
SIDE POPULATION SORTING SEPARATES SUBFRACTIONS OF  

INTESTINAL STEM CELLS 

Richard Joseph von Furstenberg 

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Master of Science in the 
Department of Cell and Molecular Physiology 

Chapel Hill 
2012 

 

 

                  Approved by: 

Michael Goy, Ph.D. 

Kay Lund, Ph.D. 

John Rawls, Ph.D. 

Susan Henning, Ph.D. 

 

 



ii 
 

ABSTRACT 

 
RICHARD VON FURSTENBERG: Side Population Sorting Separates Subfractions of 

Intestinal Stem Cells 
(Under the direction of Susan J. Henning) 

 
 

 The existence of intestinal stem cells (ISCs) which generate the epithelium has 

been recognized for over three decades. Recent work suggests there are two distinct ISC 

populations: active ISCs which are important for epithelial homeostasis, and quiescent 

ISCs that drive proliferation after injury. Although quiescent ISCs may be of greater 

therapeutic use, to date, isolation of this population has been achieved only with 

fluorescent reporter mice. My goal was to identify an isolation method for both ISC 

populations that can be used in wild-type mice and eventually humans.  In the following 

experiments I use side population (SP) sorting to demonstrate that the USP: contains 

reporter cells of the active ISC, is highly proliferative by S phase analysis, and expresses 

high levels of the known active ISC transcripts.  In contrast the LSP is: non-proliferative, 

de-enriched for active ISC transcripts, and enriched for those of quiescent ISCs.    
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CHAPTER 1 

INTRODUCTION 

 

 The existence of the intestinal epithelial stem cells (ISCs) that can generate the 

four main lineages of the small intestine (absorptive, goblet, enteroendocrine, Paneth cell) 

has been recognized for the last 40 years.1  There have been recent strides in the 

characterization of both ISC biology, and the niche they occupy.2,3  These advances have 

in large part been a product of transgenic reporter mice (Lgr5, Sox9, Bmi1, mTert, Lrig1, 

and Hopx).  Information emerging from in vivo studies of these mice including ISC 

behavior in normal physiology, development, cancer, and response to damage, have shed 

new light on the existing notion of two distinct ISC populations or phenotypic states.4,1   

The crypt base columnar cells (CBC), intercalated amongst Paneth cells in the crypt base, 

display high levels of Lgr5 promoter activity and are rapidly cycling (every 24h) 5,6.   For 

this reason the CBC cells are referred to as the “active ISC” and are believed to be 

primarily responsible for the rapid turnover of the intestinal epithelium during normal 

homeostasis.  Located above the Paneth cells in the “+4” cell position (distributed from 

+2 to +7) are the long lived, slowly cycling stem cells.7  Validated genetic markers of the 

+4 cells, include Bmi1, mTert, Lrig1, Hopx.8,9,10,11   
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The supra-Paneth cells labeled by these markers have demonstrated the potential to 

generate the four main intestinal lineages, and cycle at higher frequency following 

damage.12,13,10  The active and slow-cycling ISC populations appear to be engaged in a 

fluid relationship in which the +4 cell can repopulate the CBC pool, and conversely the 

CBC can generate the +4 cell in a bidirectional phenomenon termed interconversion.14,10  

Furthermore, and in the same vein, it has been proposed that the Lgr5+ cells express 

transcriptional markers associated with quiescence (Bmi1, Tert, Hopx, and Lrig1) while 

maintaining an active status in the CBC position15.  Adding to this concept of plasticity, 

recent publications suggest that committed progenitors or subsets of both Paneth and 

enteroendocrine cells (EE) may re-enter the cell cycle following damage.16,17,18,19   

 While the various ISC transgenic mice have allowed for elegant experiments and 

new insight, this approach is limited to these specifically-engineered animals and thus has 

experimental and therapeutic limitations.  In contrast, fluorescence-activated cell sorting 

(FACS) approaches using antibodies against surface markers such as DCLK1, CD24, and 

LRIG1 offer the potential to sort ISC from any mouse or human.  However to date the 

published antibody based methods each have caveats of their own:  DCLK1 is expressed 

on slow-cycling ISC and differentiated tuft cells, CD24 is expressed on actively-cycling 

ISC and Paneth cells, and while Lrig1 is expressed on slow-cycling ISC,  high levels of 

Lrig1 are expressed in the CBC.20,21,22  In light of these caveats a selection method based 

on a conserved stem cell property of dye efflux and DNA content offers a parallel 

approach to surface marker strategies.   

The side population (SP) phenotype is due to the presence of xenobiotic efflux 

transporters found on the membrane of stem cells.  The technique, originally developed 



3 
 

utilizing bone marrow cells, has now been used to successfully isolate stem cells from 

many solid tissues including skeletal muscle, lung, liver, testis, kidney, skin, mammary 

gland, heart, and brain.23   Our laboratory reported in 2005 the use of SP sorting to enrich 

for ISC from WT mouse intestine.24  A microarray comparing the intestinal SP to intact 

jejunum, and consequent Gene Ontology analyses, revealed enrichment in Msi1 and 

interestingly a de-enrichment of markers associated with cell cycle.25  Gulati et al. also 

validated the SP as originating primarily from the crypt base by performing in situ for 36 

transcripts enriched in the aforementioned SP microarray, of which 32 were found to be 

restricted to the crypt base.   

I hypothesized that the SP we have previously reported on represents the slowly-

cycling stem cell population and that an effluxing population exists above the traditional 

intestinal SP which represents the actively cycling CBC.24,25  For the purpose of this 

paper the traditional SP will be referred to as the lower SP (LSP) and the newly described 

upper SP as (USP) from here forward as I report a series of experiments to test this 

hypothesis.  I conclude from these studies that this one method of SP sorting will allow 

for the simultaneous isolation of a fraction enriched for actively cycling and slowly 

cycling ISC from WT mice. 
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CHAPTER 2 

METHODS AND MATERIALS 

 

MICE 

WT adult male C57BL/6J mice and heterozygote breeder pairs of Lgr5-EGFP-

IRES-creERT2 (called Lgr5-EGFP from here on) mice were obtained from The Jackson 

Laboratories (Bar Harbor, ME), and housed under a 12:12-h light-dark cycle in American 

Association for Accreditation of Laboratory Animal Care-approved facilities. All animals 

were used within the age range of 6-8 weeks. All WT and Lgr5-EGFP animal usage had 

Institutional Animal Care and Use Committee approval.   

 

CELL PREPARATION AND SP STAINING AND ANALYSIS 

 

Epithelial cells were isolated from the jejunum of WT and Lgr5-EGFP mice using 

our previous published EDTA method.21  For SP analysis, cells from the preparation were 

incubated in “SP buffer” made with 2% FBS, and 10mM HEPES in HBSS and either 

Hoechst 33342 (10ug/ml equal to 17µM) (Sigma) or Vybrant DyeCycle Violet (DCV) 

10µM (Invitrogen) for 90min at 37°C.  Following the incubation the cells were washed 

with ice cold HBSS and labeled with CD45-FITC (Biolegend) at 0.5ug/106 cells and 

propidium iodide (PI) at 1µg/ml for removal of cells that were dead and/or of 

hematopoetic origin.  For validation purposes, in order to block vital dye efflux, cells  
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were pre-incubated with 100µM verapamil for 20min at 37°C and incubated with the 

above SP solution for 90min at 37°C with the addition of 100µM verapamil.  To generate 

the SP fluorescent phenotype Hoechst 33342 samples were excited using a UV laser 

(Dako MoFlo) while DCV samples were excited using a 405nm laser (Dako CyAn and 

BD LSRII).  Corresponding band-pass filter sets were: Dako MoFlo (blue 450-50, red 

670-30), Dako CyAn (blue 450-50, red 680-20), and BD LSRII (blue 450-50, red 660-

20). On each machine, the SP was defined on the redlo population which was eliminated 

by verapamil (Figure 1). For analyses and cell collections, the SP was subdivided into 

two regions: upper SP (USP), and lower SP (LSP).  

 

SP AND EdU S PHASE ANALYSIS 

 

WT mice were injected intraperitoneally with 100µg EdU in PBS, and sacrificed 

1h post-injection.  The jejunum was harvested and epithelial cells were isolated, labeled 

for SP analysis (Hoechst) as mentioned above, and the sub-populations of the SP 

phenotype (LSP and USP) were collected using a Dako MoFlo cell sorter.  The LSP and 

USP cell collections were then processed for EdU detection using the Click-it kit 

(Invitrogen) with an Alexa-647 fluor.  The LSP and USP cell collections were 

subsequently analyzed for EdU positivity using a Dako CyAn flow cytometer.       
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SP AND LGR5-EGFP TRACKING 

 

 Lgr5-EGFP+/- mice were sacrificed, and jejunal epithelial cells isolated.  The cells 

were incubated and labeled for SP analysis (DCV) as described above.  The cells were 

then analyzed using the Dako CyAn to detect both SP fluorescence as well Lgr5-EGFP 

signal from the same sample.  Summit 4.2 software was used to track the Lgr5-EGFPhi 

cells with respect to their SP phenotype.   

 

qRT-PCR OF SP SUBPOPULATIONS 

 

 LSP and USP were collected into lysis buffer and RNA isolated using the 

RNAqueous-Micro kit (Ambion).  cDNA was generated using the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems).  Quantitative reverse transcriptase PCR 

(qRT-PCR) was conducted for each sample in triplicate.  Taqman probes (Actb, 

Mm00607939_s1; Dclk1, Mm00444950_m1; Lgr5, Mm00438890_m1; Lrig1, 

Mm00456116_m1; mTert, Mm00436931_m1; Ascl2, Mm01268891_g1; Olfm4, 

Mm01320260_1; Bmi1 Mm03053308_g1; Hopx, Mm00558630_m1; SI, 

Mm01210305_m1; Lyz, Mm00727183_s1; ChgA Mm00514341_m1; Muc2, 

Mm00458299_m1; Syp, Mm00436850_m1) were obtained from Applied Biosystems and 

used according to manufacturer’s protocol.   
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B-Actin RNA was used as an internal control due to its similar Ct threshold values 

between USP and LSP when the same number of cells were collected: difference in ² -

Actin threshold Ct’s of USP and LSP for 100,000 cells each = 0.18±0.48 (expressed as 

mean ± SEM), n=3.  ” ” Ct (cycle threshold) values were calculated to obtain fold 

changes vs. pooled intact jejunum (WT C57BL6J male 7wk old mice).   

 

QUANTIFICATION OF ENTEROENDOCRINE CELLS IN THE LOWER SP 

 

 The jejunum was harvested and epithelial cells were isolated, labeled for SP 

analysis (Hoechst) as mentioned above, and the sub-populations of the SP phenotype 

(LSP and USP) were collected using a Dako MoFlo cell sorter.  The LSP and USP cell 

collections were then labeled with synaptophysin antibody (Epitomics) as described by 

Bjerknes and Cheng, with the only exception being our use of the synaptophysin antibody 

at an increased 1:500 concentration.26  To validate the synaptophysin antibody in our 

hands it was tested on intestinal cells isolated from peptide YY-GFP mouse, a reporter 

mouse in which the subset of peptide-YY EE cells express GFP.  
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CHAPTER 3 

S PHASE ANALYSIS OF SIDE POPULATION 

 

 To investigate the proliferative activity of the SP sub-populations LSP and USP 

were analyzed for EdU positivity 1h after injection of WT mice with the thymidine 

analog.  Because SP phenotype is reliant on the extrusion of vital dyes by membrane 

efflux pump of the ATP-binding cassette (ABC) transporter superfamily, the collection of 

the SP sub-populations had to be performed before fixation of the cells for EdU detection 

(Figure 2A).  After collection and reanalysis of the SP sub-populations, the EdU positive 

percentages showed marked differences. The USP was 36 ± 4% EdU positive upon 

reanalysis (Figure 2B) while the LSP was only 0.4 ± 0.04% EdU positive (Figure 2C).  

These data suggest the actively cycling ISC are likely to reside in the USP.  Conversely 

the paucity of S phase cells in the LSP, taken along with our group’s previous SP 

publications, suggests it may harbor ISC that cycle very infrequently.  This approximate 

100 fold difference in the percentage of cells undergoing S-phase between the two SP 

subpopulations dramatically illustrates the disparity in proliferative activity between USP 

and LSP.  



 

 

 

 

CHAPTER 4 

UPPER SP CONTAINS ACTIVE INTESTINAL STEM CELL 

 

Since Lgr5 is a commonly used marker of actively cycling ISCs, Lgr5-EGFP 

mice were used to assess the distribution of Lgr5+ cells between the USP and the LSP.  

To this end, following the SP analysis of intestinal epithelial cells from Lgr5-EGFP mice 

(Figure 3A), the Lgr5-EGFPhi fraction was gated forward onto an SP plot (Figure 3B), 

with SP sub-population gates based on a standard SP sample of all cells from the same 

mouse.  Supporting the S phase data from the EdU experiment, 96 ± 2% of the Lgr5-

EGFPhi cells tracked to the USP gate (Figure 3C).  Quantitation of the actual Lgr5-

EGFPhi contribution to the overall makeup of the USP was not possible due to the mosaic 

expression of Lgr5-EGFP in the intestine.21  
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CHAPTER 5 

TRANSCRIPT ANALYSIS OF UPPER AND LOWER SP 

 

The experiments to this point suggest that the actively cycling ISC are restricted 

to the USP.  To explore the transcriptional profile of the SP sub-populations, I utilized 

qRT-PCR and primer/probes for active and quiescent ISC markers.  Additionally I used 

primer/probes for the four intestinal lineages to give some insight into the non-stem cell 

makeup of the SP sub-populations. 

 

qRT-PCR OF INTESTINAL STEM CELL mRNA MARKERS 

 

As expected from the EdU analysis and Lgr5-EGFPhi cell tracking experiments, the USP 

was enriched in all active ISC markers examined, specifically: Lgr5 (25 ± 3), Ascl2 (47 ± 

16), and Olfm4 (10 ± 2), (Figure 4).  The quiescent ISC associated transcripts were 

enriched as well: Lrig1 (37 ± 15), Bmi1 (84 ± 15), mTert (39 ± 15), Hopx (13 ± 4), and 

Dclk1 (5 ± 2).  

 In contrast the LSP was de-enriched for active ISC markers relative to intact 

jejunum, Lgr5 (0.7 ± 0.5), Ascl2 (0.9 ± 0.6), and Olfm4 (0.6 ± 0.5).  mTert  mRNA was 

significantly enriched while other q-ISC markers were increased but did not achieve 
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statistical significance,  Lrig1 (4.8 ± 2.2), Bmi1 (9.2 ± 3.9).  Dclk1 (0.5 ± 0.3), the q-

ISC/tuft cell marker was de-enriched.     

 Interestingly, markers associated with quiescence (Lrig1, Bmi1, mTert, HopX, and 

Dclk1) were also enriched in the USP compared to intact jejunum.  This is in agreement 

with the finding by Munoz et al. that the Lgr5+ cells contain both transcriptional profiles 

(active/quiescent).15  Notably the LSP was void of active ISC markers and enriched for 

quiescent ISC markers. 

    

qRT-PCR OF LINEAGE mRNA MARKERS 

 

In regard to lineage positive cells (Figure 5) the USP was enriched in Muc2 (4.0 ± 

1.0), Lyz (23 ± 8), ChgA (6.3 ± 1.7), and Syp (3.3 ± 1.5) transcripts while de-enriched for 

SI (0.4 ± 0.1).  The LSP appeared to have minimal amounts of absorptive, goblet, and 

Paneth cell transcripts: SI (1.2 ± 0.1), Muc2 (2.7 ± 1.9), Lyz (1.0 ± 0.9) respectively.  The 

EE markers ChgA (17.3 ± 6.6) and Syp (4.1 ± 2.0) were elevated in the LSP.  With regard 

to lineage contamination of the USP, the levels of Lyz, Muc2, and EE transcripts were 

increased over intact jejunum.  LSP however was relatively free from contaminating 

lineage markers with the exception of the EE marker ChgA.   
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CHAPTER 6 

ENTEROENDOCRINE CELL QUANTIFICATION 

 

In light of recent publications from Sei et al. and Van Landeghem et al., that a 

subset of EE cells have ISC potential, I felt it was important to investigate the possibility 

that the LSP was selecting for this EE subset.27,19  To directly assess the number of EE 

cells in the SP regions I opted to collect USP and LSP cells from WT mice and reanalyze 

by permeablizing the cells and labeling with an antibody against the EE marker Syp.  The 

resulting analysis showed less than 2% of the LSP to be Syp positive indicating the LSP 

is likely a different population (Figure 6).  To validate the pan-EE specificity of the Syp 

antibody I tested it against intestinal epithelial cells isolated from the PYY-GFP mouse, 

developed by Bohorquez et al., in which the peptide-YY producing subset of EE cells 

express GFP.28  Our resulting flow analysis demonstrated that almost all PYY-GFP cells 

were also Syp positive (Figure 7).  The ability of a committed secretory progenitor to 

revert back to a stem cell phenotype following damage has been recently demonstrated 

by van Es et al. in the case of the Dll1hi cell and the characterization of the H2B-LRC 

secretory progenitor by Buczacki et al.16,17  However I did not find significant expression 

of Dll1 or Atoh1 mRNA in the LSP (data not shown).  Thus, under homeostatic 

conditions these progenitors do not exhibit the stem cell phenotype of dye efflux.  
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CONCLUSION 

 

This paper reports the use of SP sorting to successfully isolate two phenotypically 

different putative ISC populations from WT mice.  Most notable is the near 100 fold 

difference in the percentage of cells undergoing S phase when comparing the USP to the 

LSP.  I demonstrated that Lgr5-EGFPhi cells, which represent the active ISC, were found 

to reside in the USP when tracked on the SP plot.  Upon sorting and processing the USP 

and LSP for mRNA analysis, I found differing transcriptional profiles via qRT-PCR.  In 

support of the notion that the LSP is characteristic of the quiescent ISC pool, mRNA 

markers associated with quiescent ISC were enriched, while those of the active ISC were 

de-enriched.  The LSP, otherwise free from lineage transcripts, displayed a high level of 

ChgA mRNA.  To evaluate the possibility that the LSP contained a significant proportion 

of EE cells, I collected the LSP along with the USP and labeled the cells with anti-Syp 

antibody.  Less than 2% of the LSP was positive for the widely reported pan-EE marker 

Syp.18,16  This finding exemplifies the caution by that transcript levels, especially from 

secretory cells, are not necessarily indicative of cell number.29   

The SP phenotype is conferred when a cell expresses a combination of effluxing 

membrane proteins belonging to the ATP-binding cassette (ABC) superfamily including 

multi-drug resistance 1 (Mdr1 human, Mdr1a/1b mouse) and ATP-binding cassette, sub-

family G (WHITE), member 2 (Abcg2) also referred to as breast cancer resistance  
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protein1 (Bcrp1) which work in concert to eliminate a DNA binding dye such as Hoechst 

33342 or DyeCycle Violet.23,30  Despite this efflux some amount of dye does bind to the 

DNA and resulting fluorescence is an index of DNA content and allows for 

discrimination of cell cycle activity.23  The interpretation of cell cycle activity/ DNA 

content from SP has been demonstrated by both Goodell et al. and Petriz et al. with bone 

marrow cells and yielded plots analogous to the patterning seen in intestine when 

visualized using lower signal amplification of the vital dye emission than we had in 

2005.31,32  Adapting these instrument settings I could now interpret an additional 

effluxing population (USP) above the traditional SP (now LSP) illustrated in the 2005 

publication from our group.24  This “upper SP” region was in an orientation much like the 

published S-G2M phase cells which exist, spatially, above the SP along the Hoechst blue 

axis.  Confirming this, I found the USP to be highly enriched in cells which incorporated 

EdU following a 1h pulse when compared to the LSP.   

The Lgr5-EGFPhi cells from the Lgr5-EGFP-ires-CreERT2 mice have been 

previously used as a surrogate for the mitotically active ISC.13  To examine the 

relationship between active ISC and SP phenotype I performed SP analysis on jejunal 

epithelium from these mice, and found that almost all Lgr5-EGFPhi  active ISC reside in 

the USP.  Unfortunately, as referenced in our results, due to the mosaicism of Lgr5-EGFP 

expression in this mouse line I could not estimate the contribution of Lgr5hi cells to the 

USP.  As mentioned in the introduction there no published ISC membrane markers which 

are exclusive to the active ISC so I was precluded from further investigation as to the 

exact ISC percentage of the USP. 
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Next I evaluated the transcriptional profiles of the USP and LSP in terms of ISC 

genes (quiescent and active) as well as genetic markers of the committed lineages.  As 

expected from the Lgr5-EGFPhi tracking experiment I found an enrichment of Lgr5, 

Ascl2, and Olfm4 in the USP.  Interestingly, markers associated with quiescence (Lrig1, 

Bmi1, mTert, HopX, and Dclk1) were also enriched in the USP compared to intact 

jejunum.  This is in agreement with the findings of that the Lgr5+ cells contain both 

transcriptional profiles (active/quiescent).15   The LSP in contrast expressed only the 

quiescent ISC markers (Lrig1, Bmi1, mTert, and HopX) at levels above intact jejunum, 

and were de-enriched for a-ISC transcripts (Lgr5, Ascl2, and Olfm4).  With regard to 

lineage contamination of the USP, the levels of Lyz, Muc2, and EE transcripts were 

increased over intact jejunum.  LSP however was relatively free from contaminating 

lineage markers with the exception of the EE marker ChgA.  

 In light of recent publications from Sei et al. and Van Landeghem et al. that a 

subset of EE cells have ISC potential, I felt it was important to investigate the possibility 

that the LSP was selecting for this EE subset.27,19  To directly assess the number of EE 

cells in the SP regions I opted to collect USP and LSP cells from WT mice and reanalyze 

by permeablizing the cells and labeling with an antibody against the EE marker Syp.  The 

resulting analysis showed less than 2% of the LSP to be Syp positive indicating the LSP 

is likely a different population.  To validate the pan-EE specificity of the Syp Ab I tested 

it against intestinal epithelial cells isolated from the peptide YY-GFP mouse in which the 

peptide YY producing subset of EE cells express GFP.  Our resulting flow analysis 

demonstrated that almost all peptide YY-GFP cells were also Syp positive.  The ability of 

a committed secretory progenitor to revert back to a stem cell phenotype following 
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damage has been recently demonstrated as in the case of the Dll1hi cell and the H2B-LRC 

secretory progenitor.16,17   However I did not find significant expression of Dll1 or Atoh1 

mRNA in the LSP.    

A recent study that has strengthened the link between intestinal SP and ISC is an 

inducible Abcg2-LacZ mouse model allowing for lineage tracing.33  Previously 

mentioned as one of the vital dye effluxers, Abcg2 has been demonstrated to be the most 

critical to the SP phenotype in bone marrow, essentially eliminating the SP population 

when the breast cancer resistance protein 1 (Bcrp1) the mouse homolog of Abcg2 was 

knocked out.34  Fatima et al. tamoxifen treated adult Abcg2CreERT2/+RosaLacZ/+ and found 

50% of the crypts and associated villi stained positive for LacZ one month afterward, 

with some crypts/villi remaining blue out to 21 months.  This suggests that intestinal ISC 

of varying lifespan express Abcg2.  The division of the SP into an upper and lower 

portion with respective active and quiescent phenotypes is a concept already applied in 

the hematopoietic stem field identified a USP and LSP among HSC’s, with the USP 

representing a more proliferative HSC with a shorter lifespan and the LSP exhibiting 

quiescence, longer life span, and responsive to TGF-² 1 stimulation.  In their study the 

LSP exhibited a higher engraftment rate and contribution to peripheral blood regeneration 

than the USP when transplanted into lethally irradiated mice.35  While these studies from 

the HSC field are encouraging, there is still a significant gap to close in our 

understanding of the intestinal SP with regard to both therapeutic potential and its 

relationship to ISC physiology.  I have made progress in this direction by demonstrating 

that SP sorting can be used to identify and collect two populations, LSP and USP, from 

WT mice which are enriched for quiescent and active cycling ISC subsets respectively.  
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Currently, the only way to identify the quiescent or reserve ISC population is with 

genetically engineered mice.  This method may offer an alternative that should be 

applicable to WT mice or human tissue because of the evolutionary conservation of the 

biology central to the SP phenotype.      
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Figure 1. Representative SP histograms and verapamil validation using DyeCycle Violet 
(DCV) or Hoechst 33342 (Ho) vital dyes on the LSRII (DCV), CyAn (DCV), and MoFlo 
(Ho). 
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Figure 2. Locating the actively cycling cells with regard to the SP subpopulations.  Adult 
C57/BL6 mice were injected IP with 100µg EdU.  1h post injection, jejunal epithelial 
cells were prepped for SP sorting and the upper SP (USP) and lower SP (LSP) were 
collected by FACS for reanalysis of EdU positive cells on a second pass through a flow 
cytometer. Whole epithelium, shown for reference, is 6 ± 1% EdU positive. The USP is 
36 ± 4% EdU positive, roughly 100 fold increase over the LSP at 0.4 ± 0.04% EdU 
positive, n=3. 
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Figure 3. Tracking the Lgr5-EGFPhi cells to the SP. (A) All jejunal epithelial cells from 
Lgr5-EGFP mouse are analyzed based on SP phenotype and gates are drawn. Using 
Summit 4.3 software, only the EGFPhi cells (B) were gated forward onto the previously 
established SP gates (C), 96±2% Lgr5-EGFPhi cells track to USP (n=3).  
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Figure 4. RT-PCR analysis of active and quiescent ISC mRNA markers from USP and 
LSP.  Data are shown as fold change vs. intact jejunum.  LSP (gray) fold changes are as 
follows Lgr5 (0.7 ± 0.5), Ascl2 (0.9 ± 0.6), and Olfm4 (0.6 ± 0.5).  Several quiescent ISC 
markers were analyzed:  Lrig1 (4.8 ± 2.2), Bmi1 (9.2 ± 3.9), mTert (4.8 ± 1.6), Hopx (2.3 
± 1.3); while Dclk1 (0.5 ± 0.3) was de-enriched.  The USP (black) was analyzed for the 
following active ISC markers: Lgr5 (25 ± 3), Ascl2 (47 ± 16), and Olfm4 (10 ± 2). The 
quiescent ISC associated transcripts examined were: Lrig1 (37 ± 15), Bmi1 (84 ± 48), 
mTert (39 ± 15), Hopx (13 ± 4), and Dclk1 (5.1 ± 1.7), n=3.    
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Figure 5. RT-PCR analysis of intestinal lineage mRNA markers from USP and LSP.  
Data are shown as fold change vs. intact jejunum.  LSP (gray) was analyzed for the 
following markers SI (1.2 ± 0.1), Lyz (1.0 ± 0.9), Muc2 (2.7 ± 1.9), ChgA (17 ± 7) and 
Syp (4.1 ± 2.0).  The same marker examination of  USP (black) yielded:  SI (0.4 ± 0.1), 
Lyz (23 ± 8.0), Muc2 (4.0 ± 1.0), ChgA (6.3 ± 1.7), and Syp (3.3 ± 1.5), n=3. 

 
 
 
 
 
 
 
 
 
 
 
 
 



32 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Quantifying the percent of enteroendocrine cells in SP subpopulations using 
flow cytometric analysis of synaptophysin. Percent synaptophysin positive of SP sub 
populations as follows: Upper SP (0.3 ± 0.08%), Lower SP (1.8 ± 0.5%), and Non SP 
(0.02 ± 0.01%), n=3.   
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Figure 7.  Validation of the synaptophysin antibody against small intestinal cells from a 
PYY-GFP mouse.  Panel (A) is a plot of PYY-GFP cells labeled with an isotype control.  
Panel (B) are PYY-GFP cells labeled with an antibody against synaptophysin.  Analysis 
demonstrated that 93.5 ± 1.5% PYY-GFP cells are synaptophysin positive, n=4. 
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