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Abstract
SLK, a STE20-like serine/threonine protein kinase, and LOK/STK10, or lymphocyte oriented kinase/serine/threonine protein kinase 10, are thought to be involved in apoptosis and regulation of cell division. To further study the physiological roles of these two closely related and poorly-studied kinases, there is a need to discover selective chemical probes. Modeling chemogenomics data with Quantitative Structure Activity Relationship (QSAR) analysis is well-defined approach employed by computational chemists to predict the bioactivity of an untested compound. Here we show that QSAR models built on large curated chemogenomics datasets can help to prioritize and design inhibitors selective for SLK or LOK from the majority of related kinases within the STE20 subfamily. Twenty-six predictive QSAR models were developed on both Carolina Cheminformatics Workbench (ChemBench) and GUSAR software with CCR and Q2 values obtained by 5-fold external cross-validation of 0.6-0.85 and 0.67-0.94, respectively. Over three million compounds from the ZINC dataset were screened through these externally validated QSAR models. Two compounds were predicted to be selectively active for SLK and forty for LOK. Predicted activity of these compounds was in agreement with the results of molecular docking with Schrodinger GLIDE on crystal structures 4USF and 4USE. Selected compounds were recommended to the Structural Genomics Consortium in UNC for experimental testing.
Introduction
Kinases are enzymes that play a role in numerous cell signaling events, including apoptosis.1 Thus they can be therapeutic targets for anti-cancer treatments, for example when regulation of a kinase involved in cell-cycle transition is lost.1 By definition, all kinases catalyze the transfer of a phosphate group from ATP to a target molecule.1 For poorly-studied kinases, the target recipient of the phosphate is unknown. Proteins SLK and LOK are two under-studied serine/threonine kinases that are involved with proper spindle orientation during mitosis and tumor suppression in T-cells respectively.2, 3 To further study these kinases, a chemical probe must be designed to selectively inhibit the kinase of interest in order to visualize the biological role of the kinase in vivo. However, all kinases contain a conserved binding site for ATP, which has hampered the discovery of kinase-specific inhibitors.4 Although inhibitors for two understudied kinases SLK and LOK exist, these compounds promiscuously interact with a broad range of off-target kinases, including kinases within the STE20 subfamily of serine/threonine protein kinases.5 This promiscuous character of currently known SLK and LOK inhibitors, such as compounds CHEMBL509032 for SLK and GSK237701A for LOK, could be due to the high sequence similarity of the ATP binding sites of STE20 kinases with SLK and LOK.1 Consequently, inhibitors that could serve as chemical probes to selectively inhibit SLK or LOK are required to be inactive against these STE20 kinases. 

Results from High throughput screens (HTS) such as the GSK Published Kinase Inhibitor Set (PKIS), have generated a considerable amount of data on not only SLK and LOK, but also on other kinases within STE20 kinase subfamily.5 ChEMBL, a publicly accessible chemical database maintained by the European Molecular Biology Laboratory contains millions of curated compounds from medicinal chemistry journals and PubChem assays, including HTS data such as PKIS.6 Computational modeling of this extensive data source is consequently a viable and ideal approach for kinase chemical probe discovery. 

Quantitative Structure Activity Relationship models (QSAR), built on datasets from HTS and reliable assays, can predict the bioactivity of an untested molecule.7 QSAR models can therefore predict the inhibition activities of untested compounds toward not only one, but a group of target kinases. Consequent virtual screening (VS) of untested compounds from a chemical library through QSAR models can elucidate undiscovered chemical structures with desired inhibition profiles.7, 8 Successful usages of QSAR models for VS have been conducted, including virtually screening a library of compounds from the ZINC database, a large dataset encompassing millions of different chemical scaffolds that can be readily purchased from chemical vendors.9 However, QSAR-based VS approaches have not yet been utilized to discover a selective chemical probe for SLK and LOK from the ZINC database. The limitations on QSAR modeling, particularly on the reliability of the data used to build the model and the low accuracy predictions for compounds not represented within the training and test sets, can be acknowledged through a chemical curation workflow and external five-fold cross validation of each model.10 Rigorously validated QSAR models that employ curation and external cross validations have shown to have higher correct classification rates.10

With the ever growing number of publicly available protein crystal structures with near two angstrom resolutions, docking, or the computational insertion of a compound into the 3D crystal structure of a protein and the subsequent measurement of the binding energies, is increasingly used in the initial phases of drug discovery.11 In docking, conformational isomers of compounds are generated and placed into a grid box containing atomic coordinates of the protein crystal structure. Protein ligand interactions are measured through a docking algorithm and summarized into a docking score. The use of 2D QSAR in combination with molecular docking in drug design of kinase inhibitors, such as EGFR tyrosine inhibitors, has been widely used.12 However, docking and consensus 2D QSAR modeling have not yet been published for the recently elucidated 2015 crystal structures of SLK and LOK.3

Goals of this study include [1] collecting and integrating chemogenomic data on STE20 kinases, [2] designing a curation workflow that involves both chemical structure and biological activity standardization, [3] creating QSAR models through two separate modeling approaches that model STE20 kinases, [4] screening of a curated VS dataset of compounds through externally validated QSAR models, and [5] docking of predicted actives to crystal structures of SLK and LOK through Protein Databank published structures. 



Methods
Project Overview
In this study, ChEMBL data on twenty-six STE20 kinases were curated and utilized in combinatorial cross-validated QSAR modeling. After analysis of the models, compounds from a lead-like and purchasable subset of the ZINC dataset were screened through the QSAR models to determine compounds with selected kinase inhibition profiles. Out of the over three million compounds contained within this ZINC library, only two compounds were found to be active towards SLK and inactive for the rest of the STE20 kinases. Forty compounds selective for LOK over other STE20 kinases were also found. The predicted compounds were docked within protein crystal structures of SLK and LOK in order to validate their predicted bio-activity. 
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Figure 1 Kinase chemical probe discovery workflow

As Figure 1 demonstrates, QSAR models were built for each kinase on both ChemBench and GUSAR software after chemical data curation. Only compounds from the ZINC library that were predicted to be active on both SLK GUSAR and ChemBench QSAR models were chemical probe candidates for SLK. SLK probes were also required to be predicted as inactive on both GUSAR and ChemBench models representing the rest of the twenty-five kinases in the STE20 subfamily. Probes for LOK were predicted in a similar manner but with predicted activity for LOK QSAR models and predicted inactivity for the rest of the twenty-five STE20 subfamily kinases. Predicted compounds for SLK and LOK were docked through Schrodinger Glide software into crystal structures PDB 4USE and 4USF respectively.




Target Kinases and Bioactivity Data
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Figure 2 Kinases within the STE20 subfamily 13
Kinases within the same phylogenetic subfamily of SLK and LOK, as listed in the Appendix and partially shown in Figure 2, were identified through the Universal Protein Resource database. Due to limited bioactivity data from ChEMBL, only twenty-six STE20 kinases were modeled. The dominant assays featured within the ChEMBL datasets on the STE20 kinases, as featured in Table 1, included four activity types of binding affinity, residual activity, percent inhibition, and thermal melting change. 

Table 1 Sources of bioactivity data utilized in kinase models 6
	ChEMBL Document ID
	Journal
	Year
	Bioactivity Value & Assay
	Activity Threshold

	CHEMBL1145498
	Proc. Natl. Acad. Sci. U.S.A.
	2007
	Thermal melting change / thermal shift assay
	> 4 °C change

	CHEMBL2218924
	Biochem. J.
	2013
	Residual activity / filter-binding radioactive ATP transferase assay 
	< 50%
[at 0.1 µM] 

	CHEMBL1961873
	Nat. Biotechnol.
	2016

	Percent inhibition / microfluidic mobility shift assay
	> 50% 
[at 0.1 µM]

	CHEMBL1908390
	Nat. Biotechnol.
	2011
	Binding affinity / competition binding assays
	< 1 μM



Chemical Data Curation
Proper data curation was performed through a KNIME workflow according to the protocols developed earlier from Fourches et al.14 These protocols included chemical curation such as the removal of salts, mixtures, and stereochemistry in addition to the conversion of compounds from simplified molecular-input line-entry system (SMILES) notation into a structure data file (SDF) format. Standardizer was used for structure canonicalization and transformation, JChem 17.2.27.0, 2016, ChemAxon (http://www.chemaxon.com). Duplicates created from standardization, as presented in Figure 3, were recognized and removed through HiTQSAR software.15



 
Figure 3 Example chemical standardization of a mixture and subsequent duplicate

Biological Data Curation
Biological data curation through KNIME software followed the workflow developed in our lab earlier. 16 Activity of each compound was defined by categorical “active” vs “inactive” as given by thresholds listed from their respective data sources and summarized in Table 1. For each kinase, compounds tested more than once for the same bioactivity type were compared and compounds with inconsistent bioactivities were removed. When compounds from different bioactivity types (Kd/TM) were combined for each kinase, activity values of compounds tested in different assays were compared. Compounds for each kinase that had matching activities, such as the compounds labeled in Figure 4, were used in modeling while compounds with conflicting bioactivity values were discarded. 




Figure 4 Data concordance example across different bioactivity types 

ChemBench QSAR Modeling Approach & ISIDA Molecular Descriptors
Categorical QSAR models were generated on the Carolina Cheminformatics Workbench, a publicly accessible cheminformatics portal.17 Each kinase was modeled using random forest (RF) with ISIDA descriptor sets. Compounds are computationally represented by a topological graph of nodes and edges representing atoms and bonds. The path or connections from one target node to the next node through edges, of varying length, can be mathematically created from this graph of nodes. Descriptors from ISIDA include 2 to 7 atom-lengths paths and are dataset-specific.18 RF is a relatively quick machine learning technique that discriminates which specific descriptors can split the dataset into active/inactive classes the best. For example, a RF model will create decision trees that search through the list of descriptors to find a specific descriptor that will best separate the dataset into two distinct classes. Following one split, the model will continue to search for more and more specific descriptors to split the data until all compounds have been split into distinct classes. One thousand decision trees based on random subsets of ISIDA fragment descriptors were generated through RF with a weighted consensus prediction of each of the tree to prevent high variance and bias.

GUSAR Modeling Approach & QNA Molecular Descriptors
General Unrestricted Structure-Activity Relationships, also known as GUSAR, software was utilized to build consensus models utilizing radial basis functions with self-consistent regression (RBF-SCR) with a Quantitative Neighborhoods of Atoms (QNA) descriptor set.19 QNA descriptors were generated from ionization potentials and electron affinities of atoms within the connectivity matrices of molecules. These QNA descriptors were then weighted by coefficients obtained from an implemented SCR through a least-squared method and inputted into the calculation of a radial basis function. 

The applicability domain cutoff of both QSAR modeling approaches were set to one standard deviation. Thus, compounds that were more than one standard deviation away in multidimensional chemical descriptor space from the compounds used to generate that model, did not have their bioactivities predicted. Furthermore, both ChemBench and GUSAR approaches utilized five-fold external cross-validation in order to limit overfitting of the QSAR models to the training and test datasets. 

Virtual Screening
The ZINC database of the Bioinformatics and Chemical Informatics Research Center at the University of California, San Francisco was utilized as a compound library to screen for chemical probes. 9 A subset of the ZINC dataset that contained lead-like compounds that were readily purchasable from chemical vendors was standardized with the same data curation protocol described earlier. These 3,257,538 compounds were screened through both the GUSAR and ChemBench QSAR models for each STE20 kinase.  

External validation of SLK & LOK models by SGC maleimides


Figure 5 Core maleimide structure of SGC external validation set

Throughout the process of model generation and virtual screening, Structural Genomics consortium (SGC) members at the University of North Carolina at Chapel Hill published a set of phenyl-substituted compounds containing a core structure shown in Figure 5 with associated binding affinity data for SLK and LOK. This set of twenty-eight compounds, tested from an Amplified Luminescent Proximity Homogeneous Assay (ALPHA Screen), was utilized as external validation of the generated QSAR models. Compounds were categorized into binary classifications through a threshold defined by a Kd less than 1µM for “active” compounds and a Kd more than 1µM for “inactive” molecules.
 
Table 2 Activity characterization of SGC maleimide external validation set
	Kinases
	SLK
	LOK

	SGC maleimide compounds with active classification
	22
	15

	SGC maleimide compounds with inactive classification
	6
	13



Molecular Docking Protocols
Schrodinger GLIDE software was utilized to perform molecular docking of the predicted active compounds. The crystal structures of LOK and SLK were obtained from the Protein Databank through PDB codes 4USE and 4USF respectively. 5 Only one of the monomers from the dimer crystal structure was utilized and the docking site was identified as the pocket in which the co-crystalized ligand resided within, which can be also identified as the ATP binding site. This decision to choose the ATP site to dock compounds was due to the majority of published kinase inhibitors exhibiting competitive inhibition within the ATP binding site (type I inhibition). 4  Since docking scores are relative and change from one protein to the next, ATP-coordinated with magnesium was utilized as a control within each molecular docking project. Predicted compounds from QSAR models were validated to be active against their respective predicted target kinase by scoring a lower docking score than ATP within the docking site. 

Results & Discussion
Balanced ChemBench models RF with ISIDA descriptors

Figure 6 CCR values for ChemBench QSAR models encompassing twenty-six STE20 kinases

Predictions from models with CCR values below 0.6 are not acceptable enough to be considered accurate. Therefore, kinases OSR1, YSK4, MAP4K5, MAP4K1, STK39, YSK1, and TAO1 were not modeled within the balanced ChemBench QSAR models. Only nineteen out of the twenty-six STE20 kinases were able to be modeled with both ChemBench and GUSAR consensus QSAR modeling approaches. The seven kinases not modeled on ChemBench were therefore only predicted using GUSAR models. 


Unbalanced GUSAR models RBF-SCR with MNA descriptors

Figure 7 Q2 values for GUSAR QSAR models encompassing twenty-six STE20 kinases

With each STE20 kinase passing the acceptable threshold of Q2 = 0.6, every kinase was represented in the unbalanced GUSAR modeling approach.  

Predicted compounds & substructures
Out of the 3,257,538 compounds within the VS library, two compounds were predicted to be simultaneously active for SLK and inactive for the other twenty-five STE20 kinases in both ChemBench and GUSAR QSAR models. In contrast, forty compounds were projected by QSAR to be concurrently active for LOK while inactive for the other twenty-five STE20 kinases. Predicted compound names and structures are listed in the Appendix section. Characteristics of the predicted compounds for LOK include pyridine, pyrimidine, and imidazole rings. Of the twenty eight FDA approved small molecule kinase inhibitors, twenty seven (96%) compounds contain these nitrogen heterocyclic rings.20 Another characteristic of the predicted LOK compounds was the existence of methoxy phenyl rings in 90% of the dataset. These hydrophobic methoxy phenyl groups could possibly interact with the hydrophobic pockets near the ATP binding site of LOK while still being able to form hydrogen bonds with main chain amides. 

Analysis of SGC external validation
	Prediction Statistics
	SLK ChemBench
	SLK GUSAR
	LOK ChemBench
	LOK GUSAR

	Sensitivity
	0
	0
	0.32
	0.21

	Specificity
	1
	1
	1
	1

	CCR
	0.5
	0.5
	0.66
	0.60

	Compounds within AD
	22
	28
	28
	28


Table 3 Modeling results of the SGC external maleimide test set

While every QSAR model could predict inactive compounds correctly, both SLK ChemBench and GUSAR models were unable to predict a single active compound within the SGC dataset. Furthermore, only 22 out of 28 compounds in the external set were within the applicability domain cutoff of the SLK ChemBench model to be predicted. The reasoning behind this limited prediction ability is because only one compound within the dataset used to build the SLK models contained the maleimide substructure, CHEMBL366266, with the phenyl group replaced with an indole group. This is in comparison to the ten compounds within the LOK dataset that contains the maleimide structure. The increase in maleimides within the dataset used to produce the LOK ChemBench and GUSAR models is likely the reason for the higher CCR values in respect to the SLK models. Due to the highly specific nature of the SGC maleimide external validation set, containing compounds with high structural similarity but different bioactivity values, a CCR value at or above 0.6 is considered validation that the models created through the consensus LOK GUSAR and ChemBench software has acceptable external dataset accuracy. As future studies, we will rebuild our models including these maleimides to increase both the predictive power and applicability domain of developed QSAR models.

Analysis of docking
[image: C:\Users\Chris\Downloads\ZINC36358443.png] [image: ]
Figure 8 Docking output of predicted compound ZINC36358443 in LOK (PDB 4USE) and ZINC06783186 in SLK (PDB 4USF)

Although there are caveats to docking, such as the static nature of the protein structure and the limits to generating all possible conformational isomers of docking compounds, docking remains a useful tool in identifying lead candidates for drug discovery. Here we have utilized docking to validate the predicted activities of screened ZINC compounds for their respective targets SLK and LOK. Forty ZINC compounds predicted to be selectively active for LOK were docked into the crystal structure of kinase LOK bound with compound SB-633825 (PDB: 4USE). 5 The compound ZINC36358443, which was predicted to be active for LOK but inactive for the rest of the STE20 kinases through QSAR modeling, scored a lower docking score than the control, adenosine triphosphate (ATP). This lower docking score signified that ZINC36358443 had more favorable energy interactions with the protein than ATP, thereby making ZINC36358443 a potential competitor inhibitor of ATP. Shown in Figure 8 are protein ligand interactions between kinase LOK and ZINC36358443. Grey-spheres around the chloro-substituted phenyl ring of ZINC36358443 describe which areas of the docked compound are solvent exposed. With most of ZINC36358443 not exposed to solvent and instead buried deep into the binding pocket of LOK, the kinase-compound complex of LOK and ZINC36358443 can be interpreted as highly favorable. Within Figure 8 a hydrogen bonding between the main chain nitrogen of the Cys113 residue with the furo-pyrrole ring of ZINC36358443 in addition to pi-cation interaction with Lys65 side chain with the methoxy-phenyl ring of ZINC36358443 can also be observed. These specific interactions, that the docked ATP did not make with LOK, could be a sign of the selectivity of ZINC36358443 to differentially inhibit LOK over other STE20 kinases. Consequently, the docking output of LOK with ZINC36358443 validates the predicted ChemBench and GUSAR QSAR highly selective activity of ZINC36358443 against LOK.

Conclusions and Future Directions
QSAR has been utilized by researchers to increase efficiency of drug discovery, predict toxic substances for regulatory purposes, and even drug re-purposing. 21, 22 This experiment has demonstrated that QSAR can also be applied to discovering a selective chemical probe for understudied kinases. We have shown that two compounds for SLK and forty compounds for LOK could be predicted active towards their target while concurrently predicted inactive towards off-target kinases through combinatorial QSAR modeling with validated QSAR techniques. Docking of the predicted structures have confirmed that the QSAR predicted active compounds indeed show activity, as demonstrated by higher affinity than ATP, toward their target kinases. Consequent development of these lead compounds that selectively inhibit SLK or LOK can allow researchers to further study the role in cell cycle regulation and apoptosis of these kinases in vivo.

Predicted inhibitors selective for LOK or SLK will be experimentally validated by our collaborators in the UNC Structural Genomics Consortium. Due to cost, 12 compounds (2 for SLK and 10 for LOK) will be submitted for synthesis and use in the ALPHA screen assay to test binding affinity. From our combinatorial QSAR modeling and molecular docking results, we are confident that compounds sent to SGC will not only be active towards SLK or LOK but also inactive towards twenty-five kinases within the STE20 family.
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