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Background: We and others have shown that the gamma
tocopherol (gT) isoform of vitamin E has multiple anti-
inflammatory and antioxidant actions and that gT
supplementation reduces eosinophilic and endotoxin
(LPS)-induced neutrophilic airway inflammation in animal
models and healthy human volunteers.
Objective: We sought to determine whether gT
supplementation reduces eosinophilic airway inflammation and
acute neutrophilic response to inhaled LPS challenge in
volunteers with asthma.
Methods: Participants with mild asthma were enrolled in a
double-blinded, placebo-controlled crossover study to assess the
effect of 1200 mg of gT daily for 14 days on sputum eosinophils,
mucins, and cytokines. We also assessed the effect on acute
inflammatory response to inhaled LPS challenge following gT
treatment, focusing on changes in sputum neutrophilia, mucins,
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and cytokines. Mucociliary clearance was measured using
gamma scintigraphy.
Results: Fifteen subjects with mild asthma completed both arms
of the study. Compared with placebo, gT notably reduced
pre-LPS challenge sputum eosinophils and mucins, including
mucin 5AC and reduced LPS-induced airway neutrophil
recruitment 6 and 24 hours after challenge. Mucociliary
clearance was slowed 4 hours postchallenge in the placebo
group but not in the gT treatment group. Total sputum mucins
(but not mucin 5AC) were reduced at 24 hours postchallenge
during gT treatment compared with placebo.
Conclusions: When compared with placebo, gT
supplementation for 14 days reduced inflammatory features of
asthma, including sputum eosinophils and mucins, as well as
acute airway response to inhaled LPS challenge. Larger scale
clinical trials are needed to assess the efficacy of gT supplements
as a complementary or steroid-sparing treatment for asthma. (J
Allergy Clin Immunol 2018;141:1231-8.)

Key words: Asthma, endotoxin, eosinophil, lipopolysaccharide,
mucin, mucociliary clearance, neutrophil, tocopherol, vitamin E

Asthma is among the most prevalent chronic diseases in the
United States1 and represents a source of significant burden to
patients and health care systems. Environmental pollutant
exposure is a known trigger for asthma exacerbations, which are
characterized by airway inflammation, bronchoconstriction,
increased production of airway mucous, and decreased
mucociliary clearance (MCC) with formation of mucous plugs.2,3

Endotoxin (the main component of which is LPS) is commonly
encountered in ambient air particulate matter as well as in
domestic and occupational settings and has been linked to
asthma severity.4-6Endotoxin is a potent stimulatorof the innate im-
mune response,7 signaling through Toll-like receptor 4 on airway
macrophages to stimulate production of inflammatory cytokines
and eicosanoids, recruitment of granulocytes, and production
of gel-forming airwaymucins, includingmucin 5AC (MUC5AC).8

Airway inflammation during acute exacerbations of asthma is
often characterized by increase in both airway eosinophils and
neutrophils.9 Neutrophilic airway inflammation is particularly
evident in viral asthma exacerbations as well as in some chronic
asthma phenotypes.10 Our group has shown that inhaled LPS
challenge induces airway neutrophilia in human volunteers, and
we now employ this procedure as a model of acute exacerbation
of airway disease against which potential therapies can be
tested.11-13 We have previously demonstrated that inhaled
fluticasone propionate administered for 2 weeks decreased
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sputum eosinophilia and subsequent LPS-induced acute airway
neutrophilia in asthmatics.14 In subsequent studies, we have
shown that treatment with the IL-1 receptor antagonist, ana-
kinra,15 and the vitamin E isoform, gamma tocopherol (gT)16

also attenuated LPS-induced airway neutrophilia in healthy
volunteers.
Our hypothesis that vitamin E supplementation decreases

airway inflammation in asthma and allergic airway disease was
inspired by epidemiologic evidence suggesting that increased
dietary vitamin E intake is associated with reduced incidence of
allergic disease17-19 and asthma.20 Among the isoforms of
vitamin E that have been suggested as asthma interventions are
a-tocopherol (aT), which is commonly used as both a supplement
and pharmaceutical product, and gT, the predominant isoform of
vitamin E found in dietary sources. Intervention trials of aT in hu-
mans with asthma have been generally disappointing.21,22

gT has not been as vigorously studied for airway disease. gT
and its primary metabolite 2,7,8-trimethyl-2-(B-carboxy-ethyl)-
6-hydroxychroman (g-CEHC) do have a number of unique anti-
inflammatory actions,23,24 including scavenging reactive nitrogen
species to form 5-nitro-g-tocopherol24 and inhibition of COX-2
and 5-lipooxygenase, reducing inflammatory eicosanoid produc-
tion.25 We have pursued a program of preclinical and early phase
clinical trials of gTas a novel therapeutic for treatment of airway
inflammation.25-29 In a rodent model of evoked airway inflamma-
tion, gT reduced allergen-induced eosinophilia and mucin re-
sponses27 as well as LPS-induced neutrophil, prostaglandin E2,
and mucin responses (including MUC5AC).29 We subsequently
observed that 1 week of treatment with a gT-enriched mixed
tocopherol preparation reduced the neutrophilic response to
inhaled LPS challenge in a phase I randomized, double-blinded,
placebo-controlled crossover study of healthy adults.16 This
report describes our next step in assessing gT as an intervention
for asthma, in which we test the hypothesis that gT reduces eosin-
ophilic airway inflammation and attenuates the neutrophilic
airway response to inhaled LPS challenge in volunteers with
mild asthma.
METHODS

Volunteer recruitment and inclusion criteria
We recruited subjects aged 18 to 50 years with a history of episodic

wheezing or shortness of breath consistent with asthma or physician-

diagnosed asthma classified as mild intermittent or mild persistent asthma

as defined by the National Heart, Lung, and Blood Institute guidelines for the

Diagnosis and Management of Asthma.30 Exclusion criteria included any of

the following: daily albuterol use, nighttime asthma symptoms more than

once per week, or emergency treatment for asthma within the previous

12 months. As sputum inflammatory cell measures were a central endpoint

in this study, all subjects were screened for their ability to provide an adequate

induced sputum sample during their screening session, defined by

>250,000 cells, >50% viability, and <40% squamous cells.
Prior to study entry, subjects underwent a general health screen including a

detailed medical history, physical exam, baseline laboratory evaluation,

spirometry, and allergy skin testing to common aeroallergens including house

dustmite, cockroach, treemix, grassmix,weedmix,molds, cat, dog, guinea pig,

rabbit, rat, andmouse allergens.Awheal sizeof 3mmorgreater than the negative

control was considered positive. Subjects who were found to be pregnant,

nursing an infant, regularly taking anti-inflammatory or immune-modulating

medications, or with a history of abnormal blood coagulation parameters were

excluded. This study was approved by the University of North Carolina

Institutional Review Board and the US Food and Drug Administration (IND

13004) and is listed on ClinicalTrials.gov (NCT02104505).
Study design
Subjects were randomized to 1200 mg gT or placebo (safflower oil)

treatment for 14 days (Fig 1), a study period similar to that used to assess the

effect of fluticasone propionate on airway response to LPS challenge in asth-

matics. The gT supplement consisted of gel tabs each containing 612 mg gT,

7 mg aT, 28 mg b-tocopherol, and 8 mg d-tocopherol (Callion Pharma, Inc,

Jonesborough, Tenn), and subjects were instructed to take 2 gel tabs once daily

with a meal to maximize bile secretion and enhance absorption. Medication

bottles were returned and any leftover pills were counted on the day of LPS

challenge to ensure adherence. Twenty-four to 48 hours prior to LPS chal-

lenge, subjects presented for sputum induction and gamma scintigraphy to

measure MCC. On day 14 of dosing, subjects underwent inhaled LPS chal-

lenge with 20,000 endotoxin units of Clinical Center Reference Endotoxin,

with MCC measurement performed 4 hours postchallenge and sputum induc-

tion at 6 and 24 hours postchallenge. Sputum was analyzed for granulocytes,

inflammatory cytokines, andmucin content as previously described.31-34 After

a minimum 3-week washout to allow for clearance of inflammatory cells from

the airways, subjects were crossed over to the alternate treatment group. Veni-

puncture was performed at regular intervals for assessment of prothrombin

time, activated partial thromboplastin time, and international normalized ratio.
Randomization and masking
The randomization list was prepared by a biostatistician using SAS 9.4

(SAS Institute, Cary, NC) and provided to the University of North Carolina

Investigational Drug Service. Only the pharmacist and statistician had access

to the randomization schedule. Subjects were randomized to treatment groups

1:1 using permuted blocks of 4. gT and safflower oil (placebo) gel tabs were

identical in appearance and were dispensed as a 7-day supply from the

Investigational Drug Service to the study staff. Subjects returned for a follow-

up visit to receive the additional 7-day supply of investigational drug for that

period.
Endotoxin inhalation challenge
Clinical Center Reference Endotoxin, referred to as LPS, was provided by

the National Institutes of Health Clinical Center. All doses were prepared by

the Investigational Drug Service and inhaled by subjects as a nebulized

preparation using a DeVilbiss Ultraneb 99 ultrasonic nebulizer (DeVilbiss,

Port Washington, NY).12,16
Sputum induction, processing, and mediator

measurement
Each subject provided 7 induced sputum samples (Fig 1): screening (prior to

placebo or active treatment), 24 to 48 hours prior to each LPS challenge session

(posttreatment sputum), and 6 and 24 hours after each LPS challenge session

(postchallenge sputum). Induced sputum samples were processed as previously

described.31-34 Cell viability (trypan blue exclusion) and total cell counts were

assessed in a Neubauer hemacytometer (Fisher Scientific, Hampton, NH), and

differential cell counts were performed on cytocentrifuged cells stained with a

modified Wright stain (Hema-Stain-3; Fisher Scientific, Hampton, NH). Cyto-

kines from sputum supernatants were measured using multiplex technology

(Meso Scale Discovery/MSD, Gaithersburg, Md). Each sample was analyzed

http://ClinicalTrials.gov
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FIG 1. Phase IIa crossover study design in volunteers with mild asthma (n 5 15). Randomized, placebo

controlled crossover study of gT supplement or safflower oil placebo in 15 subjects with mild asthma.

Subjects were challenged with inhaled LPS followed 4 hours later by gamma scintigraphy to measure MCC

and 6 hours later by sputum induction.
with the V-PLEX Human Proinflammatory Panel II kit (Meso Scale). Even

though ability to provide adequate sputum for analysis was an entrance criterion,

therewere instances during the study inwhich a subjectwas not able to provide a

sputum sample or provided a poor-quality sputum sample. In these instances,

these volunteers were excluded from analysis of the effect of active treatment

on airway inflammation. These volunteers were included in assessment of

MCC and safety end points for the study.
Gamma scintigraphy for measurement of MCC
The procedure used for measuring MCC in humans has been described in

detail previously.35,36 Briefly, volunteers inhaled an aerosol of technetium Tc

99msulfur colloid using a slow inhalation (80 mL/sec), large particle (9.5 mm

mass median aerodynamic diameter) method.37 Immediately following inha-

lation of the radioaerosol (duration of <5 minutes), an initial deposition scan

was recorded (sum of two 2-minute images) and then continuous 2-minute im-

ages were recorded for a period of 2 hours to monitor clearance of particles

from the lung as the subject remained seated in front of the gamma camera.

Subjects returned the following day after the radiolabeled aerosol exposure

to obtain a 30-minute scan of 24-hour lung activity/retention.

A whole lung region of interest bordering the right lung (created from a

Co57 transmission lung scan37) was used to determine, by computer analysis,

the whole lung retention (decay and background corrected) as a fraction of the

initial counts in the right lung, over the 2-hour clearance period at 10-minute

intervals. MCC was calculated and expressed as average clearance in percent

over the 2-hour period.35 Because measures of MCC can be influenced by the

initial, regional lung deposition of the inhaled radioaerosol, we also calculated

(1) the central/peripheral ratio of activity and (2) the skew of the counts/pixel

versus number of pixels histogram for the initial 2-minute image from each

study visit.35,38
Analysis of serum tocopherols and g-CEHC
aT, gT, d-tocopherol, and 5-nitro-g-tocopherolweremeasured by anHPLC

assay with electrochemical detection,39 and g-CEHC was analyzed using

liquid chromatography tandem mass spectrometry as previously described.40
Analysis of sputum mucins
To measure total mucins, a 100 mL aliquot of induced sputum was

solubilized in 6MGuHCl and subjected to differential refractometry

(tREX, Wyatt Technology, Goleta, Calif) coupled with size exclusion

chromatography as described previously.41 Individual concentration of

MUC5AC was measured by labeled mass spectrometry method using

deuterium-labeled MUC5AC peptide standards.
Statistical analysis
We employedmethods similar to those used in our initial study of the effect

of gT in healthy volunteers.16 The primary end points of the study were airway

eosinophilia (defined as the difference in sputum eosinophils present in post-

treatment samples) and LPS-induced airway neutrophilia (defined as the

change in induced sputum neutrophils (PMNs) from posttreatment to 6 hours

postchallenge), comparing gT treatment with placebo.
In planning this study, we were guided by the results of our previous study

of gT-enriched supplementation on airway PMN response to LPS challenge in

13 healthy volunteers.16 Based on these data, we estimated that a sample size

of 30 volunteers would be adequate for this study, with an a priori plan to un-

dertake an interim analysis after 15 volunteers completed this study. As

planned and approved by Institutional Review Board and US Food and

Drug Administration review, the interim analysis would lead us to stop the

study due to demonstration of futility or statistically significant support of

the hypotheses that gT inhibits airway eosinophilia and LPS-induced

neutrophilia, or continuation of the study to n5 30 due to inconclusive interim

results.

For initial posttreatment versus postchallenge comparisons of sputum

end points and MCC within each treatment group, paired t tests or

Wilcoxon signed rank tests (depending on whether the normality

assumption was met) were employed. Data that were not normally

distributed were transformed using Box-Cox transformation. Given the

crossover design of our study, we next determined the gT treatment effect

(compared with placebo) on posttreatment sputum end points and on

LPS-induced changes (D postchallenge – posttreatment) in sputum end

points using a linear mixed model approach described by Jones and

Kenward42 that considers the above-mentioned individual tests in a global,

unified way where all data are used at the same time. SAS PROC MIXED

was used to fit the linear mixed model. Criterion for significance was taken

to be P <_ .05.
RESULTS

Subject demographics
Twenty-three subjects with mild asthma were enrolled and

underwent randomization. Based on frequency of daytime and
nighttime symptoms and use of rescue albuterol, 22 subjects were
classified as having mild intermittent asthma. One subject was
classified as having mild persistent asthma and was using
montelukast daily at the time of enrollment. However, this subject
withdrew from the study prior to inhaled LPS exposure. No
subjects were using inhaled corticosteroids at the time of
enrollment or at any point during the study. The majority of
participants were atopic (74%) based on the results of skin prick
testing. Demographic characteristics of the study population are
shown in Table I. Fifteen subjects completed both arms of the
crossover study (see Fig E1 in the article’s Online Repository at
www.jacionline.org), with 13 providing adequate sputum for
assessment of the primary sputum inflammatory end points for
both treatment periods.
gT supplementation increased serum gT and

g-CEHC concentrations
Serum gT and g-CEHC concentrations rose significantly

from baseline values in the active treatment group
only (P < .0001 for both) (Table II). Conversely, aT

http://www.jacionline.org


TABLE I. Demographic characteristics of enrolled study vol-

unteers (N 5 23)

Age (y), median (range) 26 (20-47)

Sex (female/male) 19/4

Race

Caucasian 15

African American 4

Asian 2

Native American 2

Ethnicity

Hispanic 1

Non-Hispanic 22

Atopic, n (%) 17 (74)

BMI (kg/m2), median (range) 26 (20-42)

FEV1 (L), median (range) 3.3 (2.4-4.4)

FEV1 % predicted, median (range) 97 (83-109)

BMI, Body mass index.
concentrations decreased from baseline in the active treatment
group (P 5 .003).
gT treatment reduced posttreatment sputum

eosinophils and mucins
Using the linear mixed model approach, we found that gT

treatment significantly reduced posttreatment sputum percentage
of eosinophils (P5 .04) and eosinophils per milligram of sputum
(P 5 .01) compared with placebo (Fig 2, A and B). Likewise, gT
treatment significantly reduced posttreatment total mucins
(P 5 .03) and MUC5AC content (P < .0001) compared with pla-
cebo (Fig 2, C and D).
gT treatment attenuated LPS-induced sputum

neutrophilia
Inhaled LPS challenge significantly increased sputum percent-

age of neutrophils (%PMNs) (P5 .003) and neutrophils per milli-
gram (PMNs/mg) of sputum (P 5 .01) at 6 hours compared with
posttreatment sputum during the placebo period. The increase
during the placebo period (%PMNs: D 20.1 6 16.5%, P < .01;
PMNs/mg D 384.1 6 531.2, P < .01) was greater than that seen
during the active period (%PMNs: D 11.7 6 20.7%, P 5 .04;
PMNs/mg: D 236.2 6 692.7, P 5 .2). Linear mixed modeling
demonstrated that gT treatment (compared with placebo) signif-
icantly attenuated sputum %PMNs at both 6 (P 5 .04) and
24 hours (P 5 .02) after LPS challenge (Fig 3, A and B). There
was no effect of inhaled LPS challenge or gT treatment on any
measure of sputum eosinophilia following LPS challenge.
gT effects on airway mucin production and MCC
MUC5AC content was significantly increased from posttreat-

ment levels in both treatment groups 6 hours after inhaled LPS
challenge (P 5 .001 [placebo], P 5 .0004 [active]). By 24 hours
post-LPS challenge, total sputum mucins decreased in both
treatment groups compared with prior to LPS challenge, though
not significantly. Using linear mixed modeling to assess for a
treatment affect, we detected significantly less total sputum
mucins during the active treatment period compared with the total
associated with placebo use (P 5 .03) (Fig 3, C). We found no
significant difference in MUC5AC concentrations between the
treatment groups at the same time point (data not shown).
As an exploratory measure, we assessed how gT intervention
may impact MCC. MCC was measured prior to and 4 hours after
LPS challenge. There were no differences in regional deposition
indices (central/peripheral ratio or skew) nor in 24-hour retention
between posttreatment and postchallenge measurements for
either treatment period. MCC was significantly slowed following
LPS challenge compared with posttreatment measurements for
the placebo treatment period (MCC5 16.36 9.3% postchallenge
vs 21.46 6.9% posttreatment, P < .01) (Fig 4). In contrast, there
was no such slowing of MCC by LPS challenge during active
treatment (MCC 5 20.2 6 8.0% postchallenge vs 21.4 6 9.7%
posttreatment, P 5 .6). However, for this new end point, the
sample size was not adequate to definitively ascribe a treatment
effect for gT on LPS-induced slowing of MCC when accounting
for period and carryover effects.
gT treatment did not impact LPS-induced changes

in sputum TH1 cytokines
During the placebo period, sputum IL-1b and IL-8

concentrations were significantly increased 6 hours post-LPS
challenge compared with posttreatment values (P 5 .002 and
P5 .01, respectively), while no significant LPS-induced increase
was observed during the active treatment period (P 5 .07 and
P 5 .40, respectively). There was no significant LPS-induced
change in sputum IL-6 concentration during either treatment
period. Compared with placebo treatment, we did not detect a
significant gT treatment effect on LPS-induced inflammatory
cytokine concentrations in sputum following LPS challenge.
Adverse events
No serious adverse events occurred during the study period.

The most commonly reported symptoms were gastrointestinal in
nature. During the active treatment period, 21.7% of subjects
reported nausea and 26% reported diarrhea or loose stools,
compared with 8.7% and 4.3% during the placebo treatment
period, respectively. These symptomswere typically transient and
tended to occur during the first or second day of treatment and
then self-resolved. One subject chose to discontinue study
participation due to intolerable diarrhea during the active
treatment period. No significant change in prothrombin time,
activated partial thromboplastin time, or international normalized
ratio was observed, and there were no reported bleeding events
during the study. After completion of 14 days of active treatment,
no clinically or statistically significant changes were seen in FEV1

or FEV1/forced vital capacity from measurements taken during
the initial baseline visit.
DISCUSSION
The primary goal of this proof-of-concept study was to

determine whether gT supplementation in adults with asthma
decreases airway eosinophilia as well as the inflammatory
response to inhaled LPS, a model of neutrophil-predominant
asthma exacerbation. Our results demonstrate that asthmatics
treated with gT supplementation for 14 days had significantly
reduced eosinophils in sputum when compared with those
receiving placebo treatment. These findings suggest that gT
may reduce baseline TH2-mediated airway inflammation, which
could be beneficial for eosinophilic asthma phenotypes. We also



TABLE II. Serum concentrations of tocopherols and g-CEHC from 18 volunteers with mild asthma

Baseline Placebo treatment period Active treatment period

gT (mmol/L) 2.6 (1.43-6.22) 3.69 (1.65-8.82) 19.8 (2.49-50.15)*

aT (mmol/L) 25.41 (14.72-37.81) 25.22 (18.48-52.65) 19.04 (11.07-36.52)*

dT (mmol/L) 0.09 (0.01-0.68) 0.12 (0.04-0.4) 0.26 (0.06-0.6)

g-CEHC (mmol/L) 0.14 (0.05-0.45) 0.17 (0.07-1.4) 3.11 (0.08-7.82)*

5-NO2-gT (mmol/L) 0.01 (0-0.07) 0.02 (0-0.07) 0.01 (0-0.05)

Data represented as medians (ranges).

5-NO2-gT, 5-nitro-g-tocopherol; dT, d tocopherol.

*P < .05 comparing baseline concentrations to those obtained after 14 days of gT supplementation. Analyses were performed using paired t tests for gT and aT data and by

Wilcoxon matched pairs signed rank test for dT and g-CEHC data as they were not normally distributed.

FIG 2. gT reduced posttreatment sputum eosinophils and mucins (n 5 13). Sputum %eosinophils (A),

sputum eosinophils/mg (B), total sputum mucins (C), and sputum MUC5AC concentrations (D) were

reduced in posttreatment sputum samples during active treatment compared with placebo treatment.
found that, compared with placebo, gT treatment was associated
with lower posttreatment sputum mucins, including the inducible
mucin glycoprotein, MUC5AC, which has been found in high
concentrations in mucous plugs from fatal asthma cases.43

Ex vivo gT treatment was previously found to inhibit IL-13-
induced secretion of eotaxin from airway epithelial cells, a potent
chemotactic factor for eosinophils.44 Given that mucin
production is enhanced by IL-13, similar mechanisms may
account for the impact of gT on mucin production as well.

We also found that gT treatment attenuated neutrophilic airway
response to inhaled LPS challenge. Neutrophilic airway
inflammation is often less responsive to corticosteroid
treatment,45 and there is a great unmet need for nonsteroidal
therapies that target this specific type of inflammation. While
we found no significant difference in sputum mucins between
the treatment periods at 6 hours post-LPS challenge, total mucins
were significantly lower at 24 hours with gT treatment, which
could suggest faster recovery from mucin hypersecretion
following an acute inflammatory challenge.
We observed a significant impairment of MCC following

inhaled LPS challenge during the placebo treatment period but
not during the gT treatment period. We have previously found a
slowing ofMCC by LPS challenge in healthy nonsmokers35 and a
trend toward slowing in mild asthmatics that was confounded by
regional deposition differences between baseline and post-LPS
challengeMCC (unreported).38While this study was not powered
to detect a significant treatment effect of gT on MCC, our results
do suggest that gT reduces LPS-induced slowing of MCC, and
warrants further study. The mechanism by which inhaled LPS
slows MCC is not understood, but it may be related to quantity
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FIG 3. gT attenuated LPS-induced sputum neutrophilia and mucin produc-

tion (n5 13). Sputum%PMNs at 6 hours (A) and 24 hours (B) postchallenge

were significantly reduced during active treatment compared with placebo.

C, Total sputum mucins at 24 hours postchallenge were significantly

reduced during active treatment compared with placebo treatment.

FIG 4. gT was associated with attenuation of LPS-induced changes in MCC

(n 5 15). MCC is represented as mean retention versus time at posttreat-

ment and 4 hours postchallenge for each treatment group. Inhaled LPS

challenge resulted in significant slowing of MCC after placebo treatment,

but no significant effect on MCC was seen after gT treatment.
or quality of sputummucins, epithelial tethering of mucins, direct
effects on ciliary function, or a combination of these factors.43

The gT supplement used in our study given daily over a 2-week
period resulted in significantly increased serum concentrations of
gT and its primary active metabolite g-CEHC but with reduced
serum aT concentrations by an unknown mechanism. This
finding is consistent with previous studies of gT supplementation
effects on reducing aT plasma concentrations,46 including one
conducted by our group that demonstrated reduced aT
concentrations in serum following a 3-dose regimen of an iden-
tical gT supplement administered over a 24-hour period.47 It is
unknown whether continued gT supplementation would result
in further decline in aT concentrations, nor is it known what
the long-term physiologic consequences of this decline would be.
While our work has consistently demonstrated a beneficial

effect of gT on airway inflammation, others have proposed a
proinflammatory role for gT based primarily on human
observational or animal model studies. In a cross-sectional study
of young adults enrolled in the Coronary Artery Risk
Development in Young Adults (CARDIA) cohort, higher serum
aT levels were associated with higher lung function values (FEV1

and forced vital capacity), while higher serum gT levels were
associated with lower FEV1 and forced vital capacity values.48

While the results of this epidemiological study are intriguing,
the correlation between serum gT levels and lung function may
reflect gT as a risk factor or biological marker for lung function.
Furthermore, others have shown that dietary vitamin E, at least
70% of which is composed of gT, was associated with increased
FEV1 in older adults

49 and may be protective against adult-onset
asthma.20 It is important to emphasize that these studies were not
intervention trials, and several potential confounding factors
could have influenced their results, including differences in intake
of dietary fats. For example,gT-rich oils tend to have higher levels
of polyunsaturated fatty acids, which may contribute to certain
disease states, whereas aT-rich oils contain predominantly mono-
unsaturated fatty acids, which have more health benefits.50

Although further studies are needed to address the long-term
impact of gT supplementation on airway inflammation, our
2-week dosing regimen with gT had no impact on spirometry
measurements.
There are very few published human trials of gT

supplementation in the context of airway inflammation
prevention and/or treatment. Vitamin E has been studied for
prevention and treatment of many chronic health conditions,51-54



yet human trials in asthma have yielded conflicting results and 
have focused on treatment with aT, the most abundant 
tocopherol isoform in widely available supplements. In contrast 
to the results presented here, studies utilizing murine models 
found that gT supplementation exacerbated eosinophilic 
inflammation, while aT supplementation conferred 
protection.55,56 It is possible that these conflicting reports reflect 
species-dependent differences in the anti-inflammatory effects of 
gT. Previous work from our group demonstrates that gT 
supplementation reduces airway eosinophilia in humans16 and 
rodents.27,28 This is in agreement with our current study, in which 
short-term dosing with gT exhibits acute anti-eosinophilic and 
anti-inflammatory properties in human subjects. These results, 
coupled with evidence that gT has unique anti-inflammatory 
properties compared with aT (including the ability to scavenge 
reactive nitrogen species24 and inhibit COX-2 and 5-
lipooxygenase25) supports the use of gT-enriched vitamin E 
preparations as a potential intervention for acute exacerbation, 
pollution induced disease, and possibly even chronic allergic 
diseases. These findings support conducting larger trials with gT 
supplementation in volunteers with asthma to further evaluate its 
role in modulating features of asthma.

This early phase clinical trial has several limitations. Our 
participants were predominantly female, which could reduce the 
generalizability of our results. The study population was 
somewhat heterogeneous with both atopic (74%) and nonatopic 
(26%) participants, and based on our safety criteria to undergo 
inhaled LPS challenges, had mild asthma. Given that the 
supplementation period only lasted 2 weeks, the longer-term 
effect of reduced serum aT levels noted with gT 
supplementation will have to be further studied for safety and 
efficacy in treating chronic airway inflammation. Our dosing 
regimen was generally well-tolerated, though early, transient 
gastrointestinal symptoms occurred in about one-fourth of 
participants studied. Additionally, we saw no prolongation of 
blood coagulation measurements, and no significant bleeding 
events were reported. The occurrence of early gastrointestinal 
side effects and potential need for both long-term and short-term 
treatment regimens suggests that dose ranging studies need to be 
done. Finally, the impact of body mass index on driving 
treatment responses to LPS will have to be further evaluated, 
given that we have previously shown that increased BMI is 
associated with sputum neutrophil recruitment to inhaled LPS 
among atopic subjects with asthma.57

In conclusion, we have shown that a 14-day course of gT 
supplementation resulted in reduced eosinophilic inflammation 
of the airways and reduction in sputum mucins including 
MUC5AC. Additionally, gT supplementation reduced LPS-
induced neutrophilic airway inflammation and mucinous 
content of sputum following inhalation challenge and was 
associated with reduced impact of LPS on MCC. Overall, our 
results with 2 weeks  of gT supplementation were similar to 
the effects of 2 weeks of treatment with inhaled fluticasone 
propionate on both posttreatment sputum eosinophilia and acute 
neutrophilic response to inhaled LPS challenge.14 Taken 
together, these observations indicate that gT has potential to 
treat multiple features of asthma, including airway inflamma-
tion, mucous production, and clearance of mucous from the 
airways, and should be studied further in larger-scale clinical 
trials to investigate the efficacy of gT for improving asthma 
outcomes.
We are grateful to Jihong Wu and Dr John Lay, PhD, for their assistance

in acquisition and analysis of MCC data. We are also grateful to Martha

Almond, RRT, for her assistance with study visits and regulatory

documentation.

Key messages

d gT supplementation in mild asthmatics reduced sputum
eosinophils and mucins compared with placebo in a
fashion similar to that of inhaled fluticasone propionate
and may have a role in reducing TH2-mediated
inflammation.

d gT reduced the neutrophilic inflammatory response to
inhaled LPS challenge compared with placebo and may
represent a useful therapy for neutrophil-predominant
asthma exacerbation.
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Excluded (n=2):
• Not mee ng inclusion criteria (n=2)

Assessed for eligibility (n=25) 

Allocated to γT (n=12)
• Discon nued interven on

(diarrhea; asthma/ allergy flare) 
(n=2)

Included in analysis of principal 
endpoints  (n=7)

Randomized (n=23)

Period 1

Period 2

Allocated to placebo (n=11)
• Withdrew consent prior to 

receiving treatment (n=1)
• Lost to follow up (n=1)
• Discon nued interven on 

(exclusionary condi on) (n=1)

Included in analysis of principal 
endpoints  (n=8)

Allocated to γT (n=8)
• Discon nued interven on (moved 

from area) (n=1)

Allocated to placebo (n=10)
• Discon nued interven on 

(personal reasons, asthma/ allergy 
flare) (n=2)

FIG E1. CONSORT diagram outlining subject randomization and participation in a phase IIa crossover study

of volunteers with mild asthma.
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