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ABSTRACT

Matthew David Goodson: Chemical Enrichment of the Early Solar System.
(Under the direction of Fabian Heitsch.)

Meteorites preserved from the birth of the solar system over 4.5 billion years ago contain

the chemical signature of a nearby contemporaneous stellar explosion in the form of short-

lived radioisotopes (SLRs) such as Aluminum-26. Yet results from hydrodynamical models

of SLR injection into the pre-solar cloud or disk encounter a common problem: it is difficult

to sufficiently mix the hot, enriched gas into the cold, dense, cloud without disrupting the

formation of the solar system. I first consider the role of numerical methods in limiting the

mixing. I implement six turbulence models in the Athena hydrodynamics code. I then

explore an alternative mechanism to overcome the mixing barrier: microscopic dust grains.

I numerically model the interaction of a supernova remnant containing SLR-rich dust grains

with a nearby molecular cloud. The results suggest that SLR transport on dust grains is a

viable mechanism to explain solar system enrichment. Finally, I attempt to constrain the

formation timescale of stellar systems such as the solar system using deuterium fractionation

as a “chemical clock”. I determine the physical conditions necessary to reach the observed

values of deuterium fraction in pre-stellar cores.
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CHAPTER 1: INTRODUCTION

1.1 Short-lived radioisotopes

The solar system formed from the gravitational collapse of an interstellar gas cloud over

4.5 Gyr ago (Amelin et al., 2010). The gas cloud has long since dissipated, but a record

of its physical conditions and chemical composition is preserved in meteorites. Calcium–

aluminium-rich inclusions (CAIs) in chondritic meteorites are the oldest known solar system

solids, with ages of ≈ 4.567 Gyr (Amelin et al., 2002, 2010). Spectroscopic analyses of CAIs

in the 1970s revealed isotopic excesses due to the in situ decay of short-lived radioisotopes

(SLRs) (Lee et al., 1976, 1977), so named because of their half-lifetimes of . a few Myr

(Russell et al., 2001; McKeegan & Davis, 2007). Table 1.1 summarizes the SLRs present in

the early solar system (ESS) and their relative abundances inferred from meteoritic studies.

The importance of these SLRs in solar system evolution lies in their radioactive nature.

The SLRs present in the ESS were incorporated into small rocky bodies (planetesimals)

and eventually planets, where their radioactive decay produced large amounts of heat. In

particular, the decay of Aluminum-26 (denoted 26Al, τ1/2 ≈ 0.7 Myr) and Iron-601 (τ1/2 ≈

2.6 Myr) fueled the differentiation of planetesimals (Sahijpal et al., 2007) and the internal

melting of ice in rocky bodies (Travis & Schubert, 2005) during the first 10 Myr of solar

system evolution (Urey, 1955). The sustained aqueous state in these bodies due to SLR

heating may have allowed the synthesis of amino acids – the biomolecular precursors for life

(Cobb & Pudritz, 2014). Understanding the origin of SLRs is therefore critical in assessing

other planetary systems and the probability of life elsewhere in the cosmos.

1The number indicates the atomic mass; for these elements, the most common stable isotopes are Aluminum-
27 and Iron-56.
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Table 1.1: Summary of short-lived radioisotopes in the early solar system.

Parent τ1/2 Daughter Reference Initial Initial ESS
SLR (Myr) Isotope Isotope Abundance Ratio Mass Fraction
10Be 1.5 10B 9Be 3− 10× 10−4 6.5− 22× 10−14

26Al 0.72 26Mg 27Al 5.2× 10−5 3.3× 10−9

36Cl 0.3 36Ar 35Cl & 1.7× 10−5 9.4× 10−11

41Ca 0.1 41K 40Ca 4− 6× 10−9 3.0− 4.5× 10−13

53Mn 3.7 53Cr 55Mn 6− 8× 10−6 8.5− 1.1× 10−10

60Fe 2.6 60Ni 56Fe
3− 7× 10−7 4.4− 10× 10−10

. 7− 12× 10−9 1.0− 1.8× 10−11

107Pd 6.5 107Ag 108Pd 5.9× 10−5 2.6× 10−13

182Hf 8.9 182W 180Hf 1× 10−4 9.0× 10−14

References: 10Be: McKeegan et al. (2000); Srinivasan & Chaussidon (2013); 26Al: Lee et al.
(1976); Jacobsen et al. (2008); 36Cl: Lin et al. (2005); Jacobsen et al. (2009); 41Ca: Liu
et al. (2012); Srinivasan & Chaussidon (2013); 53Mn: Shukolyukov & Lugmair (2006);

Trinquier et al. (2008); 60Fe: Tachibana & Huss (2003); Mishra & Goswami (2014);
Moynier et al. (2011); Tang & Dauphas (2012); 107Pd: Chen & Wasserburg (1996);

Schönbächler et al. (2008); 182Hf: Burkhardt et al. (2008); Kruijer et al. (2014).
Initial ESS mass fraction is estimated using the initial solar abundances of Lodders (2003).

Measurements of the 60Fe initial abundance based on secondary ionization mass
spectrometry (SIMS) and multi-collector inductively coupled plasma mass spectrometry

(MC-ICPMS) do not agree; each is therefore reported independently.

The presence and abundance of SLRs also provides clues about the birth environment of

the solar system. The presence of “live” SLRs in the ESS seems remarkable; SLRs rapidly

decay and must therefore either be produced locally or quickly transported through the

interstellar medium (ISM) from a nearby massive, evolved nucleosynthetic source (Lee et al.,

1977). In the latter case, the presence of a nearby massive star provides constraints on the

birth environment of the solar system, such as cluster size (Adams, 2010) and dynamical

evolution (Parker et al., 2013; Pfalzner, 2013). However, the conditions leading to enrichment

are uncertain. The initial abundances of some SLRs in the ESS appear to be enhanced above

the Galactic background level (Diehl et al., 2006), but similar conditions may be common in

star-forming regions (Vasileiadis et al., 2013; Jura et al., 2013; Young, 2014).

The origin scenarios and initial abundances for SLRs are still a matter of debate, but

it seems likely that both solar and extra-solar enrichment sources are required to explain

the observed variety. Local mechanisms such as solar radiation-induced spallation reactions
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can produce some SLRs (e.g. 10Be) but not all (e.g. 60Fe) (Heymann & Dziczkaniec, 1976;

Gounelle & Meibom, 2008). Although recent estimates of the initial 60Fe/56Fe ratio argue

against significant 60Fe enrichment (Tang & Dauphas, 2012), the enhanced 26Al/27Al ratio

probably requires external sources (Makide et al., 2013). Asymptotic giant branch (AGB)

star winds (Wasserburg et al., 1994), Wolf–Rayet (WR) winds (Prantzos & Casse, 1986),

or Type II (core-collapse) supernova (SN) shock waves (Cameron & Truran, 1977) could

transport SLRs and contaminate the ESS at some phase of its evolution (e.g. pre-solar

molecular cloud, pre-stellar core, or proto-planetary disc).

1.1.1 Supernova enrichment

Among the various enrichment sources, Type II supernovae (SNe) have received the

most attention in the literature (Cameron & Truran, 1977; Foster & Boss, 1997; Ouellette

et al., 2005; Pan et al., 2012). SNe are naturally associated with star-forming regions, and

predicted SLR yields from SNe match reasonably well with ESS abundance estimates (Meyer

& Clayton, 2000). Additional evidence is provided by the anomalous ratio of oxygen isotopes

([18O]/[17O]) in the solar system, which is best explained by enrichment from Type II SNe

(Young et al., 2011).

Following the discovery of 26Al in CAIs, Cameron & Truran (1977) suggested that a

nearby SN could have simultaneously injected SLRs and triggered the collapse of the ESS.

In this scenario, a single SN shock wave rapidly transports and deposits SLRs into an iso-

lated marginally-stable pre-stellar core. The impinging shock wave compresses the core and

triggers gravitational collapse while at the same time generating hydrodynamical instabil-

ities at the core surface that lead to mixing of SLRs with the solar gas. Foster & Boss

(1997) first demonstrated the plausibility of this scenario with hydrodynamical simulations,

and subsequent iterations of the experiment (Boss et al., 2010; Boss & Keiser, 2012, 2013,

2014, 2015) have defined a range of acceptable shock wave parameters (e.g. speed, width,

density) for enrichment. This ‘triggered formation’ scenario requires nearly perfect timing
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and choreography. The SN must be close to the pre-stellar core (. 0.1–4 pc) at the time of

explosion to prevent significant SLR radioactive decay during transit; yet the SN shock must

slow considerably (from & 2000 km s−1 at ejection to . 70 km s−1 at impact) to prevent

destruction of the core, requiring either large separation (& 10 pc) or very dense intervening

gas (& 100 cm−3). Gritschneder et al. (2012) demonstrated that injection at higher velocities

(up to 270 km s−1) may be possible, but this is yet to be confirmed in three-dimensional

models.

The amount of SLRs injected in the ‘triggered formation’ scenario is typically below

observed values; both Boss & Keiser (2014) and Gritschneder et al. (2012) find SLR injection

efficiencies . 0.01, compatible with only the lowest estimates for ESS values (Takigawa

et al., 2008). Enrichment relies on hydrodynamical mixing of the ejecta into the pre-stellar

gas, primarily via the Rayleigh–Taylor (RT) instability (Boss & Keiser, 2012). However,

mixing in inviscid hydrodynamical simulations is controlled by numerical viscosity; because

the instabilities grow fastest on the smallest scales, the details of the small-scale mixing are

dominated by resolution effects. Shin et al. (2008) found that all quantities except the mixing

fraction show convergence in shock-cloud simulations, similar to those performed by Boss &

Keiser (2014). Hence estimates of the SLR injection from hydrodynamical simulations may

be underestimated due to numerical effects.

1.1.2 Models for turbulent mixing

One possible means to mitigate resolution effects in hydrodynamical simulations is a

turbulence model, sometimes referred to as a subgrid-scale (SGS) model (Schmidt, 2014).

Turbulence models attempt to mimic the effect of unresolved small-scale turbulence on the

large-scale flow, often through the addition of “turbulent” stresses. Gray & Scannapieco

(2011) used a turbulence model to track metal enrichment in galactic haloes, and Pittard

et al. (2009) examined the effect of turbulence models on the shock-cloud interaction. From

these studies, it is difficult to assess what effect a turbulence model would have on SLR
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enrichment, as the environments and physics are different in each application.

I therefore develop a common framework for two-equation Reynolds-Averaged Navier-

Stokes (RANS) turbulence models (Goodson et al., 2017), and I implement six such models

in the Athena hydrodynamics code (Stone et al., 2008). I verify each implementation with

the standard subsonic mixing layer, although the level of agreement depends on the definition

of the mixing layer width. I then test the validity of each model into the supersonic regime,

showing that compressibility corrections can improve agreement with experiment. For models

with buoyancy effects, I also verify the implementation via the growth of the Rayleigh-Taylor

instability in a stratified medium. The models are then applied to the shock-cloud interaction

in three dimensions. I focus on the mixing of shock and cloud material, comparing results

from turbulence models to high-resolution simulations (up to 200 cells per cloud radius) and

ensemble-averaged simulations. I find that the turbulence models lead to increased spreading

and mixing of the cloud, although no two models predict the same result. Increased mixing

is also observed in inviscid simulations at resolutions greater than 100 cells per radius; this

suggests that the turbulent mixing only begins to be resolved at point and previous studies

may underestimate the SLR injection.

1.1.3 Supernova dust grains

Even with a turbulence model, hydrodynamical mixing alone may not be sufficient to

explain the enrichment of the ESS. The (linear) growth rates of the involved fluid instabilities

depend on the square root of the density contrast (Chandrasekhar, 1961), resulting in an

inevitable impedance mismatch between the hot, diffuse stellar ejecta and the cold, dense

pre-solar core.

As an alternative, I explore the injection of SLRs via supernova dust grains as a way to

overcome the mixing barrier (Goodson et al., 2016b). I numerically model the interaction

of a supernova remnant containing SLR-rich dust grains with a nearby molecular cloud

using the Athena code. I find that the expanding gas shell stalls upon impact with the
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dense cloud, and gas-phase SLR injection occurs slowly due to hydrodynamical instabilities

at the cloud surface. In contrast, dust grains of sufficient size (& 1 µm) decouple from

the gas and rapidly penetrate into the cloud. Once inside the cloud, the dust grains are

destroyed, releasing SLRs and rapidly enriching the dense (potentially star-forming) regions.

This suggests that SLR transport on dust grains is a viable mechanism to explain SLR

enrichment. Furthermore, dust grains of different sizes penetrate different distances, which

could explain the discrepancy between 26Al and 60Fe in CAIs.

1.1.4 Massive star formation timescales

As indicated above, the primary source of SLRs is massive, evolved stars (> 8M�). A key

constraint on models of supernova enrichment is the timescale for massive star formation

(Gounelle et al., 2009; Gaidos et al., 2009). Since the SLRs rapidly decay, the SN must

be close to the ESS in both time and distance, preferably within the same molecular cloud

complex. Since the age spreads of clusters are small (Hartmann et al., 2001; Hartmann, 2003),

enrichment is most likely if the SN progenitor forms first and forms rapidly. Yet it is unclear

from dynamical observations whether massive stars form slowly (Tan et al., 2013) or rapidly

(Vázquez-Semadeni et al., 2007). An alternative means to probe the age and state of massive

starless cores is using chemical tracers, in particular deuterated molecules (Ceccarelli et al.,

2014). In sufficiently dense (nH > 105 cm−3), cold (T < 20 K) environments, CO freeze-out

opens a pathway for ion-neutral reactions that increase the deuterium fraction, i.e., the ratio

of deuterated to non-deuterated species, Dfrac. High levels of deuterium fraction in N2H+

are observed in some pre-stellar cores (Kong et al., 2016). Single-zone chemical models find

that the timescale required to reach observed values (DN2H+

frac ≡ N2D+/N2H+ & 0.1) is longer

than the free-fall time, possibly ten times longer (Kong et al., 2015).

I explore the collapse and deuteration of turbulent, magnetized cores with 3D magne-

tohydrodynamics simulations (Goodson et al., 2016a). I construct an approximate chemical

model to follow the growth in abundances of N2H+ and N2D+. I then examine the dynamics
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of the core using each tracer for comparison to observations (Kong et al., 2017). I find that

the velocity dispersion of the core as traced by N2D+ appears slightly sub-virial compared

to predictions of the Turbulent Core Model of McKee & Tan (2003), except at late times

just before the onset of protostar formation. By varying the initial mass surface density,

the magnetic energy, the chemical age, and the ortho-to-para ratio of H2, I also determine

the physical and temporal properties required for high deuteration. I find that low initial

ortho-to-para ratios (. 0.01) and/or multiple free-fall times (& 3) of prior chemical evolution

are necessary to reach the observed values of deuterium fraction in pre-stellar cores. This

suggests that the collapse rate may be significantly slower than the free-fall time, or the

deuteration process begins earlier than assumed.

1.2 Overview of contents

Chapter 2 provides an overview of the Athena magnetohydrodynamics code, as well

as modifications to the code. The most significant modification to the code is described

in Chapter 3, which details a suite of two-equation turbulence models. These models are

applied to the generic shock-cloud interaction to investigate turbulent mixing, especially in

relation to SLR injection. While this affects the gas mixing, Chapter 4 investigates a different

solution to the mixing problem, namely injection of SLRs by supernova dust grains. The

formation timescales of the massive stars that ultimately produce supernovae are considered

in Chapter 5, specifically in relation to observed deuteration of pre-stellar cores. Finally, I

conclude in Chapter 6.
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CHAPTER 2: NUMERICAL METHODS

2.1 The Athena code

The evolution of an ideal, inviscid magnetized fluid is governed by three conservation

equations for the mass, the momentum, and the energy:

∂ρ

∂t
+∇ · (ρu) = 0 (2.1.1)

∂ρu

∂t
+∇ · (ρuu−BB +

B ·B
2

+ P I) = 0 (2.1.2)

∂E

∂t
+∇ · [(E + P +

B ·B
2

)u] = 0 (2.1.3)

with the density ρ, the velocity vector u, the magnetic field vector B1, the unit dyad I, the

thermal pressure P , and the total energy density E:

E =
P

γ − 1
+

1

2
ρ|u|2 +

B ·B
2

, (2.1.4)

where the ideal gas law P = (γ − 1)e has been used to relate the pressure P to the internal

energy density e via the adiabatic index γ. For magnetized fluids, Maxwell’s relations must

be coupled with the fluid equations. For an ideal (perfectly-conducting) plasma, Faraday’s

law and Ohm’s law lead to the induction equation:

∂B

∂t
−∇× (u×B) = 0. (2.1.5)

1The units are such that the magnetic permeability µ = 1.
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Finally, in many applications it is helpful to evolve a passive color field:

∂ρC

∂t
+∇ · (ρuC) = 0. (2.1.6)

Color fields do not affect the dynamics; they are therefore often used to trace the flow and

mixing of different fluids or to follow chemical abundances.

We use the Athena magnetohydrodynamics (MHD) code (Stone et al., 2008) to numer-

ically solve Eqs. 2.1.1-2.1.6. Athena integrates the fluid equations using a finite-volume

method on a uniform Cartesian grid in three dimensions. The hydrodynamical variables (ρ,

u, E) are represented as volume-averages at cell centers, while the magnetic fields (B) are rep-

resented as an area-average at cell interfaces. Athena uses a high-order Godunov method;

in short, the time integration is performed by computing time- and area-averaged fluxes at

cell interfaces as a solution to the Riemann problem. The Riemann problem describes the

one-dimensional evolution of two uniform gases initially separated by an interface. If the

gas properties are discontinuous across the interface, removal of the interface will generate

a family of waves that propagate through the fluids with characteristic speeds dependent

on the initial conditions. The Godunov method treats the evolution of fluids through each

cell interface at each time step as a Riemann initial value problem. Further details of the

Riemann problem and its extension to three-dimensions are given by Toro (2009).

The Godunov method used in Athena has three main elements: the time integration

scheme, the spatial reconstruction scheme, and the Riemann solver. Two directionally-

unsplit integration methods are available: the corner transport upwind method (CTU) of

Colella (1990) and the predictor-corrector method of van Leer (2006) (VL; see also Stone &

Gardiner, 2009). Both methods employ constrained transport (CT; Evans & Hawley, 1988)

to preserve the divergence–free constraint on the magnetic field. Athena uses the spatial

reconstruction methods of Colella & Woodward (1984) to interpolate cell-centered quantities

to the cell interfaces for evaluation of the fluxes in the Riemann method. Exact solutions

of the Riemann problem are computationally expensive (Toro, 2009); therefore approximate
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solutions are often used. We prefer solvers in the HLL family (Harten et al., 1983) that

average over intermediate states in the Riemann problem. For hydrodynamics, we use the

HLLC solver (Toro, 2009) which includes the contact wave; this is extended for MHD to

include the Alfvén wave in the HLLD solver (Miyoshi & Kusano, 2005).

Athena conserves the mass, momentum, total energy, and divergence of the magnetic

field to machine accuracy. Eqs. 2.1.1-2.1.6 do not include viscosity; however, the discretiza-

tion, integration, and interpolation introduce numerical viscosity proportional to the grid

resolution, time accuracy, and interpolation order, respectively. This allows Athena to

handle non-conservative phenomena such as supersonic shocks. Eqs. 2.1.1-2.1.3 also do not

include additional source terms such as gravity and radiative cooling. Gravity is implemented

in Athena in a way that conserves momentum but not energy (see Section 2.2.2). Other

sources, such as diffusion and radiative cooling, are implemented at first order in time via

operator splitting.

2.2 Modifications to Athena

2.2.1 Dual energy formulation

Certain source terms, such as radiative cooling, require the temperature T , which is

proportional to the internal energy density e = P/(γ − 1) via the ideal gas law. Athena

evolves the total energy density E, and the internal energy is evaluated by subtracting the

kinetic energy Ekin ≡ ρ|u|2/2 from the total energy. In regions where the kinetic energy is a

significant fraction of the total energy, the difference will be susceptible to numerical errors

and the internal energy returned may be non-physical (e < 0). Therefore, we simultaneously

solve the internal energy equation:

∂e

∂t
+∇ · (eu) = −P ∇ · u. (2.2.1)
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If the internal energy is a small fraction of the total energy (e/E ≤ 10−3), we revert to using

e rather than E−Ekin. This “Dual Energy Formulation” is also used in Enzo (Bryan et al.,

2014) and Flash (Fryxell et al., 2000). The check is performed any time the internal energy

(or pressure or temperature) is required, such as calculating the pressure at cell interfaces

as inputs to the Riemann solver. We prefer the dual energy formulation over a pressure or

temperature floor in our models; while reverting the pressure to a small number (∼ 10−20)

may not affect the dynamics in most situations, the cooling depends very sensitively on the

temperature.

The internal energy equation (Eq. 2.2.1) is not conservative. The left-hand side can be

treated as an advection equation for e/ρ. We therefore use the density flux returned from

the Riemann solver to advect the internal energy, treating e as a passive color field. The

source term is calculated and applied at cell centers using a monotonic central difference to

evaluate the gradients of the velocity in each direction. In contrast to Bryan et al. (2014),

we use the updated pressure [calculated from P = e(γ − 1)] when applying the source term

at the full time-step update in the integrator. The non-conservative formulation can lead to

large discrepancies from the correct internal energy if the equation is allowed to evolve on

its own (see Figure 2.1). Therefore, we follow the recommendation of Bryan et al. (2014)

and synchronize the internal energy using the total energy when deemed safe to do so. We

reset e = (E− ρ|u|2/2) if e/Emax ≥ 0.1, where Emax is the maximum total energy of the cell

and its immediate neighbours [eq. 45 of Bryan et al. (2014) with η2 = 0.1].

Test case: Sod shock tube

The Sod shock tube is a standard hydrodynamical test case (Tasker et al., 2008). The

set-up is a variant of the Riemann problem described in Section 2.1: two uniform gases are

initialized with a discontinuity in the density and pressure. The analytic solution is known

from the Riemann problem. t = 0 then corresponds to the removal of the interface, and the

discontinuity should generate three waves – a shock wave, a contact wave, and a rarefaction
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Figure 2.1: Profiles of the density, pressure, and velocity in the 1D Sod shock tube test case
with 1024 grid points at t = 0.25 (in computational units). The analytic solution is shown
as the solid line, with simulation results overplotted in open squares. From left to right in
each profile are the rarefaction, contact, and shock discontinuities. The left column shows
the result obtained with the standard dual energy method, while the right column shows the
result when only the internal energy is used. The results show good agreement except in the
shock front, which proceeds too slowly if only the internal energy is used.

wave. We test the dual energy formulation in two ways: 1) as described above with checks

and syncing of the total energy, and 2) completely using the internal energy instead of the

total energy. The latter represents the worst-case scenario; in practice, the internal energy

is a fall-back mechanism only used in a neglible fraction of cells per time-step.

Figure 2.1 shows the density, pressure, and velocity in the Sod shock tube at t = 0.25

(in computational units). The left column shows the standard dual energy formulation,

while the right column shows the worst-case scenario. In the standard case, the dual energy

shows excellent agreement with the analytic solution; the rms error on the energy is 7.04×

10−4. However, if only the internal energy is evolved (and not the total energy), the shock

propagates too slowly and the rms error on the energy increases to 5.26×10−3. This illustrates

the non-conservative nature of Eq. 2.2.1, as the source term on the right hand side creates

issues; the dilatational term (∇·u) is large at the shock front and depends sensitively on the

12



method used in calculating the velocity gradients. Despite this, the internal energy is still

very accurate in the rarefaction and contact regions. As previously mentioned, the internal

energy is only rarely used as a fallback mechanism. Overall, the dual energy formulation

maintains a high degree of accuracy while preventing unphysical states and avoiding ad hoc

floor values.

2.2.2 Gravity

Gravity is implemented in Athena in a way that conserves momentum but not energy:

∂ρu

∂t
+∇ · (ρuu−BB +

B ·B
2

+ P I + Tg) = 0 (2.2.2)

∂E

∂t
+∇ · [(E + P +

B ·B
2

)u] = −ρu · ∇φ (2.2.3)

where φ is the gravitational potential and Tg is the gravitational tensor defined as (Jiang

et al., 2013):

Tg =
1

4πG
[∇φ∇φ− 1

2
(∇φ) · (∇φ)I] (2.2.4)

with G the gravitational constant. This allows the momentum change due to gravity to be

treated as a flux rather than a source term. The potential φ is evaluated at each time step

via solution of Poisson’s equation,

∇2φ = 4πGρ. (2.2.5)

This elliptic partial differential equation can be evaluated using a variety of methods, such as

multigrid methods or Fourier transforms, provided an approriate discretization and boundary

conditions.

2.2.3 Gravity with SMR

Athena includes static mesh refinement (SMR) which allows for additional grid reso-

lution in specific regions. In contrast to adaptive mesh refinement (AMR), SMR refinement
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grids remain in a fixed location for the duration of the simulation. This provides strict con-

trol over where and how refinement is achieved. Unfortunately, mesh refinement complicates

standard solving procedures for gravity. Athena currently does not support gravity with

SMR. We have thererfore implemented a new gravitational potential solver compatible with

SMR.

We follow a procedure similar to that used in Enzo (Bryan et al., 2014). We use

an iterative process to determine the gravitational potential level-by-level. First, we use

a standard FFT-based method to compute the potential on the root domain, for either

isolated or periodic boundary conditions. We then prolongate (interpolate) the potential to

set boundary conditions on the next finer level. These values are used as Dirichlet boundary

conditions for a Poisson solve on the fine domain. We use the standard second-order finite-

difference approximation to the Poisson equation. The resulting linear equation is solved

with the Hypre library (Falgout et al., 2006). Hypre provides easy access to a variety of

parallelized multigrid methods. The resulting potential is then interpolated to the next fine

domain, and the process repeats. Finally, all fine domain potentials are restricted (averaged)

back onto the coarse domains to reduce errors.

We use the same prolongation and restriction operators as Athena uses for the scalar

hydrodynamic variables, namely those of Tóth & Roe (2002). For prolongation, this is a

conservative linear interpolation with a monotonic slope limiter. The slope limiter prevents

new extrema as a result of interpolation. Athena prolongates a single cell-centered coarse

value into a 2×2×2 (in 3D) cube of fine-grid values. The method is conservative in that the

mean of the cube of values is equivalent to the coarse value. However, the linear interpolation

routine is slightly inaccurate for fields with non-linear gradients. As an example, consider

a smooth point-mass potential going as r−1. The linear interpolation will overshoot on one

side of the center and undershoot on the other side, resulting in a checkerboard pattern.

The size of the errors is dependent on the steepness of the gradient, but generally this error

is small. Further, the prolongation is only used to set boundary values for the potential
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Figure 2.2: Midplane slice at z = 0 of the gravitational potential (left panel) resulting from
an oblate spheroid determined using Hypre on a single fixed grid of 1283 cells. The log
of the relative error is also shown (right panel). Hypre use parallelized multigrid methods
to solve the linear system resulting from the finite-difference approximation to the Poisson
equation. Boundary conditions are evaluating using a high-order multipole expansion.

solve. The fine grid density field is not interpolated, and therefore the resulting potential is

(overall) smooth.

Test case: MacLaurin spheroid

A homoegenous oblate spheroid (or so-called “MacLaurin” spheroid) is ideal for testing

the accuracy of gravity solvers (Couch et al., 2013) because the potential can be expressed

analytically (Ricker, 2008) and the partial symmetry will reveal dimension-dependent errors.

We initialize a static oblate spheroid with semi-major axis a = 1.0, ellipticity e = 0.9, and

uniform density ρ = 1.0 in a negligible background ρ0 = 10−10. The spheroid is centered in

a simulation cube of width L = 4.0.

We first test our new Hypre-based Poisson solver on a single fixed grid of 1283 support

points. We use a multipole expansion (up to octupole) to compute the potential at the
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Figure 2.3: Same as Figure 2.2, but for a nested SMR grid of three levels. The root grid is
323, resulting in an effective resolution of 1283. The SMR refinement boxes are barely visible
in the error (right panel) due to the interpolation from coarse to fine levels.

boundaries. The solution to linear system resulting from discretization of Eq. 2.2.5 is

evaluated using the generalized minimal residual (GMRES) method with a semicoarsening

multigrid (SMG) pre-conditioner. Figure 2.2 shows the potential and relative error in a

midplane slice at z = 0. Comparing to the analytic solution, our solver yields an rms

relative error of 3.2× 10−6, with a maximum error of 3.5× 10−3.

We then test the solver on a nested SMR grid of three levels, with 323 support points on

the coarest level and an effective resolution of 1283 on the finest level. Similar to Figure 2.2,

Figure 2.3 shows the potential and relative error in a midplane slice at z = 0. The outlines

of the SMR refinement grids are visible in the error, but overall the potential is still highly

accurate. Compared to the fixed grid, the rms error and maximum error are only slightly

increased to 4.0 × 10−6 and 4.5 × 10−3, respectively. Most importantly, the use of SMR

reduces the computational time by over an order of magnitude, despite having to solve for

the potential on multiple levels sequentially.
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2.2.4 Dust dynamics

Particles, such as dust grains, follow a different equation of motion which must be solved

simultaneously. We have added passive particles to the VL integrator (Stone & Gardiner,

2009) in Athena (Stone et al., 2008). The particle update is performed using the predictor

values. Comparisons with the CTU integrator, which includes particles by default, show

nearly absolute agreement. We have also extended Athena to include drag forces, collisional

destruction, and dust evaporation; full details including a test case are presented in Section

4.2.3.
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CHAPTER 3: TURBULENCE MODELS IN THE SHOCK-CLOUD
INTERACTION1

3.1 Introduction

Since the discovery of 26Al in CAIs by Lee et al. (1976), the leading hypothesis has been

injection of SLRs by a nearby supernova (Cameron & Truran, 1977; Margolis, 1979). In this

scenario, a SN launches a supersonic blast wave carrying SLRs into the ISM that collides with

nearby molecular gas clouds (McKee & Ostriker, 1977). The impinging shock wave drives

hydrodynamic instabilities at the cloud surface, such as the Rayleigh-Taylor (RT), Kelvin-

Helmholtz (KH), and Richtmeyer-Meshkov (RM) instabilities (Stone & Norman, 1992), that

could simultaneously inject SLRs and trigger gravitational collapse (Foster & Boss, 1997).

If the blast wave has traveled sufficient distance, or if the target cloud is sufficiently

small, the blast wave can be considered approximately planar when it collides with the

molecular cloud. In this case, the interaction resembles the standard shock-cloud interaction

– a well-studied problem in numerical simulations (Stone & Norman, 1992; Klein et al.,

1994; Xu & Stone, 1995; Nakamura et al., 2006; Pittard et al., 2009; Pittard & Parkin,

2016). Foster & Boss (1997) first performed shock-cloud simulations of SN enrichment, and

subsequent shock-cloud experiments (Boss et al., 2010; Boss & Keiser, 2012, 2013, 2014,

2015) have extending the physics and parameter space. Yet these simulations encounter a

common bottleneck – it remains difficult to mix the hot SN ejecta into the dense molecular

cloud without disrupting the cloud. Most recently, Boss & Keiser (2015) find that less than

1Portions of this chapter previously appeared as an article in Monthly Notices of the Royal Astronomical
Society. The original citation is as follows: Goodson, M. D., Heitsch, F., Eklund, K., & Williams, V. A.
“A systematic comparison of two-equation Reynolds-averaged NavierStokes turbulence models applied to
shockcloud interactions,” MNRAS (2017).
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10% of incident SN material is injected into a dense pre-solar core, reaching only the lowest

estimates for ESS abundances (Takigawa et al., 2008).

It may be that the mixing observed in shock-cloud simulations is artificially suppressed

by insufficient resolution. In Goodson et al. (2017), we explore the dynamics and mixing of

the shock-cloud interaction in detail. We consider turbulence models as a means to reduce

resolution effects, and we implement six models in the Athena code. We test the ability

of the models to capture hydrodynamical instabilities, and we apply the models to a shock-

cloud interaction in three dimensions. We find that the turbulence models predict higher

levels of mixing, with injection fractions & 30%. Increased mixing is also seen in inviscid

simulations only once sufficient resolution is achieved (greater than 50 cells per cloud radius).

This suggests that the turbulent cascade begins to be resolved at this point, and simulations

with lower resolutions may underestimate the turbulent mixing.

3.1.1 Hydrodynamical modeling of the shock-cloud interaction

In Eulerian hydrodynamics simulations, the growth of turbulence is controlled by nu-

merical viscosity (resolution effects). Adequate resolution is therefore necessary to properly

capture the dynamics. Previous work on the shock-cloud interaction has found that about

100 cells per radius are necessary for convergence of global quantities (Klein et al., 1994;

Nakamura et al., 2006; Pittard et al., 2009), although this requirement may be relaxed in

3D simulations (Pittard & Parkin, 2016). However, because the instabilities grow fastest on

the smallest scales, the details of the small-scale mixing are dominated by resolution effects.

Shin et al. (2008, hereafter SSS08) found that all quantities except the mixing fraction show

convergence in shock-cloud simulations.

One possible means to mitigate resolution effects is a turbulence model, sometimes re-

ferred to as a subgrid-scale (SGS) model. Turbulence models attempt to mimic the effect of

unresolved small-scale turbulence on the large-scale flow, often through the addition of “tur-

bulent” stresses. Such models are common in engineering codes, and they are increasingly
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used in astrophysics (Schmidt et al., 2006; Scannapieco & Brüggen, 2008; Pittard et al., 2009;

Gray & Scannapieco, 2011; Schmidt & Federrath, 2011; Schmidt, 2014; Pittard & Parkin,

2016). Turbulence models can be separated into two types: Reynolds-averaged Navier-Stokes

(RANS) and Large-Eddy Simulations (LES). The former relies on time-averaging of the de-

composed fluid equations, while the latter uses spatial filtering of variables. Here, we only

consider RANS models; for a review of LES methods, see Schmidt (2014).

3.1.2 Turbulence models in the shock-cloud interaction

Both RANS and LES turbulence models have been used to model the interaction of a

shock with a cloud, in different environments and with different results. Pittard et al. (2009,

hereafter P09) examined the hydrodynamic shock-cloud interaction in two dimensions with

the k-ε model, a two-equation RANS model. The authors argued that the k-ε turbulence

model adequately captured the dynamics of the shock-cloud interaction and reduced the

resolution requirements. Follow-up studies by Pittard & Parkin (2016, hereafter PP16)

revealed that the k-ε model did not significantly alter the dynamics or improve the resolution

convergence in three dimensional simulations.

Gray & Scannapieco (2011, hereafter GS11) used a different two-equation RANS model,

based on the k-L formalism, to track metal enrichment in so-called “minihalos”. An enriched

supersonic galactic outflow impacts a diffuse cloud of primordial gas, subject to both gravity

and radiative cooling. The authors modified the k-L model of Dimonte & Tipton (2006,

hereafter DT06), which was calibrated for RT and RM instabilities, to include the KH in-

stability and compressibility effects. Here the authors specifically investigated the turbulent

mixing of metals. While there were notable differences in the enrichment of diffuse gas, the

metal abundance in the dense gas was largely unaffected by the turbulence model.

Schmidt et al. (2014) applied a one-equation LES model to the simulations of Iapichino

et al. (2008), which studied a cosmological minor-merger, i.e., the infall of a low-mass sub-

cluster into a larger cluster. This resembles the shock-cloud interaction but on larger scales.
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For this application, the authors used a linear eddy-viscosity relation with a dynamic proce-

dure to calculate transport coefficients (“shear-improved” SGS model). The authors found

that, while the LES turbulence model did not significantly alter the energy of the interaction,

it did affect the vorticity and subsequent evolution of the infalling gas.

It is difficult to interpret and compare the effects of the turbulence models in the sim-

ulations described above. First, each application explored different physical regimes and

therefore included different physics (e.g. radiative cooling, gravity). Second, some turbu-

lence models incorporated additional effects, such as buoyancy and compressibility, that

other models implicitly neglect. Third, each turbulence model affects the dynamics differ-

ently. In the case of LES, the resolved dynamics are largely unaffected, as the model only

considers turbulent effects near and below the filter width, which is typically close to the grid

scale. However, RANS models average out dynamical fluctuations at all scales below some

characteristic length scale, which varies throughout the simulation and could be much larger

than the grid scale. Fourth, the “true” solution to the shock-cloud interaction is unknown.

One can compare results obtained with a turbulence model to higher-resolution simulations,

but without an explicit viscosity the degree of mixing remains constrained by the numerical

viscosity.

Finally, it is unclear whether these turbulence models are valid in the astrophysical

regimes being probed. All turbulence models rely on closure approximations with adjustable

parameters often determined by comparison with empirical results. The laboratory experi-

ments used for calibration are typically subsonic and incompressible in nature. While some

models can be modified to produce correct results in transonic and moderately compressible

regimes, it is unknown whether these modifications remain valid in the highly supersonic,

highly compressible conditions characteristic of the ISM.
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3.1.3 Motivation and outline

In an effort to better understand the effects and validity of turbulence models in astro-

physical applications such as SLR enrichment, we perform hydrodynamical simulations of

the generic shock-cloud interaction with six two-equation RANS models. We first develop a

common framework for two-equation turbulence models, and we implement this framework

in the Athena hydrodynamics code (Stone et al., 2008). We verify the implementation of

each turbulence model with the subsonic shear mixing layer test, ensuring that the width of

the mixing layer grows linearly in accord with experimental results. We also highlight the

dependence of the growth rate on the definition of the mixing layer width. We then test

the validity of each model into the supersonic regime. Most models are known to perform

poorly in transonic applications, but we explore three common “compressibility corrections”

that improve results. Three of the models here considered include buoyancy effects, such

as the RT instability. For these models, we further verify our implementation with a strat-

ified medium test, in which we compare the temporal growth of the RT boundary layer to

experimental results.

After determining that the turbulence models are implemented correctly, we test each

turbulence model in a three-dimensional adiabatic shock-cloud interaction. We quantify

not only the global dynamics but also the small-scale mixing. To examine the validity of

the turbulence models, we perform a resolution convergence test of the inviscid shock-cloud

interaction, up to 200 cells per radius in full 3D on a fixed grid. We also compare results to an

ensemble-average of inviscid simulations initialized with grid-scale initial turbulence, scaled

to roughly match the initial conditions of the turbulence models. Finally, we consider the

effects of initial conditions and compressibility corrections in the turbulence models, finding

that the former makes a significant difference in evolution whereas the latter does not.

We outline the six RANS turbulence models and their implementation in Athena in

Section 3.2. We verify each implementation with a mixing layer test in Section 3.3, and

we further verify three of the models with the stratified medium test in Section 3.4. The
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turbulence models are then used in the shock-cloud simulation; the set-up and results of

these simulations are presented and discussed in Section 3.5. Finally, we discuss the validity

of turbulence models in astrophysical applications in Section 3.6 before concluding in Section

3.7.

3.2 Turbulence models

We extend Eqs. 2.1.1 – 2.1.6 as follows:2

∂ρ

∂t
+∇ · (ρu) = 0 (3.2.1)

∂(ρu)

∂t
+∇ · (ρuu + P I) = ∇ · τ ′ (3.2.2)

∂E

∂t
+∇ · [(E + P )u] = ∇ · (uτ ′ − q′) + ΨE (3.2.3)

∂(ρC)

∂t
+∇ · (ρCu) = ∇ · d′ (3.2.4)

∂(ρk)

∂t
+∇ · (ρku) = ∇ · (µT

σk
∇k) + Ψk (3.2.5)

∂(ρξ)

∂t
+∇ · (ρξu) = ∇ · (µT

σξ
∇ξ) + Ψξ (3.2.6)

with the specific turbulent kinetic energy k, an auxiliary turbulence variable ξ, the turbulent

stress tensor τ ′, the turbulent heat flux q′, the turbulent diffusive flux d′, turbulent viscosity

µT , turbulent diffusion coefficients σ, and source terms due to turbulent effects Ψ. E now

represents the total resolved energy density E 3.

Two-equation models are so named because they add two “turbulent” variables – the

specific turbulent kinetic energy k and an auxiliary variable ξ that varies from model to

model – with corresponding transport equations (Eqs. 3.2.5-3.2.6). Models are typically

2For simplicity of notation, we do not differentiate Reynolds-averaged (ρ, P ) and Favre-averaged (ũ, Ẽ, C̃)
variables, where φ̃ ≡ ρφ/ρ.

3We do not include the turbulent kinetic energy ρk in the definition of total energy; therefore we are
simulating the total resolved energy. See section 2.4.5 of Garnier et al. (2009) for a complete discussion of
compressible energy equation systems.
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denoted by the chosen auxiliary turbulence variable; e.g., ξ → ε yields the k-ε model. Here,

we examine the standard k-ε model of Launder & Spalding (1974, hereafter LS74), as well

as the extended model of Morán-López & Schilling (2013, hereafter MS13); the k-L models

of Chiravalle (2006, hereafter C06) and GS11; and the k-ω models of Wilcox (1988, hereafter

W88) and Wilcox (2006, hereafter W06). For the k-ε and k-ω models, we also test the effect

of three standard compressibility corrections, presented in Sarkar et al. (1989, hereafter S89),

Zeman (1990, hereafter Z90), and Wilcox (1992, hereafter W92).

The turbulent stress tensor τ ′ is defined as

τ ′ij = 2µT (Sij −
1

3
δijSkk)−

2

3
δijρk (3.2.7)

with resolved stress rate tensor S given by

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (3.2.8)

The specific turbulent kinetic energy k is defined as k ≡ (1/2)τ ′kk and requires an additional

transport equation. The generic transport equation (Eq. 3.2.5) is applicable to (almost) all

models investigated, with source term

Ψk = PT − CDρε+ CBρ
√
kAigi (3.2.9)

with the production term PT = τ ′ij∂ui/∂xj, specific dissipation ε, dissipation coefficient

CD, buoyancy coefficient CB, and Atwood number in the ith direction Ai with acceleration

gi = −(1/ρ)∂P/∂xi. The source term on the energy equation is ΨE = −Ψk. Table 3.1

presents a summary of all model constants and values.

In adiabatic simulations, the turbulent heat flux vector q′ is defined as

q′j = −κT
∂T

∂xj
=

γ

γ − 1

µT
PrT

∂T

∂xj
(3.2.10)
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Table 3.1: Summary of model constants. Some values may appear at variance with the
reference; this is due only to our generic formalism, which redefines and combines certain
constants for consistency across all models. Values presented for the W06 model neglect
limiting functions and should therefore be considered approximations.

Constant Description LS74 MS13 C06 GS11 W88 W06
Cµ Turbulent viscosity 0.09 0.09 0.30 1.00 1.00 1.00
CD Dissipation of turbulence 1.00 1.00 8.91 3.54 0.09 0.09
CB Buoyancy effects 0.00 0.10 1.70 1.19 0.00 0.00
PrT Turbulent Prandtl number 0.90 0.90 1.00 1.00 0.90 0.89
σk Turbulent energy diffusion 1.00 0.50 1.00 1.00 2.00 1.67
σξ Turbulent diffusion 1.30 0.50 1.00 0.50 2.00 2.00
σC Turbulent Schmidt number 1.00 0.50 1.00 1.00 1.00 1.00
C1 Turbulence generation 1.44 1.44 1.00 0.33 0.56 0.52
C2 Additional effects 1.92 1.92 1.00 1.00 0.08 0.07
C3 Buoyancy effects 0.00 0.09 0.00 0.00 0.00 0.00

with turbulent thermal conductivity κT = cpµT/PrT , specific heat capacity cp = γ/(γ − 1),

and turbulent Prandtl number PrT .

Passively advected scalar fields are diffused using a gradient-diffusion approximation,

where the turbulent diffusive flux vector d′ is given by

d′j =
µT
σC

∂C

∂xj
, (3.2.11)

with Schmidt number σC generally of order unity.

3.2.1 k-ε models

In the k-ε formalism, the auxiliary turbulence variable ξ is defined to be the specific

turbulent energy dissipation ε ∝ k3/2L−1, where L is a defined turbulent length scale. The

exact scaling depends on the implementation; we here use ε = C
3/4
µ k3/2L−1, where Cµ is a

model constant related to the viscosity.
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LS74

LS74 outlined the standard version of the k-ε model, and it is perhaps the most widely

used RANS turbulence model. The model uses the eddy-viscosity µT defined as

µT = Cµρ
k2

ε
(3.2.12)

with Cµ = 0.09. The transport equation for ε (Eq. 3.2.6) has the source term

Ψε = C1
ε

k
PT − C2ρ

ε2

k
. (3.2.13)

The model constants are summarized in Table 3.1. Because CB = 0, the model neglects

buoyant effects, such as the RT instability.

MS13

To include the RT and RM instability effects in the k-ε model, MS13 added a buoyancy

term, with the Atwood number in Eq. 3.2.9 defined as

Ai =
k3/2

ρε
(
∂ρ

∂xi
− ρ

P

∂P

∂xi
). (3.2.14)

The source term for the dissipation equation Ψε is also extended as

Ψε = C1
ε

k
PT − C2ρ

ε2

k
+ C3ρ

ε√
k
Aigi. (3.2.15)

The model constants are summarized in Table 3.1; we note that the MS13 values are largely

the same as LS74 but with modified transport coefficients and CB 6= 0.
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3.2.2 k-L models

The k-L model is a two-equation RANS model developed by DT06 to study RT and RM

instabilities. Shear (KH instability) was added by C06 and extended to include compress-

ibility effects by GS11. The auxiliary variable ξ is defined to be the eddy length scale L.

The model uses the eddy-viscosity

µT = CµρL
√

2k. (3.2.16)

The transport equation for L (Eq. 3.2.6) has the source term

ΨL = C1ρL(∇ · u) + C2ρ
√

2k. (3.2.17)

Again, we here set the specific dissipation in Eq. 3.2.9 to be ε = C
3/4
µ k3/2L−1.

C06

C06 added shear to the k-L model of DT06 by employing the full stress tensor rather

than just the turbulent pressure term. This necessitated re-calibrating the model coefficients

of DT06. We note that C06 used a slightly different RT growth rate parameter (α = 0.05

instead of α = 0.0625 in DT06) when calibrating the model. Buoyancy effects are included

via the Atwood number defined as

Ai =
ρ+ − ρ−
ρ+ + ρ−

+
L

ρ

∂ρ

∂xi
, (3.2.18)

where ρ+ and ρ− are the reconstructed density values at the right and left cell faces, re-

spectively. The model constants are summarized in Table 3.1; we note that the constant

values appear to differ from those given in C06, but that this is solely due to our generic

two-equation framework which combines and re-defines certain constants.
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GS11

Similar to C06, the model of GS11 is based on the k-L model of DT06, but with the

complete turbulent stress tensor to include KH effects. The model uses a slightly different

definition of the Atwood number from C06, with

Ai =
ρ+ − ρ−
ρ+ + ρ−

+
2L

ρ+ L |∂ρ/∂xi|
∂ρ

∂xi
, (3.2.19)

where again ρ+ and ρ− are the reconstructed density values at the right and left cell faces,

respectively.

GS11 also introduces a variable (τKH) to account for compressibility effects by modifying

the turbulent stress tensor,

τ ′ij = 2µT τKH(Sij −
1

3
δijSkk)−

2

3
δijρk. (3.2.20)

τKH is calibrated with compressible shear layer simulations and estimated using a “local”

Mach number Ml ≡ |∇× u|L/cs, where cs is the local sound speed. However, the piecewise

fit for τKH given by Eq. 19 in GS11 is discontinuous, which can lead to numerical issues. We

therefore fit their formulation with a smooth function,

τKH(Ml) = 0.000575 +
0.19425

1.0 + 0.000337exp(17.791 Ml)
. (3.2.21)

The model constants are summarized in Table 3.1; we note that the C06 and GS11 model

constants differ despite significant similarity in model formulation and calibration.

3.2.3 k-ω models

The k-ω model was first developed by W88 and updated in Wilcox (1998) and W06.

The auxiliary variable ξ is defined to be the specific dissipation rate (or eddy frequency)

ω = k1/2L−1, which has units of inverse time. Then the specific dissipation is ε = Cµkω. To
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our knowledge, this is the first use of a k-ω model in an astrophysical application.

W88

The first version of the k-ω model is outlined in W88. The model uses the eddy-viscosity

µT = Cµ
ρk

ω
. (3.2.22)

The transport equation for ω (Eq. 3.2.6) uses the source term

Ψω = C1
ω

k
PT − C2ρω

2. (3.2.23)

The model constants are summarized in Table 3.1.

W06

The most recent version of the k-ω model is presented in W06 and Wilcox (2008). While

the model is similar to W88, there are important (and elaborate) differences, such as cross-

diffusion terms and stress limiters. While the additional terms improve the accuracy and

reduce the dependence on initial conditions, the model is sufficiently complex to prohibit

a generic description. Our implementation in Athena includes the additional terms, and

we refer the reader to W06 and Wilcox (2008) for a full description of the model. For

completeness we note approximate constant values in Table 3.1.

3.2.4 Compressibility corrections

A common way to account for compressibility effects is to modify the turbulence dis-

sipation rate ε. In theory, ε is decomposed into solenoidal and dilatational components,

with the latter only manifesting in compressible turbulence. In practice, only a slight mod-

ification is needed to the k and ω equations. In Eq. 3.2.9, the second term on the right

hand side is modified as CDρε → CDρε[1 + F (Mt)], where F (Mt) is a function of the local
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turbulent Mach number Mt ≡
√

2k/as, with as the local sound speed. No further changes

are needed in the k-ε formalism. In the k-ω formalism, Eq. 3.2.23 is also modified with

C2ρω
2 → [C2 − CDF (Mt)]ρω

2. We consider three forms for F (Mt) proposed in the litera-

ture. The simplest model is that of S89 which uses

F (Mt) = M2
t . (3.2.24)

The most complex model is that of Z90 with

F (Mt) = 0.75{1.0− exp[−1.39(γ + 1.0)(Mt −Mt0)2]}H(Mt −Mt0), (3.2.25)

with H the Heaviside step function and Mt0 ≡ 0.10
√

2/(γ + 1). Finally, the model of W92

suggests

F (Mt) = 1.5(M2
t − 0.0625)H(Mt − 0.25). (3.2.26)

It is worth noting that these are purely phenomenological models; resolved DNS simulations

by (Vreman et al., 1996) have demonstrated that the dissipation is not actually reduced in

compressible turbulence. Despite this realization, compressibility corrections that modify the

dissipation are still commonly used because they yield accurate results in many applications.

As noted in Section 3.2.2, GS11 uses a different type of compressibility correction which

modifies the turbulent stress tensor. No satisfactory correction is available for C06.

3.2.5 Turbulence model initial conditions

In simulations with a turbulence model, we must specify initial conditions for the tur-

bulent kinetic energy k and the additional turbulent variable (ξ → ε, L, or ω). We desire

identical initial conditions for all models; we therefore set the turbulent length scale L in all

models and convert using scaling relations. Based on dimensional arguments, ε ∝ k3/2/L

and ω ∝ k1/2/L. The literature values for the constant of proportionality vary; we obtained
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Table 3.2: Mixing layer growth rates for Mc = 0.10.

Model Cb10 Cb1 Cs10 Cω Cθ
empirical 0.082-0.100 a 0.170-0.181 b 0.058-0.084 a 0.081-0.091 a,c 0.016-0.018 d

LS74 0.070 0.092 0.056 0.083 0.015
MS13 0.067 0.091 0.053 0.077 0.014
C06 0.181 0.206 0.143 0.066 0.038
GS11 0.123 0.189 0.100 0.134 0.026
W88 0.052 0.062 0.041 0.040 0.011
W06 0.061 0.074 0.047 0.069 0.013

aBarone et al. (2006); bPapamoschou & Roshko (1988), with δviz ≈ δb1; cBrown & Roshko
(1974); dPantano & Sarkar (2002).

the best agreement across models using ε0 = C
3/4
µ k

3/2
0 L−1

0 and ω0 = C
−1/4
µ k

1/2
0 L−1

0 .

3.2.6 Implementation in Athena

The turbulence update is first order in time and implemented via operator splitting.

The fluxes are calculated at cell walls using a simple average to reconstruct quantities from

cell-centered values. Spatial derivatives are computed using second order central differences.

Source terms are evaluated after application of the viscous fluxes and are applied with

an adaptive Runge-Kutta-Fehlberg integrator (RKF45). Stability of the explicit diffusion

method is preserved by limiting the overall hydrodynamic time step based on the condition

∆t ≤ (∆2ρ)/(6µT ), where ∆ is the minimum cell size. The dependence on ∆2 limits the

feasibility of our implementation to low resolution simulations.

3.3 Mixing layer test

To verify the implementation of each turbulence model in Athena, we perform a one-

dimensional temporal mixing layer test. Our set-up is nearly identical to that described in

section 2.2.2 of GS11, which was adapted from section 3 of C06. We initialize a discontinuity

in the perpendicular (y) velocity at the origin. The difference in velocity between the left and
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right states sets the convective Mach number, defined as (Papamoschou & Roshko, 1988)

Mc ≡
|vl − vr|
cl + cr

, (3.3.1)

with v the y-velocity and c the sound speed, with subscripts l and r for the left and right

regions respectively. Unlike GS11, we shift the frame of reference to move at the convective

velocity; then vl = −vr. We also smooth the initial velocity discontinuity with a hyperbolic

tangent function, as was done in Palotti et al. (2008). The parallel (x) velocity is zero.

We use an ideal equation of state with γ = 1.4. The density and pressure are constant at

ρ0 = 1.0 g cm−3 and P0 = 1.72× 1010 erg cm−3, corresponding to a uniform sound speed cl =

cr = 1.55×105 cm s−1. The simulation domain is a one-dimensional region with extent -5.0 cm

< x < 5.0 cm with a resolution of 4096 cells. Similar to GS11, we initialize a small shear

layer of width δ0 = 0.1 cm centered at the interface with turbulent energy k = 0.02(∆v)2

and L = 0.2δ0, where ∆v = |vl − vr|. This initial layer is also smoothed to the background

values of k0 = 10−4(∆v)2 and L0 = 10−2δ0.

We run each simulation for 200µs. The velocity discontinuity generates a shear layer,

and the width of the shear layer δ grows linearly in time as

δ(t) = Cδ ∆v t, (3.3.2)

where Cδ is a constant. The exact value for Cδ depends on how the shear layer thickness δ

is defined. In lab experiments, the visual thickness δviz (Brown & Roshko, 1974) or pressure

thickness δp (Papamoschou & Roshko, 1988) are used. In numerical experiments, the velocity

thickness δb, energy thickness δs, and vorticity thickness δω are often used (Barone et al.,

2006); less common is the momentum thickness, δθ (Vreman et al., 1996). C06 and GS11 used

a 1 per cent threshold on the velocity thickness (which we will denote as δb1), considering

regions where 0.01 < (v − vl)/(∆v) < 0.99; engineering literature tends to use a 10 per

cent threshold (δb10), defined similarly to δb1. W88 used a 10 per cent energy thickness
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(δs10), defined where 0.1 < (v− vl)2/(∆v)2 < 0.9. We will compare results using these three

definitions, as well as the momentum thickness δθ = 1/[ρ0(∆v)2]
∫
ρ(vl − v)(v − vr) dx and

the vorticity thickness δω = |vl − vr|/(∂v/∂y)max.

A further complication is that lab experiments of the plane mixing layer measure a

spatial spreading rate, δ′(x) ≡ dδ/dx. In our experiment, we move in a frame of reference

at the convective velocity vc = (1/2)(vl + vr) (assuming cl = cr) and therefore measure a

temporal spreading rate, (e.g., Vreman et al., 1996; Pantano & Sarkar, 2002)

δ′(t) =
dδ

dt
=
dx

dt

dδ

dx
= vcδ

′(x). (3.3.3)

Values for Cδ estimated from plane mixing layer experiments (Brown & Roshko, 1974; Pa-

pamoschou & Roshko, 1988) and high-resolution numerical simulations (Pantano & Sarkar,

2002; Barone et al., 2006) are reported in Table 3.2, where the subscript on C indicates the

corresponding shear layer thickness definition.

3.3.1 Mixing layer results

Figure 3.1 shows the time evolution of a subsonic (Mc = 0.1) mixing layer with the LS74

k-ε model. The profiles of the the y-velocity v, turbulent kinetic energy k, and turbulent

length L all spread in time; as noted, the exact spreading rate depends on how the layer

thickness is defined. Figure 3.2 shows the growth of the shear layer thickness δ(t) for different

layer definitions. All definitions show linear growth in time. The 1 per cent velocity thickness

grows at the greatest rate, while the momentum thickness increases at the lowest rate. We

use a χ2 minimization linear fit to estimate Cδ; the results are presented in Table 3.2.

Table 3.2 also shows the growth rates at Mc = 0.10 for all RANS models tested. We find

that the various turbulence models lead to differing growth rates on the same test problem.

Although most models do not reproduce the measured growth rate for all thickness defini-

tions, all models do produce linear growth in time and roughly agree with the measured value

for at least one definition, leading us to conclude that our models are implemented correctly
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Figure 3.1: Time evolution of the one-dimensional subsonic (Mc = 0.10) shear flow test with
the LS74 k-ε turbulence model. From the top, profiles of the y-velocity v, specific turbulent
kinetic energy k, and turbulent length scale L = C

3/4
µ k3/2ε−1. Profiles are shown at times

t = 0, 50, 100, and 200 µs, indicated by colour.
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Figure 3.2: Growth of the shear layer width δ(t) in the subsonic (Mc = 0.10) mixing layer
with the LS74 k-ε turbulence model. The shear layer definition is indicated by colour. All
definitions produce linear growth but at different rates.
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in Athena. Variations in numerical method between codes could lead to discrepancies with

previous work; further, there is significant uncertainty on the measured values. Interestingly,

there is no clear relation between the different measures and models; for example, Cb10 is

much greater with the GS11 model compared to the LS74 model, but Cω is slightly less.

This suggests no single measure should be preferred.

Finally, we note that C06 and GS11 calibrated their turbulence models using a 1 per

cent velocity definition for the mixing layer. While their models show good agreement with

this definition, we find that these models largely do not predict spreading rates in agreement

with measured values when using other definitions. This suggests that a 1 per cent criterion

may not be the best definition for comparison.

3.3.2 Compressible mixing layer

The spreading rate of a compressible mixing layer is found to decrease with increasing

convective Mach number (Birch & Eggers, 1973; Brown & Roshko, 1974; Papamoschou &

Roshko, 1988). The difference is expressed as the compressibility factor Φ ≡ δ′/δ′i, where δ′i is

the incompressible growth rate. Experiments have yielded different relations between Mc and

Φ, such as the popular “Langley” curve (Birch & Eggers, 1973), the results of Papamoschou

& Roshko (1988), and the fit of Dimotakis (1991).

We perform simulations with increasing convective Mach number up to Mc = 10. We use

the growth rate determined at Mc = 0.1 with thickness δb10 as our incompressible growth rate

δ′i. Results obtained with the LS74 model are presented as solid circles in Figure 3.3, with

two experimental curves shown for comparison. Although the spreading rate does decrease

with increasing Mach number, it does not follow the experimental trend. This is consistent

with previous work which shows that standard two-equation RANS turbulence models do

not reproduce the observed reduction in spreading rate without modifications.

As described in Section 3.2.4, three authors (S89, Z90, and W92) have proposed “com-

pressibility corrections” to better capture the decrease. These corrections work by increasing
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Figure 3.3: The compressibility factor Φ ≡ δ′/δ′i as a function of convective Mach number
Mc. Results are shown for the standard LS74 model with no compressibility correction
(purple dots) and with the compressibility corrections of S89 (blue upward triangles), Z90
(green downward triangles), and W92 (gold diamonds); as well as for the GS11 model (red
squares), which includes a stress modification (τKH). The empirical curves of Dimotakis
(1991, dashed) and Barone et al. (2006, dot-dashed) are also shown for comparison.

the dissipation rate due to pressure-dilatation effects. Although direct numerical simulation

results have shown that this is not actually the case (Vreman et al., 1996), these ad hoc

compressibility corrections are still widely used because they produce more accurate results

(at least in the transonic regime). Figure 3.3 also shows results obtained when the three

compressibility corrections are applied to the LS74 model. All three corrections do decrease

the spreading rate to roughly the experimental values, at least up to Mc = 5; above this,

the growth rate is slightly below the experimental estimate. The difference between the

corrections of S89, Z90, and W92 is negligible. Similar results are obtained when applied to

the MS13, W88, and W06 models.

There is no straightforward way to apply these corrections to the model of C06; however,

GS11 does include a compressibility correction through the variable τKH (see Section 3.2.2).

Results obtained with the model of GS11 are also shown on Figure 3.3. The asymptotic

nature of the τKH function (Eq. 3.2.21) reproduces the observed behavior of compressible

layers up to Mc ≈ 1; however, above this point the GS11 formulation leads to growth rates

that are too small. Indeed, data points are not available for Mc > 2.5 for GS11 because the

model did not evolve.
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3.4 Stratified medium test

Three of the models here considered include buoyant effects to capture the RT instability,

namely MS13, C06, and GS11. To further verify the implementation of these models, we

perform a two-dimensional stratified medium test. Our set-up is nearly identical to that

described in section 2.2.1 of GS11, which was itself adapted from section 5 of DT06. We

accelerate a heavy fluid of density ρ1 = 1.0 g cm−3 into a lighter fluid of density ρ2 =

0.9 g cm−3 from an initially hydrostatic state. The acceleration acts in the −y direction

at g = 9.8 × 108 cm s−2. The grid is 0.02 × 1.0 cm with a resolution of 16 × 800 cells,

and the interface is at the midpoint of the y axis. The temperature is discontinuous at the

interface, with T1 = 45 K and T2 = 50 K, and follows a profile to maintain hydrostatic

equilibrium. Note that we do not perturb the interface; as the interface is grid-aligned, the

RT instability will not develop in an inviscid code. However, a buoyant turbulence model

will recognize the impulsive density and pressure gradients and generate turbulence, leading

to the development of a mixing layer between the two fluids. Bubbles of light fluid will

penetrate the heavy fluid with height h(t) = αbAgt
2, where A = (ρ1 − ρ2)/(ρ1 + ρ2) is

the Atwood number and αb ≈ 0.06 is a constant empirically determined from experiments

(Dimonte et al., 2004). Numerical simulations of the RT instability tend to underestimate

the growth by a factor of ∼ 2 (Dimonte et al., 2004; Stone & Gardiner, 2007), underscoring

the need for a turbulence model.

Figure 3.4 shows the evolution of the boundary layer for the turbulence models of C06,

GS11, and MS13. The other turbulence models (LS74, W88, and W06) lack buoyant source

terms; hence they cannot capture the RT instability and show no evolution in this test case.

We compare the growth of turbulent kinetic energy k(y, t) and turbulent length scale L(y, t)

with the analytic solutions given in DT06. The model of GS11 shows good agreement with

the analytic predictions; however, the models of C06 and MS13 do not accurately follow the

evolution. We note that C06 used a slightly lower value of the bubble penetration constant

αb compared to DT06 when calibrating the model; however this is insufficient to fully explain
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Figure 3.4: Time evolution of the stratified medium test with the buoyant turbulence models
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Figure 3.5: Growth of the bubble height h as a function of Agt2 for the buoyant turbulence
models (C06, GS11, and MS13). The growth should be linear with slope equal to the DT06
experimental bubble constant α = 0.06, shown in black. GS11 matches well with linear
growth at α ≈ 0.05. C06 is also linear but with a lower value of α ≈ 0.038. MS13 matches
well initially with α ≈ 0.06, but eventually the evolution becomes non-linear and diverges.

the discrepancy. Figure 3.4 also shows the evolution of the density ρ, the temperature T , and

the heavy fluid mass fraction Fh, determined using a passive color field C that is initialized

to unity in the heavy fluid and to zero in the light fluid.

We can also determine the growth rate of the bubble height h(t), estimated as the point

where the mass fraction of heavy material Fh = 0.985 (Stone & Gardiner, 2007). Figure

3.5 shows the growth of the bubble height h(t) plotted against Agt2; hence the lines should

be linear with a slope of α ≈ 0.06. We see that, after an initial transient phase, the GS11

model does show a linear trend with α ≈ 0.050 – slightly lower than expected but still

in good agreement. The model of C06 also shows a linear trend, but the layer grows too

slowly with α ≈ 0.038. The MS13 model is initially in good agreement with α ≈ 0.060 but

eventually diverges and grows non-linearly. It is unclear what in the MS13 model causes

this runaway growth, but the test result suggests that MS13 may not properly account for

sustained buoyancy and will therefore yield inconsistent results.
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3.5 Shock-cloud simulations

Having verified and validated our turbulence model implementation with idealized tests,

we now explore a complex problem: the astrophysical shock-cloud interaction. We solve

Eqs. 3.2.1-3.2.6 in Athena using the directionally unsplit CTU integrator (Colella, 1990)

with third order reconstruction in the characteristic variables (Colella & Woodward, 1984)

and the HLLC Riemann solver (Toro, 2009). Simulations are performed on Cartesian grids

in three dimensions. We use an adiabatic equation of state with the ratio of specific heats

γ = Cp/CV = 5/3. Self-gravity and magnetic fields are not included.

3.5.1 Setup and initial conditions

Our simulation is a variant of the typical shock-cloud interaction: a planar shock wave

of hot diffuse gas propagates through a uniform medium and impacts a cold, dense cloud.

The initial conditions are determined by the Mach number of the shock M , the radius of the

cloud R, and the density ratio of cloud to the ambient medium χ. Our fiducial simulation

uses M = 10, R = 1, and χ = 10.

The ambient medium is initially uniform with density ρ0 = 1 and pressure P0 = 1, in

arbitrary (computational) units. Our simulation domain initially extends from −5 ≤ x ≤ 15,

−5 ≤ y ≤ 5, and −5 ≤ z ≤ 5, again in arbitrary units. All boundaries are outflow-only,

except the upstream boundary (see below). The simulation resolution is indicated by the

number of cells per cloud radius NR; our fiducial simulation is NR = 25, corresponding to a

resolution of 512× 256× 256. We perform a resolution test in Section 3.5.2 up to NR = 200;

while NR = 25 is sufficient for most quantitative estimates, the details of the mixing are

notably different for NR ≥ 100.

The cloud begins centered at the origin and in pressure equilibrium with the ambient

medium. The cloud has a spherically-symmetric density profile given by (e.g., Nakamura
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et al., 2006):

ρ(r) = ρ0 +
ρc − ρ0

1 + ( r
R

)n
, (3.5.1)

where ρc = χρ0 is the central density and n controls the steepness of the profile. We use

n = 20 to obtain a profile similar to that of P09 but steeper than that of SSS08 (which used

n = 8). As in SSS08, we must set an arbitrary boundary for the “cloud,” which we denote

as rb and define where ρ(rb) = 1.01ρ0; for R = 1 and n = 20, rb = 1.25. To trace cloud

material, a passive scalar field Cc is set to unity where r ≤ rb and zero otherwise.

We initialize the shock with the adiabatic solutions of the Rankine-Hugoniot jump con-

ditions for a given Mach number M . The upstream boundary condition maintains these

quantities, resulting in a shocked wind model. The shock begins at x = −2 and propagates

in the +x direction. We use an additional passive colour field to trace the mixing of shocked

material in the simulation. A shock tracer Cs is initialized to unity only within the leading

edge of the shock with a width of one cloud radius, i.e., Cs = 1.0 where −3 < x < −2 and

zero otherwise.

The time is given in terms of the “cloud crushing time”, tcc, defined as (Klein et al.,

1994)

tcc ≡
R

us
=
χ1/2R

Mas
, (3.5.2)

where us is the shock velocity within the cloud and as =
√
γP0/ρ0 =

√
5/3 is the ambient

sound speed in computational units.

We do not use any mesh refinement – simulations are run on a single mesh of uniform

spacing. Athena is capable of static mesh refinement (SMR), which differs from adaptive

mesh refinement (AMR) in that in SMR the refinement grids are placed at the beginning of

the simulation and remain fixed. We did attempt to use SMR but encountered significant

issues when combined with a turbulence model. Interpolation of the conserved variables

(namely energy and momentum) across coarse-fine interfaces produced small numerical errors

in the primitive variables (namely pressure and velocity), which were sufficient to generate
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artificial vorticity that was amplified by the turbulence models. Using a single grid has the

further advantage that the diffusive properties of the code remain uniform across the domain.

Turbulence model initial conditions

Following GS11, we set the initial value for k relative to the internal energy as k0 = ki eint

on a cell by cell basis with eint = P/(γ − 1); similarly, we set the initial value for L relative

to the cloud radius as L0 = LiR. For our fiducial simulation, we choose ki = 10−2 and

Li = 10−2 everywhere to roughly match the initial conditions of GS11. We note that this

differs from the approach of P09 in which the authors used different initial conditions for the

shock and cloud; the effect of initial conditions will be explored in Section 3.5.2.

Co-moving grid

The cloud will be accelerated and disrupted by the shocked wind, and eventually all

cloud material will leave the initial simulation domain. To follow the cloud evolution for

as long as possible, we implement a “co-moving grid” similar to the method used in SSS08.

We adjust the x-velocity at each time step to keep our domain centered on the bulk of the

cloud material. At the beginning of each integration, we compute the mass-averaged cloud

velocity

〈vx〉 =

∫
V

(ρCc)
g vx dV∫

V
(ρCc)g dV

, (3.5.3)

where g is a weighting factor we introduce to keep the grid fixed on the densest cloud

material. While SSS08 used g = 1, we find we are better able to follow the cloud with g = 4.

We then subtract 〈vx〉 from the x-velocity everywhere in the simulation and update the grid

location and inflow conditions accordingly. To prevent cloud material from encroaching on

the upstream boundary, we limit the co-moving velocity when cloud material would come

within a distance of 2rb from the upstream boundary. We also prohibit the inflow velocity

from becoming subsonic to prevent information traveling upstream. We have verified this

method by comparing to simulations performed in an elongated static grid (−5 < x < 45);
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the resulting cloud evolution is nearly indistinguishable.

Implicit Large Eddy Simulations

Grid-based hydrodynamics simulations performed without a turbulence model are some-

times referred to as “inviscid” simulations; however, the discretization of the Euler equations

introduces numerical viscosity, and the turbulent cascade is truncated at the grid scale. The

grid thus serves as an “implicit” filter, and such a simulation may be referred to as an

“Implicit Large-Eddy Simulation”, or ILES (Garnier et al., 2009; Schmidt, 2014). We there-

fore denote simulations performed without a turbulence model as ILES. We perform high-

resolution ILES simulations up to NR = 200 for comparison to simulations with a turbulence

model.

Ensemble-averaged simulations with grid-scale turbulence

Even at high resolution, an ILES simulation with static initial conditions is not equivalent

to models with a turbulence model because the turbulence models are initialized with non-

zero small-scale turbulent energy (k0 6= 0). P09 therefore compared shock-cloud simulations

performed with the LS74 k-ε model to an inviscid simulation with random perturbations to

the density, velocity, and pressure in the post-shock flow. We extend the P09 approach by

averaging multiple high-resolution inviscid simulations initialized with different random per-

turbations. This should provide a good comparison, as the results from a RANS turbulence

model can be interpreted as an ensemble average over many turbulent flow realizations. The

velocity perturbations are drawn from a Gaussian distribution, and the width of the Gaus-

sian is set to match the initial level of turbulence in the models, namely ki = 10−2 eint. The

amplitude of the density perturbations is drawn from a Gaussian with a width of 0.01. Note

that, unlike P09, we do not perturb the pressure. We perform 10 simulations at NR = 25

with different turbulent realizations and then average on a cell-by-cell basis. We refer to

results from this method as “Turbulent ILES”, or TILES.
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Diagnostics

For comparison to previous shock-cloud simulations, we compute several standard in-

tegrated diagnostic quantities (Klein et al., 1994). The cloud-mass-weighted average of a

quantity f is defined as

〈f〉 =
1

Mcl

∫
V

ρCcfdV, (3.5.4)

where the initial cloud mass Mcl =
∫
t=0

(ρCc) dV .

We follow the effective radius normal to the x-axis

a = [5(〈x2〉 − 〈x〉2)]1/2, (3.5.5)

with similar expressions along the y and z axes denoted b and c respectively. We also compute

the rms velocity along each axis (Nakamura et al., 2006),

δvx = (〈v2
x〉 − 〈vx〉2)1/2, (3.5.6)

again with similar expressions in y and z.

To follow the mixing, we adopt the mixing fraction fmix introduced in Xu & Stone (1995)

and used in SSS08, where

fmix =
1

Mcl

∫
0.1<Cc<0.9

ρCcdV. (3.5.7)

As the cloud material (initially Cc = 1.0) is mixed into the ambient medium (initially

Cc = 0.0), the cloud concentration will take on intermediate values and fmix will increase.

We also examine another quantitative estimate of the mixing: the injection efficiency

finj, defined as

finj =
1

ηgeomMs

∫
Cc≥0.1

ρCsdV, (3.5.8)

where Ms =
∫
t=0

ρCsdV is the initial shock tracer mass and η is a normalization factor. As

the shock passes over the cloud, mixing at the leading edge by RT instabilities and at the
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edges by KH instabilities will “inject” shock material (such as SLRs) into the cloud. As in

4.3.3, the injection efficiency is normalized via ηgeom such that only the mass of the shock

tracer directly incident on the cloud cross-section πr2
b is considered; hence, finj = 1 indicates

“perfect” injection.

Optimization and Performance

The shock-cloud simulations were performed on the KillDevil Cluster at UNC Research

Computing. To our knowledge, the run with NR = 200 is the largest fixed-grid simulation

of the three-dimensional shock-cloud interaction performed to date, with 4096×2048×2048

grid cells. Evolving the simulation to t = 10tcc required over 500,000 CPU-hours, with a

maximum memory usage of nearly 13 TB across 2,048 CPUs.

Due to the fixed-grid nature of Athena, there is very little overhead in our simulations,

and communication between processors is largely limited to transmission of boundary values

after each update. Athena has been demonstrated to scale well out to 20,000 processors

(Stone et al., 2008). We judge performance using the number of cells updated per CPU

second. In our shock-cloud simulations, we find that the performance of the code is better

for larger jobs, increasing from 2.02 × 104 cells per second at NR = 6 up to 2.10 × 105 at

NR = 200. This increase is not surprising, as the ratio of computational work to inter-

process communication increases with increasing resolution. In our largest simulation, the

processors spent over 99% of their time in active computation, indicating that the load is

well-balanced and that inter-process communication over the InfiniBand network did not

saturate significantly.

3.5.2 Results

Dynamical evolution

We follow the interaction of the shocked wind with the cloud for up to 10 cloud-

crushing times. Figure 3.6 shows the time evolution of the cloud column density Σ(Cc) =
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Figure 3.6: Time evolution of the logarithm of the density-weighted cloud column density
Σ(Cc) ≡

∫
ρCc dz/

∫
ρ dz in the fiducial (NR = 25) three-dimensional shock-cloud interac-

tion. The units are arbitrary. From left to right, the columns show snapshots at t = 2, 4, 6,
8, and 10 tcc. From top to bottom, the rows show simulations performed with no turbulence
model (ILES), ensemble-averaged grid-scale turbulence (TILES), the k-ε models of LS74 and
MS13, the k-L models of C06 and GS11, and the k-ω models of W88 and W06. As the cloud
is accelerated by the shock, the simulation domain moves to follow the bulk of the cloud
material. The cloud is ablated forming a head-tail structure, and the characteristic vortex
ring is visible at t = 4tcc. The RANS turbulence models smooth the fluctuating structures
below a characteristic length scale L, in some cases completely diffusing the cloud.
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∫
ρCc dz/

∫
ρ dz in the fiducial (NR = 25) simulations for each of the models, including no

turbulence model (ILES) and ensemble-averaged grid-scale turbulence (TILES). The cloud

material is initially confined within r ≤ rb, but after impact material is ablated and mixed

into the shock and ambient medium, leading to a head-tail structure. The cloud is accel-

erated in the +x-direction; as described in Section 3.5.1, we shift our grid to be co-moving

with the densest cloud material. The location of the cloud at a given time varies from run

to run, as each turbulence model uniquely alters the cloud acceleration and destruction. As

material is ablated from the edges of the cloud, large KH rolls develop in the ILES simu-

lation. Around 4 tcc, the characteristic vortex ring is clearly evident. The evolution of an

inviscid adiabatic shock-cloud interaction is described in detail in PP16; we here focus on

the differences resulting from the turbulence models.

The turbulence models also include diffusion of passive colour fields, which is of partic-

ular importance for the mixing estimates. In the ILES simulations, cloud material is most

concentrated at the cloud edges as a result of the KH instability. The additional viscosity

from the turbulence models diffuses the colour field to varying degrees. In the models of

LS74, MS13, and W06, three structures still remain in the colour field: the dense head, the

vortex ring, and the diffuse tail. However, in the models of C06, GS11, and W88, the colour

field is largely smoothed. In C06 and GS11, the cloud material becomes nearly uniformly

distributed in an oblate spheroid. It is unclear whether this is due to increased buoyancy,

shear effects, and/or over-production of turbulent energy.

Figure 3.7 presents the time evolution of the density-weighted column of specific tur-

bulent energy Σ(k) =
∫
ρk dz/

∫
ρ dz. For the ILES and TILES runs, the turbulent energy

is not explicitly tracked; we therefore follow Schmidt & Federrath (2011) and construct an

estimate for k = Ck∆
2|S∗|2, where ∆ is the grid resolution, S∗ij = Sij − (1/3)δijSkk is the

trace-free resolved strain rate tensor (see Eq. 3.2.8), and Ck is a scaling constant. The

exact scaling is uncertain; Schmidt & Federrath (2011) used Ck ≈ 0.013 based on supersonic

isothermal turbulence. Here, we set Ck = 1 and treat k as a morphological rather than
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Figure 3.7: Similar to Figure 3.6, but showing the density-weighted column of turbulent
kinetic energy Σ(k) ≡

∫
ρk dz/

∫
ρ dz. The units are arbitrary. In runs without a turbulence

model (ILES and TILES), k is estimated from the resolved strain-rate tensor.
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quantitative estimate.

Figure 3.7 shows that in all runs the strongest areas of turbulence generation are 1) at

the cloud edges due to shearing motions; 2) in the cloud tail due to shear and compression;

and 3) at the shock front due to compression. LS74 and W06 produce relatively little

turbulence, resulting in a correspondingly low turbulent viscosity. These models produce

only slight differences in morphology from the ILES and TILES cases. While the small-scale

structure is smoothed, the two large KH rolls are still present. In contrast, W88 produces

large amounts of turbulent energy, particularly in the shock. The turbulent pressure term

ultimately leads to non-physical spreading of the shock downstream. The strong shear at

the cloud edges spreads material into two primary streamers. This also occurs in MS13, but

the dominant turbulence is at the leading edge of the cloud due to the inclusion of buoyancy

effects (RT instability). A similar effect is seen in C06 and GS11 due to the buoyancy;

however, in C06 and GS11 the ambient turbulence dissipates rapidly and the cloud expands

due to the increased interior turbulent pressure.

The transmitted shock within the cloud also increases the turbulent length scale L via

the dilatation term (∇ · u) in ΨL of the k-L models (C06 and GS11); this is seen in Figure

3.8, which shows the evolution of the density-weighted column of L, Σ(L) =
∫
ρL dz/

∫
ρ dz.

These models show turbulent length scales roughly an order of magnitude greater than the

other models, while the turbulent kinetic energy is roughly an order of magnitude lower.

The most similar model is MS13; however, all three models with buoyancy terms (MS13,

C06, and GS11) show significant expansion, and the cloud is eventually diffused completely.

The models without a turbulence model (ILES and TILES) are not shown in Figure 3.8, as

L would simply be the grid scale ∆.

Evolution of diagnostic quantities

Figure 3.9 shows the time evolution of various diagnostic quantities. Overall, the turbu-

lence models produce similar results for the cloud axis ratio b/a, excepting C06 and W88.
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Figure 3.8: Similar to Figure 3.6, but showing the density-weighted column of turbulent
length scale Σ(L) ≡

∫
ρL dz/

∫
ρ dz. The units are arbitrary. The runs without a turbulence

model (ILES and TILES) are not shown, as L = ∆ by definition.
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Figure 3.9: Evolution of diagnostic quantities in the three-dimensional shock cloud simula-
tion. From top to bottom, the cloud axis ratio b/a; the rms velocity along the x-axis relative
to the sound speed as; the rms velocity along the y-axis relative to the sound speed as; the
mixing fraction fmix; and the injection efficiency finj. The turbulence model is indicated by
line colour, with the inviscid case shown in black. The units are arbitrary.
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In C06, large amounts of turbulent pressure within the cloud cause the cloud to expand and

become spherical. However, the turbulence models show little agreement in their treatment

of either motions (δv) or mixing (fmix and finj). The ILES and TILES simulations are com-

parable, but all simulations with a turbulence model show reduced rms velocity dispersions,

as the additional turbulent viscosity diffuses the small-scale turbulent motions. Recall that

the turbulence models work by averaging out the fluctuating velocities below the character-

istic length scale. C06 and GS11 lead to the largest values of L – on the order of the cloud

radius within the cloud – and therefore smooth nearly all small-scale fluctuations.

This also affects the mixing. The TILES model shows only slightly faster mixing than

the ILES result. This differs from what was observed by P09, where the mixing of mate-

rial proceeded almost twice as fast in models with grid-scale turbulence compared to those

without (see, e.g. fig. 15g of P09, where mcore is an alternative measure for mixing). This is

mostly likely due to the strength of the imposed turbulence, which was considerably higher

in P09 than in our TILES simulations.

As already noted, LS74 and W06 introduce the least turbulent viscosity and therefore

most resemble the ILES case. Surprisingly, W06 shows a reduction in fmix relative to the

ILES runs. In all runs, fmix approaches unity, indicating complete cloud disruption. In

several models, the expansion of the cloud at late times reduces the concentration of cloud

colour field below the mixing threshold (Cc ≥ 0.1) which causes fmix to decrease. A different

trend is observed in the injection efficiency, where the three most diffusive models (W88,

C06, and GS11) reach a significantly different peak value from the other models. Both the

shock and cloud are diffused, and the increased viscosity leads to enhanced injection. There

is agreement between most models at a final value of finj ≈ 0.3 – slightly higher than previous

shock-cloud studies of solar system enrichment, which found finj . 0.1 (Boss & Keiser, 2015).
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Figure 3.10: Time evolution of the rms difference between the TILES result and the tur-
bulence models for the density-weighted cloud colour field Σ(Cc). The turbulence model is
indicated by line colour. LS74 and MS13 show the best agreement with the TILES result.

Model validity

A primary goal of this work is to compare the behavior of turbulence models in an iden-

tical astrophysical application. Clearly the models do not all reproduce the same dynamical

and quantitative evolution. As noted in Section 3.5.1, we believe the best reference for a

RANS model is an ensemble-average of high-resolution grid-scale turbulence simulations.

We therefore compare the turbulence model results to the TILES result. We compute an

rms difference for the density-weighted cloud colour field at each time step using the TILES

result as the reference. The time evolution of the rms difference is shown Figure 3.10. We

observe that the k-ε models of LS74 and MS13 agree best with the TILES result. A similar

trend is observed when compared to the highest resolution ILES simulation (NR = 200, see

Section 3.5.2).

Effect of compressibility corrections

As seen in Section 3.3.2, the RANS models here considered are largely calibrated with

subsonic, incompressible experiments, and they do not reproduce the correct shear layer

growth rate without modifications. As our shock is supersonic (M = 10), we anticipated a

compressibility correction would be important to model the evolution. However, we find that

the compressibility corrections have a negligible effect on the simulation evolution in LS74,
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MS13, W88, and W06. We do not test GS11 without τKH, as this could affect the calibration;

and we do not test C06, as there is no straightforward way to implement a correction. As

the results are nearly indistinguishable, we do not present any figures. It is possible that the

effects may become important at higher Mach numbers, but we defer this for future studies.

Dependence on initial conditions

The RANS turbulence models considered here are known to be sensitive to initial con-

ditions, particularly the W88 model (Wilcox, 2008). In most astrophysical applications, the

prescription for the initial values of k and L is arbitrary. We set the initial value for k relative

to the internal energy as k0 = ki eint and for L relative to the cloud radius as L0 = LiR. Our

fiducial simulation uses ki = 10−2 and Li = 10−2 to roughly match the initial conditions of

GS11. However, P09 chose non-uniform initial conditions, with varying levels of k between

the shock and the cloud. Similar to P09, we test the dependence of the LS74 turbulence

model on the initial conditions by performing simulations with varying levels of initial tur-

bulence ki and length scale Li, ranging from 10−4 to 100 in both quantities. We perform this

test at NR = 12, as the increased viscosity decreases the allowed time step size.

Figure 3.11 presents a snapshot of the density-weighted average cloud colour column at

t = 6tcc for each combination of ki and Li in the LS74 model. We see that even an order

of magnitude difference in either quantity produces notable differences in the evolution and

mixing. Increasing either k or L increases the turbulent viscosity, to the point where the

cloud is completely diffused into the background. This is also evident in Figure 3.12, which

shows the time evolution of the mixing fraction fmix in runs with different initial conditions

for the LS74 model. Our results agree with earlier findings by P09, in which simulations with

low initial turbulence (ki = 10−6 in the shock) showed decreased mixing (as evidenced by e.g,

a slower decrease in core mass mcore in fig. 15g of P09) compared to simulations with higher

initial turbulence (ki = 0.13 in the shock). It is perhaps not surprising that different initial

conditions produce different results, as each represents a particular physical state (i.e., more
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Figure 3.11: Snapshots of the density-weighted cloud column density Σ(Cc) at t = 6tcc for
different initial conditions with the LS74 model. The columns show varying levels of initial
turbulent energy k0 = kieint; from left to right, ki = 10−4, 10−2, and 1. The rows show
varying initial turbulent length scale L0 = LiRc; from top to bottom, Li = 10−4, 10−2, and
1. Increasing either quantity increases the turbulent viscosity and hence the diffusion of the
colour field. The units are arbitrary; ε0 can be determined for each model using the relation
in Section 3.2.1.
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Figure 3.12: Time evolution of the mixing fraction fmix for different initial conditions with
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initial turbulent length scale Li. As the cloud is diffused, the cloud concentration Cc drops
below the threshold and fmix decreases.
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or less turbulence at varying scales). One should carefully consider the initial conditions

when using RANS models in an unsteady flow.

Finally, PP16 concluded that the LS74 k-ε model did not significantly affect the evolution

of their three-dimensional shock-cloud simulations. However, this is most likely due to their

choice of initial conditions; PP16 used ki = 10−6 and Li = 1.6 × 10−4 (Pittard, personal

communication) in all simulations, corresponding to very low initial levels of turbulence.

While the LS74 model has very little effect for small (and probably reasonable) initial values

of k and L, we demonstrate that the model can dramatically alter 3D simulations under

certain conditions.

Resolution dependence

While 100 cells per cloud radius are necessary to see convergence of global quantities

in 2D studies (Klein et al., 1994, P09), the resolution limit may be less strict in 3D. PP16

found that 32–64 cells may be sufficient for global convergence in 3D simulations. Figure

3.13 shows the time evolution of the diagnostic quantities in ILES simulations for resolutions

NR = 10− 200. In agreement with PP16, we observe that globally-averaged quantities (b/a

and δv) exhibit only small variation with increasing resolution for NR & 25.

However, it is difficult to assess whether or not this represents true convergence. For

consistency with previous work, we perform an analysis similar to that described in Appendix

A3 of PP16. We calculate the relative difference ∆QN between a measurement Q at a given

resolution N and the same measure at a reference resolution Nref (typically the highest

resolution), given by eq. A1 of PP16 as

∆QN =
|QN −QNref

|
|QNref

|
. (3.5.9)

Figure 3.14 shows the relative difference as a function of simulation resolution NR for

various diagnostic quantities at t = 3tcc. We compare results using Nref = 100 (as in PP16)

and Nref = 200. We note that our axial direction is x, whereas in PP16 the axial direction
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Figure 3.13: Similar to Figure 3.9, but for different simulation resolutions (measured in cells
per cloud radius NR) with no turbulence model (ILES). We observe only small variance in
the evolution of global quantities (axis ratio b/a and velocity dispersions δv) for NR & 25.
The mixing estimates (fmix and finj) decrease with increasing resolution up to NR = 50, but
then increase again with increasing resolution.
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Figure 3.14: Estimates of the relative difference ∆QN as a function of resolution for global
quantities (top row: effective radii; middle row: rms velocities) and mixing estimates (bottom
row: mixing, injection, and core mass) at t = 3tcc in the ILES simulations. The left column
uses NR = 100 as the reference resolution, while the right column uses NR = 200. As in fig.
A13 of PP16, we see decreasing relative difference with increasing resolution when NR = 100
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partial resolution of the turbulent cascade for NR & 50.
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is z; hence our quantity a should be compared to c in e.g., fig. A13 of PP16, and likewise

our δvx to their δvz. For further comparison with PP16, we also calculate ∆QN for the core

mass, mcore, defined as

mcore =

∫
Cc≥0.5

ρCcdV. (3.5.10)

We finally note that our initialization of the cloud colour field is slightly different than in

PP16; we use a constant value of Cc = 1 for r ≤ rb, while PP16 used a spatially varying Cc

that decreased with increasing radius within the cloud.

If we use NR = 100 as our reference resolution (left column of Figure 3.14), we find

good agreement with PP16. The relative difference decreases with increasing resolution for

most quantities, suggesting convergence. The only quantities with increasing difference are

the velocity dispersions along axes perpendicular to the flow (δvy and δvz), which are not

shown in fig A13 of PP16. However, the trend is less certain if we use our highest resolution

simulation with NR = 200 as the reference. There is no longer any sign of convergence,

particularly in the mixing measures.

This is surprising given previous studies of the shock-cloud interaction. Xu & Stone

(1995) found little variance in fmix up to NR = 50 in hydrodynamical shock-cloud interac-

tions. While similar magneto-hydrodynamical simulations by SSS08 did not show conver-

gence in fmix up to NR ≈ 120, the authors predicted that, in simulations without an explicit

viscosity, fmix should continue to decrease with increasing resolution and tend to zero at

infinite resolution. In examining the time evolution in Figure 3.13, we do not observe either

trend. While we find that fmix does show a decreasing trend up to NR = 50, fmix actually

increases with increasing resolution beyond this point. A similar result is observed in fig.

A8a of PP16; the mixing (as measured by mcore) decreases with increasing resolution up

to NR = 64, at which point increased mixing (indicated by a faster decrease in mcore) is

observed for NR = 128.

These results suggest that for resolutions NR & 50, mixing in the “inviscid” hydrody-

namical shock-cloud simulation starts to be dominated by turbulent diffusion rather than
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numerical diffusion. If the correlation time of the turbulence is short compared to the nu-

merical diffusion time, the turbulent viscosity will dominate the diffusion (see the Appendix

of Heitsch et al., 2004). At low resolutions (NR ≤ 50), the numerical viscosity dominates the

dynamics and affects the growth of instabilities. As the resolution increases up to NR = 50,

numerical diffusion decreases, yet the turbulent cascade is not yet sufficiently resolved to

show “true” turbulent mixing, i.e., mixing rates independent of the numerical diffusion. The

mixing is therefore at a minimum near this resolution, which could explain the apparent

“convergence” observed in Figure 3.14 when NR = 100 is used as the reference.

For NR & 50, the numerical viscosity is reduced to the point that the RT and KH

instabilities can grow at the cloud surface and seed further turbulent motions. This is

evident in Figure 3.15, which shows a snapshot of the cloud column density at t = 6tcc for

varying simulation resolution. At high resolution, the leading edge of the cloud is saturated

with RT fingers, and the shear at the cloud edge generates KH rolls that spawn additional

vortices in the cloud wake. The turbulent cascade that develops is now largely resolved; the

corresponding Reynolds number is large, and the mixing is increased.

The continued increase in mixing from NR = 100 to NR = 200 in our fiducial simulation

suggests that the turbulent cascade is still not fully resolved at this point. It is unclear

whether the mixing would continue to increase with increasing resolution. As our simulations

are performed on a fixed grid with no mesh refinement, extending our simulations beyond

NR = 200 is not feasible given the computational burden (see 3.5.1).

We are also unable to perform simulations with NR > 25 when using a turbulence model,

due to the stability requirement that dt . (∆)2. P09 found that the LS74 model reduced

the convergence requirements in 2D, but PP16 found the model had little effect in 3D. As

noted in Section 3.5.2, this may be a consequence of the low level of initial turbulence used

in PP16. In our resolution tests up to NR = 25, we find no significant benefit from the

turbulence models.

Figure 3.16 compares the time evolution of the mixing estimates for the ILES model
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Figure 3.15: Snapshots of the density-weighted cloud column density Σ(Cc) at t = 6tcc

for different simulation resolution with the inviscid (ILES) model. The resolution increases
from top to bottom, from NR = 6 up to NR = 200. Above NR = 50, the reduced numerical
viscosity allows the growth of KH instabilities and enhances the mixing. The units are
arbitrary.
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Figure 3.16: Similar to Figure 3.9, but only the mixing estimates are shown for the highest
resolution ILES simulation (NR = 200) and the turbulence models (NR = 25). All models
other than W06 show increased mixing relative to the ILES result, and LS74 and W06 show
the best agreement.

at NR = 200 with the turbulence models at NR = 25. Despite the increased mixing at

NR = 200, all turbulence models other than W06 still indicate more mixing than observed.

Yet if the ILES mixing continues to increase at higher resolutions, as the trend suggests, it

may be that the turbulence models effectively predict the “correct” mixing.

Dependence on numerical methods

Figure 3.17 shows the resolution dependence of the mixing estimates at t = 6tcc for

various combinations of integrators, Riemman solvers, and reconstruction accuracy. Our

fiducial simulation uses the CTU integrator with 3rd order reconstruction of the character-

istic variables and the HLLC Riemann solver (denoted CTU 3 HLLC). We also test second

order reconstruction (CTU 2 HLLC); the Roe Riemann solver (Roe, 1981) with H-correction

(Stone et al., 2008) (CTU 3 Roe); and the Van Leer (VL) integrator (Stone & Gardiner,

2009) with second order reconstruction in the primitive variables (VL 2p HLLC). We find

that changing any of these algorithms in the Godunov scheme can alter the degree of mixing,

especially the Riemann solver. The results obtained with the Roe solver are almost a factor

of two below the fiducial results; furthermore, it does not show the trend of increasing fmix

from NR = 50 to NR = 100 as seen in the other runs. The dependence of ILES mixing on
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Figure 3.17: Estimates of the mixing fraction fmix and injection efficiency finj at t = 6tcc as
a function of resolution, indicated by the number of cells per cloud radius NR. Results are
shown for different algorithms in the Godunov scheme; we test the effect of the integrator
(CTU, VL), the order of reconstruction [3, 2, 2p], and Riemann solver (HLLC, Roe). The
Riemann solver has the greatest effect, reducing the mixing estimates and failing to show an
increase in mixing for NR > 50.

the numerical algorithm underscores the utility of a turbulence model.

3.6 Discussion

In an effort to understand previous shock-cloud simulations, we have limited our explo-

ration to RANS turbulence models. However, LES models are probably more appropriate for

most astrophysical applications, including the shock-cloud interaction. The RANS approach

tends to diffuse the small scale structure in the simulation, yet these are often the scales of

greatest interest in astrophysics applications (e.g., star formation). In contrast, the resolved

dynamics are largely unaffected in LES, and the filtering approach is ideal for unsteady

flows. Despite these differences in formulation, the methods of LES are remarkably similar

to RANS; the models have similar equations with similar closures, such as eddy-viscosity

and gradient-diffusivity. The simplest LES model is the Smagorinsky model (Smagorinsky,

1963), which is essentially a zero-equation mixing-length model. The LES model of Schmidt

& Federrath (2011) is a one-equation model; k is followed with a transport equation, while

the turbulent length scale L is simply replaced by the grid scale spacing ∆. LES models

also suffer the same calibration issues as RANS. Schmidt & Federrath (2011) calibrated their
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model using high-resolution ILES simulations of turbulence, but it is difficult to determine

if this approach is valid (see Section 3.5.2 and Figure 3.15).

We have only tested two-equation models. Models with fewer equations, such as the one-

equation Spalart-Allmaras model (Spalart & Allmaras, 1992), are easy to implement but do

not perform well in situations with inhomogeneous or decaying turbulence. However, models

with two or fewer equations make use an isotropic eddy-viscosity. This assumption of isotropy

severely limits the accuracy of these models in regions of high vorticity. Anisotropic models,

such as the seven-equation Reynolds-Stress-Transport model (Wilcox, 2008), independently

follow the six components of the turbulent stress tensor plus a dissipation equation. This

approach is highly accurate, but the associated computational cost is often prohibitive. One

compromise may be the use of a non-linear eddy-viscosity relation, such as that used in

Schmidt & Federrath (2011). All of the RANS models considered here use linear eddy-

viscosity relations, but the additional complexity of the non-linear relation improves results

in complex flows without the need for additional stress transport equations (Gatski & Jongen,

2000).

We also note that the assumption of isotropy is incorrect in magnetized turbulence

(Goldreich & Sridhar, 1995), as typically encountered in astrophysical applications. Eddies

are stretched along the field lines, and the anisotropy is scale-dependent and increases toward

smaller-scales (Cho & Lazarian, 2003). It is unclear if an anisotropic RANS model could be

developed for magnetohydrodynamics (MHD); however, such models could be developed in

the LES framework (Miesch et al., 2015). Indeed, closures for the MHD LES equations have

been proposed (Vlaykov et al., 2016) but such methods have yet to be thoroughly validated.

One potential benefit of a turbulence model is the proper modeling of the RT instability

(Dimonte et al., 2004). However, the buoyant turbulence models here considered seem to

perform poorly in complex flows and generate excessive turbulence. Critically, the models

have not been validated for use in supersonic, highly compressible turbulence, which is

exactly the regime of interstellar gas dynamics. While compressibility corrections can be
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used, simulations have demonstrated that they are physically incorrect (Vreman et al., 1996).

Finally, we note that we are limited in our use of turbulence models by an explicit

time integration method – maintaining stability requires dt ∝ (∆)2. Implicit formulations

are possible (e.g. Huang & Coakley, 1992) but the associated computational cost may be

significant due to coupling between the turbulent variables.

3.7 Conclusions

We have developed a common framework for two-equation Reynolds-Averaged Navier-

Stokes (RANS) turbulence models in the Athena hydrodynamics code. All models use a

linear eddy-viscosity relation based on resolved dynamics to add turbulent diffusivity. We

have implemented six RANS turbulence models: the k-ε models of LS74 and MS13; the k-L

models of C06 and GS11; and the k-ω models of W88 and W06.

We have verified the models with the subsonic shear mixing layer. The models can only

reproduce the correct mixing layer growth rate for certain definitions of the layer width δ

(Figure 3.2), and the different definitions are not directly related. We have also extended

the simulations into the supersonic regime, up to convective Mach numbers of 10, where

compressibility corrections are needed to reduce the growth rate of the mixing layer in

accord with experiment (Figure 3.3). Three common “compressibility corrections” from

the literature (S89, Z90, and W92) perform very similarly and provide agreement with

experimental results up to Mc ≈ 5. The stress tensor modification implemented by GS11

provides similar results up to Mc ≈ 1, but beyond this the model grows too slowly.

Three of the models tested (C06, GS11, and MS13) include buoyant effects (Rayleigh-

Taylor and Richtmeyer-Meshkov instabilities). For these models, we use a simple stratified

medium subject to constant acceleration to test the growth of the RT boundary layer. The

model of GS11 shows the best agreement with experimental growth rates (Figure 3.5), while

C06 grows too slowly and MS13 diverges at late times.
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We then use the RANS models to simulate a generic astrophysical shock-cloud inter-

action. We follow the interaction in three dimensions for up to 10 cloud crushing times

by implementing a co-moving grid. By using a consistent initial condition, we are able to

compare global quantities as well as estimates of the mixing and injection returned by differ-

ent turbulence models. We also generate an appropriate comparison by ensemble-averaging

results from high-resolution inviscid simulations with grid-scale turbulence. We find that:

1. The k-ε models of LS74 and MS13 and the k-ω model of W06 generate the least

turbulence and corresponding lowest numerical viscosity.These models show the best

agreement with the reference inviscid turbulence (TILES) result (Figure 3.10) at the

fiducial resolution (NR = 25).

2. The k-L models of C06 and GS11 generate excessive turbulence within the cloud,

leading to expansion, rapid disruption, and elevated mixing compared to the TILES

result (Figure 3.9). The W88 k-ω model generates excessive turbulence within the

shock front, which also leads to enhanced disruption. Overall, the W88 and C06

models show the least agreement with the reference results (Figure 3.10).

3. Compressibility effects play a small role in the shock-cloud interaction, at least at the

Mach number considered here (M = 10), as the compressibility corrections do not

noticeably alter the simulation evolution or mixing estimates.

4. In agreement with previous work by P09, we show that the turbulence models are

highly sensitive to the initial conditions (Figure 3.12). For large initial values of k or

L, the RANS models smooth the resolved dynamics beyond utility (Figure 3.11); for

small initial values, the RANS models have negligible effects.

5. Globally-averaged quantities vary only slightly with increasing resolution at resolutions

higher than 25 cells per radius (Figure 3.13). While this agrees with previous work up

to 100 cells per radius (PP16), we find that beyond this point turbulent mixing begins
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to be resolved [see also 6] and thus alters the dynamics, preventing true convergence

(Figure 3.14).

6. Estimates of the mixing decrease with increasing resolution up to 50 cells per radius

(Figure 3.13), but beyond this point the mixing increases, up to a resolution of 200

cells per radius – the current limit of our computational resources. This suggests that

mixing in inviscid simulations does not trend toward zero at infinite resolution (Figure

3.14) but rather that the turbulent diffusivity becomes dominant when the numerical

viscosity is sufficiently low.

7. The degree of mixing in the highest-resolution inviscid simulation (NR = 200) agrees

best with the predictions of the LS74 turbulence model (Figure 3.16), but it is unknown

what will occur at higher resolution or in a different application. Furthermore, the

choice of numerical method (particularly the Riemann solver) can shift the mixing

fraction in ILES simulations by nearly a factor of two (Figure 3.17).

While the RANS turbulence models perform adequately in simple, specific test cases, it

remains difficult to assess their veracity in complex dynamical applications. Further work

toward understanding mixing in ILES simulations is necessary if proper calibrations are to

be achieved.
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CHAPTER 4: ENRICHMENT OF THE PRE-SOLAR CLOUD BY
SUPERNOVA DUST GRAINS1

4.1 Introduction

The presence of short-lived radioisotopes (SLRs) in meteorites has been interpreted as

evidence that the early solar system (ESS) was exposed to a supernova shortly before or

during its formation. A primary source of SLRs is massive, evolved stars (≥ 8M�). When

a massive star ends its life, it explodes as a supernova and expels SLRs into the interstellar

medium (ISM). The SLRs can then be incorporated into newly forming stars. It has long

been suggested that the solar System was born near such an event (Cameron & Truran, 1977).

However, the short half-life of these isotopes provides strong constraints on the proximity of

the massive stars – the radioactive material must rapidly reach the pre-solar cloud to prevent

significant decay, yet the material must also be traveling slow enough that the impact does

not shred the cloud. This delicate balance has proved difficult to achieve in hydrodynamic

simulations, as slowing the SN gas sufficiently suppresses the enrichment to several orders

of magnitude below observed values.

As discussed in Sections 1.1.1 and 3.1, simulations of SLR enrichment in the ‘triggered

formation’ scenario find injection efficiencies compatible with the lowest estimates for ESS

abundances (Takigawa et al., 2008). Enrichment relies on hydrodynamical mixing of the

ejecta into the pre-stellar gas, primarily via RT fingers (Boss & Keiser, 2012); as noted in

Chapter 3, the turbulent mixing may be underestimated due to insufficient resolution.

Another possible solution to the mixing barrier problem is to concentrate the SN ejecta

1Portions of this chapter previously appeared as an article in Monthly Notices of the Royal Astronomical
Society. The original citation is as follows: Goodson, M. D., Luebbers, I., Heitsch, F., & Frazer, C. C.
“Chemical enrichment of the pre-solar cloud by supernova dust grains,” MNRAS 462, 2777-2791 (2016).
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into dense clumps that can breach the cloud surface. The inner ejecta of Type II SNe are

found to be clumpy and anisotropic in both observations (Grefenstette et al., 2014; Boggs

et al., 2015) and simulations (Wongwathanarat et al., 2015). Pan et al. (2012) explore

injection and mixing of clumpy SN ejecta into molecular clouds. The authors find that an

over-dense clump can penetrate up to 1 pc into the target cloud, leaving a swath of enriched

gas in its wake. Depending on the degree of clumpiness, the resulting enrichment can be

comparable to ESS abundances.

As an alternative, Goodson et al. (2016b) explores the injection of SLRs via supernova

dust grains as a way to overcome the mixing barrier. We numerically model the interaction

of a supernova remnant containing SLR-rich dust grains with a nearby molecular cloud. We

modify the Athena code to include dust drag forces and destruction (both thermal and non-

thermal sputtering). We conclude from our simulations that sufficiently large (a & 1 µm)

dust grains can rapidly penetrate the cloud surface and deposit SLRs within the cloud, long

before any gas can hydrodynamically mix at the cloud surface. Nearly half of all incident

dust grains sputter or stop within the cloud, enriching the dense (eventually star-forming)

gas. Our results suggest that dust grains offer a viable mechanism to deposit SLRs in

dense star-forming gas and may be the key to reproducing the canonical solar system SLR

abundances.

4.1.1 Supernova dust grains

The ejecta from both stellar winds and SNe have been predicted to condense and form

dust grains (Clayton, 1979; Elmegreen, 1981; Kozasa et al., 1989). This prediction is sup-

ported by observations that find some SNe produce large amounts of dust (& 0.1 M�) soon

after explosion (Indebetouw et al., 2014; Matsuura et al., 2015). In addition, meteorites

contain pre-solar grains that originated in massive stars, including SNe (Clayton & Nittler,

2004). Numerous authors (Clayton, 1975; Ouellette et al., 2005; Gaidos et al., 2009) have

suggested that these dust grains will contain SLRs, and in fact some pre-solar grains show
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evidence for in situ decay of 26Al (Groopman et al., 2015). If the dust grains survive trans-

port to the pre-solar cloud, they can dynamically decouple from the stalled shock front and

penetrate into the dense gas, possibly delivering SLRs (Elmegreen, 1981; Foster & Boss,

1997).

Ouellette et al. (2010) have examined the role of dust grains in enrichment, considering

injection into an already-formed proto-planetary disc. Although the disc’s small cross-section

places strong constraints on the SN distance, the authors found that over 70 per cent of dust

grains with radii greater than 0.4 µm can survive the passage into the inner disc where they

are either stopped or destroyed. Both fates contribute SLRs to the forming star, suggesting

dust grains may favorably enhance enrichment. However, injection at the disc phase may

be too late; CAIs containing SLRs probably formed within the first 300,000 years of solar

system formation (Young et al., 2005), prior to the proto-planetary disc phase.

Injecting dust grains at the pre-stellar core phase may be more difficult. For grains

impacting a dense pre-stellar core of number density n & 105 cm−3, only grains with radii

a ≥ 30 µm are able to penetrate the stalled shock front and deposit SLRs into the core

(Boss & Keiser, 2010). 30 µm is greater than either simulated (Sarangi & Cherchneff, 2015)

or meteoritic (Clayton & Nittler, 2004) SN grain radii (typically a . 1 µm). Therefore, if

injection via dust grains is to be a viable scenario, it must occur at an even earlier phase.

Enriching the pre-solar molecular cloud prior to core formation has been suggested by

several authors (Gaidos et al., 2009; Gounelle et al., 2009; Young, 2014) but remains largely

untested with simulations. In this scenario, one to several massive stars, possibly across

multiple generations, contribute SLRs to a large star-forming region. The solar system then

forms from the enriched gas, eliminating the need for injection into a dense core. To our

knowledge, the only numerical simulations of this scenario are presented by Vasileiadis et al.

(2013), with a follow-up by Kuffmeier et al. (2016). The authors follow the enrichment of a

massive (& 105 M�) star-forming region over 20 Myr. A turbulent periodic box is allowed

to evolve subject to star formation and SN feedback. The combined effect of numerous
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explosions leads to an overall enrichment of 26Al and 60Fe in star-forming gas. The authors

used passive particles to track SLRs, and they relied on numerical diffusion to mimic the

mixing between SN ejecta and cold gas. While the resulting enrichment is broadly consistent

with observed ESS values, a more detailed understanding of the injection mechanisms may

be of interest.

4.1.2 Motivation

We attempt to bridge the gap between the small-scale injection scenario of Boss et al.,

and the global, large-scale approach of Vasileiadis et al., by studying the interaction of

a single SN remnant with a large, clumpy molecular cloud. We focus on the details of

the injection mechanism, investigating in particular the role of SLR-rich dust grains. We

use hydrodynamical simulations to follow the evolution of the gas and dust over 0.3 Myr.

The dust grains are decelerated by drag forces and destroyed by thermal and non-thermal

sputtering, releasing SLRs into the gas phase. We estimate the amount of SLRs injected

into the cloud and determine the dust grain radii needed for successful injection to occur.

We outline the numerical methods, including initial conditions and dust grain physics,

in Section 4.2. We describe measures and analytic estimates for the injection efficiency

in Section 4.3. We present the results of our simulations in Section 4.4 and discuss the

implications for enrichment scenarios in Section 4.5. Finally, we summarize our conclusions

in Section 4.6.

4.2 Methods

We use Athena to solve Eqs. 2.1.1–2.1.6. We do not include magnetic fields; therefore

B = 0. We modify Eqs. 2.1.3 and 2.2.1 to include radiative heating and cooling (see Section
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4.2.2):

∂E

∂t
+∇ · [(E + P )u] = n(Γ− nΛ) (4.2.1)

∂e

∂t
+∇ · (eu) = −P ∇ · u + n(Γ− nΛ), (4.2.2)

with the the gas number density n ≡ ρ/(µmH), the mass of hydrogen mH, a mean atomic

weight µ = 1, a heating rate Γ, and a volumetric cooling rate Λ. We also evolve several

passive tracer fields:

∂ρCc

∂t
+∇ · (ρCcu) = 0 (4.2.3)

∂ρCs

∂t
+∇ · (ρCsu) = 0 (4.2.4)

∂ρd

∂t
+∇ · (ρdu) = 0 (4.2.5)

using color field Cc to follow cloud material, color field Cs to follow gas-phase SN ejecta, and

four passive density fields ρd to track sputtered particle mass (see Section 4.2.3).

We use the directionally unsplit van Leer (VL) integrator (Stone & Gardiner, 2009)

with second order reconstruction in the primitive variables (Colella & Woodward, 1984) and

the HLLC Riemann solver (Toro, 2009). Simulations are performed on Cartesian grids in

three dimensions. We use an adiabatic equation of state with the ratio of specific heats

γ = Cp/CV = 5/3. Heating and cooling are included via composite curves (see Section

4.2.2). As the cooling breaks the total energy conservation, we find it necessary to include

first-order flux correction (Lemaster & Stone, 2009) as well as internal energy fallback (see

Section 2.2.1) to maintain positive states. Gravity, magnetic fields, and thermal conduction

are not included. A summary of modifications made to Athena is given in Section 2.2.
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Table 4.1: Summary of model parameters. Fiducial values are given in bold where necessary.

Parameter Definition Values
n0 Ambient number density (cm−3) 1
T0 Ambient temperature (K) 4910.58
Rc Cloud radius (pc) 8.8
nc Cloud number density (cm−3) 0.1ncl = 42.33
Tc Cloud temperature (K) 116.02
Rcl Clump radius (pc) 0.05 Rc = 0.44
ncl Clump number density (cm−3) 423.25
Tcl Clump temperature (K) 11.60
φ Cloud volume filling factor 0.1, 0.3, 0.5, 0.7, 0.9
NR Number of cells per cloud radius 12, 25, 50, 100
ESN SN explosion energy (erg) 1051

Mej SN ejected mass (M�) 10
RSNR SN remnant initial radius (pc) 4.6
d Distance from SN center to nearest 17.6

cloud edge (pc)
ρd Dust grain density (g cm−3) 3.0
a Dust grain radius (µm) 10, 1, 0.1, 0.01
Np Number of particles of each radius 103, 104, 105

4.2.1 Setup and initial conditions

We initialize a spherical gas cloud in a uniform ambient medium. We use a single fluid

approximation with a mean atomic weight of µ = 1, treating all the gas as neutral hydrogen.

The background is in thermal equilibrium with temperature T0 ≈ 4900 K and number density

n0 = 1 cm−3, consistent with average values for the diffuse ISM (McKee & Ostriker, 1977).

The simulation domain extends from -53 to +35 pc in x and from -22 to +22 pc in y and z.

Our fiducial simulation (run F) has a resolution of δx = δy = δz ≈ 0.17 pc, corresponding to

roughly 50 cells per cloud radius (NR = 50). Table 4.1 summarizes our simulation parameters

and values.

Target molecular cloud

The target molecular cloud is stationary and centerd at the origin with radius Rc =

8.8 pc. To approximate the substructure observed in molecular clouds, we model the cloud

as a distribution of small spherical clumps of number density ncl ≈ 420 cm−3 and size
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Rcl = 0.05 Rc = 0.44 pc, embedded in an intercloud medium (ICM) of number density

nc = 0.1 ncl. The clumps are generated randomly within the cloud radius Rc up to the

desired volume filling factor φ = 0.5. The clumps can overlap, but the density is not

cumulative. The density profiles of both the cloud and the individual clumps are smoothed

at the edges, and both the cloud and clumps are in pressure equilibrium with the background

at P/kB ≈ 4900 K cm−3. The clumps have a temperature Tcl ≈ 12 K, which also guarantees

thermal equilibrium. The ICM is slightly warmer (Tc ≈ 120 K) and is not in strict thermal

equilibrium, but the subsequent cooling is negligible and does not affect the dynamics.

The cloud edge is smoothed using the profile

n(r) = n0 +
nc − n0

1 + (r/Rc)kn
, (4.2.6)

where r is the radius from the origin and kn controls the steepness of the profile. We use

kn = 20 to give a steep profile. Each clump is given a similar profile by letting n0 → nc,

nc → ncl, and Rc → Rcl. To trace cloud material, the passive color field Cc is set to unity

where n ≥ nc and zero otherwise (Shin et al., 2008).

Supernova remnant

We initialize the supernova remnant (SNR) at the start of the energy-conserving phase.

The shock front has expanded to a radius RSNR = (3Mej/(4πρ0))1/3 after time tSNR ≈

[RSNR(1.90ESN/ρ0)−1/5]5/2, where Mej is the mass ejected from the SN and ESN is the total

energy of the SN explosion. We set Mej = 10 M� and ESN = 1051 erg, resulting in RSNR ≈

4.6 pc and tSNR ≈ 1000 yr. We numerically calculate profiles for the density, radial velocity,

and pressure based on the Sedov–Taylor (ST) blast-wave solutions (Taylor, 1950; Sedov,

1959) and interpolate these quantities on to the computational grid using a cubic spline.

Athena uses a finite-volume method; hence if we sample only the cell-centerd location

(as is usually done), the resulting SNR will suffer distortion from grid effects. We find it

necessary to sub-sample 83 support points within each cell to construct the volume-averaged
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cell-centerd conserved variables.

The SNR is centerd at a distance d = 2 Rc ≈ 18 pc from the near edge of the cloud

along the negative x-axis. This is broadly consistent with the separation distance of central

stars in OB associations from bordering molecular gas, such as in Cepheus OB2 (Patel et al.,

1998). For our target (cloud) parameters, the ‘radioactivity distance’ (equation 2, Looney

et al., 2006) for uniform 26Al enrichment to the initial solar system abundance is (given

uncertainties in SN yield) between 10 and 20 pc. As our distance is at the upper end of

this range, our enrichment estimates should be considered lower limits, as decreasing the

separation would reduce the geometric dilution (see Section 4.3.2).

To follow the SN gas-phase ejecta, we initialize the passive color field Cs to unity within

RSNR and zero elsewhere. For the dust-phase ejecta, we randomly place Np = 105 particles

of each of the four radius groups (see Section 4.2.3) within 0.9 RSNR, for a total of 4 ×

105 particles. The particle input radius is truncated to prevent interpolation errors at the

discontinuity. Particles are initialized with a radial velocity determined from the ST solution.

4.2.2 Thermal physics

On the time and distance scales considered here, the dynamics of the SNR should not

be strongly affected by radiative cooling. Cioffi et al. (1988) and Blondin et al. (1998)

have estimated the time and location for SNR transition from the Sedov–Taylor phase to the

radiative phase. For our SN parameters (ESN = 1051 erg, n0 = 1 cm−3), the transition radius

is approximately 19 pc, slightly further than the distance from the SN to the cloud surface.

However, radiative cooling is expected to strongly affect the dynamics of the shock-cloud

interaction. Melioli et al. (2005) have shown that cooling reduces the fragmentation and

destruction of the cloud, and Boss et al. (2008) find cooling by molecular species is essential

to successfully inject SLR material into the pre-solar cloud. It is therefore critical to include

radiative heating and cooling effects.

The temperatures in our simulation span over eight orders of magnitude, from the hot

75



2 4 6 8

−30

−28

−26

−24

−22

−20

2 4 6 8
log T [K]

−30

−28

−26

−24

−22

−20

lo
g

 Λ
 [

e
rg

 s
−

1
 c

m
3
]

Figure 4.1: Volumetric cooling rate Λ(T ) (solid line) as a function of temperature T from
3 to 109 K. This composite cooling curve is constructed by blending three cooling functions
from the literature: for T < 104 K, a modified version of equation (4) from Koyama &
Inutsuka (2001); for 104 K < T < 108.5 K, the CIE rates from Sutherland & Dopita (1993);
and for T > 108.5 K, the free–free rate of equation (5.15b) in Rybicki & Lightman (1985).

SN ejecta (T & 109 K) to the cold molecular gas (T . 10 K). To cover this temperature

range, we combine three standard composite cooling curves into a single cooling function,

shown in Fig. 4.1. For temperatures T < 104 K, we use a modified version of equation (4)

in Koyama & Inutsuka (2001):

ΛKI(T ) = 2× 10−26 {107 exp
−118400

T + 1000

+ 0.014
√
T exp

−22.75

max[1.0, (T − 4.0)]
} erg s−1 cm3. (4.2.7)

This is a fit to the cooling rates of Wolfire et al. (1995). For temperatures 104 K < T <

108.5 K, we use the collisional ionization equilibrium (CIE) cooling rates for solar metallicity

given in table 6 of Sutherland & Dopita (1993). For temperatures T > 108.5 K, we use the

free–free cooling rate given by equation (5.15b) in Rybicki & Lightman (1985):

ΛRL(T ) = 1.42554× 10−27 g
√
T erg s−1 cm3, (4.2.8)

with a Gaunt factor g = 1.5. The transition between regimes is smoothed with a hyperbolic

tangent function. For heating, we use Γ(T ) = 2 × 1026 erg s−1 below 104 K and smoothly
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transition to Γ(T ) = 0 above 104 K.

Heating and cooling are implemented as source terms for the total energy (and internal

energy). The cooling time-scale is typically much shorter than the hydrodynamical time-step;

we therefore use an iterative explicit method (adaptive Runge–Kutta–Fehlberg) to integrate

the source terms in time. The update is performed each time step via operator splitting.

4.2.3 Dust grains

Dust grains are modelled using Lagrangian tracer particles, where each simulated particle

represents a collection of dust grains with similar properties and motions. Trajectories of

the particles are integrated using the fully implicit method of Bai & Stone (2010), which

we have incorporated into the VL integrator in Athena. In a Cartesian coordinate system,

Athena solves an equation of motion for each particle given by

dvi

dt
= −vi − u

tstop

, (4.2.9)

with vi the velocity vector of particle i, u the local gas velocity vector, and tstop the particle

stopping time due to gas drag. Neglecting grain charges and assuming only pure hydrogen

gas, the (collisional) drag law is given by (Draine & Salpeter, 1979)

dvi
dt
≈ −2πa2nkBTG0(s)

(4/3)πρda3
, (4.2.10)

with

G0(s) ≈ 8s

3
√
π

(1 +
9π

64
s2)1/2 (4.2.11)

and

s ≡ (
mHv2

rel

2kBT
)1/2, (4.2.12)

where a is the dust grain radius, kB is the Boltzmann constant, T is the temperature of the

gas, n is the gas number density, ρd is the internal density of the dust (which we treat as
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constant at ρd = 3.0 g cm−3), mH is the mass of hydrogen, and vrel ≡ vi − u is the relative

velocity difference between the dust and gas. The stopping distance is evaluated as

tstop =

√
π

2
√

2

aρd

n
√
mHkBT

(1 +
9πmH

128kBT
v2

rel)
−1/2. (4.2.13)

The gas properties (n, T , u) at each particle’s location are calculated from nearby grid points

using a triangular-shaped cloud (TSC) interpolation scheme (Hockney & Eastwood, 1988).

There is no momentum feedback from the particles on the gas.

Dust grain sizes

The drag force and the sputtering rates depend on the dust grain radius a. Since the

size distribution of grains formed in SN ejecta is still a matter of debate (Clayton & Nittler,

2004; Bianchi & Schneider, 2007; Nozawa et al., 2007; Sarangi & Cherchneff, 2015; Marassi

et al., 2015), we follow the approach of Ouellette et al. (2010) and implement an initial

‘distribution’ of four radii: a = 10, 1, 0.1, and 0.01 µm. Each radius group is initialized with

the same number of particles (Np = 105), and the sputtered mass from each radius group is

tracked using a separate passive scalar field (ρd, see Section 4.2.3).

Sputtering

The dust grains will be eroded by both thermal and non-thermal (kinetic) sputtering.

We use sputtering rates estimated from the results of Nozawa et al. (2006), neglecting the

slight differences in sputtering rate due to dust composition.

Non-thermal sputtering results from high-speed collisions of a dust grain with gas molecules

and depends on the magnitude of the relative velocity |vrel| between the gas and the dust.

For simplicity, we adopt the polynomial fit of Ouellette et al. (2010, eqs. 13,14)2 to the

2Note that Ouellette et al. (2010) contain a typographical error in the definition of x; cm s−1 should be
km s−1.
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Figure 4.2: Polynomial fits to the thermal (solid red line) and non-thermal (dashed blue line)
sputtering rates, estimated from fig. 2 of Nozawa et al. (2006). The non-thermal sputtering
varies with the relative velocity |vrel| between the dust and the gas (bottom axis), and the
thermal sputtering varies with the gas temperature T (top axis). Both rates depend on the
gas number density n and are given in volumetric units (µm yr−1 cm3).

non-thermal (kinetic) sputtering rates of Nozawa et al. (2006, fig. 2b):

yk = −0.1084x4
k + 1.7382x3

k − 10.5818x2
k + 28.1292xk − 32.7024 (4.2.14)

with xk = log10(|vrel|/1 km s−1) and

(
da

dt
)k = −10yk (

n

1 cm−3
) µm yr−1, (4.2.15)

with the velocity difference between the dust and the gas |vrel| in km s−1, and the gas number

density n. Fig. 4.2 shows the volumetric non-thermal sputtering rate n−1(da/dt) (solid blue

line) as a function of the relative velocity |vrel| (bottom axis).

Thermal sputtering is due to the thermal motion of the gas and depends on the tem-

perature T . Similar to the procedure used by Ouellette et al. (2010) for the non-thermal

sputtering rate, we generate an average fit to the thermal sputtering rates of Nozawa et al.

(2006, fig. 2a) with the polynomial

yt = −0.001911x4
t + 0.12275x3

t − 2.4011x2
t + 18.6752xt − 56.2785 (4.2.16)
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with xt = log10(T/1 K) and

(
da

dt
)t = −10yt (

n

1 cm−3
) µm yr−1. (4.2.17)

Fig. 4.2 also shows the volumetric thermal sputtering rate n−1 (da/dt) (dashed red line) as

a function of the temperature T (top axis).

We treat thermal and kinetic sputtering independently, adding the contributions to

determine the erosion. However, the thermal motions of the gas will skew the relative

velocity difference between the dust and the gas, particularly at high temperatures. We note

that the more detailed treatment of Bocchio et al. (2014) leads to slightly lower sputtering

rates in the high temperature regime, suggesting that our sputtering rates are overestimated

and hence our injection efficiencies should be considered lower bounds in this regard.

The erosion rates (equations 4.2.15 and 4.2.17) are applied at first order via operator

splitting. A particle is assumed to be completely destroyed when its radius decreases to

10−4 µm. As the particles are eroded, they release SLRs back into the gas phase. To

continue tracking the sputtered SLRs in gas phase, we deposit the sputtered dust mass into

a passive density field ρd
3. This field is initially set to zero and is advected with the gas. Each

initial grain radius group has its own unique passive density field. The mass is distributed

into nearby cell-centered field locations using the same TSC interpolation scheme used to

determine gas properties (Hockney & Eastwood, 1988).

At each time-step, the mass lost by each particle is given by

∆Mp =
4πρp

3
[a3 − (a−∆a)3], (4.2.18)

where a is the current grain radius, ∆a = [(da/dt)k + (da/dt)t] dt is the total change in

radius due to both non-thermal and thermal sputtering, Mp is the mass of each particle, and

3Note that this is a passive density rather than a concentration (i.e., color) field. The density is a conserved
quantity, whereas the concentration is not.
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ρp is the density of each particle. It is important to note that ρp 6= ρd, as each particle in

Athena represents a collection of many individual dust grains. As the density of each dust

grain is fixed at ρd = 3.0 g cm−3, the exact number of dust grains per particle depends on

the dust mass and the number of particles used; e.g. for 1 M� of 1 µm dust distributed in

105 particles, each particle represents ∼ 1039 dust grains. For simplicity, we normalize such

that each particle has an initial mass of unity. Hence, if every particle of a given radius

group is completely destroyed, the total mass of the passive density field is Np. With this

simplification, ρp = 3/(4πa3
0), where a0 is the original radius of the particle, and

∆Mp =
a3 − (a−∆a)3

a3
0

. (4.2.19)

Verification of dust dynamics and sputtering

We have modified the Lagrangian tracer particles in Athena to include the drag force

given by Eq. 4.2.13 and the sputtering rates given by Eqs. 4.2.15 and 4.2.17. We verify the

dynamics and destruction in a simple test case. A particle representing each radius group is

initialized at x = 0 with vrel = 500 km s−1 in a uniform medium of density n = 10 cm−3 and

temperature T = 105 K. For a = 10, 1, 0.1, and 0.01 µm, the stopping times are 1.50× 105,

1.5 × 104, 1.5 × 103, and 1.5 × 102 years, respectively. Figure 4.3 compares the evolution

of the position, velocity, and radius of the four particles in Athena to the exact solution.

Overall, the implementation in Athena performs well, with an rms error in the position

of 1.4 × 10−2 for the largest particles. The rms error increas with decreasing radius, up to

0.84 for the smallest grains, but these grains are less important for enrichment as they stop

rapidly and carry the least SLR mass.
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Figure 4.3: Time evolution of the position x, velocity v, and radius a of dust particles
in a simple test case. The dust radius is indicated by color. The exact solution is given
by the solid line, and results from Athena are overlaid as open squares. Overall, our
implementation in Athena follows the dynamics and sputtering to high accuracy; only the
smallest (a = 0.001µm) grains show disagreement, but as these grains have little mass and
are rapidly stopped they contribute very little to the enrichment.
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4.3 Enrichment estimates and measures

4.3.1 Dust production

We are interested in enriching a molecular cloud with SLRs from a nearby SN. The quan-

tity of SLRs produced by a SN varies with progenitor mass (Chieffi & Limongi, 2013), and

any estimate is dominated by uncertainties in reaction rates (Iliadis et al., 2011) and pro-

genitor models (Woosley & Heger, 2007). Of this amount, some fraction will condense into

dust grains of various sizes (Sarangi & Cherchneff, 2015; Marassi et al., 2015). Furthermore,

the dust grains that form behind the SNR forward shock will subsequently be processed by

the reverse shock (Bianchi & Schneider, 2007; Nozawa et al., 2007; Biscaro & Cherchneff,

2016; Bocchio et al., 2016). Calculations of dust grain processing in the reverse shock predict

survival rates of 0–100 per cent, depending on the grain size, grain composition, and local

gas density (Nozawa et al., 2007; Bianchi & Schneider, 2007; Silvia et al., 2010, 2012). Addi-

tionally, inhomogeneities in the SNR produce small clumps of higher density that may shield

the forming dust grains from destruction (Biscaro & Cherchneff, 2014, 2016; Micelotta et al.,

2016). For simplicity, we assume a homogeneous SNR and background medium. Because

we begin our simulations at the end of the free-expansion phase, we neglect processing by

the reverse shock. We therefore assume at least some amount of dust has survived and is

still well-coupled to the gas, consistent with 1D simulations (Biscaro & Cherchneff, 2016;

Bocchio et al., 2016). Our calculations are normalized such that the condensation efficiency

and survival rate do not affect the evolution.

4.3.2 Geometric dilution

As the SNR expands, the ejecta become distributed over a larger surface area. For a

spherical target of radius R, at a distance d from the SNR center, the fraction of the total
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ejecta incident on the target cross-section is

ηgeom =
πR2

4πd2
. (4.3.1)

For our fiducial set-up, d ≈ 18 pc and R ≈ 9 pc; then ηgeom ≈ 0.06. This factor is used to

normalize our injection efficiency η (see Section 4.3.3).

4.3.3 Injection efficiency

The mixing of incident material with a target has been the subject of much previous

numerical work, both in the context of the standard shock-cloud interaction (Xu & Stone,

1995; Shin et al., 2008; Pittard et al., 2009) and in solar system enrichment (Boss & Keiser,

2012; Ouellette et al., 2010). Defining a good measure of the mixing is difficult and depends

on the context. We therefore quantify the mixing in two ways.

For the shock-cloud interaction, the mixing fraction is typically defined by the dilution

of cloud material into ambient material, using the cloud color field (Cc). Conversely, we are

interested in the mixing of incident ‘shock’ material (SN ejecta) into the cloud. We therefore

define the color-based injection efficiency ηc as the total mass of SN ejecta in cells containing

at least 10 per cent cloud material (i.e. Cc ≥ 0.1), normalized by the initial ejecta mass and

the incident ejecta fraction (ηgeom). If all of the ejecta incident on the cloud cross-section are

‘injected’ into the cloud, η = 1.

In the context of solar system enrichment, we are most interested in enriching the dens-

est (potentially star-forming) regions of the target cloud. Both Boss & Keiser (2012) and

Ouellette et al. (2010) consider ejecta to be ‘injected’ above an absolute density threshold.

We therefore calculate an alternate injection efficiency, ηd, defined as the total mass of SN

ejecta in cells with density greater than the ICM density (i.e. n > nc), also normalized

by the incident mass fraction (ηgeom). This measure only probes the dense clumps; thus if

ηd � ηc, most of the ejecta are in diffuse cloud material.

For both measures, we use ηg for the gas-phase injection and ηd for general dust grain
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injection (note that ηd and ηd are different quantities). We further determine the dust

injection for each radius group, using η10, η1, η0.1, and η0.01 for the a = 10, 1, 0.1, and 0.01

µm dust grains, respectively.

The gas injection efficiency is defined as the mass ratio of ‘injected’ gas phase SN ejecta

(as traced by the passive color field Cs) to the initial amount of gas-phase SN ejecta that is

incident on the cloud surface:

ηg ≡
∫
V

(ρCs)injected

ηgeom

∫
V

(ρCs)t=0

, (4.3.2)

where ‘injected’ material is defined using either the cloud color field (Cc > 0.1) or the density

(n > nc).

For the dust grain injection efficiency, we must include both sputtered material (traced

by the passive density field ρd) and intact grain material. Further, we only consider dust

grains that have been stopped, i.e. decelerated to a relative velocity less than 10 per cent

of the local sound speed. For each initial radius group, the dust grain injection efficiency

is calculated as the mass ratio of both stopped and sputtered material to the initial total

particle mass incident on the cloud surface (which we have normalized to be the number of

particles Np):

ηd ≡
[
Np∑

(Mp)vrel≤0.1cs +
∫
V

(ρd)]injected

ηgeom

Np∑
(Mp)t=0

. (4.3.3)

The unknown quantities discussed in Section 4.3.1 (e.g. SLR yield, dust production, dust

destruction) can then be included when estimating final SLR abundances. Note that we do

not account for radioactive decay during transit. The half-life of 26Al is t1/2 ≈ 0.7 Myr. For

our fiducial SNR, the shock impacts the cloud after roughly 0.03 Myr; therefore only ∼ 3

per cent of the total ejected 26Al will have decayed by that time. Over the full duration of

our simulation (0.3 Myr), ∼ 25 per cent of the 26Al will have decayed. The short half-life

of 26Al underscores the need for both rapid transport and incorporation into the molecular

cloud.
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4.4 Results

4.4.1 Dynamical evolution

We follow the evolution of the SN remnant and its interaction with the pre-solar molec-

ular cloud for 0.3 Myr. Fig. 4.4 shows the first 0.03 Myr of time evolution of the fiducial

simulation (run F). As the ST solution is initialized with both kinetic and thermal energy,

the pressure discontinuity at the edge of the SNR launches a shock wave (forward shock)

into the ambient medium. Because the gas-phase ejecta are traced with a passive color field

(Cs), they instead follow the contact wave, which lags behind the forward shock. The dust

grains begin with the ejecta velocity and therefore initially travel with the expanding gas,

experiencing no drag or non-thermal sputtering. However, the high temperatures in the SNR

cause significant thermal sputtering. Fig. 4.5 shows the ratio of sputtered mass to total mass

for each grain radius group over time. At early times, thermal sputtering dominates and

erodes nearly 80 per cent of the smallest (a = 0.01 µm) grains.

As the remnant expands into the ambient medium, the forward shock accumulates more

material, eventually slowing and cooling into a dense shell. The smallest grains (a = 0.01 µm)

remain well-coupled to the inner gas ejecta. Slightly larger (a = 0.1 µm) grains outpace the

inner ejecta but stall in the dense forward shock. The relative velocity difference then

generates non-thermal sputtering, which contributes almost equally to the destruction of the

0.1 µm grains (compare the dashed and dash–dotted green lines in Fig. 4.5). Both of the

smaller grain groups are almost completely stopped and destroyed by sputtering within the

remnant. In contrast, the larger grains (a ≥ 1.0 µm) remain largely intact and dynamically

decouple from the ejecta due to their higher inertia. The large grains also pass through

the forward shock and ballistically impact the cloud before the shock arrives. Once in the

cloud, the grains rapidly slow and kinetically sputter due to the increased densities and high

relative velocities.

The behaviour of the dust grains in the SN remnant agrees well with the results of
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Figure 4.4: Time evolution of our fiducial simulation (run F) at early stages (the first 0.03
Myr). Each image is a mid-plane slice at z = 0. The top row shows the total number
density n in cm−3. All other rows show the mass fraction of each tracer on a per cell basis
relative to the initial tracer mass. The second row is the gas-phase ejecta, traced by the
color field Cs. The remaining rows are the sputtered mass of dust grains from each radius
group. The black contour traces the cloud boundary, defined where the cloud color field
Cc ≥ 0.1. The particles located within the central midplane slice (−δz/2 < z < +δz/2) are
overlaid in grey according to their initial radius group. The smallest grains (a = 0.01 µm)
remain well-coupled to the inner ejecta by the drag force and sputter almost completely
before impacting the cloud. The 0.1 µm grains outpace the inner ejecta but stall in the
forward shock. The large (a & 1.0 µm) dust grains decouple and outpace the shock front
due to their larger inertia, reaching the cloud and depositing SLRs before the shock impacts
the surface. The sputtering of individual particles is visible in the form of radial contrails
from the SN center.
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Figure 4.5: Fraction of total particle mass eroded by thermal sputtering (dashed), non-
thermal sputtering (dash-dot), and the combination of both (solid) during the first 0.1 Myr
of the fiducial simulation (run F). colors indicate the initial radius group (red: 10 µm; orange:
1 µm; green: 0.1 µm; blue: 0.01 µm). The 0.01 µm grains are rapidly and significantly
eroded, predominately by thermal sputtering in the hot SNR. Over 20 per cent of the total
mass is lost in the first kyr, and nearly 100 per cent in the first 10 kyr. The 0.1 µm grains
also experience rapid destruction but with almost equal contributions from both thermal
and non-thermal sputtering, and nearly all are destroyed. The larger grains fare better, with
roughly 40 and 10 per cent destruction rates for the 1 and 10 µm groups respectively. In
both instances, the destruction is dominated by non-thermal sputtering as the grains pass
through the shock front and into the cold, dense cloud.

Bocchio et al. (2016). The authors performed 1D simulations of the growth and erosion of

dust in SNRs including multiple grain compositions, plasma drag, and detailed sputtering.

Despite using simplified dust physics, we obtain very similar results to the evolution of

Mg2SiO4 presented in fig. 3 of Bocchio et al. (2016): (1) small grains (a = 0.01 µm) are highly

eroded in the remnant and remain within the ejecta region; (2) slightly larger (a = 0.1 µm)

grains pass through the ejecta but remain within the forward shock; and (3) the larger

(a = 1.0 µm) grains are eroded very little and eventually move beyond the forward shock.

Fig. 4.6 shows the evolution of the simulation after forward-shock impact. As noted

in Section 4.2.2, the SNR is only just starting to cool when it impacts the molecular cloud

surface. The expansion velocity of the shell is still supersonic (∼ 350 km s−1) at impact. The

hot, diffuse gas encounters a cold, dense wall and deflects around the edges, ablating material.

A slower shock is transmitted into the cloud, and the clumpy substructure provides channels

and gaps for the gas to enter the cloud. Both the clumpy substructure and the efficient
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Figure 4.6: Same as Fig. 4.4, but at later stages. The forward shock impacts the cloud
within ∼ 0.03 Myr, but the inner ejecta does not arrive until t ∼ 0.06 Myr. The clumpy
substructure of the cloud creates channels for the impinging gas to penetrate and mix. At
later times, Rayleigh–Taylor instabilities lead to injection of gaseous SLRs through the cloud
surface. After 0.3 Myr, nearly all the grains within the cloud have either been stopped or
sputtered. Nearly half of the dust grains incident on the cloud are captured, and the largest
grains penetrate furthest.
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Figure 4.7: Time evolution of the fiducial simulation (run F) illustrating the spatial strati-
fication of the dust grains (top row) and sputtered SLRs (bottom row) due to initial grain
radius distribution. As in Figs 4.4 and 4.6, the images are mid-plane slices at z = 0. In
the top row, particles located from −δ/2 ≤ z ≤ +δ/2 are overlaid on a desaturated map of
number density. Each dust grain group is color-coded by initial radius (red: 10 µm; orange:
1 µm; green: 0.1 µm; blue: 0.01 µm). The same color scheme holds in the bottom row,
now showing the sputtered SLR mass fraction, relative to the initial tracer mass. The grey
contour defines the cloud edge. As the simulation proceeds, the dust grains separate spa-
tially based on initial radius, with the larger grains travelling further into the cloud. This
stratification could help explain anomalies in observed solar system abundances, such as the
low 60Fe/26Al ratio.

radiative cooling prevent the formation of a stand-off shock, which is usually observed in

the adiabatic shock–cloud interaction (Nakamura et al., 2006) and could drastically limit

the SLR injection (see Section 4.4.6). At late times, the Rayleigh–Taylor instability begins

to manifest at the cloud surface, driving fingers into the cloud that will eventually mix and

inject SLRs in the gas phase.

In contrast to the hydrodynamical (gas-phase) mixing, the large dust grains rapidly

inject SLRs throughout the cloud. Fig. 4.7 shows the evolution of the dust grains, as

well as a combined view of the sputtered mass from each initial radius group. The largest

(a = 10 µm) grains penetrate furthest, sputtering most of their mass in the leading edge of

the cloud. The smaller grains have been largely stopped and sputtered before entering the

cloud. Still, the SLR contents of the 0.1 µm grains have outpaced the inner ejecta and mix

into the dense gas ∼ 0.05 Myr earlier. Nearly all grains incident on the cloud are sputtered

and stopped within the cloud, i.e. only grains at grazing angles can re-emerge from the cloud

interior.
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4.4.2 Injection of SLRs

We are interested in the enrichment of the densest (eventually star-forming) gas. There-

fore, we analyse the SLR deposition as a function of density (Fig. 4.8). Comparing the

dust ejecta to the gas ejecta, the gas ejecta are mostly distributed in the diffuse SNR and

background ISM. In contrast, the 10 µm grains deposit a significant fraction of mass into the

densest gas, and smaller particles deposit smaller fractions in the dense gas. This effect is

further quantified in Fig. 4.9, which compares the injection efficiency η of both dust and gas

as a function of time. At late times, the color-based injection efficiency is roughly equivalent

for all grain sizes (ηc ∼ 0.5), indicating that nearly half the incident material has been mixed

into the cloud. However, the density-based injection ηd decreases with decreasing grain size,

to the point that the smallest grains and gas deposit only negligible amounts of ejecta in the

densest regions. This agrees qualitatively with Boss & Keiser (2012), who found only a small

fraction of incident gas-phase material is injected into a dense pre-stellar core (ηd
g ≈ 0.03).

This indicates that only the large grains are able to enrich the densest gas (n > nc). Table

4.2 provides a summary of final injection efficiencies from all simulations performed.
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Figure 4.8: Tracer mass fraction binned logarithmically by density across time for the fiducial
simulation (run F). The top panel shows the SNR gas tracer (ρCs). The rest of the panels
show the mass deposited into gas phase by dust grain sputtering (ρd) for each initial grain size
(10, 1, 0.1, and 0.01 µm). While hydrodynamical mixing is largely restricted to later times
and low cloud densities (top panel), the large (a ≥ 1 µm) dust grains enrich higher densities
at earlier times. Only the smallest grains do not reach higher densities. The prominent
horizontal line at n = 1 cm−3 corresponds to the ambient medium, while lower densities are
located in the diffuse SNR.
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Table 4.2: Summary of supernova-blast simulations and results. The parameters φ, NR, and Np are defined in Tabel 4.1, and
definitions of the injection efficiencies η are given in Section 4.3.3.

Run name φ NR Np ηc
g ηc

10 ηc
1 ηc

0.1 ηc
0.01 ηd

g ηd
10 ηd

1 ηd
0.1 ηd

0.01

F 0.5 50 105 0.45 0.39 0.48 0.45 0.46 0.065 0.36 0.37 0.23 0.011
R1 0.5 12 105 0.59 0.38 0.42 0.46 0.47 0.083 0.36 0.25 0.13 0.030
R2 0.5 25 105 0.49 0.38 0.44 0.43 0.45 0.11 0.36 0.31 0.19 0.048
R4 0.5 100 105 0.39 0.39 0.50 0.46 0.34 0.11 0.36 0.42 0.30 0.031
N1 0.5 50 104 0.44 0.38 0.47 0.44 0.44 0.066 0.35 0.37 0.23 0.012
N2 0.5 50 106 0.45 0.38 0.47 0.44 0.44 0.066 0.35 0.36 0.22 0.011
FT 0.5 50 105 0.30 0.41 0.51 0.46 0.29 0.045 0.38 0.41 0.31 0.056
NS 0.5 50 105 0.45 0.00 0.0012 0.011 0.029 0.065 0.00 0.0012 0.0096 0.011
NC 0.5 50 105 0.00 0.37 0.30 0.00033 0.00 0.00 0.29 0.043 0.000 0.000
F1 0.1 50 105 0.46 0.34 0.49 0.45 0.47 0.052 0.23 0.36 0.22 0.0081
F3 0.3 50 105 0.45 0.37 0.48 0.45 0.46 0.057 0.32 0.36 0.22 0.0092
F7 0.7 50 105 0.43 0.40 0.48 0.44 0.44 0.071 0.38 0.38 0.23 0.012
F9 0.9 50 105 0.42 0.40 0.48 0.44 0.42 0.071 0.39 0.39 0.24 0.010
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Because the SLRs decay, the enrichment needs to occur rapidly. As seen in both Figs

4.8 and 4.9, the particles are able to deposit SLRs in the cloud ∼ 0.1 Myr before gas phase

mixing occurs. For all dust grain sizes, the injection of SLRs occurs rapidly, reaching peak

values in less than 0.1 Myr. This is contrasted with the gas, which slowly mixes and is still

increasing its injection amount when the simulation ends. The gas injection efficiency only

becomes comparable to the dust injection efficiencies after 0.2 Myr.

4.4.3 Resolution convergence

As discussed in Chapter 3, the degree of mixing in inviscid simulations is controlled

by numerical viscosity. In the three-dimensional shock-cloud interaction, previous work has

found that about 32–64 cells per cloud radius (indicated as NR) are necessary for convergence

of global quantities (Pittard & Parkin, 2016), and our fiducial simulation falls within this

range (NR ≈ 50). However, we find that the small scale mixing does not convergence 3.5.2,

as the turbulent cascade begins to be resolved at this point.

Fig. 4.10 compares the fiducial result to simulations performed at both lower and higher

resolution (runs R1–R4), up to 100 cells per radius (1024 × 512 × 512 grid points). The

injection efficiency of the larger grains (a ≥ 0.1 µm) increases only slightly with increasing

resolution. In contrast, the injection of smallest grains (a = 0.01 µm) and the gas ejecta

decreases as the resolution increases. The larger injection efficiencies at lower resolution

may be attributable to increased numerical diffusion, leading to increased mixing at the

cloud interface. Overall, the trend is sufficiently flat to conclude that our three-dimensional

simulations are sufficiently resolved at NR = 50.

In the previous resolution test, we kept the number of particles fixed at Np = 105. We

do not expect the particles to be strongly affected by simulation resolution. However, the

number of particles used may alter the injection. As the particles are placed randomly within

the SNR, a sufficient number of particles are required to eliminate any gaps when the shock

wave encounters the cloud surface. We repeat our fiducial simulation varying the number of
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Figure 4.9: Injection efficiency η as a function of time for the ejecta in our fiducial simulation
(run F). Injection is measured using the cloud tracer (solid) and density threshold (dashed).
Each tracer is color-coded as in Fig. 4.4 (purple: gas; red: 10 µm; orange: 1 µm; green:
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intermediate grains (a = 0.1 µm) are sputtered and stopped in the forward shock and arrive
slightly ahead of the gas. The smallest grains (a = 0.01 µm) sputter significantly before
entering the cloud, yet injection of SLRs from these grains continues as gas at the leading
edge of the cloud is subsequently mixed by Rayleigh-Taylor instabilities. While the color-
based injection is approximately the same (ηc & 0.4) for all ejecta types, the density-based
injection (ηd) decreases with grain radius, indicating most of the smaller grain deposition is
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Figure 4.10: Injection efficiencies η as a function of simulation resolution, represented by
the cells per cloud radius NR. η is evaluated at simulation termination (t = 0.3 Myr) using
the cloud tracer (solid) and density threshold (dashed). Each tracer is color-coded as in
Fig. 4.4 (purple: gas; red: 10 µm; orange: 1 µm; green: 0.1 µm; blue: 0.01 µm). The
injection efficiency of the largest grains increases slightly for both measures, as the density
peaks within the clumps are better resolved and capture more material. Injection decreases
for the smallest grains and the gas due to decreased numerical diffusion at the cloud surface.
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particles from Np = 104 (run N1) to Np = 106 (run N2). We find no significant variation in

injection efficiency with particle number (see Table 4.2).

4.4.4 Effect of supernova remnant model

We have also performed a simulation using the standard thermal pulse to initialize the

SNR rather than an exact ST solution. In this model (run FT), we inject ESN = 1051 erg

of thermal energy and Mej = 10 M� uniformly into a spherical volume of radius 20 cells.

With sufficient resolution, this approach has been shown to evolve approximately into the

ST solution after only 2 kyr (Kim & Ostriker, 2015) and is therefore often used for its

simplicity (Vasileiadis et al., 2013). Because the SNR has no initial kinetic energy, injecting

the particles at the start of the simulation would generate non-physical drag. We therefore

let the thermal pulse evolve for 3 kyr before injecting the particles, which are then placed in

the forward shock with the local gas velocity.

The final state of the simulation is displayed in the second column of Fig. 4.11. Overall,

the result obtained using the thermal pulse is almost indistinguishable from the ST model –

the shock thickness, velocity, and arrival time are approximately the same, and the injection

efficiencies at simulation termination are nearly identical (see Table 4.2). There is a small

difference in the dust grains due to the initialization; because we wait 3 kyr to insert the

dust in the thermal pulse model, the grains experience less thermal sputtering and arrive

later.

4.4.5 Effect of sputtering

We compare the fiducial results to a simulation run without sputtering (run NS). The

third column of Fig. 4.11 shows the result at simulation termination. The hydrodynamics

and the gas tracer field are not affected by the lack of sputtering, since there is no feedback

from the particles to the gas. The drag force depends on the dust grain radius, and therefore

the dust dynamics are altered by the lack of sputtering. The largest grains pass almost
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Figure 4.11: Similar to Fig. 4.7, but comparing different simulations at t = 0.3 Myr. From
left to right, the columns show (a) the fiducial simulation (run F); (b) the SNR initialized as a
thermal pulse rather than a ST solution (run FT); (c) no sputtering of dust grains (run NS);
and (d) no thermal physics, i.e. purely adiabatic with no heating or cooling (run NC). The
middle row shows the gas ejecta tracer field. Comparing the fiducial to the thermal pulse,
the initialization of the SNR does not appear to drastically alter the evolution or injection.
Without sputtering, there are no SLRs released in gas phase; hence the bottom panel is
blank. The 10 µm dust grains are not stopped in the cloud by drag and re-emerge. Without
cooling, the impact of the SNR creates a bow shock that deflects incoming gaseous ejecta.
The large, intact grains still decouple and penetrate the cloud surface, injecting SLRs.
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entirely through the target cloud. The rest of the grains also travel further into the cloud but

are eventually stopped by the drag force. Since there is no sputtering, no SLRs are released

into the gas phase and the injection is measured solely by the stopped grain criterion (see

Section 4.3.3).

4.4.6 Effect of radiative cooling

We compare the fiducial results to a simulation run without radiative heating and cooling

(run NC). As seen in the fourth column of Fig. 4.11, the behaviour of the gas is radically

altered. As the shock wave impacts the cloud surface, the purely adiabatic equation of

state results in the formation of a stand-off shock at the leading edge of the cloud, diverting

impinging material and preventing mixing. The gas-phase ejecta and the smaller grains

(which are either coupled to the gas or sputtered) do not mix at all with cloud material,

and the injection efficiency is essentially zero (see Table 4.2). Cooling lowers the effective

adiabatic index of the shock-cloud interaction. As the gas is compressed, the strong radiative

losses reduce the shock stand-off distance, allowing mixing of phases and enhancing injection.

The larger dust grains are less affected as they are largely intact at impact and still penetrate

the cloud surface.

4.4.7 Filling factors

In contrast to previous shock–cloud and SN injection simulations, we include substruc-

ture in the target cloud through high-density clumps randomly embedded in an ICM. The

fiducial simulation has a cloud volume filling factor of φ = 0.5. We expect the SN shock

wave to interact differently as the filling factor is varied. Clumps at the cloud surface provide

channels for injection, reducing the need for Rayleigh–Taylor fingers. We examine the effect

of varying the filling factor from φ = 0.1 to 0.9 (runs F1–F9); results are given in Table 4.2.

Overall, the dust grain injection is largely unaffected by the filling factor. A higher φ leads

to slightly increased injection efficiency, most notably in the 10 µm grains, as the additional
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clumps capture grains on trajectories near the periphery of the cloud.

4.5 Discussion

4.5.1 The Role of dust grains

We investigate the role of SN dust grains in enriching a nearby molecular cloud with

SLRs. Our results indicate that dust grains formed in SN ejecta can survive transport

through the ISM and significantly enrich neighbouring clouds. We find that sufficiently

large grains (a ≥ 1 µm) decouple from the expanding SN remnant, pass through the shock

front and cloud surface, and deposit a significant fraction of their SLR mass into the cloud

(ηd & 0.4). In particular, large dust grains enrich the dense gas rapidly, preventing significant

SLR decay. Smaller grains (a ≤ 0.1 µm) sputter and stall in the SNR and contribute

SLRs predominately through gas-phase mixing. The gas-phase ejecta mix slowly through

hydrodynamic and thermal instabilities at the cloud surface.

Our results agree with those of Ouellette et al. (2010) despite using very different targets

(molecular cloud versus proto-stellar disc) and SN distances (18 pc versus 0.1–2 pc). The

authors found that a considerable fraction (η & 0.8) of grains larger than 1 µm are injected

into the target, which compares favorably with our estimates (ηd & 0.4). Similarly, the

smallest grains (a = 0.01 µm) are slowed and completely destroyed. We also find approximate

agreement with our estimate for gaseous injection; Ouellette et al. (2010) estimated ηg . 0.01,

while we find ηd
g ≈ 0.1.

4.5.2 60Fe/26Al ratio

We observe that the dust drag and sputtering naturally lead to a spatial stratification

between grains of different sizes, illustrated in Fig. 4.7. One of the leading arguments

against a SN enrichment source is that the SLR abundances in our solar system do not

precisely match predicted SN yields. In particular, some estimates of the ratio of 60Fe/26Al

in the ESS are orders of magnitude lower than expected in SNe (Tang & Dauphas, 2012),
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casting doubt on a SN origin for 26Al (Gounelle, 2015). However, if the primary carriers of

60Fe and 26Al condense into grains of different characteristic radii, these isotopes may not

end up in the same dense gas reservoirs. In addition, the ejecta of SNRs are not spatially

homogeneous (Grefenstette et al., 2014). Both observational (DeLaney et al., 2010) and

simulation (Wongwathanarat et al., 2015) results indicate that iron-group elements may be

preferentially ejected in a particular direction. If the pre-solar cloud was not in this narrow

window, it would receive far less 60Fe than predicted, and a SN may still be the injection

source.

4.5.3 Other considerations

We do not consider the evolution of the SN progenitor prior to explosion. The progeni-

tor’s stellar wind and ionizing radiation will shape the circumstellar environment, resulting

in a stratified medium (ρ ∝ r2) rather than a uniform medium. This density gradient will

affect the transit of the shock wave and grains through the intervening gas. Furthermore, the

stellar wind will contain dust grains that may also be enriched with certain SLRs, such as

26Al, produced during main sequence and post-main sequence evolution (Limongi & Chieffi,

2006; Palacios et al., 2005). These enriched dust grains will be swept up by the passage of

the subsequent SNR and may further enhance SLR enrichment (Gounelle & Meynet, 2012).

We consider only one set of parameters for the SN (explosion energy ESN = 1051 erg

and ejected mass Mej = 10 M�) at a single distance (d = 18 pc). The SN parameters

are somewhat constrained and only slightly affect the initial condition. The SN distance

is limited by the estimated SLR yield of SNe, the geometric dilution of ejecta, and the

radioactive decay of SLRs. As noted in Section 4.2.1, our chosen separation is at the upper

limit of the ‘radioactivity distance’ for 26Al enrichment (Looney et al., 2006). Reducing

the distance from the SN to the pre-solar cloud may increase injection due to decreased

geometric dilution, increased shock speed at impact, decreased time for radioactive decay of

SLRs, and decreased sputtering. Therefore our estimates may be considered a lower limit in
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this regard.

We also only consider a single SN. However, most massive stars form in clustered envi-

ronments, e.g. OB associations (Lada & Lada, 2003), and in multiple systems (Zinnecker &

Yorke, 2007). Indeed, it is likely that multiple SNe over one or more generations contributed

SLRs to the pre-solar cloud (Vasileiadis et al., 2013; Young, 2014).

Cloud morphology may also play a considerable role in gas injection. We introduce static,

clumpy substructure in the target cloud. The substructure prevents a symmetric stand-off

shock from forming after impact and provides diffuse channels for injection through the

dense filaments. The break-up of the shock also generates turbulence and mixing. We have

neglected dynamical perturbations (velocity substructure); however, molecular clouds are

probably turbulent (Elmegreen & Scalo, 2004), and introducing turbulence could further

enhance the mixing at the cloud surface and increase injection of the smaller grains and gas.

We do not include gravity in our simulations. The potential effect of gravity can be

estimated by comparing the local free-fall time tff = [3π/(32Gρ)]1/2 to the simulation time.

For the dense clumps with ncl ≈ 400 cm−3, tff ≈ 2 Myr – much longer than the time-scales

considered here (0.3 Myr). However, we note that compression by the SN shock wave, as

well as fragmentation due to thermal instability, will create higher densities and may trigger

collapse. Due to the global nature of our simulation, we are limited to measuring injection

efficiencies at large scales within the cloud. Following the enrichment and mixing down to

individual pre-stellar cores (sub-parsec scale) will require gravity and additional resolution

(possibly through mesh refinement). While the densest gas is harder to penetrate, collapsing

cores could receive SLRs by accreting enriched diffuse gas during collapse (Kuffmeier et al.,

2016).

In our dust drag law, we consider only neutral grains and ignore the Coulomb drag

force [second term in equation 4 of Draine & Salpeter (1979)]. However, dust grains will be

charged by collisions with ions (Draine & Salpeter, 1979). The Coulomb term will become

large when the relative velocity approaches the sound speed and may significantly affect the
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grain dynamics at low relative velocities. Within the SNR, the dust-to-gas relative velocity

is low and the gas temperature is high; hence the Coulomb (plasma) drag may be several

times larger than the collisional drag (fig. 2, Bocchio et al., 2016). Reducing the dust grain

velocities may reduce the injection, and therefore our estimates of enrichment may be upper

limits. Charged grains will also interact with any magnetic fields present in the gas, which

we neglect. Within the SN ejecta, the dust grains may be largely unaffected by magnetic

effects, as there is observational and numerical evidence that the field is radially aligned

(Dunne et al., 2009; Reynoso et al., 2013; Inoue et al., 2013). However, the field orientation

may shift at the SN shock front; as noted by Foster & Boss (1997), gas–grain de-coupling may

be suppressed or even prevented by fields in the shock front, which could drastically reduce

the enrichment. Magnetic effects could also alter the grain dynamics within the target cloud.

The average magnetic field increases with column density in dense molecular gas (Crutcher,

2012); hence the effect on grains also increases near star-forming clumps. Future work on the

subject should consider the combined effects of grain charging, Coulomb drag, and magnetic

fields.

4.6 Conclusions

A nearby supernova (SN) remains a possible candidate as the source of short-lived ra-

dioisotopes (SLRs) in the early solar system (ESS). The main challenge in this “direct in-

jection” scenario is overcoming the impedance mismatch between the hot, diffuse supernova

remnant (SNR) gas and the cold, dense pre-solar gas, as demonstrated amply in the literature

(Boss & Keiser, 2012; Gritschneder et al., 2012; Pan et al., 2012). We explore whether dust

grains formed from the SN ejecta and carrying SLRs can overcome the mixing barrier and

enrich dense (potentially star-forming) gas. Using hydrodynamical simulations, we model

the interaction of a SNR carrying dust grains with the pre-solar molecular cloud. We follow

dust grains of varying initial radius (a = 0.01–10 µm) subject to drag forces and sputtering.

We find the following points:
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1. Sufficiently large dust grains (a ≥ 1 µm) entrained in the SN ejecta will decouple from

the shock front and survive entry into the molecular cloud. They will then be either

completely stopped or sputtered, enriching the dense gas with SLRs within 0.1 Myr of

the SN explosion.

2. Smaller dust grains (a ≤ 0.1 µm) formed in the SN ejecta will be either stopped or

sputtered before impacting the molecular cloud. The sputtered SLRs will contribute

to the enrichment through subsequent gas-phase mixing.

3. Gas-phase SN ejecta will enrich the leading edge of molecular cloud only after insta-

bilities develop at the cloud surface. The degree of mixing depends strongly on the

inclusion of radiative cooling.

While it is still unknown what fraction of dust grains survive passage by the reverse shock

and emerge from the SNR, we show that any surviving dust will contribute favorably to the

typical SN enrichment scenario. Indeed, if a significant amount of large (a & 1 µm) grains

survive, dust may be the dominant source of SLR enrichment in nearby molecular clouds.

Most notably, the dust grain enrichment occurs rapidly, in contrast with the typical gas-

phase mixing which relies on the growth of hydrodynamical instabilities at the cloud surface.

A shorter time delay between production and injection of the SLRs prevents substantial

radioactive decay. Finally, if the various SLRs condense into different-sized dust grains, drag

and sputtering will lead to a spatial stratification of SLRs within the pre-solar cloud. This

could explain the large discrepancy in the 60Fe/26Al mass ratio between SN predictions and

meteoritic measurements. We conclude that dust grains can be a viable mechanism for the

transport of SLRs into the pre-solar cloud.
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CHAPTER 5: DEUTERIUM FRACTIONATION OF MASSIVE
PRE-STELLAR CORES1

5.1 Introduction

Massive stars played a central role in enriching the early solar system with SLRs, yet the

physical processes and conditions involved in massive star formation remain uncertain (Tan

et al., 2014). The relative rarity of massive stars and thus their typical large distances from

us, along with their deeply embedded formation environments, make it difficult to observe

details of the massive star formation process. The timescale for the formation of massive

stars could constrain the enrichment of nearby low-mass systems (such as the solar system);

a significant delay between molecular cloud formation and the onset of star formation would

decrease the likelihood of local enrichment. In Goodson et al. (2016a), we explore the

timescale and physical conditions of massive star formation with 3D magnetohydrodynamical

observations. We include an approximate deuterium chemistry model to enable comparisons

with recent observations of deuteration in massive, pre-stellar cores (Kong et al., 2016).

5.1.1 Massive Star Formation

There are two main theories for massive star formation: 1) Core Accretion models, e.g.,

the Turbulent Core Accretion model (McKee & Tan, 2003, hereafter MT03), which assumes

near-virialized starting conditions for relatively ordered collapse; and 2) the Competitive

Accretion model (Bonnell et al., 2001), which posits fragmentation and subsequent accretion

by multiple stars from a turbulent, globally collapsing medium. Distinguishing these two

1Portions of this chapter previously appeared as an article in The Astrophysical Journal. The original citation
is as follows: Goodson, M. D., Kong, S., Tan, J. C., Heitsch, F., & Caselli, P. “Structure, Dynamics, and
Deuterium Fractionation of Massive Pre-Stellar Cores,” The Astrophysical Journal, 833:274 (18pp), 2016
December 20. c○ 2016. The American Astronomical Society. All rights reserved.
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scenarios relies on disentangling the numerous physical processes involved, such as turbulent

motions, magnetic fields, and feedback.

Numerical modeling is one means to extricate the various processes. Previous simula-

tions of massive star formation have focused on the role of turbulence, magnetic fields, and

radiation in clump fragmentation. Girichidis et al. (2011) investigated the fragmentation

of hydrodynamic clumps, examining the effect of the initial density profile and turbulent

driving. The authors found that single massive stars are more likely to form from centrally-

concentrated initial conditions, while the details of the turbulence are relatively unimportant.

Numerous authors (Krumholz et al., 2007, 2010; Peters et al., 2011; Cunningham et al., 2011;

Commerçon et al., 2011; Myers et al., 2013) have demonstrated that radiative feedback from

protostars inhibits fragmentation of the clump. Magnetohydrodynamics (MHD) simulations

both neglecting radiation (Hennebelle et al., 2011; Seifried et al., 2011, 2012) and with ra-

diation (Peters et al., 2011; Commerçon et al., 2011; Myers et al., 2013) indicate that even

a weak magnetic field suppresses clump fragmentation, and increasing the field strength

further reduces the fragmentation.

In all of the aforementioned MHD numerical studies, the magnetic field strength is

initially super-critical, i.e., the field cannot prevent gravitational collapse. The central pre-

stellar core contracts rapidly, forming a protostar within one to two free-fall times. Yet

the timescale of core collapse remains an open question. In the Competitive Accretion

model, cores form and rapidly collapse on the order of the free-fall time. In the Turbulent

Core model, the cores persist longer – at least one dynamical time – possibly supported

by magnetic fields and turbulence near virial balance. Indeed, some observed cores exhibit

supersonic linewidths consistent with virial balance (Tan et al., 2013; Kong et al., 2017).

Yet, velocity dispersions due to virial equilibrium or energy equipartition (consistent with

free-fall) differ only by a factor of
√

2 (Vázquez-Semadeni et al., 2007). Therefore, even a

clear distinction between virial equilibrium and free-fall collapse based on velocity dispersion

seems difficult. However, we note that where they have been measured, observed infall speeds
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generally seem to be small, i.e., ∼ 1/3 of the free-fall velocity (Wyrowski et al., 2016).

5.1.2 Deuteration as a Chemical Clock

An alternative means to probe the age and state of starless cores is using chemical

tracers, in particular deuterated molecules. In sufficiently dense (nH > 105 cm−3), cold

(T < 20 K) environments, CO freeze-out opens a pathway for ion-neutral reactions that

increase the deuterium fraction, i.e., the ratio of deuterated to non-deuterated species, Dfrac.

For a full review of deuteration processes, see Ceccarelli et al. (2014). Observationally,

deuterated molecules are excellent probes of pre-stellar gas. Caselli et al. (2001) traced low-

mass star forming regions with N2D+ and DCO+, finding deuterium fractions Dfrac & 0.1,

several orders of magnitude above the cosmic deuterium ratio (D/H ∼ 10−5). Similarly,

Tan et al. (2013, hereafter T13) identified high-mass star-forming regions in infrared dark

clouds (IRDCs) with the same deuterated molecules. Kong et al. (2016, hereafter K16) has

subsequently estimated the deuterium fraction of N2H+ in these regions to be of comparable

values to those in low-mass pre-stellar cores (DN2H+

frac ≡ N2D+/N2H+& 0.1) (see also Fontani

et al., 2011).

As deuteration is expected to begin only when pre-stellar core conditions are satisfied, the

deuterium fraction may be a useful estimator of core age. Kong et al. (2015, hereafter K15)

developed a time-dependent astrochemical network to model the evolution of deuterium-

bearing molecules. The authors followed the chemistry in a single zone with fixed physical

conditions or with simple density evolution. Under typical core conditions, the K15 models

suggest that the deuteration process is slow, with up to ten free-fall times required to reach

the observed values of DN2H+

frac .

Moving beyond single-zone chemical models is a difficult task, as the complex reac-

tion network requires extensive computational resources. Pagani et al. (2013) coupled the

deuterium network of Pagani et al. (2009) with a 1D spherically-symmetric hydrodynamic

calculation. The simulations followed deuteration in 200 radial zones during collapse of a
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low-mass pre-stellar core from a uniform, static state. In disagreement with K15, Pagani

et al. (2013) determined that fast collapse is preferred, as steady-state abundances deter-

mined from the model were typically much higher than observed. However, the models of

Pagani et al. (2009) and Pagani et al. (2013) begin with very high initial depletion factors,

which greatly shortens the deuteration timescale. A full discussion and comparison is pre-

sented in K15, but it is worth noting that, given similar initial conditions, the models of K15

agree with Pagani et al. (2009) to within a factor of 3.

If large-scale magnetic fields are present, the assumption of radial symmetry during

collapse will not hold, as flux-freezing prevents significant collapse in directions perpendicular

to the field. Further, the turbulent motions within the core are not fully captured in 1D

simulations. Indeed, the chemical evolution may be altered by non-linear effects such as

density fluctuations and turbulent diffusion. Implementing a full chemical network in high-

resolution 3D simulations is currently not feasible given computational limits. One option

may be to reduce the number of reactions and reactants; however, this would negatively

affect the accuracy of the chemistry. Here, we develop an alternative approach.

We construct an approximate deuterium chemistry model built on the full astrochemical

network results of K15. By parameterizing the results across a wide range of densities, we

formulate a robust and efficient method to follow the growth and deuteration of N2H+ in 3D

MHD simulations of massive core collapse. We generate a turbulent, magnetized pre-stellar

core according to the paradigm of MT03, and we model the collapse of the core until the

first protostar forms. We simultaneously follow the chemical evolution of N2H+ and N2D+

and compare to observed massive pre-stellar cores. By varying the initial conditions, such

as the mass surface density, magnetic energy, chemical age, and initial ortho-to-para ratio of

H2, we can estimate the core properties necessary to match observed deuterium abundances.

We observe in our simulations that the collapse occurs on roughly the free-fall time,

regardless of the initial mass surface density or magnetic field strength. We conclude that

reaching the observed deuterium fractions requires significant prior chemical evolution, low
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initial ortho-to-para ratio, and/or slower collapse, possibly by stronger magnetic fields or

sustained turbulence.

We outline our numerical methods, including initial conditions and chemical model in

(Section 5.2). The results of our simulations are presented and discussed in Section 5.3.

We discuss the implications for massive star formation in Section 5.4 before concluding in

Section 5.5.

5.2 Methods

We use a modified version of Athena (Stone et al., 2008) version 4.2 to solve the

equations of ideal, inviscid MHD given by Eqs. 2.1.1–2.1.5. We include a passive color field

C to trace core material, whose evolution is given by Eq. 2.1.6. We also evolve several scalar

fields to trace the chemistry:

∂ρ[X]

∂t
+∇ · (ρu[X]) = S([X]) (5.2.1)

with the fractional abundance [X] for some species X relative to hydrogen, and a source

term S. Full details of the chemical model are presented in Section 5.2.2.

We use the directionally unsplit van Leer (VL) integrator (Stone & Gardiner, 2009) with

second order reconstruction in the primitive variables (Colella & Woodward, 1984) and the

HLLD Riemann solver (Toro, 2009). Simulations are performed on Cartesian grids in three

dimensions. To obtain an approximately isothermal equation of state, we set the ratio of

specific heats γ = CP/CV = 1.001. We do not include radiation pressure or feedback; we do

include self-gravity.

5.2.1 Setup and Initial Conditions

We initialize a spherical core according to the relations of MT03. We set the core mass

Mc = 60 M� and the density power law exponent kρ = 1.5. For our fiducial core, we set the
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Table 5.1: Summary of turbulent core simulations. Fiducial simulation is S3M2.

Σcl µΦ Mc Rc n̄ tff Bc α σ δ
Run Name (g cm−2) (M�) (pc) (cm−3) (kyr) (mG) (km s−1) (AU)

S3M2 0.3 2 60 0.104 1.97×105 76 0.803 2 0.99 213
S1M2 0.1 2 60 0.180 3.79×104 173 0.268 2 0.76 365
S3M1 0.3 1 60 0.104 1.97×105 76 1.606 2 0.99 213
S1M1 0.1 1 60 0.180 3.79×104 173 0.536 2 0.76 365

clump mass surface density Σcl = 0.3 g cm−2, consistent with the estimates of T13 observed

cores. With these values, MT03 prescribes the radius of the core

Rc = 0.057

(
Σcl

1 g cm−2

)−1/2

pc → 0.10 pc (5.2.2)

and the number density of hydrogen at the surface

nH,s = 1.16× 106

(
Σcl

1 g cm−2

)3/2

cm−3 → 1.82× 105 cm−3, (5.2.3)

where the value after the arrow is for the fiducial model. The mean number density in the

core is n̄ = 1.97× 105 cm−3, and the average free-fall time of the core is

tff =

√
3π

32Gρ̄
→ 76 kyr, (5.2.4)

with average density ρ̄ = n̄µmH, the mean molecular weight µ = 2.33, and the mass of

hydrogen mH. To trace the core, we initialize the passive color field C to unity for r ≤ Rc

and zero otherwise. We also perform simulations with lower initial mass surface density

of the surrounding clump (Σcl = 0.1 g cm−2); the relevant parameters for both cases are

summarized in Table 5.1.

Density Structure

The core has a density profile ρ(r) ∝ r−1.5, which is consistent with observations of

massive pre-stellar cores (Butler & Tan, 2012). We set the core to a constant temperature
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Tc = 15 K; thus the thermal pressure in the core follows the same power law as the density.

The sound speed in the core cs =
√
kBT/(µmH) = 0.2 km s−1, with the Boltzmann constant

kB. To prevent divergence as r → 0, we flatten the profile over an inner radius, Rf = 0.15Rc.

We calculate the central density nc = ns[1.0 + (Rc/Rf)
kρ ] → 1.99 × 106 cm−3. We impose

an order of magnitude jump in the density at the core surface, which is smoothed by a

hyperbolic tangent profile with Rs = 0.05Rc. The density in the ambient medium is constant

at n0 = 0.1ns. The overall density profile is given by

n(r) = n0 +
nc − n0

1 + (r/Rf)kρ
(0.5− 0.5 tanh [

r −Rc

Rs

]). (5.2.5)

The ambient temperature T0 is determined by thermal pressure balance with the core: T0 =

10Tc = 150 K. This mimics the effective pressure of the surrounding clump medium, which

is expected to be dominated by non-thermal mechanisms, e.g., turbulence. The actual

temperature of the clump is expected to be quite similar to that of the core.

The core is centered in a cubic simulation box of side length L = 5Rc → 0.52 pc with

spatial resolution δ = L/512 → 213 AU. We use periodic boundary conditions to prevent

gravitational evacuation at the box edges; the core is sufficiently padded to prevent any

interactions with the boundaries. We use a periodic FFT solver to calculate the gravitational

potential. Eventually runaway collapse in a few cells drives the global time-step to nearly

zero. The collapse could be followed longer by the addition of sink particles, but as we are

only interested in pre-stellar conditions, we terminate the simulation at this point.

Magnetic Fields

We initialize a cylindrically-symmetric magnetic field in the z-direction, similar to the

field geometry of Myers et al. (2013). The field strength is determined by the desired mass-

to-flux ratio normalized to the critical value (Mouschovias & Spitzer, 1976):

µΦ =
M

MΦ

=
2πG1/2M

Φ
, (5.2.6)
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where MΦ is the critical mass-to-flux value and Φ is the magnetic flux through the center

of the core. To maintain approximately constant µΦ throughout the core, the field strength

decreases as r−0.5; then the magnetic pressure B2/(8π) ∝ r−1, as in MT03. For a given µΦ,

we calculate the field strength at the surface of the core Bs:

Bs =
3

2

G1/2Mc

µΦR2
c

→ 0.22 mG. (5.2.7)

Similar to our treatment of the density, we smooth the magnetic field profile both at the

center of the core and at the edge of the core. The field in the ambient medium is uniform

at B0 = Bs, and the overall magnetic field profile is given by

B(ξ) = B0 +
Bc −B0

1 + (ξ/Rf)0.5
(0.5− 0.5 tanh [

ξ −Rc

Rs

]), (5.2.8)

where ξ ≡
√
x2 + y2 is the distance from the z-axis and Bc is the central field strength, given

by Bc = Bs[1.0 + (Rc/Rf)
0.5]. Our fiducial simulation uses a slightly super-critical mass-to-

flux ratio (µΦ = 2), in accord with observations of dense molecular gas (Crutcher, 2012);

then the central field strength Bc → 0.80 mG. We also perform simulations with a stronger

magnetic field, corresponding to critical mass-to-flux ratio (µΦ = 1). Relevant parameters

in both cases are summarized in Table 5.1.

Turbulence

We initialize supersonic turbulence in the cores with random velocity perturbations. The

turbulence is generated in a method similar to that described in Mac Low (1999): amplitudes

are drawn from a random Gaussian with a Fourier power spectrum of form |δvk| ∝ k−2, with

1.0 < kL/2π < N/2, where k is the wavenumber, L is the box size, and N is the number of

cells. We apply fully solenoidal (divergence-free) perturbations. The initial perturbation has

a one-dimensional velocity dispersion σ calculated from the virial relation, α ≡ 5σ2Rc/(GMc)

(Bertoldi & McKee, 1992). Because we do not initialize any density perturbations, we set
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the core to be initially super-virial (α = 2); the initial velocity dispersion in the fiducial

simulation is then σ → 0.99 km s−1. This value is close to the velocity dispersion of a

virialized core including external pressure terms, given in T13:

σc,vir = 1.09

(
Mc

60 M�

)1/4(
Σcl

1 gcm−2

)1/4

km s−1 → 0.80 km s−1. (5.2.9)

We do not drive the turbulence; energy is only injected at initialization.

5.2.2 Chemistry

We follow the evolution of two molecular species in our simulations: N2H+ and N2D+.

The fractional abundance of each species is advected with the fluid as a passive color field

(Eq. 5.2.1). We use an approximate chemical model based on the results of K15, in which

the authors presented a time-dependent chemical network for the evolution of N2H+ and

N2D+ in a single-zone approximation. We combine results from across the K15 parameter

space into a unified model to predict the initial chemical abundances and growth rates.

In K15, the authors examined the influence of numerous physical conditions and found

that the results depend strongly on the number density of hydrogen, nH, and the initial

ortho-to-para ratio of H2, OPRH2
0 . Deuteration is most efficient when the number density is

high and OPRH2 is low. Unfortunately, OPRH2 is not easy to estimate from observations.

The statistical expectation for OPRH2 at H2 formation on grains is OPRH2 = 3.0; OPRH2

then decreases as ortho-H2 is destroyed. We test the effect of different initial OPRH2 values

by including three sets of K15 simulations: OPRH2
0 = 1.0, 0.1, and 0.01.

For a given OPRH2
0 , we use a suite of 55 uniform density models from K15 to construct

our approximate model, spanning hydrogen number densities from 103 to 109 cm−3. All

models use the fiducial parameters of K15: gas temperature T = 15 K, cosmic ray ionization

rate ζ = 2.5 × 10−17 s−1, heavy-element depletion factor fD = 10, radiation field (relative

to Habing field) G0 = 1, and visual extinction AV = 30 mag. We note that, while ζ ≈

3× 10−16 s−1 in diffuse gas (Indriolo & McCall, 2012), cosmic rays are attenuated in dense
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Figure 5.1: Time evolution of chemical number density and deuterium fraction from K15 for
various hydrogen number densities nH. The number density is computed as nH[X], where [X]
is the relative abundance of species X. From top to bottom, the number density of N2H+,
of N2D+, and the deuterium fraction, DN2H+

frac ≡ N2D+/N2H+. Results are obtained with
K15 fiducial parameters except that OPRH2

0 = 0.1. The time required to reach equilibrium
decreases with increasing density. Additionally, the equilibrium values for both species abun-
dance and the deuterium fraction increase with increasing density, reaching DN2H+

frac & 0.3 at
nH = 109 cm−3.
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starless cores to a value approximately an order of magnitude lower (Padovani et al., 2009;

Keto & Caselli, 2010). We also note that for these conditions of high extinction the radiation

field plays a negligible role. Each K15 model provides the time evolution of the fractional

abundance of species X, denoted [X](t), over 100 Myr. Figure 5.1 presents the fiducial results

of K15 for varying hydrogen number density nH at OPRH2
0 = 0.1, with the deuterium fraction

DN2H+

frac ≡ N2D+/N2H+.

Chemical Age

To set the initial condition for the molecular abundances, we must make assumptions

about the previous history of the gas. Deuteration begins as CO starts to freeze out, which

occurred prior to t = 0 for our simulation; the exact amount of prior time is unknown.

We therefore investigate four chemical starting times, tchem, which for simplicity we make

multiples of the mean core free-fall time: tchem = 0, 1, 3, and 10 tff . For tchem = 0, we assume

[N2H+]=[N2D+]=0.0. For all other tchem, we reference the constant density runs of K15. We

first interpolate the K15 results using a cubic spline onto an nH-t grid of 10002 support points.

This finer grid then functions as a look-up table; given a particular starting time tchem and

density nH, we estimate the chemical abundances using bi-linear interpolation. This method

implicitly assumes that the gas has been in its current configuration for the duration of

tchem. While this is clearly an idealization, it provides a simple test of the importance of the

previous history of the gas.

Chemical Growth Rates

The time evolution of each chemical species at a given density is provided by K15. From

these runs, we can calculate a growth rate, d[X]/dt as a function of time and density. If

our simulations maintained a constant density, we could use the absolute time to determine

the growth rate and easily evolve the abundances. However, in a dynamical simulation with

non-linear density evolution, the time dependence is not straightforward. If we restrict the
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Figure 5.2: Example look-up grid for the chemical evolution of (top) [N2H+] and (bottom)
[N2D+] in our simulation. The grid shown is for OPRH2

0 = 0.1 and is generated from the
chemical network modeling of K15. A growth rate d[X]/dt is estimated for each species X
using bi-linear interpolation based on the current hydrogen number density nH and relative
abundance [X].

abundances to strictly grow monotonically, we can parameterize the chemical growth rate as

a function of the chemical abundance itself and remove the time dependence. In the chemical

modeling results of K15, [N2D+] strictly monotonically increases, and [N2H+] monotonically

increases except for a slight decrease very near equilibrium. As the effect is relatively small

(. 30%), we ignore any decreases in chemical abundances. With this modification, we can

parameterize the growth rate as a function of the current species abundance.

We calculate the time derivative as a function of chemical abundance for each of the

constant-density runs performed in K15 using a second-order central difference. For compu-

tational efficiency, we then interpolate the results onto a 10002 nH-[X] look-up grid. Figure
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5.2 shows an example grid for OPRH2
0 = 0.1. For each cell and at each time step in the sim-

ulation, the growth rate is estimated by bi-linear interpolation based on the current density

and fractional abundance. The total source term S([X]) = ρ dt (d[X]/dt) is calculated using

a sub-cycled fourth-order Runge-Kutta method and applied to the scalar field via operator-

splitting. Numerical effects of the scalar field can potentially lead to fractional abundances

larger than the equilibrium value; therefore, for each cell we calculate the equilibrium value

for the current density and prevent the fractional abundance from exceeding this value.

Chemistry Tests

We validate our approximate chemical model by comparing to results from K15. We first

compare simulations run with constant density. Overall, we find our approximate chemistry

matches the full network calculations to within a few percent. As these models form the basis

for our approximate method, it is reassuring that we match the evolution of all quantities

accurately. We note that our parameterization leads to a systematic underestimate of the

equilibrium values of [N2H+] and DN2H+

frac , up to 30% below the values of K15. As discussed

above, we need to make the growth rate a single-valued function of the current abundance,

so we remove the slight decrease in [N2H+] near equilibrium.

We next compare to the Dynamic Density Evolution (DDE) simulations of K15. In these

models, the authors used a single zone in which the hydrogen number density nH evolved as

dnH

dt
= αff

nH(t)

tff(t)
, (5.2.10)

where tff is the local free-fall time at the current density. Results are shown in Figure 5.3.

Overall, the results agree to within 10% for most of the simulations. At early times, the

short chemical time-scales are not well-resolved. Again, at late times the inability of [N2H+]

to decrease leads to a systematic underestimate of [N2H+] and DN2H+

frac .
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Figure 5.3: Comparison between K15 chemical network calculations (solid line) and our
approximate chemical model in Athena (open diamonds) for Dynamic Density Evolution
(DDE) tests. Each column shows a unique test case, with varying rates of collapse (αff)
and density ratios (ni/nf). The evolution of the density (top row) is identical in both K15
and Athena; therefore no comparison is shown. Results are for OPRH2

0 = 0.1. Overall,
the results agree to within 30%, with the largest discrepancies at initialization, as the short
chemical timescales are difficult to resolve. At late times, there is a small tendency to
systematically overestimate N2H+, which can lead to an underestimation of DN2H+

frac due to
our parameterization method.
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5.3 Results

5.3.1 Dynamical Evolution

We follow the collapse and chemical evolution of the fiducial simulation (run S3M2) for

61 kyr ≈ 0.8tff . Figure 5.4 shows the time evolution of the mass surface density, mean ve-

locity (weighted by the N2D+ abundance), and chemical tracers projected along the x-axis,

perpendicular to the initial magnetic field orientation, as well as the ratio of the column

densities (DN2H+

frac ≡ N [N2D+]/N [N2H+]). For comparison to observations, we apply a den-

sity threshold when calculating the N2H+ and N2D+ column densities based on the J = 3–2

transition critical densities, which are given in table 2 of Miettinen & Offner (2013). For

simplicity, we use a single value for both species of ncrit(3–2) ≈ 4×106 cm−3. However, emis-

sion still occurs at densities below ncrit (Evans, 1999), resulting in an effective critical density

roughly an order of magnitude lower (Shirley, 2015); we therefore consider contributions to

the chemical column densities only where nH2 ≥ neff = 4× 105 cm−3. The density-weighted

plane-of-sky magnetic field projection is overlaid on the mass surface density map.

The initial turbulent velocity field disrupts the smooth density distribution. The external

pressure prevents significant expansion, and the core begins to collapse due to gravity. As

these are ideal MHD simulations, the magnetic field in the z-direction prevents significant

collapse along the perpendicular directions due to flux-freezing. Material can freely collapse

along the field lines, creating an elongated filamentary structure in the x-y plane. We follow

the evolution of the core until runaway gravitational collapse into a few central cells prevents

further evolution; this is essentially the formation of the first protostar. As seen in Figure

5.4, the core collapses monolithically with little fragmentation, and the density appears to

be centrally concentrated at termination. The magnetic field structure eventually develops

an hourglass morphology as the field lines are pulled inward at the midplane.

The asymmetry introduced by the magnetic field suggests the viewing angle will be

important. Figure 5.5 shows projections taken along the z-axis, parallel to the initial field
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Figure 5.4: Projections from our fiducial turbulent, magnetized core model (run S3M2).
Time proceeds from left to right in units of the initial mean free-fall time tff . From top
to bottom, the rows are: the mass surface density Σ; the mean velocity along the line of
sight weighted by N2D+; the column density of N2H+; the column density of N2D+; and the
deuterium fraction DN2H+

frac . The chemical starting time tchem = 0 tff and the initial ortho-to-
para ratio of H2 OPRH2

0 = 0.1. Projections are taken along the x-axis, perpendicular to the
initial magnetic field direction. The density-weighted magnetic field projection in the plane-
of-sky is overlaid on the mass surface density in black lines, with the length proportional to
the field strength. For reference, the length corresponding to B = 0.3 mG is shown in the
top right. The chemical tracers are only considered where the molecular hydrogen number
density is greater than neff = 4× 105 cm−3, roughly 10% of the critical density for the (3–2)
transition. As [N2D+]=0 at t=0, we instead show the density-weighted mean velocity for
that panel only.
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Figure 5.5: Same as Figure 5.4, but now the projection is taken along the z-axis, parallel to
the initial field direction.
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Figure 5.6: “Spectra” of the total emission from N2H+(3–2) (top row) and N2D+(3–2) (bot-
tom row) in run S3M2 at simulation termination, for line-of-sight velocities parallel (left
column) and perpendicular (right column) to the magnetic field. The velocity binsize is
0.1 km s−1. Assuming the gas is optically thin, we weight the velocities with the abundance
of the tracer species. The black line shows the unprocessed distribution; the red line shows
the effect of thermal broadening at T = 15 K; and the blue line includes both thermal and
hyperfine structure (HFS) broadening. For reference, the normalized HFS intensities are
shown in black at the bottom of each panel.

orientation. The core now appears circular, suggesting a disk-like structure in the x-y plane.

More small-scale structure is visible, as the velocity perturbations tangle and amplify the

plane-of-sky magnetic field in the core; however, the central condensation remains distinct,

surrounded by less-dense filaments or streams.

In the mean velocity map at t = 0.8tff in Figure 5.4, there is a velocity gradient of

several km s−1 across the central condensation, suggesting rotation in the x-y plane. This is

further evidenced in the velocity “spectra” shown in Figure 5.6, which all exhibit a double-

peaked distribution. The spectra are computed from the integrated intensity of N2H+(3–2)

and N2D+(3–2) assuming LTE optically-thin emission (jX ∝ n[X]). To examine the effect

of different broadening mechanisms, Figure 5.6 presents the abundance-weighted velocity

distribution with no broadening (black line), with thermal broadening at T = 15 K (red

line), and with hyperfine structure (HFS) broadening (where each component has the same

Gaussian profile with a thermal velocity dispersion corresponding to T = 15 K; blue line).
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The thermal velocity dispersion is sufficiently small (σX ≈ 0.06 km s−1) that the broadening

has only a modest effect. The projection direction has a pronounced effect, as the dispersion

in the +z-direction (parallel to the magnetic field) is much wider than in the +x-direction.

This may be attributed to material collapsing freely along the magnetic field lines. There

are also noticeable differences between the N2H+ and N2D+ spectra; the N2D+ spectra

exhibit more small scale structures than the N2H+. As will be discussed in Section 5.3.2,

N2H+ largely reaches equilibrium throughout the core, whereas N2D+ does not; N2D+ may

therefore probe smaller and denser structures within the core.

T13 assessed the virial state of observed pre-stellar cores by comparing the velocity

dispersion of N2D+(3–2), σN2D+ , to the predictions for a virialized core based on MT03, σc,vir

(Eq. 5.2.9). We present a similar analysis in Figure 5.7. At each time step, we calculate

the projected area in which N2D+(3–2) emission is present, then ascribe an equivalent area

circle to determine the effective core radius Rc,eff . The clump mass surface density Σcl is

then determined within the annulus from Rc to 2Rc. To match the observations of T13, the

effective core mass is determined from the projections in two ways: 1) the total mass surface

density Σ is summed within the equivalent area to compute the maximum core mass Mc,max;

2) the clump surface density is subtracted from the total mass surface density before summing

to compute the minimum core mass Mc,min, removing contributions from the foreground and

background to the core mass. The velocity dispersion of N2D+(3–2) is determined by fitting

a Gaussian to the thermally-broadened spectrum computed along each Cartesian projection

direction. For comparison, we also show the velocity dispersion calculated from the core

color tracer (σc), which should represent the actual velocity dispersion of the core. Finally,

the clump mass surface density and minimum core mass are used to estimate the velocity

dispersion of a virialized core, σc,vir (Eq. 5.2.9), compared to σN2D+ and σc.

In the fiducial run, the effective radius decreases as the core collapses. The effective

core mass also decreases due to the central concentration of the N2D+ tracer. The core

is initialized with a velocity dispersion σ = 1 km s−1; yet by t = 0.1tff , σ ≈ 0.4 km s−1.
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The velocity dispersion then increases most strongly in the z-direction, as material collapses

freely along the magnetic field lines. As N2D+becomes concentrated in the densest regions

of the core, it no longer traces the overall velocity distribution and diverges from the color

field estimate. The cores analyzed in both T13 and Kong et al. (2017) were determined to be

moderately sub-virial, with σN2D+/σc,vir ∼ 0.8 (based on the mm continuum estimate of core

mass, which is expected to already include subtraction of the clump mass surface density

via interferometric spatial filtering and thus be consistent with using Mc,min). However, for

the case of the massive core C1-S, T13 found σN2D+/σc,vir ' 0.45 and argued this may imply

the presence of strong (∼ 1 mG), large-scale magnetic fields. Here, we observe that after

the initial turbulent energy injection, the fiducial core (run S3M2) appears moderately sub-

virial but later becomes super-virial as the core collapses. The simulation with a stronger

magnetic field (run S3M1), which is discussed in more detail in Section 5.3.6, shows an even

more sub-virial velocity dispersion when viewed in the x and y directions, consistent with

the T13 estimate for C1-S.

The evolution of the fiducial run is further quantified in Figure 5.8, which shows the

evolution of both the mean and maximum values of the mass surface density, chemical abun-

dances, and DN2H+

frac in the core. Here we define the core using the effective number density

threshold neff ; as this selects a unique volume, the mean column density is independent of

viewing angle. Maximum values are computed from the x-axis projections. The mean mass

surface density of the core decreases initially due to the initial turbulence and then increases

slowly with time, from Σ ≈ 0.4 g cm−2 up to 0.8 g cm−2. The maximum value increases

nearly two orders of magnitude between 0.5 and 0.7 tff , as the central overdensity contracts

rapidly. The chemical evolution is discussed in Section 5.3.2.

The same density threshold is applied to the column density probability distribution

functions (PDFs) presented in Figure 5.9. As the core collapses, the initially (roughly)

lognormal mass surface density distribution develops a high-density power-law tail, indicative

of collapse. At simulation termination, roughly 10% of the core mass is at Σ ≥ 1.0 g cm−2.
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Figure 5.9: Probability distribution functions in our fiducial simulation (run S3M2) at mul-
tiple times. From top to bottom, the panels show the mass surface density Σ, the N2H+

column density, the N2D+ column density, and the deuterium fraction DN2H+

frac . Simulation
times are indicated by color (blue: t =0.2 tff ; red: 0.4 tff ; yellow: 0.6 tff ; green: 0.8 tff).
Projections are taken along the x-axis for tchem = 0 and OPRH2

0 = 0.1.
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5.3.2 Chemical Evolution

As the density increases due to gravitational collapse, the growth rates of the chemical

species also increase. We observe in Figures 5.4 and 5.5 that N2H+ reaches equilibrium before

N2D+ and is more widespread. This agrees well with observations of pre-stellar core regions;

K16 find an extended envelope of N2H+ emission around cores in IRDC G028.37+00.07, while

N2D+ is more concentrated. The asymmetry introduced by the magnetic field also affects the

chemical morphology; when viewing perpendicular to the field, the chemical tracers are more

centrally-concentrated. The chemical evolution is also quantified in Figure 5.8. The mean

N2H+ column density increases rapidly and then flattens over time as equilibrium is reached;

in contrast, the mean N2D+ column density grows steadily throughout the simulation without

reaching equilibrium, and DN2H+

frac increases only modestly until late times (after N2H+ has

reached equilibrium). The maximum values of N2D+ and DN2H+

frac do reach equilibrium values,

but this is limited to only the densest regions of the core. This is confirmed in Figure 5.9,

which shows only a small fraction of cells in the core are able to reach DN2H+

frac ≥ 0.1 by the

end of the simulation. As K16 detected widespread deuteration in pre-stellar cores (see also

the study of Barnes et al. (2016) for evidence of widespread deuteration on parsec-sized,

lower-density scales in an IRDC), this suggests more time is needed for the outer regions of

the core to reach observed values.

Figure 5.10 presents radial averages of DN2H+

frac within the core at different times and

projection directions. DN2H+

frac grows rapidly in the center of the core, where the density is

highest, while in the outer regions, DN2H+

frac remains relatively unchanged for the duration of

the simulation. The direction of projection does not significantly affect the radial profile,

which suggests observed radial profiles could be a useful (viewing-angle-independent) means

to constrain the age of the core. Radial mapping of DN2H+

frac within observed cores is now

technically feasible with ALMA.
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Figure 5.10: Radial averages of DN2H+

frac in our fiducial simulation (run S3M2) for tchem = 0
and OPRH2

0 = 0.1. Results are shown for different times (blue: 0.2 tff ; red: 0.4 tff ; yellow:
0.6 tff ; green: 0.8 tff) and projection directions (solid: x-axis; dashed: y-axis; dash-dotted:
z-axis).

5.3.3 Effect of Initial OPRH2

Pagani et al. (2013) and K15 found that the initial ortho-to-para ratio of H2 (OPRH2
0 )

strongly affected the chemical evolution of N2D+ and DN2H+

frac . Our fiducial simulation has

OPRH2
0 = 0.1. As the hydrodynamics is unaffected by the chemistry, we simultaneously

evolve the molecular species using OPRH2
0 = 0.01 and OPRH2

0 = 1.0. The evolution of the

mean values of N2D+ and DN2H+

frac at different OPRH2
0 is shown in Figure 5.8. As noted by

K15, a lower OPRH2
0 leads to faster growth of N2D+, as well as a larger equilibrium value

of [N2D+]. Since N2H+ is unchanged by OPRH2
0 , DN2H+

frac also grows faster and reaches a

higher value. The mean value of DN2H+

frac remains below the observed values (& 0.1) even at

the lowest OPRH2
0 (=0.01), indicating a longer core lifetime and/or earlier deuteration (see

Section 5.3.4) is necessary. The effect of varying OPRH2
0 is also presented in Figure 5.11,

which shows the ratio of chemical column densities (i.e., DN2H+

frac ) at the end of the fiducial

simulation for varying OPRH2
0 . From the top row moving down, OPRH2

0 decreases for a given

chemical age, with a corresponding increase in the mean deuterium fraction in the core.
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Figure 5.11: Ratio of chemical column densities (DN2H+

frac ) at simulation termination (t =
0.8tff) from our fiducial model (run S3M2) for different initial chemical ages and ortho-to-
para ratios of H2. From left to right, the columns are at tchem = 0, 1, 3, and 10 tff ; from
top to bottom, the rows are OPRH2

0 = 1.00, 0.10, and 0.01. As either tchem or OPRH2
0 are

increased, the resulting mean deuterium fraction in the core increases.
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5.3.4 Effect of Initial Chemical Age

We have thus far assumed in our calculations that the gas begins in an initially pristine

condition, with tchem = 0, i.e., [N2H+]=[N2D+]=0.0 at t = 0. However, this may not be the

case, especially given our initial condition; we initialize the core after it has already formed

a centrally-concentrated structure. Deuteration begins once CO begins to freeze-out, which

occurred at some unknown time prior to the current state. We therefore explore different

“chemical ages” for the core: tchem = 0, 1, 3, and 10 tff . To set the initial condition for the

chemical abundances, we reference the constant density results of K15 at an absolute time,

as described in Section 5.2.2. The core then begins from an advanced state of deuteration,

assuming the core has been in its current density configuration for tchem. While the dynamical

collapse is unchanged, the core is able to reach higher deuterium fractions. As is evident

in Figure 5.11, the deuterium fraction increases for increasing chemical age, with nearly

the entire core achieving the equilibrium value of DN2H+

frac for tchem = 10tff . While this may

seem to agree with the estimates of K15, which indicated up to 10 free-fall times may be

necessary to reach observed values of DN2H+

frac , the simulations are not directly comparable. In

K15, the density continually increases, with a corresponding decrease in tff ; here, we assume

a constant density (hence a constant tff) prior to initialization. Regardless, in both cases the

conclusion remains that deuteration must proceed for longer than the average free-fall time,

either by earlier deuteration or slower collapse.

5.3.5 Effect of Initial Mass Surface Density

We also examine the effect of varying the initial clump mass surface density Σcl. Our

fiducial simulation uses Σcl = 0.3 g cm−2; however, this is the current observed state of the

cores in the T13 sample. As the cores currently show significant deuteration, we investigate

an earlier phase of the core lifetime by decreasing the initial clump mass surface density

to Σcl = 0.1 g cm−2 (run S1M2). We keep the core mass fixed at 60 M� and use the

prescription of MT03 to adjust the core radius (increase Rc → 0.18 pc) and surface number
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density (decrease nH,s → 8.2 × 104 cm−3). The average core free-fall time then increases

to tff → 173 kyr. We maintain the core temperature at Tc = 15 K and the initial virial

parameter α = 2; the initial velocity dispersion then decreases to σ → 0.76 km s−1. We also

maintain the same mass-to-flux ratio µΦ = 2; the central field strength is then reduced to

Bc → 0.27 mG.

Figures 5.12 and 5.13 show the evolution of run S1M2 for projections along the x- and

z-axes, respectively. Based on the results of K15 presented in Figure 5.1, we expect the lower

densities in the core to lead to slower chemical growth and lower equilibrium values of DN2H+

frac .

The core collapses more slowly on an absolute timescale, but the simulation terminates at

the same relative time, t = 0.8 tff . Comparing on a relative timescale, there are only modest

differences in morphology and chemistry between the two cases. At termination, run S1M2

appears more filamentary and less centrally concentrated than run S3M2. Although the ab-

solute column density values are lower, the mean DN2H+

frac is actually higher. This is displayed

in Figure 5.14, which shows the final mean chemical column densities and corresponding

DN2H+

frac for all simulations performed. Depending on the value of tchem and OPRH2
0 , DN2H+

frac is

higher in run S1M2 by a factor of 1-5 over run S3M2. We therefore conclude that the initial

mass surface density does not strongly affect the chemical evolution.

5.3.6 Effect of Magnetic Field Strength

We also test the effect of increasing the magnetic field strength. We perform simulations

with a critical field strength (µΦ = 1.0) for both the fiducial mass surface density (Σcl =

0.3 g cm−2; run S3M1) and the decreased value (Σcl = 0.1 g cm−2; run S1M1). Projections

are shown for run S3M1 in Figures 5.15 and 5.16, and for run S1M1 in Figures 5.17 and

5.18. In both instances, the stronger magnetic field leads to an initial expansion of the core

before it coalesces again and collapses. The critical field does slow the contraction – both

simulations run 0.2tff past the corresponding µΦ = 2.0 simulations – but ultimately does

not prevent collapse. The slower collapse leads to a larger, more diffuse core compared to
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Figure 5.12: Similar to Figure 5.4 but for a core with lower initial mass surface density
(Σcl = 0.1 g cm−2; run S1M2). Projections are taken along the x-axis (perpendicular to
initial magnetic field direction). The simulation runs to the same relative time (0.8 tff),
which corresponds to a longer absolute time (139 kyr).
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Figure 5.13: Same simulation as in Figure 5.12 (run S1M2) but now the projections are
taken along the z-axis, parallel to the initial magnetic field direction.
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the fiducial run at a given time. The stronger field also inhibits motions perpendicular to

the field, as illustrated in Figure 5.7. The velocity dispersions in the x and y directions are

lower in run S3M1 compared to run S3M2, while the z direction is largely unaffected. The

filamentary structure observed perpendicular to the field is also narrower, which reduces

estimates of the mass.

Figure 5.14 reveals that the longer timescale at µΦ = 1.0 does result in a higher mean

value of DN2H+

frac in both cases, but only by a factor of 1-2 over runs with µΦ = 2.0. As with the

mass surface density, we conclude that the magnetic field strength does not strongly affect

the resulting deuterium fraction. However, we caution that this result may be influenced by

the initial field geometry (see Section 5.4), and further investigation is warranted.

5.4 Discussion

Figure 5.14 summarizes the final mean chemical column densities (and DN2H+

frac ) for all

simulations performed and across the entire parameter space. In agreement with the one-zone

models of K15, we find that deuteration proceeds slowly during collapse and only reaches
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Figure 5.15: Similar to Figure 5.4 but for a core with a stronger magnetic field (µΦ = 1;
run S3M1). Projections are taken along the x-axis, perpendicular to initial magnetic field
direction. The critical magnetic field inhibits the collapse, allowing the simulation to proceed
another 0.2 tff . Due to flux-freezing, material collapses most freely parallel to the magnetic
field; hence the core becomes compressed in the z-direction.
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Figure 5.16: Same simulation as Figure 5.15 (run S3M1) but now the projections are taken
along the z-axis, parallel to the initial magnetic field direction.
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Figure 5.17: Similar to Figure 5.12 but for a core with increased magnetic field strength
(Σcl = 0.1, µΦ = 1; run S1M1). Projections are taken along the x-axis (perpendicular to
initial magnetic field direction). As in Figure 5.15, the stronger field again slows the collapse
and leads to an elongated core.
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Figure 5.18: Same simulation as Figure 5.17 (run S1M1) but for projections taken along the
z-axis, parallel to the initial magnetic field direction.
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observed values under certain conditions, namely low OPRH2
0 (. 0.01) or advanced chemical

evolution (tchem & 3tff). The initial mass surface density and magnetic field strength do not

largely alter this conclusion.

Our approximate chemistry model for N2H+ deuteration is constructed from the results

of K15. The K15 chemical network calculations were performed with the same physical

conditions (e.g., temperature, ionization rate, dust-to-gas ratio) except for the density and

OPRH2
0 . As noted in Section 5.2.2, these two quantities play a large role in determining the

deuteration and are therefore parameters of our model. However, varying any of the other

K15 model parameters could shift the equilibrium value of DN2H+

frac by an order of magnitude,

as is evident in fig. 5 of K15. In particular, increasing the initial heavy-element depletion

factor fD decreases the timescale for deuteration. This may explain the discrepancy between

our work and the results of Pagani et al. (2013); we set fD = 10 and obtain results consistent

with slow collapse, whereas Pagani et al. (2013) chose fD & 300 and determined a fast collapse

best matched DN2H+

frac observations. While there is evidence for some CO depletion (fD . 5) in

IRDCs (Hernandez et al., 2011, 2012), further observations are necessary to better constrain

this parameter. Fig. 5 of K15 also demonstrates the effect of changing the cosmic ray

ionization rate ζ; increasing ζ will both decrease the equilibrium value of DN2H+

frac and increase

the growth rate of DN2H+

frac . We also note that the K15 fiducial parameter values may not be

applicable across the full range of densities (103 ≤ nH ≤ 109cm−3). Short of implementing

the full network in 3D MHD simulations, future work could introduce density-dependent

parameters to better span the K15 parameter space. Finally, our parameterization introduces

a systematic overestimate of N2H+ and underestimate of DN2H+

frac , by up to 30% relative error.

While the approximation is expedient for simulations, a time-dependent chemical network

will be required to obtain more accurate species evolution as the density evolves.

The cores begin with a smooth density profile, and we rely on the initial super-virial

turbulent velocity field to create density fluctuations. The turbulence is thus not fully

developed at initialization, and the energy decays rapidly as seen in Figure 5.7. Ideally,
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the density and velocity structure would be generated in a self-consistent manner, possibly

through driven turbulence with subsequent application of gravity (e.g., Heitsch et al., 2001;

Myers et al., 2014).

We consider magnetic fields but neglect non-ideal MHD effects, such as ambipolar dif-

fusion (AD). The AD timescale is estimated in figure 6 of K15 to be roughly an order of

magnitude longer than the free-fall timescale for all relevant densities (see also Heitsch &

Hartmann, 2014). As all our simulations terminate prior to t = 2 tff , we do not expect AD

to significantly affect the dynamics. However, the field geometry may affect the results. We

begin with a smooth, cylindrically-symmetric field in the z-direction. As with the density

field, the magnetic field is tangled by turbulent motions, but only after initialization. Ma-

terial freely collapses along the field lines even when the field is of critical strength. Future

studies should begin either with a tangled component in addition to an ordered component,

or should generate a tangled field through turbulent driving (Myers et al., 2014).

We are limited in the range of spatial scales we can probe due to the lack of mesh

refinement. Our fiducial simulation is performed using a fixed grid of 5123 grid cells, for a

minimum resolution of δ ≈ 360 AU. Following the collapse and chemical evolution further

will require additional resolution, possibly through the use of mesh refinement.

We also halt our calculations when the collapsing core is no longer adequately resolved,

i.e., at protostar formation. We do not include sink particles, as we are only interested in

pre-stellar conditions. For similar reasons, we also neglect radiative feedback. As demon-

strated by Commerçon et al. (2011) and Myers et al. (2013), including radiation feedback

from protostars slows the collapse and inhibits fragmentation. It is unclear how the proto-

stellar radiation field will affect the deuteration process; however, there is recent evidence

that protostars can exist within highly-deuterated regions (Tan et al., 2016). Radiation ef-

fects could increase the core lifetime and hence the deuterium fraction, and future studies

following the chemistry for longer periods should include these effects using sink particles

and radiation-magnetohydrodynamics.
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5.5 Conclusions

We have constructed an approximate chemical model for the deuteration of N2H+ in

cold, dense pre-stellar gas. Our model is based on the results of the astrochemical net-

work presented in K15. The full network is prohibitively expensive in multi-dimensional

hydrodynamics simulations. Rather than reducing the number of reactions, we parameterize

the results across a range of densities into look-up tables. This approximate formulation

is demonstrated to perform reasonably well in comparison to full network calculations with

both constant and evolving density.

We implement our approximate chemical model in the Athena MHD code. In 3D

simulations, we follow deuteration during the collapse of a turbulent, magnetized pre-stellar

core. The core is initialized in accordance with the Turbulent Core Accretion model of

MT03. For our adopted initial conditions, the core collapses to the point of forming a

protostar within roughly one free-fall time, regardless of the initial mass surface density or

magnetic field strength. During most of this collapse phase the velocity dispersion of the core

as traced by N2D+(3–2) appears moderately sub-virial compared to predictions of the MT03

Turbulent Core Model, consistent with observations of T13 and Kong et al. (2017). Only

near the end, just before protostar formation, does the velocity dispersion rise to appear

super-virial.

As the core collapses, the increase in density accelerates the deuteration of N2H+. How-

ever, we find that DN2H+

frac does not reach observed values (& 0.1) in ∼ 1 tff , unless the initial

ortho-to-para ratio of H2 (OPRH2
0 ) is . 0.01 or the core begins from an advanced chemical

state (tchem & 3 tff). This is in agreement with K15 and suggests that the collapse rate in

highly-deuterated cores may be significantly slower than the free-fall time, or the deuteration

process begins earlier than assumed.
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CHAPTER 6: CONCLUSION

6.1 Conclusions and future work

A nearby Type II supernova (SN) remains the most likely candidate as the source of

short-lived radioisotopes (SLRs) in the early solar system (ESS). However, hydrodynamical

simulations of enrichment by SNe have repeatedly shown that the injection of SLRs is several

orders of magnitude less than required to match ESS abundances.

It may be that mixing is suppressed by insufficient numerical resolution. I have there-

fore investigated the role of hydrodynamical turbulent mixing in SLR enrichment. I have

implemented six two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models

in the Athena hydrodynamics code. After verifying the models with standard mixing layer

tests, I apply the models to the astrophysical shock-cloud interaction. To better understand

SLR enrichment of the ESS, I focus on the role of turbulent mixing and injection. I find that,

in contrast to previous predictions, estimates of the mixing actually increase with increasing

resolution, but only once sufficient resolution is attained to resolve the turbulent cascade.

This required the highest resolution fixed-grid simulations of the shock-cloud interaction to

date, with over half a million CPU hours used for a single simulation. Furthermore, this

finding agrees with the elevated mixing predictions of the turbulence models, but it remains

unclear whether this result holds in other applications.

Even if the hydrodynamical mixing is underestimated at typical resolutions, the gas-

phase injection may still be insufficent to explain ESS abundances. I have therefore explored

an alternate injection mechanism, namely dust grains formed from the SN ejecta and carrying

SLRs. Using hydrodynamical simulations, I model the interaction of a SNR carrying dust

grains with the pre-solar cloud. I find that sufficiently large dust grains (a ≥ 1 µm) formed
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in the SN ejecta can survive entry into the cloud, where they are either stopped or destroyed.

This rapidly enrichs the dense (potentially star-forming) gas with SLRs. Smaller dust grains

(a ≤ 0.1 µm) are either stopped or sputtered before impacting the cloud, although they

can still enhance the enrichment through subsequent hydrodynamical mixing. While it is

still unclear what sizes and amounts of dust are common in SNR, I show that any dust

grains can contribute favorably in the typical SN enrichment scenario. Finally, the spatial

stratification of different sized dust grains could explain the discrepancy in 60Fe/26Al mass

ratio between SN nucleosynthesis predictions and ESS meteoritic measurements. I conclude

that dust grains are a viable mechanism for the transport of SLRs into the ESS. Future

studies should examine the role of magnetic fields and grain charge in SN enrichment.

Finally, the short half-lives of the SLRs constrains the time and distance from the ESS

to the massive stellar nucleosynthetic source. The odds of enrichment are therefore best if

the SN progenitor formed just before the ESS in the same cluster of stars. If star formation

proceeds slowly, this could reduce the likelihood of enrichment. We therefore investigate the

timescale for massive star formation by comparing observations of highly-deuterated pre-

stellar cores to three-dimensional magnetohydrodynamical simulations with an approximate

chemical model. We parameterize the results from a full chemical network to produce a

robust and efficient method for the deuteration of N2H+ in Athena. Despite varying the

initial magnetic field and surface density of the core, all models collapse to form a protostar

within roughly one free-fall time. While the deuterium fraction does increase during collapse,

it does not reach observed values (& 0.1) within one free-fall time, unless the initial conditions

are more advanced than assumed. Further work is necessary to determine when deuteration

begins in the star formation process.
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Trinquier, A., Birck, J.-L., Allègre, C., Göpel, C., & Ulfbeck, D. 2008, Geochimica et Cos-
mochimica Acta, 72, 5146

Urey, H. C. 1955, Proceedings of the National Academy of Sciences, 41, 127

van Leer, B. 2006, Communications in Computational Physics, 1, 192
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Industries, Inc.)

—. 2008, AIAA Journal, 46, 2823

Wolfire, M. G., Hollenbach, D., Mckee, C. F., Tielens, A. G. G. M., & Bakes, E. L. O. 1995,
The Astrophysical Journal, 443, 152

Wongwathanarat, A., Müller, E., & Janka, H.-T. 2015, Astronomy & Astrophysics, 577, A48

Woosley, S. E., & Heger, A. 2007, Physics Reports, 442, 269
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