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Abstract

This work describes the coupling of the IR-MALDESI imaging source with the Q Exactive mass 

spectrometer. IR-MALDESI MSI was used to elucidate the spatial distribution of several HIV 

drugs in cervical tissues that had been incubated in either a low or high concentration. Serial 

sections to those analyzed by IR-MALDESI MSI were homogenized and analyzed by LC-MS/MS 

to quantify the amount of each drug present in the tissue. By comparing the two techniques, an 

agreement between the average intensities from the imaging experiment with the absolute 

quantities for each drug was observed. This correlation between these two techniques serves as a 

prerequisite to quantitative IR-MALDESI MSI. In addition, a targeted MS2 imaging experiment 

was also conducted to demonstrate the capabilities of the Q Exactive and to highlight the added 

selectivity that can be obtained with SRM or MRM imaging experiments.
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Introduction

Mass spectrometry imaging (MSI) is a method by which mass spectra are generated from 

discrete locations in a two dimensional array across a sample surface.[1] This combination 

of spatial information with the specificity and sensitivity of mass spectrometric detection 

make MSI a valuable tool in a variety of scientific fields.[2-9] One such example is the 

potential that MSI has demonstrated in the analysis of pharmaceuticals in tissue sections.

[10-12] Knowledge of the distribution of a drug, and in some cases its metabolites, within 

certain compartments or sub-compartments of a particular tissue can have numerous 

implications in the areas of drug pharmacokinetics and pharmacodynamics.[13-14] Whole-
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body autoradiography (WBA) is the predominant technique for the determination of drug 

distribution in tissue.[15] While WBA is a valuable quantitative technique, it shares an 

inherent flaw with all radiolabeled studies in that it only follows the distribution of the 

radiolabel and provides no information as to which form of the drug is being detected 

(parent or metabolite). Given that MSI is based on mass spectrometric detection, it is 

capable of distinguishing between the parent drug and its metabolites. Perhaps one of the 

most enticing attributes of MSI is its label-free nature that precludes the use of expensive 

radiolabels and allows for the simultaneous analysis of xenobiotics and endogenous 

compounds in a single global experimental approach. In some cases the additional 

knowledge gained from endogenous distributions can provide valuable insight on the impact 

of the drug on the local environment, implications for site-specific efficacy and toxicity, and 

can be used to identify certain histological features.[11, 16-18] MSI is befitting to drug 

discovery and development where the early understanding of preclinical drug distribution 

(and without requiring a radiolabel) can improve efficiency by narrowing the list of potential 

candidates.

Matrix-assisted laser desorption/ionization (MALDI) is perhaps the most common ionization 

technique that is currently used for MSI. Several characteristics of MALDI that make it a 

suitable match for MSI include its high sensitivity and small spot size which are 

prerequisites for high spatial resolution imaging.[19] There are, however, several issues 

regarding this technique including the requirement that the sample must be amenable to high 

vacuum as well as the extensive sample preparation that is involved prior to analysis.[20-21] 

Other ionization methods such as desorption electrospray (DESI), liquid extraction surface 

analysis (LESA), and matrix-assisted laser desorption electrospray ionization (MALDESI) 

have demonstrated promise for pharmaceutical tissue imaging with little to no prior sample 

preparation.[22-24]

MALDESI refers to any technique which involves resonant excitation of an endogenous or 

exogenous matrix to facilitate analyte desorption followed by post-ionization through ESI. 

The matrix described here refers to any molecule present in large excess that strongly 

absorbs the laser energy and leads to analyte ejection.[25] The first MALDESI publication 

was presented in 2006 by Muddiman as proof of principle using a UV laser (UV-

MALDESI) and a ubiquitin solution mixed with an organic acid matrix.[26] This resulted in 

the detection of multiply charged ubiquitin with a charge state distribution that was 

indistinguishable from that obtained by direct infusion ESI which affirmed electrospray 

post-ionization in the MALDESI mechanism. Muddiman, as well as several other research 

groups, have also explored the utility of other laser wavelengths for MALDESI in each case 

utilizing a matrix that strongly absorbed within the wavelength region of the laser emission.

[27-31] An exciting combination arose with the use of a Mid-IR laser (2.94 μm) with 

endogenous or exogenous water as the laser energy absorbing matrix (IR-MALDESI) which 

offers certain intrinsic benefits including the lack of matrix interference in the mass spectra 

and the natural occurrence of water in most biological samples. While the use of water as a 

matrix for IR laser desorption was not an entirely new concept,[32] ion yields for IR-

MALDI using ice were typically low.[33] Thus, post-ionization of the larger fraction of 

neutral molecules in the ablation plume using ESI could result in improved ion yields.[34] 

MSI using laser ablation electrospray ionization (LAESI), an analogue of IR-MALDESI, has 
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been presented using the endogenous water in the tissue as a laser energy absorbing matrix.

[35] However, we have found that depositing a uniform ice matrix over the sample surface 

provides improved reproducibility from pixel to pixel resulting in higher image quality.[24, 

36-37]

Due to the complex nature of biological tissue samples, MSI techniques rely heavily on the 

mass spectrometer to resolve species by m/z. Several groups have demonstrated the utility of 

coupling imaging sources with high resolving power mass spectrometers in order to resolve 

several unique species with the same nominal mass that often times have different spatial 

distributions.[11, 19, 36, 38-42] The primary benefits to imaging with Fourier transform 

(FT) mass spectrometers include not only the ability to increase the spectral peak capacity 

but also the ability to obtain accurate mass measurements that improve the confidence of ion 

identification. However, due to the relatively slow acquisition rates, FT imaging can be a 

time consuming process. The hybrid quadrupole orbitrap mass spectrometer (Q Exactive) 

has several unique features that make it highly amenable to MSI.[43] In addition to using the 

enhanced FT (eFT) to reduce the required transient times, the Q Exactive also allows for 

multiplexing capabilities to improve the overall duty cycle. Several groups demonstrated the 

application of the Q Exactive for MSI.[44-46]

The use of MSI to visually evaluate the distribution of drugs in tissue is of particular interest 

in the field of human immunodeficiency virus (HIV), an intracellular infection primarily of 

CD4+ T cells. In this disease, current limitations in assessing mucosal tissue antiretroviral 

drug distribution have slowed the progress of small molecule research in the prevention of 

HIV infection.[47] Moreover, an understanding of antiretroviral distribution in HIV tissue 

reservoirs, where low-level viral replication may still be occurring in the face of clinically 

effective antiretroviral therapy[48] will form the foundation of successful eradication 

strategies. Previous uses of MALDI in the HIV field have focused on the quantification of 

antiretrovirals in plasma,[49] and more recently MSI has been used to examine the 

disposition of a novel antiretroviral in brain tissue.[50] A reliable method of visually 

evaluating antiretroviral exposure in tissues relevant to HIV infection will greatly inform the 

development of novel therapies for HIV treatment, prevention, and cure.

Herein, we present on the coupling of the IR-MALDESI imaging source to the Q Exactive 

to determine the distribution of several commonly used antiretroviral drugs in incubated 

tissues. Imaging is performed as either a broadband acquisition to obtain a global 

perspective of the three drugs of interest with endogenous species or as a more selective 

targeted MS2 acquisition. In addition, tissue sections that are adjacent to those used for 

imaging were homogenized and analyzed by LC-MS/MS to quantify the total amounts of 

each drug present in the tissue. These values were then compared with the relative 

abundances from the imaging experiments to determine the quantitative capabilities of IR-

MALDESI MSI.
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Experimental

Materials

HPLC Grade methanol and water were purchased from Burdick and Jackson (Muskegon, 

MI) and formic acid was purchased from Sigma-Aldrich (St. Louis, MO). Emtricitabine, 

tenofovir and raltegravir were obtained from the NIH AIDS Reagent Program, directed by 

the Pathogenesis and Basic Research Branch, Basic Sciences Program, Division of AIDS 

(DAIDS), NIAID, NIH. All materials were used as purchased without further purification.

Samples

Cervical tissues were obtained from surgical waste via the University of North Carolina 

Tissue Procurement Facility through UNC IRB # 09-0921. Written informed consent was 

obtained from all patients. After harvest, tissues were placed immediately in culture media 

[Iscove's Modified Dulbecco's Media (Gibco, Grand Island, NY), 10% fetal bovine serum 

(Gibco), 240 units/mL nystatin (Sigma, St. Louis, MO), 100 units/mL penicillin-

streptomycin (Gibco), and MEM vitamin solution (Sigma)] and kept on ice until receipt into 

the laboratory. Once received into the lab, tissues were trimmed of fat and other connective 

tissue with sterile scissors and cut into approximately 1cm2 pieces. Pieces were placed into 

individual wells of a 24-well tissue culture plate with 1mL culture media containing low or 

high concentrations of the nucleoside reverse transcriptase inhibitors emtricitabine (FTC) 

and tenofovir (TFV) and the integrase strand transfer inhibitor raltegravir (RAL). Here, low 

concentrations were defined as 10 times the reported plasma Cmax value in humans for each 

drug: 18,000 ng/mL FTC, 3,800 ng/mL TFV, and 28,880 ng/mL RAL. High concentration 

was defined as 100,000 ng/mL for all three drugs. These concentrations were selected to 

mimic mucosal tissue concentrations seen clinically in Phase I studies.[51-52] The 

incubation concentration along with the exact monoisotopic mass for each drug is also 

presented in Table 1. All tissues were incubated for 24 hours at 37°C. After 24 hours, tissues 

were removed from drug and rinsed with fresh culture media before being frozen with dry 

ice vapor and stored at -80°C. Each tissue was sectioned at -20°C using a Leica CM1950 

cryomicroto me (Buffalo Grove, IL) into 10, 25, or 50 μm thick sections. The sections were 

then thaw-mounted onto glass microscope slides for imaging. Sections of each tissue were 

mounted adjacent to each other so that each glass slide contained a section of each tissue in 

the low and high concentrations at the same thickness. Sections that were serial cuts to those 

used for imaging were also collected for LC-MS quantitation.

IR-MALDESI Imaging

A more detailed description of the IR-MALDESI imaging source can be found elsewhere.

[36-37] In short, the tissue sample is placed on a liquid cooled thermoelectric stage that is 

cooled to -10°C while under nitrogen purge and is then exposed to the ambient environment 

in order to deposit a thin layer of ice over the surface of the tissue. Once the ice layer has 

been deposited, the enclosure around the source is purged with nitrogen to maintain a 

relative humidity of around 10 % which we have found to be the point where ice deposition 

and sublimation are close to equilibrium to preserve a consistent ice matrix layer throughout 

the course of the imaging experiment. A mid-IR laser tuned to 2.94 μm (IR-Opolette 2371, 

Opotek, Carlsbad, CA) is used to resonantly excite the ice matrix layer and facilitate the 
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desorption of neutral molecules from the tissue section. These neutrals then partition into the 

charged solvent droplets of an electrospray plume where ions are generated through an ESI-

like process. The geometry of the IR-MALDESI source has recently been optimized for 

tissue imaging.[37] For the imaging experiments, 50% (v/v) aqueous methanol with 0.2% 

formic acid was used for the electrospray solvent as this composition has been shown to 

work well for small molecules and lipids.[24] All imaging experiments were performed with 

a spot-to-spot distance of 100 μm.

Q Exactive

The IR-MALDESI imaging source was fully synchronized with a Thermo Fisher Scientific 

Q Exactive (Bremen, Germany) such that ion accumulation was triggered to overlap with 

the pulsing of the laser resulting in a single orbitrap acquisition at each pixel. The automatic 

gain control (AGC) of the instrument was turned off for all imaging experiments due to its 

incompatibility with our pulsed ionization source. The AGC is normally used to maintain a 

consistent number of ions in the orbitrap. It does so by determining the rate of ion generation 

during a prescan and varying the amount of time that ions are accumulated to reach a target 

number of ions (AGC target) for the analytical scan. With the AGC off, ions are 

accumulated for a set period of time according to the maximum ion injection time (IT). Even 

with the AGC off, mass accuracy was verified to be maintained within 1 ppm by using two 

diisooctyl phthalate peaks (391.2843 [M+H]+ and 413.266 [M+Na]+) as lock-masses in the 

instrument control software.

For broadband acquisition, two laser pulses were performed at 20 Hz (50 ms/pulse) with a 

150 ms IT to accumulate ions from both laser pulses in the C-trap followed by a single 

Orbitrap acquisition. The mass range for the orbitrap acquisition was set to 150-600 m/z. 

The mass resolution was set to 140,000 at m/z 200.

For MS2 acquisition, a targeted MS2 method file was created using an inclusion list for 

isolating the protonated ion of RAL (m/z 445.16302) with a maximum IT of 150 ms. Two IR 

pulses were performed at each pixel (20 Hz) where ions from each pulse were isolated with 

a 4 m/z window and a 1.5 m/z offset followed by ion accumulation in the C-trap. The 

accumulated ion packet was then fragmented in the HCD cell at a normalized collision 

energy of 20. All resulting fragments were analyzed in a single orbitrap acquisition. The 

normalized collision energy was optimized through the direct infusion of a RAL standard. 

Unique transitions for RAL were also determined during the direct infusion of the drug 

standards. The mass resolution was set to 140,000 at m/z 200 for the MS2 acquisition in the 

orbitrap in order to obtain high mass accuracies for the fragments.

Data Analysis

For individual ion images, the raw data (.raw) from the Thermo Q Exactive was converted to 

the mzXML format using the MSConvert software from Proteowizard[53] For the stacked 

ion images, the raw files were converted to mzML files using the MSConvert software from 

Proteowizard and were then converted to individual imzML files using imzMLConverter.

[54] The imzML Converter was then used to stack the individual imzmL files into one 

master imzML file. The mzXML or imzML files were then loaded into the standalone 
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version of MSiReader which is freely available software developed in our lab for processing 

MSI data.[55] In order to demonstrate the quality of the raw data, ion images presented in 

this manuscript were neither interpolated nor normalized (unless otherwise specified). 

MSiReader was used to extract peak intensities to the regions around the low and high 

concentration tissues in order to determine the average peak intensity for comparison with 

the absolute amounts determined by LC-MS/MS. A modified ‘hot’ colorscale was used to 

demonstrate changes in intensity. Despite its widespread use in visualizing data, the 

‘rainbow’ or ‘jet’ colorscale leads to misleading and non-intuitive distinctions between 

intensity values and was thus not used here.[56-59]

LC-MS/MS Quantitation

Tissue sections (10, 25, and 50 μm) from the low and high concentration tissue samples 

were extracted and analyzed by LC-MS/MS for TFV, FTC, and RAL concentrations. 

Sections were homogenized and extracted in 1 mL of 70:30 acetonitrile:1 mM ammonium 

phosphate (pH 7.4) using a Precellys® 24 tissue homogenizer. Calibration standards were 

prepared at 0.3, 0.6, 1.5, 6, 15, 30, 75, 150, 255, and 300 ng/mL in 70:30 acetonitrile:1 mM 

ammonium phosphate (pH 7.4). Quality control (QC) samples were prepared at 0.9, 21, and 

240 ng/mL in 70:30 acetonitrile:1 mM ammonium phosphate (pH 7.4). Following 

centrifugation, 300 μL of each standard/QC/sample was mixed with 50 μL of an internal 

standard solution (13C5-TFV, 13C15N2-FTC, and RAL-d3 at 50 ng/mL in 50:50 

methanol:water). The resulting solutions were evaporated to dryness under nitrogen at 50°C. 

Samples were reconstituted in 100 μL of 1 mM ammonium phosphate (pH 7.4) and 

transferred to a 96-well plate for LC-MS/MS analysis.

A Shimadzu HPLC system (SIL-20AC autosampler, LC-20AD pumps, and CTO-20A 

column oven; Shimadzu Scientific Instruments, Columbia, MD) was used for this analysis. 

A Waters Atlantis T3 column (2.1 mm × 100 mm, 3 μm, Waters, Milford, MA) was utilized 

at 35°C. A gradient elution using water with 0.1% formic acid (Mobile Phase A) and 

acetonitrile with 0.1% formic acid (mobile Phase B) was used to perform chromatographic 

separation. A Sciex API 5000 Triple Quad mass spectrometer (AB Sciex, Foster City, CA) 

equipped with a Turbo spray interface was used as the detector. TFV and 13C5-TFV were 

detected in negative ion mode with mass transitions of 286 → 107 and 291 →111, 

respectively. FTC, 13C15N2-FTC, RAL, and RAL-d3 were detected in positive ion mode 

with mass transitions of 248 → 130, 251 →133, 445 → 361, 448 →109, respectively.

Calibration standards and QCs for all three analytes were within 15% of nominal 

concentrations. With the tissue samples being extracted in 1 mL of solvent, the final result 

(in ng/mL) was equivalent to mass extracted (in ng) from each sample. The tissues (all < 

1mg) provided negligible volume to the homogenized sample allowing for the direct 

correlation between ng/mL and ng extracted. Since the tissue slices were too small to weigh, 

the final drug concentrations were not adjusted for tissue mass and are presented as ng 

extracted per slice.
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Results and Discussion

Full Acquisition IR-MALDESI MSI

Cervical tissues were incubated in either a high or low concentration of the three HIV drugs 

tenofovir (TFV), emtricitabine (FTC), and raltegravir (RAL). Two adjacent 10 μm sections 

of the high concentration tissue were thaw-mounted onto glass microscope slides. These two 

tissue sections were then imaged either with or without an ice matrix in order to validate the 

use of ice as a matrix for IR-MALDESI MSI.[37] The optical images of the tissues for both 

conditions as well as the corresponding ion maps for the protonated ions of the three 

incubated drugs are shown in Figure 1. The ion images for each drug provide clear evidence 

of the degree of improvement that can be achieved when using ice as a matrix. Also, the 

average pixel intensity and frequency of pixels in the tissue-related area where signal was 

detected (number of non-zero pixels/total number of pixels for the tissue-related area) are 

also provided for each drug under both conditions to provide a more objective comparison. 

The average pixel intensity is shown to be between about 15 fold higher for the tissue with 

ice as a matrix compared to the tissue without a matrix. While it is likely linked to the 

improvement in overall intensity, there is also marked improvement in the frequency of 

pixels with signal in the imaging experiment with ice which is especially clear for tenofovir 

which is the least abundant of the three incubated drugs. The results of these experiments 

help to validate the use of ice as a matrix for IR-MALDESI MSI and support our previous 

conclusions.[37]

The high and low concentration incubated tissues were then cryo-sectioned into several 

thicknesses (10, 25, and 50 μm) to investigate the influence of tissue thickness on the 

imaging experiment. IR-MALDESI MSI was then performed on each set of tissues (high 

and low concentration at each tissue thickness) using a broadband acquisition method where 

at each image pixel a single full mass spectrum (m/z 150-600) was collected. This broadband 

acquisition allows for the observation of all three drugs as well as any endogenous species 

that fall within the m/z range. For each tissue thickness a single imaging experiment was 

conducted which encompassed both the low and high concentration tissue sections. Ion 

images for the protonated forms of all three drugs as well as the optical images of the tissue 

sections are shown in Figure 2. All of the ion maps shown in Figure 2 are on the same 

intensity scale to demonstrate the relative intensities of all three drugs across the different 

tissue thicknesses. Coupling the IR-MALDESI imaging source with the Q Exactive has 

demonstrated a vast improvement in the analysis time necessary to complete a high 

resolving power imaging experiment. On the Q Exactive, the broadband imaging 

experiments were acquired at a rate of 1.6 scans/second. For reference, the acquisition rate 

for the same experiment on our LTQ-FT is roughly 0.5 scans/second, which represents a 

nearly threefold improvement in acquisition speed with the Q Exactive. This improvement is 

likely due to the eFT which allows for shorter transients in addition to the multiplexing 

capabilities of the Q Exactive where ions can be accumulated for the next acquisition while 

the FT analysis is being performed.

At each pixel, the laser ablates all the way through the tissue and therefore it may be 

expected that the intensity for any of the drugs from the 50 μm section should be roughly 
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five times that of the 10 μm section since there is five times more material (this assumption 

is validated from the LC-MS/MS quantification presented later). This, however, was not 

observed and the signal from all three thicknesses appears to be relatively similar. The lack 

of correlation between tissue thickness and the signal abundance could be occurring for 

several reasons. One possible explanation is that in IR-MALDESI the ablated material 

interacts with the charged solvent droplets of the electrospray plume where the analyte is 

extracted into the solvent droplets and is later ionized through an ESI-like process. The 

efficiency of this neutral capture event may inversely scale with the amount of material that 

is ablated. In essence, the extraction of analyte may be limited because there are a finite 

number of droplets present that are available for interaction with the tissue material. Despite 

this, Figure 2 shows that for a given tissue thickness there is an observable difference in 

intensity between the low and high concentrations and in fact the ratio of the average 

intensity of the low and high concentrations is consistent for all three tissue thicknesses.

Comparison of IR-MALDESI MSI with LC-MS/MS Quantitation

Tissue sections serial to those imaged by IR-MALDESI MSI were homogenized and 

analyzed by LC-MS/MS to quantify the amount of each drug that was present in both the 

high and low concentration tissues for all three tissue thicknesses. Table 2 shows the results 

of this analysis and provides the absolute amount of each drug per tissue section (ng/tissue). 

The ratio of low to high concentration was determined for each set of tissues and these 

values were then compared with the corresponding average intensity ratios from the IR-

MALDESI imaging experiments. This comparison is shown in Figure 3. It should be noted 

that differential uptake of these drugs precludes the ability to compare their incubated 

concentrations with ratios observed by LC-MS and IR-MALDESI (data not shown). Figure 

3a shows the relative intensity ratio from the low to the high concentration tissues for each 

of the three drugs. It is evident that for both techniques and the different tissue thicknesses, 

the low/high ratio clusters together for a given drug. To compare the two methods, the low/

high concentration ratios are plotted as a function of the method, thus a slope of 1 indicates 

agreement between the two methods (Figure 3b). The slope of the least-squares fit line 

through the data (forcing the intercept to 0) was around 0.74 with a correlation coefficient of 

close to 0.8. The deviation from an ideal slope of 1 is likely due to an underestimation of the 

low/high ratio by IR-MALDESI. The cause of this underestimation of the ratio is possibly 

due to the decreased frequency of detection of these drugs in the low concentration tissue 

which is a result of being near the detection limit as evidenced by Figure 2. While there 

obviously room for improvement, the low/high concentration ratios between LC-MS/MS 

and IR-MALDESI are in fairly good agreement. A correlation between MSI and LC-MS/MS 

has been demonstrated previously for other ionization methods including MALDI [18, 50, 

60-70] and DESI,[22, 71-72] but this is the first example of agreement between IR-

MALDESI MSI with LC-MS/MS. Given that LC-MS/MS is a validated quantitation 

method; the correlation between the average intensities from IR-MALDESI with the 

absolute quantities determined by LC-MS/MS provides a foundation for quantification 

directly from an imaging experiment. Direct quantitation from an MSI experiment would be 

ideal (especially for heterogeneous tissues) and is the focus of research efforts from several 

groups.[40, 61, 63-70, 72-77]

Barry et al. Page 8

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



A potential limitation of this study is the use of mucosal tissue explants incubated in drug-

containing media, rather than utilizing tissue biopsies obtained from patients receiving the 

drug. It is possible that antiretroviral uptake into explants ex-vivo differs from that observed 

in-vivo. However, the human tissue explant model has previously been validated for 

generating pharmacokinetic/pharmacodynamic (PK/PD) relationships that are clinically 

useful.[78-79] With the promising data generated from this current investigation, future drug 

distribution experiments evaluating tissues obtained from animals and humans dosed with 

these drugs are being planned.

MS2 IR-MALDESI MSI

IR-MALDESI MSI was performed as a targeted MS2 experiment for the drug RAL. Ions 

generated from two laser pulses were filtered for the protonated form of RAL using the 

selection quadrupole followed by accumulation in the C-Trap. The ions were then 

fragmented in the HCD cell and mass analyzed in the orbitrap at 140,000 RP (at m/z 200) to 

obtain accurate mass data on the fragment ions. This process was then repeated over the 

surface of the tissue such that a fragment ion ‘scan’ was acquired at each pixel in the image. 

The acquisition rate for the targeted MS2 imaging experiment was 1.5 scans/second, 

implying that very little overhead was incurred with the added step of fragmentation. Ion 

maps for the several RAL transitions are shown in Figure 4a. The colocalization of all of the 

transitions with the parent ion distribution at m/z 445 demonstrates the higher selectivity that 

can be achieved with an MRM-MSI approach. In addition, the ion abundance ratios from 

this pseudo MRM imaging experiment were compared with those obtained from the direct 

infusion ESI-MS experiment that was used to determine the optimal collision energy (Figure 

4b). As shown, the ion abundance ratios are nearly identical between the two techniques. 

This implies also that the internal energy imparted during ionization in IR-MALDESI is 

comparable to the softness of ionization in ESI as has been previously mentioned.[80]

Conclusions

We have demonstrated the capabilities of IR-MALDESI MSI coupled with the Q Exactive 

mass spectrometer. Tissue sections that were incubated with several potent and commonly 

utilized antiretroviral drugs were analyzed by IR-MALDESI MSI as well as LC-MS/MS. A 

comparison of these two methods demonstrated that the average intensities determined from 

the imaging experiments agreed well with the absolute abundances determined from a 

validated quantitation method. These experiments serve as a foundation for direct 

quantitation from tissue using IR-MALDESI MSI. In addition, a targeted MS2 imaging 

experiment was also conducted to show the added selectivity that can be attained for this 

type of analysis.
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Figure 1. 
Validation of the use of ice as a matrix for IR-MALDESI MSI. Optical images (a) of two 10 

μm serial sections of the high concentration tissue either with or without (respectively) a 

deposited layer of ice. Ion maps of (b) emtricitabine as [M+H]+, (c) tenofovir as [M+H]+, 

and (d) raltegravir as [M+H]+. In addition, the average intensity and frequency of the pixels 

with signal within the tissue area is provided for each of the ions under both conditions (with 

or without ice matrix) to demonstrate the degree of improvement that is achieved when 

using the ice matrix.
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Figure 2. 
IR-MALDESI MSI analysis of cervical tissues incubated in either a low or high 

concentration of three HIV drugs including emtricitabine (FTC), tenofovir (TFV), and 

raltegravir (RAL). Three different tissue thicknesses were investigated (10, 25, and 50 μm). 

The ion maps for all three drugs at each tissue thickness are shown on the same intensity 

scale to highlight relative differences in abundance.
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Figure 3. 
Comparison of data from LC-MS/MS and IR-MALDESI. (a) Plot of the low to high 

concentration ratios of all three drugs across the three tissue thicknesses that were 

investigated. (b) Plot of the data from both methods (LC-MS/MS vs. IR-MALDESI). A 

slope near 1 indicates relatively good agreement between the results from the LC-MS/MS 

and IR-MALDESI MSI experiments.
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Figure 4. 
Results of MRM Imaging. (a) Ion maps for the several unique transitions for raltegravir 

(RAL) that were observed from the targeted MS2 IR-MALDESI MSI experiment. The 

colocalization of all of the transitions demonstrates the increased selectivity that can be 

realized with targeted MS2 imaging techniques. (b) Comparison of the ion abundance ratios 

for selected transitions of raltegravir for both IR-MALDESI and LC-MS/MS.
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Table 1
Incubation concentrations for the three HIV drugs

Drug Abbreviation Monoisotopic Mass of [M+H]+ Low Conc. (μg/mL) High Conc. (μg/mL)

Tenofovir TFV 288.0856 3.8 100.0

Emtricitabine FTC 248.0499 18.0 100.0

Raltegravir RAL 445.1630 28.88 100.0
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Table 2
Absolute drug quantities determined by LC-MS/MS

Incubated Conc. Tissue Thickness TFV (ng/Tissue) FTC (ng/Tissue) RAL (ng/Tissue)

Low

10 0.877 3.36 2.29

25 1.91 6.95 4.90

50 4.04 14.4 10.6

High

10 8.82 9.19 12.5

25 21.9 23.1 33.2

50 43.3 44.7 64.6
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