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Abstract

BAŞAK ALTAN: Essays in Durable Goods Monopolies.

(Under the direction of Gary Biglaiser.)

This study analyzes a vertically differentiated market for an imperfectly durable good

served by a monopolist in an infinite horizon, discrete time game. I characterize Markov perfect

equilibria of this game as a function of the common discount rate, the common depreciation

rate of the goods, the length of the time period between successive price changes, and the

quality levels of the goods. I establish that quality differentiation may alleviate the time

inconsistency problem of a durable goods monopolist. In particular, I prove that when the

monopolist is not allowed to buy the goods back from previous buyers, the set of parameters

supporting the monopoly outcome is larger and the set of parameters supporting the Coase

Conjecture is smaller. When the monopolist, however, is allowed to buy the goods back from

previous buyers, quality differentiation only affects the off-equilibrium path either by increasing

the rate at which a steady state is reached or by expanding the set of steady states supporting

the monopoly outcome. This study suggests that when the innate durability of a good is high,

the monopolist must commit to not buying the used goods back and produce a lower quality

good to maintain his market power.
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Chapter 1

Introduction

Durable goods markets have received much attention since Coase (1972) argued that a durable

goods monopolist cannot exercise his monopoly power when the good is perfectly durable.

Upon sale of a unit, the monopolist has incentives to sell more by lowering the price of the

good. Thus, a rational consumer, anticipating that the monopolist will cut the price as long

as it is no less than the marginal cost of the good, prefers deferring consumption so long as the

price is not close to the competitive level. Hence, in the absence of the ability to commit to

the future prices, the monopoly power of a durable goods monopolist is largely deteriorated,

and the monopolist is unable to extract as much consumer surplus as a monopolist selling a

perishable good could. Moreover, when the monopolist becomes extremely flexible in adjusting

prices, market power vanishes and the competitive outcome is immediately achieved.

The existing theories on durable goods monopolies support the Coase Conjecture by es-

tablishing that in Markov perfect equilibria, a durable goods monopolist cannot exercise his

market power.1 Casual empirical evidence, however, suggests that durable goods monopolists

charge prices much higher than the marginal cost of production and make considerable profits

(e.g. Microsoft, Apple, etc.).

This dissertation studies an unexplored motive, the role of quality differentiation, for solv-

ing the commitment problem a durable goods monopolist faces. I consider a market for an

imperfectly durable good served by a monopolist in an infinite horizon, discrete time game. In

1See Bulow (1982), Stokey (1981), Gul, Sonnenschein and Wilson (1986), and Sobel (1991).



each period, the monopolist can sell two versions, high and low quality, of the durable good

that depreciate stochastically. I analyze whether the simultaneous introduction of vertically

differentiated goods enables the monopolist to maintain his market power and to credibly

commit to deferring sales to low valuation consumers.

In an interesting study, Deneckere and McAfee (1996) analyze damaged goods in a static

market and show that manufacturers may intentionally damage a portion of their goods in order

to price discriminate. For example, Intel first produced a fully functioning 486DX processor,

then by disabling the math coprocessor produced the 486SX that is inferior to the 486DX.

Even though the 486SX was more expensive to produce, the price of the 486SX was lower.

In addition to price discrimination, Intel might use the 486SX to maintain his market power.

Because, Intel might credibly defer sales of the 486DX to low valuation consumers by selling

the 486SX to low valuation consumers instead. The issue that the current study investigates is

whether a monopolist will damage a portion of the goods and produce a lower quality version

of it in an attempt to mitigate the commitment problem and enhance his market power.

Earlier studies on durable goods monopolies suggest that there are many responses a

durable goods monopolist can adopt to restore the profitability, such as reducing the dura-

bility of the good (Coase, 1972), leasing (Bulow, 1986), contractual provisions (Butz, 1990),

or using an inferior high cost technology (Karp and Perloff, 1996). Such responses, however,

are not extensively observed in several durable goods markets. This implies that the commit-

ment problem that Coase conjectures does not decrease profits of durable goods monopolists

as much as theory claims. Deneckere and Liang (2008) provide an answer for why casual

empirical evidence may contradict with Coase’s insight by establishing that a durable goods

monopolist can commit to high future prices when the good is sufficiently perishable.

Recent studies extend the seminal analyses on durable goods monopolies by considering

new product introductions. By offering new products for sale the monopolist seller can increase

the economic depreciation of the initial version of the good and regain his profitability.2 Even

though we have a clearer understanding of why the Coase Conjecture may not hold, our exact

2See Levinthal and Purohit (1989), Waldman (1993, 1996), Choi (1994), Fudenberg and Tirole (1998), Lee
and Lee (1998), Fishman and Rob (2000), Kumar (2002, 2006), and Anton and Biglaiser (2009).
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understanding of Coase’s insight remains incomplete, since a glance at durable goods markets

suggests that many durable goods are characterized by menus of multiple quality levels and

prices: Dell’s Inspiron laptop vs its XPS laptop, Mathematica’s student version vs its full

version, hardcover textbooks vs paperback textbooks, etc.

From a theoretical point of view, this study follows Deneckere and Liang (2008). I extend

their single good setting into a setting of a vertically differentiated market to analyze the ef-

fect of quality differentiation on the commitment problem a durable goods monopolist faces.

Similar to Deneckere and Liang (2008), I establish that there exist three types of Markov per-

fect equilibria: a Coase Conjecture equilibrium, a monopoly equilibrium, and a reputational

equilibrium. For sufficiently low depreciation rates, the unique equilibrium is the Coase Con-

jecture equilibrium. The Coase Conjecture equilibrium has a unique steady state equal to the

competitive quantity. At the steady state, the monopolist serves the high quality good to all

consumers. For sufficiently high depreciation rates, the unique equilibrium is the monopoly

equilibrium. The intuition is that when the durable good is sufficiently perishable, replace-

ment sales at high prices compensate the desire to penetrate the market further by lowering

the price of at least one of these two versions of the durable good. This equilibrium has two

monopoly steady states one of which is equal to the static monopoly quantity. At this steady

state, the monopolist only serves the high quality good to the high type consumers. The

market at the other monopoly steady state is segmented into two: the monopolist serves the

high quality good to the high type consumers and serves the low quality good to the low type

consumers. Upon deviation from a monopoly steady state, if the good is sufficiently perishable,

the monopolist returns to one of these two steady states from any state. Otherwise, the Coase

Conjecture steady state coexists with the monopoly steady states. For intermediate values of

the depreciation rate, all three types of equilibria exist. In the reputational equilibrium, the

monopolist cuts the production of the high quality good to create a reputation of pricing high.

The steady state quantity of the high quality good falls short of the monopoly quantity of the

high quality good.

When buyers are allowed to trade the good with each other in a perfectly competitive

3



second-hand market that the monopolist is not allowed to enter, I prove that the set of pa-

rameters supporting the Coase Conjecture equilibrium is smaller and the set of the parameters

supporting the monopoly equilibrium is larger when the monopolist produces low and high

quality goods. When the monopolist is, however, allowed to buy back the goods from previ-

ous buyers, I prove that quality differentiation does not affect the domain of the parameters

supporting each type of equilibrium but affects the off-equilibrium path.

This dissertation establishes that when the monopolist is not allowed to buy back the goods

from previous buyers, quality differentiation may enhance market power of a durable goods

monopolist and alleviate the commitment problem. In particular, when the innate durability

of a good is high, to credibly commit to the monopoly prices of the good the monopolist will

produce a lower quality good either by damaging a portion of the goods or by producing the

lower quality good from scratch. On the other hand, when the monopolist is allowed to buy

back the goods from previous buyers, if the innate durability of a good is sufficiently high, it is

less likely to observe quality differentiation. In particular, if the depreciation rate is so low that

the Coase Conjecture equilibrium is the unique equilibrium then the monopolist is reluctant

to introduce lower quality versions of the good. Moreover, a durable goods monopolist selling

a sufficiently perishable good has penetrated the market in an attempt to increase profit, then

he may introduce a higher (or a lower) quality version of the good to be able to restore his

market power. However, if the monopolist has already been committed to the monopoly price,

he will be reluctant to introduce a lower quality version of the good.

The rest of my dissertation proceeds as follows. Chapter 2 discusses the literature. Chapter

3 introduces the model. Chapter 4 characterizes equilibria in a durable goods monopoly when

buyers can trade with each other in a perfectly competitive second-hand market. Chapter 5

characterizes equilibria in a durable goods monopoly when the seller can buy back the goods

from previous buyers. Chapter 6 concludes. All proofs are relegated to the Appendix.
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Chapter 2

Literature Review

The time inconsistency problem a durable goods monopolist faces has been aggressively

studied since Coase (1972) conjectured that the sequence of prices (or outputs) of a monopolist

selling a perfectly durable good does not maximize his overall profitability. The goal of this

section is to briefly survey the literature in an effort to understand the theory of durable goods

monopolies and to place this study in the appropriate context.1

Early studies analyzing a monopolist selling a perfectly durable good establish that if

buyers condition their strategies on payoff relevant part of the histories (that is, if buyers use

Markov strategies), Coase’s prediction holds. Bulow (1982) studies a durable goods monopolist

in a two period model and shows that the optimum price charged by the monopolist is strictly

less than the static monopoly price. Intuitively, unless the monopolist credibly precommit to

a production plan, consumers anticipate that the monopolist will produce additional units to

exploit residual demand which decreases the present value of the durable good. Therefore,

since consumers are reluctant to pay the static monopoly price in the first period, in response

to the expectations of the consumers the monopolist cuts the price of the durable good. Stokey

(1981) extends Bulow’s (1982) setting into an infinite horizon setting and proves the existence

of an equilibrium that is the limit of the unique equilibrium of the finite version of her model

which satisfies the Coase Conjecture. Similarly, Gul, Sonnenschein, and Wilson (1986) show

that even though a continuum of subgame perfect equilibria may exist in an infinite horizon

1See Waldman (2003) for a detailed literature survey on durable goods monopolies.



model, the Coase Conjecture is verified for Markov strategies. Sobel (1991) extends these

initial analyses by considering a market for a perfectly durable good in which demand expands

over time. His study also verifies Coase’s prediction for Markov strategies. Intuitively, if the

monopolist charges the static monopoly price forever, as new consumers enter the market the

number of low valuation consumers grows cutting the price then becomes inevitable.

On the contrary to the early studies, Ausubel and Deneckere (1989) show that if buyers

condition their strategies on not only payoff relevant part of the histories but the past actions

as well, there exist equilibria in which the monopolist creates a reputation and maintains some

or all of his market power when the marginal cost of production is no less than the lowest

valuation of the buyers. In addition to establishing a reputation, depreciation of a durable

good can also help a durable goods monopolist avoid the time inconsistency problem. Bond

and Samuelson (1984) show that in a discrete time, infinite horizon game when the good

depreciates, replacement sales may deter the monopolist from cutting the price as long as the

time period between successive offers of the monopolist is nonzero. However, in the limit, as the

time period approaches zero, the competitive outcome is achieved and the Coase Conjecture

holds. Karp (1996), on the other hand, by using a continuous time model with replacement

sales constructs continuous time equilibria in which the monopolist can earn profits above the

competitive level. However, Karp (1996) also shows the existence of an equilibrium that verifies

the Coase Conjecture. Following Karp (1996), Deneckere and Liang (2008) characterize the

effect of the depreciation rate on the market outcome of a durable goods monopoly when agents

use Markov strategies. They conclude that below a certain level of durability, there exists a

unique stationary equilibrium in which the monopolist charges the static monopoly price in

each period which continues to exist even when the seller becomes highly impatient. Intuitively,

when the product depreciates, replacement sales become more profitable than penetrating the

market by cutting the price of the good.

A number of recent studies on durable goods monopolies revolves around the issue of intro-

duction of new products with quality improvements. Levinthal and Purohit (1989), Fudenberg

and Tirole (1998), and Lee and Lee (1998) study optimal sales strategy of a durable goods
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monopolist who may introduce an improved version of the good in a two period model. Wald-

man (1993, 1996), Choi (1994), Fishman and Rob (2000), and Kumar (2002) study the quality

and pricing strategy of a durable goods monopolist. These studies develop the idea of planned

obsolescence and established that Coase’s insight holds. Intuitively, introduction of higher

quality products lower the value of used units. Since consumers foresee that the units they

have will become obsolete, they refuse to pay the static monopoly price of the good. Hence,

the monopolist faces a problem of time inconsistency and the overall profitability is reduced.

Kumar (2006) analyzes a discrete time, infinite horizon model in which the monopolist selling

a perfectly durable good can vary the quality of the good and shows that when lowest buyer

valuation is greater than the marginal cost of production every subgame perfect equilibrium

verifies the Coase Conjecture. Anton and Biglaiser (2009) study an exogenous quality growth

in an infinite horizon durable goods monopoly model. They show that, for any positive dis-

count factor, the support of Markov perfect equilibrium payoffs ranges from getting all the

surplus to getting the single period flow value of each upgrade. Takeyama (2002) studies

quality differentiation of a perfectly durable good and the possibility of upgrades in a two

period model. Inderst (2008), on the other hand, studies optimal strategy of a durable goods

monopolist who can offer perfectly durable goods in different qualities in an infinite horizon

model and shows that when the monopolist becomes extremely flexible in adjusting the prices

and qualities, he immediately loses his monopoly power and competitive outcome is achieved.
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Chapter 3

The Model

Consider a market for an indivisible and imperfectly durable good. The market is served

by a monopolist who can produce two versions of the durable good that differ in quality: high

quality and low quality goods with quality levels qH and qL, respectively. The durable good

with quality level qi may be referred as durable good i. The monopolist offers both versions

of the durable good for sale simultaneously at discrete points in time. The monopolist is risk

neutral and has discount rate r. The objective of the monopolist is to maximize the present

value of his expected profits.

There exists a continuum of infinitely-lived buyers indexed by b ∈ [0, 1]. Buyers are seg-

mented into two groups: high valuation buyers and low valuation buyers. Buyer b′s reservation

price for acquiring one unit of durable good i is represented by

f i (b) =

 θqi for b ∈ [0, b̂]

θqi for b ∈ (̂b, 1]
.

All buyers are risk neutral and have the same discount rate r. Buyer b derives a net surplus

of e−rt(f i(b)− pi) if she purchases durable good i at price pi at time t. Each buyer wishes to

possess at most one unit of the durable good.1 A buyer is allowed to access the markets as

often as she wishes and seeks to maximize the present value of her expected payoffs.

1We may assume that the storage costs of the second unit is infinite.



The length of the time period between successive price changes is z > 0. Both versions

of the durable good depreciate stochastically at the same rate. The probability that a good

is still working after a length of time t is e−λt. Hence, with probability µ ≡ 1 − e−λz, the

good fails between successive price changes. For all versions of the good, the marginal cost of

production is assumed to be lower than θ(qH − qL). Hence, without loss of generality, it is set

to zero.

In Chapter 4, we assume that there exists a perfectly competitive second-hand market in

which buyers can trade with each other. In Chapter 5, however, we assume that the monopolist

can buy back the goods from previous buyers. Sales occur only at discrete points in time,

t = 0, z, 2z, . . . , nz, . . . in all markets. The time nz is referred as period n. In each period, the

game runs as follows. First, the monopolist sets the price of each version of the good before

trade occurs. Then, buyers choose whether or not to hold a good and which version to hold,

and trade occurs in all markets simultaneously. After a time interval of z passes, the game

repeats itself.

Markov perfect equilibria of this game in which agent strategies only depend on the current

state are sought to derive. A strategy of the monopolist specifies the price he charges for each

version of the good, and a strategy of a buyer specifies whether or not to hold a durable good

and which version to hold. Formally, the game is denoted by G(z, r, λ, qH , qL). Let σ be a pure

strategy for the monopolist where σ determines the price charged for each version of the good

by the monopolist in a period as a function of the prices charged in the previous period and the

actions chosen by the buyers in the previous period. Let the set of buyers’ acceptances of good

i in a period be denoted by Qi. Since either there exists an active perfectly competitive second-

hand market or the monopolist is allowed to buy back, strategies of a buyer are independent of

her holding status and depend only on the current prices.2 A buyer’s strategy in such equilibria

is described by acceptance functions, V H(·) and V L(·), where buyer b chooses to hold good i

2If there were no perfectly competitive second-hand market, the strategies of the monopolist would depend
on the distribution of the current holdings of each version of the good rather than the size of the current stock
of goods, and the strategies of a buyer would depend on not only the current prices, but the current holding
status as well.
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in the current period if and only if the current price of good i satisfies pi ≤ V i(b).3 Hence, the

set of buyers holding good i after trade is an interval of the form [0, bH ] for the high quality

good and (bH , bL] for the low quality good. It follows that σ can be represented as a function

of the current stock of goods in the market. Hence, the prices of the monopolist in a period are

determined by σ : Ω × Ω → R2
+ where Ω is the Borel sigma algebra on [0, 1]. A strategy of a

buyer with valuation parameter θ ∈ {θ, θ} is denoted by τθ where τθ : R2
+ → {0, 1, 2}. Decision

0 indicates that the buyer chooses not to hold any good in the current period. Decision 1

indicates that the buyer chooses to hold the low quality good in the current period. Decision

2 indicates that the buyer chooses to hold the high quality good in the current period. The

pure strategy profile {σ, τ} generates a stationary path of prices and sales that can be derived

recursively. The monopolist is also allowed to mix. Later, however, it is established that the

monopolist never randomizes in any period of the game unless it is the initial period. As

in Gul, Sonnenschein, and Wilson (1986), the attention is restricted to equilibria in which

deviations by sets of measure zero buyers change neither the actions of the monopolist nor the

actions of the other buyers. Hence, in such equilibria buyers behave as price takers. From now

on, I refer to Markov perfect equilibrium simply as equilibrium.

3If there exists b such that pH ≤ V H (b) and pL ≤ V L ( b) then b accepts the offer that gives her the highest
payoff.
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Chapter 4

Perfectly Competitive Second-hand Market

In this chapter, we study vertical product differentiation in a durable goods market with

a perfectly competitive second-hand market. Buyers are allowed to trade the good with each

other in the second-hand market. The monopolist, however, is not allowed to enter this

market.1

4.1 Characterization of Dynamic Optimization

In this section, first, we represent the dynamic optimization problems of the buyers and the

monopolist. Then, we discuss the characteristics of equilibrium strategies of the monopolist.

The acceptance function V i (b) must be consistent with buyer b’s intertemporal optimiza-

tion which requires buyer b to be indifferent between purchasing the good today at the price

V i (b) and waiting one period to purchase it. Hence, V i (b) is derived from

f i (b) − V i (b) = ρ(f i (b) − ṕi) (4.1)

where ρ ≡ δ(1 − µ) and ṕi is the expected price of good i in the next period. Since f i(·)

is monotone and deviations of measure zero buyers do not affect the equilibrium, V i (·) is a

non-increasing left-continuous function.

Let xi denote the stock of the durable good i before trade and yi denote the stock of the

1All proofs of this section are relegated to the Appendix A.



durable good i after trade. The value function of the monopolist is R(xH , xL) and must satisfy

R (x) = max
yi∈[xi,1]

{
PH (y)

(
yH − xH

)
+ PL(y)(yL − xL) + δR ((1− µ) y)

}
(4.2)

where δ ≡ e−rz is the discount factor and P i(·) is the price of durable good i. The price

of the high quality good must be consistent with the incentive compatibility constraint of

the marginal buyer of the high quality good, and the price of the low quality good must be

consistent with the participation constraint of the marginal buyer of the low quality good.

Hence, when the stock of the goods after trade is (yH , yL), the price of the high quality good

is

PH (y) = V H
(
yH
)
− V L

(
yH
)

+ PL (y) , (4.3)

and the price of the low quality good is

PL (y) = V L(yH + yL) (4.4)

where V L(yH)− PL(y) is the payoff of buyer yH if she purchases the low quality good at the

price PL (y).

Let T (·) denote the argmax correspondence of the objective function. By the generalized

theorem of the maximum and the contraction mapping theorem, there exists a unique contin-

uous function R(·), and T (·) is a non-empty and compact valued correspondence.2 Moreover,

the supermodularity of the objective function implies that T (·) is non-decreasing. It follows

that there exists at most countable number of points for which T (·) is multi-valued. Even

though the monopolist is allowed to use behavioral strategies, we establish that

Proposition 1. The monopolist does not randomize along any equilibrium path and chooses

the minimum of the argmax correspondence with probability one unless it is the initial period.

Therefore, given a state (xH , xL), the equilibrium output choice of the monopolist is t(x) =

minT (x). Moreover, the output function, ti(·) : [0, 1− µ]× [0, 1− µ]→ R+, is nondecreasing

2See Ausubel and Deneckere (1989) for the generalized theorem of the maximum.
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since T (x) is a monotone correspondence.

An equilibrium is represented by {PH(·), PL(·), tH(·), tL(·), R(·)}. The structure of a sta-

tionary path is as follows. In the initial period, the monopolist selects prices: PH(y0) and

PL(y0). All buyers b ≤ yH0 purchase the high quality good and all buyers yH0 < b ≤ yH0 + yL0

purchase the low quality good.3 At the beginning of the next period, the stock of the high

quality good is xH1 = (1 − µ)yH0 and the stock of the low quality good is xL1 = (1 − µ)yL0 .

The monopolist selects prices, PH(y1) = PH(t(x1)) and PL(y1) = PL(t(x1)), and all buyers

b ≤ yH1 choose to hold the high quality good and all buyers yH1 < b ≤ yH1 + yL1 choose to hold

the low quality good. This continues until a steady state is reached. Once a steady state is

reached, the monopolist continues by selling to replacement demands.

In order to construct equilibria of this game, the solution method introduced by Deneckere

and Liang (2008) is followed. First, we prove the existence of a steady state in any equilibrium.

Then, we characterize all possible steady states. Finally, we derive all stationary paths that

reach a steady state by using backward induction from the steady state.

The analysis of this study focuses on the nontrivial case where b̂ θ > θ. Otherwise, the

static monopoly prices would be θqH and θqL.4 Since a durable goods monopolist who does

not have any commitment power can achieve this outcome, the unique stationary steady state

of this game when b̂θ < θ is the static monopoly outcome.5

4.2 Characterization of Steady States

In this section, first, we establish the existence of a steady state in any equilibrium. Then,

we characterize all possible steady states that may coexist.

Let a steady state (yHs , y
L
s ) be defined as the stock levels of durable goods satisfying tH((1−

µ)ys) = yHs and tL((1 − µ)ys) = yLs . We establish that any equilibrium has a corresponding

3If T (0, 0) is multi-valued, the monopolist may select the price randomly from P (T (0, 0)).

4Indeed, any price for the low quality good would be an equilibrium price as long as all buyers purchase the
high quality good.

5For the hairline case b̂θ = θ, one can use the limit of b̂θ > θ.

13



steady state.

Proposition 2. Any equilibrium has at least one steady state, and the steady state prices

satisfy PH
(
yHs , y

L
s

)
= fH

(
yHs
)
− fL

(
yHs
)

+ fL
(
yHs + yLs

)
and PL

(
yHs , y

L
s

)
= fL

(
yHs + yLs

)
.

The economic intuition behind the steady state prices is as follows. At a steady state

(yHs , y
L
s ), the marginal buyer of the high quality good is yHs and the marginal buyer of the

low quality good is yHs + yLs in each period. Buyer yHs + yLs is indifferent between today’s and

tomorrow’s offer for the low quality good when the price of the low quality good is fL(yHs +yLs ).

Similarly, buyer yHs is indifferent between today’s and tomorrow’s offer for the high quality good

when the price of the high quality good is fH(yHs ). However, when the price of the low quality

good is fL
(
yHs + yLs

)
, buyer yHs ’s net surplus from the low quality good is fL(yHs )−fL(yHs +yLs ).

Hence, in order to sell the high quality good to buyer yH , the monopolist has to leave an

information rent no less than fL(yHs ) − fL(yHs + yLs ) to the high type buyers. Therefore, at

the steady state, the price of the high quality good is fH(yHs ) − fL(yHs ) + fL(yHs + yLs ) and

the price of the low quality good is fL(yHs + yLs ).

Let us consider a market for a perfectly durable good served by a monopolist. The monopo-

list cannot credibly commit to a static monopoly output since he has an irresistible temptation

to cut the price to sell the good to the remaining buyers. Thus, in this setting, the static

monopoly output would never be a steady state. Deneckere and Liang (2008) point out that

when the good depreciates the monopolist may prefer serving to the replacement demand of

the high type buyers at a higher price rather than cutting the price in an attempt to increase

sales. They show that there exist three types of steady states: a Coase Conjecture, a monopoly,

and a reputational steady state.

When a monopolist produces two versions of a durable good, there exist five possible steady

states: (1, 0), (̂b, 0), (̂b, 1− b̂), (ŷH , 0), and (y̌H , 1− y̌H) where ŷH , y̌H ∈ (0, b̂). At the steady

state (1, 0), all buyers hold the high quality good after trade and the monopolist serves their

replacement demand in each period. This steady state is called the Coase Conjecture steady

state and the equilibrium having (1, 0) as the unique steady state is called the Coase Conjecture

equilibrium. At the steady state (̂b, 0), all high type buyers hold the high quality good after
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trade and the monopolist sells to the replacement demand of the high type buyers for the high

quality good in each period. At the steady state (̂b, 1− b̂), all high type buyers hold the high

quality good and all low type buyers hold the low quality good after trade, and the monopolist

serves the replacement demands in each period. In the one-period version of this game, due

to the assumption that b̂θ > θ, the monopolist sells the high quality good to the high type

buyers at the price θqH and sets the price of the low quality good high enough so that none of

the buyers purchase it. Hence, (̂b, 0) is called the static monopoly steady state and (̂b, 1− b̂) is

called the segmented monopoly steady state. The static monopoly steady state always coexists

with the segmented monopoly steady state. Depending on the magnitude of µ, the Coase

Conjecture steady state (1, 0) may coexist with the monopoly steady states. The equilibrium

with a monopoly steady state is called the monopoly equilibrium. Finally, the states (ŷH , 0)

and (y̌H , 1 − y̌H) are called reputational steady states and the equilibrium corresponds with

them is called the reputational equilibrium. At a reputational steady state, the monopolist

limits the production of the high quality good and sells it to some of the high type buyers.

The Coase Conjecture steady state (1, 0) always coexist with the reputational steady states.

These results are summarized by

Proposition 3. Let S denote the set of steady states. In any equilibrium one of the followings

holds:

1. S = {(1, 0)};

2. S = {(̂b, 1− b̂), (̂b, 0)} or S = {(̂b, 1− b̂), (̂b, 0), (1, 0)} or S = {(̂b, 1− b̂), (1, 0)};

3. S = {(ŷH , 0), (ŷH , 1− ŷH), (1, 0)} or S = {(y̌H , 1− y̌H), (1, 0)} where y̌H , ŷH ∈ (0, b̂).

The intuition behind Proposition 3 comes from the following two observation. First, given

the expectations of the buyers, some states cannot be a steady state as the monopolist can

profitably deviate from these states. Second, since the number of the steps in f i is two, if the

marginal buyer of the high quality good is a high type then the marginal buyer of the low

quality good can be either a high type or a low type, whereas if the marginal buyer of the
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high quality good is a low type, then the marginal buyer of the low quality good must be a

low type as well. Hence, at most three steady states can coexist in an equilibrium.

4.3 Characterization of Equilibria

In this section, we derive all possible equilibria and establish that the equilibrium of each

type is unique. Moreover, we analyze the effects of quality differentiation on each type of

equilibrium.

4.3.1 The Coase Conjecture Equilibrium

Consider equilibria with a unique steady state at which all buyers, after trade, hold the high

quality good. By conducting backward induction from the Coase Conjecture steady states, we

construct the stationary paths for all (xH , xL).

First, we describe stationary paths when stock of the high quality good is greater than

(1 − µ)̂b. Since the stock of the high quality good has to increase in each period in such

equilibria, when xH > (1 − µ)̂b, the marginal buyers are low types thereafter. The low type

buyers, anticipating that the monopolist will saturate the entire market with the high quality

good, do not accept any price greater than θqi for durable good i.6 Hence, in this case the

stationary paths are defined as follows. When none of the buyers hold the low quality good,

the monopolist sets the price of the high quality good as θqH and the price of the low quality

good as θqL. All buyers hold the high quality good after trade and the monopolist continues by

selling the high quality good to the replacement demand µ at the price θqH thereafter. When

some buyers hold the low quality good, if the stock of the low quality good is low enough, the

monopolist prefers selling the high quality good to buyers who do not currently hold any good.

Hence, the monopolist sets the price of the high quality good as θqH and the price of the low

quality good as θqL and continues by selling the high quality good to the replacement demand

6If buyer b ∈ (̂b, 1] is willing to pay more than θqi for durable good i, so is buyer b ∈ (̂b, b̂ + ε), since V i(.)
is non-increasing. This implies that b is expecting to make a capital gain by purchasing it. Namely, buyer b
expects that the price of good i will increase next period. However, since neither (̂b, 1− b̂) nor (̂b, 0) is a steady
state, this is not possible.
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µ at the price θqH . However, if the stock of the low quality good falls above this threshold, the

monopolist prefers selling the high quality good to all buyers. Due to an excess supply of the

low quality good in the second-hand market, the low quality good will be available for free.

Hence, the monopolist sets the price of the high quality good as θ(qH − qL).7 All buyers hold

the high quality good after trade, and the monopolist continues by selling the high quality

good to the replacement demand µ at the price θ∆q.

Second, we describe the stationary paths when stock of the high quality good is less

than (1 − µ)̂b. There exist four paths depending on the state of the low quality good.

On path 1, none of the buyers hold the low quality good. On path 2, the marginal buyer

of the low quality good is a high type. On path 3, the marginal buyer of the low qual-

ity good is a low type. On path 4, there exists an excess supply of the low quality good.

The sequence of states {(xHk,j , xLk,j)}
mj+1
k=2 for each path j = 1, . . . , 4 is constructed such that

when the state is (xHk,j , x
L
k,j), the monopolist is indifferent between bringing the next period’s

state to (xHk−1,j , x
L
k−1,j) by charging (pHk−1,j , p

L
k−1,j) and bringing the next period’s state to

(xHk−2,j , x
L
k−2,j) by charging (pHk−2,j , p

L
k−2,j). The sequence {(pHk,j , pLk,j)}

mj+1
k=0 is set such that

the incentive compatibility constraint of the marginal buyer of the high quality (4.3) and the

participation constraint of the marginal buyer of the low quality good (4.4) hold.

Figure 1 illustrates how states move towards the Coase Conjecture steady state. When

none of the buyers hold the low quality good, the movement is as follows. For yH ≤ y, the

stock of the high quality good after trade in the next period will be b̂. For yH > y, the

monopolist will penetrate the entire market with the high quality good in the next period

and reach the Coase Conjecture steady state, and continue by serving the high quality good

to the replacement demand of all buyers thereafter. When some buyers hold the low quality

good, the arrows indicate the direction of movement of the state at any (yH , yL) to the Coase

Conjecture steady state. Figure 1 also indicates that as the stock of the low quality good

increases, the real time that passes to reach the Coase Conjecture steady state increases as

well.

7For ease of exposition from now on qH − qL is referred as ∆q.
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Figure 4.1: The Coase Conjecture Equilibrium

Now, let us illustrate the movement of the high quality good towards the Coase Conjecture

steady state with its corresponding prices when some high type buyers hold the low quality

good. For expositional purposes, the monopolist is assumed to immediately penetrate the

market with the high quality good by charging θ∆q for the high quality good when xH ≥

(1−µ)̂b and xL > 0. If xH ∈ (xHk+2,2, x
H
k+1,2] for k ≥ 1, the monopolist sets the price of good i

as pik,2 so that after trade the stock of good i will be yik,2. If xH ∈ (xH1,2, 1−µ], the monopolist

sets the price of the high quality good as θ∆q to penetrate the entire market with the high

quality good. Then, all buyers will hold the high quality good and the low quality good will

be available for free. Figure 2 illustrates how the price and the stock of the high quality good

evolves along path 2. For ease of exposition yHk,2 is referred as yk and refer pHk,2 as pk. The

arrows indicate the direction of the movement of a state.
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Figure 4.2: Path 2

We establish that existence of a Coase Conjecture equilibrium requires that {xHk,j}
mj+1
k=0

must be strictly decreasing and must satisfy xHmj+1,j ≤ 0 < xHmj ,j . The set of parameters

supporting this condition is derived and it is proved that the equilibrium is unique.

Theorem 1. There exists at most one Coase Conjecture equilibrium if and only if µ < µ for

some µ ∈ (0, 1).

The Coase Conjecture equilibrium does not exist for sufficiently perishable goods. Because,

for large µ, rather than fully penetrating the market with the high quality good at the price

pH0,j , the monopolist would sell to the replacement demands µyH1,j and µyL1,j at the prices pH1,j

and pL1,j , respectively.

The differences among the paths with respect to the high quality good is illustrated to

analyze how the production of the low quality good affects the stock and the price of the

high quality good and to analyze whether the production of the low quality good helps the

monopolist maintain his market power. For ease of exposition yHk,j is referred as yk,j and pHk,j

is referred as pk,j .

First, we study the effect of the low quality good when the initial stock of the low quality

good is zero. We must compare path 1 on which none of the buyers hold the low quality good
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Figure 4.3: Path 1 vs Path 2

with path 2 on which the marginal buyer of the low quality good is a high type. Figure 3

illustrates these two paths. We observe that when some high types hold the low quality good,

the price of the high quality good diminishes. For all xH < (1 − µ)̂b, on path 2 the marginal

buyer of the low quality good is a high type. Hence, information rent cannot explain the price

difference between these two paths. However, while moving towards the steady state along

path 2, once all high type buyers hold the high quality good, the marginal buyer of the low

quality good becomes a low type. When some low type buyers hold the low quality good,

to make high type buyers hold the high quality good rather than the low quality good, the

monopolist has to leave some information rent to the high type buyers. Hence, the high type

buyers, anticipating that the monopolist will eventually lower the price of the high quality

good, are willing accept a price for the high quality good that is significantly lower than the

price when none of the buyers hold the low quality good. In addition to the price difference,

we also observe that when some high types hold the low quality good, the time elapses to reach

the Coase Conjecture steady state is longer.

Second, we study the effect of the low quality good when some high types hold the low

quality good. We must compare path 2 on which the marginal buyer of the low quality good
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Figure 4.4: Path 2 vs Path 3

is a high type with path 3 on which the marginal buyer of the low quality good is a low type.

Figure 4 illustrates these two paths. We, first, observe that the price of the high quality good

is lower on path 3. The reason is that on path 3 the monopolist has to leave some information

rent to the high type buyers to eliminate their incentives to buy the low quality good rather

than the high quality good. In addition to the price difference, we also observe that the time

elapses to reach the Coase Conjecture steady state is longer on path 3.

Last, we study the effect of the low quality good when there is an excess supply of the low

quality good. In this case, the low quality good is available for free. Since, the monopolist

does not make any profits from the low quality good when there is an excess supply of the

low quality good, on path 4 the stock of the high quality good does not depend on the stock

of the low quality good. Figure 5 illustrates path 1 and path 4. We can see that the stock of

the high quality good is the same on these two paths. Moreover, since the low quality good is

available for free on path 4, the information rent that the monopolist has to leave to the high

type buyers is greater than the information rent on path 3. Hence, on path 4 the price of the

high quality good is even lower.

When none of the buyers hold the low quality good, the monopolist fully penetrates the
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Figure 4.5: Path 1 vs Path 4

market by charging θqH for the high quality good. However, when some of the buyers hold

the low quality good, the monopolist either fully penetrates the market with the high quality

good at the price θ∆q or sells the high quality good to some of the low type buyers at the price

θqH and reaches the steady state gradually. Moreover, we observe from the figures that as the

stock of the low quality good increases, so does the real time that passes before the monopolist

reaches the Coase Conjecture steady state. It follows that the threshold depreciation rate

supporting the Coase Conjecture equilibrium must be smaller when xL is positive. Therefore,

Corollary 1. The domain of the parameters consistent with the Coase Conjecture equilibrium

is smaller when the monopolist can produce multiple goods that differ in quality.

The monopolist fully penetrates the entire market with the high quality good in mj periods

on path j. Hence, the real time that elapses until the market is fully penetrated with the high

quality good is mjz. We show that mj has a finite limit m̂j regardless of the state of the low

quality good. Therefore,

Corollary 2. In the Coase Conjecture equilibrium, the initial price of the high quality durable

good converges to the lowest buyer valuation θqH as the length of the time period between
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successive offers approaches zero.

We show that m̂1 = m̂4 = m̂ and m̂ < m̂j for j = 2, 3 where m̂ is the corresponding limit

of a durable goods monopolist selling a single version of the good. Additionally, we establish

that m̂j for j = 2, 3 increases with the state of the low quality good and decreases with the

quality difference between the versions of the good. Therefore,

Corollary 3. When the time period between successive price changes is arbitrarily small, as

the quality difference between two versions of the durable good increases, the real time that

elapses until the market is fully penetrated with the high quality good converges to m̂.

4.3.2 The Monopoly Equilibrium

Consider equilibria in which the monopolist credibly commits not to selling the high quality

good to low type buyers. The monopoly steady states of such equilibria are (̂b, 0) and (̂b, 1− b̂).

The necessary conditions for the existence of a monopoly equilibrium are as follows. First,

when the state before trade is ((1−µ)̂b, 0), the monopolist must prefer selling the high quality

good to the high type buyers’ replacement demand µb̂ at the price θqH forever to selling the

high quality good to buyers who do not hold the high quality good (1−(1 − µ)̂b) at the price

PH(1, 0) and continuing by selling the high quality good to all buyers’ replacement demand µ

at the price PH(1, 0) thereafter. If

µb̂θqH
1−δ ≥(1−(1− µ)̂b)PH(1, 0)+ δµ

1−δP
H(1, 0) (4.5)

holds, the monopolist never cuts the price of the high quality good to PH(1, 0) to serve the

high quality good to all buyers. Since PH(1, 0) ≤ θqH , (4.5) holds for µ ≥ (1−δ)(1−b̂)θ
b̂∆θ−δ(1−b̂)θ

≡ µst.

Second, when the state before trade is ((1− µ)̂b, 0), the monopolist must prefer selling the

high quality good to the high type buyers’ replacement demand µb̂ at the price θqH forever

to selling the high quality good to the high type buyers’ replacement demand µb̂ at the price

PH (̂b, 1−b̂) forever and selling the low quality good to the low type buyers 1−b̂ at the price

PL(̂b, 1−b̂) and continuing by selling the low quality good to their replacement demand µ(1−b̂)
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at the price PL(̂b, 1−b̂) thereafter. If

µb̂θqH
1−δ ≥

µb̂
1−δP

H (̂b, 1−b̂) + (1−b̂)PL(̂b, 1−b̂)+ δµ(1−b̂)
1−δ PL(̂b, 1−b̂) (4.6)

holds, the monopolist never cuts the price of the low quality good to PL(̂b, 1−b̂) in order to

serve the low quality good to the low type buyers. Since PH (̂b, 1−b̂) ≤ θqH −θqL+PL(̂b, 1−b̂)

and PL(̂b, 1−b̂) ≤ θqL, (4.6) holds if µ ≥ µst. Therefore, the monopolist does not deviate from

the static monopoly steady state (̂b, 0) when µ ≥ µst.

Third, when the state before trade is ((1− µ)̂b, (1− µ)(1−b̂)), the monopolist must prefer

selling the high quality good to the high type buyers’ replacement demand µb̂ at the price

θqH − θqL + θqL and selling the low quality good to the low type buyers’ replacement demand

µ(1− b̂) at the price θqL forever to penetrating the entire market with the high quality good

by charging PH(1, (1− µ)(1−b̂)) and continuing by selling the high quality good to all buyers’

replacement demand µ at the price PH(1, xL) thereafter. If

µb̂(θqH−θqL+θqL)
1−δ + µ(1−b̂)θqL

1−δ ≥(1−(1− µ)̂b)PH(1, xL)+ δµ
1−δP

H(1, xL) (4.7)

holds, the monopolist never cuts the price of the high quality good to PH(1, xL) to serve

the high quality good to all buyers. Since PH(1, xL) ≤ θ∆q for all xL > 0, (4.7) holds

if µ ≥ (1−δ)(1−b̂)θ∆q
b̂∆θ∆q−δ(1−b̂)θ∆q+θqL

≡ µsg. Therefore, the monopolist does not deviate from the

segmented monopoly steady state (̂b, 1−b̂) for µ ≥ µsg. Moreover, since PH(1, 0) > PH(1, xL)

for all xL > 0, µsg < µst must hold.

It is established that the necessary condition for the existence of a monopoly equilibrium,

µ ≥ µsg, is also sufficient for the existence and the uniqueness of the equilibrium.

Theorem 2. There exists at most one monopoly equilibrium iff µ ≥ µsg. The monopoly steady

states of such equilibrium are {(̂b, 1−b̂)} for µsg ≤ µ < µst and {(̂b, 0), (̂b, 1−b̂)} for µ ≥ µst.

In such an equilibrium, for µ ≥ µst the monopolist initially charges θqH for the high quality

good and charges a price for the low quality good high enough that none of the buyers purchase

it. Hence, from the initial state (0, 0) the monopolist brings the state to (̂b, 0) by selling the
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high quality good to all high types. He then continues to charge the static monopoly prices

to serve the replacement demand of the high type buyers for the high quality good. For

µsg ≤ µ < µst the monopolist initially charges θqH − θqL + θqL for the high quality good and

θqL for the low quality good. Hence, from the initial state (0, 0) the monopolist brings the

state to (̂b, 1− b̂) by selling the high quality good to all high types and selling the low quality

good to all low types. He then continues to charge the segmented monopoly prices to serve

the replacement demands.

If the monopolist deviates from a monopoly steady state by selling more of the high quality

good in an attempt to increase profits, the movement of the states in a monopoly equilibrium

is as follows. The sequence of states {(x̃Hk,j , x̃Lk,j)}
mj+1
k=0 is constructed such that when that

state is (x̃Hk,j , x̃
L
k,j), the monopolist is indifferent between bringing the next period’s state to

(x̃Hk−1,j , x̃
L
k−1,j) by charging (p̃Hk−1,j , p̃

L
k−1,j) and staying at (x̃Hk,j , x̃

L
k,j) by charging (p̃Hk,j , p̃

L
k,j)

forever. There exist three paths depending on the state of the low quality good. On all paths,

the initial value of the state of the high quality good is x̃H0,j = (1 − µ)̂b and its end value is

x̃Hmj+1,j ≤ 1− µ.

On path 1, none of the buyers hold the low quality good. For all xH ≤ x̃Hm1+1,1, path 1

reaches the static monopoly steady state. On path 2, some buyers hold the low quality good.

For all xH ≤ x̃Hm2+1,2, path 2 reaches the segmented monopoly steady state. Since the low

type buyers anticipate that the price of the low quality good will be eventually equal to θqL,

the monopolist cannot charge more than θqL for the low quality good. Hence, p̃Lk,2 = θqL for

all k. On path 3, there exists an excess supply of the low quality good. Hence, p̃Lk,3 = 0 for all

k. For all xH ≤ x̃Hm3+1,3, path 3 reaches the segmented monopoly steady state.

If the good is sufficiently perishable, the monopolist will return to a monopoly steady state

from any state of the high quality good above (1 − µ)̂b. Hence, we have x̃Hmj+1,j = 1 − µ.

Otherwise, the Coase Conjecture steady state coexists with monopoly steady states. In this

case, we have x̃Hmj+1,j < 1 − µ. Hence, when the state is (x̃Hmj+1,j , x̃
L
mj+1,j), the monopolist

is indifferent between bringing the state to (ỹHmj ,j , ỹ
L
mj ,j

) and fully penetrating the market by

selling the high quality good to all buyers and continuing by serving the replacement demand µ

for the high quality good thereafter. It follows that the monopolist strictly prefers penetrating
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Figure 4.6: The Monopoly Equilibrium I

the market with the high quality good when the state of the high quality good is greater than

x̃Hmj+1,j .

When the state is moving towards a monopoly steady state, low type buyers purchase

the high quality good at a price exceeding their valuation, in order to make capital gains by

reselling it in the second-hand market at a later date. If none of the buyers hold the low

quality good, the steady state of the market will be (̂b, 0); otherwise it will be (̂b, 1− b̂).

Figure 6 illustrates how states move to a monopoly steady state when the good is sufficiently

perishable. The arrows indicate the direction of movement of the state at any (yH , yL). When

none of the buyers hold the low quality good, the states move towards the static monopoly

steady state from any (yH , 0) as follows. For yH ≤ y, the stock of the high quality good after

trade in the next period will be b̂ and the monopolist will continue by selling the high quality
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Figure 4.7: The Monopoly Equilibrium II

good to the replacement demand of the high type buyers thereafter. For yH > y, the stock of

the high quality good after trade in the next period will be y. When some buyers hold the low

quality good, the states move towards the segmented monopoly steady state along the arrows.

Figure 7 illustrates how states move to the a monopoly steady state when the good is

not sufficiently perishable. The arrows indicate the direction of movement of the state at

any (yH , yL). If yH is low, the states move towards a monopoly steady state, otherwise the

states move towards the Coase Conjecture steady state. When none of the buyers hold the low

quality good, the states move as follows. For yH ≤ y the stock of the high quality good after

trade in the next period will be b̂ and the monopolist will continue by selling the high quality

good to replacement demand of the high type buyers thereafter. For y < yH ≤ y, the stock of

the high quality good after trade in the next period will be y. For yH > y, the stock of the
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Figure 4.8: The Monopoly Equilibrium

high quality good after trade in the next period will be 1 and the monopolist will continue

by selling the high quality good to replacement demand of all buyers thereafter. When some

buyers hold the low quality good, the states move towards a steady state along the arrows.

Figure 8 illustrates the movement of the high quality good towards a monopoly steady state

with its corresponding prices. For expositional purposes only path 1 and path 2 are studied,

and when the monopolist moves towards the Coase Conjecture steady state, the monopolist is

assumed to immediately penetrate the market with the high quality good by charging θ∆q for

the high quality good. For ease of exposition ỹHk,j is referred as yk,j and p̃Hk,j is referred as pk,j .

On the left graph the state moves back to a monopoly steady state from any state, whereas

on the right graph the state moves towards the Coase Conjecture steady state when the stock

of the high quality good is high. The arrows indicate the direction of the movement. We can

observe from these graphs that production of a low quality good lowers the price of the high

quality good in a monopoly equilibrium.

Let µs (δ) be the threshold depreciation rate derived in Deneckere and Liang (2008). When

a monopolist produces a single version of a durable good, a monopoly equilibrium exists for

all µ > µs (δ). It is established that

Corollary 4. The threshold depreciation rate supporting the static monopoly steady state µst

is a function of δ such that µst(δ) = µs (δ) holds for all δ.

Since the segmented monopoly steady state is supported for µsg ≤ µ < µst, the set of

parameters consistent with the monopoly equilibrium expands when a monopolist produces a
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low quality good as well as a high quality good.

Now, consider the structure of the stationary path as the time period between successive

offers of the monopolist diminishes. For xH > (1 − µ)̂b, the state either immediately moves

to the Coase Conjecture steady state or slowly goes back to a monopoly steady state. It is

established that the rate at which a monopoly steady state is reached is independent of the

state of the low quality good and that

Corollary 5. As the length of the time period between successive price changes approaches

zero, the state of the high quality good moves towards a monopoly steady state at the rate of

ẋH = λxH

(
1− θ

θ

(
yH

b̂

)λ+r
λ

)
for xH > (1− µ)̂b.

4.3.3 The Reputational Equilibrium

Consider equilibria in which the monopolist establishes a reputation by cutting the production

of the high quality good. The stock of the high quality good at a reputational steady state

falls short of the static monopoly output of the high quality good. The reputational steady

states of such equilibria are (y̌H , 1− y̌H) and (ŷH , 0) where ŷH , y̌H ∈ (0, b̂).

If µ is sufficiently low, from the initial state (0, 0), the monopolist will immediately bring

the state to (y̌H , 1− y̌H) by charging θqH−θqL+θqL for the high quality good and θqL for the

low quality good and continue by selling to the replacement demand µy̌H for the high quality

good at the price θqH−θqL+θqL and to the replacement demand µ(1− y̌H) for the low quality

good at the price θqL thereafter.

If µ falls above this threshold, from the initial state (0, 0), the monopolist will immediately

bring the state to (ŷH , 0) by charging θqH for the high quality good and charging a price no

less than θqL for the low quality good and continue by selling to the replacement demand µŷH

for the high quality good at the price θqH thereafter.

If the monopolist penetrates the market by selling more of the high quality good, he loses

his reputation for pricing high. Since buyers expect that the future prices will be lower, they

are reluctant to pay a high price for the high quality good. Hence, the monopolist has to

drastically lower the price of the high quality good, and the state slowly moves to the Coase

Conjecture steady state (1, 0). Therefore, upon deviation from a reputational steady state by
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increasing the stock of the high quality good, the game follows the Coase Conjecture path.

When the steady state is (ŷH , 0), if the monopolist penetrates the market by selling more

of the low quality good, buyers expect that the monopolist will increase the sales of the low

quality good and hence, they do not accept any price for the low quality good significantly

greater than θqL. Hence, the monopolist immediately brings the state to (ŷH , 1 − ŷH) by

charging θqH − θqL + θqL for the high quality good and charging θqL for the low quality good

and continues by selling to the replacement demands thereafter.

Theorem 3. There exists a unique reputational equilibrium if and only if µsg < µ ≤ µ.

The reputational steady states of such equilibrium are {(y̌H , 1 − y̌H)} for µsg < µ ≤ µ′ and

{(ŷH , 0), (ŷH , 1− ŷH)} for µ′ < µ ≤ µ where µ′ ≥ µst.

The existence of the reputational equilibrium necessitates existence of the Coase Conjecture

equilibrium and the monopoly equilibrium. The intuition behind this is as follows. If the Coase

Conjecture equilibrium does not exist, neither does the reputational equilibrium. Because when

the Coase Conjecture equilibrium does not exist, the steady state stock of the high quality good

falls short of a certain level below which a path that the monopolist follows upon deviation

from a reputational steady state cannot be constructed. Moreover, the monopoly equilibrium

does not exist when the monopolist cannot resist penetrating the market further in an attempt

to increase profits. Since, the monopolist makes less profits by limiting the production of the

high quality good, when the monopoly equilibrium does not exist, neither does the reputational

equilibrium.

The structure of the reputational equilibrium, when the time period between successive

price changes is infinitesimal is studied and it is established that

Corollary 6. Let y̌H = θ

θ
and ŷH = (λ+r)θ

λθ+rθ
. As the length of the time period between successive

price changes approaches zero, the reputational steady state converges to (y̌H , 1 − y̌H) for

µ ∈ (µsg, µst], and converges to (ŷH , 0) for µst < µ ≤ µ.
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4.4 Coexistence of Equilibria: Single Good vs Multiple Goods

In this section, first, we study an example to analyze how production of a low quality product

affects the existence and the uniqueness of each type of equilibrium. Then, we characterize

the set of parameters supporting each type of equilibrium, when the time period between

successive price changes is arbitrarily small.

Let µs (δ) and µs (δ) be the threshold depreciation rates when the monopolist produces a

single version of a durable good.8 It is established that

Proposition 4. The threshold depreciation rates are functions of δ such that µsg (0) < µ (0) <

µs (0) = µs (0), and limδ→1 µ
sg (δ) = limδ→1 µ

st (δ) = 0 and limδ→1 µ (δ) = limδ→1 µ
s (δ).

We study an example to identify how production of a low quality good affects the param-

eters consistent with each type of equilibrium. Consistent with the example in Deneckere and

Liang (2008), we assume that θ = 0.6 θ, b̂ = 0.7, and qH = 3 qL.

First, let us study Figure 9 which illustrates the range of (µ, δ) where each type of equi-

librium exists when the monopolist produces only a high quality good. As discussed in detail

by Deneckere and Liang (2008), for µ < µs (δ) the Coase Conjecture equilibrium is the unique

equilibrium, for µs (δ) ≤ µ ≤ µs (δ) all types of equilibrium coexist, and for µ > µs (δ), the

monopoly equilibrium is the unique equilibrium. The intuition behind this result is as follows.

As depreciation factor µ increases, profits from replacement sales increase. Hence, rather than

penetrating the market further, the monopolist prefers serving replacement demands.

Second, let us study Figure 10 which illustrates the range of (µ, δ) supporting each type of

equilibrium when the monopolist produces a low quality good as well as the high quality good.

For expositional purposes, we refer µsg (δ) as µ (δ). We can observe that with multiple goods

differ in quality, the range of (µ, δ) consistent the Coase Conjecture equilibrium is smaller and

the range of (µ, δ) consistent with the monopoly equilibrium is larger. The economic intuition

behind this result is as follows. For µ (δ) ≤ µ < µs (δ), the Coase Conjecture equilibrium

does not exist when the monopolist produces multiple goods, since the depreciation rate is

8See Deneckere and Liang (2008) for details.
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Figure 4.9: Support of Each Type of Equilibrium: Single Good

high enough so that when the state is (̂b, 1− b̂), the monopolist prefers selling to replacement

demands rather than fully penetrating the market with the high quality good. Moreover, for

µ (δ) < µ ≤ µs (δ), a monopoly equilibrium exists when the monopolist produces multiple

goods because for a given value of δ, µ ∈ (µ (δ) , µs (δ)] supports the segmented monopoly

steady state but not the static monopoly steady state.

Figure 10 also helps us identify the structure of equilibria when the monopolist can adjust

the prices frequently. As the length of the time period diminishes, (µ, δ) converges to (0, 1)

for all r > 0 and λ < ∞. Since µ(δ) = 1 − δ
λ
r , (µ(δ), δ) lies below (µ(δ), δ) when λ

r is small.

Moreover, when the length of the time period between successive offers of the monopolist is ar-

bitrarily small, the cutoff value λ0 below which the Coase Conjecture equilibrium is the unique
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Figure 4.10: Support of Each Type of Equilibrium: Multiple Goods

equilibrium is λ0 = r(1−b̂)θ∆q
(̂bθ−θ)∆q+θqL

, whereas the corresponding threshold when the monopolist

produces a single version of the good is λs0 = r(1−b̂)θ
(̂bθ−θ)

. Therefore,

Corollary 7. (i) Let λ0 = r(1−b̂)θ∆q
(̂bθ−θ)∆q+θqL

. As the length of the time interval between successive

offers of the monopolist converges to zero, a Coase Conjecture equilibrium exists for all λ <∞.

When λ < λ0, the Coase Conjecture equilibrium is the unique equilibrium. When λ ≥ λ0, all

three types of equilibrium coexist.

(ii) Let λs0 = r(1−b̂)θ
(̂bθ−θ)

. When the monopolist produces single version of the good, as the

length of the time interval between successive offers of the monopolist converges to zero, a

Coase Conjecture equilibrium exists for all λ < ∞. When λ < λs0, the Coase Conjecture

equilibrium is the unique equilibrium. When λ ≥ λs0, all three types of equilibrium coexist.
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Hence, since λ0 < λs0, it is concluded that for all z ≥ 0, the monopoly equilibrium is more

likely to occur, when the monopolist offers multiple goods differ in quality. For example, when

θ = 0.6 θ, b̂ = 0.7, qH = 3 qL, and δ = 0.60, the threshold depreciation rates are µ = 0.15,

µ = 0.41, and µs = 0.42, µs = 0.64. Therefore, if the monopolist only produces the high

quality good, the monopoly equilibrium exists when the expected life time is less than 3 years,

and is the unique equilibrium when the expected life time is less than 1 year. However, if

the monopolist produces the low quality good as well as the high quality good, the monopoly

equilibrium exists when the expected life time is less than 6 years, and is the unique equilibrium

when it is less than 2 years.
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Chapter 5

Buybacks

In this chapter, we study vertical product differentiation in a durable goods market when

the monopolist is allowed to buy the goods back from previous buyers.1

5.1 Characterization of the Dynamic Optimization

In this section, first, we represent the dynamic optimization problems of the buyers and the

monopolist. Then, we discuss the characteristics of equilibrium strategies of the monopolist.

First, let us provide the first result to help us characterize the optimization problem. There

are two numbers βH and βL summarizing the actions of the previous buyers in a stationary

equilibrium.

Proposition 5. In any stationary equilibrium, for any current price p =
(
pH , pL

)
, there exist

cutoff indices βH (p) and βL (p) with βH (p) < βL (p) such that after trade, every buyer with

index not exceeding βH (p) holds a high quality good, every buyer with index between βH (p)

and βL (p) holds a low quality good, and every buyer with index greater than βL (p) holds none

of the goods and prefers waiting for the next period’s offer.

Hence, a buyer’s strategy in a stationary equilibrium is described by non-increasing left-

continuous functions2, PH(·) and PL(·), with buyer b choosing to hold a high quality good (a

1All proofs of this section are relegated to the Appendix B.

2Since we restrict our attention to stationary equilibria in which bilateral deviations of measure zero buyers
does not change actions of the agents, we can assume that acceptance functions are left continuous.



low quality good) in the current period if and only if the current price of the high quality good

satisfies pH ≤ PH (b) (pL ≤ PL (b)).3

Let xi denote the stock of the durable good with quality i before trade and let V
(
xH , xL

)
denote the monopolist’s net present value of profits. Therefore, we have

V
(
xH , xL

)
= max

yH ,yL≥0
yH+yL∈[0,1]

 ℘H
(
yH , yL

) (
yH − xH

)
+ ℘L

(
yH , yL

) (
yL − xL

)
+δV

(
(1− µ) yH , (1− µ) yL

)


where δ = e−rz represents the discount factor and ℘H and ℘L stand for the market price of

the high quality good and the market price of the low quality good, respectively. The price of

the high quality good satisfies the incentive compatibility constraint of the marginal high type

buyer. Hence, we must have

℘H
(
yH , yL

)
≤ PH

(
yH
)
− fL

(
yH
)

+ ℘L
(
yH , yL

)
where fL

(
yH
)
− ℘L

(
yH , yL

)
is the surplus of buyer yH , purchasing the low quality good.

Let T (·) denote the argmax correspondence of the objective function. By the general-

ized theorem of the maximum (Ausubel and Deneckere (1989)) and the contraction mapping

theorem, there exists a unique continuous function V (·), and T (·) is a non-empty and com-

pact valued correspondence. Moreover, supermodularity of the objective function implies

that T (·) is non-decreasing. The stock of the high quality good and the stock of the low

quality good after trade are represented by tH
(
xH , xL

)
and tL

(
xH , xL

)
, respectively, where(

tH
(
xH , xL

)
, tL
(
xH , xL

))
∈ T

(
xH , xL

)
. The acceptance function P i (b) i = H,L is derived

from buyer b’s optimization problem. Hence, PH(·) and PL(·) should satisfy the arbitrage

equations of the buyers,

fH
(
yH
)
− PH

(
yH
)

= ρ
(
fH
(
yH
)
− PH

(
tH(·)

))
3If there exists b such that pH ≤ PH (b) and pL ≤ PL ( b) then b accepts the offer that gives her the highest

payoff.
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and

fL
(
yH + yL

)
− PL

(
yH + yL

)
= ρ

(
fL
(
yH + yL

)
− PL

(
tH(·) + tL(·)

))
where ρ = δ (1− µ) and ti(·) = ti

(
(1− µ) yH , (1− µ) yL

)
, i = H,L.

Since T (·) is a non-decreasing compact correspondence, there exist at most countable num-

ber of points for which it is multi-valued. The following lemma shows that the monopolist

does not gain from randomization.

Proposition 6. The monopolist does not randomize along any stationary equilibrium path

and chooses the minimum element of the argmax correspondence with probability 1 unless it is

the initial period.

Therefore, given the state variables,
(
xH , xL

)
, the monopolist chooses minT

(
xH , xL

)
un-

less it is the initial period which implies that the output function ti(·) : [0, 1− µ]× [0, 1− µ]→

R+ for all i = H,L is nondecreasing. Since T (·) is upper-hemicontinuous and monotone, ti(·)

is left-continuous as well.

A stationary equilibrium is represented by
{
PH(·), PL(·), R(·), tH(·), tL(·)

}
. The structure

of a stationary path is as follows. In the initial period, the monopolist selects prices: for the

high quality good, ℘H
(
yH0 , y

L
0

)
, and for the low quality good, ℘L

(
yH0 + yL0

)
. All buyers b ≤ yH0

purchase the high quality good and all buyers yH0 < b ≤ yH0 + yL0 purchase the low quality

good.4 At the beginning of the next period, a stock of high quality good is xH1 = (1− µ) yH0

and the stock of low quality good is xL1 = (1− µ) yL0 . In period 2 the game is repeated and all

buyers b ≤ yH1 choose to hold the high quality good and all buyers yH1 < b ≤ yH1 +yL1 choose to

hold the low quality good. This continues until a steady state is reached. The market prices

are derived from acceptance functions, and the price of the high quality good should satisfy

the incentive compatibility constraint. We therefore have

℘H
(
yHi , y

L
i

)
= PH

(
yHi
)
− fL

(
yHi
)

+ ℘L
(
yHi , y

L
i

)
and

4If T (0, 0) is multi-valued, the monopolist may select randomly.
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℘L
(
yHi + yLi

)
= PL

(
yHi + yLi

)
where PH

(
yH0
)

= PH
(
tH (0, 0)

)
and PL

(
yH0 + yL0

)
= PL

(
tH (0, 0) + tL (0, 0)

)
, and PH

(
yHi
)

=

PH
(
tH
(
xHi , x

L
i

))
and PL

(
yHi + yLi

)
= PL

(
tH
(
xHi , x

L
i

)
+ tL

(
xHi , x

L
i

))
for all i = 1, 2, . . ..

To construct the stationary equilibria, we follow the solution method introduced by De-

neckere and Liang (2008). First, we prove the existence of a steady state in any stationary

equilibrium. Then, we characterize all possible steady states. Finally, we derive the stationary

path that reaches a steady state by using backward induction from the steady state.

5.2 Characterization of Steady States

In this section, after proving the existence of a steady state for any stationary equilibrium, we

characterize all possible steady states that may coexist.

Let a steady state
(
yHs , y

L
s

)
be defined as stock levels of the durable goods after trade

satisfying tH
(
(1− µ) yHs , (1− µ) yLs

)
= yHs and tL

(
(1− µ) yHs , (1− µ) yLs

)
= yLs . The follow-

ing proposition establishes the existence of a steady state by showing that for any stationary

equilibrium there exists at least one corresponding steady state.

Proposition 7. Any stationary equilibrium has at least one steady state. That is, there exists

(yH , yH) such that

tH
(
(1− µ) yH , (1− µ) yL

)
= yH

and

tL
(
(1− µ) yH , (1− µ) yL

)
= yL

where yH ∈ (0, 1], yH + yL ≤ 1. Moreover, the steady state prices satisfy

℘H
(
yH , yL

)
= fH

(
yH
)
− fL

(
yH
)

+ fL
(
yH + yL

)
and

℘L
(
yH , yL

)
= fL

(
yH + yL

)
.
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The steady state prices are derived from marginal buyers’ arbitrage equations and the

incentive compatibility condition. When the steady state stock levels are yHs and yLs for the

high and the low quality goods, respectively, then in each period the marginal buyer of the

high quality good is yHs and the marginal buyer of the low quality good is yHs + yLs . Buyer

yHs is indifferent between today’s and tomorrow’s offer for the high quality good when the

price of the high quality good is fH
(
yHs
)
. Similarly, buyer yHs + yLs is indifferent between

today’s and tomorrow’s offer for the low quality good when the price of the low quality good

is fL
(
yHs + yLs

)
. However, when the price of the low quality good is fL

(
yHs + yLs

)
, buyer

yHs ’s net surplus from the low quality good is fL
(
yHs
)
− fL

(
yHs + yLs

)
. Therefore, to sell the

high quality good to buyer yH , the monopolist has to leave information rent no less than

fL
(
yHs
)
− fL

(
yHs + yLs

)
. Therefore, at the steady state, the price of the high quality good is

fH
(
yHs
)
− fL

(
yHs
)

+ fL
(
yHs + yLs

)
and the price of the low quality good is fL

(
yHs + yLs

)
.

The analysis of this study focuses on the nontrivial case where b̂ θ > θ. Otherwise, the

static monopoly prices would be θqH and θqL
5, and a durable goods monopolist who does

not have any commitment power can achieve this outcome. This result follows from Lemma

3 which shows that neither version’s price is less than the lowest reservation price for that

version of the durable good.6

The seller never charges a price less than θqH for the high quality good and a price less

than θqL for the low quality good.

Proposition 8. Since the unique stationary steady state of this game when b̂θ < θ is the static

monopoly outcome, we restrict our attention to b̂θ > θ.7

The result that there always exists a steady state associated with any stationary equilib-

rium helps us conduct backward induction from each steady state in order to construct the

corresponding stationary equilibria. To establish it we first need to derive all possible steady

states.

5Indeed, any price for the low quality good would be an equilibrium price as long as all buyers purchase the
high quality good.

6This result is also established by Fudenberg, Levine and Tirole’s (1985) Lemma 2 for the single good case.

7For the hairline case b̂θ = θ, we can use the limit of b̂θ > θ.
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Let us consider a market for a perfectly durable good served by a monopolist. The monopo-

list cannot credibly commit to a static monopoly output since he has an irresistible temptation

to cut the price to sell to the remaining buyers. Thus, in this setting, the static monopoly

output would never be a steady state. Deneckere and Liang (2008) points out that when the

good depreciates the monopolist may prefer selling to the replacement demand of the high

type buyers at a higher price rather than cutting the price in an attempt to increase the sales.

They show that there exist three types of steady states: a Coase Conjecture, a monopoly,

and a reputational steady state. If the monopolist moves the market to a state by selling the

good to all buyers and continues fulfilling the replacement demand then the state is called the

Coase Conjecture steady state. The monopoly steady state is the one in which the monopolist

preserves his market power by selling to the high type buyers and fulfilling their replacement

demand forever. In the reputational steady state, the monopolist cuts the production and sells

the good to some of the high type buyers.

Despite the similarity with the results of Deneckere and Liang (2008), we show that pro-

duction of a low-end durable good necessitates existence of other steady states. We establish

that there exist five possible steady states: (1, 0),
(
b̂, 0
)

,
(
b̂, 1− b̂

)
,
(
ỳH , ỳL

)
,
(
ỳH , 1− ỳH

)
where ỳH ∈

(
0, b̂
)

and ỳL ∈
[
0, b̂− ỳH

]
. If the steady state is (1, 0) then all buyers hold the

high quality good after trade and the monopolist serves their replacement demand in each

period. We call (1, 0) the Coase Conjecture steady state and call the equilibrium having (1, 0)

as the unique steady state the Coase Conjecture equilibrium. We call
(
b̂, 0
)

the standard

monopoly steady state. At such a steady state, after trade all high type buyers hold the high

quality good and the monopolist sells to the replacement demand of the high type buyers for

the high quality good forever. At the standard monopoly steady state the price of the low

quality good is set sufficiently high so that none of the buyers purchases it. We call
(
b̂, 1− b̂

)
the segmented monopoly steady state. At the segmented monopoly steady state, after trade all

high type buyers hold the high quality good, all low type buyers hold the low quality good,

and the monopolist serves the replacement demands in each period. The segmented monopoly

steady state
(
b̂, 1− b̂

)
always coexists with the standard monopoly steady state

(
b̂, 0
)

. De-

pending on the magnitude of the depreciation rate, µ, we may observe the Coase Conjecture
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steady state (1, 0) with
(
b̂, 0
)

and
(
b̂, 1− b̂

)
as well. We call an equilibrium with the standard

and the segmented monopoly steady states the monopoly equilibrium. We call
(
ỳH , ỳL

)
and(

ỳH , 1− ỳH
)

reputational steady states and the corresponding equilibrium the reputational

equilibrium. At a reputational steady state, the monopolist limits the production of the high

quality good and sells it to some of the high type buyers. At the first reputational steady

state, after trade some of the high type buyers hold the high quality good and some of them

hold the low quality good whereas at the second steady state, while some high type buyers

hold the high quality good, the rest of the buyers holds the low quality good. The steady

states
(
ỳH , 1− ỳH

)
and (1, 0) always coexist with

(
ỳH , ỳL

)
. The result is established by the

following.

Proposition 9. Let S denote the set of steady states. In any stationary equilibrium one of

the followings hold:

1. S = {(1, 0)} ;

2. S =
{(
b̂, 0
)
,
(
b̂, 1− b̂

)}
or S =

{(
b̂, 0
)
,
(
b̂, 1− b̂

)
, (1, 0)

}
;

3. S =
{(
ỳH , 1− ỳH

)
, (1, 0)

}
or S =

{(
ỳH , ỳL

)
,
(
ỳH , 1− ỳH

)
, (1, 0)

}
where ỳH ∈

(
0, b̂
)

and ỳL ∈
[
0, b̂− ỳH

]
.

The intuition behind this comes from the following two casual observation. First, given

the expectations of the buyers, some of the states cannot be a steady state as the monopolist

can profitably deviate from these states. Additionally, since the number of the steps in f i is

two, at most three steady states can coexist in an equilibrium.8

5.3 Characterization of Stationary Equilibria

In this section, we derive stationary equilibria for a given demand curve. Similar to Deneckere

and Liang (2008), there exist three types of equilibria: a Coase Conjecture equilibrium, a

8If the marginal buyer of the high quality good is high type, then the marginal buyer of the low quality good
can be either high type or low type. However, if the marginal buyer of the high quality good is low type, then
the marginal buyer of the low quality good must be low type as well.
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monopoly equilibrium and a reputational equilibrium. We show the uniqueness of the equilib-

rium of each type, and analyze the effects of quality differentiation on each type of equilibrium.

5.3.1 The Coase Conjecture Equilibrium

We characterize equilibria with a unique steady state at which all buyers, after trade, hold the

high quality good.9

We now describe the derivation of the stationary path that leads us to the steady state (1, 0)

from any state. In such equilibria, since the low type buyers anticipate that the monopolist

saturates the entire market with the high quality good eventually, they are reluctant to pay

more than their reservation price for the durable goods. Hence, for any buyer b ∈
(
b̂, 1
]
, the

acceptance price of the high quality good is θqH and the acceptance price of the low quality

good is θqL.10 Thus, the stationary path that reaches (1, 0) is immediately defined for all xH ≥

(1− µ) b̂ and all xL. To construct the stationary path for xH < (1− µ) b̂, we define a sequence

of states
{(
xHk , x

L
k

)}m+1

k=2
such that when the state is

(
xHk , x

L
k

)
, the monopolist is indifferent

between
(
yHk−1, y

L
k−1

)
with

(
pHk−1, p

L
k−1

)
and

(
yHk−2, y

L
k−2

)
with

(
pHk−2, p

L
k−2

)
where xik represents

the stock of the durable good with quality i before trade in period k+1 and yik =
xik

1−µ represents

the stock of the durable good with quality i after trade in period k, i = H,L. Given the state

of the market, the seller serves either the high type buyers or all buyers. These two possible

cases are represented by
{(
xHk , (1− µ) b̂− xHk

)}m′+1

k=2
and

{(
x̂Hk , 1− µ− x̂Hk

)}m+1

k=2
. On the

path
{(
xHk , (1− µ) b̂− xHk

)}m′+1

k=2
, the seller serves only the high type buyers until the steady

state is reached. Some of the high type buyers hold the high quality good and the rest of

them holds the low quality good. While moving towards the steady state, the monopolist

buys the low quality good gradually and sells the high quality good instead. On the path

9One should observe that selling only the low quality good can never be an equilibrium, since the monopolist
would be strictly better off by buying all low quality good back and selling the high quality good instead.

10If the acceptance price of a buyer b ∈
(
b̂, 1
]

for the good with quality i was greater than θqi then the

acceptance price of buyer b ∈
(
b̂, b̂+ ε

)
would be greater than θqi, since P i (.) is non-increasing. This would

imply that b is expecting to make a capital gain by purchasing it. Namely, buyer b would expect that the price

of the good with quality i will increase next period. However, since neither
(
b̂, 1− b̂

)
nor

(
b̂, 0
)

is a steady

state, this is not possible.
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{(
x̂Hk , 1− µ− x̂Hk

)}m+1

k=2
, the seller serves some high type buyers with the high quality good

and fulfills the rest of the market with the low quality good. Until the steady state is reached,

all low type buyers hold the low quality good and the quality of the good that they hold is

upgraded once the steady state is reached. Upon reaching the steady state, the monopolist

sells to the replacement demand of all buyers for the high quality good thereafter. The stock

of the low quality good determines which path that the monopolist follows. If the stock of the

low quality good before trade is sufficiently low then the seller prefers buying all excess low

quality good back immediately and serving only the high type buyers until the steady state

is reached. Otherwise, in addition to selling the high quality good to some of the high type

buyers, the monopolist would like to fulfill the rest of the market with the low quality good.

The market prices depend on which path the monopolist follows. On the first path, the

marginal buyer of each version of the good is high type. The market prices in period k, pHk

and pLk , are set such that a high type buyer is indifferent between purchasing the good with

quality i at pik today and waiting one more period to purchase it at pik−1. Hence, in period k,

the market prices, pHk and pLk , are θqH − ρk
(
θ − θ

)
qH and θqL − ρk

(
θ − θ

)
qL, respectively.11

On the second path, the marginal buyer of the high quality good is high type, whereas the

marginal buyer of the low quality good is low type. Hence, the price of the high quality good

should satisfy the incentive compatibility constraint rather than the indifference condition. In

this case, the market prices are p̂Hk = θqH − ρk
(
θ − θ

)
qH −

(
1− ρk

) (
θ − θ

)
qL and p̂Lk = θqL.

The following theorem shows that the necessary and sufficient condition for the existence

of the Coase Conjecture equilibrium is the depreciation rate being sufficiently low.12

Theorem 4. There is at most one Coase Conjecture equilibrium. This equilibrium exists if

11Suppose that a buyer is indifferent between purchasing the high quality good today and purchasing it
tomorrow and that the same buyer is also indifferent between purchasing the low quality good today and
purchasing it tomorrow. Then the buyer is indifferent between these two versions of the good in the current
trading period.

12The Coase Conjecture equilibrium does not exist when µ is large. The intuition is as follows. When the
depreciation rate is large, rather than fulfilling the replacement demand of all buyers for the high quality good
at the price of θqH , the seller would be better off by selling either to the replacement demand of the high type
buyers for the high quality good and to the replacement demand of the low type buyers for the low quality
good at the market prices θqH − θqL+ θqL and θqL, respectively or to the replacement demand of the high type
buyers for the high quality good at the market price θqH .
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Figure 5.1: The Coase Conjecture Equilibrium

and only if µ < µ, for some µ ∈ (0, 1) .

The proof establishes that both
{
xHk
}

and
{
x̂Hk
}

are strictly decreasing and there exist m′

and m such that xHm′+1 < 0 ≤ xHm′ and x̂Hm+1 < 0 ≤ x̂Hm when µ falls below µ.

The movement of the high quality good with the corresponding prices on these two paths

illustrated in Figure 11. We suppose that m′ = 2 and m = 3.13 Arrows indicate the direction of

the movement of the state of the high quality good. On the first path (top path), the monopolist

only sells to the high types, whereas on the second path (bottom path), the monopolist sells

to low type buyers as well. Hence, the monopolist has to leave some information rent to the

high type buyers on the second path. We therefore have pHk > p̂Hk . However, as the state gets

closer to the steady state (as k decreases), the information rent that a high type buyer gets

diminishes. That is, the distance between pHk and p̂Hk diminishes and it vanishes at the steady

state. Even though the price of the high quality good decreases on both paths, the rate at

which it diminishes on the first path is greater, pk+1 − pk < p̂k+1 − p̂k for all k < min (m′,m).

Moreover, we also establish that even though the proportion of the high type buyers holding the

high quality good on the second path is greater than the one on the first path, ŷk > yk for all

13Actually, we have limz→0+ m
′ < limz→0+ m.
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k < min (m′,m), the rate at which the monopolist penetrates the market with the high quality

good on the first path is strictly greater than the rate on the second path. Indeed, the exact

relation between these two is
(
yk − yk+1

)
= (ŷk − ŷk+1)

qH
(qH − qL)

for all k < min (m′,m).

On the equilibrium path, from the initial state (0, 0) the seller serves only the high type

buyers until the steady state is reached and fully penetrates the market in m′ periods. We

show that as the time period between the successive offers of the monopolist diminishes, m′

converges its finite limit. This implies that the real time passes before the prices drop to θqH

and θqL vanishes as the time period between successive price changes approaches zero. Hence,

the following concludes.

Corollary 8. In the Coase Conjecture equilibrium, the initial price of the durable good with

quality i converges to the lowest buyer valuation θqi as the length of time period between two

successive offers approaches zero.

We also show that the limit of m′ is strictly less that the limit of the number of the periods

required to reach the Coase Conjecture Steady state when the monopolist produces only one

version of the good.

Corollary 9. The rate at which the market prices converge to θqH and θqL increases as the

quality difference between two versions of the durable good increases.

Therefore, our result suggest that if the good that a monopolist produces is sufficiently

durable, he is reluctant to expand the product-line by producing different versions of it in

response to the time inconsistency problem he faces and that vertical product differentiation

in a market for highly durable goods can only be explained by profit motives.

5.3.2 The Monopoly Equilibrium

We study equilibria in which the monopolist can credibly commit to the static monopoly prices.

If this was a one period game, the monopolist would sell the high quality good to the high

type buyers at the price θqH and set the price of the low quality good high enough so that
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none of the buyers purchases it.14 Hence, we consider equilibria in which
(
b̂, 0
)

is a steady

state and characterize the set of parameters so that such equilibria exist.

If the monopoly equilibria exist then, from the initial state (0, 0), the monopolist moves to(
b̂, 0
)

by charging θqH for the high quality good and θqL for the low quality good and then he

continues fulfilling the replacement demand of the high type buyers for the high quality good

µb̂ at the price θqH .15 However, if the monopolist deviates from
(
b̂, 0
)

by charging a lower

price for the low quality good in an attempt to increase profit by selling the low quality good

to the low type buyers then, rather than moving the state back to
(
b̂, 0
)

by buying the low

quality good back or waiting for the low quality good dissipating gradually, the monopolist

may immediately bring the state to
(
b̂, 1− b̂

)
and continue serving the replacement demands.

Hence, there exist two types of monopoly steady state: the standard monopoly steady state(
b̂, 0
)

and the segmented monopoly steady state
(
b̂, 1− b̂

)
. The monopolist can credibly

commit to the static monopoly prices at the standard monopoly steady state, whereas at the

segmented monopoly steady state the price of the high quality good must be lower than its

static monopoly price due to the incentive compatibility constraint.

In a monopoly equilibrium, the Coase Conjecture steady state (1, 0) always coexists with

the monopoly steady states. Upon deviation from a monopoly steady state, if the stock of

the high quality good is sufficiently high and the depreciation rate is sufficiently low, the

monopolist will immediately bring the state to (1, 0) and continue serving the replacement

demand of all buyers for the high quality good.

The existence of a monopoly equilibrium with the standard monopoly steady state requires

that when the state before trade is
(

(1− µ) b̂, 0
)

, the monopolist must prefer selling to the

replacement demand of the high type buyers for the high quality good to penetrating the

market further by cutting the price of the goods. Hence, the monopolist must prefer serving

the replacement demand µb̂ at the price θqH to cutting the price of the high quality good to

PH (1) in order to sell the high quality good to all buyers and continuing by selling to the

14It is due to the restriction on the parameters to eliminate the nontrivial case: b̂θ > θ.

15We assume that when a buyer is indifferent between the two versions of the durable good, she buys the
high quality good.
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replacement demand µ at the price PH (1) thereafter. Therefore, we must have

µb̂θqH
1− δ

≥
(

1− (1− µ) b̂
)
PH (1) +

δµPH (1)

1− δ
.

Additionally,when the state before trade is
(

(1− µ) b̂, 0
)

, the monopolist must not cut the

price of the low quality good in an attempt to increase profit by selling the low quality good

as well. That is, the monopolist must prefer serving the replacement demand µb̂ at the price

θqH to serving the high type buyers’ replacement demand for the high quality good forever at

the price θqH − θqL + θqL and selling the low quality good to low type buyers at PL (1) and

continuing by selling to their replacement demand µ
(

1− b̂
)

for the low quality good at the

price PL (1) thereafter. Therefore, we must have

µb̂θqH
1− δ

≥
µb̂
(
θqH − θqL + θqL

)
1− δ

+
(

1−b̂
)
PL (1) +

δµ
(

1−b̂
)
PL (1)

1− δ
.

Similarly, the existence of a monopoly equilibrium with the segmented monopoly steady

state requires that when the state is
(

(1− µ) b̂, (1− µ)
(

1−b̂
))

, the monopolist must prefer

selling to the replacement demands to penetrating the entire market by charging PH (1) and

selling to the replacement demand of all buyers for the high quality good thereafter. Therefore,

we must have

µb̂
(
θqH − θqL + θqL

)
+ µ

(
1− b̂

)
θqL

1− δ
≥(

1− (1− µ) b̂
)
PH (1)− (1− µ)

(
1−b̂

)
PL (1) +

δµPH (1)

1− δ
.

We show that these three inequalities hold if and only if µ ≥ µ. The following theorem shows

that the condition, µ ≥ µ, is also sufficient for the existence the monopoly equilibrium.

Theorem 5. There exists a unique monopoly equilibrium iff µ ≥ µ.

We construct a sequence of states, {x̃k}m
′+1

k=0 where x̃k =
(
x̃Hk , 0

)
with the initial value x̃H0 =

(1− µ) b̂ and the end value x̃Hm′+1 ≤ (1− µ) such that when the state is x̃k, the monopolist is

indifferent between bringing the next period’s state to x̃k−1 < x̃k and staying at x̃k forever.
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Similarly, we construct a sequence of states {x̂k}m+1
k=0 where x̂k =

(
x̂Hk , 1− µ− x̂Hk

)
with the

initial value x̂H0 = (1− µ) b̂ and the end value x̂Hm+1 ≤ (1− µ) such that when the state is x̂k,

the monopolist is indifferent between bringing the next period’s state to x̂k−1 < x̂k and staying

at x̂k forever. We show that for all k ≤ min (m′,m), x̃Hk = x̂Hk , and that the limit state of the

high quality good depends on the depreciation rate. When the good is sufficiently perishable

we have x̃Hm′+1 = x̂Hm+1 = 1 − µ, whereas otherwise we have x̂Hm+1 < x̃Hm′+1 < 1 − µ. We call

the sequence {x̃k}m
′+1

k=0 the standard monopoly path and the sequence {x̂k}m+1
k=0 the segmented

monopoly path.

On the standard monopoly path, if some buyers hold the low quality good, the monop-

olist buys all low quality good back from them immediately. Hence, the monopolist prefers

incurring a higher cost rather than waiting for the low quality good dissipating gradually. If

the monopolist left some of the low quality good in the market, he wouldn’t be able to sell

as much the high quality good as he could. Since the marginal benefit of selling one unit of

the high quality good is greater than the marginal cost of buying one unit of the low quality

good back, and as the states get closer to the steady state, the marginal cost of having the

low quality good in the market raises, the monopolist strictly prefers buying all low quality

good back immediately when he is on the standard monopoly path. On the other hand, if the

segmented monopoly steady state is eventually reached, anticipating that the price of the low

quality good will be equal to the low type buyers’ reservation price θqL sooner or later, the

low type buyers are not willing to pay more than θqL for the low quality good. Hence, when

the monopolist is on the segmented monopoly path, he always sells the low quality good to

the low type buyers who does not hold the high quality good, and gradually buys the high

quality good from the low type buyers and sells the low quality good instead until the steady

state
(
b̂, 1− b̂

)
is reached.

For any state of the high quality good xH , there exists a threshold for the state of the

low quality good x
(
xH
)
. Suppose xH ∈

(
x̃Hk−1, x̃

H
k

]
∩
(
x̂Ht−1, x̂

H
t

]
. If xL ≤ x

(
xH
)

then the

monopolist follows the path that reaches the standard monopoly steady state
(
b̂, 0
)

. The

market prices will be p̃Hk and p̃Lk , and the stock of the high quality and the stock of the

low quality good after trade will be tH
(
xH , xL

)
= ỹHk−1 and tL

(
xH , xL

)
= 0, respectively. If
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xL > x
(
xH
)

then the monopolist follows the path that reaches the segmented monopoly steady

state
(
b̂, 1− b̂

)
. The market prices will be p̂Ht and p̂Lt , and the stock of the high quality and the

stock of the low quality good after trade will be tH
(
xH , xL

)
= ŷHt−1 and tL

(
xH , xL

)
= 1− ŷHt−1,

respectively.

If the good is sufficiently perishable, µ ≥ µ′, then the monopolist will return to a monopoly

steady state from any state above (1− µ) b̂. The buyers in the interval
(
b̂, 1
]

purchase the

high quality good at a value exceeding their reservation prices, in order to make capital gains

by reselling it to the monopolist at a later date. If the state of the low quality good is below

its threshold value then the steady state of the market will be
(
b̂, 0
)

; otherwise it will be(
b̂, 1− b̂

)
. Therefore, for any state

(
xH , xL

)
with xH ∈

(
(1− µ) b̂, 1

]
it will take at most

m + 1 periods to return to a steady state (if xL ≤ xL
(
xH
)
, the steady state will be

(
b̂, 0
)

;

otherwise, it will be
(
b̂, 1− b̂

)
). Upon reaching

(
b̂, 0
)

the monopolist charges the standard

monopoly prices θqH and θqL and serves the replacement demand of the high type buyers

for the high quality good forever, and upon reaching
(
b̂, 1− b̂

)
the monopolist charges the

segmented monopoly prices θqH − θqL + θqL and θqL and serves the replacement demand of

the high type buyers for the high quality good and the replacement demand of the low type

buyers for the low quality good forever. When the good is sufficiently perishable, we have

x̃Hk = x̂Hk and m′ = m. Even though the stock of the high quality good after trade is the same

on both paths, since some of the low type buyers hold the low quality good on the segmented

monopoly path, the price of the high quality good should satisfy the incentive compatibility

constraint and hence, it is strictly less than its price on the standard monopoly path.

If the good is sufficiently durable, µ ≤ µ < µ′, the Coase Conjecture steady state (1, 0)

exists with
(
b̂, 0
)

and
(
b̂, 1− b̂

)
. Suppose that the state of the high quality good equals x̃Hm′+1

and that the state of the low quality good falls below the threshold. Then the monopolist is

indifferent between moving to
(
ỹHm′ , 0

)
and fully penetrating the market by selling the high

quality good to all buyers and serving their replacement demand for the high quality good

forever. It follows that the monopolist strictly prefers moving to (1, 0) and staying there

forever when the state of the high quality good is greater than x̃Hm′+1. Suppose now that the

state of the high quality good equals x̂Hm+1 and that the state of the low quality good falls
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above the threshold. Then the monopolist is indifferent between moving to
(
ỹHm , 1− ỹHm

)
and

fully penetrating the market by selling the high quality good to all buyers and serving their

replacement demand for the high quality good forever. It implies that the monopolist strictly

prefers moving to (1, 0) and staying there forever when the state of the high quality good is

greater than x̂Hm+1. In this case, it is possible to have m′ > m. When stock of high quality good

is high enough, the monopolist brings the state to the Coase Conjecture steady state (1, 0)

immediately. The set of states of the high quality good supporting the standard monopoly

equilibrium is smaller than the set of states supporting the segmented monopoly steady state.

Now, we consider the structure of the equilibrium as the time period between successive

offers of the monopolist diminishes. If some of the low type buyers hold the high quality good,

the state either immediately moves to the Coase Conjecture steady state or slowly goes back to

a monopoly steady state. Let x̃H = limz→0+ x̃
H
m′(z)+1 and x̂H = limH

z→0+ x̃m(z)+1. Suppose the

stock of the low quality good is sufficiently low (high). Then, if the stock of the high quality

good after trade lies in the interval
(

(1− µ) b̂, x̃H
]

(
(

(1− µ) b̂, x̂H
]
) then it takes real time for

the state to move back to
(
b̂, 0
)

(
(
b̂, 1− b̂

)
). However, if the stock of the high quality good

lies in the interval
(
x̃H , 1

]
(
(
x̂H , 1

]
), the state immediately moves to (1, 0). We show that the

quality of the durable goods does not play any role in the rate at which the state moves back

to a steady state. Therefore, we have the following.

Corollary 10. If total stock of durable goods before trade xH+xL is less than
(
yHθ − θ

) λ+ r

r
,

then

P i
(
yH , yL

)
=



θqi for yH ∈
[
0, b̂
]
, all yL

θqi

(
b̂

yH

)λ+ r

λ
for yH ∈

(
b̂, x̃H

]
, all yL

θqi for yH ∈
(
x̃H , 1

]
, all yL

where i = H,L. When xH < b̂, the monopolist sells b̂ − xH units of high quality good; when

xH ∈
(
b̂, x̃H

]
, the monopolist selects ẋH = λxH

1− θ

θ

(
yH

b̂

)λ+ r

λ

; when xH > x̃H , the

monopolist sells 1−xH units of high quality good. Moreover, the monopolist buys all low quality
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good back immediately. Otherwise, we have

PH
(
yH , yL

)
=



θqH − θqL + θqL for yH ∈
[
0, b̂
]
, all yL

θ∆q

(
b̂

yH

)λ+ r

λ
+ θqL for yH ∈

(
b̂, x̂H

]
, all yL

θqH for yH ∈
(
x̂H , 1

]
, all yL

and

PL
(
yH , yL

)
= θqL for all yH and yL.

When xH < b̂, the monopolist sells b̂ − xH units of high quality good; when xH ∈
(
b̂, x̂H

]
,

the monopolist selects ẋH = λxH

1− θ

θ

(
yH

b̂

)λ+ r

λ

, and sells low quality good to the rest

of the buyers; when xH > x̂H the monopolist sells 1 − xH units of high quality good. When

xH ≤ x̂H , the monopolist fulfills the rest of the market with low quality good but buys all low

quality good back when xH > x̂H . Moreover, x̂H > x̃H .

We also prove that the steady state path of the monopolist who produces single version,

say qH only, of the durable good coincide with
{
x̃Hk
}m′+1

k=0
and that as the time horizon between

successive offers of the monopolist approaches zero, the limit if the path for single good market

is the same as x̃H . We therefore conclude that

Corollary 11. The set of states of the high quality good supporting the monopoly equilibrium

expands with the introduction of the low quality good.

5.3.3 Reputational Equilibrium

We now consider equilibria in which the monopolist establishes a reputation by cutting the

production of the high quality good. The steady states of such equilibria are
(
ỳH , ỳL

)
,(

ỳH , 1− ỳH
)

and (1, 0) where ỳH ∈
(

0, b̂
)

and ỳL ∈
[
0, b̂− ỳH

]
. The stock of the high

quality good in a reputational steady state falls short of the static monopoly output. However,

whether or not the monopolist limits the production of the low quality good as well depends
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Figure 5.2: The Reputational Equilibrium

on the parameter values. If θ
(
ỳH + ỳL

)
≥ θ, from the initial state (0, 0), the monopolist will

immediately move to
(
ỳH , ỳL

)
by charging θqH for the high quality good and θqL for the low

quality good and continue selling to the replacement demands. Otherwise, from the initial state

(0, 0), the monopolist will immediately move to
(
ỳH , 1− ỳH

)
by charging θqH − θqL + θqL for

the high quality good and θqL for the low quality good and continue providing for the replace-

ment demands. If the monopolist penetrates the market by selling more of the high quality

good, he loses his reputation for pricing high and has to drastically lower the price of the high

quality goods. Since buyers expect that the future prices will be lower, they are reluctant to

pay a high price for the high quality good and hence, the state slowly moves to the Coase

Conjecture steady state (1, 0).

The movement of the high quality good’s price and state in a reputational equilibrium is

illustrated in Figure 12. For all xH < (1− µ) ỳH , the monopolist immediately brings the state

of the high quality good to ỳH . Depending on the parameter values and the stock of the low

quality good, the state of low quality good is moved to ỳL or 1− ỳH . For simplicity, we assume

that upon deviation from ỳH , it takes two steps to reach the Coase Conjecture steady state,

and is characterized by the stationary path derived for the Coase Conjecture equilibrium.
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When the steady state is
(
ỳH , ỳL

)
, the monopolist does not completely lose his reputation

if he penetrates the market by selling more of the low quality good. Upon observing a price

cut on the low quality good, buyers expect that the monopolist will increase the sales of the

low quality good and hence would not accept any price for the low quality good significantly

greater than θqL. Thus, the monopolist must drop the price of the low quality good rather

than losing the sale. This implies that, deviation from
(
ỳH , ỳL

)
via cutting the price of the

low quality good causes the state to immediately move to
(
ỳH , 1− ỳH

)
.

Theorem 6. There exists a unique reputational equilibrium if and only if µ < µ ≤ µ.

Moreover, in the limit, as the time period between successive offers approaches zero, the

steady state output levels and the acceptance prices are represented by the following corollary.

Corollary 12. Let ỳH and ỳL satisfy
(
ỳHqH + ỳLqL

)
=

(λ+ r) θqH

λθ + rθ
. Then, as the time

period between two successive offers approaches zero, the reputational equilibrium acceptance

price converges to

PH
(
yH , yL

)
=


θqH for yH ∈

[
0, ỳH

]
, and yL ∈

[
0, ỳL

]
(
θqH − θqL + θqL

)
for yH ∈

[
0, ỳH

]
, and yL ∈

(
ỳL, 1

]
θqH for yH ∈

(
ỳH , 1

]
, all yL

and

PL
(
yH , yL

)
=


θqL for yH ∈

[
0, ỳH

]
, and yL ∈

[
0, ỳL

]
θqL for yH ∈

[
0, ỳH

]
, and yL ∈

(
ỳL, 1

]
θqL for yH ∈

(
ỳH , 1

]
, all yL

In a reputational equilibrium, as the time period between successive offers is arbitrarily

short, the steady state stock of the durable good with the production of a low-end good falls

short of the steady state stock of the durable good when the low-end good is not produced.

Moreover, the difference between these two output levels increases with respect to the quality

of the low-end good. However, the segment of the market that the monopolist serves expands

with the production of the low-end good, and increases as the quality of the low-end good

increases. Hence, welfare comparison is not trivial.
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Therefore, our results suggest that when the monopolist has a reputation of being tough,

and has credibly committed to the static monopoly price, he is reluctant to produce a low-end

good. However, if the monopolist has deviated from the equilibrium by cutting the price of

the good in an attempt to increase profit, he then wants to introduce a higher quality good to

regain his reputation for pricing high.

5.4 Coexistence of Stationary Equilibria

The issue we address in this section is whether or not it is possible to observe more than one

type of stationary equilibrium for given exogenous variables: depreciation rate µ, discount

factor δ, valuation parameters
(
θ, θ
)
, quality parameters (qH , qL), proportion of the high type

buyers b̂. To establish it, we have the following result.16

Proposition 10. The threshold depreciation rates µ and µ are decreasing in discount fac-

tor δ with the same initial values µ (0) = µ (0) =

(
1− b̂

)
θ

θ − θ
and with the end values of

limδ→1− µ (δ) > 0 and µ (1) = 0.

When the monopolist does not count any future profit (i.e. δ = 0), we either observe a

Coase Conjecture equilibrium or a monopoly equilibrium depending on the depreciation rate.

If µ <

(
1− b̂

)
θ

θ − θ
, the unique equilibrium will be the Coase Conjecture equilibrium. Otherwise,

it will be the monopoly equilibrium.

When the monopolist discounts future payoffs (i.e. δ > 0), we observe all types of stationary

equilibrium. When µ < µ (δ), the Coase Conjecture equilibrium is the unique equilibrium.

When µ (δ) ≤ µ ≤ µ (δ) all types of equilibrium, the Coase Conjecture, the monopoly, and the

reputational equilibrium, coexist. When µ > µ (δ), the monopoly equilibrium is the unique

equilibrium.

This result implies that as long as the durable good depreciates (i.e. µ > 0), a monopoly

equilibrium always exists for sufficiently large discount factors δ. Moreover, it also shows that

16This auxiliary result is also established by Lemma 3 of Deneckere and Liang (2008).
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as the monopolist discounts future less, the domain of (δ, µ) on which a Coase Conjecture

equilibrium exists contracts.

Let µS (δ) and µS (δ) denote the threshold depreciation rates of single good model of

Deneckere and Liang (2008). We prove that vertical product differentiation does not affect the

values of µ (δ) and µ (δ).

Corollary 13. For all δ > 0, µ (δ) = µS (δ) and µ (δ) = µS (δ) where µS (δ) and µS (δ) stand

for corresponding threshold depreciation rates of single durable good market.

Since, the threshold depreciation rates are the same as the ones in Deneckere Liang (2008),

their result for the existence of stationary equilibria, as the time period between two successive

offers gets arbitrarily small remains. The results are as follows.17 There exists a threshold

λ0 below which the Coase Conjecture equilibrium is the unique equilibrium even when the

time period between successive offers is vanished. However, when λ > λ0, all three types of

equilibria coexist.

17See Deneckere and Liang (2008) for a detailed analysis.
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Chapter 6

Conclusion

In this dissertation, I study the effect of quality differentiation on the commitment problem

of a durable goods monopolist. I extend the single good setting of Deneckere and Liang

(2008) into a setting of a vertically differentiated market and consider a monopolist selling an

imperfectly durable good available in two quality levels in an infinite horizon, discrete time

game. I characterize the Markov perfect equilibria as a function of the common discount rate,

the common depreciation rate of the goods, the length of the time period between successive

price changes, and the quality levels of the goods. Similar to Deneckere and Liang (2008),

I establish that there exist three types of Markov perfect equilibria: a Coase Conjecture

equilibrium, a monopoly equilibrium, and a reputational equilibrium. For sufficiently low

depreciation rates, the unique equilibrium is the Coase Conjecture equilibrium. The Coase

Conjecture equilibrium has a unique steady state equal to the competitive quantity. For

sufficiently high depreciation rates, the unique equilibrium is the monopoly equilibrium. This

equilibrium has two monopoly steady states one of which is equal to the static monopoly

quantity. The market at the other monopoly steady state is segmented into two: the monopolist

serves the high quality good to the high type buyers and serves the low quality good to the low

type buyers. For intermediate values of the depreciation rate, all three types of equilibria exist.

In the reputational equilibrium, the monopolist creates a reputation of pricing high by cutting

the production of the high quality good. Hence, the reputational steady state quantity of the

high quality good falls short of the monopoly quantity of the high quality good. These results



survive even when the agents become extremely patient. However, the set of parameters for

which the Coase Conjecture equilibrium is unique vanishes. When the length of the time period

between successive price changes is arbitrarily close to zero, the Coase Conjecture equilibrium

always exists and the monopoly equilibrium exists only if the good is sufficiently perishable.

I prove that the set of parameters supporting the Coase Conjecture equilibrium is smaller

and the set of the parameters supporting the monopoly equilibrium is larger when the monop-

olist, who is not allowed to buy back used goods from previous buyers, can produce a lower

quality good and when buyers are allowed to trade the good with each other in a perfectly

competitive second-hand market. When the monopolist is, however, allowed to buy back the

goods from previous buyers, I prove that quality differentiation does not affect the domain of

the parameters supporting each type of equilibrium but affects the off-equilibrium path.

This study establishes that quality differentiation may enhance market power of a durable

goods monopolist and alleviate the commitment problem when the monopolist is not allowed

to buy back the goods from previous buyers. In particular, when the innate durability of

a good is high, to credibly commit to the monopoly prices of the good the monopolist will

produce a lower quality good either by damaging a portion of the goods or by producing the

lower quality good from scratch. On the other hand, when the monopolist is allowed to buy

back the goods from previous buyers, if the innate durability of a good is sufficiently high, it is

less likely to observe quality differentiation. In particular, if the depreciation rate is so low that

the Coase Conjecture equilibrium is the unique equilibrium then the monopolist is reluctant

to introduce lower quality versions of the good. Moreover, a durable goods monopolist selling

a sufficiently perishable good has penetrated the market in an attempt to increase profit, then

he may introduce a higher (or a lower) quality version of the good to be able to restore his

market power. However, if the monopolist has already been committed to the monopoly price,

he will be reluctant to introduce a lower quality version of the good.
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Appendix A

Appendix for Chapter 4

Proof of Proposition 1. Suppose there exists a history after which the state is (xH0 , x
L
0 )

and the monopolist randomizes among the elements of P (t(x0)). Let the expected price of

good i be pi2. Since T (·) is a sublattice of Y , we have y1 ∧ y2 ∈ T (xH , xL) where y1, y2 ∈

T (xH , xL). It follows that pi2 < pi1 = P i(inf T (x0)) and p−i2 ≤ p−i1 = P−i(inf T (x0)) for

i ∈ {H,L}. Let us define v̂Hj by fH(yH0 ) − v̂Hj = ρ(fH(yH0 ) − pHj ) and v̂Lj by fL(yH0 +

yL0 ) − v̂Lj = ρ(fL(yH0 + yL0 ) − pLj ), j = 1, 2 where yH0 =
xH

1− µ
and yL0 =

xL

1− µ
. When

the monopolist randomizes the price of the high quality and the low quality goods in the

previous period cannot be greater than v̂H2 and v̂L2 , respectively. We will show that P i(y0) ≥

v̂i1 and P−i(y0) ≥ v̂−i1 . Let (yHn , y
L
n ) be defined such that (yHn , y

L
n ) ↑ (yH0 , y

L
0 ) and T ((1 −

µ)yn) is single valued for all n. Since T (·) is a monotone increasing correspondence, we have

PH (y0) = lim
n→∞

PH (yn) = lim
n→∞

(
(1− ρ) fH

(
yHn
)

+ ρPH (T ((1− µ) yn)
)
≥ (1− ρ) fH

(
yH0
)

+

ρpH1 = v̂H1 and PL (y0) = lim
n→∞

PL (yn) = lim
n→∞

(
(1− ρ) fL

(
yHn + yLn

)
+ ρPL (T ((1− µ) yn)

)
≥

(1− ρ) fL
(
yH0 + yL0

)
+ ρpL1 = v̂L1 . Hence, we can conclude that the monopolist does not

randomize along any equilibrium path and (tH(x), tL(x)) = inf T (x) denotes the monopolist’s

equilibrium choice.

Proof of Proposition 2. If (yHs , y
L
s ) is the stock level after trade in a steady state, we must

have V H(yHs ) = fH(yHs ) and V L(yHs + yLs ) = fL(yHs + yLs ). This implies that PH(yHs , y
L
s ) =

fH(yHs )− fL(yHs ) + fL(yHs + yLs ) and PL(yHs , y
L
s ) = fL(yHs + yLs ).

Let us define the sets SH and SL as SH = {bH : V H(bH) = fH(bH)} and SL = {bL :

V L(bL) = fL(bL)}. Suppose that SH and SL are nonempty. Let (b́H , b́L) be defined as

b́H = supSH and b́L = supSL such that b́H < b́L. First, we show that (b́H , b́L− b́H) is a steady

state. Then, we prove that V i and f i necessarily cross for all i ∈ {H,L} and that b́H < b́L.

We now prove that (b́H , b́L − b́H) is a steady state. First, we claim that there is no

58



bH > b́H such that the maximum willingness to pay of buyer bH for the high quality good

is greater V H(b́H). We prove this claim by contradiction. Suppose that there exists bH >

b́H with V H(bH) ≥ V H(b́H). Then, by definition we must have fH(bH) < fH(b́H). Since

ti(·) is non-decreasing with respect to both arguments and
∣∣ti1∣∣ ≥ ∣∣ti2∣∣ we haveV H(tH((1 −

µ)bH , (1−µ)((b′L−bH))) ≤ V H(tH((1−µ)b́H , (1−µ)((b́L− b́H))). This implies a contradiction,

since V H(bH) = (1 − ρ)fH(bH) + ρV H(tH((1 − µ)bH , (1 − µ)(b′L − bH))) < (1 − ρ)fH(b́H) +

ρV H(tH((1 − µ)b́H , (1 − µ)(b́L − b́H))) = V H(b́H). Similarly, we now claim that there is no

bL > b́L such that the maximum willingness to pay of buyer bL for the low quality good is

greater V L(b́L). Suppose that there is bL > b́L with V L(bL) ≥ V L(b́L). Then by definition we

have fL(bL) < fL(b́L). Moreover, by the same reasoning above, we have V L((tH + tL)((1 −

µ)b′H , (1 − µ)((bL − b′H))) ≤ V L((tH + tL)((1 − µ)b́H , (1 − µ)(b́L − b́H))). This implies a

contradiction, since V L(bL) = (1 − ρ)fL(bL) + ρV L((tH + tL)((1 − µ)b′H , (1 − µ)(bL − b′H)))

< (1− ρ)fL(b́H) + ρV L((tH + tL)((1− µ)b́H , (1− µ)(b́L − b́H))) = V L(b́L). Therefore, we can

conclude that, if the offer is PH(b́H , b́L) = fH(b́H)−fL(b́H)+fL(b́L) and PL(b́H , b́L) = fL(b́L),

all b ≤ b́H holds the high quality good, all b́H < b ≤ b́L holds the low quality good, and all

b > b́L rejects. Since V H(b́H) = (1 − ρ)fH(b́H) + ρV H(tH((1 − µ)b́H , (1 − µ)(b́L − b́H))) and

V H(b́H) = fH(b́H), we must have tH((1 − µ)b́H , (1 − µ)(b́L − b́H)) = b́H and since V L(b́L) =

(1−ρ)fL(b́H)+ρV L((tH+tL)((1−µ)b́H , (1−µ)(b́L− b́H))) and V L(b́L) = fL(b́L), we must have

(tH+tL)((1−µ)b́H , (1−µ)(b́L− b́H)) = b́L which implies that tL((1−µ)b́H , (1−µ)((b́L− b́H)) =

b́L − b́H . Hence, (b́H , b́L − b́H) is a steady state.

Now, we prove that V i and f i necessarily cross for all i ∈ {H,L} and that b́H < b́L. First,

suppose that there is a stationary equilibrium which does not have any steady states. This

implies that Si for i ∈ {H,L} is empty. We show that if SH is empty then V H(b) < θqH for

b ∈ [0, b̂] and V H(b) > θqH for b ∈ (̂b, 1]. If SH is empty, then we must have V H(b) 6= θqH for

b ∈ [0, b̂] and V H(b) 6= θqH for b ∈ (̂b, 1]. Since the seller never charges a price less than θqH

for high quality good as long as pL > 0, we cannot have V H(b) < θqH . Hence, we must have

V H(b) > θqH for b ∈ (̂b, 1]. Moreover, it is not possible that V H(b) > θqH for some b ∈ [0, b̂].

If we had V H(b) > θqH , it would imply that V H(0) > θqH , since V H(·) is nonincreasing.

Given a state, say (0, xL), the arbitrage equation V H(0) = (1 − ρ)θqH + ρV H(tH(0, xL))
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implies that V H(tH(0, xL)) > V H(0) which is a contradiction because tH(0, xL) ≥ 0 and

V H(0) is nonincreasing. Second, suppose that SL is empty. We show that if SL is empty

then V L(b) < θqL for b ∈ [0, b̂] and V L(b) > θqL for b ∈ (̂b, 1]. If SL is empty then V L(b) 6=

θqL for b ∈ [0, b̂] and V L(b) 6= θqL for b ∈ (̂b, 1]. Since the seller never charges a price

less than θqL for low quality good when bL < 1, we must have V L(b) > θqLfor b ∈ (̂b, 1].

Moreover, it is not possible that V L(b) > θqL for some b ∈ [0, b̂]. If it was, it would imply

that V L(0) > θqL, since V L(·) is nonincreasing. Given a state (0, bL), the arbitrage equation

V L(0) = (1− ρ)θqL + ρV L((tH + tL)(0, 0)) implies that V L((tH + tL)(0, 0)) > V L(0) which is

a contradiction because ti(0, 0) ≥ 0 for all i = H,L and V L(·) is nonincreasing.

We now show that V i(b) < θqi for b ∈ [0, b̂] and V i(b) > θqi for b ∈ (̂b, 1] leads to a

contradiction with the definition of ti(·). Suppose that the state is (xH , xL) where xH ∈ [0, b̂].

Since θqH −V H( x
H

1−µ) > 0, the arbitrage equation θqH −V H( x
H

1−µ) = ρ(θqH −V H(tH(xH , xL)))

implies that V H(tH(xH , xL)) < V H( x
H

1−µ). That is, tH(xH , xL) > xH

1−µ . Suppose now that

the state is (((1 − µ)(̂b + ε), xL) where ε ∈ (0, 1 − b̂] and (1 − µ)(̂b + ε) + xL ≤ 1. Since

θqH−V H (̂b+ε) < 0, the arbitrage equation θqH−V H (̂b+ε) = ρ(θqH−V H(tH((1−µ)(̂b+ε), xL)))

implies that V H(tH((1 − µ)(̂b + ε), xL)) > V H (̂b + ε). That is, tH((1 − µ)(̂b + ε), xL) < b̂ + ε.

Therefore, lim
ε→0+

tH((1 − µ)(̂b + ε), xL) ≤ b̂ < tH((1 − µ)̂b, xL). Since, T (·) is upper hemi-

continuous, lim
ε→0+

(tH((1 − µ)(̂b + ε), xL), tL((1 − µ)(̂b + ε), xL)) ∈ T ((1 − µ)̂b, xL). Moreover,

since T (·) is a lattice, lim
ε→0+

(tH((1−µ)(̂b+ε), xL), tL((1−µ)(̂b+ε), xL))f(tH((1−µ)̂b, xL), tL((1−

µ)̂b, xL)) ∈ T (·) which contradicts with the definition of (tH(·), tL(·)). Suppose that the state

is (xH , xL) where xH + xL ∈ [0, b̂]. Since θqL − V L(x
H+xL

1−µ ) > 0, the arbitrage equation

θqL − V L(x
H+xL

1−µ ) = ρ(θqL − V L((tH + tL)(xH , xL))) implies that V L((tH + tL)(xH , xL)) <

V L(x
H+xL

1−µ ). That is, (tH + tL)(xH , xL) > xH+xL

1−µ . Similarly, suppose the state is (xH , (1 −

µ)(̂b + ε) − xH) where ε ∈ (0, 1 − b̂]. Since θqL − V L(̂b + ε) < 0, the arbitrage equation

θqL − V L(̂b + ε) = ρ(θqL − V L((tH + tL)(xH , (1 − µ)(̂b + ε) − xH))) implies that V L((tH +

tL)(xH , (1− µ)(̂b+ ε)− xH)) > V L(̂b+ ε). That is, (tH + tL)(xH , (1− µ)(̂b+ ε)− xH) < b̂+ ε.

So, lim
ε→0+

((tH + tL)(xH , (1−µ)(̂b+ε)−xH)) ≤ b̂ < (tH + tL)(xH , (1−µ)(̂b+ε)−xH . Since tH is

nondecreasing, we have lim
ε→0+

tH(xH , (1−µ)(̂b+ε)−xH) ≥ tH(xH , (1− µ) b̂−xH). This implies
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that lim
ε→0+

tL(xH , (1 − µ)(̂b + ε) − xH) < tL(xH , (1 − µ)(̂b − xH)). Since, T (·) is upper hemi-

continuous, lim
ε→0+

(tH(xH , (1−µ)(̂b+ε)−xH), tL(xH , (1−µ)(̂b+ε)−xH)) ∈ T (xH , (1−µ)̂b−xH).

Moreover, since T (·) is a lattice, lim
ε→0+

(tH(xH , (1−µ)(̂b+ ε)−xH), tL(xH , (1−µ)(̂b+ ε)−xH))

f(tH(xH , (1− µ)̂b− xH), tL(xH , (1− µ)̂b− xH)) ∈ T (·) which contradicts with the definition

of (tH(·), tL(·)).

Lemma 1.

If there exists
(
ýH , ýL

)
such that (i) V H

(
yH
)

= V H
(
ýH
)

and fH
(
yH
)

= fH
(
ýH
)
, (ii)

V L
(
yH + yL

)
= V L

(
ýH + ýL

)
and fL

(
yH + yL

)
= fL

(
ýH + ýL

)
, (iii) V H (yH) (ýH − yH)

+ V L
(
yH + yL

) (
ýL − yL

)
> 0 hold for some ýH ≥ 0 and ýL ≥ 0 then

(
yH , yL

)
cannot be a

steady state.

If these conditions hold, then the monopolist strictly prefers
(
ýH , ýL

)
to
(
yH , yL

)
. There-

fore
(
yH , yL

)
cannot be a steady state since the monopolist deviates from that state with

probability one.

Proof of Lemma 1. The proof of this lemma is trivial. Because, it is clear that the monopolist

prefers
(
ýH , ýL

)
to
(
yH , yL

)
almost sure.

Proof of Proposition 3. Lemma 1 helps us to establish that some states cannot be a steady

state. First, we show that (ỳH , 0) cannot be a steady state when ỳH ∈ (̂b, 1). Suppose not.

Then V H(ỳH) = θqH and V L(ỳH) = θqL. Since V i(·) is a non-increasing function, V H(b) ≤

θqH and V L(b) ≤ θqL for all b ∈ (ỳH , 1]. So, V H(yH) = θqH and V L(yH) = θqL for all

y ∈ [ỳH , 1]. Since the seller would prefer yH > ỳH , (ỳH , 0) cannot be a steady state.

Second, for ỳH ∈ (0, b̂], and ỳH+ỳL ∈ (̂b, 1), (ỳH , ỳL) cannot be a steady state. Suppose not.

Then V H(ỳH) = θqH and V L(ỳH + ỳL) = θqL. Therefore, for all b > ỳH + ỳL, V L(b) ≤ θqL has

to hold for (ỳH , ỳL) to be a steady state. However, for all b ∈ [0, 1], we must have PL(b) ≥ θqL.

So, for all b > ỳH + ỳL, we must have fL(b) = θqL. Hence, (ỳH , ỳL) cannot be a steady state.

Third, for ỳH ∈ (̂b, 1), and ỳH+ ỳL ∈ (̂b, 1], (ỳH , ỳL) cannot be a steady state. Suppose not.

Then V H(ỳH) = θqH and V L(ỳH + ỳL) = θqL. Therefore, for all bH > ỳH and bL > ỳH + ỳL,

V H(bH) ≤ θqL and V L(bL) ≤ θqL have to hold for (ỳH , ỳL) to be a steady state. However,

for all bH ∈ [0, 1] and bL ∈ [0, 1], we must have V H(bH) ≥ θqL and V L(bL) ≥ θqL. So, for all

bH > yH and bL > ỳH + ỳL, we have V H(bH) ≥ θqL and V L(bL) = θqL. Hence, we conclude
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that (ỳH , ỳL) cannot be a steady state.

Fourth, for ỳH + ỳL ∈ (0, b̂] and ỳL > 0, (ỳH , ỳL) cannot be a steady state. Suppose not.

Then, we must have V H(b) < θqH for b ∈ (ỳH , b̂] and V L(b) = θqL for b ≤ ỳH + ỳL. However, if

there exists b′ such that V H(b′) < θqH , it must be V L(b′) < θqL which leads to a contradiction.

Proof of (2): Suppose that (̂b, 0) is a steady state. Then, according to Proposition 2,

PH (̂b) = θqH and PL(̂b) = θqL. Since V i(·) is non-increasing, we must have P i(b) ≤ θqi for all

b ∈ [0, b̂]. So Lemma 1 shows that (b, 0) such that b < b̂ cannot be a steady state. We conclude

that the only possible steady states other than (̂b, 0) are (̂b, 1 − b̂) and (1, 0). Suppose now

that (̂b, 1− b̂) is a steady state. Then, PH (̂b) = θqH− θqL+ θqL and PL(̂b) = θqL.

Proof of (3): Suppose that (ỳH , 0) where ỳH ∈ (0, b̂) is a steady state. Then PH(b) = θqH

and PL(b) = θqL for all b ∈ [0, ỳH ] and PH(b) < θqH and PL(b) < θqL for all b ∈ (ỳH , b̂]. This

implies that (̂b, .) cannot be a steady state. We conclude that the only possible steady states

other than (ỳH , 0) when ỳH ∈ (0, b̂) are (ỳH , 1 − ỳH) and (1, 0). Suppose that (ỳH , b̂ − ỳH)

where ỳH ∈ (0, b̂) is a steady state. Then PH(bH) = θqH and PL(bL) = θqL for all bH ∈ [0, ỳH ]

and bH ∈ [0, b̂] and PH(bH) < θqH for all bH ∈ (ỳH , b̂]. This implies that (̂b, .) cannot be a

steady state. We conclude that the only possible steady states other than (ỳH , b̂− ỳH) when

ỳH ∈ (0, b̂) are (ỳH , 1− ỳH) and (1, 0).

Proof of (1): If there is no steady state in [0, b̂] then (1, 0) is a steady state.

Proof of Theorem 1. First, let us define the set of states on each path. Let xjk,i be the state

of the durable good j in period k on path i. We start with defining the set of states for the

high quality good. For k = 0, 1, the states are xH0,i = 1 − µ and xH1,i = (1 − µ)̂b on all paths

(i = 1, . . . , 4). For k = 2, the state is xH2,i = b̂θ−θ
θ−θ on the first and the forth paths (i = 1, 4), and

it is xH2,i =
(b̂θ−θ)(qH−qL)+(1−xL2,i)θqL

θqL+(θ−θ)(qH−qL)
on the second and the third paths ( i = 2, 3). For k = 3,

the state is xH3,i = (1−µ)−1 θ
ρ(θ−θ)

(xH2,i− (xH1,i−xH2,i)) on the first and the forth paths (i = 1, 4),

and xH3,2 = (1 − µ)−1(1 + θqL+θ(qH−qL)

(θ−θ)qL+ρ(θqL+(θ−θ)(qH−qL))
)xH2,2 −

b̂θ(qH−qL)+(1−xL3,2)θqL
(θ−θ)qL+ρ(θqL+(θ−θ)(qH−qL))

, and

xH3,3 = (1 − µ)−1(1 + θqL+θ(qH−qL)

ρ(θqL+(θ−θ)(qH−qL))
)xH2,2 −

b̂θ(qH−qL)+(1−xL3,2)θqL
ρ(θqL+(θ−θ)(qH−qL))

. For k > 3, the states

are xHk,i = (1 − µ)−1(xHk−1,i − ak,i(xHk−2,i − xHk−1,i)) where ak,i = θ
ρk−2(θ−θ)

for i = 1, 4, ak,2 =

θqH
ρk−3((θ−θ)qL+ρ(θqL+(θ−θ)(qH−qL)))

, and ak,3 = θqH
ρk−2(θqL+(θ−θ)(qH−qL))

.
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We now define the set of states for the low quality good. On path 1, the states are

xLk,1 = 0 for all k. On path 2, the states are xL1,2 = (1 − µ)(1 − b̂) for k = 1 and xLk,2 ∈

(0, (1 − µ)̂b − xHk,2] for all k ≥ 2. On path 3, states are xL1,3 = (1 − µ)(1 − b̂) for k = 1 and

xLk,3 ∈ ((1− µ)̂b− xHk,3, 1− µ− xHk,3] for all k ≥ 2. On path 4, there is an excess supply of the

low quality good, so xLk,4 > 1− µ− xHk,4 holds for all k.

Second, let us define µ. Let us define the set Λi as Λi = {µ ≥ 0 | ∃ mi < ∞ s.t.

xHm+1,i < 0 ≤ xHm,i and {xHk,i}
mi
k=0 is a strictly decreasing sequence} and let µ be minµi, where

µi = sup Λi. Since 0 ∈ Λi and Λi is open in R+for all i, we must have µ > 0. Now, we

show that if µ′ ∈ Λi and µ′′ < µ′ then µ′′ ∈ Λi. This implies that Λi = [0, µi). The proof

for path 1 and path 4 are established in Deneckere and Liang (2008, Theorem 1).1 To prove

that this also holds for path 2 and path 3, we show that ∆H
k,i = xHk−1,i − xHk,i is decreasing

in µ for all i = 2, 3. By definition of xHk,i,
d∆H

k,i

dµ < 0 holds for k ≤ 2, i = 2, 3. The rest of

the proof comes from induction. As the first step of induction, we show that
dxH3,i
dµ > 0 and

d∆H
3,i

dµ < −2(1 − µ)−1xH3,i. Since
dxH3,i
dµ = (1 − µ)−1(xH3,i + (1 − µ)−1a3,ix

H
2,i) and a3,i > 1, we

must have
dxH3,i
dµ > 2(1− µ)−1xH3,i > 0. Note that

d∆H
3,i

dµ = −dxH3,i
dµ . Thus,

d∆H
3,i

dµ < −2(1− µ)−1xH3,i

holds for path i = 2, 3. As the second step of induction, we assume
dxHk−1,i

dµ > 0 and
d∆H

k−1,i

dµ <

−(k−2)(1−µ)−1xHk−1,i hold. We now show that
dxHk,i
dµ > 0 and

d∆H
k,i

dµ < −(k−1)(1−µ)−1xHk,i hold

as well. Since ∆H
k,i = (1−(1−µ)−1)xHk−1,i+(1−µ)−1ak,i∆

H
k−1,i and

dxHk−1,i

dµ > 0, we have
d∆H

k,i

dµ <

−(1−µ)−2xHk−1,i + (1−µ)−2ak,i∆
H
k−1,i + (1−µ)−1 dak,i

dµ ∆H
k−1,i+(1−µ)−1ak,i

d∆H
k−1,i

dµ . Moreover,

dak,2
dµ = ak,2(1−µ)−1((k−2)− θqH

(θ−θ)qL+ρ(θqL+(θ−θ)(qH−qL))
) and

dak,3
dµ = ak,3(1−µ)−1(k−2) imply

that we must have
d∆H

k,i

dµ < −(1−µ)−2xHk−1,i+(1−µ)−2ak,i(k−1)∆H
k−1,i+(1−µ)−1ak,i

d∆H
k−1,i

dµ .

Additionally, due to the induction, since
d∆H

k−1,i

dµ < −(k− 2)(1−µ)−1xHk−1,i and ak,i > 1,
d∆H

k,i

dµ

< −(k − 1)(1− µ)−2xHk−1,i + (1− µ)−2ak,i(k − 1)∆H
k−1,i = −(k − 1)(1− µ)−1xHk,i holds.

Now, we prove that a stationary equilibrium exists for µ ≤ µ. Let us define {PH (.), PL (.),

tH (.), tL (.), R (.)} as follows. First, we define path 1:

1These two are identical because the set of states of the high quality good on path 1 and on path 4 is the
same as the set of states of a durable good available in only one version.
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PH(xH , 0) =

 pHm1,1
for xH∈ [0,yHm1,1

]

pHk,1 for xH ∈ (yHk+1,1, y
H
k,1]

where k = 0, . . . ,m1 − 1,

PL(xH , 0) ≥θqL for all xH ,

tH
(
xH , 0

)
=


yHm1−1,1 for xH ∈ [0, xHm1,1

]

yHk−1,1 for xH ∈ (xHk+1,1, x
H
k,1]

1 for xH ∈ (xH2,1, 1− µ]

where k = 2, . . . ,m1 − 1,

tL(xH , 0) = 0 for all xH ,

R(xH , 0) =


(yHm1−1,1 − xH)PH(yHm1−1,1, 0) + δRm1−1 for xH ∈ [0, xHm1,1

]

(yHk−1,1 − xH)PH(yHk−1,1, 0) + δRk−1 for xH ∈ (xHk+1,1, x
H
k,1]

(1− xH)PH(1, 0) + δµθqH
1−δ for xH ∈ (xH2,1, 1− µ]

where k = 2, . . . ,m1 − 1, Rs ≡ R(xHs,1, 0) and pHk,1 = (1− ρk)θqH + ρkθqH .

The sequence {xHk,1}
m1
k=2 is defined such that when the state is (xHk,1, 0) the monopolist is

indifferent between selecting (yHk−1,1, 0) and (yHk−2,1, 0) where yHk,1 =
xHk,1
1−µ .

Second, we define path 2:
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PH
(
xH , xL

)
=

 pHm2,2
for xH ∈ [0, yHm2,2

(xL)]

pHk,2 for xH ∈ (yHk+1,2(xL), yHk,2(xL)]

where k = 0, . . . ,m2 − 1,

PL
(
xH , xL

)
=


pLm2,2

for xH ∈ [0, yHm2,2
(xL)]

pLk,2 for xH ∈ (yHk+1,2(xL), yHk,2(xL)]

0 for xH ∈ (yH1,2, y
H
0,2]

where k = 1, . . . ,m2 − 1,

tH(xH , xL) =


yHm2−1,2 for xH ∈ [0, xHm2,2

(xL)]

yHk−1,2 for xH ∈ (xHk+1,2(xL), xHk,2(xL)]

1 for xH ∈ (xH2,2(xL), 1− µ]

where k = 2, . . . ,m2 − 1,

tL(xH , xL) = xL for all xH ,

R(xH , xL) =


(yHm2−1,2 − xH)PH(yHm2−1,2, x

L) + δRm2−1,2 for xH ∈ D1

(yHk−1,1 − xH)PH(yHk−1,1, x
L) + δRk−1,1 for xH ∈ D2

(1− xH)PH(1, xL) + δµθ(qH−qL)
1−δ for xH ∈ D3

where k = 2, . . . ,m2 − 1, Rs,i ≡ R(xHs,i, 0), pL0,2 = 0,

pLk,2 = (1− ρk−1)θqL + ρk−1(1− ρ)θqL for k = 1, 2, . . .,

pHk,2 = pLk,2 + (θ − ρk(θ − θ))(qH − qL) for k = 0, 1, . . .,

D1 ≡ [0, xHm2,1
(xL)], D2 ≡ (xHk+1,2(xL), xHk,2(xL)], and D3 ≡ (xH2,2(xL), 1− µ]

The sequence {xHk,2(xL)}m2
k=2 is defined such that when the state is (xHk,2(xL), xL) the monop-

olist is indifferent between selecting (yHk−1,2(xL), xL) and (yHk−2,2(xL), xL) where yHk,2 =
xHk,2
1−µ . We

now define xL2,2(xL) and prove the existence of this path. When the state is
(
xH , xL

)
, the state

of the low quality good in the second period will be xL2,2(xL) = (1−µ)sxL, s ∈ {n, n+1, . . . , n}.

We define n as n =

⌊
ln(xL2,2)−ln(xL)

ln(1−µ)

⌋
where xL2,2 solves xH2,2(xL)+xL2,2 = (1−µ)̂b, and define n as

m((1−µ)nxL) ≥ n and m((1−µ)nxL) < n+ 1 where m(x) is set such that xHm+1,2 < 0 ≤ xHm,2

with xL2,2 = x. Let us define the set Γ2 as Γ2 = {s : xH ∈ (xHs+2,2, x
H
s+1,2] s.t s = n, . . . , n} and

define k as k = min Γ2. Since xHs,2(xL) < xHs,2(x́L) for xL2 > x́L2 for all s = n+ 2, . . . , n+ 2, Γ2

is non-empty.

Third, we define path 3:
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PH(xH , xL) =

 pHm2,3
for xH ∈ [0, yHm3,3

(xL)]

pHk,3 for xH ∈ (yHk+1,3(xL), yHk,3(xL)]

where k = 0, . . . ,m3 − 1,

PL(xH , xL) =


pLm3,3

for xH ∈ [0, yHm3,3
(xL)]

pLk,3 for xH ∈ (yHk+1,3(xL), yHk,3(xL)]

0 for xH ∈ (yH1,3, y
H
0,3]

where k = 1, . . . ,m3 − 1,

tH(xH , xL) =


yHm3−1,3 for xH ∈ [0, xHm3,3

(xL)]

yHk−1,3 for xH ∈ (xHk+1,3(xL), xHk,3(xL)]

1 for xH ∈
(
xH2,3

(
xL
)
, 1− µ

]
where k = 1, . . . ,m3 − 2,

tL(xH , xL) = xL for all xH ,

R(xH , xL) =


(yHm2−1,2 − xH)PH(yHm2−1,2, x

L) + δRm2−1,2 for xH ∈ D1

(yHk−1,1 − xH)PH(yHk−1,1, x
L) + δRk−1,1 for xH ∈ D2

(1− xH)PH(1, xL) + δµθ(qH−qL)
1−δ for xH ∈ D3

where k = 2, . . . ,m3 − 1, Rs,i ≡ R(xHs,i, 0), pLk,3 = (1− ρk)θqL,

pHk,3 = pLk,3 + (θ − ρk(θ − θ))(qH − qL), D1 ≡ [0, xHm2,1
(xL)],

D2 ≡ (xHk+1,2(xL), xHk,2(xL)], and D3 ≡ (xH2,2(xL), 1− µ].

The sequence {xHk,3(xL)}m3
k=2 is defined such that when the state is (xHk,3(xL)), xL)) the

monopolist is indifferent between selecting (yHk−1,3(xL), xL) and (yHk−2,3(xL), xL) where yHk,3 =

xHk,3
1−µ . We now define xL2,3(xL) and prove the existence of this path. When the state is (xH , xL),

the state of the low quality good in the second period is xL2,3 = (1 − µ)sxL, s ∈ {0, 1, . . . , n}

where n′ is defined as n′ =

⌈
ln(xL2,3)−ln(xL)

ln(1−µ)

⌉
. Let us define the set Γ3 as Γ3 = {s : xH ∈

(xHs+3,3, x
H
s+2,3] s.t s = 0, . . . , n′} and define k as k = max Γ3. To prove that path 3 exists

we show that Γ3 is a non-empty set. For s = 2, . . . , n′ + 2, we have xHs,3(xL) < xHs,3(x́L)

for xL2 > x́L2 . To finish the proof we need to show that xHn′+2,3(xL) < xHn+2,2(xL). Note

that n − 1 ≤ n′ ≤ n. Hence, we show that xHs,3(xL) < xHs,2(xL) holds by induction. Since

xj2,2 = xj2,3 = xj2 for j = H,L, by definition we have xH3,3 < xH3,2. Now, we show that

xH4,3 < xH4,2 and ∆H
4,2 < ∆H

4,3 hold. Since we have a4,3 > a4,2 and a4,2x
H
3,2 > a4,3x

H
3,3 for
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µ < µ, the difference equations, xH4,2 − xH4,3 = (1 − µ)−1((xH3,2 − xH3,3) + (a4,2x
H
3,2 − a4,3x

H
3,3))

and ∆H
4,3 −∆H

4,2 = xH2 (a4,3 − a4,2) + (a4,2x
H
3,2 − a4,3x

H
3,3), are both positive. Then we assume

that xHk−1,3 < xHk−1,2 and ∆H
k−1,2 < ∆H

k−1,3 hold and show that xHk,3 < xHk,2 and ∆H
k,2 < ∆H

k,3.

Since ak,3 > ak,2 and ∆H
k−1,2 < ∆H

k−1,3, we have xHk,2 − xHk,3 = (1 − µ)−1((xHk−1,2 − xHk−1,3) +

(ak,3∆H
k−1,3 − ak,2∆H

k−1,2)) > 0. Moreover, since ∆H
k,i = (1− (1− µ)−1)xHk−1,i + ak,i∆

H
k−1,i, we

have ∆H
k,3 −∆H

k,2 = (1− (1− µ)−1)(xHk−1,3 − xHk−1,2) + ak,3∆H
k−1,3 − ak,2∆H

k−1,2 > 0.

Last, we define path 4:

PH(xH , xL) =

 pHm4,4
for xH ∈ [0, yHm4,4

]

pHk,4 for xH ∈ (yHk+1,4, y
H
k,4]

where k = 0, . . . ,m4 − 1,

PL(xH , xL) = 0 for all xH ,

tH(xH , xL) =


yHm4−1,4 for xH ∈ [0, xHm4,4

]

yHk−1,4 for xH ∈ (xHk+1,4, x
H
k,4]

1 for xH ∈ (xH2,4, 1− µ]

where k = 2, . . . ,m4 − 1,

tL(xH , xL) = xL for all xH ,

R(xH , xL) =


(yHm4−1,4 − xH)PH(yHm4−1,4, x

L) + δRm1−1 for xH ∈ D1

(yHk−1,4 − xH)PH(yHk−1,4, x
L) + δRk−1 for xH ∈ D2

(1− xH)PH(1, xL) + δµθ(qH−qL)
1−δ for xH ∈ D3

where k = 2, . . . ,m4 − 1, Rs ≡ R(xHs,4, 0),

pHk,4 = (1− ρk)θ(qH − qL) + ρkθ(qH − qL),

D1 ≡ [0, xHm4,4
], D2 ≡ (xHk+1,4, x

H
k,4], and D3 ≡ (xH2,4, 1− µ].

The sequence {xHk,4}
m4
k=2 is defined such that when the state is (xHk,4, x

L) the monopolist is

indifferent between selecting (yHk−1,4, x
L) and (yHk−2,4, x

L) where yHk,4 =
xHk,4
1−µ .

Now, we verify that the path defined above is a solution to the system. Let’s define

Π(y, x) = PH(y)(yH−xH)+PL(y)(yL−xL)+δR((1−µ)y). First, we show that the monopolist

never increases the state of the low quality good. When the state is (xHk , x
L
k ) the monopolist
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is indifferent between (
xHk−1

1−µ ,
xLk−1

1−µ ) and (
xHk−2

1−µ ,
xLk−2

1−µ ) when

(1− µ)(xHk (pHk−1 − pHk−2) + xLk (pLk−1 − pLk−2))

= xHk−1(pHk−1 − ρpHk−3) + xLk−1(pLk−1 − ρpLk−3)− xHk−2(pHk−2 − ρpHk−3)− xLk−2(pLk−2 − ρpLk−3)

holds for k = 3, . . .. Moreover, when the state is
(
xH2 , x

L
2

)
the monopolist is indifferent between

(̂b, 1− b̂) and (1, xL2 ) if

xH2 (pH1 − pH0 ) + xL2 p
L
1 = b̂pH1 − pH0 + (1− b̂)pL1 + ρ(1− b̂)pH0

Thus, we have
dxHk
dxLk

= −pLk−1−p
L
k−2

pHk−1−p
H
k−2

for all k. Then, it follows that on both path 2 and path

3 we have dΠ
dxLK

< 0 for k = 3, . . .. However, for k = 2 even though dΠ
dxL2

< 0 holds for path

3, dΠ
dxL2

< 0 holds for path 2 if θ > (θ − θ) which holds on
⋂
∀i

Γi. This implies that when the

state is (xHk , x
L
k ) the monopolist is indifferent between moving the state to (xHk−1, x

L
k−1) and to

(xHk−2, x
L
k−2) where xLk−1 = xLk−2 = (1 − µ)xLk . We therefore have Π(yk−1, xk) = Π(yk−2, xk).

Let hk(x) = Π(yk−1, x) − Π(yk−2, x). Then we have hk(xk) = 0 and
dhk(x)

dx
= −PH(yk−1) +

PH(yk−2) < 0. It implies that when xLk (xL) =
xL2

(1−µ)k−2 , for x < xHk (xL) we have yk−1 � yk−2,

and for x > xHk (xL) we have yk−1 ≺ yk−2. For a given xL, Π(y, x) is strictly increasing in

yH on any of the intervals [0, yHmi,i(x
L
2 )],(yHmi,i(x

L
2 ), yHmi−1,i(x

L
2 )], . . . , (yH1 , 1]. It follows that

t(x) is a solution to the problem. Since buyers’ arbitrage equation is also satisfied, the set

{PH (.),PL (.),tH (.),tL (.),R (.)} is a stationary set for µ ≤ µ.

To prove the uniqueness of the solution, we consider any stationary equilibrium with unique

steady state (1, 0), and let {PH0 (.), PL0 (.), tH0 (.), tL0 (.), R0 (.)} be the associated stationary

set. We now prove that {PH0 (.), PL0 (.), tH0 (.), tL0 (.), R0 (.)} is equal to {PH (.), PL (.), tH (.),

tL (.), R (.)}.

First, we will show that PH0 (y) = PH(y) for all yH ∈ (̂b, 1]. Since neither (̂b, 0) nor

(̂b, 1 − b̂) is a steady state, we must have V H (̂b) < θqH . Suppose now that there exists ε > 0

such that V H(b) > θqH for all b ∈ (̂b, b̂ + ε). This yields a contradiction, since we have

V H (̂b) < θqH . Therefore, V H (b) = θqH for all b ∈ (̂b, 1]. It follows that for all yH ∈ (̂b, 1],
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we have PH(yH , 0) = θqH , and for b̂ < yH + yL ≤ 1, we have PH(yH , yL) = θqH and for

yH + yL > 1, we have PH(yH , yL) = θ(qH − qL).

Second, we show that PL0 (y) = PL(y) for all yH ∈ (̂b, 1]. The same argument can be

applied here. Since V L(̂b) < θqL and there exists no ε > 0 such that V L(b) > θqL for all

b ∈ (̂b, b̂+ ε), we have V L(b) = θqL for all b ∈ (̂b, 1]. It follows that, for all (yH , yL) such that

b̂ < yH + yL ≤ 1, we have PL(yH , yL) = θqL and for yH + yL > 1, we have PL(yH , yL) = 0.

Then, we prove that tH0 (xH1 , x
L) = 1, and tL0 (xH1 , x

L) = xL. Let’s apply the arbitrage equa-

tion for the high quality good to b̂. We then have θqH − V H (̂b) = ρ(θqH − V H(tH0 (xH1 , x
L))).

Since V H (̂b) < θqH , it follows that V H (̂b) > V H(tH0 (xH1 , x
L)). Since V H (.) is non-increasing,

tH0
(
xH1 , x

L
)
> b̂ must hold. If we apply the arbitrage equation for the low quality good

to b̂ + yL where yL = xL

1−µ , we will have tH0 (xH1 , 0) + tL0 (xH1 , 0) > b̂, and for xL > 0,

tH0 (xH1 , x
L) + tL0 (xH1 , x

L) ≥ b̂ + yL. Given the price structure described above, the monop-

olist chooses tH0 (xH1 , x
L) = 1, and tL0 (xH1 , x

L) = xL. We now show that there exists xH2

such that tH0 (xH2 , x
L) = 1, and tL0 (xH2 , x

L) = xL and that xH2 = xH2 . Due to left conti-

nuity of tH0 there exists ε > 0 such that tH0 (xH , xL) = 1 for all xH ∈ (xH1 − ε, 1] and xL.

This implies that, due to the arbitrage equations and incentive compatibility constraints,

P j0
(
yH , yL

)
=



pj1,1 for yH ∈ (yH1 − ε1
1−µ , y

H
1 ], yL = 0

pj1,2 for yH ∈ (yH1 − ε2
1−µ , y

H
1 ], yH + yL ≤ yH1

pj1,4 for yH ∈ (yH1 − ε3
1−µ , y

H
1 ], yH1 < yH + yL ≤ 1

pj1,4 for yH ∈ (yH1 − ε4
1−µ , y

H
1 ], yH + yL > 1

for j = H,L. Let’s

define xH2,i as xH2,i = inf{xH : tH0 (xH , xLi ) = 1, ∀xLi where xL1 = 0, xL2 ∈ [0, xH1 − xH ],

xL3 ∈ (xH1 − xH , 1 − µ − xH1 ], xL4 > 1 − µ − xH1 }. To observe that xH2,i = xH2,i, recall

that. Π(y1, x) < Π(y0, x) for xH > xH2 and Π(y1, x) > Π(y0, x) for xH < xH2 . Since

Π0(y1, x) = Π(y1, x) and Π0(y0, x) = Π(y0, x) we must have xH2,i = xH2,i.

We now assume that the sequence holds for k = t, we will show that it holds for k = t+ 1

as well. That is we will show that PH0 (yH , yL) = pHk+1, PL0 (yH , yL) = pLk+1 for yH ∈

(yHk+2(xL), yHk+1(xL)], and tH0 (xH , xL) = yHk (xL), tL0 (xH , xL) = xL for xH ∈ (xHk+2(xL), xHk+1(xL)]

for all xL = (1 − µ)yL. To see this, first observe that for b < b̂, we have V H(b) < θqH ,

and for b < b̂ we have V L(b) < θqL, for b ∈ (̂b, 1] we have V L(b) < θqL, and for b <
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1 we have V L(b) = 0. If we apply the arbitrage equation for the high quality good at

yHk (xL) and the arbitrage equation for the low quality good at yHk (xL) + yL, we will have

tH0 (xHk (xL), xL) > yHk (xL) and tH0 (xHk (xL), xL) + tL0 (xHk (xL), xL) > yHk (xL) + yL. We know

that xHk+1(xL) = inf{xH : tH0 (xH , xL) = yHk−1(xL)}. Moreover, as discussed above, since

dyHk (yL)

dyL
< 0 and dΠ

dyH
> dΠ

dyL
, the seller keeps the low quality good as low as possible. Hence,

we must have tH0 (xHk+1(xL), xL) = yHk (xL), tL0 (xHk+1(xL), xL) = xL. Similar to the previous

discussion, we use left continuity of tH0 (·) to define xHk+2(xL) = inf{xH : tH0 (xH , xL) = yHk (xL)}

and conclude that xHk+2(xL) = xHk+2(xL).

Proof of Corollary 1. For the existence of the Coase Conjecture equilibrium in a vertically

differentiated market we must have qH − qL > qL and θ > θ − θ, and µ ∈
⋂
∀s

Γs, s = 1, . . . , 4.

Since Γi ⊂ Γj for all i = 2, 3 and j = 1, 4 and Γj is equivalent to the set Λ defined in Deneckere

and Liang which guarantees existence of the Coase Conjecture equilibrium, the threshold

depreciation rate for the Coase Conjecture equilibrium to exist in vertically differentiated

market is strictly less than the threshold depreciation rate in a market in which only one

version of the good is sold.

Proof of Corollary 2. By definition of xHk,i, x
H
k,i = (1−µ)−1(xHk−1,i−ak,i(xHk−2,i−xHk−1,i)) for

k ≥ 4, we have limz→0 x
H
k,i = limz→0+(xHk−1,i− ak,i(xHk−2,i− xHk−1,i)). Hence, limz→0+ (xHk−1,i−

xHk,i) > limz→0(xHk−2,i−xHk−1,i). By using induction, limz→0+(xHk−1,i−xHk,i) > limz→0+(xHk−2,i−

xHk−1,i) > limz→0+(xH2,i − xH3,i) > b̂ − xH2,i. For i = 1, 4 we have b̂ − xH2,i =
(1−b̂)θ
θ−θ , and for

i = 2, 3 we have b̂ − xH2,i =
(1−b̂)θ
θ−θ =

b̂(θqL+(θ−θ)(qH−qL))
(1−b̂)θ(qH−qL)−(1−b̂)θqL+xL2 θqL

. Therefore, for i = 1, 4

it will take at most mi ≤
b̂(θ−θ)
(1−b̂)θ

+ 1 steps and for i = 2, 3 it will take at most mi ≤
b̂((1−b̂)θ(qH−qL)−(1−b̂)θqL+xL2 θqL)

b̂(θqL+(θ−θ)(qH−qL))
+ 1 steps to sell to all buyers.

Proof of Corollary 3. Let m represents the number of the interactions between the monop-

olist and the buyers in market sold one version of the good. As z diminishes both m and mi

for i = 1, 4 converges to
b̂(θ−θ)
(1−b̂)θ

+ 1, whereas mi for i = 2, 3 converges to

b̂
((

1− b̂
)
θ (qH − qL)−

(
1− b̂

)
θqL + xL2 θqL

)
b̂
(
θqL +

(
θ − θ

)
(qH − qL)

) + 1.
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Since
b̂((1−b̂)θ(qH−qL)−(1−b̂)θqL+xL2 θqL)

b̂(θqL+(θ−θ)(qH−qL))
>

b̂(θ−θ)
(1−b̂)θ

for all xL2 , the first part of the proof is finished.

To prove the second part of the corollary, we should observe that for a give qH , dmi
dqL

> 0 for

i = 2, 3 and limqL→0+ mi =
b̂(θ−θ)
(1−b̂)θ

+ 1 for i = 2, 3.

Proof of Theorem 2. Let x̃jk,i be the state of the durable good j in period k on path i. There

exists three paths depending on the state of the low quality good. First, we define the set of

states for the high quality good. For all i, let x̃H0,i = (1−µ)̂b, and let x̃Hk,i = θ+ρk−1∆θ
θ+(1−µ)ρk−1∆θ

x̃Hk−1,i.

Second, we define the set of states for the low quality good. For all k ≥ 0, let x̃Lk,1 = 0, let

x̃Lk,2 = 1 − µ − x̃Hk,2 and let x̃Lk,3 be such that x̃Hk,3 + x̃Lk,3 > 1 − µ. Since, the state of the high

quality good is independent of the path, from now on we refer to the state of the high quality

good in period k on path i as x̃Hk . Observe that x̃H0 < x̃H1 < ỹH0 < x̃H2 < ỹH1 < x̃H3 < · · · where

ỹjk =
x̃jk

1−µ for µ ≥ µsg.

We now define {p̃jk,i}
∞
k=0. On path 1, the price of the high quality good is p̃Hk,1 = θqH +

ρk∆θqH and the price of the low quality good is set such that none of the buyers would

purchase it. On path 2, the price of the high quality good is p̃Hk,2 = θqH + ρk∆θ∆q and the

price of the low quality good is p̃Lk,2 = θqL. On path 3, the price of the high quality good is

p̃Hk,3 = θ∆q + ρk∆θ∆q and the price of the low quality good is p̃Lk,2 = 0.

Now, we prove that a stationary equilibrium exists for µ ≥ µsg. Let us define {PH (.),

PL (.), tH (.), tL (.), R (.)}. If x̃H∞ = lim
k→∞

x̃Hk ≥ 1 − µ, then set m = sup{k : x̃Hk < 1 − µ} and

define x̃Hm+1 = 1− µ. For a given state (xH , xL), we define the stationary path as follows.

PH
(
xH , xL

)
=



θqH for xH ∈ D1 and xL = 0

θqH − θqL + θqL for xH ∈ D1 and xL ∈ DxH

θqH − θqL for xH ∈ D1 and xL ∈ D′
xH

p̃Hk,1 for xH ∈ D2 and xL = 0

p̃Hk,2 for xH ∈ D2 and xL ∈ DxH

p̃Hk,3 for xH ∈ D2 and xL ∈ D′
xH

where k = 1, . . . ,m− 1,
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PL
(
xH , xL

)
=



θqL for xH ∈ D1 and xL = 0

p̃Lk,1 for xH ∈ D2 and xL = 0

θqL for all xH and xL ∈ DxH

0 for all xH and xL ∈ D′
xH

where k = 1, . . . ,m+ 1,

tH(xH , xL) =

 b̂ for xH ∈ D3

ỹHk−1 for xH ∈ D4

where k = 2, . . . ,m+ 1,

tL(xH , xL) =


0 for all xH and xL = 0

1− tH(xH , xL) for all xH and xL ∈ DxH

xL for all xH and xL ∈ D′
xH

R(xH , xL) =



( δµb̂1−δ + (̂b− xH))θqH for xH ∈ D3 and xL = 0

( δµb̂1−δ + (̂b− xH))(θ∆q + θqL) + C1 for xH ∈ D3 and xL ∈ DxH

( δµb̂1−δ + (̂b− xH))θ∆q for xH ∈ D3 and xL ∈ D′
xH

(
µỹHk−1

1−δ + (x̃Hk−1 − xH))p̃Hk−1,1 for xH ∈ D4 and xL = 0

(
µỹHk−1

1−δ + (x̃Hk−1 − xH))p̃Hk−1,2 + C2 for xH ∈ D4 and xL ∈ CxH

(
µỹHk−1

1−δ + (x̃Hk−1 − xH))p̃Hk−1,3 for xH ∈ D4 and xL ∈ CxH

where k = 2, . . . ,m− 1, C1 = ( δµ(1−b̂)
1−δ + (1− b̂− xL))θqL,

C2 = (
µ(1−ỹHk−1)

1−δ + (1− µ− x̃Hk−1 − xL))p̃Lk−1,2, CxH ≡ [0, 1− xH ],

D1 ≡ [0, b̂], D3 ≡ [0, x̃H1 ], D4 ≡ (x̃Hk−1, x̃
H
k ], D2 ≡ (ỹHk−1, ỹ

H
k ],

and DxH ≡ [0, 1− µ− xH ].

If x̃H∞ = lim
k→∞

x̃Hk,i < 1− µ. For all k ≥ 1 define R̃(·) as
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R̃k−1(xH | xL) =


(
µỹHk−1

1−δ + S1 for xH ∈ D4, xL = 0

(
µỹHk−1

1−δ + S2 + C3 for xH ∈ D4, xL ∈ CxH

(
µỹHk−1

1−δ + S3 for xH ∈ D4, xL ∈ CxH

where C3 = (
µ(1−ỹHk−1)

1−δ + (1− µ− (1− µ)ỹHk−1 − xL))p̃Lk−1,2,

S1 ≡ ((1− µ)ỹHk−1 − xH))p̃Hk−1,1, S2 ≡ ((1− µ)ỹHk−1 − xH))p̃Hk−1,2,

S3((1− µ)ỹHk−1 − xH))p̃Hk−1,3, CxH ≡ [0, 1− xH ],

and D4 ≡ (x̃Hk−1, x̃
H
k ].

Define x́Hi = max{xH ∈ [(1 − µ)̂b, x̃H∞] : R̃k−1(xH) ≥ Rc(xH)}, where Rc(xH | xL) =

( δµ
1−δ + (1 − xH))pc and pc =

 θqH for xL = 0

θ∆q for xL > 0
. Since R̃k−1(. | xL) decreases as xL

increases, we have x́H1 > x́H2 > x́H3 . Let mi be such that x́Hi ∈ (x̃Hmi , x̃
H
mi+1]. Since R̃k−1(x̃H∞ |

0)−Rc(x̃H∞ | 0) < 0 and by definition of µ, m1 exists, so do m2 and m3. Now, let x̃Hmi+1,i ≡ x́Hi

and define the stationary path as follows.

PH
(
xH , xL

)
=



θqH for xH ∈ D1 and xL = 0

θqH − θqL + θqL for xH ∈ D1 and xL ∈ DxH

θqH − θqL for xH ∈ D1 and xL ∈ D′
xH

p̃Hk,1 for xH ∈ D2,1 and xL = 0

p̃Hk,2 for xH ∈ D2,2 and xL ∈ DxH

p̃Hk,3 for xH ∈ D2,3 and xL ∈ D′
xH

θqH for xH ∈ D5 and xL = 0

θ∆q for xH ∈ D5 and all xL, i = 2, 3

where ki = 0, . . . ,mi + 1,

PL
(
xH , xL

)
=



θqH for xH ∈ D1 and xL = 0

p̃Lk,1 for xH ∈ D2 and xL = 0

θqL for all xH and xL ∈ DxH

0 for all xH and xL ∈ D′
xH

where k = 1, . . . ,m1 + 1,
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tH(xH , xL) =


b̂ for xH ∈ D3

ỹHk−1 for xH ∈ D4

1 for xH ∈ D6

where k = 2, . . . ,m+ 1,

tL(xH , xL) =


0 for all xH and xL = 0

1− xH for all xH and xL ∈ DxH

xL for all xH and xL ∈ D′
xH

R(xH , xL) =



( δµb̂1−δ + (̂b− xH))θqH for xH ∈ D3 and xL = 0

( δµb̂1−δ + (̂b− xH))(θ∆q + θqL) + C1 for xH ∈ D3 and xL ∈ DxH

( δµb̂1−δ + (̂b− xH))θ∆q for xH ∈ D3 and xL ∈ D′
xH

(
µỹHk−1

1−δ + (x̃Hk−1 − xH))p̃Hk−1,1 for xH ∈ D4,1 and xL = 0

(
µỹHk−1

1−δ + (x̃Hk−1 − xH))p̃Hk−1,2 + C2 for xH ∈ D4,2 and xL ∈ CxH

(
µỹHk−1

1−δ + (x̃Hk−1 − xH))p̃Hk−1,3 for xH ∈ D4,3 and xL ∈ CxH

( δµ
1−δ + (1− xH))θqH for xH ∈ D6 and xL = 0

( δµ
1−δ + (1− xH))θ∆q for xH ∈ D6 and all xL.

where ki = 0, . . . ,mi + 1, D5 ≡ (ỹHmi+1,1, 1], D6 ≡ (x̃Hm1+1, 1],

and all other variables are defined as above.

.

We now show that the stationary path defined above is a solution. We consider the case

where x̃H∞ < 1 − µ. First, we show that when the state of the low quality good is zero,

the monopolist prefers setting the price of the low quality good high enough so that none of

the buyers purchase the low quality good. Suppose that xH ∈ (x̃Hk−1, x̃
H
k ]. For all µ > µst,

we have R̃1((1 − µ)̂b | 0) > R̃1((1 − µ)̂b | (1 − µ)(1 − b̂)). If there exists xHk such that

R̃k−1(xHk | 0) = R̃k−1(xHk | 1−µ−xHk ) then R̃k−1(xHk | 0) ≤ Rc(xHk | 0). Hence, tL
(
xH , 0

)
= 0.

Second, we show that for xL ∈ (0, 1− µ− xH ], tL(xH , xL) = 1− tH(xH , xL). In period k,

when the state is (xHk , x
L
k ) and xHk +xLk ≤ 1−µ, the monopolist is indifferent between staying at

(xHk , x
L
k ) forever and bringing the state to (xHk−1, x

L
k−1) if xHk (θqH+(1−µ)ρk−1∆θ∆q)+yLk θqL =

xHk−1(θqH+ρk−1∆θ∆q)+xLk−1θqL holds. Let Π2(xHk , x
L
k ) =

µx̃Hk
(1−δ)(1−µ) p̃

H
k,2+

µx̃Lk
(1−δ)(1−µ) p̃

L
k,2. Since

dxHk
dxLk

= − θqL
θqH+(1−µ)ρk−1∆θ∆q

, we have
dΠ2(xHk ,x

L
k )

dxLk
> 0. Hence, xLk = 1−µ−xHk must hold. For a

given (xH , xL), since R̃ is increasing in yH on any of the intervals [0, ỹH0 ], (ỹH0 , ỹ
H
1 ],. . .,(ỹHmi+1, 1],
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we have tH ∈ {ỹH0 , ỹH1 , . . . , ỹHmi+1, 1}.

Third, we construct the sequence of states such that when the state is (x̃Hk , 0), we have

R̃k−1(x̃Hk | 0) = R̃k(x̃
H
k | 0), hence (ỹHk−1, 0) ∼ (ỹHk , 0). When the state is (x̃Hk , 1− µ− x̃Hk ), we

have R̃k−1(x̃Hk | 1 − µ − x̃Hk ) = R̃k(x̃
H
k | 1 − µ − x̃Hk ), hence (ỹHk−1, 1 − ỹHk−1) ∼ (ỹHk , 1 − ỹHk ).

When the state is (x̃Hk , x
L) where x̃Hk + xL > 1 − µ, we have R̃k−1(x̃Hk | xL) = R̃k(x̃

H
k | xL),

hence (ỹHk−1, x
L) ∼ (ỹHk , x

L). Now, let hmi+1(xH | xL) = Rc(x
H | xL)− R̃m1(xH | xL), and for

k ≤ mi let hk(x
H | xL) = R̃k(x

H | xL) − R̃k−1(xH | xL). By definition of x̃Hk , hk(x̃
H
k | 0) = 0

for all k. Moreover, we have
dhm1+1

dxH
= −(θqH − p̃Hm1,1

) > 0 and dhk
dxH

= −(p̃Hk,1 − p̃Hk−1,1) > 0.

Hence, tH(xH , 0) is a solution. To see that tH(xH , 1− µ− xH) is a solution as well, we should

observe that for all k, hk(x̃
H
k | xL) = 0 where xL ≥ 1−µ−x̃Hk and

dhmi+1

dxH
= −(θ∆q− p̃Hmi,2) > 0

and dhk
dxH

= −(p̃Hk,i − p̃Hk−1,i) > 0 for i = 2, 3. Therefore, we conclude that the path we derived

is a solution to the optimization problem.

To prove the uniqueness of the solution, we consider any stationary equilibrium with a

steady state (̂b, 0) with the associated stationary set {PH0 (.),PL0 (.),tH0 (.),tL0 (.),R0 (.)}, and

show that {PH0 (.),PL0 (.),tH0 (.),tL0 (.),R0 (.)} is equal to {PH (.),PL (.),tH (.),tL (.),R (.)}.

Let’s define v̌H1 = sup
b>b̂

V H
0 (b). First, suppose that v̌H1 = θqH . We start with proving

v̌L1 ≤ θqL where v̌L1 = sup
b>b̂

V L
0 (b). Suppose that there exists b > b̂ such that V L

0 (b) > θqL.

If we apply the arbitrage equation to b, for the low quality good we have θqL − V L
0 (b) =

ρ(θqL−V L
0 (tH(·) + tL(·))). Since θqL−V L

0 (b) < 0, we must have tH(·) + tL(·) < b. If we apply

the arbitrage equation to b, for the high quality good, θqH − V H
0 (b) = ρ(θqH − V H

0 (tH(·))).

Since V H
0 (b) = θqH , we must have tH(·) > b, which leads to a contradiction. Hence, we must

have tH(xH , xL) = 1 and tL(xH , xL) = xL for xH > (1− µ)̂b and

PH0
(
xH , xL

)
=



θqH if xH ≤ b̂ and xH + xL ≤ b̂

θqH − θqL + θqL if xH ≤ b̂ and b̂ < xH + xL ≤ 1

θqH − θqL if xH ≤ b̂ and xH + xL > 1

θqH if xH > b̂ and b̂ < xH + xL ≤ 1

θ∆q if xH > b̂ and xH + xL > 1

,
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PL0
(
xH , xL

)
=



θqL if xH ≤ b̂ and xH + xL ≤ b̂

θqL if xH ≤ b̂ and b̂ < xH + xL ≤ 1

0 if xH ≤ b̂ and xH + xL > 1

θqL if xH > b̂ and b̂ < xH + xL ≤ 1

0 if xH > b̂ and xH + xL > 1

,

tH0
(
xH , xL

)
=

 b̂ if xH ≤ (1− µ)̂b

1 if xH > (1− µ)̂b
,

tL0
(
xH , xL

)
= xL for all xH , xL.

Hence, {PH0 , PL0 , t
H
0 , t

L
0 , R0} is uniquely determined.

Second, suppose that v̌H1 > θqH . We show that p̌H1 =


p̃H1,1 if xL = 0

p̃H1,2 if xH + xL ≤ 1

p̃H1,3 if xH + xL > 1

. First, we

must prove that there exists ε > 0 such that tH0 ((1−µ)yH , xL) = b̂ for all yH ∈ (̂b, b̂+ε]. To see

this, observe that tH0 ((1−µ)yH , (1−µ)yL) < yH for all yH such that V H
0 (yH) > θqH . If we had

tH0 ((1− µ)yH , (1− µ)yL) ≥ yH , we would have V H
0 (tH0 ((1− µ)yH , (1− µ)yL)) ≤ V H

0 (yH) that

would yield V H
0 (yH) = (1−ρ)θqH +ρV H

0 (tH0 ((1−µ)yH , (1−µ)yL) ≤ (1−ρ)θqH +ρV H
0 (yH) <

θqH which contradicts with the initial assumption.

Let x̌H1 (xL) = max{xH ≤ 1 − µ | tH0 (xH , xL) = b̂}. First, if x̌H1 (xL) = 1 − µ then

{PH0 , PL0 , t
H
0 , t

L
0 , R0} is uniquely determined as follows

PH0
(
xH , xL

)
=



θqH if xH ≤ b̂ and xL = 0

θqH − θqL + θqL if xH ≤ b̂ and xH + xL ≤ 1 and xL > 0

θqH − θqL if xH ≤ b̂ and xH + xL > 1

p̌H1,1 if xH > b̂ and xL = 0

p̌H1,2 if xH > b̂ and xH + xL < 1and xL > 0

p̌H1,3 if xH > b̂ and xH + xL > 1

,

PL0
(
xH , xL

)
=


p̌L1,1 if xL = 0

θqL if xL > 0 and xH + xL ≤ 1

0 if xH > b̂ and xH + xL > 1

,

tH0
(
xH , xL

)
= b̂ for all xH , xL,
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tL0
(
xH , xL

)
=

 1− b̂ if xH ≤ b̂ and xH + xL ≤ b̂

xL otherwise
.

Second, let us consider the case where x̌H1 (xL) < 1 − µ. Define p̌H2 = sup{PH0 (b) | b >
x̌H1 (xL)

1−µ }. If p̌H2 = θqH then as discussed above we have

PH0
(
xH , xL

)
=

 θqH if xH ∈ (
x̌H1 (xL)

1−µ , 1] and xH + xL ≤ 1

θ(qH − qL) if xH ∈ (
x̌H1 (xL)

1−µ , 1] and xH + xL > 1
,

PL0
(
xH , xL

)
=

 θqL if xH + xL ≤ 1

0 if xH + xL > 1
,

tH0
(
xH , xL

)
= 1 if xH ∈ (

x̌H1 (xL)
1−µ , 1],

tL0
(
xH , xL

)
= xL if xH ∈ (

x̌H1 (xL)
1−µ , 1].

It follows that R0(xH , xL) =

 RC(xH , xL) if xH ∈ (x̌H1 (xL), 1− µ]

R̃(xH , xL) if xH + xL > 1− µ
. By the continu-

ity of R0 at xH = x̌H1 since R̃(x̌H1 (xL), xL) = R0((x̌H1 (xL), xL), we must have x́H1 = x́H2 = x́H3 .

Suppose now that p̌H2 > θqH . Then by the same reasoning, there must exits ε > 0 such

that tH0 (xH , xL) =
x̌H1 (xL)

1−µ , for all xH ∈ (x̌H1 (xL), x̌H1 (xL) + ε]. Hence, p̌H2 = p̃H2 . Now we show

that x̌H1 (xL) = x̃H1 (xL).

Let us define

V0(xH , xL) =


π(̂b, 0 | xH , 0)− µp̃H1,1x

H

(1−µ)(1−δ) if xL = 0

π(̂b, 1− b̂ | xH , xL)− µp̃H1,2x
H+µp̃L1,2x

L

(1−µ)(1−δ) if 0 < xL ≤ 1− xH .

π(̂b, xL | xH , xL)− µp̃H1,3x
H

(1−µ)(1−δ) if xL > 1− xH

Since tH0 (xH , xL) = b̂ for all xH ≤ x̌H1 (xL) and tH0 (xH , xL) = x̌H1 (xL) for all xH ∈ (x̌H1 (xL),

x̌H1 (xL)+ε], we must have V0(x̌H1 (xL), xL) = 0. Since V0(x̃H1 (xL), xL) = 0 and ∂
∂xH

V0(xH , xL) <

0, we must have x̌H1 (xL) = x̃H1 (xL).

We must apply the same argument inductively. Given x̌Hk (xL) = max{xH : tH0 (xH , xL) =

x̌Hk−1((1−µ)xL)}, it must be that x̌Hk (xL) = x̃Hk (xL). If x̌Hk (xL) = 1−µ, then x̃Hk (xL) = 1−µ

and m = k−1. If x̌Hk (xL) < 1−µ and p̌Hk+1 = θqH then x̌Hk (xL) = x́ = x̃Hk (xL) and m = k−1.

If x̌Hk (xL) < 1 − µ and p̌Hk+1 > θqH then m > k − 1 and x̌Hk+1(xL) = max{xH : tH0 (xH , xL) =
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x̌Hk ((1− µ)xL)}.

Proof of Corollary 4. Since x̃Hk,1 = x̃k and p̃Hk,1 = p̃k where (x̃k, p̃k) denotes the path when

the monopolist produces one version of the good, we must have µst(δ) = µs (δ).

Proof of Corollary 5. On path 1,
PH(ỹHk,1,0)−PH(ỹHk−1,1,0)

ỹHk,1−ỹ
H
k−1,1

=
−(1−ρ)(p̃Hk−1,1−µ(p̃Hk−1,1−θqH))

µỹHk−1,1

. As

z approaches 0, since ỹHk,1 − ỹHk−1,1 converges to zero, we have PH1 (y, 0) y = −λ+r
λ PH (y, 0).

The solution of the differential equation is PH (y, 0) = c1y
−λ+r

λ . Since PH
(
b̂, 0
)

= θqH , we

have c1 = θqH b̂
λ+r
λ . Hence, PH (y, 0) = θqH

(
b̂
y

)λ+r
λ

. As z approaches zero,
ỹHk,1−ỹ

H
k−1,1

z =

ỹHk−1,1

p̃Hk−1,1−θqH
−z(p̃Hk−1,1−θqH)+ z

µ
p̃Hk−1,1

converges to ẏ1 = λy1

(
1− θ

θ

(
b̂
y

)−λ+r
λ

)
.

On path 2,
PH(ỹHk,2,1−ỹ

H
k,2)−PH(ỹHk−1,2,1−ỹ

H
k−1,2)

ỹHk,2−ỹ
H
k−1,2

=
−(1−ρ)((p̃Hk−1,2−θqL)−µ(p̃Hk−1,2−θqH))

µỹHk−1,2

. As z ap-

proaches 0, since ỹHk,2 − ỹHk−1,2 converges to zero, we have dPH(y,1−y)
dy y = −λ+r

λ (PH (y, 1− y)

− θqL). The solution of the differential equation is PH (y, 1− y) = c2y
−λ+r

λ + θqL. Since

PH
(
b̂, 1− b̂

)
= θqH − θqL+ θqL, we have c2 = θ∆qb̂

λ+r
λ . Hence, PH (y, 1− y) = θqH

(
b̂
y

)λ+r
λ

+ θqL. As z approaches zero,
ỹHk,2−ỹ

H
k−1,2

z = ỹHk−1,2

p̃Hk−1,2−θqH
−z(p̃Hk−1,2−θqH)+ z

µ(p̃Hk−1,2−θqL)
converges to

ẏ2 = λy2

(
1− θ

θ

(
b̂
y

)−λ+r
λ

)
.

On path 3,
PH(ỹHk,3,y

L)−PH(ỹHk−1,3,y
L)

ỹHk,3−ỹ
H
k−1,3

=
−(1−ρ)(p̃Hk−1,3−µ(p̃Hk−1,3−θ∆q))

µỹHk−1,3

. As z approaches 0,

since ỹHk,3 − ỹHk−1,3 converges to zero, we have PH1 (y, .) y = −λ+r
λ PH (y, .). The solution

of the differential equation is PH (y, .) = c3y
−λ+r

λ . Since PH
(
b̂, yL

)
= θqH − θqL, we

have c3 = θ∆qb̂
λ+r
λ . Hence, PH (y, .) = θ∆q

(
b̂
y

)λ+r
λ

. As z approaches zero,
ỹHk,3−ỹ

H
k−1,3

z =

ỹHk−1,3

p̃Hk−1,3−θ∆q
−z(p̃Hk−1,3−θ∆q)+ z

µ
p̃Hk−1,3

converges to ẏ3 = λy3

(
1− θ

θ

(
b̂
y

)−λ+r
λ

)
.

Proof of Theorem 3. As stated in the proof of Proposition 3, if (y̌H , 1 − y̌H) is a steady

state, we must have

V H(b) =


= θqH for b ≤ y̌H

< θqH for b ∈ (y̌H , b̂]

= θqH for b ∈ (̂b, 1]

(A.1)

and

V L(b) =

 < θqL for b ≤ b̂

= θqL for b ∈ (̂b, 1]
, (A.2)
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and if (ŷH , 0) is a steady state, we must have

V H(b) =


= θqH for b ≤ ŷH

< θqH for b ∈ (ŷH , b̂]

= θqH for b ∈ (̂b, 1]

(A.3)

and

V L(b) =


= θqL for b ≤ ŷH

< θqL for b ∈ (ŷH , b̂]

= θqL for b ∈ (̂b, 1]

. (A.4)

Let us establish that the existence of a reputational equilibrium implies µ ∈ (µ, µ]. First, we

show that µ > µ. Suppose that the steady state is (y̌H , 1− y̌H). Due to (A.1) and (A.2), for all

yH ≤ y̌H and for all yL, we have tH((1−µ)yH , (1−µ)yL) = y̌H and tL((1−µ)yH , (1−µ)yL) =

1− y̌H and hence we have PH(yH , yL) = θqH − θqL + θqL and PL(yH , yL) = θqL. This implies

that R((1−µ)y̌H , (1−µ)(1− y̌H)) = µy̌H(θqH−θqL+θqL)
1−δ + µ(1−y̌H)θqL

1−δ . By the continuity of R(·),

y̌H solves ψ(y) = 0 where ψ(y) = µy(θqH−θqL+θqL)
1−δ + µ(1−y)θqL

1−δ − RC((1− µ)y, (1− µ)(1− y)).

Since ψ(̂b) = 0 when µ = µ, we must have ψ(̂b) < 0 for all µ < µ. Since, ψ(·) is strictly

increasing, the existence of y̌H < b̂ requires that µ > µ. Suppose now that the steady state

is (ŷH , 0). Due to (A.3) and (A.4), for all yH ≤ ŷH , we have tH((1 − µ)yH , 0) = ŷH and

tL((1 − µ)yH , 0) = 1 − ŷH and hence we have PH(yH , 0) = θqH and PL(yH , 0) = θqL. This

implies that R((1 − µ)ŷH , 0) = µŷHθqH
1−δ . By the continuity of R(·), ŷH solves ς(y) = 0 where

ς(y) = µyHθqH
1−δ − RC((1− µ)y, 0). Since ς (̂b) = 0 when µ = µst, we must have ς (̂b) < 0 for all

µ < µst. Since, ς(·) is strictly increasing, the existence of ŷH < b̂ requires that µ > µst. By

definition of µst and µ, µst > µ.

Second, we show that µ < µ. The proof follows from a contradiction. Suppose that for

some µ > µ, a reputational equilibrium exists. Let us define

K1 = min{k : xHj,1 < xHj−1,1 for all j ≤ k}.
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Since the Coase Conjecture equilibrium does not exist for µ > µ, we have xH
K1,1

> 0. Further-

more, since xH
K1+1,1

≥ xH
K1,1

, when the initial state is (xH
K1,1

, 0) the monopolist prefers selling

to (yH
K1+1,1

, 0) to selling to (yH
K1,1

, 0). This implies that

µpH
K1,1

yH
K1,1

+ δRC(xH
K1,1

, xL) > RC(xH
K1,1

, xL).

Hence, ς(yH
K1,1

) > 0 and ŷH < yH
K1,1

. However, constructing the sequence for yH below yH
K1,1

is not possible. Similarly, let’s define

K3 = min{k : xHj,3 < xHj−1,3 for all j ≤ k and xL = 1− yH
K1,3
}.

Since the Coase Conjecture equilibrium does not exist for µ > µ, we have xH
K3,3

> 0. Further-

more, since xH
K3+1,3

≥ xH
K3,3

, when the initial state is (xH
K3,3

, 1 − µ − xH
K3,3

) the monopolist

prefers selling to (yH
K3+1,3

, 1− yH
K1,3

) to selling to (yH
K3,3

, 1− yH
K1,3

). This implies that

µpH
K3,3

yH
K3,3

+ µpL
K3,3

(1− yH
K3,3

) + δRC(xH
K3,3

, 1− µ− xH
K3,3

) > RC(xH
K3,3

, 1− µ− xH
K3,3

).

Hence, ψ(yH
K3,3

) > 0 and y̌H < yH
K3,3

. However, constructing the sequence for yH below yH
K3,3

is not possible. Hence, we must have µ < µ.

We now establish that a reputational equilibrium exists for any µ ∈ (µ, µ]. Let ∆ := ς−ψ.

Then, ∆(y) := µ(θy−θ)qL
1−δ − (RC((1−µ)y, 0)−RC((1−µ)y, (1−µ)(1− y))). We have ∆(0) < 0

and ∆(1) > 0. Moreover, ψ(ŷH) > 0. For µ > µ, we have ψ(̂b) > 0. Since ψ(̂b) > 0. Since

ψ(0) = µθqL
1−δ −R

C(0, 1−µ) < 0, and ψ(·) is strictly increasing there exists a unique y̌H ∈ (0, b̂)

such that ψ(y̌H) = 0. Similarly, for µ > µst, we have ς (̂b) > 0. Since ς(0) = −RC(0, 0) < 0,

and ς(·) is strictly increasing, there exists a unique ŷH ∈ (0, b̂) such that ς(ŷH) = 0. Therefore,

for µ ∈ (µ, µst], the steady state of a reputational equilibrium is (y̌H , 1− y̌H). PH(yH , yL) =

θqH − θqL + θqL for all yH < y̌H and all yL, and PL(yH , yL) = θqL for all yH and yL. Hence,

R(xH , xL) = (y̌H−xH)(θqH−θqL+θqL)+(1− y̌H−xL)θqL+δ(µy̌
H(θqH−θqL+θqL)

1−δ + µ(1−y̌H)θqL
1−δ )

for xH ∈ [0, (1− µ)y̌H ] and for xL ∈ [0, (1− µ)(1− y̌H)], and the path is defined by the Coase

Conjecture path elsewhere. For µ ∈ (µst, µ], if θŷH > θ, the reputational steady state is
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(ŷH , 0), otherwise it is (y̌H , 1− y̌H).

Now, we establish that µ < µ. Since µ < µst, to establish it we show that µst < µ by

proving {xk,1} is strictly decreasing and m is finite for µ ≤ µ. First, we show that x2,1 < x1,1

for any µ ≤ µ. Since h2(·) is decreasing and h2(xH2 ) = 0, to establish the proof, we show that

h2(xH1,1) < 0. We have

h2(x1,1) = Π(y1,1, x1,1)−Π(y0,1, x1,1) = PH (̂b, 0)µb̂+ δΠ(y0,1, x1,1)−Π(y0,1, x1,1)

= PH(yH1 , 0)µb̂− (1− δ)Π(y0,1, x1,1).

Since Π(y0,1, x1,1) ≥ µb̂θqH
1−δ , we have

h2(x1,1) ≤ PH (̂b, 0)µb̂− µb̂θqH = µb̂(PH (̂b, 0)− θqH) < 0

Second, we show that there exist ∆ > 0 such that xH3,1 < xH2,1 −∆. Since h3(·) is decreas-

ing and h3(xH3,1) = 0, to establish the proof, we show that h3(xH2,1) < 0. We have h3(xH2,1)

= Π(y2,1;x2,1) − Π(y1,1;x2,1) = PH(y2,1)µyH2,1 − (1 − δ)Π(y1,1;x2,1). Since Π(y1,1;x2,1) =

Π(y0,1;x2,1), we have Π(y1,1;x2,1) = (xH1,1 − xH2,1)θqH + Π(y0,1;x1,1). Therefore, h3(xH2,1) <

PH(y2,1)
µxH2,1
1−δ −(1−δ)(xH1 −xH2 )θqH−µb̂θqH

1−δ = (PH(y2,1)−θqH)
µxH2,1
1−δ −(1−δ)(xH1,1−xH2,1)θqH < 0.

Therefore, xH2,1 − xH3,1 =
h3(xH2,1)

h′3(x)
=

(1−δ)((xH1 −xH2 )θqH)

−PH(y2,1)+PH(y1,1)
= ∆ > 0

Third, we suppose that there exist ∆ such that xHk < xHk−1 −∆ for k ≥ 3 and show that

it also holds for k + 1. Since the sequence is decreasing until k − 1, we have Π(yk−1,1, xk,1) ≥

Π(y0, xk) = (1−xk,1)θqH+δR (1− µ) = Π(y0,1, x1,1)+(xH1,1−xHk,1)θqH ≥
µb̂θqH
1− δ

+(xH1 −xHk )θqH .

By the same argument stated above hk+1,1(xHk,1) = Π(yk,1, xk,1) − Π(yk−1,1, xk,1) < −(1 −

δ)(xH1,1 − xHk,1)θqH < 0. Therefore, since hk+1,1

(
xHk+1,1

)
= 0 and h′k+1,1 (.) = −PH(yk,1) +

PH(yk−1,1), we have xHk,1 − xHk+1,1 =
hk+1,1(xHk,1)
h′k+1,1(.)

>
(1−δ)(xH1,1−xHk,1)θqH
PH(yk,1)−PH(yk−1,1)

.

Proof of Corollary 6. Consider
(
ŷH , 0

)
. We set ŷH such that ζ

(
ŷH , 0

)
= 0. Then

limz→0+ ζ
(
yH , 0

)
= limz→0+(µθqHy

H

1−δ − ((1− (1−µ)yH)θqH + δµθqH
1−δ )). Therefore, at

(
ŷH , 0

)
we

have ŷHqH = limz→0+
(1−δ)θqH+δµθqH
µθ+(1−δ)(1−µ)θ

= (λ+r)θqH
λθ+rθ

. Since θŷH = (λ+r)θθ

λθ+rθ
> θ, the seller moves

to
(
ŷH , 0

)
from the initial state (0, 0) when µst < µ < µ.
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Now, consider
(
y̌H , 1− y̌H

)
. We set y̌H such that ψ(y̌H , 1 − y̌H) = 0. Then limz→0+ ψ

(yH , 1− yH) = limz→0+(µ(θqH−θqL+θqL)yH

1−δ + µθqLy
L

1−δ − ((1− (1− µ)yH)θqH + δµθqH
1−δ )).

Proof of Proposition 4. Trivial.

Proof of Corollary 7. Trivial.
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Appendix B

Appendix for Chapter 5

Proof of Proposition 5. The proof is established by the following two claims. First, we

claim that if buyer b buys good i rather than waiting one period then b′ < b would prefer

buying good i to waiting one period as well. The Buyer b s payoff when she accepts pit is

f i (b) − pit + δVb (Ht, a) . When she rejects pit, her payoff is δVb (Ht, r). Since the good may

stop functioning with probability µ, Vb (Ht, a) = µVb (Ht, r) . Therefore, buyer b accepts pit if

f i (b) − pit ≥ ρVb (Ht, r) . Suppose that b′ < b. Show that f i (b′) − pit ≥ ρVb′ (Ht, r) .Suppose

b adopts b′ s strategy. Then b s payoff would be less that b′ s payoff. That is, f i (b) − p̃i −

ρVb (Ht, r) ≤ f i (b′)− p̃i − ρVb′ (Ht, r) . This implies that

ρ (Vb′ (Ht, r)− Vb (Ht, r)) ≤ f i
(
b′
)
− f i (b) .

If we rewrite the expression we get

pit ≤ f i (b)− ρVb (Ht, r) ≤ f i
(
b′
)
− ρVb′ (Ht, r)

Second, we claim that If buyer b prefers high quality good to low quality good then b′ < b

would prefer high quality good as well. Buyer b s payoff when she accepts high quality good

is fH (b) − pHt + δµVb (Ht, r) . Her payoff when she accepts low quality good is fL (b) − pLt +

δµVb (Ht, r) . Therefore, buyer b prefers high quality good to quality one if fH (b) − fL (b) ≥

pHt − pLt . Since for all b′ < b, fH (b′) − fL (b′) ≥ fH (b) − fL (b) , b′ prefers high quality good

as well.

For all pHt − pLt , one of the followings is true. All consumers may buy low quality good:

fH (0)−fL (0) ≤ pHt −pLt , all consumers may buy high quality good: fH (1)−fL (1) ≥ pHt −pLt ,

or there may exists b̃ such that for all b ≤ b̃ fH (b) − fL (b) ≤ pHt − pLt and for all b > b̃
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fH (b)− fL (b) > pHt − pLt .

Proof of Proposition 6. Any stationary equilibrium has at least one steady state. That is,

there exists (yH , yH) such that

tH
(
(1− µ) yH , (1− µ) yL

)
= yH

and

tL
(
(1− µ) yH , (1− µ) yL

)
= yL

where yH ∈ (0, 1], yH + yL ≤ 1. Moreover, the steady state prices satisfy

℘H
(
yH , yL

)
= fH

(
yH
)
− fL

(
yH
)

+ fL
(
yH + yL

)
and

℘L
(
yH , yL

)
= fL

(
yH + yL

)
.

If
(
yH , yL

)
are the stocks after trade in a steady state. Then PH

(
yH
)

= fH
(
yH
)

and

PL
(
yH + yL

)
= fL

(
yH + yL

)
. This implies that

℘H
(
yH , yL

)
= fH (yH)− fL (yH) + fL (yH + yL)

and

℘L
(
yH , yL

)
= fL (yH + yL) .

Let’s define the sets SH and SL
(
yH
)

as

SH =
{
yH : PH

(
yH
)

= fH
(
yH
)}

and

SL
(
yH
)

=
{
yL : PL

(
yH + yL

)
= fL

(
yH + yL

)}
.
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Suppose that SH and SL
(
maxSH

)
are nonempty. Let

(
yH , yL

)
be defined as

yH = maxSH

and

yL = maxSL
(
yH
)
.

First we will show that
(
yH , yL

)
is a steady state. To do that, we will prove that yH

and yL are the maximum states to have acceptance prices PH
(
yH
)

and PL
(
yH + yL

)
,

respectively. If there existed ỹH > yH with PH
(
ỹH
)

= PH
(
yH
)

from the definition of

yH we must have fH
(
ỹH
)
< fH

(
yH
)
. Since tH

(
xH , xL

)
is non-decreasing with respect

to xH for a given xL and since PH(·) is non-increasing we have PH(tH((1 − µ)ỹH , (1 −

µ)yL)) ≤ PH(tH((1− µ) yH , (1− µ) yL)) which implies a contradiction, since PH
(
ỹH
)

=

(1− ρ) fH
(
ỹH
)

+ ρPH(tH((1−µ)ỹH , (1−µ)yL)) < (1−ρ)fH(yH) + ρPH(tH((1−µ)yH , (1−

µ)yL)) = PH
(
yH
)
.

If there existed ỹL > yL with PL
(
yH + ỹL

)
= PL

(
yH + yL

)
from the definition of yH

and yL we must have PL
(
yH + ỹL

)
< PL

(
yH + yL

)
. Since tL

(
xH , xL

)
is non-decreasing with

respect to xL for a given xH and since PL(·) is non-increasing we have PL(tH((1− µ)yH , (1−

µ)ỹL) + tL((1−µ)yH , (1−µ)ỹL)) ≤ PL(tH((1−µ)yH , (1−µ)yL) + tL((1−µ)yH , (1−µ)yL))

which implies a contradiction. PL
(
yH + ỹL

)
= (1− ρ)fL(yH + ỹL) + ρPL(tH((1− µ)yH , (1−

µ)yL)+tL((1−µ)yH , (1−µ)ỹL)) < (1−ρ) fL(yH+yL) + ρ PL(tH((1−µ)yH , (1−µ)yL)+tL((1−

µ)yH , (1−µ)yL)) = PL(yH + yL). So, following the offers PH
(
yH
)
− fL

(
yH
)

+PL
(
yH + yL

)
for high quality good and PL

(
yH + yL

)
for low quality good, all b ≤ yH accept high quality

good and all yH < b ≤ yH + yL accept low quality good and all b > yH + yL reject the offers

of the monopolist. So, we derive from the arbitrage equations for the high and quality goods

PH
(
yH
)

= fH
(
yH
)
, and PL

(
yH + yL

)
= fL

(
yH + yL

)
respectively.

Suppose that there is a stationary equilibrium which does not have any steady states.

This implies that either SH or SLis empty. First, suppose SH is empty and that PL (b) is a

nonincreasing function. We will show that PH (b) < θqH for b ∈
[
0, b̂
]

and PH (b) > θqH
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for b ∈
(
b̂, 1
]
. If SH is empty then PH (b) 6= θqH for b ∈

[
0, b̂
]

and PH (b) 6= θqH for

b ∈
(
b̂, 1
]
. We know from Lemma 2 that the seller never charges a price less than θqH

for high quality good. This implies that PH (b) > θqH for b ∈
(
b̂, 1
]
. Moreover, it is not

possible that PH (b) > θqH for some b ∈
[
0, b̂
]
. If it was, it would imply that PH (0) >

θqH , since PH(·) is nonincreasing. Given a state
(
0, ýL

)
, the arbitrage equation PH (0) =

(1− ρ) θqH + ρPH
(
tH
(
0, (1− µ) ýL

))
implies that PH

(
tH
(
0, (1− µ) ýL

))
> PH (0) which is

a contradiction because tH
(
0, (1− µ) ýL

)
≥ 0 and PH(·) is a nonincreasing function. Now,

suppose SL is empty and that PH (b) is a nonincreasing function. We will show that PL (b) <

θqL for b ∈
[
0, b̂
]

and PL (b) > θqL for b ∈
(
b̂, 1
]
. If SL is empty then PL (b) 6= θqL

for b ∈
[
0, b̂
]

and PL (b) 6= θqL for b ∈
(
b̂, 1
]
. We know from Lemma 2 that the seller never

charges a price less than θqL for low quality good. This implies that PL (b) > θqLfor b ∈
(
b̂, 1
]
.

Moreover, it is not possible that PL (b) > θqL for some b ∈
[
0, b̂
]
. If it was, it would imply

that PL (0) > θqL, since PL(·) is nonincreasing. Given a state
(
0, ýL

)
, the arbitrage equation

PL (0) = (1− ρ) θqL+ρPL
(
tH (0, 0) + tL (0, 0)

)
implies that PL

(
tH (0, 0) + tL (0, 0)

)
> PL (0)

which is a contradiction because tj (0, 0) ≥ 0 for all j = H,L and PL(·) is a nonincreasing

function.

Suppose PH (b) < θqH for b ∈ [0, b̂] and PH (b) > θqH for b ∈ (̂b, 1] and that PL (b) is

a nonincreasing function. Given a state
(
yH , ýL

)
where yH ∈ [0, b̂], since θqH − PH

(
yH
)
>

0, the arbitrage equation θqH − PH
(
yH
)

= ρθqH − PH(tH((1 − µ)yH , (1 − µ)ýL))) implies

that PH(tH((1 − µ)yH , (1 − µ)ýL)) < PH(yH). That is, tH((1 − µ)yH , (1 − µ)ýL) > yH .

Similarly, given a state (̂b + ε, ýL) where ε ∈ (0, 1 − b̂], since θqH − PH (̂b + ε) < 0, the

arbitrage equation θqH − PH (̂b + ε) = ρ(θqH − PH(tH((1 − µ)(̂b + ε), (1 − µ)ýL))) implies

that PH(tH((1− µ)(̂b + ε), (1− µ)ýL)) > PH (̂b + ε). That is, tH((1− µ)(̂b + ε), (1− µ)ýL) <

b̂ + ε. So, lim
ε→0

tH((1 − µ)(̂b + ε), (1 − µ)ýL) ≤ b̂ < tH((1 − µ)̂b, (1 − µ)ýL). Since, T (·) is

upper hemi-continuous, (lim
ε→0

tH((1 − µ)(̂b + ε), (1 − µ)ýL), lim
ε→0

tL((1 − µ)(̂b + ε), (1 − µ)ýL)) ∈

T ((1−µ)̂b, (1−µ)ýL). Moreover, since T (·) is a lattice, meet of (lim
ε→0

tH((1−µ)(̂b+ε), (1−µ)ýL),

lim
ε→0

tL((1− µ)(̂b+ ε), (1− µ)ýL)) and (tH((1− µ)̂b, (1− µ)ýL), tL((1− µ)̂b, ((1− µ)) ýL)) is in

T (·) as well which contradicts with the definition of (tH(·), tL(·)).

Suppose PL (b) < θqL for b ∈ [0, b̂] and PL (b) > θqL for b ∈ (̂b, 1] and that PH (b) is a
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nonincreasing function. Given a state
(
ýH , yL

)
where ýH+yL ∈ [0, b̂], since θqL−PL(ýH+yL) >

0, the arbitrage equation θqL−PL(ýH + yL) = ρ(θqL−PL(tH((1−µ)ýH , (1−µ)yL) + tL((1−

µ)ýH , (1 − µ)yL))) implies that PL(tH((1 − µ)ýH , (1 − µ)yL) + tL((1 − µ)ýH , (1 − µ)yL)) <

PL(ýH + yL). That is, tH((((1− µ)ýH , ((1− µ)yL) + tL((((1− µ)ýH , ((1− µ)yL) > ýH + yL.

Similarly, given a state (ýH , b̂+ε−ýH) where ε ∈ (0, 1−b̂], since θqL−PL(̂b+ε) < 0, the arbitrage

equation θqL−PL(̂b+ε) = ρ(θqL−PL(tH((1−µ)ýH , (1−µ)(̂b+ε−ýH))+tL((1−µ)ýH , (1−µ)(̂b+

ε−ýH)))) implies that PL(tH((1−µ)ýH , (1−µ)(̂b+ε−ýH))+tL((1−µ)ýH , (1−µ)(̂b+ε−ýH))) >

PL(̂b+ε). That is, tH((1−µ)ýH , (1−µ)(̂b+ε− ýH))+tL((1−µ)ýH , (1−µ)(̂b+ε− ýH)) < b̂+ε.

So, lim
ε→0

tH((1 − µ)ýH , (1 − µ)(̂b + ε − ýH)) + lim
ε→0

tL((1 − µ)ýH , (1 − µ)(̂b + ε − ýH)) ≤ b̂ <

tH((1−µ)ýH , (1−µ)(̂b−ýH))+tL((1−µ)ýH , (1−µ)(̂b−ýH)). Since tH is increasing with respect

to each variable, we have lim
ε→0

tH((1−µ)ýH , (1−µ)(̂b+ε− ýH)) > tH((1−µ)ýH , (1−µ)(̂b− ýH)).

This implies that lim
ε→0

tL((1−µ)ýH , (1−µ)(̂b+ε−ýH)) < tL((1−µ)ýH , ((1− µ)) (̂b−ýH)). Since,

T (·) is upper hemi-continuous, (lim
ε→0

tH((1 − µ)ýH , (1 − µ)(̂b + ε − ýH)), lim
ε→0

tL((1 − µ)ýH , (1 −

µ)(̂b + ε − ýH))) ∈ T ((1 − µ)ýH , (1 − µ)̂b − ýH). Moreover, since T (·) is a lattice, meet of

(lim
ε→0

tH((1 − µ)ýH , (1 − µ)(̂b + ε − ýH)), lim
ε→0

tL((1 − µ)ýH , (1 − µ)(̂b + ε − ýH))) and (tH((1 −

µ)ýH , (1 − µ)̂b − ýH), tL((1 − µ)ýH , (1 − µ)̂b − ýH)) is in T (·) as well which contradicts with

the definition of
(
tH(·), tL(·)

)
.

Proof of Proposition 7. Monopolist’s equilibrium valuation must be non-negative. More-

over, equilibrium surplus cannot exceed θqH . Therefore monopolist’s equilibrium valuation

cannot exceed θqH . Moreover, from Lemma 1 we know that buyer’s equilibrium valuation is

nonincreasing and has modulus of continuity no greater than 1. That is,

PH
(
b′
)
− PH (b) ≤ fH

(
b′
)
− fH (b) .

This implies that

PH
(
b′
)
≤ PH (b) + fH

(
b′
)
− fH (b) .

Since buyers’ valuation is nonincreasing and does not exceed θqH , it must be that PH (1) ≤

θqH . So above inequality and the upper bound on valuations imply that PH (0) ≤ PH (1) +
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fH (0)− fH (1) ≤ 2θqH − θqH . By using the above inequality one more time we get PH (0) ≤

PH (1)+fH (0)−fH (1) . After rearranging the inequality, we get PH (1) ≥ PH (0) − (fH (0)−

fH (1)). That is, PH (1) ≥ fH (1) − fH (0) . Therefore, PH (1) ≥ θqH − θqH . Therefore all

buyers accept any price below θqH−θqH . So the monopolist never charges such prices. Knowing

that the lowest possible price is θqH − θqH all buyers accept prices such that θqH − p ≥

ρ
(
θqH −

(
θqH − θqH

))
. So any price below θqH − ρθqH is accepted by all buyers. Therefore,

for all positive n, all prices below θqH−ρnθqH are accepted by all buyers. As n goes to infinity

the limit price converges to θqH . Therefore the seller never charges less than θqH .The idea for

the low quality good is the same is the same.

Lemma 2.

The arg max correspondence T
(
xH , xL

)
of the objective function is a sublattice of [0, 1]×

[0, 1] .

Proof of Lemma 2. To prove the lemma, we show that the objective function is supermod-

ular. We claim that the objective function has increasing differences. Since the objective func-

tion has increasing difference on X×Y where X = [0, 1− µ)× [0, 1− µ) and Y = [0, 1]× [0, 1],

The objective function is supermodular on X×Y .1 Therefore, the objective function is super-

modular on Y for a given
(
xH , xL

)
. This implies that argmax correspondence of the objective

function is a sublattice of Y .2

Lemma 3.

If there exists
(
ýH , ýL

)
such that

i. PH
(
yH
)

= PH
(
ýH
)

and fH
(
yH
)

= fH
(
ýH
)
,

ii. PL
(
yH + yL

)
= PL

(
ýH + ýL

)
and fL

(
yH + yL

)
= fL

(
ýH + ýL

)
,

iii. PH
(
yH
) (
ýH − yH

)
+ PL

(
yH + yL

) (
ýL − yL

)
> 0

hold for some ýH ≥ 0 and ýL ≥ 0 then
(
yH , yL

)
cannot be a steady state.

Proof of Lemma 3. If the conditions hold then the monopolist strictly prefers
(
ýH , ýL

)
to(

yH , yL
)
. Therefore

(
yH , yL

)
cannot be a steady state since the monopolist deviates from that

1See Topkis Corollary 2.6.1, pg 45.

2See Topkis Theorem 2.7.1 pg 66.
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state with probability 1.

Proof of Proposition 8. First we present implications of the previous lemma.

1– We show that
(
ỳH , 0

)
where ỳH ∈

(
b̂, 1
)

cannot be a steady state. Suppose not. Then

PH
(
ỳH
)

= θqH and PL
(
ỳH
)

= θqL. Since P (·) is a non-increasing function, PH (b) ≤ θqH and

PL (b) ≤ θqL for all b ∈
(
ỳH , 1

]
. So, PH

(
yH
)

= θqH and PL
(
yH
)

= θqL for all y ∈
[
ỳH , 1

]
.

Since the seller would prefer yH > ỳH ,
(
ỳH , 0

)
cannot be a steady state.

2– We show that
(
ỳH , ỳL

)
where ỳH ∈

(
0, b̂
]
,and ỳH+ỳL ∈

(
b̂, 1
)

cannot be a steady state.

Suppose not. Then PH
(
ỳH
)

= θqH and PL
(
ỳH + ỳL

)
= θqL. Therefore, for all b > ỳH + ỳL,

PL (b) ≤ θqL has to hold for
(
ỳH , ỳL

)
to be a steady state. But Lemma 3 states that for all

b ∈ [0, 1] , PL (b) ≥ θqL.So, for all b > ỳH + ỳL, fL (b) = θqL.Lemma 4 concludes that
(
ỳH , ỳL

)
cannot be a steady state.

3– We show that
(
ỳH , ỳL

)
where ỳH ∈

(
b̂, 1
)
, and ỳH + ỳL ∈

(
b̂, 1
]

cannot be a steady

state. Suppose not. Then PH
(
ỳH
)

= θqH and PL
(
ỳH + ỳL

)
= θqL. Therefore, for all

bH > ỳH and bL > ỳH + ỳL, PH
(
bH
)
≤ θqL and PL

(
bL
)
≤ θqL have to hold for

(
ỳH , ỳL

)
to

be a steady state. But Lemma 3 states that for all bH ∈ [0, 1] and bL ∈ [0, 1] , PH
(
bH
)
≥ θqL

and PL
(
bL
)
≥ θqL. So, for all bH > yH and bL > ỳH + ỳL, we have PH

(
bH
)
≥ θqL and

PL
(
bL
)

= θqL.Lemma 4 concludes that
(
ỳH , ỳL

)
cannot be a steady state.

Proof of (2): Suppose that
(
b̂, 0
)

is a steady state. Then, according to Proposition 2,

PH
(
b̂
)

= θqH and PL
(
b̂
)

= θqL. Since P i(·) is decreasing and P i (b) ≤ θqi for all b ∈
[
0, b̂
]
.

So Lemma 4 shows that (b, 0) such that b < b̂ cannot be a steady state. We conclude that the

only possible steady states other than
(
b̂, 0
)

are
(
b̂, 1− b̂

)
and (1, 0) .

Proof of (3): Suppose that
(
ỳH , 0

)
where ỳH ∈

(
0, b̂
)

is a steady state. Then PH (b) =

θqH and PL (b) = θqL for all b ∈
[
0, ỳH

]
and PH (b) < θqH and PL (b) < θqL for all b ∈(

ỳH , b̂
]
. This implies that

(
b̂, .
)

cannot be a steady state. We conclude that the only possible

steady states other than
(
ỳH , 0

)
when ỳH ∈

(
0, b̂
)

are
(
ỳH , 1− ỳH

)
and (1, 0) . Suppose that(

ỳH , b̂− ỳH
)

where ỳH ∈
(

0, b̂
)

is a steady state. Then PH
(
bH
)

= θqH and PL
(
bL
)

= θqL

for all bH ∈
[
0, ỳH

]
and bH ∈

[
0, b̂
]

and PH
(
bH
)
< θqH for all bH ∈

(
ỳH , b̂

]
. This implies that(

b̂, .
)

cannot be a steady state. We conclude that the only possible steady states other than(
ỳH , b̂− ỳH

)
when ỳH ∈

(
0, b̂
)

are
(
ỳH , 1− ỳH

)
and (1, 0) . Suppose that

(
ỳH , ỳL

)
where
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ỳH ∈
(

0, b̂
)

and ỳH + ỳL ∈
(

0, b̂
)

is a steady state. Then PH
(
bH
)

= θqH and PL
(
bL
)

=

θqL for all bH ∈
[
0, ỳH

]
and bH ∈

[
0, ỳH + ỳL

]
and PH

(
bH
)
< θqH and PL

(
bL
)
< θqH for all

bH ∈
(
ỳH , b̂

]
and bL ∈

(
ỳH + ỳL, b̂

]
. We conclude that the only possible steady states other

than
(
ỳH , ỳL

)
when ỳH ∈

(
0, b̂
)

and ỳH + ỳL ∈
(

0, b̂
)

are
(
ỳH , 1− ỳH

)
and (1, 0) .

Proof of (1): If there is no steady state in
[
0, b̂
]

then (1, 0) is a steady state.

Proof of Theorem 4. The proof has two parts. First, we show that there exists an equi-

librium in which (1, 0) is the unique steady state. Then, in the second part, we prove the

uniqueness of the equilibrium.

Existence:

First, let’s define {xk}m
′

k=0 and {x̂k}mk=0 where xk = (xHk , (1− µ) b̂ − xHk ) and x̂k = (x̂Hk ,

1− µ− x̂Hk ). The initial values are xH0 = x̂H0 = 1− µ, xH1 = x̂H1 = (1− µ) b̂,

xH2 = x̂H2
qH

(qH − qL)
− (1− µ) b̂

qL
(qH − qL)

where x̂H2 =
b̂θ − θ
θ − θ

. The rest is defined as

xHk = (1− µ)−1

(
xHk−1 −

(
xHk−2 − xHk−1

) θ

ρk−2
(
θ − θ

))+ µb̂
qL

(qH − qL)

and

x̂Hk = (1− µ)−1

(
x̂Hk−1 −

(
x̂Hk−2 − x̂Hk−1

) θ

ρk−2
(
θ − θ

)) .

Second, we derive the support of µ such that the state of high quality good is decreasing

(i.e. xHk−1 > xHk and x̂Hk−1 > x̂Hk ) and that there exist xHm′ and x̂Hm such that xm′+1 < 0 ≤ xm′

and x̂m+1 < 0 ≤ x̂m hold.

We now claim that if x̂Hk−1 > x̂Hk then xHk−1 > xHk holds and thatm′ < m. To prove the claim

we show that xHk −xHk+1 =
(
x̂Hk − x̂Hk+1

) qH
(qH − qL)

and xHk = x̂Hk
qH

(qH − qL)
−(1− µ) b̂

qL
(qH − qL)

for k = 2, . . . ,m′. By definition we have xHi − xHi+1 = (x̂Hi − x̂Hi+1)
qH

(qH − qL)
and xHi =

x̂Hi
qH

(qH − qL)
− (1− µ) b̂

qL
(qH − qL)

for i = 1, 2. The proof comes from induction. Assume

that xHi − xHi+1 = (x̂Hi − x̂Hi+1)
qH

(qH − qL)
and xHi = x̂Hi

qH
(qH − qL)

− (1− µ) b̂
qL

(qH − qL)
hold
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for i = k − 1. We now show that it also holds for i = k. Due to the assumption on(
xHk−2 − xHk−1

)
and xHk−1 , we have xHk = (1− µ)−1 ((x̂Hk−1

qH
(qH − qL)

− (1− µ) b̂
qL

(qH − qL)
) −(

x̂Hk−2 − x̂Hk−1

) qH
(qH − qL)

θ

ρk−2
(
θ − θ

))+µb̂
qL

(qH − qL)
. After simplifications xHk is pinned down

to xHk = (1−µ)−1(x̂Hk−1−(x̂Hk−2− x̂Hk−1)
θ

ρk−2
(
θ − θ

))
qH

(qH − qL)
−(1− µ) b̂

qL
(qH − qL)

. By def-

inition of x̂Hk , we have xHk = x̂Hk
qH

(qH − qL)
−(1− µ) b̂

qL
(qH − qL)

. This implies that xHk −xHk+1 =(
x̂Hk − x̂Hk+1

) qH
(qH − qL)

which finishes the proof. Let’s define set Λ′ and set Λ as

Λ′ =
{
µ ≥ 0 | ∃ m′ <∞ s.t. xHm′+1 < 0 ≤ xHm′ and

{
xHk
}m′
k=0

is decreasing
}

and

Λ =
{
µ ≥ 0 | ∃ m <∞ s.t. x̂Hm+1 < 0 ≤ x̂Hm and

{
x̂Hk
}m
k=0

is decreasing
}

.

Since xHk − xHk+1 > x̂Hk − x̂Hk+1, we have Λ ⊂ Λ′ and m′ < m. 3 Therefore, Λ represents the

domain of the depreciation rate. Let µ = sup Λ. Since 0 ∈ Λ and Λ is open in R+, we have

µ > 0. Note that x̂H2 ≤ x̂H1 , for all µ ≤

(
1− b̂

)
θ

b̂
(
θ − θ

) whereas, x̂H3 ≤ x̂H2 for all µ <

(
1− b̂

)
θ

b̂
(
θ − θ

) .

We now show that if µ̀ ∈ Λ and µ < µ̀, then µ ∈ Λ. To show that we need to prove that(
x̂Hk−1 − x̂Hk

)
is decreasing in µ. We have x̂H0 < x̂H1 < x̂H2 < x̂H3 for all µ ≤ µ. To finish the

proof, we need to show that
(
x̂Hk−1 − x̂Hk

)
is decreasing with respect to µ as well. Let’s define

x̂Hk as

x̂Hk = (1− µ)−1 (x̂Hk−1 −
(
x̂Hk−2 − x̂Hk−1

)
âk−2

)
where âk =

θ

ρk
(
θ − θ

) . The proof comes from induction.

Step 1:
dx̂H3
dµ

> 0 and
d
(
x̂H2 − x̂H3

)
dµ

< −2 (1− µ)−1 x̂H3 .

Step 2: Assume that
dx̂Hk−1

dµ
> 0 and

d
(
x̂Hk−2 − x̂Hk−1

)
dµ

< − (k − 2) (1− µ)−1 x̂Hk−1.

Step 3: Show that
dx̂Hk
dµ

> 0 and
d
(
x̂Hk−1 − x̂Hk

)
dµ

< − (k − 1) (1− µ)−1 x̂Hk . Note that

x̂Hk−1 − x̂Hk = (1 − (1 − µ)−1)x̂Hk−1 + (1 − µ)−1ak−2(x̂Hk−2 − x̂Hk−1). So,
d(x̂Hk−1−x̂

H
k )

dµ < −(1 −

3Since m′ is the same as m of DL (2008), the number of periods required to fulfill the market with product
differentiation is striclty less than single good setting of this model.
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µ)−2x̂k−1 +(k−1)(1−µ)−2âk−2(x̂Hk−2−x̂Hk−1)+(1−µ)−1âk−2
d(x̂Hk−2−x̂

H
k−1)

dµ ≤ −(1−µ)−2(x̂Hk−1−

(k−1)−2ak−2(x̂Hk−2− x̂Hk−1)+(k−2)âk−2x̂
H
k−1) < −(1−µ)−2(k−1)(x̂Hk−1− âk−2(x̂Hk−2− x̂Hk−1))

< −(1− µ)−1(k − 1)x̂Hk where the third inequality follows from âk−2 > 1.

Third, we prove that for µ ∈ Λ there exists a stationary equilibrium with unique steady

state (1, 0) . The pentad
{
PH(·), PL(·), tH(·), tL(·), R(·)

}
is defined as follows.

P (·) =



(
pHm, p

L
m

)
for xH ∈ D1, x

L ∈ C1(
p̂Hm, θqL

)
for xH ∈ D2, x

L ∈ C ′1(
pHk , p

L
k

)
for xH ∈ D3, x

L ∈ C1, k ∈ S(
p̂Hk , θqL

)
for xH ∈ D4, x

L ∈ C ′1, k ∈ S′

where D1 ≡ [0, yHm], D2 ≡ [0, ŷHm′ ], D3 ≡ (yHk+1, y
H
k ], D4 ≡ (ŷHk+1, ŷ

H
k ], C1 ≡ [0, b̂ − xH ],

S ≡ {m− 1, ..., 0}, S′ ≡ {m′ − 1, ..., 0}.

t(·) =



(
yHm−1, b̂− yHm−1

)
for xH ∈ D1, xL ∈ C1(

ŷHm′−1, 1− ŷHm′−1

)
for xH ∈ D1, xL ∈ C ′1(

yHm−1, b̂− yHm−1

)
for xH ∈ D2, xL ∈ C2(

ŷHk−1, 1− ŷHk−1

)
for xH ∈ D2, xL ∈ C ′2(

yHk−1, b̂− yHk−1

)
for xH ∈ D1, xL ∈ C3(

ŷHm′−1, 1− ŷHm′−1

)
for xH ∈ D1, xL ∈ C ′3(

yHk−1, b̂− yHk−1

)
for xH ∈ D3, xL ∈ C3(

ŷHk′−1, 1− ŷHk′−1

)
for xH ∈ D3, xL ∈ C ′3(

yHk−1, b̂− yHk−1

)
for xH ∈ D4, xL ∈ C3(

ŷHm′−1, 1− ŷHm′−1

)
for xH ∈ D4, xL ∈ C ′3(

yHk−1, b̂− yHk−1

)
for xH ∈ D4, xL ∈ C4(

ŷHk′−1, 1− ŷHk′−1

)
for xH ∈ D4, xL ∈ C ′4(

yHk−1, b̂− yHk−1

)
for xH ∈ D5, xL ∈ C4

(1, 0) for xH ∈ D5, xL ∈ C ′4(
yHk−1, b̂− yHk−1

)
for xH ∈ D6, xL ∈ C5(

ŷHk′−1, 1− ŷHk′−1

)
for xH ∈ D6, xL ∈ C ′5(

yHk−1, b̂− yHk−1

)
for xH ∈ D7, xL ∈ C5

(1, 0) for xH ∈ D7, xL ∈ C ′6
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where k, t = m − 1, . . . 2, k′ = m′ − 1, . . . 2, and D1 ≡ [0, xHm] ∩ [0, x̃Hm′ ], D2 ≡ [0, xHm] ∩

(x̃Hk+1, x̃
H
k ], D3 ≡ [0, xHm] ∩ (x̃Hk′+1, x̃

H
k′ ], D4 ≡ (xHt+1, x

H
t ] ∩ (x̃Hk′+1, x̃

H
k′ ], D5 ≡ (xHt+1, x

H
t ] ∩

(x̃H2 , 1−µ], D6 ≡ (xH2 , 1−µ]∩ (x̃Hk′+1, x̃
H
k′ ], D7 ≡ (xH2 , 1−µ]∩ (x̃H2 , 1−µ], C1 ≡ [0, t

(
xHm, x

H
)
]

∩T (x′
(
yHm−1, ỹ

H
m′−1

)
, xH), C2 ≡ [0, t

(
xHm, x

H
)
] ∩ T (x′

(
yHm−1, ỹ

H
k−1

)
, xH), C3 ≡ [t

(
xHk+1, x

H
)
,

t
(
xHk , x

H
)
] ∩ T (x′

(
yHk−1, ỹ

H
m′−1

)
, xH), C4 ≡ [t

(
xHk+1, x

H
)
, t
(
xHk , x

H
)
] ∩ T (x′

(
yHk−1, 1

)
, xH),

C5 ≡ [t
(
xHk+1, x

H
)
, t
(
xHk , x

H
)
] ∩ T (x′

(
yHk−1, 1

)
, xH). Moreover, we have

R
(
xH , xL

)
=
(
tH
(
xH , xL

)
− xH

)
PH

(
tH
(
xH , xL

)
, tL
(
xH , xL

))
+
(
tL
(
xH , xL

)
− xL

)
PL
(
tH
(
xH , xL

)
, tL
(
xH , xL

))
+ δR

(
(1− µ) tH

(
xH , xL

)
, (1− µ) tL

(
xH , xL

))
where pHk = θqH − ρk(θqH − θqH), pLk = θqL − ρk(θqL− θqL), and p̂Hk = θqH − (θ− θ)(ρkqH +

(1−ρk)qL) for all k = 0, ...,m. We define ySk as ySk =
xSk

1− µ
, S = H,L. Moreover, the threshold

values on xL are defined as

t
(
xHk , x

H
)

= xHk
qH − qL
qL

+ (1− µ) b̂− xH qH
qL

and

T
(
x′
(
yHk , ỹ

H
k′
)
, xH

)
= A (k) + yHk B (k, k)− ŷHk′B

(
k′, k

)
− xHC

(
k′, k

)
+D (k) ∆R

(
yHk , ŷ

H
k′
)

where the functions of k and k′ are:

A (k) =
b̂θ − θ − ρk b̂∆θ

(1− ρk) ∆θ
, B (t, k) =

(
θ − ρt∆θ

)
∆q

(1− ρk) ∆θqL
, C (t, k) =

(
ρt − ρk

)
qH +

(
1− ρt

)
qL

(1− ρk) qL
,

D (k) =
δ

(1− ρk) ∆θqL
, and ∆R

(
yHk , ŷ

H
k′
)

= R((1−µ)yHk , (1−µ)(̂b−yHk ))−R((1−µ)ŷHk′ , (1−

µ)(1− ŷHk′ )).

Let’s define Π((yH , b̂−yH); (xH , xL)) = (yH−xH)PH(yH , b̂−yH)+(̂b−yH−xL)PL(yH , b̂−

yH) + δR((1 − µ)y, (1 − µ)(̂b − yH)) and Π̂((ŷH , 1 − ŷH); (xH , xL)) = (ŷH − xH)PH(ŷH , 1 −

ŷH) + (1− ŷH − xL)PL(ŷH , 1− ŷH) + δR((1− µ)ŷ, (1− µ)(1− ŷH)). The state variable xHk is
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set such that

Π
((
yHk−1, b̂− yHk−1

)
;
(
xHk , (1− µ) b̂− xHk

))
= Π

((
yHk−2, b̂− yHk−2

)
;
(
xHk , (1− µ) b̂− xHk

))
.

Let’s define

hk
(
xH , xL

)
= Π

((
yHk−1, b̂− yHk−1

)
;
(
xH , xL

))
−Π

((
yHk−2, b̂− yHk−2

)
;
(
xH , xL

))

then by definition of xHk we have hk

((
xHk , (1− µ) b̂− xHk

))
= 0. Since

∂hk
(
xH , xL

)
∂xH

= −PH
(
yHk−1, b̂− yHk−1

)
+ PH

(
yHk−2, b̂− yHk−2

)
< 0,

for xH < xHk we have

hk

(
xH , (1− µ) b̂− xHk

)
> 0

and for xH > xHk we have,

hk

(
xH , (1− µ) b̂− xHk

)
< 0.

Now, suppose that xH ∈
(
xHk+1, x

H
k

]
. Since

∂hk
(
xH , xL

)
∂xL

=−PL(yHk−1, b̂−yHk−1) + PL(yHk−2, b̂−

yHk−2) < 0, ∃ x̀L > 0 such that hk
(
xH , x̀L

)
= 0 for xH ∈

(
xHk+1, x

H
k

]
. At x̀L we have

∂hk
(
xH , x̀L

)
∂xH

(
xHk − xH

)
=
∂hk

(
xH , x̀L

)
∂xL

(
x̀L −

(
(1− µ) b̂− xHk

))
.

Thus, for all xL > xHk
∆q

qL
+ (1− µ) b̂− xH qH

qL
we have

hk
(
xH , xL

)
< 0

and for all xL < xHk
∆q

qL
+ (1− µ) b̂− xH qH

qL
we have

hk
(
xH , xL

)
> 0.

Therefore, since Π
((
yH , yL

)
,
(
xH , xL

))
is strictly increasing with respect to yH and yL on any
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of the intervals defined above, given xH ∈
(
xHk+1, x

H
k

]
, for all xL ∈ (t(xHk+1, x

H), t(xHk , x
H)]

where t(xHk , x
H) = xHk

qH − qL
qL

+ (1− µ) b̂ − xH qH
qL

, the optimum choice of the seller among

{(yH0 , b̂− yH0 ), (yH1 , b̂− yH1 ), . . . , (yHm, b̂− yHm)} is (yHk−1, b̂− yHk−1).

The state variable x̂Hk is set such that

Π̂
((
ŷHk−1, 1− ŷHk−1

)
;
(
x̂Hk , 1− µ− x̂Hk

))
= Π̂

((
ŷHk−2, 1− ŷHk−2

)
;
(
x̂Hk , 1− µ− x̂Hk

))
.

Let’s define

ĥk
(
xH , xL

)
= Π̂

((
ŷHk−1, 1− ŷHk−1

)
;
(
xH , xL

))
− Π̂

((
ŷHk−2, 1− ŷHk−2

)
;
(
xH , xL

))
then ĥk

((
ŷHk , 1− µ− ŷHk

))
= 0.

Since
∂ĥk

(
xH , xL

)
∂xH

= −PH
(
ŷHk−1, 1− ŷHk−1

)
+ PH

(
ŷHk−2, 1− ŷHk−2

)
< 0, for xH < x̂Hk ,

ĥk
(
xH , xL

)
> 0

and for xH > x̂Hk ,

ĥk
(
xH , xL

)
< 0.

Since,
∂ĥk

(
xH , xL

)
∂xL

= 0, the seller would like to choose highest possible xL.Therefore, given

xH ∈
(
x̂Hk+1, x̂

H
k

]
, for all xL the optimum choice of the seller among {(ŷH0 , 1− ŷH0 ), (ŷH1 , 1− ŷH1 ),

. . . , (ŷHm , 1− ŷHm)} is (ŷHk−1, 1− ŷHk−1).

Let’s define

dk
(
xH , xL

)
= Π

((
yHk , b̂− yHk

)
;
(
xH , xL

))
− Π̂

((
ŷHk′ , 1− ŷHk′

)
;
(
xH , xL

))
.

Suppose xH ∈
(
xHk+1, x

H
k

]
∩
(
x̂Hk′+1, x̂

H
k′
]
, then there exists xL where dk

(
xH , xL

)
= 0. Moreover,

∂dk
(
xH , xL

)
∂xL

= −
(
1− ρk

) (
θ − θ

)
qL < 0. It follows that for a given xH ∈

(
xHk+1, x

H
k

]
∩(

x̂Hk′+1, x̂
H
k′
]

if xL < T
(
x′
(
yHk , ŷ

H
k′
)
, xH

)
then

dk
(
xH , xL

)
> 0
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and if xL > T
(
x′
(
yHk−1, ỹ

H
k′−1

)
, xH

)
then

dk
(
xH , xL

)
< 0.

Since Π((yH , b̂ − yH); (xH , xL)) is strictly increasing in yH on any of the intervals [0, ym],

(ym, ym−1], . . . , (y1, 1] and Π̂((ŷH , 1 − ŷH); (xH , xL)) is strictly increasing in ŷH on any of

the intervals [0, ŷm′ ], (ŷm, ŷm−1], . . . , (ŷ1, 1]. This implies that (tH(xH , xL), tL(xH , xL)) is the

smallest solution of the monopolist’s optimization problem. Buyer’s arbitrage equations are

also satisfied. It follows that {PH(·), PL(·), tH(·), tL(·), R(·)} is a stationary triplet for µ ∈ Λ.

Uniqueness:

We now consider any stationary equilibrium whose unique steady state is (1, 0). Let {PH0 (·),

PL0 (·), tH0 (·), tL0 (·), R0(·)} be the stationary triplet of that equilibrium. We show that {PH(·),

PL(·), tH(·), tL(·), R(·)} = {PH0 (·), PL0 (·), tH0 (·), tL0 (·), R0(·)}.

First, we show that tH0 (xH1 , (1 − µ)̂b − xH1 ) = 1 and tL0 (xH1 , (1 − µ)̂b − xH1 ) = 0. Since

(̂b, 0) and (̂b, 1 − b̂) are not steady states, we must have PH
(
b̂
)
< θqH , PL

(
b̂
)
< θqL.

Moreover, since (1, 0) is a steady state, we must have PH (1) = θqH , PL (1) = θqL. Now,

consider the arbitrage equations at
(
b̂, 0
)

. Due to the arbitrage equation for high quality

good θqH − PH0
(
b̂
)

= ρ(θqH − PH0 (tH0 ((1 − µ)̂b, 0))), we have PH0 (tH0 ((1 − µ)̂b, 0)) < PH0 (̂b).

Since PH0 (·) is non-increasing, the stock of high quality good increases at b̂: tH0 ((1−µ)̂b, 0) > b̂.

Similarly, due to the arbitrage equation for low quality good θqL−PL0 (̂b) = ρ(θqL−PL0 (tH0 ((1−

µ)̂b, 0)+ tL0 ((1−µ)̂b, 0))), we have PH0 (tH0 ((1−µ)̂b, 0)+ tL0 ((1−µ)̂b, 0)) < PL0 (̂b). Since PL0 (·) is

non-increasing, total stock of durable good increases at b̂ is tH0 ((1−µ)̂b, 0)+ tL0 ((1−µ)̂b, 0) > b̂.

Moreover, at any b ∈ [0, 1] , marginal benefit of high quality good is greater than marginal cost

of low quality good. Thus, we have tH0

(
(1− µ) b̂, 0

)
= 1 and tL0

(
(1− µ) b̂, 0

)
= 0.

Second, we show that tH0
(
x̂H1 , 1− µ− x̂H1

)
= 1 and tL0

(
x̂H1 , 1− µ− x̂H1

)
= 0. We know

that we must have PH
(
b̂
)
< θqH , PL

(
b̂
)
< θqL and PH (1) = θqH , PL (1) = θqL. Due to

the arbitrage equation for the high quality good θqH −PH0 (̂b) = ρ(θqH −PH0 (tH0 ((1−µ)̂b, (1−

µ)(1− b̂)))), we have PH0 (tH0 ((1−µ)̂b, (1−µ)(1− b̂))) < PH0 (̂b). Since PH0 (·) is non-increasing,

the stock of high quality good increases at b̂: tH0

(
(1− µ) b̂, (1− µ)

(
1− b̂

))
> b̂. Similarly,
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due to the arbitrage equation for low quality good θqL−PL0 (1) = ρ(θqL−PH0 (tH0 ((1−µ)̂b, (1−

µ)(1− b̂)+tL0 ((1−µ)̂b, (1−µ)(1− b̂))), we have PH0 ((tH0 (1−µ)̂b, (1−µ)(1− b̂))+tL0 (1−µ)̂b, (1−

µ)(1 − b̂)) < PL0 (1). Since PL0 (·) is non-increasing, total stock of durable good increases at

b̂, we have tH0

(
(1− µ) b̂, (1− µ)

(
1− b̂

))
+ tL0

(
(1− µ) b̂, (1− µ)

(
1− b̂

))
≥ 1. Therefore, we

must have tH0

(
(1− µ) b̂, (1− µ)

(
1− b̂

))
+ tL0

(
(1− µ) b̂, (1− µ)

(
1− b̂

))
= 1 Moreover, at

any b, marginal benefit of high quality good is greater than marginal cost of low quality good.

Thus, we have tH0

(
(1− µ) b̂, (1− µ)

(
1− b̂

))
= 1 and tL0

(
(1− µ) b̂, (1− µ)

(
1− b̂

))
= 0.

Third, we show that for all xH ∈ (xH1 − ε, xH1 ] we have tH0 (xH , (1 − µ)̂b − xH) = 1 and

tL0 (xH , (1−µ)̂b−xH) = 0. By the left continuity of tH0 (xH , xL), ∃ ε > 0 such that tH0 (xH , (1−

µ)̂b−xH) = 1 and tL0 (xH , (1−µ)̂b−xH = 0 for all xH ∈ (xH1 − ε, xH1 ]. The arbitrage equations

for yH ∈ (yH1 −
ε

1− µ
, yH1 ] and yL ≤ b̂− yH are

for high quality good: fH
(
yH
)
− PH0

(
yH
)

= ρ
(
fH
(
yH
)
− PH0 (1)

)
,

for low quality good: fL
(
yH + yL

)
− PL0

(
yH + yL

)
= ρ

(
fL
(
yH
)
− PH0 (1)

)
.

Since yH ≤ b̂ and yH+yL ≤ b̂, the arbitrage equations imply that PH0
(
yH
)

= θqH−ρ
(
θ − θ

)
qH

and PL0
(
yH + yL

)
= θqL − ρ

(
θ − θ

)
qL where yH + yL ≤ b̂.

Fourth, we show that for all xH ∈ (x̂H1 −ε, x̂H1 ], and xL ∈ ((1−µ)̂b−xH−γ, (1− µ) b̂−xH ],

tH0
(
xH , xL

)
= 1 and tL0

(
xH , xL

)
= 0. By the left continuity of tL0

(
xH , .

)
, ∃ γ > 0 such

that tH0
(
xH , xL

)
= 1 and tL0

(
xH , xL

)
= 0 for all xH ∈ (x̂H1 − ε, x̂H1 ] and all xL ∈ ((1 −

µ)̂b − xH − γ, ((1− µ)) b̂ − xH ]. The arbitrage equations for yH ∈ (ŷH1 −
ε

1− µ
, ŷH1 ] and

yL ∈ ((1− µ)̂b− yH − γ

1− µ
, (1− µ) b̂− yH ] are

for high quality good: fH
(
yH
)
− PH0

(
yH
)

= ρ
(
fH
(
yH
)
− PH0 (1)

)
for low quality good: fL

(
yH + yL

)
−PL0

(
yH + yL

)
= ρ

(
fL
(
yH
)
− PH0 (1)

)
. Since yH ≤ b̂

and yH + yL ≤ b̂, the arbitrage equations imply that PH0
(
yH
)

= θqH − ρ
(
θ − θ

)
qH and

PL0
(
yH + yL

)
= θqL − ρ

(
θ − θ

)
qL where yH + yL ≤ b̂.

Fifth, we show that inf
(
xH1 − ε

)
= xH2 .Let’s define x̀H2 = inf{xH : tH0

(
xH , xL

)
= 1,

xL ∈ ((1− µ) b̂−xH−γ, (1− µ) b̂−xH ]}. We know that when xL = (1− µ) b̂−xH2 , if xH < xH2

then Π
(
y1;
(
xH , xL

))
> Π

(
y0;
(
xH , xL

))
. Otherwise, if xH > xH2 then Π

(
y1;
(
xH , xL

))
<

Π
(
y0;
(
xH , xL

))
. Since Π0(y1; (xH , xL)) = Π(y1; (xH , xL)) and Π0(y0; (xH , xL)) = Π (y0;

(xH , xL)), we must have x̀H2 = xH2 .
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Sixth, we show that inf((1 − µ)̂b − xH − γ) = t(xH2 , x
H). Let’s define x̀L2 = inf{xL :

tL0 (xH , xL) = 0, xH ∈ (xH2 , 1 − µ]}. We know that for a given xH , if xL < t(xH2 , x
H)

then Π(y1; (xH , xL)) > Π(y0; (xH , xL)); whereas if xL > t(xH2 , x
H) then Π(y1; (xH , xL)) <

Π(y0; (xH , xL)). Since Π0(y1; (xH , xL)) = Π(y1; (xH , xL)) and Π0(y0; (x)) = Π (y0; (x)), we

must have x̀L2 = t(xH2 , x
H).

Seventh, suppose tH
(
xH , xL

)
= yHk−1 and tL

(
xH , xL

)
= b̂ − yHk−1 for xH ∈

(
xH2 , 1− µ

]
and xL ∈ (t(xHk+1, x

H), t(xHk , x
H)] for k = 1, 2, . . . , i. Show that it holds for i + 1. We have

tH
(
xH , xL

)
= yHi−1 and tL

(
xH , xL

)
= b̂ − yHi−1 for xH ∈

(
xH2 , 1− µ

]
and xL ∈ (t(xHi+1, x

H),

t(xHi , x
H)]. Now, we prove that {PH(·), PL(·), tH(·), tL(·), R(·))} = {PH0 (·), PL0 (·), tH0 (·),

tL0 (·), R0(·)} holds for i + 1 for xH ∈ (xH2 , 1 − µ]. We must have PH0
(
yHi+1, y

L
i+1

)
< θqH

and PL0
(
yHi+1, y

L
i+1

)
< θqL. This implies that we have PH0

(
yHi+1

)
> PH0

(
tH0
(
xHi+1, x

L
i+1

))
and

PL0
(
yHi+1 + yLi+1

)
> PL0

(
tH0
(
xHi+1, x

L
i+1

)
+ tL0

(
xHi+1, x

L
i+1

))
. Since PH0 (·) and PL0 (·) are non-

increasing, stock of high quality good and total stock increase when xHi+1 = (1− µ) yHi+1 and

xLi+1 = (1− µ) yLi+1. That is, tH0
(
xHi+1, x

L
i+1

)
≥ yHi+1 and tH0

(
xHi+1, x

L
i+1

)
+ tL0

(
xHi+1, x

L
i+1

)
≥

yHi+1 + yLi+1. Since xHi+1 and xLi+1 are defined as

xHi+1 = inf
{
xH : t0

(
xH , xL

)
= yHi−1 where xL = (1− µ) b̂− xH

}

and

xLi+1 = inf
{
xL : t0

(
xH , xL

)
= b̂− yHi−1 where xH ∈

(
xH2 , 1− µ

]}
,

this imply that limε→0 t
H
0

(
xHi+1 − ε, xLi+1

)
= yHi and limε→0 t

L
0

(
xHi+1, x

L
i+1 − ε

)
= b̂− yHi . Now,

we can use left continuity of ti(·) functions to define

x̀Hi+2 = inf
{
xH : t0

(
xH , xL

)
= yHi where xL = (1− µ) b̂− xH

}

and

x̀Li+2 = inf
{
xL : t0

(
xH , xL

)
= yLi where xH ∈

(
xH2 , 1− µ

]}
.

Now, to finish the proof we need to show that x̀Hi+2 = xHi+2 and x̀Li+2 = xLi+2.We know that
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when xL = (1− µ) b̂ − xHi+2 if xH < xHi+2 then Π
(
yi+1;

(
xH , xL

))
> Π

(
yi;
(
xH , xL

))
; other-

wise, if xH > xHi+2 then Π
(
yi+1;

(
xH , xL

))
< Π

(
yi;
(
xH , xL

))
. Since Π0

(
yi+1;

(
xH , xL

))
=

Π
(
yi+1;

(
xH , xL

))
and Π0

(
yi;
(
xH , xL

))
= Π

(
yi;
(
xH , xL

))
then we must have x̀Hi+2 = xHi+2.

Similarly, for a given xH , if xL < t
(
xHi+2, x

H
)

then Π
(
yi+1;

(
xH , xL

))
> Π

(
yi;
(
xH , xL

))
;

whereas if xL > t
(
xHi+2, x

H
)

then Π
(
yi+1;

(
xH , xL

))
< Π

(
yi;
(
xH , xL

))
. Since Π0 (yi+1;

(xH , xL)) = Π(yi+1; (xH , xL)) and Π0(yi; (xH , xL)) = Π(yi; (xH , xL)), we must have x̀Li+2 =

t
(
xHi+2, x

H
)
.

Eighth,we show that for all xH ∈
(
x̂H1 − ε, x̂H1

]
, we have tH0

(
xH , 1− µ− xH

)
= 1 and

tL0
(
xH , 1− µ− xH

)
= 0. By the left continuity of tH0

(
xH , xL

)
, ∃ ε > 0 such that tH0 (xH , 1−µ−

xH) = 1 and tL0
(
xH , 1− µ− xH

)
= 0 for all xH ∈

(
x̂H1 − ε, x̂H1

]
. Since yH ≤ b̂ and yH+yL > b̂,

the arbitrage equations for high quality good fH
(
yH
)
− PH0

(
yH
)

= ρ
(
fH
(
yH
)
− PH0 (1)

)
and for low quality good fL(yH + yL) − PL0 (yH + yL) = ρ(fL(yH) − PH0 (1)) imply that

PH0
(
yH
)

= θqH − ρ
(
θ − θ

)
qH and PL0

(
yH + yL

)
= θqL where yH + yL > b̂. Now, consider

buyer b ∈
(
ŷH1 −

ε

1− µ
, ŷH1

]
. Buyer b strictly prefers low quality good for all pH ≥ θqH −(

θ − θ
)

(ρqH + (1− ρ) qL). The monopolist has to leave some rent to high type buyers when

yH + yL > b̂. Hence, when yH ∈
(
ŷH1 −

ε

1− µ
, ŷH1

]
and yL > b̂− yH

PH
(
yH
)

= θqH −
(
θ − θ

)
(ρqH + (1− ρ) qL)

and

PL
(
yL
)

= θqL.

Ninth, we show that for all xH ∈
(
x̂H1 − ε, x̂H1

]
, and xL ∈

(
1− µ− x̂H − γ, 1− µ− x̂H1

]
,

we have tH0
(
xH , xL

)
= 1 and tL0

(
xH , xL

)
= 0. By the left continuity of tL0

(
xH , .

)
∃ γ > 0

such that tH0
(
xH , xL

)
= 1 and tL0

(
xH , xL

)
= 0 for all xH ∈

(
x̂H1 − ε, x̂H1

]
and all xL ∈(

1− µ− xH − γ, 1− µ− xH
]
. Since yH ≤ b̂ and yL ∈ (1−yH− γ

1− µ
, 1−yH ] and yH+yL > b̂

, the arbitrage equations for high quality good fH
(
yH
)
− PH0

(
yH
)

= ρ
(
fH
(
yH
)
− PH0 (1)

)
and for low quality good: fL

(
yH + yL

)
− PL0

(
yH + yL

)
= ρ

(
fL
(
yH
)
− PH0 (1)

)
imply that

PH0
(
yH
)

= θqH −ρ
(
θ − θ

)
qH and PL0

(
yH + yL

)
= θqL where yH +yL > b̂. Hence, due to the
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incentive compatibility constraint, when yH ∈ (ỹH1 −
ε

1− µ
, ỹH1 ] and yL ∈ (1−yH− γ

1− µ
, 1−yH ]

we have

PH
(
yH
)

= θqH −
(
θ − θ

)
(ρqH + (1− ρ) qL)

and

PL
(
yL
)

= θqL.

Tenth, we show that inf
(
x̃H1 − ε

)
= x̃H2 . Let’s define x́H2 = inf{xH : tH0

(
xH , xL

)
= 1,

xL ∈ (1 − µ − xH − γ, 1 − µ − xH ]}. We know that when xL = 1 − µ − x̃H2 , if xH <

x̃H2 then Π
(
ỹ1;
(
xH , xL

))
> Π

(
ỹ0;
(
xH , xL

))
; otherwise if xH > x̃H2 then Π

(
ỹ1;
(
xH , xL

))
<

Π
(
ỹ0;
(
xH , xL

))
. Since Π0

(
ỹ1;
(
xH , xL

))
= Π(ỹ1; (xH , xL)) and Π0(ỹ0; (xH , xL)) = Π(ỹ0;

(xH , xL)), we must have x́H2 = x̃H2 .

Eleventh, we show that inf
(
1− µ− x̂H − γ

)
= 0. Let’s define x́L2 = inf{xL : tL0 (xH , xL) =

0, xH ∈ (x̂H2 , 1 − µ]}. Since Π
(
ŷ1;
(
xH , xL

))
< Π

(
ŷ0;
(
xH , xL

))
, for all xL and for xH ∈(

x̂H2 , 1− µ
]
, we must have x́L2 = 0.

Twelfth, suppose that xH ∈
(
xH2 , 1− µ

]
∩
(
x̃H2 , 1− µ

]
and that xL ∈ (t(xHk+1, x

H), t(xHk , x
H)].

We now prove the existence of T
(
x̀
(
yHk−1, 1

)
, xH

)
.First, we should observe that there exists a

threshold on xL, let’s call is X ′, such that for all xL < X ′, Π0((yHk−1, b̂ − yHk−1); (xH , xL)) >

Π̂0((1, 0); (xH , xL)) and for all xL > X ′, Π0((yHk−1, b̂− yHk−1); (xH , xL)) < Π̂0((1, 0); (xH , xL)).

Now, we show that X ′ = T
(
x̀
(
xHk , x

H
))

. For a given xH ∈
(
xH2 , 1− µ

]
∩
(
x̃H2 , 1− µ

]
,if

xL < T
(
x̀
(
xHk , x

H
))

then Π
((
yHk−1, b̂− yHk−1

)
;
(
xH , xL

))
> Π̃ (1, 0) ;

(
xH , xL

)
; otherwise

if xL > T
(
x̀
(
xHk , x

H
))

then Π((yHk−1, b̂ − yHk−1); (xH , xL)) < Π̃((1, 0); (xH , xL)). Since we

have Π0((yHk−1, b̂ − yHk−1); (xH , xL)) = Π((yHk−1, b̂ − yHk−1); (xH , xL)), and Π̂0((1, 0); (xH , xL))

= Π̂((1, 0); (xH , xL)), we must have X ′ = T
(
x̀
(
xHk , x

H
))
.

Finally, suppose the sequence holds for k = 1, 2, . . . , i. Show that it holds for i+ 1 as well.

Proof of Corollary 8.

See the proof of Corollary 2.

Proof of Corollary 9. By definition of xHk and x̂Hk , for k ≥ 3; limz→0 x
H
k = limz→0+(xHk−1−(

xHk−2 − xHk−1

) θ(
θ − θ

)) and similarly limz→0+ x̂
H
k = limz→0(x̂Hk−1−

(
x̂Hk−2 − x̂Hk−1

) θ(
θ − θ

)).
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Moreover, limz→0+ x
H
2 =

b̂θ − θ
θ − θ

qH
(qH − qL)

−b̂ qL
(qH − qL)

< x̂H2 .

By induction,

lim
z→0+

(
xHk−1 − xHk

)
> lim

z→0

(
xHk−2 − xHk−1

)
> b̂− lim

z→0
xH2 =

(
1− b̂

)
θ

θ − θ
qH

(qH − qL)

and

lim
z→0

(
x̂Hk−1 − x̂Hk

)
> lim

z→0

(
x̂Hk−2 − x̂Hk−1

)
> b̂− x̂H2 =

(
1− b̂

)
θ

θ − θ
.

Therefore, when the seller serves only high type buyers on the path to the steady state, it takes

at most m′ ≤
b̂
(
θ − θ

)(
1− b̂

)
θ

(qH − qL)

qH
+ 1 steps to sell the high quality good to all consumers.

However, when the seller serves both buyers, it takes at most m ≤
b̂
(
θ − θ

)(
1− b̂

)
θ

+ 1 steps to sell

the high quality good to all consumers.

Proof of Theorem 5. The proof has two parts. First, we show that there exists an equilib-

rium in which
(
b̂, 0
)

is a steady state. Then we prove that the equilibrium derived in the first

part is unique.

Existence:

First, we derive a path of states that reaches a steady state. The path {x̃k}∞k=1 is for

the standard monopoly steady state
(
b̂, 0
)

, and the path {x̂k}∞k=1 is for segmented monopoly

steady state
(
b̂, 1− b̂

)
. Let’s iteratively define the sequence {x̃k}∞k=1 where x̃k =

(
x̃Hk , 0

)
as

x̃Hk =
p̃Hk−1x̃

H
k−1

µθqH + (1− µ) p̃Hk−1

with the initial value x̃H0 = (1− µ) b̂. We set x̃Hk such that when

the state is
(
x̃Hk , 0

)
the monopolist is indifferent between staying at

(
x̃Hk , 0

)
forever and moving

the state to
(
x̃Hk−1, 0

)
. The price of high quality good p̃Hk and low quality good p̃Lk are derived

from buyers’ arbitrage equations. The prices are set such that marginal buyers are indifferent

between today and tomorrow. The prices are defined as p̃Hk =
(
1− ρk

)
θqH + ρkθqH and

p̃Lk =
(
1− ρk

)
θqL + ρkθqL. Similarly, we iteratively define the sequence {x̂k}∞k=1 where x̂k =(

x̂Hk , 1− µ− x̂Hk
)

as x̂Hk =

(
p̂Hk−1 − θqL

)
x̂Hk−1

µθqH − θqL + (1− µ) p̂Hk−1

with the initial value x̂H0 = (1− µ) b̂.

The prices that make buyers be indifferent between today and tomorrow are p̂Hk = θqH +

ρk∆θ∆q and p̂Lk = θqL. We should note that x̃H0 < x̃H1 < x̃H2 < . . . and x̂H0 < x̂H1 < x̂H2 < . . ..
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Which sequence that the monopolist follows depends on the amount of low quality good in the

market. If the low quality good is low enough, the monopolist prefers buying all low quality

good back and following {x̃k}∞k=1 thereafter. However, if the amount of low quality good in

the market is sufficiently high then he would follow {xk}∞k=1. The steady that the monopolist

will reach not only depend on the amount low quality good but the limit value of x̃Hk and x̂Hk

as well. If the limit value is less than the market size then when the amount of high quality

good is sufficiently high, the monopolist fulfills the market immediately and reaches the Coase

Conjecture steady state (1, 0).

If xH∞ = limk→∞ x
H
k ≥ 1−µ, then set m = sup

{
k : xHk < 1− µ

}
and define xm+1 = 1−µ.

Let yHk =
xHk

1− µ
. The pentad

{
PH(·), PL(·), tH(·), tL(·), R(·)

}
is defined as follows.

PH
(
xH , xL

)
=



θqH ∀xH ∈
[
0, b̂
]

and ∀xL ∈
[
0, xL

(
xH
)]

θqH − θqL + θqL ∀xH ∈
[
0, b̂
]

and ∀xL /∈
[
0, xL

(
xH
)]

p̃Hk ∀xH ∈
(
yHk−1, y

H
k

]
and ∀xL ∈

[
0, xL

(
xH
)]

p̂Hk ∀xH ∈
(
yHk−1, y

H
k

]
and ∀xL /∈

[
0, xL

(
xH
)]

PL
(
xH , xL

)
=



θqH ∀xH ∈
[
0, b̂
]

and ∀xL ∈
[
0, xL

(
xH
)]

θqL ∀xH ∈
[
0, b̂
]

and ∀xL /∈
[
0, xL

(
xH
)]

p̃Lk ∀xH ∈
(
yHk−1, y

H
k

]
, k ∈ S and ∀xL ∈

[
0, xL

(
xH
)]

θqL ∀xH ∈
(
yHk−1, y

H
k

]
, k ∈ S and ∀xL /∈

[
0, xL

(
xH
)]

tH
(
xH , xL

)
=

 b̂ ∀xH ∈
[
0, xH1

]
and ∀xL

yHk−1 ∀xH ∈
(
xHk−1, x

H
k

]
, k ∈ {2, . . . ,m+ 1}

tL
(
xH , xL

)
=



0 ∀xH ∈
[
0, xH1

]
and ∀xL ∈

[
0, xL

(
xH
)]

1− b̂ ∀xH ∈
[
0, xH1

]
and ∀xL /∈

[
0, xL

(
xH
)]

0 ∀xH ∈
(
xHk−1, x

H
k

]
, k ∈ S′and ∀xL ∈

[
0, xL

(
xH
)]

1− yHk−1 ∀xH ∈
(
xHk−1, x

H
k

]
, k ∈ S′and ∀xL /∈

[
0, xL

(
xH
)]
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R
(
xH , xL

)
=



(
δµb̂

1− δ
+ (̂b− xH))θqH − θqLxL

(
δµb̂

1− δ
+ (̂b− xH))

(
θqH − θqL + θqL

)
+ C1

(
µyHk−1

1− δ
− (xH − xHk−1))p̃Hk−1 − xLp̃Lk−1

(
µyHk−1

1− δ
−
(
xH − xHk−1

)
)p̂Hk−1 + C2

where S ≡ {1, . . . ,m+ 1}, S′ ≡ {2, . . . ,m+ 1}, C1 ≡ (
δµ(1− b̂)

1− δ
+ (1− b̂− xL))θqL, C2 ≡

(
µ
(
1− yHk−1

)
1− δ

−
(
xL −

(
1− µ− xHk−1

))
)θqL.

If xH∞ = limk→∞ x
H
k < 1− µ then let’s define

R̃
(
xH , xL

)
=

(
µx̃Hk−1

(1− δ) (1− µ)
−
(
xH − x̃Hk−1

))
p̃Hk−1 − xLp̃Lk−1,

R̂
(
xH , xL

)
= (

µx̂Hk−1

(1− δ) (1− µ)
−(xH−x̂Hk−1))p̂Hk−1+(

µ(1− µ− x̂Hk−1)

(1− δ) (1− µ)
−(xL−1−µ−x̂Hk−1)))θqL

for xH ∈
(
xHk−1, x

H
k

]
and k ≥ 1. Set

x̃∗ = max
{
xH ∈

(
(1− µ) b̂, x̃∞

]
: R̃
(
xH , xL

)
≥ R1

(
xH , xL

)}

and

x̂∗ = max
{
xH ∈

(
(1− µ) b̂, x̂∞

]
: R̂
(
xH , xL

)
≥ R1

(
xH , xL

)}
where

R1

(
xH , xL

)
=

(
δµ

(1− δ)
+
(
1− xH

))
θqH − xLθqL.

Let m and m′ be such that x̃∗ ∈
(
xHm, x

H
m+1

]
and x̂∗ ∈

(
xHm′ , x

H
m′+1

]
.

Now, we prove the existence of m and m′:

Since x̃H∞ < 1− µ, we have

R̃
(
x̃H∞, x

L
)
−R1

(
x̃H∞, x

L
)

=

(
µx̃H∞

(1− δ) (1− µ)
−
(

δµ

(1− δ)
+
(
1− x̃H∞

)))
θqH < 0.

This implies that x̃∗ < x̃H∞. Furthermore, due to definition of µ, x̃∗ ≥ (1− µ) b̂. Similarly,
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x̂∗ < x̂H∞, since

R̂
(
x̂H∞, x

L
)
−R1

(
x̂H∞, x

L
)

=

(
µx̂H∞

(1− δ) (1− µ)
−
(

δµ

(1− δ)
+
(
1− x̂H∞

)))
θqH +

(
(1− δ (1− µ))

(
1− µ− x̂H∞

)
(1− δ) (1− µ)

)
θqL

=

(
(1− ρ) x̂H∞ − (1− ρ) (1− µ)

(1− δ) (1− µ)

)
θqH +

(
(1− ρ)

(
1− µ− x̂H∞

)
(1− δ) (1− µ)

)
θqL

=
(1− ρ)

(1− δ) (1− µ)

(
x̂H∞ − (1− µ)

)
θ (qH − qL) < 0

when x̂H∞ < 1 − µ. Moreover, due to the definition of µ, x̂∗ ≥ (1− µ) b̂. Additionally, when

xL < xL, since R̂
(
x̂∗, xL

)
< R1

(
x̂∗, xL

)
, we have x̂∗ < x̃∗. On the other hand, when xL > xL,

since R̂
(
x̂∗, xL

)
> R1

(
x̂∗, xL

)
, we have x̂∗ > x̃∗.

The pentad {PH(·), PL(·), tH(·), tL(·), R(·)} is defined as follows.

PH
(
xH , xL

)
=



θqH ∀xH ∈
[
0, b̂
]

and ∀xL ∈
[
0, xL

(
xH
)]

θqH − θqL + θqL ∀xH ∈
[
0, b̂
]

and ∀xL /∈
[
0, xL

(
xH
)]

p̃Hk ∀xH ∈
(
yHk−1, y

H
k

]
, k ∈ S and ∀xL ∈

[
0, xL

(
xH
)]

p̂Hk ∀xH ∈
(
yHk−1, y

H
k

]
, k ∈ S′ and ∀xL /∈

[
0, xL

(
xH
)]

θqH ∀xH ∈
(
yHm+1, 1

]
and ∀xL ∈

[
0, xL

(
xH
)]

θqH ∀xH ∈
(
yHm′+1, 1

]
and ∀xL /∈

[
0, xL

(
xH
)]

PL
(
xH , xL

)
=



θqH ∀xH ∈
[
0, b̂
]

and ∀xL ∈
[
0, xL

(
xH
)]

θqL ∀xH ∈
[
0, b̂
]

and ∀xL /∈
[
0, xL

(
xH
)]

p̃Lk ∀xH ∈
(
yHk−1, y

H
k

]
, k ∈ {1, . . . ,m+ 1} and ∀xL ∈

[
0, xL

(
xH
)]

θqL ∀xH ∈
(
yHk−1, y

H
k

]
, k ∈ {1, . . . ,m′ + 1} and ∀xL /∈

[
0, xL

(
xH
)]

θqL ∀xH ∈
(
yHm+1, 1

]
and ∀xL ∈

[
0, xL

(
xH
)]

θqL ∀xH ∈
(
yHm′+1, 1

]
and ∀xL /∈

[
0, xL

(
xH
)]

tH
(
xH , xL

)
=



b̂ ∀xH ∈
[
0, xH1

]
and ∀xL

yHk−1 ∀xH ∈
(
xHk−1, x

H
k

]
, k ∈ {2, . . . ,m+ 1}

1 ∀xH ∈
(
yHm′+1, 1

]
and ∀xL /∈

[
0, xL

(
xH
)]

1 ∀xH ∈
(
yHm′+1, 1

]
and ∀xL /∈

[
0, xL

(
xH
)]
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tL
(
xH , xL

)
=



0 ∀xH ∈
[
0, xH1

]
and ∀xL ∈

[
0, xL

(
xH
)]

1− b̂ ∀xH ∈
[
0, xH1

]
and ∀xL /∈

[
0, xL

(
xH
)]

0 ∀xH ∈
(
xHk−1, x

H
k

]
, k ∈ S and ∀xL ∈

[
0, xL

(
xH
)]

1− yHk−1 ∀xH ∈
(
xHk−1, x

H
k

]
, k ∈ S′and ∀xL /∈

[
0, xL

(
xH
)]

0 ∀xH ∈
(
yHm+1, 1

]
and ∀xL ∈

[
0, xL

(
xH
)]

0 ∀xH ∈
(
yHm′+1, 1

]
and ∀xL /∈

[
0, xL

(
xH
)]

R
(
xH , xL

)
=



(
δµb̂

1− δ
+ (̂b− xH))θqH − θqLxL

(
δµb̂

1− δ
+ (̂b− xH))

(
θqH − θqL + θqL

)
+ C1

(
µyHk−1

1− δ
− (xH − xHk−1))p̃Hk−1 − xLp̃Lk−1

(
µyHk−1

1− δ
− (xH − xHk−1))p̂Hk−1 + C2

(
δµ

(1− δ)
+ (1− xH))θqH − xLθqL

(
δµ

1− δ
+ (1− xH))θqH − xLθqL

where S ≡ {1, . . . ,m+ 1}, S′ ≡ {2, . . . ,m+ 1}, C1 ≡ (
δµ(1− b̂)

1− δ
+ (1− b̂− xL))θqL, C2 ≡

(
µ
(
1− yHk−1

)
1− δ

−
(
xL −

(
1− µ− xHk−1

))
)θqL.

Now, we will show that the stationary pentads defined above satisfy the maximization prob-

lem of the monopolist. First, we consider the case in which (1, 0) coexists with the monopoly

steady states, i.e., xH∞ < 1−µ. Let Π (y;x) = PH
(
yH , yL

) (
yH − xH

)
+PL

(
yH , yL

) (
yL − xL

)
+

R ((1− µ) y) . We show that TL (x) ⊂ {0, 1 − yHm+1, 1 − yHm , . . . , 1 − yH0 ).Π (y;x) is strictly

increasing in yH on any of the intervals [0, y0] × [0, 1] , (y0, y1] × [0, 1] , . . . , (ys+1, 1] × [0, 1] ,

s ∈ {m,m′}. So, TH (x) ⊂ {yH0 , yH1 , . . . , yHm+1, 1}.

Due to the recursive structure of x̃k and x̂k we have Π (ỹk; x̃k) = Π (ỹk−1; x̃k) and Π (ŷk; x̂k) =

Π (ŷk−1; x̂k). Let’s define h̃, ĥ, g as follows.4

h̃m+1

(
xH , xL

)
= Π

(
1;
(
xH , xL

))
−Π

(
ỹm;

(
xH , xL

))
,

4h̃m+1

(
xH , xL

)
=

[(
δµ

(1− δ) +
(
1− xH

))
θqH − xLθqL

]
−
[(

µyHm
1− δ −

(
xH − xHk−1

))
p̃Hm − xLp̃Lm

]
h̃k
(
xH , xL

)
=

[(
µyHk

1− δ −
(
xH − xHk

))
p̃Hk − xLp̃Lk

]
−
[(

µyHk−1

1− δ −
(
xH − xHk−1

))
p̃Hk−1 − xLp̃Lk−1

]
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h̃k
(
xH , xL

)
= Π

(
ỹk;
(
xH , xL

))
−Π

(
ỹk−1;

(
xH , xL

))
for k ≤ m where ỹk =

(
ỹHk , 0

)
, and5

ĥm′+1

(
xH , xL

)
= Π

(
1;
(
xH , xL

))
−Π

(
ŷm′ ;

(
xH , xL

))
,

ĥk
(
xH , xL

)
= Π

(
ŷk;
(
xH , xL

))
−Π

(
ŷk−1;

(
xH , xL

))
for k ≤ m′ where ŷk =

(
ŷHk , 1− µ− ŷHk

)
. In this case h̃k

(
x̃Hk , 0

)
= 0 and ĥk(x̂

H
k , 1− µ− x̂Hk )

= 0 for all k. The state variable if high quality good affect h’s as follows

∂ĥk
∂xH

= p̂Hk−1 − p̂Hk > 0.

Now, the existence of the threshold value of low quality good will be proved. We define

g
(
xH , xL

)
= Π

(
ỹk;
(
xH , xL

))
−Π

(
ŷk;
(
xH , xL

))
.

There exists xL = xL
(
xH
)

such that g
(
xH , xL

)
= 0. Moreover,

∂g

∂xL
= −p̂Lk + θqL < 0.

Uniqueness:

Let
{
PH0 (·), PL0 (·), tH0 (·), tL0 (·), R0(·)

}
be the pentad with some stationary equilibrium hav-

ing
(
b̂, 0
)

as steady state. We will show that the pentad is unique.

Let’s define p̈H1 = supPH0
(
yH , yL

)
yH>b̂

, and p̈L1 = supPL0
(
yH , yL

)
yH+yL>b̂

. First, suppose that p̈H1 =

θqH . In this case, PH0
(
yH , yL

)
=

 θqH for yH ∈
(

0, b̂
]

and all yL

θqH for yH ∈
(
b̂, 1
]

and all yL
. For yH > b̂, buyer’s

arbitrage equation for high quality good implies that tH0
(
(1− µ) yH , (1− µ) yL

)
> b̂ for all

5ĥm′+1

(
xH , xL

)
=

[(
δµ

(1− δ) +
(
1− xH

))
θqH − xLθqL

]
−

[(
µyHm′

1− δ −
(
xH − xHm′

))
p̂Hm′ +

(
µ
(
1− yHm′

)
1− δ −

(
xL −

(
1− µ− xHm′

)))
θqL

]

ĥk
(
xH , xL

)
=

[(
µyHk

1− δ −
(
xH − xHk

))
p̂Hk +

(
µ
(
1− yHk

)
1− δ −

(
xL −

(
1− µ− xHk

)))
θqL

]

−

[(
µyHk−1

1− δ −
(
xH − xHk−1

))
p̂Hk−1 +

(
µ
(
1− yHk−1

)
1− δ −

(
xL −

(
1− µ− xHk−1

)))
θqL

]
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(1− ρ) θqH + ρPH0
(
tH0
(
(1− µ) yH , (1− µ) yL

))
= PH0

(
yH
)

= θqH . Therefore, since θqH for

all yH ∈
(
b̂, 1
]

and all yL, we have tH0
(
xH , xL

)
= 1 for all xH > (1− µ) b̂. We now show that

p̈L1 = θqL. Suppose not. Since p̈L1 > θqL for some yH + yL > b̂, buyer’s indifference equation

for low quality good implies that tH0
(
xH , xL

)
+ tL0

(
xH , xL

)
<
xH + xL

1− µ
for xH +xL > (1− µ) b̂

since θqL−PL0
(
yH + yL

)
= ρ(θqL−PL0 (tH0 ((1−µ)yH , (1−µ)yL) + tL0 ((1−µ)yH , (1−µ)yL))).

This leads to a contradiction because tH0
(
xH , xL

)
= 1 for all xH > (1− µ) b̂. Therefore,

PH0
(
yH , yL

)
=

 θqL for yH ∈
(

0, b̂
]

and all yL

θqL for yH ∈
(
b̂, 1
]

and all yL
. It follows that, since PH0

(
yH , yL

)
>

PH0
(
yH , yL

)
for yH > b̂, we have tL0

(
xH , xL

)
= 0 for all xH ∈

(
b̂, 1
]
. Now, define ṗL1 =

inf PL0
(
yH , yL

)
yH+yL≤b̂

. Suppose first that ṗL1 = θqL. Now, suppose that ṗL1 < θqL. Define. Let

ḃL1 = sup
{
xH + xL < (1− µ) b̂ : tL0

(
xH , xL

)
= 0
}
. Then, since

(
b̂, 0
)

is a steady state, we

have

PH0
(
yH , yL

)
=

 θqH for yH ∈
(

0, b̂
]

and all yL

θqH for yH ∈
(
b̂, 1
]

and all yL
,

PH0
(
yH , yL

)
=

 θqL for yH ∈
(

0, b̂
]

and all yL

θqL for yH ∈
(
b̂, 1
]

and all yL
,

tH0
(
xH , xL

)
=

 b̂ for yH ∈
(

0, b̂
]

and all yL

1 for yH ∈
(
b̂, 1
]

and all yL
,

tL0
(
xH , xL

)
=

{
0 for all yH and all yL ,

R
(
xH , xL

)
=

 b̂ for yH ∈
(

0, b̂
]

and all yL

1 for yH ∈
(
b̂, 1
]

and all yL
.

Therefore,
{
PH0 (·), PL0 (·), tH0 (·), tL0 (·), R0(·)

}
is uniquely defined.

Secondly, suppose that p̈H1 > θqH and p̈L1 = θqL. Now we show that p̈H1 = p̂H1 . First

one should observe that tH0
(
(1− µ) yH , (1− µ) yL

)
< yH for all yH ∈

(
b̂, 1
]

and yL when

PH0
(
yH , yL

)
> θqH . Suppose not. Let tH0

(
(1− µ) yH , (1− µ) yL

)
≥ yH .This implies that

PH0
(
tH0
(
(1− µ) yH , (1− µ) yL

))
< PH0

(
yH
)
.Due to the indifference equation we have PH0 (yH)

= (1− ρ) θqH + ρPH0
(
tH0
(
(1− µ) yH , (1− µ) yL

))
≤ (1− ρ) θqH + ρPH0

(
yH
)
. Therefore,

PH0
(
yH
)
≤ θqH which contradicts with the initial assumption. We now claim that there exists
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ε > 0 such that tH0
(
(1− µ) yH , (1− µ) yL

)
= b̂ for all yH ∈

(
b̂, b̂+ ε

]
. Let’s choose yH0 , y

L
0 ∈(

b̂, 1
]

with PH0
(
yH0
)
> θqH and iteratively define yHK as yHK = tH0

(
(1− µ) yHk−1, (1− µ) yLk−1

)
.

The reasoning is, if there is no such ε then
{
yHK
}

would be decreasing sequence bounded

below by b̂. In this case, the indifference equation implies that PH0
(
yH0
)

=
(
1− ρk

)
θqH +

ρkPH0
(
yHk
)
. As k goes to infinity, this would imply that lim

k→∞
PH0

(
yH0 , 1− yH0

)
= θqH which

yields to a contradiction. This implies that p̈H1 = p̂H1 . Let’s define x̌H1 = max{x ≤ 1 − µ :

tH0 (xH , 1− µ− xH) = b̂} and p̈H2 = sup
yH>b̂

{
PH0

(
yH , yL

)
| yH >

x̌H1
1− µ

}
. Now, we show that

x̌H1 = x̂H1 . There are three cases.

Suppose x̌H1 = 1 − µ. Then we have PH0
(
yH , yL

)
= p̂H1 for all yH ∈

(
b̂, 1
]

and all yL,

R0

(
xH , xL

)
= R̂

(
xH , xL

)
, tH0

(
xH , xL

)
= b̂ and tL0

(
xH , xL

)
= 1− b̂ for all xH ∈ [0, 1− µ] and

xL. Therefore, the pentad is uniquely defined and x̂H1 = 1− µ and m′ = 0.

Suppose x̌H1 < 1 − µ and p̈H2 = θqH Then as above, PH0
(
yH , yL

)
= θqH for all yH ∈(

x̌H1
1− µ

, 1

]
and yL, R0

(
xH , xL

)
= R1

(
xH , xL

)
, tH0

(
xH , xL

)
= 1 and tL0

(
xH , xL

)
= 0 for

all xH ∈
[
x̌H1 , 1− µ

]
and xL. Moreover, R0

(
xH , xL

)
= R̂

(
xH , xL

)
for all xH < x̌H1 . The

continuity of R0 at xH = x̌H1 implies that R̂
(
x̌H1 , x

L
)

= R1

(
x̌H1 , x

L
)
. Therefore, x̌H1 = x̂∗ =

x̂H1 .

Suppose x̌H1 < 1−µ and p̈H2 > θqH . Then we claim that p̈H2 = p̂H2 . To establish the claim we

need to show that there exists ε > 0 such that tH0 (xH , xL) =
x̌H1

1− µ
for all xH ∈

(
x̌H1 , x̌

H
1 + ε

]
.

Then we show that x̌H1 = x̂H1 . Let’s define a function V̂
(
xH , xL

)
as

V̂
(
xH , xL

)
= Π̂

((
b̂, 1− b̂

)
;
(
xH , xL

))
−
(

µp̂H1 x
H

(1− µ) (1− δ)
+

µθqLx
L

(1− µ) (1− δ)

)

where Π̂((̂b, 1− b̂), x) = (
δµb̂

1− δ
+(̂b−xH))(θqH−θqL+θqL) + (

δµ(1− b̂)
1− δ

+(1− b̂−xL))θqL. By

definition of x̂H1 , we have V̂
(
x̂H1 , 1− µ− x̂H1

)
= 0. Since tH0

(
xH , xL

)
= b̂ and tL0

(
xH , xL

)
=

1 − b̂ for xH ≤ x̌H1 and all xL, and tH0
(
xH , xL

)
=

x̌H1
1− µ

and tL0
(
xH , xL

)
= 1 − x̌H1

1− µ
for

xH ∈
(
x̌H1 , x̌

H
1 + ε

]
and all xL. Continuity of R0 implies that V̂

(
x̌H1 , 1− µ− x̌H1

)
= 0 as well.

Moreover, since
dV̂ (x, 1− µ− x)

dx
< 0 we must have x̌H1 = x̂H1 .

The same argument can be applied inductively. Given x̌Hk = max
{
x : tH0

(
xH , xL

)
= x̌Hk−1

}

108



then it must be that x̌Hk = x̂Hk . If x̌Hk = 1− µ then x̂Hk = 1− µ and m = k − 1. If x̌Hk < 1− µ

then p̈Hk+1 = θqH then x̌Hk = x̂∗ = x̂Hk and m = k, p̈Hk+1 > θqH then m > k − 1 and define

x̌Hk+1 = max
{
x : tH0

(
xH , xL

)
= x̌Hk

}
.

Thirdly, suppose that p̈H1 > θqH and p̈L1 > θqL. We claim that p̈H1 = p̃H1 and p̈L1 = p̃L1 . To

prove the claim we need to show that there exist ε and δ such that tH0
(
(1− µ) yH , (1− µ) yL

)
= b̂ and tL0

(
(1− µ) yH , (1− µ) yL

)
= 0 for all yH ∈

(
b̂, b̂+ ε

]
and yL ∈ [0, δ]. We know from

the previous discussion that there exists ε > 0 such that tH0
(
(1− µ) yH , (1− µ) yL

)
= b̂ for

yH ∈
(
b̂, b̂+ ε

]
and all yL. Now, we show that there exists δ such that tL0 ((1−µ)yH , (1−µ)yL)

= 0 for all yH ∈ (̂b, b̂+ ε] and yL ∈ [0, δ] where p̈H > θqH and p̈L > θqL. Since p̈L > θqL. stock

of low quality good should be decreasing. That is, b̂+tL0
(
(1− µ) yH , (1− µ) yL

)
< yH+yL. As

yH approaches b̂, we would have lim
yH→b̂+ t

L
0

(
(1− µ) yH , (1− µ) yL

)
< yL. Now let’s choose

yH0 and yH0 with PL0
(
yL0
)
> θqL and yH0 + yL0 ∈

(
b̂, 1
]
. If there was no such δ then

{
yH0 + yLk

}
would be a decreasing sequence bounded below by yH0 . Then PL0

(
yL0
)

=
(
1− ρk

)
θqL + ρk

PL0
(
yLk
)

where yLk = tH0
(
(1− µ) yH0 , (1− µ) yLk−1

)
which would imply that lim

k→∞
PL0
(
yL0
)

= θqL.

This yields a contradiction.

Now define x̌H1 = sup{xH ≤ 1 − µ : tH0
(
xH , 0

)
= b̂} and x̌L1 = sup{xL ≤ 1 − µ − b̂ :

tH0
(
x̌H1 , x

L
)

= 0}. Suppose x̌H1 = 1−µ. Then PH0
(
yH , yL

)
= p̃H1 and PH0

(
yH , yL

)
= p̃L1 for all

yH ∈
(
b̂, 1
]

and all yL, and R0

(
xH , xL

)
= R̃

(
xH , xL

)
, tH0

(
xH , xL

)
= b̂, tL0

(
xH , xL

)
= 0 and

xH ∈ [0, 1− µ] and all xL. PH0
(
yH , yL

)
= p̃H1 , R0

(
xH , xL

)
= R̃

(
xH , xL

)
, tH0

(
xH , xL

)
= b̂,

tL0
(
xH , xL

)
= 0 for all yH ∈

(
b̂, 1
]

and xH ∈ [0, 1− µ] and all xL. Suppose x̌H1 < 1 − µ

and x̌L1 = 1 − µ − x̌H1 and p̈H2 = θqH . Then as above, PH0
(
yH , yL

)
= θqH , PL0

(
yH , yL

)
=

θqL, R0

(
xH , xL

)
= R1

(
xH , xL

)
, tH0

(
xH , xL

)
= 1, tL0

(
xH , xL

)
= 0 for yH ∈

(
x̌H1

1− µ
, 1

]
and

xH ∈
[
x̌H1 , 1− µ

]
and all xL ≥ 0 and PH0

(
yH , yL

)
= θqH − θqL + θqL, PL0

(
yH , yL

)
= θqL

and tH0
(
xH , xL

)
= b̂, tL0

(
xH , xL

)
= 1 − b̂, R0

(
xH , xL

)
= R̂

(
xH , xL

)
for all yH ∈

[
0,

x̌H1
1− µ

]
and xH ∈

[
0, x̌H1

]
and all yL. R0

(
xH , xL

)
= R̂

(
xH , xL

)
for all xH ≤ x̌H1 . Continuity of

R0 at xH = x̌H1 implies that R̂
(
x̌H1 , x

L
)

= R1

(
x̌H1 , x

L
)
. Therefore, x̌H1 = x̂∗ = x̂H1 .Define

p̈L2 = sup
yH>b̂

{
PL0
(
yH , yL

)
| yL > x̌L1

1− µ

}
. Then the same argument can be applied inductively.

Proof of Corollary 10. First, we derive the threshold for xL. Define g (x) = Π
(
ỹk,
(
xH , x

))
−
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Π
(
ŷk,
(
xH , x

))
where

Π
(
ỹk,
(
xH , xL

))
=

(
µyHk
1− δ

−
(
xH − xHk

))
p̃Hk − xLp̃Lk

and

Π
(
ŷk,
(
xH , xL

))
=

(
µyHk
1− δ

−
(
xH − xHk

))
p̂Hk +

(
µ
(
1− yHk

)
1− δ

−
(
xL −

(
1− µ− xHk

)))
θqL.

The threshold xL, xL
(
xH
)
, solves g (x) = 0 Since

dg (x)

d (x)
< 0. Therefore, for all xL ≤ xL

(
xH
)

the seller prefers ỹk to ŷk; otherwise, the seller prefers ŷk to ỹk. When the time horizon between

two successive offers is z,

xL
(
xH
)

= yHk

(
θ

ρk∆θ
+ 1

)
1− ρ
1− δ

− (1− ρ) θ

(1− δ) ρk∆θ
− xH .

In the limit, as the length of time period z approaches zero, we have

xL
(
xH
)

= yHk
θ

∆θ

λ+ r

r
− θ

∆θ

λ+ r

r
− xH .

Second, we derive the market prices of the goods.

i. Derivation of prices on the standard monopoly path, PH
(
ỹHk
)
: Since PH

(
ỹHk
)

= p̃k =

θqH + ρk∆θqH we have p̃k − p̃k−1 = −ρk−1 (1− ρ) ∆θqH . This implies that

PH
(
ỹHk
)
− PH

(
ỹHk−1

)
ỹHk − ỹHk

=
−ρk−1 (1− ρ) ∆θqH

(
µθqH + (1− µ) p̃Hk−1

)
ỹHk−1

(
p̃Hk−1 −

(
µθqH + (1− µ) p̃Hk−1

))
Since p̃Hk − θqH = ρk∆θqH ,

PH
(
ỹHk
)
− PH

(
ỹHk−1

)
ỹHk − ỹHk−1

=
− (1− ρ)

(
p̃Hk−1 − µ

(
p̃Hk−1 − θqH

))
µỹHk−1

.
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As z approaches 0, ỹHk − ỹHk−1 converges to zero. Hence, the above equation converges to6

PH1 (y, 0) y = −λ+ r

λ
PH (y, 0) .

The solution of this differential equation gives us PH (y, 0) = k̃0y
−
λ+ r

λ . Since PH
(
b̂, 0
)

=

θqH , k̃0 is defined by k̃0 = θqH

(
b̂
)λ+ r

λ . Therefore,

PH (y, 0) = θqH

(
b̂

y

)λ+ r

λ
.

ii. Derivation of prices on the segmented monopoly path, PH
(
ỹHk
)
: Since PH

(
ŷHk
)

= p̂k =

θqH + ρk∆θ∆q we have p̂k − p̂k−1 = −ρk−1 (1− ρ) ∆θ∆q. This implies that

PH
(
ŷHk
)
− PH

(
ŷHk−1

)
ŷHk − ŷHk

=
−ρk−1 (1− ρ) ∆θ∆q

(
µθqH − θqL + (1− µ) p̂Hk−1

)
ŷHk−1

(
−µθqH + µp̂Hk−1

) .

Since p̂Hk − θqH = ρk∆θ∆q,

PH
(
ŷHk
)
− PH

(
ŷHk−1

)
ŷHk − ŷHk−1

=
− (1− ρ)

(
µθqH − θqL + (1− µ) p̂Hk−1

)
µŷHk−1

.

As z approaches 0, ŷHk − ŷHk−1 converges to zero. Hence, the above equation converges to7

PH1 (y, 1− y) y = −λ+ r

λ

(
PH (y, 1− y)− θqL

)
.

6Since limz→0+
PH

(
ỹHk
)
− PH

(
ỹHk−1

)
ỹHk − ỹHk−1

= PH1 (y, 0) and limz→0+
− (1− ρ)

(
p̃Hk−1 − µ

(
p̃Hk−1 − θqH

))
µỹHk−1

=

−λ+ r

λ

PH (y, 0)

y
.

7Since

limz→0+
PH

(
ŷHk
)
− PH

(
ŷHk−1

)
ŷHk − ŷHk−1

= PH1 (y, 1− y)

limz→0+
− (1− ρ)

(
µθqH − θqL + (1− µ) p̂Hk−1

)
µŷHk−1

= −λ+ r

λ

(
PH (y, 0)− θqL

)
y

.
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The solution of this differential equation gives us PH (y, 1− y) = k̂0y
−
λ+ r

λ + θqL. Since

PH
(
b̂, 0
)

= θqH − θqL + θqL, k̂0 is defined by k̂0 = θ∆q
(
b̂
)λ+ r

λ . Therefore,

PH (y, 1− y) = θ∆q

(
b̂

y

)λ+ r

λ
+ θqL.

Third, we derive ẏ.

i. Derivation of ẏ on the standard monopoly path,
dỹ

dz
: Upon dividing both sides by z, the

equation for ỹHk − ỹHk−1 becomes

ỹHk − ỹHk−1

z
=
µỹHk−1

z

(
p̃Hk−1 − θqH

µθqH + (1− µ) p̃Hk−1

)
.

Since limz→0+
ỹHk − ỹHk−1

z
=
dỹ

dz
and limz→0+

µỹHk−1

z
(

p̃Hk−1 − θqH
µθqH + (1− µ) p̃Hk−1

) = λỹ
PH (y, 0)− θqH

PH (y, 0)
,

we have

˜̇y = λỹ
PH (y, 0)− θqH

PH (y, 0)
= λỹ

1− θ

θ

(
ỹ

b̂

)λ+ r

λ

 .

ii. Derivation of ẏ on the segmented monopoly path,
dŷ

dz
: Upon dividing both sides by z,

the equation for ŷHk − ŷHk−1 becomes

ŷHk − ŷHk−1

z
=
µŷHk−1

z

(
p̂Hk−1 − θqH

µθqH − θqL + (1− µ) p̂Hk−1

)
.

By the same reasoning we have,
dŷ

dz
= λŷ(1− θ (qH − qL)

PH (ŷ, 1− ŷ)− θqL
) = λŷ(1− θ

θ

(
ŷ

b̂

)λ+ r

λ ).

Proof of Corollary 11. See the proof of Theorem 5.

Proof of Theorem 6. Consider a reputational equilibria in which
(
ỳH , ỳL

)
where ỳH < b̂

and ỳH + ỳL ≤ b̂ is a steady state. By the proof of Proposition 3, we have PH
(
bH
)

= θqH

for b ≤ ỳH , PH
(
bH
)
< θqH for b ∈

(
ỳH , b̂

]
, and PH

(
bH
)

= θqH for b ∈
(
b̂, 1
]
. Moreover,

the proof of Proposition 3 also implies that PL (b) = θqL for b ≤ ỳH + ỳL, PL (b) < θqL for
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b ∈
(
ỳH + ỳL, b̂

]
, and PL (b) = θqL for b ∈

(
b̂, 1
]
. Therefore, for b ∈

(
ỳH , 1

]
, the stock of high

quality good is strictly increasing and for b ∈
(
ỳH + ỳL, 1

]
, total stock of durable goods (high

quality and low quality) is strictly increasing. It follows that when the stock of high quality

good is greater than ỳH , then the stationary pentad must coincide with the Coase Conjecture

equilibrium pentad.

The proof has three main parts. First, we show that the existence of a reputational

equilibrium implies µ ∈
(
µ, µ

]
. Then, we show that µ < µ. Finally, we prove that for each

µ ∈
(
µ, µ

]
there exists a reputational equilibrium.

First, we prove that µ > µ if a reputational equilibrium exists. Since PH (b) = θqH for all

b ≤ ỳH and PL (b) = θqL for all b ≤ ỳH + ỳL, we must have tH
(
(1− µ) yH , (1− µ) yL

)
= ỳH

and tL
(
(1− µ) yH , (1− µ) yL

)
= ỳL for all yH ≤ ỳH and yL ≤ ỳH + ỳL. This implies that

R
(
(1− µ) ỳH , (1− µ) ỳL

)
=
µỳHθqH

1− δ
+
µỳLθqL
1− δ

. By the continuity of function R, ỳH and ỳL

solve ζ
(
yH , yL

)
= 0 where ζ(·) is defined as

ζ
(
yH , yL

)
=
µyHθqH

1− δ
+
µyLθqL
1− δ

−RC
(
(1− µ) yH , (1− µ) yL

)
with yH ≤ ỳH and yL ≤ ỳH + ỳL. Since ζ

(
b̂, 0
)

= 0 at µ, we have ζ
(
b̂, 0
)
< 0 for all µ < µ.

Moreover, since ζ is strictly increasing, the existence of 0 < ỳH < b̂ and 0 ≤ ỳH + ỳL ≤ b̂

requires µ > µ.

Second, we prove that the existence of a reputational equilibrium implies µ ≤ µ. The

proof follows a contradiction. Suppose that for some µ > µ, a reputational equilibrium with(
ỳH , ỳL

)
exists. Let’s define

K = min
{
k : xHj < xHj−1 for all j ≤ k

}
and

K̃ = min
{
k : x̃Hj < x̃Hj−1 for all j ≤ k

}
.

Since the Coase Conjecture equilibrium does not exist for µ > µ, we have xH
K
> 0 and

x̃H
K̃
> 0. Since, xH

K+1
> xH

K
, when the initial state is

(
xH
K
, xL

)
, for all xL ≤ (1− µ) b̂ − xH

K
,
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the monopolist prefers selling to
(
yH
K
, yL
)

to selling to
(
yH
K−1

, b̂− yH
K−1

)
. That is,

µpHyH
K

+ µpLyL + δRC
(
xH
K
, xL

)
> RC

(
xH
K
, xL

)
which can be rewritten as

µpHyH
K

1− δ
+
µpLyH

K

1− δ
> RC

(
xH
K
, xL

)
.

Therefore, ζ
(
yH
K
, yL
)
> 0. Since ζ(·) is increasing we have ỳH < yH

K
. This is not possible

because the sequence of the Coase Conjecture equilibrium cannot be extended to initial states

below xH
K

.

Now, we will show that µ < µ. To do that we need to prove that if µ ≤ µ then the

sequence
{
xHk
}

and
{
x̃Hk
}

are strictly decreasing and m and m′ are finite. Because the

continuity of xHk and x̃Hk in µ implies that the same property holds in a right neighbor-

hood of µ which implies that µ ≥ µ. The proof of Theorem 2 establishes that µ ≤ µ iff

µb̂θqH
1− δ

≤ Π
(

(1, 0) ,
(

(1− µ) b̂, 0
))

which is equivalent to

µb̂
(
θqH − θqL + θqL

)
1− δ

+
µ
(

1− b̂
)
θqL

1− δ
≤ Π((1, 0), ((1− µ)̂b, (1− µ)(1− b̂))).

To prove that the sequence
{
xHk
}

and
{
x̃Hk
}

are strictly decreasing and m and m′ are

finite, we use induction. First, we show that xH2 < xH1 hold for any µ ≤ µ. To establish that

xH2 < xH1 , we need to show that h2

(
xH1
)

which implies that xH2 < xH1 , since h2(·) is decreasing

and h2

(
xH2
)

= 0. We define h2

(
xH1
)

as

h2

(
xH1
)

= Π
((
yH1 , 0

)
;
(
xH1 , 0

))
−Π

((
yH0 , 0

)
;
(
xH1 , 0

))
= PH

(
yH1 , 0

)
µb̂+ δΠ

((
yH0 , 0

)
;
(
xH1 , 0

))
−Π

((
yH0 , 0

)
;
(
xH1 , 0

))
= PH

(
yH1 , 0

)
µb̂− (1− δ) Π

((
yH0 , 0

)
;
(
xH1 , 0

))
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Since Π
((
yH0 , 0

)
;
(
xH1 , 0

))
≥ µb̂θqH , we have

h2

(
xH1
)
≤ PH

(
yH1 , 0

)
µb̂− µb̂θqH = µb̂

(
PH

(
yH1 , 0

)
− θqH

)
< 0.

Similarly to establish that x̃H2 < x̃H1 , we need to show that h̃2

(
x̃H1
)

which implies that

x̃H2 < x̃H1 , since h̃2(·) is decreasing and h̃2

(
x̃H2
)

= 0. We define h̃2

(
x̃H1
)

as

h̃2

(
x̃H1
)

= Π
((
ỹH1 , 1− ỹH1

)
;
(
x̃H1 , 1− µ− x̃H1

))
−Π

((
ỹH0 , 1− ỹH0

)
;
(
x̃H1 , 1− µ− x̃H1

))
= PH

(
ỹH1 , 1− ỹH1

)
µb̂+ PL

(
ỹH1 , 1− ỹH1

)
µ
(

1− b̂
)

− (1− δ) Π
((
ỹH0 , 1− ỹH0

)
;
(
x̃H1 , 1− µ− x̃H1

))
.

Since Π
((
ỹH0 , 1− ỹH0

)
;
(
x̃H1 , 1− µ− x̃H1

))
≥ µ

((
θqH − θqL + θqL

)
b̂+ θqL

(
1− b̂

))
, we have

h̃2

(
x̃H1
)
≤
(
PH

(
ỹH1 , 1− ỹH1

)
−
(
θqH − θqL + θqL

))
µb̂

+
(
PL
(
ỹH1 , 1− ỹH1

)
− θqL

)
µ
(

1− b̂
)
< 0.

To establish the second step of induction, we need to show that there exist ∆ such that

xH3 < xH2 −∆. The idea is the same. We prove that h3

(
xH2
)
< 0 which directly implies that

xH3 < xH2 since h3(·) is decreasing and h3

(
xH3
)

= 0. We define h3

(
xH2
)

as

h3

(
xH2
)

= Π (y2;x2)−Π (y1;x2)

= PH (y2)µyH2 + PL (y2)µ
(
b̂− yH2

)
− (1− δ) Π (y1;x2)

= PH (y2)µyH2 + PL (y2)
µ

1− µ

(
(1− µ) b̂− xH2

)
− (1− δ) Π (y1;x2) .

We know that Π (y1;x2) = Π (y0;x2). This implies that Π (y1;x2) =
(
xH1 − xH2

)
θqH −
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(
(1− µ) b̂− xH2

)
θqL + Π (y0;x1). Therefore,

h3

(
xH2
)
< PH (y2)

µxH2
1− µ

+ PL (y2)

(
µb̂− µxH2

1− µ

)
− (1− δ)

(
xH1 − xH2

)
θqH

+ (1− δ)
(

(1− µ) b̂− xH2
)
θqL − µb̂θqH

=
(
PH (y2)− PL (y2)

) µxH2
1− µ

+ PL (y2)µb̂− (1− δ)
(
xH1 − xH2

)
θ∆q − µb̂θqH

=
(
PH (y2)− PL (y2)

) µxH2
1− µ

−
(
θqH − PL (y2)

)
µb̂− (1− δ)

(
xH1 − xH2

)
θ∆q

<
((
PH (y2)− PL (y2)

)
−
(
θqH − PL (y2)

)) µxH2
1− µ

− (1− δ)
(
xH1 − xH2

)
θ∆q

=
(
PH (y2)− θqH

) µxH2
1− µ

− (1− δ)
(
xH1 − xH2

)
θ∆q < 0.

Similarly we now prove that h̃3

(
x̃H2
)
< 0 which directly implies that x̃H3 < x̃H2 since h̃3(·) is

decreasing and h̃3

(
x̃H3
)

= 0. We define h̃3

(
x̃H2
)

as

h̃3

(
x̃H2
)

= Π (ỹ2; x̃2)−Π (ỹ1; x̃2)

= PH (ỹ2)µỹH2 + PL (ỹ2)µ
(
1− ỹH2

)
− (1− δ) Π (ỹ1; x̃2)

= PH (ỹ2)µỹH2 + PL (ỹ2)
µ

1− µ
(
(1− µ)− x̃H2

)
− (1− δ) Π (ỹ1; x̃2) .

We know that Π (ỹ1; x̃2) = Π (ỹ0; x̃2). This implies that Π (ỹ1; x̃2) =
(
xH1 − xH2

)
θqH −(

(1− µ) b̂− xH2
)
θqL + Π (y0;x1). Therefore,

h̃3

(
x̃H2
)
< PH (ỹ2)

µx̃H2
1− δ

+PL (ỹ2) (µ− µx̃H2
1− δ

)−(1− δ)
(
1− µ− x̃H2

)
θ∆q−(1− δ) Π (ỹ0; x̃0)

=
(
PH (ỹ2)− PL (ỹ2)

) µx̃H2
1− µ

+ PL (ỹ2)µ− (1− δ)
(
1− µ− xH2

)
θ∆q

− µb̂
(
θqH − θqL + θqL

)
− µ

(
1− b̂

)
θqL

=
(
PH (ỹ2)− PL (ỹ2)

) µx̃H2
1− δ

− (1− δ)
(
1− µ− x̃H2

)
θ∆q − µb̂

(
θqH − θqL

)
<
(
PH (ỹ2)− PL (ỹ2)− θqH + θqL

) µx̃H2
1− δ

− (1− δ)
(
1− µ− x̃H2

)
θ∆q < 0.
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Now, suppose that there exist ∆ such that xHk < xHk−1 − ∆ for k ≥ 3. We will show that it

also holds for k + 1. Since the sequence is decreasing until k − 1, we have

Π
(
yk−1, xk

)
≥ Π (y0, xk)

= (1− xk) θqH −
(

(1− µ) b̂− xk
)
θqL + δR (x0)

= Π (y0, x1) +
(
xH1 − xHk

)
θqH −

(
(1− µ) b̂− xk

)
θqL

≥ µb̂θqH
1− δ

+
(
xH1 − xHk

)
θqH −

(
(1− µ) b̂− xk

)
θqL.

Therefore, we have Π
(
yk−1, xk

)
≥ µb̂θqH

1− δ
+
(
xH1 − xHk

)
θ∆q. The last inequality follows the

first inequality stated above.

Now, we will show that hk+1

(
xHk
)

= Π (yk, xk)−Π
(
yk−1, xk

)
< 0. Since,

Π (yk, xk) = µyHk P
H (yk) + µ

(
b̂− yHk

)
PL (yk) + δΠ

(
yk−1, xk

)
we have

hk+1

(
xHk
)

= µyHk
(
PH (yk)− PL (yk)

)
+ µb̂PL (yk)− (1− δ) Π

(
yk−1, xk

)
.

By using the above inequality

hk+1

(
xHk
)
≥ µyHk

(
PH (yk)− PL (yk)

)
+ µb̂PL (yk)

− µb̂θqH − (1− δ)
(
xH1 − xHk

)
θ∆q

= µyHk
(
PH (yk)− PL (yk)

)
− µb̂

(
θqH − PL (yk)

)
− (1− δ)

(
xH1 − xHk

)
θ∆q

< −µyHk
(
θqH − PH (yk)

)
− (1− δ)

(
xH1 − xHk

)
θ∆q < 0.

Therefore, since hk+1

(
xHk+1

)
= 0 and hk+1(·) is decreasing, we must have xHk+1 < xHk .
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Similarly,

Π (ỹk−1, x̃k) ≥ Π (ỹ0, x̃k) =
(
1− x̃Hk

)
θqH −

(
(1− µ)− x̃Hk

)
θqL + δR (x̃0)

= Π (ỹ0, x1) +
(
x̃H1 − x̃Hk

)
θqH −

(
(1− µ)− x̃H1

)
θqL −

(
(1− µ)− x̃Hk

)
θqL

= Π (ỹ0, x1) +
(
x̃H1 − x̃Hk

)
∆q

≥
µb̂
(
θqH − θqL + θqL

)
1− δ

+
µ
(

1− b̂
)
θqL

1− δ
+
(

(1− µ) b̂− xk
)
θ∆q.

The last inequality follows the first inequality stated above.

Now, we will show that h̃k+1

(
x̃Hk
)

= Π (ỹk, x̃k)−Π (ỹk−1, x̃k) < 0. Since,

Π (ỹk, x̃k) = µyHk P
H (ỹk) + µ

(
1− ỹHk

)
PL (ỹk) + δΠ (ỹk−1, x̃k)

we have

h̃k+1

(
x̃Hk
)

= µỹHk
(
PH (ỹk)− PL (ỹk)

)
+ µPL (ỹk)− (1− δ) Π (ỹk−1, x̃k) .

By using the above inequality, we will have h̃k+1

(
x̃Hk
)
< µỹHk P

H (ỹk) + µ(1 − ỹHk )PL (ỹk)

−µb̂(θqH − θqL + θqL) −µ(1− b̂)θqL− (1− δ) ((1−µ)̂b− x̃Hk )θ∆q = µỹHk (PH (ỹk)−PL (ỹk)) +

µPL (ỹk) −µ((̂bθqH−θqL)+(1− b̂)θqL) −(1−δ)((1−µ)̂b− x̃Hk )θ∆q = µỹHk (PH (ỹk)−PL (ỹk))

−µb̂(θqH − θqL − θqL) − (1 − δ)((1 − µ)̂b − x̃Hk )θ∆q < 0. Therefore, since h̃k+1

(
x̃Hk+1

)
= 0

and h̃k+1(·) is decreasing, we must have x̃Hk+1 < x̃Hk . This implies that m ≤ 2 +
b̂− xH2
ε

and

m′ ≤ 2 +
b̂− x̃H2
ε

.

Finally, we show that a reputational equilibrium exists for any µ ∈
(
µ, µ

]
. Let’s define ζ(·)

with yH < b̂ and yH + yL ≤ b̂ as

ζ
(
yH , yL

)
=
µyHθqH

1− δ
+
µyLθqL
1− δ

−RC
(
(1− µ) yH , (1− µ) yL

)
.

First, we show that there exists ỳH such that ζ
(
ỳH , 0

)
= 0. Since ζ (0, 0) = −RC (0, 0) < 0

and ζ
(
b̂, 0
)
> 0 and ζ(·) is increasing, there must exist ỳH ∈

(
0, b̂
)

such that ζ
(
ỳH , 0

)
= 0.
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Second, we show that there exists y̌H ∈
(
0, ỳH

)
such that ζ

(
y̌H , b̂− y̌H

)
= 0. Since ζ

is increasing with respect to both arguments, ζ
(
ỳH , b̂− ỳH

)
> 0 and ζ1 > ζ2, there exists

y̌H < ỳH such that ζ
(
y̌H , b̂− y̌H

)
= 0.

To establish that 0 < y̌H , we will show that ζ
(

0, b̂
)
< 0 which directly implies that there

exists ỳH ∈
(
0, ỳH

)
such that ζ

(
ỳH , ỳH − b̂

)
= 0. By definition of µ, ζ

(
b̂, 0
)
> 0 and as yH

decreases ζ
(
yH , b̂− yH

)
decreases as well. Since

RC
(

0, (1− µ) b̂
)
> RC

(
(1− µ) b̂, (1− µ)

(
1− b̂

))
>
µb̂
(
θqH − ρ∆θ∆q

)
1− δ

+
µ
(

1− b̂
)
θqL

1− δ
,

we have

ζ
(

0, b̂
)

=
µb̂θqL
1− δ

−RC
(

0, (1− µ) b̂
)
<
µb̂θqL
1− δ

−
µb̂
(
θqH − ρ∆θ∆q

)
1− δ

−
µ
(

1− b̂
)
θqL

1− δ
< 0.

This finishes the proof that y̌H ∈
(
0, ỳH

)
.

Additionally, if θ
(
ỳH + ỳL

)
> θ then the monopolist moves to

(
ỳH , ỳL

)
otherwise the

monopolist would move to
(
ỳH , 1− ỳH

)
immediately. Therefore, there exists

(
ỳH , ỳL

)
such

that PH
(
yH , yL

)
= θqH , PL

(
yH , yL

)
= θqLfor yH ∈

[
0, ỳH

]
and for yL ∈

[
0, ỳL

]
and

PH
(
yH , yL

)
=
(
θqH − θqL + θqL

)
, PL

(
yH , yL

)
= θqLfor yH ∈

[
0, ỳH

]
and for yL ∈

(
ỳL, 1

]
.

Moreover, if θ
(
ỳH + ỳL

)
≥ θ then we have tH

(
yH , yL

)
= ỳH and tL

(
yH , yL

)
= ỳL for

yH ∈
[
0, ỳH

]
and for yL ∈

[
0, ỳL

]
. If θ

(
ỳH + ỳL

)
< θ then we have tH

(
yH , yL

)
= ỳH and

tL
(
yH , yL

)
= 1 − ỳH for yH ∈

[
0, ỳH

]
and for all yL. Thus, R

(
xH , xL

)
=
(
ỳH − xH

)
θqH +(

ỳL − xL
)
θqL +

δµỳHθqH
1− δ

+
δµỳLθqL

1− δ
for θ

(
ỳH + ỳL

)
≥ θ and for yH ∈

[
0, ỳH

]
, yL ∈

[
0, ỳL

]
,

whereas R
(
xH , xL

)
=
(
ỳH − xH

)
(θ∆q + θqL) + (1 − ỳH − xL) θqL +

δµỳH
(
θ∆q + θqL

)
1− δ

+

δµ
(
1− ỳH

)
θqL

1− δ
for θ

(
ỳH + ỳL

)
< θ and for yH ∈

[
0, ỳH

]
, all yL. The pentad is defined by

the Coase Conjecture pentad otherwise.
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Proof of Corollary 12. Consider (ỳH , ỳL). We set ỳHand ỳL such that ζ(ỳH , ỳL) = 0.

limz→0+ ζ(yH , yL) = limz→0+((
µθqHy

H

1− δ
+
µθqLy

L

1− δ
) − ((1 − (1 − µ)yH)θqH − (1 − µ)yLθqL +

δµθqH
1− δ

)) = limz→0+
1

1− δ
((yHqH + yLqL)(µθ + (1 − δ)(1 − µ)θ) − ((1 − δ)θqH + δµθqH)).

Therefore, at
(
ỳH , ỳL

)
we have (ỳHqH+ỳLqL) = limz→0+

(1− δ) θqH + δµθqH

µθ + (1− δ) (1− µ) θ
=

(λ+ r) θqH

λθ + rθ
.

Since (ỳH + ỳL)θ > (ỳH + ỳL
qL
qH

)θ =
(λ+ r) θθ

λθ + rθ
> θ, the seller moves to (ỳH , ỳL) from the

initial state (0, 0).

Proof of Proposition 9. The functions µ (δ) and µ (δ) are decreasing, with µ (0) = µ (0) =(
1− b̂

)
θ

θ − θ
, limδ→1− µ (δ) = 0, and limδ→0+ µ (δ) > 0. Consider µ. We know that µ is derived

from the existence of the Coase Conjecture equilibrium. By definition we have xH0 = 1 − µ,

xH1 = (1 − µ)̂b, xH2 =
b̂θ − θ
θ − θ

qH
(qH − qL)

− (1− µ) b̂
qL

(qH − qL)
, and xHk = (1 − µ)−1(xHk−1 −(

xHk−2 − xHk−1

) θ

ρk−2
(
θ − θ

)) + µb̂
qL

(qH − qL)
. Define ∆k = xHk−1 − xHk . Then it follows that

∆1 = (1 − µ)(1 − b̂), ∆2 = (

(
1− b̂

)
θ − µb̂

(
θ − θ

)
θ − θ

)
qH

qH − qL
, ∆k = (1 − (1 − µ)−1)xHk−1 +

(1 − µ)−1∆k−1
θ

ρk−2
(
θ − θ

) − µb̂ qL
(qH − qL)

. First, we show that limδ→0+ µ (δ) =

(
1− b̂

)
θ

θ − θ
.

We set µ so that for all µ ≤ µ, we have ∆k > 0 for k = 1, . . . ,m and there exists m such

that xHm+1 < 0 ≤ xHm holds. As δ → 0, ∆3 increases drastically and so does ∆k for all

k ≥ 3. In this case, we need to make sure that ∆2 is positive. For all µ ≤

(
1− b̂

)
θ

θ − θ
, we have

xH2 ≤ xH3 . Therefore, we guarantee that for k = 1, . . . ,m we have ∆k > 0 and m is set such

that xHm+1 < 0 ≤ xHm.

We now claim that limδ→1− µ (δ) > 0. When δ = 1 and µ = 0, for k = 3, . . . ,m + 1, ∆k

is pinned down to ∆k = ∆k−1
θ(

θ − θ
) . Hence ∆k = ∆2(

θ(
θ − θ

))k−1 > 0. Let m be such that

xHm+1 < 0 ≤ xHm. Since xHk is a continuous function of µ, it follows that there exists µ′ > 0

such that for all µ ∈ [0, µ′) we have ∆k > 0 and xHm+1 < 0 ≤ xHm.

Finally, we show that µ is a decreasing function of δ. First, we choose µ < µ (δ) so

that ∆k > 0 for all k = 1, . . . ,m + 1. Then we show that ∆k is decreasing in δ which

gives us that ∆k (δ′) > ∆k (δ) > 0 where δ′ > δ. This implies that µ (δ′) > µ (δ) for
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δ′ > δ. Observe that ∆2 and xH2 are independent of δ and xH3 is increasing in δ. More-

over,
d∆3

dδ
= −∆2

δρ

θ

(1− µ)
(
θ − θ

) < 0. The proof comes from induction. If
dxHk−1

dδ
> 0 and

d∆k−1

dδ
< −(

θ

(1− µ)
(
θ − θ

))k−1 then we prove that
dxHk
dδ

> 0 and
d∆k

dδ
< −(

θ

(1− µ)
(
θ − θ

))k.

Since ∆k = (1− (1−µ)−1)xHk−1 + (1−µ)−1∆k−1
θ

ρk−2(θ − θ)
−µb̂ qL

(qH − qL)
,
d∆k

dδ
< (1− (1−

µ)−1)
dxHk−1

dδ
+ (1− µ)−1d∆k−1

dδ

θ

ρk−2
(
θ − θ

) − (k − 2)(1− µ)−1∆k−1
θ

ρk−2
(
θ − θ

)
δ

. Moreover,

since (1−(1−µ)−1)
dxHk−1

dδ
< 0 and (k−2)(1−µ)−1∆k−1

θ

ρk−2(θ − θ)δ
> 0, we have

d∆k

dδ
< (1−

µ)−1d∆k−1

dδ

θ

ρk−2
(
θ − θ

) . Due to the assumption on
d∆k−1

dδ
,
d∆k

dδ
< −(

θ

(1− µ)
(
θ − θ

))k
1

ρk−2
<

−(
θ

(1− µ)
(
θ − θ

))k since
1

ρk−2
> 1. Now, to finish the induction we need to show that

dxHk
dδ

> 0. By definition, we have

dxHk
dδ

= (1− µ)−1(
dxHk−1

dδ
− d∆k−1

dδ

θ

ρk−2
(
θ − θ

) + (k − 2) ∆k−1
θ

δρk−2
(
θ − θ

)).

Since
d∆k−1

dδ
< 0 it follows that

dxHk
dδ

> 0. Therefore, we conclude that if µ ≤ µ (δ) then

µ ≤ µ (δ′) for all δ′ < δ, µ is a decreasing function of δ. The same results hold for µ (δ).

Proof of Corollary 13. Trivial.
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