 0.6913
BlurCar1 0.812668 0.8451 0.8452 0.8451 0.8479 0.8478 0.8498
BlurCar2 0.803337 0.8612 0.8623 0.8612 0.8584 0.8634 0.8593
BlurCar3 0.828998 0.8485 0.8494 0.851 0.8506 0.8482 0.8477
BlurCar4 0.800752 0.8383 0.8378 0.841 0.8367 0.8147 0.7949
BlurFace 0.816285 0.8355 0.8339 0.8355 0.8355 0.8362 0.8407
BlurOwl 0.780318 0.8024 0.8023 0.8014 0.7936 0.7891 0.7824
Board 0.777413 0.8172 0.8204 0.8125 0.808 0.8169 0.8037
Bolt 0.788435 0.6332 0.6197 0.638 0.6933 0.7045 0.7405
Bolt2 0.685844 0.0111 0.0111 0.0107 0.0107 0.0106 0.0106
Box 0.688159 0.7071 0.712 0.7358 0.7388 0.7323 0.7375
Boy 0.712229 0.8159 0.8128 0.8159 0.8129 0.8103 0.811
Car1 0.181559 0.2413 0.2498 0.2413 0.2537 0.2611 0.2089
Car2 0.716059 0.7891 0.7903 0.7891 0.78 0.7622 0.7537
Car24 0.558321 0.5904 0.6066 0.6208 0.6077 0.5958 0.5834
Car4 0.503505 0.6453 0.6467 0.6312 0.6517 0.6234 0.6001
CarDark 0.783473 0.748 0.7407 0.7684 0.774 0.7778 0.7955
CarScale 0.562736 0.6019 0.6005 0.6028 0.6036 0.603 0.4204
ClifBar 0.544592 0.1913 0.2028 0.2021 0.2017 0.1826 0.1918
Coke 0.610538 0.5765 0.5763 0.5765 0.5749 0.5816 0.5826
Couple 0.67483 0.5891 0.5905 0.5993 0.5963 0.602 0.5561
Coupon 0.876802 0.9131 0.9131 0.9131 0.9131 0.9134 0.9199
Crossing 0.730556 0.7548 0.7254 0.7544 0.7448 0.7016 0.6972
Crowds 0.698641 0.6595 0.669 0.6753 0.6775 0.724 0.7316
Dancer 0.722116 0.7329 0.7327 0.7395 0.7429 0.7452 0.7124
Dancer2 0.763492 0.7302 0.7302 0.7317 0.7508 0.76 0.7629
David 0.63482 0.6785 0.6785 0.7035 0.6863 0.6418 0.5828
David2 0.799415 0.7438 0.7404 0.7495 0.7693 0.7797 0.7821
David3 0.776266 0.774 0.7793 0.7681 0.7765 0.7816 0.7857
Deer 0.814219 0.7894 0.7881 0.7894 0.7887 0.784 0.7612
Diving 0.362569 0.2352 0.2343 0.3092 0.3783 0.3136 0.3154
Dog 0.463817 0.4721 0.4754 0.4814 0.5069 0.4901 0.3697
Dog1 0.677637 0.7278 0.7273 0.7298 0.7097 0.7151 0.6729
Doll 0.594906 0.6093 0.6186 0.6341 0.6214 0.6111 0.5993
DragonBaby 0.622419 0.6018 0.6018 0.6018 0.6018 0.6068 0.6372
Dudek 0.764275 0.7945 0.7937 0.7945 0.7945 0.8064 0.8035
FaceOcc1 0.717435 0.7365 0.7362 0.7365 0.7365 0.7337 0.7294
FaceOcc2 0.739151 0.7235 0.7236 0.7244 0.7433 0.7448 0.7261
Fish 0.828231 0.8302 0.8314 0.8284 0.8266 0.8203 0.8214
FleetFace 0.701893 0.6879 0.6838 0.6879 0.6879 0.687 0.6893
Football 0.730729 0.7276 0.7259 0.7276 0.7332 0.7386 0.7368
Football1 0.80888 0.6712 0.6319 0.7342 0.7831 0.8018 0.8057
Freeman1 0.588519 0.6227 0.6098 0.2888 0.267 0.2824 0.2911
Freeman3 0.508696 0.3564 0.3576 0.3552 0.3393 0.3393 0.3406
Freeman4 0.411745 0.4335 0.3969 0.3978 0.401 0.4013 0.4006
Girl 0.675333 0.7572 0.7568 0.7572 0.7538 0.7525 0.711
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Table 6.6: Detailed results of MetaCREST on OTB2015 (Girl2 — Woman).

MetaCREST-01 CREST CREST-Base CREST-20 CREST-10 CREST-05 CREST-01
Girl2 0.594508 0.5784 0.5672 0.5937 0.6041 0.6046 0.6139
Gym 0.512262 0.4946 0.5087 0.4976 0.5196 0.4995 0.4956
Human2 0.63796 0.6762 0.676 0.6797 0.6932 0.691 0.6977
Human3 0.667901 0.048 0.0482 0.048 0.0482 0.0492 0.0473
Human4-2 0.54537 0.3327 0.3291 0.313 0.3308 0.3355 0.3542
Human5 0.504575 0.5228 0.5215 0.5637 0.5806 0.3885 0.4031
Human6 0.338745 0.2988 0.2934 0.2893 0.2938 0.2534 0.2137
Human7 0.685143 0.7573 0.7516 0.7575 0.7558 0.7356 0.625
Human8 0.680804 0.6306 0.6291 0.7031 0.7001 0.5577 0.5141
Human9 0.61249 0.6665 0.6662 0.6937 0.6767 0.5681 0.5135
Ironman 0.448078 0.3873 0.4016 0.4013 0.393 0.42 0.4191
Jogging-1 0.733364 0.7681 0.7672 0.7844 0.7866 0.7791 0.7791
Jogging-2 0.766713 0.7763 0.7771 0.7779 0.774 0.7631 0.769
Jump 0.248634 0.0792 0.0894 0.2619 0.2806 0.1101 0.0995
Jumping 0.726609 0.6706 0.6709 0.6782 0.6895 0.6994 0.7033
KiteSurf 0.704649 0.7126 0.7149 0.7012 0.7001 0.7001 0.6956
Lemming 0.59702 0.7557 0.7552 0.758 0.7624 0.7593 0.7545
Liquor 0.83414 0.8162 0.8153 0.8181 0.8189 0.8189 0.8189
Man 0.822672 0.795 0.7978 0.8028 0.8127 0.8266 0.807
Matrix 0.595238 0.4138 0.4233 0.4071 0.3929 0.2729 0.2748
Mhyang 0.742506 0.8348 0.8355 0.8348 0.8164 0.8215 0.8024
MotorRolling 0.652729 0.5752 0.5723 0.4974 0.1687 0.1135 0.0987
MountainBike 0.677945 0.7005 0.7007 0.7005 0.7001 0.6919 0.6953
Panda 0.535333 0.5103 0.4732 0.5478 0.5699 0.5645 0.5843
RedTeam 0.518596 0.6082 0.6424 0.6442 0.6462 0.6456 0.6336
Rubik 0.666857 0.6618 0.6572 0.6627 0.6642 0.662 0.6573
Shaking 0.75499 0.7444 0.7409 0.7444 0.7293 0.7571 0.771
Singer1 0.539547 0.6697 0.674 0.6634 0.6344 0.5872 0.4001
Singer2 0.775826 0.7328 0.733 0.0364 0.037 0.0389 0.0399
Skater 0.634821 0.5952 0.5958 0.5929 0.5961 0.6074 0.6259
Skater2 0.616092 0.5734 0.591 0.6032 0.6193 0.6165 0.5872
Skating1 0.65869 0.5182 0.556 0.5248 0.5739 0.5764 0.5942
Skating2-1 0.519682 0.3528 0.351 0.3578 0.3601 0.3658 0.3614
Skating2-2 0.41488 0.4164 0.4146 0.4978 0.5029 0.4014 0.3908
Skiing 0.566725 0.4674 0.4897 0.4738 0.4856 0.4656 0.465
Soccer 0.184038 0.4298 0.4275 0.4298 0.4298 0.3907 0.4563
Subway 0.790204 0.7045 0.1782 0.7415 0.7352 0.7369 0.7429
Surfer 0.632852 0.6511 0.6494 0.6682 0.5906 0.542 0.511
Suv 0.753036 0.7996 0.8062 0.8047 0.803 0.7994 0.5684
Sylvester 0.687024 0.7601 0.7605 0.7601 0.7625 0.7647 0.7645
Tiger1 0.685096 0.6002 0.6005 0.6002 0.6002 0.6817 0.731
Tiger2 0.628571 0.5894 0.5885 0.5931 0.5926 0.5954 0.58
Toy 0.633632 0.6038 0.602 0.6094 0.6422 0.6187 0.537
Trans 0.530338 0.5518 0.5457 0.5584 0.5465 0.5495 0.5757
Trellis 0.643987 0.7381 0.737 0.7394 0.7228 0.6891 0.6656
Twinnings 0.625316 0.67 0.6607 0.6781 0.6522 0.643 0.6395
Vase 0.450185 0.4665 0.4579 0.4665 0.4672 0.4521 0.3894
Walking 0.627369 0.6448 0.6596 0.6914 0.6775 0.662 0.6511
Walking2 0.464571 0.6364 0.6253 0.6294 0.6555 0.6575 0.634
Woman 0.702002 0.7292 0.7341 0.7132 0.7192 0.7598 0.7692

Average 0.63696061 0.622858 0.617631 0.621314 0.62165 0.608597 0.595679
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Table 6.7: Detailed results of MetaSDNet on OTB2015 (BasketBall — Girl).

MetaSDNet-01 pyMDNet-30 pyMDNet-15 pyMDNet-10 pyMDNet-05 pyMDNet-03 pyMDNet-01
BasketBall 0.6004 0.6386 0.6056 0.6273 0.7412 0.6121 0.0177
Biker 0.3793 0.339 0.3722 0.3575 0.3001 0.2884 0.0956
Bird1 0.0308 0.3054 0.2381 0.3228 0.3136 0.3177 0.0524
Bird2 0.7196 0.798 0.7884 0.7388 0.7253 0.6883 0.0789
BlurBody 0.7241 0.6705 0.7849 0.6806 0.7188 0.6501 0.696
BlurCar1 0.8176 0.7969 0.8145 0.8088 0.7959 0.0022 0.1475
BlurCar2 0.8407 0.8412 0.8528 0.8423 0.7875 0.6815 0.6893
BlurCar3 0.8494 0.8297 0.8455 0.7903 0.7431 0.2721 0.0365
BlurCar4 0.8499 0.7799 0.8387 0.8183 0.5847 0.1056 0.0165
BlurFace 0.8076 0.7806 0.7734 0.7807 0.5003 0.4183 0.2497
BlurOwl 0.7754 0.7482 0.799 0.7447 0.7184 0.6763 0.7001
Board 0.7262 0.7399 0.7028 0.6973 0.4725 0.4363 0.0685
Bolt 0.7506 0.7665 0.5725 0.7642 0.7488 0.3555 0.0044
Bolt2 0.6306 0.7118 0.7109 0.7512 0.6995 0.7042 0.0112
Box 0.7216 0.6343 0.7074 0.6664 0.0342 0.675 0.6477
Boy 0.779 0.7514 0.7565 0.769 0.7727 0.7529 0.7871
Car1 0.7116 0.6764 0.681 0.5854 0.6308 0.1188 0.0047
Car2 0.8147 0.8334 0.7965 0.8258 0.7901 0.325 0.2691
Car24 0.8151 0.8405 0.8366 0.8328 0.8585 0.8365 0.854
Car4 0.791 0.7396 0.7529 0.7563 0.7284 0.7472 0.7559
CarDark 0.7741 0.748 0.8254 0.7929 0.064 0.0109 0.0108
CarScale 0.7107 0.6691 0.6576 0.674 0.6926 0.0096 0.288
ClifBar 0.5904 0.6349 0.5728 0.6319 0.6308 0.6192 0.5928
Coke 0.6246 0.4793 0.5106 0.4865 0.4117 0.2068 0.1448
Couple 0.6694 0.5759 0.5418 0.5701 0.6139 0.6449 0.0235
Coupon 0.3282 0.3328 0.3459 0.3333 0.3293 0.1067 0.2085
Crossing 0.7369 0.7294 0.7655 0.7714 0.7452 0.7298 0.7552
Crowds 0.7405 0.6823 0.0899 0.0797 0.6384 0.6351 0.0071
Dancer 0.6673 0.6083 0.6707 0.6231 0.636 0.5443 0.3439
Dancer2 0.7705 0.7083 0.7378 0.7517 0.6822 0.7063 0.0924
David 0.7676 0.7614 0.7 0.7406 0.7635 0.7598 0.4336
David2 0.7287 0.745 0.7835 0.7514 0.7467 0.774 0.1124
David3 0.716 0.7303 0.7611 0.7668 0.7551 0.0083 0.0064
Deer 0.717 0.6915 0.7612 0.7009 0.7156 0.0543 0.0235
Diving 0.3838 0.3559 0.3623 0.3652 0.355 0.0401 0.0044
Dog 0.4413 0.4511 0.5163 0.5808 0.4916 0.5114 0.5111
Dog1 0.7815 0.7451 0.7662 0.7405 0.7387 0.7279 0.7273
Doll 0.8031 0.8298 0.8238 0.8339 0.8224 0.8295 0.8236
DragonBaby 0.7012 0.7122 0.6844 0.7054 0.563 0.0923 0.1239
Dudek 0.8306 0.8251 0.8388 0.8171 0.8398 0.8352 0.8142
FaceOcc1 0.6294 0.6669 0.7112 0.7294 0.7232 0.3265 0.1794
FaceOcc2 0.7009 0.7417 0.7494 0.7481 0.7396 0.7198 0.7155
Fish 0.7749 0.8526 0.7994 0.8485 0.7777 0.8374 0.8407
FleetFace 0.6339 0.722 0.7189 0.7067 0.7224 0.722 0.3047
Football 0.7199 0.1427 0.1406 0.6771 0.6534 0.1354 0.1046
Football1 0.6802 0.7085 0.6918 0.7233 0.5798 0.0946 0.0528
Freeman1 0.6897 0.7266 0.6953 0.6952 0.6607 0.612 0.694
Freeman3 0.7696 0.7607 0.7756 0.7828 0.7909 0.548 0.5321
Freeman4 0.6303 0.6204 0.6726 0.6288 0.2028 0.689 0.6793
Girl 0.7501 0.5939 0.6645 0.6036 0.5982 0.6363 0.5794
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Table 6.8: Detailed results of MetaSDNet on OTB2015 (Girl2 — Woman).

MetaSDNet-01 pyMDNet-30 pyMDNet-15 pyMDNet-10 pyMDNet-05 pyMDNet-03 pyMDNet-01
Girl2 0.7303 0.7339 0.7238 0.7257 0.6038 0.5872 0.6081
Gym 0.5068 0.5141 0.4567 0.5176 0.4625 0.4484 0.0254
Human2 0.7011 0.6262 0.7356 0.6797 0.6608 0.7351 0.402
Human3 0.5686 0.4716 0.0142 0.4545 0.5624 0.5327 0.0008
Human4-2 0.5927 0.6185 0.6038 0.567 0.5992 0.5804 0.0834
Human5 0.7134 0.624 0.6092 0.6533 0.7008 0.6225 0.5703
Human6 0.7504 0.694 0.7627 0.5205 0.7575 0.0121 0.003
Human7 0.7922 0.704 0.7021 0.6583 0.7718 0.795 0.5217
Human8 0.7024 0.6064 0.6399 0.5688 0.5435 0.5487 0.4799
Human9 0.664 0.5661 0.5538 0.4515 0.484 0.0073 0.0031
Ironman 0.4604 0.428 0.1816 0.4418 0.0138 0.1411 0.3368
Jogging-1 0.7098 0.7711 0.7369 0.7773 0.749 0.7217 0.4915
Jogging-2 0.7389 0.7439 0.7602 0.731 0.7565 0.7214 0.0338
Jump 0.0496 0.1593 0.251 0.1659 0.1694 0.0656 0.0582
Jumping 0.6867 0.7176 0.7157 0.6872 0.7184 0.5757 0.5276
KiteSurf 0.7098 0.7676 0.6298 0.343 0.7358 0.6865 0.7103
Lemming 0.7499 0.7108 0.7356 0.7582 0.7461 0.0215 0.0213
Liquor 0.7915 0.6435 0.7477 0.6869 0.7283 0.6757 0.1501
Man 0.8077 0.8017 0.779 0.7903 0.79 0.8088 0.8006
Matrix 0.279 0.4671 0.4476 0.4724 0.4705 0.1057 0.0705
Mhyang 0.7521 0.8094 0.8147 0.7603 0.6258 0.6084 0.674
MotorRolling 0.5839 0.5833 0.5851 0.5976 0.5738 0.1283 0.2398
MountainBike 0.7652 0.7172 0.7366 0.6433 0.7135 0.0063 0.0063
Panda 0.6096 0.5238 0.5448 0.57 0.5035 0.5199 0.4794
RedTeam 0.559 0.5711 0.6262 0.5641 0.5719 0.5234 0.2384
Rubik 0.7301 0.7106 0.7157 0.7075 0.7009 0.7092 0.0121
Shaking 0.6814 0.5986 0.6864 0.0907 0.0421 0.6373 0.0566
Singer1 0.7614 0.7159 0.7422 0.7128 0.6918 0.4938 0.6759
Singer2 0.6043 0.6906 0.0389 0.0848 0.0628 0.006 0.0034
Skater 0.5256 0.5482 0.6131 0.5643 0.5827 0.5601 0.6149
Skater2 0.5395 0.5747 0.6726 0.5111 0.417 0.0297 0.0363
Skating1 0.6006 0.6439 0.5325 0.5804 0.6102 0.5495 0.592
Skating2-1 0.481 0.5028 0.4327 0.4521 0.4986 0.4919 0.4462
Skating2-2 0.3244 0.4951 0.5316 0.3864 0.4175 0.0196 0.017
Skiing 0.4891 0.495 0.5056 0.4633 0.4762 0.3774 0.3633
Soccer 0.4948 0.4218 0.3805 0.4939 0.4021 0.3697 0.4123
Subway 0.7546 0.6754 0.6751 0.6724 0.6528 0.6727 0.6833
Surfer 0.7007 0.7285 0.719 0.7023 0.7207 0.7411 0.1836
Suv 0.744 0.7973 0.7744 0.7893 0.7716 0.6956 0.1601
Sylvester 0.7125 0.6861 0.7 0.6968 0.1434 0.2789 0.2842
Tiger1 0.6224 0.6396 0.6679 0.6355 0.4128 0.4374 0.0549
Tiger2 0.4618 0.6278 0.6971 0.6179 0.6907 0.0359 0.016
Toy 0.6755 0.6577 0.6505 0.6394 0.6424 0.6394 0.631
Trans 0.5518 0.619 0.6229 0.6194 0.2508 0.1306 0.134
Trellis 0.7806 0.6886 0.7653 0.6632 0.6988 0.6954 0.226
Twinnings 0.5667 0.7025 0.6562 0.6647 0.6228 0.2355 0.0073
Vase 0.55 0.4609 0.5083 0.5198 0.4902 0.0838 0.0931
Walking 0.7405 0.6504 0.7135 0.6823 0.6394 0.7067 0.7094
Walking2 0.7951 0.7848 0.7581 0.7666 0.7568 0.783 0.7836
Woman 0.7512 0.7577 0.7398 0.7542 0.7467 0.0019 0.0018

Average 0.6621 0.6522 0.6416 0.6328 0.5950 0.4539 0.3165
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6.2 Meta-Curvature

6.2.1 Case study

In this section, we provide a case study of the linear regression example. Let Xtr,Xval,Xnew ∈

Rm×p training, validation, and test set and their targets are Ytr,Yval,Ynew ∈ Rm. With the

model’s parameter θ ∈ Rp, a typical loss function for the linear regression is defined as follows.

J(θ) =
1

2
‖Y −Xθ‖2. (6.1)

The gradient w.r.t the model’s parameter θ is

∇θJ(θ) = −X>(Y −Xθ). (6.2)

Given the meta-curvature matrix, M, a fixed inner learning rate α, then the meta-objective

function is

Jval(θ) =
1

2
‖Yval −Xval(θ

tr)‖2 (6.3)
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Following the derivation from the main text and given the new test set, we perform one inner

and outer optimization steps. And the transformed gradient for the new test set is as follow.

Mnew∇θJnew(θ) (6.4)

= M∇θJnew(θ) + β
(
∇θJtr(θ)

>∇θJnew(θ)
)
α∇θJval(θ

tr) (6.5)

= M∇θJnew(θ)− β
[
(Ytr −Xtrθ)

>XtrX
>
new(Ynew −Xnewθ)

]
α∇θJval(θ

tr) (6.6)

= M∇θJnew(θ)− β
[
(Ytr −Xtrθ)

>XtrX
>
new(Ynew −Xnewθ)

]
α
[
X>val(Yval −Xvalθ

tr)
]

(6.7)

= M∇θJnew(θ)− β
[
(Ytr −Xtrθ)

>XtrX
>
new(Ynew −Xnewθ)

]
(6.8)

α
[
X>valYval −X>valXval(θ − αMX>tr (Ytr −Xtrθ))

]
(6.9)

= M∇θJnew(θ)− β
[

(Ytr −Xtrθ)
>XtrX

>
new(Ynew −Xnewθ)︸ ︷︷ ︸

A

]
(6.10)

[
αX>val(Yval −Xvalθ)︸ ︷︷ ︸

B

−α2X>valXval︸ ︷︷ ︸
C

MX>tr (Ytr −Xtrθ)︸ ︷︷ ︸
D

]
. (6.11)

The term A is the gradient similarity term, and in linear regression case, it is defined as a

bilinear form e.g. x>Ay, where A = XtrX
>
new. It is multiplied by both training and test residuals.

A is related to covariance matrix, but between training set and the new test set. The term B is the

validation gradient term. The terms C and D correspond to O(α2). Since the loss function of the

linear regression has a quadratic form and its derivative has a linear form. Therefore, the Taylor

expansion of the derivative has up to α2 order. The term D is the transformed gradient and the

term C is a covariance matrix of validation dataset (assuming it’s centered).

6.2.2 Experimental setup

6.2.2.1 Few-shot classification

For both 5-way 1-shot and 5-way 5-shot classification, we set the batch size 4 for 1 step exper-

iments and 2 for 5 step experiments. 15 examples per class were used for evaluating the model

after updates. In total, we ran 100,000 iterations for 1 step experiments and 200,000 iterations for
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2 step experiments. The inner/outer learning rates are β = 0.001, α = 0.01. We apply dropout

rate 0.2 in the final linear layer for only MC1 and MC2 (other methods did perform worse with

dropout). For cutout data augmentation, we cut out 36× 36 random crops.

6.2.2.2 Few-shot reinforcement learning

For all experiments, the inner learning rates was α = 0.1, discount factor γ = 0.99. And we

used a meta batch size of 40 tasks. For each task, the horizon is H = 200 with 20 rollouts. For

TRPO optimizer, the maximum threshold of KL divergence was 0.01, the number of conjugate

gradient descent steps are 10, and the maximum number of line search was 15. Every line search

step, the step size was multiplied by 0.8. For PPO, we used Adam as the optimizer. The clipping

threshold is 0.3 and we performed 5 gradient steps per each meta batch. In HalfCheetahVel, we

uniformly sample velocities from 0 to 2. In Walker2dVel, we also uniformly sample velocities

from 0 to 5. In both Walker2dDir and Walker2dVel we give additional 1.0 reward when the agent

does not fall over.
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6.3 Learning to generate given few examples

6.4 Detailed Network Architectures

We provide the detailed network architecture of our approach in Figure 6.2.

6.5 More examples

We provide more visual examples for car and chair categories in Figures 6.3 and 6.4 respec-

tively. In addition to novel views synthesized by our method, we also provide the intermediate

output (visibility map and output of DOAFN) as well as views synthesized by other approaches.

6.6 Test results on random backgrounds

Figure 6.5 presents test results on synthesized images with random backgrounds. Interme-

diate stages, such as visibility map, background mask, and outputs of DOAFN are also shown.

We compare against L1 and AFN baselines. Note that L1 and AFN could perform better on back-

ground area if we applied similar approaches used in TVSN, which we considered backgrounds

separately.

6.7 Arbitrary transformations with linear interpolations of one-hot vectors

We show an experiment on the generalization capability for arbitrary transformations. Al-

though we have trained the network with 17 discrete transformations in the range [20,340] with

20-degree increments, our trained network can synthesize arbitrary view points with linear in-

terpolations of one-hot vectors. For example, if [0,1,0,0,...0] and [0,0,1,0,...0] represent 40 and

60-degree transformations respectively, [0,0.5,0.5,0,...0] represents 50 degree. More formally, let

t ∈ [0, 1]17 be encoding vector for the transformation parameter θ ∈ [20, 340] and s be step size

(s = 20). For a transformation parameter i × s ≤ θ < (i + 1) × s, i and i + 1 elements of the
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encoding vector t is

ti = 1− θ − (i× s)
s

, ti+1 = 1− ti (6.12)

Figure 6.6 shows some of examples. From the third to the sixth columns, we used linearly inter-

polated one-hot vectors to synthesize views between two consecutive discrete views that were in

the original transformation set (the second and the last columns).

6.8 More categories

We picked cars and chairs, since both span a range of interesting challenges. The car category

has rich variety of reflectance and textures, various shapes, and a large number of instances. The

chair category was chosen since it is a good testbed for challenging ‘thin shapes’, e.g. legs of

chairs, and unlike cars is far from convex in shape. We also wanted to compare to previous works,

which were tested mostly on cars or chairs. In order to show our approach is well generalizable to

other categories, we also performed experiments for motorcycle and flowerpot categories. We fol-

lowed the same experimental setup. We used the entire motocycle(337 models) and flowerpot(602

models) categories. For each category, 80% of 3D models are used for training, which leaves

around 0.1 million training pairs for the motorcycle and 0.2 million for the flowerpot category.

For testing, we randomly sampled instances, input viewpoints, and desired transformations from

the rest 20% of 3D models. Figure 6.7 shows some of qualitative results.
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Figure 6.2: Transformation-grounded view synthesis network architecture
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Figure 6.3: Results on test images from the car category (15). 1st-input, 2nd-ground truth. From
3rd to 6th are deep encoder-decoder networks with different losses. (3rd-L1 norm (133), 4th-
feature reconstruction loss with pretrained VGG16 network (60; 74; 137; 73), 5th-adversarial
loss with feature matching (41; 108; 118), 6th-the combined loss). 7th-appearance flow network
(AFN) (157). 8th-ours(TVSN).
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Figure 6.4: Results on test images from the car category (15). 1st-input, 2nd-ground truth. From
3rd to 6th are deep encoder-decoder networks with different losses. (3rd-L1 norm (133), 4th-
feature reconstruction loss with pretrained VGG16 network (60; 74; 137; 73), 5th-adversarial
loss with feature matching (41; 108; 118), 6th-the combined loss). 7th-appearance flow network
(AFN) (157). 8th-ours(TVSN).
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Figure 6.5: Test results on synthetic backgrounds
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Figure 6.6: Test results of linear interpolation of one-hot vectors
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Figure 6.7: Test results of motorcycle and flowerpot categories
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