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ABSTRACT 
 

ANNE P. STARLING:  Perfluoroalkyl Substances in Pregnancy and the Risk of 

Preeclampsia 

(Under the direction of Dr. Stephanie M. Engel) 

 

 

Perfluoroalkyl substances (PFASs) are persistent, ubiquitous environmental 

contaminants and may be related to preeclampsia, a common pregnancy complication.  

Previous studies have found serum concentrations of PFASs to be positively associated 

with serum cholesterol in non-pregnant individuals, and also associated with pregnancy-

induced hypertension, including preeclampsia.  Using data from the large, population-

based Norwegian Mother and Child Cohort (MoBa) Study, we estimated associations 

between PFAS concentrations measured during pregnancy and an independently 

validated diagnosis of preeclampsia.  Additionally, we estimated associations between 

mid-pregnancy PFAS concentrations and plasma lipid concentrations in order to evaluate 

one possible mechanism of association between PFASs and preeclampsia. 

A case-cohort study was conducted to estimate associations between mid-

pregnancy plasma PFAS concentrations and preeclampsia. In proportional hazards 

models adjusted for maternal age, pre-pregnancy body mass index, education and 

smoking, we observed no positive associations between PFASs and preeclampsia. 

However, we found an inverse association between perfluoroundecanoic acid (PFUnDA) 

and preeclampsia, with a hazard ratio of 0.8 (95% confidence interval [CI]=0.7, 0.9) per 

natural-log unit increase in PFUnDA. 
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In a separate cross-sectional analysis, we found positive associations between 

mid-pregnancy plasma concentrations of seven PFASs and high-density lipoprotein 

cholesterol (HDL).  The greatest change in HDL per natural-log unit of exposure was 

associated with PFUnDA.  HDL increased 3.7 mg/dL per interquartile shift in PFUnDA 

(95% CI=2.5, 4.9).  A multi-pollutant model for HDL including seven PFAS exposures 

also showed the strongest association with PFUnDA compared with the other six PFASs.  

Additionally, perfluorooctane sulfonate (PFOS) was positively associated with plasma 

total cholesterol. Total cholesterol increased 4.2 mg/dL per interquartile shift in PFOS 

(95% CI=0.8, 7.7) in adjusted models.   

We found positive associations between certain PFASs and plasma lipid 

parameters, and we observed that different PFASs may have different strengths of 

association with lipid parameters during pregnancy.  We did not observe any positive 

associations between mid-pregnancy plasma PFAS concentrations and a validated 

diagnosis of preeclampsia. The plasma concentrations of PFOA in this study, while 

within the range of previous studies of non-occupationally exposed populations, are 

substantially lower than exposure levels in the previous study that found associations 

between PFOA and preeclampsia. 
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CHAPTER 1: BACKGROUND AND REVIEW OF LITERATURE 

 

1.1. Overview 

 Perfluoroalkyl substances (PFASs) are persistent environmental chemicals that 

are detectable in the blood of nearly all Americans (1) and many other populations 

worldwide (2). The most commonly measured species of PFAS, perfluorooctane 

sulfonate (PFOS) and perfluorooctanoic acid (PFOA), have been widely used in 

industrial and consumer products, including surface treatments for fabrics and carpets, 

food packaging, fire-fighting foam and other wetting agents (3). In both highly exposed 

populations as well as general population samples, PFASs have been positively 

associated with altered lipid profiles that are consistent with certain disturbances found in 

cardiovascular disease, including elevated plasma cholesterol, triglycerides, and uric acid 

(4-7).  

 A recent study of non-occupationally exposed women living in an area of high 

PFOA contamination in drinking water found estimated concentrations of PFOA to be 

positively associated with preeclampsia in both linear and quintile-based analyses (8).  

Preeclampsia is a serious complication of pregnancy, consisting of new-onset 

hypertension combined with proteinuria.  Preeclampsia commonly leads to preterm 

delivery, and carries a high risk of maternal and infant morbidity and mortality.  The 

possibility that plasma concentrations of widespread environmental contaminants during 
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pregnancy may increase the risk of preeclampsia is of substantial public health concern 

and merits further examination. 

 

1.2. Critical Review of Literature 

1.2.1. Humans are widely exposed to PFASs 

PFASs are man-made chemicals with a variety of consumer and industrial uses, 

including surface treatments for textiles and carpets, coatings for food packaging and 

non-stick cookware, fire-fighting foam, hydraulic fluids, and various waxes, polishes, 

adhesives, lubricants and surfactants (3, 9, 10). These compounds are persistent in the 

natural environment and in the human body (11).  Exposure to PFOS and PFOA is near-

universal in the general U.S. population; over 99% of 2007-2008 NHANES participants 

age 12 or older had detectable levels in their blood, with mean serum concentrations of 

13.2 ng/mL of PFOS and 4.1 ng/mL of PFOA (12).  Sources of exposure in the general 

population may include food, drinking water, house dust, air, and breast milk (13, 14).  

The widespread presence of PFASs in human blood and in the environment is of 

substantial public health concern because toxicologic and epidemiologic studies have 

suggested a number of potential adverse effects. 

The unique chemical structure of a PFAS consists of a fully-fluorinated carbon 

backbone and one or more hydrophilic heads (15).  PFASs are highly resistant to 

degradation in the environment or metabolism in the body, owing to their extremely 

strong carbon-fluorine bonds (11, 16).  PFASs are not lipophilic, and while the tissue 

distribution in humans is unknown, rodent studies suggest that PFASs likely reside 

primarily in the liver, kidney, and blood (17).  PFASs bind strongly to the protein 

component of plasma (18).  The geometric mean half-lives of PFOS, perfluorohexane 
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sulfonate (PFHxS), and PFOA in human serum were estimated in one study as 4.8 years, 

7.3 years, and 3.5 years, respectively (19). 

 

1.2.2. Sources and pathways of human exposure to PFASs 

PFASs have been produced since the 1950s for a variety of industrial purposes.  

The unique chemical properties of PFASs render them valuable for surface treatments to 

repel both oil and water (20).  PFASs comprise a large group of chemicals, of which we 

focus on two major groups of concern: (1) perfluorinated carboxylic acids (PFCAs), such 

as PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and 

perfluoroundecanoic acid (PFUnDA); and (2) perfluorinated sulfonic acids (PFSAs), such 

as PFOS, perfluorohexane sulfonate (PFHxS), and perfluoroheptane sulfonate (PFHpS).  

In addition to being intentionally produced, certain PFAS species may also be generated 

through the degradation or metabolism of precursor molecules.  PFCAs may be generated 

from the breakdown of fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphate 

surfactants (PAPS) (20, 21), while PFSAs may result from the breakdown of 

perfluoroalkyl sulfonamides and sulfonamidoethanols (FOSAs, FOSEs) (15, 22, 23).   

PFASs are widely detected in wildlife and environmental media (15, 24), and the 

levels of PFASs in human serum likely represent the accumulation of exposures from a 

variety of sources (25).  PFCAs are still being manufactured worldwide (26), while 

PFSAs are no longer produced in the U.S. or Europe following the listing of PFOS as a 

persistent organic pollutant (POP) under the Stockholm Convention and a voluntary 

phase-out by the U.S. manufacturer 3M starting in 2000 (27).  While PFCAs and PFSAs 

have traditionally been produced by separate processes and do not interconvert, the high 
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correlations between PFOS and PFOA concentrations detected in many species suggest a 

common source of exposure (25). 

In non-occupationally exposed populations, ingestion of PFASs in food is 

believed to be the principal source of exposure (13, 24, 28).  A study in 2004 estimated 

that average Canadians ingest 250 ng/day of PFCAs and PFOS via contaminated food 

products, while the total intake from all sources was estimated to be 410 ng/day (29).  In 

addition to food sources, other pathways of PFAS exposure in the general population may 

include contaminated drinking water (25), breast milk (30), and ingestion or absorption 

from house dust.  House dust is believed to contribute a greater proportion of total 

exposure for small children, who may spend time crawling on carpets and floors and 

engage in significant hand-to-mouth activity (24). 

Other sources of PFAS exposure in non-occupationally exposed populations may 

include migration of PFASs from materials used for food packaging and food preparation 

(9).  Fifteen species of PFAS are approved by the FDA for treating paper and other 

materials that come into contact with food, including microwave popcorn bags, french fry 

packages, pizza liners, burger boxes, and sandwich wrappers (26).  These compounds 

may migrate from the packaging into the food at a much higher rate than was anticipated, 

particularly in the presence of emulsified oils (26).  Furthermore, PFOA-precursor PAPS 

are approved by the FDA for food contact materials, and as defoaming agents in 

pesticides (20).  It is unknown whether the toxicological consequences of direct exposure 

to PFCAs may differ from the consequences of exposure to precursor molecules, as the 

pathway from FTOH to PFCA includes several reactive intermediates (20).  A recent 

study of indoor air, house dust, and clothes-dryer lint in the homes of pregnant women in 
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Vancouver, Canada, found detectable levels of FTOH as well as PFASs and PFAS-

precursors FOSAs and FOSEs (23).  This  finding suggests that humans are routinely 

exposed to combinations of these chemicals in the household environment via inhalation 

and ingestion (23). 

 

1.2.3. Levels of PFASs among different populations, dietary and other predictors, and 

trends in human exposure over time 

 

PFASs are detectable in the serum of nearly all inhabitants of developed 

countries, whether or not PFAS production actually occurs in that country (31).  PFASs 

have been measured in serum and plasma collected from populations in North America 

(1, 32), South America (2), Asia (33-35), Europe (36) and Australia (37).  A few highly 

exposed populations have been studied, including retired fluorochemical workers (19, 38) 

and populations with PFOA-contaminated water supplies (39, 40).  A summary of the 

detected concentrations of PFASs in various biomonitoring studies is shown in Table 1.1 

and Table 1.2.
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Table 1.1.  Concentrations (ng/mL) of commonly measured perfluoroalkyl substances among selected populations with background 

levels of exposure, by matrix and year of collection. 

 

Study Authors Country/Region Year Matrix Sex  PFOS PFOA PFHxS PFNA 

Current Study Norway 2003-2008 plasma Female 13* 2.8* 0.7 0.5 

Whitworth et al. (41) Norway 2003-2004 plasma Female 13* 2.2*   

Inoue et al. (42) Japan 2003 serum Female 8.1* 

   Harada et al. (43) Japan/Kyoto 2003 serum Female 13.8 7.1 

  Harada et al. (43) Japan/Kyoto 2003 serum Male 28.1 12.4 

  Harada et al. (43) Japan/Akita 2003 serum Female 6.9 2.5 

  Harada et al. (43) Japan/Akita 2003 serum Male 12.9 3.4 

  Harada et al. (43) Japan/Miyagi 2003 serum Female 3.5 2.8 

  Harada et al. (43) Japan/Miyagi 2003 serum Male 5.7 3.3 

  Haug et al. (44) Norway 2003 serum Both sexes 32 4.1 2.2 1.1 

Calafat et al. (1) US/NHANES 2003-2004 serum Female 18.4 3.5 1.7 0.9 

Calafat et al.(1) US/NHANES 2003-2004 serum Male 23.3 4.5 2.2 1.1 

Kato et al. (12) US/NHANES 2003-2004 serum Both sexes 20.7 3.95 1.93 0.966 

Midasch et al. (45) Germany 2003 plasma Female 13* 2.6* 

  Karrman et al. (46) Sweden  2004 serum Female 20.7 3.8 4.7 0.8 

Haug et al. (36) Norway 2004 serum Male 18 3.4 

 

0.78 

Monroy et al. (47) Canada 2004-2005 serum Female 16.2 2.2 4.1 0.8 

von Ehrenstein et al. (48) US/NC 2004-2005 serum Female 21.9 3.9 1.9 1.2 

Grandjean et al. (49) Faroe Islands 2004-2006 serum Both sexes 16.7 4.1 0.63 1 

Haug et al. (36) Norway 2005 serum Male 21 3.5 1.6 0.85 

Kato et al. (12) US/NHANES 2005-2006 serum Both sexes 17.1 3.92 1.67 1.09 

Chan et al. (50) Canada 2005-2006 serum Female 7.4 1.4 1.1 

 Haug et al. (36) Norway 2006 serum Male 12 2.7 

 

0.55 
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Table 1.1, cont.         

         

Study Authors Country/Region Year Matrix Sex  PFOS PFOA PFHxS PFNA 

Holzer et al. (40) Germany 2006 plasma Both sexes 4.6 4.8 0.8 

 Holzer et al. (40) Germany 2006 plasma Female 5.2 2.8 0.6 

 Holzer et al. (40) Germany 2006 plasma Male 9.7 5.8 2.2 

 Lin et al. (51) Taiwan 2006-2008 plasma Female 8.1* 2.45* 

 

1.81 

Lin et al. (51) Taiwan 2006-2008 plasma Male 11.8* 0.75* 

 

1.52 

Kato et al. (12) US/NHANES 2007-2008 serum Both sexes 13.2 4.13 1.96 1.49 

Kato et al. (12) US/NHANES 2007-2008 serum Female 10.7 3.56 1.46 1.33 

Kato et al. (12) US/NHANES 2007-2008 serum Male 16.3 4.8 2.63 1.66 

Fromme et al. (14) Germany 2007-2009 plasma Female 3.5 2.3 0.6 0.8 

Haines & Murray (52) Canada 2007-2009 plasma Female 7.07 2.17 

  Haines & Murray (52) Canada 2007-2009 plasma Male 11.13 2.94 

  Kim et al. (53) Korea 2007 serum Female 5.6 1.6 0.89 0.79 

Haug et al. (36) Norway 2007 serum Female 10 1.9 0.94 0.94 

Haug et al. (36) Norway 2007 serum Male 10 2.1 0.75 0.62 

Schecter et al. (54) US/Texas 2009 serum Both sexes 4.1* 2.85* 1.2* 1.2* 

Wang et al. (55) US/California 2009 serum Female 9.44 2.21 0.88 1.01 

Note: All values are means, with the exception of medians which are marked with a (*). 
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Table 1.2. Concentrations (ng/mL) of commonly measured perfluoroalkyl substances among selected populations with high levels of 

exposure, by matrix and year of collection. 

 

Study Authors Country/Region Year Matrix Sex  PFOS PFOA PFHxS PFNA 

Olsen et al. (4) Belgium  2000 serum Female 130 70 

  Olsen et al. (4) Belgium  2000 serum Male 960 1030 

  Olsen et al. (4) US/Alabama 2000 serum Female 1400 1900 

  Olsen et al. (4) US/Alabama 2000 serum Male 930 1230 

  Sakr et al. (56)  US 2004 serum Both sexes 

 

428 

  Frisbee et al. (57) US/WV&OH 2005-2006 serum Both sexes 23.3 82.9 5.1 1.6 

Holzer et al. (40) Germany 2006 plasma Both sexes 4.9 22.1 1.2 

 Holzer et al. (40) Germany 2006 plasma Female 5.8 23.4 1.1 

 Holzer et al. (40)  Germany 2006 plasma Male 10.5 25.3 2.5 

 Zhang et al. (35) China 2008-2009 serum Both sexes 14.18 6.93 0.45 

 Zhang et al. (35) China 2008-2010 serum Female 6.42* 3.51* 

  Zhang et al. (35) China 2008-2011 serum Male 16.38* 3.49* 

  Freberg et al. (58) Norway 2009 serum Male 26* 57* 1.5* 12* 

Note: All values are means, with the exception of medians which are marked with a (*).
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The predictors of PFAS levels in background-exposed populations have varied 

across studies.  Some studies have noted positive associations between serum PFASs and 

intake of red meat or packaged snack foods (59), while others have emphasized intake of 

seafood and especially shellfish (28, 44).  A study from Denmark found intake of eggs, 

dairy, and cereals to be weakly predictive of PFOS (31).  This variation in dietary 

predictors is not surprising among studies conducted in different countries or regions, as 

the PFAS content of food sources likely varies substantially between geographic areas 

(29).  One study found that preparing food by frying was positively associated with PFAS 

levels, while body mass index, active smoking, and alcohol consumption were negatively 

associated (31).  Another study, however, reported positive associations between body 

mass index and serum PFAS concentration (60). 

Unlike many persistent pollutants, PFASs have not been shown to be higher in 

adults than children (25).  However, among 300 children in Texas, increasing age (up to 

age 12) was associated with increasing levels of PFOS, PFOA, PFNA, and PFHxS (54).  

Due to changes in PFAS production that occurred at the same time as this study, it is 

unclear whether the observed association between PFAS levels and age in children is 

actually due to accumulating exposures during childhood, or to lower cumulative intake 

among younger children following the cessation of PFOS production in the U.S., 

discussed below.  Among adults, age may be a predictor of PFASs in some populations 

but not in others.  No relationship with age was found in studies from Denmark (31), 

China (33), or the United States (61); however, studies from Australia (37) and Norway 

(36) observed a trend of increasing PFOS with age. 
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In some populations, levels of certain PFASs appear to be higher in men than 

women (12, 43, 61, 62).  Two studies from China reported higher levels of PFOS in men 

than women, but no statistically significant sex difference in levels of PFCAs (33, 35).  

Studies of children have generally reported no significant sex difference in PFAS levels 

(54, 62). 

PFAS levels in the United States declined between the 1999-2000 and 2003-2004 

NHANES, by approximately 32% for PFOS and 25% for PFOA (1).  This drop may be 

partially attributed to the 2000-2002 phase-out of PFOS manufacturing in the United 

States, and to the simultaneous reduction in global PFCA manufacturing emissions (10).  

Declines of similar magnitude in both PFOS and PFOA were observed in pooled blood 

samples from Norway between 2000 and 2004 (36).  However, there is some evidence in 

the United States that PFOA levels have remained relatively constant between 2004 and 

2008, while serum concentrations of PFNA have increased (12).  Table 1.3 shows serum 

PFAS concentrations in the U.S. since 1999, as well as comparable levels in Norway. 
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Table 1.3.  Mean serum concentrations (ng/mL) of selected PFASs among adults with 

background levels of exposure in the United States and Norway, by year and sex. 

 

Country Year Sex  PFOS PFOA PFHxS PFNA 

Norway 1998 Female 15 3.1 1.2 0.46 

Norway 1998 Male 31 4.3 1.9 0.67 

Norway 2002 Male 27 3.9 -- 0.75 

Norway 2004 Male 18 3.4 -- 0.78 

Norway 2005 Male 21 3.5 1.6 0.85 

Norway 2006 Male 12 2.7 -- 0.55 

Norway 2007 Male 10 2.1 0.75 0.62 

US/NHANES 1999-2000 Both sexes 30.4 5.21 2.13 0.55 

US/NHANES 2003-2004 Both sexes 20.7 3.95 1.93 0.97 

US/NHANES 2005-2006 Both sexes 17.1 3.92 1.67 1.09 

US/NHANES 2007-2008 Both sexes 13.2 4.13 1.96 1.49 

US/NHANES 2007-2008 Female 10.7 3.56 1.46 1.33 

US/NHANES 2007-2008 Male 16.3 4.80 2.63 1.66 

Note: Sources of data (12, 36).  Values shown as missing were not reported. 

 

 

1.2.4. Potential health effects of PFAS exposure 

In animal studies, PFAS exposure has been associated with a variety of adverse 

effects, including hepatotoxicity, immunotoxicity, tumorigenesis, and developmental and 

reproductive toxicity (11).  The hepatotoxic effects of PFAS exposure in animals may 

manifest as liver tumors, elevated liver enzymes, and hepatomegaly, as well as altered 

hepatic immune function (63).  In rats and non-human primates, liver hypertrophy 

associated with PFOS has also been accompanied by decreases in total cholesterol and 

HDL cholesterol (64, 65), possibly due to impaired lipoprotein production (66). 

Immunotoxic effects of PFASs demonstrated in animal studies include reductions 

in lymphoid organ weights, reduced lymphoid cell numbers, and reduced antibody 

synthesis (67).  Studies in mice suggest that PFAS exposure impairs the adaptive immune 

response (including lymphocyte proliferation and NK cell activity) while activating 
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certain components of the innate immune response (68-71).  T-cell dependent antibody 

responses, which require the integrated functioning of the humoral and cell-mediated 

immune systems, may be impaired in mice at doses of PFOS that are within the 

equivalent range of human background exposures (72).  Tumors associated with PFAS 

exposure in rats include liver, Leydig cell, and pancreatic acinar cell tumors (17).  Non-

genotoxic carcinogenic effects in cells in vitro have also been observed (73). 

Developmental and reproductive effects associated with prenatal PFAS exposure 

in rats and mice include low birth weight (74), structural abnormalities, and increased 

neonatal mortality (75).  Additionally, pregnant rats exposed to PFOS developed 

significantly depressed plasma thyroxine (T4) and triiodothyronine (T3) without the 

normally expected increase in thyroid-stimulating hormone (74).  There may also be 

delayed effects on offspring due to PFAS exposure in utero.  In mice, low-dose PFOA 

exposure during prenatal development was associated with excess weight gain in midlife, 

as well as elevated insulin and leptin levels, among gonadally intact females only (76). 

The mechanism of the observed toxic effects of PFAS exposure is not fully 

known.  In rodents, PFASs appear to act as agonists of peroxisome proliferator-activated 

receptor alpha (PPARα), a nuclear receptor which regulates a number of genes involved 

in fatty acid oxidation, lipid transport, glucose metabolism, and other metabolic functions 

(77).  PFASs may also activate other PPARs, including PPARγ (78).  The impact of 

PPAR agonism by PFASs on lipid metabolism in vivo is unclear; the result of high-dose 

PFAS exposure in laboratory animals is generally a reduction in total cholesterol and 

triglycerides (17, 64, 65), whereas the opposite pattern is detected in highly exposed 

humans, as described below.  Agonism of PPARα is also believed to be responsible for 
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the liver toxicity and hepatocarcinogenesis caused by PFAS exposure in rodents (11), 

although this explanation remains controversial (79). PFAS exposure may also alter the 

expression of genes involved in steroid and glucose metabolism (80, 81) via interaction 

with other nuclear receptors, including the constitutive androstane receptor and the 

pregnane X receptor (82-85).  

The developmental and immunotoxic effects in animals may be only partially 

mediated by PPARα agonism. PPARα knockout mice did not show reduced neonatal 

survival after PFOA exposure, in contrast to PFOA-exposed wild type mice (83); 

however, PFOS exposure produced similar effects on neonatal mortality in wild type and 

knockout mice, suggesting a mechanism of developmental toxicity by PFOS that operates 

independently of PPARα (82).  Finally, in vitro human peripheral leukocytes exposed to 

PFASs show reduced cytokine production that appeared to be dependent on PPARα for 

PFOA but independent for PFOS exposure (86).   

Of interest for the etiology of preeclampsia, PFOS exposure has been linked in 

animal studies to a shift in the balance of Th-1 and Th-2 mediated immunity (69, 70).  

The predominance of Th-2 (humoral) immunity over Th-1 (cell-mediated) immunity is 

normal during healthy pregnancy, and has been hypothesized to play a role in preventing 

the maternal T-cells from attacking the fetus (87).  Alterations of the balance between 

Th-1 and Th-2 immunity during pregnancy could potentially lead to increased risk of 

fetal rejection and other adverse pregnancy outcomes.  However, the shift demonstrated 

by the response of ex vivo splenocytes from male mice exposed to PFOS was a reduction 

in Th-1 associated cytokines (IL-2 and IFN-γ) and an increase in a Th-2 associated 

cytokine (IL-4), which would not promote over-activation of cell-mediated immunity (69, 
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70).  The effects of PFAS exposure on the adaptive immune system during pregnancy are 

unknown. 

Despite the ubiquitous presence of PFASs in human plasma, the potential for 

adverse health effects resulting from chronic, low-level exposure is not well-established.  

In both highly exposed populations as well as general population samples, PFASs have 

been associated with altered lipid profiles that are consistent with risk factors for 

cardiovascular disease, including elevated plasma cholesterol, triglycerides, and uric acid 

(4-7).   These findings have not been consistent across populations, however, possibly 

owing to the age and sex distribution of the population studied, or to differences in the 

magnitude of the exposure. 

 One highly exposed population that has been the subject of extensive study is 

located in a region of West Virginia and Ohio where drinking water was contaminated 

with PFOA from a nearby factory.  Among 46,294 adults in this population, both PFOA 

and PFOS (which was not elevated above background levels) were positively associated 

with total cholesterol and LDL cholesterol, and positively though less strongly associated 

with triglycerides (5).  The ratio of total cholesterol to HDL cholesterol, an important 

indicator of cardiovascular risk, was also positively associated with both PFOS and 

PFOA, although there was no linear association between PFOS or PFOA and HDL 

cholesterol (5).  Among 12,476 children and adolescents in the same PFOA-exposed 

population, serum PFOA was positively associated with total cholesterol, LDL 

cholesterol, and triglycerides, while serum PFOS was positively associated with total 

cholesterol, LDL cholesterol, and HDL cholesterol (57).  Both of these studies included 

roughly equal numbers of males and females. 
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Occupational studies of predominantly male, adult workers have generally 

reported positive cross-sectional associations between PFOA and total cholesterol, and 

inconsistent results for associations with other lipid parameters.  One study observed 

positive associations between PFOA and total cholesterol and LDL cholesterol, but no 

association with HDL cholesterol or triglycerides (56).  Another occupational study 

observed significant positive associations between PFOA and both total cholesterol and 

uric acid (38).  Yet another cross-sectional study of predominantly male workers found 

positive associations between both PFOS and PFOA and serum total cholesterol and 

triglycerides, and no associations with HDL cholesterol (4).  A recent study of 

fluorochemical plant workers in China found a negative association between PFOA and 

HDL cholesterol (88). 

Associations between serum PFASs and lipid concentrations have also been 

studied cross-sectionally in non-pregnant general population samples.  In a sample of the 

U.S. population aged 12 and older, using data from the 2003-2004 NHANES survey, 

three of the four PFASs examined (PFOS, PFOA, and PFNA) were positively associated 

with total cholesterol and non-HDL cholesterol, while PFHxS was negatively associated 

(7).  However, the study excluded women who were pregnant or breastfeeding.  By 

contrast, a cross-sectional study using the Canadian Health Measures Survey found 

significant positive associations between PFHxS and total cholesterol, LDL cholesterol, 

and non-HDL cholesterol among non-pregnant adults (89).  The same study observed 

positive unweighted associations between PFOA and PFOS and total cholesterol, but the 

findings did not remain significant after appropriately weighting for the survey design 

(89).  In a study of 723 non-pregnant Inuit adults with background levels of PFASs, a 
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positive association was observed between PFOS and HDL cholesterol in both men and 

women, and no association was observed between PFOS and LDL cholesterol or non-

HDL cholesterol (90). To our knowledge, no previous studies of the associations between 

PFAS levels and plasma lipid concentrations have been conducted among pregnant 

women.   

Outcomes related to pregnancy and reproductive health have been investigated in 

highly exposed as well as in background-exposed populations.  Increased time to 

pregnancy was associated with PFOA and PFOS in one general population study (91), 

but two other studies failed to replicate this finding (41, 92).  In the highly PFOA-

exposed C8 cohort, researchers concluded that there was a “probable link” between 

estimated PFOA concentration and pregnancy-induced hypertension (including 

preeclampsia) (93).  In two studies of the C8 cohort, self-reported preeclampsia was 

positively associated with maternal PFOA levels (8, 94).  Neither study measured 

maternal PFOA concentration during the pregnancies of interest; one study employed a 

predictive model to assign PFOA exposure at the time of pregnancy (8), while the other 

study used measured PFOA and PFOS serum concentrations up to 5 years after the 

pregnancy (94).  Some of the potential pathways by which PFASs may be related to 

preeclampsia are discussed in Section 1.2.6, below. 

While high-dose PFAS exposure in laboratory animals has toxic effects on the 

fetus, there is currently no scientific consensus as to whether the relatively low levels of 

exposure found in the general population may result in adverse developmental effects in 

humans (95).  However, at least certain PFASs appear to cross the human placenta (47, 

96), and some recent evidence suggests that prenatal PFAS exposure may have long-term 
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effects on the health of offspring.  For example, in a prospective cohort of Danish infants, 

maternal serum PFOA concentration during pregnancy was associated with an elevated 

risk of obesity at 20 years in female offspring only (97); which parallels findings in mice 

described above (76). 

 

1.2.5. Epidemiology of preeclampsia 

Preeclampsia is a disease of pregnancy, defined by the new onset of hypertension 

and proteinuria after 20 weeks of pregnancy (98, 99).  This study used a definition based 

on the American College of Obstetricians and Gynecologists (ACOG) diagnostic criteria 

for preeclampsia (100), and required both of the following, documented at the same clinic 

visit: (1) systolic blood pressure of at least 140 mm Hg or diastolic blood pressure of at 

least 90 mm Hg, occurring after 20 completed weeks of gestation in a woman with 

previously normal blood pressure; and (2) proteinuria, defined as at least +1 on urine 

dipstick measurement. 

The proximate cause of preeclampsia is believed to be reduced placental 

perfusion, likely resulting from the failure of the spiral arteries of the placental bed to 

undergo normal physiological changes of pregnancy (101).  The consequent mismatch of 

fetal requirements and maternal supply leads to a suite of maternal inflammatory 

responses, including vasospasm, activation of the coagulation cascade, and reduced 

plasma volume through release of fluid into the intravascular space (102).  The resultant 

maternal disease may include signs of hypoperfusion in organs throughout the body 

(103).  The reason for the initial reduction in placental perfusion initiating the process is 

the subject of intensive study (104). 
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Preeclampsia affects approximately 3% of pregnancies in the United States (105, 

106), and remains a leading cause of maternal mortality in both developed and 

developing countries.  Approximately 16% of maternal deaths in industrialized countries 

are caused by preeclampsia (107).  The incidence of preeclampsia has increased in the 

United States (105) and in Norway (108, 109) during the past three decades.  

Approximately 42% of indicated (non-spontaneous) preterm births in the United States, 

and 15% of all preterm births, may be attributed to preeclampsia (102, 110). 

The short-term consequences of preeclampsia may include adverse health 

outcomes for both the pregnant woman and the fetus or infant.  Preeclamptic women are 

at elevated risk for developing eclampsia (seizures), coma, death, stroke, acute renal 

failure, pulmonary edema, acute respiratory distress, elevated transaminases, liver 

hematoma, and hepatic failure (111, 112).  Possible adverse outcomes for infants of 

preeclamptic pregnancies include stillbirth or preterm birth, neonatal mortality, low 

Apgar scores, febrile seizures, encephalopathy, and growth restriction (112).  

Furthermore, evidence suggests that adverse maternal and infant outcomes may 

extend far beyond the preeclamptic pregnancy.  Women who experience pregnancies 

complicated by preeclampsia are at elevated risk of cardiovascular disease, including 

hypertension, stroke and venous thromboembolism later in life (113).  This association 

may be due to the physiologic stress of pregnancy unmasking pre-existing tendencies 

toward cardiovascular disease (114).  Long-term health consequences may exist for the 

infants of preeclamptic pregnancies as well, especially if the management of the disease 

requires preterm delivery.  Preterm infants are at increased risk of motor and cognitive 

deficits, relative to infants born at term (115).  Finally, infants who experience a 
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preeclamptic uterine environment are at elevated risk for hypertension in adolescence and 

coronary heart disease later in life (116, 117); however, it is unclear whether the risk in 

the offspring is due to the environment in utero, or to a genetic predisposition shared with 

the mother (118). 

The etiology of preeclampsia remains obscure, but is likely multifactorial with 

both genetic and environmental contributions.  Known risk factors include nulliparity, 

personal or family history of preeclampsia, chronic hypertension, diabetes mellitus, 

autoimmune disorders, kidney disease, obesity, multiple gestation, history of subfertility, 

African-American race, and maternal age (112, 119).  For unknown reasons, cigarette 

smoking during pregnancy is associated with a 30% reduction in the risk of preeclampsia 

(120).  Limited exposure to the sperm of the partner who fathered the current pregnancy 

has been cited as a risk factor, but it is unclear whether conceiving with a new partner is 

truly a risk factor, or if the increased risk actually results from the longer interpregnancy 

interval that often accompanies a change in partners (121).  First pregnancies have more 

than twice the risk of preeclampsia compared with later pregnancies (122).  There is a 

strong risk of recurrence: among women who have had a previous preeclamptic 

pregnancy, the risk of preeclampsia in the second pregnancy is 14.7% (122).  

Some researchers have proposed that preeclampsia may be classified into two 

subtypes, defined by early (prior to 34 weeks of gestation) versus late (after the 

completion of 34 weeks) onset (123, 124).  Early onset preeclampsia is associated with 

high vascular resistance and low cardiac output, while later onset is associated with low 

vascular resistance and occurs more frequently in women with obesity, chronic 

hypertension, diabetes mellitus, or other preexisting disease (124).  Furthermore, these 
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two subtypes may have distinct etiologies, as indicated by different lipid profiles at 18 

weeks of gestation in women who subsequently developed early versus late preeclampsia 

(125). 

In the clinical setting, preeclampsia is categorized as mild or severe, based on 

blood pressure measurements and the degree of perturbation of lab values.  The ACOG 

diagnostic criteria for mild preeclampsia include: 1) new onset elevated blood pressure 

(at least 140 mm Hg systolic or at least 90 mm Hg diastolic) occurring after 20 weeks of 

gestation, and 2) urinary protein excretion of at least 0.3g/day in a 24-hour urine 

specimen.  Severe preeclampsia includes both of these features, and also one or more of 

the following criteria: 1) blood pressure of at least 160 mm Hg systolic or at least 110 

mm Hg diastolic on at least two occasions, measured 6 hours apart and while patient is at 

rest, 2) urinary protein excretion of at least 5g/day in a 24-hour urine specimen or at least 

3+ urine dipstick protein measurement on two samples collected 4 hours apart, 3) oliguria 

of less than 500mL of urine in 24 hours, 4) cerebral or visual disturbances, 5) pulmonary 

edema or cyanosis, 6) epigastric or right upper quadrant pain, 7) impaired liver function, 

8) thrombocytopenia, or 9) fetal growth restriction (100). 

Several genes linked to maternal endothelial function, vasoactive proteins, 

coagulation and immune function have been associated with preeclampsia (126), 

suggesting that pre-existing, asymptomatic conditions of the vascular system might 

predispose women to the disorder.  Women with low pre-pregnancy plasma volume, and 

intolerance to the normal plasma volume expansion of pregnancy, have elevated risk of 

developing preeclampsia (127, 128).  Similarly, women who have habitually elevated 

sympathetic tone may be at elevated risk for preeclampsia (129). 
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The maternal immune system is carefully regulated during normal placentation, 

and disruption of this system is one possible mechanism for the development of 

preeclampsia. While normal pregnancy is characterized by a predominance of Th-2 

(humoral) immunity and associated cytokines (87), the cytokine profile detected in 

preeclamptic patients appears to reflect an altered balance of Th-1 and Th-2 type CD4 

positive helper T-cells (130).  Specifically, preeclamptic patients demonstrate an excess 

of Th-1 cells, which secrete the pro-inflammatory cytokines IL-2, IFN-γ and TGFβ, and a 

relative decrease in Th-2 type cells, which secrete cytokines IL-4, IL-5, IL-6, and IL-13 

(130).  An excess of Th-1-type cytokines could increase the risk of cell-mediated immune 

rejection of the fetus.   

Exposure to certain environmental contaminants may increase a woman’s risk of 

developing preeclampsia.  Engaging in activities related to pesticide exposure in the first 

trimester of pregnancy was associated with an elevated risk of preeclampsia and 

pregnancy-induced hypertension among the wives of farmers in Iowa and North Carolina 

(131).  Additionally, a study of air pollution in California showed significantly elevated 

risks of preeclampsia associated with nitrogen oxides and with PM2.5 (132).  Most 

relevant to this study, among women in a region with PFOA-contaminated drinking water 

(the C8 cohort), higher estimated PFOA levels during pregnancy were associated with 

increased risk of preeclampsia (8). 

 

1.2.6. Potential links between PFAS exposure and preeclampsia 

As described above, preeclampsia shares many features with cardiovascular 

disease in non-pregnant individuals, including endothelial dysfunction, elevated 
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cholesterol and triglycerides, and hyperuricemia (99).  Serum PFAS concentrations have 

been associated with altered lipid profiles as well as elevated uric acid in non-pregnant 

individuals (5, 6).  If PFASs were shown to be causally associated with elevations in 

cholesterol, uric acid, and triglycerides in non-pregnant individuals, it is plausible that the 

same biological mechanisms could also increase the risk of preeclampsia in pregnant 

women.  For example, the partial agonism of peroxisome proliferator-activated receptors 

(PPARs) by PFASs may alter the expression of genes involved in lipid and glucose 

metabolism, as well as vascular inflammation (77).  Notably, administration of a PPARγ 

antagonist to pregnant rats produced a preeclampsia-like syndrome, including 

hypertension, proteinuria, and endothelial dysfunction (133). 

 It is plausible that the lipid pattern associated with PFAS exposure may differ in 

pregnant women as compared with non-pregnant women.  Normal pregnancy is 

characterized by dramatic changes in plasma volume, glomerular filtration rate, and the 

concentration of various clinical chemistry analytes relative to the non-pregnant state.  

The pattern of changes in plasma lipid concentrations during normal pregnancy has been 

well-documented (134).  Total cholesterol rises 25-50% over non-pregnant levels (135).  

High-density lipoproteins (HDL) begin to increase early in pregnancy and reach their 

peak at approximately the 28
th

 week of pregnancy (136).  Low-density lipoproteins 

(LDL) are characterized by a slight initial decrease followed by a gradual increase.  Very 

low-density lipoproteins, the principal carriers of triglycerides, increase continuously 

from between the 14
th

 and 36
th

 week (134).  By late pregnancy, triglycerides are typically 

elevated 200-400% times over pre-pregnant levels (134, 135).  In addition to these 

changes in plasma concentration of lipoproteins, there are qualitative changes in the HDL 
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and LDL particles during normal pregnancy.  In some women, particularly those with 

steep increases in triglyceride levels during pregnancy, there is a subclass shift toward 

smaller, denser LDL particles (137).  Among HDL particles, there is a subclass shift to 

larger HDL species (136). 

In addition, the kidneys in normal pregnancy adopt a state of hyperfiltration, in 

which the renal plasma flow and glomerular filtration rate (GFR) increase.  The GFR 

begins to increase in the first trimester and peaks in the 2
nd

 half of pregnancy at 

approximately 40-60% above the non-pregnant level (138).  There is also an expansion of 

plasma volume in normal pregnancy and a reduction in plasma oncotic pressure along the 

glomerular capillaries (138).  The increased GFR leads to increased excretion of 

numerous substances normally found in plasma, including uric acid, a metabolic product 

linked to cardiovascular disease risk and to preeclampsia (139, 140).  

Studies of the association between lipid profile and preeclampsia risk have 

produced inconclusive results, possibly related to the etiologic heterogeneity of the 

preeclampsia syndrome.  One study found that maternal dyslipidemia at 15-20 weeks 

gestation was associated with mild, but not severe, preeclampsia (141).  Another study 

found that hypertriglyceridemic dyslipidemia before 20 weeks of gestation was 

associated with early-onset but not late-onset preeclampsia (125).  Each of these studies 

measured non-fasting serum lipids.  The severe and mild variants of the preeclampsia 

syndrome may have distinct lipid profiles as early as mid-pregnancy (141), suggesting a 

latent phase of the disorder that may be present before the clinical signs of preeclampsia 

appear. There is currently no definitive test prior to 20 weeks to predict the subsequent 
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development of preeclampsia, although certain combinations of maternal characteristics 

and biochemical markers may prove clinically useful (142). 

Biomarkers measured early in pregnancy that are associated with subsequent 

preeclampsia risk may provide insight into the mechanisms leading to certain types of 

preeclampsia.  For example, cystatin C is a cysteine protease inhibitor produced by the 

maternal decidua, which is believed to play a role in limiting the trophoblast invasion 

process of normal placentation (143).  In non-pregnant individuals, cystatin C is a 

sensitive indicator of changes in glomerular filtration rate (142).  In a recent nested case-

control study, maternal serum cystatin C at 11 to 16 weeks of pregnancy was 

significantly higher in women who subsequently developed preeclampsia than in women 

who completed normal pregnancies (144).   

While the clinical symptoms of preeclampsia resolve with delivery of the 

placenta, women who develop preeclampsia have an elevated post-pregnancy risk of 

developing cardiovascular disease, including three to four times the risk of hypertension, 

and two times the risk of death from cerebrovascular or cardiovascular disease, compared 

with women with no history of preeclampsia (113).  These findings have led some 

researchers to view the state of pregnancy as a “stress test” that uncovers cardiovascular 

disease at an early, otherwise asymptomatic, stage (114).  One of the features of 

subclinical cardiovascular disease may be chronic inflammation.  Inflammation has long 

been described as a characteristic of the preeclamptic placenta (145).  C-reactive protein 

(CRP), an inflammatory acute phase reactant, was found to be elevated in post-

menopausal women who had developed eclampsia in a pregnancy that occurred 30 years 
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prior to examination (146).  Elevated CRP in non-pregnant women is a marker of 

increased cardiovascular disease risk (147). 

The immunotoxic effects of PFAS exposure may be relevant to preeclampsia as 

well.  In vitro, PFOS is associated with a decrease in human NK cell activity (148).  This 

finding is significant for the pathogenesis of preeclampsia because NK cells are believed 

to mediate the invasion of trophoblasts into decidua and spiral arteries in normal 

placentation (149).  Insufficient invasion of the spiral arteries due to impaired NK cell 

function could potentially contribute to preeclampsia (150).  Table 1.4 summarizes some 

of the observed associations with PFASs that may also relate to the pathogenesis of 

preeclampsia. 

 

Table 1.4. Summary of conditions associated with perfluoroalkyl substances that may 

also be involved in the pathogenesis of preeclampsia. 

Observed Association Proposed Mechanism Potential Link to Preeclampsia 

Elevated lipids, 

triglycerides(5, 57)
 

Partial agonism of 

peroxisome 

proliferator activated 

receptors (PPAR) 

Early-onset preeclampsia is 

characterized by elevated 

cholesterol and triglycerides 

(125); administration of 

PPAR-γ antagonist in rats 

leads to preeclampsia-like 

syndrome (133). 

Immunotoxicity (11), 

decreased adaptive 

immune response (151), 

including impaired natural 

killer (NK) cell activity 

(148) 

Indirect inhibition of 

lymphocyte 

proliferation (151) 

NK cells are involved in the 

normal invasion of 

trophoblasts into the uterine 

spiral arteries to supply the 

placenta with adequate blood 

(149), and placental 

hypoperfusion is a possible 

etiologic factor in 

preeclampsia (150). 

 

 

 



 

CHAPTER 2: STATEMENT OF SPECIFIC AIMS 

2.1. Specific Aims 

2.1.1. To quantify the association between mid-pregnancy plasma PFAS levels and a 

validated diagnosis of preeclampsia among nulliparous women.  

 

 PFAS concentrations were measured in plasma collected at mid-pregnancy from 

500 validated nulliparous preeclampsia cases, and 567 pregnancies randomly selected 

from all eligible nulliparous women without regard to case status.  Of the 567 members 

of the subcohort, 17 were also cases.  Preeclampsia diagnosis was reported to the MBRN 

at delivery and subsequently validated by independent review of antenatal medical 

records.  An association between PFAS levels and preeclampsia has been suggested by a 

previous study of women highly exposed to PFOA, and our study design employs a well-

characterized exposure and outcome in order to estimate this association among 

nulliparous women. 

 

2.1.2. To determine the cross-sectional associations between mid-pregnancy PFAS levels 

and several clinical chemistries pertinent to lipid metabolism and cardiovascular health. 

 

 PFAS concentrations were measured in plasma from 950 women in MoBa, along 

with the following substances related to cardiovascular risk and inflammation: total 

cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), C-reactive 

protein, triglycerides and uric acid.   PFASs have been associated with disturbances in 

lipid metabolism in non-pregnant individuals, and may be linked to chronic 
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inflammation.  The cross-sectional associations between plasma PFASs and lipids among 

pregnant women have not previously been studied. 

 

2.2. Hypotheses and Interpretation 

2.2.1. Specific Aim 1 

If the hazard ratio for the association between mid-pregnancy PFAS concentrations and 

preeclampsia were elevated, this would indicate that nulliparous women with higher 

PFAS levels at mid-pregnancy are at greater risk of developing preeclampsia, conditional 

on gestational age, than women with lower PFAS levels.  A possible interpretation of this 

result is a causal relationship between PFAS levels in plasma and preeclampsia.  

However, other possible explanations for this finding include confounding by an 

unmeasured variable that is related to both PFAS concentration at mid-pregnancy and to 

preeclampsia, or chance.   

Similarly, if an elevated odds ratio were produced by a logistic regression model 

of preeclampsia as a function of mid-pregnancy PFAS concentration, this would indicate 

that the risk of developing preeclampsia over the entire duration of pregnancy increases 

with increased PFAS concentration.  This result could also be the result of a causal 

relationship, or due to chance or bias from unmeasured confounders.  If the logistic 

regression analysis produced a negative result, but the Cox proportional hazards model 

produced a positive result, this would suggest that the overall risk of preeclampsia does 

not vary over the entire duration of pregnancy, but that women with higher PFAS levels 

tend to develop the disease earlier in gestation than women with lower PFAS levels at 

mid-pregnancy.  A potential alternative interpretation of a positive result could be reverse 

causality: if a pre-symptomatic stage of the preeclampsia disease process had already 
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influenced PFAS levels by mid-pregnancy, this could lead to an apparent association 

between PFASs and preeclampsia.   

If an inverse association between mid-pregnancy PFAS concentration and 

preeclampsia were found in Cox proportional hazards models, it would indicate that 

nulliparous women with higher levels of PFASs are at lower risk of developing 

preeclampsia, conditional on gestational age, than women with lower PFAS 

concentrations.  This finding could also be interpreted as a causal relationship (although 

there is no biological evidence to support this hypothesis), or as the result of confounding 

by unmeasured variables.  Finally, if no association between mid-pregnancy PFAS 

concentrations and preeclampsia were detected, this could suggest either that there is no 

association between PFAS concentrations and preeclampsia in this population with 

background exposure levels, or that the study did not have sufficient power to detect the 

small magnitude of association that is present. 

 

2.2.2. Specific Aim 2 

Based on the results of previous epidemiologic studies, it was expected that the 

concentrations of seven PFASs at mid-pregnancy would be positively associated with 

total cholesterol, LDL cholesterol, triglycerides, and uric acid.  This finding would lend 

support to the hypothesis that PFASs during pregnancy are associated with elevations in 

certain risk factors for cardiovascular disease, and would provide a potential mechanistic 

explanation for a positive association between PFAS concentration and preeclampsia.  A 

null or negative association with these substances would not support that hypothesis. 
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A positive association with C-reactive protein would suggest an inflammatory 

process co-occurring with higher concentrations of PFASs.  This could either indicate 

that PFASs cause inflammation, or that a common cause of PFAS concentration and 

inflammation is present.  An inverse association between PFASs and C-reactive protein 

could indicate that PFASs protect against certain inflammatory processes, or that a 

common cause of increased PFASs and decreased C-reactive protein is present.  Finally, 

a null association between PFASs and C-reactive protein would suggest that 

inflammation is not related to mid-pregnancy PFAS concentration. 

 

2.3. Rationale and Innovation 

This dissertation is the first study to examine PFAS levels measured at mid-

pregnancy, in relation to the subsequent development of preeclampsia in nulliparous 

women (Aim 1).  Although PFASs are persistent in the body, a decline in maternal serum 

levels has been observed during pregnancy and lactation (30, 47, 60) and so it may be 

important to measure PFASs early in pregnancy to accurately estimate any association 

with pregnancy outcomes.  We restricted our analysis to women with no previous live or 

stillbirths because the risk factors for preeclampsia in later pregnancies may differ from 

the risk factors in first pregnancies.  This study will make an important contribution to the 

epidemiology of PFASs in nulliparous pregnant women with background levels of 

exposure. 

Furthermore, this will be the first study to examine PFASs in relation to clinical 

chemistries at mid-pregnancy (Aim 2), including total cholesterol, HDL and LDL 

cholesterol, triglycerides, uric acid, and C-reactive protein.  Blood lipids and uric acid 

levels have been previously associated with PFASs in cross-sectional studies of non-
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pregnant individuals (5-7, 56, 89), but the presence of such associations in pregnant 

women has not been explored.  Additionally, this dissertation will inform our 

understanding of the possible mechanisms by which PFAS levels in blood may be linked 

to preeclampsia, by examining mid-pregnancy alterations in clinically important 

biomarkers. 

Given that human exposure to PFASs is ubiquitous, it is a critical public health 

priority to evaluate whether any adverse health effects may result from chronic, low-level 

exposure to these compounds, particularly in pregnant women.  If a causal association is 

established, then public health measures may be warranted to reduce exposure to PFASs 

in the environment, by identifying and minimizing sources of exposure.  Moreover, 

quantifying the association between PFAS concentration and preeclampsia risk may 

inform the biological mechanisms underlying this common pregnancy complication.  In 

summary, this dissertation will provide a precise estimate of the association between 

PFASs in pregnancy and the development of preeclampsia, and will also provide 

information on a possible mechanism of any association. 



   

CHAPTER 3: METHODS 

3.1. Overview of Methods 

 The first aim was addressed using a case-cohort study design within the large 

Norwegian Mother and Child Cohort (MoBa) Study.  The majority of eligible validated 

preeclampsia cases among nulliparous women enrolled in MoBa in 2003-2007 were 

included in the study, as well as a random subcohort of women at risk for preeclampsia 

who enrolled during the same time frame.  Cox proportional hazards and logistic 

regression models were used to determine whether plasma PFAS concentrations at mid-

pregnancy were associated with onset of preeclampsia or delivery due to preeclampsia. 

 The second aim was addressed using a cross-sectional study of a subsample 

within MoBa.  Weighted linear regression models were used to estimate the associations 

between mid-pregnancy plasma PFAS concentrations and several clinical chemistries of 

interest, specifically: total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, 

uric acid, and C-reactive protein.  Multi-pollutant models were fitted for HDL in order to 

determine whether correlated PFASs could produce confounding in single-pollutant 

models.  A hierarchical empirical Bayes model was also fitted in order to shrink the 

estimates produced by the multi-pollutant model to a common mean. 
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3.2. Approach 

3.2.1. Subject Identification 

3.2.1.1. Study population 

The source population from which samples were drawn for both aims was the 

Norwegian Mother and Child Cohort Study (MoBa), a large prospective cohort of 

pregnant women and their offspring, recruited for the purpose of identifying causes of 

disease in both mother and child (152).  The study was designed and conducted by the 

Norwegian Institute of Public Health (NIPH), and additional resources for the collection 

of biological materials were provided by the National Institute of Environmental Health 

Sciences (NIEHS).  The study enrolled approximately 108,000 pregnancies to 90,700 

women in Norway between 1999 and 2008.  The majority of pregnant women in Norway 

who scheduled a prenatal care visit between 17 and 20 weeks of gestation were invited by 

mail to participate in the study.  Of all women invited to participate, 39% enrolled, and 

87% of enrolled women donated blood samples for analysis.  The study was approved by 

the Regional Committee for Medical Research Ethics and the Norwegian Data 

Inspectorate.  Informed consent was obtained from each participant at enrollment.  

Identifying information is maintained securely by the Norwegian Institute of Public 

Health, which provides de-identified data sets to researchers. Further details about the 

study are available at http://www.fhi.no/morogbarn. 

 All enrolled women completed a questionnaire with details about their health 

history, lifestyle, and pregnancy history.  Maternal plasma samples were collected at mid-

pregnancy (median gestational week = 18), information on preeclampsia was obtained by 

record linkage with the Medical Birth Registry of Norway (MBRN), and outcome 

validation was performed on all recognized cases of preeclampsia as well as a random 
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subset of non-cases (Klungsøyr et al., submitted).  Validation methods are described 

below. 

 

3.2.1.2. Aim 1 

 For the case-cohort study, 500 cases were selected from among eligible MoBa 

participants who were reported to have preeclampsia on the MBRN, and whose case 

status was confirmed by an independent validation study.  The validation study requested 

the antenatal records for all 4,081 women who were recorded on the MBRN as having 

preeclampsia, as well as 2,000 additional women without reported preeclampsia.  

Records were received for 90% of eligible pregnancies.  These records were reviewed by 

study personnel for evidence of preeclampsia according to the criteria described in detail 

in Section 3.2.2.2., below. Additionally, women eligible to be cases in our study also met 

the following criteria: 

1. Enrolled in MoBa during 2003-2007 

2. No previous live births or stillbirths 

3. Singleton pregnancy 

4. Maternal mid-pregnancy plasma sample collected in EDTA tube 

 

 For the subcohort sample, 567 individuals who met the criteria described above 

were randomly selected from the MoBa cohort without regard to case status.  Seventeen 

validated cases randomly selected into the subcohort sample were also included in the 

study as cases.  Participants were excluded from this study if they had evidence of 

hypertension prior to pregnancy, defined as any of the following: 1) chronic hypertension 
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reported to the MBRN or on the MoBa questionnaire, or 2) an ICD-9 code corresponding 

to chronic hypertension on the antenatal medical chart, or 3) a documented blood 

pressure of at least 140 mm Hg systolic or 90 mm Hg diastolic prior to 20 weeks of 

gestation on the antenatal medical chart.   

 

3.2.1.3. Aim 2 

 For the cross-sectional study, we used an existing data set pertaining to 950 MoBa 

women selected for a previous case-control study of subfecundity.  Women eligible for 

selection into the subfecundity study met the following criteria: 

1. Enrolled in MoBa during 2003-2004 

2. Planned pregnancy that resulted in a live-born child 

3. Maternal mid-pregnancy plasma sample collected in EDTA tube 

4. Non-missing responses to the MoBa questionnaire items regarding time-

to-pregnancy 

 

For the previous study, 400 cases were randomly selected from all eligible 

subfecund women (defined as a self-reported time-to-pregnancy greater than 12 months 

(41)), and 550 were randomly selected from all women who met the four eligibility 

criteria described above (with time-to-pregnancy of any length).  For our cross-sectional 

study of mid-pregnancy PFASs and clinical chemistries, only pregnancies with complete 

outcome and covariate information were included in the analysis. 
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3.2.2. Study Design 

3.2.2.1. Classification of Exposure 

Maternal plasma samples were collected in EDTA tubes at mid-pregnancy 

antenatal visits, and samples were shipped at ambient temperature to the Norwegian 

Institute of Public Health in Oslo for storage and analysis.  The majority of samples were 

received the day after collection (153).  Samples were maintained at -80 degrees Celsius 

at the MoBa biobank in Oslo (153).  The Laboratory Information Management System 

(LIMS) at the biobank maintains the identifying information associated with each sample 

and stores the locations of each aliquot within the freezer system.  An evaluation of the 

freeze-thaw cycles of this system and the associated changes in various biomarkers has 

recently been published, and found minimal changes in most analytes studied after 10 

freeze-thaw cycles (154). 

Concentrations (ng/mL) of 19 PFAS species were measured in thawed aliquots of 

plasma using high-performance liquid chromatography/tandem mass spectrometry at the 

Norwegian Institute of Public Health.  The lower limits of detection using this method are 

in the range of 0.0020-0.050 ng PFAS/mL serum (155).  For PFOS, the total area of 

linear and branched isomers was integrated.  Further details about the laboratory methods 

have been published previously (155).  PFASs are chemically stable and any changes in 

plasma concentration during transport are believed to be negligible (156). 

 

3.2.2.2. Classification of Outcome for Aim 1 

Preeclampsia was reported to the MBRN via a standard form completed by 

midwives at delivery.  The form has 5 check boxes pertaining to the outcome: 1) 
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hemolysis, elevated liver enzymes, and low platelet count (HELLP syndrome); 2) 

eclampsia; 3) early preeclampsia (diagnosed prior to 34 weeks of gestation); 4) mild 

preeclampsia; and 5) severe preeclampsia. All MoBa participants who had any form of 

preeclampsia reported to the MBRN had their antenatal charts requested from hospitals 

for the purpose of independent review and validation of the preeclampsia diagnosis. 

Validated cases had evidence in their medical records of meeting the following definition 

for preeclampsia, requiring both of the following criteria at the same clinic visit: 

1. Systolic blood pressure of at least 140 mm Hg or diastolic blood pressure 

of at least 90 mm Hg, occurring after 20 completed weeks of gestation in a 

woman with previously normal blood pressure; and 

2. Proteinuria, defined as at least +1 on urine dipstick measurement. 

 

The validated preeclampsia outcome was coded as a binary variable.  For cases, 

the gestational week at diagnosis of preeclampsia and the gestational day at delivery due 

to preeclampsia were recorded as continuous variables, using ultrasound-based estimates 

of gestational age. 

 

3.2.2.3. Classification of Outcomes for Aim 2 

 Among the 950 women in the existing sample, several clinical chemistry analytes 

of interest were measured in the same mid-pregnancy (non-fasting) plasma sample used 

to evaluate PFAS concentrations.  The analytes that were measured and recorded as 

continuous variables were:  uric acid, C-reactive protein, LDL cholesterol, HDL 

cholesterol, triglycerides, and total cholesterol.  All analytes were measured with an 
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Olympus AU400e Clinical Chemistry Analyzer at the National Institute of Environmental 

Health Sciences, using reagents from Beckman Coulter (for triglycerides and cholesterol) 

and Genzyme Diagnostics (for all others).  The method used to measure LDL was direct 

enzymatic (N-geneous® LDL-ST cholesterol reagent).  The within- and between-batch 

CV for all clinical chemistries were <5%, except for the between-batch CV for 

triglycerides, which was 6.3%.  Binary outcome variables were created for the highest 

25% of each clinical chemistry analyte (or lowest 25%, in the case of HDL cholesterol).   

  

3.2.2.4. Covariate Ascertainment 

Several covariates of interest were obtained from the MoBa enrollment 

questionnaire, which was filled out by participants at approximately 18 weeks of 

gestation, and the MBRN, which was filled out by midwives at delivery.  These 

covariates include: 

 Maternal age at delivery. This variable was recorded on the MBRN.   

 Pre-pregnancy BMI.  This variable was calculated based on two self-

reported questionnaire items: “What did you weigh at the time you 

became pregnant and what do you weigh now (in kilograms)?” and “How 

tall are you?”   

 Smoking.  This variable was based on the question, “Do you smoke now 

(after you became pregnant)?” and classified as a binary variable.  

 History of chronic hypertension.  Women reporting a previous diagnosis 

of “high blood pressure” were excluded from the case-cohort study. 
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 Education completed.  This variable was based on a questionnaire item 

that asked women to indicate “the highest level of education you [and the 

baby’s father] have completed and current studies if you are still 

studying.”  Seven options were provided: 1) 9-year secondary school, 2) 

1-2 year high school, 3) technical high school, 4) 3-year high school 

general studies or junior college, 5) regional technical college or 4-year 

university degree, 6) university, technical college, more than 4 years, and 

7) other education.  The seven options were grouped into fewer categories 

for the purpose of analysis. 

 Gestational age at blood draw.  This information was derived from the 

MoBa biospecimen records. 

 Parity.  The sample for Aim 1 was restricted to nulliparous women.  

Nulliparous was defined as having no previous live births or stillbirths 

after 16 weeks of gestation reported to the MBRN. 

  

Additionally for Aim 1, in order to assess whether any alterations in glomerular 

filtration rate occurred by mid-pregnancy among women who later developed 

preeclampsia, the following markers of kidney function were measured in the mid-

pregnancy plasma sample: 

 Creatinine 

 Cystatin C 

Both of these analytes were measured at the National Institute of Environmental 

Health Sciences using an Olympus AU400e chemistry immuno-analyzer. The creatinine 
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measurement procedure is a modification of the Jaffe procedure in which creatinine 

reacts with picric acid at an alkaline pH.  The cystatin C assay utilizes the sol particle 

immunoassay principle, using colloidal gold particles coated with anti-cystatin C specific 

polyclonal antibodies (157). 

For Aim 2, certain variables related to pregnancy history were obtained from the 

enrollment questionnaire and considered as potential confounders: 

 Parity, length of interpregnancy interval, and history of breastfeeding.  

The question stem that pertains to these variables is: “Have you ever been 

pregnant before?”  If the respondent answered “yes,” further information 

was requested for each prior pregnancy about the date, outcome, and 

number of months of breastfeeding for each previous pregnancy.   

 

3.2.2.5. Quality Assurance/Quality Control 

For measurement of PFASs in mid-pregnancy plasma, standard procedures for 

quality control and quality assurance were followed, including cases and non-cases 

randomly interspersed in each analytic batch.  Pooled QC samples were randomly 

included in batches, and laboratory personnel were masked as to which tubes contained 

QC samples.  Within- and between-batch coefficients of variation were calculated and 

reported.  

For the determination of the outcome in Aim 1, only cases of preeclampsia which 

were validated by independent review of the antenatal medical records were included.  

Previous studies may have relied on registries or self-report in order to classify women as 

having preeclampsia.  However, the positive predictive value of self-reported 
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preeclampsia in one validation study was observed to be less than 60% (158).  In MoBa, 

the outcome of preeclampsia was initially recorded by midwives at birth and reported to 

the Medical Birth Registry of Norway (MBRN).   In the validation study, antenatal 

medical records were requested for all MoBa participants who were identified as having 

preeclampsia on the MBRN, and the records were examined to identify women who met 

the ACOG-derived definition of preeclampsia.  The use of a validated outcome should 

minimize outcome misclassification and improve our ability to detect an association if 

one exists. 

 

3.2.3. Data Analysis 

3.2.3.1. Analyses common to both Aims 

The univariate distributions of each of the seven continuous PFASs detectable in 

greater than 50% of samples were examined, and measures of central tendency and 

spread were reported.  The correlations between each of the seven PFASs were 

calculated.  Quartiles of exposure were created for the assessment of dose-response 

relationships. The observed concentrations of PFASs were compared to the levels 

observed in previous studies of the general population in the U.S. and Norway, as well as 

to highly exposed populations (see Table 1.1 and Table 1.2).  

The univariate distributions of the continuous outcome variables for Aim 2 were 

also examined, and measures of central tendency and spread for each clinical chemistry 

analyte were reported.   Descriptive statistics were calculated for covariates considered 

potential confounders, and the number of missing values for covariates was assessed.  
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Bivariate associations between exposures and outcomes, covariates and outcomes, and 

covariates and exposures, were estimated. 

 

3.2.3.2. Analyses specific to Aim 1 

Potential confounders were identified a priori based on the existing literature, and 

a minimally sufficient adjustment set was selected based on a directed acyclic graph 

(DAG) representing the state of knowledge in this area.  The DAG was used to identify 

potential confounders that are not causal intermediates or colliders. A proposed DAG for 

Aim 1 is presented in Figure 4.1.  For this DAG, the following variables constitute a 

minimally sufficient adjustment set: 

 Maternal age.  Young and old maternal age have been previously 

associated with preeclampsia (99), and age has also been associated with 

PFAS levels, although inconsistently. 

 Pre-pregnancy BMI.  BMI has been previously related to PFAS levels, 

although both positive and inverse associations have been reported.  Pre-

pregnancy BMI is positively associated with preeclampsia risk (159). 

 Smoking.  Smoking is inversely associated with preeclampsia risk (120), 

and may also be related to PFAS levels (31). 

 Education completed.  This variable serves as a proxy for socioeconomic 

status, which may be associated with PFAS levels (59) and also potentially 

associated with preeclampsia risk. 

 Cystatin C.  Impaired kidney function, as indicated by cystatin C, may 

lead to elevated PFASs if urinary excretion is reduced.  Additionally, 
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cystatin C measured at mid-pregnancy may be associated with 

preeclampsia risk (144).  Whether changes in cystatin C may be caused by 

the preeclampsia disease process remains unknown, and so the status of 

cystatin C as a confounder is questionable. 

 

The two principal statistical results for Aim 1 are: 1) the hazard ratio for 

preeclampsia, conditional on gestational age, as a function of plasma PFAS concentration 

at mid-pregnancy, and 2) the risk ratio of preeclampsia during pregnancy as a function of 

plasma PFAS concentration at mid-pregnancy.  The hazard ratio was estimated using a 

Cox proportional hazards regression model.  The risk ratio was estimated by the odds 

ratio produced by a multivariate logistic regression model. 

There are two event times of interest for the time-to-event analyses: gestational 

age at diagnosis and gestational age at delivery due to preeclampsia.  Each of these times 

was analyzed in relation to plasma PFAS levels using a multivariate Cox proportional 

hazards model, weighted for selection into the case-cohort study (160).  Non-cases were 

treated as censored at their gestational age at delivery.  Because prenatal care is freely 

available in Norway, we do not expect that the diagnosis of preeclampsia would be 

delayed due to limited access to health care.  In severe cases of preeclampsia, diagnosis is 

quickly followed by delivery, often induced by health care providers.  However, in more 

mild cases of preeclampsia, health care providers may not intervene immediately, and 

women may deliver weeks after the diagnosis.  These mild cases may represent a subtype 

of preeclampsia with a unique etiology.  In order to evaluate the influence of these early, 

mild cases on the effect estimates produced by the time-to-event analysis, both 
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gestational days at diagnosis and gestational days at delivery were separately evaluated as 

event times.  

The primary advantages of using Cox proportional hazards models are (1) they 

utilize all available information about the timing of disease onset, and (2) they easily 

handle the problem of right-censoring of controls due to delivery before 40 weeks of 

gestation.  One assumption of this model is that random censoring (for example, due to 

delivery of the infant for reasons other than preeclampsia) must be non-informative with 

regard to the outcome.  It is possible that this assumption may be violated if the risk of 

early delivery from causes other than preeclampsia is associated with the risk of 

preeclampsia if the pregnancy had continued.  However, preterm birth for causes other 

than preeclampsia is relatively uncommon in this population (<5% of non-cases). 

An alternative approach used to address Aim 1 was logistic regression of the 

cumulative incidence of preeclampsia over the entire risk period.  The use of logistic 

regression to estimate the risk ratio is justified because the outcome is rare in this 

population (fewer than 4% of pregnancies).  The logistic analysis addresses the 

hypothesis that the overall risk of preeclampsia varies as a function of plasma PFAS 

levels at mid-pregnancy.  However, this approach does not consider women who had 

pregnancies shorter than 40 weeks, and therefore had a shorter period of time at risk for 

preeclampsia.   

 

3.2.3.3. Analyses specific to Aim 2 

Potential confounders were identified a priori based on the existing literature, and 

a minimally sufficient adjustment set was selected based on a directed acyclic graph 
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(DAG) representing the state of knowledge in this area.  A proposed DAG for the 

association between PFASs and HDL cholesterol in Aim 2 is presented in Figure 4.2.  

The DAG was used to identify potential confounders that are not causal intermediates or 

colliders.  For this DAG, the following variables constitute a minimally sufficient 

adjustment set: 

 Maternal age.  Age has been previously associated with PFAS levels, 

although inconsistently across studies, and plasma lipid levels typically 

increase with age (161). 

 Pre-pregnancy BMI.  BMI has been previously associated with PFAS 

levels, although both positive and inverse associations have been reported.  

BMI is expected to be positively associated with blood lipid levels (162). 

 Smoking.  Smoking is positively associated with plasma lipid levels (163), 

and may also be related to PFAS levels (31). 

 Education completed.  This variable serves as a proxy for socioeconomic 

status, which may be associated with both PFAS levels (59) and with 

blood lipid levels (164). 

 Gestational age at blood draw.  Adjustment for this variable is important 

because of the substantial changes in blood volume and hemodynamics 

that occur throughout pregnancy. 

 Length of interpregnancy interval.  Long interpregnancy intervals are 

associated with increasing risk of preeclampsia (121), and may also be 

associated with maternal age. 
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 Parity.  Previous pregnancy is associated with reductions in PFASs, 

possibly through transfer to the fetus or through increased excretion (14, 

60). 

 Breastfeeding history.  PFASs decline during pregnancy and breastfeeding 

(30, 60), and breastfeeding history may be associated with later 

cardiovascular health and lipid levels (165). 

 

The association between each PFAS concentration and each lipid or clinical 

chemistry analyte was estimated using weighted multiple linear regression models.  

Residuals were checked for normality.  The regression coefficient for each PFAS 

exposure variable may be interpreted as the change in the clinical chemistry of interest 

(or transformed dependent variable) associated with a natural-log unit change in the 

concentration of PFAS, or an IQR-unit shift in ln-PFAS.  Additionally, weighted logistic 

regression was used to estimate the risk of having high (above the 75th percentile) total 

cholesterol, LDL cholesterol, triglycerides, uric acid, or C-reactive protein, or having low 

(below the 25
th

 percentile) HDL cholesterol.  

Inverse probability-of-selection weighting was employed in order to account for 

the selection into the previous case-control study of subfecundity (166).  While weighting 

has a cost in precision, this strategy is preferred in this scenario over adjusting for the 

selection factor, due to the possibility that subfecundity may share some common causes 

with the outcomes of interest (167).  However, a sensitivity analysis explored the 

robustness of findings to an alternate strategy of adjusting for subfecundity rather than 

weighting.  To ensure that the over-sampling of subfecund women for the prior study did 
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not bias the effect estimates in the present cross-sectional study, an additional analysis 

was restricted to the 550 women who were selected without regard to time-to-pregnancy.  

Additionally, an analysis was restricted to nulliparous women to examine whether this 

produced any change in point estimates.  

In order to assess whether or not the models met the assumptions of a log-linear 

relationship between exposure and outcome (or linear in the logit, in the case of logistic 

models), residual plots were examined.  Dose-response relationships were evaluated 

using quartile-based categories of PFAS exposure, where possible. 

Various statistical methods were employed to evaluate the influence of multiple 

correlated PFAS exposures.  The problem posed by multiple correlated exposures in this 

study is the difficulty in distinguishing which of the PFASs may be primarily responsible 

for any association detected.  A multi-pollutant model for HDL was used to identify 

PFASs that may be acting as confounders of the PFAS-HDL association and to include 

them as covariates in a common model.  To address concerns about possible 

multicollinearity in the multiple-pollutant model, the variance inflation factors were 

examined.   

Additionally, empirical Bayes regression was employed to examine how the 

estimates for the mutually-adjusted PFAS-HDL associations changed when “shrunk” to a 

common mean (168).  Empirical Bayes regression may lend stability to coefficient 

estimates for multiple, correlated exposures because it assumes that the coefficients are 

drawn from a common distribution.  Imposing groupings of exposures based on prior 

information may also improve estimates; however, the classification of PFASs into 

perfluorinated carboxylic acids and perfluorinated sulfonic acids did not aid in estimation 
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and so coefficients were shrunk to a single common mean.  The coefficients produced by 

single-pollutant, multiple-pollutant, and empirical Bayes models for HDL were compared 

with regard to precision and bias. 

 

3.2.4. Statistical Power and Sample Size 

The sample size of Aim 1 was chosen to provide sufficient statistical power to 

detect the magnitude of association between PFASs and preeclampsia that was 

anticipated in this population. Assuming a two-sided hypothesis test with type 1 error rate 

of 5%, and given the measured distribution of PFOS and PFOA concentration in this 

population, 500 cases should provide greater than 80% power to detect an odds ratio of 

greater than or equal to 1.43 associated with PFAS concentration above the median level 

of exposure. This was smaller than the effect size observed in preliminary studies in this 

population. 

Anticipating the statistical power for Aim 2 was more challenging, as it was an 

exploratory analysis with several different outcomes, and no comparable data exist in 

populations with background levels of exposure.  On the basis of the distributions of the 

exposures and the outcome of total cholesterol, the intended sample size of 950 provided 

statistical power to detect the beta-coefficients shown in Table 3.1, given a type 1 error 

rate of 5%. These estimates are within the range of estimates found in previous studies; 

however, no previous studies have been conducted in pregnant women.  
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Table 3.1.  Power to detect associations between PFASs (ng/mL) and total cholesterol 

(mg/dL). 

 

Power PFOA β* PFOS β* 

0.70 2.35 0.52 

0.80 2.65 0.60 

0.90 3.05 0.70 

*β represents a change in total cholesterol (mg/dL) per 1-unit increase in PFAS (ng/mL). 

 

3.2.5. Participant Eligibility and Selection 

 The process of selecting eligible participants for each of the two aims is 

summarized in Figure 3.1. 

 

Figure 3.1.  Summary of participant eligibility and participation in both aims. 

Aim 2: PFASs and clinical chemistries  Aim 1: PFASs and preeclampsia 

* The number of eligible subcohort members for the preeclampsia study was estimated 

because the availability of EDTA plasma samples was not confirmed for all potential 

subcohort members. 



 

CHAPTER 4: RESULTS 

4.1. Perfluoroalkyl substances during pregnancy and validated preeclampsia among 

nulliparous women in the Norwegian Mother and Child Cohort Study
1
 

 

4.1.1. Introduction 

Preeclampsia is a serious complication of pregnancy, consisting of new-onset 

hypertension combined with kidney dysfunction, which frequently leads to preterm 

delivery.  Preeclampsia affects approximately 3% of pregnancies in the United States 

(105) and in Norway (109), and it is a leading cause of maternal morbidity and mortality.  

The etiology of preeclampsia remains obscure, but it is likely multifactorial, with both 

genetic and environmental contributions.  Known risk factors for preeclampsia include 

nulliparity, personal or family history of preeclampsia, chronic hypertension, diabetes 

mellitus, autoimmune disorders, kidney disease, obesity, multiple gestation, history of 

subfertility, and maternal age (112, 119).  For unknown reasons, cigarette smoking during 

pregnancy is associated with a 30% reduction in the risk of preeclampsia (120).  Recent 

studies have raised the concern that blood concentrations of perfluoroalkyl substances 

during pregnancy may be associated with an increased risk of preeclampsia (8, 94). 

 Perfluoroalkyl substances (PFASs) are persistent environmental contaminants 

detectable in the blood of human populations worldwide (1, 2, 16, 36).  The most 

commonly measured species of PFAS, perfluorooctane sulfonate (PFOS) and 

                                                 
1
A revised version of Section 4.1 was submitted to the American Journal of Epidemiology in 2013 with the 

following co-authors: Stephanie M. Engel, David B. Richardson, Donna D. Baird, Line Småstuen Haug, 

Rolv Skjærven, Alison M. Stuebe, Kari Klungsøyr, Quaker Harmon, Georg Becher, Cathrine Thomsen, 

Azemira Sabaredzovic, Merete Eggesbø, Jane A. Hoppin, Gregory S. Travlos, Ralph E. Wilson, Lill Iren 

Trogstad, Per Magnus, Matthew P. Longnecker. 
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perfluorooctanoic acid (PFOA), have been widely used in industrial and consumer 

products, including surface treatments for fabrics and carpets, food packaging, fire-

fighting foam and other wetting agents (3).  PFASs are highly resistant to degradation in 

the environment or metabolism in the body (11, 16).  The half-lives of perfluorooctane 

sulfonate (PFOS) and perfluorooctanoate (PFOA) in human serum are estimated to be 4.8 

years and 2.3 years, respectively (19, 169).   

Despite the ubiquitous presence of PFASs in humans and in the environment, the 

potential adverse health effects that may result from chronic, low-level exposure have not 

been adequately studied, particularly among pregnant women.  A recent study of non-

occupationally exposed women living in an area of high PFOA contamination in drinking 

water found model-based estimates of pregnancy PFOA levels to be positively associated 

with preeclampsia (8).  Two possible mechanisms by which PFASs may lead to 

preeclampsia are described here.  

One potential mechanism of association may be through increased plasma lipids.  

While the result of high-dose PFAS exposure in laboratory animals is generally a 

reduction in cholesterol (64, 65), the opposite trend has been found in highly exposed 

humans. In studies of humans with occupational or other above-background levels of 

PFAS exposure, PFOA and PFOS have been associated with elevated total cholesterol 

and uric acid (5, 6, 38).  Similarly, in general population samples, PFOS and PFOA 

concentrations have been positively associated with total cholesterol and non-HDL 

cholesterol (7).  This observed association between PFASs and elevated lipids is 

consistent with a potential mechanism by which PFASs could be linked with 

preeclampsia, because preeclampsia is often preceded by elevated non-HDL cholesterol 
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and triglycerides (125, 141).  However, our recent study of pregnant women in the 

Norwegian Mother and Child Cohort Study (MoBa) found positive associations between 

several PFASs and HDL cholesterol, as well as an association between PFOS and total 

cholesterol (Section 4.2). 

A second potential mechanism by which PFAS concentrations during pregnancy 

may lead to preeclampsia is via immunotoxic effects.  In vitro, PFOS is associated with a 

decrease in human natural killer (NK) cell activity (148).  This finding is significant for 

the pathogenesis of preeclampsia because NK cells are believed to mediate the invasion 

of trophoblasts into the decidua and spiral arteries in normal placentation (149).  

Insufficient invasion of the spiral arteries due to impaired NK cell function could 

potentially contribute to preeclampsia (150). 

The possibility that plasma concentrations of these widespread environmental 

contaminants during pregnancy may increase the risk of preeclampsia is of substantial 

public health concern and merits further examination.  We explored this question in a 

case-cohort study of women with background levels of exposure enrolled in the large 

MoBa cohort. 

 

4.1.2. Methods 

4.1.2.1. Participants 

This is a sub-study within MoBa, a prospective pregnancy cohort study conducted 

by the Norwegian Institute of Public Health (152, 153, 170).  The Study was approved by 

the Regional Committee for Medical Research Ethics and the Norwegian Data 

Inspectorate.  Participants were recruited from throughout Norway in 1999-2008.  The 
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majority of pregnant women who scheduled a routine ultrasound examination between 17 

and 20 weeks of gestation were invited by mail to participate in the study, and 39% of 

invited women participated.  Informed consent was obtained from each MoBa participant 

upon recruitment.  Data were linked to the Medical Birth Registry of Norway (MBRN) 

(171).  Further details may be found at www.fhi.no/morogbarn.  The present study is 

based on version 4.301 of the quality-assured data files released for research. 

Eligibility requirements for this analysis were pregnancy with a singleton infant, 

no previous live births or stillbirths, no history of chronic hypertension, available mid-

pregnancy EDTA-preserved plasma sample, and enrollment in MoBa 2003-2007.  This 

study was restricted to women with no previous live births or stillbirths because PFASs 

have been shown to decline in recent pregnancy and lactation (14, 60), and because 

nulliparous women may have different risk factors for preeclampsia than women with 

previous pregnancies (121, 172).  We further restricted eligibility to women who enrolled 

in 2003 and later because the laboratory analysis of PFASs required EDTA 

anticoagulation, a process that was initiated in the MoBa study in 2003.  From 549 

eligible cases of preeclampsia in this time frame, 500 were randomly selected into the 

study.  From approximately 21,500 eligible pregnancies, 550 were selected at random as 

the subcohort sample. 

 

4.1.2.2. Exposure 

 Maternal non-fasting blood samples were collected at hospitals and maternity 

units across Norway at the time of study enrollment (median = 18 weeks of gestation) 

and shipped at ambient temperature to the MoBa biorepository in Oslo.  Most samples 

http://www.fhi.no/morogbarn
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were received and processed the day after collection (153).  At the biorepository, plasma 

was separated, aliquoted, and stored at -80 degrees Celsius. Changes in PFAS 

concentrations in transit are believed to be negligible, as PFASs are chemically stable 

(173), and a recent study showed no evidence of change over time in concentrations of 

four PFASs in serum maintained at room temperature for 10 days (156).   

Concentrations (ng/mL) of nine PFASs were measured in maternal plasma using 

high-performance liquid chromatography/tandem mass spectrometry at the Norwegian 

Institute of Public Health.  Details of the analytic process have been published previously 

(155).  Analyses were restricted to the seven PFASs present in at least 50% of samples: 

perfluorooctane sulfonate (PFOS), perfluoroheptane sulfonate (PFHpS), perfluorohexane 

sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), 

perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA).  The limit of 

quantification (LOQ) was 0.05 ng/mL for these seven PFASs.  For quantification of 

PFOS, the total area of linear and branched isomers was integrated.  A total of 25 blinded 

specimens from a single pool were analyzed in the same batches as the sample specimens 

for quality assurance/quality control (QA/QC) purposes. Inter-assay coefficients of 

variation were calculated for each PFAS, and ranged from 8.6 for PFOA to 29.8 for 

PFHpS. 

 

4.1.2.3. Outcome 

At the time of delivery, birth attendants reported the presence or absence of 

preeclampsia to the MBRN using a standard form.  A validation study was conducted to 

quantify the performance of the MBRN in identifying preeclampsia (Klungsøyr et al., 
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submitted).  Antenatal medical records were reviewed for evidence of meeting diagnostic 

criteria for preeclampsia based on a definition published by the American College of 

Obstetricians and Gynecologists (ACOG) (100).  The validation study found the 

sensitivity of MBRN report of preeclampsia was 97% and the specificity was 76% 

(Klungsøyr et al., submitted). 

Validated preeclampsia in the present study required evidence of both of the 

following criteria, at the same antenatal clinic visit: 

1) Systolic blood pressure of at least 140 mm Hg, or diastolic blood pressure of 

at least 90 mm Hg, occurring after 20 completed weeks of gestation; and 

2) Proteinuria, defined as at least 1+ on urine dipstick measurement. 

Our definition differs from the ACOG definition in that we relied on a single urine 

dipstick measurement, while ACOG recommends the use of 24-hour urine collection to 

diagnose proteinuria.  The use of 24-hour urine collection was not standard practice in 

Norway at the time of the study and therefore this information was generally not 

available to us in antenatal records.  Additionally, our definition required that 

hypertension and proteinuria be documented at the same clinic visit.  The gestational 

week of the clinic visit during which these diagnostic criteria were met was recorded.  

 We excluded both cases and cohort members with evidence of chronic 

hypertension, given that diagnosis of preeclampsia in the presence of chronic 

hypertension is clinically complicated and often times ambiguous (174).  Chronic 

hypertension was defined as any of the following: 1) chronic hypertension reported to the 

MBRN or on the MoBa questionnaire, or 2) an ICD-9 code corresponding to chronic 

hypertension on the antenatal medical chart, or 3) a documented blood pressure of at least 
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140 mm Hg systolic or 90 mm Hg diastolic prior to 20 weeks of gestation on the 

antenatal medical chart.   

 

4.1.2.4. Other variables 

At the time of enrollment, women provided information via questionnaire 

regarding a number of demographic and lifestyle characteristics, as well as events in their 

reproductive and medical history.  Maternal characteristics reported to the MBRN were 

also available.  Covariate information was obtained from the following sources: maternal 

age at delivery was reported to the MBRN; pre-pregnancy body mass index (BMI) was 

calculated based on the participant’s self-reported height and weight before she became 

pregnant; maternal education completed was self-reported in response to a questionnaire 

item asking women to report the highest level of education completed; maternal smoking 

during pregnancy was self-reported in response to the question, “Do you smoke now 

(after you became pregnant)?” at a median of 18 weeks gestation. 

Creatinine (mg/dL) and cystatin C (mg/L) were measured in mid-pregnancy 

plasma samples to detect changes in kidney function and glomerular filtration rate.  Both 

substances were measured at the National Institute of Environmental Sciences using an 

Olympus AU400e chemistry immuno-analyzer.  The procedure used to measure 

creatinine was a kinetic modification of the Jaffe procedure in which creatinine reacted 

with picric acid at an alkaline pH.  The cystatin C assay was based on the sol particle 

immunoassay (157), using colloidal gold particles coated with anti-cystatin C specific 

polyclonal antibodies. 
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4.1.2.5. Statistical analysis 

 We used weighted Cox proportional hazards models to estimate hazard ratios 

(HRs) and 95% confidence intervals (CIs) for the association between each PFAS and 

preeclampsia.  Weights were based on the inverse probability of selection into the case-

cohort study (160).  The 17 individuals who were randomly selected into both case and 

subcohort samples were assigned two separate intervals of person-time; one interval for 

their time at risk in the subcohort during which they were included in the risk sets for 

other cases, and one interval for their time immediately prior to becoming a case (160).  

Cases not in the subcohort were considered to enter the study immediately prior to 

becoming a case.  The proportional hazards assumption was verified through graphical 

inspection of weighted Schoenfeld residuals; there was no evidence to reject the null 

hypothesis of proportional hazards.   

 We considered two separate event times: the gestational week of the clinic visit 

during which both diagnostic criteria were met, and the gestational day of delivery due to 

preeclampsia.  The separate methods were expected to provide different results only in 

the instances where diagnosis and delivery were separated by several weeks.  

Additionally, we used logistic regression to examine a binary outcome of preeclampsia 

diagnosis without regard to the timing of diagnosis or delivery.   

 Modeled covariates were selected based on a directed acyclic graph (DAG) 

representing associations reported in the existing literature, and the identification of a 

minimally sufficient set of covariates to control confounding (Figure 4.1). The minimally 

sufficient adjustment set was identified using DAGitty v1.0 (www.dagitty.net).  The 

modeled covariates and their categorizations were as follows: maternal age at delivery 

http://www.dagitty.net/
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(continuous); pre-pregnancy BMI (continuous); maternal education (<=12 years, 13-16 

years, >16 years); and smoking at mid-pregnancy (yes/no). 

Concentrations of PFASs were treated in two ways for the purposes of analysis: 

(1) as quartiles, with the lowest quartile serving as the referent category (with the 

exception of PFDA, which was categorized only at or above versus below the median due 

to >25% of values below the LOQ) and (2) as natural-log transformed continuous 

variables to assess linear trends.  For all PFASs, values below the LOQ were replaced by 

the expected value of the log-normal distribution, given that the value was below the 

limit of quantification; this was calculated as the mean of values below the limit of 

quantification randomly drawn from the estimated log-normal distribution (175).  We 

examined the shape of the dose-response function using logistic regression models of the 

association between each continuous PFAS exposure, modeled as a restricted cubic spline 

function with 5 knots at the 5
th

 , 25
th

, 50
th

, 75
th

, and 95
th

 percentiles, and validated 

preeclampsia as a binary outcome.  All statistical analyses were performed using SAS 9.3 

(SAS Institute, Cary, NC).  The logistic spline models were fitted using a SAS macro 

created by Desquilbet and Mariotti (176). 

 

4.1.3. Results 

The principal analysis included 976 women (466 cases and 510 non-cases) with 

complete information on modeled covariates.  Three of the original 550 subcohort 

members reported chronic hypertension to the MBRN and therefore were excluded.  

Additionally, one member of the subcohort had a gestational age at delivery reported to 

the MBRN of less than 20 weeks, and so was excluded because she was never at risk to 
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develop preeclampsia.  Fewer than 6% of participants were missing data for any modeled 

covariate.   

The participants ranged in age from 16 to 44 years old (Table 4.1).  There was no 

notable difference in age distribution between cases and controls.  BMI ranged from 15.4 

to 48.8 kg/m
2
, and there were more cases than controls with a BMI greater than or equal 

to 30 kg/m
2
 (16% of cases versus 7% of controls).  The majority of participants had 

between 13 and 16 years of education (75% of cases and 70% of controls).  Overall, 7% 

of participants reported current smoking at mid-pregnancy, with a slightly lower 

percentage of cases reporting smoking (6%).  The median duration of pregnancy was 

shorter among cases (274 days) than among controls (282 days). 

As noted above, this analysis is restricted to the seven PFASs that were detectable 

in plasma samples from greater than 50% of participants (Table 4.2).  PFOS had the 

highest median concentration (12.87 ng/mL) and was detectable in 100% of samples.  

PFOA had the second highest median concentration (2.78 ng/mL) and was also 

detectable in 100% of samples.  The other measured PFASs in descending order of 

median concentration were PFHxS, PFNA, PFUnDA, PFHpS, and PFDA.  PFDA was 

detectable in 71% of samples.  The seven PFASs were moderately to highly correlated 

with one another (Table 4.3).  The lowest correlation observed was between PFDA and 

PFHpS (ρ=0.18) and the highest was between PFNA and PFDA (ρ=0.75).  PFOS and 

PFOA were correlated at ρ=0.64. 

None of the seven PFASs had positive associations with preeclampsia, either in 

quartile analyses or when PFASs were entered as continuous natural-log transformed 

exposure variables (Table 4.4).  Interestingly, there was an inverse association between 
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PFUnDA and preeclampsia: the highest quartile of PFUnDA had an adjusted HR of 0.55 

(95% CI=0.38, 0.81) relative to the lowest quartile, and each increase of 1 ln-ng/mL of 

PFUnDA was associated with an adjusted HR of 0.78 (95% CI=0.66, 0.92). Additional 

adjustment for plasma creatinine (Table 4.5) or plasma cystatin C (Table 4.6) did not 

produce meaningful changes in any effect estimates. 

Similarly, none of the seven PFASs were positively associated with delivery due 

to preeclampsia (Table 4.7).  Each upper quartile of PFUnDA was associated with 

decreased risk of delivery due to preeclampsia relative to the lowest quartile, and each 

increase of 1 ln-ng/mL of PFUnDA was associated with an HR for delivery due to 

preeclampsia of 0.71 (95% CI=0.59, 0.84).  There was no indication in the quartile 

analysis of a linear dose-response relationship for PFUnDA; all three of the upper 

quartiles of PFUnDA were associated with reduced preeclampsia risk relative to the 

lowest quartile of PFUnDA. 

In logistic regression analyses of binary preeclampsia diagnosis, without regard to 

timing, the second quartile of PFUnDA was associated with reduced risk of preeclampsia 

(HR=0.60, 95% CI=0.42, 0.87) relative to the lowest quartile, as was the highest quartile 

of PFUnDA (HR=0.65, 95% CI=0.44, 0.96) (Table 4.8).  Each increase of 1 ln-ng/mL of 

PFUnDA was associated with an HR for preeclampsia of 0.86 (95% CI=0.73, 1.01). 

The shape of the dose-response function was characterized using restricted cubic 

spline functions for the association between each continuous PFAS exposure variable and 

preeclampsia.  The spline graphs suggested weakly inverse associations between PFNA, 

PFDA, PFUnDA and preeclampsia.  There was some indication in the spline graphs of an 

increase in preeclampsia risk at the higher concentrations of PFHpS.  Overall the results 
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of the logistic regression analysis using restricted cubic spline functions appeared to 

parallel the results of the Cox proportional hazards models.  There were no strong linear 

trends observed within the range of exposure concentrations measured in this population. 

 

4.1.4. Discussion 

 We observed no positive associations between plasma PFAS concentrations and 

preeclampsia in this sample of 976 nulliparous Norwegian women, at background levels 

of PFAS exposure.  A series of related studies on pregnancy-induced hypertension and 

preeclampsia conducted in a population highly exposed to PFOA through contaminated 

drinking water reported positive associations with both PFOA and PFOS (8, 94).  The 

difference in results between our study and those previous studies may be partly 

attributed to differences in exposure assessment, to differences in preeclampsia case 

definition, or to the restriction of our study to nulliparous women.   

 Our study directly measured perfluoroalkyl substances at mid-pregnancy, prior to 

the onset of preeclampsia, while previous studies used indirect methods to assess 

perfluoroalkyl substances during pregnancy.  Specifically, one study employed predictive 

modeling to estimate exposure at the time of pregnancy (8); another measured exposure 

concentration in serum up to 5 years after the pregnancy of interest (94).  Exposures 

assessed in different ways could be biased differently by unmeasured factors.  For 

example, recall bias could be present if ascertainment of preeclampsia history took place 

after the participants became aware of PFOA contamination of their drinking water.   

 The PFOA serum concentrations measured or predicted in previous studies were 

substantially higher than the plasma concentration measured in the present study.  It is 
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possible that shape of the PFOA-preeclampsia dose-response function is non-linear, and 

that effects are only observable at higher exposure concentrations than those present in 

our study.  However, differences in exposure magnitude do not explain the lack of 

association between PFOS and preeclampsia found in our study, because the median 

PFOS concentration in the previous study was approximately equal to ours (94). 

We employed a definition of preeclampsia that was validated through review of 

antenatal medical records, while previous studies used self-reported preeclampsia (8, 94).  

The positive predictive value of self-reported preeclampsia in a previous study was 

approximately 50-60% (177).  The use of medical records in our study may have served 

to reduce outcome misclassification, possibly through the exclusion of other hypertensive 

disorders of pregnancy that did not meet the diagnostic criteria for preeclampsia. 

Our study was restricted to nulliparous women.  This restriction ensures that 

observed PFAS levels do not reflect recent declines in body burden due to previous 

pregnancy and lactation (14, 60, 178).  Nulliparous women also have a higher risk of 

preeclampsia as compared to parous women (122).  Women who develop preeclampsia in 

their second or later pregnancies may have a different underlying set of risk factors and 

clinical characteristics as compared to nulliparous women.  Approximately half of the 

women in the previous studies (8, 94) were nulliparous.  It is possible that the association 

between mid-pregnancy PFASs and preeclampsia may differ between nulliparous and 

parous women. 

We observed an inverse (protective) association between PFUnDA and 

preeclampsia.  This finding must be considered preliminary as we are not aware of any 

previous studies that have evaluated this association.  There are several possible 
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explanations for this finding, which may result from chance, causality, confounding, or 

pharmacokinetics.   

One possible explanation for the inverse association between PFUnDA and 

preeclampsia is the mediation of high-density lipoprotein (HDL) cholesterol.  In a 

separate study, also within the MoBa cohort, all seven PFASs studied were positively 

associated with HDL cholesterol at mid-pregnancy, and PFUnDA showed the strongest 

association with HDL (Section 4.2).  As higher levels of HDL are considered to be 

protective against cardiovascular disease (179), and low HDL cholesterol during 

pregnancy has been associated with increased risk of preeclampsia (180), it is possible 

than an environmental factor leading to increased HDL levels could in fact lower the risk 

of preeclampsia.  However, if the association between PFUnDA and preeclampsia is 

mediated by HDL, then adjustment for HDL may produce estimates that are biased or 

difficult to interpret (181).  Furthermore, it is unknown whether the previously observed 

association between PFASs and HDL in pregnant women is causal, or the result of 

unmeasured confounding or pharmacokinetics.  For example, there may be a special 

affinity between certain PFASs and HDL cholesterol in circulating blood, leading to a 

positive cross-sectional association (182).   

Another possible explanation for observed associations between PFASs and 

preeclampsia may be immune-mediated.  PFASs have a number of immunotoxic effects 

(67), and altered immunologic responses may also be involved in the pathogenesis of 

preeclampsia (183).  However, it is unclear how the immunotoxic effects of PFASs could 

produce the observed inverse association between PFUnDA and preeclampsia.  
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 Strengths of this study include the use of a validated diagnosis of preeclampsia, 

which serves to reduce outcome misclassification, and the use of a highly sensitive assay 

for PFASs, allowing the quantification of several PFASs that have not been studied 

extensively.  Additionally, our restriction to nulliparous women eliminates the possibility 

of bias resulting from recent changes in PFAS concentration due to pregnancy and 

lactation.  By contrast with previous studies (8, 94), we were able to directly measure 

PFASs in mid-pregnancy plasma, prior to the onset of preeclampsia.  However, the 

possibility remains that an asymptomatic, unidentified stage of the disease may already 

be present at mid-pregnancy.  If this hypothetical pre-symptomatic stage were to 

influence kidney function or glomerular filtration, it could also influence excretion and 

therefore plasma concentrations of PFASs.  However, adjustment for plasma creatinine 

and cystatin C did not affect our results, suggesting that the estimates were not 

confounded by measurably impaired kidney function.  We cannot rule out the possibility 

of bias due to confounding by an unmeasured variable.   

 As previously noted, the participation rate into the MoBa study was 39% of 

eligible women.  It is possible that selection bias may have influenced the results of this 

study in unpredictable ways.  If unmeasured variables were related to both exposure and 

to selection into the study, or related to both selection and the outcome, bias could result.  

However, we are unaware of any strong confounders that were unmeasured in this study.  

Additionally, the process used to validate cases of preeclampsia excluded pregnancies 

lacking antenatal medical records, or for whom the absence of chronic hypertension prior 

to 20 weeks of gestation could not be established.  Another potential limitation of this 

study may be the lower median BMI in this population as compared to US populations.  
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Only 11% of participants had a BMI of 30 kg/m
2
 or greater, whereas 32% of US women 

aged 20-39 in the US had a BMI in this range (184).  This difference may limit 

generalizability of the findings to US populations. 

  

4.1.5. Conclusions 

 Our study does not support a positive association between plasma PFAS 

concentration at mid-pregnancy and preeclampsia among nulliparous women.  Our 

results do suggest that different PFASs may have different associations with 

preeclampsia, and that it is important to examine associations with each PFAS separately.  

Further research may wish to examine whether the observed inverse association between 

PFUnDA and preeclampsia is present in other populations, and to investigate 

mechanisms that may underlie this association.     
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Table 4.1. Characteristics of 976 eligible pregnant women enrolled in the Norwegian 

Mother and Child Cohort Study in 2003-2007 and selected into a case-cohort study of 

preeclampsia. 

 

 Cases 

(N=466) 

Controls 

(N=510) 

Total 

 N % N % N % 

Maternal age at delivery (years)       

     16-24 78 17 80 16 158 16 

     25-29 202 43 210 41 412 42 

     30-34 139 30 169 33 308 32 

     35-44 47 10 51 10 98 10 

       

Body mass index (kg/m
2
)*       

     15.4-24.9  263 56 367 72 630 65 

     25.0-29.9 
  
 130 28 105 20 235 24 

     30.0-48.8 
  
 73 16 38 7 111 11 

       

Maternal education (years)        

     12 or less 13 3 11 2 24 2 

     13-16 351 75 359 70 710 73 

     More than 16 97 21 130 25 227 23 

     Other education 5 1 10 2 15 2 

       

Smoking during pregnancy       

     Yes  28 6 38 7 66 7 

     No    438 94 472 93 910 93 

       

Duration of pregnancy (weeks)       

    24-<28 4 1 0 0 4 0.4 

    28-<32 17 4 2 0.4 19 2 

    32-<37 73 16 21 4 95 10 

    37-<42 356 77 440 87 798 82 

    42-<44 13 3 44 9 57 6 

    Missing 3  3  6  

*Pre-pregnancy body mass index
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Table 4.2.  Plasma concentrations (ng/mL) of seven perfluoroalkyl substances detectable in at least 50% of samples, among 976 

eligible pregnant women enrolled in the Norwegian Mother and Child Cohort Study in 2003-2007. 

 

  % Chain Percentile  

Name Abbrev >LOQ Length 5
th

 25
th

 50
th

 75
th

 95
th

 CV* 

Perfluorooctanoic acid PFOA 100.0 8  1.43 2.14 2.78 3.57 5.15 8.6 

Perfluorononanoic acid PFNA 99.7 9  0.24 0.39 0.54 0.74 1.12 13.3 

Perfluorodecanoic acid PFDA 71.1 10 <LOQ <LOQ 0.10 0.18 0.34 27.0 

Perfluoroundecanoic acid PFUnDA 83.7 11  <LOQ 0.08 0.17 0.27 0.47 22.2 

Perfluorohexane sulfonate PFHxS 99.5 6 0.27 0.49 0.69 0.95 1.78 14.6 

Perfluoroheptane sulfonate PFHpS 83.6 7 <LOQ 0.09 0.15 0.23 0.37 29.8 

Perfluorooctane sulfonate PFOS 100.0 8 6.07 9.69 12.87 17.03 25.53 11.4 

* Inter-assay coefficient of variation was calculated as (standard deviation / mean)*100 for 25 pooled QA/QC samples. 
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Table 4.3.  Spearman correlation coefficients between plasma concentrations of 

perfluoroalkyl substances detectable in >50% of samples, among 976 pregnant women in 

the Norwegian Mother and Child Cohort Study selected for a case-cohort study of 

preeclampsia. 

 

PFOA PFNA PFDA PFUnDA PFHxS PFHpS PFOS 

PFOA - 0.61 0.45 0.31 0.54 0.53 0.64 

PFNA  - 0.75 0.51 0.45 0.31 0.42 

PFDA  

 

- 0.54 0.27 0.18 0.25 

PFUnDA    - 0.40 0.24 0.33 

PFHxS     - 0.50 0.58 

PFHpS      - 0.74 

PFOS       - 
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Table 4.4.  Hazard ratios for preeclampsia diagnosis associated with plasma PFAS 

concentration (ng/mL) among 976 eligible pregnant women in the Norwegian Mother 

and Child Cohort Study, of whom 466 developed preeclampsia. 

 

  Crude HR 95% CI Adjusted* 

HR 

95% CI 

PFOA (Q1)  0.32-2.11 1.  1.  

 (Q2)  2.12-2.77  0.99 0.70, 1.42 1.03 0.70, 1.50 

 (Q3)  2.77-3.56 0.93 0.65, 1.32 0.92 0.63, 1.35 

 (Q4)  3.56-11.28 0.88 0.61, 1.25 1.01 0.69, 1.48 

 Per ln-unit PFOA 0.84 0.63, 1.13 0.89 0.65, 1.22 

      

PFNA (Q1)  <LOQ-0.39 1.  1.  

 (Q2)  0.39-0.54 0.85 0.60, 1.22 0.88 0.60, 1.30 

 (Q3)  0.54-0.74 0.92 0.64, 1.31 1.04 0.71, 1.53 

 (Q4)  0.74-3.54 0.80 0.56, 1.15 0.88 0.60, 1.29 

 Per ln-unit PFNA 0.84 0.66, 1.07 0.90 0.70, 1.16 

      

PFDA <LOQ-0.10 (median) 1.  1.  

 0.10-1.74 0.81 0.63, 1.05 0.88 0.67, 1.16 

 Per ln-unit PFDA 0.86 0.74, 1.00 0.88 0.75, 1.04 

      

PFUnDA (Q1)  <LOQ-0.08 1.  1.  

 (Q2)  0.08-0.17 0.55 0.38, 0.79 0.51 0.35, 0.76 

 (Q3)  0.17-0.27 0.57 0.40, 0.82 0.60 0.41, 0.88 

 (Q4)  0.27-1.01 0.49 0.34, 0.71 0.55 0.38, 0.81 

 Per ln-unit PFUnDA 0.76 0.65, 0.89 0.78 0.66, 0.92 

      

PFHxS (Q1)  <LOQ-0.49 1.  1.  

 (Q2)  0.49-0.69 0.94 0.66, 1.34 0.86 0.59, 1.26 

 (Q3)  0.69-0.95 1.00 0.70, 1.42 1.01 0.69, 1.49 

 (Q4)  0.95-11.47 0.84 0.59, 1.19 0.93 0.64, 1.36 

 Per ln-unit PFHxS 0.86 0.70, 1.06 0.91 0.72, 1.14 

      

PFHpS (Q1)  <LOQ-0.09 1.  1.  

 (Q2)  0.09-0.15 1.22 0.85, 1.74 1.30 0.88, 1.92 

 (Q3)  0.15-0.22 1.01 0.71, 1.45 1.01 0.69, 1.48 

 (Q4)  0.22-1.19 1.04 0.73, 1.48 1.12 0.77, 1.63 

 Per ln-unit PFHpS 1.01 0.85, 1.20 1.03 0.86, 1.24 

      

PFOS (Q1)  1.44-9.66 1.  1.  

 (Q2)  9.67-12.79 1.18 0.82, 1.68 1.12 0.76, 1.65 

 (Q3)  12.80-16.91 0.85 0.59, 1.21 0.88 0.60, 1.29 

 (Q4)  16.91-56.61 1.08 0.75, 1.53 1.09 0.75, 1.58 

 Per ln-unit PFOS 1.08 0.82, 1.42 1.13 0.84, 1.52 
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*Adjusted for maternal age, pre-pregnancy BMI, education completed, and smoking 

during pregnancy. 
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Table 4.5.  Hazard ratios for preeclampsia diagnosis associated with plasma PFAS 

concentration (ng/mL) among 975 eligible pregnant women with complete covariate and 

outcome information in the Norwegian Mother and Child Cohort Study, of whom 466 

developed preeclampsia, additionally adjusted for plasma creatinine (mg/dL). 

 

  Unadjusted 

HR 

95% CI Adjusted
*

HR 

95% CI 

PFOA (Q1)  0.32-2.11 1.  1.  

 (Q2)  2.12-2.77  0.99 0.69, 1.41 1.02 0.70, 1.49 

 (Q3)  2.77-3.56 0.92 0.64, 1.32 0.91 0.62, 1.34 

 (Q4)  3.56-11.28 0.87 0.61, 1.24 1.02 0.70, 1.50 

 Per ln-unit PFOA 0.84 0.63, 1.12 0.90 0.66, 1.24 

      

PFNA (Q1)  <LOQ-0.39 1.  1.  

 (Q2)  0.39-0.54 0.86 0.60, 1.23 0.89 0.61, 1.32 

 (Q3)  0.54-0.74 0.92 0.64, 1.31 1.06 0.72, 1.56 

 (Q4)  0.74-3.54 0.80 0.56, 1.15 0.91 0.62, 1.33 

 Per ln-unit PFNA 0.84 0.66, 1.07 0.92 0.71, 1.19 

      

PFDA <LOQ-0.10 (median) 1.  1.  

 0.10-1.74 0.81 0.63, 1.04 0.89 0.67, 1.18 

 Per ln-unit PFDA 0.86 0.73, 1.00 0.89 0.76, 1.05 

      

PFUnDA (Q1)  <LOQ-0.08 1.  1.  

 (Q2)  0.08-0.17 0.55 0.38, 0.79 0.50 0.34, 0.74 

 (Q3)  0.17-0.27 0.57 0.40, 0.82 0.59 0.40, 0.87 

 (Q4)  0.27-1.01 0.49 0.34, 0.71 0.56 0.38, 0.82 

 Per ln-unit PFUnDA 0.76 0.65, 0.89 0.78 0.66, 0.92 

      

PFHxS (Q1)  <LOQ-0.49 1.  1.  

 (Q2)  0.49-0.69 0.93 0.65, 1.33 0.87 0.59, 1.28 

 (Q3)  0.69-0.95 0.99 0.70, 1.41 1.04 0.70, 1.53 

 (Q4)  0.95-11.47 0.83 0.58, 1.18 0.93 0.64, 1.36 

 Per ln-unit PFHxS 0.86 0.70, 1.06 0.91 0.73, 1.14 

      

PFHpS (Q1)  <LOQ-0.09 1.  1.  

 (Q2)  0.09-0.15 1.21 0.85, 1.73 1.29 0.87, 1.92 

 (Q3)  0.15-0.22 1.01 0.70, 1.44 0.99 0.68, 1.45 

 (Q4)  0.22-1.19 1.03 0.72, 1.47 1.12 0.77, 1.64 

 Per ln-unit PFHpS 1.01 0.85, 1.19 1.03 0.86, 1.24 

      

PFOS (Q1)  1.44-9.66 1.  1.  

 (Q2)  9.67-12.79 1.18 0.83, 1.69 1.13 0.76, 1.68 

 (Q3)  12.80-16.91 0.85 0.59, 1.21 0.89 0.61, 1.30 

 (Q4)  16.91-56.61 1.08 0.75, 1.53 1.10 0.75, 1.60 

 Per ln-unit PFOS 1.08 0.82, 1.42 1.15 0.85, 1.55 
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* Adjusted for maternal age, pre-pregnancy BMI, education completed, smoking, and 

creatinine (mg/dL). 
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Table 4.6.  Hazard ratios for preeclampsia diagnosis associated with plasma PFAS 

concentration (ng/mL) among 972 eligible pregnant women with complete covariate and 

outcome information in the Norwegian Mother and Child Cohort Study, of whom 464 

developed preeclampsia, additionally adjusted for plasma cystatin C (mg/L). 

 

  Unadjusted 

HR 

95% CI Adjusted* 

HR 

95% CI 

PFOA (Q1)  0.32-2.11 1.  1.  

 (Q2)  2.12-2.77  0.99 0.69, 1.41 1.02 0.70, 1.49 

 (Q3)  2.77-3.56 0.94 0.66, 1.34 0.94 0.64, 1.37 

 (Q4)  3.56-11.28 0.87 0.61, 1.24 1.00 0.68, 1.46 

 Per ln-unit PFOA 0.84 0.63, 1.13 0.89 0.65, 1.22 

      

PFNA (Q1)  <LOQ-0.39 1.  1.  

 (Q2)  0.39-0.54 0.86 0.60, 1.23 0.88 0.60, 1.30 

 (Q3)  0.54-0.74 0.91 0.64, 1.30 1.03 0.70, 1.52 

 (Q4)  0.74-3.54 0.80 0.56, 1.15 0.88 0.60, 1.29 

 Per ln-unit PFNA 0.84 0.66, 1.07 0.90 0.70, 1.16 

      

PFDA <LOQ-0.10 (median) 1.  1.  

 0.10-1.74 0.81 0.63, 1.05 0.88 0.67, 1.17 

 Per ln-unit PFDA 0.86 0.74, 1.00 0.88 0.75, 1.04 

      

PFUnDA (Q1)  <LOQ-0.08 1.  1.  

 (Q2)  0.08-0.17 0.54 0.38, 0.78 0.51 0.34, 0.75 

 (Q3)  0.17-0.27 0.57 0.40, 0.82 0.60 0.40, 0.87 

 (Q4)  0.27-1.01 0.50 0.34, 0.71 0.56 0.38, 0.82 

 Per ln-unit PFUnDA 0.76 0.66, 0.89 0.78 0.66, 0.92 

      

PFHxS (Q1)  <LOQ-0.49 1.  1.  

 (Q2)  0.49-0.69 0.92 0.65, 1.32 0.84 0.57, 1.24 

 (Q3)  0.69-0.95 1.00 0.70, 1.42 1.02 0.69, 1.50 

 (Q4)  0.95-11.47 0.85 0.59, 1.20 0.94 0.64, 1.38 

 Per ln-unit PFHxS 0.87 0.70, 1.07 0.91 0.73, 1.14 

      

PFHpS (Q1)  <LOQ-0.09 1.  1.  

 (Q2)  0.09-0.15 1.22 0.85, 1.74 1.29 0.87, 1.92 

 (Q3)  0.15-0.22 1.00 0.70, 1.44 1.00 0.68, 1.46 

 (Q4)  0.22-1.19 1.04 0.73, 1.49 1.12 0.77, 1.64 

 Per ln-unit PFHpS 1.01 0.85, 1.20 1.03 0.86, 1.24 

      

PFOS (Q1)  1.44-9.66 1.  1.  

 (Q2)  9.67-12.79 1.18 0.82, 1.68 1.12 0.75, 1.65 

 (Q3)  12.80-16.91 0.84 0.58, 1.20 0.87 0.59, 1.27 

 (Q4)  16.91-56.61 1.08 0.76, 1.55 1.10 0.75, 1.60 

 Per ln-unit PFOS 1.09 0.83, 1.43 1.14 0.84, 1.53 
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*Adjusted for maternal age, pre-pregnancy BMI, education completed, smoking, and 

cystatin C (mg/L). 
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Table 4.7. Hazard ratios for delivery due to preeclampsia associated with plasma PFAS 

concentration (ng/mL) among 970 eligible pregnant women in the Norwegian Mother 

and Child Cohort Study, of whom 463 developed preeclampsia. 

 

  Unadjusted 

HR 

95% CI Adjusted* 

HR 

95% CI 

PFOA (Q1)  0.32-2.11 1.  1.  

 (Q2)  2.12-2.77  0.94 0.65, 1.38 0.96 0.64, 1.45 

 (Q3)  2.77-3.56 0.90 0.62, 1.32 0.92 0.62, 1.38 

 (Q4)  3.56-11.28 0.85 0.58, 1.25 0.99 0.66, 1.48 

 Per ln-unit PFOA 0.84 0.61, 1.15 0.92 0.65, 1.29 

      

PFNA (Q1)  <LOQ-0.39 1.  1.  

 (Q2)  0.39-0.54 0.80 0.55, 1.16 0.84 0.56, 1.27 

 (Q3)  0.54-0.74 0.86 0.59, 1.25 0.98 0.66, 1.48 

 (Q4)  0.74-3.54 0.72 0.50, 1.06 0.79 0.53, 1.19 

 Per ln-unit PFNA 0.78 0.60, 1.02 0.85 0.64, 1.12 

      

PFDA <LOQ-0.10 (median) 1.  1.  

 0.10-1.74 0.79 0.60, 1.02 0.84 0.63, 1.12 

 Per ln-unit PFDA 0.83 0.71, 0.98 0.84 0.71, 1.00 

      

PFUnDA (Q1)  <LOQ-0.08 1.  1.  

 (Q2)  0.08-0.17 0.48 0.32, 0.70 0.45 0.30, 0.68 

 (Q3)  0.17-0.27 0.48 0.33, 0.71 0.48 0.31, 0.72 

 (Q4)  0.27-1.01 0.44 0.30, 0.65 0.48 0.32, 0.72 

 Per ln-unit PFUnDA 0.71 0.60, 0.83 0.71 0.59, 0.84 

      

PFHxS (Q1)  <LOQ-0.49 1.  1.  

 (Q2)  0.49-0.69 0.92 0.63, 1.34 0.88 0.58, 1.32 

 (Q3)  0.69-0.95 0.96 0.66, 1.40 0.99 0.66, 1.49 

 (Q4)  0.95-11.47 0.81 0.56, 1.18 0.92 0.62, 1.38 

 Per ln-unit PFHxS 0.84 0.67, 1.05 0.90 0.70, 1.16 

      

PFHpS (Q1)  <LOQ-0.09 1.  1.  

 (Q2)  0.09-0.15 1.23 0.84, 1.79 1.40 0.92, 2.11 

 (Q3)  0.15-0.22 1.06 0.73, 1.55 1.06 0.70, 1.59 

 (Q4)  0.22-1.19 1.07 0.74, 1.55 1.22 0.82, 1.82 

 Per ln-unit PFHpS 1.03 0.86, 1.24 1.07 0.88, 1.30 

      

PFOS (Q1)  1.44-9.66 1.  1.  

 (Q2)  9.67-12.79 1.08 0.74, 1.57 1.02 0.67, 1.54 

 (Q3)  12.80-16.91 0.83 0.57, 1.21 0.86 0.57, 1.29 

 (Q4)  16.91-56.61 1.04 0.72, 1.52 1.09 0.74, 1.62 

 Per ln-unit PFOS 1.07 0.80, 1.43 1.15 0.84, 1.57 
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*Adjusted for maternal age, pre-pregnancy BMI, education completed, and smoking 

during pregnancy. 
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Table 4.8.  Odds ratios for preeclampsia diagnosis associated with plasma PFAS 

concentration (ng/mL) among 976 eligible pregnant women in the Norwegian Mother 

and Child Cohort Study. 

  Unadjusted 

OR 

95% CI Adjusted* 

OR 

95% CI 

PFOA (Q1)  0.32-2.11 1.  1.  

 (Q2)  2.12-2.77  1.03 0.72, 1.47 1.04 0.72, 1.50 

 (Q3)  2.77-3.56 0.97 0.68, 1.38 1.03 0.72, 1.49 

 (Q4)  3.56-11.28 0.89 0.62, 1.27 1.02 0.70, 1.47 

 Per ln-unit PFOA 0.85 0.63, 1.17 0.94 0.68, 1.29 

      

PFNA (Q1)  <LOQ-0.39 1.  1.  

 (Q2)  0.39-0.54 0.91 0.64, 1.30 1.01 0.70, 1.46 

 (Q3)  0.54-0.74 0.98 0.68, 1.39 1.17 0.81, 1.70 

 (Q4)  0.74-3.54 0.86 0.60, 1.23 1.01 0.69, 1.47 

 Per ln-unit PFNA 0.89 0.69, 1.14 0.99 0.76, 1.30 

      

PFDA (0)  <LOQ-0.10 1.  1.  

 (1)  0.10-1.74 0.84 0.66, 1.08 0.97 0.74, 1.28 

 Per ln-unit PFDA 0.89 0.76, 1.03 0.96 0.82, 1.13 

      

PFUnDA (Q1)  <LOQ-0.08 1.  1.  

 (Q2)  0.08-0.17  0.57 0.40, 0.81 0.60 0.42, 0.87 

 (Q3)  0.17-0.27  0.64 0.45, 0.92 0.72 0.50, 1.06 

 (Q4)  0.27-1.01  0.53 0.37, 0.77 0.65 0.44, 0.96 

 Per ln-unit PFUnDA 0.79 0.68, 0.92 0.86 0.73, 1.01 

      

PFHxS (Q1)  <LOQ-0.49 1.  1.  

 (Q2)  0.49-0.69 0.88 0.62, 1.26 0.84 0.58, 1.21 

 (Q3)  0.69-0.95 0.96 0.67, 1.37 0.94 0.66, 1.36 

 (Q4)  0.95-11.47 0.85 0.59, 1.21 0.95 0.65, 1.37 

 Per ln-unit PFHxS 0.88 0.72, 1.07 0.92 0.75, 1.13 

      

PFHpS (Q1)  <LOQ-0.09 1.  1.  

 (Q2)  0.09-0.15 1.17 0.82, 1.67 1.14 0.79, 1.64 

 (Q3)  0.15-0.22 0.99 0.69, 1.42 0.98 0.68, 1.41 

 (Q4)  0.22-1.19 1.02 0.72, 1.46 1.01 0.70, 1.46 

 Per ln-unit PFHpS 1.01 0.85, 1.20 1.01 0.85, 1.20 

      

PFOS (Q1)  1.44-9.66 1.  1.  

 (Q2)  9.67-12.79  1.19 0.83, 1.70 1.20 0.83, 1.73 

 (Q3)  12.80-16.91  0.85 0.60, 1.22 0.90 0.62, 1.29 

 (Q4)  16.91-56.61  1.10 0.77, 1.56 1.13 0.78, 1.62 

 Per ln-unit PFOS 1.11 0.84, 1.47 1.14 0.85, 1.53 

* Adjusted for maternal age, pre-pregnancy BMI, education completed, and smoking 

during pregnancy.
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Figure 4.1.  Directed acyclic graph describing the hypothesized associations between perfluoroalkyl substances, preeclampsia, and 

covariates.  
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4.2. Perfluoroalkyl substances and cardiometabolic clinical chemistries in plasma during 

pregnancy among women in the Norwegian Mother and Child Cohort Study
2
 

4.2.1. Introduction 

Perfluoroalkyl substances (PFASs) are persistent environmental contaminants 

detectable in the blood of human populations worldwide (2, 16), including nearly all 

Norwegians (36) and Americans (1).  PFASs are used in the manufacturing process of 

numerous industrial and consumer products, including surface treatments for fabrics and 

food packaging, fire-fighting foam, surfactants and pesticide additives (15).  They may 

enter the environment through release from industrial sources or through consumer 

products (10).   

Sources of exposure to PFASs in the general population may include food, 

drinking water, house dust, air, and breast milk (13, 14).  PFASs are highly resistant to 

degradation in the environment or metabolism in the body (11, 16).  The half-lives of 

perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and 

perfluorooctanoate (PFOA) are estimated to be 4.8 years, 7.3 years, and 2.3 years, 

respectively (19, 169).  PFASs are not lipophilic, and while the tissue distribution in 

humans is unknown, animal studies suggest that PFASs likely reside primarily in the 

liver, kidneys, and blood (17).  

Animal studies have demonstrated a number of adverse health effects associated 

with high-dose oral exposure to PFOS and PFOA, including hepatotoxicity, 

tumorigenesis, immunotoxicity, and developmental toxicity (11, 185).  Some adverse 

                                                 
2
A revised version of Section 4.2 was submitted to the journal Environment International in 2013 with the 

following co-authors: Stephanie M. Engel, Kristina W. Whitworth, David B. Richardson, Alison M. 

Stuebe, Julie L. Daniels, Line Småstuen Haug, Merete Eggesbø, Georg Becher, Azemira Sabaredzovic, 

Cathrine Thomsen, Ralph E. Wilson, Gregory S. Travlos, Jane A. Hoppin, Donna D. Baird, Matthew P. 

Longnecker. 
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effects in animals are believed to be mediated through the binding of PFASs to the 

peroxisome proliferator-activated receptor alpha (PPARα), which plays a role in the 

regulation of lipid and glucose metabolism in humans and rodents (83).   

In epidemiologic studies of highly exposed populations as well as populations 

with background levels of exposure, PFAS concentrations have been associated with 

altered lipid profiles that are consistent with increased risk of cardiovascular disease.  

These lipid alterations have included elevated plasma cholesterol, triglycerides, and uric 

acid (4-7).  The two PFASs typically present in human blood at the highest 

concentrations, PFOS and PFOA, have been studied most extensively, but recently 

researchers have begun to examine the lipid correlates of PFASs present at lower 

concentrations, including PFHxS and perfluorononanoic acid (PFNA) (7, 89).  The 

observed associations between PFASs and lipid concentrations have not been consistent 

across studies or across populations, possibly owing to the different age and sex 

distributions of the groups studied, the different sizes of the study populations, or the 

different settings (occupational versus general populations).   

To our knowledge, no previous studies of the associations between PFAS levels 

and plasma lipid concentrations have been conducted among pregnant women.  The 

relation between PFASs and lipids during pregnancy is particularly important to quantify 

for the following reasons: 1) pregnant women differ in their relative and absolute lipid 

concentrations (135), and may show different associations between PFASs and lipids as 

compared with non-pregnant women; and 2) altered plasma lipids during pregnancy, 

particularly elevated plasma triglycerides, are associated with a number of adverse 

outcomes, including preeclampsia (186) and pregnancy-induced hypertension (187).   
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A retrospective study of pregnancy outcomes among women in Ohio and West 

Virginia exposed to PFOA-contaminated drinking water found elevated odds of 

preeclampsia associated with higher levels of PFOA (8).  If pregnant women with higher 

PFAS levels also demonstrate the altered lipid patterns previously described in non-

pregnant populations, then this may suggest a mechanism by which plasma PFAS 

concentrations could be linked to an increased risk of preeclampsia.  In particular, 

elevations in triglycerides and certain types of low-density lipoprotein (LDL) particles 

are considered “pro-atherogenic” during pregnancy and may promote oxidative stress and 

endothelial damage leading to preeclampsia (188).  Elevated uric acid (hyperuricemia) 

during pregnancy is also a feature of preeclampsia (99).  Elevated C-reactive protein 

(CRP) in non-pregnant women is a marker of increased cardiovascular disease risk (147). 

We therefore measured cross-sectional associations between PFAS concentrations 

at mid-pregnancy and the levels of the following cardiometabolic clinical chemistries: 

total cholesterol, LDL cholesterol, high-density lipoprotein (HDL) cholesterol, 

triglycerides, uric acid, and CRP.  The purpose of this study was to increase 

understanding of the physiologic correlates of plasma PFAS concentration during 

pregnancy and to evaluate a possible mechanism of any associations that may exist 

between plasma PFAS concentrations and adverse pregnancy outcomes, including 

preeclampsia. 
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4.2.2. Material and Methods 

4.2.2.1. Cohort description and eligibility criteria 

The Norwegian Mother and Child Cohort Study (MoBa) is a prospective 

population-based pregnancy cohort conducted by the Norwegian Institute of Public 

Health (152, 153, 170).  The study was approved by the Regional Committee for Medical 

Research Ethics and the Norwegian Data Inspectorate.  Participants were recruited from 

all over Norway in 1999-2008.  In total, 39% of invited women participated.  Informed 

consent was obtained from each MoBa participant upon recruitment.  At the time of 

enrollment, women provided information via questionnaire regarding a number of 

demographic and lifestyle characteristics, as well as events in their reproductive and 

medical history.  Blood samples were obtained from the mother during pregnancy 

(median = 18 weeks of gestation).  Data obtained in MoBa were linked to the Medical 

Birth Registry of Norway (171).  Further details may be found at www.fhi.no/morogbarn.  

The current study is based on version 4.301 of the quality-assured data files released for 

research. 

 The current analysis uses data that were previously collected for a case-control 

study of PFASs and subfecundity (41).  For the previous study, 400 pregnancies were 

randomly selected from all eligible MoBa participants who met criteria for subfecundity 

(defined as self-reported time to pregnancy of greater than 12 months), and 550 

pregnancies were randomly selected from all eligible MoBa participants who reported a 

time to pregnancy of any duration.  To be eligible for selection into the previous study, 

women must have enrolled in MoBa in 2003-2004, delivered a live-born child, provided 

a mid-pregnancy plasma sample, and provided complete information about time to 

http://www.fhi.no/morogbarn
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pregnancy on the enrollment questionnaire.  From the 950 participants in the previous 

study, 889 women with complete information on covariates and outcomes of interest 

were included in the present analysis. 

 

4.2.2.2. Collection and analysis of plasma samples 

 At the time of study enrollment, maternal non-fasting blood samples were 

collected in EDTA tubes at hospitals and maternity units across Norway and shipped at 

ambient temperature to the MoBa biorepository in Oslo.  The majority of samples were 

received and processed the day after collection (153).  At the biorepository, plasma was 

separated, aliquoted, and stored at -80 degrees Celsius. Changes in PFAS concentrations 

in transit are believed to be negligible, as PFASs are chemically stable (173), and a recent 

study showed no evidence of change over time in concentrations of four PFASs in serum 

maintained at room temperature for 10 days (156).  Lipid concentrations are also 

expected to be relatively unchanged during shipping; a previous study demonstrated that 

lipid measurements changed by only a small percentage (<7% for LDL, <4% for HDL, 

total cholesterol, and triglycerides) when whole blood was kept at room temperature (21 

degrees Celsius) in EDTA tubes for up to 7 days (189). 

 

4.2.2.3. Exposure measurement 

Concentrations (ng/mL) of nineteen PFASs were measured in maternal plasma 

using high-performance liquid chromatography/tandem mass spectrometry at the 

Norwegian Institute of Public Health.  Details of the analytic process have been published 

previously (155).  Analyses were restricted to the seven PFASs present in at least 50% of 
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samples: perfluorooctane sulfonate (PFOS), perfluoroheptane sulfonate (PFHpS), 

perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorononanoic 

acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA).  

The limit of quantification (LOQ) was 0.05 ng/mL for these seven PFASs.  For 

quantification of PFOS, the total area of linear and branched isomers was integrated.  A 

total of 50 blinded, pooled specimens were analyzed in the same batches as the sample 

specimens for quality assurance/quality control (QA/QC) purposes. Inter-assay 

coefficients of variation were calculated for each PFAS. 

 

4.2.2.4. Outcome measurement  

 Plasma lipid parameters (total cholesterol, HDL cholesterol, LDL cholesterol, and 

triglycerides) as well as uric acid and CRP were measured in the same mid-pregnancy, 

non-fasting plasma sample that was used to evaluate PFAS concentrations.  All analytes 

were measured with an Olympus AU400e Clinical Chemistry Analyzer at the National 

Institute of Environmental Health Sciences, using reagents from Beckman Coulter and 

Genzyme Diagnostics.  The method used to measure LDL was direct enzymatic (N-

geneous® LDL-ST cholesterol reagent).  Inter-assay coefficients of variation were 

calculated for all lipid parameters based on the 50 QA/QC samples. 

 

4.2.2.5. Covariates  

Information on maternal characteristics was derived from the MoBa baseline 

questionnaire and from the Medical Birth Registry of Norway (MBRN).  Variables 

considered to be potential confounders based on the prior literature were: maternal age (5, 
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7, 89, 90), pre-pregnancy body mass index (BMI) (60), nulliparous or most recent 

interpregnancy interval (41, 60), duration of breastfeeding most recent child (41), 

maternal years of education (5, 89), current smoking at mid-pregnancy (5, 7, 89, 90), 

gestational weeks at blood draw (60), and amount of oily fish consumed daily at the time 

of the mid-pregnancy questionnaire (90, 178).   

Additionally, for models with HDL cholesterol as the outcome, adjustment for 

plasma albumin concentration (g/dL; quartiles) was considered due to the positive 

correlation observed between HDL and plasma albumin.  Albumin was measured in the 

mid-pregnancy maternal plasma sample with an Olympus AU400e Clinical Chemistry 

Analyzer at the National Institute of Environmental Health Sciences, using reagents from 

Beckman Coulter.  The method of measurement was direct and utilized a neutral buffered 

solution of bromocresol green as a dye binding indicator. 

 

4.2.2.6. Statistical analysis  

Weighted multiple linear regression was used to estimate the association between 

each PFAS concentration and each continuous clinical chemistry outcome.  Weighted 

logistic regression was used to estimate the association between each PFAS concentration 

and each binary clinical chemistry outcome.  Weights were based on the inverse 

probability of selection into the original case-control study (41), as described in 

Richardson et al. (166).  A sensitivity analysis was performed to examine whether 

restricting to the women who were selected without regard to subfecundity (the ‘base 

sample’) would produce results that closely resembled the results of the weighted 

analysis.  Additional sensitivity analyses examined whether (1) adjustment for 
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subfecundity rather than weighting, or (2) restriction of the study population to 

nulliparous women only, would influence results. The analysis of nulliparous women 

only was performed only with adjustment for subfecundity rather than weighting because 

the additional restrictions on eligibility rendered the previous selection weights invalid. 

Concentrations of PFASs were treated in three ways for the purposes of analysis: 

(1) as quartiles, with the lowest quartile serving as the referent category (with the 

exception of PFDA, which was categorized only at or above versus below the median due 

to >25% of values below the limit of quantification), (2) as natural-log transformed 

continuous variables to assess linear trends, and (3) combined into a single “multiple high 

exposure” variable which was equal to 1 if all PFAS concentrations measured for a given 

participant were in the highest category of the observed distribution.  In models using 

quartiles of exposure, beta-coefficients represent the change in clinical chemistry 

outcome associated with each of the upper quartiles, relative to the lowest quartile of 

PFAS concentration.  In models using natural log-transformed continuous exposures, the 

beta-coefficients represent the change in clinical chemistry outcome associated with each 

natural log-unit increase in each PFAS.  Additionally, the change in clinical chemistry 

outcome associated with an interquartile-range (IQR) shift in each continuous ln-PFAS 

(from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution) is 

reported.  For PFDA, because more than 25% of values were below the LOQ, the IQR 

was estimated from the observed portion of the log-normal distribution.  For all PFASs, 

values below the LOQ were replaced by the expected value of the log-normal 

distribution, given that the value was below the limit of quantification; this was 
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calculated as the mean of values below the limit of quantification randomly drawn from 

the estimated log-normal distribution (175). 

Each lipid parameter or clinical chemistry outcome was treated as a continuous 

outcome variable in a separate model with a single PFAS exposure variable.  Plasma 

triglycerides and CRP were natural-log transformed in order to meet the modeling 

assumption of normally distributed residuals.  For simplicity and comparability, models 

for all six lipid parameters and clinical chemistry outcomes were adjusted for the same 

covariate set.  Covariates were selected through the construction of a directed acyclic 

graph (DAG) representing the existing literature (Figure 4.2), and the identification of a 

minimally sufficient set of variables to control confounding.  The DAG was primarily 

based on expected confounders of the PFAS-HDL association but was also generalizable 

to the other outcomes.  The minimally sufficient adjustment set was identified using 

DAGitty v1.0 (www.dagitty.net).   

All covariates were modeled as categorical variables to allow for non-linear 

associations.  The categorization of covariates was as follows: maternal age (<24, 25-29, 

30-34, >=35 years); pre-pregnancy BMI (<25, 25-29.99, >=30 kg/m
2
); maternal 

education (less than high school, completed high school, some college, 4 or more years of 

college); smoking at mid-pregnancy (yes/no), oily fish consumed (0-3.0, 3.1-7.5, 7.6-

14.9, 15-100 g/day); gestational age at blood draw (12-16, 17-18, 19-20, 21-37 weeks); 

nulliparous or most recent interpregnancy interval (nulliparous, 4-23, 24-47, 48-245 

months); and breastfeeding duration in previous pregnancy (nulliparous or <1, 1-5, 6-11, 

12-17, 18-36 months).  Subjects were excluded from the analysis if they had missing 

values for any modeled covariates.  

http://www.dagitty.net/


 

87 

 

 Some PFASs were moderately or highly correlated with other measured PFASs.  

Spearman rank-order correlations were calculated between each pair of PFASs.  In order 

to explore the possible influence of confounding by correlated PFASs in single-pollutant 

models, a multiple-pollutant model was estimated for HDL cholesterol.  In the multiple-

pollutant model, all seven PFASs detectable in >50% of samples were included in the 

same model as natural-log transformed continuous variables.  The variance inflation 

factors for each of the exposures in this model were examined to assess collinearity.  

Finally, an empirical Bayes model was fitted for HDL in which all coefficients for each 

ln-PFAS were shrunk to a common mean.  The empirical Bayes model lends stability to 

estimates of highly correlated exposures by assuming that all coefficients for each 

exposure-outcome association are drawn from a common distribution.  Each individual 

coefficient is shrunk toward the mean of this common distribution. All statistical analyses 

were performed using SAS 9.3 (SAS Institute, Cary, NC). 

 

4.2.3. Results 

 The sample size for this analysis was 889 women with complete data on all 

covariates.  Each of the individual covariates had missing data for <3% of participants.  

Participants ranged in age from 19 to 44 (Table 4.9).  Half of the women had no previous 

live births or stillbirths (50%), while 3% had three or more previous pregnancies.  A total 

of 8% reported smoking during pregnancy.  The range of gestational age at the time of 

blood draw was from 12 weeks to 37 weeks; however, the majority of women (99%) 

provided plasma samples during their second trimester of pregnancy (14-26 weeks’ 
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gestation), and 73% of participants provided plasma samples between 17 and 20 weeks of 

gestation. 

 Of the nineteen PFASs measured, only seven were detectable in greater than 50% 

of samples: PFOA, PFNA, PFDA, PFUnDA, PFHxS, PFHpS, and PFOS.  Further 

analyses were restricted to these seven compounds.  PFDA was detectable in 70% of 

samples, while the six other PFASs were detectable in at least 88% of samples (Table 

4.10).  PFOS and PFOA were detectable in 100% of samples.  The highest median 

concentration was observed for PFOS (13.03 ng/mL), followed by PFOA, then PFHxS, 

PFNA, PFUnDA, PFHpS, and finally PFDA (0.09 ng/mL).   

 A number of the PFASs demonstrated moderate to high pairwise correlations 

(Table 4.11).  The most strongly correlated PFASs were PFNA and PFDA (ρ=0.71).  The 

least correlated PFASs among the seven were PFUnDA and PFHpS (ρ=0.17).  In general, 

the sulfonates (PFHxS, PFHpS, PFOS) were relatively highly correlated with one another 

(ρ=0.53-0.59) while the pairwise correlations among the carboxylates (PFOA, PFNA, 

PFDA, PFUnDA) were more variable (ρ=0.26-0.71). 

 The median plasma concentration for total cholesterol was 211 mg/dL, for HDL 

was 67 mg/dL, for LDL was 125 mg/dL, for triglycerides was 124 mg/dL, for uric acid 

was 3.2 (mg/dL), and for CRP was 4.4 mg/L (Table 4.12).  One participant was missing 

data for all clinical chemistry analytes; another participant had a missing value for C-

reactive protein only.  The distribution of plasma total cholesterol, HDL cholesterol, and 

LDL cholesterol was approximately normal while the distributions of plasma 

triglycerides and C-reactive protein demonstrated positive skew.  Triglycerides and C-

reactive protein were therefore natural-log transformed in subsequent analyses.  Two 
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implausibly low values for HDL cholesterol (2.5 mg/dL) and triglycerides (2.5 mg/dL), 

and one implausibly high value for C-reactive protein (250 mg/L) were excluded and the 

values were treated as missing.   

Lipid concentrations were moderately to highly correlated with one another; the 

highest correlation was observed between total cholesterol and LDL (ρ=0.88), while total 

cholesterol was only moderately correlated with HDL (ρ=0.36) and ln-triglycerides 

(ρ=0.34).  HDL and LDL were very weakly correlated (ρ=0.06, p>0.05), while HDL and 

ln-triglycerides were negatively correlated (ρ= -0.29, p<0.05).  Uric acid and C-reactive 

protein were moderately correlated with one another (ρ=0.23), and C-reactive protein was 

moderately correlated with triglycerides (ρ=0.26) 

Total cholesterol was positively associated with ln-PFOS as a continuous variable 

(Table 4.13).  Each ln-unit increase in PFOS was associated with an increase of 8.89 

mg/dL (95% CI=1.64, 16.14) in total cholesterol.  For each IQR-unit increase in ln-

PFOS, total cholesterol increased by 4.22 mg/dL (95% CI=0.78, 7.66).  The latter change 

represents an increase of 2.0% over the median concentration of total cholesterol in this 

population.  The third and fourth quartiles of PFOS had elevated total cholesterol as 

compared to the first quartile, but the confidence intervals were imprecise.   

The single pollutant model for the association between ln-PFOS and total 

cholesterol was additionally adjusted for ln-PFUnDA to evaluate whether this PFAS, 

which appeared to confound the PFAS-HDL associations, also might have produced bias 

in the PFOS-total cholesterol association observed.  There was no evidence of 

confounding bias by ln-PFUnDA on the PFOS-total cholesterol association in the 

adjusted model.  The covariate-adjusted change in total cholesterol associated with a 1 ln-
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unit change in PFOS without adjustment for ln-PFUnDA was 8.89 (95% CI=1.64, 16.14); 

in the model further adjusted for ln-PFUnDA the change in total cholesterol for a 1-ln-

unit change in PFOS was 10.26 (95% CI=2.35, 18.16). 

None of the other PFASs had notable linear associations with total cholesterol; in 

addition, the quartile estimates generally did not provide support for monotonic dose-

response relationships between PFASs and total cholesterol.   

In adjusted quartile analyses, all seven PFASs had higher HDL cholesterol 

associated with the highest quartile of exposure, relative to the lowest quartile of 

exposure (or, in the case of PFDA, associated with concentration at or above the median 

versus below the median) (Table 4.14).  Additionally, PFOS, PFNA, PFDA, PFUnDA, 

and PFHxS showed positive linear associations with HDL cholesterol in adjusted models.  

The strongest evidence supporting a monotonic dose-response relationship with HDL was 

observed for PFUnDA, which had the highest quartile-specific associations as well as the 

largest associated change in HDL.  For each natural log-unit increase in PFUnDA, HDL 

increased by 4.05 mg/dL (95% CI=2.76, 5.35).  For each IQR-unit increase in ln-

PFUnDA, HDL increased by 3.71 mg/dL (95% CI=2.52, 4.90).  This change represents 

an increase of 5.5% over the median concentration of HDL cholesterol in this sample. 

The other six PFASs also demonstrated some evidence of an exposure-response 

relationship with HDL in adjusted quartile analyses, although in general the association 

was driven by the highest quartile of exposure.  Each IQR-unit increase in ln-PFNA was 

associated with an increase of 1.67 mg/dL HDL (95% CI=0.57, 2.76); each IQR-unit 

increase in ln-PFDA was associated with an increase of 2.57 mg/dL HDL (95% CI=1.23, 
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3.90); and each IQR-unit increase in ln-PFOS was associated with an increase of 2.08 

mg/dL HDL (95% CI=1.12, 3.04).   

Adjustment for plasma albumin concentration (quartiles) tended to reduce the 

magnitude of the associations between each PFAS quartile and HDL cholesterol (Table 

4.15).  On average, the difference in HDL cholesterol between the lowest and highest 

quartile of PFAS was reduced by 15% with the inclusion of plasma albumin in the model.  

The coefficients for the linear associations between continuous natural-log transformed 

PFAS variables and continuous HDL were attenuated by 16% on average, but remained 

elevated.   

All seven PFASs were included as continuous natural-log transformed exposure 

variables in the same model to determine their mutually-adjusted associations with HDL.  

The coefficients for all PFASs were attenuated, with the exception of PFUnDA, which 

remained strongly associated with HDL (Table 4.16).  The change in HDL for each ln-

unit of PFNA was reduced dramatically from 2.84 mg/dL (95% CI=0.97, 4.71) to -2.04 

(95% CI=-5.09, 1.00) in the adjusted multiple pollutant model.  By contrast, the change 

in HDL for each ln-unit of PFUnDA decreased only slightly from 4.05 mg/dL (95% 

CI=2.76, 5.35) to 3.96 mg/dL (95% CI=2.05, 5.88).  The multiple pollutant model 

therefore confirmed the strong association between PFUnDA and HDL.  The influence of 

including the other six PFASs in the multiple pollutant model was generally much 

stronger than the influence of adjustment for covariates in the single pollutant models.  

The multiple pollutant model did not show evidence of multicollinearity; all variance 

inflation factors for the PFAS variables were <4.   
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A multiple pollutant empirical Bayes model was also fitted for HDL, including 

only the 524 participants selected without regard to subfecundity (base sample).  In the 

empirical Bayes model, beta-coefficients were shrunk to a common mean (Table 4.17).  

The changes in beta-coefficients between the multiple pollutant model and the empirical 

Bayes model were minimal, as compared to the changes between the single pollutant and 

multiple pollutant model estimates (Figure 4.3). 

In adjusted models for LDL cholesterol, the beta-coefficient for a 1 ln-unit change 

in PFOS was elevated, but the confidence interval was wide and included the null (Table 

4.18); each ln-unit shift in PFOS was associated with a change of 6.43 mg/dL LDL (95% 

CI= -0.12, 12.97).  The second quartile of PFOS concentration was associated with a 

decrease in LDL concentration relative to the first quartile, while the third and fourth 

quartiles of PFOS concentration were associated with elevated LDL.  None of the other 

six PFASs were associated with LDL. 

Linear associations between PFASs and triglycerides were not observed (Table 

4.19).  The fourth quartile of PFUnDA concentration was associated with small decrease 

in ln-triglycerides (-0.08 ln-mg/dL, 95% CI= -0.16, -0.01) relative to the first quartile.  

None of the other PFASs were associated with triglycerides in quartile-based or 

continuous models.  Similarly, no associations between ln-PFAS and uric acid were 

observed, either in linear or quartile-based analyses (Table 4.20). 

There was some indication of an inverse association between PFNA and natural 

log-transformed CRP (Table 4.21).  The change in CRP for each ln-ng/mL change in 

PFNA was -0.15 ln-mg/L (95% CI = -0.28, -0.03); each IQR-unit shift in PFNA was 

associated with a change of -0.09 ln-mg/L of CRP (95% CI = -0.16, -0.02).  The fourth 
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quartile of PFNA was also associated with lower ln-C-reactive protein relative to the first 

quartile (-0.23 ln-mg/L, 95% CI = -0.41, -0.05).  None of the other PFASs were 

associated with CRP in quartile-based or continuous models. 

When the lipid parameters and cardiometabolic clinical chemistries were 

examined as binary outcome variables corresponding to above or below the upper 

quartile of the observed distribution, the results were similar to the results of the 

continuous outcome models (Tables 4.22-4.27).  PFUnDA and PFDA were both 

associated with reduced odds of low HDL (below the 25
th

 percentile; Table 4.23).  For 

PFDA, the adjusted odds ratio for low HDL associated with PFDA concentration at or 

above the median relative to below the median was OR=0.55 (95% CI=0.36, 0.84).  For 

PFUnDA, the adjusted odds ratio for low HDL associated with the highest quartile of 

PFUnDA concentration relative to the lowest quartile was OR=0.29 (95% CI=0.16, 0.55).  

The second quartile of PFUnDA was associated with reduced odds of high triglycerides 

(above the 75
th

 percentile; Table 4.25), OR=0.52 (95% CI=0.30, 0.89), as was the highest 

quartile of PFHpS (OR=0.56, 95% CI=0.31, 0.99).  The highest categories of PFDA, 

PFUnDA, and PFHxS were associated with reduced odds of high CRP (Table 4.27). 

Additional sensitivity analyses were performed to examine the robustness of 

results to different modeling strategies.  Restricting the analysis to the 524 women with 

complete covariate and outcome data who were selected without regard to subfecundity 

produced quartile effect estimates that were similar to those produced by the weighted 

models, although the confidence limits were wider due to the smaller sample size (Tables 

4.28-4.33).   
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The influence of weighting for prior selection by subfecundity was evaluated by 

adjusting for subfecundity (prior case status) and performing unweighted analyses.  

Estimates did not change systematically from the weighted estimates (Tables 4.34-4.39). 

The unweighted analysis was additionally restricted to nulliparous women only, 

in order to examine whether observed associations differed in this subpopulation as 

compared to the larger sample.  When adjusted analyses were restricted to nulliparous 

women only, confidence intervals widened further but the overall interpretation of results 

did not change, with the possible exception of stronger inverse associations with natural 

log-transformed triglycerides (Tables 4.40-4.45).   

Finally, exposure was defined as a binary variable, “multiple high exposure,” 

which was equal to 1 when the measured concentrations of all seven PFASs were in the 

highest quartile of the observed distribution.  The results of linear regression of each 

clinical chemistry outcome on this binary exposure variable were similar to the results of 

the single pollutant analyses, showing a positive linear association with HDL cholesterol, 

and a weak inverse association with natural-log transformed triglycerides (Table 4.46). 

 

4.2.4. Discussion  

 Among pregnant women from a population with background levels of PFAS 

exposure, plasma concentrations of all seven PFASs examined were positively associated 

with HDL cholesterol.  The observed associations are consistent with the findings of 

some previous cross-sectional studies, but inconsistent with others.  A recent study of 723 

non-pregnant Inuit adults with background levels of PFOS exposure showed a positive 

association between PFOS and HDL cholesterol in both men and women (90).  Among 
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12,476 children and adolescents from a highly PFOA-exposed community in Ohio and 

West Virginia, serum PFOS was positively associated with HDL cholesterol (57).  

However, other studies have reported no association between PFASs and HDL 

cholesterol (5, 7), and one recent study of highly PFOA-exposed male workers in China 

reported an inverse association between PFOA and HDL (88). 

Evidence of a linear association between PFOS and total cholesterol was also 

observed in the present study, but no evidence of association between other PFASs and 

total cholesterol.  A number of previous studies have described positive associations 

between multiple PFASs and total cholesterol.  Among adults and children in the highly 

PFOA-exposed Ohio and West Virginia population, both PFOA and PFOS (the latter was 

not elevated above background levels) were positively associated with serum total 

cholesterol (5, 57).  Studies of highly exposed, predominantly male, adult workers have 

reported positive cross-sectional associations between PFOA and total cholesterol (4, 38, 

56).  However, some studies have reported null or inverse associations.  A study of non-

pregnant adults in the general U.S. population described positive associations between 

PFOS, PFOA, PFNA and total cholesterol, but an inverse association between PFHxS 

and total cholesterol (7).  A recent study of non-pregnant adult Canadians reported a 

positive association between PFHxS and total cholesterol, but no significant associations 

between PFOA or PFOS and total cholesterol in weighted analyses (89). 

We observed no associations between any PFAS and LDL cholesterol, either in 

quartile analyses or when each PFAS was treated as a continuous variable.  Similarly, 

there were no linear associations between PFASs and triglycerides, although the highest 

quartile of PFUnDA exposure and the second quartile of PFHpS were associated with 
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slight decreases in triglycerides.  The existing literature on this topic is inconclusive, with 

previous studies reporting either positive or no associations between PFASs and LDL 

cholesterol or triglycerides.  Among adults and children in the highly PFOA-exposed 

Ohio and West Virginia population, PFOA concentrations were positively associated 

with LDL cholesterol and triglycerides; PFOS was positively associated with LDL 

cholesterol in both adults and children, and with triglycerides in adults only (5, 57).  

However, among non-pregnant Inuit adults, no association was observed between PFOS 

and LDL cholesterol (90).  In one occupational study, PFOA concentration was positively 

associated with serum LDL cholesterol but not with triglycerides (56), while in another 

occupational study both PFOS and PFOA were positively associated with triglycerides 

(LDL not analyzed) (4). 

Our study provided no strong evidence for associations between PFASs and uric 

acid or CRP.  A previous study of highly PFOA-exposed adults found positive 

associations with uric acid for both PFOS and PFOA (6).  In occupationally exposed 

individuals, PFOA was positively associated with uric acid, but not with CRP (38). 

The median plasma concentrations of the seven PFASs in this study were 

comparable to reported serum levels from 2006 in Norway (36) and somewhat lower than 

reported serum levels from the United States in the same year (12).  Plasma and serum 

measurements of PFASs have been shown to be approximately equal for a particular 

subject at a given time (190).  Therefore the PFAS concentrations measured in the current 

study are comparable to the magnitude of exposure observed in previous studies of 

background-exposed populations. 
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This study is the first to specifically examine associations between PFASs and 

cardiometabolic clinical chemistries in pregnant women.  Some previous studies (7, 90) 

excluded pregnant women, who are known to have altered lipid metabolism relative to 

non-pregnant women.  Normal pregnancy is characterized by substantial changes in the 

concentration of various constituents of plasma relative to the non-pregnant state.  

Notably, total cholesterol rises 25-50% over non-pregnant levels (135) and triglycerides 

are typically elevated 200-400% times over pre-pregnant levels by late pregnancy (134, 

137).  HDL cholesterol also increases by approximately 40% over non-pregnant levels 

(134).  The composition of HDL particles also changes during pregnancy, such that each 

particle contains a greater proportion of cholesterol and acylglycerols, but without an 

increase in phospholipid content (191). 

PFOA and PFOS concentrations in pregnant women have been reported to be 

somewhat lower than in non-pregnant women (192); in one study this difference persisted 

after adjustment for plasma volume changes (via hemoglobin/hematocrit ratio) as well as 

demographic and lifestyle factors (193).  The observed differences may be due to the 

residual confounding effects of normal plasma volume expansion during pregnancy, but 

may also suggest transfer of PFASs to the fetus, or increased excretion of PFASs during 

pregnancy (194).  Given these differences in both lipids and PFASs during pregnancy, it 

is plausible that whatever causal or non-causal mechanism leads to observed associations 

between PFASs and lipids, the associations may differ in pregnant women relative to 

non-pregnant women. 

 The biological mechanism that may lead to positive associations between plasma 

PFAS concentrations and lipids in humans is largely unknown.  PFAS are known to 
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activate PPARα, a receptor involved in regulating gene expression related to lipid and 

glucose metabolism, but the activation of this receptor in humans tends to produce lower 

lipid concentrations (195).  While some of the toxic effects of PFOA in animals are 

believed to operate through activation of PPARα, evidence suggests that the toxicity of 

PFOS may occur through alternate mechanisms, independent of PPARα (82, 83).  

Recently, toxicologists have begun to study PFASs other than PFOA and PFOS, and have 

demonstrated varying strength of PPARα activation associated with PFASs of different 

chain lengths (196, 197). The relative proportion of biological effects due to PPARα-

dependent mechanisms and PPARα-independent mechanisms may vary across PFASs. 

The investigation of potential health effects due to PFASs other than PFOA and 

PFOS is particularly important given that human exposure to these less-studied PFASs 

may be increasing (12).  Certain PFASs that previously appeared in human serum at low 

concentrations, such as PFHxS, have been used to replace PFOS in household stain-

proofing and other applications following the phase-out of PFOS in 2000-2002, and 

therefore we may expect higher human exposures in the future (198, 199).  As previously 

noted, a study of non-pregnant individuals in the US general population found opposite 

lipid associations with PFHxS as compared to the other PFASs studied (PFOA, PFOS, 

PFNA) (7), highlighting the importance of examining the effects of different PFASs 

separately. 

As multiple PFASs tend to be correlated with one another, it is possible that the 

results observed in single-exposure models are partially due to the confounding influence 

of one or more correlated PFAS species.  In the present study, the results of the model 

that included all seven PFASs suggested that PFUnDA had the strongest positive 
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association with HDL, and that the associations between HDL and other PFASs observed 

in single-exposure models may have been biased due to confounding by exposure to 

PFUnDA.  PFUnDA was the longest-chain PFAS examined here, but we are not aware of 

any research suggesting that it has higher potency or biological activity in humans 

relative to the shorter-chain PFASs.  Toxicology studies will be required to establish the 

relative biological activity of PFASs of different chain lengths. 

A limitation of this study is the cross-sectional design, which does not allow 

causal interpretation of the findings.  Non-causal explanations for the findings may 

include unmeasured confounding or pharmacokinetics.  A recent laboratory study 

explored whether previously observed cross-sectional associations between PFASs and 

plasma lipid parameters could be explained by the distribution of PFASs into lipoprotein 

fractions, and concluded that this partitioning was not a sufficient explanation for the 

dose-response associations observed (182).  However, the same study found that of the 

small proportion of each PFAS (for example, <25% of PFOS) that resided in the non-

lipoprotein-depleted portion of the plasma, a somewhat larger percentage was recovered 

from the HDL subfraction relative to the LDL and VLDL subfractions (182), raising the 

possibility of a special affinity between HDL and some PFASs.  Researchers may wish to 

further examine whether this affinity could account for the association observed here 

between HDL and PFASs in plasma. 

 Another potential limitation of this study is the use of non-fasting plasma lipid 

parameters.  Fasting for 8-12 hours is typically recommended prior to lipid screening.  

However, researchers have observed minimal changes in lipid profiles following typical 

food intake (200).  Additionally, non-fasting triglycerides may be more strongly 
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associated with cardiovascular disease risk in women than fasting triglycerides (201).  

Our study also employed a single measurement of plasma lipid concentrations.  As these 

measurements may vary over time, multiple measures are preferred to establish lipid 

profiles for cardiovascular risk (202).  Finally, our study did not consider dietary 

components other than oily fish that may influence lipid concentrations. 

In general, the findings lend only modest support to a possible mechanism by 

which PFASs concentrations during pregnancy may be related to adverse pregnancy 

outcomes.  Lipid disturbances in early and late pregnancy associated with preeclampsia 

include elevated triglycerides (141, 186), as well as higher total cholesterol and LDL, and 

typically lower HDL cholesterol (203, 204), although one study noted slightly higher 

HDL at mid-pregnancy among women who subsequently developed severe preeclampsia 

as compared with controls (141).  We found no evidence of elevated triglycerides 

associated with PFAS concentrations in pregnant women.  The positive associations we 

observed between multiple PFASs and HDL cholesterol are not consistent with elevated 

risk of preeclampsia.  However, we did observe a positive linear association between 

PFOS and total cholesterol, and higher total cholesterol is associated with elevated risk of 

preeclampsia.  

 

4.2.5. Conclusions 

This study provides evidence of PFAS-specific associations with lipids in 

pregnant women.  Specifically, plasma PFOS concentration during pregnancy was 

positively associated with total cholesterol, and multiple PFASs were positively 

associated with HDL cholesterol.  While the latter finding is not consistent with lipid 
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profiles that have been associated with adverse pregnancy outcomes, the association 

between PFOS concentrations and cholesterol during pregnancy merits further 

investigation in a longitudinal study to determine whether or not it is likely to be causal. 

Elevated total cholesterol during pregnancy is associated with adverse pregnancy 

outcomes, including preeclampsia, which can result in harm to the mother and developing 

fetus. 
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Table 4.9. Characteristics of 889 pregnant women enrolled in the Norwegian Mother and 

Child Cohort Study (2003-2004) and previously selected for a case-control study of 

subfecundity. 

 

 N %  N % 

Age (years)   Time to pregnancy (months)   

     19-24 54 6      <3 292 33 

     25-29 262 29      3-6 145 16 

     30-34 397 45      7-12 54 6 

     35-44 176 20      >12  396 45 

      

Pre-pregnant body mass 

index (kg/m
2
) 

  Previous live births or stillbirths   

     14.9-<25.0  528 59      0  446 50 

     25.0-<30.0
 
 240 27      1    307 35 

     30.0-45.4 121 14      2  111 12 

        3 + 25 3 

Education completed       

     Less than high school 73 8 Interpregnancy interval (months)   

     Completed high school 287 32      No previous births/stillbirths 446 50 

     Some college 372 42      4-23 106 12 

     4 or more years college 157 18      24-47  177 20 

        48-245 160 18 

Smoking at mid-pregnancy      

     Yes  72 8    

     No    817 92 Breastfeeding duration in 

previous pregnancy (months) 

  

        No previous births/stillbirths 446 50 

Oily fish consumed (g/day)        <1 560 13 

     0-3.0  230 26      1-5 39 4 

     3.1-7.5   224 25      6-11  146 16 

     7.6-14.9  215 24      12-17  119 13 

     15-100    220 25      18-36  25 3 

      

Gestational week at blood 

draw 

  Trimester of pregnancy at blood 

draw 

  

     12-16 151 17      First (12-13 weeks) 6 0.7 

     17-20 651 73      Second (14-26 weeks) 879 99 

     21-37 87 10      Third (27-37 weeks) 4 0.4 



 

 

  

1
0
3
 

Table 4.10.  Plasma concentrations (ng/mL) of seven perfluoroalkyl substances detectable in at least 50% of samples from 889 

pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004.  

   Carbon       

  Percent Chain         Percentile  

 Abbreviation Detectable Length
a
 5

th
 25

th
 50

th
 75

th
 95

th
  CV

b
 

Perfluorocarboxylic Acids       

     Perfluorooctanoic acid PFOA 100.0 8 1.05 1.67 2.25 3.03 4.43 6.7 

     Perfluorononanoic acid PFNA 99.9 9 0.17 0.29 0.39 0.51 0.81 15.6 

     Perfluorodecanoic acid PFDA 70.3 10 <LOQ
c
 <LOQ 0.09 0.15 0.27 18.1 

     Perfluoroundecanoic acid PFUnDA 94.0 11  <LOQ 0.13 0.22 0.33 0.57 32.8 

Perfluorosulfonic Acids       

     Perfluorohexane sulfonate PFHxS 99.8 6 0.27 0.44 0.60 0.87 1.87 13.2 

     Perfluoroheptane sulfonate PFHpS 88.0 7 <LOQ 0.09 0.13 0.19 0.32 44.5 

     Perfluorooctane sulfonate PFOS 100.0 8 6.90 10.32 13.03 16.60 24.34 11.3 
a
 Chain length for perfluorocarboxylic acids includes the carbon in the carboxyl group. 

b
 Coefficient of variation, inter-assay, was calculated as (weighted standard deviation of batch means / weighted mean of batch 

means)*100 for the 50 pooled control samples, weighted by the number of pooled control samples in each analytic batch. 
c
 Limit of quantification.  
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Table 4.11.  Spearman correlation coefficients among plasma concentrations (ng/mL) of seven perfluoroalkyl substances 

detectable in at least 50% of samples from 889
a
 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 

2003-2004. 

 

PFOA PFNA PFDA PFUnDA PFHxS PFHpS PFOS 

PFOA -       

PFNA 0.62 -      

PFDA 0.42 0.71 -     

PFUnDA 0.26 0.56 0.60 -    

PFHxS 0.57 0.51 0.32 0.32 -   

PFHpS 0.48 0.43 0.24 0.17 0.53 - 

 PFOS 0.64 0.66 0.44 0.44 0.59 0.59 - 
 

            
a
 Values below the limit of quantification are excluded; sample size differs for each pairwise correlation. 
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Table 4.12.  Distribution of plasma lipid concentrations among 889 pregnant women enrolled in the Norwegian Mother and 

Child Cohort Study, 2003-2004. 

 Percentile    

 5
th

 25
th

 50
th

 75
th

 95
th

  CV
a
   

Total cholesterol (mg/dL) 158 189 211 233 276 2.5   

High-density lipoprotein cholesterol (mg/dL) 47 58 67 75 88 4.0   

Low-density lipoprotein cholesterol (mg/dL) 81 107 125 147 178 4.3   

Triglycerides (mg/dL) 74 98 124 158 217 8.7   

Uric Acid (mg/dL) 2.2 2.7 3.2 3.6 4.3 2.4   

C-reactive protein (mg/L) 1.1 2.8 4.4 7.9 17.1 2.3   
a
 Coefficient of variation, inter-assay, was calculated as (weighted standard deviation of batch means / weighted mean of batch 

means)*100 for the 50 pooled control samples, weighted by the number of pooled control samples in each analytic batch. 
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Table 4.13.  Weighted
a
 linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and total cholesterol (mg/dL) among 889 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004. 

   Adjusted
b
 

LSM
c
 or β 

 

95% CI
d
 

PFOA Quartile 1 (referent)  206.93   

 Quartile 2  1.27 -6.73, 9.26 

 Quartile 3  3.39 -4.67, 11.46 

 Quartile 4  3.74 -5.17, 12.64 

 Per ln-unit (PFOA)
e
  2.48 -4.42, 9.38 

 Per IQR(ln-PFOA)
f
  1.49 -2.65, 5.64 

PFNA Quartile 1 (referent)  210.01   

 Quartile 2  -5.05 -12.54, 2.43 

 Quartile 3  -3.84 -11.55, 3.87 

 Quartile 4  2.25 -6.43, 10.94 

 Per ln-unit (PFNA)  0.00 -6.00, 5.99 

 Per IQR(ln-PFNA)  0.00 -3.52, 3.51 

PFDA Below median (referent)  207.91   

 At or above median  1.93 -3.47, 7.33 

 Per ln-unit (PFDA)  1.70 -2.26, 5.67 

 Per IQR(ln-PFDA)
g
  1.71 -2.27, 5.69 

PFUnDA Quartile 1 (referent)  207.62   

 Quartile 2  0.73 -6.34, 7.79 

 Quartile 3  0.16 -7.30, 7.61 

 Quartile 4  4.35 -3.52, 12.21 

 Per ln-unit (PFUnDA)  0.84 -3.32, 5.01 

 Per IQR(ln-PFUnDA)  0.77 -3.04, 4.59 

PFHxS Quartile 1 (referent)  207.26   

 Quartile 2  0.41 -7.13, 7.94 

 Quartile 3  1.42 -6.29, 9.13 

 Quartile 4  4.04 -4.10, 12.18 

 Per ln-unit (PFHxS)  2.87 -1.89, 7.62 

 Per IQR(ln-PFHxS)  1.92 -1.26, 5.10 

PFHpS Quartile 1 (referent)  209.26   

 Quartile 2  -1.01 -8.52, 6.50 

 Quartile 3  -2.37 -10.03, 5.29 

 Quartile 4  0.94 -7.20, 9.08 

 Per ln-unit (PFHpS)  -0.61 -5.12 3.91 

 Per IQR(ln-PFHpS)  -0.48 -4.09 3.12 

PFOS Quartile 1 (referent)  207.78   

 Quartile 2  -3.62 -10.63, 3.38 

 Quartile 3  2.79 -5.21, 10.79 

 Quartile 4  7.34 -0.68, 15.36 

 Per ln-unit (PFOS)  8.89 1.64, 16.14 

 Per IQR(ln-PFOS)  4.22 0.78, 7.66 
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a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
d
 95% confidence interval. 

e 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
f
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
g 

IQR of ln(PFDA) estimated as 2*(75
th

 percentile-median) because the 25
th

 percentile of 

PFDA was below the limit of quantification. 
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Table 4.14.  Weighted
a
 linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and HDL cholesterol (mg/dL) among 889 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004. 

   Adjusted
b
 

LSM
c
 or β 

 

95% CI
d
 

PFOA Quartile 1 (referent)  61.15   

 Quartile 2  0.21 -2.40, 2.83 

 Quartile 3  2.31 -0.59, 5.21 

 Quartile 4  3.42 0.56, 6.28 

 Per ln-unit (PFOA)
e
  2.14 -0.25, 4.52 

 Per IQR(ln-PFOA)
f
  1.28 -0.15, 2.72 

PFNA Quartile 1 (referent)  61.60   

 Quartile 2  -0.06 -2.60, 2.49 

 Quartile 3  0.49 -2.09, 3.07 

 Quartile 4  3.27 0.48, 6.06 

 Per ln-unit (PFNA)  2.84 0.97, 4.71 

 Per IQR(ln-PFNA)  1.67 0.57, 2.76 

PFDA Below median (referent)  61.28   

 At or above median  2.73 0.89, 4.57 

 Per ln-unit (PFDA)  2.56 1.22, 3.89 

 Per IQR(ln-PFDA)
g
  2.57 1.23, 3.90 

PFUnDA Quartile 1 (referent)  59.31   

 Quartile 2  3.05 0.57, 5.54 

 Quartile 3  4.40 1.86, 6.95 

 Quartile 4  7.62 4.98, 10.25 

 Per ln-unit (PFUnDA)  4.05 2.76, 5.35 

 Per IQR(ln-PFUnDA)  3.71 2.52, 4.90 

PFHxS Quartile 1 (referent)  60.39   

 Quartile 2  1.57 -0.95, 4.10 

 Quartile 3  2.69 0.07, 5.32 

 Quartile 4  3.22 0.77, 5.66 

 Per ln-unit (PFHxS)  1.46 0.19, 2.74 

 Per IQR(ln-PFHxS)  0.98 0.13, 1.83 

PFHpS Quartile 1 (referent)  61.60   

 Quartile 2  -0.27 -2.59, 2.05 

 Quartile 3  0.32 -2.22, 2.86 

 Quartile 4  2.99 0.52, 5.46 

 Per ln-unit (PFHpS)  1.30 -0.07, 2.66 

 Per IQR(ln-PFHpS)  1.04 -0.05, 2.12 

PFOS Quartile 1 (referent)  60.33   

 Quartile 2  1.98 -0.38, 4.33 

 Quartile 3  2.49 0.00, 4.99 

 Quartile 4  4.46 2.04, 6.88 

 Per ln-unit (PFOS)  4.39 2.36, 6.42 

 Per IQR(ln-PFOS)  2.08 1.12, 3.04 
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a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
d
 95% confidence interval. 

e 
Coefficient represents the change in lipid outcome for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
f
 Coefficient represents the change in lipid outcome for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
g 

IQR of ln(PFDA) estimated as 2*(75
th

 percentile-median) because the 25
th

 percentile of 

PFDA was below the limit of quantification. 
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Table 4.15.  Weighted
a
 linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and HDL cholesterol (mg/dL) among 889 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, 

additionally adjusted for plasma albumin concentration (quartiles). 

   Adjusted
b
 

LSM
c
 or β 

 

95% CI
d
 

PFOA Quartile 1 (referent)  60.95   

 Quartile 2  -0.07 -2.64, 2.50 

 Quartile 3  2.13 -0.73, 4.98 

 Quartile 4  3.01 0.12, 5.89 

 Per ln-unit (PFOA)
e
  1.76 -0.63, 4.16 

 Per IQR(ln-PFOA)
f
  1.06 -0.38, 2.50 

PFNA Quartile 1 (referent)  61.56   

 Quartile 2  -0.56 -3.09, 1.97 

 Quartile 3  0.17 -2.39, 2.73 

 Quartile 4  2.35 -0.46, 5.17 

 Per ln-unit (PFNA)  2.30 0.41, 4.19 

 Per IQR(ln-PFNA)  1.35 0.24, 2.46 

PFDA Below median (referent)  61.05   

 At or above median  2.37 0.54, 4.20 

 Per ln-unit (PFDA)  2.22 0.87, 3.56 

 Per IQR(ln-PFDA)
g
  2.22 0.87, 3.58 

PFUnDA Quartile 1 (referent)  59.11   

 Quartile 2  3.00 0.54, 5.46 

 Quartile 3  4.29 1.77, 6.82 

 Quartile 4  7.16 4.56, 9.75 

 Per ln-unit (PFUnDA)  3.79 2.50, 5.07 

 Per IQR(ln-PFUnDA)  3.47 2.29, 4.64 

PFHxS Quartile 1 (referent)  60.21   

 Quartile 2  1.37 -1.14, 3.88 

 Quartile 3  2.59 0.00, 5.17 

 Quartile 4  2.77 0.32, 5.23 

 Per ln-unit (PFHxS)  1.14 -0.14, 2.42 

 Per IQR(ln-PFHxS)  0.98 0.13, 1.83 

PFHpS Quartile 1 (referent)  61.47   

 Quartile 2  -0.56 -2.90, 1.79 

 Quartile 3  0.06 -2.42, 2.53 

 Quartile 4  2.46 -0.04, 4.96 

 Per ln-unit (PFHpS)  1.01 -0.36, 2.37 

 Per IQR(ln-PFHpS)  0.81 -0.28, 1.90 

PFOS Quartile 1 (referent)  60.08   

 Quartile 2  1.89 -0.48, 4.26 

 Quartile 3  2.58 0.09, 5.07 

 Quartile 4  4.00 1.60, 6.40 

 Per ln-unit (PFOS)  3.89 1.84, 5.93 

 Per IQR(ln-PFOS)  1.84 0.87, 2.82 
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a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily, plasma albumin 

concentration. 
c
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
d
 95% confidence interval. 

e 
Coefficient represents the change in HDL cholesterol (mg/dL) for each 1 ln-(ng/mL) 

increase in PFAS concentration. 
f
 Coefficient represents the change in HDL cholesterol (mg/dL) for a shift in PFAS 

concentration from the 25
th

 percentile to the 75
th

 percentile of the observed exposure 

distribution. 
g 

IQR of ln(PFDA) estimated as 2*(75
th

 percentile-median) because the 25
th

 percentile of 

PFDA was below the limit of quantification. 
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Table 4.16.  Weighted
a
 linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and HDL cholesterol (mg/dL) among 889 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004.  Single 

pollutant model and multiple pollutant model. 

 

 Single pollutant model, adjusted
b
 Multiple pollutant model, adjusted 

 β per ln-unit
c
 95% CI

d
 β per ln-unit 95% CI 

PFOA 2.14 -0.25, 4.52 0.51 -3.00, 4.03 

PFNA 2.84 0.97, 4.71 -2.04 -5.09, 1.00 

PFDA 2.56 1.22, 3.89 0.30 -1.86, 2.45 

PFUnDA 4.05 2.76, 5.35 3.96 2.05, 5.88 

PFHxS 1.46 0.19, 2.74 0.06 -1.60, 1.72 

PFHpS 1.30 -0.07 2.66 0.14 -1.63, 1.92 

PFOS 4.39 2.36 6.42 2.24 -1.37, 5.84 
a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c 
Coefficient represents the change in HDL cholesterol (mg/dL) for each 1 ln-(ng/mL) 

increase in PFAS concentration. 
d
 95% confidence interval. 
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Table 4.17.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and HDL cholesterol (mg/dL) among 524 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, selected 

without regard to subfecundity (base sample).  Multiple pollutant model compared to 

hierarchical empirical Bayes shrinkage model. 

 

 Multiple pollutant model, adjusted
a
 Empirical Bayes model, adjusted 

 β per ln-unit
b
 95% CI

c
 β per ln-unit 95% CI 

PFOA 0.68 -3.36, 4.71 0.41 -1.97, 2.67 

PFNA -2.30 -6.12, 1.52 -0.18 -3.10, 1.70 

PFDA 0.22 -2.19, 2.62 0.51 -1.28, 2.01 

PFUnDA 4.02 1.74, 6.30 2.38 0.58, 4.81 

PFHxS 0.14 -2.06, 2.34 0.36 -1.34, 1.85 

PFHpS 0.07 -2.10, 2.23 0.37 -1.26, 1.83 

PFOS 2.42 -1.98, 6.81 1.11 -1.00, 3.85 
a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
b 

Coefficient represents the change in HDL cholesterol (mg/dL) for each 1 ln-(ng/mL) 

increase in PFAS concentration. 
c
 95% confidence interval. 
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Table 4.18.  Weighted
a
 linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and LDL cholesterol (mg/dL) among 889 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004. 

   Adjusted
b
 

LSM
c
 or β 

 

95% CI
d
 

PFOA Quartile 1 (referent)  125.96   

 Quartile 2  0.77 -6.27, 7.81 

 Quartile 3  4.05 -3.30, 11.41 

 Quartile 4  3.24 -4.48, 10.95 

 Per ln-unit (PFOA)
e
  2.19 -4.03, 8.41 

 Per IQR(ln-PFOA)
f
  1.32 -2.42, 5.06 

PFNA Quartile 1 (referent)  129.39   

 Quartile 2  -4.87 -11.62, 1.89 

 Quartile 3  -3.81 -10.70, 3.09 

 Quartile 4  -0.77 -8.27, 6.73 

 Per ln-unit (PFNA)  -2.15 -7.32, 3.01 

 Per IQR(ln-PFNA)  -1.26 -4.29, 1.77 

PFDA Below median (referent)  127.29   

 At or above median  0.79 -3.97, 5.54 

 Per ln-unit (PFDA)  0.10 -3.40, 3.59 

 Per IQR(ln-PFDA)
g
  0.10 -3.41, 3.61 

PFUnDA Quartile 1 (referent)  129.04   

 Quartile 2  -1.77 -8.02, 4.49 

 Quartile 3  -3.55 -10.35, 3.25 

 Quartile 4  -2.45 -9.49, 4.60 

 Per ln-unit (PFUnDA)  -2.39 -6.00, 1.22 

 Per IQR(ln-PFUnDA)  -2.19 -5.49, 1.11 

PFHxS Quartile 1 (referent)  127.12   

 Quartile 2  0.25 -6.40, 6.91 

 Quartile 3  0.36 -6.31, 7.02 

 Quartile 4  1.33 -6.05, 8.70 

 Per ln-unit (PFHxS)  1.82 -2.60, 6.24 

 Per IQR(ln-PFHxS)  1.22 -1.74, 4.17 

PFHpS Quartile 1 (referent)  127.03   

 Quartile 2  2.73 -3.81, 9.28 

 Quartile 3  -1.07 -7.83, 5.70 

 Quartile 4  2.07 -4.98, 9.12 

 Per ln-unit (PFHpS)  -0.04 -4.00, 3.93 

 Per IQR(ln-PFHpS)  -0.03 -3.20, 3.14 

PFOS Quartile 1 (referent)  127.18   

 Quartile 2  -3.43 -9.50, 2.65 

 Quartile 3  2.40 -4.71, 9.51 

 Quartile 4  5.32 -1.82, 12.46 

 Per ln-unit (PFOS)  6.43 -0.12, 12.97 

 Per IQR(ln-PFOS)  3.05 -0.06, 6.15 
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a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
d
 95% confidence interval. 

e 
Coefficient represents the change in lipid outcome for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
f
 Coefficient represents the change in lipid outcome for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
g 

IQR of ln(PFDA) estimated as 2*(75
th

 percentile-median) because the 25
th

 percentile of 

PFDA was below the limit of quantification. 
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Table 4.19.  Weighted
a
 linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and natural-log transformed triglycerides (ln-mg/dL) 

among 889 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 

2003-2004. 

   Adjusted
b
 

LSM
c
 or β 

 

95% CI
d
 

PFOA Quartile 1 (referent)  4.92   

 Quartile 2  0.03 -0.04, 0.10 

 Quartile 3  0.00 -0.08, 0.08 

 Quartile 4  -0.04 -0.12, 0.04 

 Per ln-unit (PFOA)
e
  0.00 -0.07, 0.06 

 Per IQR(ln-PFOA)
f
  0.00 -0.04, 0.04 

PFNA Quartile 1 (referent)  4.94   

 Quartile 2  -0.03 -0.10, 0.04 

 Quartile 3  -0.02 -0.09, 0.05 

 Quartile 4  -0.02 -0.09, 0.06 

 Per ln-unit (PFNA)  -0.02 -0.07, 0.03 

 Per IQR(ln-PFNA)  -0.01 -0.04, 0.02 

PFDA Below median (referent)  4.95   

 At or above median  -0.06 -0.11, 0.00 

 Per ln-unit (PFDA)  -0.03 -0.07, 0.00 

 Per IQR(ln-PFDA)
g
  -0.03 -0.07, 0.00 

PFUnDA Quartile 1 (referent)  4.97   

 Quartile 2  -0.06 -0.13, 0.00 

 Quartile 3  -0.07 -0.14, 0.00 

 Quartile 4  -0.08 -0.16, -0.01 

 Per ln-unit (PFUnDA)  -0.04 -0.08, 0.00 

 Per IQR(ln-PFUnDA)  -0.04 -0.07, 0.00 

PFHxS Quartile 1 (referent)  4.95   

 Quartile 2  -0.05 -0.11, 0.02 

 Quartile 3  -0.02 -0.10, 0.05 

 Quartile 4  -0.02 -0.10, 0.05 

 Per ln-unit (PFHxS)  -0.01 -0.05, 0.03 

 Per IQR(ln-PFHxS)  -0.01 -0.03, 0.02 

PFHpS Quartile 1 (referent)  4.96   

 Quartile 2  -0.07 -0.14, 0.00 

 Quartile 3  -0.01 -0.08, 0.06 

 Quartile 4  -0.06 -0.14, 0.01 

 Per ln-unit (PFHpS)  -0.03 -0.07, 0.01 

 Per IQR(ln-PFHpS)  -0.02 -0.06, 0.01 

PFOS Quartile 1 (referent)  4.93   

 Quartile 2  0.00 -0.07, 0.07 

 Quartile 3  -0.03 -0.10, 0.04 

 Quartile 4  -0.01 -0.08, 0.07 

 Per ln-unit (PFOS)  -0.02 -0.09, 0.04 

 Per IQR(ln-PFOS)  -0.01 -0.04, 0.02 
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a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
d
 95% confidence interval. 

e 
Coefficient represents the change in lipid outcome for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
f
 Coefficient represents the change in lipid outcome for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
g 

IQR of ln(PFDA) estimated as 2*(75
th

 percentile-median) because the 25
th

 percentile of 

PFDA was below the limit of quantification. 
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Table 4.20.  Weighted
a
 linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and uric acid (mg/dL) among 889 pregnant women 

enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004. 

   Adjusted
b
 

LSM
c
 or β 

 

95% CI
d
 

PFOA Quartile 1 (referent)  3.29   

 Quartile 2  0.02 -0.13, 0.18 

 Quartile 3  0.02 -0.14, 0.18 

 Quartile 4  -0.01 -0.19, 0.16 

 Per ln-unit (PFOA)
e
  0.03 -0.13, 0.20 

 Per IQR(ln-PFOA)
f
  0.02 -0.08, 0.12 

PFNA Quartile 1 (referent)  3.29   

 Quartile 2  -0.03 -0.19, 0.13 

 Quartile 3  0.02 -0.14, 0.19 

 Quartile 4  0.04 -0.12, 0.21 

 Per ln-unit (PFNA)  0.03 -0.10, 0.16 

 Per IQR(ln-PFNA)  0.02 -0.06, 0.10 

PFDA Below median (referent)  3.32   

 At or above median  -0.07 -0.17, 0.04 

 Per ln-unit (PFDA)  -0.03 -0.10, 0.04 

 Per IQR(ln-PFDA)
g
  -0.03 -0.10, 0.04 

PFUnDA Quartile 1 (referent)  3.35   

 Quartile 2  -0.10 -0.26, 0.05 

 Quartile 3  -0.07 -0.24, 0.10 

 Quartile 4  -0.09 -0.26, 0.08 

 Per ln-unit (PFUnDA)  -0.04 -0.13, 0.04 

 Per IQR(ln-PFUnDA)  -0.04 -0.12, 0.04 

PFHxS Quartile 1 (referent)  3.27   

 Quartile 2  0.08 -0.07, 0.23 

 Quartile 3  0.05 -0.09, 0.19 

 Quartile 4  -0.03 -0.19, 0.12 

 Per ln-unit (PFHxS)  -0.02 -0.13, 0.09 

 Per IQR(ln-PFHxS)  -0.01 -0.09, 0.06 

PFHpS Quartile 1 (referent)  3.29   

 Quartile 2  -0.05 -0.19, 0.10 

 Quartile 3  0.00 -0.15, 0.14 

 Quartile 4  0.07 -0.08, 0.22 

 Per ln-unit (PFHpS)  0.04 -0.05, 0.13 

 Per IQR(ln-PFHpS)  0.03 -0.04, 0.10 

PFOS Quartile 1 (referent)  3.32   

 Quartile 2  -0.09 -0.25, 0.06 

 Quartile 3  0.02 -0.14, 0.17 

 Quartile 4  0.01 -0.15, 0.17 

 Per ln-unit (PFOS)  0.00 -0.19, 0.19 

 Per IQR(ln-PFOS)  0.00 -0.09, 0.09 



 

119 

 

a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
d
 95% confidence interval. 

e 
Coefficient represents the change in lipid outcome for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
f
 Coefficient represents the change in lipid outcome for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
g 

IQR of ln(PFDA) estimated as 2*(75
th

 percentile-median) because the 25
th

 percentile of 

PFDA was below the limit of quantification. 
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Table 4.21.  Weighted
a
 linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and natural log-transformed C-reactive protein (ln-

mg/L) among 889 pregnant women enrolled in the Norwegian Mother and Child Cohort 

Study, 2003-2004. 

   Adjusted
b
 

LSM
c
 or β 

 

95% CI
d
 

PFOA Quartile 1 (referent)  1.77   

 Quartile 2  -0.01 -0.18. 0.15 

 Quartile 3  -0.02 -0.20, 0.16 

 Quartile 4  -0.11 -0.31, 0.08 

 Per ln-unit (PFOA)
e
  -0.11 -0.27, 0.04 

 Per IQR(ln-PFOA)
f
  -0.07 -0.16, 0.03 

PFNA Quartile 1 (referent)  1.84   

 Quartile 2  -0.16 -0.34, 0.02 

 Quartile 3  -0.15 -0.32, 0.03 

 Quartile 4  -0.23 -0.41, -0.05 

 Per ln-unit (PFNA)  -0.15 -0.28, -0.03 

 Per IQR(ln-PFNA)  -0.09 -0.16, -0.02 

PFDA Below median (referent)  1.78   

 At or above median  -0.10 -0.22, 0.03 

 Per ln-unit (PFDA)  -0.07 -0.16, 0.02 

 Per IQR(ln-PFDA)
g
  -0.07 -0.16, 0.02 

PFUnDA Quartile 1 (referent)  1.79   

 Quartile 2  -0.05 -0.22, 0.12 

 Quartile 3  -0.03 -0.19, 0.13 

 Quartile 4  -0.12 -0.30, 0.07 

 Per ln-unit (PFUnDA)  -0.05 -0.14, 0.04 

 Per IQR(ln-PFUnDA)  -0.05 -0.13, 0.04 

PFHxS Quartile 1 (referent)  1.76   

 Quartile 2  -0.01 -0.20, 0.17 

 Quartile 3  0.03 -0.15, 0.20 

 Quartile 4  -0.10 -0.28, 0.07 

 Per ln-unit (PFHxS)  -0.11 -0.21, 0.00 

 Per IQR(ln-PFHxS)  -0.07 -0.14, 0.00 

PFHpS Quartile 1 (referent)  1.70   

 Quartile 2  0.15 -0.02, 0.32 

 Quartile 3  0.00 -0.16, 0.16 

 Quartile 4  0.13 -0.04, 0.30 

 Per ln-unit (PFHpS)  0.06 -0.03, 0.15 

 Per IQR(ln-PFHpS)  0.05 -0.03, 0.12 

PFOS Quartile 1 (referent)  1.73   

 Quartile 2  0.06 -0.12, 0.24 

 Quartile 3  0.05 -0.12, 0.22 

 Quartile 4  -0.02 -0.20, 0.15 

 Per ln-unit (PFOS)  -0.02 -0.17, 0.13 

 Per IQR(ln-PFOS)  -0.01 -0.08, 0.06 
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a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
d
 95% confidence interval. 

e 
Coefficient represents the change in lipid outcome for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
f
 Coefficient represents the change in lipid outcome for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
g 

IQR of ln(PFDA) estimated as 2*(75
th

 percentile-median) because the 25
th

 percentile of 

PFDA was below the limit of quantification. 
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Table 4.22.  Weighted
a
 logistic regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and high total cholesterol (above the 75
th

 percentile) 

among 889 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 

2003-2004. 

  Adjusted
b
 

OR 

 

95% CI
c
 

PFOA Quartile 1 (referent) 1.   

 Quartile 2 1.13 0.66, 1.91 

 Quartile 3 1.33 0.75, 2.34 

 Quartile 4 1.05 0.57, 1.93 

PFNA Quartile 1 (referent) 1.   

 Quartile 2 0.71 0.42, 1.20 

 Quartile 3 0.74 0.43, 1.25 

 Quartile 4 1.24 0.71, 2.16 

PFDA Below median (referent) 1.   

 At or above median 1.35 0.92, 1.98 

PFUnDA Quartile 1 (referent) 1.   

 Quartile 2 0.98 0.57, 1.69 

 Quartile 3 1.03 0.60, 1.77 

 Quartile 4 1.45 0.83, 2.53 

PFHxS Quartile 1 (referent) 1.   

 Quartile 2 0.83 0.49, 1.42 

 Quartile 3 1.15 0.68, 1.94 

 Quartile 4 1.10 0.64, 1.90 

PFHpS Quartile 1 (referent) 1.   

 Quartile 2 0.94 0.56, 1.57 

 Quartile 3 0.91 0.54, 1.51 

 Quartile 4 0.98 0.57, 1.67 

PFOS Quartile 1 (referent) 1.   

 Quartile 2 0.64 0.38, 1.10 

 Quartile 3 1.05 0.60, 1.83 

 Quartile 4 1.56 0.90, 2.68 
a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 95% confidence interval. 
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Table 4.23.  Weighted
a
 logistic regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and low HDL cholesterol (below the 25
th

 percentile) 

among 889 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 

2003-2004. 

  Adjusted
b
 

OR 

 

95% CI
c
 

PFOA Quartile 1 (referent) 1.   

 Quartile 2 0.86 0.49, 1.53 

 Quartile 3 0.74 0.38, 1.42 

 Quartile 4 0.50 0.24, 1.00 

PFNA Quartile 1 (referent) 1.   

 Quartile 2 1.09 0.60, 1.98 

 Quartile 3 1.26 0.70, 2.24 

 Quartile 4 0.92 0.46, 1.84 

PFDA Below median (referent) 1.   

 At or above median 0.55 0.36, 0.84 

PFUnDA Quartile 1 (referent) 1.   

 Quartile 2 0.52 0.31, 0.88 

 Quartile 3 0.36 0.20, 0.66 

 Quartile 4 0.29 0.16, 0.55 

PFHxS Quartile 1 (referent) 1.   

 Quartile 2 0.86 0.48, 1.52 

 Quartile 3 0.91 0.50, 1.66 

 Quartile 4 0.81 0.44, 1.50 

PFHpS Quartile 1 (referent) 1.   

 Quartile 2 0.96 0.55, 1.69 

 Quartile 3 1.33 0.76, 2.33 

 Quartile 4 0.76 0.41, 1.42 

PFOS Quartile 1 (referent) 1.   

 Quartile 2 1.06 0.62, 1.82 

 Quartile 3 0.96 0.55, 1.69 

 Quartile 4 0.53 0.27, 1.04 
a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 95% confidence interval. 
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Table 4.24.  Weighted
a
 logistic regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and high LDL cholesterol (above the 75
th

 percentile) 

among 889 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 

2003-2004. 

  Adjusted
b
 

OR 

 

95% CI
c
 

PFOA Quartile 1 (referent) 1.   

 Quartile 2 1.12 0.66, 1.89 

 Quartile 3 1.11 0.63, 1.98 

 Quartile 4 1.03 0.55, 1.94 

PFNA Quartile 1 (referent) 1.   

 Quartile 2 0.63 0.37, 1.07 

 Quartile 3 0.55 0.32, 0.93 

 Quartile 4 0.85 0.49, 1.49 

PFDA Below median (referent) 1.   

 At or above median 1.12 0.77, 1.65 

PFUnDA Quartile 1 (referent) 1.   

 Quartile 2 0.79 0.46, 1.36 

 Quartile 3 0.76 0.44, 1.33 

 Quartile 4 0.95 0.55, 1.66 

PFHxS Quartile 1 (referent) 1.   

 Quartile 2 0.82 0.48, 1.42 

 Quartile 3 0.99 0.58, 1.68 

 Quartile 4 1.04 0.59, 1.82 

PFHpS Quartile 1 (referent) 1.   

 Quartile 2 1.17 0.68, 1.99 

 Quartile 3 0.90 0.52, 1.55 

 Quartile 4 1.24 0.71, 2.17 

PFOS Quartile 1 (referent) 1.   

 Quartile 2 0.63 0.37, 1.08 

 Quartile 3 0.81 0.46, 1.44 

 Quartile 4 1.65 0.96, 2.85 
a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 95% confidence interval. 
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Table 4.25.  Weighted
a
 logistic regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and high triglycerides (above the 75
th

 percentile) 

among 889 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 

2003-2004. 

  Adjusted
b
 

OR 

 

95% CI
c
 

PFOA Quartile 1 (referent) 1.   

 Quartile 2 1.08 0.62, 1.89 

 Quartile 3 0.65 0.35, 1.20 

 Quartile 4 0.52 0.26, 1.00 

PFNA Quartile 1 (referent) 1.   

 Quartile 2 0.88 0.49, 1.58 

 Quartile 3 0.90 0.50, 1.63 

 Quartile 4 1.03 0.56, 1.89 

PFDA Below median (referent) 1.   

 At or above median 0.78 0.52, 1.16 

PFUnDA Quartile 1 (referent) 1.   

 Quartile 2 0.52 0.30, 0.89 

 Quartile 3 0.64 0.36, 1.13 

 Quartile 4 0.68 0.38, 1.21 

PFHxS Quartile 1 (referent) 1.   

 Quartile 2 0.68 0.39, 1.20 

 Quartile 3 0.89 0.51, 1.56 

 Quartile 4 0.75 0.40, 1.41 

PFHpS Quartile 1 (referent) 1.   

 Quartile 2 0.43 0.24, 0.76 

 Quartile 3 0.73 0.44, 1.23 

 Quartile 4 0.56 0.31, 0.99 

PFOS Quartile 1 (referent) 1.   

 Quartile 2 0.95 0.55, 1.64 

 Quartile 3 0.67 0.38, 1.18 

 Quartile 4 0.86 0.47, 1.58 
a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 95% confidence interval. 
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Table 4.26.  Weighted
a
 logistic regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and high uric acid (above the 75
th

 percentile) among 

889 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 2003-

2004. 

  Adjusted
b
 

OR 

 

95% CI
c
 

PFOA Quartile 1 (referent) 1.   

 Quartile 2 0.80 0.45, 1.42 

 Quartile 3 0.97 0.52, 1.80 

 Quartile 4 1.27 0.67, 2.43 

PFNA Quartile 1 (referent) 1.   

 Quartile 2 0.84 0.48, 1.46 

 Quartile 3 1.00 0.58, 1.75 

 Quartile 4 1.10 0.62, 1.95 

PFDA Below median (referent) 1.   

 At or above median 0.82 0.55, 1.21 

PFUnDA Quartile 1 (referent) 1.   

 Quartile 2 0.77 0.45, 1.32 

 Quartile 3 0.75 0.42, 1.31 

 Quartile 4 0.77 0.44, 1.37 

PFHxS Quartile 1 (referent) 1.   

 Quartile 2 1.50 0.85, 2.65 

 Quartile 3 1.44 0.82, 2.50 

 Quartile 4 1.22 0.69, 2.15 

PFHpS Quartile 1 (referent) 1.   

 Quartile 2 1.01 0.57, 1.79 

 Quartile 3 1.51 0.89, 2.56 

 Quartile 4 1.60 0.91, 2.81 

PFOS Quartile 1 (referent) 1.   

 Quartile 2 1.11 0.62, 1.97 

 Quartile 3 1.46 0.83, 2.55 

 Quartile 4 1.32 0.73, 2.38 
a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 95% confidence interval. 
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Table 4.27.  Weighted
a
 logistic regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and high C-reactive protein (above the 75
th

 percentile) 

among 889 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 

2003-2004. 

  Adjusted
b
 

OR 

 

95% CI
c
 

PFOA Quartile 1 (referent) 1.   

 Quartile 2 1.03 0.57, 1.86 

 Quartile 3 1.16 0.62, 2.16 

 Quartile 4 0.78 0.40, 1.52 

PFNA Quartile 1 (referent) 1.   

 Quartile 2 0.76 0.42, 1.38 

 Quartile 3 0.48 0.27, 0.85 

 Quartile 4 0.46 0.24, 0.87 

PFDA Below median (referent) 1.   

 At or above median 0.60 0.40, 0.92 

PFUnDA Quartile 1 (referent) 1.   

 Quartile 2 0.83 0.45, 1.50 

 Quartile 3 0.73 0.40, 1.35 

 Quartile 4 0.52 0.27, 0.99 

PFHxS Quartile 1 (referent) 1.   

 Quartile 2 0.83 0.47, 1.46 

 Quartile 3 0.89 0.51, 1.54 

 Quartile 4 0.36 0.19, 0.66 

PFHpS Quartile 1 (referent) 1.   

 Quartile 2 1.78 0.97, 3.26 

 Quartile 3 1.11 0.61, 2.02 

 Quartile 4 1.50 0.80, 2.81 

PFOS Quartile 1 (referent) 1.   

 Quartile 2 2.10 1.18, 3.73 

 Quartile 3 1.07 0.58, 1.95 

 Quartile 4 0.66 0.35, 1.23 
a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 95% confidence interval. 
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Table 4.28.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and total cholesterol (mg/dL) among 524 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, selected 

without regard to subfecundity status (base sample). 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  208.02   

 Quartile 2  1.38 -7.35, 10.11 

 Quartile 3  3.43 -6.36, 13.21 

 Quartile 4  3.90 -6.48, 14.29 

 Per ln-unit (PFOA)
d
  2.53 -5.93, 10.98 

 Per IQR(ln-PFOA)
e
  1.52 -3.56, 6.60 

PFNA Quartile 1 (referent)  211.56   

 Quartile 2  -6.47 -15.37, 2.43 

 Quartile 3  -4.68 -13.53, 4.18 

 Quartile 4  1.95 -7.61, 11.51 

 Per ln-unit (PFNA)  -0.25 -7.03, 6.53 

 Per IQR(ln-PFNA)  -0.15 -4.12, 3.83 

PFDA Below median (referent)  208.99   

 At or above median  2.00 -4.36, 8.36 

 Per ln-unit (PFDA)  1.90 -2.71, 6.51 

 Per IQR(ln-PFDA)
f
  1.91 -2.72, 6.53 

PFUnDA Quartile 1 (referent)  209.14   

 Quartile 2  0.20 -8.61, 9.02 

 Quartile 3  -0.95 -10.04, 8.13 

 Quartile 4  4.16 -5.47, 13.78 

 Per ln-unit (PFUnDA)  0.62 -4.21, 5.45 

 Per IQR(ln-PFUnDA)  0.57 -3.86, 4.99 

PFHxS Quartile 1 (referent)  208.32   

 Quartile 2  1.03 -7.64, 9.70 

 Quartile 3  0.84 -7.76, 9.43 

 Quartile 4  4.19 -4.94, 13.31 

 Per ln-unit (PFHxS)  2.87 -2.48, 8.22 

 Per IQR(ln-PFHxS)  1.92 -1.66, 5.49 

PFHpS Quartile 1 (referent)  210.43   

 Quartile 2  -0.44 -8.85, 7.98 

 Quartile 3  -2.84 -11.32, 5.64 

 Quartile 4  1.09 -8.13, 10.31 

 Per ln-unit (PFHpS)  -0.55 -5.60, 4.50 

 Per IQR(ln-PFHpS)  -0.44 -4.48, 3.60 

PFOS Quartile 1 (referent)  208.50   

 Quartile 2  -3.53 -11.98, 4.92 

 Quartile 3  3.53 -5.52, 12.57 

 Quartile 4  8.29 -0.90, 17.48 

 Per ln-unit (PFOS)  9.13 0.97, 17.29 

 Per IQR(ln-PFOS)  4.33 0.46, 8.20 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.29.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and HDL cholesterol (mg/dL) among 524 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, selected 

without regard to subfecundity status (base sample). 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  61.23   

 Quartile 2  -0.03 -2.95, 2.89 

 Quartile 3  2.28 -0.99, 5.55 

 Quartile 4  3.49 0.02, 6.96 

 Per ln-unit (PFOA)
d
  2.11 -0.73, 4.94 

 Per IQR(ln-PFOA)
e
  1.27 -0.44, 2.97 

PFNA Quartile 1 (referent)  61.76   

 Quartile 2  -0.37 -3.36, 2.61 

 Quartile 3  0.08 -2.89, 3.05 

 Quartile 4  3.03 -0.18, 6.23 

 Per ln-unit (PFNA)  2.67 0.40, 4.93 

 Per IQR(ln-PFNA)  1.56 0.24, 2.89 

PFDA Below median (referent)  61.28   

 At or above median  2.62 0.50, 4.75 

 Per ln-unit (PFDA)  2.47 0.94, 4.00 

 Per IQR(ln-PFDA)
f
  2.48 0.94, 4.02 

PFUnDA Quartile 1 (referent)  59.40   

 Quartile 2  2.87 -0.03, 5.77 

 Quartile 3  4.07 1.08, 7.06 

 Quartile 4  7.62 4.45, 10.78 

 Per ln-unit (PFUnDA)  4.04 2.45, 5.62 

 Per IQR(ln-PFUnDA)  3.70 2.25, 5.15 

PFHxS Quartile 1 (referent)  60.33   

 Quartile 2  1.56 -1.34, 4.46 

 Quartile 3  2.71 -0.17, 5.58 

 Quartile 4  3.27 0.22, 6.32 

 Per ln-unit (PFHxS)  1.51 -0.28, 3.31 

 Per IQR(ln-PFHxS)  1.01 -0.19, 2.21 

PFHpS Quartile 1 (referent)  61.68   

 Quartile 2  -0.28 -3.09, 2.53 

 Quartile 3  -0.01 -2.85, 2.82 

 Quartile 4  3.19 0.11, 6.27 

 Per ln-unit (PFHpS)  1.25 -0.44, 2.95 

 Per IQR(ln-PFHpS)  1.00 -0.35, 2.35 

PFOS Quartile 1 (referent)  60.32   

 Quartile 2  1.89 -0.95, 4.72 

 Quartile 3  2.44 -0.60, 5.47 

 Quartile 4  4.44 1.35, 7.52 

 Per ln-unit (PFOS)  4.38 1.65, 7.11 

 Per IQR(ln-PFOS)  2.08 0.78, 3.37 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in HDL cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in HDL cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 

  



 

132 

 

Table 4.30.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and LDL cholesterol (mg/dL) among 524 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, selected 

without regard to subfecundity status (base sample). 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  126.77   

 Quartile 2  0.91 -6.75, 8.56 

 Quartile 3  4.03 -4.55, 12.62 

 Quartile 4  3.12 -5.99, 12.23 

 Per ln-unit (PFOA)
d
  2.08 -5.34, 9.50 

 Per IQR(ln-PFOA)
e
  1.25 -3.21, 5.71 

PFNA Quartile 1 (referent)  130.46   

 Quartile 2  -5.85 -13.68, 1.98 

 Quartile 3  -4.34 -12.12, 3.44 

 Quartile 4  -1.03 -9.44, 7.38 

 Per ln-unit (PFNA)  -2.34 -8.28, 3.61 

 Per IQR(ln-PFNA)  -1.37 -4.86, 2.12 

PFDA Below median (referent)  128.02   

 At or above median  0.95 -4.63, 6.53 

 Per ln-unit (PFDA)  0.35 -3.69, 4.40 

 Per IQR(ln-PFDA)
f
  0.36 -3.70, 4.42 

PFUnDA Quartile 1 (referent)  130.05   

 Quartile 2  -1.92 -9.66, 5.83 

 Quartile 3  -4.26 -12.24, 3.72 

 Quartile 4  -2.64 -11.09, 5.81 

 Per ln-unit (PFUnDA)  -2.52 -6.76, 1.71 

 Per IQR(ln-PFUnDA)  -2.31 -6.19, 1.57 

PFHxS Quartile 1 (referent)  127.84   

 Quartile 2  0.80 -6.82, 8.41 

 Quartile 3  0.06 -7.49, 7.61 

 Quartile 4  1.41 -6.60, 9.43 

 Per ln-unit (PFHxS)  1.89 -2.81, 6.59 

 Per IQR(ln-PFHxS)  1.26 -1.88, 4.40 

PFHpS Quartile 1 (referent)  127.80   

 Quartile 2  3.32 -4.06, 10.70 

 Quartile 3  -1.14 -8.57, 6.30 

 Quartile 4  2.03 -6.06, 10.11 

 Per ln-unit (PFHpS)  0.05 -4.38, 4.49 

 Per IQR(ln-PFHpS)  0.04 -3.50, 3.58 

PFOS Quartile 1 (referent)  127.52   

 Quartile 2  -3.20 -10.62, 4.22 

 Quartile 3  3.16 -4.79, 11.10 

 Quartile 4  6.41 -1.66, 14.48 

 Per ln-unit (PFOS)  6.66 -0.51, 13.83 

 Per IQR(ln-PFOS)  3.16 -0.24, 6.56 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in LDL cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in LDL cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.31.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and natural-log transformed triglycerides (ln-mg/dL) 

among 524 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 

2003-2004, selected without regard to subfecundity status (base sample). 

   Adjusted
b
 

LSM
c
 or β 

 

95% CI
d
 

PFOA Quartile 1 (referent)  4.93   

 Quartile 2  0.04 -0.04, 0.12 

 Quartile 3  0.01 -0.08, 0.10 

 Quartile 4  -0.03 -0.12, 0.07 

 Per ln-unit (PFOA)
d
  0.01 -0.07, 0.09 

 Per IQR(ln-PFOA)
e
  0.00 -0.04, 0.05 

PFNA Quartile 1 (referent)  4.95   

 Quartile 2  -0.03 -0.11, 0.05 

 Quartile 3  -0.02 -0.10, 0.06 

 Quartile 4  -0.01 -0.10, 0.08 

 Per ln-unit (PFNA)  -0.01 -0.07, 0.05 

 Per IQR(ln-PFNA)  -0.01 -0.04, 0.03 

PFDA Below median (referent)  4.95   

 At or above median  -0.05 -0.11, 0.01 

 Per ln-unit (PFDA)  -0.03 -0.07, 0.01 

 Per IQR(ln-PFDA)
f
  -0.03 -0.07, 0.01 

PFUnDA Quartile 1 (referent)  4.98   

 Quartile 2  -0.06 -0.14, 0.02 

 Quartile 3  -0.07 -0.15, 0.01 

 Quartile 4  -0.08 -0.17, 0.01 

 Per ln-unit (PFUnDA)  -0.04 -0.09, 0.00 

 Per IQR(ln-PFUnDA)  -0.04 -0.08, 0.00 

PFHxS Quartile 1 (referent)  4.96   

 Quartile 2  -0.05 -0.13, 0.03 

 Quartile 3  -0.03 -0.11, 0.05 

 Quartile 4  -0.02 -0.10, 0.06 

 Per ln-unit (PFHxS)  -0.01 -0.06, 0.04 

 Per IQR(ln-PFHxS)  -0.01 -0.04, 0.03 

PFHpS Quartile 1 (referent)  4.96   

 Quartile 2  -0.07 -0.15, 0.00 

 Quartile 3  -0.01 -0.08, 0.07 

 Quartile 4  -0.06 -0.14, 0.02 

 Per ln-unit (PFHpS)  -0.03 -0.07, 0.02 

 Per IQR(ln-PFHpS)  -0.02 -0.06, 0.02 

PFOS Quartile 1 (referent)  4.94   

 Quartile 2  0.00 -0.07, 0.08 

 Quartile 3  -0.02 -0.11, 0.06 

 Quartile 4  0.00 -0.08, 0.09 

 Per ln-unit (PFOS)  -0.02 -0.09, 0.06 

 Per IQR(ln-PFOS)  -0.01 -0.05, 0.03 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in ln-triglycerides for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in ln-triglycerides for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.32.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and uric acid (mg/dL) among 524 pregnant women 

enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, selected without 

regard to subfecundity status (base sample). 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  3.29   

 Quartile 2  0.02 -0.15, 0.19 

 Quartile 3  0.00 -0.19, 0.19 

 Quartile 4  -0.04 -0.24, 0.17 

 Per ln-unit (PFOA)
d
  0.02 -0.14, 0.18 

 Per IQR(ln-PFOA)
e
  0.01 -0.09, 0.11 

PFNA Quartile 1 (referent)  3.29   

 Quartile 2  -0.04 -0.21, 0.14 

 Quartile 3  0.02 -0.15, 0.19 

 Quartile 4  0.04 -0.15, 0.22 

 Per ln-unit (PFNA)  0.03 -0.11, 0.16 

 Per IQR(ln-PFNA)  0.01 -0.06, 0.09 

PFDA Below median (referent)  3.31   

 At or above median  -0.08 -0.20, 0.05 

 Per ln-unit (PFDA)  -0.03 -0.12, 0.05 

 Per IQR(ln-PFDA)
f
  -0.03 -0.12, 0.05 

PFUnDA Quartile 1 (referent)  3.35   

 Quartile 2  -0.11 -0.28, 0.06 

 Quartile 3  -0.07 -0.25, 0.10 

 Quartile 4  -0.10 -0.29, 0.08 

 Per ln-unit (PFUnDA)  -0.05 -0.14, 0.04 

 Per IQR(ln-PFUnDA)  -0.05 -0.13, 0.04 

PFHxS Quartile 1 (referent)  3.27   

 Quartile 2  0.08 -0.08, 0.25 

 Quartile 3  0.05 -0.11, 0.22 

 Quartile 4  -0.05 -0.23, 0.12 

 Per ln-unit (PFHxS)  -0.03 -0.13, 0.08 

 Per IQR(ln-PFHxS)  -0.02 -0.09, 0.05 

PFHpS Quartile 1 (referent)  3.29   

 Quartile 2  -0.05 -0.21, 0.11 

 Quartile 3  0.01 -0.16, 0.17 

 Quartile 4  0.06 -0.12, 0.24 

 Per ln-unit (PFHpS)  0.04 -0.06, 0.14 

 Per IQR(ln-PFHpS)  0.03 -0.05, 0.11 

PFOS Quartile 1 (referent)  3.31   

 Quartile 2  -0.10 -0.26, 0.07 

 Quartile 3  0.02 -0.16, 0.19 

 Quartile 4  -0.01 -0.19, 0.17 

 Per ln-unit (PFOS)  -0.02 -0.17, 0.14 

 Per IQR(ln-PFOS)  -0.01 -0.08, 0.07 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in uric acid for each 1 ln-(ng/mL) increase in PFAS 

concentration. 
e
 Coefficient represents the change in uric acid for a shift in PFAS concentration from the 

25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.33.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and natural-log transformed C-reactive protein (ln-

mg/L) among 524 pregnant women enrolled in the Norwegian Mother and Child Cohort 

Study, 2003-2004, selected without regard to subfecundity status (base sample). 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  1.74   

 Quartile 2  -0.01 -0.21, 0.19 

 Quartile 3  -0.01 -0.23, 0.22 

 Quartile 4  -0.12 -0.35, 0.12 

 Per ln-unit (PFOA)
d
  -0.12 -0.31, 0.08 

 Per IQR(ln-PFOA)
e
  -0.07 -0.19, 0.05 

PFNA Quartile 1 (referent)  1.84   

 Quartile 2  -0.20 -0.40, 0.00 

 Quartile 3  -0.16 -0.37, 0.04 

 Quartile 4  -0.27 -0.48, -0.05 

 Per ln-unit (PFNA)  -0.18 -0.33, -0.03 

 Per IQR(ln-PFNA)  -0.11 -0.20, -0.02 

PFDA Below median (referent)  1.76   

 At or above median  -0.11 -0.25, 0.04 

 Per ln-unit (PFDA)  -0.07 -0.18, 0.03 

 Per IQR(ln-PFDA)
f
  -0.07 -0.18, 0.03 

PFUnDA Quartile 1 (referent)  1.77   

 Quartile 2  -0.06 -0.26, 0.14 

 Quartile 3  -0.03 -0.24, 0.18 

 Quartile 4  -0.14 -0.36, 0.08 

 Per ln-unit (PFUnDA)  -0.06 -0.17, 0.05 

 Per IQR(ln-PFUnDA)  -0.06 -0.16, 0.05 

PFHxS Quartile 1 (referent)  1.75   

 Quartile 2  -0.03 -0.23, 0.17 

 Quartile 3  0.03 -0.17, 0.23 

 Quartile 4  -0.11 -0.31, 0.10 

 Per ln-unit (PFHxS)  -0.12 -0.24, 0.00 

 Per IQR(ln-PFHxS)  -0.08 -0.16, 0.00 

PFHpS Quartile 1 (referent)  1.67   

 Quartile 2  0.17 -0.02, 0.37 

 Quartile 3  0.00 -0.19, 0.20 

 Quartile 4  0.16 -0.05, 0.37 

 Per ln-unit (PFHpS)  0.07 -0.05, 0.18 

 Per IQR(ln-PFHpS)  0.05 -0.04, 0.15 

PFOS Quartile 1 (referent)  1.71   

 Quartile 2  0.05 -0.14, 0.25 

 Quartile 3  0.05 -0.16, 0.26 

 Quartile 4  -0.02 -0.23, 0.19 

 Per ln-unit (PFOS)  -0.02 -0.21, 0.17 

 Per IQR(ln-PFOS)  -0.01 -0.10, 0.08 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in ln-C-reactive protein for each 1 ln-(ng/mL) increase 

in PFAS concentration. 
e
 Coefficient represents the change in ln-C-reactive protein for a shift in PFAS 

concentration from the 25
th

 percentile to the 75
th

 percentile of the observed exposure 

distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.34.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and total cholesterol (mg/dL) among 889 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, 

additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  203.97   

 Quartile 2  1.30 -5.74, 8.34 

 Quartile 3  3.91 -3.61, 11.43 

 Quartile 4  3.19 -4.82, 11.19 

 Per ln-unit (PFOA)
d
  2.28 -4.21, 8.78 

 Per IQR(ln-PFOA)
e
  1.37 -2.53, 5.28 

PFNA Quartile 1 (referent)  205.87   

 Quartile 2  -0.58 -7.37, 6.20 

 Quartile 3  -1.94 -8.85, 4.97 

 Quartile 4  2.71 -4.48, 9.89 

 Per ln-unit (PFNA)  0.24 -4.91, 5.38 

 Per IQR(ln-PFNA)  0.14 -2.88, 3.15 

PFDA Below median (referent)  205.35   

 At or above median  1.35 -3.58, 6.28 

 Per ln-unit (PFDA)  0.88 -2.57, 4.32 

 Per IQR(ln-PFDA)
f
  0.88 -2.58, 4.33 

PFUnDA Quartile 1 (referent)  204.13   

 Quartile 2  1.36 -5.45, 8.16 

 Quartile 3  3.08 -3.84, 9.99 

 Quartile 4  4.56 -2.57, 11.70 

 Per ln-unit (PFUnDA)  1.33 -2.25, 4.92 

 Per IQR(ln-PFUnDA)  1.22 -2.06, 4.50 

PFHxS Quartile 1 (referent)  204.68   

 Quartile 2  -0.94 -7.71, 5.84 

 Quartile 3  3.29 -3.58, 10.15 

 Quartile 4  3.53 -3.56, 10.62 

 Per ln-unit (PFHxS)  2.68 -1.44, 6.81 

 Per IQR(ln-PFHxS)  1.79 -0.97, 4.55 

PFHpS Quartile 1 (referent)  206.38   

 Quartile 2  -2.95 -9.66, 3.76 

 Quartile 3  -0.54 -7.24, 6.16 

 Quartile 4  0.89 -6.05, 7.84 

 Per ln-unit (PFHpS)  -0.55 -4.43, 3.33 

 Per IQR(ln-PFHpS)  -0.44 -3.54, 2.66 

PFOS Quartile 1 (referent)  206.15   

 Quartile 2  -3.88 -10.56, 2.79 

 Quartile 3  0.36 -6.59, 7.30 

 Quartile 4  4.21 -2.83, 11.25 

 Per ln-unit (PFOS)  8.19 1.88, 14.51 

 Per IQR(ln-PFOS)  3.89 0.89, 6.88 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily, and subfecundity 

(self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.35.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and HDL cholesterol (mg/dL) among 889 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, 

additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  60.92   

 Quartile 2  1.24 -1.08, 3.56 

 Quartile 3  2.65 0.17, 5.13 

 Quartile 4  3.32 0.68, 5.96 

 Per ln-unit (PFOA)
d
  2.24 0.09, 4.38 

 Per IQR(ln-PFOA)
e
  1.34 0.05, 2.63 

PFNA Quartile 1 (referent)  61.20   

 Quartile 2  1.00 -1.24, 3.23 

 Quartile 3  1.83 -0.45, 4.10 

 Quartile 4  3.95 1.59, 6.31 

 Per ln-unit (PFNA)  3.32 1.63, 5.00 

 Per IQR(ln-PFNA)  1.95 0.96, 2.94 

PFDA Below median (referent)  61.41   

 At or above median  3.01 1.39, 4.63 

 Per ln-unit (PFDA)  2.78 1.66, 3.90 

 Per IQR(ln-PFDA)
f
  2.79 1.66, 3.92 

PFUnDA Quartile 1 (referent)  59.25   

 Quartile 2  3.48 1.28, 5.68 

 Quartile 3  5.41 3.18, 7.64 

 Quartile 4  7.63 5.33, 9.94 

 Per ln-unit (PFUnDA)  4.10 2.95, 5.26 

 Per IQR(ln-PFUnDA)  3.75 2.70, 4.81 

PFHxS Quartile 1 (referent)  60.69   

 Quartile 2  1.68 -0.55, 3.92 

 Quartile 3  2.68 0.41, 4.94 

 Quartile 4  3.03 0.70, 5.37 

 Per ln-unit (PFHxS)  1.33 -0.03, 2.69 

 Per IQR(ln-PFHxS)  0.89 -0.02, 1.80 

PFHpS Quartile 1 (referent)  61.51   

 Quartile 2  -0.28 -2.49, 1.93 

 Quartile 3  1.54 -0.67, 3.75 

 Quartile 4  2.56 0.27, 4.85 

 Per ln-unit (PFHpS)  1.47 0.19, 2.75 

 Per IQR(ln-PFHpS)  1.18 0.15, 2.20 

PFOS Quartile 1 (referent)  60.43   

 Quartile 2  2.35 0.16, 4.55 

 Quartile 3  2.74 0.45, 5.02 

 Quartile 4  4.57 2.25, 6.88 

 Per ln-unit (PFOS)  4.44 2.36, 6.51 

 Per IQR(ln-PFOS)  2.11 1.12, 3.09 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily, and subfecundity 

(self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.36.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and LDL cholesterol (mg/dL) among 889 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, 

additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  123.78   

 Quartile 2  0.41 -5.67, 6.50 

 Quartile 3  4.52 -1.99, 11.02 

 Quartile 4  3.56 -3.36, 10.48 

 Per ln-unit (PFOA)
d
  2.53 -3.09, 8.15 

 Per IQR(ln-PFOA)
e
  1.52 -1.86, 4.90 

PFNA Quartile 1 (referent)  126.60   

 Quartile 2  -1.97 -7.85, 3.90 

 Quartile 3  -2.76 -8.75, 3.22 

 Quartile 4  -0.35 -6.58, 5.87 

 Per ln-unit (PFNA)  -1.98 -6.43, 2.47 

 Per IQR(ln-PFNA)  -1.16 -3.77, 1.45 

PFDA Below median (referent)  125.55   

 At or above median  0.10 -4.17, 4.36 

 Per ln-unit (PFDA)  -0.80 -3.78, 2.18 

 Per IQR(ln-PFDA)
f
  -0.81 -3.80, 2.18 

PFUnDA Quartile 1 (referent)  126.66   

 Quartile 2  -1.83 -7.72, 4.07 

 Quartile 3  -1.72 -7.71, 4.27 

 Quartile 4  -2.03 -8.20, 4.15 

 Per ln-unit (PFUnDA)  -2.13 -5.23, 0.97 

 Per IQR(ln-PFUnDA)  -1.95 -4.79, 0.89 

PFHxS Quartile 1 (referent)  125.37   

 Quartile 2  -1.04 -6.91, 4.83 

 Quartile 3  1.38 -4.56, 7.33 

 Quartile 4  1.13 -5.01, 7.28 

 Per ln-unit (PFHxS)  1.50 -2.07, 5.07 

 Per IQR(ln-PFHxS)  1.00 -1.38, 3.39 

PFHpS Quartile 1 (referent)  125.17   

 Quartile 2  0.71 -5.10, 6.52 

 Quartile 3  -0.57 -6.37, 5.23 

 Quartile 4  2.35 -3.66, 8.36 

 Per ln-unit (PFHpS)  -0.16 -3.52, 3.20 

 Per IQR(ln-PFHpS)  -0.13 -2.81, 2.56 

PFOS Quartile 1 (referent)  126.59   

 Quartile 2  -4.36 -10.14, 1.43 

 Quartile 3  -0.14 -6.15, 5.88 

 Quartile 4  1.80 -4.30, 7.90 

 Per ln-unit (PFOS)  5.76 0.29, 11.24 

 Per IQR(ln-PFOS)  2.73 0.14, 5.33 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily, and subfecundity 

(self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.37.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and natural-log transformed triglycerides (ln-mg/dL) 

among 889 pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 

2003-2004, additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  4.91   

 Quartile 2  0.01 -0.05, 0.07 

 Quartile 3  -0.02 -0.08, 0.05 

 Quartile 4  -0.07 -0.14, 0.00 

 Per ln-unit (PFOA)
d
  -0.04 -0.10, 0.02 

 Per IQR(ln-PFOA)
e
  -0.03 -0.06, 0.01 

PFNA Quartile 1 (referent)  4.92   

 Quartile 2  -0.01 -0.07, 0.05 

 Quartile 3  -0.03 -0.09, 0.03 

 Quartile 4  -0.05 -0.11, 0.02 

 Per ln-unit (PFNA)  -0.04 -0.09, 0.00 

 Per IQR(ln-PFNA)  -0.03 -0.05, 0.00 

PFDA Below median (referent)  4.92   

 At or above median  -0.07 -0.11, -0.03 

 Per ln-unit (PFDA)  -0.05 -0.08, -0.02 

 Per IQR(ln-PFDA)
f
  -0.05 -0.08, -0.02 

PFUnDA Quartile 1 (referent)  4.95   

 Quartile 2  -0.07 -0.13, -0.01 

 Quartile 3  -0.07 -0.13, -0.01 

 Quartile 4  -0.10 -0.16, 0.04 

 Per ln-unit (PFUnDA)  -0.05 -0.08, -0.02 

 Per IQR(ln-PFUnDA)  -0.04 -0.07, -0.01 

PFHxS Quartile 1 (referent)  4.92   

 Quartile 2  -0.03 -0.09, 0.03 

 Quartile 3  -0.01 -0.07, 0.06 

 Quartile 4  -0.03 -0.10, 0.03 

 Per ln-unit (PFHxS)  -0.01 -0.05, 0.03 

 Per IQR(ln-PFHxS)  -0.01 -0.03, 0.02 

PFHpS Quartile 1 (referent)  4.94   

 Quartile 2  -0.07 -0.13, -0.01 

 Quartile 3  -0.02 -0.08, 0.04 

 Quartile 4  -0.07 -0.13, -0.01 

 Per ln-unit (PFHpS)  -0.04 -0.07, 0.00 

 Per IQR(ln-PFHpS)  -0.03 -0.06, 0.00 

PFOS Quartile 1 (referent)  4.92   

 Quartile 2  -0.01 -0.07, 0.05 

 Quartile 3  -0.05 -0.11, 0.01 

 Quartile 4  -0.04 -0.10, 0.02 

 Per ln-unit (PFOS)  -0.04 -0.10, 0.02 

 Per IQR(ln-PFOS)  -0.02 -0.05, 0.01 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily, and subfecundity 

(self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.38.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and uric acid (mg/dL) among 889 pregnant women 

enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, additionally 

adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  3.27   

 Quartile 2  0.04 -0.09, 0.17 

 Quartile 3  0.10 -0.05, 0.24 

 Quartile 4  0.06 -0.09, 0.21 

 Per ln-unit (PFOA)
d
  0.08 -0.04, 0.21 

 Per IQR(ln-PFOA)
e
  0.05 -0.02, 0.12 

PFNA Quartile 1 (referent)  3.29   

 Quartile 2  0.01 -0.12, 0.14 

 Quartile 3  0.03 -0.10, 0.16 

 Quartile 4  0.07 -0.06, 0.21 

 Per ln-unit (PFNA)  0.05 -0.05, 0.14 

 Per IQR(ln-PFNA)  0.03 -0.03, 0.08 

PFDA Below median (referent)  3.32   

 At or above median  -0.04 -0.13, 0.06 

 Per ln-unit (PFDA)  -0.01 -0.07, 0.06 

 Per IQR(ln-PFDA)
f
  -0.01 -0.07, 0.06 

PFUnDA Quartile 1 (referent)  3.35   

 Quartile 2  -0.09 -0.22, 0.04 

 Quartile 3  -0.08 -0.21, 0.05 

 Quartile 4  -0.03 -0.17, 0.10 

 Per ln-unit (PFUnDA)  -0.02 -0.09, 0.05 

 Per IQR(ln-PFUnDA)  -0.02 -0.08, 0.05 

PFHxS Quartile 1 (referent)  3.27   

 Quartile 2  0.08 -0.05, 0.20 

 Quartile 3  0.05 -0.08, 0.18 

 Quartile 4  0.05 -0.09, 0.18 

 Per ln-unit (PFHxS)  0.02 -0.05, 0.10 

 Per IQR(ln-PFHxS)  0.02 -0.04, 0.07 

PFHpS Quartile 1 (referent)  3.31   

 Quartile 2  -0.03 -0.16, 0.10 

 Quartile 3  -0.04 -0.16, 0.09 

 Quartile 4  0.11 -0.02, 0.24 

 Per ln-unit (PFHpS)  0.04 -0.03, 0.12 

 Per IQR(ln-PFHpS)  0.03 -0.02, 0.09 

PFOS Quartile 1 (referent)  3.32   

 Quartile 2  -0.08 -0.21, 0.05 

 Quartile 3  0.03 -0.10, 0.16 

 Quartile 4  0.07 -0.06, 0.20 

 Per ln-unit (PFOS)  0.06 -0.06, 0.18 

 Per IQR(ln-PFOS)  0.03 -0.03, 0.08 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily, and subfecundity 

(self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.39.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and natural-log transformed C-reactive protein (ln-

mg/dL) among 889 pregnant women enrolled in the Norwegian Mother and Child Cohort 

Study, 2003-2004, additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  1.85   

 Quartile 2  -0.04 -0.20, 0.11 

 Quartile 3  -0.09 -0.26, 0.08 

 Quartile 4  -0.11 -0.29, 0.07 

 Per ln-unit (PFOA)
d
  -0.11 -0.26, 0.03 

 Per IQR(ln-PFOA)
e
  -0.07 -0.15, 0.02 

PFNA Quartile 1 (referent)  1.85   

 Quartile 2  -0.05 -0.20, 0.10 

 Quartile 3  -0.10 -0.25, 0.06 

 Quartile 4  -0.13 -0.28, 0.03 

 Per ln-unit (PFNA)  -0.06 -0.18, 0.05 

 Per IQR(ln-PFNA)  -0.04 -0.10, 0.03 

PFDA Below median (referent)  1.82   

 At or above median  -0.06 -0.16, 0.05 

 Per ln-unit (PFDA)  -0.04 -0.11, 0.04 

 Per IQR(ln-PFDA)
f
  -0.04 -0.11, 0.04 

PFUnDA Quartile 1 (referent)  1.81   

 Quartile 2  -0.01 -0.16, 0.14 

 Quartile 3  -0.02 -0.17, 0.14 

 Quartile 4  -0.05 -0.20, 0.11 

 Per ln-unit (PFUnDA)  -0.02 -0.10, 0.06 

 Per IQR(ln-PFUnDA)  -0.02 -0.09, 0.06 

PFHxS Quartile 1 (referent)  1.80   

 Quartile 2  0.03 -0.12, 0.18 

 Quartile 3  0.01 -0.14, 0.16 

 Quartile 4  -0.08 -0.24, 0.08 

 Per ln-unit (PFHxS)  -0.06 -0.16, 0.03 

 Per IQR(ln-PFHxS)  -0.04 -0.10, 0.02 

PFHpS Quartile 1 (referent)  1.79   

 Quartile 2  0.05 -0.09, 0.20 

 Quartile 3  -0.01 -0.16, 0.14 

 Quartile 4  0.04 -0.12, 0.19 

 Per ln-unit (PFHpS)  0.03 -0.06, 0.11 

 Per IQR(ln-PFHpS)  0.02 -0.05, 0.09 

PFOS Quartile 1 (referent)  1.77   

 Quartile 2  0.09 -0.05, 0.24 

 Quartile 3  0.05 -0.10, 0.20 

 Quartile 4  -0.03 -0.18, 0.13 

 Per ln-unit (PFOS)  -0.01 -0.15, 0.13 

 Per IQR(ln-PFOS)  0.00 -0.07, 0.06 
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a
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily, and subfecundity 

(self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.40.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and total cholesterol (mg/dL) among 446 nulliparous 

pregnant women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, 

additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  200.24   

 Quartile 2  4.58 -9.09, 18.25 

 Quartile 3  9.10 -3.83, 22.02 

 Quartile 4  5.47 -7.04, 17.98 

 Per ln-unit (PFOA)
d
  3.52 -4.90, 11.93 

 Per IQR(ln-PFOA)
e
  2.11 -2.94, 7.17 

PFNA Quartile 1 (referent)  208.36   

 Quartile 2  -1.30 -11.57, 8.97 

 Quartile 3  -3.83 -14.00, 6.35 

 Quartile 4  -1.42 -11.40, 8.55 

 Per ln-unit (PFNA)  -1.61 -8.55, 5.32 

 Per IQR(ln-PFNA)  -0.95 -5.01, 3.12 

PFDA Below median (referent)  207.17   

 At or above median  -1.16 -7.89, 5.56 

 Per ln-unit (PFDA)  -1.63 -6.20, 2.94 

 Per IQR(ln-PFDA)
f
  -1.64 -6.22, 2.95 

PFUnDA Quartile 1 (referent)  205.11   

 Quartile 2  3.08 -6.47, 12.63 

 Quartile 3  1.93 -7.46, 11.31 

 Quartile 4  2.51 -7.20, 12.22 

 Per ln-unit (PFUnDA)  0.29 -4.44, 5.03 

 Per IQR(ln-PFUnDA)  0.27 -4.07, 4.60 

PFHxS Quartile 1 (referent)  203.22   

 Quartile 2  0.57 -10.34, 11.47 

 Quartile 3  6.92 -3.50, 17.34 

 Quartile 4  4.31 -5.91, 14.53 

 Per ln-unit (PFHxS)  3.15 -2.09, 8.39 

 Per IQR(ln-PFHxS)  2.11 -1.40, 5.61 

PFHpS Quartile 1 (referent)  207.75   

 Quartile 2  -6.13 -16.20, 3.93 

 Quartile 3  1.07 -8.73, 10.88 

 Quartile 4  -0.08 -9.34, 9.18 

 Per ln-unit (PFHpS)  1.13 -3.91, 6.17 

 Per IQR(ln-PFHpS)  0.90 -3.12, 4.93 

PFOS Quartile 1 (referent)  207.64   

 Quartile 2  -3.12 -13.51, 7.26 

 Quartile 3  -1.57 -11.44, 8.31 

 Quartile 4  2.18 -7.49, 11.86 

 Per ln-unit (PFOS)  7.44 -0.41, 15.29 

 Per IQR(ln-PFOS)  3.53 -0.20, 7.25 
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a
 Adjusted for age, pre-pregnant body mass index, education completed, current smoking 

at mid-pregnancy, gestational weeks at blood draw, oily fish consumed daily, and 

subfecundity (self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.41.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and HDL cholesterol (mg/dL) among 446 nulliparous 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, 

additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  57.52   

 Quartile 2  3.54 -1.24, 8.32 

 Quartile 3  5.13 0.60, 9.65 

 Quartile 4  4.88 0.51, 9.26 

 Per ln-unit (PFOA)
d
  2.60 -0.35, 5.55 

 Per IQR(ln-PFOA)
e
  1.56 -0.21, 3.34 

PFNA Quartile 1 (referent)  58.42   

 Quartile 2  2.90 -0.64, 6.45 

 Quartile 3  4.38 0.87, 7.89 

 Quartile 4  6.78 3.34, 10.23 

 Per ln-unit (PFNA)  4.88 2.48, 7.27 

 Per IQR(ln-PFNA)  2.86 1.46, 4.26 

PFDA Below median (referent)  60.38   

 At or above median  4.42 2.09, 6.75 

 Per ln-unit (PFDA)  3.38 1.81, 4.96 

 Per IQR(ln-PFDA)
f
  3.39 1.81, 4.97 

PFUnDA Quartile 1 (referent)  58.40   

 Quartile 2  3.70 0.46, 6.94 

 Quartile 3  6.32 3.14, 9.50 

 Quartile 4  9.17 5.87, 12.46 

 Per ln-unit (PFUnDA)  4.70 3.09, 6.30 

 Per IQR(ln-PFUnDA)  4.30 2.83, 5.77 

PFHxS Quartile 1 (referent)  58.61   

 Quartile 2  2.92 -0.88, 6.73 

 Quartile 3  3.84 0.20, 7.48 

 Quartile 4  5.16 1.59, 8.73 

 Per ln-unit (PFHxS)  1.69 -0.15, 3.52 

 Per IQR(ln-PFHxS)  1.13 -0.10, 2.36 

PFHpS Quartile 1 (referent)  60.78   

 Quartile 2  -1.71 -5.21, 1.80 

 Quartile 3  2.21 -1.20, 5.62 

 Quartile 4  2.98 -0.24, 6.20 

 Per ln-unit (PFHpS)  2.66 0.91, 4.41 

 Per IQR(ln-PFHpS)  2.13 0.72, 3.53 

PFOS Quartile 1 (referent)  57.66   

 Quartile 2  4.21 0.64, 7.78 

 Quartile 3  6.14 2.74, 9.53 

 Quartile 4  7.54 4.21, 10.87 

 Per ln-unit (PFOS)  6.09 3.38, 8.80 

 Per IQR(ln-PFOS)  2.89 1.60, 4.17 
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a
 Adjusted for age, pre-pregnant body mass index, education completed, current smoking 

at mid-pregnancy, gestational weeks at blood draw, oily fish consumed daily, and 

subfecundity (self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.42.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and LDL cholesterol (mg/dL) among 446 nulliparous 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, 

additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  119.40   

 Quartile 2  3.94 -7.71, 15.58 

 Quartile 3  9.15 -1.87, 20.16 

 Quartile 4  6.17 -4.49, 16.82 

 Per ln-unit (PFOA)
d
  3.68 -3.49, 10.86 

 Per IQR(ln-PFOA)
e
  2.21 -2.10, 6.53 

PFNA Quartile 1 (referent)  130.50   

 Quartile 2  -5.30 -14.04, 3.44 

 Quartile 3  -6.60 -15.26, 2.06 

 Quartile 4  -5.73 -14.23, 2.76 

 Per ln-unit (PFNA)  -4.05 -9.96, 1.86 

 Per IQR(ln-PFNA)  -2.38 -5.84, 1.09 

PFDA Below median (referent)  126.99   

 At or above median  -2.81 -8.54, 2.92 

 Per ln-unit (PFDA)  -2.86 -6.75, 1.04 

 Per IQR(ln-PFDA)
f
  -2.87 -6.77, 1.04 

PFUnDA Quartile 1 (referent)  127.40   

 Quartile 2  -0.40 -8.54, 7.73 

 Quartile 3  -3.94 -11.93, 4.06 

 Quartile 4  -4.18 -12.45, 4.09 

 Per ln-unit (PFUnDA)  -3.10 -7.13, 0.93 

 Per IQR(ln-PFUnDA)  -2.84 -6.53, 0.85 

PFHxS Quartile 1 (referent)  123.89   

 Quartile 2  1.15 -8.15, 10.45 

 Quartile 3  5.24 -3.65, 14.13 

 Quartile 4  0.68 -8.04, 9.40 

 Per ln-unit (PFHxS)  0.79 -3.69, 5.27 

 Per IQR(ln-PFHxS)  0.53 -2.46, 3.52 

PFHpS Quartile 1 (referent)  125.34   

 Quartile 2  0.67 -7.95, 9.28 

 Quartile 3  0.67 -7.72, 9.06 

 Quartile 4  1.21 -6.72, 9.13 

 Per ln-unit (PFHpS)  -0.11 -4.41, 4.19 

 Per IQR(ln-PFHpS)  -0.09 -3.53, 3.35 

PFOS Quartile 1 (referent)  129.19   

 Quartile 2  -5.21 -14.06, 3.65 

 Quartile 3  -4.66 -13.08, 3.76 

 Quartile 4  -2.46 -10.71, 5.80 

 Per ln-unit (PFOS)  3.66 -3.05, 10.38 

 Per IQR(ln-PFOS)  1.74 -1.45, 4.92 
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a
 Adjusted for age, pre-pregnant body mass index, education completed, current smoking 

at mid-pregnancy, gestational weeks at blood draw, oily fish consumed daily, and 

subfecundity (self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.43.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and natural-log transformed triglycerides (ln-mg/dL) 

among 446 nulliparous women enrolled in the Norwegian Mother and Child Cohort 

Study, 2003-2004, additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  4.97   

 Quartile 2  -0.04 -0.17, 0.09 

 Quartile 3  -0.08 -0.21, 0.05 

 Quartile 4  -0.12 -0.25, 0.00 

 Per ln-unit (PFOA)
d
  -0.09 -0.17, -0.01 

 Per IQR(ln-PFOA)
e
  -0.05 -0.10, 0.00 

PFNA Quartile 1 (referent)  4.97   

 Quartile 2  -0.05 -0.15, 0.04 

 Quartile 3  -0.11 -0.21, -0.02 

 Quartile 4  -0.15 -0.25, -0.06 

 Per ln-unit (PFNA)  -0.11 -0.18, -0.04 

 Per IQR(ln-PFNA)  -0.06 -0.10, -0.02 

PFDA Below median (referent)  4.94   

 At or above median  -0.14 -0.20, -0.07 

 Per ln-unit (PFDA)  -0.10 -0.15, -0.06 

 Per IQR(ln-PFDA)
f
  -0.10 -0.15, -0.06 

PFUnDA Quartile 1 (referent)  4.95   

 Quartile 2  -0.05 -0.14, 0.04 

 Quartile 3  -0.10 -0.19, -0.01 

 Quartile 4  -0.18 -0.28, -0.09 

 Per ln-unit (PFUnDA)  -0.08 -0.13, -0.03 

 Per IQR(ln-PFUnDA)  -0.07 -0.12, -0.03 

PFHxS Quartile 1 (referent)  4.94   

 Quartile 2  -0.05 -0.15, 0.06 

 Quartile 3  -0.06 -0.16, 0.04 

 Quartile 4  -0.08 -0.18, 0.02 

 Per ln-unit (PFHxS)  -0.02 -0.08, 0.03 

 Per IQR(ln-PFHxS)  -0.02 -0.05, 0.02 

PFHpS Quartile 1 (referent)  4.94   

 Quartile 2  -0.08 -0.18, 0.01 

 Quartile 3  -0.02 -0.11, 0.08 

 Quartile 4  -0.10 -0.19, -0.01 

 Per ln-unit (PFHpS)  -0.05 -0.10, 0.00 

 Per IQR(ln-PFHpS)  -0.04 -0.08, 0.00 

PFOS Quartile 1 (referent)  4.96   

 Quartile 2  -0.04 -0.14, 0.06 

 Quartile 3  -0.12 -0.22, -0.03 

 Quartile 4  -0.12 -0.21, -0.03 

 Per ln-unit (PFOS)  -0.09 -0.17, -0.01 

 Per IQR(ln-PFOS)  -0.04 -0.08, -0.01 
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a
 Adjusted for age, pre-pregnant body mass index, education completed, current smoking 

at mid-pregnancy, gestational weeks at blood draw, oily fish consumed daily, and 

subfecundity (self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.44.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and uric acid (mg/dL) among 446 nulliparous women 

enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004, additionally 

adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  3.36   

 Quartile 2  -0.07 -0.34, 0.20 

 Quartile 3  0.02 -0.23, 0.28 

 Quartile 4  -0.03 -0.28, 0.21 

 Per ln-unit (PFOA)
d
  0.08 -0.08, 0.25 

 Per IQR(ln-PFOA)
e
  0.05 -0.05, 0.15 

PFNA Quartile 1 (referent)  3.30   

 Quartile 2  0.07 -0.13, 0.27 

 Quartile 3  0.05 -0.15, 0.25 

 Quartile 4  0.09 -0.11, 0.28 

 Per ln-unit (PFNA)  0.06 -0.08, 0.19 

 Per IQR(ln-PFNA)  0.03 -0.05, 0.11 

PFDA Below median (referent)  3.39   

 At or above median  -0.11 -0.24, 0.02 

 Per ln-unit (PFDA)  -0.02 -0.11, 0.07 

 Per IQR(ln-PFDA)
f
  -0.02 -0.11, 0.07 

PFUnDA Quartile 1 (referent)  3.39   

 Quartile 2  -0.07 -0.26, 0.11 

 Quartile 3  -0.13 -0.31, 0.05 

 Quartile 4  0.03 -0.15, 0.22 

 Per ln-unit (PFUnDA)  0.00 -0.10, 0.09 

 Per IQR(ln-PFUnDA)  0.00 -0.09, 0.08 

PFHxS Quartile 1 (referent)  3.28   

 Quartile 2  0.10 -0.12, 0.31 

 Quartile 3  0.06 -0.14, 0.27 

 Quartile 4  0.10 -0.10, 0.30 

 Per ln-unit (PFHxS)  0.06 -0.04, 0.16 

 Per IQR(ln-PFHxS)  0.04 -0.03, 0.11 

PFHpS Quartile 1 (referent)  3.32   

 Quartile 2  -0.04 -0.24, 0.15 

 Quartile 3  0.03 -0.16, 0.22 

 Quartile 4  0.11 -0.08, 0.29 

 Per ln-unit (PFHpS)  0.08 -0.02, 0.18 

 Per IQR(ln-PFHpS)  0.06 -0.01, 0.14 

PFOS Quartile 1 (referent)  3.26   

 Quartile 2  0.05 -0.16, 0.25 

 Quartile 3  0.18 -0.01, 0.37 

 Quartile 4  0.14 -0.05, 0.33 

 Per ln-unit (PFOS)  0.08 -0.08, 0.23 

 Per IQR(ln-PFOS)  0.04 -0.04, 0.11 
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a
 Adjusted for age, pre-pregnant body mass index, education completed, current smoking 

at mid-pregnancy, gestational weeks at blood draw, oily fish consumed daily, and 

subfecundity (self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.45.  Linear regression coefficients between plasma concentrations of 

perfluoroalkyl substances (ng/mL) and natural-log transformed C-reactive protein (ln-

mg/dL) among 446 nulliparous women enrolled in the Norwegian Mother and Child 

Cohort Study, 2003-2004, additionally adjusted for subfecundity rather than weighted. 

   Adjusted
a
 

LSM
b
 or β 

 

95% CI
c
 

PFOA Quartile 1 (referent)  1.88   

 Quartile 2  -0.17 -0.50, 0.16 

 Quartile 3  -0.25 -0.56, 0.07 

 Quartile 4  -0.20 -0.51, 0.10 

 Per ln-unit (PFOA)
d
  -0.14 -0.34, 0.06 

 Per IQR(ln-PFOA)
e
  -0.08 -0.21, 0.04 

PFNA Quartile 1 (referent)  1.70   

 Quartile 2  0.04 -0.21, 0.29 

 Quartile 3  -0.06 -0.31, 0.19 

 Quartile 4  -0.07 -0.31, 0.17 

 Per ln-unit (PFNA)  -0.08 -0.25, 0.09 

 Per IQR(ln-PFNA)  -0.05 -0.15, 0.05 

PFDA Below median (referent)  1.70   

 At or above median  -0.06 -0.22, 0.10 

 Per ln-unit (PFDA)  -0.05 -0.16, 0.06 

 Per IQR(ln-PFDA)
f
  -0.05 -0.16, 0.06 

PFUnDA Quartile 1 (referent)  1.65   

 Quartile 2  0.11 -0.12, 0.34 

 Quartile 3  -0.03 -0.26, 0.20 

 Quartile 4  0.00 -0.24, 0.23 

 Per ln-unit (PFUnDA)  -0.05 -0.17, 0.06 

 Per IQR(ln-PFUnDA)  -0.05 -0.15, 0.06 

PFHxS Quartile 1 (referent)  1.69   

 Quartile 2  0.02 -0.24, 0.29 

 Quartile 3  0.00 -0.25, 0.25 

 Quartile 4  -0.05 -0.30, 0.20 

 Per ln-unit (PFHxS)  -0.03 -0.16, 0.10 

 Per IQR(ln-PFHxS)  -0.02 -0.11, 0.06 

PFHpS Quartile 1 (referent)  1.74   

 Quartile 2  -0.09 -0.33, 0.15 

 Quartile 3  -0.12 -0.35, 0.12 

 Quartile 4  -0.03 -0.26, 0.19 

 Per ln-unit (PFHpS)  0.02 -0.11, 0.14 

 Per IQR(ln-PFHpS)  0.01 -0.09, 0.11 

PFOS Quartile 1 (referent)  1.59   

 Quartile 2  0.18 -0.08, 0.43 

 Quartile 3  0.14 -0.10, 0.38 

 Quartile 4  0.03 -0.20, 0.27 

 Per ln-unit (PFOS)  0.08 -0.11, 0.27 

 Per IQR(ln-PFOS)  0.04 -0.05, 0.13 
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a
 Adjusted for age, pre-pregnant body mass index, education completed, current smoking 

at mid-pregnancy, gestational weeks at blood draw, oily fish consumed daily, and 

subfecundity (self-reported time to pregnancy >12 months). 
b
 Least-squares mean is presented for Quartile 1, which serves as the reference category 

for quartile analyses. 
c
 95% confidence interval. 

d 
Coefficient represents the change in total cholesterol for each 1 ln-(ng/mL) increase in 

PFAS concentration. 
e
 Coefficient represents the change in total cholesterol for a shift in PFAS concentration 

from the 25
th

 percentile to the 75
th

 percentile of the observed exposure distribution. 
f 
IQR of ln(PFDA) estimated as 2*(75

th
 percentile-median) because the 25

th
 percentile of 

PFDA was below the limit of quantification. 
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Table 4.46.  Weighted
a
 linear regression of each clinical chemistry outcome on “multiple 

high exposure” group, consisting of individuals with exposure in highest category for all 

seven perfluoroalkyl substances measured in mid-pregnancy plasma among 889 pregnant 

women enrolled in the Norwegian Mother and Child Cohort Study, 2003-2004. 

 

 Unadjusted Adjusted
b
 

 β 95% CI
c
 β 95% CI 

Total Cholesterol 4.73 -8.99, 18.44 4.06 -10.26, 18.38 

HDL Cholesterol 8.88 4.94, 12.82 7.41 3.52, 11.30 

LDL Cholesterol -2.31 -14.38, 9.76 -0.27 -12.53 11.99 

Ln-Triglycerides -0.13 -0.25, -0.01 -0.12 -0.22, -0.02 

Uric Acid 0.19 -0.08, 0.46 0.13 -0.15, 0.40 

Ln-C-reactive protein -0.15 -0.43, 0.12 -0.09 -0.37, 0.20 
a
 Weighted for prior selection by subfecundity. 

b
 Adjusted for age, pre-pregnant body mass index, nulliparous or interpregnancy interval, 

duration of breastfeeding previous child, education completed, current smoking at mid-

pregnancy, gestational weeks at blood draw, oily fish consumed daily. 
c
 95% confidence interval. 
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Figure 4.2.  Directed acyclic graph describing the hypothesized associations between perfluoroalkyl substances, HDL 

cholesterol, and modeled covariates. 
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Figure 4.3.  Single and multiple pollutant models for the association between perfluoroalkyl substances and HDL cholesterol 

(mg/dL), among 524 women selected without regard to subfecundity (base sample) enrolled in the Norwegian Mother and 

Child Cohort Study 2003-2004. 



 

 

CHAPTER 5: CONCLUSIONS 

5.1. Overall Study Aims, Findings, and Interpretation 

 The aims of this study were twofold: 1) to estimate the association between mid-

pregnancy perfluoroalkyl substances (PFASs) and a validated diagnosis of preeclampsia 

among nulliparous women, and 2) to determine the cross-sectional associations between 

mid-pregnancy PFASs and several clinical chemistries of interest for cardiovascular 

health.  These aims were accomplished using separate samples of eligible pregnancies 

from the large Norwegian Mother and Child Cohort (MoBa) study.  The aims are 

interconnected, in that the cross-sectional associations with lipid parameters and other 

clinical chemistries were intended to evaluate one possible biological mechanism linking 

PFASs with preeclampsia. 

 The first aim was accomplished through the design and analysis of a case-cohort 

study within MoBa.  Cases were randomly selected from eligible cases of preeclampsia 

whose diagnosis was validated by independent medical record review, and the subcohort 

was randomly selected from all eligible women enrolled in the same time frame.  PFASs 

were measured in mid-pregnancy plasma samples and weighted Cox proportional hazards 

regression models were used to estimate the association between each of seven PFASs 

and preeclampsia, using as the event time either the gestational week at which diagnostic 

criteria were met, or the gestational day of delivery due to preeclampsia.  In both 

circumstances, none of the seven PFASs examined were positively associated with 

preeclampsia risk, and PFUnDA was inversely associated with preeclampsia. 
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 Based on a series of previous studies conducted among women highly exposed to 

PFOA through contaminated drinking water (8, 94), we expected positive associations 

between PFASs and preeclampsia risk.  The differences in results between our study and 

the previous studies may be partially attributed to differences in outcome ascertainment 

method and exposure assessment, to lower PFOA concentrations in our study as 

compared with the previous studies, or to underlying differences between the populations 

studied. 

 Self-reported preeclampsia has been previously found to have a relatively low 

positive predictive value of 50-60% (177).  The use of self-report in previous studies of 

preeclampsia may have identified “case” groups that inadvertently included women with 

other conditions, such as underlying chronic hypertension or pregnancy-induced 

hypertension, as well as those with true preeclampsia.  Moreover, recall bias could be 

present if ascertainment of preeclampsia history took place after the participants became 

aware of PFOA contamination of their drinking water.   

 Our study also differed from previous studies in the method of exposure 

assessment.  We directly measured PFAS concentrations in plasma at mid-pregnancy, 

while previous studies either estimated PFAS concentrations during pregnancy based on 

a predictive model (8) or measured PFASs in serum up to 5 years after the pregnancy of 

interest (94).  Estimated PFOA concentrations in the previous studies were higher than 

concentrations measured in our study; for example, the upper boundary of the lowest 

category of PFOA exposure in one of the previous studies was higher than the 95
th

 

percentile of the PFOA distribution in our study (8) (Table 4.2).  However, our restricted 

cubic spline models did not show any indication of increasing risk of preeclampsia 
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associated with PFOA exposure, even at the highest observed concentrations.  Moreover, 

the median estimated PFOS concentration in the previous study did not differ notably 

from the concentration measured in our study.  The previous studies did not examine 

associations with PFASs other than PFOS and PFOA, nor did they find linear dose-

response relationships between PFOS or PFOA and preeclampsia (8, 94). 

 Like many epidemiologic studies, this investigation was prompted by a reported 

association in a highly exposed population.  The fact that our study, conducted in a 

background-exposed population, failed to replicate the findings of the previous study may 

reflect unmeasured differences in underlying population characteristics.  For example, the 

women who were most highly exposed to contaminated drinking water in Ohio and West 

Virginia may have had other risk factors that predisposed them to preeclampsia, or other 

environmental or genetic factors that interacted with high PFOA exposure to produce an 

elevated risk of preeclampsia.  Additional studies conducted in different populations may 

help to resolve these questions of possible bias due to unmeasured confounders or effect 

modifiers. 

 The inverse association we found between PFUnDA and preeclampsia (Section 

4.1) has not been previously reported.  We had no specific hypothesis regarding the 

association between PFUnDA and preeclampsia, and therefore this finding must be 

interpreted with some caution.  However, if an inverse association between PFUnDA and 

preeclampsia is observed consistently in other studies, it could potentially be explained 

by the causal mediation of HDL cholesterol.  We observed a strong positive association 

between PFUnDA and HDL in our cross-sectional analyses (Section 4.2).  This is notable 

because preeclampsia is typically characterized by reduced HDL (205), and it is 
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conceivable that an environmental exposure leading to increased HDL in pregnant 

women could actually be protective against preeclampsia.  However, we cannot 

determine from a cross-sectional study whether or not the observed associations between 

PFUnDA and HDL are causal, nor do we know whether elevations in HDL actually 

prevent preeclampsia, so this mechanism remains speculative.  Moreover, an attempt to 

adjust for HDL as a causal intermediate in order to “decompose” the observed association 

into direct and indirect effects would be unlikely to produce interpretable results, as the 

strict assumptions required for this procedure are unlikely to be met in this case (181). 

 Another consideration in the interpretation of these findings is the fact that we 

restricted our study population to women with no previous live births or stillbirths.  The 

goal of this restriction was to simplify interpretation, as PFASs decline through 

pregnancy and lactation (14, 60) then may increase again during the interval between 

pregnancies (41), and this may produce biased associations, particularly if the outcome of 

interest is related to fertility.  Restricting analyses to women with no previous live births 

or stillbirths may eliminate bias due to previous pregnancy history.  Moreover, the 

pathogenesis of preeclampsia in nulliparous women may differ from the pathogenesis in 

parous women.  Associations between PFASs and preeclampsia may differ between 

nulliparous and parous women; therefore these findings may not be generalizable to 

parous women. 

 Finally, the interpretation of observed associations between PFASs and 

preeclampsia is somewhat complicated by the heterogeneity of the disease.  Several 

researchers have suggested that early-onset preeclampsia (prior to 34 weeks’ gestation) 

may have a distinct etiology from late-onset preeclampsia, as evidenced by the fact that 
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early and late manifestations of the disease are characterized by different hemodynamic 

states and different lipid profiles (123, 124).  While we attempted to restrict our analysis 

to a clearly defined phenotype of preeclampsia, it is possible that the cases of 

preeclampsia with onset prior to 34 weeks (14% of cases in our study) may show 

different associations with PFAS concentrations than the cases with later onset.  

Unfortunately our study was not powered to detect these differences. 

 The principal outcome in Aim 1 was the gestational age at onset of preeclampsia.  

This study design was intended to account for the varying lengths of pregnancy, due to 

the competing risk of early delivery for reasons other than preeclampsia.  However, the 

results of the time-to-event model using gestational age at preeclampsia onset did not 

differ substantially from the results of the logistic analysis, which considered 

preeclampsia as a binary outcome.  This suggests that any detected differences in 

preeclampsia risk associated with PFAS concentrations were differences in the diagnosis 

of preeclampsia at any point during pregnancy, rather than differences in the timing of 

diagnosis.  By contrast, if women with higher concentrations of PFASs had earlier onset 

of preeclampsia than women with lower concentrations of PFASs, but no differences in 

overall incidence of preeclampsia, then we would have seen null results from the logistic 

regression models but positive results from the Cox proportional hazards models.   

 Similarly, the Cox proportional hazards models using the gestational age at 

identified onset of preeclampsia did not produce substantially different results from the 

models using gestational age at delivery due to preeclampsia, with the exception of a 

small inverse association with PFDA in the model using gestational age at delivery.  This 

finding could be due to chance; however it could also suggest a subset of women with 
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higher PFDA concentrations who tended to have mild preeclampsia and deliver slightly 

later than women with lower PFDA concentrations who also have preeclampsia. Women 

with mild disease may be able to remain pregnant for longer and therefore deliver later 

than women with more severe disease with the same gestational age at onset.  The small 

difference in the results of these two analyses is intriguing, but will need to be replicated 

in other studies. 

 The second aim was accomplished through the analysis of data from a subset of 

women in the MoBa study with PFASs and certain clinical chemistries measured during 

pregnancy.  Based on previous studies of non-pregnant individuals, we expected to 

observe positive associations between PFASs and total cholesterol, as well as LDL 

cholesterol and triglycerides (5, 89).  We did observe a positive linear association 

between PFOS and total cholesterol, but no associations with other PFASs.  Moreover, 

the regression models based on PFAS quartile estimates did not indicate linear dose-

response associations between PFASs and total cholesterol.  We observed no associations 

between PFASs and LDL cholesterol or triglycerides.  

 We did observe positive associations between each of the seven PFASs and HDL 

cholesterol, and the strongest association was observed between PFUnDA and HDL.  We 

cannot deduce from this single study whether this finding is due to confounding, 

pharmacokinetics, or to a causal association.  Previous studies of PFASs and lipid 

parameters in non-pregnant populations have generally shown positive associations 

between PFASs and total cholesterol and non-HDL cholesterol (89), although one study 

noted an inverse association between PFHxS and total cholesterol (7).  Lipid parameters 

change dramatically during the course of pregnancy (134) and it is possible that 
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associations between PFASs and lipid parameters in blood may differ in pregnant women 

as compared with non-pregnant individuals. 

PFASs are often correlated in biological samples, but a simply summary measure 

is not recommended due to the possibility that each PFAS may have independent 

biological activity through multiple pathways (206).  We explored a number of different 

approaches to this problem, including single pollutant, multiple pollutant, and empirical 

Bayes (EB) models.  In the cross-sectional study of PFASs and HDL cholesterol, the 

differences between the results of the single pollutant and multiple pollutant models were 

substantial, and the differences between the multiple pollutant model and the EB model 

were more modest.  Both types of multiple pollutant models (conventional and empirical 

Bayes) adjusted for possible confounding of each PFAS-HDL association by other, 

correlated PFAS exposures.  We were only able to adjust for the seven PFASs detectable 

in greater than 50% of participants; other PFASs were present at very low concentrations 

but their relative potency remains unknown.  While the use of multiple modeling 

strategies was highly informative about the potential influence of mutual confounding by 

correlated exposures, we cannot conclude based on this study alone which model 

provided the most unbiased estimates of the associations of interest. 

 Most previous studies have focused on PFOS and PFOA, which are found at the 

highest concentrations in most populations.  However, it has become evident in recent 

studies that individual PFASs may differ in their associations with outcomes of interest.  

Some laboratory studies have suggested that certain properties of PFASs may depend on 

the carbon chain length of the molecule, and PFUnDA was the longest-chain PFAS 

examined here.  However, chain length alone does not appear to explain the relative 
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potency of PFAS types, at least with regard to activation of peroxisome-proliferator 

activated receptor alpha (196, 197). 

 We cannot rule out the possibility that these results may be biased by unobserved 

confounding.  The predictors of plasma PFAS concentrations are not well-established, 

and may vary between populations.  There may be shared causes of elevated PFASs and 

elevated HDL in pregnancy that we did not adjust for.  Additionally, there may be 

different confounders of each PFAS-lipid association.  The relative toxicologic and 

pharmacokinetic properties of each of the PFASs in humans have not yet been adequately 

documented.  There may also be affinities between HDL and PFASs in circulating blood 

(182) that could explain the observed association.   

 

5.2. Strengths 

This is the first study to utilize PFAS concentrations measured during pregnancy 

to estimate associations with lipid parameters and other clinical chemistries, as well as 

with a validated diagnosis of preeclampsia.  Some previous studies have excluded 

pregnant women from cross-sectional analyses of PFASs and lipids (7, 90), while some 

have retrospectively estimated pregnancy PFAS concentrations rather than measuring 

during pregnancy (8, 94).  Our study addresses the important question of whether there 

may be adverse effects of elevated plasma PFAS concentrations during pregnancy, and 

specifically whether concentrations of PFASs may be associated with preeclampsia risk. 

This study used data from the large MoBa pregnancy cohort, which collected 

detailed questionnaire data as well as biological samples at mid-pregnancy (152), and 

high-quality PFAS assays performed by the Norwegian Institute of Public Health (155).  

The sensitivity of these assays allowed for the analysis of several PFASs, rather than only 
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the most prevalent chemicals.  Additionally, we used an independently validated 

diagnosis of preeclampsia, based on a review of antenatal medical records (Klungsoyr et 

al., submitted).  The use of a validated diagnosis of preeclampsia may have reduced 

outcome misclassification and improved our ability to detect an association.  Finally, this 

study employed a novel treatment of correlated exposures, including a comparison of 

single pollutant, multiple pollutant, and empirical Bayes shrinkage models.   

 

5.3. Limitations 

We measured PFASs in plasma samples collected at mid-pregnancy, when 

participants were recruited into the MoBa study, by contrast with previous studies which 

employed indirect methods of exposure assessment (8, 94).  However, we cannot rule out 

the possibility that an early manifestation of preeclampsia may have already been present 

at the time that samples were drawn.  If kidney function were altered at mid-pregnancy, 

this could lead to decreased urinary excretion of PFASs.  The likely result of this 

hypothetical scenario would be a positive association between PFASs at mid-pregnancy 

and the eventual development of preeclampsia; we did not observe such an association in 

this study. 

Another potential limitation of our study design was the assumption of non-

informative censoring in Cox proportional hazards models for preeclampsia.  If the risk 

of censoring (or early delivery due to reasons other than preeclampsia) were related to the 

risk of preeclampsia, then this assumption would be violated and our results could be 

biased.  However, the number of women delivering prior to 37 weeks due to reasons 

other than preeclampsia is small in this population (<5% of non-cases), and so the 

magnitude of this bias is expected to be minor. 



 

176 

 

It is possible that selection bias may have influenced the results of our study.  The 

participation rate in the MoBa study was 39% of eligible women, and a previous study 

suggests that MoBa participants differed from the general population of women giving 

birth in Norway in a number of ways (170).  For example, women under 25 years old 

were under-represented in MoBa, as were single women, women with two or more 

previous births, women with previous stillbirths, and women with pregestational diabetes 

(170).  If selection into the MoBa study were related to both PFAS exposure and to 

preeclampsia, this could produce bias in our results.  Our study was restricted to 

nulliparous women, and we adjusted for variables known to be strong confounders, 

therefore we believe that the magnitude of this potential bias is likely to be low.  

However, our results may not be generalizable to a population of women with different 

underlying characteristics. 

 

5.4. Public Health Implications 

 PFASs have been produced for over 50 years, and are now detectable in the blood 

of humans in nearly all industrialized countries, including countries with no history of 

domestic PFAS production (31).  PFASs are believed to reside in human blood, liver, and 

kidneys (17) and to have half-lives in the human body of 2-7 years (19, 169).  It is 

unknown whether adverse health effects may result from chronic, low-level exposure in 

humans.  At high levels, PFASs are known to be hepatotoxic, immunotoxic, tumorigenic, 

and developmentally toxic to fetuses (75, 82).  It is therefore highly important to establish 

whether these widespread contaminants may adversely affect the health of pregnant 

women and their infants.  Regulatory bodies in the United States and Europe have begun 

to restrict the production of PFOS and to work towards the replacement of PFOA with 
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alternative products.   Proposed replacement chemicals must also be evaluated for health 

risks and environmental persistence.  Perhaps one lesson to be learned from the 

ubiquitous presence of PFASs in the environment and in human bodies is that, in the 

future, we must evaluate not only the high-dose toxicity of a chemical but also the 

potential health effects of low-dose, chronic exposure before allowing widespread 

production and use. 

 

5.5. Clinical Relevance 

 While the study of the population health effects of environmental contaminants is 

clearly within the scope of public health research, the implications of such research for 

clinical practice are less clear. If PFASs are eventually shown to have a causal 

relationship with preeclampsia or lipids during pregnancy, then it may be appropriate for 

obstetricians and gynecologists to communicate these risks to women in the context of 

prenatal or pre-conception counseling.  This counseling could include education on 

sources of exposure to PFASs, so that women could potentially make more informed 

choices about their exposures (207).  This may be particularly important if a woman has 

had occupational or other high-dose exposure to PFASs.  For the general population, 

however, such an evaluation may cause unnecessary anxiety because individuals have 

limited ability to reduce their exposure to PFASs in their daily environments.  More 

research will be needed to determine the most common sources of PFAS exposure in 

order to develop effective screening questions for clinicians to evaluate exposure risk 

(208).  Ultimately, policy and regulatory changes leading to reduction or elimination of 

exposure to environmental pollutants are likely to be the most promising route to 

preventing pregnancy complications with environmental causes. 
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While we observed an inverse association between mid-pregnancy PFUnDA 

concentration and preeclampsia risk, it would be premature to suggest that the observed 

protective association is due to a causal effect of PFUnDA.  However, the further 

investigation of possible causes of the observed inverse association may lead to a greater 

understanding of the pathogenesis of preeclampsia.  We hope that increased knowledge 

of risk factors for preeclampsia may eventually aid in the prevention of this serious and 

common complication of pregnancy. 

 

5.6. Future Directions 

 This study produced several novel findings, the interpretation of which will spur 

future research in this area.  In order to establish whether the observed cross-sectional 

association between PFASs and HDL cholesterol in pregnant women may be causal, it 

would be informative to conduct a prospective study, in which plasma concentrations of 

PFASs are measured prior to the beginning of pregnancy.  Cohorts of women intending 

to become pregnant are challenging to assemble, but given the stability of PFASs in 

stored plasma, it is possible that this question could be examined using stored plasma 

from a study of fertility or early pregnancy that required recruitment prior to pregnancy.  

If elevated PFASs prior to pregnancy were associated with higher HDL cholesterol 

during pregnancy, this would be more suggestive of a causal association, particularly if 

adequately adjusted for diet, exercise, alcohol consumption and other known causes of 

high HDL.  However, the biological mechanism of such an association is unknown, and 

this effect would likely need to be demonstrated in an animal model in order to make a 

convincing argument for causality. 
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 Similarly, the interpretation of the observed inverse association between mid-

pregnancy PFUnDA and the subsequent diagnosis of preeclampsia is complicated by the 

timing of plasma collection.  It is possible that an early, subclinical manifestation of the 

disease state may already be present, and may influence the measured concentration of 

PFASs in plasma, possibly through altered excretion of PFASs by the kidneys.  It is 

unclear why such a process might only influence the association with PFUnDA.  

However, further toxicology studies are needed to establish the relative biological activity 

and potentially diverse modes of action of several widespread PFASs.    

 The fact that such a limited number of comparable studies have been conducted 

suggests that more epidemiologic studies of environmental exposures should consider 

including pregnant women.  Pregnant women are often excluded from general population 

studies because the altered hemodynamics and lipid metabolism of pregnancy make it 

difficult to directly compare measured values from pregnant women to non-pregnant 

individuals.  Given that all individuals in industrialized and developing areas are 

regularly exposed to environmental contaminants, it is important to study the potential 

adverse effects of PFASs and other common pollutants during pregnancy, a state in 

which both the mother and infant may be highly susceptible to harm. 
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