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ABSTRACT 
 

JILL E. JOHNSTON:  Assessing Exposure Of Chlorinated Solvents 
from the Subsurface to Indoor Air Pathway 

(Under the direction of Jacqueline MacDonald Gibson) 
 

The migration of chlorinated volatile organic compounds from groundwater to 

indoor air—known as vapor intrusion—is an important exposure pathway at sites with 

contaminated groundwater. However, monitoring indoor air quality in the hundreds or 

thousands of at-risk homes at each site is logistically and financially infeasible. Screening 

methods are needed to prioritize homes for monitoring and remediation. Current 

screening approaches do not adequately account for the substantial spatial and temporal 

variability in vapor intrusion risk, in part because the causes of this variability are not 

well understood. This work explores variability in vapor intrusion risk in a case-study 

community and then develops two different modeling approaches for screening at-risk 

homes. 

We employed a community-based approach to collect indoor air samples and 

analyze vapor intrusion risk in 20 homes at a case-study site. Results demonstrate that 

indoor concentrations of tetrachloroethylene from vapor intrusion vary by an order of 

magnitude across space and time. We show that key factors affecting this variability 

include barometric pressure drop, humidity, wind speed, and season.  

Using data collected from 370 homes in the National Database on Vapor 

Intrusion, we developed a multilevel regression model to predict vapor intrusion risks in 
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unmonitored homes. The resulting predictions decrease the rate of false negatives 

compared with the U.S. Environmental Protection Agency’s (EPA) current screening 

approach, which assumes that indoor air concentration will not exceed 1/1,000 times the 

soil gas concentration just above the groundwater.  

Finally, we demonstrate a second approach for improving the accuracy of 

screening by using Bayesian statistical techniques to integrate observational data into a 

mechanistic model describing the physical and chemical processes driving vapor 

intrusion. The resulting calibrated model also decreases the rate of false negatives in 

screening homes for vapor intrusion risks when compared with the current EPA 

approach. 

The results suggest current policy may underestimate vapor intrusion exposures, 

and we demonstrate two approaches to improve exposure assessment. Future research 

should evaluate the potential for community-centered and real-time monitoring devices, 

the integration of localized and cumulative risk information into the framework, and 

assessment of the risks and benefits of a precautionary approach to mitigation. 
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PREFACE 

 
 This dissertation is organized in a nontraditional format, which includes three 

manuscripts. Chapter 1 provides an introduction to the dissertation and a description of 

the significance of the research. Chapters 2, 3, and 4 must stand alone as manuscripts to 

be submitted for publication and therefore have some redundancies with the earlier 

chapters. Chapter 5 presents a summary of the findings, policy implications, limitations 

of the studies, and directions for future research.  
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CHAPTER 1 

Introduction 

1.1. Overview of this Research 

Although a number of important pieces of environmental legislation have been 

enacted over the past 40 years, these regulations largely ignore the indoor sphere. No 

federal agency or law specifically regulates the quality of air in residential indoor 

environments, even though Americans spend 85-90% of their time indoors and the 

majority of exposure to air contaminants occurs there (Hodgson, Garbesi, Sextro, & 

Daisey, 1992; Klepeis et al., 2001; Spengler & Sexton, 1983). Compared to the 

consumption of drinking water, humans inhale 10,000 times more liters of air per day, an 

involuntary exposure that is very difficult to replace (Schuver, 2007). Over the past 

decade, vapor intrusion has been recognized as a possible significant health hazard to 

residents living near toxic sites and polluting facilities (Johnson & Ettinger, 1991; U.S. 

Environmental Protection Agency, 1992). Despite this evidence and growing interest in 

this exposure pathway, there has not been a systematic approach to exposure assessment 

or the development of appropriate, evidence-based policy to indoor air pollution due to 

vapor intrusion. 

The vapor intrusion pathway is technically complex and incompletely understood. 

Detailed studies are few. Vapor intrusion involves both consideration of the pollutant 

source and its sink, the indoor air. It is an issue both of the commons (groundwater and/or 
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soil) as well as private space (the interior of private buildings). At vapor intrusion sites, 

exposure is both inescapable and involuntary (Fitzgerald, 2009). Current regulatory 

guidance is limited in scope, and robust decision-making tools for managing vapor 

intrusion risks are lacking. The subsequent chapters of this dissertation evaluate the 

variability and uncertainty of the vapor intrusion pathway in order to inform the 

regulatory framework around the collection of measurements and the use of quantitative 

screening and modeling tools in the evaluation of exposure. The research focuses on an 

understudied region in the United States—the South—to examine the mechanisms and 

forces at work in a southern climate. This study compares data from measurements and 

modeling efforts and quantifies the uncertainty of measuring and predicting indoor air 

concentrations. The knowledge gained may be useful in creating and refining models to 

better predict exposure due to vapor intrusion and to support the development of 

quantitative decision-making tools useful in the assessment of contaminated sites. The 

research is structured around three objectives: 

• Objective 1: Characterize spatial and temporal variability in the distribution of 

tetrachloroethylene (PCE) in indoor air in residences in a case study community 

that overlies groundwater contaminated with these chemicals. This objective has 

two components: (a) determine the concentrations of PCE in the air attributable to 

vapor intrusion in 20 homes, and (b) evaluate the factors that influence both 

temporal and spatial variability in the indoor concentrations of PCE. 

• Objective 2: Evaluate the current U.S. Environmental Protection Agency (EPA) 

vapor intrusion screening-level approach with actual measurements, and develop 



 3

an alternative method based on a multivariate analysis of the vapor intrusion 

database. 

• Objective 3: Demonstrate a novel approach to the integration of a mechanistic 

model with stochastic techniques in order to improve characterization of exposure 

due to vapor intrusion in a contaminated community.  

1.2. Scope of Vapor Intrusion Problem and Potential Health Issues  

When a subsurface release of volatile chemicals (those that easily transform to gas 

phase) occurs near buildings, contaminants can migrate upwards and result in vapor-

phase contaminant intrusion into the indoor air. A particular class of volatile chemicals, 

chlorinated volatile organic compounds (CVOCs), includes commonly used solvents such 

as tetrachloroethylene (also called perchloroethylene, or PCE). CVOCs are among the 

most frequently detected groundwater contaminants at hazardous waste sites in the 

United States (Agency for Toxic Substances and Disease Registry, 2007; McCarty, 

2010). They persist in the environment and are difficult to remediate (Simpkin & Norris, 

2010; Travis & Doty, 1990). A commonly accepted practice in the remediation of CVOC 

plumes is “monitored natural attenuation”—that is, allowing natural physical processes to 

dilute and biological processes to degrade the contaminants to allowable levels, an 

approach that can take decades (U.S. EPA, 1999b). When contaminants remain in the 

subsurface, they may migrate indoors through the vapor intrusion pathway. The 

inhalation of vapors inside homes may be the most significant pathway by which 

communities are exposed to CVOCs from groundwater (Ferguson, Krylov, & McGrath, 

1995; Fischer et al., 1996; Little, Daisey, & Nazaroff, 1992; Provoost et al., 2008). 
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Vapor intrusion exposures are real, direct, and chronic. The concentration of 

contaminants above recommended human health exposure levels in indoor air has been 

attributed to vapor intrusion from several sites (EerNisse, Steinmacher, Mehraban, Case, 

& Hanover, 2009; Folkes, Wertz, Kurtz, & Kuehster, 2009; McDonald & Wertz, 2007). 

Volatile organic compounds are reported at about half of known hazardous waste sites. 

Of these, approximately half may have conditions that favor intrusion of vapors into 

buildings, amounting to tens of thousands of sites nationwide (Schuver, 2007).  

Levels of CVOCs in indoor air are typically five to 10 times those in ambient air 

(Steinemann, 2004; Wallace, 2001). Inhalation can lead to higher toxicities than 

exposures via oral routes (Pepelko & Withey, 1985). As a result, even low levels of 

exposure to indoor pollutants can present human health risks. Long-term exposure to 

CVOCs can cause both acute and chronic health effects, ranging from headaches and 

reproductive disorders to liver and kidney cancer (Buben & O’Flaherty, 1985; Chiu, 

Caldwell, Keshava, & Scott, 2006). While the epidemiological evidence of health 

impacts at vapor intrusion sites is limited, elevated disease rates—including elevated 

rates of liver, kidney and esophageal cancer— have been reported at sites with known 

vapor intrusion (Agency for Toxic Substances and Disease Registry, 2006; Colorado 

Department of Public Health and Environment, 2002). Elevated rates of adverse birth 

outcomes among newborns, including low birth weight, fetal growth restriction, and 

cardiac defects, have been associated with their mothers living in a community exposed 

to CVOCs via vapor intrusion (Forand, Lewis-Michl, & Gomez, 2011).  
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1.3. Vapor Intrusion Exposure Pathway: Monitoring Considerations 

Determining when and where vapor intrusion is occurring—and subsequently 

remediating it—is challenging. Monitoring techniques must be able to measure minute 

concentrations of chemicals in air, in the realm of less than one part per billion (by 

volume), and chemicals of concern that volatilize from household products, including 

dry-cleaned clothes, must be identified and removed. Current practice requires the 

investigation assume a building-by-building analysis, and the evaluation techniques can 

be highly invasive, requiring entry by agency personnel and the placement of monitors 

inside private homes. 

At the community scale, current knowledge of the vapor intrusion pathway 

derives from a few detailed case studies where indoor air concentrations were measured 

across space (Folkes et al., 2009; Kliest, 1989; McDonald & Wertz, 2007; Schreuder, 

2006). The results have demonstrated significant spatial variability, and often the 

majority of the risk has been concentrated in a few homes. Further, recent research has 

demonstrated that concentrations attributed to vapor intrusion vary daily, weekly, and 

seasonally (Luo, Holton, Dahlen, & Johnson, 2011; McHugh, Nickles, & Brock, 2007; 

McHugh et al., 2012). Factors influencing temporal variability are a current area of 

investigation, with few published studies available. 

In addition, indoor sampling is further complicated by the potential for 

confounding indoor sources (Dawson & McAlary, 2009; Gorder & Dettenmaier, 2011; 

Kurtz, Wolfe, Woodland, & Foster, 2010). Obtaining accurate readings of concentrations 

attributable to vapor intrusion requires the identification and removal of confounding 

sources. This process is inexact, time consuming, resource intensive, and intrusive.  
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1.4. Vapor Intrusion Exposure Pathway: Modeling Approaches  

Determining if and when an exposure pathway exists is further limited by 

shortcomings in scientific understanding. The movement of vapors from the subsurface is 

dependent on multiple elements. The understanding of the transport mechanisms 

governing the migration of vapors from the subsurface to indoor air is still evolving 

(Folkes et al., 2009; McHugh et al., 2012; Yao & Suuberg, 2013). The potential for vapor 

intrusion to occur from a contaminant source is understood to be dependent on four 

interconnected processes as summarized in Figure 1.1: (a) the concentration of the 

contaminant in the groundwater; (b) the rate at which that contaminant can migrate 

through the soil toward the surface or building interface (soil properties); (c) the rate at 

which the contaminant is drawn into the building (foundation properties); and (d) the 

ability of the contaminant to accumulate indoors (building properties) (Johnson & 

Ettinger, 1991). Because of political, technical, and financial constraints on directly 

monitoring indoor air quality in private homes, it is typically more feasible to use a 

mathematical screening tool to identify at-risk areas. Vapor intrusion models attempt to 

simulate the transport of vapors from the source through the soil and into underlying 

buildings. 
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Figure 1.1. Summary of the physical processes that influence the vapor intrusion 
pathway. 
 

 
There are two general categories of vapor intrusion models proposed: one 

dimensional (simplified) models and multidimensional numerical models. In general, 

one-dimensional models, like the Johnson-Ettinger model (JEM), are used in site 

evaluation to identify areas of potential highest risk and/or to determine whether further 

investigation of indoor air is warranted. The JEM (Figure 1.2) is widely used for 

regulatory guidance on vapor intrusion in the United States and estimates the vapor 

attenuation ratio, α, a unitless parameter that relates the indoor air concentration to the 

concentration in the vapor phase at equilibrium with the contaminated groundwater:  

  Cindoor = α × Csource         (1) 
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where α is the vapor attenuation ratio, Cindoor is the contaminant concentration in indoor 

air (mass/volume), and Csource is the contaminant vapor-source concentration 

(mass/volume). 

 

Figure 1.2. Conceptual framework of Johnson-Ettinger model. 
 

The JEM couples one-dimensional steady-state diffusion of volatile compounds 

through porous media with diffusion and advection through the building foundation in the 

following equation to estimate α (Johnson & Ettinger, 1991): 

         (2) 

where Dtotal
eff  is the total overall effective diffusion coefficient (cm2/s), Ab is the area of 

enclosed space below grade (cm2), Qbuilding is the building ventilation rate (cm3/s), Lt is the 

source-building separation (cm), Qsoil is the volumetric flow rate of soil gas into the 
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enclosed space (cm3/s), Lcrack is the enclosed space foundation or slab thickness (cm), η is 

the fraction of foundation surface area with cracks (unitless), and Dcrack
eff  is the effective 

diffusion coefficient through the cracks (cm2/s). However, many of these parameters are 

difficult to characterize.  

The output of the JEM is intended to serve as an estimate of the influence of 

groundwater contamination on indoor air and to identify areas for further testing. 

Important parameters that influence vapor intrusion—and are included in the model—are 

soil characteristics (e.g., porosity, moisture content), building characteristics (air 

exchange rate, foundation type, and volume), and pressure differentials between the 

indoor and subsurface environments. Comparisons between modeled and measured α 

values indicate that with reasonable input parameters the JEM can predict within one 

order of magnitude the expected actual indoor air concentrations (Hers & Zapf-Gilje, 

2003).  

1.5. Vapor Intrusion Regulations and Policy Approaches 

In November 2002, the EPA issued draft guidance titled “OSWER Draft 

Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater 

and Soils (Subsurface Vapor Intrusion Guidance),” which aimed to “provide a tool to 

help the ‘user’ conduct a screening evaluation as to whether or not the vapor intrusion 

exposure pathway is complete and, if so, whether it poses an unacceptable risk to human 

health” (U.S. EPA, 2002). The guidance proposes a risk-based approach for site 

management and the setting of remediation targets similar to the approach seen for the 

management of hazardous waste sites that requires site-by-site (and in this case even 
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building-by-building) decisions at thousands of diverse sites (Daley, 2007; Sigman, 

1998).  

1.5.1. EPA Vapor Intrusion Assessment Tiers 

The EPA guidance proposes a sequential order of assessment steps used to 

“screen in” a site for further investigation (U.S. EPA, 2002). As illustrated in Figure 1.3, 

the assessment process is divided into three tiers. The first tier considers whether volatile 

contaminants along with overlying structures are present at the site. The next tier employs 

a generic (not site-specific) screening process to estimate indoor air concentrations based 

upon the measured contaminant levels in the groundwater. Finally, the third tier uses site-

specific modeling and data collection to assess human health risk. Failure to pass a 

specific step results in the conclusion that vapor intrusion either is not occurring or is not 

of adequate environmental or health concern, warranting no additional investigation. If 

any step is not sufficiently conservative or protective, sites can be falsely deemed “safe.”  
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Figure 1.3. Schematic summary of EPA’s approach to vapor intrusion sites, based on 
2002 draft guidance. 

 

Once a site passes the first tier, the second tier involves estimating the expected 

indoor air concentrations due to vapor intrusion. The 2002 guidance establishes 

groundwater targets by applying a generic attenuation factor, α, to screen vapor intrusion 

sites for study; EPA suggests that their assumptions represent the “worst-case conditions” 

(U.S. EPA, 2002). The attenuation factor is the ratio between the vapor-phase 

groundwater concentrations and indoor air concentrations of the chemicals of concern.  

If sites screen into further analysis, the guidance document then proposes the use 

of the JEM to predict indoor air concentrations based on site-specific data such as 

groundwater depth and soil type (U.S. EPA, 2002). The guidance then outlines a method 
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to use the indoor air concentration predictions to convert exposure into cancer risk 

estimates and recommend a course of action based on the risk calculation. There is no 

definitive action-level threshold; the EPA provides indoor air targets based on 10-4, 10-5 

and 10-6 risk levels. In addition, most state-level guidance provides an action-level 

threshold; across the various states, these values can vary by three orders of magnitude 

for the various CVOCs of concern (Eklund, Beckley, Yates, & McHugh, 2012). 

Once sites have been selected for further screening, the next step is to take 

measurements of concentrations in indoor air. The collection of indoor air samples is 

suggested only if a home (or site) screens into the final stage based on previous modeling. 

The favored EPA method is a 24-hour active sample using a summa canister. This 

technique actively pumps air through the canister to capture a specified volume. This 

single sample is considered to be a representative concentration upon which to base an 

action decision. 

1.5.2. Limitations of Current Regulatory Approach 

The current approaches to estimating indoor air concentrations due to vapor 

intrusion are limited, may not be sufficiently protective, and fail to account for variability 

and uncertainty in the exposure pathway. EPA’s proposed generic attenuation ratio of 

1/1000 may underestimate exposure levels, as shown through the EPA’s own analysis of 

vapor intrusion data (Figure 1.4) (Dawson, 2008a).  The EPA’s deterministic approach to 

modeling with the Johnson-Ettinger algorithm (i.e., not accounting for uncertainty and 

variability) can also underestimate actual risk and thus fail to provide adequate protection 

to affected households (Fitzgerald, 2009; Folkes et al., 2009; Schreuder, 2006; Tillman & 

Weaver, 2006). In a comparison with six other algorithms used in Europe, the JEM was 
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found to produce the least conservative predictions (Provoost et al., 2009). The use of the 

JEM as a screening tool has been cautioned against because of the potential for false 

negatives and the frequency of underpredictions (Provoost et al., 2010). Complex three-

dimensional models have been proposed and may be more accurate for an individual 

home, but these approaches are not scalable to a community level and require numerous 

detailed inputs (Bozkurt, Pennell, & Suuberg, 2009; Pennell, Bozkurt, & Suuberg, 2009; 

Yao, Shen, Pennell, & Suuberg, 2011; Yao & Suuberg, 2013). Few studies have 

compared modeling results to data, but in most cases the various models are unable to 

adequately explain the observations (Yao, Shen, Pennell, & Suuberg, 2013). 

 
 

Figure 1.4. Measured groundwater vapor attenuation factors compared to the indoor air 
concentrations shown on a log scale for observations included in the EPA National Vapor 
Intrusion Database. The orange dashed line marks an attenuation factor of 1/1000. Dark 
blue diamonds represent observations where the indoor air (IA) concentrations exceeded 
the reporting limit (RL). Light blue triangles mark IA data less than the RL. Adapted 
from Dawson (2008a).  
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Finally, the method of only sampling from a single point in space and time is 

unlikely to reflect community-scale exposure. Due to the temporal variability of the 

process (as well as the potential for confounding indoor sources), a single sampling event 

is insufficient to provide definitive information about vapor intrusion risks (McHugh et 

al., 2012). Residents have expressed reservations about allowing monitoring using 

collection devices known as summa canisters, which are invasive and costly, prone to 

measurement error, and require batteries or electricity (Siegel, 2009; Wang & Austin, 

2006). As a result of uncertainties, an accurate analysis requires robust data sets, which 

carry substantial costs.  

1.5.3. Status of Current Federal Guidance 

Since issuing the draft guidance, the EPA has yet not finalized the document. 

Separately, 29 states, stakeholder groups, and other federal agencies (including the 

Department of Defense, Department of Energy, and Department of Housing and Urban 

Development) have issued vapor intrusion guidance or other related technical documents, 

which vary widely in approach and scope (Fitzgerald, 2009; McAlary & Johnson, 2009; 

Simon, 2011). The Office of the Inspector General issued a report critical of the EPA’s 

inadequate response and the incomplete scope of the 2002 guidance (U.S. EPA, 2009). 

The EPA has blamed the lack of progress toward finalizing guidance or developing 

regulations on both administrative and scientific barriers (U.S. EPA, 2009). The EPA was 

scheduled to release a final draft of the 2002 guidance in December 2012, but the 

deadline passed and a new draft is expected in the Spring of 2013. It is anticipated that 

the new guidance will increase emphasis on the collection and use of indoor air samples 

(McHugh et al., 2012). While the limitations of the guidance document are numerous, 
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this research focuses on the tools proposed (or used) by environmental agencies to 

determine whether vapor intrusion is occurring and if a site requires monitoring or further 

remedial action.  

1.6. Study Site 

For much of this research, I used a case study site of a low-income neighborhood 

adjacent to the former Kelly Air Force Base (Figure 1.5), which operated in the southwest 

side of San Antonio, Texas, for nearly 85 years, serving as a logistic headquarters for the 

U.S. Air Force. Over that time period, the activities and practices at the base 

contaminated the shallow groundwater aquifer underneath it. Chlorinated solvents, 

including PCE, are the principal constituents of the contaminated plumes. These plumes 

extend five miles to the southeast of the base and occupy 12 square miles containing 

more than 30,000 homes in additional to farms, businesses, and schools. The shallow 

groundwater lies three to 40 feet below the homes, and PCE concentrations in the 

groundwater range from 5 µg/L (EPA drinking water maximum allowable limit) to 

almost 50,000 µg/L. Over 90% of residents living in the affected areas are Latino, and 

75% live in poverty. San Antonio is situated in a warm, semi-desert climate with 

predominantly clay soil and an older single-story housing stock without basements.  
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Figure 1.5. Map of Kelly Air Force Base and the adjacent contaminated groundwater 
plume. 

 

In previous research, the JEM was used to estimate indoor air concentrations in 

approximately 31,100 homes in the community adjacent to Kelly Air Force Base, and the 

estimated concentrations were compared with measured values in approximately 20 

homes tested by the EPA (Johnston & MacDonald Gibson, 2011). In this study, the JEM 

was employed using a probabilistic approach, in which the uncertainty and variability in 

model input variables were characterized, and Monte Carlo simulation was used to 

characterize the uncertainty in the resulting predicted indoor concentrations. 
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1.7. Motivation and Objectives 

In summary, a key unresolved debate is what constitutes sufficient evidence of a 

complete vapor intrusion pathway and how to identify whether vapor intrusion exposure 

may be occurring in individual houses (U.S. EPA, 2009). Ultimately, the vapor intrusion 

pathway is house-specific and prone to temporal fluctuations. However, in most cases 

hundreds or even thousands of buildings are potentially impacted. While it is impractical 

to monitor every home, it is also problematic to use over-simplistic decision-making 

models to determine whether additional investigation is needed. Due to the known 

limitations of the proposed modeling-based tools, alternative approaches should be 

considered in order to improve exposure estimates and provide a better estimate of health 

risks and remediation needs. So far, neither an adequate tool to identify high-risk areas 

nor the ability to assess the exposure at a community-wide level exists.  

The overarching aim of this dissertation is to investigate tools for predicting 

household indoor air contamination due to the migration of CVOCs from the subsurface 

and to assess decision-making tools used to make policy choices regarding vapor 

intrusion monitoring and remediation. This research represents the first community-wide 

study that examines vapor intrusion across space and time. The approach allows the 

quantification of relationships between weather conditions and household characteristics 

with vapor intrusion levels. The research improves upon current decision-making models 

to screen sites at risk of vapor intrusion and facilitates the allocation of resources to 

monitoring and/or remediation. Coupling modeling techniques with limited site-specific 

data can result in a process to effectively evaluate exposure at the community level, 
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characterize the uncertainty and variability in the risks, and inform an alternative site-

specific decision-making tool.  

The remainder of this dissertation is organized into four chapters. Chapter 2 

describes a method to quantify spatial and temporal variability in indoor concentrations 

of PCE in San Antonio, as well as integrate community participation. Chapter 3 examines 

the limitations of the current generic screening approach based on observations from the 

EPA vapor intrusion database and proposes a regression-based approach for screening 

potential vapor intrusion sites. Chapter 4 considers stochastic techniques to improve site-

level exposure estimates based on the JEM when some site-specific data has been 

collected. Finally, Chapter 5 discusses key findings and implications from these analyses 

as well as future research needs.  

 



 

CHAPTER 2 
 

Spatiotemporal Variability of Tetrachloroethylene 
in Residential Indoor Air Due to Vapor Intrusion: 

A Longitudinal, Community-Based Study1 
  

2.1. Introduction 

Volatile organic compounds (VOCs) are often found at higher concentration 

indoors compared to the outdoor environment (Adgate et al., 2004; Dodson, Levy, 

Houseman, Spengler, & Bennett, 2009). VOCs are capable of migrating from 

contaminated groundwater through overlying soil and building foundations, resulting in 

vapor-phase contaminant intrusion into indoor air (Environmental Quality Management, 

2004; Johnson & Ettinger, 1991). Tetrachloroethylene (PCE) is among the most 

frequently detected groundwater contaminants at hazardous waste sites in the United 

States (Agency for Toxic Substances and Disease Registry, 2007; McCarty, 2010). The 

inhalation of vapors inside homes is an understudied field, but prior research suggests it 

may be an important pathway by which communities at hazardous waste sites are 

exposed to chlorinated VOCs (CVOCs) in groundwater (Ferguson, Krylov, & McGrath, 

1995; Fischer et al., 1996; Little, Daisey, & Nazaroff, 1992; Provoost et al., 2008). Long-

term exposure to CVOCs has been linked to cancer, kidney and liver disease, and 

reproductive problems such as pregnancy loss, developmental abnormalities, and low-

                                                        
1 Johnston, J. E., & MacDonald Gibson, J. 2013, in press. Spatiotemporal variability of 
tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-
based approach. Journal of Exposure Sciences & Environmental Epidemiology 
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birth weights (Aschengrau et al., 2009; Agency for Toxic Substances and Disease 

Registry, 1997; Beliles, 2002; Doyle, Roman, Beral, & Brookes, 1997). Elevated rates of 

cancers, low birth weights, fetal growth restrictions, and cardiac defects have been 

reported at sites with CVOC vapor intrusion, although causality has not been established 

(Agency for Toxic Substances and Disease Registry, 2006; Colorado Department of 

Public Health and Environment, 2002; Forand, Lewis-Michl, & Gomez, 2011). Due to 

these potential health risks and the frequency of PCE detection in contaminated 

groundwater, the potential for PCE exposure via vapor intrusion is an important 

consideration when making decisions regarding groundwater remediation. 

Spatial and temporal variability has been observed in subslab and indoor air 

concentrations of CVOCs above contaminated groundwater plumes (see, for example, 

Folkes, Wertz, Kurtz, & Kuehster, 2009; Luo, Holton, Dahlen, & Johnson, 2011; 

McDonald & Wertz, 2007; McHugh, Nickles, & Brock, 2007; Schreuder, 2006). 

Variability across space and time has also been observed in indoor radon concentrations, 

which also result from vapor intrusion (albeit from natural geologic sources rather than 

anthropogenic contamination) (Davies & Forward, 1970; Groves-Kirkby, Denman, 

Phillips, Crockett, & Sinclair, 2010; Steck, Capistrant, Dumm, & Patton, 2004). Hence, 

an indoor air sample from a single point in space and time is unlikely to reflect 

community-scale exposure to vapor intrusion risks. Furthermore, previous work suggests 

that groundwater concentrations are not adequate surrogates for measuring vapor 

intrusion exposure potential because variability in soil and household characteristics can 

lead to houses above relatively low groundwater PCE concentrations having higher PCE 

levels in indoor air than homes overlying higher concentrations and vice versa 
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(Fitzpatrick & Fitzgerald, 2002; Folkes et al., 2009). In site assessments, often only a 

single 24-hour indoor air sample is taken from a small number of homes in an affected 

community, although U.S. Environmental Protection Agency (EPA) and state guidance 

often recommend that multiple samples be collected from a single home following a 

multi-tiered approach to vapor intrusion investigations (Eklund, Beckley, Yates, & 

McHugh, 2012; U.S. EPA, 2002). For example, in the EPA’s National Vapor Intrusion 

Database, the sampling frequency is as follows: a single-point-in-time sample in 84% of 

buildings, two samples collected in 10% of buildings, three to five samples in 5% of 

buildings, and more than five samples in 1% of cases. Collecting one or two samples, as 

is the current common practice, will not account for the potential spatial and temporal 

variability and may under- or overestimate the true exposure risk. An inaccurate 

characterization of exposure may result in inaccurate human health risk assessments.  

Previous work has helped describe the mechanisms governing vapor intrusion and 

potential causes of variability. Pressure-driven flow is an important mechanism for gas 

entry into homes (Fitzpatrick & Fitzgerald, 2002; Nazaroff et al., 1985). Building 

underpressurization, changes in barometric pressure, wind, and diurnal fluctuations in 

temperature all can influence indoor-outdoor pressure differentials and hence vapor flow 

into homes (Adomait & Fugler, 1997; Garbesi & Sextro, 1989; McHugh et al., 2012). 

When these processes lead to negative building pressure (i.e., outdoor pressure greater 

than indoor pressure), the rate of vapor intrusion increases. However, the relationships 

among these factors are complex and the net effects on vapor intrusion difficult to 

predict. For example, in some cases, higher wind speeds have been associated with lower 

indoor radon concentrations, while in others no relationship between wind speed and 
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indoor radon concentrations has been observed (Luo, 2009; Nazaroff & Doyle, 1985; 

Nazaroff et al., 1985; Turk, Prill, Grimsrud, Moed, & Sextro, 1990).  

Further understanding of the spatiotemporal drivers of vapor intrusion is needed 

in order to inform decisions about the extent of indoor air monitoring necessary to 

adequately estimate exposure risks in communities overlying contaminated groundwater. 

Yet, indoor air monitoring is intrusive, and residents can be resistant to allowing 

researchers or government personnel into their homes (Siegel, 2009). Due in part to this 

challenge, other studies of temporal variability have focused on a single home rather than 

multiple homes, and studies of spatial variability have been able to collect only one or 

two 24-hour samples in each home. 

This study addresses the need for community-wide assessment of spatiotemporal 

variability in vapor intrusion risks. The study, the first of its kind in the southern United 

States, integrated longitudinal and cross-sectional data collection at a contaminated site 

adjacent to the former Kelly Air Force Base in southwest San Antonio, Texas. We 

examined the effects of household characteristics and meteorological conditions on 

observed fluctuations in indoor air PCE concentrations to determine whether changes in 

(a) meteorological conditions, (b) soil type, (c) groundwater concentration, and (d) 

household characteristics significantly explain spatiotemporal variability in indoor PCE 

concentrations attributable to vapor intrusion. A better understanding of the drivers of 

temporal and spatial variability in vapor intrusion can inform decisions regarding 

monitoring and exposure assessment in affected communities. 

The case study site is a low-income neighborhood overlying extensive plumes of 

CVOCs in groundwater emanating from the former Kelly Air Force Base. These plumes 
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extended five miles to the southeast of the base and underlie approximately 30,000 

homes. The shallow groundwater lies 1 to 12 m below the homes. PCE concentrations in 

the groundwater range from 1 µg/L to 200 µg/L in the residential areas. Off-base 

groundwater remediation began in 2004 and is ongoing. 

The EPA evaluated a cohort of 24 houses for vapor intrusion in May 2008 and 

February 2009. During the 2008 sampling, the EPA collected one or two samples beneath 

each home’s foundation, outdoor air samples in selected locations, and a single indoor 

sample in a subset of homes. The sampling protocol followed EPA method TO-15, in 

which 6-liter collection devices known as summa canisters (in this case with a PCE 

detection limit of 0.14 µg/m3) are deployed to capture an air sample later analyzed in a 

laboratory (U.S. EPA, 1999a). For homes in which indoor air was tested, the EPA 

verified that all indoor sources had been removed by scanning each home with a real-time 

trace atmospheric gas analyzer. Figure 2.1 shows the results for PCE for the sampling 

events. The indoor air concentrations ranged from nondetectable to 1.83 µg/m3. Ambient 

air sampled for PCE averaged 0.055 µg/m3. The elevated subslab concentrations of PCE 

(4 to 600 µg/m3), along with the very low outdoor PCE concentrations, provide one line 

of evidence suggesting that PCE vapors are migrating from the groundwater into homes. 
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Figure 2.1. Summary of EPA’s previous subslab, crawl space, and indoor air 
measurements for PCE. 

  

Since this previous sampling was carried out only on a single day, the study 

design and results were not sufficient to evaluate the temporal variability in PCE 

concentration across the community. We previously modeled the scope of indoor air 

contamination in the community by employing a stochastic house-by-house approach 

based on the Johnson-Ettinger algorithm to account for variability and uncertainty in the 

parameters that influence vapor intrusion potential (Johnston & MacDonald Gibson, 

2011). This modeling study estimated that PCE concentrations may exceed screening 

levels (0.41 µg/m3 at the time of the analysis) in up to 72% of the homes, demonstrating 

potential vapor intrusion risk and highlighting specific neighborhoods that may be at 

higher risk. The present study was conducted to obtain field data to further explore the 

spatiotemporal variability suggested by our previous stochastic model.  
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2.2. Materials and Methods 

We sampled indoor air for PCE in 20 homes over a 12-day period during summer 

(July-August) 2011 (Figure 2.2). We resampled nine of the homes over another 12-day 

period in winter (February-March) of 2012. For the winter period, we divided the homes 

into those with evidence of vapor intrusion (at least one detection above 0.25 µg/m3) and 

those without. We randomly selected six homes from those that showed evidence of 

vapor intrusion and an additional three from the homes with no detectable PCE.  

 

Figure 2.2. Map showing the approximate location of the 20 homes sampled (ovals, 
black ovals for homes sampled in winter) and the PCE concentrations in the underlying 
groundwater plume.  

 

2.2.1. Indoor Air Sources Identification  

PCE is a commonly used solvent that is contained in many common consumer 

products. A survey of indoor homes unaffected by vapor intrusion found a median PCE 
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level of 0.9 µg/m3 (Dawson & McAlary, 2009), and previous work has identified 

common consumer products containing PCE (Dettenmaier & Gorder, 2010). In order to 

identify and remove potential confounding indoor PCE sources, our study team sampled 

each home in real time with the Hazardous Air Pollutants on Site (HAPSITE) field 

portable gas chromatograph/mass spectrometer (Inficon, Syracuse, NY) prior to the 

deployment of the passive samplers. Previous work has used the HAPSITE as an 

effective tool to identify and remove indoor CVOC sources (Gorder & Dettenmaier, 

2011). Prior to deploying the HAPSITE, we asked residents about the presence of 

common household products that could contain PCE and explained the importance of 

removing these sources for the duration of the study. We then asked to examine storage 

spaces for automotive, cleaning, and home repair supplies. We removed liquid/spray spot 

cleaners (15 homes), automotive lubricants (eight homes), and strong adhesives or shoe 

glue (four homes). No participant was known to use dry cleaning services or work in the 

dry cleaning industry. We also removed certain types of air fresheners because we found 

they interfered with the HAPSITE analysis. Next, within each home, we conducted an 

area-by-area investigation with the HAPSITE device to identify any additional potential 

vapor sources. After cleaning the concentrator, we collected a five-minute air sample that 

the HAPSITE automatically analyzed for PCE (detection limit 0.18 µg/m3). Any detected 

household PCE sources were removed for the duration of the study period, and the air 

was resampled three hours after removal to assure that no confounding sources remained. 

Sampling began 24 hours later. In a randomly selected subset of 10 homes, the indoor air 

was reanalyzed with the HAPSITE on the fifth day of the study to evaluate whether 

confounding sources had been reintroduced into the home. We found no evidence of 
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additional PCE sources during the mid-study resampling. In 18 of the homes, residents 

had a detached storage shed or garage, while two homes had no garage. These detached 

structures were neither evaluated nor included in the analysis.  

2.2.2. Indoor Air Sampling 

During the summer sampling event, we collected a total of eight duplicate 

samples (16 total samples) over a period of 12 days in each of the 20 study homes. For 

the second sampling period, four sample pairs per home were collected sequentially over 

a 12-day period in February and March. A total of 392 samples were collected (186 

paired measurements). Passive monitoring devices were shipped to the field site, and 

duplicate field blanks were included in each sampling season. In each case, samplers 

were left in place for three days in order to ensure sufficient detection sensitivity. 

Duplicate samples were taken to help assure the quality of the collected data and avoid 

losing information if a device was mishandled. Figure 2.3 shows an example sampling 

schedule. 

We deployed the indoor air monitoring devices on a simple, freestanding 

apparatus (constructed for this study) that enabled the sampling tubes to be hung in the 

breathing zone, 1.5 m (4.5 ft) above the floor. We located the samplers on the ground 

floor in an unused room, if available, or otherwise in a location where the monitors were 

less likely to be disturbed.  

 



 28 

 

Samples 
Day 

0 
Day 

1 
Day 

2 
Day 

3 
Day 

4 
Day 

5 
Day 

6 
Day 

7 
Day 

8 
Day 

9 
Day 
10 

Day 
11 

Day 
12 

Summer phase             

Indoor 
Source 
Identification 

             
  

1X & 1Y              
2X & 2Y              
3X & 3Y              
4X & 4Y              
5X & 5Y              
6X & 6Y              
7X & 7Y              
8X & 8Y              

Winter 
phase 

             

Indoor 
Source 
Identification 

             
   

9X & 9Y              
10X & 10Y              
11X & 11Y              
12X & 12Y              

Figure 2.3. Example data collection schedule per house. 

 

The sampling protocol followed ISO 16017-2:2003 (Indoor, Ambient and 

Workplace Air-Sampling and Analysis of Volatile Organic Compounds by Sorbent 

Tube/Thermal Desorption/Capillary Gas Chromatography–Part 2: Diffusive Sampling). 

Consistent with this protocol, the sampling devices were small (6.35 mm diameter × 89 

mm height), stainless-steel tubes packed with an engineered adsorbent, Chromosorb-106, 

with a demonstrated affinity for chlorinated solvents. Beacon Environmental Services, 

Inc., (Bel Air, MD) thermally conditioned the samplers and shipped them to the study 

site. Previous studies have shown that these devices provide results comparable to those 

of summa canisters (Odencrantz, Thornley, & O’Neill, 2009).  

Consistent with ISO 16017-2:2003 and also with U.S. EPA method TO-17 
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guidelines for sorbent samplers, Beacon Environmental analyzed the resulting samples 

with a Markes International thermal desorption system coupled with an Agilent 7890 gas 

chromatograph/ 5975 mass spectrometer (TD-GC/MS) (Woolfenden & McClenny, 

1999). The concentration was calculated from the measured mass, exposure duration, and 

sorbent tube uptake rate for PCE (0.46 ml/min). The Beacon Environmental laboratory’s 

reporting limit is 0.25 ng per sampling tube, yielding a detection limit of 0.13 µg/m3. All 

field sample measurements were below the analytical system’s upper calibration limit of 

5.0 ng; therefore, no sample dilutions were required. The continuing calibration 

verification values for the system check compounds were all within ±20% of the true 

values. Laboratory method blanks were run with each sample batch to identify 

contamination present in the laboratory. In addition, laboratory control samples were 

included with each of the analytical batch samples and included the PCE compound. The 

average recovery rate of PCE for these samples was 95%.  

In total, 392 total samplers were collected, with two lost due to leaks and sample 

handling errors. Five additional samplers were not used because the second internal 

standard was outside of the control limit, resulting in 385 observations. In these cases, we 

used only a single measurement to assign concentration. For all other cases, we averaged 

the two duplicate samples to estimate the measured concentration for a total of 186 

distinct observations. On average, the relative percentage difference was 8.1% among 

duplicate samples that exceeded the detection limit.  

2.2.3 Model Covariates 

Meteorological data were acquired from the weather station at the former Kelly 

Air Force Base, which is within a 1.0 to 4.5 km radius of the study homes. Hourly data 
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for temperature, wind speed, and humidity were averaged for the appropriate time period 

(based on the start and stop time for each sampler). Barometric pressure generally follows 

a diurnal cycle. The daily pressure drop was calculated as the difference between the 

crest and subsequent trough of the curve for each cycle (determined from hourly pressure 

measurements), with the first cycle commencing at the time of sampler deployment. 

These daily pressure drops were then averaged over the three-day exposure time for each 

sample tube. Information on chemical groundwater concentrations was acquired for April 

2011 through the Kelly Air Force Base Semi-Annual Compliance Plans (1998-2011) 

from the Air Force Real Property Agency. Concentrations were interpolated from 900 

monitoring wells using a Bayesian maximum entropy approach (see Christakos, Bogaert, 

& Serre, 2001; Johnston & MacDonald Gibson, 2011). All homes were located within 

480 m of a monitoring well, with the majority of homes within 100 m of a well. While 

groundwater concentrations exhibit temporal changes, for this analysis the value was 

assumed to be constant for the study period. Groundwater depth was not included 

because the temporal resolution of the data was insufficient to allow such an analysis. 

The soil type beneath each home was determined from the Bexar County Soil Survey. 

For all homes, the identified soil type was either Houston Black clay or Lewisville silty 

clay (Taylor, Hailey, & Richmond, 1966).  

Information was collected daily from participants about use of air conditioners, 

fans, and windows. These data were consolidated into a binary variable based on whether 

the home used air conditioning. In all homes that used air conditioning, the windows 

were kept closed. Since closed windows and cooling systems were strongly collinear, we 

only included the air conditioning variable in the model. Only one of the 20 homes used a 
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dryer inside the home (others used dryers located in detached structures), so this variable 

was not considered in the model. Information on the age and square footage of each home 

was acquired from the Bexar County Appraisal District. 

2.2.4. Community-Based Design 

In partnership with a local community organization, the Committee for 

Environmental Justice Action (CEJA), we designed the research question, chose 

appropriate methods, recruited participants, and collected data. In this study, community 

cooperation was especially important because the sampling protocol necessitated access 

to participating homes on a daily basis over the sampling period and that participants 

adhere to the removal of products that could confound the results. To recruit participants, 

CEJA representatives circulated flyers describing the study. If a community member 

responded, CEJA arranged a meeting with a member of our study team, who then offered 

additional information about the data collection process. One participant in each 

household helped collect information on heating, cooling, and mechanical ventilation 

type for each home and completed an activity diary for each day of the study. The 

activity diary asked about use of products that might affect indoor air PCE concentrations 

and/or transport of vapors from the subsurface into the home (e.g., use of cleaning 

products, mechanical cooling devices, windows, and clothes dryers).  

2.2.5. Statistical Analysis 

We employed a longitudinal multivariate regression modeling approach to 

examine the temporal associations between the observed indoor PCE concentrations 

(dependent variable) in each home and barometric pressure drop, wind speed, and other 

meteorological characteristics. The form of the regression model was chosen to account 
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for the detection limit (0.13 µg/m3) of the sampling device as well as the longitudinal 

nature of the data collection. Typical techniques, such as exclusion of data, the 

assignment of half the detection limit to nondetects, or the substitution of a value 

randomly selected from an appropriate distribution, have been shown to bias parameter 

estimates and, in the case of the latter approach, bias the variance (Helsel, 1990; Lubin et 

al., 2004). To avoid such biases, we used the Tobit model, an extension of the probit 

analysis developed by Tobin (1958), which has been proven to provide an unbiased 

maximum likelihood approach for analyzing measurement data with detection limits 

(Slymen, de Peyster, & Donohoe, 1994; Tobin, 1958). Since the distribution of observed 

concentrations was right-skewed, we used a log-transformed dependent variable. 

 In this analysis, we employed clustered robust estimates of standard errors. In 

order to account for repeat and overlapping observations in each home and for the 

relatively small sample size, to estimate the standard error on each β coefficient we 

employed a method that is robust to serial autocorrelation and with good performance 

across a variety sample sizes (see Arellano, 1987; Hansen, 2007; Kezdi, 2003). Stata IC 

(Version 12) was used for statistical analyses, with an a priori significance level of 0.05.  

To analyze the influence of changes in meteorological conditions on the within-

home variation over time, a distinct intercept was modeled for each home in the 

regression, so that time-invariant characteristics would not bias the model. To investigate 

the variation between homes, we evaluated a pooled population average that examined 

both time-varying meteorological variables and time-invariant household characteristics. 
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2.3. Results 

Table 2.1 shows the characteristics and minimum and maximum PCE 

concentrations measured in the 20 homes (all of which completed the study in its 

entirety). Figure 2.4 shows the detailed results for each house. PCE was detected in 12 of 

the 20 homes. The average PCE concentration across all samples above the detection 

limit was 0.28 µg/m3 (Table 2.2); however, concentrations fluctuated as much as one 

order of magnitude (Figure 2.5).  

In general, the measured concentrations were low, although about half exceeded 

the EPA Region 6 risk-based screening level for resident air of 0.33 µg/m3 that was in 

place at the time of sampling. In April 2012, the EPA revised its PCE screening level to 

9.4 µg/m3, higher than all of the concentrations observed in this study. Nonetheless, the 

previous EPA analyses showing elevated subslab PCE concentrations and extremely low 

ambient concentrations (Figure 2.1) suggests that vapor intrusion may be an important 

source of the PCE observed in these homes, particularly because we removed indoor 

sources prior to sampling. (As an additional check on potential indoor sources, we also 

examined the correlations between measured PCE concentrations and self-reported days 

when cleaning products were used, but none of these correlations was significant.) 

Neither field blanks nor laboratory method blank samples had any measurable 

concentrations of PCE. Despite the low PCE concentrations observed in this study, the 

results nonetheless provide valuable new information on factors both within and between 

homes that influence variability in indoor PCE concentrations at sites affected by vapor 

intrusion. 



 

Table 2.1. Characteristics of the 20 homes included in this study. 

Year built+ Foundation Cooling Soil type*  

Estimated 
groundwater 
PCE (µg/l) 

Indoor PCE 
minimum 
(µg/m3) 

Indoor PCE 
maximum 
(µg/m3) 

Sampled in 
winter 

1925 Crawl Central AC HtA 8 <0.13 0.14 Yes 

1928 Crawl Fans HtA 12 <0.13 <0.13 No 

1928 Crawl Fans HtA 21 <0.13 0.32 No 

1934 Crawl Fans LvA 22 <0.13 <0.13 No 

1940 Crawl Fans HtA 6 <0.13 <0.13 Yes 

1945 Crawl Window units HtA 21 <0.13 0.16 Yes 

1946 Crawl Window units HtA 15 <0.13 0.33 No 

1949 Crawl Fans LvA 50 <0.13 <0.13 No 

1950 Crawl Central AC LvA 21 <0.13 <0.13 No 

1950 Crawl Fans HtA 20 <0.13 0.15 No 
1951 Slab-on-grade Central AC LvA 4 <0.13 0.46 No 

1953 Crawl Window units HtA 5 0.15 1.2 Yes 

1955 Crawl Window units LvA 50 <0.13 0.46 Yes 

1963 Slab-on-grade Window units LvA 8 <0.13 0.16 No 

1965 Slab-on-grade Central AC LvA 98 <0.13 0.29 Yes 

1965 Slab-on-grade Central AC LvA 98 0.15 0.67 Yes 

1965 Slab-on-grade Fans LvA 98 0.16 .42 Yes 

1972 Crawl Window units HtA 11 <0.13 1.50 Yes 

1976 Slab-on-grade Window units LvA 98 0.14 0.75 No 

1984 Crawl Central AC LvA 4 <0.13 <0.13 No 
+ All homes are single story. * HtA: Houston Black clay; LvA: Lewisville silty clay 
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Figure 2.4. Indoor air concentration of PCE by study home.  

Table 2.2. Summary statistics for the key continuous variables included in the regression 
model. 

Time-variant variables Above detection samples 
(ns=90) 

Below detection samples 
(ns=106) 

PCE concentration  
Indoor air (µg/m3) 
 

 
                      0.28   

  (0.22)+ 

 
≤0.13 

-- 
Weather characteristics 
Barometric pressure drop (mm Hg) 
 
Average wind speed (m/s) 
 
Relative humidity (%) 
 

 
6.05 

(2.53) 
4.03 

(0.89) 
62.64 

(14.53) 

 
5.91 

(2.63) 
4.32 

(0.86) 
58.2 

(11.98) 
Time Invariant Variables Houses with any sample above 

the detection limit (nh=12) 
Houses with no samples 
above the detection limit 
(nh=8) 

PCE in the groundwater 
Groundwater concentration (µg/L) 

 
43.6 

(40.2) 

 
32.8 

(29.1) 
Household characteristics  
House area (m2) 
 
House age (years) 

 
124.6 
(52.8) 
58.9 

(14.7) 

 
111.2 
(46.9) 
61.1 

(17.7) 
+ Standard deviation is provided in parentheses. 
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Figure 2.5. Temporal variation in indoor PCE concentrations in homes with at least one 
sample above the detection limit. 
 

2.3.1. Within-Home Temporal Variability 

Table 2.3 shows the results of the regression model examining the effects of 

weather variables on within-home temporal variability in PCE concentrations. As shown, 

barometric pressure drop, wind speed, relative humidity, and season all significantly 

predict the observed temporal variations. Specifically, indoor concentrations increase 

with magnitude of the pressure drop (p=0.048) and humidity (average marginal effect 

p<0.001), while concentrations decrease as wind speed increases (p<0.001) and during 

winter (p=0.001). As noted above, a similar relationship between wind speed and indoor 

concentration has been observed in previous studies of radon (Nazaroff & Doyle, 1985; 

W. Nazaroff et al., 1985; Turk et al., 1990). A recent, detailed study of a single house at a 

vapor intrusion site did not observe strong correlations between seasonal winds and vapor 

intrusion but suggested that wind may contribute to short-term vapor intrusion changes 

(Holton et al., 2012). In the model, humidity may be capturing some of the short-term 
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effects of rainfall, such as groundwater rise. During rain events, humidity levels exceed 

90%, while the average during the study period was 62%. In summary, for this 

community based on the regression analysis, it is expected that PCE concentrations in 

homes that are prone to vapor intrusion PCE concentrations will be higher during 

summer, during low-wind events, or when large barometric pressure drops occur.  

 

Table 2.3. Average marginal effects for the within-home variability of natural log PCE 
indoor air concentration (ln-µg/m3) due to vapor intrusion. 

Covariate Coefficient+ 
Weather characteristics 
Barometric pressure drop (mm Hg) 
 
Average wind speed (m/s) 
 
Relative humidity (%) 
 
Relative humidity squared (%) 
 
Winter season 

 
 0.11* 

 (0.051) 
 -0.26** 
 (0.093) 
 0.29** 

 (0.017) 
 -0.0017 
 (0.00051) 
 -2.50** 
 (0.71) 

Constant  
 

 -12.42** 
 (2.48) 

Note: There were 120 observations from 13 homes. Standard errors (in parentheses) were computed using 
clustered robust standard errors.  
 
+McFadden’s pseudo R2: 0.2887. F-statistic: 3.98 (p<0.0001)  
* Statistically significant at the 5% level. 
** Statistically significant at the 1% level. 

 

2.3.2. Spatial (Between-Home) Variability  

Table 2.4 shows the regression model exploring the effects of household, 

environmental, and meteorological characteristics on between-home variability. The 

model results include all samples, including those from homes in which no indoor PCE 

was detected. As shown, indoor air PCE concentrations increase with groundwater 

concentration (expressed as a logarithmic term, p=0.030), a slab-on-grade foundation 

(p=0.028), magnitude of the barometric pressure drop (p=0.036) and humidity (expressed 
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as a quadratic term, p=0.04). On the other hand, concentrations decrease in the absence of 

an air conditioning unit (presumably because windows are opened, p=0.015) and with 

wind speed (p=0.004). Although not statistically significant, larger homes tended to have 

higher indoor PCE concentrations, while lower PCE concentrations were measured in 

older (and presumably leakier) homes. Together, all of these included covariates are 

highly significant (p<0.001). 

 

Table 2.4. Population-averaged effects of model covariates on between-home (spatial) 
variability of natural log PCE indoor air concentration (ln-µg/m3) due to vapor intrusion.  

Variable Coefficient+ 
PCE concentration  
Log of groundwater concentration  
(log-µg/L) 

 
0.16* 
(0.07) 

Household characteristics  
Slab-on-grade foundation 
 
No air conditioning units 
 
House area (m2) 
 
Age of home (years) 

 
0.83* 
(0.37) 
-0.51* 
(0.20) 
0.0017 

(0.0019) 
-0.0060  
(0.0057) 

Environmental characteristics 
Houston Black clay soil 
 

 
-0.46* 
(0.23) 

Weather characteristics 
Barometric pressure drop (mm Hg) 
 
Average wind speed (m/s) 
 
Humidity (%) 
 
Relative humidity squared (%) 
 
Winter season 
 

 
0.15* 
(0.07) 

-0.36** 
(0.12) 
0.051* 
(0.02) 

-0.002** 
(0.0006) 
-2.84** 
(1.01) 

Constant  -4.45** 
(1.13) 

Note: There were 182 observations from 20 homes. Clustered robust standard errors in parenthesis.  
+McFadden’s pseudo R2: 0.3389. F-statistic: 7.96 (p<0.0001) 
* Statistically significant at the 5% level. 
** Statistically significant at the 1% level. 
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2.4. Discussion 

The indoor air concentrations observed in this study were similar to the results 

previously found in the EPA investigation (see Figure 2.1). The highest concentration 

measured by the EPA summa canister (1.83 µg/m3) was on par with the highest 

observations in this study (1.50 µg/m3). We do, however, observe a short-term temporal 

variability in indoor air concentrations that cannot be captured with a single-point-in-time 

sampling event. The relationship between meteorological conditions and indoor PCE 

observed here could help indicate the potential range of concentrations when only a 

single measurement is possible. 

Several previous studies have found relationships between meteorological 

variables and vapor intrusion similar to those observed here. Radon studies have shown 

that atmospheric pressure drops contribute to the total radon entry rate into a building and 

can increase indoor concentrations by a factor of two over a daily time scale (Holford, 

Schery, Wilson, & Phillips, 1993; Robinson, Sextro, & Riley, 1997). Although 

atmospheric pressure fluctuations do not produce a net positive flow rate into homes over 

longer time intervals, they cause short-term changes in radon entry because of increases 

in the pressure differential between the subslab and indoor air (Robinson et al., 1997). 

That is, indoor air responds more quickly than subslab air to an ambient pressure change, 

leading to short temporal variations in subslab-indoor air pressure differentials that, in 

turn, affect advective flow of contaminant vapors into buildings. Similarly, a previous 

investigation of the intrusion of (unchlorinated) hydrocarbon vapors into a building in 

Australia found that semidiurnal decreases in barometric pressure caused a negative 

pressure differential between the building interior and subslab, increasing the rate of 
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advective mass transfer of hydrocarbons into the indoor air (Patterson & Davis, 2009). 

Our analysis also suggests that an ambient pressure drop may increase the mass of PCE 

flowing into the home.  

In studies in northern climates in homes with basements, higher concentrations of 

CVOCs have been observed in the winter compared with other seasons (Fitzpatrick & 

Fitzgerald, 2002; Holton et al., 2012). The inverse relationship observed here, in the hot 

and arid San Antonio climate, may be partly explained by the tighter sealing of homes 

during the summer months (to keep out the heat), higher subsurface and groundwater 

temperatures, desiccation of the shallow soils, or any combination of these. It should be 

noted that the temperatures in February and March 2012 were mild, ranging from 12 to 

21°C. A detailed survey of homes in Houston, Texas, with characteristics similar to 

households in this study observed the lowest air exchange rates in the summer 

(Yamamoto, Shendell, Winer, & Zhang, 2009). Seasonal data on vapor intrusion in 

southern climates is limited; however, summertime increases in radon concentrations 

were observed in Alabama homes with crawl spaces and were attributed to preferential 

flow pathways associated with the area’s karst geomorphology (Wilson, Gammage, 

Dudney, & Saultz, 1991). Using air conditioning has also been associated with higher 

indoor radon concentrations (Radford, 1985). This observation is worth further 

investigation because it suggests that seasonal effects on vapor intrusion in southern 

climates may differ from those in northern climates. However, the small sample size 

(necessitated by funding limitations) and selection criteria for resampled homes may have 

biased our observations. 
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 The results of this study are limited by the small sample size and few homes 

studied compared with the size of the potentially affected population. Measurements were 

not taken during a rainstorm or during freezing conditions. The relationships identified 

here may not be generalizable to other sites, especially those with a different climate, 

hydrogeology, and housing stock. The homes included in the study were a convenience 

sample, not a random sample. Therefore, selection bias among the households that chose 

to participate in the study may have influenced the results of the analysis. The passive 

sampling devices showed relatively good precision, although in some cases the difference 

in the duplicates was high and the use of the average of the measurements may have 

biased the results. We did not collect summa canister samples (to compare the accuracy 

of the passive sampling devices), nor were ambient air samples collected. The sampling 

of the EPA and previous sampling by the local health department gave no indication of 

elevated ambient levels of PCE, but possible intrusion from outdoor sources may have 

affected our measurements.  

Also worth noting are the potential advantages of the community-based research 

design used in this study. The study required daily access to each home and the 

motivation of residents to complete the entire protocol (including foregoing use of 

products that may contain PCE). Experience at other sites has suggested that access to 

homes is a barrier to data collection in vapor intrusion studies, particularly because at 

such sites animosity may exist between the community, those responsible for the 

potential pollution, and the involved government agencies (Siegel, 2009). In this case, 

participants appeared to adhere to the study protocol and participated for the duration of 

the study. 
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2.5. Conclusions 

This study provides evidence of spatial variability as well as short-term and 

seasonal variability in PCE concentrations due to vapor intrusion. These results suggest 

that a single-point-in-time sample of indoor air in homes at risk of vapor intrusion is not 

adequate for characterizing the temporal variability in exposures. This study contributes 

to the body of evidence suggesting that vapor intrusion potential fluctuates on short and 

seasonal time scales and suggests that evaluating temporal variability is needed to 

adequately characterize the occurrence of vapor intrusion in a home. While PCE 

concentrations detected at this site did not exceed the new PCE risk-based standards, 

acknowledging spatial and temporal variability as well as understanding the drivers of 

these processes may be significant in designing and conducting vapor intrusion 

investigations at other sites, where concentrations may exceed EPA’s standards.  

 



 

CHAPTER 3 

Screening Houses for Vapor Intrusion Risks: 
A Multiple Regression Analysis Approach2 

 

3.1. Introduction 

When groundwater or soil contamination occurs near buildings, volatile 

contaminants can migrate upwards and result in vapor-phase contaminant intrusion into 

the indoor air, a phenomenon called vapor intrusion. Chlorinated volatile organic 

compounds (CVOCs), which are among the most frequently detected groundwater 

contaminants at hazardous waste sites in the United States, persist in the environment, are 

difficult to remediate, and hence may pose long-term exposure risks (Agency for Toxic 

Substances and Disease Registration, 2007; Fischer et al., 1996; McCarty, 2010; Simpkin 

& Norris, 2010; Travis & Doty, 1990).  

Policy debates concerning how to evaluate and minimize vapor intrusion risks are 

ongoing. Key questions include (Schuver, 2007; U.S. Environmental Protection Agency, 

2009): 

1) What constitutes sufficient evidence of a complete vapor intrusion pathway? 

2) How can those responsible for contaminated sites identify which homes are at 

the highest risk for vapor intrusion?  

                                                        
2  Johnston, J.E., & MacDonald Gibson, J. 2013, in press. Screening houses for vapor 
intrusion risks: A multiple regression analysis approach. Environmental Science & 
Technology. 
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3) In which homes should vapor barriers, exhaust systems, or other measures be 

put in place in order to prevent exposure to vapors from subsurface 

contaminants? 

 

At many contaminated sites, hundreds or even thousands of buildings may be 

affected by vapor intrusion. Due to political, technical, and financial constraints, 

monitoring indoor air directly in every potentially affected home is typically infeasible. 

Hence, decision-makers employ screening tools to categorize buildings according to the 

level of potential vapor intrusion risk. The current draft U.S. Environmental Protection 

Agency (EPA) guidance document on vapor intrusion, released in 2002, proposes a 

sequential order of assessment steps to “screen in” sites for further, and increasingly more 

site-specific, investigation (U.S. EPA, 2002). The suggested protocol begins with an 

examination of the source of vapors (contaminated groundwater or unsaturated soils), 

proceeds to monitoring soil gas in the unsaturated zone above the source, and, if there is 

evidence of vapor intrusion, continues upward to collect samples at the exposure point 

(e.g., indoor air or sub-foundation vapor). Buildings may be designated as not requiring 

further investigation at any of these steps. 

As part of this sequential screening process, the EPA recommends the use of a 

generic screening-level model to determine whether site-specific data (such as indoor air 

measurements) should be collected. This initial assessment applies an “attenuation 

factor” to measured concentrations of contaminants in groundwater to predict the 

potential indoor air concentrations due to vapor intrusion. This attenuation factor is 

intended to represent the decrease in contaminant concentrations that occurs as the 
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contaminant vapor migrates upward from the groundwater table, through the overlying 

soil, and into buildings; it is defined as (Johnson & Ettinger, 1991): 

α =
Cindoor

Csource

       (1) 

 

where Cindoor is the contaminant concentration in indoor air (mass/volume) and Csource is 

the contaminant concentration in the soil gas just above the water table (mass/volume). 

Currently, the EPA recommends employing a generic attenuation factor of 1/1,000 to 

every building where the groundwater table is at least 5 feet from the ground surface, 

implying a contaminant concentration decrease of at least three orders of magnitude as 

the contaminant migrates upward into the building. 

Previous reviews of empirical data at vapor intrusion sites have identified 

measured attenuation factors that range over several orders of magnitude. A comparison 

of attenuation factors found values as high as 0.1, with site averages ranging from 10-6 to 

10-2 for chlorinated solvents (Johnston & MacDonald Gibson, 2011). Such results suggest 

that a factor of 1/1,000 could underpredict vapor intrusion risks (i.e., not be sufficiently 

conservative) in some cases. Others have suggested that the EPA generic attenuation 

factor is overly conservative—that, in practice, observed attenuation factors usually are 

significantly lower than 1/1,000 (Folkes, Kurtz, & Wannamaker, 2007; Johnson, Ettinger, 

Kurtz, Bryan, & Kester, 2009).  

The transport of CVOCs from groundwater to indoor air is complex and 

incompletely understood. Differences in building construction, spatial variations in 

geology and soil type, and temporal and spatial variability in vadose zone transport 

processes and depth to ground water all may influence vapor migration, but existing 

models incorporating these factors still lack sufficient accuracy in predicting the 
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substantial spatiotemporal variability observed empirically (Bozkurt, Pennell, & Suuberg, 

2009; Hers, Zapf-Gilje, Evans, & Li, 2002; Hers & Zapf-Gilje, 2003; Johnson, 2005; 

McDonald & Wertz, 2007; Pennell, Bozkurt, & Suuberg, 2009; Tillman & Weaver, 

2006).  

In order to provide a data source for further studying factors that influence vapor 

intrusion, the EPA compiled the National Vapor Intrusion Database. This database 

represents the largest collection of vapor intrusion data in the United States (Dawson, 

2008b; U.S. EPA, 2012), containing as of 2012 almost 2,400 indoor air observations 

collected during 1990-2007 in 913 buildings at 41 sites in 15 states. EPA personnel 

reviewed and quality-assured the data prior to inclusion in the database (U.S. EPA, 

2012). The data represent a cross-sectional collection of vapor intrusion observations; 

most sites do not include multiple measurements in multiple buildings over time. A 

detailed description of the database, data sources, and included parameters is available 

from U.S. EPA’s (2012) vapor intrusion database report.  

This paper provides the results of the first systematic multivariate analysis of the 

EPA’s vapor intrusion database. We employ a multivariate regression approach to 

evaluate the effects of contaminant properties, geologic conditions, groundwater depth, 

soil type, building foundation type, and season on the observed vapor attenuation factors. 

Our analysis focuses on chlorinated solvents, which are among the most common 

contaminants in groundwater and which are present in 98% of observations in the data 

set. 

 



 47 

3.2. Methods 

3.2.1. Dependent Variable 

The dependent variable in this analysis is the attenuation factor (Equation 1). 

Hence, only observations for which paired data on groundwater and indoor air 

contamination were available were eligible for inclusion (~35% of the data). Using 

average groundwater temperature and adjusted chemical-specific Henry’s constants, the 

measured groundwater concentrations were converted into groundwater-source vapor 

concentrations (µg/m3), and then calculated the groundwater vapor intrusion attenuation 

factor as follows: 

α i =
Ci,indoor

Ci,gw × KH ,i ×
1000L

m3

    (2) 

where α i is the vapor attenuation factor for chemical i, Ci,indoor is the concentration of the 

chemical i indoors due to vapor intrusion (µg/m3), Cgw is the concentration of the 

contaminant in the groundwater (µg/L), and KH ,i is the chemical-specific Henry’s 

constant for the average temperature of the groundwater (unitless). As Johnson et al. 

(2009) recommend, in order to avoid biasing the results we excluded samples with 

groundwater or indoor air concentrations below the detection limit. 

CVOCs are often detected in indoor air even in areas not affected by 

contaminated soil or groundwater (Dawson & McAlary, 2009), due to the presence of 

indoor sources (e.g. cleaning products) and/or infiltration of contaminated outdoor air. 

The EPA marked all database entries (16.3%) they suspected of being confounded by 

non-vapor-intrusion sources (due, for example, to a lack of pre-screening for and removal 
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of indoor sources) (Dawson & McAlary, 2009; Johnson et al., 2009; U.S. EPA, 2012). 

Our analysis excluded these observations.  

3.2.2. Explanatory Covariates 

Covariates in this analysis included geological, environmental, household, and 

chemical characteristics. We grouped contaminated sites into six geological groundwater 

regions, reflecting similarities in the composition, arrangement, and structure of 

subsurface formations as well as in broad water storage and transmission characteristics 

(Heath, 1984). Other environmental covariates were the depth to groundwater (m) and 

soil type. Soil type was classified as fine-grained (predominantly clay or silts), coarse 

(sandy soils), or very coarse (sand plus pebbles or rocks) generally based on the coarsest 

soil described in the vadose zone at the site.    

Four types of foundations typified buildings in the database and hence also were 

considered as covariates: basement, slab-on-grade, crawl space, or partial basement.  

Buildings were further divided into residential, mixed-use, or commercial/institutional.  

In the final model, 96% of the observations were categorized as residential, so we 

restricted the analysis to residential buildings.  

Seven CVOCs were included in the final analysis: 1,1-dichloroethane, 1,1-

dichloroethylene (DCE), 1,1,1-trichloroethane, cis-1,2-dichloroethylene, 

tetrachloroethylene (PCE), trichloroethylene (TCE), and vinyl chloride. Since the 

chemical properties are important parameters in fate and transport models, we 

represented contaminants with their molecular weight (g/mol) and diffusion coefficient in 

air (cm2/s), assuming standard temperature and pressure.  
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3.2.3. Statistical Analysis 

Since the attenuation factors were right skewed, the regression analysis employed 

the logarithm of the observed attenuation factor as the dependent variable (see Appendix 

B, Figure B.1).  The associations between the vapor intrusion attenuation factor and 

environmental parameters, household characteristics, and chemical properties were then 

explored using multivariate statistical techniques, as described in the following sections. 

Multivariate Regression Model 

Our first regression analysis fitted the following model to the pooled data: 

logyi = αααα + Bx i + εεεε i       (4) 

where yi is the vapor intrusion attenuation factor for observation i, x i is the vector of 

model covariates, Β is the vector regression coefficient, andεi is the residual vector. The 

data exhibit positive spatial autocorrelation (the tendency for measurements in close 

spatial proximity to share similar attributes). Classical regression techniques applied to 

such mixed-level data often exaggerate levels of statistical significance of coefficient 

estimates (Moulton, 1990; Wooldridge, 2003). Our first multivariate pooled regression 

approach controlled for such site-level clustering by adjusting the standard error, 

replacing the independence-of-errors assumption with an independence-between-clusters 

assumptions, and employing a variant of Huber-White heteroskedasticity-consistent 

standard errors (Huber, 1972; Arellano, 1987; Graubard & Korn, 2006;). This approach 

allows the variance of the error term to vary by site, rather than remaining constant across 

all sites. 
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Multilevel Regression Model 

Second, we implemented a multilevel linear regression model that views the data 

as arising from a hierarchical process in which individual buildings are nested within 

sites that share common characteristics and sites are, in turn, nested in regions with 

geologic similarities (Figure 3.1). Multilevel statistical techniques provide a technically 

robust analytical framework when the causal processes that affect the outcome are 

hypothesized to operate in such a nested fashion (Gelman & Hill, 2006; Subramanian, 

Jones, & Duncan, 2003). Exploratory analysis of the attenuation factor data suggests that 

a hierarchical framework may be appropriate (see Appendix B, Figure B.2). For 

hierarchical data, a pooled regression estimator of the effect of an observation-level 

predictor may be biased when using a flat regression approach such as in our first model 

(Steenbergen & Jones, 2002). The multilevel approach allowed us to examine the 

influence of building-specific characteristics on the attenuation factor as well as whether 

site-level and macro-scale geological-level contextual factors influence the attenuation 

factor when accounting for building-specific parameters.  
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Figure 3.1. Schematic of nested multilevel model. 

The multilevel approach models the intercept of each level as random, assuming 

that building i is nested within site j, which in turn is nested within geological region k: 

  
logyijk = ππππ 0 jk + ππππ pjk

p=1

P

∑ xpjk + εεεε ijk

    (5)
 

where  π0jk is the intercept, πpjk is the vector of regression coefficients and xpijk is the 

vector of explanatory variables at the observation level. Assuming there are Q level-2 

predictors and allowing zqjk to be the qth predictor in site j influencing attenuation, then 

the model is further specified as:  

  
π 0 jk = β00k + β0qk

q=1

Q

∑ zqjk + δ0 jk

     (6)
 

where β0qk and zqjk are the vectors for the regression coefficients and explanatory 
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variables, respectively. Finally, the level-3 intercept-only model is given by: 

  β00k = γ000 + υ00k      (7)  

The model further assumes that the components of the unobserved random effects,εijk , 

δ0 jk and υ00k, are independent and normally distributed with means of zero. 

We used the empirical Bayes prediction method described by Rabe-Hesketh & 

Skrondal (2008) and the iterative generalized least squares maximum likelihood estimator 

as implemented in STATA IC 12 (StataCorp, College Station, Texas) to fit the model in 

Equations 5-7 to the data. Functional forms and interactions between variables were 

evaluated using the Akaike information criterion (AIC) and the likelihood ratio test. An a 

priori  significance level of 0.05 was used. 

3.3. Results and Discussion 

After excluding observations with missing data for one or more variables, the 

study sample comprised 370 measurements from 21 sites, 84% of which were 

contaminated with DCE, PCE, and/or TCE. The majority of sites were located in the 

nonglaciated central groundwater region (n=235), but all six regions were included in the 

final models. Of the included data, the mean vapor intrusion attenuation value was 0.0008 

(sd=0.005), but the observed values extended over five orders of magnitude. Among this 

sample, 11.6% of observations exceeded the suggested EPA screening level of 0.001. 

Table 3.1 shows the summary statistics for the subgroups of observations included in the 

analysis.  
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3.3.1. Regression Models 

The results from the regression analyses reveal several statistically significant 

determinants of attenuation factors among residential buildings overlying chlorinated 

groundwater plumes. The final regression models used a logarithmic transformation of 

groundwater depth as the best-fit functional form. The coefficients of the two regression 

models follow similar patterns significance. Table 3.2 presents the results from both 

models. We use the multilevel model as the baseline for the discussion because it has the 

lowest AIC value, indicating the best fit. The models reveal several statistically 

significant determinants of attenuation factors among residential buildings overlying 

chlorinated groundwater plumes, as discussed in the following sections. 
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Table 3.1. Summary statistics for the key continuous variables included in the regression 
model. 

Variable Observations 
(n=370) 

Observations if 
alpha>0.001 
(n=44) 

Environmental characteristics 
Vapor intrusion attenuation factor 
 
Groundwater depth (m) 
 
Winter season 

 
0.0008 

(0.005)a 
4.35 

(2.42) 
87% 

 
0.0075 

(0.016) 
2.70 

(1.53) 
91% 

Soil type 
Fine-grained soil 
Coarse-grained soil 
Very coarse-grained soil 

 
34% 
60%  
6% 

 
18% 
53% 
29% 

Foundation type 
Basement 
Crawl space 
Slab-on-grade 
Mixed foundation type 

 
49% 
26% 
16% 
9% 

 
85% 
0 
12% 
3% 

Chemical characteristics 
Molecular weight (g/mol) 
 
Diffusivity in air (cm2/s) 
 

 
 128.4 
 (24.91) 

0.079 
 (0.0061) 

 
 137.6 
 (19.7) 

0.077 
 (0.0032) 

Groundwater hydrogeologic regions 
Alluvial basins 
Atlantic & Gulf coastal plain 
Colorado plateau & Wyoming basin 
Glaciated central region 
Nonglaciated central region 
Northeast & superior uplands 

 
2.9% 
11% 
0.8% 
16% 
63% 
5.7% 

 
12% 
11% 
0 
53% 
26% 
9% 

a Standard deviation is provided in parentheses for continuous variables. 
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Table 3.2. Effects of model covariates on variation in the log groundwater vapor 
intrusion attenuation factor. 

Variable (n=370) Model 1a Model 2 
 Clustered OLS  Multilevel 
Chemical characteristics 
Molecular weight (g/mol) 
 
Diffusivity in air (cm2/s) 
 

 
0.002 

(0.002) 
-10.93 
(8.89) 

 
0.0054** 
(0.0021) 
-14.74 
(9.25) 

Environmental characteristics 
Log-groundwater depth (m) 
 

 
-0.92*** 

(0.25) 

 
-0.79*** 

(0.29) 
Soil type (reference: coarse-grained) 
Fine-grained soil 
 
Very coarse-grained soil 
 
Log-groundwater depth × fine-grained  
 
Log-groundwater depth × very coarse-grained 

 
-0.53 
(0.41) 
1.29*** 
(0.19) 
0.75 

(0.88) 
-1.70*** 

(0.25) 

 
-0.58** 
(0.29) 
0.66* 
(0.39) 
0.55 

(0.53) 
-1.84** 
(0.74) 

Season (reference: summer) 
Winter season  

 
0.45* 
(0.23) 

 
0.42*** 
(0.15) 

Foundation type (reference: basement) 
Crawl space 
 
Slab-on-grade 
 
Partial basement 
 
 
Crawl space × winter 
 
Slab-on-grade × winter 
 
Partial basement × winter 
 

 
-0.37 
(0.40) 
0.78 

(0.52) 
1.47*** 
(0.24) 

 
-1.37*** 

(0.45) 
0.11 

(0.42) 
-1.12*** 

(0.32) 

 
-0.41* 
(0.22) 
0.67* 
(0.36) 
1.83*** 
(0.67) 

 
-0.99*** 

(0.38) 
0.17 

(0.25) 
-1.55** 
(0.74) 

Variance components  
Groundwater geological region υ 00k

2  
 

Site-level δ0 jk
2  

Observation-level εijk
2  

 
-- 

 
-- 

 
-- 

 
0.24 

(0.16) 
0.26 

(0.10) 
0.65 

(0.025) 
Constant  
 

-7.46*** 
(1.86) 

-3.53*** 
(0.92) 

Akaike information criterion 846.58 793.02 
Log likelihood -478.15 -378.51 

a Robust standard error reported in parentheses; * p<0.1, ** p<0.05, ***p<0.01 
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Environmental and Chemical Covariates 

In both models, chemicals with higher molecular weights have slightly higher 

attenuation factors (statistically significant in Model 2, p=0.011), while those with high 

diffusivity in air have slightly but not significantly lower (p=0.11) attenuation factors. 

PCE and TCE have the highest molecular weights among the included contaminants and 

were also the most frequently observed in this dataset. The general solubility trend among 

chlorinated solvents is that as the number of chlorine atoms on a compound increases 

(which in turn increases the molecular weight), the aqueous solubility decreases and the 

octanol-water partition coefficient increases; these factors may influence contaminant 

partitioning from water into the vapor phase (Cwiertny & Scherer, 2010). The variance of 

air diffusivity between chemicals is relatively small (mean= 0.079, sd = 0.006). Our 

results concur with previous deterministic models of the vapor intrusion pathway 

concluding that small variations in diffusivity do not have a significant impact on the 

final predictions (Yao, Shen, Pennell, & Suuberg, 2011). 

In the case of groundwater depth, we found a nonlinear relationship that is 

negative and statistically significant in both regression models (p=0.008 for Model 2). 

This finding is consistent with physical transport models and previous studies showing 

that as the distance between the structure and the source increases, more attenuation is 

expected (Johnson, 2005; Tillman & Weaver, 2006).  

Compared to coarse-grained soil, fine-grained soil is associated with a 

significantly lower attenuation factor (p=0.046), while very coarse-grained soil is 

associated with a marginally higher attenuation factor (p=0.092). Soil type is a proxy for 

characteristics that influence the transport of vapor, namely hydraulic conductivity and 
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porosity, and others have concluded that soil type is a strong indicator of vapor intrusion 

potential (Bozkurt et al., 2009; Hers & Zapf-Gilje, 2003; Pennell et al., 2009; Tillman & 

Weaver, 2006). A Wald’s test of the interaction between soil type and groundwater depth 

shows high joint significance (p=0.004). This suggests that the relationship between 

groundwater depth and the attenuation factor is mediated by soil type. Shallow 

groundwater (less than 3 m below ground level) coupled with coarse or very coarse soil 

type puts a site at risk for higher-than-expected attenuation factors, that is, increases the 

possibility of exceeding the conservative screening estimate of 0.001.  

Household and Seasonal Characteristics 

Foundation type was the principal descriptor of household properties in this study. 

A Wald’s test indicated that the categorical construct used to represent foundation type in 

this analysis was highly significant (p<0.001), even though, slab-on-grade and crawl-

space foundations were only marginally significant (p=0.066 and p=0.064, respectively) 

when compared individually to basement foundations. In both models, homes with crawl 

space foundations were associated with a lower vapor intrusion factor, while those with 

slab-on-grade foundations were associated with higher intrusion factors when compared 

to homes with basements.  

Season also significantly influenced the attenuation factor, as did the interaction 

between season and foundation type. On average, attenuation ratios in the winter were 

higher than in summer (p=0.007). However, for crawl-space homes, the seasonal effect 

was opposite, with higher intrusion factors in summer than in winter (p=0.010).  

Attenuation factors increased more in winter in slab-on-grade foundations than in homes 

with basements, but this difference was not statistically significant. 
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Figure 3.2 simulates the predicted relationships between soil type, foundation 

type, season and groundwater depth based on the multilevel model. In general, slab 

foundation and very coarse soil type are associated with the highest attenuation factors; at 

shallow groundwater levels, homes with these characteristics are predicted to experience 

much more vapor intrusion than the current generic attenuation factor (0.001) would 

indicate, as Figure 3.2 shows. We also observe that homes with crawl-space foundations 

are expected have attenuation factors below the screening level under almost all 

conditions, although these homes also show the widest range of predicted attenuation 

factors.  

 

Figure 3.2. Predicted (log) vapor intrusion attenuation factor based on multilevel model 
for PCE, assuming mean groundwater region and site-level characteristics for various 
combinations of groundwater depth (m), soil type, foundation type, and season. B: 
basement; Slab: slab on grade; CS: crawl space; C: coarse-grained soil; F: fine-grained 
soil; VC: very coarse-grained soil; W: winter; S: summer. 
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Prior research on the physical mechanics of vapor intrusion suggests similar 

results to what we have observed: Differences in both construction styles and ventilation 

rates have been observed to contribute up to two orders of magnitude to the between-

home variability in actual indoor air concentrations (Hers & Zapf-Gilje, 2003). Research 

at one well-studied site found statistically higher attenuation factors for slab-on-grade 

homes compared to basement or crawl-space homes (Folkes, Wannamaker, & Kuehster, 

2004). Other studies have found only a weak relationship between attenuation factors and 

construction type, although these conclusions are based on modeling and simulations 

rather than field observations (Abreu & Johnson, 2005; Johnson & Ettinger, 1991). While 

vapor intrusion can occur in homes with any foundation type studies, our analysis 

suggests that foundation type significantly influences the magnitude of the attenuation 

factor.  

Like the present study, other studies in northern climates in homes with 

basements have found higher concentrations of indoor CVOCs in the winter compared to 

other seasons, although the mechanisms underlying this phenomenon are not fully 

understood (Fitzpatrick & Fitzgerald, 2002; Holton et al., 2012; Luo, Holton, Dahlen, & 

Johnson, 2011; McHugh et al., 2007). One hypothesis posits that the differential pressure 

gradient across the foundation increases during the heating season as a result of indoor-

outdoor temperature differences, increasing the vapor flow rate into the home (Nazaroff, 

Lewis, Doyle, Moed, & Nero, 1987).  

The effects of foundation type and season, and the interaction between these two 

factors, that our regression analyses revealed for CVOCs is consistent with results of 

previous studies of the intrusion of radon vapors into homes. For example, a cross-
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sectional study of indoor radon concentrations in Danish homes found the highest mean 

radon concentrations in slab-on-grade homes and partial basement homes, followed by 

homes with crawl-space and full basements (Ulbak et al., 1988). A further review of 

radon in Danish homes found statistically significant seasonal differences observed in 

slab-on-grade and partial basement homes (Majborn, 1992). Among the data analyzed in 

the present study, foundation type influenced vapor attenuation, with seasonal effects the 

strongest for partial basement foundations and the highest mean concentrations predicted 

for slab-on-grade foundations (Figure 3.2). For crawl-space foundations, we observed the 

opposite seasonal effect, that is, higher concentrations, on average, in the summer 

compared to the winter. While field studies of vapor intrusion in crawl-space homes are 

limited, summertime increases in radon concentrations have been observed in Alabama 

homes with crawl spaces (Wilson, Gammage, Dudney, & Saultz, 1991).  

Higher-Level Characteristics 

 Compared to the classical regression model, we find that including higher-level 

predictors in a hierarchical model offers a statistical improvement to an ordinary least 

squares (OLS) model, according to the likelihood ratio test (p=0.001). Using the flat data 

structure of OLS, but accounting for data clustering, we find coefficient estimates 

comparable to those in the multilevel model. However, in the OLS model, the post-

estimation adjustment of standard errors may produce inefficiency in the estimates’ error, 

masking statistically significant effects that become apparent in the multilevel model.  

3.3.2. Predictions 

We evaluated the ability of the models to serve as a predictive screening tool for 

the vapor attenuation factor (Figure 3.3). The correlation between measured and 



 61 

predicted attenuation factors is 41% for the multilevel model and 36% for the OLS 

model, indicating that these models have explanatory power but are not sufficient to 

accurately estimate vapor intrusion risk on a house-by-house basis. The correlation 

between the attenuation factors predicted by the two models is 95%, suggesting that the 

models yield very similar estimates.  

 

Figure 3.3. Comparison of the log mean predictions (blue) and 95th percentile 
predictions (orange) with the actual log of the attenuation factor. Dashed red lines 
represent the current EPA screening level. 

 

In Table 3.3 we compare the performance of the models by dividing the measured 

attenuation factor into four groups and examining the frequency of over-/underprediction 

as well as the magnitude of the error (shown by the root mean squared error). In the case 

of the 95th percentile multilevel predictions, the model consistently overpredicts 
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attenuation factors below 10-4; however, the magnitude of these overpredictions is less, 

on average, than occurs when applying the generic EPA screening level. For example, for 

the observations with attenuation factors below 10-5, the mean prediction for this cohort is 

0.0001, an order of magnitude lower than the generic EPA screening level. For measured 

attenuation factors above 10-4, the results are more mixed. Homes with higher attenuation 

factors are often the most at risk to high indoor air concentrations. Thus, to protect health, 

it is perhaps more important to be conservative in the estimations among this group of 

observations. The 95th percentile predictions are conservative (i.e., over-predict 

attenuation factors) in most cases (68%) and identified 72% of the homes with 

attenuation factors exceeding the current screening criterion of 0.001. 



 

 

Table 3.3. Comparison of three methods for predicting groundwater attenuation factors to measured factors. 

 Measured Attenuation Factor 

αααα <10-5 10-5 
≥ αααα < 10-4 10-4 

≥ αααα< 10-3 αααα ≥ 10-3 

 High+  Low+ RMSE* High Low RMSE High Low RMSE High Low RMSE 

EPA generic 
screening factor 

47 0 2.47 149 0 1.55 132 0 0.67 0 43 0.68 

Multilevel  
model, mean 

46 1 1.00 116 35 0.46 18 114 0.54 5 38 1.06 

Multilevel model, 
95th percentile 

47 0 1.57 148 1 0.94 94 38 0.48 26 17 0.61 

+  High: model predictions exceed the observed groundwater attenuation factor (over-predictions); Low: model under-predict the observed attenuation. 
*RMSE: root mean squared error (calculated based on log(α)) 
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The predictions offered by the regression models developed in this analysis, 

coupled with an understanding of the relationships between various house and site-level 

conditions, could provide more nuanced screening-level information than a generic 

attenuation factor to support decision-making at potential vapor intrusion sites. In most 

cases, the 95th percentile predictions are slightly conservative, but allow for a range of 

screening values based on regional, site, and home characteristics. 

This analysis is limited by the sample size and the lack of data on several key 

variables shown to be important in modeling vapor intrusion. While 21 different sites are 

represented in the final model, they are clustered in the northern half of the United States. 

Different weather, soil, and groundwater patterns in the southern United States may 

influence the relationships observed there (Johnston & MacDonald Gibson, 2013). While 

quality control measures were completed prior to inclusion of information into the 

database, the values are subject to measurement error as the protocols, classification 

systems, and sampling techniques varied by site. Soil type is used to approximate the ease 

with which vapors can flow through the soil but is a crude proxy for the true below-

ground vapor flow rate, as the classification system fails to capture the presence of high-

permeability flow paths (Garbesi & Sextro, 1989; Johnson, 2005). Further, previous 

research has shown that the attenuation factor is sensitive to air exchange rate, which 

regulates the ability of vapors to accumulate indoors (Johnston & MacDonald Gibson, 

2011; Tillman & Weaver, 2006). The air exchange rate can be highly variable between 

houses depending upon heating/cooling systems, opening of windows, and the energy 

efficiency of a building. For future efforts, collected information on the foundation area 

and the age of the home may improve upon this model, as both sources of information are 
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typically already available from other sources. While air exchange rate is not easily 

acquired, house age and foundation area have been shown to be a reasonable proxy for 

the leakiness of a structure (Chan, Nazaroff, Price, Sohn, & Gadgil, 2005).  

3.4. Conclusions  

This analysis provides insights into the effects of various household and 

environmental characteristics on the vapor intrusion attenuation factor, based on the 

largest currently available vapor intrusion dataset. The available data suggest that the 

relationship between vapor intrusion and groundwater concentration depends on soil 

type, groundwater depth, foundation, and season, with the effects of foundation varying 

by season. Our multivariate approach suggests that slab-on-grade foundations, shallow 

groundwater, and very coarse soil increase the risk of a home to vapor intrusion. In the 

majority of cases, the multilevel model resulting from our analysis was able to identify 

homes with vapor attenuation ratios above the current EPA screening level. This 

modeling approach may prove increasingly useful as more sites are identified as at-risk 

for vapor intrusion and may offer flexibility as a generally conservative screening tool 

(using the 95th percentiles of regression parameters) that can be adapted to local 

conditions. The regression approach may help site-level initial screening estimates and 

identification of priority homes or neighborhoods for further investigation.  



 

CHAPTER 4 

Updating Exposure Models of Indoor Air Pollution Due to Vapor Intrusion: 
Bayesian Calibration of the Johnson-Ettinger Model3 

 
 

4.1. Introduction 

Chlorinated volatile organic chemicals (CVOCs) are capable of migrating from a 

subsurface plume upwards and cause vapor-phase contaminant intrusion in the overlying 

indoor air, an exposure pathway known as vapor intrusion. The challenges of collecting a 

robust data set inside private homes have complicated the characterization of vapor 

intrusion risks across potentially affected communities (Folkes, Wertz, Kurtz, & 

Kuehster, 2009; McDonald & Wertz, 2007; McHugh, Nickles, & Brock, 2007; 

Schreuder, 2006). Empirical evidence shows substantial spatial and temporal variability 

in contaminant exposures due to vapor intrusion, but the factors driving this variability 

are incompletely understood (Fitzpatrick & Fitzgerald, 2002; Folkes et al., 2009; P. 

Johnson et al., 2009). The scarcity of community-scale data, in turn, creates challenges to 

prioritizing homes for monitoring and assessing the need for remediation.  The difficulty 

in assigning exposure at the individual or neighborhood level further restricts 

investigations of the potential association between vapor intrusion exposure and adverse 

health outcomes (Forand, Lewis-Michl, & Gomez, 2011).   

                                                        
3 Johnston, J.E., MacDonald Gibson, J., & Sun, Q. 2013. In preparation for 
Environmental Science and Technology 
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Because of political, technical, and monetary constraints on directly monitoring 

indoor air quality in private homes, mathematical screening tools typically are used to 

identify at-risk areas. While few studies have compared model predictions to measured 

indoor air pollutant concentrations, the existing literature reveals that the current models 

are, in general, inadequate to describe the observations (Yao, Shen, Pennell, & Suuberg, 

2013). Previous research has identified the need for vapor intrusion models that more 

accurately reflect real-world conditions (Picone, Valstar, van Gaans, Grotenhuis, & 

Rijnaarts, 2012). The model most commonly employed during vapor intrusion site 

characterizations and recommended by the U.S. Environmental Protection Agency (EPA) 

draft vapor intrusion guidance is the Johnson-Ettinger model (JEM) (Eklund, Beckley, 

Yates, & McHugh, 2012; U.S. EPA, 2002). The JEM couples one-dimensional steady-

state diffusion of volatile compounds through porous media with diffusion and advection 

through the building foundation (Johnson & Ettinger, 1991). In regulatory applications, 

deterministic values for variables that describe contaminant, environmental, and 

household properties serve as inputs to the JEM.  The output is the vapor attenuation 

ratio, α, a unitless parameter that relates the indoor air concentration to the concentration 

in the subsurface water or soil (Johnson & Ettinger, 1991). The concentration of the 

contaminant indoors due to vapor intrusion is then estimated by: 

  Cindoor = α*Csource                       (1) 

where Cindoor  is the contaminant concentration in indoor air (mass/volume) and Csource is 

the contaminant vapor-source concentration (mass/volume), generally expressed as 

groundwater concentration multiplied by the appropriate Henry’s constant.   
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In this research, we demonstrate a Bayesian approach for using empirically 

measured indoor air concentrations from a case study community to calibrate the JEM, in 

order to improve the accuracy and precision of its predictions of indoor air quality in the 

community. Systematic calibration procedures using site-level data have the potential to 

improve the accuracy of the JEM and hence to facilitate decision-making at vapor 

intrusion sites (Ellison, 1996; Larssen et al., 2006). The Bayesian method yields posterior 

calibrated distributions for the model input parameters of interest. The calibration 

approach used in this research has not been employed previously to update the JEM, 

although it has been applied successfully to a variety of ecological process-based and 

chemical fate-and-transport models (Arhonditsis et al., 2008; Larssen et al., 2006; 

Lehuger et al., 2009; Reinds, van Oijen, Heuvelink, & Kros, 2008; Saloranta et al., 2007; 

Van Oijen et al., 2011; Yeluripati et al., 2009). In these previous studies, the calibration 

procedure has narrowed the uncertainty of input parameters and improved overall model 

forecasting.  

The Johnson-Ettinger algorithm is intended to estimate the influence of 

groundwater contamination on the overlying indoor air and to identify areas of concern 

for further evaluation (Environmental Quality Management, 2004). While the model 

contains numerous parameters, its application involves substantial uncertainty 

contributed by both model structure and parameter inputs (Fitzgerald, 2009). Since many 

sites contain hundreds or thousands of potentially impacted structures, the 2002 EPA 

guidance recommends the use of a combination of default and readily available site-

specific-values as inputs to the JEM in order to evaluate whether the modeled indoor air 

concentrations exceed an established risk level. The EPA guidance provides default 



 69 

deterministic values for many of the inputs and suggests that these default values are 

“conservative,” in other words, tend to over-estimate exposure risk. 

Previous studies comparing modeled and measured α values have indicated that, 

with reasonable input parameters, the JEM can predict within one order of magnitude the 

actual indoor air concentrations of chlorinated volatile organic compounds (Hers & Zapf-

Gilje, 2003). However, although purported to be conservative, in some past studies the 

JEM has underpredicted α and thus the indoor air concentration of the relevant pollutant 

(Fitzpatrick & Fitzgerald, 2002; Hers, Zapf-Gilje, Evans, & Li, 2002; Mills, Liu, Rigby, 

& Brenners, 2007; Provoost et al., 2010; Schreuder, 2006). More complex, three-

dimensional models have been proposed and may be more accurate for an individual 

home, but these approaches require detailed local information, are not scaled to a 

community level, and have yet to be applied in a regulatory context (Bozkurt, Pennell, & 

Suuberg, 2009; Pennell, Bozkurt, & Suuberg, 2009; Yao & Suuberg, 2013).   

The case study site employed to assess the potential for Bayesian calibration to 

improve the performance of the JEM is a neighborhood overlying extensive plumes of 

tetrachloroethylene (PCE) in groundwater emanating from the former Kelly Air Force 

Base in San Antonio, Texas. These plumes extend almost 8 km (5 miles) to the east and 

southeast of the base, affecting some 30,000 homes. The groundwater table is 1-10 m 

below the houses. Prior measurements of local monitoring wells have found PCE 

concentrations in the shallow groundwater ranging from 5 µg/L to almost 50,000 µg/L.   

In previous work we developed a method for incorporating parameter uncertainty into the 

JEM algorithm via Monte Carlo simulation, and we simulated indoor air concentrations 

of PCE in each of the case study community’s 30,000 homes (Johnston & MacDonald 
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Gibson, 2011). While this previous Monte Carlo analysis offered a new approach to 

assessing the range of possible indoor pollutant concentrations in affected homes, the 

predictions still underestimated measured concentrations.   

The goal of the research presented here is to further improve the JEM algorithm 

by calibrating it to measured indoor air pollutant concentrations, hence increasing both 

the accuracy and precision of the model. We compare the indoor air pollutant 

concentrations predicted by the calibrated stochastic model to the concentrations 

predicted by the deterministic JEM version currently used for policy and regulatory 

decisions. We compare both sets of predictions to measured indoor air pollutant 

concentrations, in order to evaluate whether the calibration technique can improve model 

vapor intrusion predictions. To our knowledge, such calibration of the JEM has not 

previously been attempted. 

4.2. Methods 

The mechanistic Johnson-Ettinger algorithm was combined with stochastic 

representations of input parameters and observed indoor air concentration data to update 

unknown model input parameters through Bayesian calibration using a Markov Chain 

Monte Carlo (MCMC) technique (Gilks & Roberts, 1996). The method involves 

specifying prior probability distributions for the input parameters and the likelihood 

function for the measured data (Figure 4.1). The approach iteratively computes posterior 

distributions for each uncertain input by comparing the predicted indoor air concentration 

at each new iteration with the measured concentration. The algorithm produces a 

sequence of updated input parameter values that comprise the posterior probability 

distribution functions for the inputs. This approach allows for the formal management of 
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uncertainties in both the input parameters and the measured values and permits the 

explicit calculation of uncertainty in model results (Larssen et al., 2006).  

 

Figure 4.1. Sketch of model framework for the Bayesian calibration methodology. 
 

4.2.1. Johnson-Ettinger Model 

The JEM uses the following relationship to characterize the diffusion of pollutant 

vapors through the subsurface soil and across a building foundation and the subsequent 

accumulation of the pollutant inside the building (Johnson & Ettinger, 1991):  
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where  Dtotal
eff  is total overall effective diffusion coefficient (cm2/s), Ab  is the area of 

enclosed space below grade (cm2), Qbuilding is the building ventilation rate (cm3/s), Lt  is 

the source-building separation (cm), Qsoil is the volumetric flow rate of soil gas into the 

enclosed space  (cm3/s), Lcrack is the enclosed space foundation or slab thickness (cm), η 

is the fraction of foundation surface area with cracks (unitless), and Dcrack
eff

 is the effective 

diffusion coefficient through the cracks (cm2/s).   

A majority of the eight inputs included in the JEM are not easily measured or 

characterized (Yao, Pennell, & Suuberg, 2012). Thus, in practice, parameter values are 

estimated from a series of secondary and tertiary equations that approximate the JEM 

inputs (see Table 4.1). As a result, the number of primary parameters considered in the 

model expands to 25. In practice, the EPA and/or state agencies suggest the use of 

deterministic values for each primary input parameter. However, in reality these 

parameters are both variable and uncertain. Hence, our stochastic modeling approach 

represents nine of the key input parameters (five of which are specific to the soil type) 

with lognormal probability distributions. The prior parameters for each distribution are 

informed by readily available site-specific data or, where such data are not available, 

extracted by national surveys or experimental studies available in the literature (Johnston 

& MacDonald Gibson, 2011). For this analysis, parameters describing soil properties 

were considered separately for each U.S. Department of Agriculture (USDA) classified 

soil type present at the sites of indoor air measurements (clay or silty clay). The 

distributions reflect the uncertainty in the environmental drivers as well as the variability 

in the parameter values. The remaining 14 inputs, the majority of which describe physical 
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properties of PCE or measurable properties of a house (e.g., square footage), were 

represented as deterministic values. Collectively, the set of equations and parameter 

distributions constitutes the prior knowledge in the Bayesian framework to estimate the 

prior model-predicted indoor air concentration for each house.    

Table 4.1. Complete set of equation needed to implement the Johnson-Ettinger model.  
The input parameters calibrated using Bayesian updating are marked with an asterisk (*).   

Model equations Variables: 
House/foundation calculations 

Vb = A× MH
  

Qbuilding =
VbEb

3600                                                 

 

Rcrack = η Ab

Xcrack                                                  

Vb 
A 
MH 
Qbuilding

Eb  

Ab  

Lcrack 

Rcrack 
η 

Xcrack 

= Building volume (cm3) 
= Building area (cm2) 
= Building mixing height (cm)*  
= Building ventilation rate (cm3/s) 
= Indoor air exchange rate (hr-1)*  
= Area of enclosed space below grade (cm2) 
= Foundation thickness (cm) 
= Effective crack width (cm) 
= Fraction of surface area with cracks* 
= Floor-wall seam perimeter (cm) 

Soil property calculations 

Ste =
θm −θr

θT −θr  
θv =θT −θm  
Krg = (1− Ste)

0.5(1− (Ste)
1/M )2M

 

Ki =
Ksµw

ρwg  
k = Krg × Ki  

Qsoil =
2πk(∆P)Xcrack

µ ln(
2Zcrack

Rcrack

)
 

Ste 

θm 

θr  

θT  

M  
Krg  

Ki  

Ks 

µw 

ρw  
g 

k  
∆P  
µ 

Zcrack 

= Effective total fluid saturation 

= Volumetric moisture content (cm3/cm3)*  

= Residual soil water content (cm3/cm3)*  

= Total porosity (m3-voids/m3-soil)* 

= Van Genuchten curve shape parameter* 
= Relative air permeability 
= Soil intrinsic permeability (cm2) 

= Soil saturated hydraulic conductivity (cm/s)* 

= Dynamic viscosity of water (g/cm-s) 

= Density of water (g/cm3) 
= Acceleration due to gravity (cm/s2) 
= Soil permeability near foundation (cm2/s) 
= Indoor-outdoor pressure difference (g/cm-s2)*  
= Viscosity of air (g/cm-s) 
= Crack opening depth below grade (cm) 

Diffusion calculations 

Di
eff = Dair (

θv
3.33

θT
2

)+
DH2O

H i

(
θm

3.33

θT
2

)
 

Dtotal
eff =

Lt

Li

Di
eff

i=1

n

∑
 

Di
eff  

Dair  

DH 2O
 

H i  

Dtotal
eff  

Lt  
 

Li  

= Effective diffusion for soil layer, i (cm2/s) 

= PCE diffusion coefficient in air (cm2/s) 

= PCE diffusion coefficient in water (cm2/s) 

= PCE Henry’s constant 

= Total overall effective diffusion coefficient 
(cm2/s)+ 

= Distance between the source and the bottom of 
the enclosed space floor (cm) 

= Thickness of soil layer i (cm) 

A b = A+ 2
1

2
× A × Lcrac k + 4×

1

2
× A × L c r ack 
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The groundwater depth (cm) and groundwater contaminant concentrations (µg/L) 

were interpolated for 2011 based on semiannual data for the 900 shallow groundwater 

monitoring wells located in and around the former Kelly Air Force Base. Monitoring well 

data are available through the Department of Defense Air Force Real Property Agency 

Semi-Annual Compliance Plans from 1998-2011. The 31-km2 area was divided into 150-

m2 grid cells. A state-of-the-art spatio-temporal geostatistical interpolation method, 

Bayesian maximum entropy, was then used to describe the estimated mean concentration 

and variance for each grid cell using a technique described elsewhere (Christakos, 

Bogaert, & Serre, 2001; Serre, Carter, & Money, 2004). Every house in the grid cell was 

assigned the corresponding values (and uncertainty) for the groundwater depth (cm below 

surface) and PCE concentration (µg/L). Since these values are house-specific and based 

on a dense network of monitoring wells, these two parameters were not calibrated during 

the Bayesian updating. The resulting maps of PCE in the groundwater and the 

groundwater levels are shown in Figure C.1 and Figure C.2, respectively (Appendix C).   

4.2.2. Indoor Air Concentration Measurements 

From July to August 2011, we collected indoor air samples from 20 homes in the 

community (eight samples per home). The concentration of PCE indoors (µg/m3) was 

measured with passive samplers taking sequential 72-hour integrated measurements. 

Potential confounding sources were removed from each residence before deploying the 

passive samplers. Further details about the sampling methods are available elsewhere 

(Johnston & MacDonald Gibson, 2013). The measured concentrations comprise the data 

values, yij, used to update the JEM parameters. The mean and variance of the measured 
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concentration in each house were calculated, accounting for the detection limit (0.13 

ug/m3) and using the Kaplan Meier nonparametric technique (Antweiler & Taylor, 2008; 

Helsel, 2005). Table 4.2 presents indoor air concentration summary statistics and other 

relevant attributes for each sampled home. 

Table 4.2. Basic properties of houses and measured concentration of PCE indoors. The 
mean and standard deviation is shown, assuming a lognormal distribution.  

House Soil 
Type+ 

Area  
(m2) 

PCE groundwater  
(µg/L) 

PCE indoor air 
(µg/m3) 

1 SiC 119 24.9 (1.5) 0.18 (0.12) 
2 C 116 7.6 (1.6) 0.15 (0.09) 
3 C 97 2.3 (1.7) 0.25 (0.34) 
4 SiC 118 11.2 (1.5) 0.08 (0.03) 
5 SiC 109 49.2 (1.4) 0.18 (0.05) 
6 C 74 2.8 (1.8) 0.08 (0.03) 
7 C 100 5.9 (1.9) 0.08 (0.03) 
8 SiC 122 49.2 (1.4) 0.31 (0.16) 
9 SiC 74 2.1 (1.6) 0.08 (0.03) 
10 SiC 272 1.9 (1.8) 0.20 (0.13) 
11 SiC 136 49.2 (1.5) 0.20 (0.10) 
12 SiC 109 49.2 (1.4) 0.28 (0.19) 
13 C 145 10.5 (1.9) 0.11 (0.04) 
14 SiC 93 104.3 (1.1) 0.08 (0.03) 
15 SiC 207 4.2 (1.4) 0.15 (0.01) 
16 C 82 10.5 (1.9) 0.14 (0.09) 
17 SiC 74 24.9 (1.5) 0.08 (0.03) 
18 C 109 10.0 (1.3) 0.08 (0.03) 
19 C 178 5.3 (1.6) 0.22 (0.40) 
20 C 40 3.8 (1.8) 0.09 (0.03) 

+ SiC: silty clay; C: clay 

 

4.2.3. Bayesian Approach for Updating JEM Parameters 

Let yij denote the indoor air concentration of PCE for the jth measurement in the 

ith house, and let ƒ(θ,ω, xi) denote the mean value of the indoor air concentration 

predicted in the ith house by the JEM using the uncertain parameter vector θ (the nine 

parameters with asterisks in Table 4.1), the deterministic parameter vector ω, and the 

house-specific parameter vector xi  (house area, groundwater concentration and 

groundwater level). We can then use a stochastic model to investigate the relationship 
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between the measured PCE concentration, yij , and mean value of the concentration,  

ƒ(θ,ω, xi), predicted by the JEM, as follows: 

yij = ƒ(θ,ω, xi) + εij ,  i = 1, 2,…,n; j=1,2,…,j i    (3) 

where n is the number of houses, j i is the total number of measurement within the ith 

house, and εij is the difference between the predicted mean and the observed 

concentration (the error term). In accordance with previous work, the errors are assumed 

to be independent and identically distributed as normal random variables with mean of 

zero and variance of σ i
2, i.e. εij~N(0, σ i

2) (Klemedtsson et al., 2008; Svensson et al., 

2008; Van Oijen, Rougier, & Smith, 2005). The calibration process assumes there is an 

optimal set of input parameters that minimizes the error. These assumptions lead to the 

following likelihood function for the observed data: 

 

p(y |θθθθ)] =
1

2ππππσσσσ i
2

j =1

j i

∏
i=1

n

∏ exp −
yij − f (θθθθ,ωωωω,xi )( )2

2σσσσ i
2

 

 

 
 

 

 

 
 
    (4)

 

The likelihood function evaluates how well the simulation model is able to reproduce the 

observed data yij at each value of θθθθ. In the Bayesian paradigm, any prior information 

about the input parameters, θθθθ, can be improved by incorporating the local data 

information (measured indoor PCE concentration) through the likelihood function, p(y|θθθθ), 

which further leads  to the posterior distribution p(θθθθ|y), according to Bayes’ Theorem: 

   p(θθθθ |y) =
p(y |θθθθ )p(θθθθ)

p(y)
     (5) 

4.2.4. Posterior Distribution 

  The posterior distribution of θθθθ cannot be specified analytically because of the 

complex relationships among the input parameters, the model output, and the data.  
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However, samples from the posterior distribution can be generated using the MCMC 

method using the Metropolis-Hastings algorithm (Kennedy & O’Hagan, 2001; Larssen et 

al., 2006; Lehuger et al., 2009; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 

1953). The Metropolis-Hastings algorithm works by generating a sequence of sample 

values to estimate a posterior distribution for each parameter. These sample values are 

generated iteratively, with the distribution of the next sample being dependent only on the 

current sample value, denoted as θθθθt. The candidate (θθθθcandidate) is either accepted, in which 

case the candidate value is used in the next iteration, or rejected, in which case the 

candidate value is discarded and the current value is reused for the next iteration. The 

probability of acceptance is determined by dividing the likelihood of the candidate 

parameter vector of model inputs (θθθθcandidate) by the likelihood of the current input vector 

(θθθθt); the result is called the Metropolis ratio, r. If r ≥ 1, the candidate vector is always 

accepted; if r < 1, the candidate vector is accepted with probability r. 

 In this paper, we implement Metropolis-Hastings algorithm using the following 

process (Gilks & Roberts, 1996): 

1. Choose a starting value, θθθθinitial. 

2. At iteration t, draw a proposed candidate, θθθθcandidate, based on the current state 

of the sample values, θθθθt. 

3. Compute the Metropolis ratio r: 

 

  (6) 

 

where q(α|β),  is the proposed density of α given β. 

4. Accept the candidate as the new value θθθθt+1 with probability equal to min{r,1}.  

r =
p(θθθθcandidate|y)q(θθθθ t |θθθθcandidate)

p(θθθθ t |y)q(θθθθcandidate|θθθθ t )
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If the candidate is accepted, then θθθθcandidate = θθθθt+1; otherwise, θθθθt=θθθθt+1.   

5. Draw a new candidate, and repeat steps 2-4 until the chains reaches a 

stationary distribution of p(θθθθ|y).  

 

For each calibration, three parallel Markov chains were run from three different 

initial values for the parameter vector: the prior mean value and two randomly sampled 

points from the parameter distribution. We ran 20,000 iterations, disregarding the first 

10,000 as the unrepresentative “burn-in” of the chain and adopting the final 10,000 

iterations to characterize the posterior distribution of the parameter vector (Gilks & 

Roberts, 1996; Van Oijen et al., 2005). Chain convergence was assessed with Geweke’s 

(1992) convergence for each single chain and with the Gelman-Rubin convergence 

statistic for multiple chains (Cowles & Carlin, 1996; Gelman, Carlin, Stern, & Rubin, 

2003). All test statistics indicated that the resulting chains reached stationary distributions 

and therefore can be considered as a representative sample from the posterior probability 

distribution function. From this sample we calculated the mean, variance, and 90% 

confidence interval of the posterior estimate for each parameter based on the three chains. 

The generation and analysis of the Markov chains were carried out with the statistical 

package R, and diagnostics were conducted using the coda package for R (Plummer, 

Best, Cowles, & Vines, 2006). 

4.2.5 Soil Parameters Inputs Based on Site Measurements  

Previous research suggests that the Johnson-Ettinger model is sensitive to soil 

property inputs and that these inputs account for much of the uncertainty in the model 

output (Johnston & MacDonald Gibson, 2011; Tillman & Weaver, 2007). As a result, we 
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collected site-specific soil samples in order to provide site-level prior estimates of 

volumetric moisture content (θm), hydraulic conductivity (Ks), and total porosity (θT) for 

each of the two soil types in the study area. Soil cores were collected at four of the 20 

study homes, resulting in two cores for each soil type. These cores were evaluated at 

approximately 1.5 m and 5 m below the surface. Due to the limited sample size, we 

identified the minimum and maximum values and assigned a lognormal distribution for 

each parameter such that the minimum and maximum measured values equaled the lower 

and upper 95th percentile values of the calculated lognormal distribution. Steinberg, 

Reckhow, and Wolpert (1997) and Arhonditsis, Qian, Stow, Lamon, & Reckhow (2007) 

previously used a similar assumption with PCB fate and transport parameters and 

eutrophication model parameters, respectively. The extent to which the small number of 

soil cores collected represents soil properties across this study community is unknown. A 

second set of MCMC simulations was run to estimate a posterior probability distribution 

to evaluate whether these limited soil parameter measurements improve model calibration 

and posterior predictions, compared to using soil property estimates from available 

USDA databases. 

4.2.6. Evaluation of Model Performance 

The performance of the calibrated model was evaluated by: (a) comparing the 

90% confidence intervals of the in-home PCE concentration measurements and the model 

predictions, (b) determining the pairwise correlations between the mean and 95th 

percentile values of the predictions and measurements, and (c) calculating the root mean 

squared error (RMSE), estimated as:  
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4.3. Results and Discussion 

4.3.1. JEM Deterministic Predictions 

The indoor air concentrations of PCE in the 20 homes of interest were initially 

calculated using the standard adaptation of the JEM as recommended by the EPA vapor 

intrusion guidance document, incorporating the mean estimates for groundwater level and 

groundwater PCE concentrations, house-specific soil type and house area, and EPA 

default values for the other parameters (Environmental Quality Management, 2004).  The 

JEM deterministic predictions for PCE ranged from 0.005 to 0.15 µg/m3 for the 20 homes 

where measurements were collected. As shown in Figure 4.2, the deterministic method 

underpredicted the mean measured concentrations in all cases, and the predicted value 

was less than the 5th percentile of the observed concentrations in 11 out of the 20 study 

homes. Applied to the regulatory context, the use of the standard JEM approach would 

not accurately reflect the exposure levels occurring in the houses and would 

underestimate exposure and resulting risk. 
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Figure 4.2. Comparison of the measured indoor air PCE concentrations due to vapor 
intrusion (Johnston & MacDonald Gibson, 2013) and EPA-recommended deterministic 
modeling based on the Johnson-Ettinger algorithm.    

 

4.3.2. Simulation of Indoor Air Predictions 

Monte Carlo techniques using the final 10,000 iterations produced prior 

probability estimates of PCE indoor air concentrations for each house based on the JEM. 

On average, the mean modeled predictions of indoor air concentrations for the prior 

probability distributions were within approximately one order of magnitude of the 

observed measurements, as generally expected for the JEM (see Appendix C, Figure 

C.3). In 19 out of the 20 cases, the modeled mean value is below the observed mean. 

However, it is also believed that the uncertainty of the prior distributions is generally 

overstated since the distributions do not incorporate all information available, that is, the 

data on the indoor air measurements (Van Oijen et al., 2005).  
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We calibrated the JEM against measured indoor air data using two different sets 

of prior distributions for soil parameters: (1) distributions based on publicly available 

USDA soil information for the study area (Model 1), and (2) distributions estimated from 

our local analysis of the four soil cores (Model 2). Figure C.4 (Appendix C) shows the 

MCMC trace plots for the nine uncertain model parameters. The irregular patterns of 

these sequences of iterations are characteristic of the Metropolis-Hastings MCMC 

algorithm, because the method aims to explore the range of potential values rather than 

only identify a single global optimum value (Gelman et al., 2003).  

The means and standard deviations of the prior and posterior distributions of the 

nine updated model parameters are shown in Table 4.3, and corresponding box plots of 

the parameter distributions are compared in Figure 4.3. For the four house-related 

parameters, in both models the standard deviations of the posterior distributions were 

reduced as a result of the calibration. These results suggest that the Bayesian calibration 

technique was able to reduce the uncertainty in the model input variables and narrow the 

prediction interval. For example, the standard deviation of the air exchange rate (Eb ) 

decreased to almost half of its prior value, and the mean also decreased (by about 20%) in 

both Model 1 and Model 2. We found a higher average differential pressure (∆P ) than 

initially chosen along with a decrease in the standard deviation of this parameter. Both of 

these changes suggest that our initial prior distributional assumptions were not 

sufficiently conservative, as a higher pressure differential and a lower air exchange rate 

increase the vapor attenuation factor and thus lead to higher indoor air concentrations. 



 

Table 4.3. Prior and MCMC posterior estimates of the mean values and standard deviations of the model parameters.  
 

Input 
EPA 

default Prior distribution* Model 1 Model 2 
References for prior 

distribution assumptions 

H
o

u
se

h
o

ld
 

MH cm  300 270 (20) 268 (18.3) 269 (16.5) (Johnson, 2005) 

Eb  hr-1  0.25 0.66 (0.73) 0.55 (0.39) 0.55 (0.39) 
(Meng et al., 2004; 
Yamamoto et al., 2009) 

η   0.004 0.004 (0.0015) 0.0029 (0.0011) 0.0029 (0.0011) 
(Eaton & Scott, 1984; 
Johnson, 2005; Nazaroff, 
1992) 

∆P g/cm-s2  40 60 (35) 65.6 (28.5) 66.19 (24.96) 

(Fischer & Uchrin, 1996; 
Nazaroff et al., 1987; 
Robinson, Sextro, & Riley, 
1997) 

S
o

il   

θT  
m3- voids 
/ m3-soil 

C 0.459 
0.46 (0.09) 
M2: 0.35 (0.07) 

0.46 (0.09) 0.36 (0.06) (Carsel & Parrish, 1988; 
Environmental Quality 
Management, 2004) SiC 0.481 

0.481 (0.07) 
M2: 0.35 (0.07) 

0.48 (0.07) 0.36 (0.02) 

θm  cm3/cm3 
C 0.215 

0.21 (0.08) 
M2: 0.12 (0.075) 

0.21 (0.06) 0.13 (0.06) 
(Environmental Quality 
Management, 2004) 

SiC 0.216 
0.16 (0.04) 
M2: 0.14 (0.055) 

0.16 (0.03) 0.16 (0.03) 

θ r  cm3/cm3
 

C 0.07 0.07 (0.03) 0.07 (0.03) 0.069 (0.03) (Carsel & Parrish, 1988; 
Environmental Quality 
Management, 2004) SiC 0.09 0.10 (0.11) 0.09 (0.07) 0.16 (0.09) 

N  
C 1.25 1.25 (0.09) 1.26 (0.08) 1.25 (0.09) (Carsel & Parrish, 1988; 

Environmental Quality 
Management, 2004) SiC 1.32 1.32 (0.05) 1.32 (0.05) 1.31(0.05) 

Ks cm/day 
C 12.6 

12.6 (3.55) 
M2: 0.058 (0.17) 

16.6 (3.48) 0.16 (0.11) (Carsel & Parrish, 1988; 
Environmental Quality 
Management, 2004) 
 SiC 9.95 

9.95 (3.93) 
M2:  1.3 (0.86) 

9.95 (3.94) 1.41 (0.76) 

*  Each distribution is assumed to be lognormal and defined by its mean with the standard deviation in parentheses.  
+ C: clay; SiC: silty clay



 

 
Figure 4.3. Box plots of the prior and posterior distributions (Model 1 and Model 2) for each of the four household parameters         
and five soil parameters (for clay and SiC: silty clay soil) calibrated during the Bayesian updating. 
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In the case of the soil parameters, the calibration did not result in noticeable 

reductions in the uncertainty or shifts to the mean. While these two moments (mean and 

standard deviation) of the distribution saw some change as a result of the calibration, 

there was a shrinking of the 90% confidence interval in Model 1 for four of the soil 

parameters (θT-SiC, θm-clay, θm-SiC and N-SiC), as shown in the Figure 4.3. For the 

second model (Model 2), we integrated site-level information on the total porosity, 

volumetric moisture content, and hydraulic conductivity of the soil into our prior 

knowledge. As a result, the calibration adjusted the soil parameters to some extent—

although the posterior distribution is largely tied to the initial assumptions of the prior 

probability functions (from which the posterior candidate values were drawn). For Model 

2, our prior distributions for these parameters were substantially different than the 

assumptions based on national USDA soil type data. Further, we assumed that the 

measurements taken were representative of the soil type across the neighborhood in spite 

of the small sample size and single sampling event. As a result of these assumptions, the 

average hydraulic conductivity converged on values significantly lower than the 

distributions estimated in the first model. However, this effect appears to be partially 

offset by the higher overall total porosity of the measured soil parameters. 

4.3.3. Model Prediction Error 

 In general, the predictive ability of the Johnson-Ettinger model improved as a 

result of calibration with site-level data. The mean values of both Model 1 and Model 2 

show better agreement with the measured mean values for PCE compared to both the 

deterministic and prior information model (Figure 4.4). In 18 of 20 the cases, the mean 

measured value is within the 90% confidence interval of the predicted concentration, and 
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the confidence intervals are less than one order of magnitude in range.  However, in cases 

of high indoor air concentrations (especially given homes above lower PCE groundwater 

concentrations), the calibrated model was still unable to adequately predict the upper 

ranges of the observed indoor air concentrations. In the two cases the model predictions 

were outside of the observed values, no detectable levels of PCE were measured in the 

home. In these cases, the precise performance of the model is difficult to assess. In 

general, Model 2 estimates are slightly higher (and have a somewhat larger uncertainty 

range) than Model 1, indicating a slightly more conservative (but less precise) estimate of 

the modeled exposure. 

 
Figure 4.4. Measured predictions versus updated model predictions. The dotted gray 
horizontal line represents the PCE detection limit (0.13 µg/m3). 
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 As shown in Table 4.4, both of the calibrated models decreased the error between 

the measured and predicted values, as demonstrated by the decrease in the root mean 

squared error value (RSME). We compared the measured means with modeled means, as 

well as the measured 95th percentiles with the predicted 95th percentiles and found 

improvement in both cases.  Compared to the deterministic approach, models 1 and 2 

reduce the RMSE by almost 40% and 11%, respectively.  In general, Model 1 indicates 

smaller residuals compared to Model 2, suggesting better agreement with observed 

values. The results of paired t-tests between measured and modeled values indicate that 

the mean differences between both of the calibrated models and the measured values is 

not significantly different than zero. In contrast, for both the prior model and the 

deterministic model estimates, the predicted means differed significantly from the 

measured means (p<0.001).   

Table 4.4. Comparing model performance of the deterministic approach, the prior 
predictions and the two updated model predictions to the measured indoor air 
concentrations.   

 Deterministic Prior Model 1 Model 2 

 Mean 95th Mean 95th Mean 95th Mean 95th 

Mean 
Difference 
(paired t-test) 

0.097 

(p<0.001) 

-- 0.082 

(p<0.001) 

0.087 

(p=0.16) 

0.024 

(p=0.23) 

0.035 

(p=0.57) 

0.0019 

(p=0.94) 

-0.14 

(p=0.84) 

RMSE 0.264 -- 0.103 0.276 0.089 0.262 0.109 0.301 

 

4.3.4. Sensitivity and Uncertainty Analysis 

Previous work has found that, in order of significance, the predicted vapor 

intrusion attenuation ratio is most sensitive to the effective soil moisture content, air 

exchange rate, total porosity, and building mixing height (Johnson, 2005; Tillman & 

Weaver, 2006). A sensitivity analysis was conducted by setting each calibrated model 
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input variable to the 5th and 95th percentile value of its posterior distribution, in order to 

determine the effects on the predicted indoor air concentration. Figure 4.5 shows the 

results for the household and silty clay soil parameters (the results for clay soil are very 

similar). As shown, increasing the air exchange rate or the mixing height decreases the 

predicted indoor air concentrations, while the opposite relationship is true of the other 

parameters.  Among all of these input variables, the air exchange rate had the largest 

influence on the predicted indoor air concentrations.  Air infiltration affects indoor air 

quality because insufficient air exchange with the outdoors can lead to higher exposure to 

pollutants of indoor or subsurface origin (Chan et al., 2005). Predicted concentrations 

also were sensitive to mixing height (used in the JEM to estimate the volume of the 

house) and the total soil porosity. Importantly, the calibration process decreased the 

uncertainty around each of these important input parameters, hence providing for 

narrower prediction intervals of indoor air concentration, compared to the prior model. 

On the other hand, the uncertainty around some of the input parameters stayed the 

same, indicating that the calibration had little impact.  This is particularly true for the first 

posterior model (Model 1), where only slight changes occurred in the probability 

distributions of the soil parameters. This may suggest either that data are insufficient to 

improve these parameters or that their optimal values were outside the prescribed range 

(Lehuger et al., 2009). The inability to narrow the uncertainty around the soil properties 

may also suggest that there is extensive heterogeneity among the soil properties 

influencing vapor diffusion even within a given soil type. This natural heterogeneity may 

make it impossible to reduce the standard deviation of these inputs below a certain range. 

Using the measured soil values of Model 2 increased the uncertainty of soil related 
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parameters compared to assuming the values based on the USDA classification system 

(Figure 4.5c). Specifically, we observe greater uncertainty contributed by the hydraulic 

conductivity than seen in the other analysis, which further suggests that soil properties 

exhibit substantial, irreducible variability. The important influence of small-scale 

heterogeneity in soil on soil vapor transport has been noted in other studies (Carsel & 

Parrish, 1988; Garbesi, Robinson, Sextro, & Nazaroff, 1999).  This observation may also 

be an artifact of the limited sample size used in the updating process.



 

 
Figure 4.5. Sensitivity analysis of uncertain variables. The soil parameters displayed are for the silty clay (SiC) soil type.    
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4.3.5. Potential Suitability of Bayesian Calibration for Vapor Intrusion 

Our primary goal in this study was to demonstrate the potential of a Bayesian 

calibration procedure to improve the parameterization of a vapor intrusion model, 

systematically quantify the uncertainty, and reduce the uncertainty in model output.  

Bayesian calibration with MCMC can handle a large number of parameters simultaneously, 

associate prior knowledge of parameter values with measurements of output variables, and 

reduce uncertainty when there is insufficient knowledge about the parameter distributions. In 

this study we chose to calibrate model parameters common across the community (rather 

than parameters, like groundwater depth, specific to each house). This approach searches for 

posterior distributions that simultaneously minimize error among all study homes at this site. 

In this study, indoor air measurements and model estimates do not exceed the revised EPA 

screening levels for PCE issued in April 2012, but the research nonetheless offers insights 

into a systematic approach to updating and improving the JEM exposure estimates based on 

limited data and evaluating the uncertainty of the predictions.  

 This technique could also be applied to multisite data, and in some ecological 

studies, to compare site-level and regional-level estimates (Lehuger et al., 2009). The 

calibration results can serve as the default values for spatial extrapolation in new houses 

where indoor air measurements have not been collected. However, Bayesian calibration 

cannot reduce the uncertainty of a parameter estimate or improve its accuracy without 

appropriate input data. While the calibrated models improve model predictions compared to a 

deterministic approach, there remains a large amount of uncertainty around each prediction. 

This is not entirely different from what is seen at vapor intrusion sites, where indoor air 

concentrations of the chemical of concern can fluctuate by more than an order of magnitude 
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over days, weeks or months (Folkes et al., 2009; Johnson, Ettinger, Kurtz, Bryan, & Kester, 

2009; McHugh et al., 2007). We did not see a substantial improvement in the predictions 

when including measured soil properties as the initial parameter assumptions, although this 

may not be the case if a large sample is available from which to establish the initial 

distributional properties. At least with this site, improving parameters of the soil properties 

proved challenging and possibly reflects that the spatial resolution scale of the soil 

classification scheme for assigning soil characteristics of houses may need to be increased to 

see improved efficiency of the parameter estimates. 

4.4. Conclusions 

We presented a statistical framework for model calibration and uncertainty estimation 

for complex deterministic vapor intrusion models. In this case, we combined a model with a 

mechanistic foundation with statistical methods; the former component can predict system 

behavior, while the latter allows for empirical parameter estimation and rigorous analyses of 

uncertainty. The inclusion of uncertainties in model predictions can strengthen the inferences 

drawn from model results in support of decision-making. The lack of quantifiable uncertainty 

often is used by scientists to justify their lack of involvement with the decision-making 

process and by some decision analysts as a vehicle to avoid using scientific information in 

the process (Morgan & Henrion, 1992; Underwood, 1995). However, uncertainty is 

fundamental to all scientific activities, and people regularly make decisions based on 

uncertain data (e.g., weather forecasts). The results need not be treated as final predictions, 

but rather can be viewed as new sources of information (new prior probability functions) for 

subsequent “experiments” that lead to modifications in management practices (new 

decisions) or improvement of exposure predictions. 
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For better model-based decision-making, the uncertainty in model projections should 

ideally be reduced, quantified, and reported in a way that can be used by decision makers. 

The Bayesian approach generates a posterior predictive distribution that accounts for both the 

uncertainty about the parameters and the uncertainty that remains when some parameters are 

known (Kennedy & O’Hagan, 2001), presenting a more realistic picture to support 

environmental management (Reichert & Omlin, 1997). In the case presented here, the 

currently regulatory framework for estimating exposure at sites potentially impacted by 

vapor intrusion could be improved through incorporation of uncertainty and variability of 

input parameters as well as the integration of site-level (even if limited) measurements to 

provide a more robust dataset from which to make decisions.  



 

Chapter 5 

Concluding Remarks 

5.1. Overview of Policy Issues and Current Research Limitations  

This dissertation has addressed several aspects of assessing vapor intrusion exposure 

risks. It demonstrated a method to quantify relationships between environmental, 

meteorological and household characteristics at the community scale (Chapter 2), to evaluate 

these relationships for sites across the country (Chapter 3), and to propose new methods for 

improving exposure predictions via the use of mechanistic models and site-level data 

(Chapter 4). At its core, the research presented in this dissertation explores the intersection of 

exposure assessment and quantitative environmental policy tools. 

Exposure assessment is one of the key components of the regulatory decision-making 

approach regarding environmental and health risks and is frequently applied to hazardous 

waste sites. Accurate assessment of human exposures is a critical component of 

environmental health research and is paramount to the quality and utility of human health 

risk assessments (McKone, Ryan, & Özkaynak, 2008). As described in a National Research 

Council report (2009), exposure assessment first requires definition of the scope of the 

assessment in the context of the decision that needs to be made; that is, when designing an 

exposure assessment, the policy question should be posed first, and the assessment should 

then focus on gathering the information needed to answer the question (Abt, Rodricks, Levy, 

Zeise, & Burke, 2010). For example, screening-level information may be adequate to address 
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some questions, targeted data may be useful for others, and extensive data may be needed in 

some circumstances, particularly for developing scientifically sound policies and regulations 

(Lioy & Smith, 2013). However, as noted in a recent report issued by the National Research 

Council (2012), policy and regulations have been slow to incorporate exposure science.  

While it has been clear for some time that air pollution exposures are dominated by 

the indoor environment (the fraction of pollution inhaled from indoor sources is about 

1,000 times greater than that from outdoor sources), policy innovations, monitoring 

programs, and other efforts to control indoor pollution have been limited (Bennett et al., 

2002; Myers & Maynard, 2005; Wallace, 1991). This pattern extends to vapor intrusion. 

More than 20 years after the scientific, environmental, and regulatory community began to 

recognize this pathway, a comprehensive decision-making framework for addressing the 

potential exposure is still lacking. The full scope of the problem and the policy questions that 

need to be answered in order to make informed decisions regarding remediation and 

protecting public health  are still unclear. More than 120,000 sites across the country known 

to have contaminated soil and groundwater have yet to be sufficiently remediated (Ehlers & 

Kavanaugh, 2013). It is unlikely, due to financial, political and technical limitations, that 

these tens of thousands of toxic groundwater plumes will be remediated anytime in the near 

future, and thus without interventions, exposures (such as from vapor intrusion) are likely to 

persist (Ehlers & Kavanaugh, 2013). Even hazardous waste sites that have been “closed,” 

that is, considered sufficiently remediated, have been reopened specifically to investigate the 

vapor intrusion pathway (Rolph, Torres, & Everett, 2012). 

Regulatory efforts to determine risks associated with vapor intrusion have been 

shaped by the results of only a small number of studies, which is problematic because broad 
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generalizations about vapor intrusion may not be accurate. For example, early studies from 

Massachusetts found higher concentrations of chlorinated solvents in the winter compared 

with the summer, and recommendations to test in the winter were integrated into site 

assessment practices (Fitzpatrick & Fitzgerald, 2002). Outside of the research reported in this 

dissertation, this assumption has not otherwise been tested in warm southern or 

Mediterranean climates, where household behavior patterns and indoor/outdoor temperature 

and pressure differentials may differ from those in northern climates. Further, agencies have 

largely assumed a linear relationship between groundwater concentration and indoor air 

concentrations and thus prioritized (sometimes exclusively) collecting measurements in 

homes atop the highest plume concentration (Dawson, 2008a). The vapor intrusion 

monitoring program in Redfield, Colorado, showed that unhealthy indoor air concentrations 

are found in buildings overlying relatively low levels of contaminants and has helped dispel 

the belief that clay soil could sufficiently retard the migration of vapor into homes (Folkes et 

al., 2009; Renner, 2002). Furthermore, current U.S. Environmental Protection Agency (EPA) 

draft guidance on assessing vapor intrusion sites largely excludes homes with crawl spaces 

(U.S. EPA, 2002); this is likely to be a relic of early studies conducted in areas of the country 

where basements are typically found.  

 As noted in Chapter 1, the EPA has been examining vapor intrusion for decades and 

has yet to issue final guidance on assessing this pathway. Meanwhile, at least 29 states and 

several federal agencies have drafted their own vapor intrusion guidance or rules, in order to 

fill the void created by a lack of final guidance from EPA; however, the majority of these 

guidance documents are non-binding and, legal analysis suggests the documents may 

generate more confusion than clarity around the appropriate assessment and subsequent 
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decision-making process (Eklund, Beckley, Yates, & McHugh, 2012; Rolph et al., 2012). 

   

5.2. Key Findings and Implications 

 This dissertation aims to improve tools of exposure assessment—that is, tools to help 

forecast, prevent, and mitigate exposures that may lead to adverse human health effects and 

to help identify populations that face high exposures due to the vapor intrusion pathway. This 

work demonstrates methods to integrate evidence-based and quantitative tools into the 

analysis of the vapor intrusion pathway at the community level and proposes new approaches 

to evaluate exposure when equipped with only limited data and imperfect models. An 

additional outcome of this dissertation is the development of reproducible, quantitative 

techniques to incorporate and analyze both the uncertainty and variability among exposure 

predictions and measurements in order to improve exposure characterization.  

 

5.2.1. Evaluating Current Guidance on Vapor Intrusion Exposure Assessment 

Chapters 2-4 examined key assumptions behind the current EPA guidance for 

assessing the vapor intrusion pathway. The research finds that the scientific evidence and 

body of data, in general, do not substantiate the current approaches used by the EPA (and 

many state agencies) to assess exposure. Chapter 2 contributes to the small but growing body 

of evidence on the heterogeneity of exposures across space and time among residential 

homes in a contaminated community. Even over a few days, indoor air concentration can 

fluctuate by orders of magnitude, suggesting that a single sample or even a couple of samples 

in a home will not adequately characterize the exposure occurring in that space over time. 

Long-term averages of concentrations (over months or a year) also may mask short periods 
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of high exposure. This work further shows that measurements taken in only one or a few 

homes in an affected community, as is often recommended by vapor intrusion guidance, are 

unlikely to be representative of the current exposure across the entire area. These results 

confirm other recent research that a robust sampling protocol is necessary for accurately 

characterizing exposure and perhaps challenges the feasibility of the current house-by-house 

approach to environmental management of vapor intrusion sites (Holton et al., 2013; 

Schumacher et al., 2013). 

The current draft EPA guidance document for assessing vapor intrusion exposure 

risks outlines a process in which homes must be sequentially ‘screened in’ for further 

analysis based on increasingly site-specific and less conservative assumptions 

(Environmental Quality Management, 2004). For example, to remain on the list of candidates 

for further evaluation, a home must lie above an area of groundwater contamination for 

which the contaminant concentration in the soil gas just above the groundwater table is at 

least 1,000 times the indoor air concentration associated with potential health risks.  Homes 

overlying aquifer sections with concentrations below this threshold are eliminated from the 

list of buildings that may require remediation. Chapter 3 shows that the use of the current 

generic vapor attenuation screening factor (1/1000) to screen in sites for further 

investigations may be insufficiently conservative and may underestimate indoor air 

concentrations in some cases. The analysis of the largest existing database of vapor intrusion 

site-level data demonstrates that the generic value is exceeded in 10% of the analyzed cases. 

The regression-based model developed using empirical data is a potential tool that can be 

used to improve screening of vapor intrusion sites, as it sharply decreases the percentage of 

underpredictions (compared to the EPA generic screening) while allowing a less conservative 
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screening value under certain conditions. Understanding important factors affecting the vapor 

attenuation ratio can be refined (and perhaps improved) by including in the database easily 

acquired additional information, such as the area and age of the home and meteorological 

conditions during sampling. This work also supports the idea that regional differences in 

climate and geology may affect the observed relationships between groundwater chemical 

concentrations and indoor air chemical concentrations. The work demonstrates a preliminary 

screening method that is adaptable to local conditions and can serve as a generic method to 

identify high-risk areas to prioritize for further investigations. 

As described in previous chapters, the Johnson-Ettinger model is a favored tool of 

regulators for predicting exposure from the vapor intrusion pathway. However, the current 

EPA protocol is to apply this model in its deterministic form, without considering the 

variability and uncertainty in model input parameters. This research showed that the 

deterministic approach systematically underestimates the observed concentrations in indoor 

PCE.  Chapter 4 demonstrated a process for combining prior information with limited site-

level data to represent uncertainty and variability in the indoor air concentrations predicted 

by the Johnson-Ettinger model. At least in the case study presented here, the JEM as applied 

by the EPA appears inadequate as a tool to estimate exposure, particularly if it is used to 

exclude sites from further analysis. These techniques demonstrate one way to improve the 

agreement between the JEM predictions and the measured indoor air concentrations, as well 

as represent the variability and uncertainty. 

 

5.2.2. Quantifying Relationships Between Vapor Intrusion and Other Factors 

This dissertation has demonstrated stochastic techniques for analyzing the 
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relationships between indoor air concentrations and environmental, household, and 

meteorological variables. As the understanding of transport processes that govern vapor 

intrusion continues to evolve, the insights resulting from the stochastic analyses presented in 

this dissertation can contribute to the evolving body of knowledge about the physical and 

chemical processes affecting vapor intrusion. Using a panel study design that incorporates 

measurements across both space and time, as in this dissertation, allows for the quantification 

of relationships between indoor air concentrations and temporal and spatial variables. While 

these relationships are likely not applicable to sites nationwide, the research methods can be 

applied in other settings to better understand potential exposure patterns and high-risk 

scenarios for other communities. Estimating these relationships then allows for 

contextualizing the concentrations measured based on known (and in most cases easily 

acquired) meteorological, environmental, or household conditions. We have found that 

temporal changes in weather conditions (barometric pressure drop, wind speed, humidity, 

and season) can explain approximately a third of the observed variability in short-term 

fluctuations of indoor PCE concentrations. While this approach does not demonstrate the 

causal mechanisms behind these observed temporal changes, it does show statistically 

significant correlations among the variables. This approach can facilitate the understanding 

of the potential variability of concentrations in houses from a specific site. For future work, 

incorporating information about the indoor-outdoor temperature differential may refine this 

model, as it serves as an easily measured proxy of differences between ambient and indoor 

conditions. 

The stochastic approach was extended to the multisite vapor intrusion database 

collected by the EPA (Chapter 3). Using multilevel statistical analysis of the vapor intrusion 



  
 

101 

  

  

attenuation factor, we were able to examine patterns among attenuation and various other 

characteristics across many previously studied sites. As a result, we were able to evaluate 

correlations accounting for multiple factors, rather than just bivariate associations, in order to 

quantify the relationships between soil type, foundation, type contaminant properties, and 

season. However, few observations have been collected (or made available) from the 

southern United States and integrating this information may result in different relationships 

between the covariates and the vapor intrusion attenuation factor than reported in Chapter 3. 

In some cases similar patterns surfaced from both the local analysis (Chapter 2) and the 

national analysis (Chapter 3). For example, in both local and national analyses, the 

foundation type associated with the highest risk was cement slab-on-grade, and finer-grained 

soil was associated with lower risk. As mentioned, conflicting information also emerged, as 

summer was correlated with statistically higher indoor PCE concentrations in the San 

Antonio community, while the opposite effect was observed from the national database. In 

summary, regression-based approaches can support the understanding and quantification of 

such associations at vapor intrusion.  

 

5.2.3. Integrating Multiple Sources of Information to Improve Exposure Predictions 

 A key unresolved issue is how to integrate site information into the process for 

deciding whether a home affected by vapor intrusion requires remediation.  This research has 

developed tools to integrate site-specific information, empirical indoor air data, and a 

mechanistic model to improve the agreement between measured and predicted indoor air 

concentrations. While previous studies have attempted to improve the ability to model vapor 

intrusion at the individual building level, few studies have compared model results to 

measured data across multiple homes, and even fewer have used observations to influence 
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model design (Yao & Suuberg, 2013). In this study, we integrated information about 

environmental factors, household properties, and contaminant characteristics to propose a 

model for the screening homes for further vapor intrusion analysis (Chapter 3) and we 

demonstrated a Bayesian approach to calibrating a probabilistic version of the Johnson-

Ettinger model (Chapter 4). In face of the complexity and contentiousness around 

environmental problems, synthesizing information from multiple studies may be a good 

strategy for resolving environmental controversies (Biggs, Carpenter, & Brock, 2009). 

Scientists along with environmental managers frequently confront a diverse array of data 

relevant to a particular problem and need to combine information across different spatial or 

temporal scales (Wikle, 2003). Chapter 3 demonstrates the use of multilevel modeling to 

combine information about factors influencing the variability of the vapor attenuation factor 

both within and across vapor intrusion sites. This approach can easily be extended to include 

multiple samples over time if such data are available. In Chapter 4, the results show how 

combining mechanistic and stochastic tools along with observations can improve model 

performance as well as the utility of the model as a decision-making tool.  

Further, these methods are not static, but rather facilitate the integration of new 

information, allowing an adaptability that is often seen as a desirable component of 

environmental policy tools. If new data are collected or a new understanding of important 

parameters or transport mechanisms emerges, previous analyses and data can be incorporated 

as prior knowledge through this method. Research has advocated for adaptive environmental 

management processes, in which analysis and decision-making are revisited in a continuous 

loop as conditions, information, and understanding of the complex system evolves (Polasky, 

Carpenter, Folke, & Keeler, 2011). The methods demonstrated in this research support this 
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type of adaptive management approach.  

 

5.2.4. Assessing Uncertainty 

 Recognition of the controversial nature of decision-making on complex 

environmental issues has spurred discussions about the role of uncertainty in environmental 

policy analysis. Assessing uncertainty is necessary for addressing the credibility of the 

scientific approaches used in a decision-making context (Ascough, Maier, Ravalico, & 

Strudley, 2008; Van der Sluijs, 2002). Inadequate articulation of uncertainties in 

environmental science for policy has contributed to inappropriate decisions and significant 

environmental and health damages (Maxim & van der Sluijs, 2011; Morgan & Henrion, 

1992). Better understanding of uncertainty and how the level of uncertainty influences action 

is a prerequisite for better decision-making (Rowe, 1994; Walker et al., 2003). This research, 

along with emerging work from vapor intrusion sites, provides more conclusive evidence that 

the vapor intrusion pathway is highly complex, insufficiently described by current 

mechanistic models, and not well suited for application of simple decision-making tools. 

Regulatory approaches that support environmental management decision based on a single 

measured or predicted value are inadequate. Chapter 2 demonstrates that indoor air 

concentration is highly variable across space and time, and Chapters 3 and 4 show that EPA-

recommended deterministic site evaluation models are insufficient as conservative prediction 

tools. Based on this knowledge, it is important that the uncertainties of both indoor air 

measurements and modeled values are both acknowledged and quantified. This research in 

turns supports a key objective of policy analysis as described by Morgan (1978), which is: 

to evaluate, order and structure incomplete knowledge so as to allow decisions to 
be made with as complete an understanding as possible of the current state of 
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knowledge, its limitations and its implications. 
 

Because any site-level vapor intrusion assessment will be faced with imperfect 

information, and because modeling efforts are still advancing, the results of vapor intrusion 

exposure assessments need to be framed by confidence intervals. The case study research 

demonstrates the ability to use passive sampling techniques to facilitate repeat sampling of 

one home in order to collect multiple measurements from which to evaluate the potential 

range of concentrations. This temporal variability is described in a site-specific stochastic 

model that helps to assess the range of possible predictions using limited data. Chapter 3 

demonstrates a method for predicting the generic attenuation factor, and using the 95th 

percentile of the prediction decreases the potential for false negatives. Finally, Chapter 4 

shows how to explicitly quantify the uncertainty of Johnson-Ettinger model predictions. The 

analyses show how to compute uncertainty in modeled predictions, which is crucial for 

meaningful interpretation of model results (Warmink, Janssen, Booij, & Krol, 2010).  

 

5.3. Future Research Needs  

While a comprehensive study of the scope of potentially affected sites and 

populations has not been conducted, it is realistic that hundreds of thousands of buildings 

may be impacted by vapor intrusion and that this unregulated exposure pathway is likely to 

pose the greatest risks of exposure to chlorinated solvents for individuals living atop 

contaminated groundwater in and around hazardous waste or industrial sites (Ferguson, 

Krylov, & McGrath, 1995; Fischer et al., 1996; Little, Daisey, & Nazaroff, 1992; Provoost et 

al., 2008). While there is largely consensus from the scientific community that a single-point-

in-time sample is insufficient to characterize the exposure occurring inside a single building, 
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and certainly cannot represent an entire community, a framework for systematically 

evaluating the information in order to inform policy choices does not yet exist. In addition to 

collecting more data, future research needs include the improvement of tools and techniques 

to gather data, contextualize the data, and assess the value of such information in face of the 

uncertainty and potential health risks associated with vapor intrusion.  

5.3.1. Decentralized Data Collection and Stakeholder Engagement 

Recognized shortcomings of the conventional approaches to vapor intrusion 

monitoring include the logistical difficulty of placing and retrieving samples, the delay in 

obtaining results, and the high costs of analysis. Adding to policy demands are community 

demands for access to technologies that allow community members to work alongside 

scientists to generate their own exposure data, and more effectively participate in the 

environmental policy and regulatory processes (Brown et al., 2012). Evidence suggests that 

community-based research improves the relationship between scientists and residents and 

enhances both the quantity and quality of data collected (Altman, 1995; Viswanathan et al., 

2004). Conducting exposure studies in the absence of community input or failing to maintain 

communication with affected communities may greatly diminish public confidence in 

exposure science and reinforce distrust of scientists engaged in this work (Stern & Fineberg, 

1996; Wynne, 2006). Vapor intrusion is no exception, and the involuntary and unavoidable 

nature of the exposure likely fuels residents’ desire to ensure agency’s decisions are 

protective of the residents’ health.  

Innovations in science and technology provide opportunities to overcome data 

limitations, improve the transparency of exposure assessments, and support a framework to 

generate knowledge that is effective, timely, and relevant to current and emerging 
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environmental health challenges. Engaging broader audiences may improve the 

responsiveness of exposure science and support problem formulation, collection of data, 

access to data, and development of decision-making tools (Lioy & Smith, 2013). In the case 

of vapor intrusion, the lack of field data, particularly from the southern part of the country, is 

striking. At the same time, community residents potentially affected by vapor intrusion are 

demanding more extensive monitoring efforts both pre- and post-mitigation, and the state of 

the science is showing that a robust monitoring network is necessary to adequately 

characterize exposure (Siegel, 2009). While work here demonstrates a passive monitoring 

technology that community members can deploy themselves (Chapter 2), a more 

comprehensive study could evaluate the comparative efficacy of allowing residents to collect 

relevant data themselves with current monitoring tools.  

It has been suggested that scientific results derived from community and stakeholder 

engagement can empower individuals, communities, and agencies in preventing and reducing 

exposures, and in addressing environmental disparities (Boyer, 1996), but this approach has 

not be studied in relation to vapor intrusion. Increasingly, exposure monitoring equipment is 

being developed that is portable and can collect near-real-time data on contaminant levels. 

Efforts are under way to develop small portable sensors to measure ambient CVOCs that may 

be adaptable to vapor intrusion (Chen et al., 2012; Kim, Burris, Chang, Bryant-Genevier, & 

Zellers, 2012; Negi et al., 2010). Research into portable and inexpensive devices to collect 

vapor intrusion data has the potential to facilitate the collection of exposure data and to 

enable community residents to participate in the exposure assessment process. These devices 

can collect detailed information to characterize temporal variability, offer real-time readings 

to residents, and store data electronically. 
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Improving the characterization of exposure can facilitate further research on the 

health impacts of vapor intrusion. Evidence suggests acute exposures to CVOCs are linked to 

adverse pregnancy outcomes such as pregnancy loss, premature birth, developmental 

abnormalities, and low birth weights (Beliles, 2002; Chiu, Caldwell, Keshava, & Scott, 2006; 

Doyle, Roman, Beral, & Brookes, 1997). Elevated rates of low birth weight children, fetal 

growth restriction, and cardiac defects have been associated with exposure with CVOCs via 

vapor intrusion compared with unexposed populations (Forand, Lewis-Michl, & Gomez, 

2011), but more studies are necessary to quantify this relationship further and improve 

environment health surveillance at vapor intrusion sites.  

5.3.2. Vapor Intrusion in Context 

Within the current regulatory approach to addressing hazardous waste (including 

vapor intrusion), it is not sufficient to show that contamination exists. It must also be shown 

that humans are exposed to that contamination and that this exposure increases the likelihood 

of an adverse health outcome. The framework for evaluating the vapor intrusion pathway 

follows the traditional chemical-by-chemical, pathway-by-pathway, one-disease-at-a-time 

approach widely used to make site-specific cleanup decisions at polluted sites in the United 

States (Montague, 2004; O’Brien, 2000). Nonetheless it is recognized that environmental 

health outcomes at the community level are a result of exposure to mixtures of chemicals, 

combined with social, economic, and psychological stressors that may increase vulnerability 

at the population level (Evans, Hubal, Kyle, Morello-Frosch, & Williams, 2007). To date, 

information and frameworks are lacking for evaluating vapor intrusion exposure in relation to 

cumulative exposures, and in relation to individual and population-level differences in 

vulnerability (Callahan & Sexton, 2007).  
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A cumulative exposure assessment framework is needed to incorporate community-

level characteristics into vapor intrusion exposure assessments.  For example, in the 

community used as a case study in this analysis, exposure to PCE alone may be occurring not 

only via vapor intrusion but also in drinking water or through inhalation and dermal exposure 

during bathing or wading in the local creek or in the workplace. Furthermore, PCE could 

interact with dozens of other chemicals identified in the community, such that exposure to 

multiple contaminants could exacerbate the risks posed by PCE. Future research should 

assess multiple pathways and chemical exposure occurring at vapor intrusion sites and 

explore how this information can be better integrated into environmental management.  

Scientists have suggested that in spite of the increasingly sophisticated models and 

tools developed to address environmental problems, existing models are insufficient to 

represent the complex, dynamic nature of environmental systems (Biggs et al., 2009; Pahl-

Wostl, 2007; Zellmer, Allen, & Kesseboehmer, 2006). Additional insights to complement 

existing scientific models and tools are possible through the consideration of community 

expertise (Corburn, 2002; Farrell, 2006). Therefore, also needed are processes for collecting 

and documenting community knowledge of vapor intrusion exposure and for integrating the 

results into the assessment process. The use of community-based exposure assessment 

techniques should be expanded; such techniques employ the community in defining the 

problems and the necessary data, supplying local knowledge, and interpreting the results in 

the context of the local reality (Barzyk et al., 2009; Corburn, 2007). Qualitative methods may 

offer insights into vapor intrusion research because of their ability to engage residents 

regarding local environmental health problems and to contribute to the understanding of 

population exposures by providing data on people’s behaviors, their perceptions of risk, and 



  
 

109 

  

  

the social, economic, cultural, and political considerations that influence personal exposure 

(Scammell, 2010). However, a method to combining quantitative and qualitative inputs from 

scientific studies of exposure, participatory community-based processes, and local 

knowledge is lacking (Lambert, Guyn, & Lane, 2006). Research should continue on 

systematic ways to incorporate into the assessment process the specialized knowledge of the 

community about the local environment, exposure and activity patterns, and lived 

experiences.  

5.3.3. Acting Under Uncertainty  

 The need to make decisions regarding vapor intrusion is not going to wait until the 

scientific uncertainty has been resolved. It is clear that one or even a few indoor air samples 

will not tell the complete story of exposure, but rather adequately characterizing exposure 

requires long-term monitoring that collects samples on relatively fine temporal and spatial 

scales. One potential area of further research is on the use of mechanical techniques to create 

conditions of high exposure. Inducing negative pressure differentials can “turn on” vapor 

intrusion. Initial data suggest that controlling pressure differentials is technologically simple 

and reasonably reliable, and collecting samples during such negative pressure conditions may 

offer a better picture of the high potential indoor concentrations (McHugh et al., 2012). This 

approach could potentially reduce the potential for collecting false negative readings and 

decrease the uncertainty associated with a single sample, but further research is still 

necessary. Such an approach is still limited by the need for trained personnel and a house-by-

house analysis to measure exposure, but it nonetheless offers a potential new tool to more 

quickly estimate potential indoor air concentrations at the household level.  
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In the face of a potential risk and the inability to fully quantify scientifically that risk, 

the regulatory framework surrounding vapor intrusion should consider alternative assessment 

approaches. The precautionary principle has been proposed as a tool to address decision-

making in such circumstances (Deville & Harding, 1997; Sandin, 1999; Stewart, 2002). The 

principle has generally been defined as having two main components: preventive action in 

the face of uncertainty and reversing the burden of proof. The approach suggests that the 

decision-maker should anticipate harm before it occurs and provide for some measure of 

protection against this harm even if the probability cannot be determined accurately by 

existing science (Crawford-Brown & Crawford-Brown, 2011). This framework shifts away 

from the traditional paradigm that requires proof of some unacceptable level of risk. Future 

analysis of vapor intrusion guidance and regulation approaches should further consider: (a) 

who bears the burden of proof; (b) the evidence required to pass a confidence threshold; and 

(c) co-benefits , that is, others effects favorable to human welfare that are not directly related 

to the benefit of vapor intrusion mitigation.  

Given the current state of evidence, the vapor intrusion community needs a thoughtful 

analysis of the costs, benefits, and health implications associated with an extended 

monitoring program compared to preventive remediation measures. The vapor intrusion 

pathway can usually be adequately controlled or eliminated in a cost-effective manner by 

some combination of sealing cracks, venting sumps, modifying HVAC operations, or 

installing subslab depressurization systems (Fitzgerald, 2009). These interventions may have 

significant public health co-benefits of reducing radon intrusion or decreasing moisture 

buildup, though no research on this topic has been published to our knowledge. This 

information could offer a framework from which to evaluate the trade-offs between 
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collecting more information (additional monitoring) vs. taking action with imperfect 

information.  

5.4. Conclusions  

 This dissertation examines several aspects of the migration of CVOCs from the 

subsurface to the indoor air, finding that current approaches to assessment of exposure are 

inconsistent with the current scientific evidence. While the understanding of the vapor 

intrusion pathway is still incomplete, the results demonstrate methods to better assess 

exposure at the community scale and integrate uncertainty analysis into both monitoring and 

modeling techniques. This research demonstrates quantitative techniques for integrating data 

into models in order to avoid such underestimates, one flaw in current policy design. Future 

research should evaluate the potential for community-centered and real-time monitoring 

devices, the integration of localized and cumulative risk information into the decision-

making framework, and assessment of the risks and benefits of a precautionary approach to 

vapor mitigation.
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APPENDIX A 

Spatiotemporal Variability of Tetrachloroethylene 
in Residential Indoor Air Due to Vapor Intrusion: 

A Longtudinal, Community-Based Study – Supplementary Material 
 

The supplemental materials contain the following information: 

• Details on the equations behind the Tobit regression model, 

• Analysis of covariance of the covariates considered for the model 

• Picture of the sampling setup 

 
Tobit Regression Model: 
 

In the likelihood function the censored (below detection limit) data are 

represented as a probability of being less than the censoring threshold.  In the likelihood 

function the censored (below detection limit) data are represented as a probability of 

being less than the censoring threshold.  The resulting regression model is characterized 

by a latent regression equation: 

yi
* = x i

Tβ + εi         (1) 

where yi
*  is the latent dependent variable and the error term (εi) is assumed to be 

independent and normally distributed with a mean of 0 and a variance of σ 2. The 

observed dependent variable, yi is defined as 

yi = yi
* if yi

* > c        (2)  

yi = c otherwise. 

where c represents the detection limit.  With a log-transformed dependent variable, the 

resulting likelihood function is: 
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L = Φ
logc − x i

Tβ
σ

 

 
 

 

 
 

yi = c

∏ φ
yi >c

∏ logyi − x i
Tβ

σ

 

 
 

 

 
      (3) 

  

 
Table A.1. Analysis of variance of covariates considered in the model. 
 
 R2 F-statistic F-statistic significance 
Age of home (years) 0.036 6.80 0.0099 
Air conditioning (yes/no) 0.027 2.45 0.089  
Area of home (m2) 0.0082 1.48 0.22 
Barometric pressure drop (mm) 0.038 0.61 0.092  
Cleaning conducted (yes/no) 0.0035 0.61 0.44 
Dryer used (yes/no) 0.0064 0.84 0.36  
Humidity (%) 0.025 4.58 0.034 
PCE groundwater concentration 
(µg/L) 

0.0261 3.16 0.078 

Season (summer/winter) 0.015 2.65 0.10  
Soil (clay/silt) 0.013 1.61 0.11 
Temperature (°C) 0.0057 1.03 0.3122 
Wind (m/s) 0.033 6.14 0.014 
Windows (opened/closed) 0.0093 1.69 0.19 
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Figure A.1. An example of the passive sampling set up used in residential homes in this 
study.
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APPENDIX B 

Screening Houses for Vapor Intrusion Risks: 
A Multiple Regression Analysis Approach – Supplementary Material 

 
 

The supplemental materials contain the following information: 

• Details on the distribution of the vapor intrusion attenuation factors 

• Figure showing the shows site-to-site and region-to-region variability of the 

attenuation factors. 

• A univariate analysis of the vapor intrusion attenuation factors and the model 

covariates 

 

 

Figure B.1. Distribution of pooled vapor intrusion attenuation factors for all observations 
included in statistical analysis. 
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Figure B.2. Distribution of measured natural logarithm of attenuation factors for CVOCs 
across the sites and groundwater regions; black line tracks the mean attenuation factor at 
each site and region and shows site-to-site and region-to-region variability. 
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Univariate and Variance Component Analysis  

Previous studies of radon have used the analysis of variance (ANOVA) approach 

as a technique to examine the proportion of variation in indoor radon contributions 

explained by various factors, such as geology, foundation type or building ventilation 

(Appleton & Miles, 2010; Burkhart & Huber, 1993; Louizi, Nikolopoulos, Lobotessi, & 

Proukakis, 2001). Similarly, we employed ANOVA as an initial approach to assessing 

the significance of the differences between means for pooled observations for the 

different factors potentially affecting vapor intrusion. 

According to the one-way ANOVA, soil type followed by foundation type and 

groundwater depth explained the greatest proportion of variation in measurements among 

fixed effect covariates (Table B.1). All the explanatory variables were statistically 

significant (p<0.05), based on the F-test. The chemical properties explained the smallest 

portion of the variance in attenuation.  

To assess the relative importance of the various levels of analysis prior to the 

inclusion of the additional covariates, we considered the ratio of each variance 

component—εijk
2 (representing variance between buildings), δ0 jk

2  (between-site variance), 

and υ00k
2 (between-region variation)—to the total variance in the attenuation factors. The 

random effects variance component at the observation level (εijk
2 ) accounted for a major 

portion—60.9%—of the variance. Importantly, however, this implies that 39.1% of the 

variance is due to higher levels of analysis. Specifically, the site level (δ0 jk
2 ) accounts for 

13.2% and the geologic region (υ00k
2 ) for 25.9% of the variance. These results indicate 

that significant variation in the vapor intrusion attenuation factor occurs at all three levels 
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of analysis, providing further evidence of the multilevel character of the vapor intrusion 

data.  

Table B.1. Proportion of the variation of log vapor intrusion attenuation factor for 
residential homes explained by environmental, household and multilevel factors. 

Covariates Pooled observations 

 Number of 
categories 

% 
variation 
explained  

Diffusivity in Air Continuous 2.5% 
Chemical molecular 
weight 

Continuous 2.9% 

Season 2 3.9% 
Groundwater depth 
(m) 

Continuous 5.5% 

Foundation 4 6.0% 
Soil type 3 8.5% 
Random effects 
variance components 

    

Groundwater region 6 25.9% 
Site 1 13.2% 
Observation 370 60.9% 
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APPENDIX C 

Updating Exposure Models of Indoor Air Pollution Due to Vapor Intrusion: 
Bayesian Calibration of the Johnson-Ettinger Model – Supplementary Material 

 
Table C.1. Additional model inputs, parameters, and references not in Table 4.3. 
 Model 

Parameter 
Description Modeling Method* Primary Reference 

G
ro

un
dw

at
er

 

PCE 
concentration 

Presence of TCE and 
PCE in groundwater 
aquifer, µg/L 

Bayesian maximum 
entropy, lognormal 
(mean, standard 
deviation) for each grid 
cell 

Air Force Real 
Property Agency 

Lt  
Aquifer distance from 
ground level surface, 
cm 

Bayesian maximum 
entropy, normal (mean, 
standard deviation) for 
each grid cell 

Air Force Real 
Property Agency 

 H
ou

se
 &

 F
ou

nd
at

io
n 

 

Lcrack Foundation thickness, 
cm 

15 

(Environmental 
Quality Management, 
2004; Johnson, 2005) 

Zcrack 
Depth below ground 
surface to bottom of 
the foundation, cm 

15 

(Environmental 
Quality Management, 
2004) 

Xcrack 

Total length of cracks 
through which soil gas 
vapors are flowing / 
floor-wall seam 
perimeter, cm 

Sqrt(Area/2)*6 Author’s judgment 

Area (A) Area of enclosed space 
below grade, cm2 

Evaluated independently 
for each household 
(discrete) 

Bexar County 
Appraisal District, 
2009 

S
oi

l  
  Dc,z

eff
 

Effective diffusion 
through the capillary 
zone, cm2/s 

C 

SiC 

.000016 

.000026 

(Carsel & Parrish, 
1988; Environmental 
Quality Management, 
2004) 

Lc,z 
Height of the capillary 
zone, cm 

C 

SiC 

81.5 

192 

(Carsel & Parrish, 
1988; Environmental 
Quality Management, 
2004) 
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Figure C.1. Estimated PCE groundwater concentrations (µg/L) in 2011. 

 
Figure C.2. Estimated groundwater levels (m below surface) in 2011. 
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Figure C.3. Measured values (circle- mean with 90% confidence interval) compared to 
the prior probability predictions (x-mean with 90% confidence interval). 
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Figure C.4. Trace plots shown for one of the three parallel chains for Model 1. 
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