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ABSTRACT 
 

LYDIA MARIE BARRIGAN: Immune evasion strategies utilized by Francisella tularensis 
(Under the direction of Jeffrey Frelinger) 

 
Francisella tularensis is a highly pathogenic, gram-negative, facultative intracellular 

bacterium and the causative agent of tularemia.  Francisella has evolved numerous 

mechanisms to evade host immune responses.  One immune evasion mechanism utilized by 

Francisella is its ability to induce prostaglandin E2 (PGE2) secretion from infected host cells.  

We identified 20 Francisella genes necessary for the induction of PGE2 secretion in infected 

host cells.  One of the genes necessary for PGE2 induction encodes a highly conserved 

AAA+ ATPase chaperone protein, ClpB.  F. tularensis live vaccine strain (LVS) clpB is 

attenuated in vivo, despite normal intracellular growth in vitro.  LVS clpB fails to inhibit pro-

inflammatory cytokine responses in the lung early after inoculation, a process normally 

inhibited by LVS.  The adaptive immune response is also altered compared to LVS with 

increased IFN-γ or IL-17A production by T cells.  Although LVS clpB is attenuated, it 

induces an immune response that is as protective as LVS following lethal challenge 

indicating clpB is a potential target for vaccine development.  Although the primary immune 

response is altered during LVS clpB infection, there are no differences in the secondary 

immune response to LVS.  The primary immune response to LVS requires IFN-γ and IL-17A 

production to control bacterial replication.  Few Th17 cells were identified during the 

secondary response in the lung whereas there were numerous CD4+ and CD8+ T cells 
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producing IFN-γ.  IFN-γ production is required for controlling bacterial replication 

during the secondary response, but IL-17A production is dispensable for survival during re-

infection.   

 Francisella also evades host immunity by targeting innate immune cells for infection.  

Francisella infects different cell types in the lung depending on the route of inoculation; 

alveolar macrophages are infected following intranasal inoculation while interstitial 

macrophages and neutrophils are infected in the lung after intradermal inoculation.  The 

lung’s cytokine milieu is more pro-inflammatory after intradermal inoculation compared to 

intranasal inoculation, consistent with the development of a more robust IFN-γ mediated 

adaptive immune response.  A better understanding of the mechanisms of Francisella 

infection will not only result in understanding important concepts in pathogenesis, but will 

suggest key pathways to impact for the development of drugs and vaccines.  
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CHAPTER 1 

INTRODUCTION 

 

Discovery of Francisella  

In 1911, George McCoy described a plague-like disease in ground squirrels in Tulare 

County California (1).  By 1912, McCoy and Chapin had isolated a gram-negative 

coccobacillus as the causative agent of this plague-like disease and named it Bacterium 

tularense (2).  Wherry and Lamb were the first to isolate Bacterium tularense in 1914 from a 

man’s conjunctival ulcer (3).  In subsequent years, Edward Francis of the Public Health 

Service extensively studied Bacterium tularense and named the disease caused by Bacterium 

tularense tularemia (4).  During Francis’s studies, it became clear to him that Bacterium 

tularense was also the causative agent rabbit fever, deer fly fever, tick fever and lemming 

fever.  Francis determined Bacterium tularense was transmitted to humans via the bite of an 

infected insect or by handling infected animal carcasses after hunting (4).  Indeed, many of 

the early cases described by Francis were farmers who had been bitten by an infected insect.  

Laboratory workers were also at risk for contracting tularemia; Francis is reported to have 

contracted tularemia on four separate occasions (4, 5).  In a lecture given by Francis in 1927, 

he claimed tularemia was, “elucidated from beginning to end by American investigators 

alone” (5).  While early studies of Bacterium tularense were conducted by researchers within 

the Public Health Service, it is clear now that tularemia was not a disease confined to the 

U.S.  Francis serologically confirmed 3 cases of human tularemia in Japan in 1925 and there 



 
 

are earlier reports from Japan and Europe of symptoms consistent with tularemia (6, 

7). In the 1920’s Bacterium tularense was designated Pasteurella tularensis, but DNA 

hybridization studies performed by Ritter and Gerloff in 1966 indicated the bacteria were not 

closely related to Pasteurella (8).  Ritter and Gerloff’s data supported earlier groups’ work 

that certain species within the Pasteurella genus were more closely related to one another 

than to other species within the genus (9, 10).  In honor of Francis’s many contributions to 

the understanding tularemia, Pasteurella tularensis was renamed Francisella tularensis.  To 

date, Francisella remains the only genus within the family Francisellaceae (11).         

Commonly studied Francisella laboratory strains 

There are three closely related strains of Francisella that differ in pathogenicity in 

both humans and mice.  A summary of the properties of the three commonly used 

Francisella strains is shown in table 1.  The most virulent strain is F. tularensis subspecies 

(subsp.) tularensis (SchuS4).  SchuS4 has an infectious dose of 10 bacteria in humans and 

the LD100 for all inoculation routes in C57Bl/6J or BALB/c mice less than 10 colony forming 

units (CFU) (12-14).  Mice inoculated with SchuS4 succumb to infection within 5 days.  F. 

tularensis subsp. tularensis is typically found in Northern America and is classified as a Type 

A strain (15).  Type A strains can be further broken down into two clades- A1 and A2.  Clade 

A1 is found  in the eastern U.S. and California while clade A2 is predominately found in the 

western half of the U.S. (16).  The A1 clade is further broken down into A1a and A1b based 

on the genotypes of human and animal isolates using pulsed field gel electrophoresis (17).  

Epidemiologic analysis revealed infection with clade A1b causes more severe disease (24% 

mortality) than A1a (4%) or A2 (0%) (17).  It is important to note, however, that the data set 
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could be biased because isolates are more likely to be collected from severe cases of 

tularemia.             

F. tularensis subsp. holartica is a Type B strain widely distributed in Asia, Europe, 

and North America and is less virulent in mice and man compared to Type A strains (16, 18).  

The commonly used Type B laboratory strain is F. tularensis subsp. holartica (live vaccine 

strain (LVS)) (15).  The inoculation route dictates the LD50 in mice for LVS.  For intranasal 

inoculations, the LD50 is 103 CFU whereas intradermal inoculation has an LD50 of 106 CFU 

(19-21).  The infectious dose in humans has not been explicitly tested, but 90 % of humans 

given a respiratory LVS vaccine with 104 organisms developed detectable antibody titers and 

59% required no treatment during a SchuS4 challenge (22).       

The inclusion of F. novicida as a F. tularensis subspecies is controversial (23-25).  F. 

novicida (U112) is considered a separate species from Francisella tularensis due to, 

“differences in phenotype including chemotaxonomic markers, distinct ecological roles, 

different clinical and epidemiological characteristics, and differing abilities and modes of 

invasion and mechanisms of tissue damage in mammals” (23).  Huber, et al. argues that 

DNA-DNA hybridization studies and 16S rRNA and recA sequencing indicates F. novicida 

should be a subspecies within the F. tularensis species (25).  Because F. novicida has not 

been officially recognized as a subspecies, it will be referred to as a separate species here.  F. 

novicida is found in Australia and North America and is avirulent in immunocompetent 

humans (26).  In mice, however, it is highly pathogenic with infectious doses (intranasal 

LD50 approximately 10 CFU; intradermal LD50 2.4x103 CFU) and a disease course similar to 

SchuS4 (27, 28).      
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Francisella genome properties 

Despite vast differences in virulence within mouse and man, the genomes of SchuS4, 

LVS, and U112 are highly similar with >97% sequence identity (SchuS4 accession number 

NC 006570, LVS accession number NC 007880, U112 accession number NC  008601).  

Despite the high degree of sequence identity between Type A strains (SchuS4) and type B 

strains (LVS), the chromosomes are extensively rearranged compared to one another (29).  

Type A strains also demonstrate gene rearrangement compared to one another while there is 

no observed rearrangement observed between two different Type B strains (29).  The 

Francisella species’ and subspecies’ chromosome contains approximately 1.9 Mb, encodes 

about 1,700 genes, and has a low % G+C content (32%) (30, 31).  Basic genome properties 

for all three strains are summarized in table 1.  Nearly one-third of all Francisella open 

reading frames encode hypothetical proteins of unknown function (30).  F. novicida has very 

few pseudogenes (14), which may not encode functional proteins, compared to both Type A 

and Type B strains (303 and 254, respectively) (30).  The large number of pseudogenes in 

Type A and Type B strains suggests these genomes are deteriorating while F. novicida’s 

genome is intact (30).  A highly conserved region of Francisella’s chromosome between 

species and subspecies is the Francisella pathogenicity island (FPI).  The FPI encodes 19 

genes and was originally identified because of its reduced %G+C content.  Type A and Type 

B strains have two nearly identical copies of the FPI, while F. novicida only has one.  

Another difference between strains is that SchuS4 and U112 contain anmK and pdpD, while 

these genes are absent in LVS (32).  While the presence of only one FPI copy in F. novicida 

may explain its decreased virulence in humans, this strain is still highly virulent in mice.  

Both copies of FPI genes seem to be functionally redundant because deletion or transposon 
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insertion does not impact virulence; attenuation only occurs when both copies are deleted 

(33-37).  As the name suggests, the FPI is required for Francisella virulence.  The role of the 

FPI during infection will be discussed in a later section.            

Tularemia 

Individuals can contact tularemia in a variety of different ways including inhalation, 

direct contact of infected tissue through a cut in the skin, a bite from an infected arthropod 

vector, or ingesting contaminated food or water.  Tularemia has an incubation period of 3-6 

days and is sometimes difficult to diagnose because of the non-specific symptoms, such as: 

malaise, fever, chills, cough, myalgias, and headache (18, 38, 39).  Ulceroglandular tularemia 

is the most common type of tularemia (90% of cases) and presents with an ulcer, the location 

of which can help determine how the patients contracted the disease (39).  Ulceroglandular 

patients have swollen lymph nodes that are painful to the touch (40).  When an ulcer cannot 

be found, the patient has glandular tularemia (41).  In rare cases, individuals can become 

infected through the conjunctiva and develop oculoglandular tularemia.  Clinical symptoms 

of oculoglandular tularemia include swollen eyelids, ocular erythema, excessive lacrimation, 

and pain (38, 41).  Another rare form of tularemia is oropharyngeal which is caused by 

ingesting contaminated food or water.  Patients present with ulcerative-exudative stomatitis, 

pharyngitis, and swelling of the regional lymph nodes (38, 41).  Occasionally, there are 

outbreaks of oropharyngeal tularemia where contaminated water is typically found to be the 

source of Francisella (42-45).   

The most severe form of tularemia is the pneumonic form that occurs when 

Francisella is inhaled.  Individuals can contract pneumonic tularemia when working with 

hay on a farm or working as a landscaper.  In fact, several of the early cases of tularemia 
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described by Francis were men working on the farm (4).  There is also the risk of aerosol 

exposure during a bioterrorism attack.  Patients with pneumonic tularemia have symptoms 

generally associated with pneumonia- fever, headache, sore throat, cough, malaise, and 

increased respiratory rate (38, 41).  Chest x-rays are typically un-informative because they 

are similar to x-rays from patients with tuberculosis, lymphoma, or pneumococcal 

pneumonia (38, 41, 46).  Pneumonic tularemia can also be caused by bacterial dissemination 

from distal sites and lung pathology is found in approximately 30% of ulceroglandular 

tularemia patients (39).  Before the advent of antibiotics, between 30-60% of individuals with 

pneumonic tularemia caused by a Type A strain would die (41).  Today, the mortality rate is 

less than 2% (47).  To treat tularemia, streptomycin is the first drug of choice, although 

gentamicin is an acceptable alternative treatment (47).  β-lactam antibiotics are ineffective 

because Francisella encodes a β-lactamase (48).                   

Francisella as a Bioterrorism Threat  

Within a few decades of Francisella’s discovery in California, it became clear this 

bacterium could be used in a bioweapon.  Francisella was tested on prisoners by Japanese 

scientists led by Ishii Shiro and Kitano Misaji in Manchuria starting in 1932 and continuing 

until 1945 (49).  Experiments involving Francisella and other potential bioweapon agents 

were conducted at a research facility called Unit 731 that employed more than 3000 

researchers (49).  Also during World War II, tularemia outbreaks affected German and Soviet 

Union soldiers.  Ken Alibeck, a bioweapons scientist from the former Soviet Union, has 

suggested those outbreaks were intentional (50).  The United States began an offensive 

bioweapon program in 1942 with assistance from Shiro and Misaji who received immunity in 

exchange for disclosing information regarding their work in Unit 731 (51-53).  In the 1950’s, 
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volunteers were exposed to Francisella aerosols in Fort Detrick, Maryland to determine 

human susceptibility and to test potential vaccines and therapies (51).  Francisella was one 

of 7 agents weaponized by the United States (51).  In 1975, the United Nations held the 

Convention on the Prohibition of the Development, Production, and Stockpiling of 

Bacteriological (Biological) and Toxin Weapons and on Their Destruction (BWC) went into 

effect (54).  This treaty prohibited signatories from developing or stockpiling pathogens or 

toxins, “of types and in quantities that have no justification for prophylactic, protective, or 

other peaceful purposes” (55).  All U.S. offensive biological weapons programs were ended 

by President Nixon’s executive orders in 1969 and 1970 and all stocks were destroyed 

between 1971 and 1973 (51, 56).  Despite the Soviet Union acting as a signatory to the 1972 

BWC treaty, Ken Alibeck claims the Soviet Union continued to stockpile Francisella, 

engineered to be antibiotic resistant, until the 1990’s (50).                                 

The use of Francisella as the infectious agent in a bioweapon would have devastating 

consequences.  F. tularensis subsp. tularensis has a low infectious dose; as few as 10 

organisms can cause severe disease in humans via either cutaneous or aerosol exposure (12, 

13).  Pneumonic tularemia is the most severe form of disease with high rates of fatality if left 

untreated (57).  Therefore, aerosolization of Francisella has the potential to expose a large 

number of individuals via the most virulent route.  A World Health Organization (WHO) 

committee estimated in 1969 that aerosolization of 50 kilograms of F. tularensis over a 

metropolitan area with a population of 5 million people would result in 250,000 

incapacitating casualties and 19,000 deaths (58).  One risk noted by the WHO as problematic 

with Francisella was the ability of tularemia outbreaks to persist for weeks, even months, 

after the initial attack (58).  Using the model devised by the WHO, the Centers for Disease 
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Control and Prevention (CDC) estimated that such an attack would cost society $5.4 billion 

per 100,000 people exposed (59).  Because of its low infectious dose, ease of aerosolization, 

ability to persist in the environment, and high rates of morbidity and mortality, F. tularensis 

subsp. tularensis is classified as a Tier 1 Select Agent by the U.S. government.  Because F. 

tularensis subsp. holartica LVS and F. novicida have been shown to not cause severe disease 

in man, the CDC has exempted these strains from the regulations governing select agent use.   

Intracellular lifestyle of Francisella 

Francisella is a facultative intracellular pathogen that can infect a wide variety of 

hosts including amoeba, arthropod vectors, and mammals.  One inside the host, Francisella 

targets a variety of cell types for infection.  Experiments with human cell lines found 

Francisella is taken into host cells by looping phagocytosis (60).  Serum opsonization 

enhances phagocytosis of Francisella and in the absence of opsonization, the mannose 

receptor can mediate uptake of bacteria (60-64).  Complement receptor 3 (CR3), Fcγ 

receptors, scavenger receptor class A, nucleolin, and lung surfactant protein A also mediate 

uptake of Francisella in mouse and human macrophages, dendritic cells, and neutrophils (62-

70).  Opsonization of SchuS4 by human C3 increases bacterial uptake into human monocyte-

derived macrophages (hMDMs) via CR3 (64).  Importantly, C3-mediated SchuS4 uptake 

does not lead to efficient NF-κB activation or elicit a pro-inflammatory response by hMDMs 

like C3-independent uptake does (64).  C3-mediated uptake of U112 into hMDMs does elicit 

a pro-inflammatory cytokine response which could partially explain why U112 is non-

pathogenic in immunocompetent humans (64).  The lack of pro-inflammatory cytokines after 

C3-mediated SchuS4 uptake is not due to bacterial factors because C3-dependent uptake of 

paraformaldehyde-fixed SchuS4 does not lead to phosphorylation of ERK whereas C3-
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independent uptake of fixed SchuS4 does (64).  Dai, et al. proposes that C3-mediated uptake 

results in a signaling cascade that negatively regulates TLR2 activation (64).  C3-mediated 

uptake is advantageous for SchuS4 because it gains entry to the host cell, but does so in a 

“silent” fashion.                

Once inside the host cell, Francisella escapes the phagosome to avoid degradation.  

The Francisella-containing phagosome does undergo portions of the normal phagosome 

maturation process (reviewed in (71)).  Several groups have characterized Francisella’s fate 

upon phagocytosis.  Because the groups used different Francisella strains, cell lines, and 

microscopy techniques, the timing of events vary; however, broad and consistent themes 

emerged.  Francisella resides in a phagosome for up to 4 hours post-infection.  During this 

time, the phagosome fuses with early endosomes (marked by EEA1) and then late endosomes 

(marked by CD63, LAMP1/2, and Rab7 GTPase) (61, 72-77).  Francisella-containing 

phagosomes do not fully mature into phagolysosomes because they never acquire cathepsin 

D (61, 72, 75, 78).  Whether or not the Francisella-containing phagosome becomes acidified 

is not clear.  Two groups have shown limited vacuolar ATPase accumulation on LVS- or 

Schus4-containing vacuoles in J774.1 and human macrophages (61, 72, 79).  Two other 

groups have found U112- or SchuS4-containing vacuoles to contain vacuolar ATPases and 

blocking acidification delayed disruption of the phagosomal membrane and consequently 

bacterial escape (73, 76).  The disparate results by these two groups may be a consequence of 

the mechanism of bacterial uptake.  Acidification did not occur when cells were infected with 

serum opsonized bacteria but did occur when non-opsonized bacteria were used.  Further 

experiments are necessary to clarify whether acidification occurs prior to Francisella’s 

escape from the phagosome. 
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Francisella has completely escaped the phagosome within 4-8 hours post-infection 

and grows in the cytosol.  In vitro and in vivo screens have identified Francisella genes 

necessary for growth and virulence (80-92).  However, it is difficult to separate a failure to 

escape the phagosome from a failure to grow intracellularly because growth requires the 

bacteria to escape the phagosome.  Therefore, additional experiments examining intracellular 

trafficking of mutants can determine whether a gene is critical for escaping the phagosome or 

for intracellular growth.  The ability of several Francisella mutants to escape the phagosome 

has been determined by microscopy.  The best characterized mutant is iglC.  Several groups, 

including our own, have found that iglC is required for Francisella to escape the phagosome 

(36, 73, 93-95).  DotU, IglG, IglI, PdpA, PdpC, and VgrG are other FPI proteins necessary 

for phagosomal escape (95-101).  IglD is required for LVS to escape the phagosome but not 

U112 (36, 102).  MglA, FevR, and MigR are also required for phagosomal escape (36, 94, 

103, 104).  Because these proteins all regulate FPI expression, it is unlikely they directly 

disrupt the phagosomal membrane but instead drive expression of proteins that do.  Outside 

of the FPI or regulators thereof, FTT0383, FTT1103, FTT1676, and carA are required for 

phagosomal escape (86, 91, 105).  U112 acpABC and hap have been shown to be required 

for phagosomal escape; however, other groups have found them dispensable in both SchuS4 

and U112 (104, 106-108).  Additional experiments are required to resolve these differing 

results.   

As stated before, many screens have identified genes necessary for Francisella to 

grow intracellularly.  Several mutations have been well characterized and have shown a 

dissociation between intracellular growth and escape from the phagosome, i.e. Francisella 

mutants can escape the phagosome but cannot replicate in the cytosol.  One such example is 
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ripA (109). LVS ripA escaped the phagosome at the same frequency as wild-type but once in 

the cytosol, did not replicate (109).  Other well characterized examples are: FTT0369c, gtt, 

and purMCD (90, 91, 110).  Two things are necessary to further characterize the genes 

necessary for phagosomal escape or intracellular growth.  First, in-frame deletion strains 

must be made to confirm the requirement of genes identified from transposon mutant screens.  

It is possible that polar effects could alter downstream gene transcription and the construction 

of in-frame deletion strains will avoid that potential issue.  Second, phagosomal trafficking 

needs to be determined for each clean deletion strain to determine whether a gene is required 

for escape or for growth.  These studies are important for our understanding of Francisella 

pathogenesis since escape and intracellular growth are required for virulence.                                    

Francisella replicates in the cytosol of host cells until approximately 24 hours post-

inoculation until the host cell lyses and bacteria are released or the bacteria are surrounded by 

a double-membrane structure termed the Francisella-containing vacuole (FCV).  The FCV is 

marked by LAMP-1 and cathepsin D indicating fusion with endosomal and lysosomal 

vacuoles and by autophagosome markers dansylcadaverin and LC3 (77).  Despite the 

presence of lysosomal components, bacteria within the FCV remain intact and do not appear 

to become damaged (77, 111).  Strains that fail to replicate intracellularly (dipA, purMCD) 

are found in autophagic-vacuoles, but these strains are destroyed indicating wild-type 

bacteria prevent destruction by an undefined mechanism (111).  Clemens and Horwitz did 

not observe autophagic vacuoles in human monocyte-derived macrophages or THP-1 cells 

following SchuS4 inoculation (112).  They attributed the difference in the formation of 

autophagic vacuoles to the use of human versus mouse macrophages.  More recently, 

however, Chong, et al. found autophagic vacuoles did form in human macrophages (111).  It 
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is possible that the formation of autophagic vacuoles is dependent on the culture conditions.  

Autophagy is used by the host to control other intracellular infections such as Salmonella, 

Listeria, or Streptococcus (113-115).  In the case of these intracellular pathogens the 

autophagic vacuole forms early after infection; however, Francisella isn’t found in the FCV 

until 20 hours post-inoculation (77).  Because the FCV forms late in infection and doesn’t 

result in bacterial destruction, its formation could be utilized by Francisella to leave the host 

cell if the host cell does lyse.                                       

Francisella pathogenicity island  

Pathogenicity islands are regions of bacterial chromosomes that encode proteins 

necessary for virulence (reviewed in (116)).  The FPI is a 33 kb region that encodes 16-19 

open reading frames that are highly conserved between Francisella species and subspecies.  

Nano, et al. first identified the FPI in 2004 by examining partially sequenced Francisella 

genomes (32).  Even before the identification of the FPI in 2004, genes within the FPI had 

already been identified as necessary for Francisella virulence (117).  Since the initial 

characterization of the FPI, numerous studies have been conducted examining the 

requirement of genes within the pathogenicity for intracellular growth, phagosomoal escape, 

cytopathogenicity, and virulence in mice and Drosophila (see Table 2 in (118)).  All FPI 

genes have been tested for their requirement for intracellular growth and only pdpC, pdpD, 

pdpE, and amnK are dispensable for intracellular growth (118).  These four genes are also 

dispensable for virulence in Drosophila (118).  The only FPI gene not required for virulence 

in mice is pdpE (118).  Not all FPI genes have been tested for their requirement for 

phagosomal escape or cytopathogenicity but of the genes tested, pdpE is dispensable for both 

properties, while iglG is not required for phagosomal escape and iglA is not required 
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cytopathogenicity (118).  Of all genes within the FPI, only pdpE is dispensable for all aspects 

of Francisella virulence.  Further studies are necessary to define the requirement of remaining 

FPI genes for phagosomal escape and cytopathogenicity.  It is clear, however, that the FPI is 

required for Francisella to grow in its intracellular niche and to cause disease in mice.   

Type six secretion system encoded by the Francisella pathogenicity island  

Genes within the FPI share limited homology with genes encoding type six secretion 

systems (T6SS) first discovered in Vibrio cholerae (97, 100, 119-122).  The FPI is a distant 

relative of all other identified T6SS (123).  The core components of T6SS are (V. cholerae 

annotation): ClpV, DotU, Hcp, IcmF, VipA, VipB, and VgrG (118).  The most conserved 

components of the FPI are IglA, IglB, DotU, and VgrG which are homologous to V. cholerae 

VipA, VipB, DotU, and VgrG, respectively (120, 124).  Interaction between IglA and IglB 

depends on a highly conserved IglA α-helix (124).  Based on homology with other T6SS, 

IglA and IglB are hypothesized to form a transmembrane structure capable of mediating the 

transport of effector proteins into the host cell; this hypothesis still needs to be directly tested 

in Francisella (125, 126).  DotU is required for functional T6S and is thought to stabilize the 

secretion apparatus (100).  While VgrG is also highly conserved, it lacks the C-terminal 

active domain found in other homologs (100).  Francisella VgrG is predicted to contain 

multiple β-strands and structural algorithms found it to show structural similarity to 

bacteriophage tail spike proteins suggesting VgrG could be involved in forming a bridge 

between Francisella and the host cell membrane (100).  Like other VgrG homologs, 

Francisella VgrG is secreted into the cytosol of infected macrophages and broth culture 

supernatants but in a FPI-independent manner (97, 119, 127).  U112 IglI was shown by 

Barker, et al. to be secreted in an FPI- and VgrG-dependent manner but Broms, et al. only 
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found FPI-independent secretion of LVS IglI (97, 99).  It is possible the difference in 

secretion profiles could have been strain specific, however, more recent work from Broms, et 

al. demonstrated LVS IglI secretion did require the FPI (128).  Broms, et al. used two 

different approaches (CyaA or TEM beta-lactamase fusion) to determine whether LVS IglI 

was secreted so it is possible the reporter tag affected secretion and lead to differing results.  

Using TEM beta-lactamase tags, Broms, et al. determined whether all FPI proteins were 

secreted into the host cell based on cleavage of the substrate CCF2-AM (128).  They found 

secretion of IglC, IglE, IglF, IglI, IglJ, PdpA, PdpE, and VgrG was dependent on DotU, IglC, 

IglG, and VgrG (128).  All but two of the proteins identified are novel T6SS effector 

proteins.   

Whether Francisella encodes a true T6SS is still unclear because three core T6SS 

components (ClpV, IcmF, and Hcp) have only limited homology with Francisella proteins.  

Francisella IglF shares some homology with ClpV, however IglF lacks the conserved AAA+ 

ATPase domain that supplies energy to drive T6S.  PdpB contains some IcmF homology but 

lacks the Walker A boxes found in conserved IcmF homologs.  Finally, IglC has structural, 

but not sequence, homology to Pseudomonas aeruginosa Hcp and is proposed to form a 

hexameric ring structure due this homology (122).  Additional support that Francisella uses a 

T6S-like system is that all of the secreted effectors identified by Broms, et al. are unique to 

Francisella and do not share homology with other T6SS effectors (128).  More studies are 

required to determine whether the function of the proteins encoded by the FPI and whether 

Francisella effectors are secreted by a T6SS or T6S-like system.                               
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Regulation of the Francisella pathogenicity island 

FPI expression is required for intracellular growth so it is not surprising that these 

genes are up-regulated once the bacteria are inside of host cells (73, 91, 120, 129-131).  

Expression of FPI genes is regulated by at least six proteins: MglA, SspA, FevR (also 

referred to as PigR), MigR, PrmA, and Hfq (27, 103, 130, 132-136).  MglA and SspA form a 

heterodimer and interact with RNA polymerase to drive gene expression (133).  FevR 

interacts with the MglA/SspA heterodimer and this interaction is mediated by ppGpp; fevR 

expression is also enhanced by increased ppGpp (137).  The FevR regulon is identical to the 

MglA/SspA regulon except that MglA/SspA regulate fevR expression further supporting the 

importance of the interaction between FevR and MglA/SspA to drive gene expression  (132, 

137).  FevR contains a helix-turn-helix motif that shares homology with MerR transcriptional 

activators suggesting FevR could target MglA/SspA/RNA polymerase to the FPI (132).  

MigR also regulates expression of the FPI but since it is required for fevR expression, it may 

be acting indirectly through FevR (103).  PrmA regulates expression of the FPI and binds its 

own promoter and pdpD’s promoter following phosphorylation by KdpD (136).  

Phosphorylated PrmA co-immunoprecipitates with MglA and SspA suggesting these proteins 

form a complex and regulate gene expression (136).  Unlike all other discussed regulators of 

the FPI which positively regulate gene expression, Hfq represses expression of Francisella 

genes within and outside of the FPI (135).  Specifically within the FPI, Hfq represses 

expression of genes from pdpA to iglJ, but not all FPI genes leading to speculation that the 

two operons within the FPI may be regulated differentially (135).                                     
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Innate immune response to Francisella 

Macrophages 

Macrophages are targeted by Francisella for infection in vivo and in vitro 

experiments often use human or mouse primary macrophages or macrophage-like cell lines 

to examine various aspects of Francisella pathogenicity.  In vivo, Francisella infects 

peritoneal, airway, lung interstitial, and alveolar macrophages (Chapter 4, (138-141)).  

Mouse macrophages infected with LVS are unable to produce pro-inflammatory cytokines, 

even when stimulated with E. coli LPS (140, 142, 143).  Macrophages infected with LVS are 

also subject to MHCII down-regulation (144).  These results will be discussed further in the 

immune evasion section.  Macrophage activation by IFN-γ prevents intracellular growth of 

U112, LVS, and SchuS4 (36, 75, 145).  U112 does not escape the phagosome of human 

monocyte-derived macrophages activated with IFN-γ (75).  IFN-γ activation of J774.1 mouse 

macrophages decreases, but does not abolish, LVS’s ability to escape the phagosome (93).  

SchuS4 escapes the phagosome of IFN-γ activated bone marrow-derived macrophages and 

human monocyte-derived macrophages but replication in the cytosol is abrogated (145).  

Differences in experimental design could impact when replication is affected from strain to 

strain; however, it is clear that macrophage activation by IFN-γ prevents Francisella 

replication and is a mechanism by which the immune system controls the infection.   

Dendritic Cells 

Francisella also infects dendritic cells (DC) in vivo (Chapter 4, (140, 141)).  SchuS4 

also replicates in human monocyte-derived DCs (146).  DCs are professional antigen 

presenting cells and are therefore a key bridge between innate and adaptive immunity 

(reviewed in (147)).  During antigen presentation, DCs secrete cytokines that influence how 
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naïve T cells differentiate into effector T cells (147).  Because DCs are a crucial component 

of the immune response, they serve as an excellent target for immune suppression by 

Francisella.  SchuS4 actively suppresses cytokine responses and up-regulation of MHCII and 

CD86 in human and mouse DCs whereas LVS does not (66, 140, 141, 146, 148-150).  

Immune suppression in DCs will be discussed in more detail below in the immune evasion 

section.            

Natural Killer Cells 

Natural killer (NK) cells are an important component of innate immunity and have 

cytolytic activity in the absence of antigen specificity (reviewed in (151)).  NK cells produce 

perforin and IFN-γ.  Production of perforin is dispensable during a LVS infection because 

perforin-deficient mice are not more susceptible than wild-type (152).  IFN-γ is critical for 

controlling Francisella infection and is produced by NK cells following LVS infection (153-

157).    Depletion of NK cells renders mice more susceptible to intranasal LVS infection; 

however, has no effect on disease course (bacterial burdens and weight loss) during primary 

intranasal SchuS4 infection (153, 158).  It is important to note, however, that mice succumb 

so rapidly to SchuS4 infection that it may be difficult determine whether a treatment worsens 

disease course.  Crane, et al. found very few IFN-γ+ NK cells in the spleen or lung of mice 

intranasally inoculated with SchuS4 further supporting data that NK cell depletion does not 

impact survival (159).  While NK cells do not play a protective role during SchuS4 infection, 

treatment of mice with Acai polysaccharide potentiates IFN-γ production by NK cells and 

increases percent survival after SchuS4 aerosol challenge (160).  Administration of CpG 

primes NK cells in a TLR9-dependent manner and enhances their ability to control an 
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infection of BMDMs (161).  These data suggest that immunomodulating therapy targeting 

IFN-γ production by NK cells could be used to treat tularemia.           

Neutrophils 

Neutrophils are critical during infection and assist in bacterial clearance by 

phagocytosis and the production of reactive oxygen species (reviewed in (162)).  Neutrophils 

also produce chemotactic factors that recruit other innate immune cells to the site of infection 

(162).  In a Francisella infection, neutrophils are present at the site of infection in a variety 

of inoculation routes (163-165).  Depletion of neutrophils using monoclonal antibody had 

only moderate effects of bacterial burdens in an aerosolized LVS model, despite the presence 

of neutrophils present in the lungs early after infection (165).  Neutrophil depletion during 

intravenous or intradermal infection with LVS caused mice to succumb to otherwise sub-

lethal doses (166).  The differences observed in mice infected with LVS could be attributable 

to the different routes of infection.  Depletion of neutrophils had no effect on mean time to 

death compared to control mice in an aerosolized SchuS4 model, however, death occurs so 

rapidly following SchuS4 infection (5 days) that it might be difficult to shorten time to death 

(167).  Similar results were found when neutrophils were depleted during an intranasal 

infection with SchuS4 (168).  It is important to note, however, that the studies examining the 

importance of neutrophils used the monoclonal antibody RB6-8C5, which recognizes Ly6G 

and Ly6C (169).  Ly6C is also present on dendritic cells, some lymphocytes, and monocytes 

(169).  Therefore, the results are confounded by the possibility that other cell types important 

during a Francisella infection were also depleted.  To avoid depleting other cell types, 

studies should use clone 1A8 which is specific for Ly6G and will only deplete neutrophils 

(169).  The presence of neutrophils could be detrimental during infection if the neutrophils 
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severe host tissue damage.  Matrix metalloproteinase 9 (MMP9) is an enzyme that degrades 

the extracellular matrix and recruits neutrophils and macrophages by creating a gradient of 

KC.  Recruitment of neutrophils in turn leads to additional MMP9 release and amplification 

of the recruitment signal.  Mice deficient in MMP9 have increased bacterial burdens and are 

more susceptible to infection with LVS or SchuS4 (170).  Altogether, these results suggest 

that neutrophils can play a beneficial role in the immune response to Francisella, however, 

too much of a neutrophil response is detrimental to the host.   

The importance of neutrophil effector function (i.e. reactive oxygen species (ROS) 

production) has also been investigated.  LVS infection of mice deficient in phagocyte oxidase 

(p47phox-/-) have a decreased LD50 compared to wild-type mice (171).  gp91phox-/- mice exhibit 

similar survival curves as wild-type mice but do have significantly increased bacterial 

burdens (168).  It is important to note that neutrophils are not the only source of ROS; 

macrophages also produce ROS (172).  Therefore mice deficient in enzymes required to 

produce ROS affect multiple cell types and this must be taken into account when considering 

the previous data.  In human neutrophils, opsonized LVS is capable of infecting cells but 

inhibits respiratory burst and replicates in the cytoplasm (173).  katG encodes a catalase 

capable of neutralizing ROS (174).  LVS katG and SchuS4 katG are more susceptible to 

H2O2 but only LVS katG is highly attenuated in vivo (174).  The difference between katG 

strains could be caused by the difference in pathogenicity of the parental strains; LVS is 

highly attenuated compared to SchuS4 in mice.  These data indicate that Francisella has 

evolved mechanisms to include inhospitable neutrophils in its replicative niche and expressed 

proteins to combat ROS.  Francisella certainly targets neutrophils for infection; neutrophils 

comprise the dominant population infected with U112, LVS, and SchuS4 on day 3 post-
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infection in the lung (139).  We also found neutrophils to be the dominant infected cell type 

in the epidermis and dermis following intradermal inoculation (Chapter 5).  Because 

neutrophils do not reside in normal, naïve skin, we hypothesize neutrophils are recruited to 

the site of infection where they ingest invading Francisella.                   

Innate immune detection of Francisella 

Toll-like receptors 

Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) that 

recognize conserved microbial products (reviewed in (175)).  TLRs are expressed on the 

surface of host cells or in the endosome (176).  Signaling through TLRs requires adaptor 

proteins such as MyD88, TRIF, and TIRAP and leads to the production of type I interferon 

and pro-inflammatory cytokines (176).  TLR2 recognizes lipoproteins and is the most 

important TLR during infection with Francisella (177).  Francisella has three identified 

TLR2 ligands- LpnA (also known as Tul4), FTT_1103, and FTL_0645 (178-180).  TLR2-/- 

mice are more susceptible to LVS intranasal and intradermal infection and have increased 

bacterial burdens in the spleen, liver, and lung (177).  TLR2 signaling is required for the 

induction of pro-inflammatory cytokines in LVS infected peritoneal macrophages and 

BMDCs (181, 182).  Since TLR2 signals through the adaptor, MyD88, it is not unexpected 

that MyD88-/- mice are also more susceptible to LVS infection than wild-type mice (155, 

177).  The phenotype of MyD88-/- mice is more severe than TLR2-/- mice suggesting there 

are other PRRs that signal through MyD88.  TLR4 also signals through MyD88, however, 

TLR4-/- mice are not more susceptible to intranasal infection with U112 or LVS or 

aerosolized SchuS4 (177, 183, 184).  TLR4 recognizes lipopolysaccharide (LPS), but 

Francisella expresses an altered form of LPS that does not initiate signaling through TLR4 
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(185).  This immune evasion mechanism is discussed in more detail below.  Two TLRs have 

been shown to have no role in Francisella infection.  TLR5 recognizes flagellin, but 

Francisella does not express flagellin.  Therefore, a NF-κB luciferase reporter is not 

activated when TLR5-expressing cells are stimulated with LVS (150).  TLR9 senses CpG 

DNA in the endosome/phagosome.  TLR9-/- mice have similar bacterial burdens and survival 

curves as wild-type mice when inoculated intradermally with LVS indicating this PRR is not 

required to sense infection with Francisella (155).                     

Inflammasome  

As discussed above, Francisella escapes the phagosome and replicates in the cytosol.  

Francisella evolved the ability to live intracellularly as a way to “hide” from the immune 

response, yet in the constant dance between host and pathogens, the host has evolved 

cytosolic sensors to detect pathogens, like Francisella, that violate the sanctity of the cytosol.  

A major class of cytosolic PRRs are the NOD-like receptors (NLRs) (reviewed in (186)).  

NLRs form the inflammasome by interacting with the adapter protein, ASC, which recruits 

and then cleaves pro-caspase-1 into its active form (reviewed in (187)).  Caspase-1 can then 

process pro-IL-1β and pro-IL-18 into their active forms.  There are numerous NLRs family 

members (22 in humans; 34 in mice) that respond to a variety of signals from molecules 

associated with pathogens to self-derived molecules like cholesterol crystals (187).   

In the context of LVS or U112 infection, production of IL-1β and IL-18 requires 

ASC, caspase-1, and AIM2 but not the alternative adaptor Ipaf (101, 188-190).  Additionally, 

phagosomal escape is required for caspase-1 activation because U112 mlgA or pdpA mutants 

that do not escape are unable to cause pro-caspase-1 cleavage (101).  AIM2 co-localizes with 

bacterial DNA suggesting that lysed Francisella in the cytosol activates the AIM2 
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inflammasome (188, 189).  Mice deficient in caspase-1, ASC, or AIM2 are more susceptible 

to U112 infection compared to wild-type mice as measured by bacterial burdens and/or 

survival (101, 188, 189).  Type I interferons are also required for inflammasome activation 

because IFNAR-/- macrophages do not cleave caspase-1 or produce mature IL-1β or IL-18 

(191).  Type I interferon increases AIM2 expression supporting a mechanism by which the 

cells are sensitized to DNA recognition by type I interferon signaling.  Yet, despite the 

importance of type I inteferons for inflammasome activation in vitro and the increased 

susceptibility of mice deficient in required inflammasome components, IFNAR-/- mice are 

more resistant to U112 and LVS infection (our unpublished data and (192)).  The 

discordance in results could be explained by the finding that IFNAR-/- mice have increased 

IL-17A production and increased neutrophil numbers which could increase bacterial 

clearance, thereby promoting host survival (192).   

Immune evasion by Francisella 

Targets innate immune cells 

One immune evasion strategy utilized by pathogenic bacteria is to target innate 

immune cells for infection and subsequent killing (193).  Francisella has been shown to 

target a variety of cell types following infection including dendritic cells, macrophages, 

monocytes, neutrophils, and alveolar type II (ATII) epithelial cells (139-141, 194).  Hall, et 

al. performed a comprehensive study to identify the infected cell repertoire in the lungs of 

mice inoculated with GFP-expressing U112, LVS, or SchuS4 using flow cytometry (139).  

Alveolar macrophages compose 50-80% of all infected cells for all three Francisella strains 

one day post-infection (139).  By day 3 post-inoculation, the infected cell repertoire is very 

different with neutrophils comprising 45-80% of infected cells (139).  The experiments by 
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Hall, et al. provided insight into Francisella-host interactions later in infection, but did not 

identify the cell types that Francisella initially targeted for infection.  Bosio, et al. identified 

Francisella infected airway macrophages and lung dendritic cells one hour post-inoculation 

(140, 141).  Our laboratory has also worked to identify the infected cell repertoire in the lung 

and skin after intranasal or intradermal inoculation.  These data are presented in Chapter 4.                        

Francisella modulates macrophage function 

As indicated in the preceding section, Francisella targets a variety of immune cells 

for infection.  Once inside of these cells, Francisella is capable of modulating their cytokine 

response.  J774.1 cells infected with LVS do not secrete TNF-α or IL-1β, even when 

stimulated with E. coli LPS (142).  Bone marrow-derived macrophages (BMDM) do not 

significantly up-regulate MHCII or CD86 (co-stimulatory molecule) upon inoculation with 

LVS (140).  Additionally, infected BMDMs do not produce detectable CCL2, IL-1β, IL-6, 

IL-10, MIP-2, or TNF-α when infected with LVS (140, 143).  Human monocyte-derived 

macrophages are able to produce pro-inflammatory cytokines after infection with LVS (143).  

Alveolar macrophages purified from the lung after intratracheal inoculation with LVS 

behaved like BMDMs with no up-regulation of MHCII or CD86 and no cytokine production 

(140).  Together, these data indicate that infection with LVS does not induce phenotypic 

(antigen presentation) or functional (cytokine production) maturation of macrophages.  These 

data are summarized in table 2.     

Francisella modulates DC function 

DCs infected with Francisella also have their responses modulated.  LVS infection of 

bone marrow-derived DCs (BMDC) leads to up-regulation of MHCII and CD86 but not 

production of IL-6, IL-10, or TNF-α (140).  Therefore, unlike BMDMs, BMDCs can undergo 
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phenotypic maturation without undergoing functional maturation.  Airway DCs are infected 

with LVS following intratracheal inoculation and these cells support bacterial replication 

(140).  Like BMDCs, mouse airway and lung DCs up-regulate MHCII and CD86 upon LVS 

infection and these cells do not produce TNF-α as determined by flow cytometry (140).  

SchuS4 infection, on the other hand, does not cause MHCII or CD86 up-regulation of 

airway, lung, or lymph node DCs (141).  Furthermore, cultured lung and airway cells from 

SchuS4 infected mice do not produce levels of TNF-α or IL-12p40 that is increased 

compared to uninfected mice (141).  LVS infection of DCs also inhibits cytokine production 

when infected cells are stimulated with LPS (TLR4 agonist) or zymosan (TLR2 agonist) 

(140).  Likewise, SchuS4 infection prevents CD86 up-regulation on DCs or monocyte 

recruitment when mice are treated with intranasal LPS (141).  Both LVS and SchuS4 

infection lead to the production of the anti-inflammatory cytokine, TGF-β (140, 141).  

Together, these data indicate that infection with LVS and SchuS4 suppress host immunity by 

decreasing antigen presentation by preventing functional maturation of DCs and by inducing 

TGF-β to form an immunosuppressive environment.  As a consequence, Francisella can 

persist in the host.                        

Human monocyte-derived DCs infected with SchuS4 up-regulate MHCII and CD86 

but do not produce any pro- or anti-inflammatory cytokines (146).  SchuS4 infected cells also 

fail to respond to secondary stimulation with E. coli LPS (146).  The inhibition of cytokine 

production is an active process by SchuS4 because cells inoculated with killed SchuS4 can 

produce cytokine in response to E. coli LPS (146).  Monocyte-derived DCs express little 

surface CD14, a co-receptor for TLR2 and TLR4 (149).  Addition of soluble CD14 allows 

monocyte-derived DCs to produce cytokine after SchuS4 inoculation (149).  SchuS4 
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inoculation of monocyte-derived DCs leads to the production of IFN-β and the selective 

inhibition of IL-12p40, but not TNF-α, production (148).  Incubation of human DCs with 

SchuS4 conditioned media also resulted in a failure of those to produce cytokine after E. coli 

LPS stimulation suggesting that SchuS4 secretes molecule(s) that can inhibit cytokine 

production (146).  LVS does not have the same inhibitory effect on human monocyte-derived 

DCs.  DCs up-regulate CD40, CD86, and MHCII and produce a variety of cytokines after 

LVS inoculation (66, 150).  The ability of LVS to induce a pro-inflammatory response in 

human DCs and macrophages could indicate why LVS is not pathogenic in humans, while 

the inability of human DCs to respond to a SchuS4 infection is likely one reason SchuS4 is 

highly pathogenic in people.  These data are summarized in table 2.      

Altered LPS structure 

LPS is a pathogen associated molecular pattern (PAMP) abundantly present on the 

surface of gram negative bacteria (195).  LPS consists of 3 distinct structural regions: O-

antigen, core, and lipid A (196).  LPS lipid A signals through TLR4 to activate pro-

inflammatory immune responses (197).  MALDI-TOF mass spectrometry showed that many 

different Francisella isolates (including subsp. tularensis, holartica, and mediasiatica, and F. 

novicida) have conserved tetra-acetylated lipid A with longer carbon chains (185, 198-200).  

Purified F. novicida LPS fails to stimulate human or mouse cell lines to produce cytokines 

like IL-8, TNF-α, or IL-1β (185).  Additionally, F. novicida LPS does not act as a TLR4 

antagonist, as cells can respond to Salmonella LPS even in the presence of 100 ng/mL F. 

novicida LPS (185).  Finally, aerosol delivery of F. novicida LPS does not result in 

neutrophil recruitment to the lung like E. coli LPS does (185).  Together, these data indicate 
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that Francisella LPS does not stimulate a pro-inflammatory immune response, allowing the 

bacteria to evade TLR4 mediated detection.                  

Induction of PGE2 

SchuS4, LVS and U112 induce infected bone marrow derived macrophages to 

synthesize and secrete the lipid mediator, prostaglandin E2 (PGE2) (95, 201).  Induction of 

PGE2 synthesis and secretion alters the immune response so that Francisella can persist in 

the host.  PGE2 is a pleotropic molecule that has a variety of effects on the immune response 

depending on its local concentration and the E-prostanoid receptor (EP) that binds PGE2 

(reviewed (202)).  PGE2 is required for dendritic cell migration from the infected tissue to the 

draining lymph node (203-205).  PGE2 also effects cytokine production, and therefore naïve 

T cell differentiation, by antigen presenting cells via inhibition of IL-12 production 

(decreases Th1) and enhancement of IL-23 production (increases Th17) (206-209).  Finally, 

PGE2 signaling through E-prostainoid receptor 4 (EP4) decreases calcium flux and therefore 

early T cell activation (210).  PGE2 engagement of EP4 causes T cells produce less IL-2 

thereby decreasing T cell proliferation (210, 211).  PGE2 signaling through EP4 also causes T 

cells to produce less IFN-γ, but more IL-4 and IL-5 thus skewing the T cell response from a 

Th1 response that mediates clearance of intracellular pathogens like Francisella towards a 

Th2 response that is suited for clearing extracellular pathogens (211, 212).  Overall, PGE2 

induced by Francisella decreases the number of responding T cells and skews the T cells that 

do respond towards effector functions that are ineffective at bacterial clearance.  Intranasal 

inoculation of B6 mice with LVS increases PGE2 concentration in the lung (213).  Inhibition 

of PGE2 synthesis with indomethacin, a COX1/2 inhibitor, decreases PGE2 concentration, 

increases the number of IFN-γ producing T cells, and results in faster bacterial clearance 
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(213).  Therefore, induction of PGE2 is an effective immune evasion strategy utilized by 

Francisella to persist in the host.     

We have identified the Francisella genes necessary for induction of PGE2 synthesis 

and secretion (95).  These data are presented and discussed in Chapter 5.    

Down-regulation of MHC 

Francisella further modulates the adaptive immune response by causing down-

regulation of MHCII expression on IFN-γ activated bone marrow derived macrophages 

(144).  The ability of Francisella to decrease surface expression of MHCII is dependent on 

PGE2 synthesis by infected host cells (144).  Autocrine and/or paracrine PGE2 signaling 

through a yet unidentified EP leads to the production of a >10 kDa soluble factor, termed 

FTMØSN, that induces IL-10 production (214).  IL-10 signaling leads to increased 

expression of the ubiquitin ligase MARCH1 (214).  Ubiquitination of MHCII leads to its 

degradation and therefore decreased antigen presentation to CD4+ T cells.  The identity of 

FTMØSN remains unknown, but Hunt, et al. report it is not IL-10, TGF-β, IL-6, VEGF, 

MIP-1α, or leukemia inhibitory factor (214).  Additionally, production of FTMØSN does not 

require TLR2 signaling or caspase-1 processing (214).  Although the signaling cascade that 

leads to MHCII down-regulation is complex, it does require PGE2.  Therefore, inhibition of 

PGE2 synthesis would not only increase antigen presentation to CD4+ T cells but those T 

cells would make a more effective response, as described in a subsequent section.                             

Adaptive immune response to Francisella 

Primary response by γδ T cells 

While αβ+ TCR T cells are critical during primary and secondary infection with 

Francisella, γδ+ TCR T cells are dispensable.  γδ TCR-/- mice are not more susceptible to 

27



 
 

primary intranasal or intradermal infection with LVS (215, 216).  During primary infection 

with SchuS4 in a convalescent model, γδ TCR-/- mice are not more susceptible than wild-type 

mice (159).  Additionally, γδ TCR-/- survivors of the primary infection were also not more 

susceptible than wild-type survivors during a secondary infection (159).  γδ T cells produce 

IL-17 upon intranasal infection with LVS, but since γδ TCR-/- mice are not anymore 

susceptible to infection than wild-type mice, γδ T cells and their effector functions are not 

essential in mouse models of tularemia (215, 217).         

Although γδ T cells appear to be dispensable in mice, γδ T cells respond to 

Francisella infection in humans.  In particular, Vγ9/Vδ2 γδ T cells comprise almost all 

peripheral blood γδ T cells and 30-40% of all CD3+ T cells even one month after infection 

(218, 219).  Vγ9/Vδ2 γδ T cells respond to phosphoantigens and are capable of controlling 

LVS-infected THP-1 cells (human monocyte cell line) (220).  Some, but not all patient 

Vγ9/Vδ2 γδ T cells were also capable of controlling growth of SchuS4 in THP-1 cells (220).  

Depletion of IFN-γ increased the number of intracellular LVS suggesting IFN-γ is produced 

by Vγ9/Vδ2 γδ T cells and helps control the infection (220).  Whereas Vγ9/Vδ2 γδ T cells 

tremendously expand after a naturally acquired Francisella infection, LVS vaccination by 

scarification does not cause this same expansion (218).  Unfortunately, mice lack γδ T cells 

analogous to Vγ9/Vδ2 in humans so this result cannot be studied further. 

Primary response by B cells 

Francisella has long been thought of as an intracellular pathogen that spends little 

time outside of host cells during infection.  Furthermore, when bacteria were detected in the 

blood, they were thought to reside within migrating leukocytes (221).  Forestal, et al. was the 

first to counter the long-held paradigm by showing that non-cell associated Francisella are 
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found in the plasma of infected mice (222).  Both LVS and SchuS4 were found free in the 

plasma following intranasal or intradermal inoculation indicating the phenomena was not 

specific to a specific Francisella strain or route of infection (222).  Yu, et al. also found 

U112 free in the plasma of intranasally infected mice (223).  Moreover, LVS and SchuS4 

were capable of growing in whole mouse blood indicating the blood represents another 

replicative niche for Francisella (222).  Data revealing an extracellular lifecycle stage of 

Francisella within a host highlighted the potential importance of B cells in clearance of the 

primary infection. 

 Despite an extracellular phase of infection, mice deficient in B cells are only 

moderately more susceptible to intradermal or aerosol LVS infection than wild-type mice 

suggesting B cells aren’t mediating bacterial clearance (167, 224). In a convalescent model 

of SchuS4 infection, B cell deficient mice succumb to infection 10 days after stopping 

levofloxacin treatment (159).  Francisella can adhere to and infect B cell lines or splenocytes 

and induce apoptosis (225).  Because Francisella can infect a variety of cell types, it isn’t 

surprising that B cells can be infected as well (139).  Infection of B cells also allows them to 

serve as antigen presenting cells and have another role in the infection besides antibody 

production.  In fact, during secondary infection B cells likely play a role in antigen 

presentation and/or cytokine production (discussed below) (224).   

B-1a cells, or innate immune B cells, are sources of natural antibody and respond to 

T-independent antigens.  Because they are T-independent, B-1a cells respond rapidly to 

antigen and produce antibodies within 2-3 days of vaccination.  B-1a cells can be stimulated 

with LVS LPS to produce anti-LPS antibodies (226, 227).  LVS LPS vaccination causes an 

increase in splenic and peritoneal cavity B-1a cells which peak at day 5 post-vaccination 
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(226).  Splenic B-1a cells rapidly decline after day 5 but peritoneal B-1a cells are detectable 

for up to 2 months post-vaccination (226).  In the case of a convalescent SchuS4 infection, B-

1a cells exacerbate the infection by producing IL-10 which decreases IFN-γ production by 

NK cells (228).  These data highlight another difference between LVS and SchuS4 infection 

where B-1a cells help resolve LVS infection via antibody production and B-1a cells are 

detrimental during SchuS4 infection.    

In humans, the presence of serum anti-Francisella antibodies is often used to 

diagnose tularemia.  Natural infection with Francisella induces IgM, IgG, and IgA antibodies 

that peak between 4 and 7 weeks after infection and are present in the serum for up to11 

years after infection (229-231).  When anti-Francisella titers were determined in a cohort of 

individuals in Sweden infected 25 years prior, titers were below detection limit (232).  

Intradermal vaccination with LVS also leads to peak agglutination titers between 2 and 4 

weeks post-vaccination (233, 234).  Anti-Francisella antibodies were also present when 

serum was tested 1.5 years after vaccination (233).          

Secondary response by B cells 

Early studies examining the ability of immune sera to transfer protection to naïve 

mice indicated antibodies did not confer protection upon SchuS4 challenge (235).  On the 

other hand, mice could be protected during LVS challenge by transfer of LVS immune sera 

or anti-Francisella LPS antibodies (19, 236-239).  Passive transfer of antibody from SchuS4 

infected mice treated with levofloxacin (to help resolve the primary infection) was able to 

mediate protection during lethal SchuS4 challenge (240).  Immunization with Francisella 

LPS or conjugates thereof were also protective during LVS but not SchuS4 challenge (28, 
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226, 227, 241-243).  B-1a cells produce antibodies directed against LVS O-antigen that are 

protective during LVS challenge (226, 227).      

More recent studies have vaccinated mice with inactivated LVS in the presence of 

immunostimulatory compounds like IL-12, immunostimulatory complexes (ISCOMs), or 

cholera toxin and found some protection during SchuS4 challenge (239, 244-247).  

Vaccination with heat killed LVS plus IL-12 provided 100% protection during intranasal 

LVS challenge and was dependent on IgA (244).  When mice were vaccinated with heat 

killed LVS and an IL-12-expressing viral vector, mice were protected during lethal 

intraperitoneal challenge (239).  The authors did not directly show the requirement of B cells 

but did show high IgG titers and the absence of a T cell response after vaccination, leading 

them to conclude protection was B cell-mediated (239).  While several groups have shown 

partial protection during SchuS4 challenge in mice vaccinated with inactivated LVS in the 

presence of immunostimulatory compounds, they have not shown any evidence that 

protection was antibody-dependent (245-247).  In fact, Bitsaktis, et al. found their 

vaccination regimen was protective in IgA-deficient mice indicating the B cell response was 

not required to mediate protection in their model (245).  Oral vaccination with LVS did 

confer protection during SchuS4 challenge that was mediated by CD4+ T cells and B cells 

(248).  Additional studies are necessary to identify whether B and/or T cells are mediating 

protection in vaccination studies.  A better understanding of the mechanisms underlying 

protection will assist in the rationale design of vaccines.      

During a secondary infection, B cell deficient mice are much more susceptible than 

their wild-type counterparts (224).  Susceptibility is not caused by a lack of antibody 

production because passive transfer of sera does not confer protection (224).  Instead, 
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transfer of B cells from immune mice leads to protection suggesting another role for the B 

cells besides antibody production (224).  B cells could be an important source of antigen 

presentation during the secondary infection or could produce cytokines and/or chemokines 

that influence both innate and adaptive responses.  The mechanisms that cause B cells to 

confer protection need to be further elucidated.      

Primary response by αβ T cells 

Years of Francisella research have conclusively shown the requirement of T cells for 

the clearance of a primary infection and the development of protective immunity.  Mice 

lacking all T cells such as αβ TCR-/- or nu/nu mice develop a chronic infection that they 

eventually succumb to (216, 249, 250).  When either CD4+ or CD8+ T cells are singly 

depleted, mice can resolve the primary LVS intradermal infection and can survive a lethal 

LVS secondary intraperitoneal infection (216).  Mice depleted of both CD4+ and CD8+ T 

cells develop a chronic LVS infection with steady bacterial burdens for months after 

infection (216).  The cells that control, but not are incapable of clearing, the infection are 

CD4-CD8-NK1.1-TCRαβ+Thy1.2+ double negative (DN) T cells (251, 252).  These cells are 

prevalent in the lungs of intranasally inoculated mice, but are less abundant in the spleen and 

lung after intradermal inoculation (252).  The LD50 of SchuS4 in mice is <10 CFU and 

immunocompetent mice succumb rapidly to infection (5 days) (14).  Therefore, it is not 

surprising that mice lacking T cells also succumb rapidly to SchuS4 infection (21, 159, 167).  

Chen, et al. has shown that SchuS4 infection causes thymic atrophy and decreased numbers 

of CD4+CD8+ (double positive) thymocytes (253).  T cell responses during LVS infection 

peak on day 10 post-inoculation (213).  During a convalescent SchuS4 infection, T cell 
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responses were maximal on day 7 post-inoculation (159).  The authors only examined days 7, 

14, and 21 so the peak could be a consequence of the time points analyzed (159).  

There are three key effector cytokines produce by CD4+, CD8+, and/or DN T cells 

during Francisella infection.  IFN-γ is critical for survival during primary LVS infection.  

Depletion using anti-IFN-γ antibody significantly increases bacterial burdens (156, 254).  

Additionally, IFN-γ-deficient mice succumb to sub-lethal LVS infectious doses (155).  IFN-

γR-/- mice even succumb to SchuS4 during treatment with levofloxacin, highlighting the 

importance of IFN-γ during infection (159).  To complete molecular Koch’s postulates, 

treatment with recombinant IFN-γ decreases bacterial burdens, confirming the requirement of 

IFN-γ during LVS infection (255).  While a variety of cell types produce IFN-γ during 

Francisella infection, IFN-γ production by T cells is necessary to control bacterial growth in 

infected BMDMs (157, 256).  CD8+ and DN T cells also produce IFN-γ that is capable of 

controlling bacterial growth in BMDMs but these T cell subsets don’t rely on IFN-γ as much 

as CD4+ T cells do to control infection (256).  CD8+ T cells required TNF-α to control LVS 

growth in BMDMs (256, 257).  Depletion of TNF-α significantly increases bacterial burdens 

following LVS infection (254).  In vivo, CD4+, CD8+, and DN T cells produce IFN-γ after 

intradermal and intranasal inoculation with LVS (213, 252, 258).  Another critical cytokine 

during Francisella infection is IL-17.  Intranasal inoculation with LVS leads to the expansion 

of IL-17A+ CD4+ (Th17) cells and IL-17A+ DN T cells (213, 252, 258).  Production of IL-

17A is critical for controlling infection because IL-17A- or IL-17 receptor-deficient mice 

have increased bacterial burdens during respiratory infection (217, 252).  IL-17A depletion 

also results in increased bacterial burdens and quicker mean time to death during respiratory 

infection (215, 217).  Th17 cells are only detected in the lung following intranasal infection 
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and not intradermal infection, despite similar bacterial burdens early after infection (213).  

Similar results are seen during Listeria monocytogenes infection where Th17 cells are only 

found after intranasal infection and not intravenous infection (259).  To further support the 

role of Th17 cells during intranasal but not intradermal infection, IL-17A deficient mice do 

not have higher lung or liver burdens compared to wild-type mice (252).  There is a slight, 

but statistically significant increase in spleen bacterial burdens in IL-17A-/- mice compared to 

wild-type controls (252).                                      

Without MHCI or MHCII tetramers, it has been difficult to study the responses of 

antigen-specific T cells (tetramers reviewed in (260)).  An immunodominant CD4+ epitope 

(LpnA86-99) comprises up to 20% of CD4+ T cells in B6 mice and is therefore an excellent 

candidate for the use in MHCII tetramer development (261).  T cells from mice vaccinated 

intradermally responded to purified bacterioferritin, GroEL, and KatG suggesting these 

proteins also contain CD4+ and/or CD8+ epitopes (262).  Humanized HLA-DR4 transgenic 

mice have been used to identify human MHCII epitopes (263).  FopB was identified in a 

screen and contains an epitope that human CD4+ T cells respond to; immunization with FopB 

also protected HLA-DR4 transgenic mice during lethal LVS challenge (263).  McMurry, et 

al. predicted human MHCI and MHCII epitopes using bioinformatics and then tested these 

epitopes on peripheral blood mononuclear cells (PBMCs) from individuals that had 

previously contracted tularemia (264).  Using this approach, they identified candidate 

peptides that 95% of patients responded to (264).  The authors then tested whether these 

peptides could be used in a vaccination regimen in HLA-DR4 transgenic mice and found 

some protection during lethal LVS infection (265).  Because the authors used HLA-DR4 

transgenic mice, they were only able to examine “human” CD4+ T cell responses and not 
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CD8+ T cell responses, even though the identified peptides could be stimulating both T cell 

subsets.  Further identification of CD4+ and CD8+ epitopes is important for two reasons.  

First, the ability to use tetramer will allow researchers to track Franicsella-specific T cells 

throughout the primary infection, the development of memory, and a secondary response.  

MHCII tetramer with IAb presenting LpnA86-99 is currently being developed.  Although CD8+ 

T cells clearly respond to Francisella antigen, an epitope has not yet been identified.  Epitope 

identification is also important for vaccine development so that humans could be immunized 

with peptides that induce a robust, protective immune response.  The use of humanized HLA-

A2/DR4 mice could assist in these efforts.                   

Because T cells are required for the clearance of a primary infection and the 

development of protective immunity, it is not surprising that Francisella has evolved 

mechanisms to interfere with T cell responses.  Francisella infection causes host cells to 

synthesize and secrete prostaglandin E2 (PGE2) which shifts the immune away from a Th1 

response and towards a less effective Th2 response (201, 266).  MHCII is also down-

regulated in a PGE2-dependent process (144, 214).  Both of these immune evasion 

mechanisms are discussed in more detail above.        

Secondary response by αβ T cells 

Survival of a secondary LVS infection requires CD4+ or CD8+ T cells; either subset is 

sufficient to mediate bacterial clearance (216).  Both IFN-γ and TNF-α are necessary for 

survival during secondary infection with LVS (Chapter 4, (254, 267)).  During SchuS4 

secondary infection, both CD4+ and CD8+ T cells are required for protection (21, 268, 269).  

IL-17 production in the lung correlated with protection in mice challenged with aerosolized 

SchuS4 (270).  Despite correlating with protection, depletion of IL-17 with antibody did not 

35



 
 

significantly increase bacterial burdens (270).  Similarly, we found IL-17A depletion had no 

effect on weight loss or bacterial burdens in mice challenged intranasally with LVS (Chapter 

4).    

Memory T cells persist in patients that were vaccinated or naturally acquired 

tularemia.  Upon re-stimulation, T cells produced IFN-γ, IL-2, and TNF-α (271-273).  When 

the ability of T cells to produce IL-17 and IL-22 was evaluated in PBMCs from LVS 

vaccinated individuals, both IL-17 and IL-22 were detected in CD4+ T cells (274).  These 

data indicate that human infection also induces Th17 cells.  Despite the absence of detectable 

anti-Francisella antibodies in people 25 years after infection, peripheral blood did contain T 

cells that produced IFN-γ following stimulation with Francisella antigen (232).  After a 

specific outbreak of tularemia, there were very few cases for the next 25 years in the region 

these individuals lived, therefore it was unlikely they were exposed to Francisella again 

(232).  In a more recent study, T cells from peripheral blood of donors vaccinated with LVS 

by scarification up to 34 years prior were able to produce IFN-γ in response to re-stimulation 

(275).  These data indicate that T cell mediated immunity is long-lasting in humans in the 

absence of a recurring infection of vaccination booster.          

Objectives 

 Francisella has evolved several mechanisms to evade and/or suppress host immunity.  

We will focus on three immune evasion mechanisms in this dissertation: the ability to induce 

infected cells to synthesis and secrete PGE2 which suppresses the T cell response (Chapters 2 

and 5), the failure to induce pro-inflammatory cytokine production (Chapter 2), and targeting 

innate immune cells for infection (Chapter 4).  We will also examine what cytokines are 

necessary for survival during a lethal secondary infection (Chapter 3).  Overall, the work 

presented here increases our understanding of the underlying mechanisms by which  
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Francisella subverts host immunity.  This knowledge not only increases our understanding of 

Francisella pathogenesis but also identifies pathways that could be targeted during future 

vaccine or drug development.            
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Table 1 
 

Table 1. Properties of Francisella strains 
 Francisella strain 
 Francisella 

novicida 

Francisella 
tularensis subsp. 

holartica 

Francisella 
tularensis subsp. 

tularensis 
Laboratory strain name U112 LVS SchuS4 
Virulence in humans - + +++ 
Human intranasal 
infectious dose (12, 13, 22, 
26) 

Not infectiousa 104 CFU 10 CFU 

Virulence in mice +++ ++ +++ 
LD50    

Intranasal (14, 19, 20, 21, 
27) 10 CFU 103 CFU < 10 CFU 

Intradermal (14, 19, 28) 2.4x103 CFU 106 CFU < 10 CFU 
Genome properties (30, 31)    

Genome size (bp) 1,910,031 1,895,998 1,892,819 
Number of open reading 
frames (predicted) 1731 1380 1445 

Number of pseudogenes 14 303 254 
% G+C content 32.47 32.15 32.26 

a immunocompetent individuals 
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Table 2 
 

Table 2: Immune evasion of phenotypic and functional maturation of 
antigen presenting cells 

 Francisella strain 
 LVS SchuS4 
Mouse BMDM   

Up-regulate MHCII/CD86 (140) No ND 
Produce pro-inflammatory cytokines (140, 
143) No ND 

Alveolar macrophages   
Up-regulate MHCII/CD86 (140) No ND 
Produce pro-inflammatory cytokines (140) No ND 

Human MDM   
Up-regulate MHCII/CD86 ND ND 
Produce pro-inflammatory cytokines (143) Yes ND 

Mouse BMDC   
Up-regulate MHCII/CD86 (140) Yes ND 
Produce pro-inflammatory cytokines (140) No ND 

Mouse lung or lymph node dendritic cells   
Up-regulate MHCII/CD86 (140, 141) Yes No 
Produce pro-inflammatory cytokines (140, 
141) No No 

Human MDDC   
Up-regulate MHCII/CD86 (66, 149, 150) Yes Yes 
Produce pro-inflammatory cytokines (66, 148, 
149, 150) Yes No 

ND: not determined   
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CHAPTER 2 

INFECTION WITH FRANCISELLA TULARENSIS LVS CLPB LEADS TO AN ALTERED 

YET PROTECTIVE IMMUNE RESPONSE1,2 

 

OVERVIEW 

Bacterial attenuation is typically thought of as reduced bacterial growth in the 

presence of constant immune pressure.  Infection with Francisella tularensis elicits innate 

and adaptive immune responses.  Several in vivo screens have identified F. tularensis genes 

necessary for virulence.  Many of these mutations render F. tularensis defective for 

intracellular growth.  However, some mutations have no impact on intracellular growth 

leading us to hypothesize that these F. tularensis mutants are attenuated because they induce 

an altered host immune response.  We were particularly interested in the F. tularensis LVS 

mutant clpB (FTL_0094) because this strain was attenuated in pneumonic tularemia yet 

induced a protective immune response.  LVS clpB’s attenuation was not due to an 

intracellular growth defect as LVS clpB grew similarly to LVS in primary bone marrow 

derived macrophages and a variety of cell lines.  We therefore determined whether LVS clpB 

induced an altered immune response compared to LVS in vivo.  We found that LVS clpB 

                                                            
1 Contributing authors: Lydia M. Barrigan, Shraddha Tuladhar, Jason C. Brunton, Matthew D. Woolard, Ching-
ju Chen, Divey Saini, Richard Frothingham, Gregory D. Sempowski, Thomas H. Kawula, and Jeffrey A. 
Frelinger 
 
2 Portions of this chapter were published in Infection and Immunity.  Barrigan, et al. 2013 Jun;81(6):2028-42. 
Copyright © 2013, American Society for Microbiology. Reprinted with permission.  
 



 
 
 

induced pro-inflammatory cytokine production in the lung early after infection, a process not 

observed during LVS infection.  LVS clpB provoked a robust adaptive immune response 

similar in magnitude to LVS, but with increased IFN-γ and IL-17A production as measured 

by mean fluorescence intensity.  Altogether, our results indicate that LVS clpB is attenuated 

due to altered host immunity and not an intrinsic growth defect.  These results also indicate 

that disruption of non-essential gene(s) that are involved in bacterial immune evasion, like F. 

tularensis clpB, can serve as a model for the rational design of attenuated vaccines. 

 

INTRODUCTION 

Enormous efforts have gone into detecting bacterial mutations that result in 

diminished growth in vivo.  Many of these mutations are the result of a failure of the 

pathogen to grow in vitro, and can be attributed to defects in critical aspects of bacterial 

metabolism.  Mutations, for example, that result in auxotrophy render the bacteria incapable 

of synthesizing essential nutrients such as purines or co-enzymes and therefore cause a 

growth defect.  Relatively few mutations that cause bacterial attenuation have been 

demonstrated to be the result of a failure of the pathogen to interfere with host immune 

responses.  In this manuscript, we focus on one mutation that likely falls into this class of 

altered host immunity.   

Francisella tularensis is a gram negative coccobacillus and the causative agent of the 

zoonotic disease tularemia.  Inhalation of as few as 10 virulent type A F. tularensis 

organisms can cause fatal disease in humans (1).  This low infectious dose, ability to persist 

in the environment, ease of aerosolization, and high morbidity and mortality has earned F. 

tularensis a Category A Select Agent classification (2).  In fact, F. tularensis has been used 
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as the infectious agent in bioweapons and continues to present a real threat today (3, 4).  It is 

therefore critical to understand both infection and pathogenesis.  Many attenuating mutations 

of Francisella have been described (5-7), but little information is available on the immune 

response to attenuated mutants, beyond whether they can protect from secondary challenge 

with wild-type bacteria.   

Experiments utilizing F. tularensis as the infectious agent typically use three strains 

that differ widely for virulence in humans and mice.  F. tularensis subsp. tularensis SchuS4 

(SchuS4) is a type A strain and must be handled at BSL-3 conditions because of its low 

infectious dose and its ability to be transmitted via aerosol.  SchuS4 is highly pathogenic in 

mice with an LD100 of <10 CFU (8).  Mice inoculated with SchuS4 succumb to infection 

within 6 days of inoculation (9) making studies of the adaptive immune response in non-

manipulated mice impossible.   For our experiments, we used the type B strain, F. tularensis 

subsp. holartica live vaccine strain (LVS).  LVS is attenuated in humans and mice compared 

to SchuS4.  Although LVS was widely used in Eastern Europe as a vaccine, it is unlikely to 

ever be licensed in the United States.  LVS’s intranasal LD50 is approximately 1000 CFU in 

mice (8) allowing us to examine aspects of adaptive immunity using an intranasal inoculation 

dose of 500 CFU.  The third strain commonly used is F. novicida U112 (U112) which is 

avirulent in immunocompetent humans but is highly virulent in mice with a low infectious 

dose and rapid death similar to SchuS4.                            

The immune response to F. tularensis is multi-layered and complex, requiring 

components of both innate and adaptive immunity.  The bacterium has evolved several 

strategies to evade or subvert the host’s immune response so that it can persist in the host.  

First, F. tularensis infects a variety of innate immune cells during infection in the lung 
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including macrophages, dendritic cells, monocytes, and neutrophils (10, 11).  F. tularensis 

also expresses a form of LPS that does not efficiently stimulate TLR4 (12).  LVS does not 

stimulate functional maturation (cytokine production) of dendritic cells but does promote 

phenotypic maturation through the up-regulation of CD80 and CD86 (11).  SchuS4 does not 

induce phenotypic or functional maturation of dendritic cells, allowing the bacterium to 

persist in an immunosuppressed environment (13).  Finally, F. tularensis lives intracellularly, 

allowing the bacterium to avoid antibody and complement-mediated destruction (14).   

Because F. tularensis replicates within host cells, the T cell response is a critical 

component for bacterial clearance.  Indeed, T cells are required for clearance of F. tularensis 

and the development of protective immunity (15).  In particular, IFN-γ is required for 

controlling F. tularensis infection.  When IFN-γ is blocked by antibody, there is an increase 

in bacterial burden and mice deficient in IFN-γ succumb to an LVS inoculum dose that is 

sublethal in wild-type mice (16, 17).  Administration of recombinant IFN-γ to infected mice 

decreases bacterial burdens confirming this cytokine’s importance in control of the infection 

(18).  Th17 cells are also induced in the lung following intranasal inoculation (19).  IL-17A 

deficient mice have increased bacterial burdens compared to wild-type mice and 

administration of IL-17 neutralizing antibody also increased bacterial burdens highlighting 

this cytokine’s importance during respiratory tularemia (20, 21).         

Several in vivo screens have identified F. tularensis virulence determinants in U112, 

LVS, and SchuS4 (5-7).  A F. tularensis mutant could be attenuated if the mutation disrupts 

expression of a gene necessary for intracellular growth such as the genes within the 

pathogenicity island (22).  A F. tularensis mutant could also be attenuated if the disrupted 

gene causes the strain to become an auxotroph (5-7).  When a mutation does not cause an 
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intracellular growth defect, a strain’s attenuation could be the result of the failure to evade 

the host’s immune response.  We were interested in characterizing the immune response to 

an attenuated LVS mutant, LVS clpB (FTL_0094).  clpB encodes a highly conserved 

chaperone protein of the AAA+ superfamily of ATPases.  F. tularensis ClpB is involved in 

the response to oxidative, ethanol, and acid stresses (23).  LVS clpB and SchuS4 clpB strains 

are attenuated when delivered using intradermal, intraperitoneal, or oral inoculation routes 

(23-25).  Previous infection with LVS clpB and SchuS4 clpB provided protection during 

wild-type challenge (23-25).  However, the host’s primary immune response to LVS clpB 

that elicits protection during wild-type challenge has not yet been examined.   

In this study, we examined the innate and adaptive immune response following 

intranasal infection with LVS or LVS clpB.  Our LVS clpB strain did not show any defects in 

intracellular growth in primary bone marrow derived macrophages or several cell lines.  

Because there were no differences in growth, we hypothesized that LVS clpB’s attenuation 

was due to an altered immune response.  Indeed, LVS clpB induced altered innate and 

adaptive immune responses compared to LVS.  Other groups have shown SchuS4 clpB and 

LVS clpB are attenuated in vivo, but potential mechanism(s) causing attenuation have not 

been described (23-25).  The work presented here describes the immune response that 

contributes to LVS clpB’s attenuation.  The studies also highlight the potential use of clpB as 

a target for attenuation because milder disease is caused while still inducing a robust 

protective immune response in the lung. 

 

 

 

72



 
 
 

MATERIALS AND METHODS 

Bacteria   

The live vaccine strain of Francisella tularensis subsp. holartica (LVS) was obtained 

from the CDC (Atlanta, GA).  F. tularensis subsp. tularensis (SchuS4) was obtained from 

BEI Resources (Manassas, VA).  Bacteria were grown on chocolate agar supplemented with 

1% IsoVitalex (Becton-Dickinson), brain heart infusion (BHI) broth supplemented with 1% 

IsoVitalex, or Chamberlain’s defined media (CDM) (26).  When necessary, kanamycin (10 

μg/mL) or hygromycin (200 μg/mL) was added for antibiotic selection.  Bacteria were grown 

at 37˚C.  To prepare bacterial inoculations, bacteria were removed from a lawn grown on 

chocolate agar and resuspended in sterile PBS at an OD600=1 (equivalent to 1x1010 

CFU/mL).  Appropriate dilutions were made in sterile PBS to obtain the desired bacterial 

dose.  The number of viable bacteria was quantified by serial dilution and plating on 

chocolate agar.  The LVS clpB::Tn strain was generated using the EZ-Tn5 system 

(Epicentre).  Insertion in clpB mapped to nucleotide 89763.  The LVS clpB (FTL_0094) and 

LVS dotU (FTL_0119) deletion strains were generated using the suicide vector pMP812 (27) 

containing an amplified region of clpB or dotU.   

Bacterial growth curves   

In a 96-well plate, CDM or BHI broth was inoculated with LVS, LVS clpB, or LVS 

dotU so that the starting OD600=0.01.  The OD600 was measured every 15 minutes for 48 

hours using a TECAN Infinite M200 plate reader (TECAN) capable of maintaining 37˚C and 

5% CO2 while shaking.      
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Mice   

C57Bl/6J (B6), B6.SJL-PtprcaPepcb/BoyJ (B6-CD45.1), and BALB/cByJ (BALB/c) 

mice were obtained from The Jackson Laboratory (Bar Harbor, ME).  B6.129S7-

Rag1tm1Mom/J (Rag-/-) were purchased from The Jackson Laboratory and then bred in-house.  

All mice were housed in specific-pathogen free conditions at the University of Arizona or 

Duke University in accordance with their respective Institutional Animal Care and Use 

Committees.  Female B6 and BALB/c mice used for infections were between 7 to 12 weeks 

of age.   

Cell lines and BMDM generation   

J774.1, MH-S, and A549 cells were obtained from ATCC (Manassas, VA).  J774.1 

and A549 cells were cultured in DMEM supplemented with 10% fetal bovine serum (Atlas), 

L-glutamine (HyClone), sodium pyruvate (HyClone), and penicillin/streptomycin (Life).  

MH-S cells were cultured in RPMI 1640 supplemental with 10% fetal bovine serum (Atlas), 

L-glutamine (HyClone), sodium pyruvate (HyClone), and penicillin/streptomycin (Life).  

Media was replaced with antibiotic free media 24 hours prior to inoculation with F. 

tularensis. BMDMs were generated from B6 bone marrow as previously described (28).      

In vitro growth assays   

1x106 cells/well (BMDM, J774, and MH-S) or 0.5x106 cells/well (A549) were seeded 

into a 24 well plate for intracellular growth assays and given 2 hours to adhere to the plate.  

Cells were inoculated at a multiplicity of infection (MOI) of 25:1.  Infection was facilitated 

by centrifugation at 300xg for 5 minutes.  Cells were incubated for 2 hours with bacteria and 

then media was removed.  Media containing 50 μg/mL gentamicin (Sigma) was added to kill 

extracellular bacteria.  One hour after gentamicin addition, media was removed and the cells 
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were washed twice before the addition of fresh media.  To determine intracellular growth, 

media was removed 4 or 24 hours post-infection and 1 mL of PBS was added to the cells.  

Cells were removed from the plate by scraping and pipeting vigorously up and down.  Cells 

were lysed by vortexing at maximal speed for 1 minute.  Serial 1:10 dilutions of the lysate 

were made and plated on chocolate agar.  Resulting colonies were counted 72 hours later.   

Inoculation of Mice   

Mice were anesthetized with 575 mg/kg tribromomethanol (Avertin) (Sigma) 

administered intraperitoneally.  Mice were then intranasally inoculated with 5 x 102 CFU 

LVS, 5x104 CFU LVS clpB, or 5x105 CFU LVS dotU suspended in 50 μL PBS.  For high 

dose LVS challenge experiments, mice were anesthetized with 0.25 mL of 7.5 mg/mL 

ketamine and 0.5 mg/mL xylazine cocktail in PBS.  Mice were then intranasally inoculated 

with 5x103 CFU LVS.  For SchuS4 challenge, approximately 30 CFUs of SchuS4 were 

administered via the aerosol route in a BSL-3 chamber.  Mice were weighed daily following 

all inoculations.  Mice were sacrificed if they lost more than 25% of their starting weight as 

indicated in our UA and Duke IACUC protocols.     

Determination of bacterial burdens   

Spleens, livers, and lungs were homogenized in sterile PBS using a Biojector 

(Bioject).  10-fold serial dilutions were made and plated on chocolate agar.  Resulting 

colonies were counted 72 hours later.  The limit of detection is 50 CFU per organ.       

Collection of broncheoalverolar lavage fluid   

Mice were sacrificed and the trachea exposed.  A 22 gauge catheter was inserted into 

the trachea and secured with suture.  The lungs were fully inflated with 800 μL of PBS and 
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washed three times.  Cells were removed from the lavage fluid by centrifugation.  Collected 

lavage fluid was frozen at -80˚C until Luminex analysis.   

Luminex analysis   

A multiplex luminex bead-based approach was used to quantify 

cytokines/chemokines in BAL fluid or clarified tissue homogenate.  A 20-analyte assay panel 

was performed according to the manufacturer’s protocol (Invitrogen) using a BioPlex array 

reader (Bio-Rad Laboratories).  Using integrated cytokine/chemokine standard curves, the 

assay reports pg/mL of the following analytes:  FGF basic, GM-CSF, IFN-γ, IL-1α, IL-1β, 

IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p40/p70), IL-13, IL-17, KC, MCP-1, MIG, MIP-1α, 

TNF-α, and VEGF.  A five-parameter non-linear logistic regression model was used to 

establish standard curve and to estimate the probability of occurrence of a concentration at a 

given point.  Standard outliers were removed from the analysis if the observed/expected % 

recovery was outside of the acceptable limits (70-130%).  Upper and lower levels of 

quantification were determined by the BioPlex Manager software based on goodness of fit 

and percent recovery.  Calculated pg/mL for experimental specimens were multiplied by the 

inherent assay dilution factor (df=2) and reported as final observed pg/mL. 

Depletion of IFN-γ   

Purified XMG1.2 (anti-IFN-γ) antibody was a generous gift from Mary Ann 

Accavitti-Loper at the SERCEB Mouse Monoclonal Antibody Core (University of Alabama- 

Birmingham).  Rat IgG1 isotype control antibody (anti-HRPN) was purchased from 

BioXCell (West Lebanon, NH).  Mice were administered 500 µg of depleting or control 

antibody in 200 µL PBS via intraperitoneal injection on days 0 and 2 post-inoculation.   
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Gating strategy for BALF analysis 

 The gating scheme is shown in figure 1.  Single cells were discriminated from 

doublets by plotting side scatter height (SSC-H) versus side scatter area (SSC-A).  Cells were 

then gated on by plotting SSC-A versus forward scatter area (FSC-A).  Live cells were then 

gated by plotting the live/dead stain on a 1-D histogram.  Cells from the BALF were 

discriminated from the CFSE-labeled splenocyte carries by plotting an empty channel versus 

CFSE.  CD3+, CD19+, and not B and T cells were gated on by plotting CD3 versus CD19.  

From the not B and T gate, GR-1 versus CD11b was plotted to distinguish neutrophils from 

not neutrophils.  From the not neutrophils gate, SSC-A versus F4/80 was plotted to 

distinguish F4/80+ from F4/80- cells.  From the F4/80- gate, CD11c versus FSC-A was 

plotted and dendritic cells were gated on.  From the F4/80+ gate, CD11c versus CD11b was 

plotted to distinguish alveolar macrophages (AMs) from interstitial macrophages (IMs).       

Collection of spleen and lung cells    

Spleens were harvested from mice and made into a single cell suspension.  Red blood 

cells were lysed using ammonium chloride-potassium carbonate lysis buffer.  Lungs were 

perfused with PBS to remove blood and then finely minced.  Minced lung was placed in 10 

mL of digestion buffer containing 0.5 mg/mL collagenase I (Worthington Biochemical), 0.02 

mg/mL DNase (Sigma), and 125 U/mL elastase (Worthington Biochemical) in RPMI1640 

(HyClone).  Lungs were digested for 30 minutes at 37˚C and then vigorously pipetted prior to 

filtering through a 100 µM filter.  Mononuclear cells were isolated from the single cell 

suspension by density gradient centrifugation over Lympholyte M (Cedarlane Labs).  Viable 

cells from spleen and lung were determined by trypan blue exclusion using a hemacytometer.           
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Antibodies   

The following directly conjugated antibodies were utilized for flow cytometry 

analysis: CD3 AF488 (Clone 145-2C11, eBioscience); CD3 Pacific Blue (Clone 17A2, 

Biolegend); CD4 AF700 (Clone GK1.5, Biolegend); CD8a V500 (Clone 53-6.7, BD 

Biosciences); CD11b Pacific Blue (Clone M1/70, Biolegend); CD11b V500 (Clone M1/70, 

BD Horizon); CD11c Pacific Blue (Clone N418, Biolegend); CD11c PE-Cy7 (Clone N418, 

Biolegend); CD19 Pacific Blue (Clone 6D5, Biolegend); CD19 PerCP-Cy5.5 (Clone 6D5, 

Biolegend); CD45.1 PE-Cy7 (Clone A20, Biolegend); F4/80 Pacific Blue (Clone BM8, 

Biolegend); F4/80 PE (Clone BM8, eBioscience); GR-1 (Ly-6G) eFluor 450 (Clone RB6-

8C5, eBioscience); GR-1 AF700 (clone RB6-8C5, eBioscience); IFN-γ PE (Clone XMG1.2, 

BD Biosciences); IL-17A AF647 (Clone TC11-18H10.1, Biolegend); NK1.1 Pacific Blue 

(Clone PK136, Biolegend); TCR γδ PerCP-Cy5.5 (Clone GL3, Biolegend).   All antibodies 

were titrated on normal B6 splenocytes prior to use.   

Intracellular cytokine staining    

Splenocytes from B6-CD45.1 mice were used as antigen presenting cells.  B6-

CD45.1 cells were added at 2x106/well in a 24 well plate or 0.5x106/well in a 48 well plate 

and infected with LVS at an MOI of 200:1 or mock infected.  Two hours post-infection, the 

media was removed and 5 μg/mL gentamicin was added to kill any extracellular bacteria.  

Splenocytes were cultured overnight in the presence of gentamicin.  Prior to co-culture with 

cells isolated from infected mice, antigen presenting cells were washed extensively to 

remove any cytokine or PGE2 that could interfere with the co-culture.  Cells isolated from 

mice were co-cultured at a 1:1 ratio with infected or mock infected splenocytes for 24 hours.  

During the last 4 hours of culture, 10 µg/mL Brefeldin A (Sigma) was added to each well to 
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stop cytokine secretion.  Cells were removed from the plate and stained with Pacific Blue 

succimidyl ester (Invitrogen) to distinguish live and dead cells.  Cells were then stained with 

antibodies for surface markers.  Following fixation and permeabilization of the cells, cells 

were stained for IFN-γ and IL-17A.  Cells were washed extensively after each staining step 

to remove residual unbound antibody.               

Gating strategy for intracellular cytokine staining analysis   

The gating scheme is shown in figure 2.  Single cells were discriminated from 

doublets by plotting side scatter linear versus side scatter area.  Cells were then selected by 

plotting side scatter area versus forward scatter area.  Live CD3+ T cells were then selected 

by plotting CD3 versus the Pacific Blue channel which included the live/dead stain and 

markers for antigen presenting cells.  From the CD3+ gate, CD4+ and CD8+ T cells were 

selected.  Gates for IFN-γ and IL-17A positive cells were set based on isotype control 

staining.  Delta mean fluorescent intensity (∆MFI) for each sample was determined by 

subtracting the cytokine negative population from the cytokine positive population.  FlowJo 

v7.6 (Treestar) was used for all flow cytometry analysis.       

Determination of IFN-γ and IL-17A secretion by purified CD4+ T cells   

B6 splenocytes were depleted of T cells using Mouse Thy1.2 Dynabeads (Life 

Technologies) and used as antigen presenting cells.  5x104/well T cell depleted splenocytes 

were seeded in a 96 well plate and then infected with LVS at an MOI of 200:1 or mock 

infected.  Two hours post-infection, the media was removed and 5 μg/mL gentamicin was 

added to kill any extracellular bacteria.  T cell depleted splenocytes were cultured overnight 

in the presence of gentamicin.  Prior to co-culture with purified CD4+ T cells from infected 

mice, antigen presenting cells were washed extensively to remove any cytokine or PGE2 that 
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could interfere with the co-culture.  CD4+ T cells were enriched from single cell suspension 

of lung cells or splenocytes using a Dynabeads Untouched Mouse CD4 Cells Kit (Life 

Technologies).  Enriched CD4+ T cells were co-cultured at a 1:1 ratio with T cell depleted 

LVS infected or mock infected splenocytes for 24 hours.  Culture supernatant was then 

removed and stored at -20°C until ELISA analysis.  Each sample was tested in triplicate.  

IFN-γ concentration was determined using a Mouse IFN-γ Instant ELISA (eBioscience) and 

IL-17A concentration was determined using a Mouse IL-17A Ready-Set-Go ELISA 

(eBioscience).  T cell depletion and CD4+ T cell enrichment was determined using flow 

cytometry analysis.  IFN-γ and IL-17A concentrations were normalized based on the number 

of CD4+ T cells in the culture as determined by flow cytometry.   

Statistical analysis   

Data were analyzed using a one-way ANOVA with Tukey’s post-test for cytokine 

levels and flow cytometry results.  Bacterial burdens were log transformed and then a 

Student’s t-test or ANOVA with Tukey’s post-test was applied.  For LVS protection studies, 

a Chi-square test with Yates’ correction was applied.  GraphPad Prism (v5.04) was used for 

analysis.  Error bars show standard error of the mean.  Significance levels are indicated as 

follows: * p < 0.05; ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

RESULTS 

LVS clpB is attenuated in mouse pneumonic tularemia   

Several groups have shown that LVS clpB or SchuS4 clpB strains are attenuated 

following either intradermal, intraperitoneal, or oral inoculation in either BALB/c or 

C3H/HeN mice (23-25).  We were interested in determining whether LVS clpB was also 
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attenuated in a pneumonic tularemia model in C57Bl/6J (B6) mice.  For this study, we 

produced two LVS clpB mutant strains.  One strain carried a transposon (Tn) insertion in the 

clpB gene and the other was an in frame deletion of the clpB coding sequence.  The 

mutations were confirmed by DNA sequencing.  Although transposon mutations can have 

polar effects, we did not expect any from the transposon insertion in clpB because 

bioinformatic analysis indicated that clpB is not located in an operon (23).  Indeed, we found 

the clpB::Tn mutant and the deletion strain behaved identically in all experiments.  We have 

therefore combined all data and will simply refer to infection with either strain as LVS clpB.   

Initial experiments demonstrated that LVS clpB did not disseminate to the spleen and 

liver in all mice when an inoculation dose of 500 CFU was used, despite this dose causing 

disease following LVS inoculation (figure 3).  We therefore conducted preliminary 

experiments to establish the dose of LVS clpB that produced a similar peak bacteremia in the 

spleen so that mice were exposed to similar antigen levels.  Similar antigen load is important 

because in other infection models, the magnitude of the primary adaptive immune response 

was influenced by the peak bacterial load and not the duration of infection (29-31).  As a 

control for inoculation with a bacterial strain that failed to grow intracellularly, we selected 

LVS dotU (32).  We achieved similar burdens for LVS and LVS clpB but since LVS dotU 

fails to grow intracellularly (32), this strain was inoculated at the highest practical dose.  

Seven to twelve week old B6 mice were intranasally inoculated with 5x102 CFU LVS, 5x104 

CFU LVS clpB, or 5x105 CFU LVS dotU.  To determine bacterial growth in vivo, mice were 

euthanized on days 3, 7, and 10 post-inoculation and bacterial burdens were determined in 

the spleen, liver, and lung by plating serial dilutions of tissue homogenate on chocolate agar 

(figure 4A-C). While LVS clpB and LVS bacterial burdens were not significantly different 3 
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days post-inoculation in the spleen and liver, LVS clpB was cleared much faster than LVS 

from all organs tested.  Few LVS clpB colonies were recovered 10 days post-inoculation 

while LVS-infected mice still had high bacterial loads, particularly in the lung.  LVS clpB 

was also attenuated in BALB/c mice compared to LVS (figure 5A-C).  Like B6 mice, LVS 

and LVS clpB burdens are similar in the spleen and liver of BALB/c mice on day 3 post-

inoculation and LVS clpB is cleared faster than LVS.   

Despite the 1000-fold higher dose of LVS dotU compared to LVS, the number of 

colonies recovered from the lungs 3 days post-inoculation was 1000-fold less than LVS.  

Viable LVS dotU organisms were recovered from isolated lung cells from LVS dotU 

infected mice harvested 3 days post-inoculation cultured in gentamicin for 1 hour 

demonstrating that LVS dotU was internalized and the bacteria had not simply persisted in 

the extracellular space (figure 6).  Despite its intracellular location, LVS dotU failed to leave 

the lung and transit to the spleen and liver and was effectively cleared by 7 days post-

inoculation in all organs tested.  Because LVS dotU was not found in distal organs on day 3 

post-inoculation, but infected cells were still present in the lung, these data suggest that 

infected cells were not the primary method of dissemination.  Alternatively, the LVS dotU 

infected cells were not activated in a manner that caused them to leave the primary site of 

infection.  To confirm that rapid clearance of LVS clpB and LVS dotU was specifically due 

to the absence of these genes, the strains were trans-complemented.  B6 mice were 

intranasally inoculated with 5x102 CFU of LVS clpB complement or LVS dotU complement.  

We used the same dose as LVS since transcomplementation should return these strains to 

wild-type LVS virulence levels.  Indeed, transcomplementation of  LVS clpB and LVS dotU 

led to bacterial burdens comparable to LVS in the spleen, liver, and lungs 3 days post-
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inoculation (figure 7).  Overall, these results demonstrate that LVS clpB is attenuated in a 

pneumonic model of tularemia, just as other groups have shown for LVS clpB and SchuS4 

clpB by different routes of inoculation (23-25).       

We also wanted to understand if the extent of disease caused by LVS clpB was 

similar to LVS induced disease.  As a measure of overall health, body weight change is a 

reasonable measure of clinical status.  Infected B6 and BALB/c mice were weighed daily and 

weight loss as a percentage of starting weight is reported (figure 8).  LVS infected mice lost 

approximately 15% of their starting weight by day 7 and then slowly regained weight. In 

contrast to LVS, LVS clpB infected mice only lost approximately 10% of their starting 

weight and began to regain weight 5 days post-inoculation.  LVS clpB mice regained their 

lost weight more rapidly than LVS infected mice which correlated with faster bacterial 

clearance.  Mice infected with LVS dotU did not lose any weight, an expected result given 

the bacteria failed to grow in vivo.  Together these results indicate the LVS clpB is attenuated 

in pneumonic tularemia and lead to a weight loss profile that differed from LVS infection. 

Previous infection with LVS clpB protects against lethal LVS intranasal challenge   

We next sought to determine whether previous intranasal inoculation with LVS, LVS 

clpB, or LVS dotU elicits an immune response that was protective against subsequent lethal 

LVS intranasal challenge.  Mice were intranasally inoculated with 5x102 CFU LVS, 5x104 

CFU LVS clpB, or 5x105 CFU LVS dotU.  To examine the early memory response, mice 

were challenged with 5x103 CFU (approximately 5 LD50 (8)) LVS intranasally 28 days after 

the initial infection.  All mice vaccinated with LVS or LVS clpB survived lethal LVS 

challenge (figure 9A).  LVS and LVS clpB vaccinated mice lost little weight following lethal 

LVS challenge and quickly returned to their starting weight (figure 9B).  Naïve and LVS 
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dotU vaccinated mice continued to lose weight after LVS and LVS clpB vaccinated mice 

began their recovery.  The abrupt change in the weight loss curve for the LVS dotU group is 

due to the one surviving mouse.  Naïve mice fell below the weight loss threshold 6 or 7 days 

post-re-challenge.  5 of 6 LVS dotU vaccinated mice succumbed to infection 6 days after the 

lethal dose challenge.  There was no significant difference in survival when LVS dotU 

vaccinated mice were compared to the naïve group.  The surviving LVS dotU vaccinated 

mouse lost more than 20% of its starting weight, but never fell below the 25% threshold after 

challenge with LVS.  Despite sustained illness indicated by weight loss in this mouse, there 

were no colonies recovered from the spleen, liver, or lung 14 days following the lethal 

challenge, similar to mice following primary exposure to LVS.   

When naïve and LVS dotU vaccinated mice were sacrificed upon losing >25% of their 

starting weight (day 6 post-re-challenge), we harvested spleen, liver, and lung and 

determined bacterial burdens (figure 9C-E).  We also harvested spleen, liver, and lungs from 

LVS and LVS clpB vaccinated mice on day 6 post-infection and determined bacterial 

burdens for comparison purposes (figure 9C-E).  Naïve and LVS dotU vaccinated mice had 

high bacterial burdens in the spleen and liver with means exceeding 105 CFU.  Even higher 

bacterial burdens were observed in the lungs of naïve and LVS dotU vaccinated mice (means 

>107 CFU).   LVS and LVS clpB vaccinated mice had few or no colonies recovered from the 

spleen, liver, and lung.  For example, no colonies were recovered from the lungs of LVS 

vaccinated mice and 4 of 6 LVS clpB vaccinated mice.       

We were also interested in whether LVS clpB would confer long-lived protection 

against lethal LVS challenge.  Mice were intranasally innoculated with 5x102 CFU LVS, 

5x104 CFU LVS clpB, or 5x105 CFU LVS dotU and then challenged with 5x103 CFU LVS 
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intranasally 120 days after the initial infection.  All LVS and LVS clpB vaccinated mice 

survived lethal LVS challenge (figure 10A).  All naïve mice succumbed to their infection by 

day 7.  Over half of the LVS dotU vaccinated mice succumbed to their infection by day 7 and 

all but one mouse succumbed by day 14.  The surviving LVS dotU vaccinated mouse lost 

more than 20% of its starting weight but never fell below the 25% threshold for sacrifice.  

This mouse was sacrificed on day 14 and the bacterial burdens were determined in the 

spleen, liver, and lung.  125 CFUs were recovered from the spleen, zero CFUs were 

recovered in the liver, and 425 CFUs were recovered from the lung indicating this mouse was 

clearing the high dose LVS challenge.  When mice were challenged 120 days after 

vaccination, the LVS and LVS clpB vaccinated groups lost more weight (approximately 10-

15% of starting weight) compared to the same groups challenged 28 days after vaccination 

(figure 10B).  LVS and LVS clpB vaccinated mice not only showed equivalent weight loss 

after high-dose LVS challenge but also regained their lost weight at a similar pace.  Naïve 

and LVS dotU vaccinated mice also show similar weight loss profiles compared to each 

other.  Figure 2E also shows the surviving LVS dotU vaccinated mouse exhibited extreme 

weight loss but did rapidly gain weight on days 13 and 14.   

When naïve and LVS dotU vaccinated mice fell below the weight loss threshold on 

day 6, four mice per group were sacrificed and bacterial burdens were determined for the 

spleen, liver and lung (figure 10C-E).  Naïve and LVS dotU vaccinated mice had high 

bacterial burdens that were comparable to the burdens found when mice were challenged 28 

days after vaccination with means exceeding 105 in the spleen and liver and 107 in the lung..  

LVS and LVS clpB vaccinated mice had approximately 104 CFU in their lungs on day 6 after 
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the high-dose LVS challenge but few, if any, CFUs in the spleen and liver.  These results 

clearly indicate that LVS clpB protects against subsequent lethal LVS challenge.   

Since LVS clpB induced a robust adaptive immune response that protected against a 

lethal LVS challenge, we next wanted to determine whether LVS clpB could protect against 

aerosolized highly virulent SchuS4.  Mice were intranasally innoculated with 5x102 CFU 

LVS, 5x104 CFU LVS clpB, or 5x105 CFU LVS dotU and then challenged with 30 CFU 

SchuS4 (measured as dose retained  in the lungs at one hour, approximately 30 LD100 (8)) via 

the aerosol route 28 days after the initial infection.  The use of aerosolized SchuS4 in B6 

mice is a very stringent test of whether LVS clpB infection confers protection.  Previous 

vaccination with LVS protected 2 of 7 mice and LVS clpB vaccination protected 1 of 8.  

These results are consistent with the findings of others who have also shown that previous 

LVS infection does not fully protect against SchuS4 challenge in B6 mice (33, 34).  Naïve 

and LVS dotU vaccinated mice succumbed to SchuS4 infection 5 days post-infection.  While 

neither LVS nor LVS clpB vaccination provided complete protection against subsequent 

SchuS4 infection, these infections significantly increased the median survival time from 5 

days (naïve) to 9 (LVS clpB) or 10 (LVS) days (figure 11).  A Mantel-Cox log-rank test was 

used to compare survival of the vaccinated groups to the naïve group.  LVS dotU vaccination 

was not statistically different from the naïve group but LVS and LVS clpB vaccination 

significantly increased survival after SchuS4 challenge (p ≤ 0.001). 

LVS clpB does not exhibit an intracellular growth defect   

A bacterial strain’s attenuation could be the result of a growth defect or an altered 

immune response that is more effective at bacterial clearance.  We therefore sought to 

determine whether our LVS clpB or LVS dotU strains had a growth defect in broth or 
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intracellularly that could explain their attenuation in vivo.  We initially examined the ability 

of LVS, LVS clpB, and LVS dotU to grow in either CDM (minimal) or BHI (rich) broth.   

We inoculated cultures with log phase bacteria and monitored the OD600 every 15 minutes for 

48 hours.  The growth rates of the three strains in CDM and BHI are nearly identical (figure 

12A-B).  Therefore, there is no inherent growth difference in vitro. 

We next determined whether LVS clpB or LVS dotU had an intracellular growth 

defect in primary BMDMs or the cell lines: A549 (human alveolar type II epithelial), J774 

(mouse macrophage), and MH-S (mouse alveolar macrophage).  Cells were inoculated with 

LVS or LVS clpB at an MOI of 25:1 for 120 minutes to allow internalization.  Cells were 

then treated with gentamicin to kill extracellular bacteria.  To determine bacterial 

internalization, cells were lysed 4 hours after inoculation and serial dilutions of the lysate 

were plated on chocolate agar.  We recovered a similar number of both LVS and LVS clpB 

CFUs within each different cell type at 4 hours post-inoculation indicating that LVS clpB is 

not defective for internalization (figure 13A-D).  To determine the ability of LVS clpB to 

grow in BMDMs, we lysed infected cells 24 hours post-inoculation and plated serial dilutions 

of the lysate on chocolate agar.  We found a similar increase in the number of CFUs 

recovered for LVS and LVS clpB within each cell line indicating LVS clpB has no 

intracellular growth defect (figure 13A-D).  Because LVS clpB grows in a variety of cell 

lines, these data indicate the ability of LVS clpB to grow intracellularly is generalizable and 

not specific to a certain cell type.  Although LVS dotU infects all cells tested so that it is 

protected from gentamicin similarly to LVS 4 hours post-inoculation, this strain failed to 

grow and a similar number or even fewer CFUs were recovered 24 hours post-inoculation 

(figure 13A-D).  We can rescue the intracellular growth defect seen with LVS dotU by trans-

87



 
 
 

complementation (figure 14).  These results indicate the in vivo attenuation of LVS dotU is 

likely a consequence of this strain’s inability to grow intracellularly.  Indeed, LVS dotU and 

U112 dotU fail to escape the phagosome (32, 35) to reach the cytosol- Francisella’s 

replicative niche.  However, since LVS clpB has no intracellular growth defect, its 

attenuation may be caused by an altered immune response that is more effective at bacterial 

clearance.   

LVS clpB fails to inhibit early pro-inflammatory cytokine production in the lung   

Because LVS clpB did not exhibit an intracellular growth defect, we hypothesized 

that this strain’s attenuation was due to an altered immune response that was more effective 

at bacterial clearance.  To test our hypothesis, we first examined cytokine production in the 

lung BALF on day 3 post-inoculation using a 20-plex mouse cytokine Luminex assay.  

Despite higher lung bacterial burdens in LVS infected B6 mice on day 3 post-inoculation 

compared to LVS clpB infected B6 mice (figure 4A), the BALF of LVS infected B6 mice 

contained less pro-inflammatory cytokines and chemokines compared to LVS clpB infected 

B6 mice (figure 15).  LVS clpB also induced a similar profile of pro-inflammatory cytokines 

and chemokines in the lungs of BALB/c mice on day 3 post-inoculation whereas LVS did not 

(figure 15).  BALB/c mice also had significantly higher day 3 post-inoculation lung LVS 

burdens compared to LVS clpB (figure 5A).  Clearly, LVS clpB failed to suppress early pro-

inflammatory cytokine production in the lung which is in stark contrast to LVS infection 

which does not induce pro-inflammatory cytokine production in the lung (figure 15 and 

(11)).  Additionally, the failure of LVS clpB to suppress pro-inflammatory cytokine 

production is not specific to a particular mouse strain as the same effect is seen in B6 and 

BALB/c mice.  Despite the high inoculum dose of LVS dotU, this strain did not elicit any 
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detectable pro-inflammatory cytokine production in the lungs of B6 or BALB/c infected mice 

(data not shown).    

Depletion of IFN-γ early after LVS clpB inoculation increases bacterial burdens   

To confirm that pro-inflammatory cytokine production early after LVS clpB 

inoculation was important innate-mediated bacterial clearance, we treated B6 mice with 500 

µg of XMG1.2 (anti-IFN-γ) or rat IgG1 isotype antibody on day 0 and day 2 post-

inoculation.  On day 3 post-inoculation, mice were sacrificed and bacterial burdens were 

determined in the spleen, liver, and lung.  Mice receiving IFN-γ depleting antibody had 

significantly higher bacterial burdens than mice receiving isotype control antibody in all 

organs (figure 16A-C).  We confirmed IFN-γ depletion by subjecting clarified tissue 

homogenates to Luminex analysis.  All mice receiving anti-IFN-γ depleting antibody had 

IFN-γ levels below the detection limit whereas isotype control animals had high levels of 

lung IFN-γ (figure 16D).  These data indicate pro-inflammatory cytokine production, such as 

IFN-γ, early after LVS clpB inoculation help control bacterial replication.   

LVS clpB infection alters the cellular composition of the BALF  

The presence of pro-inflammatory cytokines/chemokines in the BALF on day 3 post-

inoculation suggested that the cellular composition of the BALF could be altered in LVS 

clpB infected mice.  First, we determined the overall cellularity of the BALF for uninfected, 

LVS, LVS clpB, or LVS dotU infected B6 mice.  LVS clpB infected mice have significantly 

more cells in the BALF compared to uninfected, LVS, and LVS dotU infected mice (figure 

17A).  We then used flow cytometry to identify alveolar macrophages, dendritic cells, 

interstitial macrophages, and neutrophils.  Because the total cellularity of LVS clpB BALF 

was significantly higher than all other groups, the total number of each individual cell 

89



 
 
 

population is also increased.  We therefore focused on whether the composition of the 

response is changing (figure 17B-E).  We did not detect a significant increase in any of the 

analyzed cell populations except for neutrophils.  In LVS clpB infected mice, neutrophils 

comprise approximately 40% of all BALF cells; neutrophils are only approximately 10% of 

BALF cells in LVS infected mice.  The difference in the composition is not surprising given 

the presence of neutrophil chemoattractants like MIG and KC in the BALF of LVS clpB 

infected mice (figure 15).             

 We also determined the BALF cellularity of uninfected, LVS, LVS clpB, or LVS 

dotU infected BALB/c mice on day 3 post-inoculation.  Like B6 mice infected with LVS 

clpB, BALB/c mice also had significantly more cells in the BALF upon LVS clpB infection 

(figure 18).  BALB/c mice express high levels of GR-1 on all myeloid cells; therefore, we 

could not unambiguously define the cellular composition of the BALF as we did in B6 mice.  

Despite being unable to define the cellular composition of BALB/c BALF, we did observe 

increased cellularity in LVS clpB infected mice, data consistent with increased pro-

inflammatory cytokine and chemokine levels as determined by Luminex (figure 15).          

MyD88 and TLR2 signaling are required for LVS clpB clearance  

 We next sought to determine the signaling pathways involved in mediating LVS clpB 

clearance.  Signaling through MyD88 is required for survival during LVS infection (16, 36).  

To determine whether MyD88 signaling is required for clearance of LVS clpB, we 

intranasally inoculated MyD88-/- or B6 mice with 5x104 CFU LVS clpB and determined 

bacterial burdens in the spleen, liver, and lung on days 3 and 7 post-inoculation.  MyD88-/- 

mice have significantly higher bacterial burden in the lung, but not the spleen or liver, on day 

3 post-inoculation (figure 19A-C).  These data suggest that MyD88 signaling is necessary for 
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control of bacterial growth at the site of primary infection, but not distal sites, early after 

inoculation.  On day 7 post-inoculation, bacterial burdens in all three organs exceeded 108 

CFU (figure 19A-C).  This increase in bacterial burdens indicates MyD88 signaling is 

necessary for a productive innate immune response capable of controlling LVS clpB 

infection.  Despite the high bacterial burdens, MyD88-/- mice do not lose any weight until 

days 6 and 7 post-inoculation when bacterial burdens are very high (figure 19D).  The 

absence of weight loss in earlier after inoculation in MyD88-/- mice suggests there is little 

production of cytokines like IL-1, IL-6, and TNF-α.     

 TLR2 signaling is required for survival following intranasal or intradermal 

inoculation with LVS (36).  TLR2 requires MyD88 to progagate the signaling cascade (37).  

To determine whether the failure of MyD88-/- mice to control LVS clpB infection was due 

solely to the failure to propagate signals initiated by TLR2, we infected TLR2-/- or B6 mice 

with 5x104 CFU LVS clpB and determined bacterial burdens in the spleen, liver, and lung on 

days 3 and 7 post-inoculation.  On day 3 post-inoculation, B6 and TLR2-/- had identical 

burdens in the spleen, liver, and lung indicating TLR2 signaling is not necessary for early 

control of LVS clpB (figure 20A-C).  On day 7 post-inoculation, TLR2-/- mice have 

significantly higher bacterial burdens in the lung and liver compared to B6 mice; spleen 

bacterial burdens are not different between the two groups (figure 20A-C).  Lung TLR2 

signaling is particularly important for controlling the infection because bacterial burdens are 

approximately 100-fold increased in the lungs of TLR2-/- mice compared to B6 (figure 20C).  

TLR2-/- mice have similar weight loss profiles as B6 mice until days 6 and 7 post-inoculation 

where they fail to gain weight at the same rate as B6 mice (figure 20D).  These weight loss 
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data suggest that there are TLR2-independent pathways mediating cytokine production that 

causes weight loss early after inoculation.                                                        

TLR2 signaling is required for production of some pro-inflammatory cytokines after 

LVS clpB infection  

 Three Francisella lipoproteins have been identified as TLR2 ligands- LpnA, 

FTT_1103, and FTL_0645 (38-40).  TLR2 signaling is necessary for the production of pro-

inflammatory cytokines in peritoneal macrophages infected with LVS (36, 41).  Therefore, it 

was possible that TLR2-/- mice fail to control LVS clpB infection because of defective 

cytokine/chemokine production.  We isolated BALF from uninfected or LVS clpB infected 

B6 and TLR2-/- mice on day 3 post-inoculation and determined cytokine and chemokine 

concentrations using Luminex analysis.  TLR2-/- mice were able to produce several pro-

inflammatory cytokines/chemokines after LVS clpB infection at significantly higher levels 

compared to uninfected mice (IL-12, IP-10, KC, MIG, and GM-CSF) (figure 21).  Despite 

the ability of TLR2-/- mice to produce these cytokines/chemokines, they did not produce as 

much cytokine/chemokine as B6 mice (with the exception of GM-CSF where equivalent 

amounts were produced) (figure 21).  These data suggest that LVS clpB stimulates both 

TLR2-independent and TLR2-dependent pathways that lead to pro-inflammatory cytokine 

production.  The production of IL-1α, IL-1β, IL-2, IL-6, IL-17, MIP-1α, and TNF-α required 

TLR2 signaling as these cytokines/chemokines were not found at significantly higher levels 

in LVS clpB infected TLR2-/- mice compared to uninfected mice (figure 21).  Of note, IFN-γ 

was 28-fold higher in LVS clpB infected TLR2-/- mice compared to uninfected mice but this 

was not a statistically significant increase (figure 21).  Although GM-CSF and IFN-γ were 

produced at higher levels in B6 and TLR2-/- mice than uninfected mice, there was no 
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difference between the LVS clpB infected B6 and TLR2-/- mice suggesting their induction is 

TLR2-independent.  Altogether, these data indicate that LVS clpB stimulates the innate 

immune system via TLR2-independent and -dependent mechanisms that lead to pro-

inflammatory cytokine and chemokine production. 

TLR2 signaling is not required for neutrophil influx into the BALF   

 The differential cytokine and chemokine concentrations in the BALF of LVS clpB 

infected B6 and TLR2-/- mice could affect cellular recruitment to the lungs and therefore the 

cellular composition of the BALF.  We first determined the total number of cells present in 

the BALF and found LVS clpB infected B6 mice had significantly more BALF cells than 

both uninfected and LVS clpB infected TLR2-/- mice (figure 22A).  LVS clpB infected TLR2-

/- mice did have significantly more BALF cells than uninfected mice indicating TLR2-

independent pathways are involved in cellular recruitment (figure 22A).  These data are 

consistent with decreased, but not absent, cytokines and chemokines in the BALF which 

could cause a decrease in cellular recruitment (figure 21).  Despite recovering fewer cells 

from the BALF of LVS clpB infected TLR2-/- mice, the cellular composition is nearly 

identical to B6 mice in terms of the percentage of BALF cells that are alveolar macrophages, 

dendritic cells, or neutrophils (figure 22B-E).  There was a statistically significant increase in 

the percentage of interstitial macrophages in LVS clpB infected TLR2-/- mice compared to 

B6 mice (figure 22D).  While statistically significant, we do not believe the increase to be 

biologically significant because the percentage of all cells is low and amounts to just a few 

hundred cells.  Together, these data indicate that while TLR2-/- mice have decreased total 

BALF cellularity compared to B6 mice, the composition of the BALF is equivalent.             
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Adaptive immunity is required for LVS clpB clearance   

LVS clearance requires adaptive immunity (15).  Because LVS clpB induced a robust 

innate immune response and was nearly cleared from the host prior to the peak of the 

adaptive immune response (day 10 post-inoculation (19)), this raised the possibility that the 

innate immune system alone was capable of controlling the infection and mediating bacterial 

clearance without the requirement of adaptive immunity even though the adaptive response 

was vigorous (see below).  To test this possibility, we infected B6 and Rag-/- with 5x104 CFU 

LVS clpB.  On days 3 and 7 post-infection, B6 and Rag-/- mice had equivalent bacterial 

burdens in the lung indicating that innate immunity was capable of controlling the infection 

initially (figure 23A).  We next infected Rag-/- and B6 mice with 5x104 CFU LVS clpB and 

harvested organs 28 days post-inoculation.  No bacteria were recovered from the B6 mice but 

LVS clpB persisted in the lungs of Rag-/- mice (figure 23A).  The same trend was seen in the 

spleen and liver (figure 23B-C).  Despite persistent bacteremia with LVS clpB in Rag-/- mice, 

weight loss profiles were identical in Rag-/- and B6 mice (figure 23D).  Since LVS clpB 

persisted in Rag-/- mice, this result indicates that adaptive immunity is required for LVS clpB 

clearance similar to LVS (15); the robust innate response is not sufficient to clear LVS clpB.  

It further suggests that the innate immune response is responsible for the early weight loss 

profile observed in LVS clpB inoculated mice.   

LVS clpB infection induces altered immune expansion   

After determining that adaptive immunity is required for LVS clpB clearance, we 

characterized the adaptive immune response to this strain.  First we determined the total 

number of cells recovered from the spleen and lung on days 7 and 10 post-inoculation (figure 

24).  LVS and LVS clpB infected mice had similar increases in spleen cellularity with an 
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approximately 2-3 fold increase in total cells compared to uninfected mice on days 7 and 10 

post-inoculation (figure 24A-B).  LVS and LVS clpB infected mice also had increased lung 

cellularity of 2-5 fold over uninfected mice on days 7 and 10 post-inoculation (figure 24C-

D).  When spleen cellularity of LVS and LVS clpB infected mice was compared, there was 

no significant difference on day 7 or 10 post-inoculation (figure 24A-B).  However, lung 

cellularity was decreased significantly in LVS clpB infected mice compared to LVS infected 

mice on days 7 and 10 post-inoculation (figure 24C-D).  The difference in lung cellularity is 

likely due to the contraction of the immune response following LVS clpB clearance.  While 

the LVS clpB infection was nearly cleared on day 10 post-inoculation, LVS infected mice 

still had high bacterial burdens and an on-going infection likely drives sustained lung 

cellularity.  Because LVS dotU failed to grow in vivo, it was not surprising that LVS dotU 

infected mice did not have any increase in spleen or lung cellularity compared to uninfected 

mice and exhibited no immune expansion from day 7 to 10 (figure 24A-D).        

LVS clpB infection induced a robust IFN-γ mediated immune response similar in 

magnitude to LVS infection  

Given the strong innate response, we suspected that in spite of the earlier clearance of 

LVS clpB, we would still observe a robust adaptive response.  We therefore examined 

whether IFN-γ production by CD4+ T cells was altered after LVS clpB infection in terms of 

absolute number and frequency (Figure 25A-H).  We identified IFN-γ producing T cells 

using intracellular cytokine staining following co-culture with LVS infected congenic B6-

CD45.1 splenocytes as antigen presenting cells.  The gating scheme used for all flow 

cytometry analysis is shown in figure 2.  We found no statistically significant difference in 

the number of CD4+ T cells producing IFN-γ in LVS and LVS clpB infected mice on day 7 in 
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the spleen and lung (figure 25A-B).  On day 10 post-inoculation, the number of splenic CD4+ 

IFN-γ+ T cells was not significantly different between LVS and LVS clpB infected mice in 

spite of lower bacterial burdens in LVS clpB infected mice (figure 25C).  In the lung, 

however, there was a significant decrease in the number of CD4+ IFN-γ+ T cells in LVS clpB 

infected mice compared to LVS infected mice (figure 25D).  While the frequency of IFN-γ+ 

cells in the CD4+ T cell pool in LVS clpB infected mice was higher than LVS infected mice 

(41.6% versus 35.8%), the difference did not reach statistical significance (figure 25H).  

Because the frequency of IFN-γ+ cells of CD4+ T cells was similar in the lungs of LVS and 

LVS clpB infected mice, the difference in the absolute number was due to fewer total cells in 

the lungs of LVS clpB infected mice on day 10 post-inoculation (figure 24D).  The frequency 

of splenic IFN-γ+ CD4+ T cells in LVS infected mice was significantly increased compared 

uninfected and LVS dotU infected mice on days 7 and 10 post-inoculation (figure 25E, G).  

LVS clpB infected mice did not have a statistically significant increase in the frequency of 

IFN-γ+ CD4+ T cells compared to uninfected mice in the spleen on day 7 or 10 post-

inoculation, but the frequency trends higher (figure 25E, G).  LVS and LVS clpB infected 

mice had significantly more IFN-γ+ CD4+ T cells in the lung on day 7 post-inoculation 

compared to uninfected and LVS dotU infected mice (figure 25F).  We did not detect an 

increase in the number or frequency of splenic or lung CD4+ IFN-γ+ cells in LVS dotU 

infected mice compared to uninfected mice (figure 25A-H).         

CD8+ T cells showed a similar pattern of IFN-γ production as CD4+ T cells (figure 

26A-H).  There was no statistical difference in the number of CD8+ IFN-γ+ T cells in the 

spleen or lungs of LVS and LVS clpB infected mice on day 7 post-inoculation (figure 26A-

B).  On day 10 post-inoculation, there were equivalent numbers of CD8+ T cells producing 
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IFN-γ in the spleens of LVS clpB and LVS infected mice (figure 26C).  There was, however, 

a significant decrease in the number of IFN-γ+ CD8+ T cells in the lungs of LVS clpB 

infected mice on day 10 post-inoculation compared to LVS infected mice (figure 26D).  

Again, the percentages of IFN-γ+ cells in the CD8+ T cell pool remained the same, therefore 

any decrease in absolute number on day 10 is due to decreased lung cellularity in LVS clpB 

infected mice (figure 26H).  There was a significant decrease in the frequency of IFN-γ+ 

CD8+ T cells in the lungs of LVS clpB infected mice compared to LVS infected mice on day 

7 post-inoculation in the lung (figure 26F).  The difference in the frequency of IFN-γ+ CD8+ 

T cells between LVS and LVS clpB infected mice in the lung on day 7 post-inoculation has 

been overcome by LVS clpB infected mice by day 10 post-inoculation (figure 26F, H).  In 

the spleen, the frequency of IFN-γ+ CD8+ T cells are similar for all groups on day 7 post-

inoculation (figure 26E).  By day 10 post-infection, LVS and LVS clpB infected mice have 

significantly higher frequencies of IFN-γ+ CD8+ T cells compared to uninfected or LVS dotU 

infected mice (figure 26G).  Uninfected and LVS dotU infected mice were similar to each 

other in terms of the absolute number and frequency of CD8+ IFN-γ+ cells in the spleen and 

lungs on days 7 and 10 post-inoculation (figure 26A-D).      

We found an approximate 2-fold increase in the number of IFN- γ+ CD4+ T cells in 

the spleens of LVS and LVS clpB infected mice between days 7 and 10 post-inoculation 

(figure 25A, C).  There was at least a 10-fold expansion of IFN- γ+ CD4+ T cells in the lungs 

of LVS and LVS clpB infected mice between days 7 and 10 post-inoculation (figure 25B, D).  

LVS clpB infected mice, however, did not show the degree of expansion seen in LVS 

infected mice (10-fold versus 35-fold).  The frequency of IFN-γ+ CD4+ T cells also increased 

from day 7 to day 10 post-inoculation in the lungs of LVS and LVS clpB infected mice 
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(figure 25F, H).  There was no change in the number of IFN-γ+ CD8+ T cells in the spleens of 

LVS or LVS clpB infected mice between days 7 and 10 post-inoculation (figure 26A, C).  

There was, however, an approximate 10-fold increase in the number of responding IFN-γ+ 

CD8+ T cells in the lungs of both LVS and LVS clpB infected mice between days 7 and 10 

(figure 26B, D).  Like CD4+ T cells, the frequency of IFN-γ+ CD8+ T cells increased in the 

lungs of LVS and LVS clpB infected mice from day 7 to day 10 post-inoculation (figure 26F, 

H)  Together these results indicate that LVS clpB infection induced a similar number and 

frequency of IFN- γ+ CD4+ and CD8+ T cells as LVS infection.     

LVS clpB infection led to increased IFN-γ expression by responding T cells compared to 

LVS infection   

We next measured the mean fluorescent intensity (MFI) of CD4+ IFN-γ+ cells 

because MFI is an indication of how much IFN-γ is expressed on a per cell basis.  We 

normalized the data by subtracting the MFI of the IFN-γ- population from the MFI of the 

IFN-γ+ population to give a change in MFI (∆MFI).  Figure 27A-D shows data for CD4+ 

IFN-γ+ ∆MFI combined from 4 independent experiments.  The differences in ∆MFI for CD4+ 

IFN-γ+ T cells on day 10 were consistent from experiment to experiment and representative 

histograms derived from the same experiment are shown (figure 27E-H).  There was a 

significant increase in the ∆MFI of CD4+ cells producing IFN-γ in the spleens and lungs 

from LVS and LVS clpB infected mice compared to either uninfected mice on day 7 and 10 

post-inoculation (figure 27A-D).  On day 7 post-inoculation, there was no significant 

difference in CD4+ IFN-γ ∆MFI from LVS infected mice as compared to LVS clpB infected 

mice for both the spleen and lung (figure 27A-B).  However, on day 10, there was a 

significant increase in IFN-γ ∆MFI from LVS clpB infected mice compared to LVS infected 
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mice in both the spleen and lung (figure 27C-D).  To further investigate IFN-γ production by 

CD4+ T cells, we enriched CD4+ T cells from the spleen and lung on day 10 post-inoculation.  

We chose day 10 because this time point had more responding CD4+ T cells than day 7 and 

also exhibited differences in IFN-γ expression as measured by ΔMFI.  Enriched lung and 

spleen CD4+ T cells were re-stimulated using LVS infected T cell-depleted splenocytes.  The 

concentration of IFN-γ in the culture supernatant was determined by ELISA 24 hours after 

the start of the co-culture and normalized to the number of CD4+ T cells in each sample 

(figure 28).  There was no difference in the IFN-γ concentration following re-stimulation of 

enriched lung or spleen CD4+ T cells from LVS or LVS clpB infected mice.  It is possible 

that we did not see the difference in IFN-γ production by CD4+ T cells because of IFN-γ 

turnover during the culture.  Additionally, intracellular cytokine staining is a much more 

sensitive technique than ELISA analysis of culture supernatant.                  

The IFN-γ ∆MFI trend for CD8+ T cells is similar to the CD4+ T cell subset.  

Measurement of IFN-γ ∆MFI in the spleen and lung showed similar expression of IFN-γ on 7 

days post-inoculation in LVS and LVS clpB infected mice (figure 29A-B).   There was a 

significant increase in the ∆MFI of IFN-γ+ in the CD8+ T cells in LVS clpB infected mice 

compared to LVS infected mice in the spleen and lung on day 10 post-inoculation (figure 

29C-D).  Representative histograms derived from the same experiment for IFN-γ+ CD8+ T 

cells from LVS and LVS clpB infected mice are shown (figure 29E-H).  The IFN-γ ∆MFI in 

CD8+ T cells indicates that like CD4+ T cells, the cells from LVS clpB infected mice express 

more IFN-γ than cells isolated from LVS infected mice, even though fewer cells are present.                   

 

 

99



 
 
 

LVS clpB infection increases IL-17 expression compared to LVS infection   

Th17 cells are also involved in the immune response during pneumonic tularemia (19, 

20).  Although there was no significant change on day 7 post-inoculation, by day 10 post-

inoculation there was a significant increase in the absolute number of CD4+ IL-17A+ T cells 

in the lungs of LVS infected mice compared to uninfected mice (figure 30C, D).  LVS clpB 

infected mice trended towards more CD4+ IL-17A+ T cells in the lungs on day 10 post-

inoculation than uninfected mice but the difference did not reach statistical significance 

(figure 30D).  There was no significant difference in the absolute number of Th17 cells in the 

lungs of LVS and LVS clpB infected mice on day 10 post-inoculation (figure 30D).  There 

was also an expansion of Th17 cells in the lung between days 7 and 10 post-inoculation for 

LVS and LVS clpB infected mice with nearly a 10-fold increase in cell number (figure 30C-

D).  The absolute number and frequency of splenic CD4+ T cells producing IL-17A was 

similar on days 7 and 10 post-inoculation among uninfected, LVS, LVS clpB, and LVS dotU 

infected mice indicating Th17 cells are not responding to infection in the spleen (figure 30A-

B).  On day 7 post-inoculation, the lungs of LVS infected mice have a significant increase in 

the frequency of IL-17A+ CD4+ T cells compared to uninfected mice (figure 30G).  LVS 

clpB infected mice have a significant increase in the frequency of IL-17A+ CD4+ T cells in 

the lung on day 10 post-inoculation compared to uninfected and LVS dotU infected mice 

(figure 30H).     

There was a significant increase in IL-17A ∆MFI in the lung of LVS clpB infected 

mice on day 10 post-inoculation in the lung compared to LVS (figure 31D).    There was also 

no significant difference in the splenic IL-17A ∆MFI when all groups of mice are compared 

(figure 31A-B).  Representative histograms of IL-17A+ CD4+ T cells are shown (figure 31E-
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H).  We also determined IL-17 secretion by enriched CD4+ T cells from the lung and spleen 

on day 10.  These cells were re-stimulated with LVS infected T cell depleted splenocytes and 

the concentration of IL-17 was determined using ELISA (figure 32).  Enriched CD4+ T cells 

from the lungs of LVS and LVS clpB infected mice secreted similar amounts of IL-17A.  

Overall, our results suggest that Th17 expansion largely occurs at the site of primary 

infection.     

LVS clpB induces an altered innate and adaptive immune response compared to LVS 

infection 

Altogether, our results demonstrate that LVS clpB infection induces altered host 

immunity compared to wild-type LVS infection.  First, we saw early pro-inflammatory 

cytokine production in the lungs of LVS clpB infected mice, a process that was inhibited 

during LVS infection.  The production of these pro-inflammatory cytokines was partially 

dependent on TLR2 signaling.  Additionally, LVS clpB infected mice produced at least 

equivalent expansion of Th1, Th17, and CD8+ T cell responses as LVS infected mice, with 

lower bacterial burdens and a shorter duration of infection. 

 

DISCUSSION 

Bacterial attenuation can be the consequence of a strain’s failure to grow, as in the 

case of auxotrophs, or by a strain’s failure to inhibit components of host immunity.  Both in 

vitro and in vivo screens have identified Francisella virulence determinants and several of 

those screens identified clpB as a gene required for virulence (5-7, 42).  While several groups 

describe a slight intracellular growth defect for clpB strains (23, 43, 44), we did not see an 

intracellular growth defect for our LVS clpB strains in the cell types we tested.  This result 
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suggested that something else was responsible for clpB’s attenuation in animal models of 

infection (23-25).  We therefore hypothesized that LVS clpB induces an altered immune 

response that mediates faster bacterial clearance. 

To test our hypothesis, we first confirmed that our LVS clpB strain was attenuated in 

a pneumonic model of tularemia.  In order to achieve similar bacterial burdens early after 

infection, we inoculated mice with a 100-fold higher dose of LVS clpB compared to LVS.  

Ideally, we would have used the same inoculation dose for both bacterial strains.  However, 

LVS clpB not only failed to disseminate to the spleen and liver in all mice but the bacterial 

burdens were also significantly lower in all organs tested on day 3 post-inoculation at an 

inoculation dose of 5x102 CFU.  An inoculation dose of 5x104 CFU of LVS clpB led to 

similar bacterial burdens as LVS 3 days post-inoculation and allowed us to examine 

differences in the adaptive immune response in the absence of large differences in overall 

antigen load.  Despite similar bacterial burdens early after inoculation, we observed rapid 

clearance of LVS clpB.  Even though LVS clpB was cleared rapidly from the host, this strain 

did elicit an adaptive immune response that developed into protective memory.  Importantly, 

previous infection with LVS clpB provided equivalent protection as LVS against subsequent 

lethal LVS intranasal inoculation.  The bacterial burdens in LVS and LVS clpB vaccinated 

mice infected 120 days after vaccination were higher than the same groups challenged 28 

days after vaccination.  The increase in bacterial burden was consistent with the increased 

weight loss seen when mice were challenged 120 days after vaccination.  Because the 

number of antigen-specific T cells decreases over time, we hypothesize the increased 

bacterial burdens seen upon challenge 120 days after vaccination was due to fewer 

responding T cells compared to day 28.  However, we cannot directly address this hypothesis 
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by quantifying the number of Francisella-specific T cells because MHCI or MHCII tetramer 

is not yet available.  Previous LVS clpB infection did not provide complete protection against 

aerosolized SchuS4 administered 28 days after LVS clpB infection.  LVS clpB infection did 

however, increase the median survival time.  One mouse previously inoculated with LVS 

dotU survived lethal LVS challenge; however, we do not know if that was the result of a 

secondary immune response.  This result was surprising given that our intracellular cytokine 

staining showed LVS dotU infected mice behaved much like naïve mice with similar low 

numbers of IFN-γ producing T cells.  However, LVS dotU persisted intracellularly in some 

mice until at least day 7 post-inoculation, allowing time for a F. tularensis specific T cell 

response to be primed.   The protection was incomplete and indicates a LVS dotU mutant 

would not be effective vaccine.  Overall, our LVS clpB strain was attenuated in pneumonic 

tularemia while providing 100% protection against subsequent lethal infection just as other 

groups had shown using other models of tularemia (23-25).   

After confirming the attenuation of LVS clpB in pneumonic tularemia, we examined 

the innate immune response in the lung.  LVS infection does not elicit a pro-inflammatory 

cytokine response in the lung despite promoting phenotypic maturation of dendritic cells 

(11).  We also found that LVS infection did not elicit a pro-inflammatory cytokine response 

in the lung despite very high bacterial burdens on day 3 post-inoculation.  LVS clpB, in 

contrast, did elicit a robust pro-inflammatory cytokine response in the lungs of both B6 and 

BALB/c mice.  The failure of LVS clpB to inhibit early cytokine production could explain 

why lower inoculation doses resulted in poor dissemination to the spleen and liver, in spite of 

no intracellular growth defect.  Because antibody depletion of IFN-γ increased lung LVS 

clpB burdens, these data suggest that the high concentration of pro-inflammatory cytokines 
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and chemokines in the lung are responsible for the decrease in bacterial burdens compared to 

LVS we observe on day 3 post-inoculation. 

Maximal weight loss occurs two days earlier in LVS clpB infected mice compared to 

LVS infected mice and corresponds to the same time period where there are high levels of 

pro-inflammatory cytokines in the BALF.  We therefore hypothesize that the earlier weight 

loss in LVS clpB infected mice is caused by the pro-inflammatory cytokine response and not 

bacterial burdens or the adaptive immune response.  Rag-/- mice infected with LVS clpB have 

identical weight loss profiles as B6 mice, despite the presence of a chronic infection, 

suggesting weight loss is not caused by bacterial burdens.  We have not determined whether 

Rag-/- mice are capable of producing pro-inflammatory cytokines/chemokines after LVS clpB 

infection, however, Rag-/- mice have an intact innate immune system so we predict these 

mice would produce cytokines upon infection.  LVS clpB infected MyD88-/- mice do not lose 

weight between days 2-5 post-inoculation and only begin to lose weight when they have 

extremely high bacterial burdens and are therefore likely experiencing organ failure.  We 

have not determined whether MyD88-/- mice can produce pro-inflammatory 

cytokines/chemokines after LVS clpB infection, however we predict that they cannot based 

on their failure to lose weight and the requirement of MyD88 for all TLR signaling, except 

TLR3.  The production of pro-inflammatory cytokines during LVS clpB infection was only 

partially dependent on TLR2 signaling.  Francisella has three identified TLR2 ligands and 

TLR2-signalling has been reported to be important for survival during intranasal and 

intradermal inoculation with LVS (36, 38-40).  TLR2-/- mice were able to produce some pro-

inflammatory cytokines and chemokines in response to LVS clpB infection but did not 

induce the levels that were found in wild-type mice inoculated with LVS clpB.  LVS clpB 
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infected TLR2-/- mice fail to regain weight at the same rate as B6 mice and have higher 

bacterial burdens on day 7 post-inoculation.  These data suggest that TLR2-/- mice have a 

defect in the development of adaptive immunity.  To support this idea, LVS clpB infected 

TLR2-/- mice had a significantly lower concentration of IL-12 in the BALF on day 3 post-

inoculation compared to LVS infected mice.  IL-12 production by dendritic cells or 

macrophages directs naïve T cells towards a Th1 (IFN-γ producing) fate upon antigen 

encounter (45, 46).  This question could be addressed in the context of LVS clpB infection 

with simple intracellular cytokine staining experiments to determine whether TLR2-/- mice 

have an altered T cell response compared to B6 mice.                   

Despite a robust pro-inflammatory innate immune response to LVS clpB, the innate 

response was not sufficient to mediate bacterial clearance alone.  Additionally, we knew 

from our protection studies that there was priming of the adaptive immune response because 

mice previously infected with LVS clpB were protected from lethal LVS challenge.  We then 

began to characterize the adaptive immune response to LVS clpB.  When overall immune 

expansion is compared, LVS and LVS clpB infection led to a similar increase in the number 

of cells found in the spleen on days 7 and 10.  We found a significant decrease in the number 

of cells isolated from the lungs of LVS clpB infected mice on days 7 and 10 post-inoculation 

compared to LVS infected mice.  This decrease was likely due to contraction of the immune 

response as LVS clpB was rapidly cleared from the host while LVS infected mice maintain 

high bacterial burdens.  To further support this, the percentages of CD4+ and CD8+ T cells in 

the lungs were the same in LVS and LVS clpB infected mice indicating that while the 

magnitude of the response was changing, the composition of the response remained 

unchanged.  When we examined the effector function of cells in the spleen, we found 
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equivalent numbers of CD4+ and CD8+ T cells producing IFN-γ in LVS and LVS clpB 

infected mice.  The absolute number of CD4+ and CD8+ T cells in the lung of LVS clpB 

infected mice was decreased compared to LVS infected mice but the percentage of cells 

producing IFN-γ remained the same.   

Although we found similar frequencies of IFN-γ producing CD4+ and CD8+ T cells 

after LVS or LVS clpB infection, we did find altered expression levels of IFN-γ as measured 

by ∆MFI.  There was a significant increase in the amount of IFN-γ expressed by T cells from 

LVS clpB infected mice compared to LVS infected mice in both the spleen and lung as 

measured by ∆MFI.  Since IFN-γ is critical for LVS clearance and administration of 

recombinant IFN-γ decreased bacterial burdens, the increased production of IFN-γ by T cells 

in LVS clpB infected mice is consistent with faster clearance of LVS clpB (18).              

The IL-17 response is also important during pneumonic tularemia.  We have 

previously shown that LVS intranasal, but not intradermal, inoculation induces Th17 cells in 

the lung (19).  IL-17 production following F. tularensis infection has been shown to promote 

IL-12 production by dendritic cells and indirectly promote a Th1 immune response (20).  

Although infection with LVS or LVS clpB led to similar numbers of Th17 cells in the lungs 

of infected mice, Th17 cells from LVS clpB infected mice expressed significantly more IL-

17A as measured by ∆MFI.  The increase in IL-17 expression by LVS clpB infected mice is 

consistent with the finding by Lin et al, where the Th1 response was promoted by IL-17 (20).   

We also measured IFN-γ and IL-17 concentration in the BALF, 7 and 10 days post-

inoculation.  We did not detect increased concentration of either cytokine in BALF from 

LVS clpB infected mice compared to LVS mice.  Although these data are not in agreement 

with the flow ∆MFI data, we attribute the difference to differential distribution of immune 
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cells between airspace and lung parenchyma.  Cytokines in the BALF are secreted 

predominantly by cells within the airspace, and represent production by a variety of immune 

cells.  In contrast, our intracellular cytokine staining experiments measure IFN-γ and IL-17 in 

the entire lung, but this analysis is limited only to T cells.  When we enriched CD4+ T cells 

from the lung and spleen on day 10 post-inoculation and re-stimulated them ex vivo with 

LVS infected T cell-depleted splenocytes, we did not detect differences in IFN-γ or IL-17A 

secretion into the culture supernatant.  Differences between the read-out of the flow 

cytometry and ELISA assays could also account for disparate result.  At a minimum, 

however, CD4+ T cells isolated from LVS clpB infected mice are able to produce equivalent 

amounts of cytokine compared to T cells from LVS infected mice.   

The increase in IFN-γ production by T cells in LVS clpB infected mice could be 

caused by differences in lung prostaglandin E2 (PGE2) concentration.  PGE2 suppresses IFN-

γ production by T cells in LVS infected mice (19).  U112 clpB fails to induce PGE2 in 

BMDMs (35) and LVS clpB induced significantly less PGE2 than wild-type LVS in BMDMs 

(figure 33).   LVS clpB infected mice have significantly lower PGE2 concentrations in the 

lavage fluid on day 7 and 10 post-inoculation compared to LVS infected mice (figure 34).  

The high concentration of PGE2 in LVS infected mice decreases IFN-γ production by 

responding T cells, an inhibitory process not present in LVS clpB infected mice.  Increased 

IFN-γ production in LVS clpB infected mice is also consistent with increased IL-17 

expression by T cells in LVS clpB infected mice based on the finding by Lin et al where the 

Th1 response was promoted by IL-17 (20).  However, PGE2 has been shown to promote IL-

23 production which drives the development of Th17 cells (47-50).  In LVS clpB infected 

mice, there was little PGE2 present in the BALF suggesting there is another mechanism 
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driving Th17 accumulation since this cell subset was present in equivalent numbers in LVS 

and LVS clpB infected mice despite dramatic differences in PGE2 levels.   

Although we are still in the process of identifying the F. tularensis effector molecule 

responsible for inducing PGE2, it seems unlikely that ClpB directly induces PGE2.  ClpB is 

an intracellular chaperone protein that is unlikely to be sensed by the host.  Proteomic 

analysis by Meibom, et al of a membrane-enriched protein fraction from a LVS clpB mutant 

identified 5 proteins with decreased expression compared to LVS at elevated temperature 

conditions (23).  None of the identified targets of ClpB are required for PGE2 induction (35) 

therefore ClpB must have another target that is involved in PGE2 induction.  We speculate 

clpB was identified as a gene necessary for PGE2 induction because ClpB plays a role in 

assembly of the type VI secretion system that is responsible for secreting the unknown PGE2 

inducer.  Studies to identify the mechanim(s) utilized by F. tularensis to induce PGE2 

synthesis are ongoing.                        

ClpB is a highly conserved chaperone protein present not only in prokaryotes but also 

in eukaryotes and plants (51).  Due to ClpB’s conserved nature and the finding that 

disruption of clpB attenuates F. tularensis as well as other bacteria (52-56), this gene is an 

excellent candidate target for attenuation of pathogenic bacteria for vaccine development.  In 

the case of F. tularensis, LVS clpB infection was cleared faster than LVS yet induced a 

robust IFN-γ mediated immune response that was protective in both short- and long-term 

secondary infections.  Therefore, clpB serves as an advantageous target for F. tularensis 

attenuation for future vaccine development.  This work also highlights the importance of 

examining the immune response to attenuated mutants, particularly in the course of vaccine 

development.  
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Figure 1
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Figure 1.  Gating scheme for BALF analysis.  Single cells were discriminated from 

doublets by plotting side scatter height (SSC-H) versus side scatter area (SSC-A).  Cells 

were then gated on by plotting SSC-A versus forward scatter area (FSC-A).  Live cells 

were then gated by plotting the live/dead stain on a 1-D histogram.  Cells from the BALF 

were discriminated from the CFSE-labeled splenocyte carries by plotting an empty 

channel versus CFSE.  CD3+, CD19+, and not B and T cells were gated on by plotting 

CD3 versus CD19.  From the not B and T gate, GR-1 versus CD11b was plotted to 

distinguish neutrophils from not neutrophils.  From the not neutrophils gate, SSC-A versus 

F4/80 was plotted to distinguish F4/80+ from F4/80- cells.  From the F4/80- gate, CD11c 

versus FSC-A was plotted and dendritic cells were gated on.  From the F4/80+ gate, 

CD11c versus CD11b was plotted to distinguish alveolar macrophages (AMs) from 

interstitial macrophages (IMs).  For each gate, the percent of the parent gate is indicated in 

bold (for example, AMs are 66.84% of the F4/80+ gate). 
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Figure 2

Figure 2.  Gating scheme for intracellular cytokine staining analysis.  Single cells were 

discriminated from doublets by plotting side scatter linear versus side scatter area.  Cells 

were then selected by plotting side scatter area versus forward scatter area.  Live CD3+ T 

cells were then selected by plotting CD3 versus the Pacific Blue channel which included 

the live/dead stain and markers for antigen presenting cells.  CD45.1- CD3+ cells were 

gated on by plotting CD3 versus CD45.1.  From the CD45.1- CD3+ gate, CD4+ and CD8+ 

T cells were selected.  Gates for IFN-γ and IL-17A positive cells were set based on isotype 

control staining.  For simplicity, only CD4+ IFN-γ is shown.  Change in mean fluorescent 

intensity (ΔMFI) for each sample was determined by subtracting the cytokine negative 

population from the cytokine positive population.  For each gate, the percent of the parent 

gate is indicated in bold (for example, CD3+ cells are 15.10% of the cells gate).    
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Figure 3
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Figure 3.  LVS clpB does not disseminate when a low inoculation dose is used.  B6 mice 

were intranasally inoculated with 5x102 CFU LVS, 5x102 CFU LVS clpB, or 5x104 CFU 

LVS clpB.  On day 3 post-inoculation, bacterial burdens were determined in the A) spleen, 

B) liver, and C) lung by plating serial dilutions of organ homogenate on chocolate agar.  

n=6-10 mice/group.  Data are combined from at least 2 independent experiments.  The 

dashed line indicates the limit of detection of 50 CFUs.  Statistical significance was 

determined on log-transformed data using ANOVA with Tukey's post-test.    
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Figure 4.  LVS clpB infected B6 mice clear bacteria faster.  B6 mice were intranasally 

inoculated with LVS (5x102 CFU), LVS clpB (5x104 CFU), or LVS dotU (5x105 CFU).  

On days 3, 7, and 10 post-inoculation, bacterial burdens were determined in the A) lung, B) 

liver, and C) spleen by plating serial dilutions of organ homogenate on chocolate agar.  

n=5-12 mice/group.  Data are combined from at least 4 independent experiments per time 

point.  The dashed line indicates the limit of detection of 50 CFUs.  Statistical significance 

was determined on log-transformed data using ANOVA with Tukey's post-test (day 3 and 

7) or a Student's t-test (day 10).  

112



BA

C

Figure 5

Figure 5.  LVS clpB infected BALB/c mice clear bacteria faster.  BALB/c mice were 

intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 CFU), or LVS dotU 

(5x105 CFU).  On days 3, 7, and 10 post-inoculation, bacterial burdens were determined in 

the A) lung, B) liver, and C) spleen by plating serial dilutions of organ homogenate on 

chocolate agar.  n=4-6 mice/group.  Data are combined from 2 independent experiments 

per time point.  The dashed line indicates the limit of detection of 50 CFUs.  Statistical 

significance was determined on log-transformed data using ANOVA with Tukey's post-test 

(day 3 and 7) or a Student's t-test (day 10).   
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Figure 6

Figure 6.  LVS dotU is internalized by lung cells following intranasal inoculation.  B6 

mice were intranasally inoculated with 5x105 CFU LVS dotU.  3 days post-inoculation, 

lungs were removed and digested into a single cell suspension.  Samples were then divided 

in half and one half was treated with 50 µg/mL gentamicin for 45 minutes to kill 

extracellular bacteria.  Cells were washed to remove antibiotic and then plated directly on 

chocolate agar without lysis.  The number of bacterial colonies in the untreated half and 

gentamicin-treated half were determined.  n=3 mice.  Data are from 1 experiment.    
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Figure 7

A B

Figure 7.  Trans-complementation of LVS clpB or LVS dotU restores bacterial virulence 

to LVS levels.  B6 mice were intranasally inoculated with 5x102 CFU LVS, LVS clpB, LVS 

clpB complement, or LVS dotU complement or 5x105 LVS dotU.  Bacterial burdens were 

determined in the lung for A) LVS clpB or B) LVS dotU on days 3 post-inoculation by 

plating serial dilutions of organ homogenate on chocolate agar.  The dashed line indicates 

the limit of detection of 50 CFUs.  Statistical significance was determined using an 

ANOVA with Tukey's post-test on log-transformed data.  n=3-4 mice/group.  Data are from 

1 experiment.    
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Figure 8
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Figure 8.  LVS clpB infected B6 and BALB/c mice exhibit less disease.  B6 and BALB/c 

mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 CFU), or LVS 

dotU (5x105 CFU).  Mouse weight was determined daily and is reported as the percentage 

of starting weight for A) B6 or B) BALB/c mice.  n=25-32 mice/group (B6) or n=4-6 

mice/group (BALB/c).       
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Figure 9.  LVS clpB protects against a lethal LVS secondary challenge 28 after primary 

infection.  B6 mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 

CFU), or LVS dotU (5x105 CFU), or left uninfected.  A) 28 days after primary infection, 

mice were challenged intranasally with 5x103 CFU LVS and survival was measured.  n=6-

12 mice/group.  Data are combined from 2 independent experiments.  A Chi-square test 

with Yate's correction was used to compare survival of the vaccinated groups to the naïve 

group: Naïve versus LVS: p ≤ 0.001; Naïve versus LVS clpB: p ≤ 0.0001; Naïve versus 

LVS dotU: ns.  B) Mice were weighed daily following secondary infection with LVS and 

weight loss is reported as a percentage of starting weight.  Weight loss by the surviving 

LVS dotU vaccinated mouse is reported.  n=6-12 mice/group.  Data are combined from 2 

independent experiments.  Bacterial burdens in the C) spleen, D) liver, and E) lung on day 

6 post-rechallenge were determined by plating serial dilutions of tissue homogenate on 

chocolate agar.  n=5-7 mice/group.  Data are combined from 2 independent experiments.  

The dashed line indicates the limit of detection of 50 CFUs.  Statistical significance was 

determined on log-transformed data using ANOVA with Tukey's post-test.  
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Figure 10.  LVS clpB protects against a lethal LVS secondary challenge 120 after 

primary infection.  B6 mice were intranasally inoculated with LVS (5x102 CFU), LVS 

clpB (5x104 CFU), or LVS dotU (5x105 CFU), or left uninfected.  A) 120 days after 

primary infection, mice were challenged intranasally with 5x103 CFU LVS and survival 

was measured.  n=6-12 mice/group.  Data are combined from 2 independent experiments.  

A Chi-square test with Yate's correction was used to compare survival of the vaccinated 

groups to the naïve group: Naïve versus LVS: p ≤ 0.001; Naïve versus LVS clpB: p ≤ 

0.0001; Naïve versus LVS dotU: ns.  B) Mice were weighed daily following secondary 

infection with LVS and weight loss is reported as a percentage of starting weight.  Weight 

loss by the surviving LVS dotU vaccinated mouse is reported.  n=12-15 mice/group.  Data 

are combined from 2 independent experiments.  Bacterial burdens in the C) spleen, D) 

liver, and E) lung on day 6 post-rechallenge were determined by plating serial dilutions of 

tissue homogenate on chocolate agar.  n=6-8 mice/group.  Data are combined from 2 

independent experiments.  The dashed line indicates the limit of detection of 50 CFUs.  

Statistical significance was determined on log-transformed data using ANOVA with 

Tukey's post-test.  
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Figure 11

Figure 11.  Previous infection with LVS clpB increases median survival time after lethal 

SchuS4 aerosol challenge.  B6 mice were intranasally inoculated with LVS (5x102 CFU), 

LVS clpB (5x104 CFU), or LVS dotU (5x105 CFU), or left uninfected.  28 days after 

primary infection, mice were challenged with 30 CFU of aerosolized SchuS4.  A Mantel-

Cox log-rank test was used to compare survival of the vaccinated groups to the naïve 

group.  n=8 mice/group.  Data are from 1 experiment.  Naïve versus LVS: p ≤ 0.001; 

Naïve versus LVS clpB: p ≤ 0.0001; Naïve versus LVS dotU: ns.  
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Figure 12
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Figure 12.  LVS clpB does not exhibit a broth growth defect.  LVS, LVS clpB and LVS 

dotU growth in A) CDM or B) BHI broth was determined using a TECAN Infinite M200 

plate reader by measuring the OD600 every 15 minutes for 48 hours.  Data shown are the 

average of triplicate wells and are representative of at least 3 independent experiments per 

strain.  
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Figure 13

Figure 13.  LVS clpB does not exhibit an intracellular growth defect.  A) B6 bone 

marrow derived macrophages (BMDMs), B) A549, C) J774, or D) MHS cells were 

infected with LVS, LVS clpB, or LVS dotU at an MOI of 25:1.  Cells were lysed either 4 or 

24 hours post-infection and serial dilutions of the lysate were plated on chocolate agar to 

determine the number of bacteria present.  Cells were infected with each strain in triplicate 

and lysates from each sample were plated in duplicate.  Data are representative of at least 2 

independent experiments.  

A  B

C D

121



Figure 14

Figure 14.  Trans-complementation of LVS dotU restores intracellular growth.  B6 bone 

marrow derived macrophages (BMDMs) were inoculated with LVS, LVS dotU, or LVS 

dotU complement at an MOI of 25:1.  BMDMs were lysed either 4 or 24 hours post-

inoculation and serial dilutions of the lysate were plated on chocolate agar to determine the 

number of bacteria present.  BMDMs were inoculated with each strain in triplicate and 

lysates from each sample were plated in duplicate.  Data are representative of 3 

independent experiments. 
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Figure 15

Figure 15.  LVS clpB induces a pro-inflammatory response in the lung early after 

infection.  B6 or BALB/c mice were intranasally inoculated with LVS (5x102 CFU) or 

LVS clpB (5x104 CFU), or left uninfected.  3 days post-inoculation, BALF was collected 

and cytokine and chemokine concentrations were determined using a Luminex-based 

assay.  Cytokine and chemokines levels were first normalized to the levels in uninfected 

mice and then the fold increase in cytokine or chemokine concentration from LVS clpB 

infected mice over LVS infected mice was determined for each infected group and values 

are indicated in bold if they exceeded 2 fold.  n=4-7 mice/group.  Data are combined from 

at least 2 independent experiments per mouse strain.  ANOVA with Tukey's post-test was 

used to determine significant changes in cytokine and chemokine concentrations within 

each mouse strain.  LVS clpB levels were significantly higher (p ≤ 0.05) than LVS in both 

mouse strains for IP-10, KC, IL-12, and TNF-α.  LVS clpB levels were significantly 

higher (p ≤ 0.05) than LVS levels in B6 mice for IFN-γ, IL-6, and GM-CSF.  LVS clpB 

levels were significantly higher (p ≤ 0.05) than LVS levels in BALB/c mice for MIG.
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Figure 16
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Figure 16.  IFN-γ depletion increases bacterial burdens after LVS clpB inoculation.  B6 

mice were intranasally inoculated with LVS clpB (5x104 CFU).  Mice were treated with 

500 μg anti-IFN-γ or rat IgG1 isotype control antibody on day 0 and 2 post-inoculation.  

Bacterial burdens in the A) spleen, B) liver, and C) lung were determined on day 3 post-

inoculation by plating serial dilutions of tissue homogenate on chocolate agar.  n=8 

mice/group.  Data are compiled from 2 independent experiments.  The dashed line indicates 

the limit of detection of 50 CFUs.  Statistical significance was determined on log-

transformed data using a Student's t-test.  D) Lung tissue homogenate was clarified and 

IFN-γ concentration determined by Luminex analysis.   n=8 mice/group.  Data are compiled 

from 2 independent experiments.  The dashed line indicates the limit of detection of 20 

pg/mL.  Statistical significance was determined using a Student's t-test.    
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Figure 17
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Figure 17.  LVS clpB infection of B6 mice leads to increased mBAL cellularity and 

altered mBAL cellular composition.  B6 mice were intranasally inoculated with LVS 

(5x102 CFU), LVS clpB (5x104 CFU), or LVS dotU (5x105 CFU), or left uninfected.  A) 

On day 3 post-inoculation, the total number of cells in the mBAL was determined.  The % 

B) alveolar macrophages, C) dendritic cells, D) interstitial macrophages, and e) neutrophils 

of all cells in the mBAL was determined by flow cytometry.  n=4-7 mice/group.  Data are 

combined from 2 independent experiments.       
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Figure 18

Figure 18.  LVS clpB infection of BALB/c mice leads to increased mBAL cellularity.  

BALB/c mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 

CFU), or LVS dotU (5x105 CFU), or left uninfected.  On day 3 post-inoculation, the total 

number of cells in the mBAL was determined. n=5-7 mice/group.  Data are combined from 

2 independent experiments.       
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Figure 19

Figure 19.  MyD88 signaling is required to control LVS clpB infection.  B6 or MyD88-/- 

mice were intranasally inoculated with LVS clpB (5x104 CFU).  On days 3 and 7 post-

inoculation, bacterial burdens were determined in the A) spleen, B) liver, and C) lung by 

plating serial dilutions of organ homogenate on chocolate agar.  n=5-9 mice/group.  Data 

are combined from 2 independent experiments per time point.  The dashed line indicates 

the limit of detection of 50 CFUs.  Statistical significance was determined on log-

transformed data using a Student's t-test.  

D

127



BA

C

Figure 20

Figure 20.  TLR2 signaling is required to control LVS clpB infection.  B6 or TLR2-/- 

mice were intranasally inoculated with LVS clpB (5x104 CFU).  On days 3 and 7 post-

inoculation, bacterial burdens were determined in the A) spleen, B) liver, and C) lung by 

plating serial dilutions of organ homogenate on chocolate agar.  n=3-8 mice/group.  Data 

are from 1 experiment for day 3 and combined from 2 independent experiments for day 7.  

The dashed line indicates the limit of detection of 50 CFUs.  Statistical significance was 

determined on log-transformed data using a Student's t-test.  D) Weight loss was 

determined daily and is reported as a percentage of the starting weight.   
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Figure 21
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Figure 21.  TLR2 signaling is required for maximal pro-inflammatory cytokine 

production following LVS clpB infection.  B6 or TLR2-/- mice were intranasally 

inoculated with LVS clpB (5x104 CFU).  On day 3 post-inoculation, BALF was collected 

and cytokine and chemokine concentrations were determined using a Luminex-based assay 

and fold increases for each pair of groups is reported.  n=3-5 mice/group.  Uninfected mice 

are combined B6 and TLR2-/-.  Data are from 1 experiment.  An ANOVA with Tukey's 

post-test was used to determine statisical significance for each cytokine or chemokine.  

Statistical significance is indicated by stars after the fold change when two groups differed.        
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Figure 22
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Figure 22.  LVS clpB infection of B6 and TLR2-/- mice leads to increased BALF 

cellularity and altered BALF cellular composition.  B6 or TLR2-/- mice were intranasally 

inoculated with LVS clpB (5x104 CFU) or left uninfected.  A) On day 3 post-inoculation, 

the total number of cells in the BALF was determined.  The % B) alveolar macrophages, 

C) dendritic cells, D) interstitial macrophages, and e) neutrophils of all cells in the BALF 

was determined by flow cytometry.  n=3-5 mice/group.  Data are from 1 experiment.  

Statistical significance was determined using ANOVA with Tukey's post-test.        
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Figure 23.  Adaptive immunity is required for LVS clpB clearance.  B6 or Rag-/- mice 

were intranasally inoculated with 5x104 CFU LVS clpB.  Bacterial burdens were 

determined in the A) lung, B) spleen, and C) liver on days 3, 7, 10, and 28 post-inoculation 

by plating serial dilutions of organ homogenate on chocolate agar.  n=6-8 mice/group for 

each time point.  Data are combined from 2 independent experiments for each time point.  

The dashed line indicates the limit of detection of 50 CFUs.  Statistical significance was 

determined on log-transformed data using a Student's t-test.  D) Mouse weight was 

determined daily and is reported as the percentage of starting weight.  n=6-8 mice/group.  

Data are combined from 2 independent experiments.
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Figure 24. LVS and LVS clpB infection leads to increased spleen and lung cellularity.  

B6 mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 CFU), or 

LVS dotU (5x105 CFU), or left uninfected.  The total number of cells in the spleen or lung 

was determined on day 7 and 10 post-inoculation by trypan blue exclusion.  Total number 

of cells in the spleen on day A) 7 or B) 10 post-inoculation.  Total number of cells in the 

lung on day C) 7 or D) 10 post-inoculation.  n=4-9 mice/group.  Data are combined from at 

least 4 independent experiments.  Statistical significance was determined using an ANOVA 

with Tukey's post-test.    
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Figure 25

Figure 25.  LVS and LVS clpB infection leads to increased IFN-γ+ CD4+ T cells.  B6 

mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 CFU), or LVS 

dotU (5x105 CFU), or left uninfected.  On days 7 and 10 post-inoculation, splenocytes or 

isolated lung cells were re-stimulated with LVS infected B6-CD45.1 antigen presenting 

cells for 24 hours.  Brefeldin A was added during the last 4 hours of co-culture.  n=4-9 

mice/group.  Data are combined from at least 4 independent experiments.  Statistical 

significance was determined using an ANOVA with Tukey's post-test.  Number of IFN-γ 

producing CD4+ in the A) spleen or B) lung on day 7 post-inoculation.  Number of IFN-γ 

producing CD4+ in the C) spleen or D) lung on day 10 post-inoculation.  % IFN-γ+ of 

CD4+ in the E) spleen or F) lung on day 7 post-inoculation.  % IFN-γ+ of CD4+ in the G) 

spleen or H) lung on day 10 post-inoculation.  
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Figure 26

Figure 26.  LVS and LVS clpB infection leads to increased IFN-γ+ CD8+ T cells.  B6 

mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 CFU), or LVS 

dotU (5x105 CFU), or left uninfected.  On days 7 and 10 post-inoculation, splenocytes or 

isolated lung cells were re-stimulated with LVS infected B6-CD45.1 antigen presenting 

cells for 24 hours.  Brefeldin A was added during the last 4 hours of co-culture.  n=4-9 

mice/group.  Data are combined from at least 4 independent experiments.  Statistical 

significance was determined using an ANOVA with Tukey's post-test.  Number of IFN-γ 

producing CD8+ in the A) spleen or B) lung on day 7 post-inoculation.  Number of IFN-γ 

producing CD8+ in the C) spleen or D) lung on day 10 post-inoculation.  % IFN-γ+ of 

CD8+ in the E) spleen or F) lung on day 7 post-inoculation.  % IFN-γ+ of CD8+ in the G) 

spleen or H) lung on day 10 post-inoculation.   
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Figure 27
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Figure 27. CD4+ T cells from LVS clpB infected mice express more IFN-γ per cell than LVS 

infected mice.  B6 mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 

CFU), or LVS dotU (5x105 CFU), or left uninfected.  On days 7 and 10 post-inoculation, 

splenocytes or isolated lung cells were re-stimulated with LVS infected B6-CD45.1 antigen 

presenting cells for 24 hours.  Brefeldin A was added during the last 4 hours of co-culture.  To 

determine the change in mean fluorescent intensity (ΔMFI) for each sample, the MFI of the IFN-γ 

negative population was subtracted from the MFI of the IFN-γ positive population.  n=4-9 

mice/group.  Data are combined from at least 4 independent experiments.  Statistical significance 

was determined using an ANOVA with Tukey's post-test.  IFN-γ ΔMFI for CD4+ T cells in the A) 

spleen or B) lung on day 7 post-inoculation.  IFN-γ ΔMFI for CD4+ T cells in the C) spleen or D) 

lung on day 10 post-inoculation.  Representative histograms of the IFN-γ+ CD4+ T cells from LVS 

(solid line) and LVS clpB (dotted line) infected mice in the E) spleen or F) lung on day 7 post-

inoculation.  Representative histograms of the IFN-γ+ CD4+ T cells from LVS (solid line) and LVS 

clpB (dotted line) infected mice in the G) spleen or H) lung on day 10 post-inoculation. 
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Figure 28
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Figure 28.  CD4+ T cells from LVS or LVS clpB infected mice secrete similar amounts 

of IFN-γ.  B6 mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 

CFU), or left uninfected.  10 days post-infection, CD4+ T cells were enriched from the A) 

spleen and B) lung and re-stimulated with LVS or mock infected T cell-depleted 

splenocytes.  Cells were stimulated with PMA/Ionomycin as a positive control or left 

untreated as a negative control.  IFN-γ secretion into the culture supernatant was measured 

by ELISA.  Each sample was analyzed in triplicate.  n=4 mice/group.  Data are combined 

from two independent experiments.   
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Figure 29. CD8+ T cells from LVS clpB infected mice express more IFN-γ per cell than LVS 

infected mice.  B6 mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 

CFU), or LVS dotU (5x105 CFU), or left uninfected.  On days 7 and 10 post-inoculation, 

splenocytes or isolated lung cells were re-stimulated with LVS infected B6-CD45.1 antigen 

presenting cells for 24 hours.  Brefeldin A was added during the last 4 hours of co-culture.  To 

determine the change in mean fluorescent intensity (ΔMFI) for each sample, the MFI of the IFN-γ 

negative population was subtracted from the MFI of the IFN-γ positive population.  n=4-9 

mice/group.  Data are combined from at least 4 independent experiments.  Statistical significance 

was determined using an ANOVA with Tukey's post-test.  IFN-γ ΔMFI for CD8+ T cells in the A) 

spleen or B) lung on day 7 post-inoculation.  IFN-γ ΔMFI for CD8+ T cells in the C) spleen or D) 

lung on day 10 post-inoculation.  Representative histograms of the IFN-γ+ CD8+ T cells from LVS 

(solid line) and LVS clpB (dotted line) infected mice in the E) spleen or F) lung on day 7 post-

inoculation.  Representative histograms of the IFN-γ+ CD8+ T cells from LVS (solid line) and LVS 

clpB (dotted line) infected mice in the G) spleen or H) lung on day 10 post-inoculation. 
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Figure 30.  Th17 cells expand in the lungs of LVS and LVS clpB infected mice.  B6 mice 

were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 CFU), or LVS dotU 

(5x105 CFU), or left uninfected.  On days 7 and 10 post-infection, splenocytes or isolated 

lung cells were re-stimulated with LVS infected B6-CD45.1 antigen presenting cells for 24 

hours.  Brefeldin A was added during the last 4 hours of co-culture.  n=4-9 mice/group.  

Data are combined from at least 4 independent experiments.  Statistical significance was 

determined using an ANOVA with Tukey's post-test.  Number of IL-17A producing CD4+ 

in the spleen on A) day 7 or B) day 10 post-infection.  Number of IL-17A producing CD4+ 

in the lung on C) day 7 or D) day 10 post-infection.  % IL-17A+ of CD4+ in the spleen on 

E) day 7 or F) day 10 post-inoculation.  % IL-17A+ of CD4+ in the lung on G) day 7 or H) 

day 10 post-inoculation. 

138



A

Figure 31

B C D

E F G H

Figure 31.  Th17 cells from LVS clpB infected mice express more IL-17 than cells from 

LVS infected mice.  B6 mice were intranasally inoculated with LVS (5x102 CFU), LVS 

clpB (5x104 CFU), or LVS dotU (5x105 CFU), or left uninfected.  On days 7 and 10 post-

infection, splenocytes or isolated lung cells were re-stimulated with LVS infected B6-

CD45.1 antigen presenting cells for 24 hours.  Brefeldin A was added during the last 4 

hours of co-culture.  To determine the change in mean fluorescent intensity (ΔMFI), the 

MFI of the IL-17A negative population was subtracted from the MFI of the IL-17A 

positive population.  n=4-9 mice/group.  Data are combined from at least 4 independent 

experiments.  Statistical significance was determined using an ANOVA with Tukey's post-

test.  IL-17A ΔMFI for CD4+ T cells in the spleen on A) day 7 or B) day 10 post-infection.  

IL-17A ΔMFI for CD4+ T cells in the lung on C) day 7 or D) day 10 post-infection.  

Representative histograms of the IL-17A+ CD4+ T cells from LVS (solid line) and LVS 

clpB (dotted line) infected mice in the spleen on E) day 7 or F) day 10 post-infection.  

Representative histograms of the IL-17A+ CD4+ T cells from LVS (solid line) and LVS 

clpB (dotted line) infected mice in the lung on G) day 7 or H) day 10 post-infection.    
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Figure 32
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Figure 32.  CD4+ T cells from LVS or LVS clpB infected mice secrete similar amounts of 

IL-17A.  B6 mice were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 

CFU), or left uninfected.  10 days post-inoculation, CD4+ T cells were enriched from the 

A) spleen and B) lung and re-stimulated with LVS or mock infected T cell-depleted 

splenocytes.  Cells were stimulated with PMA/Ionomycin as a positive control or left 

untreated as a negative control.  IL-17A secretion into the culture supernatant was 

measured by ELISA.  The dashed line indicates the limit of detection of 6 pg/mL.  Each 

sample was analyzed in triplicate.  n=4 mice/group.  Data are combined from two 

independent experiments.  
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Figure 33

Figure 33.  LVS clpB induces less PGE2 synthesis and secretion from bone marrow-

derived macrophages compared to LVS.  1x105 B6 BMDMs were inoculated at an MOI of 

500:1, 250:1, or 125:1 with LVS, LVS clpB, or LVS dotU.  24 hours post-inoculation, 

culture supernatants were collected and the concentration of PGE2 was determined using 

an ELISA.  BMDMs were infected with each strain in triplicate.  Uninfected BMDMs 

produced 38.58 +/- 1.62 pg/mL PGE2 and LPS treated BMDMs (positive control) 

produced 672.58 +/- 172.01 pg/mL PGE2.  Data are representative of 3 independent 

experiments.  Statistical significance was determined using ANOVA with Tukey's post-test 

to compare the strains at each MOI: 500:1: LVS versus LVS clpB: p ≤ 0.001; LVS versus 

LVS dotU: p ≤ 0.001; LVS clpB versus LVS dotU: p ≤ 0.01. 250:1: LVS versus LVS clpB: 

p ≤ 0.05; LVS versus LVS dotU: p ≤ 0.01; LVS clpB versus LVS dotU: ns. 125:1: LVS 

versus LVS clpB: p ≤ 0.01; LVS versus LVS dotU: p ≤ 0.001; LVS clpB versus LVS dotU: 

ns.   
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Figure 34

Figure 34.  LVS clpB infected mice produce less PGE2 than LVS infected mice.  B6 mice 

were intranasally inoculated with LVS (5x102 CFU), LVS clpB (5x104 CFU), or left 

uninfected.  On days A) 3, B) 7, and C) 10 days post-inoculation BALF was collected and 

the concentration of PGE2 was determined by ELISA.  n=5-10 mice/group for each time 

point.  Data are combined from at least two independent experiments per time point.  

Statistical significance was determined using ANOVA with Tukey's post-test.    
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CHAPTER 3 

IFN-γ, BUT NOT IL-17A, IS REQUIRED FOR SURVIVAL DURING SECONDARY 

PULMONARY FRANCISELLA TULARENSIS LVS INFECTION1 

 

OVERVIEW 
 

IL-17 production by T cells is critical following intranasal inoculation with the highly 

pathogenic bacterium, Francisella tularensis Live Vaccine Strain (LVS).  In the absence of IL-17, 

mice have higher bacterial burdens and produce less IFN-γ, a cytokine required for F. tularensis 

clearance.  While the importance of both Th1 and Th17 cells during primary intranasal F. tularensis 

infection is clear, the importance of these cells isn’t understood during the memory response.  Using 

intracellular cytokine staining, we measured the number of CD4+ T cells producing IFN-γ or IL-17 in 

vaccinated mice on day 4 of the secondary response.  Because there were so few bacteria in the spleen 

after secondary challenge, we also measured the local immune response in the lung where bacterial 

loads were higher.  Although there was a robust Th1 response, Th17 cells are not present at higher 

numbers in the lungs of vaccinated mice compared to unvaccinated mice.  These data show that the 

lung is the dominant site of the secondary infection and the immune response.   Furthermore, these 

data suggest Th17 cells are not required for survival after secondary challenge.  To further investigate 

the importance of IFN-γ and IL-17 during the secondary response to F. tularensis, we depleted either 

IFN-γ or IL-17 in vivo using monoclonal antibody treatment.  Vaccinated mice treated with IFN-γ 

depleting antibody lost more weight and had higher bacterial burdens compared to vaccinated mice 

treated with isotype control antibody.  In contrast, treatment with anti-IL-17 antibody did not alter 

                                                            
1 Contributing authors: Lydia Barrigan, Shraddha Tuladhar, Deepa Jamwal, and Jeffrey Frelinger 
 



 
 

weight loss profiles or bacterial burdens compared to mice treated with isotype control antibody.  

Altogether, these results suggest that IFN-γ is required both during primary and secondary intranasal 

F. tularensis infection.  IL-17, on the other hand, is critical during the primary response to intranasal 

F. tularensis but dispensable during the secondary response. 

 

INTRODUCTION 

Tularemia, or rabbit fever, is caused by the gram negative coccobacillus, Francisella 

tularensis.  Francisella is highly pathogenic and causes severe disease in humans, leading the 

U.S. government to categorize Francisella as a Tier 1 Select Agent (1).  While the CDC 

reports approximately 120 cases of naturally-acquired tularemia each year in the U.S., 

Francisella has been used as the infectious agent in bioweapons and continues to pose a 

realistic threat today (2-4).  The potential of a bioterrorism attack utilizing F. tularensis as 

the infection agent underscores the need for an effective vaccine.  Although the Francisella 

Live Vaccine Strain (LVS) was widely used as a vaccine in Europe where tularemia is much 

more common, the mechanisms of attenuation are undefined, preventing the FDA from 

licensing this vaccine in the U.S. (1).         

Three different strains of Francisella are commonly studied in the laboratory.  F. 

tularensis subsp. tularensis SchuS4 (SchuS4) is a highly virulent Type A strain.  As few as 

10 organisms can cause severe disease in humans with a 30-60% fatality rate if antibiotics 

are not administered (5).  The LD100 in mice is <10 CFU for all inoculation routes and mice 

succumb to infection within 5-6 days (6, 7).  SchuS4 is handled at BSL-3 due to its ease of 

aersolization and low infectious dose in humans.  Because unmanipulated mice succumb to 

SchuS4 infection before the development of an adaptive immune response, F. tularensis 

subsp. holartica LVS is used to study components of adaptive immunity.  LVS is less 
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virulent in both mouse and man; the LD50 for mice varies widely depending on the 

inoculation route.  The LD50 for intraperitoneal inoculation is <1 CFU, intranasal inoculation 

is 103 CFU, and intradermal inoculation has an LD50 of >105 CFU (8).  The final commonly 

studied strain of Francisella is F. novicida U112 (U112).  U112 is avirulent in 

immunocompetent humans but highly virulent in mice with a low infectious dose (LD100 < 

10 CFU) and rapid death similar to SchuS4.                

The T cell response is required to mediate F. tularensis clearance because the 

bacterium lives within infected cells (9).  IFN-γ is required to control LVS infection.  IFN-γ 

depletion increases systemic bacterial burdens and mice deficient in IFN-γ succumb to an 

otherwise sublethal LVS infection for wild-type mice (10, 11).   Treatment with exogenous 

recombinant IFN-γ decreases bacterial burdens further confirming the importance of IFN-γ 

for bacterial control (12).  The route of primary infection influences the T cell response.  

When B6 mice are inoculated intranasally with LVS, there are significantly fewer responding 

T cells producing IFN-γ in the lung compared to intradermally inoculated mice even though 

bacterial burdens (i.e. antigen loads) are similar early after infection (13).  The increased 

IFN-γ production observed in intradermally inoculated mice correlates with faster bacterial 

clearance compared to mice inoculated intranasally.  Intranasal inoculation with LVS also 

induces expansion of lung Th17 cells, a response not seen in intradermally inoculated mice 

(13).  IL-17A is also important for bacterial control following intranasal inoculation as IL17-/- 

mice have increased lung LVS burdens compared to wild-type B6 mice (14).  In primary 

infections with LVS, treatment with IL-17A depleting antibody increases lung bacterial 

burdens compared to mice treated with isotype control antibody and decreases the mean time 

to death (14, 15).         
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Previous infection with LVS or the attenuated mutant, LVS clpB, provides 100% 

protection against lethal LVS challenge and T cells are required for the development of 

protective immunity (9, 16).  While the importance of IFN-γ and IL-17A during primary 

pneumonic tularemia are clear (10-12, 14, 15), the nature of the T cell response during 

secondary pneumonic tularemia remains unknown.  We sought to determine whether IFN-γ 

producing CD4+ and CD8+ T cells and/or Th17 cells are elicited during the secondary 

response using intracellular cytokine staining.  We further determined if IFN-γ and/or IL-

17A are important during the secondary response using antibody depletion.  Additionally, we 

were interested in comparing the memory responses in LVS and LVS clpB vaccinated mice 

because both strains completely protected during a lethal challenge, despite differences in the 

primary T cell response.  We found LVS and LVS clpB vaccinated mice have nearly 

identical T cell responses during a secondary infection and that IFN-γ is absolutely required 

for survival during re-challenge whereas IL-17A is dispensable.  Understanding what T cell 

responses are crucial for protective memory will inform further vaccine development.         

 

MATERIALS AND METHODS 

Bacteria   

The live vaccine strain of Francisella tularensis subsp. holartica (LVS) was obtained 

from the CDC (Atlanta, GA).  Bacteria were grown at 37˚C on chocolate agar supplemented 

with 1% IsoVitalex (Becton-Dickinson).  To prepare bacterial inoculations, bacteria were 

removed from a lawn grown on chocolate agar and resuspended in sterile PBS at an OD600=1 

(equivalent to 1x1010 CFU/mL).  Appropriate dilutions were made in sterile PBS to obtain 

the desired bacterial dose.  The actual number of viable bacteria was determined by serial 
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dilution and plating on chocolate agar.  The LVS clpB (FTL_0094) deletion strain was 

generated using the suicide vector pMP812 (17) containing an amplified region of clpB.   

Mice   

C57Bl/6J (B6) and B6.SJL-PtprcaPepcb/BoyJ (B6-CD45.1) mice were obtained from 

The Jackson Laboratory (Bar Harbor, ME).  All mice were housed in specific-pathogen free 

conditions at the University of Arizona in accordance with the Institutional Animal Care and 

Use Committee (IACUC).  Female B6 mice used for infections were between 7 to 12 weeks 

of age.   

Inoculation of Mice   

Mice were anesthetized with 575 mg/kg tribromomethanol (Avertin) (Sigma) 

administered intraperitoneally.  Mice were then intranasally inoculated with 5 x 102 CFU 

LVS or 5x104 CFU LVS clpB suspended in 50 μL PBS.  Mice were weighed daily following 

all inoculations.  For lethal LVS challenge experiments, mice were anesthetized with 0.25 

mL of 7.5 mg/mL ketamine and 0.5 mg/mL xylazine cocktail in PBS.  Mice were then 

intranasally inoculated with 5x103 CFU (5 x LD50) LVS in 50 µL PBS.  Mice were weighed 

daily following all inoculations.  Mice were sacrificed if they lost more than 25% of their 

starting weight as indicated in our IACUC protocol.           

Determination of serum IgG titers   

LVS lysate was made by lysing mid-log phase LVS grown in brain heart infusion 

(BHI) broth using RIPA buffer.  The amount of protein in the LVS lysate was quantified 

using a Bio-Rad DC Protein Assay (Bio-Rad).  High binding ELISA plates (Costar) were 

coated overnight with 0.25 µg/well LVS lysate in 100 mM sodium carbonate/bicarbonate 

buffer (pH 9.6).  Coated plates were washed with 1x PBS containing 0.05% Tween-20 and 
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then blocked with 5% BSA (w/v) in PBS for 1 hour at room temperature.  100 µL/well of 1:2 

serial dilutions of mouse serum starting at 1:100 was added to the plate and incubated at 

room temperature for 2 hours.  Plates were then washed with 1x PBS containing 0.05% 

Tween-20.  100 µL/well of anti-mouse IgG conjugated to alkaline phosphatase (1:1000) 

(Life) was added to the plate and incubated at room temperature for 1 hour.  Plates were 

washed with 1x PBS containing 0.05% Tween-20.  100 µL/well para –Nitrophenylphosphate 

(pNpp) (Life) was added to the plate and incubated for 30 minutes at room temperature.  A405 

and A570 were measured using a plate reader (Molecular Devices).  A570 was subtracted from 

A405 to normalize and half-maximal titers were determined for each mouse.  Each serum 

sample was analyzed in duplicate.      

Western blots detecting LVS specific antibodies   

10, 20, and 40 µg of LVS lysate were loaded in a 4-12% Bis-Tris SDS 

polyacrylamide gel (Life).  A molecular weight marker ranging from 10-250 kDa was also 

loaded on the gel (Licor).  Proteins were separated by subjecting the gel to 150 volts for 

approximately 2 hours.  Proteins were then transferred onto a PVDF membrane by subjecting 

the transfer apparatus to 25 volts for 60 minutes.  The membrane was then blocked with 5% 

BSA in TBST buffer (w/v) for 1 hour at room temperature.  Mouse sera from naïve, LVS, or 

LVS clpB infected mice collected 28 days post-inoculation was diluted 1:2000 in 5% BSA in 

TBST buffer (w/v) and incubated on the membrane overnight at 4°C.  The membrane was 

then washed thoroughly with TBST buffer.  Goat anti-mouse IgG conjugated to IRDye 

800CW (Licor) was diluted 1:5000 in 5% milk in TBST and incubated with the membrane 

for 1 hour at room temperature.  The membrane was then washed thoroughly and then bands 

were visualized using the Odyssey Infrared Imaging System (Licor).                        
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Determination of bacterial burdens   

Spleens, livers, and lungs were homogenized in sterile PBS using a Biojector 

(Bioject) as previously described (13).  10-fold serial dilutions were made and plated on 

chocolate agar.  Resulting colonies were counted 72 hours later.  The limit of detection is 50 

CFU per organ.       

Collection of spleen and lung cells   

Spleens were harvested from mice and made into a single cell suspension.  Red blood 

cells were lysed using ammonium chloride-potassium carbonate lysis buffer.  Lungs were 

perfused with PBS to remove blood and then finely minced.  Minced lung was placed in 10 

mL of digestion buffer containing 0.5 mg/mL collagenase I (Worthington Biochemical), 0.02 

mg/mL DNase (Sigma), and 125 U/mL elastase (Worthington Biochemical) in RPMI1640 

(HyClone).  Lungs were digested for 30 minutes at 37˚C and then vigorously pipetted prior to 

filtering through a 100 µM filter.  Mononuclear cells were isolated from the single cell 

suspension by density gradient centrifugation over Lympholyte M (Cedarlane Labs).  Viable 

cells from spleen and lung were determined by trypan blue exclusion using a hemacytometer.           

Antibodies   

The following directly conjugated antibodies were utilized for flow cytometry 

analysis: CD3 AF488 (Clone 145-2C11, eBioscience); CD4 AF700 (Clone GK1.5, 

Biolegend); CD8a V500 (Clone 53-6.7, BD Biosciences); CD45.1 PE-Cy7 (Clone A20, 

Biolegend); TCR γδ PerCP-Cy5.5 (Clone GL3, Biolegend); IFN-γ PE (Clone XMG1.2, BD 

Biosciences); IL-17A AF647 (Clone TC11-18H10.1, Biolegend); CD11b Pacific Blue (Clone 

M1/70, Biolegend); CD11c Pacific Blue (Clone N418, Biolegend); CD19 Pacific Blue 

(Clone 6D5, Biolegend); F4/80 Pacific Blue (Clone BM8, Biolegend); GR-1 (Ly-6G) eFluor 
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450 (Clone RB6-8C5, eBioscience); NK1.1 Pacific Blue (Clone PK136, Biolegend).   All 

antibodies were titrated on normal B6 splenocytes prior to use.   

Intracellular cytokine staining   

Splenocytes from B6-CD45.1 were used as antigen presenting cells.  B6-CD45.1 cells 

were added at 2x106/well in a 24 well plate or 0.5x106/well in a 48 well plate and infected 

with LVS at an MOI of 200:1 or mock infected.  Two hours post-infection, the media was 

removed and 5 μg/mL gentamicin was added to kill any extracellular bacteria.  Splenocytes 

were cultured overnight in the presence of gentamicin to allow antigen processing and 

presentation.  Prior to co-culture with cells isolated from infected mice, antigen presenting 

cells were washed extensively to remove any cytokine or PGE2 that could interfere with the 

co-culture.  Cells isolated from mice were co-cultured at a 1:1 ratio with infected or mock 

infected splenocytes for 24 hours.  During the last 4 hours of culture, 10 µg/mL Brefeldin A 

(Sigma) was added to each well to stop cytokine secretion.  Cells were removed from the 

plate and stained with Pacific Blue succimidyl ester (Invitrogen) to distinguish live and dead 

cells.  Cells were then stained with antibodies for surface markers.  Following fixation and 

permeabilization of the cells, cells were stained for IFN-γ and IL-17A.  Cells were washed 

extensively after each staining step to remove residual unbound antibody.               

Gating Strategy for T cell Analysis   

The gating scheme is shown in figure 1.  Single cells were discriminated from 

doublets by plotting side scatter linear versus side scatter area.  Cells were then selected by 

plotting side scatter area versus forward scatter area.  Live CD3+ T cells were then selected 

by plotting CD3 versus the Pacific Blue channel which included the live/dead stain and 

markers for antigen presenting cells.  From the CD3+ gate, CD4+ and CD8+ T cells were 
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selected.  Gates for IFN-γ and IL-17A positive cells were set based on isotype control 

staining.  Change in mean fluorescent intensity (∆MFI) for each sample was determined by 

subtracting the cytokine negative population from the cytokine positive population.  FlowJo 

v7.6 (Treestar) was used for all flow cytometry analysis.       

Depletion of IFN-γ or IL-17A   

Anti-IFN-γ (clone XMG1.2) was a generous gift from Mary Ann Accavitti-Loper 

(University  of Alabama- Birmingham).  Rat IgG1 isotype control antibody (clone HRPN), 

anti-IL-17A (clone 17F3), and mouse IgG1 isotype control antibody (clone MOPC-21) were 

purchased from BioXCell (West Lebanon, NH).  Mice were administered 500 µg of anti-

IFN-γ or rat IgG1 isotype control or 100 ug of anti-IL-17A or mouse IgG1 in 200 µL PBS 

via intraperitoneal injection on days 0, 2, and 4 post-inoculation.   

Luminex analysis   

A multiplex luminex bead-based approach was used to quantify 

cytokines/chemokines in BAL fluid or clarified tissue homogenate.  A 20-analyte assay panel 

was performed according to the manufacturer’s protocol (Invitrogen) using a BioPlex array 

reader (Bio-Rad Laboratories).  Using integrated cytokine/chemokine standard curves, the 

assay reports pg/mL of the following analytes:  FGF basic, GM-CSF, IFN-γ, IL-1α, IL-1β, 

IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p40/p70), IL-13, IL-17, KC, MCP-1, MIG, MIP-1α, 

TNF-α, and VEGF.  A five-parameter non-linear logistic regression model was used to 

establish standard curve and to estimate the probability of occurrence of a concentration at a 

given point.  Standard outliers were removed from the analysis if the observed/expected % 

recovery was outside of the acceptable limits (70-130%).  Upper and lower levels of 

quantification were determined by the BioPlex Manager software based on goodness of fit 
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and percent recovery.  Calculated pg/mL for experimental specimens were multiplied by the 

inherent assay dilution factor (df=2) and reported as final observed pg/mL. 

Statistical analysis   

Statistical significance of flow cytometry data was determined using a Kruskal-Wallis 

with Dunn’s post-test.  Bacterial burdens were log transformed and then a one-way ANOVA 

with Tukey’s post-test was applied.  A Mann-Whitney test was used for IgG titer data.  

GraphPad Prism (v5.04) was used for analysis.  Error bars show standard error of the mean.  

Significance levels are indicated as follows: * p < 0.05; ** p < 0.01, *** p < 0.001, **** p < 

0.0001.   

 

RESULTS 

Do differences in the adaptive immune response to LVS and LVS clpB translate to 

differences in the memory response?   

We have previously shown that LVS clpB is attenuated, not because of an intrinsic 

growth defect, but instead by inducing altered innate and adaptive immunity (16).  The 

kinetics of the T cell response during primary infection with LVS and LVS clpB differs (16).  

To briefly summarize, LVS and LVS clpB infected mice have similar immune responses on 

day 7 post-inoculation, i.e. the total spleen and lung cellularity are similar as are the number 

of CD4+ T cells producing IFN-γ or IL-17A or CD8+ T cells producing IFN-γ (Chapter 2 

figures 24-26).  Additionally, the amount of cytokine produced by responding T cells is 

similar on day 7 post-inoculation as measured by delta mean fluorescence intensity (ΔMFI) 

(Chapter 2 figures 27 and 29).  The immune responses between LVS and LVS clpB infected 

mice differ 10 days post-inoculation.  LVS infected mice have significantly higher spleen and 
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lung cellularity on day 10 post-inoculation than LVS clpB infection (Chapter 2 figure 24).  

The differences in cellularity are likely a consequence of immune response contraction 

because LVS clpB was nearly cleared from the host on day 10 post-inoculation (Chapter 2 

figure 4).  Although there is a significant decrease in the number of T cells responding in 

LVS clpB infected mice, the responding T cells produced significantly more IFN-γ and IL-

17A as measured by ΔMFI (Chapter 2 figures 25-27, 29-31).  Despite LVS clpB’s 

attenuation, inoculation with this strain induced a robust adaptive immune response that was 

required for bacterial clearance (Chapter 2 figure 23).  Previous infection with LVS or LVS 

clpB induced a protective immune response during lethal LVS challenge early (day 28) or 

late (day 120) post-initial infection (Chapter 2 figures 9, 10).  We next sought to determine 

whether the secondary immune response was similar in LVS and LVS clpB vaccinated mice.             

LVS and LVS clpB infected mice have similar antibody responses   

B cell deficient mice are not more susceptible to primary infection with LVS, 

however they are 100-fold more susceptible during secondary infection (18).  Therefore, 

while differences in the primary antibody response to LVS or LVS clpB were unlikely to 

affect bacterial clearance during the first infection, differences in the antibody response may 

impact clearance, and therefore survival, during a second infection.  We therefore determined 

anti-Francisella IgG titers in LVS and LVS clpB infected mice 28 and 120 days post-

inoculation.  Mice were inoculated with 5x102 CFU LVS or 5x104 CFU LVS clpB.  On days 

28 and 120 post-inoculation, sera was obtained from naïve, LVS or LVS clpB vaccinated 

mice and half-maximal IgG titers were determined by ELISA.  LVS and LVS clpB 

vaccinated mice had similar IgG titers on day 28 or day 120 post-inoculation (figure 2A-D).  

Naïve mouse sera did not contain LVS-specific IgG antibodies (figure 2A, C).  In addition to 
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similar IgG titers, sera from LVS and LVS clpB infected mice produced similar, but not 

identical, banding patterns when used to probe LVS lysate indicating infection with LVS or 

LVS clpB results in recognition of similar Francisella antigens (figure 2E).  Together, these 

data indicate that infection with either LVS or LVS clpB elicits a similar antibody response 

in terms of total IgG levels as well as antibody specificity.  Additionally, these data 

suggested that survival of LVS and LVS clpB vaccinated mice during lethal LVS challenge is 

not a consequence of a more robust B cell response in one vaccinated group compared to the 

other.                  

Previous infection with LVS and LVS clpB decreases bacterial burdens during 

secondary infection   

We next examined the T cell response in LVS and LVS clpB vaccinated mice to 

determine whether differences in the primary response translated to differences in the 

memory response.  We chose to look at the T cell memory response on day 4 post-

rechallenge because the secondary response occurs more rapidly than the primary response 

and this time point was also before unvaccinated mice began to succumb to infection (16).  

We first determined bacterial burdens in the spleen, liver, and lung on day 4 post-rechallenge 

to quantitate the amount of antigen present in each tissue.  Mice were inoculated with 5x102 

CFU LVS or 5x104 CFU LVS clpB and then challenged with 5x103 CFU LVS 120 days after 

the initial infection.  Age-matched unvaccinated mice were also inoculated with 5x103 CFU 

LVS.  As expected, bacterial burdens were significantly lower in the spleen, liver, and lung 

of LVS and LVS clpB vaccinated mice compared to unvaccinated mice (figure 3A-C).  These 

data indicate that prior infection with LVS or LVS clpB elicits an immune response that 
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controls bacterial growth at the site of primary infection (lung) as well as distal sites (spleen 

and liver).     

Spleen and lung cellularity is similar irrespective of vaccination status   

We next examined the secondary T cell response in LVS or LVS clpB vaccinated 

mice.  Mice were inoculated with 5x102 CFU LVS or 5x104 CFU LVS clpB and then 

challenged with 5x103 CFU LVS 120 days after the initial infection.  Age-matched 

unvaccinated mice were also inoculated with 5x103 CFU LVS.  On day 4 post-re-challenge, 

mice were sacrificed and the number of live cells in the spleen and lung were determined by 

trypan blue exclusion.  Unvaccinated, LVS vaccinated, and LVS clpB vaccinated mice had 

similar spleen and lung cellularity (figure 4).  It is likely that the cellular composition of 

unvaccinated and vaccinated mice is different; however, quantification of individual cell 

populations using flow cytometry was not performed.       

LVS and LVS clpB vaccinated mice have an increased lung IFN-γ-mediated immune 

response compared to unvaccinated mice   

IFN-γ+ CD4+ and CD8+ T cells respond in the lung during the primary immune 

response to LVS and LVS clpB (16).  We next determined whether memory CD4+ and/or 

CD8+ T cells were responding during the secondary infection in LVS and LVS clpB 

vaccinated mice by quantifying the number of CD4+ and CD8+ T cells producing IFN-γ in 

the lung on day 4 post-re-challenge.  LVS and LVS clpB vaccinated mice had significantly 

more IFN-γ producing CD4+ and CD8+ T cells than unvaccinated mice (figure 5A, B).  There 

was no significant difference in the number of IFN-γ producing CD4+ or CD8+ T cells in the 

lungs of LVS or LVS clpB vaccinated mice during re-challenge.  Additionally, responding 

CD4+ and CD8+ T cells from the lungs of LVS and LVS clpB vaccinated mice produced 
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significantly more IFN-γ as measured by ΔMFI compared to unvaccinated mice (figure 5C, 

D).  The IFN-γ ΔMFI for CD4+ and CD8+ T cells from LVS and LVS clpB vaccinated mice 

were not significantly different.  Together these data indicate that LVS or LVS clpB 

vaccination leads to a similar IFN-γ response in the lung during lethal re-challenge that is 

greater in magnitude than the IFN-γ response in unvaccinated mice.                

LVS and LVS clpB vaccinated mice have a similar lung IL-17A-mediated immune 

response compared to unvaccinated mice   

Primary infection with LVS and LVS clpB induces Th17 expansion in the lung (13, 

16).  We next examined whether memory Th17 cells were responding during re-challenge as 

we found for IFN-γ producing T cells (figure 5).  Using ICS, we determined the number of 

Th17 cells in the lung on day 4 post-re-challenge and found similar numbers of Th17 cells 

irrespective of vaccination status (figure 6A).  Additionally, IL-17A expression did not 

increase in vaccinated mice compared to unvaccinated mice as measured by ΔMFI (figure 

6B).  These data indicate that despite the importance of Th17 cells during the primary 

response, Th17 cells do not appear to be an important component of the memory response on 

day 4 post-re-challenge because the response in vaccinated mice is similar to unvaccinated 

mice.  

The secondary response is nearly absent in the spleens of LVS and LVS clpB vaccinated 

mice   

Bacterial burdens were near the detection limit in the spleen on day 4 post-re-

challenge (figure 3A).   It is possible that bacterial burdens were low in the spleen because 

there was a robust T cell response that controlled the infection.  Alternatively, the robust T 

cell memory response in the lung could decrease bacterial dissemination to distal organs and 
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low antigen loads will not drive a local memory response.  To distinguish between these two 

possibilities, we examined the secondary immune response in the spleen on day 4 post-re-

challenge using ICS.  Additionally, examination of the secondary response in the spleen 

would indicate whether the memory response was systemic or limited to the primary site of 

infection (lung).  There were similar absolute numbers of IFN-γ producing CD4+ or CD8+ T 

cells in LVS or LVS clpB vaccinated mice compared to unvaccinated mice (figure 7A, B).  

IFN-γ ΔMFI was significantly higher in CD4+ T cells from vaccinated mice compared to 

unvaccinated mice (figure 7C) but a significant increase in IFN-γ ΔMFI for CD8+ T cells was 

not observed in vaccinated mice compared to unvaccinated mice (figure 7D).   

Primary intranasal infection with LVS or LVS clpB does not elicit expansion of Th17 

cells in the spleen (13, 16).  Similarly, the absolute number of Th17 cells in the spleens of 

LVS or LVS clpB vaccinated mice was similar to unvaccinated mice (figure 8A).  

Additionally, IL-17A expression was not increased in vaccinated mice compared to 

unvaccinated mice as measured by ΔMFI (figure 8B).  These data indicate that, like a 

primary infection with LVS or LVS clpB, Th17 cells are not involved in the immune 

response in the spleen.     

Because we observed similar numbers of CD4+ IFN-γ+, CD8+ IFN-γ+, and Th17 cells 

in the spleens of vaccinated and unvaccinated mice on day 4 post-re-challenge, these data 

suggest that the low bacterial burdens were not a consequence of a robust T cell response.  

Instead, these data suggest that low bacterial burdens in the spleen did not drive splenic 

memory T cell expansion and that a systemic immune response does not occur following 

intranasal secondary challenge of immune mice.   
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IFN-γ production is required during the secondary response to LVS   

The secondary response in LVS and LVS clpB vaccinated mice induced IFN-γ 

producing CD4+ and CD8+ T cells in the lungs as determined by ICS.  To determine whether 

IFN-γ was required during the secondary response, we treated mice with 500 µg XMG1.2 

(anti-IFN-γ) or rat IgG1 isotype control on days 0, 2, and 4 post-re-challenge.  On day 0 mice 

were intranasally inoculated with 5x103 CFU LVS, approximately 1 hour after antibody 

treatment.  Mice were weighed daily and weight loss reported as % of starting weight (figure 

9A).  Weight loss is monitored because we have found it is a nearly perfect indicator of 

clinical status.  The weight loss profiles of LVS and LVS clpB vaccinated mice receiving 

anti-IFN-γ was similar to unvaccinated mice receiving either anti-IFN-γ or isotype control 

(figure 9A).  LVS or LVS clpB vaccinated mice receiving isotype control antibody did not 

lose as much weight as those receiving anti-IFN-γ and had begun to regain lost weight on day 

5 post-re-challenge (figure 9A) indicating they are recovering from their infection and will 

survive.  We sacrificed all vaccinated mice receiving isotype control antibody on day 6 post-

re-challenge to determine bacterial burdens and therefore could not explicitly demonstrate 

that these mice would survive the lethal challenge.  However, the weight loss profiles of 

vaccinated mice receiving isotype control antibody are nearly identical to untreated 

vaccinated mice in Barrigan, et al that did recover all lost weight and survive the same lethal 

challenge dose (16).  Therefore, we are confident that the isotype control treated vaccinated 

mice would have survived the lethal challenge.             

We next examined bacterial burdens in the spleen, liver, and lung on day 6 post-re-

challenge following administration of anti-IFN-γ or isotype control antibody.  We selected 

day 6 because unvaccinated mice begin to succumb to the lethal LVS inoculation at this time 
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point.  LVS and LVS clpB vaccinated mice receiving anti-IFN-γ had significantly higher 

bacterial burdens than vaccinated mice receiving isotype control antibody in the spleen, liver, 

and lung (figure 9B-D).  Vaccinated mice depleted of IFN-γ not only have higher bacterial 

burdens than vaccinated mice receiving isotype control antibody, they also have similar 

bacterial burdens as unvaccinated mice receiving anti-IFN-γ (figure 9B-D).  Unvaccinated 

mice receiving anti-IFN-γ had significantly higher bacterial burdens in all organs tested 

compared to unvaccinated mice receiving isotype control antibody and two of the 

unvaccinated mice administered anti-IFN-γ succumbed to the infection on day 5 post-

inoculation (figure 9B-D).  All mice receiving anti-IFN-γ have lung IFN-γ levels near the 

limit of detection (21.6 pg/mL) while mice receiving isotype control antibody have between 

1-5 ng/mL IFN-γ concentrations in the lung as measured by Luminex (data not shown) 

confirming successful depletion of IFN-γ.  These data indicate that IFN-γ production is 

critical during an intranasal secondary infection just as has previously been shown for 

primary infections with LVS (10, 11).  

IL-17A is dispensable during the secondary response to LVS  

Lethal secondary infection in LVS or LVS clpB vaccinated mice did not elicit a Th17 

response that was greater in magnitude compared to unvaccinated mice as determined by 

ICS.  We therefore hypothesized that IL-17A was not required for protection during 

secondary infection.  To test this hypothesis, we treated unvaccinated, LVS vaccinated, or 

LVS clpB vaccinated mice with 100 µg 17F3 (anti-IL-17A) or mouse IgG1 isotype control 

on day 0, 2, and 4 post-rechallenge.  Mice were then intranasally inoculated with 5x103 CFU 

LVS.  Mice were weighed daily and weight loss was reported as % of starting weight (figure 

10A).  The weight loss profiles of LVS and LVS clpB vaccinated mice were identical 
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regardless of treatment with anti-IL-17A or isotype control (figure 10A).  Unvaccinated mice 

also had identical weight loss profiles irrespective of antibody treatment (figure 10A).   

We then determined bacterial burdens in the spleen, liver, and lung on day 6 post-

rechallenge.  LVS and LVS clpB vaccinated mice had spleen and liver bacterial burdens near 

the limit of detection for both treatment groups (figure 10B-C).  In the lung, bacterial burdens 

were similar in LVS and LVS clpB vaccinated mice receiving anti-IL-17A compared to 

isotype control (figure 10D).  Bacterial burdens in the spleen, liver, and lung of unvaccinated 

mice were similar irrespective of antibody depletion (figure 10B-D).  Luminex analysis of 

clarified tissue homogenates determined IL-17A levels are below the detection limit in the 

spleen and lungs of mice receiving anti-IL-17A and isotype control antibody, irrespective of 

vaccination status (data not shown).  To confirm the Luminex results, we tested the clarified 

lung homogenate by IL-17A ELISA and found vaccinated mice had similar levels of IL-17A 

(70-80 pg/mL) irrespective of antibody treatment.  Unvaccinated mice had slightly higher IL-

17A levels (130-150 pg/mL), but again there was no difference in concentration between 

anti-IL-17A and isotype treated mice.  These data indicate IL-17A is produced at low levels 

in our model during the secondary infection, further supporting our conclusion that IL-17A is 

dispensable during a recall response.    

Altogether, our results indicate that the secondary immune response in LVS and LVS 

clpB vaccinated mice is nearly identical in terms of the absolute numbers of responding cells 

as well as the amount of cytokine produced.  These data indicate that primary infection with 

attenuated LVS clpB primes the immune system equivalently as LVS despite eliciting an 

altered primary response (16).  We also determined the importance of IFN-γ and IL-17A 
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during the secondary response and found IL-17A is dispensable while IFN-γ is absolutely 

required for survival during intranasal re-challenge. 

 

DISCUSSION 

Primary intranasal inoculation with LVS or LVS clpB elicits a robust IFN-γ and IL-

17A response in the lungs of infected mice (16).  Both of these cytokines are critical for 

controlling the primary infection.  IFN-γ-/- and IL-17-/- mice have increased bacterial burdens 

compared to wild-type mice and antibody depletion of either IFN-γ or IL-17A also increases 

bacterial burdens (10-12, 14, 15).  While the roles of IFN-γ and IL-17A during primary 

pneumonic tularemia are clear, it remains unknown whether these cytokines are also 

important during secondary infection.   

Route of primary infection influences survival during lethal secondary infection 

Intradermal vaccination with LVS does not provide protection during lethal aerosol 

challenge with SchuS4 or another lethal Type A strain (19, 20).  In order to achieve 

protective immunity for future intranasal challenge, mice must be inoculated intranasally (19, 

21).  Intradermal inoculation with LVS leads to a robust IFN-γ response in the lung by both 

CD4+ and CD8+ T cells that is greater in magnitude than mice inoculated intranasally (13).  

Despite eliciting a robust IFN-γ mediated immune response in the lung, intradermally 

inoculated mice are not protected during lethal intranasal challenge with SchuS4 (21).  

Because Th17 cells expand in the lung following LVS intranasal inoculation but not 

intradermal inoculation (13), one could hypothesize that memory Th17 cells are critical to the 

development of protective immunity in the lung.  Th17 cells are a critical component of the 

primary immune response to Francisella and other pathogens ((14) and reviewed in (22)).   
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The T cell response on day 4 post-re-challenge is dominated by IFN-γ producing T cells

 Using ICS, we identified IFN-γ and IL-17A producing T cells on day 4 post-re-

challenge.  In the lung, there were significantly more CD4+ and CD8+ T cells producing IFN-

γ in LVS and LVS clpB vaccinated mice compared to unvaccinated mice.  ΔMFI was used as 

a measure of how much IFN-γ is produced per cell, LVS and LVS clpB vaccinated mice have 

significantly higher IFN-γ ΔMFIs for CD4+ and CD8+ T cells compared to unvaccinated 

mice.  Clearly, previous infection with either LVS or LVS clpB primes both CD4+ and CD8+ 

T cells that produce IFN-γ in the lung upon re-challenge.  We also quantified the number of 

Th17 cells in the lungs and although there is a trend toward an increased number of Th17 

cells in LVS or LVS clpB vaccinated mice compared to unvaccinated mice, it does not reach 

statistical significance.  The IL-17A ΔMFIs were also not increased in LVS or LVS clpB 

vaccinated mice compared to unvaccinated mice.  These data suggest that Th17 cells do not 

play a critical role in the lung during secondary infection with LVS.  Instead, responding T 

cells in the lung produce IFN-γ.   

IFN-γ depletion in vaccinated mice worsens disease and increases bacterial burdens  

The intracellular cytokine staining experiments demonstrate that the secondary 

response to an intranasal infection is mediated by both CD4+ and CD8+ T cells producing 

IFN-γ.  Although Th17 cells in the lung are an important component of the lung’s primary 

immune response (13, 15, 23), this cell subset does not expand during secondary infection, 

suggesting that these cells are dispensable.  To further interrogate the importance of IFN-γ 

and IL-17A during secondary infection, we antibody depleted each cytokine during 

secondary infection.  LVS and LVS clpB vaccinated mice depleted of IFN-γ had significantly 

higher bacterial burdens and experienced increased weight loss compared to mice receiving 

169



 
 

isotype antibody during re-challenge.  IFN-γ depletion in vaccinated mice caused them to 

behave like unvaccinated mice for both experimental read-outs.  This result demonstrated 

that IFN-γ is absolutely required for protective immunity during a secondary intranasal 

infection.  The requirement of IFN-γ during secondary infection has also been shown using 

several routes of LVS vaccination and then lethal challenge with LVS, SchuS4, or another 

Type A strain (19, 24, 25).     

IL-17A depletion in vaccinated mice does not alter disease course or increase bacterial 

burdens   

Depletion of IL-17A had no impact on weight loss in LVS and LVS clpB vaccinated 

mice compared to mice treated with isotype control antibody.  IL-17A depletion in LVS and 

LVS clpB vaccinated mice also did not alter bacterial burdens suggesting that IL-17A is 

dispensable for bacterial control during the secondary response.  Surprisingly, we did not 

observe an increase in bacterial burdens or weight loss profiles for unvaccinated mice 

receiving IL-17A depleting antibody compared to mice receiving isotype control antibody as 

other groups have shown using the very similar depletion regimens (14, 15).  This could 

suggest that the depletion antibody we used was not effective.  To test whether the anti-IL-

17A antibody could bind IL-17A, we performed an in vitro depletion experiment and found 

the antibody was capable of depleting IL-17A.  Additionally, we determined the 

concentration of anti-IL-17A and found the concentration we determined was almost 

identical to the one reported by the vendor.  Together, these data suggest the anti-IL-17A 

antibody was functional and should bind IL-17A in vivo.  Additionally, the dose 

administered to the mice was correct based on independent verification of the antibody 

concentration.   
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Because we have ruled out non-functional antibody, there are several possible 

alternative explanations for the observed result where naïve mice do not have increased 

bacterial burdens upon IL-17A depletion.  First, we used a different inoculation dose and 

delivery route (5000 CFU intranasally versus 1000 CFU  intratracheally (14)).  Second, the 

unvaccinated mice were age matched with the vaccinated mice and were 7-8 months old 

when they were inoculated while the other groups used young (6-8 weeks old) mice (14, 15).  

Finally, not all laboratory LVS stocks are identical thereby raising the possibility that slight 

differences in the infecting strain could affect virulence and/or impact the immune response.  

We could test the function of the in-hand depleting antibody by treating young mice during a 

primary LVS infection to recapitulate experiments described by Lin, et al and Markel, et al 

(15, 23).  We confirmed cytokine depletion by clarifying tissue homogenates used to 

determine bacterial burdens and subjecting these samples to Luminex analysis.  IL-17A 

levels were below detection limit for mice receiving IL-17A depleting antibody or isotype 

control.  These data indicate there was little IL-17A present in the lung irrespective of 

vaccination status and therefore little antigen for the anti-IL-17A antibody to deplete.  We 

also tested the clarified tissue homogenates by ELISA for a more sensitive determination of 

IL-17A concentration and found similar IL-17A concentrations in vaccinated mice 

irrespective of antibody treatment.  Unvaccinated mice had slightly higher IL-17A 

concentrations than the vaccinated mice (2-fold), but there were no differences between anti-

IL-17A and isotype control treatment.  We confirmed the antibody was functional and 

administered at the desired dose therefore, little IL-17A was produced in the lung of 

unvaccinated or vaccinated mice.            
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During lethal SchuS4 secondary challenge following intradermal vaccination with 

SchuS4 clpB, high levels of IL-17A are detectable in the lung during secondary aerosol 

infection and high IL-17 levels correlate with protection (26).  However, depletion of IL-17A 

did not significantly increase bacterial burdens compared to mice given isotype control 

antibody, suggesting this cytokine is not necessary for protective immunity in our 

experiments (26).  The authors did not examine whether IFN-γ was required for protection 

despite also detecting this cytokine at high levels in the lung and also finding it correlated 

with protection (26).  The primary T cell response to SchuS4 cannot be described in 

unmanipulated mice because they rapidly succumb to infection.  The Bosio laboratory has 

developed a convalescent model of SchuS4 infection where mice are intraperitoneally 

administered levofloxacin daily from day 3 until day 14 post-inoculation (27).  This model 

allowed the examination of the T cell response in the lung following primary intranasal 

inoculation with SchuS4.  They detected IFN-γ+ CD4+ and CD8+ T cells in the lung and 

spleens, with the peak response occurring on day 7 post-inoculation (27).  IL-17A was 

undetectable in lung and spleen tissue homogenates, indicating this cytokine is not produced 

at detectable levels in this model of primary SchuS4 infection (27).  More sensitive 

techniques, such as ICS, may allow the detection of Th17 cells and should be explored 

further in this model to determine whether primary intranasal inoculation with SchuS4 

induces a Th17 response.  This model could also be utilized to ask similar questions such as 

the requirement of IFN-γ and IL-17A for survival during secondary intranasal challenge with 

SchuS4.      
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Does the expression of lung T cell homing receptors differ in mice vaccinated 

intranasally or intradermally?   

Combined, our ICS and IL-17A depletion data suggest Th17 cells are not contributing 

to protective immunity to re-infection in the lung.  Because the presence of Th17 cells was a 

key difference during intranasal and intradermal primary infection, there must be an 

alternative explanation for why intradermally vaccinated mice are not protected during lethal 

intranasal challenge.  It is possible that intradermally vaccinated mice are not protected 

during an intranasal challenge because the site of T cell priming is critical for expression of 

lung homing receptors.  Therefore, despite the ability to produce large amounts of IFN-γ in 

response to Francisella antigens, T cells from intradermally vaccinated mice do not express 

the correct receptors to allow the T cells to traffic to the lung and control the secondary 

infection.  While skin and gut T cell homing receptors are well characterized, lung T cell 

homing receptors are less well defined.  Human lung resident memory T cells express the β1 

integrin, VLA-1, and the addressin, PSGL-1 (28).  It is unclear whether these homing 

receptors are expressed on mouse lung T cells.  These questions would be easier to answer in 

a system with MHCI or MHCII tetramer to examine homing receptor expression by 

Francisella-specific T cells.  We have identified an immunodominant CD4+ epitope and 

collaborators are in the process of cloning and expressing IAb presenting the LpnA peptide 

that can be used to identify Francisella-specific CD4+ T cells (29).  A CD8+ 

immunodominant epitope has not yet been identified.  In the absence of MHCI and/or 

MHCII tetramer, we could identify antigen experienced T cells by CD44hi and IFN-γ or IL-

17A expression.  It is highly likely that CD44hi T cells producing either IFN-γ or IL-17A 

following re-stimulation by LVS infected APCs are responding to LVS infection.  We could 
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then determine what homing receptor(s) these cells express and compare intranasally and 

intradermally infected mice.                 

Conventional T cell transfer experiments using T cells from immune mice do not confer 

protection   

To identify T cell population(s) that are required for protective immunity, 

immunologists transfer purified cell populations into naïve mice and challenge with the 

pathogen of interest.  Much effort has gone into developing a transfer system in a variety of 

Francisella models of infection (Karen Elkins, personal communication).  The only 

published adoptive transfer system that has successfully protected naïve mice during 

rechallenge is intraperitoneal injection of T cells followed 2 hours later by intraperitoneal 

injection of bacteria (ref).  While this system does distinguish between T cells isolated from 

naïve and immune mice, the peritoneum of the mouse has essentially been turned into a petri 

dish.  This system doesn’t require proper T cell trafficking as T cells encounter infected 

peritoneal macrophages and control the infection before bacteria can disseminate (Karen 

Elkins, personal communication).  If conventional T cell transfers were successful in our 

Francisella model, experiments could be designed to identify cell types critical for secondary 

protection.  For instance, CD4+ and/or CD8+ T cells could be purified from a specific tissue 

of an immune mouse and transferred into a naïve replete recipient that is subsequently 

lethally challenged.  This type of experiment would allow questions of where resident 

memory is located following primary intranasal or intradermal inoculation. 

Because conventional T cell transfers do not confer protection, yet those same T cells 

are required for protection if the mouse was left intact, we hypothesize the T cells fail to 

traffic properly following transfer.  We could begin to address T cell trafficking questions by 
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transferring T cells from an immune mouse into a congenically-marked recipient.  The 

presence of donor T cells in the spleen, lung, and lymph nodes would be determined by flow 

cytometry 24 hours after transfer.  These experiments would be improved if we could 

identify Francisella-specific T cells using tetramer.  This way, we would not be examining 

the ability of all T cells to home but could specifically address where Francisella-specific T 

cells traffic.    

As an alternative approach to avoid issues of T cell trafficking during transfer 

experiments, we could use parabiosis experiments to determine whether T cells could 

migrate between a pair consisting of an immune and naïve mouse through existing 

architecture.  For example, we predict that intransal inoculation of an immune mouse 

attached to a naïve mouse would confer protection on the naïve animal because the immune 

mouse would control the infection in their lung and decrease dissemination.  We found that 

LVS and LVS clpB vaccinated mice had spleen and liver bacterial burdens near the limit of 

detection.  These data, along with the near absence of a memory T cell response in the spleen 

indicates the infection is primarily contained in the lung.  Similarly, an immune mouse would 

control the infection and decrease the number of bacteria that disseminate to the attached 

naïve mouse.  Another potential experiment would involve challenging the naïve mouse in 

the pair intranasally.  If memory T cells had already or could traffic to the naïve mouse, we 

expect the naïve mouse to be protected.  If the memory T cells do not traffic properly, we 

expect the naïve mouse to succumb to the lethal infection.  If the naïve mouse was protected 

by trafficking memory T cells, we could also separate the mice prior to lethal infection to 

determine whether the T cells that conferred protection had already trafficked to the naïve 

mouse or if they migrated after infection.   
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The degree of IFN-γ+ CD4+ and CD8+ T cells and Th17 cell expansion during re-

challenge remains unclear   

We cannot state with certainty whether IFN-γ or IL-17 producing T cells expanded in 

the lungs or spleens of LVS and LVS clpB vaccinated mice because we haven’t definitively 

determined the number of resting memory T cells.  A preliminary experiment examining 

IFN-γ and IL-17A production in resting memory T cells stimulated ex vivo by LVS-infected 

CD45.1 splenocytes suggested the presence of IFN-γ producing memory T cells but not Th17 

cells in the lung.  These data are consistent with the ICS findings on day 4 post-re-challenge 

where IFN-γ+ CD4+ and CD8+ T cells were found at significantly higher numbers in LVS or 

LVS clpB vaccinated mice compared to unvaccinated mice and Th17 cells aren’t found at 

increased numbers.  It is possible that we examined the secondary T cell response at a time 

point before Th17 cells have expanded and are detectable using ICS.  Future studies should 

examine the T cell response at several time points post-re-challenge to determine the kinetics 

of the secondary response.  The antibody depletion experiments suggest that even if Th17 

cells do expand later in the secondary infection, this cell type isn’t required for survival.  

Future experiments should also examine the presence of resting memory T cells in the spleen 

and lung following primary intranasal and intradermal inoculation with LVS.  These data will 

allow a clearer understanding of whether T cell expansion occurs in the lung and spleen 

during secondary infection.       

Antibody responses are similar in LVS and LVS clpB vaccinated mice   

In addition to examining the T cell response, we determined whether primary 

infection with LVS or LVS clpB induced altered B cell responses that could impact survival 

during re-challenge.  LVS and LVS clpB vaccinated mice did not have significantly different 

176



 
 

FT-specific IgG titers on day 28 or 120 post-inoculation suggesting the B cell response 

primed during both infections is similar.  Additionally, the banding patters were similar in 

LVS and LVS clpB vaccinated mice when LVS lysate was probed indicating similar antigens 

were recognized during both infections.  The patterns are not, however, identical (figure 2E).  

The differences could be explained by altered protein expression in LVS or LVS clpB 

bacteria during infection.  ClpB is a highly conserved chaperone protein involved in the 

stress response.  In its absence, protein expression could be altered because the bacteria 

cannot properly respond to stresses caused by the infection environment and therefore the 

host would be exposed to two different sets of antigens.   

Because Francisella lives intracellularly, the antibody response is not required for 

protection.  Indeed, CD4 knock-out mice have poor antibody responses (i.e. low titers) in the 

absence of T cell help, yet these mice still survive the primary infection and subsequent lethal 

secondary challenge (9).  B cell knock-out mice (BKO), which lack mature B cells, survive 

primary intradermal inoculation with LVS but have a lower LD50 than wild-type mice (18).  

During a secondary infection, B cell deficiency give a more pronounced phenotype with a 

two-log decrease in the LD50 compared to immune wild-type mice (18).  Transfer of immune 

serum into BKO mice does not ameliorate protection but transfer of B cells from immune 

mice does (18).  Together, these data suggest that the protection mediated by B cells is not 

antibody-dependent and instead is a consequence of another intrinsic function of B cells.  In 

human cases of tularemia, there is no correlation between antibody titers and protection 

during a secondary infection (30).  Therefore, while LVS infection in humans and mice does 

elicit an antibody response, this response is not required for protective immunity.   
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Model of primary and secondary immune response to LVS infection 

Overall, we propose the following model: during primary intranasal infection with 

LVS, IL-17A produced by innate and adaptive cells in the lung initially controls the infection 

until IFN-γ production by CD4+ and CD8+ T cells levels increase and clear the infection.  

Th17 cells do not expand in the spleen during primary infection in spite of the rapid 

dissemination of bacteria following inoculation (16).  During secondary intranasal infection 

with LVS, CD4+ and CD8+ T cells in the lung expand and produce IFN-γ.  Th17 cells do not 

expand in the lung during secondary infection.  The secondary response in the lung controls 

the infection and bacteria do not spread to distal organs like the spleen and the T cell 

response is not significantly different than unvaccinated mice.  Another important finding 

from these experiments was that there were no statistically significant differences between 

LVS and LVS clpB vaccinated mice for all parameters measured.  These data indicated that 

the protective immune response elicited by previous infection with either strain is nearly 

identical.  Because LVS clpB provides 100% protection during lethal challenge while 

causing less overall disease, this strain is an excellent vaccine candidate.      
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Figure 1

Figure 1.  Gating scheme for flow cytometry analysis.  Single cells were discriminated 

from doublets by plotting side scatter height (SSC-H) versus side scatter area (SSC-A).  

Cells were then selected by plotting SSC-A versus forward scatter area (FSC-A).  Live 

CD3
+
 T cells were then selected by plotting CD3 versus the Pacific Blue channel which 

included the live/dead stain and markers for antigen presenting cells.  CD45.1
-
 T cellls 

were the gated on by plotting CD3 versus CD45.1.  From the CD45.1
-
 gate, CD4

+
 and 

CD8
+
 T cells were selected.  Gates for IFN-γ and IL-17A positive cells were set based on 

isotype control staining.  For simplicity, only CD4
+
 IFN-γ is shown.  Change in mean 

fluorescent intensity (ΔMFI) for each sample was determined by subtracting the cytokine 

negative population from the cytokine positive population.  For each gate, the percent of 

the parent gate is indicated in bold (for example, CD3
+
 cells are 15.10% of the cells gate). 

179



Figure 2
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Figure 2.  Antibody responses are similar in LVS and LVS clpB infected mice.  B6 mice 

were intranasally inoculated with 5x10
2
 CFU LVS or 5x10

4
 CFU LVS clpB, or left 

uninfected.  On day 28 (A, B) or 120 (C, D) post-inoculation, sera was collected and the 

amount of LVS-specific IgG antibodies were determined using an ELISA.  Half-maximal 

titers were calculated for LVS and LVS clpB infected mice. n=7-11 mice/group.  Data are 

combined from 2 independent experiments.  Each sample was analyzed in duplicate.  A 

Mann-Whitney test was used to determine statistical significance.  E) LVS whole cell 

lysate was probed with sera from naïve, LVS, or LVS clpB mice collected 28 days post-

inoculation.  LVS-specific antibodies were detected using goat anti-mouse IgG secondary 

antibody.
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Figure 3
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Figure 3.  Previous infection with LVS or LVS clpB decreases bacterial burdens on day 

4 post-rechallenge.  B6 mice were intranasally inoculated with 5x10
2
 CFU LVS or 5x10

4
 

CFU LVS clpB, or left unvaccinated (Unvx).  On day 120 post-inoculation, all mice were 

challenged with 5x10
3
 CFU LVS.  On day 4 post-rechallenge, bacterial burdens were 

determined in the A) spleen, B) liver, and C) lung by plating serial dilutions of organ 

homogenate on chocolate agar.  n=3-4 mice/group.  Data are combined from 2 independent 

experiments.  The dashed line indicates the limit of detection of 50 CFUs.  Statistical 

significance was determined on log-transformed data using a one-way ANOVA with 

Tukey's post-test.

181



Figure 4

A B

Figure 4.  LVS and LVS clpB vaccinated mice have similar spleen and lung cellularity 

as unvaccinated mice on day 4 post-rechallenge.  B6 mice were intranasally inoculated 

with 5x10
2
 CFU LVS or 5x10

4
 CFU LVS clpB, or left unvaccinated (Unvx).  On day 120 

post-inoculation, all mice were challenged with 5x10
3
 CFU LVS.  On day 4 post-

rechallenge, total cellularity was determined in the A) spleen or B) lung by trypan blue 

exclusion.  n=6 mice/group.  Data are combined from 3 independent experiments.  

Statistical significance was determined using a Kruskal-Wallis test with Dunn's correction.
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Figure 5
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Figure 5.  Vaccinated mice have increased numbers of lung IFN-γ producing CD4
+
 and 

CD8
+
 T cells compared to unvaccinated mice.   B6 mice were intranasally inoculated with 

5x10
2
 CFU LVS or 5x10

4
 CFU LVS clpB, or left unvaccinated (Unvx).  On day 120 post-

inoculation, all mice were challenged with 5x10
3
 CFU LVS.  On day 4 post-rechallenge, 

lung cells were restimulated with LVS infected B6-CD45.1 antigen presenting cells for 24 

hours.  Brefeldin A was added during the last 4 hours of culture.  The number of A) CD4
+
 

IFN-γ
+
 or B) CD8

+
 IFN-γ

+
 T cells in the lung was determined by flow cytometry.  To 

determine change in mean fluorescent intensity (ΔMFI) for each sample, the MFI of the 

IFN-γ negative population was subtracted from the MFI of the IFN-γ positive population 

for C) CD4
+
 or D) CD8

+
 T cells.  n=6 mice/group.  Data are combined from 3 independent 

experiments.  Statistical significance was determined using a Kruskal-Wallis test with 

Dunn's correction.    
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Figure 6
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Figure 6.  Vaccinated mice do not have increased numbers of lung Th17 cells compared 

to unvaccinated mice.  B6 mice were intranasally inoculated with 5x10
2
 CFU LVS or 

5x10
4
 CFU LVS clpB, or left unvaccinated (Unvx).  On day 120 post-inoculation, all mice 

were challenged with 5x10
3
 CFU LVS.  On day 4 post-rechallenge, lung cells were 

restimulated with LVS infected B6-CD45.1 antigen presenting cells for 24 hours.  

Brefeldin A was added during the last 4 hours of culture.  A) Number of CD4
+
 IL-17A

+
 T 

cells in the lung were determined by flow cytometry.  B) Change in mean fluorescent 

intensity (ΔMFI) for each sample was determined by subtracting the MFI of the IL-17A 

negative population from the MFI of the IL-17A positive population.  n=6 mice/group.  

Data are combined from 3 independent experiments.  Statistical significance was 

determined using a Kruskal-Wallis test with Dunn's correction. 
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Figure 7
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Figure 7.  The IFN-γ mediated secondary response is nearly absent in the spleen.  B6 

mice were intranasally inoculated with 5x10
2
 CFU LVS or 5x10

4
 CFU LVS clpB, or left 

unvaccinated (Unvx).  On day 120 post-inoculation, all mice were challenged with 5x10
3
 

CFU LVS.  On day 4 post-rechallenge, spleen cells were restimulated with LVS infected 

B6-CD45.1 antigen presenting cells for 24 hours.  Brefeldin A was added during the last 4 

hours of culture.  The number of A) CD4
+
 IFN-γ

+
 or B) CD8

+
 IFN-γ

+
 T cells in the spleen 

was determined by flow cytometry.  To determine change in mean fluorescent intensity 

(ΔMFI) for each sample, the MFI of the IFN-γ negative population was subtracted from the 

MFI of the IFN-γ positive population for C) CD4
+
 or D) CD8

+
 T cells.  n=6 mice/group.  

Data are combined from 3 independent experiments.  Statistical significance was 

determined using a Kruskal-Wallis test with Dunn's correction.           
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Figure 8

A B

Figure 8.  The IL-17A mediated secondary response is absent in the spleen.  B6 mice 

were intranasally inoculated with 5x10
2
 CFU LVS or 5x10

4
 CFU LVS clpB, or left 

unvaccinated (Unvx).  On day 120 post-inoculation, all mice were challenged with 5x10
3
 

CFU LVS.  On day 4 post-rechallenge, spleen cells were restimulated with LVS infected 

B6-CD45.1 antigen presenting cells for 24 hours.  Brefeldin A was added during the last 4 

hours of culture.  A) Number of CD4
+
 IL-17A

+
 T cells in the spleen were determined by 

flow cytometry.  B) Change in mean fluorescent intensity (ΔMFI) for each sample was 

determined by subtracting the MFI of the IL-17A negative population from the MFI of the 

IL-17A positive population.  n=6 mice/group.  Data are combined from 3 independent 

experiments.  Statistical significance was determined using a Kruskal-Wallis test with 

Dunn's correction.                                         
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Figure 9
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Figure 9.  IFN-γ depletion increases bacterial burdens.  B6 mice were intranasally 

inoculated with 5x10
2
 CFU LVS or 5x10

4
 CFU LVS clpB, or left unvaccinated (Unvx).  On 

day 120 post-inoculation, all mice were challenged with 5x10
3
 CFU LVS.  A) Mouse 

weight was determined daily and is reported as the percentage of starting weight.  n=3-5 

mice/group.  Data are combined from 2 independent experiments.  On day 6 post-re-

challenge, bacterial burdens were determined in the B) spleen, C) liver, and D) lung by 

plating serial dilutions of organ homogenate on chocolate agar.  n=3-5 mice/group.  Data 

are combined from 2 independent experiments.  The dashed line indicates the limit of 

detection of 50 CFUs.  Statistical significance was determined on log-transformed data 

using a Student's t-test comparing anti-IFN-γ to isotype control within each group. 
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Figure 10

A

B C D

Figure 10.  IL-17A depletion does not impact bacterial burdens.  B6 mice were 

intranasally inoculated with 5x10
2
 CFU LVS or 5x10

4
 CFU LVS clpB, or left unvaccinated 

(Unvx).  On day 120 post-inoculation, all mice were challenged with 5x10
3
 CFU LVS.  A) 

Mouse weight was determined daily and is reported as the percentage of starting weight.  

n=3-5 mice/group.  Data are combined from 2 independent experiments.  On day 6 post-re-

challenge, bacterial burdens were determined in the B) spleen, C) liver, and D) lung by 

plating serial dilutions of organ homogenate on chocolate agar.  n=3-5 mice/group.  Data 

are combined from 2 independent experiments.  The dashed line indicates the limit of 

detection of 50 CFUs.  Statistical significance was determined on log-transformed data 

using a Student's t-test comparing anti-IL-17A to isotype control within each group.
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CHAPTER 4 

IDENTIFICATION OF EARLY INTERACTIONS BETWEEN FRANCISELLA AND THE 

HOST1 

 
 

OVERVIEW 

 The host’s adaptive immune response to Francisella tularensis is dependent on the 

route of inoculation.  Intradermal inoculation with F. tularensis live vaccine strain (LVS) 

results in many IFN-γ+ T cells in the lung whereas intranasal inoculation produces fewer 

IFN-γ+ T cells and instead many IL-17+ T cells in the lung.  Interestingly, at one day post 

inoculation, bacterial loads are similar in the spleen and lung regardless of the route of 

inoculation.  Due to the similar bacterial loads systemically, but very different host 

responses, we hypothesize that the adaptive immune response is influenced by local events at 

the site of infection immediately following inoculation.  To test this hypothesis, we identified 

the first cell type infected in the lungs of mice intranasally inoculated with F. novicida U112, 

LVS, or the highly virulent SchuS4 strain of F. tularensis using flow cytometry.  At four 

hours post-infection, we found that for all three strains of Francisella, alveolar macrophages 

are the primary cell type infected, to the exclusion of other myeloid cells and lung 

parenchyma.  In the skin, neutrophils, macrophages, and dendritic cells are infected with 

U112 or LVS 4 hours post-inoculation.  Following bacterial dissemination from the skin to 
                                                            
1 Contributing authors: Lydia Barrigan, Shraddha Tulhadar, Shaun Steele, Kristina Reibe, Ching-ju Chen, Ian 
Cumming, John Whitesides, Sarah Seay, Richard Frothingham, Greg Sempowski, Tom Kawula, and Jeffrey 
Frelinger 
  



 

the lung, interstitial macrophages or neutrophils are infected indicating different cell types 

are infected in the lung following intranasal and intradermal inoculation. The lung has a more 

pro-inflammatory milieu following intradermal inoculation compared to intranasal 

inoculation, consistent with the development of a robust IFN-γ-mediated immune response 

after intradermal inoculation.  When alveolar macrophages are depleted using CD11c.DTR 

mice, lung bacterial burdens are higher on day 3 post-inoculation suggesting alveolar 

macrophages are necessary for controlling the infection early after inoculation.  Overall, we 

identified the early interactions between Francisella and the host following two different 

routes of inoculation.  We also identified the cytokines produced early after infection which 

likely play a role in shaping the subsequent adaptive immune response.        

 

INTRODUCTION 

Immune responses following bacterial infections are influenced by the route of 

infection (1, 2).  Cytokines produced by the innate immune response are critical in shaping 

the adaptive immune response (reviewed in (3)).  For example, if a naïve CD4+ T cell 

encounters antigen in the presence of IL-12, it will differentiate into Th1 effector T cell, but 

if it encounters IL-6 and TGF-β during antigen presentation, it will differentiate into a Th17 

effector T cell (3).  Our previous experiments in mice using intranasal or intradermal 

inoculation with Francisella tularensis subsp. holartica Live Vaccine Strain (LVS) 

demonstrated striking differences in the adaptive immune response in the lungs when these 

two inoculation routes were compared (2).  Upon either intradermal or intranasal inoculation 

with LVS, bacteria rapidly disseminate and are found in the spleen, liver, and lung 24 hours 

after inoculation (2).  After 3 days, equivalent bacterial burdens are found in the spleen and 
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lungs of mice inoculated via either route (2).  Despite similar burdens early after inoculation, 

intradermally inoculated mice clear the infection more rapidly than intranasally inoculated 

mice and have an increased IFN-γ response.  Intradermal inoculation leads to significantly 

more CD4+ and CD8+ T cells producing IFN-γ in both the spleen and lung on day 7 post-

inoculation compared to intranasal inoculation (2).  Faster bacterial clearance in 

intradermally inoculated mice correlates with the increased IFN-γ-mediated immune 

response.  IFN-γ is required for controlling F. tularensis infection and administration of 

recombinant IFN-γ decreases bacterial burdens (4-6).  Intranasal infection leads to an 

expansion of Th17 cells, a CD4+ T cell population not found in the lungs of intradermally 

inoculated mice (2).  Altogether, we conclude T cell effector function is influenced by the 

inoculation route.  Thus, it is important to understand the initiation of the immune response 

and identify the earliest cells infected by Francisella as well as the cytokine environment 

induced upon inoculation.     

Francisella tularensis is a highly pathogenic, facultative intracellular, gram-negative 

coccobacillus.  Infection with F. tularensis causes the zoonotic disease tularemia which is 

endemic in regions of the United States and Europe.  F. tularensis subspecies holartica live 

vaccine strain (LVS) does not cause severe disease in humans (7).  Murine infection with 

LVS most closely resembles human infection (8).  The LD50 for intranasal inoculations is 

approximately 103 colony forming units (CFU) and approximately 106 for intradermal 

inoculation (9, 10).  While non-pathogenic in immunocompetent humans, F. novicida U112 

(U112) is highly virulent in mice with an LD50 for intranasal or intraperitoneal inoculation of 

<10 CFU (11, 12).  F. tularensis subspecies tularensis SchuS4 (SchuS4) is highly pathogenic 

in both mice and humans.  The route of Francisella infection contributes to the severity of 
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tularemia in humans.  Approximately 90% of human tularemia cases are of the 

ulcerograndular type where bacteria are introduced through a cut in the skin or a bite from an 

arthropod vector (13).  The most severe form of tularemia is pneumonic tularemia which 

results from bacterial inhalation.  Before the use of antibiotics, pneumonic tularemia was 

fatal in 30-60% of cases when infection was caused by the highly virulent SchuS4 strain (13).  

Human disease can be caused by inhalation of as few as 10 organisms, highlighting the 

highly pathogenic nature of SchuS4 and intranasal infection (14).   

Due to similar bacterial burdens early after inoculation but very different adaptive 

immune responses for each inoculation route, we hypothesized that the adaptive immune 

response was shaped by events early after inoculation.  We therefore sought to identify host 

cells infected with F. tularensis early after inoculation.  Previously, we found alveolar 

macrophages comprised between 50-80% of cells infected with U112 or LVS 24 hours after 

intranasal inoculation (15).  Because infection for 24 hours had the potential of allowing for 

more than one round of infection, we were interested in identifying the infected cells 4 hours 

post-inoculation before any cell to cell spread.  We found alveolar macrophages were the 

primary cell type infected after intranasal inoculation and interstitial macrophages were 

infected in the lung following intradermal inoculation and bacterial dissemination to the lung.  

We also identified cytokines and chemokines produced in the lung early after inoculation or 

bacterial dissemination as well has how disease course is altered in the absence of alveolar 

macrophages.  Together, the work presented here helps us understand how events early after 

F. tularensis inoculation shape subsequent adaptive immunity.     
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MATERIALS AND METHODS 

Bacteria  

Francisella novicida U112 was obtained from Colin Manoil (University of 

Washington).  F. tularensis subsp. holartica live vaccine strain (LVS) (29684) was obtained 

from American Type Culture Collection (Manassas, VA).  F. tularensis subsp. tularensis 

SchuS4 (SchuS4) (NR-643) was obtained from BEI Resources (Manassas, VA)  Bacteria 

were grown on chocolate agar supplemented with 1% IsoVitalex (Becton-Dickinson) at 37C̊.  

Bacterial inoculations were prepared by removing bacteria from a lawn grown on chocolate 

agar and resuspended in sterile PBS at an OD600=1 (equivalent to 1x107CFU/µL).  To 

achieve the desired dose, appropriate dilutions were made using sterile PBS.  Viable bacteria 

in each preparation were quantified by serial dilution and plating on chocolate agar.  

Mice   

C57Bl/6J (B6) mice were obtained from The Jackson Laboratory (Bar Harbor, ME).  

CD11c.diphtheria toxin receptor (CD11c.DTR) were obtained from Gunter Hammerling 

(German Cancer Research Center, Heidelberg, Germany) and then bred in-house.  All mice 

were housed in specific-pathogen free conditions at the University of North Carolina- Chapel 

Hill, Duke University, or the University of Arizona in accordance with their respective 

Institutional Animal Care and Use Committees.  Female mice used for experiments were 

between 7 to 12 weeks of age.   

Inoculation of Mice   

For intranasal bacterial inoculations, mice were anesthetized with 575 mg/kg 

tribromomethanol (Avertin) (Sigma) administered intraperitoneally.  Mice were then 

intranasally inoculated with 1 x 104 CFU U112 or LVS suspended in 50 μL PBS.  For 
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intradermal inoculations, mice were inoculated with 5 x 105 CFU U112 or LVS in 25 µL at 

the base of the tail.  The inoculum was divided between 3 injection sites along the tail.  For 

diphtheria toxin (DT) treatment, CD11c.DTR mice were anesthetized with 0.25 mL of 7.5 

mg/mL ketamine and 0.5 mg/mL xylazine cocktail in PBS administered intraperitoneally and 

then intranasally inoculated with 8 ng diphtheria toxin (Sigma, St. Louis, MO) in 50 µL PBS.  

Depletion of alveolar macrophages was confirmed by flow cytometry.      

Single Cell Suspension of Mouse Lung 

B6 lungs were finely minced and placed into a sterile-filtered digestion mix of RPMI 

1640 (HyClone) containing L-glutamine (Gibco), sodium pyruvate (Gibco) and β-

mercaptoethanol (Gibco), 0.05 mg/mL collagenase (Worthington Biochemicals), 0.02 

mg/mL DNAse  (Sigma), and 125 U/mL elastase (Worthington Biochemicals). For 

intranasally inoculated mice, 50 µg/mL gentamicin (Sigma) was added to the digestion mix 

to kill extracellular bacteria.  The digestion mix was incubated in a 37°C water bath for 30 

minutes with occasional shaking.  The suspension was then strained through a 100 µM filter 

and cells pelleted by centrifugation at 300 x g for 5 minutes.  Red blood cells were lysed 

using ammonium chloride potassium lysis buffer (Gibco) and washed with RMPI 1640 

supplemented with 10% fetal calf serum (Atlas), L-glutamine, sodium pyruvate, and β-

mercaptoethanol.  The total number of viable cells was determined using a hemocytometer 

by trypan blue exclusion.        

Single Cell Suspension of Mouse Skin 

Tail skin was separated from the cartilage and placed dermis-side down in a petri dish 

containing 25 mg/mL trypsin (Invitrogen) and 50 µg/mL gentamicin.  Tails were incubated 

45 minutes at 37̊C and then the dermal and epidermal layers separated.  The epidermis was 
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placed back in the 25 mg/mL trypsin and allowed to incubate 15 additional minutes.  

Epidermal cells were removed from the epidermis by washing and passed through a 100 µm 

filter.  The dermis was minced and placed in a sterile-filtered digestion mix composed of 

RPMI 1640, L-glutamine, sodium pyruvate, β-mercaptoethanol, 1000 U/mL collagenase 

(Worthington Biochemicals), 0.01 mg/mL DNAse (Sigma), 1000 U/mL hyluronidase 

(Worthington Biochemicals), and 25 µg/mL gentamicin (Sigma).  The dermis was digested 

for 2 hours in a 37̊C water bath with occasional shaking.  Dermal cells were then passed 

through a 100 µm filter and washed with RMPI 1640 supplemented with 10% fetal calf 

serum (Atlas), L-glutamine, sodium pyruvate, and β-mercaptoethanol.  The total number of 

viable cells was determined using a hemocytometer by trypan blue exclusion.              

Bead Enrichment of CD45+ cells 

Lung single cell suspensions were stained for 20 minutes on ice with CD45-APC 

(Clone 30-F11, Biolegend). After washing the cells to remove unbound antibody, IMag anti-

APC magnetic particles (BD) were used to enrich CD45-APC positive cells according to the 

manufacturer’s instructions.  Cells that did not bind the magnetic beads were considered 

CD45-APC negative.  CD45 enrichment was measured by flow cytometry.  Enriched 

eukaryotic cells were directly plated on chocolate agar containing 10 µg/ml ampicillin 

(Sigma) and the number of CFUs counted 72 hours later.   

Identification of infected lung populations    

Lung cells in a single cell suspension after intranasal inoculation with Francisella had 

Fc receptors blocked with 2.4G2  to prevent non-specific staining and were then stained with 

F4/80 PE (Clone BM8, eBioscience), CD11b Pacific Blue (Clone M1/70, Biolegend), and 

CD11c APC (Clone N418, eBioscience). Lung cells from intradermally inoculated mice had 

199



 

Fc receptors blocked with 2.4G2 and were then stained with F4/80 PE, CD11b Pacific Blue, 

CD11c APC, and GR-1 Pacific Orange (Clone, RB6-8C5, Invitrogen).  The cells were sorted 

using a Reflection cell sorter (iCyt/Sony) or FACS Aria (BD) into four populations based on 

surface marker expression (Table 1).  Sorted populations were plated directly on chocolate 

agar containing 10 µg/ml ampicillin without lysis and bacterial CFUs counted 24-72 hours 

later to enumerate the number of infected cells. 

Identification of infected epidermal and dermal populations   

Epidermal or dermal single cell suspensions after interdermal inoculation with 

Francisella were suspended in sterile PBS and then stained with 0.1 µg/mL Pacific Blue 

succimidyl ester (Invitrogen) for 8 minutes at room temperature.  Cells had Fc receptors 

blocked with 2.4G2 and were then stained with F4/80 PE, CD45 PE-Cy7 (Clone 30-F11, 

Biolegend), CD11b FITC (Clone M1/80, eBioscience), CD11c PerCP-Cy5.5 (Clone N418, 

Biolegend), GR-1 Pacific Orange, and CD207 (Clone eBioRMUL.2, eBioscience).  The cells 

were sorted using a FACS Aria (BD) based on surface marker expression (Table 2).  2x106 

naïve splenocytes were added to the sorted populations as carrier cells prior to centrifugation 

for 5 minutes at 300xg.  Cells were then  plated directly on chocolate agar containing 10 

µg/ml ampicillin without lysis and bacterial CFUs counted 24-72 hours later to enumerate the 

number of infected cells. 

Lung, epidermal, or dermal tissue culture   

Lungs were minced finely and placed in 1 mL complete RPMI 1640 containing 50 

µg/mL gentamicin in a 24 well plate.  Tail skin was separated from the cartilage and placed 

dermis-side down in a petri dish containing 10X trypsin (Invitrogen) and 50 µg/mL 

gentamicin.  Tails were incubated 45 minutes at 37̊C and then the dermal and epidermal 
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layers separated.  Intact epidermal or dermal cell layers were placed in 1 mL complete RPMI 

1640 containing 50 µg/mL gentamicin in a 24 well plate.  1 hour after starting the culture, the 

gentamicin-containing media was removed and fresh media was added.  Tissue was cultured 

for 24 hours and then culture supernatant was collected.  Cells were removed by 

centrifugation at 300 x g for 5 minutes.  Culture supernatants were stored at -80 ̊C until 

Luminex analysis was performed.   

Luminex analysis   

A multiplex luminex bead-based approach was used to quantify 

cytokines/chemokines in the culture supernatant.  A 20-analyte assay panel was performed 

according to the manufacturer’s protocol (Invitrogen) using a BioPlex array reader (Bio-Rad 

Laboratories).  The assay reports pg/mL using integrated cytokine/chemokine standard 

curves.  The concentrations of the following analytes were determined:  FGF basic, GM-

CSF, IFN-γ, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p40/p70), IL-13, IL-17, KC, 

MCP-1, MIG, MIP-1α, TNFα, and VEGF.  A five-parameter non-linear logistic regression 

model was used to establish standard curve and to estimate the probability of occurrence of a 

concentration at a given point.  Standard outliers were removed from the analysis if the 

observed/expected % recovery was outside of the acceptable limits (70-130%).  Upper and 

lower levels of quantification were determined by the BioPlex Manager software based on 

goodness of fit and percent recovery.  Calculated pg/mL for experimental specimens were 

multiplied by the inherent assay dilution factor (df=2) and reported as final observed pg/mL. 

Statistical analysis   

Data were analyzed using a one-way ANOVA with Tukey’s post-test for cytokine 

levels.  CFU levels were log-transformed and then a Student’s t-test was used to determine 
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significance.  GraphPad Prism (v5.04) was used for analysis.  Error bars show standard error 

of the mean.  Significance levels are indicated as follows: * p < 0.05; ** p < 0.01, *** p < 

0.001, **** p < 0.0001. 

 

RESULTS 

Identification of infected host cells early after inoculation   

The adaptive immune response to LVS is influenced by the route of infection despite 

similar bacterial burdens, and therefore antigen load, early after inoculation.  We 

hypothesized the adaptive immune response was shaped by these events occurring early after 

inoculation.  We therefore sought to identify infected cells early after inoculation.  We chose 

to use 4 hours after inoculation so that Francisella had sufficient time to infect the cells it 

initially targets, but not time for cell to cell spread.  We did not use GFP-expressing bacteria 

and flow cytometry to identify infected cells because there are few infected cells at 4 hours 

post-inoculation.  For example, an intranasal inoculum dose of 1x104 CFU yielded 

approximately 100 infected cells out of 1x107 host lung cells.  Additionally, intracellular 

replication of Francisella is just beginning at our chosen time point; therefore the GFP signal 

is low in infected cells.  Instead of using GFP-expressing Francisella to identify infected 

cells by flow cytometry, we took another approach.  The tissue of interest was digested into 

single cell suspensions in the presence of gentamicin to kill extracellular bacteria and stained 

with a variety of fluorophore-conjugated antibodies specific for surface markers that 

distinguish the cell populations of interest.  We then utilized FACS to sort individual cell 

populations of interest.  Purified cell populations were plated directly on chocolate agar 
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without eukaryotic cell lysis and the resulting colonies counted.  A colony indicated a host 

cell of a specific type was infected with a live Francisella bacterium.                   

LVS infects myeloid-derived cells after intranasal inoculation   

Previous experiments identified a variety of lung cell types were infected with 

Francisella 24 and 72 hours post-intranasal inoculation (16).  Although the majority of 

infected cells 24 hours after intranasal inoculation with GFP-expressing Francisella strains 

were alveolar macrophages, alveolar type II epithelial cells were also identified as an infected 

cell type by flow cytometry (16).  Our initial experiments, therefore, sought to determine 

whether cells initially targeted by LVS were of the myeloid or non-myeloid lineage.  B6 mice 

were intranasally inoculated with 1x104 CFU LVS and sacrificed 4 hours later.  The lung 

single cell suspension was stained with anti-CD45-APC and anti-APC magnetic beads were 

used to positively select for myeloid-derived cells.  Figure 1A shows representative flow 

cytometry histograms of CD45 staining within the pre-enrichment, negative selection  

(CD45-), and positive selection (CD45+) samples.  Eukaryotic cells were directly plated on 

chocolate agar and the number of colonies within the CD45- and CD45+ pools were counted 

(figure 1B).  99% of the resulting LVS colonies were on the CD45+ plates indicating that 

LVS initially targets myeloid-derived cells for infection. 

Alveolar macrophages are the dominant infected cell type after intranasal inoculation   

Of the myeloid-derived cells in the lung, we selected alveolar macrophages, 

interstitial macrophages, and dendritic cells as the cell types most likely to be initially 

infected with Francisella.  These cell types were distinguished from one another by surface 

expression of F4/80, CD11c, and CD11b as shown in Table 1.  We also sorted an ‘other’ cell 

population that didn’t fit within the gates for alveolar macrophages, interstitial macrophages, 
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or dendritic cells.  The lung gating scheme used for the sorts is shown in figure 2.  To 

identify infected cells in the lung early after intranasal inoculation, B6 mice were intranasally 

inoculated with 1x104 CFU U112, LVS, or SchuS4 and sacrificed 4 hours post-inoculation.  

The lung single cell suspension was stained for F4/80, CD11c, and CD11b and cell 

populations sorted based on expression of these surface markers.  Sorted eukaryotic cells 

were plated directly on chocolate agar and colonies counted (figure 3).  Approximately 90% 

of all infected cells were alveolar macrophages indicating these cells were initially targeted 

by Francisella after intranasal inoculation.  The remaining 10% of infected cells consisted of 

a mixture of interstitial macrophages, dendritic cells, and other.  The results were consistent 

across individual mice.  Alveolar macrophages were 86-96% of infected cells after U112 

inoculation, 71-93% of infected cells after LVS inoculation, and 93-96% of infected cells 

after SchuS4 inoculation.  Together, these data indicate alveolar macrophages are the 

dominant infected cell type after intranasal Francisella inoculation. 

Neutrophils are the dominant infected cell type in the skin after intradermal inoculation

 We next sought to determine what cells Francisella initially targets after intradermal 

inoculation.  Of the myeloid-derived cells in the skin, we selected dendritic cells, 

macrophages, neutrophils, and langerhans as the cells as the cell types most likely to be 

target by Francisella after intradermal inoculation.  Table 2 shows the surface markers used 

to distinguish these cell types.  The gating scheme used during the sorts is shown in figure 4.  

Non-myeloid derived cells  (CD45-) were the majority of cells within the skin and were also 

sorted to determine whether they were targeted by Francisella.  For intradermal inoculations, 

mice were inoculated with 5x105 CFU U112 or LVS at the base of the tail spread over three 

injection sites.  In order to recover approximately 100 infected cells, cells from two mice 
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were combined prior to the sort into one sample.  In the epidermis, we found the majority of 

infected cells were neutrophils (figure 5).  Dendritic cells were also targeted by Francisella 

in the epidermis (figure 5).  In addition to neutrophils being the mostly likely cell typed 

infected with Francisella in the skin, neutrophils also had the highest percent infectivity of 

all sorted cell types by 10-100 fold.  Neutrophils were also the dominant infected cell type in 

the dermis (figure 6).  Macrophages were the other cell type targeted by Francisella in the 

dermis (figure 6).  Again, dermal neutrophils had the highest percent infectivity of all cell 

types in the dermis.  We had not expected naïve mouse skin to contain a large population of 

neutrophils but because so many neutrophils were infected after inoculation, we hypothesized 

that tissue damage and/or the presence of bacteria led to their recruitment.  To test this 

hypothesis, we inoculated mice with 50 μL PBS and sacrificed the mice 4 hours later.  We 

compared the % neutrophils of live CD45+ cells in the epidermis and dermis of untouched, 

naïve mice to mice that had been inoculated with PBS (figure 7).  We found a 3-4 fold 

increase in the % of neutrophils in the PBS inoculated mice suggesting that tissue damage 

caused by the injections leads to the recruitment of neutrophils to the skin.  Recruited 

neutrophils can then become infected with Francisella in the intradermal space.  Altogether, 

our data indicate neutrophils and dendritic cells are targeted by Francisella in the epidermis 

while neutrophils and macrophages are targeted by Francisella in the dermis.  Langerhans 

cells were not targeted by Francisella in either the epidermis or dermis.    

Interstitial macrophages and neutrophils are the dominant infected cell types in the 

lung after intradermal inoculation   

Because we observed very different adaptive immune responses in the lung after 

intranasal or intradermal inoculation, we hypothesized that there were different events 
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occurring early after infection.  One possibility was different infected cell types in the lung 

depending on the route of infection.  We therefore sought to identify the infected cell type(s) 

after intradermal inoculation and bacterial dissemination to the lung.  Mice were 

intradermally inoculated with 5x105 CFU U112 or LVS.  Lung harvests were carefully timed 

such that infected cells were reproducibly found in the lung but we were still examining 

infected cells as soon after infection as practical.  Pilot experiments determined 48 hours 

post-inoculation was the time point that best fit these criteria.  Lung single cell suspensions 

were stained for F4/80, CD11b, CD11c, and GR-1 and sorted into the populations shown in 

table 1 and figure 2.  After intradermal inoculation and bacterial dissemination to the lung, 

interstitial macrophages and neutrophils are infected with Francisella (figure 8).  

Importantly, alveolar macrophages were not appreciably infected with Francisella in the lung 

after intradermal inoculation and bacterial dissemination.  These results indicate that different 

cell types are targeted by Francisella in the lung depending on the inoculation route.  

Intradermal inoculation leads to a pro-inflammatory lung cytokine/chemokine 

environment 

 Due to different cell types infected in the lung following intradermal or intranasal 

inoculation with LVS, we hypothesized that the cytokines and chemokines produced after 

inoculation would be different.  We intranasally inoculated B6 mice with 1x104 CFU LVS 

and harvested lung tissue 4 hours post-inoculation.  Alternatively, B6 mice were 

intradermally inoculated with 5x105 CFU and lungs were harvested 72 hours post-

inoculation.  Lungs were also harvested from naïve mice.  All lungs were minced in the 

presence of 50 μg/mL gentamicin.  Gentamicin was removed after 1 hour and the lung tissue 

was cultured overnight.  Culture supernatant was collected 24 hours after harvest and 
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analyzed by Luminex.  The average lung cytokine and chemokine concentrations for each 

group are shown in table 3.  Intradermally inoculated mice had a pro-inflammatory lung 

milieu with significant increases in MIG, MCP-1, IP-10, and IFN-γ compared to naïve or 

intranasally inoculated mice (figure 9).  Intranasally inoculated mice had a significant 

increase in IL-10 production compared to naïve mice (figure 9).  These data indicate that the 

route of inoculation influences not only the types of cells that are initially infected but also 

the cytokine milieu of the lung.   

By culturing whole lung tissue after inoculation, we identified cytokines and 

chemokines produced by all cell types in the lung, not just the cells infected with LVS.  We 

attempted to determine the cytokines and chemokines produced specifically by alveolar 

macrophages after LVS inoculation using alveolar macrophages purified by flow cytometry 

sorting.  Naïve sorted alveolar macrophages produced cytokine in the absence of LVS 

infection, indicating these cells had become activated during the tissue processing or sorting 

process.  We were therefore unable to identify the cytokines and chemokines specifically 

produced by alveolar macrophages after intranasal inoculation. 

We also attempted to determine whether cytokine and chemokines were produced in 

the skin following intradermal inoculation.  4 hours post-inoculation we isolated epidermis 

and dermis from naïve, mock (PBS injected), U112 inoculated, and LVS inoculated mice and 

cultured whole tissue for 24 hours.  Luminex analysis of the culture supernatant showed that 

very little detectable cytokine or chemokine was produced by the epidermis or dermis.  We 

did detect high levels of IL-1α in the epidermal cultures, however, IL-1α is constitutively 

produced by epidermal cells, so this result is expected (17, 18).  We also detected FGF-basic 

(dermis), MIP-1α (epidermis), and VEGF (dermis), however all four groups of mice 
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(including naïve mice) had similar levels indicating these molecules are produced 

constitutively by the skin and were not being made in response to the infection.   

Depletion of alveolar macrophages increases bacterial burdens in the lung 

 Since alveolar macrophages are the dominant infected cell type in the lung early after 

intranasal inoculation, we sought to determine how disease course would change in the 

absence of alveolar macrophages.  To deplete alveolar macrophages, we utilized the 

CD11c.diphtheria toxin receptor (CD11c.DTR) mouse which expresses DTR under control 

of the CD11c promoter.  Alveolar macrophages express high levels of CD11c and therefore 

would also express high levels of DTR, causing alveolar macrophages sensitive to diphtheria 

toxin depletion.  We administered diphtheria toxin (DT) intranasally so that only alveolar 

macrophages were depleted and not systemic dendritic cells, which also express CD11c.  We 

titrated the dose and timing of DT treatment so that alveolar macrophages were nearly absent 

prior to inoculation.  Initial experiments indicated that nearly all alveolar macrophages were 

depleted 24 hours after DT treatment.  However, when mice were inoculated with LVS 24 

hours after DT treatment, mice succumbed within 3 days to neutrophilic pneumonia.  We 

then re-analyzed our flow cytometry data from the initial titration experiments and found a 5-

10 fold increase in neutrophils in DT-treated mice compared to PBS-treated mice.  We then 

waited longer after DT treatment to allow time for the number of neutrophils to decrease.  On 

day 5 post-DT-treatment, alveolar macrophages were still 95% depleted while neutrophils 

were increased only 2-fold (figure 10).  Importantly, spleen and lung dendritic cells were 

present in similar frequencies as untreated mice indicating the DT-treatment did not deplete 

these populations 5 days post-treatment (figure 10).  Therefore, we treated CD11c.DTR mice 

intranasally with DT 5 days prior to inoculation. 
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 To determine whether the absence of alveolar macrophages affected bacterial 

burdens, we intranasally inoculated DT-treated CD11c.DTR mice with LVS and determined 

bacterial burdens in the spleen, liver, and lung on days 3, 7, and 10 post-inoculation (figure 

11).  On day 3 post-inoculation in the lung, DT-treated mice had significantly higher 

bacterial burdens compared to PBS-treated mice (figure 11A).  Burdens continued to trend 

higher in the lung on days 7 and 10 post-inoculation in DT-treated mice compared to PBS-

treated mice, but did not reach statistical significance (figure 11).  Burdens also trended 

higher in the spleen in DT-treated mice compared to PBS-treated mice for all three time 

points, but statistical significance was not reached (figure 11).  PBS- and DT-treated mice 

had similar liver burdens on days 3, 7, and 10 post-inoculation.  These results indicate that 

the absence of alveolar macrophages does not significantly affect bacterial burdens in distal 

organs (spleen and liver).  The increase in bacterial burdens in the lung on day 3 post-

inoculation in mice lacking alveolar macrophages suggests that alveolar macrophages help 

control the initial infection. 

Interstitial macrophages are infected with LVS in the absence of alveolar macrophages 

 We next sought to determine what cell type(s) were infected with LVS in the absence 

of alveolar macrophages in DT-treated CD11c.DTR mice.  CD11c.DTR mice were treated 

with DT 5 days prior to intranasal inoculation with LVS.  4 hours post-inoculation, mice 

were sacrificed, lungs digested into a single cell suspension, and then single cells were 

stained for flow cytometry sorting.  Alveolar macrophages, interstitial macrophages, 

dendritic cells, and neutrophils were sorted according to the markers described in table 1 and 

the gating scheme shown in figure 2.  When alveolar macrophages are at greatly reduced 

numbers, interstitial macrophages are the dominant infected cell type 4 hours post-
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inoculation (figure 12).  However, even with significant alveolar macrophage depletion, 

nearly 10% of infected cells were alveolar macrophages indicating the remaining cells could 

still be infected with LVS.  When alveolar macrophages were infected, they were infected at 

a higher rate (0.029% of sorted alveolar macrophages were infected) compared to interstitial 

macrophages which were present at much higher numbers (0.0059%)   Neutrophils 

comprised a small percent of all infected cells and were only infected in 2 of 7 mice (figure 

12).  Alveolar macrophages were infected in 3 of 7 mice whereas interstitial macrophages 

were infected in all 7 mice indicating interstitial macrophages were the preferential target of 

LVS in the absence of abundant alveolar macrophages.     

The lung has a more pro-inflammatory milieu in the absence of alveolar macrophages 

 We next sought to determine whether the cytokine milieu was altered in the absence 

of alveolar macrophages early after LVS inoculation.  We hypothesized there would be an 

altered milieu because bacterial burdens were increased in the lungs in the absence of 

alveolar macrophages.  B6 or DT-treated CD11c.DTR mice were intranasally inoculated with 

LVS and lungs harvested 4 hours post-inoculation.  Lungs were minced and cultured for 24 

hours before culture supernatant was collected and analyzed by Luminex.  The average lung 

cytokine and chemokine concentrations for each group are shown in table 4.  We found a 

significant increase in the concentrations of IL-12, MCP-1, MIG, and VEGF in mice 

CD11c.DTR mice treated with DT and therefore lacking alveolar macrophages compared to 

naïve B6 mice or LVS infected B6 mice (figure 13).  IL-6 levels were significantly increased 

in LVS infected CD11c.DTR mice compared to B6 mice.  GM-CSF was also elevated in 

CD11c.DTR mice but the increase did not reach statistical significance.  Although we 

observed a different lung cytokine/chemokine milieu upon LVS inoculation in the absence of 
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alveolar macrophages, we did not isolate tissue from naïve, DT-treated CD11c.DTR mice to 

determine whether the changes we observe are due to the LVS infection or simply caused by 

the DT-treatment.  For example, the high levels of GM-CSF could be driving monocyte 

differentiation into alveolar macrophages to re-populate the lung and may not be a 

consequence of LVS infection.  Further studies are necessary to clearly address whether 

depletion of alveolar macrophages alters the lung environment prior to LVS inoculation.   

 

DISCUSSION 

 Francisella is capable of infecting a variety of cell types upon inoculation (15, 16, 19, 

20).  The early interactions between the host and pathogen set the stage for the adaptive 

immune response.  We and others have shown the route of inoculation influences the type of 

adaptive immune response that develops (2, 21).  We were particularly interested in the early 

interactions between Francisella and the host following intranasal and intradermal 

inoculation because of differential adaptive immune responses.  Intranasal and intradermal 

inoculation with LVS leads to similar bacterial burdens early after inoculation, yet the 

adaptive immune responses are very different (2).  We hypothesized early events after 

inoculation, such as the cells infected with Francisella immediately after inoculation, were 

shaping the adaptive immune response.  We therefore sought to identify the cells that were 

infected with Francisella after inoculation that were likely responsible for shaping 

subsequent adaptive immunity. 

 We identified infected cells by sorting individual populations using flow cytometry.  

We did not use GFP-expressing bacteria because we had very few infected cells and it would 

therefore be difficult to identify dimly fluorescent cells among millions of host cells, many 
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with significant autofluorescence.  This technique also only identified host cells infected with 

live Francisella.  Experiments using flow cytometry and GFP-expressing bacteria do not 

determine whether the intracellular bacterium is alive.  We had to intranasally inoculate mice 

with 1x104 CFU to have detectable infected cells after sorting.  This inoculum dose is 20-fold 

higher than our typical LVS intranasal inoculation dose.  We do not believe the higher dose 

altered the distribution of infected cell types, the higher dose likely just increased the overall 

number of infected cells.     

 All three strains of Francisella predominantly infected alveolar macrophages 

following intranasal inoculation (figure 3).  Alveolar macrophages are the resident 

macrophages of the airway and interact with inhaled antigens.  It is therefore not surprising 

that inhalation of Francisella leads to infection of alveolar macrophages.  Other pathogens, 

like Mycobacterium tuberculosis, Mycoplasma pulmonis, and Legionella pneumophila, target 

alveolar macrophages upon infection as well (22-25).  Experiments conducted by the Dow 

group and reported in Bosio, et al. found that LVS infects pulmonary dendritic cells 1 hour 

post-intratracheal inoculation with 5x104 CFU using flow cytometry to detect CFSE labeled 

bacteria inside of host cells (19).  A potential explanation for the seemingly disparate results 

between the two experiments is the use of different surface markers to define airway 

dendritic cells and alveolar macrophages.  Bosio, et al. defined dendritic cells as CD11c+, 

DEC-205+, CD11b-, and GR-1- and alveolar macrophages as CD11c-, DEC-205-, CD11b+, 

and GR-1+ (19).  We defined alveolar macrophages as CD11chigh and CD11bmid (table 1).  

The markers described by Bosio, et al. for alveolar macrophages are a better fit with how we 

define interstitial macrophages (table 1).  More recently, the Dow group reported in Guth, et 

al. that alveolar macrophages express high levels of DEC-205 and CD11c, giving this 
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macrophage cell subset a more dendritic cell-like surface phenotype (26).  Therefore, the 

more recent work by the Dow group indicates that what they defined as dendritic cells in 

2005 are actually alveolar macrophages.  Thus, our results are consistent with the results 

described by Bosio, et al. where alveolar macrophages are the primary cell type targeted by 

Francisella after pulmonary infection.   

Because alveolar macrophages were infected following intranasal inoculation with 

LVS, we sought to determine whether disease course was altered in the absence of alveolar 

macrophages.  Alveolar macrophages express high levels of CD11c (figure 2) and can 

therefore be depleted in CD11c.DTR mice upon intranasal treatment with diphtheria toxin 

(DT).  We chose to use CD11c.DTR mice so that alveolar macrophages are specifically 

depleted.  Alveolar macrophages can also be depleted by intranasal administration of 

liposomal clodronate, however this treatment is non-specific and depletes >90% of lung and 

airway antigen presenting cells (19).  Depletion of alveolar macrophages led to a significant 

increase in bacterial burdens in the lung on day 3 post-inoculation.  Burdens continue to trend 

higher in the lung on days 7 and 10 post-inoculation but the increases did not reach statistical 

significance.  Bacterial burdens were also not significantly increased in the spleen or liver at 

all three time points.  These data suggest that alveolar macrophages help control bacterial 

burdens at the primary site of infection but do not play a role in bacterial dissemination.   

Alveolar macrophages have been shown in other models to be either protective or 

detrimental during infection (19, 22, 27-29).  CBA/J mice succumb rapidly (day 3) to 

Klebsiella pneumoniae in the absence of alveolar macrophages and have significantly higher 

bacterial burdens in the plasma and lung suggesting that alveolar macrophages control 

bacterial replication in the lung (27, 29).  B6 mice, normally resistant to Mycoplasma 
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pulmonis, were more susceptible to infection in the absence of alveolar macrophages, 

indicating alveolar macrophages are important for host defense during Mycoplasma infection 

(28).  In a Mycobacterium tuberculosis model, mice lacking alveolar macrophages were less 

susceptible to infection and had decreased mycobacterial burdens in the lung and liver 

suggesting the presence of alveolar macrophages is detrimental during infection (22).  Bosio, 

et al. found depletion of alveolar macrophages with clodronate followed 18 hours later by 

intratracheal inoculation with a lethal dose of LVS led to decreased bacterial burdens and an 

increase in mean time to death (19).  It is possible that the difference in bacterial burdens 

observed in untreated and clodronate treated mice was due to the absence of cells to infect 

because nearly all antigen-presenting cells were reported to be depleted (19).  In our model of 

alveolar macrophage depletion, there are still other cells available for infection which could 

account for our different results.  Additionally, Bosio, et la. inoculated mice with a high dose 

that killed untreated mice by 6 days, indicating there is little, if any, contribution of the 

adaptive immune response.  In our model, the inoculation dose is half of the reported LD50 

for intranasal inoculation and all infected mice survive (9, 10).  The increase in bacterial 

burdens on day 3 post-inoculation and then similar burdens on day 7 and 10 suggests that 

there are defects in the innate immune response in the absence of alveolar macrophages but 

that the adaptive immune response is able to mediate bacterial clearance whether or not mice 

had alveolar macrophages upon LVS inoculation.  Future experiments should examine 

whether the adaptive immune response changes in the absence of alveolar macrophages 

during the primary response.     

 Francisella infects neutrophils, macrophages, and dendritic cells in the epidermis and 

dermis of the tail following intradermal inoculation (figure 5, 6).  Neutrophils are recruited to 

214



 

the skin upon tissue damage during PBS injection (figure 7).  We therefore suggest a model 

where dendritic cells (epidermis) or macrophages (dermis) are resident cells infected with 

Francisella and that recruited neutrophils become infected with Francisella when they 

encounter bacteria in the intradermal space.  It is not clear how Francisella disseminates 

from the site of inoculation on the tail to the lung.  The long-held paradigm was that 

Francisella was strictly an intracellular pathogen in vivo and was carried to distal sites within 

host cells (30).  Forestal, et al. was the first refute this dogma by describing cell-free LVS 

and SchuS4 in the plasma of infected mice (31).  U112 has also been found non-cell 

associated in mouse plasma (32).  To test whether Francisella disseminates as free bacteria 

in the bloodstream, mice could be treated with gentamicin to kill extracellular bacteria and 

bacterial burdens in distal organs monitored.  If the time course of infection and bacterial 

burdens are similar in gentamicin and vehicle treated mice, these data would suggest that 

while Francisella can survive extracellularly, the bacteria disseminate within host cells.  The 

dosage of gentamicin would need to be carefully titrated for such an experiment so that the 

dose is high enough to kill extracellular bacteria but low enough so that the gentamicin does 

not enter host cells and kill intracellular bacteria. 

 While we did not pursue experiments to determine the underlying mechanisms 

responsible for bacterial dissemination, we identified interstitial macrophages and neutrophils 

as the dominant infected cell types in the lung after intradermal inoculation and bacterial 

dissemination (figure 8).  We carefully timed the lung harvest after intradermal inoculation 

so that we were identifying infected cells soon after bacteria disseminated to the lung.  When 

the cytokine milieus were compared at time points early after bacterial entry into the lung (4 

hours post-intranasal, 72 hours post-intradermal inoculation), we found intradermal 

215



 

inoculation led to a more pro-inflammatory environment compared to naïve or intranasally 

inoculated mice (figure 9).  These results are consistent with a more robust Th1 response in 

the lung during the adaptive immune response following intradermal inoculation (2).                                   

If the cytokine and chemokines produced in DT-treated CD11c.DTR mice are due to 

the infection, the presence of a pro-inflammatory environment is consistent with the infection 

of interstitial macrophages (figures 8, 9, and 12).  Intradermally inoculated mice did not have 

infected alveolar macrophages following bacterial dissemination (figure 8).  Intradermally 

inoculated mice also had a more pro-inflammatory lung milieu compared to intranasally 

inoculated mice (figure 9).  The presence of a pro-inflammatory lung milieu in DT-treated 

CD11c.DTR mice where interstitial macrophages are the dominant infected cell type (figure 

12) is consistent with previous findings.  However, if the lung milieu is more pro-

inflammatory, we would expect better control of the infection which we did not observe on 

day 3 post-inoculation in the lung.  It is possible that the lung milieu is initially pro-

inflammatory, but changes by day 3.  Additional experiments are necessary to determine 

whether the lung milieu is altered on day 3 post-inoculation in mice lacking alveolar 

macrophages.  We also need to determine how the lung milieu changes upon depletion of 

alveolar macrophages because it is likely many of the changes observed were not due simply 

to the presence of LVS.  For instance, we did observe an increase in GM-CSF concentration, 

but the increase did not reach statistical significance.  GM-CSF is necessary for expressing 

high levels of CD11c and is therefore likely involved in the re-population of lung alveolar 

macrophages (26).   

Overall, we have identified alveolar macrophages are initially infected with 

Francisella in the lung intranasal and macrophages, dendritic cells, and neutrophils are 
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infected in the skin after intradermal inoculation.  We also determined interstitial 

macrophages are infected with Francisella in the lung following bacterial dissemination in 

the skin.  We had previously observed a differential adaptive immune response following 

intranasal and intradermal inoculation, despite similar bacterial burdens early after 

inoculation.  We predict there would be differences in the innate immune response in the 

lung that was contributing to the development of two distinct T cell responses and this was 

the case; different types of cells were infected following each inoculation route and the lung 

cytokine milieu was also different.  We have begun to examine the immune response in the 

absence of alveolar macrophages during intranasal inoculation.  Bacterial burdens are higher 

in the lung on day 3 post-inoculation in the absence of alveolar macrophages but are not 

increased later in infection.  Additional experiments are necessary to determine whether the 

lung’s cellular composition and cytokine milieu are altered on day 3 post-inoculation and 

whether this results in differences in the adaptive immune response.  The work presented 

here does increase our understanding of the early interactions between the host and 

Francisella for two commonly studied routes of inoculation.             
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Figure 1

CD45

%
 o

f 
m

a
x

Pre-enrichment
A

B
1%

Positive selectionNegative selection

CD45+ 

CD45-

99%

CD45
+

 

38.1%

CD45
-
 

61.3%
CD45

-
 

97.5%
CD45

+
 

0.4%

CD45
-
 

9.2%

CD45
+

 

88.4%

Figure 1.  LVS infects myeloid-derived cells following intranasal inoculation.  B6 mice 

were intranasally inoculated with 1x10
4
 CFU LVS.  4 hours post-infection mice were 

sacrificed and lungs were removed and digested into a single cell suspension.  Cells were 

stained with CD45 APC and then CD45+ cells were enriched using magnetic beads.  A) 

Representative flow cytometry analysis of CD45 enrichment.  B) CD45+ and CD45- 

populations were directly plated on chocolate agar and the number of colonies were 

counted 72 hours later.  Data are represented as the % of CFUs within a population out of 

all recovered colonies from 4 infected mice in 2 independent experiments.    
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Table 1

Table 1. Identification of lung cell types 

Cell type Surface markers
a
 

Alveolar macrophages F4/80
high

, CD11c
high

, CD11b
mid

  

Interstitial macrophages F4/80
high

, CD11c
var

, CD11b
high

 

Dendritic cells F4/80
low

, CD11c
high

, CD11b
low

 

Other F4/80
low

, CD11c
low

, CD11b
var

 

Neutrophils F4/80
low

,CD11b
high

, GR-1
high

 
a
 mid, medium level; var, variable level 
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Figure 2
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Figure 2. Lung gating scheme for sorting.  Single cells were discriminated from doublets 

by plotting side scatter height (SSC-H) versus side scatter area (SSC-A).  Cells were 

selected by plotting SSC-A versus forward scatter area (FSC-A).  F4/80
-
 and F4/80

+
 cells 

were gated on by plotting FSC-A versus F4/80.  From the F4/80
+
 gate, alveolar 

macrophages (AMs) were discriminated from interstitial macrophages (IMs) by plotting 

CD11c versus CD11b.  Of the F4/80
-
 cells, dendritic cells were identified by plotting 

CD11c versus CD11b and neutrophils were identified by plotting CD11b versus GR-1.  

For each gate, the percent of the parent gate is indicated in bold (for example, AMs are 

4.6% of the cells within the F4/80+ gate).
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Figure 3

Figure 3.  Alveolar macrophages are the primary infected cell type in the lung after 

intranasal inoculation with Francisella.  B6 mice were intranasally inoculated with 1x10
4
 

CFU U112, LVS, or SchuS4.  4 hours post-inoculation mice were sacrificed and lungs 

were removed and digested into a single cell suspension and stained for sorting.  Alveolar 

macrophages, interstitial macrophages, dendritic cells, and other cell populations were 

sorted and directly plated on chocolate agar.  Resulting colonies were counted 24-72 hours 

later.  Data are represented as the % of CFUs within a population out of all recovered 

colonies from 2 mice (U112), 6 mice (LVS), or 3 mice (SchuS4) from 1 (U112), 3 (LVS), 

or 2 (SchuS4) independent experiments.  

U112 LVS

SchuS4
Alveolar 

macrophages

Interstitial 

macrophages

Dendritic cells

Other

90.7% 88.6%

94.4%
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Table 2

Table 2. Identification of skin cell types 

Cell type Surface markers 

Dendritic cells CD45
high

, F4/80
low

, CD11c
high

 

Macrophages CD45
high

, F4/80
high

, 

CD11b
high

, GR-1
high

 

Neutrophils CD45
high

, F4/80
low

, CD11b
high

, 

GR-1
high

 

Langerhans CD45
high

, F4/80
high

, CD207
high

 

Non-myeloid CD45
low
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Figure 4
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Figure 4.  Epidermis and dermis gating scheme for sorting.  Single cells were 

discriminated from doublets by plotting foward scatter height (FSC-H) versus forward 

scatter area (FSC-A).  Cells were selected by plotting side scatter area (SSC-A) versus 

FSC-A.  Live cells were selected using a 1-D histogram.  CD45+ cells were gated on by 

plotting FSC-A versus CD45.  F4/80
-
 and F4/80

+
 cells were gated on by plotting FSC-A 

versus F4/80.  From the F4/80
+
 gate, macrophages were gated on by plotting CD11b 

versus GR-1 and Langerhans were gated on by plotting CD11b versus CD207.  Of the 

F4/80
-
 cells, dendritic cells were identified by plotting CD11c versus CD11b and 

neutrophils were identified by plotting CD11b versus GR-1.  For each gate, the percent of 

the parent gate is indicated in bold (for example, macrophages are 85.2% of the cells 

within the F4/80+ gate).
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Figure 5
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Figure 5.  Neutrophils and dendritic cells are the primary cell types infected with U112 

or LVS in the epidermis after intradermal inoculation.  B6 mice were intradermally 

inoculated with 5x10
5
 CFU U112 or LVS in 50 µL PBS at the base of the tail.  4 hours 

post-inoculation, mice were sacrificed and the tails removed.  Cells from two mice were 

combined for each sample.  Epidermis and dermis layers were separated, digested into a 

single cell suspension, and stained for sorting.  Dendritic cells, macrophages, neutrophils, 

Langerhans and non-myeloid cells were sorted and directly plated on chocolate agar.  

Resulting colonies were counted 24-72 hours later.  Data are represented as the % of CFUs 

within a population out of all recovered colonies from 6 samples (U112 or LVS) from 2 

(U112) or 3 (LVS) independent experiments.                 
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Figure 6

Figure 6.  Neutrophils and macrophages are the primary cell types infected with U112 

or LVS in the dermis after intradermal inoculation.  B6 mice were intradermally 

inoculated with 5x10
5
 CFU U112 or LVS in 50 µL PBS at the base of the tail.  4 hours 

post-inoculation, mice were sacrificed and the tails removed.  Cells from two mice were 

combined for each sample.  Epidermis and dermis layers were separated, digested into a 

single cell suspension, and stained for sorting.  Dendritic cells, macrophages, neutrophils, 

Langerhans and non-myeloid cells were sorted and directly plated on chocolate agar.  

Resulting colonies were counted 24-72 hours later.  Data are represented as the % of CFUs 

within a population out of all recovered colonies from 6 samples (U112 or LVS) from 2 

(U112) or 3 (LVS) independent experiments.                 
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Figure 7

Figure 7.  Neutrophils traffic to the skin following PBS inoculation.  B6 mice were 

intradermally inoculated with 50 µL PBS at the base of the tail or left naive.  4 hours post-

inoculation, mice were sacrificed and the tails removed.  Epidermis and dermis layers were 

separated, digested into a single cell suspension, and stained for flow cytometry analysis.  

The % of neutrophils in the live CD45+ gate was determined.  n=2 mice.  Data are from 1 

experiment.        
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Figure 8

Figure 8.  Interstitial macrophages and neutrophils are the primary cell types infected 

with U112 or LVS in the lung after intradermal inoculation.  B6 mice were intradermally 

inoculated with 5x10
5
 CFU U112 or LVS in 50 µL PBS at the base of the tail.  48 hours 

post-inoculation mice were sacrificed and lungs were removed and digested into a single 

cell suspension and stained for sorting.  Alveolar macrophages, interstitial macrophages, 

dendritic cells, and neutrophil cell populations were sorted and directly plated on chocolate 

agar.  Resulting colonies were counted 24-72 hours later.  Data are represented as the % of 

CFUs within a population out of all recovered colonies from 4 mice (U112 or LVS) from 1 

(U112 or LVS) experiment per strain.    
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Table 3 
 

Table 3.  Average lung cytokine and chemokine 
concentrations after two different routes of LVS 

inoculation (pg/mL) 
 Intradermala Intranasalb Naive 
FGF basic 69.47 69.47 69.47 
GM-CSF 127.25 702.00 349.78 
IFN-γ 137.30 17.21 17.21 
IL-1α 28.55 28.55 28.55 
IL-1β 24.51 24.51 24.51 
IL-2 11.77 11.61 11.42 
IL-4 30.93 30.93 30.93 
IL-5 37.25 129.75 152.33 
IL-6 549.35 823.18 600.25 
IL-10 81.15 154.10 63.95 
IL-12 10.87 11.03 16.78 
IL-13 22.81 22.81 22.81 
IL-17 3.54 3.54 3.54 
IP-10 243.00 19.19 19.19 
KC 1708.88 1785.48 1460.70 
MCP-1 1025.65 102.65 47.79 
MIG 1270.45 3.65 7.75 
MIP-1α 32.10 45.60 42.38 
TNF-α 17.42 17.42 17.42 
VEGF 665.5 296.63 391.53 
a Lungs harvested 72 post-intradermal inoculation 
b Lungs harvested 4 hours post-intranasal inoculation 
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Figure 9

Figure 9.  Intradermal inoculation induces a pro-inflammatory environment in the 

lung.  B6 mice were intranasally inoculated with 1x10
4
 CFU LVS, intradermally 

inoculated with 5x10
5
 CFU LVS, or left naive.  4 hours post-intranasal inoculation or 72 

hours post-intradermal inoculation, mice were sacrificed and lungs removed.  Minced 

lungs were cultured for 24 hours.  Culture supernatant was collected and analyzed using a 

Luminex-based assay.  n=4 mice/group.  Data are from 1 experiment.  An ANOVA with 

Tukey's post-test was used to determine statisical significance for each cytokine or 

chemokine.  Statistical significance is indicated by stars after the fold change when two 

groups differed. 
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Figure 10

Figure 10.  Intranasal diphtheria toxin treatment depletes alveolar macrophages.  

CD11c.DTR mice were intranasally inoculated with 8 ng of diphtheria toxin in 50 µL 

PBS.  5 days after treatment, lungs were removed, digested into a single cell suspension 

and strained for flow cytometry analysis.  The % A) alveolar macrophages, B) dendritic 

cells, C) interstitial macrophages, D) neutrophils, and E) spleen dendritic cells was 

determined of live cells was determined.  Each dot represents one mouse.  Data are 

representative of 2 independent experiments.  
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Figure 11

Figure 11.  Bacterial burdens increase in the lung early after LVS inoculation in the 

absence of alveolar macrophages.  B6 were intranasally inoculated with 50 µL PBS or 

CD11c.DTR mice were intranasally inoculated with 8 ng diphtheria toxin (DT) in 50  µL 

PBS.  5 days later, all mice intranasally inoculated with 5x10
2
 CFU LVS.  On days 3, 7, 

and 10 post-inoculation, bacterial burdens were determined in the A) lung, B) spleen, and 

C) liver by plating serial dilutions of organ homogenate on chocolate agar.  n=4-7 

mice/group for each time point.  Each dot represents one mouse.  Data are from 1 

experiment for day 7 and combined from 2 independent experiments for days 3 and 10.  

Statistical significance was determined on log-transformed data using a Student's t-test.  D) 

Weight loss was determined daily and is reported as a percentage of the starting weight.    

D
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Figure 12.  Interstitial macrophages are the dominant infected cell type in the absence 

of alveolar macrophages.  CD11c.DTR mice were intranasally inoculated with 8 ng 

diphtheria toxin (DT) in 50 µL PBS.  5 days later, mice intranasally inoculated with 1x10
4
 

CFU LVS.  4 hours post-inoculation were sacrificed and lungs removed and digested into 

a single cell suspension and stained for sorting.  Alveolar macrophages, interstitial 

macrophages, dendritic cells, and neutrophils were sorted and directly plated on chocolate 

agar.  Resulting colonies were counted 72 hours later.  Data are represented as the % of 

CFUs within a population out of all recovered colonies from 7 mice from 2 independent 

experiments.   
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Table 4 
 

Table 4.  Average lung cytokine and chemokine 
concentrations in the presence or absence of alveolar 

macrophages following intranasal LVS inoculation (pg/mL) 
 Naïve B6 LVS B6  

(+ AMs) 
LVS CD11c.DTR  

(-AMs) 
FGF basic 24.63 24.63 24.63 
GM-CSF 348.66 286.62 2714.79 
IFN-γ 10.80 10.80 10.80 
IL-1α 14.40 14.40 14.40 
IL-1β 11.80 11.80 11.80 
IL-2 8.27 8.27 8.27 
IL-4 14.59 14.59 20.38 
IL-5 858.12 521.89 602.90 
IL-6 2026.12 1030.81 2893.26 
IL-10 6.26 6.26 6.26 
IL-12 39.43 23.94 73.17 
IL-13 11.56 11.56 11.56 
IL-17 8.31 8.31 8.31 
IP-10 147.98 74.19 108.30 
KC 2111.13 2014.51 2167.38 
MCP-1 183.79 163.37 369.29 
MIG 2.44 3.64 33.48 
MIP-1α 13.76 13.76 13.76 
TNF-α 8.70 8.70 8.70 
VEGF 101.72 115.97 624.17 
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Figure 13.  LVS inoculation in the absence of alveolar macrophages induces a pro-

inflammatory environment in the lung.  B6 were intranasally inoculated with 50 µL PBS 

or CD11c.DTR mice were intranasally inoculated with 8 ng diphtheria toxin (DT) in 50  

µL PBS.  5 days later, B6 and CD11c.DTR mice intranasally inoculated with 1x10
4
 CFU 

LVS or B6 mice were left naive.  4 hours post-intranasal inoculation, mice were sacrificed 

and lungs removed.  Minced lungs were cultured for 24 hours.  Culture supernatant was 

collected and analyzed using a Luminex-based assay.  n=4 mice/group.  Data are from 1 

experiment.  An ANOVA with Tukey's post-test was used to determine statisical 

significance for each cytokine or chemokine.  Statistical significance is indicated by stars 

after the fold change when two groups differed.
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CHAPTER 5 

IDENTIFICATION OF FRANCISELLA NOVICIDA MUTANTS THAT FAIL TO INDUCE 

PROSTAGLANDIN E2 SYNTHESIS BY INFECTED MACROPHAGES1,2 

 
 

OVERVIEW 

Francisella tularensis is the causative agent of tularemia.  We have previously shown 

that infection with F. tularensis Live Vaccine Strain (LVS) induces macrophages to 

synthesize prostaglandin E2 (PGE2).  Synthesis of PGE2 by F. tularensis infected 

macrophages results in decreased T cell proliferation in vitro and increased bacterial survival 

in vivo. Although we understand some of the biological consequences of F. tularensis 

induced PGE2 synthesis by macrophages, we do not understand the cellular pathways 

(neither host nor bacterial) that result in up-regulation of the PGE2 biosynthetic pathway in F. 

tularensis infected macrophages.  We took a genetic approach to begin to understand the 

molecular mechanisms of bacterial induction of PGE2 synthesis from infected macrophages.  

To identify F. tularensis genes necessary for the induction of PGE2 in primary macrophages, 

we infected cells with individual mutants from the closely related strain Francisella 

tularensis subspecies novicida U112 (U112) two allele mutant library. Twenty genes were 

identified that when disrupted resulted in U112 mutant strains unable to induce the synthesis 

                                                            
1 Contributing authors: Matthew D. Woolard, Lydia M. Barrigan, James R. Fuller, Adam S. Buntzman, Joshua 
Bryan, Colin Manoil, Thomas H. Kawula, and Jeffrey A. Frelinger 
 
2 This work was published in Frontiers in Microbiology: Front. Microbio. 4:16. Doi:10.3389/fmicb.2013.00016 
© Woolard, Barrigan, Fuller, Buntzman, Bryan, Manoil, Kawula and Frelinger.  Reprinted with permission.   



of PGE2 by infected macrophages.  Fourteen of the genes identified are located within 

the Francisella pathogenicity island (FPI).   Genes in the FPI are required for F. tularensis to 

escape from the phagosome and replicate in the cytosol, which might account for the failure 

of U112 with transposon insertions within the FPI to induce PGE2.  This implies that U112 

mutant strains that do not grow intracellularly would also not induce PGE2. We found that 

U112 clpB::Tn grows within macrophages yet fails to induce PGE2, while U112 pdpA::Tn 

does not grow yet does induce PGE2. We also found that U112 iglC::Tn neither grows nor 

induces PGE2.  These findings indicate that there is dissociation between intracellular growth 

and the ability of F. tularensis to induce PGE2 synthesis.  These mutants provide a critical 

entrée into the pathways used in the host for PGE2 induction.  

 

INTRODUCTION 

Francisella tularensis is a facultative intracellular bacterium and the causative agent 

of tularemia.  F. tularensis has a low infective dose, high morbidity, and can persist in the 

environment (1).   F. tularensis has also been produced as a bioweapon (2), and is classified 

as a Category A Select Agent. There are four major subspecies of F. tularensis: F. tularensis 

subspecies tularensis, F. tularensis subspecies holarctica, F. tularensis subspecies 

mediasiatica, and F. tularensis subspecies novicida.  F. tularensis, F. holarctica (including 

the Live Vaccine Strain (LVS)) and F. novicida all cause a fulminate disease in mice that is 

similar to tularemia in humans (3).  There are clear differences in virulence between strains 

in mice.  F. novicida, F. holarctica and F. tularensis can have and LD50 of less than 10 

organisms in intranasally inoculated mice, while F. holarctica LVS LD50 in mice is much 

higher (4).   Each strain varies in its capacity to cause disease in humans.  F. novicida is 

240



highly attenuated in humans, only causing disease in immuno-compromised individuals (5, 

6).  F. holarctica is highly infectious in humans, but causes a milder form of tularemia 

compared to F. tularensis. F. holarctica LVS is highly attenuated for disease in humans but 

can cause disease in immunocompetent individuals (1, 7, 8).  Though each strain has a 

different level of virulence in humans, they share high nucleotide sequence identity.   F. 

novicida shares 95% nucleotide sequence identity with F. tularensis and F. holarctica (9), 

suggesting that homologous proteins function via similar mechanisms.   

Key to F. tularensis’ virulence is its ability to escape the phagosome and replicate 

within the cytosol of host cells.  Previous studies have identified over 200 genes that are 

necessary for intracellular growth of F. tularensis (10-14). Some of the genes required for 

escape from the phagosome and intracellular growth reside within the Francisella 

pathogenicity island (FPI) (15).  The FPI is a set of 16 genes that are highly conserved among 

all subspecies of F. tularensis (15).  The FPI likely encodes a secretion system that is related 

to the recently discovered type VI secretion systems (T6SS) (16, 17). The T6SS is involved 

in the virulence of several bacterial pathogens (18-21).  Several regulators of FPI expression 

have been described. Two of the best studied are MglA and SspA, which positively regulate 

the transcription of FPI genes (22-24).  The mechanisms by which FPI proteins promote F. 

tularensis escape and intra-macrophage growth are unknown. There is evidence that 

translocated products of T6SS in other bacteria are capable of modulating host immune 

responses (18, 25-27). Though FPI gene products are clearly involved in phagosome escape 

and intracellular growth, the ability of these gene products to induce immunomodulatory 

responses has not been demonstrated to date.   
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PGE2 synthesis induced by LVS from host cells alters both innate and adaptive 

immune responses. We demonstrated that F. tularensis LVS was capable of inducing 

macrophages to synthesize PGE2 and that this was independent of intracellular growth of F. 

tularensis (28).  In vitro, LVS induced PGE2 synthesis inhibits T cell proliferation and skews 

their phenotypic development from IFN-γ+ T cells to IL-4+ T cells (28). Through an indirect 

mechanism PGE2, induces ubiquitin mediated degradation of MHC II which results in 

decreased MHC II protein levels on the surface of macrophages (29).  Decreased MHC II 

surface expression would decrease the antigenic stimulatory capacity of these macrophages, 

likely making them less capable of activating F. tularensis specific T cells.   T cells are 

required for both clearance of F. tularensis and generation of long-term immune protection 

(30), thus the biological activity of PGE2 would be beneficial to F. tularensis survival in vivo.  

LVS-induced PGE2 synthesis during respiratory tularemia inhibits the generation of 

beneficial T cell response. The inhibition of PGE2 synthesis in vivo by indomethacin leads to 

increased number of IFN-γ+ T cells and decreased bacterial burden (31). It is clear that 

induction of PGE2 synthesis is an important immune modulation mechanism utilized by F. 

holarctica to persist in the host.   

Presently, none of the F. tularensis product(s) responsible for the induction of PGE2 

synthesis in eukaryotic cells are known.  Several bacterial products have been identified that 

are capable of inducing PGE2 synthesis. Bacterial peptidoglycan, LPS, and CpG DNA can 

up-regulate prostaglandin synthesis through interactions with TLR2, TLR4, and TLR9 

respectively (32-36). It is not known if F. tularensis is capable of inducing PGE2 through a 

similar mechanism. To date, few F. tularensis TLR ligands have been identified.  F. 

tularensis LpnA and FTT1103 have been reported to be TLR2 ligands and DnaK a TLR4 
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ligand (37-39).  F. tularensis LPS fails to or only weakly stimulates a cytokine response by 

host cells (40, 41).  If F. tularensis LPS does stimulate host cells, it is likely in a TLR4 

independent manner. Both TLR2 and TLR4 deficient macrophages produce PGE2 after 

infection (Woolard et al. unpublished). 

In this study we demonstrate that along with LVS, F. novicida U112 (U112), and F. 

tularensis tularensis Schu S4 (Schu S4) induce PGE2 synthesis by macrophages. We tested a 

F. novicida (U112) comprehensive transposon mutant library to identify genes necessary for 

induction of PGE2 synthesis by infected bone marrow-derived macrophages.  This library 

allowed us to identify 20 genes that when disrupted result in U112 strains that are unable to 

induce the synthesis of PGE2 by infected macrophages. Identified genes included genes of 

the FPI and regulators of the FPI.  All genes identified are highly conserved among all 

sequenced strains of F. tularensis (17, 23, 42, 43).  We also demonstrate that the ability of F. 

novicida to induce PGE2 synthesis is likely not dependent on phagosome escape nor 

intracellular growth.  This work likely suggests that the FPI is involved in immune 

modulation along with previously established mechanisms of phagosomal escape and 

intracellular growth.   

 

MATERIALS AND METHODS 

Bacteria and mouse strains 

The F. tularensis subspecies holarctica LVS was obtained from ATCC (29684; 

American Type Culture Collection (Manassas, VA) (44), the F. tularensis subspecies 

novicida U112 strain was previously published (45), and the F. tularensis subspecies 

tularensis Schu S4 strain (catalog no. NR-643) was obtained from the Biodefense Emerging 
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Infections Research Resources Repository (Manassas, VA). The two allele transposon library 

was previously described (46).  For all studies, except for the original screen, F. novicida was 

propagated on tryptic soy agar supplemented with 0.1% cysteine while the F. novicida 

transposon mutants where propagated on the same agar with the addition of 20 µg/ml of 

kanamycin.  F. holarctica LVS and F. tularensis Schu S4 where propagated on chocolate 

agar.  Inocula were generated by collecting plate grown bacteria and diluting them in PBS to 

reach an OD600 of 1.00.  Inocula where then diluted into appropriate cell culture medium for 

inoculation.    

The F. novicida two allele transposon library was previously described (Gallagher et 

al., 2007).  The LVS ΔmglA, LVS ΔsspA, LVS ΔmglA pmglA, and LVS ΔsspA psspA were 

previously published (47). The dotU deletion construct was made by splice overlap extension 

PCR retaining the start and stop codons of dotU and fusing the first four and last two codons 

in frame and retaining 0.8 kb of flanking sequence. The constructs were cloned into the 

suicide vector pMP590 and sequenced to confirm the integrity of the DNA sequence. The 

LVS dotU mutant was generated by allelic exchange, selection for plasmid co-integrates, and 

counter selection on sucrose containing media to identify plasmid and dotU allele resolution 

as described (48). The following primers were utilized to generated the SOE fragment; 

FTL0119 5’ ext 5’-GAGTTTTTTCCACCTCTGAGGATGTTTC,  FTL0119 5’ int 5’-

GAAAGACTTTAAAGAGATAGAATAATAAGGGTAAGAGGAGATTTATATGAGTCA

GATAATATC,  FTL0119 3’ int 5’-CTCCTCTTACCCTTATTATTCTATCTCTTTAAAGT 

CTTTCATTTATAATATCCTTTATATAGAG, FTL0119 3’ ext 5’-CATACATATTTAACC 

AAGTATTAGAAGATAATGGCTCAG.  Loss of the wild type and retention of the deletion 

dotU alleles were confirmed by PCR.  Since dotU is duplicated in the LVS genome, a second 
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round of mutagenesis was performed on the single dotU mutant strain to create an LVS dotU 

double deletion strain. Plasmids for complementation were created by ligating cloned region 

of dotU into the PKK MCS plasmid. dotU expression from the PKK MCS plasmid was 

regulated by the putative PI promoter.  The following primers were used: FTL0119 forward 

5’-CTTAATTAAATGAAAGACTTTAAAGAGATAGAAATTATTCTAGATATTATAA 

AAC, FTL0119 reverse 5’-TGTCGACCCAGCTTAATAAAATTAGTAAGCTTAAAAGA 

AACAGTC.   

C57Bl/6J (B6) mice were purchased from the Jackson Laboratory (Bar Harbor, ME).  

All animals used in this study were maintained under specific pathogen-free conditions in the 

American Association of Laboratory Animal Care-accredited University of North Carolina 

Department of Laboratory Animal Medicine Facilities or American Association of 

Laboratory Animal Care-accredited Louisiana State University Health Science Center at 

Shreveport Animal Medicine Facilities. All work was approved by each facility’s Animal 

Care and Use Committee (UNC #04-200, LSUHSC P10-010). 

Generation of bone marrow-derived macrophages 

Bone marrow cells from B6 mouse femurs were cultured in 30% L cell conditioned 

medium as previously described (28). Briefly bone marrow cells were flushed from B6 

mouse femurs and incubated for 7 days on nontissue culture-treated 15-cm2 dishes with L 

cell-conditioned medium as a source of GM-CSF. Following differentiation, nonadherent 

cells were removed by multiple washes with PBS and bone marrow-derived macrophages 

were removed from plates by incubation with 10 mM EDTA in PBS. Since L cell condition 

media and FBS batches can affect the amount of PGE2 induction by infected macrophages 
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we utilized the same L cell conditioned media and FBS batches for each series of 

experiments to minimize variability in PGE2 synthesis between experiments.   

Bone marrow-derived macrophage infections 

BMDM were plated in 96 well flat bottom plates (105/well).  Macrophages were 

allowed to adhere for two hours.  Macrophages were mock infected or infected with LVS, 

Schu S4, U112, or U112 transposon insertion strains at different MOIs as indicated.  Bacteria 

were centrifuged onto the macrophage monolayer at 300 g for 5 min to allow closer contact 

and more efficient infection.  Two hours after inoculation, extracellular bacteria were killed 

by the addition of 50 µg/ml of gentamicin for 45 minutes.  Supernatants were removed and 

cells were washed with antibiotic free complete medium.  Fresh antibiotic free complete 

medium was added and cells were incubated for 24 hours.  Supernatants were then collected 

and spun at 300 g for 10 minutes to remove eukaryotic cells.  Supernatants were sterilized by 

UV.  Representative supernatants were plated onto chocolate agar after UV treatment to 

ensure complete killing of F. tularensis.  Supernatant was then stored at -80o C until needed. 

Identification of transposon insertion strains 

The transposon library has previously been described (46).  In brief, the 3,050-

member library includes two insertion alleles for 1488 genes the majority of total Francisella 

ORFs. The alleles chosen were primarily insertions positioned between 5% and 70% within 

the ORF and are thus likely to represent null mutations.  After single-colony purification, the 

mutants were arrayed in 96-well format and sequence-mapped to confirm their identities.  

See table 2 of (46) for the summary of this information.    

The two allele mutant library was screened in a 96 well format.  Transposon insertion 

strains were grown up in 96 well deep well plates containing 1 ml of Tryptic Soy broth 
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containing 15µg/ml carbenicillin, 20 µg/ml kanamycin, and supplemented with 0.1% l-

cysteine-HCl.  After over-night growth an aliquot of supernatants from each transposon 

insertion strain was taken and OD600 was determined.  MOI were normalized by average 

plate OD600.  B6 BMDM was inoculated at an MOI of 500:1 to guarantee sufficient inocula 

in each well to induce PGE2 synthesis.  In our experience increasing MOI inocula increases 

the number of macrophages infected. Twenty four hours after inoculation supernatants were 

collected and then stored at -80oC until needed.   

PGE2 assay 

PGE2 in cell culture supernatants was measured using a commercial PGE2 enzyme 

immunoassay kit (Assay Design, Ann Arbor, MI) as per manufacturer’s instructions. 

Transposon insertion strains were deemed defective in the ability to induce of PGE2 when the 

levels of PGE2 by any transposon insertion strain were 3 standard deviations below the mean 

of the entire plate. 

Bacterial growth assay 

Macrophages were mock infected or infected with U112, U112 clpB::Tn, U112 

pdpA::Tn, or U112 iglC::Tn strains at an MOI of 100:1.    At 4 and 24 hours post-inoculation, 

supernatants were removed.  100 µl of 0.05% sodium dodecyl sulfate in PBS was used to 

lyse the BMDM. Samples were transferred to tubes containing 900 µl PBS and vortexed on 

high setting for one minute.  Samples were serially diluted and plated on chocolate agar to 

determine bacterial numbers.  

Confocal and transmission electron microscopy  

J774.1 macrophages (from ATCC #TIB-67) were seeded on coverslips at a density of 

6x105 cells/well.  Prior to infection, bacteria were carboxyfluorescein succinimidyl ester 
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(CFSE) labeled as previously described (49) with the following modifications:  CFSE was 

added to bacteria at a final concentration of 5 µM and incubated for 20 minutes at 37˚C.  

Macrophages were inoculated with CFSE-labeled U112, U112 clpB::Tn, U112 pdpA::Tn, or 

U112 iglC::Tn mutants at an MOI of 200:1.  Bacteria were centrifuged onto the macrophages 

at 300 g for 5 min.  Two hours after inoculation, extracellular bacteria were killed by the 

addition of 25 µg/ml of gentamicin for 45 minutes and then media was replaced with 

antibiotic free media.  At four hours post-inoculation, LAMP-1 association with bacteria was 

determined as previously described (50).  Briefly, wells were washed with PBS and fixed for 

20 minutes at room temperature with 2% (w/v) formaldehyde and 1% (w/v) sucrose in PBS.  

Cells were permeabilized using methanol.  Coverslips were blocked with 5% bovine serum 

albumin, incubated overnight at 4oC with anti-mouse LAMP-1 (1D4B eBioscience), washed 

three times with PBS, and stained with donkey anti-rat IgG Alexafluor594 secondary 

antibody (Invitrogen) for two hours at room temperature.  After three PBS washes, the 

coverslips were mounted in DAPI-containing mounting media (Vector Laboratories, Inc.) to 

label the DNA.  Cells were imaged using a Leica SP2 Laser Scanning Confocal Microscope 

using a 63x oil immersion lens.  A minimum of 20 cells per strain were captured.  To remove 

subjectivity in determining co-localization of bacteria with LAMP-1 images were analyzed 

using Volocity software (Improvision/Perkin Elmer) to determine bacterial association with 

LAMP-1. Co-localization was determined by the shared of red and green pixels at the same 

location.  To determine whether a bacterium resided in a LAMP-1 positive vesicle, the voxel 

spy tool was used closely examine whether the LAMP-1 red pixels surrounded the CFSE 

green pixels that labeled the bacterium.  If the red pixels surrounded greater than 50% of the 

green pixels, the bacterium was categorized as residing within a LAMP-1+ vesicle. 
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B6 BMDMs were inoculated with U112, U112 clpB::Tn, U112 iglC::Tn, or U112 pdpA::Tn 

at an MOI of 500:1 at an MOI of 500:1 to maximize the number of infected BMDMs.  2 

hours after inoculation, the media was removed and replaced with media containing 50 

μg/mL gentamicin (Sigma-Aldrich, St. Louis, MO).  Gentamicin-containing media was 

removed 1 hour after treatment and replaced with antibiotic-free media.  4 hours post-

inoculation, the BMDM monolayer was fixed using gluteraldehyde and post-fixed with 

osmium tetroxide.  Images were obtained using a Phillips CM-12 transmission electron 

microscope using 25,000x magnification.      

Statistical analysis 

Student’s t tests were used for statistical analysis between two group experiments. 

Multi group comparisons were done by ANOVA followed by Dunnett’s Multiple 

Comparison Test. When appropriate, data were logarithmically transformed before statistical 

analysis and confirmed by a demonstrated increase in power of the test after transformation 

of the data.  Data analysis on the rescreen (figure 2) was accomplished by one-way ANOVA 

analysis followed by Student’s t test. A p value ≤ 0.05 was considered statistically 

significant. 

 

RESULTS 

F. tularensis subspecies novicida and tularensis induced the synthesis of PGE2 by 

infected macrophages 

We have previously demonstrated that F. tularensis subspecies holarctica LVS 

induces PGE2 synthesis in infected macrophages. To enable the use of the two allele 

transposon mutant library we needed to determine if the ability to induce PGE2 synthesis by 
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infected macrophages is shared among Francisella subspecies. We tested both F. novicida 

U112 and F. tularensis Schu S4 for their ability to induce B6 bone marrow-derived 

macrophages (BMDM) to synthesize PGE2 upon infection.  We inoculated BMDM with 

LVS, U112, or Schu S4 at an MOI of 100:1.  All strains tested were capable of inducing 

synthesis of PGE2 by infected macrophages (figure 1).  This demonstrates that the ability to 

induce PGE2 synthesis is conserved among F. tularensis strains. 

Screening the two allele mutant library identifies several genes necessary for the 

Francisella induction of PGE2 by infected macrophages 

Since we demonstrated that U112 induced macrophage synthesis of PGE2, we used 

the F. novicida two allele transposon mutant library (46) to identify mutants that were unable 

to induce PGE2 synthesis.  During the initial testing of the 3050 F. novicida U112 transposon 

mutants, we defined a F. novicida U112 transposon mutant as defective in induction of PGE2 

synthesis by infected BMDM when BMDM produced relative PGE2 amounts that were three 

standard deviations lower than the plate average amount of PGE2.  The use of the three 

standard deviation rule allowed us to minimize the likelihood (0.3%) of identifying false 

positives.   The initial screen identified 33 genes that when disrupted made F. novicida 

unable to induce PGE2 synthesis by infected macrophages.  This included 10 genes located in 

the FPI.  We retested all U112 transposon insertion mutants with transposon insertions in the 

identified 33 genes.  Furthermore, since the initial screen identified 10 genes of the FPI, we 

included all FPI transposon mutants within the two allele transposon mutant library in this 

rescreen to ensure these genes important in pathogenesis were carefully evaluated.  BMDM 

were inoculated with individual transposon insertion strains (89 mutants representing the 

original 33 genes identified and 10 genes from the FPI not originally identified) at an MOI of 
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200:1 and PGE2 levels were measured 24 hours post-inoculation (figure 2).  We utilized an 

MOI of 200:1 since we have previously demonstrated this MOI results in a reproducible 

significant increase in detectable PGE2 from infected macrophages (28).  Each U112 

transposon mutant was tested a minimum of four times. No difference was noted between 

strains with insertions in the same gene; as such the values were combined for representation 

in figure 2. We were able to confirm 20 genes that when disrupted resulted in F. novicida 

strains that did not induce the synthesis of PGE2 by infected BMDM (figure 2).  With the 

exception of mglA and rpoB, which were only represented once, each gene identified encodes 

a product involved in the induction of PGE2 that was represented at least twice in the U112 

two allele transposon mutant library. The genes identified in the screen of the two allele 

mutant library are summarized in Table 1. The identified genes were located in the FPI or 

were genes that encode some of the previously identified regulators of the FPI (sspA, mglA, 

mglB, and trmE) with the exception of rpoB and clpB (17, 22, 23, 42, 51).  These genes are 

highly conserved in all F. tularensis subspecies sequenced to date (17, 23, 42, 43). Of note: 

not all genes encoded within the FPI are necessary for U112 induced PGE2 synthesis as 

pdpA::Tn, pdpD::Tn, and pdpE::Tn were able to induce PGE2 synthesis similarly to wild type 

U112.  Thus the screen identified 20 F. novicida genes that are necessary for the induction of 

PGE2. 

F. tularensis LVS mutant strains with deletions of mglA, sspA or dotU do not induce 

PGE2 synthesis from infected macrophages 

To begin to address if the genes identified in U112 also encode products that 

contribute to LVS to induce PGE2 synthesis by infected macrophages we utilized clean 

deletion mutants. Two of the genes identified in the screen of the two allele library, U112 
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mglA::Tn and U112 sspA::Tn, encode positive transcriptional regulators (22-24).  We also 

identified several genes of the FPI, including dotU. DotU is necessary for stabilization of the 

FPI secretion apparatus, and mutants lacking dotU do not have a functional FPI secretion 

system (52).   To examine the possibility that LVS mutants lacking mglA, sspA or dotU do 

not to induce PGE2 synthesis, we tested these mutant strains for induction of PGE2 synthesis 

by BMDMs.  BMDM were inoculated with LVS, LVSΔmglA, LVSΔmglA (pmglA), 

LVSΔsspA, LVSΔsspA (psspA), LVSΔdotU, or LVSΔdotU (pdotU) at an MOI of 200:1.  

Twenty-four hours after inoculation the levels of PGE2 were determined.   Neither 

LVSΔmglA, LVSΔsspA nor LVSΔdotU mutant strains induce significant PGE2 synthesis 

from infected macrophages (figure 3).  This phenotype was reversed by trans 

complementation with the appropriate plasmid (figure 3) suggesting that U112 and LVS 

induce PGE2 synthesis through similar mechanisms.  

Dissociation of intracellular growth and induction of PGE2 by Francisella 

Escape from the phagosome and replication in the cytosol of host cells are critical for 

F. tularensis survival.  All of the genes identified in this screen have been identified in other 

screens examining disease pathogenesis and intracellular growth (10-12, 14, 53, 54).  Thus, it 

may be that failures to either escape the phagosome or replicate explains why these F. 

novicida mutants did not to induce PGE2 synthesis. Previous studies that examined infection 

of macrophages by F. novicida pdpA::Tn and ΔpdpA strains demonstrated that PdpA is 

required for escape from the phagosome (50, 55).  Similarly, IglC has been shown to be 

required for F. novicida and F. holarctica phagolysosomal escape (56, 57).  In contrast, F. 

holarctica mutants with a transposon insertion in clpB escape the phagosome and replicate 

(43).  The characterization of the trafficking phenotypes of Francisella strains with mutations 
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in clpB, pdpA, and iglC suggested we could use the two allele mutant library clpB::Tn, 

pdpA::Tn, and iglC::Tn mutant strains as tools to investigate the requirement of escape and 

intracellular growth for PGE2 induction. We understand these experiments do not prove that 

these genes are necessarily involved in the induction of PGE2, but rather eliminate or confirm 

if either the act of escaping the phagosome or replicating in the cytosol is what is necessary 

and sufficient to induce PGE2 synthesis in macrophages.     

To determine the intracellular localization of these strains, we inoculated the J774.1 

macrophage cell line, as we and others have successfully used this cell line in the past to 

examine intracellular localization of F. tularensis (48, 58), at an MOI of 500:1 with CFSE 

labeled U112, U112 clpB::Tn, U112 iglC::Tn, and U112 pdpA::Tn and examined their 

association with LAMP-1 using confocal microscopy (figure 4).  A high MOI was used to 

ensure our ability to identify intracellular bacteria and their respective intracellular 

localization.  We confirmed that U112 infected J774 cells synthesize increased amounts of 

PGE2 upon both U112 and LVS infection compared to uninfected samples (data not shown).   

We analyzed the associations of bacteria and LAMP-1 using Volocity image software and 

showed the percentage of bacteria associated with LAMP-1 by pixel association (figure 4a).   

We found only 34% of U112 remained associated with LAMP-1 four hours post-inoculation.  

Similarly, 34% of U112 clpB::Tn remained associated with LAMP-1 four hours post-

inoculation.  In contrast, U112 iglC::Tn and U112 pdpA::Tn resided mainly in the 

phagosome four hours post-inoculation displaying 71% and 70% LAMP-1 association, 

respectively.  We confirmed the intracellular localization of U112 clpB::Tn, U112 iglC::Tn, 

and U112 pdpA::Tn by transmission electron microscopy (figure 4b)  These data indicate 

U112 clpB::Tn, U112 iglC::Tn, and U112 pdpA::Tn have intracellular trafficking patterns 
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that are similar to those of previously published clpB, iglC, and pdpA transposon insertion 

strains (43, 50, 55-57).  As noted above, these data show that the U112 pdpA::Tn mutant is 

able to induce PGE2 even though it was diminished in its ability to escape the phagosome.  If 

PGE2 synthesis induction required phagosomal escape, we would expect U112 pdpA::Tn 

would not induce PGE2 synthesis, as seen with U112 iglC::Tn. However, pdpA::Tn does 

induce PGE2 at similar levels to wild-type U112 (figure 2).Thus our data suggest PGE2 

induction is unaffected by intracellular trafficking/localization.   

To determine if intracellular growth was required for F. novicida induction of PGE2 

synthesis we inoculated BMDM at an MOI of 100:1 with U112, U112 clpB::Tn, U112 

pdpA::Tn, and U112 iglC::Tn and counted intracellular CFUs over time. We used an MOI 

100:1 to maximize differences in intracellular CFUs at 4 and 24 hours post-inoculation.  At 

higher MOIs extensive cell death of BMDMs by 24 hours post-inoculation made it difficult 

to measure intracellular growth (data not shown).  The number of intracellular bacteria was 

determined at 4 and 24 hours post-inoculation, while the concentration of PGE2 in 

supernatants was determined at 24 hours post-inoculation.  The U112 clpB::Tn strain grew 

within BMDM similarly to wildtype U112, while the U112 pdpA::Tn and U112 iglC::Tn 

strains failed to grow in BMDM (figure 5).  In fact, there were fewer intra-macrophage U112 

pdpA::Tn and U112 iglC::Tn bacteria at 24 hours post-inoculation than at 4 hours post-

inoculation.  Wild type U112 and U112 pdpA::Tn were able to induce PGE2 synthesis, while 

U112 clpB::Tn and U112 iglC::Tn did not.  The fact that pdpA::Tn induced PGE2 synthesis 

without intra-macrophage growth and clpB::Tn did not induce PGE2 synthesis while still able 

to grow in the macrophage demonstrates dissociation between intracellular growth and the 

ability of F. novicida to induce infected BMDM to synthesize PGE2.       
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DISCUSSION 

The induction of PGE2 synthesis by LVS infected macrophages disrupts T cell 

responses allowing LVS to persist in the host (28, 31).  We demonstrate here that induction 

of PGE2 synthesis by infected bone marrow-derived macrophages is conserved among F. 

novicida, F. holarctica, and F. tularensis.  Synthesis of PGE2 by U112 infected macrophages 

allowed us to screen the comprehensive U112 two allele transposon mutant library to identify 

Francisella genes that are potentially involved in the induction of PGE2 synthesis by 

Francisella infected macrophages.  Our screen identified 20 genes that when disrupted 

resulted in strains that failed to induce PGE2 synthesis by F. novicida infected BMDM. These 

20 genes are highly conserved in all sequenced Francisella subspecies (17, 23, 42, 43).   

Eighteen of the genes identified in this study either mapped to the FPI or represent positive 

transcriptional regulators of the FPI (17).  17 of the 20 identified genes have been 

demonstrated to be involved in mouse virulence (14, 54). Most, but not all of these genes, 

encode proteins that have been implicated in escape from the phagosome and intracellular 

growth (14, 54).  The data presented here suggest these gene products may be responsible for 

the induction of PGE2 biosynthesis in infected BMDM independent of their role in 

phagosomal escape and intracellular growth.   

The FPI likely encodes a secretion system. The FPI proteins PdpB, VgrG, DotU, 

IglA, and IglB proteins are homologous to T6SS proteins from other bacterial pathogens (16, 

52, 59, 60).   The FPI was initially identified in F. novicida via mutations in iglA and iglC 

that resulted in F. novicida strains that no longer replicated within macrophages (61).  Recent 

work has identified the FPI genes that encode proteins required for intracellular growth  and 
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include pdpA, pdpB, dotU, vgrG, iglABCDEFHJ, and potentially iglG and iglI  (56, 59, 62-

66).  The genes pdpC, pdpD, pdpE, and anmK are not required for intracellular growth (59).  

Our screen demonstrated that disruptions in FPI genes dotU, vgrG, pdpBC, and 

iglABCGEDFGHIJ resulted in U112 strains unable to induce PGE2 synthesis by infected 

macrophages.  At this time we are unsure whether all gene products are necessary, or 

whether some mutants where identified due to polar effects of transposon insertions.  This is 

possible as the FPI is believed to be organized in  two operons (17).  Future work will be 

necessary to define which FPI gene products are truly necessary for induction of PGE2 

synthesis from infected macrophages. Disruptions in pdpADE and anmK did not impair the 

bacteria’s ability to induce synthesis of PGE2. We were  not surprised that pdpD and anmK 

mutants are not impaired, as we believe the mechanism of induction of PGE2 synthesis is 

conserved between Francisella strains.  The anmK gene is not present in LVS while the 

pdpD is truncated in LVS and presumably nonfunctional (16).  The deletion of pdpE from F. 

novicida had no effect on the bacteria’s ability to grow in macrophages or cause disease. At 

this time the role of PdpE in FPI function is unknown (59).  PdpA is involved in both 

intracellular growth and virulence. However PdpA is not believed to be a component of the 

FPI secretion system (50, 55) which may explain why the pdpA::Tn mutant is still capable of 

inducing PGE2 synthesis.  Some of the transposon mutants (pdpE::TN, pdpD::Tn, and 

anmK::Tn) were capable of inducing enhanced PGE2 secretion from infected macrophages.  

The mechanism behind this is unknown and future work will be done to examine this 

phenomenon.   Regardless, it is clear that disruption of F. novicida’s genes in the FPI 

diminishes its ability to induce PGE2 synthesis from infected macrophages. 
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There are 6 genes located outside of the FPI that when disrupted resulted in strains 

unable to induce the synthesis of PGE2 from U112 infected macrophages.  Four of those 

(trmE, sspA, mglA, and mglB) have previously been identified to encode positive 

transcriptional regulators of genes found both in FPI and outside the FPI (22-24, 42, 50, 55). 

The work of the Dove laboratory has clearly identified other transcriptional regulators which 

include CaiC, CphA, PigR, and SpoT in F. tularenisis LVS(42). The two allele mutant 

library lacks transposon insertional mutants in spoT and pigR, while the caiC  and the cphA  

transposon mutant strain induced PGE2 synthesis from macrophages.  This result suggests 

differential transciprional regulation of the FPI between U112 and LVS; however future 

work would be required to corroborate this observation.  RpoB is a component of the RNAP 

catalytic core responsible for the transcription of genes (67).  The U112 rpoB::Tn was likely 

identified due to a general disruption of transcription.  The fact the rpoB::Tn mutant failed to 

induce PGE2 synthesis would predict finding other components of the RNAP catalytic core.  

However, the two allele library did not contain mutants with transposon insertions in either 

rpoA or rpoD, while rpoC::Tn and rpoZ::Tn mutants strains induced PGE2 synthesis.  ClpB, 

a stress response protein, has been previously demonstrated to be important in Francisella 

disease pathogenesis.  A U112 clpB mutant was identified due to a delay in intramacrophage 

growth, while a disruption of clpB in F. holarctica LVS resulted in a strain that could grow 

in vitro in macrophages, but failed to effectively multiply in mice (43, 61). We did not 

observe a intramacrophage growth defect of the the two allele clpB::Tn.   In Listeria 

monocytogenes and Porphyromonas gingivalis, ClpB homologs are necessary for virulence 

during animal infections (68, 69).  ClpB/ClpV homologs have been identified in other T6SS 

where their AAA+ ATPase activity supply energy for the protein secretion process (19, 21, 
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70, 71).  ClpB regulates the protein levels of DnaK, FTL_0525, FTL_0311, FTL_0588, and 

FTL_0207 (43).  Since none of these genes were identified as necessary for induction of 

PGE2 synthesis, it would suggest ClpB may have other unidentified functions.   It has not 

been demonstrated to regulate the protein levels of the FPI.  Future work will be needed to 

define the mechanism of ClpB mediated induction of PGE2 synthesis from infected 

macrophages, and whether this is through regulation of FPI genes, function of FPI gene 

products, or through a FPI independent mechanism.   

Infection of macrophages with U112, LVS, or Schu S4 results in the induction of 

PGE2.  This demonstrates that the ability to induce PGE2 synthesis from infected 

macrophages is conserved among F. tularensis subspecies.  In fact, U112 and Schu S4 

induce more PGE2 than LVS at similar doses. This difference in PGE2 induction may be 

partially responsible for difference in virulence in these different subspecies.  While we have 

previously demonstrated differences in innate immune responses to Schu S4, LVS, and U112 

in intranasally inoculated mice, it is unknown if these different responses are due to 

differences in PGE2 induction (72). Further work will address this difference in PGE2 

induction and the potential effect of PGE2 on disease pathogenesis.  The demonstration that 

inactivation of FPI genes in F. novicida results in the inability to induce PGE2 biosynthesis 

and the fact that the FPI is highly conserved among all subspecies of F. tularensis would 

suggest that the mechanism of PGE2 induction is conserved among these subspecies. The fact 

that LVS mglA, sspA and dotU mutant strains did not induce PGE2 synthesis further suggests 

the likelyhood that F. tularensis subspecies tularensis, F. tularensis subspecies holarctica, 

and F. tularensis subspecies novicida have conserved mechanisms of induction of PGE2 

synthesis.  However, we cannot discount the possibility that F. tularensis subspecies 
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tularensis may possess additional mechanisms for induction of PGE2 synthesis that F. 

novicida or F. holarctica do not.   

The FPI is necessary for the organism to escape the phagosome and replicate in the 

cytosol (59, 64-66).  The reason the transposon insertion mutants we identified in U112 

failed to induce PGE2 synthesis may be due to their failure to escape the phagosome and 

subsequently replicate.  Failure to escape the phagosome may create a physiologic barrier 

between F. tularensis and the eukaryotic molecule that is responsible for sensing and 

responding to F. tularensis.  There are many intracellular receptors that can recognize 

bacterial products (73).  ASC, a component of the inflammasome, and AIM2 (which 

recognizies F. tularensis DNA) are crucial for control of Francisella intra-macrophage 

growth in vitro and infection in vivo (74-76).  Inflammasome activation is also capable of 

inducing eicosanoid production (77). However, we believe that failure to escape into the 

cytosol is not the reason the transposon insertion mutant strains we identified in this study 

failed to induce PGE2 synthesis by infected macrophages.  In other studies, pdpA::Tn and 

ΔpdpA F. novicida mutants fail to fully escape the phagosome (50, 55, 76).  The U112 

pdpA::Tn strain in the U112 two allele mutant library does not escape the phagosome to the 

same level as wildtype U112.  Recently, 92 transposon mutant strains from the two allele 

mutant library were identified that did not  escape the phagosome (10). We showed all of 

these strains were able to induce PGE2.  Thus it is unlikely that the mutants we did identify 

failed to induce PGE2 solely because they failed to escape from the phagosome.    Future 

work that identifies both the F. tularensis effector molecule and the corresponding eukaryotic 

binding partner will allow us to more definitively dissociate F. tularensis trafficking and 

induction of PGE2 synthesis from Francisella infected macrophages.  
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Previous studies have identified 201 genes outside the FPI that are required for 

Francisella intra-macrophage growth (10, 11, 13, 53).  U112 strains with insertions in any 

one of these 201 genes were all capable of inducing PGE2 synthesis from infected 

macrophages.  We did not identify known F. tularensis auxotrophs as being defective in the 

ability to induce PGE2.  Transposon insertions in purA, purF, carA, carB, and pyrB produce 

strains that have a defect in intracellular growth yet are able to induce macrophage synthesis 

of PGE2 (53, 78, 79).  Our studies using U112, U112 clpB::Tn, U112 pdpA::Tn, and U112 

iglC::Tn strains demonstrate dissociation between intra-macrophage growth, the ability of F. 

tularensis to fully escape the phagosome, and the ability to induce PGE2.  These data also 

confirm our earlier report that UV inactivation of LVS, which inhibits replication, did not 

impact LVS’s ability to induce PGE2 synthesis from infected macrophages (28).  Further 

characterization and understanding of the molecular interactions between F. tularensis and 

eukaryotic cells that lead to the induction of PGE2 will provide new insight into tularemia 

pathogenesis.   
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Figure 1

Figure 1. LVS, U112 and Schu S4 induces the synthesis of PGE2 from bone marrow-

derived macrophages.   Bone marrow-derived macrophages were either mock inoculated 

or inoculated with LVS, U112, or Schu S4 at an MOI of 200:1.  24 hours after inoculation 

supernatants were collected and PGE2 concentration was determined.  Data represents three 

independent experiments and expressed as the mean ± standard error. * denotes statistical 

difference (p≤0.05) from uninfected BMDM.
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Figure 2

Figure 2. Identification of U112 genes necessary for the induction of PGE2 from bone 

marrow-derived macrophages.  Bone marrow-derived macrophages were inoculated with 

U112 or individual transposon insertion strains at an MOI of 200:1. 24 hours after 

inoculation, supernatants were collected and PGE2 concentration was determined.  Each 

transposon insertion mutant strain was tested 4 times. Bars represent the mean of all 

independent transposon insertions mutants within the same gene ± standard error. * 

denotes statistical difference (p≤0.05) from U112 inoculated BMDM. 
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Table 1

Table 1. Genes required for Francisella induction of PGE2 

synthesis in Francisella infected macrophages. 

ORF Gene  Function (postulated) 

FTN_0549 sspA Regulate virulence genes 

FTN_1290 mglA Regulate virulence genes 

FTN_1291 mglB Regulate virulence genes 

FTN_1298 trmE tRNA modification, GTPase activity 

FTN_1310 pdpB Unknown 

FTN_1311 iglE Unknown 

FTN_1312 vgrG Secreted 

FTN_1313 iglF Unknown 

FTN_1314 iglG Unknown 

FTN_1315 iglH Unknown 

FTN_1316 dotU Unknown 

FTN_1317 iglI Unknown 

FTN_1318 iglJ Unknown 

FTN_1319 pdpC Unknown 

FTN_1321 iglD Replication in cytosol 

FTN_1322 iglC Escape from phagosome 

FTN_1323 iglB Unknown 

FTN_1324 iglA Unknown 

FTN_1568 rpoB DNA directed RNA polymerase subunit beta 

FTN_1743 clpB Chaperone, ATPase activity 
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Figure 3

Figure 3.  mglA, sspA,  and dotU are necessary for LVS induction of PGE2 synthesis.  

Bone marrow-derived macrophages were inoculated with LVS, LVSΔsspA, LVSΔsspA 

(psspA), LVSΔmglA, LVSΔmglA (pmglA), LVSΔdotU, or LVSΔdotU (pdotU) at an MOI 

of 200:1.  24 hours after inoculation the levels of PGE2 were determined. Samples were 

analyzed in triplicate.  Data represents three independent experiments and expressed as the 

mean ± standard error.  * denotes statistical difference (p≤0.05) from LVS inoculated 

BMDM.
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Figure 4

Figure 4.  Induction of PGE2 does not require full escape from the phagosome.  A) 

Bacterial association with LAMP-1 was scored using Volocity (n= at least 20 imaged cells 

per strain with an average of one bacterium per macrophage). Co-localization was 

determined by the shared of red and green pixels at the same location.  Data represents 

three independent experiments and expressed as the mean ± standard error. *, denotes 

statistical difference (p≤0.05) from U112 infected cells. B) BMDMs were inoculated with 

U112, U112 clpB::Tn, U112 iglC::Tn, or U112 pdpA::Tn at an MOI of 500:1. Association 

of the bacterium with the phagosomal membrane was determined 4 hours post-inoculation 

using transmission electron microscopy.  Open arrowheads denote bacteria no longer 

surrounded by an intact phagosomal membrane.  Filled arrowheads denote bacteria 

surrounded by a phagosomal membrane.
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Figure 5

Figure 5.  Dissociation of intracellular growth and the induction of PGE2 from bone 

marrow-derived macrophages. A) Bone marrow-derived macrophages were inoculated 

with U112 , U112 clpB::Tn, U112 iglC::Tn, or U112 pdpA::Tn at an MOI of 100:1.  CFU 

were determined at 4hr and 24hr post-inoculation. Data represents three independent 

experiments and expressed as the means ± standard error. * denotes statistical difference 

(p≤0.05) from corresponding 4 hour sample. # BMDM denotes statistical difference (p≤ 

0.05) from 24 hour U112 infected BMDM (n=3).  B) Bone marrow-derived macrophages 

were inoculated with U112 , U112 clpB::Tn, U112 iglC::Tn, or U112 pdpA::Tn at an MOI 

of 100:1.  24 hours after inoculation supernatants were collected and PGE2 concentration 

was determined.  Data represents three independent experiments and expressed as the 

mean ± standard error. * denotes statistical difference (p≤0.05) from U112 infected 

BMDM.
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CHAPTER 6 

CONCLUDING REMARKS 

 

Survival of bacteria, viruses, fungi, and parasites has required these organisms to 

evolve sophisticated mechanisms to evade and/or subvert host immunity.  The host’s immune 

response is not singly focused; therefore, pathogens must evade many potential assaults from 

the host and have accordingly developed multiple mechanisms to do so.  These mechanisms 

are shared among organisms, allowing the study of one pathogenic organism to provide 

insight into how similar organisms also evade host immunity.  The study of host-pathogen 

interactions, specifically immune evasion, increases our understanding of pathogenicity as 

well as identifies critical aspects of host immunity necessary for pathogen clearance and the 

development of protective immunity.  These studies are increasingly important as the human 

population continues to encounter existing and emerging pathogens to which new therapies 

and/or vaccines must be developed to successfully combat infection.      

  Francisella tularensis utilizes a variety of immune evasion strategies to suppress or 

evade both the host’s innate and adaptive immune response.  Our laboratory is particularly 

interested in the immune consequences of prostaglandin E2 (PGE2) production following F. 

tularensis subsp. holartica live vaccine strain (LVS) infection.  We identified 20 genes 

necessary for the induction of PGE2 synthesis and secretion by F. novicida U112 in bone 

marrow-derived macrophages.  We also determined that PGE2 induction does not require the 

U112 to escape the phagosome.  These data are presented in Chapter 5 and were published in 

Frontiers in Microbiology in 2013 (1).  One of the genes necessary for inducing PGE2 

synthesis and secretion is clpB.  ClpB is a conserved chaperone protein of the AAA+ family 



of ATPases.  We hypothesized LVS clpB would be attenuated in vivo because a more robust 

IFN-γ-mediated adaptive immune response would form in the absence of PGE2-mediated 

suppression.  Importantly, LVS clpB does not have an intracellular growth defect compared 

to wild-type LVS.  Intranasal inoculation with LVS clpB revealed this strain was attenuated.  

While we did observe decreased PGE2 concentrations in the BALF of LVS clpB infected 

mice compared to LVS infected mice, LVS clpB induced altered innate and adaptive 

immunity as well.  LVS clpB fails to suppress early pro-inflammatory cytokine production in 

the lung following intranasal inoculation, in stark contrast to LVS inoculation.  The adaptive 

immune response in LVS and LVS clpB mice was similar in terms of the frequency of 

responding cells, but T cells from LVS clpB infected mice produced more IFN-γ and IL-17A 

as measured by mean fluorescent intensity.  Despite its attenuation, LVS clpB induces a 

protective immune response.  Because LVS clpB does not have an intracellular growth 

defect, we attribute its attenuation to the failure to suppress host immunity.  Our work 

revealed a new class of bacterial attenuation caused by altered host immunity and identified 

clpB as a gene necessary to suppress early pro-inflammatory cytokine production by the host.  

These data are presented in Chapter 2 and were published in Infection and Immunity in 2013 

(2).     

 The altered adaptive immune response in LVS clpB infected mice raised the 

possibility that the secondary immune response in LVS and LVS clpB infected mice could be 

different.  We therefore characterized the T cell response in mice previously infected with 

LVS or LVS clpB during a lethal challenge with LVS.  Mice vaccinated with LVS and LVS 

clpB had similar secondary T cell responses that were exclusively IFN-γ-mediated.  During 

primary intranasal infection, Th17 cells significantly expand in the lung but were not 
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detectable during the secondary response in numbers greater than unvaccinated mice.  We 

therefore used monoclonal antibody treatment to deplete either IFN-γ or IL-17A during the 

secondary response to determine the importance of these cytokines for survival during a 

lethal infection.  Vaccinated mice treated with anti-IFN-γ had significantly higher bacterial 

burdens than isotype treated vaccinated mice, indicating IFN-γ was critical for controlling the 

infection.  Anti-IL-17A depletion in vaccinated mice had no impact on bacterial burdens 

indicating IL-17A is dispensable during a secondary infection.  These studies contributed to 

our knowledge of the secondary immune response during pneumonic tularemia and revealed 

that while IL-17A is necessary during the primary response to intranasal LVS infection, it is 

dispensable for protection during re-infection. 

 Finally, we sought to identify early interactions between Francisella and the host 

following intranasal or intradermal inoculation.  Intranasal and intradermal inoculation with 

LVS induces two different adaptive immune responses despite similar bacterial burdens in 

the lung and spleen early after inoculation.  We hypothesized that the adaptive immune 

response was shaped by events occurring early after inoculation.  We therefore sought to 

identify the cell types infected with Francisella in the lung and skin after intranasal or 

intradermal inoculation, respectively.  Alveolar macrophages are infected in the lung 

following intranasal inoculation whereas macrophages, dendritic cells, and neutrophils are 

infected in the skin.  Following bacterial dissemination from the skin to the lung, interstitial 

macrophages and neutrophils are the dominant infected cell types indicating the route of 

inoculation influences the types of cells that become infected with Francisella.  The lung 

milieu is more pro-inflammatory after intradermal inoculation and bacterial dissemination to 

the lung compared to lungs early after an intranasal inoculation.  We also examined how 
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disease course changed when alveolar macrophages were depleted and found increased 

bacterial burdens in the lung on day 3 post-inoculation, suggesting alveolar macrophages are 

necessary to control an intranasal LVS infection.  These data are described in Chapter 4. 

 Overall, our work has identified clpB as a gene required for multiple immune evasion 

strategies used by Francisella to persist in the host (inducing PGE2 and suppression of host 

pro-inflammatory responses).  ClpB is a chaperone protein; therefore, it is unlikely that ClpB 

itself is the effector molecule responsible for immune evasion.  Instead, we hypothesize ClpB 

is involved in insuring proper folding or trafficking of the true effector molecules.  Our 

laboratory is pursuing the targets of ClpB that induce PGE2 and prevent activation of a pro-

inflammatory cytokine response as well as the host pathways involved in the pro-

inflammatory response.  We are taking advantage of the ability of Francisella to evade host 

immunity to learn more about Francisella pathogenesis as well as key players in the host’s 

immune response.  Additionally, since ClpB is highly conserved among other bacterial 

species, identifying ClpB’s targets and their role in immune evasion could increase our 

knowledge of pathogenesis in other organisms as well.    
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