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ABSTRACT 

PATRICK EARL LACKEY: The enzymes responsible for the addition and maintenance of 
the 3’ oligouridylation of histone mRNA 

(Under the direction of William F. Marzluff) 
 

  
 Histone mRNAs end in a highly conserved 3’ stemloop, making them the only known 

metazoan mRNAs that do not end in a poly(A) tail. They are also tightly cell-cyle regulated, 

with expression increasing 30-fold at the beginning of S-phase followed by a quick reduction 

in half-life as S-phase ends.  Because of its unique 3’ ends, histone mRNAs require a 

different mechanism to initiate degradation than bulk mRNA. Previous work has revealed 

that initiation of histone mRNA degradation is mediated by an oligouridylation at the 3’ end 

of the message. Further work showed these oligouridylations vary widely in base position, 

length, and when they are added to the message. In this thesis, I use a high-throughput 

sequencing approach to show that the oligouridylation of the 3’ UTR of histone mRNA are 

added by the enzyme TUT7 and that the length and function of the oligouridylations is 

controlled by the human 3’ exonuclease, 3’hExo; during S-phase the U tails are 1-2 nts and 

function to protect the 3’ end of the message from degradation. As S-phase ends, longer U-

tails are added and 3’hExo initiates the degradation of the message. From the next-generation 

sequencing data, I also present evidence that oligouridylation of the open reading frame is 

added differently than the oligouridylation of the 3’ end, likely by a different enzyme. 
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CHAPTER 1 

	  

INTRODUCTION 

The role of histones and chromatin in S-phase  

During S-phase, a eukaryotic cell must both replicate its genome and package the 

newly made DNA of that replicated genome into chromatin. Chromatin is a nucleoprotein 

complex made up of an octamer of the four canonical histone proteins, H2A, H2B, H3 and 

H4 (Kornberg 1977),  with 146 nucleotides of DNA arranged in a double helix around the 

octamer (Luger et al. 1997). The linker histone, H1, further stabilizes the nucleosome particle 

and adds higher-order structure (Hizume et al. 2005). Histone proteins are an important 

architectural unit of chromatin; without proper levels of histone proteins, the genome is 

vulnerable to damage via chromosome loss (Meeks-Wagner and Hartwell 1986).  

There are two classes of histone genes that encode for these histone proteins. The first 

is the replication dependent histone genes; this includes the four canonical histones listed 

(H2A, H2B, H3, and H4) along with the linker histone H1. The genes that encode these 

histones are the only non-polyadenylated metazoan mRNA, they are tightly cell-cycle 

regulated to be expressed during S-phase while DNA is being synthesized, and then to be 

immediately degraded once S-phase ends or DNA synthesis is stopped. These replication-

dependent histone genes and their metabolism will be discussed in detail in this thesis. The 

second type of histone is the replication-independent histone. These are also known as 
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histone variants; the genes for these histones variants are polyadenylated and cell cycle 

independent. The histone variants have a wide variety of functions. The centromere-specific 

H3 replaces H3 in centromere DNA, helping kinetochores to form. Another H3 variant, H3.3, 

varies from H3 only by four amino acids and seems to function in actively transcribed genes. 

H2A also has two variants, H2A.Z and H2A.X. H2A.Z is found around transcription start 

sites of actively transcribed genes and H2A.X is involved in chromatin remodeling (Talbert 

and Henikoff 2010). 

As histone proteins are being rapidly transcribed and translated during S-phase, they 

must then be deposited on replicating DNA in order to form the nucleosome. This is a 

complex process that can involve a large number of proteins (Burgess and Zhang 2013), but I 

will provide a brief outline here. The histones are loaded onto the newly synthesized DNA in 

stepwise-fashion; first the H3 and H4 histones are deposited on the DNA, then H2A and 

H2B, and finally H1 (Worcel et al. 1978). H3 and H4 are deposited onto the DNA by a three-

protein complex known as Chromatin Assembly Factor 1 (CAF-1), specifically by the 

interaction between the H3/H4 proteins and two subunits of CAF-1 (Kaufman et al. 1995). 

This interaction with CAF-1 and H3/H4 is S-phase specific; outside of S-phase a protein 

complex called HIRA deposits H3.3/H4 onto histone mRNA (Tagami et al. 2004). A similar 

process takes place to deposit the H2A/H2B dimers onto the chromatin once the H3/H4 

tetramer is in place. Nucleosome assembly protein 1 (NAP1) is a chaperone protein that 

assists in both the import of H2A/H2B into the nucleus, as well as likely having a role in the 

deposition of the proteins onto the chromatin itself (Mosammaparast and Ewart 2002).  
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The canonical histone genes and SLBP 

 Because of the importance of cell cycle regulation to the canonical, replication-

depedent histone genes, they have a unique orientation within the genome. In humans, there 

is one large cluster of histone genes on chromosome 6. This locus, HIST1, encodes for 55 

histone genes. A second, smaller cluster, known as HIST2 is located on chromosome 2 and 

encodes for six genes (Marzluff et al. 2002). As mentioned above, these canonical histone 

genes are not polyadenylated. Instead they all end in a highly conserved 3’ stem-loop (SL). 

This stem-loop is the cis-element that controls almost all of the elements of the post-

transcriptional life of the canonical histone mRNAs. It is required for both the increased 

expression at the beginning of S-phase and the quick degradation at the end of it (Harris et al. 

1991). 

There is also a trans-element that works in concert with the stem-loop in controlling 

almost all aspects of histone mRNA metabolism – the stem-loop binding protein (SLBP). 

SLBP binds to the stem-loop for its entire life-cycle, both in the nucleus after transcription 

and when the message is being translated on the polyribosome. The interaction between 

SLBP and histone mRNA is a specific interaction facilitated by SLBP’s non-traditional RNA 

binding domain (Z F Wang et al. 1996). SLBP is subsequently required for every other 

aspect of histone mRNA metabolism; processing, export from the nucleus, translation, and 

finally degradation (Z F Wang et al. 1996; Sullivan et al. 2009; Sànchez and Marzluff 2002; 

Mullen and Marzluff 2008). SLBP is cell cycle regulated during and after its translation 

(Whitfield et al. 2000). It is degraded at the end of S-phase through a process that is 

uncoupled from histone mRNA degradation, as inducing histone mRNA degradation during 

DNA synthesis does not induce SLBP degradation (Whitfield 2004). Instead, SLBP is 
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phosphorylated at two threonine residues and that phosphorylation is necessary for the 

degradation of the protein (Lianxing Zheng et al. 2003). 

Histone mRNA transcription and processing  

The expression of the replication-dependent histone genes is tightly tied to the cell cycle and 

DNA replication, as depicted in Figure 1. Histone genes are actually constitutively 

transcribed throughout the cell cycle, though their transcription increases 3-5 fold at the 

beginning of S-phase (DeLisle et al. 1983). This increase in transcription is regulated by the 

transcription factor NPAT. During S-phase, the Cyclin E/CDK2 complex phosphorylates 

NPAT, which upregulates histone mRNA transcription (Ma et al. 2000; Zhao et al. 2000). 

This is done through interactions between NPAT and a series of co-activators to increase 

transcription of the individual histone genes (Mitra et al. 2003; Fletcher et al. 1987; Lei 

Zheng et al. 2003; Gallinari et al. 1989).  

This increase in transcription does not account for the total increase in histone 

message in the cell during S-phase. As mentioned, the increase in transcription is 3-5 fold 

during S-phase, but the total increase in message is on the order of 35-50-fold (DeLisle et al. 

1983). The rest of the increase in histone message is accounted for by the processing of the 

histone mRNA. Processing is controlled by two cis-elements -- the stem-loop and a loosely 

conserved histone down-stream element (HDE) -- and well as SLBP and the U7 small 

nuclear riboprotein (snRNP), which act as trans-elements. 

The RNA component of the U7 snRNP is the U7 snRNA, which has some 

complementarity with the HDE and is capable of binding to it (Mowry and Steitz 1987). 

Similar to the splicing-associated snRNPs (U1, U2, U4/U6, and U5), U7 snRNA has a 

binding for the Sm proteins. Instead of the D1 and D2 Sm proteins, however, the U7 snRNP 
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has two like-SM proteins – Lsm10 and Lsm 11 in their place (Pillai et al. 2001; 2003). This 

unique binding site and the two U7-specific Lsm proteins are important for histone mRNA 

processing; if the binding site is mutated to the traditional Sm-binding site and the canonical 

Sm-ring binds to U7, processing is abolished (Grimm et al. 1993).  

The U7 snRNP and its unique Lsm proteins help create a platform for recruiting the 

rest of the factors required for histone mRNA processing. Lsm11 interacts with FLASH, a 

protein required for processing, and this interaction proved to be necessary for forming the 

cleavage complex at the 3’ end of histone message (X c Yang et al. 2011; 2012). 

Surprisingly, a number of factors are shared between cleavage of polyadenylated message 

and histone mRNA, despite the differences in the message and the different processing steps. 

Symplekin, CPSF73, CSTF100, and Fip1 are involved in both processes, with CPSF73 being 

required for cleavage in both situations (Kolev 2005; Dominski et al. 2005; Eric J Wagner et 

al. 2007).  

Processing and degradation converge at the histone locus body (HLB). Histone genes 

were first mapped to nuclear loci by by Joe Gall in 1981 (Gall et al. 1981) and first described 

as a distinct nuclear body in 2006, when it was observed as the U7 snRNP concentrated at the 

histone locus in a nuclear body separate from the Cajal Body (Liu et al. 2006). These HLBs 

can assemble with only one active histone gene repeat and gene expression is correlated to 

HLB assembly (Salzler et al. 2013). There is a conserved interaction between the factor that 

helps activate histone mRNA transcription, NPAT, and FLASH, that works to assemble the 

required transcription and processing factors together at the HLB (X c Yang et al. 2012). 
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Histone mRNA export and translation  

After transcription, histone mRNA is transported out of the nucleus by TAP via the 

same mechanism as polyadenylated mRNA (Erkmann et al. 2005). SLBP is also required for 

this process by some unknown mechanism – SLBP knockdown causes histone message to be 

retained in the nucleus and tethering SLBP to non-histone mRNAs causes them to be 

immediately exported as well (Sullivan et al. 2009).  

Like most aspects of histone mRNA metabolism, translation requires the 3’ UTR and 

the stem-loop, as well as SLBP. Work done in Chinese hamster cells showed that the stem-

loop promotes translation, dependent on 3’UTR length and the RNA’s 5’ cap (Gallie et al. 

1996). SLBP is required for translation as well, though notably only its presence is required; 

when Xenopus SLBP-1 was fused to human MS2 and expressed in rabbit reticulocyte with a 

reporter RNA containing an MS2 binding site, translation was increased (Sànchez and 

Marzluff 2002). Thus, both the stem-loop and SLBP are required for translation, but the 

interaction between the two elements is not. Instead, SLBP helps with translation through its 

interaction with the SLBP Interacting Protein (SLIP1). SLIP1 is also required for translation, 

and may facilitate the circularization of the message for translation, via its interaction with 

SLBP and its interaction with eIF4G (Cakmakci et al. 2008). 

RNA DEGRADATION 

The flow of information in the cell is well-known and well-taught as the Central 

Dogma of Molecular Biology: DNA is transcribed into RNA, RNA is translated into protein. 

In practice, of course, the way that DNA blueprints are turned into proteins is a much more 

complicated and regulated process. Because RNA is transcribed from DNA and translated 

into protein, it has long been a point of study for the control of gene expression. It can be 
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controlled at the level of transcription, splicing, processing, nuclear export, translation, and 

overall stability (Darnell 1982). A recent deep sequencing study of yeast mRNAs showed 

that different mRNAs have widely varying half-lives and that sometimes even different 

isoforms of the same gene see widely varying half-lives, along with some data that the 3’ 

UTR is likely responsible for the control of that half-life (Geisberg et al. 2014). This thesis is 

particularly concerned with the regulation of RNA stability through the half-life of 

messenger RNA molecules, and with the process by which histone mRNA is degraded. As 

discussed above, histone mRNA’s half-life is variable throughout the the cell cycle and it has 

a unique 3’ UTR, which makes it an ideal candidate to try and answer questions about the 

control of histone mRNA degradation and half-life. 

De-adenylation dependent degradation 

 All messenger RNA (with one notable exception) has both a 5’ 7-methyguanosine cap 

and a 3’ poly(A) tail to provide stability to the message after transcription and splicing. Both 

of these elements must be removed in order for mRNA to be degraded. For bulk eukaryotic 

mRNAs, the first step in almost all mRNA degradation is the shortening of the 3’ poly(A) 

tail. From this point, the cell can either re-polyadenylate the message, or take irreversible 

steps to degrade the message either in the 5’-3’ direction via decapping, or the 3’-5’ direction 

via the exosome (Garneau et al. 2007).   

 Deadenylation is largely carried out by two main cytoplasmic deadenylase 

complexes: the CCR4/NOT complex and the PAN2/PAN3 complex (Wahle and Winkler 

2013). The CCR4-NOT complex is a large protein complex that is responsible for most 

deadenylation in yeast (Tucker et al. 2001) and is highly conserved from yeast to humans 

(Dupressoir et al. 2001). The complex has five conserved subunits (Ccr4, Caf1, Not1, Not2, 
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Not3/5) and two catalytic subunits (Ccr4 and Caf1) (Temme et al. 2004; 2010; Albert et al. 

2000; Lau et al. 2009; Morita et al. 2007; Schwede et al. 2008). Both proteins have been 

crystalized, helping to reveal their mechanisms of action. Ccr4 binds specificially to 

adenosine residues, though its exact mechanism of cleavage (specifically, whether or not it 

cleaves into mono or dinucleotides) is currently uncertain (Hui Wang et al. 2010), while . 

Crystalization and purification of Caf1 revealed that divalent metal ions help determine the 

enzyme’s substrate specificity. (Jonstrup et al. 2007).  

The other complex involved in deadenylation is the cytoplasmic poly(A) binding 

protein (PABPC)-associated nuclease complex, or PAN complex. First identified in yeast 

(Boeck et al. 1996), the yeast and human complexes both consist of a catalytic subunit 

(PAN2) that interacts with a regulatory subunit (PAN3) (Uchida et al. 2004). PABPC is 

essential to its activity; PAN3 interacts with PABPC, which allows it to regulate the activity 

of PAN2 (Boeck et al. 1996; Uchida et al. 2004).  

 It is worth noting that there is evidence that the CCR4-NOT and PAN2/PAN3 

complexes may complement each other. An experiment by Roy Parker’s lab to investigate 

the role of the two complexes in yeast proved interesting in several aspects; knockout lines 

for the CCR4-NOT and PAN2-PAN3 complexes slowed down deadenylation and 

degradation of bulk RNA messages, a double knockdown of both complexes slowed down 

the degradation substantially more. A follow-up pulse-chase experiment showed that in the 

absence of both complexes, deadenylation in the cell was almost non-existent, indicating that 

both of the complexes contribute to general deadenylation in the cell (Tucker et al. 2001). 

 From this point, post-deadenylation, degradation can be carried out in either direction. 

In a process that was first discovered in yeast and is conserved in humans, the heptameric 
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Lsm1-7 ring binds the small remainder of the deadenylated tail, which works to target the 

mRNA for decapping via a specific interaction with the decapping activator Pat1 and an 

RNA-dependent interaction with the decapping protein Dcp1 (Tharun et al. 2000; Tharun and 

Parker 2001). This decapping is carried out by the Dcp1/Dcp2 complex, with the two 

subunits being discovered independently (Beelman et al. 1996; Dunckley and Parker 1999). 

In this complex, Dcp2 does the active removing of the cap and while it can act on its own, 

the presence of Dcp1 and its binding to Dcp2 greatly increases its activity (Steiger et al. 

2003). Once decapping occurs, the message is degradaded from the 5’ end by the 

exonuclease Xrn1 (Hsu and Stevens 1993). Degradation in the opposite direction, from 3’-5’, 

is carried out by the cytoplasmic version of the exosome (J S Anderson and Parker 1998), a 

massive complex of proteins that has multiple catalytic subunits and functions in both the 

nucleus and cytoplasm (Mitchell et al. 1997; Allmang et al. 1999). It is worth noting that 

these two processes seem to compensate for each other; genome-wide screens done for 

knockouts of components in both the 5’-3’ pathway (He et al. 2003) and 3’-5’ pathway 

(Houalla et al. 2006) did not greatly affect the levels of mRNA in S. cerevisiae.  

Other pathways of RNA degradation  

 There are other types of RNA decay that are not dependent upon deadenylation. The 

endonucleolytic pathway involves an endonucleolytic cleavage in the 3’ UTR between the 

poly(A) tail and the stop codon, allowing for either decapping and 5’-3’ decay or 3’-5’ decay 

of the two resulting RNA molecules as discussed above (Wu and Brewer 2012). PMR1 is a 

well-studied protein with this function – it’s targeted to the polyribosome by a 

phosphorylation that’s triggered under stressful conditions in the cell, targeting the message 

to stress granules for decay (F Yang et al. 2004; 2006).  
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 The cell has also ways to degrade aberrant transcripts through non-traditional 

pathways. As histone mRNA degradation utilizes some of the proteins in these pathways, I 

will briefly discuss them now.  

Nonsense-mediated decay 

 Nonsense-mediated decay, or NMD, is the best-studied RNA surveillance pathway. 

NMD occurs when the cell is able to both recognize and degrade RNA with a premature 

termination codon, or PTC. The main protein involved in NMD is UPF1. UPF1 binds the 3’ 

UTR of mRNA non-discriminately; it doesn’t require a PTC or translation (Kurosaki and 

Maquat 2013). UPF1 is then able to stimulate translation termination at the PTC by its 

interaction with two eukaryotic release factors, eRF1 and eRF3 (Czaplinski et al. 1998). 

Under normal circumstances, this interaction cannot happen. The cytoplasmic poly(A) 

binding protein (PAPBC1) interacts with eRF3 to stimulate translational termination (Cosson 

et al. 2002). Futhermore, PAPBC1 abolishes NMD when tethered downstream of a PTC 

(Kornberg 1977; Ansmant et al. 2007), providing a mechanism by which a normally 

terminated RNA message has the release factor eRF3 bound to the poly(A) associated protein 

PAPBC1, therefore making it impossible to interact with UPF1. Premature stop codons, 

however, create excessive distance between eRF3 and PAPBC1, therefore allowing the 

interaction with UPF1 that stimulates NMD.  

Under most circumstances, another early NMD trigger is the stop codon being located 

upstream of the exon judgment complex (EJC). This creates a binding platform for the NMD 

proteins UPF2 and UPF3 (Luger et al. 1997; Le Hir et al. 2001), which in turn form the core 

NMD complex with UPF1 (Hizume et al. 2005; J Lykke-Andersen et al. 2000) (Meeks-

Wagner and Hartwell 1986; Melero et al. 2012). This is a very tightly regulated process and 
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likely requires coordination with PAPBC and the release factors; the presence of introns in 

the 3’ UTR or an exceptionally long 3’ UTR is not enough on its own to trigger NMD, as 

there are mRNAs that are not degraded by NMD (Talbert and Henikoff 2010; Singh et al. 

2008).  

 The actual degradation of mRNA during NMD is a very complex process (there are at 

least four different methods by which this is carried out) that need not be discussed in detail 

here. In broad strokes, the UPF proteins, the release factors, and the SMG protein kinase 

complex form a SURF complex (SMG1-UPF1-eRF1-eRF3) at the premature stop codon. In 

addition to their kinase fucntions, the SMG complex contains an endonuclease capable of 

cleaving of the aberrant message so that it can be degraded bidirectionally, though the 

specifics of this vary depending on the exact manner of premature termination and the 

mRNA itself (Burgess and Zhang 2013; Søren Lykke-Andersen and Jensen 2015).  

Non-stop decay 

 Messages without stop codons are also unstable in the cell, and are degraded through 

a different mechanism from NMD and general mRNA decay, as UPF1 and the decapping 

complexes are not required for this decay pathway (Worcel et al. 1978; Frischmeyer et al. 

2002). Instead, these messages are decayed through a process termed Non-Stop Decay, 

which involves the exosome. In yeast, the exosome-associated protein Ski7p binds to the 

ribosome’s empty A-site once the ribosome reaches the poly(A) tail or the extreme 3’ end of 

the mRNA, bringing the exosome directly to the 3’ end for 3’-5’ degradation (Kaufman et al. 

1995; van Hoof et al. 2002).  
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No-go decay 

 The final type of RNA surveillance occurs on transcripts with stalled ribosomes, 

called No-Go Decay. Studies in yeast indicate that this decay occurs via an endonucleolytic 

cleavage, requires translation, and requires the proteins Dom34 and Hbs1 (Tagami et al. 

2004; Doma and Parker 2006). Dom34 has structural similarities to eRF1 (Mosammaparast 

and Ewart 2002; Carr-Schmid et al. 2002), while Hbs1 is similar to eRF3 (Marzluff et al. 

2002; Carr-Schmid et al. 2002). Together, the two proteins promote the dissociation of 

ribosomal subunits (Harris et al. 1991; Shoemaker et al. 2010). A structural analysis of the 

Dom34:Hbs1:80S subunit complex confirms that the two proteins are responsible for this 

dissociation and provides a model in which the binding of the Dom34:Hbs1 heterodimer to 

the ribosome is favored over binding to elongation factors during stalled translation (Z F 

Wang et al. 1996; Becker et al. 2011). Dom34 and Hbs1 are conserved in mammalian cells, 

and the similarity of Hbs1 to Ski7 allows the heterodimer to function in mammalian non-stop 

decay as well (Z F Wang et al. 1996; Saito et al. 2013; Sullivan et al. 2009; Sànchez and 

Marzluff 2002; Mullen and Marzluff 2008).  

Histone mRNA degradation 

 Just like the expression of histone mRNA is greatly up-regulated at the beginning of 

S-phase, it must be rapidly degraded at the end of S-phase. Degradation is also controlled by 

the stem-loop. When the last thirty nucleotides of the 3’ UTR of a mouse histone gene were 

fused to human globin and put into mouse cells, those chimeric genes were quickly degraded 

when DNA synthesis was stopped (Whitfield et al. 2000; Pandey and Marzluff 1987). This 

degradation is also tied to translation – when histone mRNA translation is disrupted or when 

the 3’UTR is lengthened to place the stemloop well beyond the stop codon, degradation does 
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not proceed (Whitfield 2004; Graves et al. 1987). Further work indicated that the reason that 

degradation did not proceed properly with these long 3’ UTRs is that translation termination 

is what’s required to properly degrade message (Lianxing Zheng et al. 2003; Kaygun and 

Marzluff 2005b). Histone mRNA degradation also requires the NMD protein Upf1 (DeLisle 

et al. 1983; Kaygun and Marzluff 2005a), although its role in degradation isn’t entirely clear.  

Most mRNA degradation begins with deadenylation, however histone mRNA has no 

poly(A) tail to be removed and so degradation must be initiated through a different method. 

In 2008 it was shown that histone mRNA can be bidirectionally degraded, just like poly(A) 

mRNA and similarly that decapping, the Lsm1-7 complex, and the exosome are all involved. 

At the same time, oligo(U) tails were discovered at the 3’ end of histone mRNA, both at the 

cleavage point and further into the stem-loop (Ma et al. 2000; Mullen and Marzluff 2008; 

Zhao et al. 2000). Further work showed that the Lsm4 – part of the Lsm1-7 ring – binds 

directly to SLBP and the Lsm1-7/SLBP complex is capable of binding the 3’ ends of histone 

mRNAs that have been oligouridylated (Mitra et al. 2003; Lyons et al. 2013; Fletcher et al. 

1987; Lei Zheng et al. 2003; Gallinari et al. 1989).  

This oligouridylation is carried out by non-canonical poly(A) polymerases also 

known as terminal uridylyl transferases, or TUTases. These proteins were initially identified 

in yeast (DeLisle et al. 1983; Kwak and Wickens 2007) (Mowry and Steitz 1987; Rissland et 

al. 2007) and have been shown to have a wide variety of functions in the life cycles of 

snRNAs, miRNAs, snoRNAs, and traditional mRNAs (Pillai et al. 2001; Trippe 2006; Pillai 

et al. 2003; Heo et al. 2009; Berndt et al. 2012; Heo et al. 2012; Lim et al. 2014). Several 

different TUTases have been implicated in histone mRNA degradation (Grimm et al. 1993; 

Mullen and Marzluff 2008; Schmidt, West, and Norbury 2010a), and one of the goals of this 
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study was to better understand exactly how the TUTases are responsible for uridylating the 3’ 

end of histone message. 

In order to better understand the nature of the oligouridylation of the 3’end of histone 

mRNA, our lab combined a high-throughput, next-generation sequencing method used to 

study miRNA (X c Yang et al. 2011; Newman et al. 2011; X c Yang et al. 2012) with a soft-

clipping bioinformatics analysis of untemplated 3’additions in order to gain more insight into 

these additions (Kolev 2005; Slevin et al. 2014; Dominski et al. 2005; Eric J Wagner et al. 

2007) (Liu et al. 2006; Welch et al. 2015). Our first experiments with this method expanded 

our knowledge of 3’ end additions to histone mRNA greatly – they show that most histone 

mRNA is uridylated in some form, though a great majority of those uridylations are one-

nucleotide additions at the 3’ end that appear to allow histone mRNA to maintain a consistent 

length. They also showed that histone mRNA is uridylated both while capped and still 

associated with the polysome (Salzler et al. 2013; Slevin et al. 2014).  

While much of the focus during histone mRNA degradation is placed on SLBP, a 

recent crystal structure of the histone mRNA/SLBP RNA-protein complex shows that a third 

protein, the human 3’-exonuclease (hEXO), is necessary for a stable structure. hEXO appears 

to function both in the processing of histone message, as well as in degradation. hEXO is 

specifically responsible for the trimming of two bases off of the 3’ end of histone mRNA 

post-cleavage (X c Yang et al. 2012; Dominski et al. 2003), while a knockout of the protein 

in mice prevents histone mRNA from degrading entirely. Low-throughput sequencing of the 

knockout mice’s histone mRNA shows the accumulation of longer oligo(U) tails (Erkmann et 

al. 2005; Hoefig et al. 2012).  
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The goal of this study was to use our high-throughput sequencing and analysis 

methods (End-Seq and AppEnD) to better understand both the different types of uridylation 

at the 3’ end of histone mRNA, the TUTases responsible for those uridylations, and the role 

of 3’ hEXO in histone mRNA trimming and degradation.  

TUTASES AND URIDYLATION 

The history of uridylation, both in general and in mammalian cells, is long and wide-ranging. 

This subject has been well reviewed (Sullivan et al. 2009; Rissland and Norbury 2008), and I 

will provide a summary here. The earliest detection of uridine incorportation was actually in 

the late 1950s and early 1960s, when both rat livers (Gallie et al. 1996; CANELLAKIS 1957) 

and ascites carcinoma cells (Sànchez and Marzluff 2002; L Wang et al. 2002) were found to 

incorporate radioactive UMP and UTP, respectively. The best early example of a TUTase, 

though, came from the tobacco plant. In 1975, Brishammer and Juntti found and 

characterized what they called a poly(U) polyermase in tobacco leaves (Cakmakci et al. 

2008; Brishammar and Juntti 1975).  

 In 2002 a C. elegans protein named GLD-2 was found to be the long sought-after 

cytoplasmic poly(A) polymerase (Darnell 1982; L Wang et al. 2002). This protein was found 

to be structurally similar to the DNA polymerase β-like superfamily of enzymes, which differ 

from the canonical polymerases in that they appear to be simpler, less processive enzymes 

(Geisberg et al. 2014; Holm and Sander 1995; Aravind and Koonin 1999). Cid1, a yeast 

protein shown to be active at the S-M checkpoint (Garneau et al. 2007; Rissland and Norbury 

2008; S W Wang et al. 2000), was also shown to be a cytoplasmic poly(A) polymerase that 

prefers RNA substrates (Wahle and Winkler 2013; CANELLAKIS 1957; Read et al. 2002). 

Further S. cerevisiae work showed that two topoisomerase related factors, TRF4 and TRF5, 
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previously identified as part of the pol β-like superfamily and as important proteins for sister 

chromatid cohesion (Tucker et al. 2001; BURDON and SMELLIE 1961; Z Wang et al. 

2000), also had the ability to poly adenylate RNA messages, though they were generally 

found to function in the nucleus and not the cytoplasm . They were also found to adenylate 

yeast histone mRNAs (Dupressoir et al. 2001; Holm and Sander 1995; Reis and Campbell 

2006; Aravind and Koonin 1999)(as previously discussed, yeast histone mRNAs do not have 

stem-loops and the relevance of this finding to our own work on mammalian histone mRNA 

is unclear, though it will be discussed later in this thesis).  

 Using all of this information about non-canonical poly(A) polymerases across 

species, a study by Kwak and Wickens in 2007 was able to identify several of these proteins 

and establish some basic characteristics of this type of enzyme (Temme et al. 2004; Kwak 

and Wickens 2007; Temme et al. 2010; Albert et al. 2000; Lau et al. 2009; Morita et al. 2007; 

Schwede et al. 2008). They made several observations: these tails added by these enzymes 

are added to the 3’ end, are non-templated, do not stimulate translation, and are often (but not 

exclusively) poly(U) tails. This study was unable to determine what caused the enzyme’s 

specificity for uridine, but a recent crystral structure of Cid1 showed that a single histidine 

residue near the active site is responsible for the uridine specificity and that without that 

histidine, the enzyme will add adenine preferentially over uridine (Hui Wang et al. 2010; 

Yates et al. 2012).  

Using the structural basis for these enzymes provided by these previous studies, our 

lab bioinformatically identified seven human proteins with similar domain structures as 

putative human TUTases (Jonstrup et al. 2007; Mullen and Marzluff 2008). We named them 

TUT1-TUT7, though most of the enzymes have different names that are often used 
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interchangeably. The seven human TUTases are depicted in Figure 2. In the last decade, 

much research has been done on all seven of these proteins, providing us with a much deeper 

picture of how these non-canonical poly(A) polymerases function across the cell. In the next 

section of this thesis, I will discuss recent research on each of these enzymes.  

TUT1 (mtPAP/hmtPAP, PAPD1) 

 TUT1 was first identified as the human mitochondrial poly(A) polymerase, or 

mtPAP/hmtPAP. When the enzyme was knocked down by RNAi, several mitochondrial 

RNA messages were shown to migrate more quickly on gels, indicating the removal of a 50 

nt or longer poly(A) tail (Boeck et al. 1996; Tomecki et al. 2004). Further knockdown studies 

of the enzyme show that depleting it results in both the loss of mitochondrial mRNA stability 

and general defects across the mitochondria, ranging from morphological changes to a 

change in oxygen consumption by the mitochondria (Uchida et al. 2004; Nagaike 2005). 

 Crystalization of mtPAP revealed several important details about the way that the 

enzyme functions. In addition to domains found in a canonical poly(A) polymerase, there is 

also a non-canonical RNA binding domain (RBD, or RNA-recognition motif, RRM) in the 

N-terminus, though it is still unclear whether this motif is capable of binding RNA. The 

active site is formed by a pocket between the finger and palm domains, where several of the 

amino acids π-stack with the adenine in ATP. Despite this interaction, the enyme appears to 

be capable of adding any of the four nucleotides to mitochondrial substrates in vitro, though 

it adds ATP and UTP much more efficiently than CTP or GTP.  Finally, the structural study 

revealed that mtPAP dimerizes. When a sextuple mutant was made to prevent dimerization, 

but to allow a normal monomer to form without changes to the active site, the enzyme’s PAP 

activity was abolished (Bai et al. 2011).  
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TUT2 (PAPD4, hGLD2) 

 The human homologue of the C. elegans GLD-2 is known as TUT2, PAPD4, or 

hGLD-2 (Boeck et al. 1996; Kwak et al. 2004; Uchida et al. 2004). Its primary function is in 

the regulation of miRNAs. It’s best-studied function is in the regulation of miR-122. In Gld2 

knockout mice, the steady state of miR-22 is lower, despite the levels of pre-miR-122 

remaining unchanged (Tucker et al. 2001; Katoh et al. 2009). A second study at the same 

time reproduced a similar finding in human fibroblast cells and further connects the enzyme 

to p53 regulation, as miR-122 negatively regulates p53 expression through binding with the 

cytoplasmic polyadenylation element binding protein (CPEB) (Tharun et al. 2000; Burns et 

al. 2011; Tharun and Parker 2001). Both studies showed that miR-122 has a 

monoadenylation that disappears when GLD-2 is not present. A more recent study tied that 

monoadenylation to the stability of miR-122, and showed the mechanism by which the 

monoadenylation can protect specific miRNA targets (Beelman et al. 1996; D’Ambrogio et 

al. 2012; Dunckley and Parker 1999).  

TUT4 (ZCCHC11) and TUT7 (ZCCHC6) 

 The two zinc-finger non-canconical poly(A)polymerases (TUT4 and TUT7, or 

ZCCHZ11 and ZCCHC6) are also involved in microRNA regulation. TUT4, specifically, is 

involved in the regulation of let-7 via the intermediary protein Lin28, a well-known 

pluripotency factor. Lin28 mediates the interaction between TUT4 and let-7, which leads to 

uridylation of the pre-microRNA and eventually degradation (Steiger et al. 2003; Heo et al. 

2009). Further studies into this topic show that this is not the only type of uridylation 

involved in the life of Group II miRNAs such as let-7. In fact, the presence of lin28 appears 

to determine the context of the uridylation. Without lin28, the pre-miRNAs are still 
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uridylated, but they are monouridylated instead of a longer tail. This monouridylation can be 

carried out by TUT4, TUT7, or hGLD2. This monouridylation creates an overhang for Dicer 

to process the pre-miRNA into a mature miRNA (Hsu and Stevens 1993; Heo et al. 2012).  

 The two zinc-finger TUTases have also been implicated in the stability of bulk 

mRNAs. Next-gen sequencing of a number of mRNA targets shows that mRNA with short 

poly(A) tails accumulate oligo(U) tails that are diminished with depletion of TUT4 and 

TUT7 by siRNA. In vitro assays confirm that this uridylation happens preferentially on 

messages with short poly(A) tails, and that the poly(A) binding protein (PABP) inhibits this 

uridylation. The mRNAs affected by this uridylation show a longer half-life when the two 

TUTases are knocked down, connecting this uridylation with global mRNA decay (J S 

Anderson and Parker 1998; Lim et al. 2014).  

TUT3 (PAPD5, TRF4-2) and TUT5 (PAPD7, TRF4-1) 

 The earliest studies on the Trf proteins in S. cerevisiae implicated the protein as a 

DNA polymerase (Pol κ) involved in sister chromatid cohesion (Mitchell et al. 1997; Z Wang 

et al. 2000; Allmang et al. 1999). In 2004, it was shown to poly-adenylate tRNA messages in 

the nucleus to mark them for degradation via the nuclear exosome (He et al. 2003; Kadaba 

2004). Further work the Trf proteins as the transferase enzymes in the nuclear 

polyadenylation complex known as the TRAMP complex, which works in tandem with the 

exosome to prevent traditional polyadenylation and promote degradation (Houalla et al. 

2006; LaCava et al. 2005).  

 In humans two non-canonical poly(A) polymerases are analogues, of the yeast Trf4, 

TUT3 and TUT5. TUT3 is part of the human nuclear exosome complex, although it’s not 

part of the nuclear exosome targeting (NEXT) complex, so it’s unclear if its function in 
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nuclear surveillance is similar to its yeast homologue (Wu and Brewer 2012; Lubas et al. 

2011; Sloan et al. 2012). Earlier results do indicate that TUT3 is involved in polyadenylating 

prematurely terminated RNA pol I transcripts and marking them for degradation by the 

exosome (F Yang et al. 2004; Shcherbik et al. 2010; F Yang et al. 2006), so it seems likely to 

be involved in the degradation of some targets in the nucleus. 

 An in-depth study was done on TUT3 in 2011, revealing several aspects of its 

function. It works as a poly (A) polymerase in vitro and it works without a co-factor. This is 

because it’s able to bind its RNA target with a non-traditional RNA binding domain at its C-

terminus. Using a cross-linking technique that utilizes photo-activatable ribonucleosides to 

facilitate an RNA immunoprecipitation (PAR-CLIP), TUT3 was also shown to target 

ribosomal RNA (Kurosaki and Maquat 2013; Rammelt et al. 2011). 

 TUT3 has also been shown to have at least two other functions separate from marking 

transcripts for degradation in the nucleus -- it’s also involved in both snoRNA and 

microRNA maturation. The H/ACA class of snoRNAs are substrates for the poly(A) specific 

ribonuclease (PARN), which are adenylated to make them targets for the enzyme. This 

adenylation is provided by TUT3, which allows for the PARN trimming to create the 

snoRNA. There is also some evidence that this trimming is done by Rrp6, which is part of 

the nuclear exosome (Czaplinski et al. 1998; Berndt et al. 2012).  

 TUT3 has also been implicated in some of the same microRNA processing as other 

TUTases. The same study that identified TUT2 as a potential factor for adenylating miR-122 

also indicated that TUT3 may be involved to a lesser degree (Cosson et al. 2002; Burns et al. 

2011). It has also been shown to again couple with PARN in the regulation of miR-21, 

adenylating it to mark it for degradation by PARN (Boele et al. 2014). PARN, miR-21, and 
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miR-122 all function together in the regulation of tumor suppressor p53, which makes TUT3 

an interesting future target to study. 

 There is not nearly as much known at this point about the other Trf4 analogue in 

humans, TUT5 (also known as PAPD7). Recently, however, an active isoform was 

discovered that may lead to new discoveries regarding the enzyme’s function (Ogami et al. 

2013).  

U6 TUTASE 

 The longest-studied non-canonical poly(A) polymerase in humans is most likely the 

U6 TUTase. Its activity was first identified in 1987, when HeLa cell extracts where shown to 

uridylate the 3’ end of the U6 snRNA (Reddy et al. 1987). The responsible enzyme was 

identified as what is now known as the U6 TUTase (also known, confusingly, as TUT1) 

(Trippe et al. 1998). Some functional analysis of the enzyme was done to reveal a nucleolar 

localization and that it does not target U6atac RNA, even though it’s a functional homolog of 

the U6 snRNP. The protein is not well-studied as compared to the other, previously discussed 

noncanonical poly(A) polymerases, though, as its an essential cellular protein and 

knockdown by RNAi results in lethality in HeLa cells (Trippe 2006).  

 The U6 TUTase is also the controversial poly(A) polymerase “Star-PAP” (Speckle-

Targeted PIPKα-regulated Poly (A) Polymerase). Star-PAP was initially identified as a 

PIPKα-interacting protein that also interacted with the cleavage and polyadenylation 

stimulating factor-73 (CPSF-73) (Mellman et al. 2008). Further work indicated that Star-PAP 

stimulates the interaction between CPSF-73 and its pre-mRNA targets, thus making it 

essential for the cleavage that precedes polyadenylation (Laishram and Richard A Anderson 

2010) and that there is a novel phosphorylation event controlled by PIPKα that makes it 
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specific for its pre-mRNA targets (Mohan et al. 2015). As mentioned above, this work is 

considered to be controversial as all of the research on the U6 TUTase as Star-PAP has come 

from one lab.  

SUMMARY 

 Histone mRNA is a unique mRNA molecule; it has a 3’ stem-loop in place of a 

poly(A), no introns, and is very tightly cell cycle regulated. The lack of poly(A) tail and very 

short half-life at the end of S-phase creates an interesting question about the method  by 

which it is degraded; bulk mRNA degradation is initiated by deadenylation, and histone 

mRNA can’t be deadenylated. Our lab has worked over the years to learn more about this 

process, and our research has revealed a number or requirements for histone mRNA 

degradation. We know that histone mRNA degradation requires both the stemloop and 

SLBP, and that it requires proper translation termination.  

 More recent work showed that histone mRNA is degraded bidirectionally using the 

same degradation complexes as bulk mRNA; Xrn1 carries out the 5’ to 3’ degradation after 

decapping, the exosome degrades the message 3’ to 5’, and the Lsm 1-7 complex is involved 

in degradation. A low-throughput sequencing assay revealed he existence of 

oligouridylations on some histone messages, including partially degraded messages, 

indicating that oligouridylation may be the method by which the cell initiates the degradation 

of histone mRNA in the absence of deadenylation.  

 We also identified seven putative human TUTases and developed a high-throughput 

sequencing method and bioinformatics work-flow to look at the oligouridylation of histone 

mRNA with great detail. Our earliest high-throughput sequencing experiments showed that 

oligouridylaton is much more prevalent in histone mRNA than we initially anticipated; in 
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some genes, more than half of histone mRNA is oligouridylated and many of the 

oligouridylation marks look quite different from each other.  

 In Chapter 2 of this thesis, I focus on two main questions: Which enzyme or enzymes 

oligouridylate histone mRNA, and what function do these oligouridylations serve as related 

to both the degradation and general metabolism of histone mRNA? Using high-throughput 

sequencing and a bioinformatics analysis, I have been able to give these questions much 

better answers than we had in the past. In Chapter 3, I focus on the TUTases initially 

identified as uridylating histone mRNA for degradation. Using data I’ve gathered over my 

time in grad school, I was able to rule these enzymes out for that particular role, though other 

evidence still indicates that at least one of them may be involved in a different part of the 

histone mRNA lifecycle. Chapter 4 of this thesis summarizes the work done in Chapters 2 

and 3 and looks forward. While my thesis work has answered some questions and (hopefully) 

settled some controversies over the role of TUTases in histone mRNA degradation, it has 

raised many more questions about the role of oligouridylation in the histone mRNA lifecycle 

for future grad students to address. 
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Figure 1. Histone mRNA has a unique 3’ end and is tightly cell cycle regulated.   
A. The highly conserved histone 3’ stem-loop and its two omnipresent (at least, in the 

cytoplasm) trans-factors, SLBP and 3’ hEXO. B. Histone mRNA is tightly cell cycle 

regulated, with a combinationatorial change in transcription and processing resulting in an 

increase of histone message at the beginning of S-phase and a rapid reduction in half-life at 

the end. 
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Figure 2. The TUTases 
Seven non-canonical poly(A) polymerases have been identified as putative TUTases. Here 

they are depicted with approximate size and important domain structure. (Adapted from (Heo 

et al. 2012)).  
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Figure 3. Histone mRNAs are uridylated, likely in concert with the beginning of 
degradation 

Histone mRNA is degraded bidirectionally like bulk mRNA, but its unique 3’ end requires a 

number of unique steps before getting to that point. This is the best understanding of the life 

of histone mRNA prior to the work done in this thesis. 
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CHAPTER 2 

TUT7 IS RESPONSIBLE FOR BOTH SHORT URIDYLATIONS OF STEADY-

STATE HISTONE mRNA AS WELL AS THE LONGER URIDYLATIONS THAT 

INITIATE HISTONE mRNA DEGRADATION 

 

INTRODUCTION 

 After our lab’s initial discovery of the uridylation of histone mRNA (Mullen and 

Marzluff 2008), we set out to find a way to create a high-throughput sequencing method to 

detect these uridylations with much greater resolution than the circular PCR used in our early 

experiments. Mike Slevin, a post-doc in our lab, was able to adapt an existing method for 

deep-sequencing pre-miRNAs using a pre-adenylated linker (Newman et al. 2011). The 

advantage of this pre-adenylated linker is that it ligates to the 3’ end of RNA without needing 

ATP, preventing an accidental circularization of the message during the ligation process. It 

also provides an anchor for reverse transcription of the ligated RNA, from which we can then 

specifically target and amplify the histone genes for deep sequencing. This is possible 

because of the high conservation in the open reading frames of histone genes; one primer is 

able to target most of the (for example) H2A genes (Marzluff et al. 2002) (see Figure 4 for a 

graphic representation of this sequencing method).  

These first experiments to deep sequence histone mRNA (Slevin et al. 2014; Welch et 

al. 2015) left us with many questions about the nature of the oligouridylation and its role in 
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histone mRNA metabolism and degradation. The presence of a large number of messages 

that retained the length of a mature histone mRNA with one or two uridine residues at the 3’ 

end was entirely unexpected. These studies also identified oligouridylations in the open 

reading frame for the first time. Combined with the longer uridylations in and around the 

stem-loop that we had prior knowledge of (Mullen and Marzluff 2008), this created several 

different types of uridylation and no real answer as to their functions, beyond the observation 

that the longer tails in the stem-loop tend to accumulate after HU treatment during 

degradation.  

 The question of which enzyme or enzymes are responsible for the uridylation was 

both unanswered and further complicated by these studies. Several candidate enzymes had 

been identified both by our lab and by others (Mullen and Marzluff 2008; Schmidt, West, 

and Norbury 2010b), but our deep sequencing experiments brought us to the realization that 

the previous looks at these enzymes via northern blots and RT-PCR was an insufficient 

picture of how these knockdowns affect degradation. As such, we decided to step back and 

take a wider view of the issue.  

 For the TUTases, we focused on TUT3, TUT4, and TUT7. As mentioned in the 

introduction, TUT3 is a human Trf4 analogue and has been implicated in the degradation of 

prematurely terminated RNA polymerase I transcripts via polyadenylation (Shcherbik et al. 

2010) and the adenylation of snoRNAs for processing by PARN (Berndt et al. 2012). Both of 

these are nucleolar functions, where TUT3 is known to be part of the nuclear exosome 

targeting, or NEXT, complex (Lubas et al. 2011; Sloan et al. 2012), although it’s currently 

unclear if its activity is limited to the nucleolus or even the nucleus. TUT3 will be further 

discussed in Chapter 3. TUT4 and TUT7 are zinc-finger TUTases that have implicated in 
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various parts of microRNA biogenesis (Heo et al. 2009; 2012; Kim et al. 2015) as well as 

uridylating bulk mRNAs for degradation (Lim et al. 2014).  

 We also wanted to focus our efforts on the human-3’-exonuclease, or 3’hEXO. 

Recently, Matthias Heissmeyer’s group knocked 3’hEXO out in mice and saw wide-ranging 

effects on histone mRNA degradation that we had previously been unable to detect via 

knockdowns and Northern blots; both the trimming back of the processed histone message 

from ACCCA to ACC and the rapid degradation of histone mRNA was completely abolished 

in these knockouts, and as a result the oligo(U) tails changed positions in these samples 

significantly (Hoefig et al. 2012). These results were accomplished with low-throughput 

sequencing, however, and so they encouraged us to try our higher-throughput methods to 

learn more about how 3’hEXO affects both uridylation and degradation. 

 

MATERIALS AND METHODS 

Cell culture and RNA interference 

RNA interference experiments were done in HeLa cells using Invitrogen’s Lipofectamine 

RNAiMAX for reverse transfections. In a six-well dish, 5 µL of the Lipofectamine reagent 

and 100 pmol of siRNA were mixed in 500 µL of serum-free OPTI-MEM media for 20 

minutes. After 20 minutes, 200,000-250,000 cells were plated directly onto the transfection 

mix, a concentration that resulted in them being approximately 70% confluent the next day. 

The day after transfection, the cells were trypsinized and re-plated on 10 cm2 plates so that 

they would be below 50% confluency for the ensuing HU treatment. A single plate was used 

for each time point.  48 hours after transfection, the cells were treated with 7.5 mM HU and 

RNA was harvested from the cells via TRIzol extraction (Ambion).  A parallel plate was 
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harvested to make lysates for protein analysis by Western blotting. The siRNAs used are 

collected in Table 1. 

Western blotting 

  Protein lysates were resolved by electrophoresis on 8% SDS-polyacrylamide gels and 

transferred to 0.45 µm nitrocellulose membrane (BioRad).  Westerns were carried out with a 

3’ hEXO antibody previously described (Dominski et al., 2003), Bethyl Labs’ antibody to 

TUT4 (product number A302-636), and Proteintech’s antibody to TUT7 (product number 

25196-1-AP).  

Northern blotting 

 1 µg of total RNA harvested from HeLa cells per sample was loaded onto a 6% 

acrylamide/8 M urea gel. The gel was transferred to a positively charged Nylon membrane 

(GE Healthcare) and probed in either QuikHyb (Stratagene) or RapidHyb (GE Healthcare) 

buffer. Probes were generated by random primed, α32P-dCTP labeling (PrimeIt II Kit, 

Stratagene) of PCR products generated to the ORF of cloned histone genes.  

Preparation of samples for high-throughput sequencing 

Forty-eight hours after siRNA transfection, the cells were treated with 7.5 mM 

hydroxyurea to stop DNA synthesis. RNA was harvested before HU addition and 15, 30, and 

45 minutes. The amount of degradation was analyzed by Northern blotting as described 

above, mixing probes for histone H2a mRNA and 7SK RNA as an internal control (Mullen 

and Marzluff, 2008) to determine the amount of degradation.  Two timepoints from each 

experiment were chosen for high-throughput sequencing: before HU treatment and usually 

the 30 minute timepoint, when about half of the histone mRNA had been degraded. The 
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remaining total RNA was treated with RQ1 DNase (Promega) and precipitated.  Libraries 

specific for histone H2a and H2b mRNAs were prepared from this DNase treated RNA as 

previously described (Slevin et al., 2014;Welch et al., 2015); I will briefly summarize the 

method here. First, ~1 µg of preadenylated linker was ligated to 1.25 µg of the DNase treated 

total RNA in a 10-20 µL reaction using T4RNL2 K227Q (New England BioLabs) at 14°C 

overnight. RNA was phenol-chloroform extracted from this ligation and ethanol precipitated. 

The resulting pellet was used directly for first-strand synthesis using SuperScript III 

(Invitrogen). Approximately one-fifth of the 25 µL first-strand synthesis reaction was used 

for the first round of PCR. This consisted of 15 cycles of PCR carried out with hot-start Q5 

high fidelity DNA polymerase (New England BioLabs) with primers specifically targeting 

both H2A and H2B genes. The first round of PCR was purified using magnetic HighPrep 

PCR beads (MagBio) and roughly quantified using the Nanodrop. Approximately 75 ng of 

the first round of PCR was used for a second round PCR reaction, again with 15 cycles and 

this time using primers with Illumina’s adapter sequences specific for the first round primers.  

These libraries were quantified using a Qubit and a quality-control check was done with an 

Agilent 2100 BioAnalyzer. The Qubit reading and BioAnalyzer traces were used to calculate 

the concentration of the PCR libraries, which were then analyzed on a MiSeq using 125 nt 

paired end sequencing.  All of the primers and linkers used in this protocol are collected in 

Table 2.  

Mapping EnD-seq Data 

Bioinformatic analysis on the samples was carried out by Joshua Welch. He mapped 

EnD-seq data to the hg19 to determine, for each sequencing read, the precise 3’ terminus of 

transcription and the presence, length, and sequence composition of any untemplated 3’ 
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additions. The data were analyzed using AppEnD as previously described (Welch et al., 

2015). Briefly, AppEnD aligns reads to the genome using bowtie2 in --local mode, then 

identifies soft-clipped portions of the reads, corresponding to bases that do not match the 

genome. Untemplated 3’ additions (if any) and the precise 3’ terminus of transcription are 

then located using dynamic programming alignment of 3’ linker sequence and the soft-

clipped portion of the read. 

RESULTS 

The life cycle of histone mRNA is outlined in Fig. 3.  The only processing step in 

histone mRNA biosynthesis is co-transcriptional cleavage of the nascent transcript to form 

the 3’ end of histone mRNA, which occurs 5 nts after the stemloop in mammalian cells 

(Scharl and Steitz 1994).  The mRNA is trimmed by 3’hExo, likely right after processing, 

removing 2 or 3 nts from the histone mRNA, which is the histone mRNA found in the 

cytoplasm.  When DNA replication is inhibited, histone mRNA is rapidly degraded.  The 

initial step in degradation is addition of an oligo(U) tail, which binds Lsm1-7, and then 

3’hExo degrades the histone mRNA 3-4 nts into the stem.  This degradation intermediate 

accumulates and is uridylated, resulting in rapid subsequent degradation of the histone 

mRNA by the exosome.  When degradation stalls, the resulting intermediate may be 

uridylated to allow further 3’ to 5’ degradation. 

We examined two points in the histone mRNA lifecycle: 1) The exonucleolytic 

trimming and uridylation of histone mRNA in the cytoplasm, and 2) uridylation of 

degradation intermediates during 3’ to 5’ degradation of the histone mRNA. We used our 

high-throughput sequencing strategy (EnD-Seq) and a bioinformatics analysis pathway 

(AppEnD) to identify untemplated 3’additions to histone mRNAs (Slevin et al., 2014;Welch 
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et al., 2015) (Figure 4) to analyze changes in the 3’ ends of histone mRNAs, and in mRNA 

degradation intermediates that resulted from knockdown of different TUTases and 3’hExo. 

Examples of the most commonly detected uridylation products are shown in Figure 5. In all 

of our sequencing experiments, the HIST2H2AA3 gene was the most common read (it is also 

the most highly expressed histone gene (Graves et al. 1985), so this was not an unexpected 

result), and so most of the experiments shown here refer to this gene unless otherwise noted.  

Most histone mRNA is uridylated in some form 

When we synchronize HeLa cells to S-phase and make EnD-Seq libraries, we find 

that the majority of HIST2H2AA3 3’ ends extend 3 nts beyond the stem, ending in ACC, 

ACU or (rarely) AUU (Figure 6).  The ACU and AUU result from non-templated additions 

of uridines after shortening of the histone mRNA. The sequencing results are displayed in 

stacked bar plots, showing the positions of the untailed RNAs (see Figure 5 for a diagram of 

the numbered histone mRNA stem-loop), RNAs with a single non-templated U, two non-

templated U’s or more than 2 non-templated U’s.  

3’hEXO trims to maintain the length of histone mRNA   

 We first examined the mono-and-di uridylations at the 3’ end of histone mRNA that 

create these ACU and AUU endings under most normal circumstances in HeLa cells. These 

were the most unexpected results in our lab’s prior studies on histone mRNA, and they raised 

the possibility that histone mRNA uridylation has a wider utility than just initiating 

degradation. Because these uridylations exist solely at the 3’ end of the message and because 

they appear in messages that are functionally the same length as “normal” histone mRNA, 

we started by knocking down 3’hEXO with siRNA (Figure 7A), then sequenced and mapped 

the 3’ end of histone mRNAs using EnD-Seq and AppEnD. Note that while this level of 
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knockdown does not significantly affect the overall rate of histone mRNA degradation 

(Mullen and Marzluff, 2008), a knockout of 3’ hExo stabilizes histone mRNA, and results in 

cytoplasmic histone mRNAs that ends 5 nucleotides (nts) after the stemloop (Hoefig et al., 

2013).  However, the knockdown of 3’hExo does perturb the overall distribution of 3’ ends 

of histone mRNAs (Fig. 7B).  

The knockdown resulted in several changes in the 3’ ends of histone mRNA 

compared with control siRNA, consistent with less 3’ trimming due to the decreased levels of 

3’ hEXO. There is small amount of histone mRNA that is untrimmed (ending in ACCCA), 

and a large increase in the histone message that is trimmed back by 1 nt to ACCC, and by 2 

nt to ACC (Fig. 7B).  There are also fewer mRNAs that were trimmed back further and 

uridylated to restore the original length of 3 nts.  We quantified the changes in histone 

mRNA 3’ ends in the pie charts in Fig. 8.  In control cells only about 15% of the 

HIST2H2AA3 message ends in ACC, compared to 35% of mRNA in the 3’hExo knockdown 

cells.  We also examined HIST1H2AG, an H2A with a shorter 3’ UTR than HIST2H2AA3. 

We saw a similar change in this gene (Fig. 7C, 8B) with an increase in message ending in 

ACC, from ~33% to 45%.  

The 3’ hExo knockdown also affected the number and position of the one and two 

nucleotide U-tails added to the 3’ end of histone mRNA. In control cells the majority of the 

3’ ends have a short U-tail replacement of the cytosine residues, ending in ACU or, less 

commonly, AUU.  The unmodified ACC is present in lower amounts than the ACU. In the 

HIST2H2AA3 gene from control cells, 86% of the mRNAs end 3 nts after the stem loop, 6% 

extend beyond that point, and 7% are trimmed shorter but not uridylated. A similar 

distribution is seen in the HIST1H2AG gene, with ACC being more prevalent than in the 
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HIST2H2H2AA3 mRNA, but with ACU still the major 3’ end.  In the 3’hExo knockdown, 

there was a 4-5 fold increase in the number of mRNAs that ended more than 3 nts after the 

stemloop in both HIST2H2AA3, (28% compared with 6%) and in HIST1H2AG, (41% 

compared to 10%) (Fig. 7B-C, 8A-B). This increase resulted in fewer “mature” histone 

mRNAs that end three nucleotides after the stem (78.5%, down from 87.8%) and fewer 

“short” messages ending two or fewer nucleotides after the stem (2.4%, down from 6.4%), as 

seen in Table 1. Again, most (72%) of the HIST2H2AA3 molecules have been uridylated, 

with the uridylation often resulting in a 4 nt extension beyond the stemloop comprised of 

both templated and untemplated nts. 

Because there are multiple non-allelic mRNAs for each core histone (Marzluff et al., 

2002), we further analyzed HIST1H2AJ (Figure 8C, 8E) and HIST1H2AC (Figure 8D, 8E). 

Each gene had a reproducible and characteristic pattern of uridylation that varied slightly 

from each other mRNA, but the direction of the changes remained consistent; the hEXO 

knockdown always results in more long histone messages, both uridylated and un-uridylated, 

and a decrease in the shorter, partially degraded messages. In all, we saw these effects 

replicated in 17 histone genes (data not shown).  

These results suggest that the one and two nucleotide tails that make up a large 

number of the reads at the 3’ end in our control experiment and under normal conditions 

result from a balance of uridylation and exonucleolytic trimming and not from addition of 

specific number of nts by a TUTase.   

TUT7 contributes to the addition of the U-tails to the 3’ end of histone mRNAs 

The other obvious question is the source of the oligo(U) tails at the 3’ end of histone 

mRNA. To answer this question, we knocked down TUT7 >80% by siRNA (Figure 9A). 



	   39	  

This knockdown had a similar efficiency to that of the 3’hExo knockdown, although it is 

once again worth noting that it was not a complete knockdown and there was still residual 

enzyme present in the cells. The knockdown had two major effects.  There was nearly a 4-

fold increase in the proportion of H2AA3 mRNAs in the TUT7 knockdowns that were 

shorter than the ACC/ACU/AUU 3’ ends (from 5% in the control to 19% in the knockdown) 

(Fig. 9B), suggesting that 3’hEXO shortened the 3’ end but the cell has a reduced ability to 

uridylate the 3’ end and properly restore the length of histone mRNA. In the control siRNA 

cells, about 75% of the HIST2H2AA3 mRNAs had non-templated uridines at the 3’ end. 

When TUT7 was depleted, that number dropped to 61%. There was a similar effect in H2AG 

mRNAs (Figure 9C), and in all the histone H2a and H2b mRNAs we analyzed.  Thus, 

knockdown of TUT7 resulted in effects that are opposite of the effect of knocking down 

3’hEXO.  

As with the hEXO knockdowns, we quantified the HIST2H2AA3 and HIST1H2AG 

knockdowns in pie charts and a table in Figure 10 (HIST2H2AA3 in 10A, HIST1H2AG in 

10B, the table in 10E) and compared them with the effects of the TUT7 knockdown on 

HIST1H2AJ and HIST1H2AC. Similar to the hEXO knockdown, we saw slightly different 

patterns of uridylation in each histone gene, but the same trend in each: the absence of TUT7 

results in more diuridylations (AUU) and more short messages trimmed further in than the 

three nucleotides beyond stem. Taken together with the evidence shown for hEXO in Figures 

8 and 9, this indicates a slower uridylation response by the cell when TUT7 is delpeted.  

Because this result was unexpected, we repeated the TUT7 knockdown experiment to 

replicate our data. As Figure 11 shows, even though the sequence results are slightly different 

than expected for the TUT7 replicate (there are more reads that end in ACCC vs. ACC in 
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both the control and the knockdown, which could be explained by a number of small 

environmental or incremental changes to the HeLa cells themselves), the uridylation pattern 

shifts in the exact same fashion for both HIST2H2AA3 and HIST1H2AG in the replicates as 

they did in the original experiment; there are more reads that end in AUU, and there are more 

reads slightly trimmed back but not uridylated back to the three nucleotide-beyond-the-stem 

point. We repeated the pie-chart analysis for this experiment in Figure 12, and came to the 

same conclusion; that our repeat experiment gave us very similar results to the first 

experiment.  

There is one interesting observation to be made in the repeat experiment that is not 

obvious in the original round of sequencing on TUT7 knockdowns; in each of the four genes 

observed in Figure 12, there is a higher proportion of reads ending in ACC in the TUT7 

knockdown reads than there is in the control. Although it’s not immediately apparent from 

the sequences themselves, this may indicate that hEXO trimming is actually dependent on an 

initial uridylation by TUT7. This is likely a very transient uridylation, given hEXO’s 

ubiquitous presence at the 3’ end of histone mRNA, so this hypothesis may be difficult to 

validate.  

Knockdown of TUT4 had minimal effects on uridylation of histone mRNAs  

TUT4 is a very similar protein to TUT7, both structurally and functionally. It has 

been previously suggested that TUT4 and TUT7 can compensate for each other in uridylation 

of miRNAs and pre-miRNAs (Thornton et al. 2012).  When we knocked down TUT4 (Fig. 

13A), there was little effect on the 3’ end of H2AA3 mRNAs when compared to the siRNA 

control. Neither the length of the mRNAs nor the pattern of uridylation was changed in 

HIST2H2AA3 or HIST1H2AG (Fig. 13B, 13C). As with the previous experiments, we 
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quantified these results in Figure 14 and added HIST1H2AJ and HIST1H2AC for 

comparison’s sake. No significant effect was found in any of the genes analyzed. 

However, when we knocked down both TUT4 and TUT7 (Fig. 15A) we saw a 

slightly larger effect on histone mRNA  than knocking down TUT7 alone (Fig. 9).  There 

was an increase in the number of shorter histone mRNAs, and a decrease in the number 

ending in ACU.  When we knocked down TUT7 alone, we saw an increase in the reads 

ending in AUU such that the percentage of reads ending in ACU and AUU almost matched 

in the TUT7 knockdowns compared to the control. For example, for HIST2H2AA3 in our 

first TUT7 knockdown experiment (Figure 10) resulted in 57.6% of HIST2H2AA3 reads 

ending in ACU/AUU vs. 63.5% in the control. The second TUT7 experiment (Figure 12) saw 

those two numbers even closer together; 67.9% vs 72% in the control. The observation 

carried to HIST1H2AG, as well, with 40.6% of experimental reads ending in ACU/AUU vs. 

48.4% in the control in our first experiment (Figure 10) and a 33.%/45.1% split in the second 

(Figure 12). In the double knockdown, however, a much lower percentage of reads are 

uridylated to restore the length of this 3’ end. In HIST2H2AA3 (Figure 12C), 49.1% of the 

double knockdown reads end in ACU/AUU vs. 66.6% in the control. In HIST1H2AG (Figure 

12D) the split is 33.9%/50.1%.  

Since the TUT4 knockdown doesn’t have this effect on its own (Figures 13-14), this 

seems to indicate that TUT4 may be capable of compensating for TUT7 when TUT7 is 

depleted. 
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Double sihEXO/siTUT7 knockdown provides more evidence that the enzymes work in 

concert at the 3’ end of histone mRNA 

 We also knocked down TUT7 and 3’hEXO simultaneously by pooling the two 

siRNAs (Fig. 16A). The results were consistent with the conclusions drawn from the 

individual knockdowns. The 3’ hEXO knockdown resulted in an increase in long reads in 

both HIST2H2AA3 (Fig. 16B, D) and HIST1H2AG (Fig. 16C, E), but most of those reads 

are untailed due to the absence of TUT7 (compare back to the long tails remaining in Figure 

7, which included a significant number of reads in the two and three positions with longer 

oligouridylations). 

Initiating histone mRNA degradation does not alter the oligouridylation pattern at the 

3’ end of histone mRNA  

 Armed with a better understanding of how histone mRNA is uridylated and how 

those oligouridylations are maintained, we moved our focus towards degradation. 

Specifically, we were first curious if these one-and-two-U oligouridylations at the 3’ end of 

histone mRNA functioned to prime the message for degradation or to “restore” the 3’ end of 

the message to a particular length to protect it from 3’hEXO until degradation begins.  

We treated cells with HU to inhibit DNA replication and initiate histone mRNA 

degradation.  The knockdowns of TUT4 and 3’hExo had minimal effects on the overall 

kinetics of histone mRNA degradation when DNA replication was inhibited (Fig. 16A), and 

the TUT7 knockdown showed a slight reduction in the rate of degradation at about 30 

minutes after the HU treatment (Fig. 17A). Previously, we had analyzed knockdown of 

3’hExo, TUT4 and TUT7, and found no significant effect on the overall rate of histone 

mRNA degradation (Dominski et al. 2003; Mullen and Marzluff 2008), although a 
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subsequent knockout of 3’ hExo in mice demonstrated that it is essential for histone mRNA 

degradation(Hoefig et al. 2012). We reasoned that although the small amount of residual 

enzyme was sufficient to promote degradation, that RNAi would alter the pattern of 

degradation intermediates if we reduced the concentration of the enzyme.  To determine the 

effect of knockdown of 3’hExo, TUT4 or TUT7 on the pathway of histone mRNA 

degradation, we analyzed the spectrum of degradation intermediates found during histone 

mRNA degradation by high-throughput sequencing when about 50% of the histone mRNA 

had been degraded as analyzed by Northern blotting.   

After HU treatment there was no change in the distribution of 3’ ends (nts 1-4 after 

the loop) compared to the same cells analyzed before HU treatment (Fig. 17B.-F, with the 

data quantified in Fig. 18,  compared to Figs. 7, 9, 11, 13, and 15).  This was true for the 

control cells, as well as the TUT7, 3’hExo and TUT knockdown cells. That is to say that the 

distribution of ends ending in ACC, ACU, AUU, longer ends, or shorter ends, was the same 

in the TUT7 knockdown cells (or 3’hEXO knockdowns, or TUT4 knockdowns, or double 

knockdowns, etc.) both before and after HU treatment. This result suggests that there is not a 

preference for initiating degradation among the histone mRNAs ending in AUU, ACU or 

ACC.  Thus the monouridyation and oligouridylations that maintain the histone mRNA at the 

same length as the “normal,” trimmed ACC message are not degradation intermediates, but 

rather mature histone mRNAs with slightly different 3’ ends, which are formed by the 

activity 3’hEXO and TUT7.  
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Knockdown of TUT7 but not TUT4 affects the initial step in degradation of histone 

mRNA   

The initial intermediate in histone mRNA that accumulates is a result of degradation 

into the 3’ side of the stem by 3’hEXO (Hoefig et al. 2012)(Fig. 19A).  In Fig. 19B-E, we 

show the degradation intermediates present at nts 5-20 in each of the siRNA knockdowns, 

removing the remaining mature histone mRNAs from the analysis. In control cells, the bulk 

of the intermediates are found at positions 7-9 from the 3’ end, partway into the stem (Slevin 

et al. 2014), with the most abundant intermediate at position 7, the A 3 nts into the stem.  

These intermediates are extensively uridylated (Fig. 19A) and have a large fraction of longer 

tails (4-6 nts), with tails extending to >10 nts (Fig. 19F).  In control cells, very few 

intermediates were detected further into the stem loop, suggesting that once degradation of 

this intermediate is initiated, degradation proceeds rapidly through the rest of the stemloop.  

These uridylated intermediates are subsequently degraded by the exosome (Slevin et al. 

2014).   

Knockdown of both TUT7 and 3’hExo individually altered the distribution and 

uridylation of these intermediates. When TUT7 was knocked down, there were many fewer 

uridylated RNAs, and the average length of the tails was shorter (Fig. 19B, 19F).  There was 

also a change in distribution of the intermediates, with a substantial increase in intermediates 

that had been degraded further into the stem-loop, most of which were not uridylated.  

Surprisingly, knockdown of 3’hExo also affected uridylation of the intermediates (Fig. 19E). 

3’hExo knockdown resulted in both a decrease in the number of tails (Fig. 19E) as well as in 

the length of the tails (Fig. 19F), which was strikingly similar to the effect of TUT7 

knockdown.  A difference between the 3’Hexo knockdown and the TUT7 knockdown was 
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that in the 3’hExo knockdown there was not further degradation into the stemloop – the 

degradation intermediates accumulated in the 7-9 nucleotide region, like in the controls. 

When we knocked down both TUT7 and 3’hExo, we saw a further decrease in the number of 

tails, as well as fewer molecules degraded further into the stemloop compared with the TUT7 

knockdown.  This result is consistent with the further degradation resulting from additional 

digestion by 3’hExo. Taken together these results suggest that 3’hExo and TUT7 work 

together in degrading the histone mRNA into the stemloop (see Discussion). 

In contrast to TUT7 knockdown, knockdown of TUT4 did not change the distribution 

of intermediates or affect their uridylation (Fig. 19C).  However, the double knockdown of 

TUT4 and TUT7 resulted in a further enhancement of the effect of TUT7 knockdown.  There 

was a further reduction in the total number of U-tails, and a much more dramatic increase in 

the number of degradation intermediates located further into the stem (Fig. 19D).  These 

results are consistent with TUT7 being the primary enzyme that adds the U-tails to these 

degradation intermediates, with TUT4 being able to partially compensate for TUT7 when 

TUT7 was knocked down. 

There is a small peak of RNAs at position 20, the last base of the stemloop. This is 

present in all samples, but is most prominent in the TUT7 knockdown and TUT4/TUT7 

double knockdowns.  The U-tails at this position are similar in length to those at positions 7-

9 in the stem, 4-6 nts long in the control and TUT4 knockdown, and are much shorter in the 

TUT7 and TUT4/TUT7 knockdowns.  Thus they are likely added by TUT7.  Since Upf1 is 

required for histone mRNA degradation and bound to the 3’ UTR of histone mRNAs before 

the stemloop (Zünd et al. 2013; Brooks et al. 2015), these intermediates could result from a 
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pause in degradation due to the presence of Upf1 on the partially degraded RNA (see 

discussion).   

Subsequent 3’ to 5’ degradation through the coding region of the histone mRNA does 

not require TUT7  

 Degradation of histone mRNA 3’ to 5’ can be divided into two stages:  1) 

Degradation into the stemloop by 3’hExo and subsequent uridylation of the degradation 

intermediates, and 2) rapid degradation to just 3’ of the ribosome by the exosome, followed 

by pausing and uridylation of the degradation intermediates, which continues as the exosome 

goes through the coding region.  There are very few degradation intermediates detected in 

control cells between the 3’ side of the stemloop and a position in the 3’ UTR about 15 nts 

from the termination codon (Fig. 20A), which we have previously shown is likely due to 

arrest of degradation by the terminating ribosome (Slevin et al. 2014).  The relative 

proportion of these two degradation intermediates reflects the flux of intermediates through 

the pathway.  In control cells treated with HU, the relative amounts of the two types of 

intermediates (those in the stemloop and those in the 3’UTR and coding region) are constant 

in multiple experiments. A change in proportion of the two populations of intermediates will 

occur when there is inhibition or acceleration of one of the steps.  For example, when the 

exosome component, Pml/Sc100 was knocked down, there was an increased accumulation of 

uridylated intermediates in the stemloop (Slevin et al. 2014), consistent with degradation 

through the 3’UTR and coding region being catalyzed by the exosome.   

In the TUT7 knockdown there was also a change in the relative proportion of these 

two classes of intermediates.  There are many fewer uridylated intermediates in the stemloop, 

although an increase in the total intermediates in the stemloop.  There are also fewer 



	   47	  

intermediates in the coding region (Fig. 20B).  This is consistent with TUT7 playing a critical 

role in the accumulation and ultimate degradation of the intermediate in the stemloop, as a 

result of uridylation of the intermediate.  The generation of the second class of intermediates 

is slowed, and they may be removed by the exosome in a TUT7-independent manner.  Hence 

they are more rapidly removed by the degradation machinery (exosome) which has not been 

affected by the TUT7 knockdown.  This effect was not seen with the TUT4 knockdown, 

where the relative amounts of the two classes of intermediates remained similar to the 

control, consistent with it not playing a major role in any of the steps in degradation.  There 

was also no effect of TUT7 or TUT4 knockdown on the proportion of the intermediates with 

U-tails or in the length of the U-tails (Fig. 20D), in contrast to the dramatic effect of TUT7 

knockdown on the number and length of U-tails in the stemloop (Fig. 19).    

 We conclude that TUT7 plays a major role in histone mRNA metabolism. It is both 

responsible for the uridylation of the 3’ end of the histone mRNA to maintain the proper 

length of histone mRNA when the mRNA is relatively stable, and for the uridylation of 

degradation intermediates during the initial steps of degradation by 3’hExo into the stem.  In 

both these steps, TUT7 and 3’hExo likely work together.  

 

DISCUSSION 

A major regulatory step in histone mRNA metabolism is regulation of histone mRNA 

half-life to maintain the coupling of histone mRNA levels with the rate of DNA replication.  

There is coordinate degradation of the family of replication-dependent histone mRNAs, 

which is mediated through the stemloop at the 3’ end of the mRNA, and the proteins bound 

to the mRNA, SLBP and 3’hExo.  Degradation of histone mRNA requires that the mRNA be 
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actively translated (Graves et al., 1987;Kaygun and Marzluff, 2005b), and recruitment of 

Upf1 is an early step in triggering degradation (Kaygun and Marzluff, 2005a).  Histone 

mRNA degradation requires many of the same factors required for degradation of 

polyadenylated mRNAs, including Lsm1-7 and the exosome.  Knockdown of Upf1, Lsm1-7 

or the exosome has a greater effect on degradation than knocking down components of the 5’ 

to 3’ decay pathway, consistent with a major pathway of histone mRNA degradation 

proceeding 3’ to 5’. Uridylation of the 3’ end of histone mRNA plays a prominent role in 

histone mRNA metabolism. Following 3’ end formation in the nucleus, SLBP and 3’hExo 

form a stable complex on the 3’ end of histone mRNA (Yang et al., 2006;Tan et al., 2013), 

and 3’hExo trims 2 nts off histone mRNA, resulting in the major cytoplasmic histone mRNA 

that ends 3 nts after the stem loop (Mullen and Marzluff, 2008;Hoefig et al., 2013).  

The length of cytoplasmic histone mRNA is maintained by uridylation of the mRNA; 

if the mRNA is trimmed to shorter than 3’ nts after the stemloop, uridines are added to 

restore the length.  In S-phase, the most abundant 3’ ends have a nontemplated uridine on the 

3’ end.  In the 3’hExo knockout, histone mRNAs end 5 nts after the stemloop (Hoefig et al., 

2013).  Thus, there are likely cycles of 3’hExo degradation followed by uridylation that 

create the final population of cytoplasmic histone mRNAs in growing cells. Our results 

confirm this hypothesis; knockdown of hEXO results in an increase in long histone mRNAs, 

and a slowing of the cell’s uridylation response by TUTase knockdown results in a shift of 

these short uridylations one nucleotide further back, suggesting that hEXO is trimming 

longer tails to length and not that the TUTases are specifically adding a certain length tail 

based on context.  
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Initiation of histone mRNA degradation requires oligouridylation of histone mRNA, 

and oligouridylated full-length (5 nts after the stemloop) histone mRNA accumulates in the 

3’hExo knockout (Hoefig et al., 2013), suggesting that uridylation of the 3’ end is a critical 

step in initiating degradation (Su et al., 2013). The initial intermediate that accumulates 

during degradation results from partial degradation into the stemloop (Ross et al., 

1986;Hoefig et al., 2013;Slevin et al., 2014) by 3’hExo and this intermediate is extensively 

uridylated  (Mullen and Marzluff, 2008;Hoefig et al., 2013;Slevin et al., 2014).  Since 

cytoplasmic histone mRNAs end in a stemloop with only 2-3 nts after the stem, they cannot 

bind Lsm1-7 without the addition of >5 nts to the cytoplasmic mRNA (Lyons et al., 2014).  

The requirement for Lsm1-7 in degradation of histone mRNAs results from the addition of an 

oligo(U) tail either to the 3’ end and/or to the initial degradation intermediate in the stem, 

providing a binding site for Lsm1-7.  The tails that accumulate on this intermediate are close 

to the size needed to bind Lsm1-7, suggesting that once they get long enough to bind Lsm1-

7, further degradation can take place.   

Previous studies using RNAi knockdown of the enzymes potentially involved in 

histone mRNA degradation (3’hExo, different TUTases) showed at best modest effects on 

the overall rate of histone mRNA degradation (Dominski et al., 2003;Mullen and Marzluff, 

2008;Schmidt et al., 2011). .  Much more significant effects are observed with knockdown of 

factors also required for degradation of many other mRNAs (Upf1, Lsm1, and exosome 

components (Kaygun and Marzluff, 2005a;Mullen and Marzluff, 2008;Slevin et al., 2014). 

The results we obtained with knockdown of 3’hExo illustrate this most clearly since very 

effective knockdown of this enzyme (>90%) had no significant effect on the rate of histone 

mRNA degradation, as detected by Northern Blotting (Dominski et al., 2003;Mullen and 
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Marzluff, 2008).  Only when 3’hExo was knocked out was histone mRNA degradation 

severely affected (Hoefig et al., 2013).  The knockout cells contained histone mRNA that 

was not trimmed (had 5 nts after the stem), and was uridylated at the 3’ end (but not 

degraded) demonstrating a critical role for 3’hExo in both forming the 3’ end of cytoplasmic 

histone mRNA and initiating histone mRNA degradation (Hoefig et al., 2013).   

We and others have obtained similar inconclusive results in RNAi knockdowns of the 

putative TUTases, with at best modest effects on histone mRNA degradation (Mullen and 

Marzluff, 2008;Schmidt et al., 2011).  The development of methods to analyze degradation 

intermediates by high-throughput sequencing has allowed us to look for potential changes in 

the distribution of intermediates in mRNA degradation as a result of knockdown of different 

factors.  Since we have identified discrete intermediates in histone mRNA degradation, we 

were able to assess changes in the relative rates in different steps of histone mRNA 

degradation, which are reflected in the relative proportion of different intermediates.  For 

example, we previously showed that when the exosome subunit Pml-Sc100 is knocked down, 

the relative proportion of uridylated intermediates in the stem increased (Slevin et al., 2014) 

[Table 1], consistent with their being the initial targets of the exosome.   

The experiments reported here show that knockdown of TUT7 and 3’hExo result in 

significant changes in the uridylation of the 3’ end of histone mRNA to maintain the normal 

length of mature histone mRNA and in the distribution of mRNA degradation intermediates. 

These results strongly suggest that TUT7, and not TUT4, plays the major role in uridylation 

of histone mRNA, both to maintain the normal length of the 3’ end in S-phase cells, and to 

uridylate prominent degradation intermediates.   
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TUT4 and TUT7 are similar proteins, which were first reported to uridylate both pre-

miRNAs and mature miRNAs.  In some studies they have been reported to act redundantly 

and/or compensate for one another.  In a recent study, Narry Kim and coworkers showed that 

both TUT4 and TUT7 add the U-tails present on some oligoadenylated mRNAs after 

deadenylation (Lim et al., 2014;Chang et al., 2014), marking them for degradation. These 

enzymes seem to be largely interchangeable for this uridylation, as shown by RNAi and in 

vitro uridylation experiments. The enzymes have also been reported to have specific 

functions, as well. TUT7 has been shown to add a single uridine to specific miRNA 

precursors by Kim and workers (Heo et al., 2012). They also reported that TUT4 specifically 

uridylates let-7 pre-miRNA through an interaction with Lin-28 (Heo et al., 2009), although it 

has also been reported by Richard Gregory’s lab that TUT7 can compensate for this function 

of TUT4 (Thornton et al., 2012).   

 Knockdown of TUT7 dramatically changed the uridylation pattern of histone 

mRNAs, both in growing cells and after inhibition of DNA replication.  Knockdown of 

TUT4 had no detectable effect on either process.  However, knockdown of TUT4 together 

with TUT7 has a larger effect on uridylation of histone mRNA than knockdown of TUT7 

alone, suggesting that TUT4 can participate, albeit inefficiently, in the uridylation of histone 

mRNA.  Thus, we conclude that TUT7 is the major enzyme in the cell that uridylates histone 

mRNA, both on the stem loop to maintain the proper length of the 3’ end and in the stem 

after initial degradation by 3’hExo to trigger further degradation of histone mRNA.   

TUT7 and 3’hExo may collaborate in the uridylation of histone mRNA. 

 Two aspects of our data suggest that TUT7 and 3’hExo may function together in 

maintaining the levels of histone mRNA uridylation.  Knockdown of 3’hExo unexpectedly 
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altered the pattern of uridylation on the degradation intermediates in the stemloop, reducing 

both the number and length of the tails, although there was no change in the amount of 

TUT7.  The number and length of the U-tails on the intermediates were reduced after HU 

treatment in the 3’hEXO knockdown cells, to the same extent that they were reduced in 

TUT7 knockdown cells.  Knockdown of 3’ hExo also altered the uridylation of the 3’ end of 

histone mRNA in growing cells, with an increase in histone mRNAs ending in ACCU and 

ACUU, suggesting that TUT7 adds a non-specific number of uridines to the histone mRNAs 

that are then trimmed back by 3’hExo.  These results are consistent with the possibility that 

3’hExo and TUT7 function together to both maintain the normal length of the 3’ end in S-

phase cells, and to uridylate the 3’ end of histone mRNAs, as well as the degradation 

intermediates in the stemloop as part of the pathway degradation. 

 The TUT7 knockdown and the TUT4/TUT7 double knockdown also show slight 

increases in messages ending in ACC with no uridylation. This suggests that the initial 

exonuclease activity of 3’hEXO may require some uridylation at the 3’ end of histone 

mRNA. We do see a number of messages ending in ACCU in the 3’hEXO knockdowns, 

which could be interepreted as a “primed” substrate for 3’hEXO to begin it’s exonuclease 

activity. 

Fig. 21 shows our current model for histone mRNA degradation. TUT7 uridylates the 

3’ end of histone mRNA to compensate for chewing of the 3’ end by 3’hEXO, until a change 

in the histone mRNP allows for more chewing by hEXO. Once hEXO chews into the stem-

loop, TUT7 puts a longer oligo(U) tail on the partially degraded stem-loop, which marks the 

message for degradation.  
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An early step in histone mRNA degradation is likely the recruitment of Upf1 to the 

histone mRNP as a result of inefficient translation termination (Kaygun and Marzluff, 

2005b).  Upf1 binds to the histone mRNP by binding to the 3’ UTR (Zund et al., 

2013;Brooks, III et al., 2015) and to SLBP (Kaygun and Marzluff, 2005a) after DNA 

synthesis is inhibited.  How the initial degradation into the stem by 3’hExo is activated or 

how the TUTase is recruited is not known, but it likely requires the helicase activity of Upf1 

which may perturb the binding of SLBP to the stemloop, allowing initial degradation by 

3’hExo into the stem.  Since 3’hExo and SLBP both interact with the C-terminal tail of Lsm4 

in Lsm 1-7 (Lyons et al., 2014), TUT7 and 3’hExo together may also interact with the Lsm1-

7 complex to promote recruitment of this complex to the 3’ end of the degradation 

intermediates in the stemloop, which may then result in subsequent degradation by the 

exosome.   

The initial step in degradation of polyadenylated mRNAs is deadenylation leaving an 

oligoA-tail which can bind Lsm1-7.  Recent studies found that a fraction of the shortened A 

tails have one or two uridines added to the 3’ end, both in fission yeast (Rissland and 

Norbury, 2009) and mammalian cells (Lim et al., 2014), suggesting that oligouridylation may 

participate in degradation of polyadenylated mRNAs as well, although as yet there are no 

examples of specificity for this uridylation for specific subsets of mRNAs. 
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Fig. 4.  EnD-Seq workflow 
A diagram of the ligation, reverse transcription, and PCR steps used in EnD-Seq before 

sequencing on the MiSeq (adapted from (Slevin et al. 2014)). At the bottom of the figure is a 

more detailed look at the Read 1 sequence, which detects the untemplated additions to the 3’ 

end of histone mRNA.  
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Figure 5.  Common EnD-Seq products 
The major 3’ ends of histone mRNAs in exponentially growing cells, ending in either ACC 

(templated), ACU or AUU with uridine additions restoring the length of the mRNAs. The 

stemloop shown is HIST2H2AA3, the most commonly sequenced gene in our EnD-Seq 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   57	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   58	  

Figure 6. EnD-Seq results for synchronized HeLa cells 
This stacked bar graph is representative of HIST2H2AA3 uridylation under the most 

favorable circumstances for histone mRNA (that is, during S-phase, when histone message is 

most highly expressed and has its longest half-life). The stacked bar graph represents the 

length of uridylation at each nucleotide position at the 3’ end.  
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Figure 7. Knockdown of 3’ hEXO changes histone mRNA uridylation patterns  
A. Western blot showing 3’ hEXO knockdown by siRNA. B.-C. Stacked bar graph for our 

high-throughput sequencing experiments showing the last eight nucleotides of HIST2H2AA3 

(B) or HIST1H2AG (C) for the hEXO knockdowns. For both experiments, control panels are 

on the left and experimental on the right.  
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Figure 8. Quantification of different histone mRNA 3’ ends after hEXO knockdown 
A.-D. Pie graphs quantifying the different species of histone mRNA 3’ ends shown in Figure 

7, and how they change with 3’ hEXO knockdown. This analysis was done for 

HIST2H2AA3 (A), HIST1H2AJ (B), HIST1H2AJ (C), and HIST1H2AC (D). The 

percentages for the graphs are shown in (E).  
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E 

    ACC ACU AUU Long Short 
HIST2H2AA3 siHEXO 34.5% 33.2% 1.9% 27.9% 2.4% 
  control 15.4% 64.6% 7.0% 5.9% 7.1% 
HIST1H2AG siHEXO 45.4% 11.5% 0.4% 40.9% 1.8% 
  control 32.9% 47.1% 3.6% 9.8% 6.6% 
HIST1H2AJ siHEXO 84.4% 2.0% 0.7% 11.4% 1.5% 
  control 90.3% 1.8% 1.9% 2.0% 4.0% 
HIST1H2AC siHEXO 43.7% 37.5% 0.8% 15.4% 2.7% 
  control 33.2% 56.9% 1.9% 3.6% 4.4% 
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Figure 9. TUT7 knockdown shifts monouridylations to diuridylations 
A. Western blot showing TUT7 knockdown by siRNA. B.-C. Stacked bar graph for our high-

throughput sequencing experiments showing the last eight nucleotides of HIST2H2AA3 (B) 

or HIST1H2AG (C) for the TUT7 knockdowns. For both experiments, control panels are on 

the left and experimental on the right. 
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Figure 10. Quantification of different histone mRNA 3’ ends after TUT7 knockdown 
A.-D. Pie graphs quantifying the different species of histone mRNA 3’ ends shown in Figure 

9, and how they change with TUT7 knockdown. This analysis was done for HIST2H2AA3 

(A), HIST1H2AJ (B), HIST1H2AJ (C), and HIST1H2AC (D). The percentages for the 

graphs are shown in (E).  
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E 

    ACC ACU AUU Long Short 
HIST2H2AA3 siTUT7 20.9% 39.0% 18.6% 2.4% 19.0% 
  control 18.6% 63.5% 6.8% 6.2% 4.9% 
HIST1H2AG siTUT7 39.7% 33.0% 7.6% 5.6% 14.1% 
  control 37.6% 45.5% 2.9% 9.4% 4.7% 
HIST1H2AJ siTUT7 81.7% 4.8% 3.9% 1.2% 8.4% 
  control 93.7% 0.8% 1.4% 1.8% 2.2% 
HIST1H2AC siTUT7 37.1% 48.4% 4.1% 1.8% 8.6% 
  control 36.3% 55.7% 1.9% 3.0% 3.1% 

 

 

 

 

 

 



	   68	  

Figure 11. Stacked bar graphs for TUT7 repeat experiment 
A. Western blot showing TUT7 knockdown by siRNA. B.-C. Stacked bar graph for our high-

throughput sequencing experiments showing the last eight nucleotides of HIST2H2AA3 (B) 

or HIST1H2AG (C) for the TUT7 knockdowns. For both experiments, control panels are on 

the left and experimental on the right. 
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Figure 12. Pie charts for repeat TUT7 EnD-Seq experiment 
A.-D. Pie graphs quantifying the different species of histone mRNA 3’ ends shown in Figure 

11, and how they change with the repeated TUT7 knockdown. This analysis was done for 

HIST2H2AA3 (A), HIST1H2AJ (B), HIST1H2AJ (C), and HIST1H2AC (D). The 

percentages for the graphs are shown in (E). 
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    ACC ACU AUU Long Short 
HIST2H2AA3 siTUT7 10.0% 32.8% 35.1% 13.8% 8.4% 
  Control 4.3% 61.1% 11.0% 19.9% 3.7% 
HIST1H2AG siTUT7 14.0% 25.8% 7.7% 49.5% 2.9% 
  Control 3.1% 41.9% 3.1% 49.6% 2.2% 
HIST1H2AJ siTUT7 91.2% 1.9% 4.1% 0.3% 2.5% 
  Control 91.7% 1.7% 2.2% 1.5% 2.9% 
HIST1H2AC siTUT7 7.7% 52.1% 9.4% 24.4% 6.3% 
  control 2.0% 59.8% 2.9% 32.6% 2.7% 

 

 

 

 

 



	   72	  

Figure 13. TUT4 knockdown has no effect on uridylation of histone mRNA 
A. Western blot showing TUT4 knockdown by siRNA. B.-C. Stacked bar graph for our high-

throughput sequencing experiments showing the last eight nucleotides of HIST2H2AA3 (B) 

or HIST1H2AG (C) for the TUT4 knockdowns. For both experiments, control panels are on 

the left and experimental on the right. 
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Figure 14. Quantification of different histone mRNA 3’ ends after TUT4 knockdown 
A.-D. Pie graphs quantifying the different species of histone mRNA 3’ ends shown in Figure 

5, and how they change with TUT4 knockdown. This analysis was done for HIST2H2AA3 

(A), HIST1H2AJ (B), HIST1H2AJ (C), and HIST1H2AC (D). The percentages for the 

graphs are shown in (E). 
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    ACC ACU AUU Long Short 
HIST2H2AA3 siTUT4 21.6% 60.3% 5.2% 5.7% 7.2% 
  Control 18.1% 64.4% 5.2% 5.6% 6.6% 
HIST1H2AG siTUT4 38.5% 44.3% 2.1% 9.7% 5.4% 
  Control 32.0% 49.8% 2.9% 9.6% 5.6% 
HIST1H2AJ siTUT4 90.8% 2.2% 1.7% 2.2% 3.1% 
  Control 91.4% 1.8% 1.6% 2.1% 3.1% 
HIST1H2AC siTUT4 36.7% 54.0% 2.2% 3.2% 3.9% 
  control 32.0% 59.3% 1.9% 3.1% 3.7% 
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Figure 15. TUT4/TUT7 double knockdown has a slight stacking effect on the 3’ ends of 
histone mRNA  

A. Western blot showing TUT4/TUT7 double knockdown by siRNA. B.-C. Stacked bar 

graph for our high-throughput sequencing experiments showing the last eight nucleotides of 

HIST2H2AA3 (B) or HIST1H2AG (C) for the double knockdown. For both experiments, 

control panels are on the left and experimental on the right. D.-E. Pie chart quantification of 

double knockdown experiment for HIST2H2AA3 (D) and HIST1H2AG (E).  
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Figure 16. 3’hEXO/TUT7 double knockdown results in lengthened, un-uridylated 
histone mRNA 

A. Western blot showing 3’hEXO/TUT7 double knockdown by siRNA. B.-C. Stacked bar 

graph for our high-throughput sequencing experiments showing the last eight nucleotides of 

HIST2H2AA3 (B) or HIST1H2AG (C) for the double knockdown. For both experiments, 

control panels are on the left and experimental on the right. D.-E. Pie chart quantification of 

double knockdown experiment for HIST2H2AA3 (D) and HIST1H2AG (E).  
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Figure 17. Oligouridylation at the 3’ end is unaffected by HU treatment  
A. Northern blots showing how knockdowns of 3’hEXO, TUT7, TUT4, and the TUT4/TUT7 

double knockdown affect histone mRNA degradation. B.-F. Stacked bar plots for these 

knockdowns at a point at which approximately half of the histone mRNA has been degraded 

(45 minutes for the hEXO knockdown, 30 minutes for each other sample). One control 

experiment has been chosen here to be representative of each sample, though individual 

controls were performed with each sequencing run (Figure 18).  
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Figure 18. Quantification of 3’ ends for each knockdown after HU treatment  
A.-D. Pie graphs quantifying the different species of HIST2H2AA3 histone mRNA 3’ ends 

shown in Figure 17. The percentages for the graphs are shown in (E). Unlike the prior pie 

charts, these charts only quantify the last five nucleotides of HIST2H2AA3 instead of the last 

seven, as including the last seven begins to include degradation intermediates after HU 

treatment.  
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E 

	  	   ACC	   ACU	   AUU	   Long	   Short	  
siHEXO	   31.2%	   26.3%	   7.1%	   21.3%	   14.1%	  
Control	   17.2%	   58.3%	   5.7%	   4.2%	   14.5%	  
siTUT7	   20.7%	   39.2%	   14.6%	   1.4%	   24.0%	  
Control	   18.3%	   59.0%	   4.9%	   4.8%	   13.0%	  
siTUT4	   21.5%	   58.8%	   4.5%	   4.6%	   10.7%	  
Control	   19.1%	   60.8%	   4.6%	   4.7%	   10.9%	  
siTUT4/TUT7	   25.1%	   41.1%	   9.1%	   2.1%	   22.6%	  
control	   22.6%	   52.3%	   4.9%	   5.5%	   14.6%	  
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Figure 19. Degradation intermediates in the HIST2H2AA3 stemloop after HU 
treatment 

A.-F. Stacked bar plots showing the distribution of uridylations in the stemloop but beyond 

the five nucleotides that make the mature and complete 3’ ends for a control experiment 

(again, one control experiment has been chosen to be representative)(A), TUT7 knockdown 

(B), TUT4 knockdown (C), TUT4/TUT7 double knockdown (D), 3’hEXO knockdown (E), 

and 3’hEXO/TUT7 double knockdown (F). G. The percentage of all reads in the stemloop 

that have a given tail length for each experiment. One nucleotide tails have been omitted to 

avoid flattening of the graph. H. Northern blot showing histone mRNA degradation after HU 

treatment in cells with both siTUT7 and 3’hEXO simultaneously knocked down. 
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Figure 20. Degradation intermediates in the 3’UTR (but outside of the stemloop) and 
open reading frame after HU treatment 

A.-C. Stacked bar plots showing the distribution of uridylations in the stemloop but beyond 

the five nucleotides that make the mature and complete 3’ ends for a control experiment 

(again, one control experiment has been chosen to be representative)(A), TUT7 knockdown 

(B), and TUT4 knockdown (C), D. The percentage of all reads in the stemloop that have a 

given tail length for each experiment. One nucleotide tails have been omitted to avoid 

flattening of the graph. 
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Figure 21. Model of histone mRNA degradation with uridylation carried out by TUT7 
and mediated by 3’ hEXO trimming 

An update of the model shown in Figure 4, reflecting the EnD-Seq/AppEND data that TUT7 

and 3’hEXO create a sort of feedback loop in uridylating the 3’ end of histone mRNA both at 

a steady state, and that this steady-state is disrupted as degradation begins.  
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CHAPTER 3 

THE EFFECTS OF TUT1 AND TUT3 ON HISTONE mRNA METABOLISM 

INTRODUCTION 

 In our lab’s first look at the uridylation of histone mRNA, TUT1 and TUT3 (also 

known as mtPAP and PAPD5) were initially identified as the enzymes most likely to 

uridylate the message as a mark for degradation. This was based on the observation that both 

TUT1 and TUT3 knockdowns by siRNA partially stabilized the histone mRNA transcripts 

after HU treatment in a northern blot (Mullen and Marzluff 2008).  

 TUT1 had been identified as a primarily mitochondrial protein (Tomecki et al. 2004) 

and knockdown of the enzyme had large effects on both mitochondrial RNA stability and 

general cellular growth and activity (Nagaike 2005). Despite its localization to the 

mitochondria, its crystal structure and in vitro activity following purification of a 

recombinant TUT1 showed that TUT1 was capable of adding U-tails as well as A tails (Bai 

et al. 2011). Because of this and because TUT1 was reported to have a splice variant without 

the mitochondrial localization sequence (Fig. 22) (Bechtel et al. 2007) that would result in 

removal of the N-terminal mitochondrial localization signal, it was a protein worth studying 

despite its general classification as a mitochondrial enzyme.  

TUT3 was also a bit of an unexpected result; its nucleotide sequence indicated similar 

with the yeast Trf proteins (Schmidt, West, and Norbury 2010b), which are involved in 

nuclear exosome targeting, and its earliest described functions were nuclear (Shcherbik et al. 
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2010). A structure/function analysis of mammalian TUT3 showed some differences to its 

yeast homolog; it is capable of activity without a cofactor and it has a non-traditional RNA-

recognition motif (RRM) at its C-terminus (Rammelt et al. 2011). It’s also potentially worth 

noting that TUT3’s activity in the processing of snoRNAs, where it works in concert with 

PARN to adenylate to provide a substrate for trimming to form the mature 3’ end of some 

snoRNAs (Berndt et al. 2012), is very similar to the TUT7/hEXO interplay mechanism 

described in Chapter 2 of this thesis.  

Even though TUT1 and TUT3 did not initially appear to be the most obvious 

enzymes to study, their effect on the stability of histone message along with all of the 

unknowns about the enzymes – the trouble annotating them that lead to uncertainty about the 

isoforms and localization, the interesting domain structures and activities with other RNA 

substrates – made them worth studying in the context of histone message degradation. My 

work focused on accomplishing several things with these enzymes. With TUT1, I focused on 

determining if its activity was limited to the mitochondria and therefore if it could have any 

function outside of the mitochondria. With TUT3, I wanted to learn about its interactions 

with proteins associated with histone mRNA metabolism, to further our knowledge about its 

subcellular localization, and to use our next-gen sequencing methods to ascertain how TUT3 

knockdown affects the 3’ end of histone mRNA, both at a steady state and during histone 

mRNA degradation.  
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MATERIALS AND METHODS 

In vitro GST pulldown assays 

TUT1, TUT3, and TUT3 truncations were all cloned into the pcDNA3 vector with a 

T7 promotor and expressed in rabbit reticulocyte using Promega’s Quick Coupled 

Transcription/Translation (TNT) kit. This kit also allowed for 35S methionine labeling during 

translation. GST-tagged SLBP and SLBP truncations were purified out of baculovirus as 

previously described (Erkmann et al. 2005). 

5µg of the fusion protein (or GST alone, for the controls) was incubated with a 50 µL 

slurry of glutathione-sepharose beads (GE Healthcare) and TEN100 buffer (20 mM Tris pH 

7.4, 0.1 mM EDTA, 100 mM NaCl) for one hour at 4°C, then the beads were pelleted. 10 µL 

of the reticulocyte was added to the beads, along with 14 µL GDB buffer (10% glycerol, 10 

mM DTT, 0.05 mg/mL BSA), 10 µL 10X TEN100 buffer, and water to a final volume of 100 

µL. This mix was incubated for 2 hours at 4°C, washed in TEN100 buffer, resuspended in 

SDS running buffer, boiled, and run on an SDS-PAGE gel. The resulting gel was dried and 

placed on a phosphor screen overnight for imaging.  

siRNA knockdowns 

 siRNA knockdowns for TUT3 were done as described in Chapter 2, using 

Lipofectamine RNAi-MAX (Invitrogen) and a reverse transfection protocol. The sequence 

for the TUT3 siRNA is found in Table 1.  

shRNA lentivirus knockdowns 

 Lentivirus was produced by co-transfecting the plasmid carrying the shRNA sequence 

(pLKO) with the plasmids for the lentiviral packaging (pVSVG and ΔNRF ) in 293T cells 
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with Lipofectamine 2000 (Invitrogen).) A mix of 5 µL Lipofectamine 2000 and 250 µL 

OPTI-MEM (Gibco) was incubated at room temperature for seven minutes and combined 

with a mix of 1µg pLKO , 750 ng ΔNRF, and 250 ng pVSVG in 250 µL OPTI-MEM. This 

second mixture was incubated at room temperature for 25 minutes, then added to a six-well 

plate with 293Ts growing at 80% confluency. After 24 hours, the media was aspirated and 

replaced at approximately half-volume (one mL of DMEM for a well in a six-well plate). 

After 24 more hours, this media was harvested and used for lentiviral infection (~100-250 µL 

per well in a six-well plate for HeLa cells). Target cells were either selected with puromycin 

24 hours later or harvested for analysis after 48-72 hours.  The shRNA sequences used to 

target the TUT1 isoforms are collected in Table 3. 

EnD-SEQ and AppEND 

 End-SEQ and AppEND on the TUT3 knockdown samples was carried out as 

described in Chapter 2 and (Slevin et al. 2014). Some further analysis was carried out on 

previously published Pm/Scl-100 knockdown samples.  

 

RESULTS 

TUT1 does not have a direct effect on histone mRNA degradation 

 Because TUT1 was originally identified as a mitochondrial protein (Tomecki et al. 

2004), we focused on the the a splice-variant with an alternate N-terminal sequence omitting 

the mitochondrial location sequence (Figure 22A) (Bechtel et al. 2007). These two isoforms 

have distinctly different sizes, making it easy to express them and study them individually in 

HeLa cells (Figure 22B). I looked to study the two isoforms of TUT1 separately from each 
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other, to determine if the initial observation that TUT1 slows histone mRNA degradation 

(Mullen and Marzluff 2008) showed a specific effect on histone message or a more global 

one created by disrupting mitochondrial function.  

 After unsuccessful co-IP experiments, we used in vitro pulldown assays to determine 

if TUT1 interacts with SLBP, as SLBP is already associated with several components of the 

degradation complex. We expressed the two isoforms in rabbit reticulocyte lysates and did a 

GST-pulldown with the same baculovirus-expressed recombinant SLBP. Neither protein 

showed a significant interaction with SLBP in these experiments, as any potential 

interactions detected were well below the 5% input (Figure 23).   

 We then made isform-specific shRNA lentiviruses to knock down the two isoforms of 

TUT1 individually, to determine the effects of each isoform on the stability of histone 

mRNA during degradation. After validating the effectiveness of the lentiviruses (Figure 24), 

we created knockdowns of the individual isoforms in HeLa cells and HU treated them for 15, 

30, and 45 minutes, then took RNA samples for Northern blots (Figure 25). The results show 

that while the TUT1A knockdown seriously affects histone mRNA levels at all timepoints, 

including the zero timepoint, the TUT1B knockdowns have very little effect on message 

stability.  

 Because of TUT1A’s role as a mitochondrial poly(A) polymerase important for 

regulating the levels of mitochondrial RNA, knockdown of TUT1 may have overall 

deleterious effects on cell growth. These results indicate that our lab’s initial observation that 

TUT1 knockdown affects histone mRNA levels was likely caused by a global effect caused 

by TUT1 knockdown affecting the general growth and health of the cell. Since the TUT1B 
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specific knockdown did not affect histone mRNA degradation,  we did not pursue TUT1 

further after these experiments.  

 

TUT3 interacts with SLBP 

 SLBP is a very unstructured protein (Tan et al. 2013) and it has known interactions 

with several other proteins involved in histone mRNA degradation, including 3’hEXO 

(Dominski et al. 2003), Lsm1 and Lsm4 (Mullen and Marzluff 2008; Lyons et al. 2013), and 

Upf1 (Kaygun and Marzluff 2005a). Because our initial hypothesis was that uridylation was 

a histone mRNA-specific mechanism to initiate uridylation, it made sense to look for an 

interaction between SLBP and one or more TUTases as a way of initiating uridylation. 

 For in vitro pulldown assays, I expressed TUT3 in rabbit reticulocyte using the 

pcDNA3 vector, and used recombinant GST-SLBP purified from baculovirus. After ruling 

out the TUT1 interaction (Figure 23), I then focused on TUT3 and TUT4. My initial 

pulldowns found a relatively strong interaction between SLBP and TUT3, but not between 

SLBP and TUT1 or TUT4 (Figure 26).  

We then looked to characterize this interaction by using truncations of both TUT3 

and SLBP. SLBP is a very well characterized protein, and different regions of the protein are 

associated with different steps in histone mRNA metabolism. Using various truncations of 

SLBP, we were able to map the binding between SLBP and TUT3 to C-terminal half of 

SLBP’s RNA-binding domain (Fig. 27), which is separate from its binding sites for Upf1 

(Stacie Meaux, unpublished) and Lsm4 (Lyons et al. 2013). 

TUT3 has three major domains; the nucleotidyl transferase domain required for 

uridylation, its Poly(A) polymerase associated domain (PAPD), and a non-traditional RNA 



	   96	  

recognition motif (RRM)(Rammelt et al. 2011). We made our truncations of TUT3 based on 

both existing splice variants in the gene databank and on these various domains, and were 

able to narrow the SLBP binding down to a 90 amino acid region that includes part of the 

PAPD, but neither of the other major domains (Fig. 28). The binding sites for TUT3 and 

SLBP are mapped in Figure 29. 

We attempted to characterize this interaction in the cell, though this proved difficult. 

After co-immunoprecipitation was unsuccessful, we overexpressed both SLBP (using the 

pGLUE vector to put a tandem-affinity purification tag on the N-terminus) and TUT3 (using 

the pcDNA3 vector to create an N-terminal FLAG tag). We then pulled down SLBP using 

magnetic streptavidin beads and saw a very slight enrichment of TUT3 (on par with the 1% 

control) as opposed to our negative control cells, which were transfected with FLAG-TUT3 

but not TAP-SLBP. HU treatment to stop DNA replication and induce histone mRNA 

degradation did not appear to affect this very slight interaction.  Thus we could not 

conclusively demonstrate that TUT and SLBP interacted. 

End-Seq and APPend show unexpected alterations to histone mRNA oligouridylation 

when TUT3 is knocked down. 

 Similar to the work done in the previous chapter, I also sought to determine the effect 

of siRNA knockdown of TUT3 using our next-gen sequencing methods, EnD-SEQ and 

AppEND.  

 Knocking TUT3 down has no effect on histone mRNA in normally growing HeLa 

cells.  In looking at the effects of TUT3 knockdown on both HIST2H2AA3 and 

HIST1H2AG, I found no discernible change in the distribution of normal 3’ ends, 

monouridylations, or diuridylations compared to the siRNA control (Fig. 30). While it’s 
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possible that TUT3 has a slight effect on stable histone mRNA (say, similar to the very slight 

effect attributed to TUT4 in Chapter 2), it’s clear that TUT3’s effect on histone mRNA under 

these circumstances is either very slight or non-existant. 

This changes substantially with an HU treatment. In HU treated samples ,there is a  

large increase in degradation intermediates at the base pairs that we closely identified with 

the initial uridylation for degradation in Chapter 2 (7-10 nucleotides in from the 3’ end) (Fig. 

31A). An unusually large number of these intermediates are uridylated with long oligo(U) 

tails 

 An increase in uridylation is obviously the opposite of the effect expected by 

knocking down a TUTase, though it is worth noting that this pattern of uridylation and 

degradation intermediates matches the results from the knockdown of the exosome 

component Pm-Scl100 previously published by our lab (Slevin et al. 2014). In order to 

further explore the similarities between the two experiments, I re-analyzed the previous Pm-

Scl100 results to match the current analysis methods for EnD-Seq/AppEND experiments 

seen in Chapter 2 (Fig. 31B). 

 These two experiments don’t make perfect comparison points, as the Pm/Scl-100 

experiment was one of our lab’s earliest EnD-SEQ experiments and the number of reads is 

substantially lower than in my TUT3 knockdown experiments. Because of this, I separated 

out the tail length comparison so that the TUT3 knockdown would be compared to the 

control that was made in parallel with it (Fig. 31C) and the same would be true of the 

Pm/Scl-100 knockdown (Fig. 31C). Both experiments show an enrichment in the reads with 

tails of four or five nucleotides as compared to the control. As we showed in Chapter 2, these 

4-5 nucleotide tails in this region of the mRNA seem to be precursors for degradation, and so 
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the fact that a TUTase knockdown would create a similar enrichment to these messages to an 

exosome knockdown is worth noting, even if the change in uridylation profile is unexpected.   

 Finally, I looked at the lengths of oligo(U) tails beyond the stem-loop and into the 

open reading frame, as Chapter 2 showed that neither TUT4 nor TUT7 were responsible for 

these uridylations. Figure 32 shows that TUT3 is not responsible for these tails either; in the 

control sample, approximately 19% of the samples that are degraded beyond the stem-loop 

are uridylated, while that number is 17% in the TUT3 knockdown. It is perhaps worth noting 

that a larger percentage of the reads from the TUT3 knockdown were found beyond the stem-

loop. This is the opposite of what would be expected if TUT3 were somehow involved in 

exosome recruitment or targeting to histone mRNA, though it’s difficult to draw conclusions 

based on these reads in particular as RNA degradation intermediates can pile up here and it is 

sometimes difficult to distinguish between genuine sequencing reads and chaff for any 

untailed read.  

DISCUSSION 

TUT3’s interaction with SLBP indicates a role in histone mRNA metabolism 

 Despite our inability to pin down the function of TUT3 in histone message 

metabolism, its interaction with SLBP is notable, as it’s an interaction not shared with other 

TUTases, including one (TUT4) that seems to be at least peripherally associated with histone 

message metabolism  It is worth mentioning, however, that this interaction does not 

necessarily tie TUT3 to any specific part of histone message metabolism, as SLBP is 

associated with the stem-loop for the entire life of the message, from transcription and 

processing to degradation. For example, unprocessed histone mRNAs in the nucleus that 
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result from failure to process histone mRNA are likely to be bound be SLBP and also are 

very unstable. 

TUT3 is likely not involved in bulk histone mRNA degradation 

 Through our deep sequencing experiments done both here and in Chapter 2, we can 

infer that it is unlikely that TUT3 has a direct role in bulk histone mRNA decay. Our work in 

Chapter 2 with hEXO and TUT7 suggest roughly how degradation proceeds through the 

stem-loop: hEXO and TUT7 exist in steady-state, feeding back on each other to create the 

trimmed and mono-and-di-uridylated 3’ end of histone mRNA. This exists until something 

disturbs the 3’ end of histone mRNP at the end of S-phase (or when DNA replication is 

inhibited), allowing hEXO to chew further into the stem-loop than it does at the steady-state. 

Here, TUT7 uridylates in the stem-loop, seven to nine nucleotides in from the 3’ end of the 

processed histone message. This uridylation catalyzes degradation of the histone message, 

both 3’ to 5’ and 5’ to 3’.  

 Our TUT3 knockdown does not directly disturb this process. The 3’ end remains 

almost completely unchanged at a steady-state, and rather than reducing uridylation of the 

degradation intermediates after HU treatment, we actually see an enrichment of them. The 

most likely explanation for this is TUT3’s potential association with the exosome; TUT3 

interacts with MTR4 and the zinc-knuckle protein ZCCHC6, both of which associate with the 

human nuclear exosome (Lubas et al. 2011). 

 Two exosome components, Rrp41 and Pm/Scl100, have been associated with histone 

mRNA degradation (Mullen and Marzluff 2008; Slevin et al. 2014). It was previously 

thought that this exosome function was mainly cytoplasmic; the exosome functions in bulk 

RNA degradation (J S Anderson and Parker 1998) and our lab has sequenced partially 
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degraded histone mRNAs that appear to have been degraded from the 3’ end. It is worth 

noting, though, that both proteins are part of the nuclear exosome complex that functions in 

various types of mRNA surveillance as well as the cytoplasmic complex associated with 

message degradation (Sloan et al. 2012). Given TUT3’s many nuclear-specific roles, it’s 

possible that it works with the nuclear exosome in surveillance of histone message in an 

unexpected and yet unexplored pathway.  

TUT3’s alteration of the histone mRNA degradation pattern resembles the exosome 

and may provide clues to its function in histone mRNA metabolism 

 Although more work needs to be done to verify TUT3’s localization to the histone 

locus body, thinking of it in conjunction with the HLB may help provide clues to its ultimate 

function. We do know that knockdown of SLBP results in the retention of unprocessed 

message in the nucleus (Sullivan et al. 2009). Some mechanism must exist to degrade these 

messages under normal circumstances; it’s possible that TUT3’s function is to facilitate the 

exosome in rapidly degrading these aberrant transcripts under normal circumstances to 

prevent them from accumulating.  

 It is currently unclear exactly how this might work; the human TRAMP complex, of 

which TUT3 is a part, has been shown to be localized to the nucleolus, while general RNA 

surveillance is carried out by the Nuclear Exosome Targeting complex, or NEXT. Still, these 

complexes are relatively understudied in humans, as compared to their yeast counterparts, 

and so there is room for uncertainty in their role in histone mRNA surveillance. In S. 

cerevisiae, two Trf proteins, Trf4 and Trf5, do have a role in regulating histone mRNA 

metabolism (Reis and Campbell 2006); when the proteins are knocked out, the core histone 

genes are overexpressed. This suggests an interaction between the Trf4 and Trf5 proteins and 
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proper regulation of histone mRNA in S. cerevisiae. Yeast histone genes are polyadenylated 

and do not have stem-loops, so it’s hard to draw 1:1 comparisons between the regulation of 

yeast histone genes and human histone genes, but the role of TUT3/Trf4 in yeast histone 

mRNA metabolism may provide some insight into how the protein functions in humans.  
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Figure 22. Splice variants of TUT1 
A. The most common variant of TUT1 has a mitochondrial location sequence, but genome 

annotation indicates an alternative splicing variant with a unique N-terminus that removes the 

mitochondrial location sequence and replaces it with two exons that do not have specific 

localization sequences. B. The mitochondrial (TUT1A) and non-mitochondrial (TUT1B) 

isoforms of TUT1 were expressed in HeLa cells using the pcDNA3-FLAG vector (* is a non-

specific band used as a loading control, and the bottom band in the top panel is the 

endogenous enzyme). The over-expression of the two isoforms was detected by our lab’s 

antibody to TUT1. 
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Figure 23. In vitro pulldown assays for TUT1 and SLBP 
The two isoforms of TUT1 (TUT1A left panel, TUT1B right panel) were expressed via TnT 

reaction in rabbit reticulocyte, and recombinant GST-SLBP expressed in Baculovirus was 

used for the experiment. 
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Figure 24. Western blots for TUT1 specific isoform knockdowns 
Cells expressing TUT1A (left) and TUT1B (right) were treated with shRNA against either 

TUT1A and TUT1B, and the knockdowns were checked via Western blot. 
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Figure 25. Northern blot for histone mRNA stability after TUT1 isoform-specific 
knockdowns 

HeLa cells were treated with lentivirus specific for TUT1A and TUT1B, then HU treated. 

RNA samples were taken and a Northern blot was done to measure how the knockdowns 

affected histone mRNA stability. 
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Figure 26. GST pulldowns with in vitro translated TUT3 and TUT4 and recombinant 
SLBP 

TUT3 and TUT4 were in vitro translated and incubated with recombinantly expressed GST-

SLBP immobilized on glutathione beads to look for interactions between the proteins.  
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Figure 27. TUT3 interacts with SLBP somewhere between SLBP’s amino acids 165 and 
200 

The pulldown experiments were repeated with various truncations of GST-SLBP to find the 

region of SLBP that interacts with TUT3. 
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Figure 28. SLBP interacts with TUT3 somewhere between TUT3’s amino acids 459 and 
549 

Truncations of TUT3 were expressed through the in vitro transcription and translation 

system, then used in pulldown assays with full-length SLBP to try and determine the region 

of TUT3 that interacts with SLBP. 
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Figure 29. Mapping the interaction between TUT3 and SLBP 
Using the data from the pulldowns, we can see that the region of SLBP that TUT3 interacts 

with is in SLBP’s RNA binding domain, but notably does not overlap with SLBP’s Lsm4 

binding site. The region of TUT3 that SLBP interacts with is part of TUT3’s PAP-associated 

domain.  
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Figure 30. EnD-Seq results for TUT3 siRNA knockdown without HU treatment 
A. Western blot showing TUT3 knockdown, with a non-specific band as loading control 

marked with the asterisk and TUT3 indicated by the arrow. B. Stacked bar plots for the 

TUT3 knockdown at the 3’ end in HIST2H2AA3. C. Stacked bar plots for the TUT3 

knockdown at the 3’ end in HIST1H2AG.  
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Figure 31. TUT3 knockdown results in accumulation of messages uridylated in the 
stem-loop in HU-treated samples 

As in Chapter 2, the TUT3 knockdown samples were treated with HU and harvested when 

approximately 50% of the message remained. A. Stacked bar graph for nucleotides 5-22 (the 

stemloop) in the TUT3 knockdown (right panel) and siRNA (left). B.  Stacked bar graph for 

nucleotides 5-22 (the stemloop) in the PM/Scl-100 knockdown (right panel) and siRNA (left) 

– data originally published in (Slevin et al. 2014)and reanalyzed here. C. Number of reads 

with a particular tail length expressed as a percentage of total reads in the 5-22 region in the 

siTUT3 experiment. D. Number of reads with a particular tail length expressed as a 

percentage of total reads in the 5-22 region in the siPM/Scl-100 experiment. 
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Figure 32. TUT3 knockdown has little effect on uridylation in the open reading frame  
A. Stacked bar graph showing uridylation patterns in the open reading frame of 

HIST2H2AA3 for control experiment (left) and siTUT3 experiment (right). B. Table 

quantifying the percentage of these reads that are uridylated, and the number of these reads as 

the percentage of the whole sequencing experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   123	  

 

 

  



	   124	  

 

 

CHAPTER 4 

	  
SUMMARY AND CONCLUSIONS 

INTRODUCTION 

 When we first discovered oligouridylation on histone mRNAs, we thought it was a 

degradation-dependent modification of the 3’ end that simulated the oligo(A) stump left after 

deadenylation on bulk mRNAs (Mullen and Marzluff 2008).  This would allow Lsm1-7 to 

bind to the histone mRNA and potentially initiate the same pathway of degradation that 

occurs on polyadenylated mRNAs.   Our deeper look at the 3’ ends of histone message using 

our next-gen sequencing methods revealed that oligouridylation is much more dynamic and 

prevelant in histone mRNA metabolism, associated with multiple steps in histone mRNA 

degradation as well as occurring on molecules that are not undergoing degradation (Slevin et 

al. 2014; Welch et al. 2015).  

 Previous work by our lab implicated a wide variety of factors involved in a number of 

different types of mRNA degradation in histone mRNA degradation; decapping enzymes, the 

exosome, and the Lsm proteins required for normal mRNA degradation are all implicated in 

different steps in histone mRNA degradation (Mullen and Marzluff 2008; Lyons et al. 2013). 

It also requires the main NMD protein Upf1 and No-Go Decay proteins Dom34 and Hbs1 

(Kaygun and Marzluff 2005a; Slevin et al. 2014). Uridylation of the oligoA tail remaining 

after deadenylation of poly(A) mRNAs has also been implicated in mRNA decay in 
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mammalian cells (Lim et al. 2014), suggesting that uridylation has a very broad role in 

mRNA decay.                              

UPF1 MAY BE CRITICAL FOR THE FIRST STEP OF HISTONE mRNA 

DEGRADATION 

 To this point, the role of Upf1 in histone mRNA degradation has been unclear. In a 

recent collaboration, though, our lab showed that Upf1 binds to the 3’ UTR 21 nucleotides 

from the cleavage site (Brooks et al. 2015). My results show an increase in uridylation at this 

point, especially in the TUT4/TUT7 double knockdown 

It is unclear exactly how all of these parts fit together; one explanation is that each 

disparate piece of machinery is involved in a specialized step in degradation of histone 

mRNA. Since histone mRNA is both unique at the 3’ end and tightly cell-cycle regulated, it 

would make sense that it has a very unique and specific mechanism of mRNA decay. 

Another explanation would be that histone mRNA might be degraded by several mechanisms 

at once, with the two ends of the same molecule being degraded simultaneously by different 

pathways, or different molecules being degraded by different pathways.  Thus some might be 

degraded by a mechanism similar to bulk mRNA decay, others by a mechanism similar to No 

Go Decay, and others more by a mechanism similar to NMD. This would make some sense 

from a logistical perspective; the cell must degrade a lot of histone mRNA and it must do it 

quickly at the end of S-phase. Having multiple pathways available to degrade the message 

would certainly be one way to approach that problem. 

The evidence we do have points towards the first model, at least for the initial steps in 

degradation, although it is far from certain. We know that Upf1 is the only NMD factor 

involved in histone mRNA decay (Kaygun and Marzluff 2005a), which suggests that the 
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histone mRNA decay pathway differs from NMD in significant ways. This means that NMD 

itself is not a mechanism by which histone mRNA is degraded. Still, there remains much to 

be uncovered about the role of uridylation, the various factors involved in degradation, and 

the cell’s preference for degradation mechanisms (ie 5’-3’ vs 3’-5’) when it comes to histone 

mRNA. 

The role of oligouridylation and the non-canonical poly(A) polymerases is similarly 

muddled. The meaning of oligouridylation in miRNAs is context dependent; under some 

circumstances TUT7 can add an oligo(U) mark that protects a piece of RNA or promotes 

process and other different circumstances the same enzyme can leave a similar mark that tags 

the RNA for destruction (Kim et al. 2015). TUT3, meanwhile, has been implicated in activity 

all over the cell; oligoadenylating snoRNAs to promote trimming and processing (Berndt et 

al. 2012), polyadenylating rRNA to mark for degradation(Shcherbik et al. 2010), and 

oligoadenylating miRNAs in the cytoplasm (Burns et al. 2011).  

The goal of this thesis is to provide some clarity to both of these subjects by 

providing a greater understanding of the role of oligouridylation in histone mRNA 

metabolism and degradation. I set out to determine both the enzyme responsible for histone 

mRNA oligouridylation, as well as the contribution of these oligo(U) marks to the 

degradation of the histone message. 

TUT7 IS THE PRIMARY TUTASE AT THE 3’ END OF HISTONE mRNA 

 My knockdown and sequencing experiments show three very clear effects that 

implicate TUT7 in the oligouridylation of histone mRNA. The first is that the knockdown of 

TUT7 resulted in a reduction of bulk uridylation of histone mRNA as compared to the 

control sample. The second is that we saw a shift inwards of the position of the mono-and-di-
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uridylations at the 3’ end of steady-state histone message that 3’hExo activity trimmed the 

mRNA further when TUT7 was reduced. When the TUT7 knockdown data is analyzed with 

the hEXO knockdown experiment in mind, it indicates that the absence of TUT7 resulted in a 

slower uridylation response by the cell. This is also supported by the TUT7/hEXO double 

knockdown. Finally, we saw a reduction in the uridylation of the key intermediates in the 

stem loop of histone mRNA associated with degradation in the knockdown cells. These three 

pieces of data taken together implicate TUT7 in the uridylation of histone mRNA at the 3’ 

end.  

 Thus two distinct classes of uridylation were affected by the TUT7 knockdown, the 

uridylation at the 3’ end of the mRNA to maintain the proper mRNA length, and the 

uridylation of the initial degradation intermediate formed by 3’hexo digestion into the stem.  

There is also uridylation of degradation intermediates that have a 3’ end in the open reading 

frame or in the 3’ UTR before the stem-loop. In general, about 10% of these intermediates 

are uridylated and TUT7 knockdown did not affect these intermediates (in fact, nothing we 

did affected these intermediates much, though this is a topic for later discussion).  These 

intermediates (uridylated and not uridylated) were greatly diminished in the TUT7 

knockdown, suggesting that they are formed slowly and then rapidly removed in by the 

exosome, in a step independent of TUT7. 

 In addition to finding that TUT7 affected both the uridylation of the 3’ ends of the 

steady-state and degrading histone mRNAs, we also found that neither TUT3 nor TUT4 had 

much of an effect on either. A TUT4 knockdown by itself had very little effect on the 

uridylation profile of histone mRNA.  However when the two enzymes were codepleted, the 
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effect was more severe than knockdown of TUT7 alone, consistent with the possibility that 

TUT4 could partially compensate for TUT7 when TUT7 was knocked down.  

 I did not run deep sequencing experiments on TUT1, TUT2, TUT5, or the U6 

TUTase. Because TUT1 is unlikely to be involved in histone message metabolism and 

knockdown of the U6 TUTase has been shown to be lethal in HeLa cells, they were not 

considered for deep sequencing in this thesis and are likely poor candidates to pursue in the 

future. Both TUT2 and TUT5 are interesting, however, as TUT2 has been implicated in some 

miRNA processing functions (Heo et al. 2012) and TUT5 is a structural homolog to TUT3, 

that has been very sparsely studied to this point.  

TUT7 AND 3’hEXO FUNCTION TOGETHER TO PROMOTE URIDYLATION AND 

DEGRADATION 

 One of the most interesting and unexpected discoveries in these experiments studying 

the oligouridylation of histone mRNA is that the mono-and-di-uridylations at the 3’ end of 

the message and the oligouridylations that encode for the earliest steps of degradation in the 

stem-loop have entirely different functions, yet are produced by the same enzyme.  

 The mono-and-di-uridylations at the 3’ end of histone mRNA exist at a high level 

(when looking at HIST2H2AA3, they are more prevalent than non-uridylated messages) in 

growing cells. They can be perturbed by both TUT7 knockdown and 3’hEXO knockdowns, 

with the TUT7 knockdown shifting the balance from monouridylations towards diuridylation 

and shorter messages and the 3’hEXO knockdowns resulting in messages with longer 

uridylations and U-tails closer to the 3’ end of the message. Importantly, once degradation is 

initiated by hydroxyurea treatment, these mRNA isoforms exist in the roughly the same 

ratios as in the growing cells, indicating that they are not preferentially degraded once the 
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cell begins to destroy histone message. This implies that they are not potential degradation 

intermediates, nor have they been “primed” for degradation. Instead, they are treated the 

same as unuridylated, mature histone mRNA. 

 My results also indicate that TUT7 is responsible for the uridylation that initiates 

degradation (this turns out to be a bit of a difficult event to define, as it appears that there is a 

general amount of exonucleolytic degradation by 3’hEXO into the stemloop under normal 

conditions as well as the larger actions of the exosome and 5’-3’ degradation machinery to 

more completely degrade the message – as such, when I refer to “initiating degradation” I’m 

referring to initiating those latter steps, and not the degradation done by 3’hEXO), after 

inhibition of DNA replication. When TUT7 is knocked down, this uridylation is reduced, 

although there is still exonucleolytic degradation into the stem. Uridylation at this location in 

the stemloop after HU treatment is also reduced when 3’hEXO is knocked down, likely 

because hEXO is required for partial degradation that opens the message up into the stem-

loop. Presumably, hEXO degrades into the stem-loop, then falls off of the message, allowing 

for TUT7 to add a longer tail that marks the remainder of the mRNA for degradation.  

 Taken together, the two results show us that length and function of an oligo(U) tail on 

histone mRNA is context-dependent. While the cell is growing and the SLBP/3’hEXO 

complex is bound to the stem-loop, TUT7 oligouridylates the message, while hEXO trims it 

back to the appropriate length, three nucleotides beyond the stem. These uridylations 

function to protect the message; by restoring the length of the mRNA, giving 3’hEXO a 

substrate to trim and possibly preventing the exonuclease from prematurely degrading into 

the stem-loop. This maintains the stem-loop/SLBP complex necessary for translation and 

other aspects of histone mRNA life in the cytoplasm. Once degradation is initiated, the 



	   130	  

stability of the 3’ mRNP is reduced and hEXO is able to chew into the stem until it forces 

itself to fall off of the message. Without hEXO present, the tails added by TUT7 are much 

longer than the one-to-two nucleotide tails that we see at the 3’ end, and these tails seem to 

be precursors to the full degradation of the message.  

TUT7 AND 3’hEXO COOPERATE TO ACHIEVE PROPER URIDYLATION OF 

HISTONE mRNA 

Our data suggest that not only do TUT7 and hEXO combine to create this context-

dependent uridylation, but that there is some of feedback between the two proteins that 

impact the function of the other. When hEXO is knocked down, the uridylation of HU-

treated histone mRNA is reduced in the important region 7-12 nucleotides from the cleavage 

site as a percentage of total reads in the region. This is an unexpected result; in the 3’hEXO 

knockout mice, these intermediates don’t exist because hEXO is not present to degrade 

further into the stem-loop (Hoefig et al. 2012). In the knockdown (as opposed to knockout) 

cells, there’s less degradation by 3’hEXO into the stem, but I expected to find the messages 

that were degraded that far back would be uridylated normally. The fact that they are not is 

an indication that there may be some sort of interaction or regulation between the two 

enzymes that further their contribution to histone mRNA metabolism. 

        Similarly, in the 3’hExo knockdown cells the uridylations at the 3’ end of the mRNA 

often extend longer than 1 or 2 nts, suggesting that TUT7 may normally add slightly longer 

tails which are then trimmed back by 3’hExo to maintain the proper length at the 3’ end of 

histone mRNA.  Given these pieces of data, one could imagine TUT7 and 3’Hexo might 

function together to both digest and uridylate their targets.   
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IS THERE A ROLE FOR TUT3 IN HISTONE mRNA METABOLISM ? 

 While the role of TUT7 was relatively clear from our sequencing, the role of TUT3 

was much less apparent. Instead of a shift of the pattern of uridylation or a global decrease in 

uridlyated message, we saw an increase of the degradation intermediates that were chewed 

back into the stem-loop and uridylated, similar to what we previously reported in the Pm/Scl-

100 knockdown (Slevin et al. 2014). The connection to the exosome was not entirely 

unexpected, since TUT3 is a human Trf4 analogue and Trf4 is part of the TRAMP complex 

that targets messages to the exosome in yeast.  

 Nothing in our results ties TUT3’s function to the cytoplasm, though. We discovered 

and analyzed an interaction between the enzyme and SLBP, but SLBP’s involvement and 

function in histone mRNA metabolism is not limited by cellular localization. The exosome 

component most studied by our lab and the one that has knockdown sequencing results that 

resemble the TUT3 knockdown sequencing experiment, Pm-Scl100, is part of both the 

nuclear and cytoplasmic exosome.  

 This raises the possibility that the reason we’re not seeing a change in 

oligouridylation or oligoadenylation (as you might expect with TUT3, given its currently 

documented activities (Rammelt et al. 2011)) is because our deep sequencing approach is 

targeting the wrong region of histone message. If TUT3 is indeed involved in some sort of 

nuclear surveillance, it would stand to reason that it affects unprocessed targets. Our current 

approach places histone primers ~150 nucleotides upstream of the 3’ cleavage point and is 

optimized to amplify cDNA fragments of approximately this length. In each experiment, 

however, we see a statistically insignificant number of unprocessed reads. While it is difficult 

to draw conclusions from these reads, it may be possible to move our primer closer to the 
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stop codon or cleavage point in the hopes of amplifying these unprocessed messages. Since 

SLBP knockdown results in an increase in unprocessed message retained in the nucleus, it 

may also be possible to couple this with a TUT3 knockdown to gain a better understanding of 

how this works. 

THE MECHANISM OF DEGRADATION FOR INTERMEDIATES IN THE OPEN 

READING FRAME REMAINS UNKNOWN 

 In every experiment we did, the uridylation of degradation intermediates in the open 

reading frame remained unperturbed; remaining at about 10% of these molecules. There are a 

number of questions about these intermediates that are not immediately easy to answer. Our 

working model for these intermediates has always been that they have been partially 

degraded by the exosome, which then stalled out when it contacted a ribosome. Once the 

ribosome is removed, the messages are re-uridylated and then fully degraded. If the 

assumption is that these messages are treated like normal mRNAs at this point, other 

published work indicates that the uridylation should come from either TUT7 or TUT4, but 

our results thus far do not support this possibility, although we cannot rule out that the TUT4 

knockdwon was not sufficient to reduce the activity of that enzyme enough to have an effect 

on these RNAs.    

 It is worth reconsidering this model some in light of the information that Dom 34 and 

Hbs1 are involved in histone message decay (Slevin et al. 2014). In yeast, the model of No-

Go Decay involves Dom 34 and Hbs1 dissociating the ribosome, followed by an 

endonucleolytic cleavage and degradation of the resulting messages. It seems possible that 

the same thing is happening in histone message; that our reads in the open reading frame are 

not a result of partial degradation, but rather cleavage after the dissociation of the ribosome.  
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It’s not clear why these messages would be differently uridylated under either 

circumstance; all evidence we have points to these sorts of messages being degraded 

normally. They no longer have a stem-loop, which eliminates the histone mRNP, and so they 

should be treated like normal untailed messages, which would be uridylated by TUT7 and 

TUT4. It is possible that if they are treated like normal messages, that a more complete 

knockdown is needed to fully detect a change in uridylation levels. 

SORTING OUT RELATIVE CONTRIBUTIONS OF 5’-3’ AND 3’-5’ 

DEGRADATION 

One thing that EnD-Seq/AppEND is currently unable to sort out is the question of 3’-

5’ degradation vs. 5’-3’ degradation. Because our primers target the 3’ end of the histone 

message specifically, there’s no way to know what the 5’ end of the message looks like.  An 

mRNA which appears intact on the 3’ end might be undergoing degradation from the 5’ end. 

Finally the amounts of different intermediates present will depend on the relative rates of 5’ 

to 3’ and 3’ to 5’ degradation.  Two earlier published studies from the lab have given us 

some insight into this, but the question looms large. In our lab’s first look at uridylation in 

2008, treating the RNA from HeLa cells with a decapping enzyme before circular PCR to 

look at both the 3’ and 5’ ends of actively degrading RNA showed that some mRNA 

molecules can be simultaneously degraded in both directions (Mullen and Marzluff 2008). In 

our second paper on uridylation we showed that messages that were immunopreciptated with 

a 7-methylguanosine antibody are uridylated in a pattern similar to normal histone mRNAs, 

indicating that these molecules had undergone partial 3’ to 5’ degradation but still contained 

a cap.  
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Still, the nature of our sequencing method makes it impossible to determine if the 

tails we see in the stem-loop are precursors for Lsm1-7 binding and decapping, or to prime 

the exosome for degradation. Knockdown of exosome components has a greater effect on 

degradation than knockdown of XRN1, the 5’ to 3’ exonuclease (Mullen and Marzluff 2008), 

consistent with 3’ to 5’ degradation being an important pathway.  Also, in the 3’hExo 

knockdown, uridylated RNAs accumulate after inhibition of DNA replication and aren’t 

subject to decapping.  One clue may be found in the length of the oligo(U) tails. The 

SLBP/Lsm complex is not capable of binding to a tail made of five uridines, but the binding 

is much stronger with 10 nucleotide tails (Lyons et al. 2013). In our sequencing results, we 

find that the tails on HIST2H2AA3 peak at five nucleotides and decline precipitously after 

this. It’s possible that the reason for this is that any tail longer than five nucleotides is being 

bound by the Lsm complex, quickly degraded, thus it cannot be detected by sequencing. 

Similarly, the other uridylated intermediates further into the 3’ UTR and ORF do not have 

tails that approach that length, so these shorter tails may simply function to prime for the 

exosome.  

This is all speculation, of course. The only way to truly answer this question would be 

to design a sequencing method capable of sequencing the entire histone mRNA. Because 

histone genes tend to be of relatively smaller size (HIST2H2AA3 is about 400 nucleotides), 

both in the coding sequence and in the UTR, this is possible. We’ve done some very 

preliminary work with the TeloPrime kit from Lexogen that utilizes a specific 5’ ligation for 

capped RNAs and had some success amplifying a full histone gene, from the 5’ cap all the 

way to the 3’ end. This would give us a much more reliable way to ensure that we are only 

sequencing capped intermediates than the cap IP that we’ve previously done, and by doing 
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that we may be able to separate some of the different pathways of degradation out from each 

other.  

It may also be worthwhile to do a larger study in Drosophila, as flies have a large 

number of oligoadenylations in addition to oligouridylations. It’s possible that the 

oligoadenylations might represent RNA marked for a different mechanism than the 

oligouridylation that appears as all oligouridylations in human cells.  

FINAL CONCLUSIONS 

The work in this thesis accomplishes several goals. It gives a new, more detailed 

model for the oligouridylation of histone mRNA, both as it applies to the message in its 

steady state and as it’s being degraded. It also points to some future directions for both the 

study of the oligouridylation of histone mRNA and the study of the degradation of the 

message.  

Our knockdown and sequencing studies of TUT7 and 3’hEXO in Chapter 2 establish 

TUT7 as the main enzyme that uridylates histone mRNA, both at a steady state and during 

degradation. They also indicate that the utility of the uridylation is determined by context; at 

steady state, 3’hEXO is part of the histone mRNP with SLBP, and TUT7 uridylates to restore 

the length of the message to prevent hEXO from trimming too far into the stem and 

destroying the equilibrium of the histone mRNP. Once degradation begins, that equilibrium 

is disturbed by some unknown factor, and hEXO trims further into the stem. Once hEXO 

trims into the stem, existing structure data tells us that it likely falls off of the stem. TUT7 

continues to uridylate, but without hEXO to trim, the tail is considerably longer. This longer 

tail initiates the full degradation of the message, both via the exosome and the 5’-3’ 

decapping pathway in a balance that is as yet undetermined.  
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In Chapter 3, we focus on the other TUTases. TUT1 is likely not involved in histone 

mRNA metabolism, as we initially speculated, but TUT3 seems very likely to have some role 

in the life of histone message, even if it is not directly involved in degradation. We show an 

in vitro interaction between SLBP and TUT3 and a knockdown and sequencing experiment 

that resembles a pattern previously published from an exosome component, More work needs 

to be done to firmly establish TUT3’s localization, especially as it relates to histone mRNA. 

This leaves several avenues for future studies. There is still work to be done to fully 

understand the roles of the exosome, the balance between it and the 5’-3’ degradation 

pathway, the true role of the uridylation that begins degradation, how the degradation 

intermediates in the UTR (beyond the stem-loop) and the ORF are formed, the role of Upf1, 

and the role of the no-go decay proteins Dom34 and Hbs1. EnD-Seq and AppEND are very 

powerful tools that can help achieve this, with a combination of knockdowns, CRISPR 

knockouts, and model organism studies in Drosophila.  

The question of TUT3 also remains; the enzyme has ties to the nuclear exosome and 

the exosome is tied to histone message degradation, but there’s no real known role for the 

nuclear exosome during histone mRNA metabolism at this point. This obviously does not 

mean that a role cannot exist, but there is a lot of work left to be done to connect these dots.
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Table 1. siRNA sequences used to target 3’hEXO and TUTases of interest 
All siRNAs are targeted to the open reading frame of the genes in question (except the C2 

control siRNA) and were generated by Dharmacon with either dTdT or UU overhangs.  
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siRNA	   Sequence	   Source	  

C2	   5’-‐GGUCCGGCUCCCCCAAAUG-‐3’	  	  
	  (EJ	  Wagner	  and	  Garcia-‐
Blanco	  2002)	  

TUT3	   5’-‐GGACGACACUUCAAUUAUU-‐3’	  
	  (Mullen	  and	  Marzluff	  
2008)	  

TUT4	   5'-‐CAGCAAAAGCAGUGAAAUA-‐3'	   This	  paper	  

TUT7	   5’-‐GAAAAGAGGCACAAGAAAA-‐3'	  
	  (Mullen	  and	  Marzluff	  
2008)	  

3'hEXO	   5’-‐UUACGAAUGGCUGUAUUAA-‐3'	  
	  (Mullen	  and	  Marzluff	  
2008)	  
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Table 2. Important linker and primer sequences for EnD-Seq/AppEND 
All sequences here originally reported in (Slevin et al. 2014). The off-set sequence for the P7 

second round primer is a variable Illumina indexing sequence and changes from sample to 

sample. 
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Preadenylated	  Linker	   5'	  Ap-‐CTGTAGGCACCATCAATCTCACTCCG-‐NH2-‐3'	  
RT	  Primer	  (linker	  
compliment)	   5'-‐CGGAGTGAGATTGATGGTGCCTACAG-‐3'	  

	  	   	  	  

Round	  1	  primers	   	  	  

V1.5-‐N5-‐RT	  Primer	   5'	  GGTTCAGAGTTCTACAGTCCGACGATC-‐NNNN-‐CGGAGTGAGATTGATGGTGCCTACAG-‐3'	  

Reverse	  N5	  Consensus	  H2A	   5'	  GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-‐NNNNN-‐CTGGCGGGCAACGCGGC-‐3'	  

Reverse	  N5	  Consensus	  H2B	   5'	  GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-‐NNNNN-‐GGTCCACCCCGACACCGGCATCT-‐3'	  

	  	   	  	  

Round	  2	  primers	   	  	  

P5-‐V1.5	   5'	  AATGATACGGCGACCACCGAGATCTACAC-‐CGACAGGTTCAGAGTTCTACAGTCCGAC-‐3'	  

P7-‐Reverse-‐Index-‐Reverse	  
5'	  CAAGCAGAAGACGGCATACGAGAT-‐CGTGAT	  
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-‐3'	  
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Table 3. shRNA sequences used to target TUT1 isoforms 
These sequences were flanked with hairpin sequences for cloning into the pLKO vector for 

use in lentiviruses, as the UNC lentivirus database did not include TUT1 isoform specific 

lentiviruses.  
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shRNA	   Sequence	   Source	  
TUT1A	   5'GGCCAAAGACCUUAGGAGAGA-‐3'	   This	  paper	  
TUT1B	   5'-‐AGGACAAAGAGGAGAUGAAGA-‐3'	   This	  paper	  
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