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Abstract. We study the discrepancies between the continuous versus discretized wave equations.

Motivated by the theoretical study of so-called “spurious” high-frequency wave packets initiated

in [1], we use the finite difference algorithm to approximate solutions to a one-dimensional wave
equation on S1 at low and high frequencies. We numerically compare these approximate solutions

to the explicit continuous solutions using the discrete analog of the usual wave energy. For low

frequencies there is good agreement, while for high frequencies there is very bad agreement. We
explain this high frequency phenomenon heuristically by observing that, for initial data resulting

in propagation in one direction only, the approximate solution nevertheless has non-trivial wave

packets propagating in both directions.

1. Introduction

In this paper, we are concerned with a phenomenon which occurs with the numerical study of high
frequency waves. In order to show this phenomenon, we study the wave equation on [0, 1] with
periodic boundary conditions using two different methods.

utt − uxx = 0

u(t, 0) = u(t, 1)

ux(t, 0) = ux(t, 1)

u(0, x) = f(x)

ut(0, x) = g(x)

(1.1)

In the first method, we discretize on a uniform mesh with N subdivisions of length h = 1
N . We use

the usual finite difference matrix A and solve the resulting ODE’s to get an approximation of the
solution to (1.1). In the second method, we solve the wave equation in the continuum and then
sample the solution on our mesh. The energy

(1.2) E(t) =

∫ 1

0

(|ut|2 + |ux|2)dx

is known to be conserved for (1.1) (see Appendix A). If ~u is a discretized approximate solution,
then the discrete analog of (1.2) is

(1.3) E(~u) = ~ut · ~ut + (A~u) · ~u,
which we use to calculate the discrete energy for the approximate solution using each method. Not
surprisingly, the energy is (almost) conserved using each method. Additionally, the energy in the
first method is very close to the energy in the second method. However, something interesting
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occurs when we examine the energy of the difference of the two approximate solutions. For low
frequencies, the energy of the difference is relatively small. On the other hand, for high frequencies
the energy of the difference is much larger. This is numerical confirmation of the defects seen in high
frequency discrete waves. This phenomenon was first observed numerically but the high frequencies
were “truncated” (see, for example, the survey article [4] and the references therein). [1] explains
theoretically what happens with these high frequencies.

1.1. Acknowledgements. We programmed the algorithms used in this project from scratch, which
was very time consuming. Additionally, computer time was limited. Therefore, it took too much
time to be able to study geometric control for the damped wave equation, which was our original
motivation [1]. I would like to extend a special thanks and appreciation to my advisor Hans
Christianson for his guidance on this project. Also, thank you to Jason Metcalfe, Jeremy Marzuola,
and Hans Christianson for serving on the committee.

2. Descriptions of the Two Methods

2.1. First Method. It should be noted that we do not use any built-in functions (other than
sqrt, exp, dot, and zeros) or algorithms in MATLAB, as they may have added features which
we do not want in our method. In the first method, we discretize first. Our discretization occurs
on a uniform mesh with N subdivisions of length h = 1

N .

0 h 2h (N − 1)h 1. . .

We use the second order finite difference matrix

A =
1

h2


2 −1 0 . . . −1
−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . . 0
...

. . .

−1 0 . . . 0 −1 2


to approximate −∂

2

∂x2 (see Appendix B).

Our discrete solution can be written as the discrete Fourier series

(2.1) ~U =
∑
j

Uj~ej

where

~ej =
√
h


e2πijh∗0

e2πijh∗1

...
e2πijh∗(N−1)





NUMERICAL CONFIRMATION OF HIGH-FREQUENCY DEFECTS IN DISCRETE WAVES 3

is the basis of orthonormal eigenvectors of A with eigenvalues
µ2
j

h2

A~ej =
2− 2 cos(2πjh)

h2
~ej (see Appendix C)

=
µ2
j

h2
~ej

(2.2)

and Uj is given by

Uj = 〈~U,~ej〉.

Our wave equation then becomes the discretized wave equation

(2.3) ~U ′′ +A~U =
∑
j

U ′′j ~ej +
∑
j

µ2
j

h2
Uj~ej = 0

with initial conditions
~U(0) = ~F

~U ′(0) = ~G.

Notice that the boundary conditions are contained in A. By matching the coefficients in (2.3) we
see that

U ′′j = −
µ2
j

h2
Uj ,

and solving this ODE gives us a formula for Uj .

(2.4) Uj = Cj+e
iµj
h t + Cj−e

−iµj
h t

Now let’s also sample our initial conditions and write them as a discrete Fourier series. We will
compare to the continuum data f, g later.

(2.5) ~F =
∑
j

Fj~ej

(2.6) ~G =
∑
j

Gj~ej

Using (2.1), (2.4), (2.5), and (2.6), we obtain formulas for Fj and Gj .

~U(0) =
∑
j

(Cj+ + Cj−)~ej = ~F

~U ′(0) =
∑
j

( iµj
h
Cj+ −

iµj
h
Cj−

)
~ej = ~G

Therefore,

(2.7) Fj = Cj+ + Cj−

(2.8) Gj =
iµj
h
Cj+ −

iµj
h
Cj−
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2.2. Second Method. In the second method, we solve the wave equation in the continuum and
then discretize. We can explicitly write out the solution as

(2.9) u =
∑
n

(
Dn+e

2πint +Dn−e
−2πint

)
e2πinx

with initial conditions

(2.10) u(0, x) = f(x) =
∑
n

fne
2πinx

(2.11) ut(0, x) = g(x) =
∑
n

gne
2πinx.

Using (2.9), (2.10), and (2.11), we obtain formulas for fn and gn.

u(0) =
∑
n

(
Dn+ +Dn−

)
e2πinx = f(x)

ut(0) =
∑
n

(
2πinDn+ − 2πinDn−

)
e2πinx = g(x)

Therefore,

(2.12) fn = Dn+ +Dn−

(2.13) gn = 2πinDn+ − 2πinDn−

2.3. Choice of Frequencies. Now that we have both of our methods set up, we must determine
what frequencies to use in order to illustrate the phenomenon. For our numerical experiments we
need a narrow band of low frequencies as well as a narrow band of high frequencies, and both bands
should not be too computationally expensive to use. The low frequency band should be near zero
where the eigenvalues of both methods are very close. Therefore, we want a range where 2πn is
very close to

µj
h . We can study the Taylor expansion of

µj
h in order to determine what range to

pick.

µj
h

=
(2− 2 cos (2πjh))1/2

h

=

√
2

h

[
1− (1− (2πjh)2

2
+O((jh)4))

]1/2
=

√
2

h

( (2πjh)2

2

)1/2[
1 +O((jh)2)

]1/2
= 2πj(1 +O(j2h2))

= 2πj +O(j3h2)

Our algorithm error is O(h), which is the mesh size. This is one order of magnitude worse than the
O(h2) error in the more modern finite element method (see, for example, [3]). Therefore, a relative
error in our Taylor series of O(h1+ε) for ε > 0 is sufficient as long as N is big enough. We choose
O(h2) because of our computer resources. Since O(j3h2) = O(h2) if j is bounded independent
of h, we arbitrarily choose to use 20 frequencies and therefore 1 ≤ j ≤ 20 is our low frequency
range.
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For our high frequency range we choose N − 20 ≤ j ≤ N − 1. By periodicity, these µj are close
to µj for 1 ≤ j ≤ 20 and will therefore be small. However, since 2πn grows linearly in n, 2πn will
be much larger than

µj
h in this high frequency range. In other words, we expect good agreement

of the eigenvalues in each method at low frequencies, but bad agreement at high frequencies. Our
way of measuring this is to use the energy.

3. Numerical Experiments

3.1. Low Frequency Experiments. We now compute the low frequency approximate solution
using each method, as well as compute the energy of the difference of the solutions. We write a
program in MATLAB that computes all of the following equations. For simplicity we take specific
frequency-localized initial data f, g. To single out the low frequencies we take

Dn− = 0 ∀n

Dn+ =

{
1, 1 ≤ n ≤ 20

0, otherwise

so that the wave only propagates in one direction. This determines fn and gn.

(3.1) fn =

{
1, 1 ≤ n ≤ 20

0, otherwise

(3.2) gn =

{
2πin, 1 ≤ n ≤ 20

0, otherwise

Our solution in the continuum is therefore

(3.3) u =

20∑
n=1

e2πinte2πinx =

20∑
n=1

e2πin(x+t)

and

(3.4) ut =

20∑
n=1

(2πin)e2πinte2πinx.

We now discretize u by sampling it on our mesh. We call it ~w:

~w =
1√
h

20∑
n=1

e2πint~en.

We also sample ut and call it wt. Notice that ~wt is the same no matter if we sample ut or take ∂t
of ~w.

~wt =
1√
h

20∑
n=1

(2πin)e2πint~en.

We renormalize ~w and ~wt by multiplying both equations by
√
h.

(3.5) ~w =

20∑
n=1

e2πint~en
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(3.6) ~wt =

20∑
n=1

(2πin)e2πint~en

On the other hand, we sample f and g and call them ~F1 and ~G1.

~F1 =

20∑
n=1

~en

~G1 =

20∑
n=1

(2πin)~en

This determines Cn+ and Cn− in the first method and we can therefore explicitly write out ~U and
~Ut.

(3.7) Cn+ =
1

2

(
1 +

h

µn
· 2πn

)
(3.8) Cn− =

1

2

(
1− h

µn
· 2πn

)

(3.9) ~U =

20∑
n=1

[
Cn+e

iµn
h t + Cn−e

−iµn
h t
]
~en

(3.10) ~Ut =

20∑
n=1

[ iµn
h
Cn+e

iµn
h t − iµn

h
Cn−e

−iµn
h t
]
~en

Notice that for 1 ≤ n ≤ 20, Cn− is small and therefore the wave mostly propagates in one direction.
This is similar to the continuous case in (3.3), which is a function of x+ t and therefore propagates
to the left only. We use Hamiltonian flow to explain the propagation rule x − x0 = ±t in section
4.

Next we compute the energy of the approximate solutions at times t = 0, πh, 2πh, . . . , (N − 1)πh.
The times must be irrational so that the time evolution is not periodic.

(3.11) E(~U) = ~Ut · ~Ut + (A~U) · ~U

(3.12) E(~w) = ~wt · ~wt + (A~w) · ~w
We run our experiments for several values of N, and we find that the energy is (almost) conserved
within each method as well as between the two methods∗. For example, Figure 1 shows the energy
at each time using the first method and Figure 2 shows the energy at each time using the second
method for N = 2000.

∗raw data available upon request
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Figure 1. Energy of ~U for N = 2000 using the low frequency band 1 ≤ n ≤ 20. The
same experiment was run for N = 100, 200, 300, . . . , 2000, 2500, 3000, . . . , 5000 and
the picture is similar.

Figure 2. Energy of ~w for N = 2000 using the low frequency band 1 ≤ n ≤ 20. The
same experiment was run for N = 100, 200, 300, . . . , 2000, 2500, 3000, . . . , 5000 and
the picture is similar.
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We also examine the energy of the difference of the two approximate solutions.

(3.13) E(~U − ~w) = (~Ut − ~wt) · (~Ut − ~wt) + (A(~U − ~w)) · (~U − ~w)

We find that as N increases, the energy of the difference becomes small relative to E(~U). This fact

is obvious when we graph the ratios E(~U−~w)((N−1)πh)
E(~U)((N−1)πh)

for different values of N.

Figure 3. Ratio of the energy of ~U − ~w to the energy of ~U at the last time step for
increasing N using the low frequency band 1 ≤ n ≤ 20. Ratios were computed for N =
100, 200, 300, . . . , 2000, 2500, 3000, . . . , 5000.

3.2. High Frequency Experiments. We now run the exact same experiments with the high
frequency band near N†. This time, Cn− in (3.8) is large and therefore the wave propagates in both
directions. We again compute the energy of the approximate solution from each method as well
as the energy of the difference. Again, we find that the energy is (almost) conserved within each
method as well as between the two methods. This is shown in Figure 4 and Figure 5.

†raw data available upon request
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Figure 4. Energy of ~U for N = 2000 using the high frequency band N−20 ≤ n ≤ N−1.
The same experiment was run for N = 100, 200, 300, . . . , 2000, 2500, 3000, . . . , 5000
and the picture is similar.

Figure 5. Energy of ~w for N = 2000 using the high frequency band N−20 ≤ n ≤ N−1.
The same experiment was run for N = 100, 200, 300, . . . , 2000, 2500, 3000, . . . , 5000
and the picture is similar.
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However, we observe that as N becomes large, the energy of the difference is on the same order

of magnitude as E(~U). We graph the ratios E(~U−~w)((N−1)πh)
E(~U)((N−1)πh)

, which are all order 100. The ratios

clearly do not decay to zero as N increases.

Figure 6. Ratio of the energy of ~U − ~w to the energy of ~U at the last time step for
increasing N using the high frequency band N − 20 ≤ n ≤ N − 1. Ratios were computed
for N = 100, 200, 300, . . . , 2000, 2500, 3000, . . . , 5000.

4. Hamiltonian Flow

We can explain this phenomenon of defects seen in high frequency discrete waves by studying the
Hamiltonian Flow of the continuous case versus the discrete case. It is well known that waves
propagate along the Hamiltonian flow of the principal symbol of the wave equation, τ2− ξ2 [2] (See
Appendix D). For low frequencies (near zero), the discrete wave propagates close to the continuous
wave. However, for high frequencies (near N), propagation in the discrete case is much different
than in the continuous case. The Hamiltonian in the continuum is given by

(4.1) Hc = τ2 − ξ2
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where ξ = 2πn and n 6= 0. Our Hamiltonian ODE’s are

ξ̇ = −Hx = 0

τ̇ = −Ht = 0

ṫ = Hτ = 2τ

ẋ = Hξ = −2ξ

(4.2)

and solving gives us

ξ = ξ0

τ = τ0

t = t0 + 2τ0s

x = x0 − 2ξ0s.

(4.3)

We take t0 = 0. We also avoid ξ0 = 0 and τ0 = 0 so that we can solve for s.

s =
x0 − x

2ξ0
=

t

2τ0

Waves live where Hc = 0 and therefore τ = ±ξ. This gives us

x0 − x
2ξ0

=
±t
2ξ0

or

(4.4) x− x0 = ±t.

Notice that the wave always has constant speed 1 no matter the frequency.

In the discrete case, our eigenvalues in (2.2) can be written as 4
h2 sin2(πhj) using trig identities.

The Hamiltonian is therefore given by

Hd = τ2 − 4

h2
sin2(πhj)

= τ2 − 4

h2
sin2

(hξ
2

)
.

(4.5)

The Hamiltonian ODE’s in this case are

ξ̇ = −Hx = 0

τ̇ = −Ht = 0

ṫ = Hτ = 2τ

ẋ = Hξ =
−4

h
sin
(hξ

2

)
cos
(hξ

2

)(4.6)

and solving gives us

ξ = ξ0

τ = τ0

t = t0 + 2τ0s

x = x0 − s
4

h
sin
(hξ

2

)
cos
(hξ

2

)
.

(4.7)
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For low frequencies near zero,

ẋ =
−4

h
sin
(hξ

2

)
cos
(hξ

2

)
=
−4

h
sin(πhj) cos(πhj) 

−4

h
· hξ

2
· 1 = −2ξ,

which is equal to ẋ in (4.2) and therefore the discrete case propagates close to the continuous case
for low frequencies.

For high frequencies near N,

ẋ =
−4

h
sin(πhj) cos(πhj) 0.

Therefore, in the discrete case propagation speed depends on frequency. Indeed for the high fre-
quencies, there may be very little propagation at all. This is in stark contrast to the constant speed
propagation seen in the continuous case. In our high frequency experiments, the propagation speed
is different in the continuous case versus the discrete case. Our choice of initial data results in the
wave splitting into a piece propagating to the left and a piece propagating to the right, and this is
why we see large disagreement between the two methods. See the discussion around (3.8).
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Appendix A. Energy Conservation for Wave Equation

We show energy conservation for the wave equation

utt − uxx = 0

u(t, 0) = u(t, 1)

ux(t, 0) = ux(t, 1)

u(0, x) = f(x)

ut(0, x) = g(x).

We define the energy as

E(t) =

∫ 1

0

(|ux|2 + |ut|2)dx.

To show energy conservation, we need to show E′(t) = 0. We compute

E′(t) =

∫ 1

0

(uxuxt + uxtux + ututt + uttut)dx

= 2Re

∫ 1

0

(uxuxt + uttut)dx.

We integrate by parts in x.

E′(t) = 2Re

∫ 1

0

(−uxxut + uttut)dx+ uxut

∣∣∣1
0

The periodic boundary conditions

u(t, 0) = u(t, 1)

ux(t, 0) = ux(t, 1)

are independent of t. Hence,

ut(t, 0) = ut(t, 1).

So

ux(t, 0)ut(t, 0) = ux(t, 1)ut(t, 1)

and we are left with

E′(t) = 2Re

∫ 1

0

(utt − uxx)utdx

= 0

using the wave equation.
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Appendix B. Derivation of Second Difference Matrix A

We sample a function u on a mesh of size h to get a vector with 1
h components.

~u =


u0
u1
...

uN−1

 , uj = u(jh)

We approximate the derivatives using difference quotients. The first derivative is approximated
by

u′(jh) ' u((j + 1)h)− u(jh)

h
.

The second derivative is then approximated by

u′′(jh) ' u′((j + 1)h)− u′(jh)

h

=

(
u((j+1)h)−u(jh))

h

)
−
(
u(jh)−u((j−1)h)

h

)
h

=
u((j + 1)h)− 2u(jh) + u((j − 1)h)

h2

=
uj+1 − 2uj + uj−1

h2
.

Since we are indexing ~u starting at zero, this formula works for 1 ≤ j ≤ N − 2. For j = 0 and
j = N − 1 we need to use the periodic boundary conditions. That is, since u(t, 0) = u(t, 1), when
we discretize we identify u0 with uN and u−1 with uN−1. Thus for j = 0, u1 − 2u0 + u−1 =
u1 − 2u0 + uN−1 and similarly for j = N − 1. Therefore,

−∂2

∂x2
u ≈ 1

h2


2 −1 0 . . . −1
−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . . 0
...

. . .

−1 0 . . . 0 −1 2

 ~u.

Appendix C. Eigenvalues of Matrix A

We define the vectors ~ej to be

~ej =
√
h


e2πijh∗0

e2πijh∗1

...
e2πijh∗(N−1)

 .
The

√
h factor makes the vectors orthonormal, that is

~ej · ~ek = δjk.
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We apply matrix A to ~ej :

A~ej =
1

h2


2 −1 0 . . . −1
−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . . 0
...

. . .

−1 0 . . . 0 −1 2


√
h


e2πijh∗0

e2πijh∗1

...
e2πijh∗(N−1)


The kth entry is

(A~ej)k =
√
h

[
−(e2πijh)k−1 + 2(e2πijh)k − (e2πijh)k+1

h2

]
=
√
h

[
−e2πijhke−2πijh + 2e2πijhk − e2πijhke2πijh

h2

]
=
√
h

[
(2− e−2πijh − e2πijh)e2πijhk

h2

]
Notice

e−2πijh + e2πijh = (cos(−2πjh)) + i sin(−2πjh)) + (cos(2πjh) + i sin(2πjh))

= 2 cos(2πjh).

So

(A~ej)k =
√
h

[
2− 2 cos(2πjh))

h2
e2πijhk

]
and therefore

A~ej =
2− 2 cos(2πjh)

h2
~ej .

In other words, the collection {~ej} are eigenvectors with eigenvalues
{µ2

j

h2

}
=
{ 2−2 cos(2πjh)

h2

}
. Hence

they constitute an orthonormal basis of RN of eigenvectors of the matrix A.

Appendix D. Derivation of Symbols

Fourier series replaces differentiation with multiplication. Take, for example, the Fourier series of
a function G(x).

G(x) =
∑
n

Gne
2πinx

Gn = 〈G(x), e2πinx〉
If we differentiate G(x) twice, we get:

∂2xG(x) =
∑
n

Gn(2πin)2e2πinx

=
∑
n

−(2πn)2Gne
2πinx

We replace 2πn with the continuous variable ξ, and therefore the symbol for ∂2x is −ξ2.
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For the wave equation, we take:

(∂2t − ∂2x)u(t, x) = (∂2t − ∂2x)
∑
n

un(t)e2πinx = 0

= ∂2t
∑
n

un(t)e2πinx +
∑
n

(2πn)2un(t)e2πinx

=
∑
n

[u′′n(t) + (2πn)2un(t)]e2πinx

Therefore for each n,
∂2t un(t) + (2πn)2un = 0.

We take the Fourier transform in time:

F(∂2t un(t) + (2πn)2un) =
1√
2π

∫ ∞
−∞

e−iτt(∂2t un(t) + (2πn)2un)dt = 0

To solve this integral, we formally integrate by parts twice:

=
1√
2π

∫ ∞
−∞
−∂te−iτt∂tun + e−iτt(2πn)2undt

=
1√
2π

∫ ∞
−∞

∂2t e
−iτtun + e−iτt(2πn)2undt

=
1√
2π

∫ ∞
−∞

[−τ2un + (2πn)2un]e−iτtdt

This is the definition of the Fourier transform of −τ2un + (2πn)2un. Hence,

−τ2ûn + (2πn)2ûn = (−τ2 + ξ2)ûn = 0

Therefore the symbol for the wave equation in the continuum is

−τ2 + ξ2

or
τ2 − ξ2.

For the discrete case, we have

(∂2t +A)~U = 0

or ∑
n

(∂2t +A)Un(t) ~en =
∑
n

U ′′n ~en +
∑
n

µ2
n

h2
Un ~en = 0.

Now the eigenvalues are
µ2
n

h2 = 4
h2 sin2(πhn) instead of (2πn)2. Hence, the symbol for the wave

equation in the discrete case is

τ2 − 4

h2
sin2(πhn)

or

τ2 − 4

h2
sin2(

hξ

2
).
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