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ABSTRACT 

Chang K. Yi: The Roles of Actin and Microtubule-based Motor Proteins in T Cell Activation 
(Under the direction of Dr. John A. Hammer III) 

 

T cell activation is a critical process in our body’s fight against infection and disease.  

The activation process begins upon encounter with stimulatory antigen presenting cells 

(APCs), which leads to the rapid polarization of various cellular components in T cells.  At 

the membrane of the contact site, T cell receptors (TCRs), adhesion molecules, and other 

accessory components become differentially clustered and rearranged to form a supra-

molecular structure called the immunological synapse.  While both actin retrograde flow and 

myosin IIA activity have been implicated in immunological synapse formation, their relative 

organization and dynamics at the immunological synapse, and their relative contributions 

toward the reorganization of receptor clusters have not been fully understood.   In this study, 

we show that the immunological synapse is essentially a radially symmetric migrating cell, 

as previously hypothesized, and provide direct proof that classical lamellipodial and lamellar 

actin networks localize at dSMAC and pSMAC regions, respectively.  Moreover, our 

experiments using actin and myosin II inhibitors reveal that actin retrograde flow and 

actomyosin II contraction work coordinately to drive the inward movements of receptor 

clusters at the immunological synapse.   

Concomitant with immunological synapse formation, the microtubule organizing 

center (MTOC) polarizes rapidly toward the contact site with the APC to position the 

secretory apparatus for directed secretion.  Due to the lack of spatial and temporal control in 

most previous studies, the kinetics of MTOC repositioning have not been well characterized 

in T cells.  In addition, the specific roles of dynein and dynein regulatory proteins during T 
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cell activation have not been defined.   In this study, we show using an optical trap-

controlled T cell activation method that TCR and LFA-1 signaling are both required for 

robust MTOC repositioning.  Moreover, we report that the repositioning process is bi-phasic, 

with distinct kinetics at each phase of MTOC movement.  Lastly, inhibition experiments 

using dominant negative constructs show that dynein and LIS1 are required for both phases 

of MTOC repositioning.  In conclusion, the actin and microtubule cytoskeletal systems 

mediate many distinct aspects of T cell activation, and are critical components of the overall 

adaptive immune response.   
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CHAPTER 1  
 

INTRODUCTION 
 
 

I. Overview 

 The actin and microtubule cytoskeleton are known to play critical roles in T cell 

function.  They are involved in signaling of antigen receptors, formation of the immunological 

synapse, and focused delivery of effector molecules, which are necessary for targeted cell 

death and communication between lymphocytes.  In addition, these cytoskeletal systems 

play important roles in numerous fundamental cellular processes such as directed cell 

migration and asymmetric cell division.  Thus, the investigation of the role of actin and MTs 

in T cells is relevant not just for the study of cell-mediated immunity, but also for the 

discovery of common biological mechanisms in cytoskeletal function and regulation. 

 

II. Lymphocytes and adaptive immunity 
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 Lymphocytes are essential for adaptive immunity against infection from pathogens, 

and the emergence of immune-related diseases, such as AIDS, has served to underscore 

their importance.  Adaptive immunity refers to the body’s ability to generate a specific 

immune response toward particular microbes and microbial toxins, and its ability to mount 

an amplified response upon future exposure to those same pathogens. In adaptive immunity, 

the response is largely carried out by two types of cells: B and T lymphocytes.  The B 

lymphocytes are responsible for the production of antibodies which mediate humoral 

immunity, whereas the cooperative action by various subsets of T lymphocytes constitutes 

cell-mediated immunity (Abbas and Lichtman, 2006).



T Lymphocytes are equipped with specialized receptors, T cell receptors (TCRs), 

which engage peptide-bound major histocompatibility complexes (pMHCs) on the surface of 

antigen presenting cells (APCs).  There are two subsets of T cells, distinguished by the 

presence of either CD4 or CD8 glycoprotein on the cell surface.  CD4+ T cells are called 

helper T cells because of their role in helping B cells produce antibodies, as well as in 

helping phagocytes destroy harmful microbes, CD8+ T cells are called cytotoxic T 

lymphocytes (CTL’s) because of their role in lysing infected cells (Abbas and Lichtman, 

2006). 

All T cells have their origin in the thymus, where progenitors differentiate into T cells 

after migration from the bone marrow.  These “naïve” T cells then leave the thymus and 

circulate between peripheral lymphoid organs where they encounter multiple APCs.  After 

recognition of antigen, naive T cells proliferate and differentiate into two different types of T 

cells: effector and memory cells.  Effector helper T cells secrete cytokines to activate 

macrophages and B cells, whereas effector CTLs develop the ability to kill infected cells. 

Effector T cells are usually short-lived while memory T cells can continue to survive long 

after differentiation.  Although memory cells are functionally “silent,” they can give rise to a 

large population of effector cells upon re-encountering the same antigen, which is the basis 

for the rapid, amplified nature of the secondary immune response (Abbas and Lichtman, 

2006). 

 

III. Signaling pathways of T cell activation 

a. TCR signal transduction 

 Underlying T cell activation is the outside-in signal transduction mediated by the TCR 

signaling complex.  The TCR signaling complex consists of α-, β-, and ζ- TCR chains and a 

repertoire of CD3 subunits, which associate with the TCR to form the functional signaling 

complex (Chan et al., 1994; Samelson, 2002; Guy and Vignali, 2009).  Recognition and 

2 
 



binding of pMHC by the α-and β- TCR chains initiates the signal transduction cascade by 

recruiting Src-family of protein tyrosine kinases (PTKs) Lck and Fyn to phosphorylate the 

immunoreceptor-based tyrosine activation motifs (ITAMs) on the CD3 subunits and the ζ- 

chain of the TCR complex (Fig. 1) (Chan et al., 1994; Samelson, 2002; Billadeau et al., 

2007; Guy and Vignali, 2009). This leads to the binding and activation of a Syk-family PTK, 

ZAP-70, which in turn phosphorylates key adaptor proteins, including the transmembrane 

protein LAT (linker for activation of T cells) (Fig. 1) (Samelson, 2002; Billadeau et al., 2007).  

LAT also contains several ITAMs which can bind Src homology (SH2)-containing molecules 

such as PLCγ1 and SLP76, and functions as a protein scaffold for the recruitment of 

multiple downstream effectors involved in TCR signal transduction (Fig. 1) (O'Shea, 2000; 

Samelson, 2002; Billadeau et al., 2007). 

 

b. Integrin regulation and signaling 

 In addition to TCR signaling, full activation of T cells requires the engagement of co-

stimulatory and adhesion molecules (Guy and Vignali, 2009).  A major example is the β2-

integrin, LFA-1 (lymphocyte function-associated antigen-1; αLβ2), which binds ICAM-1 

(intercellular adhesion molecule-1) on the surface of APCs (Kinashi, 2005).  LFA-1 is 

involved in adhesion to APCs, and is critical for the effector function of T cells during 

activation (Kinashi, 2005).  In contrast to the TCR, LFA-1 integrins are initially regulated by 

inside-out signaling, and require T cell stimulation by antigen or cytokines to become 

activated (Baker and Koretzky, 2008).  In non-stimulated T cells, LFA-1 integrins adopt a 

low-affinity, bent conformation, and lack the ability to form multivalent clusters.  However, 

engagement of the T cell antigen receptor alters the avidity of LFA-1 by opening the 

heterodimer into a high-affinity ligand binding state, as well as allowing the formation of 

multivalent LFA-1 clusters (Kinashi, 2005).   This TCR-dependent increase in LFA-1 avidity 

requires LAT recruitment of PLCγ1, which leads to calcium flux and diacylglycerol (DAG) 
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Figure 1.  Illustration of the TCR signaling cascade (Billadeau et al., 2007). 
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production, and SLP76, which activates VAV1, an important guanine exchange factor (GEF) 

involved in actin reorganization (Fig 1) (Billadeau et al., 2007; Baker and Koretzky, 2008).  

Also, SLP76 associates with ADAP (adhesion and degranulation-promoting protein), an 

adaptor molecule required for integrin function in T cells (Baker and Koretzky, 2008).  Once 

activated, LFA-1 contributes to the outside-in co-stimulatory signal to enhance T cell 

activation and effector function.   

 

IV. Immunological Synapse 

a. Identity and function of SMAC domains 

 APC engagement also leads to dramatic changes at the cellular level in T 

lymphocytes.  Upon binding their respective ligands on the surface of the APC, antigen 

receptors and adhesion proteins undergo differential clustering and rearrangement at the 

synaptic junction to form segregated, concentric domains known as supra-molecular 

activating clusters (SMACs) (Monks et al., 1998; Grakoui et al., 1999; Fooksman et al., 

2010).  The resulting bull’s-eye pattern of SMACs is a hallmark of the immunological 

synapse (IS), and provides the structural basis for signaling and secretion at the T cell-APC 

interface.  The center area of the IS, known as the central SMAC (cSMAC), is marked by the 

accumulation of TCRs, which are bound to pMHCs on the surface of the APC (Monks et al., 

1998).  The surrounding ring of the bull’s eye, known as the peripheral SMAC (pSMAC), is 

marked by LFA-1 clusters, which are bound to ICAM-1 receptors present on the APC 

surface (Monks et al., 1998).  The outermost ring, known as the distal SMAC (dSMAC), is 

marked by CD45, as well as an enrichment of F-actin (Freiberg et al., 2002; Sims et al., 

2007).   

 Recent studies argue that TCR signaling is degraded at the cSMAC, and that active 

signaling actually takes place at the periphery of the IS (Yokosuka et al., 2005; Varma et al., 

2006; Vardhana et al., 2010).  Thus, the pSMAC region may serve dual functions during T 
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cell activation: as a zone of adhesion between the T cell and the APC, and as a zone of 

active TCR signaling at the IS.  Meanwhile, the dSMAC is thought to function as a zone of 

exclusion from the IS, owing to the localization of receptors with large ecto-domains and/or 

inhibitory effect on TCR signaling (Freiberg et al., 2002).   

 Substitution of the APC surface with a supported planar lipid bilayer displaying 

stimulatory molecules has been shown to replicate the signaling activity and spatial 

organization of the IS, and has become an important tool in the study of T cell activation 

(Grakoui et al., 1999; Dustin, 2009).  Alternatively, glass coverslips coated with stimulatory 

molecules can be used to engage and activate T cells (Bunnell et al., 2003).  However, 

since the stimulatory ligands are immobilized on the coverslip substrate, antigen receptors 

and adhesion molecules on the T cell surface cannot rearrange to form the bull’s eye pattern 

of SMACs, as observed after engagement to APC and planar bilayer substrates.  This 

difference between the coverslip and planar bilayer substrates has been utilized in our 

imaging studies to distinguish the reorganization of molecules occurring at the membrane 

from that of the synaptic cortex. 

 

b. TCR MCs and the regulation of TCR signaling 

 T cells display remarkable sensitivity to antigen despite the relatively weak affinity of 

TCRs for pMHCs and low numbers of available ligand on the APC surface (Shaw and Dustin, 

1997; Huppa and Davis, 2003).  It is known that stimulation by a single pMHC on the APC 

surface is sufficient for transient activation of T cells, and that engagement of ~10 pMHC 

molecules can result in sustained activation (Irvine et al., 2002).   This sensitivity is, in part, 

enabled by the T cell co-receptor, as helper T cells lacking the CD4 co-receptor require 

higher numbers of pMHC for activation and show reduced ability to form a mature IS (Irvine 

et al., 2002). 
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 However, sensitization of individual TCRs cannot account for the prolonged TCR 

signaling observed during T cell activation (on the order of hours), as their association with 

antigen is short-lived (on the order of seconds) (Huppa and Davis, 2003).  Rather, this 

requires amplification of signal from the transiently engaged TCRs through a multi-protein 

structure at the membrane called the TCR microcluster (MC).  Within seconds of T cell 

engagement to the anti-CD3-bound substrate, TCR MCs form at the contact site (Grakoui et 

al., 1999; Bunnell et al., 2002).  These MCs are estimated to contain ~100 TCR molecules, 

and act as a platform for the recruitment and activation of downstream signaling molecules 

(Campi et al., 2005; Varma et al., 2006).  Studies using artificial substrates have shown 

concentrated tyrosine phosphorylation activity, as well as dynamic localization of ZAP70, 

Lck, and LAT to these MCs, indicating that the TCR MC functions as a basic signaling unit 

during T cell activation (Bunnell et al., 2002; Campi et al., 2005; Yokosuka et al., 2005; 

Varma et al., 2006).  Paradoxically, either signal amplification or degradation can be 

observed at TCR MCs, depending on the strength of antigenic peptide utilized (Lee et al., 

2003).  Based on this result, A. Shaw and colleagues propose that TCR signaling is actively 

tuned at the IS, allowing amplification of weak signals and dampening of strong signals 

(Cemerski and Shaw, 2006).   

 Further regulation of TCR signaling occurs via active transport of TCR MCs.  During 

IS formation, TCR MCs form at the periphery and are transported toward the center of the IS 

through an actin-dependent mechanism (Campi et al., 2005; Varma et al., 2006; Kaizuka et 

al., 2007).  However, once accumulated at the cSMAC, these MCs disassociate from 

downstream signaling molecules, lose their tyrosine phosphorylation activity, and are 

internalized for recycling back to the IS periphery (Yokosuka et al., 2005; Varma et al., 

2006).  Thus, it is through the continuous formation and cycling of TCR MCs that TCR 

signaling is sustained for full T cell activation. 
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V.  The role of actin and myosin IIA in IS formation 

a. Non-muscle myosin IIA 

 Non-muscle myosin II (referred to here as myosin II), a subclass of myosin motor 

proteins, is expressed in all eukaryotic non-muscle cells and is involved in many crucial 

functions of the cell, including cell polarity, migration, and cytokinesis.  It is composed of two 

heavy chains (HCs), two regulatory light chains (RLCs), and two essential light chains 

(ELCs).  The globular N-terminal head region of the HCs contains the binding site for actin 

and catalytic sites for ATP hydrolysis, and generates the force required for myosin II 

contractile activity.  Adjacent to the head is a neck region that binds the regulatory and 

essential LCs, and acts as a level arm to amplify the small ATP-hydrolysis induced 

conformational changes in the head, allowing the myosin to step.  Following the neck is a 

long coiled-coil rod domain that mediates dimerization of the HCs, and a short-helical tail 

that contain multiple phosphorylation sites for regulation of myosin II activity.  The rod 

domains of multiple myosin II dimers self-associate to form bipolar filaments, which can then 

bind and exert tension on actin filaments to form contractile structures in cells (Vicente-

Manzanares et al., 2009).  

 Three myosin II HC genes exist in mammalian cells (MYH9, MYH 10, and MYH14), 

giving rise to three myosin II isoforms (myosin IIA, IIB, and IIC, respectively) that differ in 

structure, regulation, localization and function.  In vitro experiments have shown that myosin 

IIA displays the highest rate of ATPase hydrolysis and the fastest rate of actin filament 

displacement.  Myosin IIA plays critical roles in leading edge protrusion and adhesion in 

migrating cells and is the dominant isoform expressed in mammalian T cells (Jacobelli et al., 

2004; Morin et al., 2008; Vicente-Manzanares et al., 2009). 

 

b. Actin networks in migrating cells 
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 The actin cytoskeleton is required for numerous fundamental cellular processes and 

has been studied in a broad spectrum of cellular systems (Gardel et al., 2010).  In particular, 

characterization of actin networks at the leading edge of migrating cells has yielded 

important understanding of their dynamics and function in recent decades.  At the leading 

edge is the lamellipodia (LP), where a branched network of dendritic F-actin filaments 

undergoes rapid actin retrograde flow, driven by actin polymerization at the front and 

depolymerization at the rear of the LP (Pollard and Borisy, 2003; Ponti et al., 2004).  

Polymerization of actin requires addition of ATP-bound actin monomers to the “barbed” ends 

of growing filaments, and Arp2/3, which creates free barbed ends by de novo nucleation of 

actin filaments off the sides of pre-existing filaments (Pollard and Borisy, 2003).  On the 

other hand, ADF cofilin (which can also create free barbed ends by severing existing actin 

filaments) promotes depolymerization of actin at the “pointed” ends of actin filaments 

(Pollard and Borisy, 2003).  The resulting actin retrograde flow provides the protrusive 

‘pushing’ force against the leading edge membrane when the cell is engaged to a substrate, 

and is the kinetic signature of the LP actin network. 

  Proximal to the LP is the lamella (LM), where transverse arcs containing actin and 

myosin IIA filaments undergo slow contraction toward and disassembly at the cell rear 

(Medeiros et al., 2006; Wilson et al., 2010).  The contraction of acto-myosin IIA filaments 

provides the ‘pulling’ force for actin networks at the cell cortex, and is the kinetic signature of 

the LM actin network.  Focal adhesion complexes enriched with integrins and associated 

signaling proteins also form in the LM, and are known to mediate the linkage between the 

cortical actin networks and the extracellular matrix (Gardel et al., 2010).  In combination with 

actin polymerization-driven protrusion in the LP, contraction of acto-myosin IIA filaments 

against these focal adhesion complexes results in the net forward movement of the cell 

body during cell migration.   
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c. The roles of actin and myosin IIA in T cell function 

 Actin networks also regulate various aspects of T cell activation.  In vivo studies have 

shown that the initial stages of migration, polarization, and synapse formation require the 

actin cytoskeleton (Billadeau et al., 2007).  More recently, in vitro experiments utilizing 

supported planar bilayer and immobilized coverslip substrates have revealed an intricate link 

between receptor-ligand complexes and cortical F-actin at the IS (Barda-Saad et al., 2005; 

Campi et al., 2005).  Upon contact with a stimulatory surface, sub-micron-sized TCR MCs 

form and signal downstream to activate actin polymerization (Bunnell et al., 2001; Varma et 

al., 2006).  This leads to increased cell spreading and further nucleation of TCR and LFA-1 

clusters.  On laterally mobile substrates, these newly formed TCR and LFA-1 clusters 

subsequently undergo actin-dependent centripetal transport to accumulate at their 

respective SMAC regions, forming the bull’s eye pattern of the IS (Kaizuka et al., 2007).  

However, the rate of actin retrograde flow is reported to be two-fold higher than that of 

receptor cluster movements (Kaizuka et al., 2007), and TCR MCs are able to move around 

physical barriers in the bilayer substrate without cortical F-actin reorganization (DeMond et 

al., 2008), suggesting an inherent “slippage” in the mechanism of coupling between receptor 

clusters and cortical actin .  Moreover, receptor clusters appear to be differentially linked to 

cortical actin networks as pre-formed LFA-1, but not TCR, clusters are destabilized by 

Latrunculin B treatment (Campi et al., 2005; Kaizuka et al., 2007).  While the molecular 

interactions mediating these linkages are unknown, centripetal flow of cortical actin has 

emerged as the likely driving mechanism behind receptor transport at the IS.   

 The synaptic interface of T lymphocytes is analogous to the leading edge of 

migrating cells, as previously noted by M. Dustin and colleagues.  Based on the motility of T 

cells on the planar bilayer substrate, as well as the localization of LP and LM markers at the 

IS, the dSMAC and pSMAC regions were predicted to be functionally equivalent to the LP 

and LM networks, respectively (Dustin et al., 2007; Sims et al., 2007).  There is evidence of 
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LP network involvement in IS formation.  Regulators of dendritic actin nucleation, such as 

Arp2/3 and the WAVE/WASP complex, are known to be recruited and activated by VAV1 

during TCR signal transduction (Fig. 1) (Billadeau et al., 2007).  Dynamic ruffling has been 

described at the contact site between T cells and APCs, and rapid actin treadmilling has 

been observed at the IS as imaged by ectopic expression of GFP-actin (Bunnell et al., 2001; 

Kaizuka et al., 2007).  Additionally, inhibition of actin polymerization is known to disrupt the 

inward movement of receptor clusters at the IS (Campi et al., 2005; Varma et al., 2006; 

Kaizuka et al., 2007).  In contrast, it is not known whether a classical LM network functions 

at the IS, as no one has described acto-myosin II arcs or focal adhesion complexes at the IS.  

Consistent with these observations, R. Vale and colleagues have proposed that a single LP 

actin network exists at the IS, and that actin retrograde flow drives the inward movement of 

receptor clusters at the IS (Kaizuka et al., 2007). 

 Myosin IIA is known to regulate the migration and adhesion of T cells (Jacobelli et al., 

2004; Morin et al., 2008), and has been implicated in the secretion of lytic granules in 

natural killer cells (Andzelm et al., 2007).  However, the role of myosin IIA in T cell activation 

is unclear as conflicting reports exist regarding the regulation and function of myosin IIA in 

IS formation.  Jacobelli et al. reported that IS formation does not require myosin IIA, as TCR 

and LFA-1 receptors reorganized into the bull’s eye pattern of cSMAC and pSMAC regions 

in blebbistatin-treated T cells (Jacobelli et al., 2004).  On the other hand, recent report by M. 

Dustin and colleagues showed that myosin IIA is required for IS formation, as inhibition of 

myosin IIA, using blebbistatin and siRNA knockdown of myosin IIA heavy chain, disrupted 

the directed movement of TCR MCs as well as cSMAC formation (Ilani et al., 2009).  

However, actin and myosin IIA were not dynamically imaged at the IS, and the relative 

contribution of actin retrograde flow and myosin II contractility to IS formation was not 

quantitatively analyzed in these studies, thus giving very little information about how actin 

and myosin II are involved in IS formation.   
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VI. The role of dynein in MTOC repositioning in T cells 

a. Cytoplasmic Dynein  

 Dynein is a class of minus end-directed MT motor proteins involved in a wide range 

of cellular functions including cargo transport, asymmetric cell division, and cell polarity 

(Dujardin and Vallee, 2002; Kardon and Vale, 2009; Allan, 2011).  In contrast to other 

classes of cytoskeletal motors, only a single dynein, cytoplasmic dynein, accommodates 

these diverse functions in non-axonemal cells.  Cytoplasmic dynein (referred to here as 

dynein) is a large complex composed of a heavy chain (HC) and several non-catalytic 

subunits.  The C-terminal portion of the HC contains a coiled-coil “stalk” extension that 

mediates binding to the MT and a ring-shaped “head” consisting of six AAA domains that 

functions as the catalytic site for ATP hydrolysis.  In addition to the AAA domains, the “head” 

region contains a linker domain that shifts its position on the catalytic ring during the ATPase 

cycle, and possibly serves as the mechanical element in the dynein power stroke. The N-

terminal “tail” portion is involved in the homo-dimerization of HCs and functions as a scaffold 

to recruit dimers of non-catalytic subunits: TCTEX 1, light chain 8 (LC8), LC7, intermediate 

chain (IC), and light intermediate chain (LIC).  These non-catalytic subunits are implicated in 

the binding of selective cargo, and are known to associate with different adaptor proteins 

that regulate the activity of dynein in cells (Kardon and Vale, 2009). 

 

b. Dynein adaptor proteins 

 Among the dynein adaptor proteins, two complexes have become of interest: 

dynactin and LIS1-NUDE/NUDEL.  Like dynein, dynactin is a large complex comprised of 

multiple subunits, including p150 which mediates binding of dynactin to the dynein complex 

through its N-terminal coiled coil region (CC1).  Dynactin is involved in the targeting of 

dynein to specific cellular regions, binding of dynein to cargo, and modulates the 
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processivity of dynein’s movement on MTs.  Regarding the latter role of dynactin, in vitro 

experiments showed that dynein processivity along MT tracks increased almost two-fold in 

the presence of dynactin.  Initially, this enhancement in processivity was attributed to the 

increased tethering of the dynein-dynactin complex to MTs via the CAP-Gly MT-binding 

domain of p150, but subsequent in vivo studies showed that the CAP-Gly domain was 

dispensable for modulation of dynein processivity.  At present, the mechanism by which 

dynactin affects dynein motility remains unclear (Kardon and Vale, 2009).    

 In addition to dynactin, LIS1 plays an important role in the regulation of dynein 

activity.  LIS1 is thought to be an important cofactor for dynein, and forms a tripartite 

complex with dynein and the LIS1-binding partner, NUDE or NUDEL (in metazoans).  LIS1 

is composed of an N-terminal coiled-coil domain that mediates dimerization, and a C-

terminal WD40 domain that binds to an ATPase domain (AAA1) in the head region of the 

dynein HC, and possibly to the tail region of the HC as well as the p50 subunit of dynactin.  

In budding yeast, homologs of LIS1 and NUDE (Pac1 and Ndl1, respectively) are involved in 

the localization of dynein at the plus ends of MTs, and in the cortical anchoring of dynein at 

the bud cell during cell division.  In metazoans, LIS1, NUDE, and NUDEL are required for 

dynein-mediated positioning of the nucleus, centrosome and the mitotic spindle, and are 

involved in the cortical anchoring of dynein during spindle repositioning (Kardon and Vale, 

2009).   

 Furthermore, recent reports from R. Vallee and colleagues show that NUDE recruits 

LIS1 to the dynein complex to modulate force generation, distinct from dynactin-regulated 

dynein activity.  Specifically, LIS1-NUDE associates with dynein to induce a sustained state 

of force generation under high load conditions (McKenney et al., 2010).  Association with 

LIS1-NUDE also improved the ensemble activity of multiple dynein motors, promoting 

dynein activity under high load conditions (McKenney et al., 2010).  Furthermore, NUDE and 

dynactin share a common binding site on the dynein IC subunit, suggesting that association 
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of dynein with LIS1-NUDE and dynactin is mutually exclusive (McKenney et al., 2011).  

While it is unclear whether LIS1-NUDE and dynactin compete with other adaptors for 

association with dynein, these results are consistent with the emerging idea that differential 

binding to adaptor proteins allows dynein to accommodate a wide range of cargos and 

functions in the cell (Kardon and Vale, 2009).    

 

c. MTOC repositioning in T cells 

Concomitant with IS formation, APC engagement leads to rapid repositioning of the 

MTOC toward the contact site in T cells (Kupfer and Dennert, 1984).  It is believed that 

MTOC repositioning serves as a key step in the directed secretion of effector molecules in T 

lymphocytes (Sancho et al., 2002).  In the case of target cell killing by CTLs, antigen 

recognition and subsequent TCR signaling leads to rapid MTOC polarization to the IS 

(Stinchcombe et al., 2006).  Lytic granules, then, move to the centrosome via dynein-

mediated intracellular transport, and undergo docking and fusion at the synaptic membrane 

(Stinchcombe and Griffiths, 2007).  Imaging studies by Stinchcombe et al. suggest that lytic 

granules localize to a specialized secretory domain of the IS and that the lytic contents are 

secreted into a sealed cleft between the CTL and target cell to cause lysis of the target cell 

(Stinchcombe et al., 2006).  In addition to the known functional role in directed secretion, a 

recent publication by Sanchez-Madrid and colleagues suggests that MTOC repositioning 

contributes to sustained T cell signaling and proper IS maturation (Martin-Cofreces et al., 

2008).      

 

d. TCR-proximal events involved in MTOC repositioning 

While MTOC repositioning is known to be dependent on TCR engagement, the 

downstream signaling pathways and mechanisms leading to repositioning are poorly 

understood.  Among the known molecules required for MTOC repositioning, which include 
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Lck, ZAP70, LAT, SLP76, VAV1, and CDC4, most are involved in signaling immediately 

downstream of the TCR (Stowers et al., 1995; Kuhne et al., 2003; Billadeau et al., 2007).  

Studies have also shown that TCR-proximal events, including calcium flux, are involved in 

MTOC repositioning in T cells (Kuhne et al., 2003; Billadeau et al., 2007).  However, the 

cascade of TCR-proximal events leading to MTOC repositioning is unclear as M. Huse and 

colleagues reported, using a photoactivateable pMHC ligand system, that DAG, and not 

calcium flux, is required for MTOC repositioning (Quann et al., 2009).  In their signaling 

model, PLCγ1-directed cleavage of PIP2 produces DAG, which then signals through atypical 

PKCs to recruit dynein to the contact site, leading to MTOC repositioning (Quann et al., 

2011).  Further experiments using T cell-APC conjugates are needed to confirm the distinct 

roles of DAG and calcium flux in T cell activation. 

In addition to DAG/ calcium influx, F-actin reorganization is thought to play an 

important role in MTOC repositioning (Sancho et al., 2002; Billadeau et al., 2007).  CDC42, 

a key regulator of Arp2/3-mediated actin polymerization, is required for MTOC polarization in 

T cells (Stowers et al., 1995), and has been implicated in the tethering of MT plus ends to 

actin filaments via its interaction with IQGAP1 in non-T cell systems (Fukata et al., 2002).  

Based on these and other observations, G. Griffiths and colleagues proposed that the ring of 

lamellipodial actin in the dSMAC drives MTOC repositioning through CDC42-mediated 

tethering of MTs to the spreading actin ring (Stinchcombe et al., 2006).  However, Gomez et 

al. report that MTOC repositioning is independent of CDC42 and Arp2/3, and that MTOC 

repositioning occurs in the absence of a lamellipodial actin ring (Gomez et al., 2007).  

Instead, they suggest that the formins mDIA1 and FMNL1 mediate the association between 

filopodial actin and MTs during actin-dependent MTOC repositioning.  Further complicating 

the role of F-actin in MTOC repositioning is a study from Sedwick et al.  They show utilizing 

a live-cell competition assay that the MTOC consistently repositions toward the site of TCR 

stimulation while F-actin polarizes toward the site of LFA-1 stimulation (Sedwick et al., 1999).  

15 
 



They conclude that the signal pathways leading to actin reorganization contribute to MTOC 

repositioning by amplifying TCR signaling, rather than through a direct association between 

actin filaments and MTs.  Given the conflicting reports regarding the role of actin in MTOC 

repositioning, more experiments are needed to understand the crosstalk between the actin 

and MT cytoskeleton during MTOC repositioning in T cells.   

 

e. Cortical pulling model of MTOC repositioning in T cells 

The most attractive model of MTOC repositioning in T cells to date is the one 

proposed by Martin Poenie’s lab (Fig. 2).  Using a technique called modulated polarization 

microscopy (MPM), they observe sliding of MTs near the CTL-target cell contact site 

coincident with MTOC movement toward the synapse (Kuhn and Poenie, 2002).  When  

engaged by multiple target cells, the CTL’s centrosome appears to oscillate back and forth 

between the targets in a linear fashion, suggesting that MTs become pulled at both sites of 

contact.  Furthermore, MTs are seen anchored at and looping through the pSMAC region in 

CTL-target cell conjugates (Kuhn and Poenie, 2002).  Based on these observations, the 

authors postulate that MTs become captured and pulled by a minus end-directed MT motor 

present in the pSMAC ring, resulting in MT sliding and net centrosome polarization to the IS.  

Since dynein is the major minus end-directed MT motor in cells, they speculate that 

cortically anchored dynein captures and pulls MTs in the pSMAC, analogous to its function 

in sliding MTs along the bud cortex in budding yeast (Adames and Cooper, 2000).  However, 

the detailed localization of cortical dynein, the mechanism of its cortical anchoring, and the 

regulation of cortical dynein activity at the IS are still unknown. 

Regarding the cortical pulling model of MTOC repositioning, questions are raised in 

light of other experimental results.  First, there is a difference between the time frames 

involved in centrosome polarization and IS maturation.  Studies utilizing planar lipid bilayers 

to engage T cells have shown that a mature IS, containing a defined pSMAC ring, forms 5-  
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Figure 2. Model of MTOC repositioning in T cells (Billadeau et al., 2007). 
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10 minutes after contact with stimulatory molecules (Grakoui et al., 1999; Kaizuka et al., 

2007).  In contrast, the MTOC is known to reposition to the contact site within 2-3 minutes 

after engagement with APC (Poenie et al., 2004), suggesting that the centrosome 

movement precedes pSMAC formation.   Second, a number of reports show that TCR 

ligation alone is enough to induce MTOC repositioning in T cells.  T cells engaged by 

polystyrene beads as well as coverslip substrates coated with anti-TCR antibodies result in 

MTOC localization toward the contact area (Stowers et al., 1995; Kuhne et al., 2003).  

Therefore, MTOC repositioning does not require LFA-1 engagement, nor the lateral 

movement of antigen and adhesion receptors to form a segregated IS at the contact site.   

Third, a follow-up study by M. Poenie’s group implicated the involvement of ADAP, 

not LFA-1, in anchoring dynein at the contact site in T cells (Combs et al., 2006).  LFA-1-

deficient Jurkat T cells were observed to reposition their MTOC normally, while inhibition of 

ADAP using shRNA knockdown disrupted MTOC translocation.  Furthermore, cortically 

associated MTs localized to the dSMAC region of the IS along with ADAP, in contrast to the 

pSMAC localization observed previously.  Lastly, ADAP was shown to associate with 

subunits of dynein in pull-down experiments, suggesting that ADAP serves as the cortical 

anchor for recruitment of dynein during MTOC repositioning.  However, the functional role of 

ADAP is inconclusive, as mouse T cells do not require ADAP for MTOC repositioning and 

ADAP-/- mice do not exhibit significant immune defects.  Identifying the cortical receptor for 

dynein at the synapse, therefore, will be an important pursuit in the overall goal of 

characterizing MTOC repositioning in T lymphocytes.   

 

f. General mechanism of MTOC repositioning  

Centrosome positioning is essential for many fundamental cellular processes.  In 

interphase cells, MTOC positioning is known to play an important role in establishing overall 

cellular architecture and in the distribution of various organelles, including the endoplasmic 
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reticulum, Golgi apparatus, and endosomes.  Additionally, MTOC polarization is thought to 

play a critical role in the differentiation of neural and epithelial cells, mitotic spindle 

organization in both symmetric and asymmetric cell division, wound healing, and in directed 

migration of fibroblasts, epithelial cells, astrocytes, and neurons (Manneville and Etienne-

Manneville, 2006).    

In most cells, the centrosome is thought to be physically linked to the nucleus near 

the center of the cell (Manneville and Etienne-Manneville, 2006).  Two possible forces acting 

on MTs are thought to maintain the MTOC at that position.  The first is a pushing force 

produced either by MT plus-end growth or centripetal actin retrograde flow (Burakov et al., 

2003).  The second is a pulling force produced either by plus end-attachment coupled MT 

depolymerization or minus end-directed MT motor activity at the cortex (Burakov et al., 

2003).  Laser ablation and RNAi experiments in single cell C. elegans embryos, as well as 

localized nocodazole experiments in mammalian interphase cells, have strongly suggested 

that MT motor-dependent pulling forces dominate in positioning the centrosome (Burakov et 

al., 2003; Manneville and Etienne-Manneville, 2006).   

Dynein has been shown to be a critical component of this cortical pulling force.  

Function blocking antibodies injected into interphase cells and wounded fibroblasts, 

respectively, show that dynein inhibition causes displacement of the centrosome from the 

cell center (Burakov et al., 2003; Gomes et al., 2005; Manneville and Etienne-Manneville, 

2006).  Furthermore, the recent report by Tsai et al. shows, using siRNA knockdown of 

dynein HC and LIS1, that dynein and LIS1 are required for pulling the MT network from the 

leading process during neural progenitor cell migration (Tsai et al., 2007).  The mechanism 

of MT pulling by cortical dynein is especially well characterized during cell division in 

budding yeast.  Translocation of the nucleus and spindle into the bud neck is known to occur 

through a ‘MT capture and sliding’ mechanism, driven by dynein localized at the bud cortex 

via the cortical receptor, Num1 (Adames and Cooper, 2000; Gundersen, 2002).  As 
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emerging evidence continues to solidify the conserved role of dynein in centrosome 

positioning, it seems plausible, then, that cortically targeted dynein at the IS could likewise 

drive MTOC repositioning in T lymphocytes.   
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CHAPTER 2 
 

ACTIN RETROGRADE FLOW AND ACTO-MYOSIN II ARC CONTRACTION  
DRIVE RECEPTOR CLUSTER DYNAMICS AT THE IMMUNOLOGICAL  

SYNAPSE IN JURKAT T CELLS 
 

 

I. Abstract  

 Actin retrograde flow and acto-myosin II contraction have both been implicated in the 

inward movement of TCR microclusters and immunological synapse formation, but no study 

has integrated and quantified their relative contributions.  Using Jurkat T cells expressing 

fluorescent myosin IIA heavy chain and F-Tractin, a novel reporter for F-actin, we now 

provide direct evidence that the dSMAC and pSMAC correspond to lamellipodial (LP) and 

lamellar (LM) actin networks, respectively, as hypothesized previously.  Importantly, our 

images reveal concentric and contracting acto-myosin II arcs/rings at the LM/pSMAC.  

Moreover, the speeds of centripetally moving TCR microclusters correspond very closely to 

the rates of actin retrograde flow in the LP/dSMAC and acto-myosin II arc contraction in the 

LM/pSMAC.  Using cytochalasin D and jasplakinolide to selectively inhibit actin retrograde 

flow in the LP/dSMAC, and blebbistatin to selectively inhibit acto-myosin II arc contraction in 

the LM/pSMAC, we demonstrate that both forces are required for centripetal TCR 

microcluster transport.  Finally, we show that LFA-1 clusters accumulate over time at the 

inner aspect of the LM/pSMAC, and that this accumulation is dependent on acto-myosin II 

contraction.  Thus, actin retrograde flow and acto-myosin II arc contraction coordinately 

drive receptor cluster dynamics at the immunological synapse. 
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II. Introduction 

The activation of T lymphocytes involves antigen receptors, adhesion molecules, and 

other accessory components, all of which polarize rapidly toward the site of contact with the 

antigen presenting cell (Fooksman et al., 2010).  Upon binding their respective ligands on 

the surface of the APC, these proteins undergo differential clustering and rearrangement at 

the synaptic junction to form two segregated, concentric domains known as SMACs (Monks 

et al., 1998; Grakoui et al., 1999).  The resulting bull’s-eye pattern of SMACs is a hallmark of 

the IS, and provides the structural basis for signaling and secretion at the T cell-APC 

interface.  The center area of the IS, known as the cSMAC, is marked by the accumulation 

of TCR MCs, which are bound to major histocompatibility complex proteins displaying 

antigenic peptide present on the surface of the APC (Campi et al., 2005; Yokosuka et al., 

2005).  The surrounding ring of the bull’s eye, known as the pSMAC, is marked by clusters 

of the β2 integrin, LFA-1, which are bound to ICAM-1 receptors present on the APC surface 

(Monks et al., 1998; Grakoui et al., 1999).  Recent studies argue that TCR signaling is 

degraded at the cSMAC, and that active signaling actually takes place at the periphery of 

the IS (Varma et al., 2006; Vardhana et al., 2010).  Thus, the pSMAC region may serve dual 

functions during T cell activation: as a zone of adhesion between the T cell and the APC, 

and as a zone of active TCR signaling at the IS.  Substitution of the APC surface with a 

glass-supported planar lipid bilayer displaying stimulatory molecules has been shown to 

replicate the signaling activity and spatial organization of the IS, and has become an 

important tool for studying T cell activation (Grakoui et al., 1999; Dustin, 2009).   

 The creation of the bull’s eye pattern exhibited by the mature IS requires the 

centripetal transport of both TCR MCs and integrin clusters, as well as their differential 

sorting at the pSMAC-cSMAC boundary. The vast majority of previous studies (see the 

Discussion for one recent exception) point to the inward flow of cortical F-actin at the IS as 

the major if not sole driving force behind centripetal receptor cluster movement (Billadeau et 
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al., 2007; Kaizuka et al., 2007; DeMond et al., 2008; Hartman et al., 2009; Yu et al., 2010).  

First, dynamic imaging of F-actin at the IS using GFP-actin as the reporter reveals very 

robust actin polymerization-driven retrograde actin flow at the perimeter of the IS (Bunnell et 

al., 2001; Kaizuka et al., 2007; Yu et al., 2010).  Moreover, this flow is radial symmetric, fully 

consistent with a symmetric centering force.  Second, the inward movement of TCR MCs 

does not begin until leading edge actin polymerization converts from initial cell spreading to 

retrograde flow upon completion of spreading (DeMond et al., 2008).  Third, the centripetal 

movement of preformed TCR MCs completely ceases upon depolymerization of F-actin 

using latrunculin (Varma et al., 2006; Kaizuka et al., 2007). 

        Consistent with centripetal actin flow driving receptor cluster movement, 

simultaneous imaging of TCR MCs, integrin clusters and F-actin (using GFP-actin) at the 

periphery of bilayer-engaged Jurkat T cells showed that both types of clusters move inward 

with actin flow (Kaizuka et al., 2007).  Interestingly, the speed of centripetal TCR MC 

movement was reported to be ~40% that of actin retrograde flow, indicating significant 

slippage between cluster movement and actin flow (Kaizuka et al., 2007).  As predicted from 

previous images of the mature IS, TCR MCs were seen to accumulate at the cSMAC, while 

the inward movement of integrin clusters ceased at the pSMAC/cSMAC boundary (Kaizuka 

et al., 2007; Hartman et al., 2009).  These two observations highlight three important 

questions regarding SMAC formation: what molecules link receptor clusters to actin flow, 

what are the physical/mechanical properties of this linkage, and how are TCR MCs and 

integrin clusters sorted at the pSMAC/cSMAC boundary (Hartman and Groves, 2011)?  

Regarding the second question, the apparent slippage between TCR MCs and actin flow 

observed by Kaizuka et al. (2007) was interpreted as evidence that the clusters spend 

variable periods of time completely detached from actin flow, by analogy with the duty cycle 

of a motor protein.  Perhaps a more robust interpretation of slippage has come from elegant 

studies employing physical barriers placed within bilayers (DeMond et al., 2008; Yu et al., 
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2010), which argue strongly for a dissipative or frictional coupling mechanism in which 

numerous, transient, weak interactions between individual receptors within a cluster and 

actin keeps the cluster attached to actin but allows slippage.   

 Importantly, the peripheral ring of robust actin retrograde flow discussed above has 

been shown to lie immediately outside of the pSMAC, and as a consequence has been 

named the distal SMAC (dSMAC) (Freiberg et al., 2002; Sims et al., 2007).  Based on this 

observation, and on the staining of the IS with various antibodies, M. Dustin proposed that 

the IS is in essence a symmetrical version of the actin cytoskeleton at the front of a 

migrating cell, where the dSMAC corresponds to the lamellipodium (LP) and the pSMAC 

corresponds to the lamellum (LM) (Dustin, 2007).  Implicit in this comparison, therefore, is 

that the centripetal movement of receptor clusters may well be driven by a combination of 

the pushing force provided by polymerization-based actin retrograde actin flow in the LP and 

the pulling force provided by myosin II-based contraction of transverse actin bundles in the 

LM (Medeiros et al., 2006; Gardel et al., 2010; Wilson et al., 2010).   

      With regard to the possible role of myosin II in the centripetal transport of TCR MCs, 

an early study using blebbistatin (BB) to inhibit myosin II argued that the myosin is not 

required for IS formation (Jacobelli et al., 2004).  In contrast, a subsequent study using both 

BB and siRNA knockdown of myosin IIA reported a dramatic inhibition of inward TCR MC 

movement, SMAC formation and IS stability (Ilani et al., 2009).  While convincing in many 

aspects, this study did not image the dynamics of F-actin or myosin II, determine the effect 

of myosin II inhibition on the rate of actin flow, define the organization of F-actin within the 

LM/pSMAC, or pinpoint the site of action of myosin II within the IS.  Moreover, it did not 

parse out the relative contributions made by actin retrograde flow and myosin II-based 

contraction to the centripetal transport of TCR MCs.  Armed with a novel reporter for F-actin, 

we sought here to address these and related, unresolved questions regarding the role of the 

actin cytoskeleton in IS formation.  
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III. Results 

a. The region of the IS corresponding to the LM/pSMAC contains concentric actin 
arcs that are rich in myosin IIA 
 

 To examine in greater detail the organization of cortical F-actin at the IS, we utilized 

E6.1 Jurkat T cells stimulated by glass-supported planar lipid bilayers containing anti-CD3ε 

antibody and ICAM-1 (Kaizuka et al., 2007) (see Methods).  Anti-CD3ε antibody labeled with 

rhodamine-X and attached to biotinylated lipids in the bilayer via a streptavidin bridge 

distributes evenly in bilayers (data not shown [DNS]).  Moreover, use of Fluorescence 

Recovery After Photobleaching (FRAP) to assess the lateral mobility of ICAM-1 tagged with 

Alexa-647 and attached to the bilayer via NTA-conjugated lipids indicated that the lipids in 

these bilayers are diffusing freely and uniformly (Fig. 3 A1-A3).  Finally, after 5 min of 

engagement with the bilayer, the vast majority (93.8%, n=32 cells; Fig. 3 B) of Jurkat T cells 

formed the central accumulation of TCR MCs, as inferred from the distribution of the anti-

CD3ε antibody in the bilayer, and the peripheral accumulation of the integrin LFA-1, as 

inferred from the distribution of ICAM-1 in the bilayer, that is characteristic of the bull’s eye-

patterned IS formed by primary T cells bound to bilayers containing peptide-MHC (Grakoui 

et al., 1999).    

To image the endogenous network of cortical F-actin at the plane of the IS, Jurkat T 

cells were stained with rhodamine-phalloidin (Fig. 4 A1-A4; two representative cells are 

shown; unless indicated otherwise, all fixations were performed 5 min after engagement with 

the bilayer).  This staining revealed three visually distinct rings or zones of F-actin at the IS: 

an outer ring characterized by very intense F-actin staining interrupted by streaks, a middle 

ring characterized by concentric arcs of F-actin, and a central zone relatively free of F-actin 

(Fig. 4 A1 and A3, and the corresponding insets in A2 and A4, respectively: the cell in A1 

shows the outer ring most clearly, while the cell in A3 shows the middle ring best).   
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Figure 3. Mobility of ICAM-1 in planar bilayers and efficiency of IS formation in Jurkat 
T cells. 
 
(A1) Alexa-647-labeled ICAM-1 in the planar bilayer immediately after photo bleaching. The 
dark region corresponds to the ~5 µm-wide photo bleached spot in the bilayer. (A2) Alexa-
647-labeled ICAM-1 molecules in the planar bilayer 3 min after photobleaching.  (A3) Graph 
showing the recovery of Alexa-647-labeled ICAM-1 fluorescence in the bleached spot as a 
function of time (expressed as a ratio of Alexa-647-labeled ICAM-1 fluorescence intensity in 
the photo bleached region relative to a nearby, unbleached region).  (B) Jurkat cells 
engaged on a planar bilayer containing Alexa-647-labeled ICAM-1 to indirectly visualize the 
distribution of LFA-1 clusters in the T cell (pseudo colored red), and Rhodamine-X-labeled 
anti-CD3ε antibody to indirectly visualize the distribution of TCR MCs in the T cell (pseudo 
colored green).  This image was taken 7 min after bilayer engagement.  The percentage of 
bilayer-engaged cells that displayed a bull’s eye-patterned IS, as well as the total number of 
cells measured in three separate studies, are indicated below B.  (C) Phalloidin staining at 
the contact site in Jurkat cells engaged on a planar bilayer containing only Alexa-647-
labeled ICAM-1.  All scale bars = 5 µm. 
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Importantly, the middle ring containing the concentric F-actin arcs overlaps extensively with 

the high concentration of ICAM-1 clusters that indirectly mark the position of the pSMAC (Fig. 

4 B1, B3 and B5, and the corresponding insets in B2, B4 and B6).  Moreover, the central  

zone that is essentially devoid of F-actin overlaps almost completely with the high 

concentration of TCR MCs that mark the mature cSMAC (Fig. 4 C1-C3). 

To verify that the outer ring corresponds to the region of dramatic actin retrograde 

flow reported previously (Bunnell et al., 2001; Kaizuka et al., 2007), i.e. to what is essentially 

a LP actin network, we double-stained cells with phalloidin and an antibody against p34, a 

subunit of the Arp2/3 complex and a bona fide marker for the LP in migrating cells (Pollard 

and Borisy, 2003).  Figure 4, Panels D1, D3 and D5, and the corresponding insets in D2, D4 

and D6, show that this outer actin ring is indeed rich in the Arp2/3 complex, while the middle 

ring is not.  This result is consistent with the assignment of this outer ring as a LP-like actin 

network.  To verify that the middle actin ring corresponds to what is essentially a LM network 

of F-actin, we double-stained cells with phalloidin and an antibody against non-muscle 

myosin IIA, a bona fide marker for the LM in migrating cells (Medeiros et al., 2006).  Figure 4, 

Panels E1, E3 and E5, and the corresponding insets E2, E4 and E6, show that this middle 

ring is indeed rich in myosin IIA, while the outer ring is not.  This result is consistent with the 

assignment of this middle ring as a LM-like network of F-actin.  Together, these results 

argue that the outer ring, which exhibits very intense F-actin staining interrupted by streaks, 

corresponds to a LP actin network (i.e. the dSMAC [(Sims et al., 2007)]), while the middle 

ring, which is comprised of concentric actin arcs and a high concentration of endogenous 

myosin IIA, and which overlaps extensively with the position of the integrin-rich pSMAC, 

corresponds to a LM actin network.  These results confirm and extend those of Sims et al. 

(Sims et al., 2007), who used antibodies against cofilin and Arp3 as markers for the 

LP/dSMAC, and an antibody against tropomyosin as a marker for LM/pSMAC. 

Like SMAC formation, the formation of the LP and LM F-actin networks was  
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Figure 4. Localization of endogenous F-actin structures and corresponding LP/LM 
markers at the IS.  
 
(A) Phalloidin staining of endogenous F-actin at the IS in representative Jurkat T cells 
stimulated on a supported planar bilayer (A1, A3) or on a glass coverslip coated with 
immobilized anti-CD3ε antibody (A5).  (A2, A4, A6) Magnified images of the boxed regions 
(white) in A1, A3 and A5, respectively.  The central zone, middle ring, and outer ring are 
indicated by brackets above A2, A4 and A6.  (B) Overlap in localization of ICAM-1 with the 
middle ring of F-actin at the IS in a representative cell stimulated on a planar bilayer.  Note 
that this particular image is a single frame from a movie of a cell expressing the F-actin 
reporter GFP-F-Tractin-P (see text) and not an image of a fixed, phalloidin-stained cell, as 
the distribution of ICAM-1 is disrupted by fixation.  (B1) ICAM-1, (B3) GFP-F-Tractin-P in the 
same cell, and (B5) merged image between B1 (green) and B3 (red).  (B2, B4, B6) 
Magnified images of the boxed regions (white) in B1, B3 and B5, respectively.  The outer 
and middle rings are indicated by brackets above B2, B4 and B6.  (C) Overlap in localization 
of TCR MCs with the actin-depleted central zone at the IS in a representative cell stimulated 
on a planar bilayer.  (C1) Anti-CD3ε antibody-labeled TCR MCs, (C2) phalloidin-staining in 
the same cell, and (C3) merged image between C1 (green) and C2 (red).  (D) Overlap in 
localization of the Arp2/3 complex with the outer ring of F-actin at the IS in a representative 
cell stimulated on a planar bilayer.  (D1) Anti-p34 (Arp2/3 subunit) antibody staining, (D3) 
phalloidin-staining in the same cell, and (D5) merged image between D1 (green) and D3 
(red).  (D2, D4, D6)  Magnified images of the boxed regions (white) in D1, D3 and D5, 
respectively.  The LP and LM regions are indicated by brackets above D2, D4 and D6.  (E) 
Overlap in localization of myosin IIA with the middle ring of F-actin at the IS in a 
representative cell stimulated on planar bilayer.  (E1) Anti-myosin IIA antibody staining, (E3) 
phalloidin staining in the same cell, and (E5) merged image between E1 (green) and E3 
(red).  (E2, E4, E6) Magnified images of the boxed regions (white) in E1, E3 and E5, 
respectively.  The LP and LM regions are indicated by brackets above E2, E4 and E6.  (F) 
Phalloidin staining at the plane of contact with the bilayer (F1) and 1 µm above the plane of 
contact with the bilayer (F2) in a representative cell stimulated on a planar bilayer.  (F3) 
Graph showing the relative intensities of phalloidin fluorescence across the IS for the green 
line in F1 (and the corresponding green intensity trace in F3) and the red line in F2 (and the 
corresponding red intensity trace in F3).  The positions of the LP/dSMAC, LM/pSMAC and 
cSMAC regions are indicated by brackets above F3.  (G) 3-D reconstructed views of 
phalloidin staining in a representative Jurkat cell stimulated on a planar bilayer.  (G1) En-
face view of phalloidin fluorescence at the plane of contact with the bilayer.  (G2) Cross-
section view of phalloidin fluorescence in the LP/dSMAC region (corresponding to the red 
line in G1).  (G3) Cross-section view of phalloidin fluorescence in the LM/pSMAC region 
(corresponding to the green line in G1).  (H) Cartoon of the LP/dSMAC, LM/pSMAC and 
cSMAC regions at the IS shown from an en-face view (H1) and a side view (H2).  All scale 
bars = 5 µm.  
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dependent on TCR ligation, as bilayers containing only ICAM-1 molecules failed to form 

these two networks (Fig. 3 C).  Importantly, Jurkat cells engaged on coverslips conjugated 

with immobilized anti-CD3ε antibody formed the two distinct F-actin networks (Fig. 4 A5 and 

A6), indicating that the dynamic organization of cortical F-actin at the plane of the IS does 

not require the rearrangement of integrins and TCR MCs that drives IS maturation (see also 

(Bunnell et al., 2001).    

We also found that phalloidin staining at the LP/dSMAC is usually most intense in 

confocal sections just above the lipid bilayer (Fig. 4 F1-F3; compare in F3 the intensity 

profiles of phalloidin staining across the cell at the plane of the bilayer [F1, Low Z, green 

line] versus 1 µm above the plane of the bilayer [F2, High Z, red line]).  Conversely, 

phalloidin staining in the LM/pSMAC was always most intense at the plane of the lipid 

bilayer (Fig. 4 F3).  These observations are consistent with dynamic ruffling activity at the 

LP/dSMAC and stable substrate adhesion at the LM/pSMAC.  Further evidence for such 

ruffling activity in the LP/dSMAC was obtained from 3D-reconstructions of phalloidin-stained 

Jurkat cells engaged on bilayers (Fig. 4 G1-G3).  Specifically, side views of F-actin in the 

LP/dSMAC region (Fig. 4 G1, red line) show that the F-actin network moves up and down 

relative to the bilayer (Fig. 4 G2, red signal; the white line marks the position of the bilayer).  

Conversely, side views of F-actin in the LM/pSMAC region (Fig. 4 G1, green line) show that 

the F-actin network here is always in close contact with the bilayer (Fig. 4 G3, green signal). 

We conclude from all of the results in Figure 4 that distinct LP and LM F-actin networks exist 

at the dSMAC and pSMAC regions of the IS, respectively, and that the LM/pSMAC is fully 

engaged at the plane of contact, consistent with its role as a zone of adhesion at the IS (Fig. 

4 H1 and H2).  Importantly, we show for the first time the presence of endogenous F-actin 

arcs in the LM/pSMAC.  We also show for the first time that these arcs are rich in 

endogenous myosin IIA.  These findings confirm and extend the idea that the dSMAC and 
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pSMAC regions of the T cell IS correspond spatially to LP and LM F-actin networks, 

respectively, as proposed by Dustin (Dustin, 2007) 

 

b. A prototype of F-Tractin, a novel reporter for F-actin, but not GFP-actin, localizes 
to both LP and LM actin networks at the IS  
 

We next sought to visualize the dynamics of F-actin in real time during the process of 

IS formation.  Previous imaging studies utilizing GFP-tagged actin showed convincingly that 

the dSMAC corresponds to a region of dramatic actin polymerization at the leading edge 

and retrograde flow (Bunnell et al., 2001; Kaizuka et al., 2007).  That said, problems have 

been encountered with the use of GFP-actin that include exclusion of GFP-actin from 

specific actin structures (Doyle and Botstein, 1996; Wu and Pollard, 2005; Wu et al., 2006), 

as well as aberrations in cytoskeletal architecture and dynamics, especially when GFP-actin 

expression levels are high (Aizawa et al., 1997; Westphal et al., 1997).  Consistent with 

such problems, when we fixed Jurkat cells expressing moderate levels of GFP-actin after 

engagement with bilayers and then stained them with Alexa-568-conjugated phalloidin, 

while the F-actin network at the LP/dSMAC was clearly visible in both channels as reported 

previously (Bunnell et al., 2001; Kaizuka et al., 2007), the actin arcs at the LM/pSMAC were 

visible only in the phalloidin channel (Fig. 5 A1-A6).  This result, which we observed 

consistently, argues that GFP-actin does not incorporate to a significant extent into the actin 

arcs that are present as endogenous structures in the LM/pSMAC (Fig. 4).  Consistent with 

our observations, no previous study of actin dynamics in T cells using GFP-actin reported 

the existence of actin arcs or rings in the LM/pSMAC. 

 In light of these observations, we decided to try an alternative to GFP-actin to 

visualize the dynamics of F-actin at the IS.  Recently, the F-actin targeting domain of the 

enzyme inositol trisphosphate 3-kinase A (ITPKA), which phosphorylates Ins(1,4,5)P3 to 

Ins(1,3,4,5)P4 in the dendritic spines of hippocampal neurons, was reported to bind F-actin 
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both in vitro and in vivo (Johnson and Schell, 2009).  Specifically, in vitro assays showed 

that peptides corresponding to residues 2-66 or 9-52 of ITPKA bind F-actin with modest 

affinity (~7 µM), and that they have little effect on the rate of depolymerization of preformed 

actin filaments (Johnson and Schell, 2009).  Both of these properties are desirable for a  

dynamic F-actin reporter, as they should increase the chance that the reporter exhibits 

minimal effects on the organization and dynamics of the F-actin structures it seeks to report.   

Consistently, FRAP of F-actin structures in living cells that were labeled with a GFP-tagged 

version of IPTKA peptide 2-66 showed that the reporter turns over very rapidly (half time of 

recovery ~0.3 sec) (Johnson and Schell, 2009).  While the F-actin binding domain of ITPKA 

has recently been further truncated to residues 9-40 and given the name F-Tractin (personal 

correspondence, Michael Schell, USUHS), the slightly longer 9-52 peptide has already been 

shown to be an excellent in vivo reporter for F-actin in two types of neurons (Johnson and 

Schell, 2009; Wagner et al., 2011).  Since peptide 9-52 is in essence a prototype of F-

Tractin, and since we used this slightly longer version throughout this study, we will refer to it 

throughout the text as F-Tractin-P.  

 To begin to validate the use of F-Tractin-P in Jurkat T cells, we fused it to mGFP, 

expressed it in cells, fixed the cells 5 min after they had contacted the bilayer, and stained 

them with Alexa-568-conjugated phalloidin.  In striking contrast to the results described 

above using GFP-actin, the actin arcs in the LM/pSMAC were clearly visible in both the 

green and red channels in cells expressing mGFP-F-Tractin-P (Fig. 5 B1-B6).  Given that 

any molecule or peptide that binds F-actin, even weakly like F-Tractin-P, should in principle 

shift the equilibrium from G-actin to F-actin to at least some extent, we performed a number 

of control experiments to exclude the possibility that the expression of F-Tractin-P in Jurkat 

cells induces non-physiological actin structures or significantly alters F-actin dynamics at the 

IS.  First, mGFP-F-Tractin-P had no obvious effect on the total amount of F-actin in cells 

across a broad range of mGFP-F-Tractin-P expression levels (Fig. 6 A).  Consistently, Fig. 6  
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Figure 5.  Comparison of F-actin structures at the IS reported by GFP-actin and 
mGFP-F-Tractin-P. 
 
(A) F-actin structures reported at the IS by GFP-actin and phalloidin in a representative 
Jurkat cell fixed after engagement on a planar bilayer.  (A1) GFP-actin, (A2) phalloidin 
staining in the same cell, and (A3) merged image between A1 (green) and A2 (red).  (A4-
A6) Magnified images of the boxed regions (white) in A1-A3, respectively.  (B) F-actin 
structures at the IS reported by GFP-F-Tractin-P and phalloidin in a representative Jurkat 
cell fixed after stimulation on a planar bilayer.  (B1) GFP-F-Tractin-P, (B2) phalloidin staining 
in the same cell, and (B3) merged image between B1 (green) and B2 (red).  (B4-B6) 
Magnified images of the boxed regions (white) in B1-B3, respectively.  The positions of the 
LP/dSMAC and LM/pSMAC regions of the IS are indicated by the brackets above A4-A6 
and B4-B6.  All scale bars = 5 µm. 
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Figure 6. Lack of effect of mGFP-F-Tractin-P expression on cellular F-actin content 
and dynamics, and on TCR signaling. 
 
(A) Graph showing the total fluorescence intensity per cell of Alexa-568-conjugated 
phalloidin for Jurkat cells bound to an anti-CD3ε-coated coverslip plotted against the total 
fluorescence intensity of mGFP-F-Tractin-P per cell.  (B) Graph showing the average total 
fluorescence intensity of Alexa-568-conjugated phalloidin in coverslip-bound cells 
expressing control GFP, mGFP-F-Tractin-P, and GFP-actin (N=40).  Note that the average 
intensity of cellular phalloidin staining in cells expressing a wide range of GFP-actin was 
significantly lower than in control cells (p<0.001), suggesting that the expression of GFP-
actin shifts the equilibrium from F-actin to G-actin to some extent. (C) Time lapse images at 
the IS of a Jurkat cell expressing GFP-F-Tractin-P and bound to an anti-CD3ε-coated 
coverslip immediately following treatment with 10 µM Latrunculin A. (D) Rise in cytosolic 
calcium in an untransfected Jurkat cell induced upon contact with an anti-CD3ε-coated 
coverslip, assayed using Fluo-4 AM as the calcium sensor.  (D1) Time lapse images of Fluo-
4, (D2) corresponding time-lapse images of the same cell using transmitted light, and (D3) 
graph showing the relative fluorescence intensity of Fluo-4 in this cell as a function of time. 
(E) Rise in cytosolic calcium in a tdTomato-F-Tractin-P-expressing Jurkat cell induced upon 
contact with an anti-CD3ε-coated coverslip, assayed using Fluo-4 AM as the calcium sensor. 
(E1) Time lapse images of Fluo-4, (E2) corresponding time-lapse images of tdTomato-F-
Tractin-P in the same cell, and (E3) graph showing the relative fluorescence intensity of 
Fluo-4 in this cell plotted over time.  All scale bars = 5 µm. 
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B shows that the average intensity of cellular phalloidin staining in all of the cells plotted in 

Fig. 6 A (mGFP-F-Tractin-P) was not significantly different from that of control cells 

expressing various levels of free mGFP (Control GFP) (p>0.05).  These results argue that 

even relatively high levels of expression of mGFP-F-Tractin-P that are significantly beyond 

what is necessary to tract F-actin in living cells, and beyond the level of expression in cells 

we routinely imaged for data collection, do not significantly drive the formation of additional 

F-actin in cells.  Second, expression of mGFP-F-Tractin-P does not appear to artificially 

stabilize actin filaments in vivo, as F-actin structures labeled by mGFP-F-Tractin-P were 

rapidly depolymerized by the addition of 10 µM Latrunculin-A (Fig. 6 C).  Specifically, in cells 

expressing mGFP-F-Tractin-P, where depolymerization was gauged by watching in real time 

the disappearance of mGFP-F-Tractin-P-labeled structures (Fig. 6 C), as well as in 

untransfected cells and cells treated with just DMSO (the vehicle for latrunculin), where 

depolymerization was gauged by fixation and staining with phalloidin at various time points 

(DNS), the depolymerization of F-actin structures was very obvious at ~30 sec after 

latrunculin addition, and nearly complete at ~60 sec.  Finally, Jurkat cells expressing F-

Tractin-P tagged with tdTomato showed the same extent of calcium influx upon contact with 

the stimulatory lipid bilayer as control cells (Fig. 6 D and E; compare the control cell in S2 

D1-D3 with the cell expressing tdTomato-F-Tractin-P in S2 E1-E3).  This observation argues 

that downstream TCR signaling is not altered by the expression of F-Tractin-P.  In summary, 

these controls, together with the crucial fact that mGFP-F-Tractin-P, but not GFP-actin, 

labels the actin arcs in the LM/pSMAC that are present as endogenous structures in 

phalloidin-stained, untransfected cells, leads us to conclude that F-Tractin-P is an ideal 

reporter for visualizing the dynamics of F-actin in both the LP and LM actin networks at the 

Jurkat IS. 
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c. Quantitation of F-actin dynamics using F-Tractin-P reveals a striking difference in 
centripetal flow rates between the LP/dSMAC and LM/pSMAC 
 

Having established from fixed cell images that the LP/dSMAC and LM/pSMAC possess 
distinct organizations of F-actin, we next asked if the dynamics of F-actin in these two 

regions also differ.  To address this question, we took time lapse images of Jurkat T cells 

expressing mGFP-F-Tractin-P after engagement on the planar bilayer (Fig. 7 A1-A3; unless 

indicated otherwise, all dynamic imaging was initiated 2 min after loading cells into the 

bilayer; see also Methods).  In agreement with previous reports (Bunnell et al., 2001; 

Kaizuka et al., 2007), dramatic actin retrograde flow was observed in the LP/dSMAC region, 

as evidenced by kymograph images across this region (Fig. 7 A2, Low Contrast, 

LP/dSMAC).  Moreover, the rate of retrograde flow across the LP/dSMAC appears both 

uniform and constant, as evidenced by the uniformity and linearity in the slopes that 

comprise the portion of kymographs corresponding to this zone. 

 Even more importantly, mGFP-F-Tractin-P revealed that the concentric actin arcs 

observed in the LM/pSMAC of untransfected cells stained with phalloidin (Fig. 4), and in still 

images of cells transfected with mGFP-F-Tractin-P (Fig. 5), are highly dynamic.  Specifically, 

they form at the boundary between the LP/dSMAC and LM/pSMAC, move inward across the 

LM/pSMAC, as evidenced by kymograph images across this region (Fig. 7 A3, High 

Contrast, LM/pSMAC), and then disappear abruptly at the boundary between the 

LM/pSMAC and the cSMAC.  Moreover, the rate of movement of these actin  

arcs across the pSMAC appears both uniform and constant, as evidenced by the uniformity 

and linearity in the slopes that comprise the portion of kymographs corresponding to this 

zone.  Visual inspection of both kymographs and movies obtained from individual cells like 

the one shown in Fig. 7 A argue that the rates at which the distinct F-actin networks in the 

LP/dSMAC and LM/pSMAC move inward must be quite different.  Consistently, 

measurements made using kymographs obtained from 8 cells yielded a value of 0.105 ± 

0.006 µm/sec for the average rate of retrograde actin flow across the LP/dSMAC, and 0.037  
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Figure 7.  Characterization of F-actin dynamics in the LP/dSMAC and LM/pSMAC 
regions of the IS.   
 
(A) Centripetal actin flow in the LP/dSMAC and LM/pSMAC regions of the IS observed using 
GFP-F-Tractin-P in a representative Jurkat cell stimulated on a planar lipid bilayer.  (A1) F-
actin reported by GFP-F-Tractin-P at the IS.  (A2, A3) Kymograph of GFP-F-Tractin-P in the 
region corresponding to the yellow line in A1, shown in low-contrast (A2) and high-contrast 
(A3).  In this and all subsequent kymographs, the shallower the slope, he faster the speed, 
and the steeper the slope, the slower the speed.  (B) Centripetal flow of F-actin and myosin 
IIA at the IS in a representative cell engaged on a bilayer.  (B1) tdTomato-F-Tractin-P, (B2) 
GFP-myosin IIA HC in the same cell, and (B3) merged image between B1 (red) and B2 
(green).  (B4-B6) Magnified images of the boxed regions (orange) in B1-B3, respectively.  
White arrowheads indicate two arcs present in the LM/pSMAC that clearly possess both F-
actin and myosin IIA.  (B7) Low-contrast kymograph of tdTomato-F-Tractin-P in the region 
corresponding to the yellow line in B1.  (B8) High-contrast kymograph of tdTomato-F-
Tractin-P in the region corresponding to the yellow line in B1.  (B9) Kymograph of GFP-
Myosin IIA HC in the region corresponding to the yellow line in B2.  The positions of the 
LP/dSMAC and LM/pSMAC regions of the IS are indicated by the brackets above A2, A3, 
B4-B6, and B7-B9.  The time scales (in sec) for all of the kymographs shown are indicated 
on the left.  Scale bars in A1 and B3 = 5 µm.  Scale bars in A2, A3, B7 = 2 µm. 
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± 0.003 µm/sec for the average rate of centripetal actin arc movement across the 

LM/pSMAC (Fig. 10 A, compare LP/dSMAC Wild Type [WT] Actin to LM/pSMAC WT Actin; 

p<0.001).  In addition to this ~3-fold difference in centripetal flow rate, we note that the 

transition between these two flow rates occurs quite abruptly at the boundary between the 

LP/dSMAC and LM/pSMAC (Fig. 7 A1-A3).  Finally, we note that essentially identical rates 

of actin retrograde flow and centripetal actin arc movement were observed when Jurkat cells 

expressing mGFP-F-Tractin-P were engaged on coverslips coated with immobilized anti-

CD3ε antibody (Fig. 8 A).  This result indicates that the dynamics of the two distinct actin 

networks in the LP and LM, as well as their formation (see Fig. 4), does not require the 

rearrangement of integrin and TCR clusters that drives IS maturation (see also (Bunnell et 

al., 2001)).  Together, these data indicate that the LP/dSMAC and LM/pSMAC regions 

possess organizations of F-actin that are kinetically as well as structurally distinct.  

 

d. Myosin IIA moves inward with the actin arcs in the LM/pSMAC 

  Given that the mGFP-F-Tractin-P-labeled actin arcs in the LM/pSMAC undergo 

apparent contraction, as observed for myosin II-containing actin arcs in the LM of migrating 

cells (Gupton and Waterman-Storer, 2006; Medeiros et al., 2006), and that the LM/pSMAC 

stains extensively for endogenous myosin IIA (Fig. 4 E), we next asked if these actin arcs 

co- localize with myosin IIA in living cells.  To accomplish this, we co-transfected Jurkat cells 

with tdTomato-F-Tractin-P and the heavy chain of myosin IIA fused at its N-terminus to GFP 

(GFP-myosin IIA HC), and we imaged the cells after engagement on bilayers.  As in the 

previous figure using mGFP-F-Tractin-P, tdTomato-F-Tractin-P reported the two structurally 

(Fig. 7 B1 and the inset in B4) and kinetically (Fig. 7 B7 and B8, see Low Contrast for the 

LP/dSMAC and High Contrast for the LM/pSMAC) distinct zones of F-actin in the LP/dSMAC 

and LM/pSMAC.  With regard to the signal for myosin IIA, in addition to weak fluorescence 

in the LP/dSMAC, an intense signal was observed in the LM/pSMAC (Fig. 7 B2 and the  
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Figure 8.  Rates of actin retrograde flow and acto-myosin II arc contraction in DMSO-
treated Jurkat cells engaged on coverslip and planar bilayer substrates, and imaging 
of actin arcs in the LM/pSMAC using only dynamic probes for myosin IIA.  
 
(A) Graph showing the rates (in µm/sec) of centripetal, GFP-F-Tractin-P-labeled actin flow 
and TCR MC movement in the LP/dSMAC and LM/pSMAC regions of DMSO-treated Jurkat 
cells stimulated on a planar bilayer, GFP-F-Tractin-P-labeled actin flow in the LP/dSMAC 
and LM/pSMAC regions of DMSO-treated Jurkat cells stimulated on a coverslip substrate, 
and GFP-myosin IIA HC- or GFP-myosin II RLC-labeled actin arc flow in the LM/pSMAC of 
DMSO-treated Jurkat cells stimulated on either a planar bilayer or a coverslip substrate.  
The number of cells used per measurement are indicated inside the bars. (B1) Dynamics of 
myosin IIA-containing actin arcs in the LM/pSMAC region of a Jurkat cell expressing GFP-
myosin IIA HC after engagement on a planar bilayer.  (B2) Kymograph of the region 
corresponding to the yellow line in B1.  (C1) Dynamics of myosin IIA-containing actin arcs in 
the LM/pSMAC region of a Jurkat cell expressing GFP-myosin II RLC after engagement on 
a planar bilayer.  (C2) Kymograph of the region corresponding to the yellow line in C1.  (D1) 
Dynamics of myosin IIA-containing actin arcs in the LM/pSMAC region of a Jurkat cell 
expressing GFP-myosin IIA HC after engagement on a planar bilayer.  (D2) Time lapse 
images of the region corresponding to the white box in D1.  Elapsed time (in sec) is 
indicated above D2.  Bright discontinuities in GFP-myosin II fluorescence within the arcs are 
indicated by yellow arrowheads in D2.  The time scales (in sec) are indicated to the left of 
the kymographs. Scale bars in B1, C1, D1 = 5 µm.  Scale bars in B2, C2, = 2 µm.  Scale bar 
in D2 = 1 µm. 
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inset in B5; see also the overlaid images in B3 and B6).  Moreover, kymographs revealed 

that this intense signal for myosin IIA, which often has the appearance of rings or arcs, also 

moves centripetally in the LM/pSMAC zone (Fig. 7 B9).  Importantly, measurements made 

using kymographs obtained from 7 cells yielded a value of 0.038 ± 0.001 µm/sec for the 

average rate of centripetal movement of these myosin IIA-rich structures across the 

LM/pSMAC (Fig. 8 A).  This value is not different from the average rate of centripetal 

movement of actin arcs in the LM/pSMAC (Fig. 10 A; p>0.05).  We note that the expression 

of GFP-tagged myosin IIA HC alone (i.e. without F-Tractin-P) also reports these 

translocating myosin IIA-rich structures in the LM/pSMAC (Fig. 8 A, B1, B2).  This result 

argues that these myosin IIA-rich, arc-like structures are not induced by our F-actin reporter.  

Finally, we obtained very similar images and rate values when we visualized myosin IIA by 

tagging its regulatory light chain with GFP (GFP-myosin II RLC) instead of its heavy chain 

(Fig. 8 A, C1, C2).  

The fact that the region of the Jurkat cell cortex that contains the actin arcs, i.e. the 

LM/pSMAC, is also the region that has the highest concentration of myosin IIA (both 

endogenous (Fig. 4 E1-E6) and exogenous (Fig. 7 B1-B6) suggests that what we are 

actually seeing in this zone are circularized, contracting acto-myosin IIA bundles.  

Consistent with this idea, the rates at which the actin arcs and the myosin IIA-rich structures 

move inward in the LM/pSMAC are indistinguishable (see above).  Moreover, close 

inspection of the signals for actin and myosin IIA in the LM/pSMAC shows that in many 

cases the two signals completely overlap in the form of concentric bands or arcs (Fig. 7 B4-

B6; see arrowheads).  Finally, time-lapse images of arcs exhibiting variations in GFP-myosin 

IIA HC intensity within the arc show that small regions of increased fluorescence intensity 

get closer together over time, consistent with arc contraction (Fig. 8 D1 and D2).  We 

conclude, therefore, that the pSMAC is rich in contracting acto-myosin IIA bundles, much 
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like the LM of a crawling cell (Medeiros et al., 2006).  To our knowledge, this is the first 

observation of contracting acto-myosin II arcs at the IS in T cells.  

 

e. TCR microclusters move inward at the speed of actin retrograde flow in the 
LP/dSMAC and at the speed of acto-myosin IIA arc contraction in the LM/pSMAC 
 

TCR MC transport at the IS requires F-actin (Varma et al., 2006; Nguyen et al., 

2008).  Moreover, numerous studies have pointed to actin polymerization and subsequent 

retrograde flow as the principal if not sole mechanism driving the centripetal movement of 

these MCs (Kaizuka et al., 2007; DeMond et al., 2008; Yu et al., 2010).  That said, none of 

these studies took into account the existence of the contracting acto-myosin IIA arcs in the 

LM/pSMAC described above.  Therefore, we next sought to correlate the rates of TCR MC 

movement across the entire IS with the rates of centripetal actin movement in the two 

structurally and kinetically distinct zones of F-actin at the IS described here.  To accomplish 

this, Jurkat cells expressing mGFP-F-Tractin-P were imaged on bilayers containing anti-

CD3ε antibody labeled with rhodamine-X to report the position of bound TCR MCs in the 

Jurkat plasma membrane.  Imaging initiated immediately after the T cell had contacted the 

bilayer show that TCR MCs first appear at the distal edge of the cell, at which point they 

then move inward at a near constant speed and in a relatively linear path across the entire 

LP/dSMAC (Fig. 9 A, frames 0-40 sec, see arrowheads).  Moreover, comparison of the 

kymographs for actin retrograde flow and the movement of individual MCs across the 

LP/dSMAC (Fig. 9 B1-B3, LP/dSMAC) show that these two rates closely match throughout 

this zone.  Even more strikingly, upon entering the LM/pSMAC zone, the movement of TCR 

MCs slows abruptly (Fig. 9 A, frames 40-90 sec, see arrowheads).  In other words, upon 

entering the LM/pSMAC, the centripetal movement of TCR MCs appears to decrease 

abruptly to match that of the slower contracting acto-myosin IIA arcs in this zone.  

Consistent with this conclusion, comparison of kymographs for actin arc contraction and the  
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Figure 9.  Characterization of TCR MC dynamics at the LP/dSMAC and LM/pSMAC 
regions of the IS. 
 
(A) Time-lapse images showing TCR MC movements in the LP/dSMAC and LM/pSMAC 
regions of the IS in a representative Jurkat cell stimulated on a planar bilayer.  TCR MCs 
(pseudo-colored green) reported by Rhodamine X-labeled anti-CD3ε antibody in the bilayer.  
F-actin (pseudo-colored red) reported by GFP-F-Tractin-P.  White arrowheads point to a 
TCR MC undergoing inward movement.  The frame at 40s that is boxed in orange indicates 
the moment when this TCR MC moved from the LP/dSMAC into the LM/pSMAC during its 
centripetal movement. (B1) Kymograph of GFP-F-Tractin-P in the region corresponding to 
the yellow line in A (0s), (B2) kymograph of a TCR MC in the region corresponding to the 
yellow line in A (0s), and (B3) merged image between B1 (red) and B2 (green).  The 
positions of the LP/dSMAC and LM/pSMAC regions of the IS are indicated by the brackets 
above B1-B3.  The boundary between the LP/dSMAC and LM/pSMAC is indicated by the 
orange line in B1-B3.  The time scale of the kymographs in B1-B3 is indicated to the left of 
B1. (C) Paths of all visible TCR MCs in a representative Jurkat cell stimulated on a planar 
bilayer.  TCR MC paths in the LP/dSMAC are shown in red, while TCR MC paths in the 
LM/pSMAC are shown in green.  The paths are discontinuous because we purposely 
avoided making measurements at the dSMAC/pSMAC boundary.  (D) Spatial and kinetic 
relationship between a TCR MC and surrounding acto-myosin II arcs in the LM/pSMAC 
region of the IS.  (D1) eGFP-Myosin IIA HC (pseudo-colored red) and TCR MCs (pseudo-
colored green) at the IS of a Jurkat cell stimulated on a planar bilayer.  (D2) Magnified 
image of the boxed region (white) in D1.  (D3) Relative intensities for myosin IIA (red) and a 
TCR MC (green) across the yellow line in D2.  (D4) Kymograph of two prominent myosin IIA-
containing arcs in the region corresponding to the yellow line in D1, (D5) kymograph of a 
TCR MC in the region corresponding to the yellow line in D1, and (D6) merged image 
between D4 (red) and D5 (green).  The time scale of the kymographs in D4-D6 is indicated 
to the right of D6.  Scale bars in A, B3, D6 = 2 µm.  Scale bar in D1 = 5 µm. 
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movement of individual TCR MCs across the LM/pSMAC (Fig. 9 B1-B3, LM/pSMAC) show 

that these two rates closely match throughout this zone.  These results suggest, therefore, 

that there is fairly precise spatial and kinetic coupling between the centripetal movements of 

TCR MCs and F-actin in both the LP/dSMAC and LM/pSMAC.  This in turn argues that TCR 

MCs are tightly coupled to the rapid retrograde actin flow in the LP/dSMAC and to the  

slower, contracting, acto-myosin IIA arcs in the LM/pSMAC.  

 To provide quantitative support for the above conclusions, we next measured the 

rates of centripetal TCR MC movement and centripetal actin flow across both the 

LP/dSMAC and LM/pSMAC in 15 Jurkat cells engaged on bilayers and imaged every 4 sec.   

Fig. 9 C shows the paths of all of the TCR MCs in a representative cell, where tracks across 

the LP/dSMAC and LM/pSMAC have been color coded red and green, respectively.  To 

determine the rates of TCR MC transport, we manually tracked MCs and calculated their 

instantaneous, frame-to-frame velocities (see Methods for details).  To determine the rates 

of retrograde actin flow and actin arc contraction, we measured the slopes in kymographs of 

the mGFP-F-Tractin-P signal.   Consistent with the conclusions drawn above, the average 

instantaneous velocity of centripetal TCR MC movement across the LP/dSMAC (0.094 ± 

0.016 µm/sec) was not statistically different from that of actin retrograde flow in this zone 

(0.105 ± 0.006 µm/sec) (Fig. 10 A, compare LP/dSMAC WT Actin to LP/dSMAC WT TCR; 

p>0.05).  Likewise, the average instantaneous velocity of centripetal TCR MC movement 

across the LM/pSMAC (0.038 ± 0.006 µm/sec) was not statistically different from that of 

actin arc contraction in this zone (0.037 ± 0.003 µm/sec) (Fig. 10 A, compare LM/pSMAC 

WT Actin to LM/pSMAC WT TCR; p>0.05).  Together, these results argue strongly that the 

centripetal movements of TCR MCs at the IS are driven sequentially by rapid retrograde 

actin flow in the LP/dSMAC and slower, contracting, acto-myosin IIA arcs in the LM/pSMAC.  

These results also argue that the coupling between the centripetal movement of TCR MCs 
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and the retrograde movement of F-actin is much less dissipative then previously reported 

(Kaizuka et al., 2007) (see Discussion).   

 To further investigate the precise spatial relationship within the LM/pSMAC between 

the centripetal movement of TCR MCs and the inward movement of the contracting acto-

myosin IIA arcs, we imaged TCR MCs movements in Jurkat cells expressing GFP-myosin 

IIA HC (Fig. 9 D1).  Two-color line scans (Fig. 9 D3) across individual, green TCR MCs in 

the LM/pSMAC (Fig. 9 D2) of a typical cell (Fig. 9 D1) show that the peak of fluorescence 

intensity for the MC usually falls in between two peaks of fluorescence intensity for myosin 

IIA arcs.  Moreover, two-color kymographs show that MCs continue to localize over time in 

between the successive, contracting, acto-myosin IIA arcs (Fig. 9 D4-D6, see arrowheads).  

Of 100 TCR MCs picked at random, 71 fell in between myosin IIA arcs based on both visual 

inspection and line scans, arguing that this phenomenon is common. These observations, 

together with the fact that TCR MCs move in tandem with the contracting acto-myosin IIA 

arcs in the LM/pSMAC (Fig. 10 A), raise the possibility that MC transport across this zone is 

driven by a “sweeping” motion generated by the acto-myosin IIA arcs, although this does not 

preclude either direct or indirect physical interactions between the MCs and the arcs.   

 

f. Inhibition of myosin IIA with blebbistatin slows TCR MC movement in the 
LP/dSMAC and disrupts both the organization of actin arcs and the directed 
transport TCR MCs in the LM/pSMAC 
 

Given the tight coupling within the LM/pSMAC between the centripetal movement of 

TCR MCs and the apparent contraction of acto-myosin IIA arcs, we next sought to measure 

the contribution made by myosin IIA to the organization of F-actin and the transport of MCs 

in this region of the IS.  More specifically, we sought to examine in detail the effects of 

conditionally inhibiting myosin IIA on the rates of centripetal actin flow and TCR MC 

movement in both the LP/dSMAC and LM/pSMAC using bilayer-engaged Jurkat cells 

expressing tdTomato-F-Tractin-P.  To inhibit myosin IIA rapidly and selectively, we used 50 
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Figure 10.  Effect of Blebbistatin on the dynamics of F-actin and TCR MCs in the 
LP/dSMAC and LM/pSMAC regions of the IS. 
 
(A) Graph showing the rates of centripetal movement (in µm/sec) of actin (red) and TCR 
MCs (green) in the LP/dSMAC and LM/pSMAC regions of WT (in this study, WT is used to 
indicate untreated cells), BB-, CD-Jas-, and CD-Jas-BB-treated Jurkat cells stimulated on 
planar bilayers.  The bars indicate the mean and standard deviation (SD) for the centripetal 
rate.  The number of cells that was analyzed for each measurement is indicated inside (or 
above) the bar (~50 TCR MCs were measured per cell).  (B) Graph showing the meandering 
index (net displacement/ total distance traveled) of TCR MCs measured in the LP/dSMAC 
and LM/pSMAC region of WT, BB-, and CD-Jas-treated cells.  Each bar shows the mean 
and SD for the meandering index.  The number of cells that were analyzed for each 
measurement is indicated inside the bar.  (C) Graph showing the percentage of TCR MCs 
that moved one or more pixels (black) or zero pixels (gray) per frame in the LP/dSMAC and 
LM/pSMAC regions of WT, BB-, CD-Jas-, and CD-Jas-BB-treated cells.  The bars show the 
percentages of all measurements that fall in these two categories.  (D) The effect of BB on 
the dynamics of actin arcs and the movements of TCR MCs in the LM/pSMAC region of the 
IS.  (D1) tdTomato-F-Tractin-P at the IS in a BB-treated cell stimulated on a planar bilayer.  
(D2) Time-lapse images of the boxed region (white) in D1. The yellow arrowheads point to a 
buckling actin arc in the LM/pSMAC.  (D3) Kymograph of Tomato-F-Tractin-P in the region 
corresponding to the yellow line in D1, (D4) kymograph of TCR MCs in the region 
corresponding to the yellow line in D1, and (D5) merged image between D3 (red) and D4 
(green).  The positions of the LP/dSMAC and LM/pSMAC regions of the IS are indicated by 
the brackets above D3-D5.  The time scale of the kymographs in D3-D5 is indicated to the 
right of D5.  Scale bar in D1 = 5 µm.  Scale bar in D4 = 2 µm. 
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µM blebbistatin (BB), a cell-permeable and highly-specific inhibitor of myosin IIA’s ATPase 

activity (Allingham et al., 2005) that locks the myosin in a weakly-bound, ADP-Pi state, 

causing it to dissociate from F-actin.  In all experiments, Jurkat cells were engaged with the 

bilayer following a 30 min pre-incubation with BB at 37ºC.  We took special care to avoid the 

use of blue light, which rapidly inactivates BB (Sakamoto et al., 2005).    

For Jurkat cells treated for 30 min with DMSO (the vehicle for BB), the rates of 

centripetal actin flow and TCR MC movement in both the LP/dSMAC and LM/pSMAC were 

not statistically different from the rates in untreated cells (Fig. 8 A; p>0.05).  In contrast, BB 

treatment led to a 44.4%  reduction in the average speed of actin retrograde flow across the 

LP/dSMAC region, from 0.105 ± 0.006 µm/sec to 0.058 ± 0.010 µm/sec (Fig. 10 A, compare 

LP/dSMAC WT Actin to LP/dSMAC BB Actin; p<0.001).  This result is consistent with the 

effect of BB on the rate of actin retrograde flow in the LP of other cell types (Medeiros et al., 

2006; Wilson et al., 2010), and is presumably due to a BB-induced reduction in the pulling 

force within the LM (see below).  In parallel with this reduction in the rate of actin retrograde 

flow, the average rate of centripetal TCR MC movement in the LP/dSMAC was reduced by 

44.2% following BB treatment, from 0.094 ± 0.016 µm/sec to 0.052 ± 0.006 µm/sec (Fig. 10 

A, compare LP/dSMAC WT TCR to LP/dSMAC BB TCR; p<0.001).  The directionality of 

TCR MC movements in the LP/dSMAC of BB-treated cells, as measured using the 

“meandering index” (total distance /net displacement; see Methods) were not, however, 

significantly different from WT (Fig. 10 B, compare LP/dSMAC WT to LP/dSMAC BB; 

p>0.05).  Together, these results argue that while myosin IIA contributes to efficient actin 

retrograde flow and TCR MC movement in the LP/dSMAC, presumably as a consequence of 

its crucial role in generating via actin arc contraction a pulling force within the LM/pSMAC 

((Vicente-Manzanares et al., 2009) and see below), it is not essential for the 

directed/persistent movement of TCR MCs in the LP/dSMAC.  We also note that the rates of 

actin retrograde flow and inward TCR MC movement across the LP/dSMAC of BB-treated 
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cells remain tightly coupled, as these two rates are not statistically different (compare 

LP/dSMAC BB Actin to LP/dSMAC BB TCR in Figure 10 A; p>0.05).   

With regard to the effects of BB treatment on the rates of actin arc contraction and 

centripetal TCR MC movement in the LM/pSMAC, the initial and most striking observation 

was that BB disrupted the organization of the concentric actin arcs found in this zone (Fig. 

10 D1-D5).  Specifically, BB treatment changed the organization of these actin arcs from the 

fairly ordered pattern of concentric rings seen in WT (Figs. 4,5,7) and DMSO-treated control 

cells (DNS), to one in which the arcs appear loose, disorganized, and not strongly 

concentric (Fig 10 D1).  Moreover, time lapse imaging shows that the actin arcs in BB-

treated cells tend to buckle and deform due to the pushing force exerted by continued actin 

retrograde flow in the LP/dSMAC region (Fig. 10 D2; see arrowheads).  These defects in arc 

behavior are also evident in kymographs of centripetal actin flow in BB-treated cells (Fig. 10 

D3, LM/pSMAC), where individual slopes that span the LM/pSMAC are not uniform across 

this zone, as compared to actin arcs in untreated cells (compare the LM/pSMAC actin 

kymograph for the BB-treated cell in Fig. 10 D3 to the LM/pSMAC actin kymograph for the 

WT cell in Fig. 7 A3).  These defects in actin arc organization and dynamics are very evident 

when one compares movies of untreated and BB-treated cells side by side, where the 

disorganized and non-uniform inward movement of arcs in the LM/pSMAC of BB-treated 

cells contrasts sharply with the relatively uniform inward progression of actin arcs in the 

LM/pSMAC of untreated cells (DNS).  

With regard to the quantitative effect of BB treatment on the rate of actin arc 

contraction in the LM/pSMAC, the drug reduced this rate by 43.2%, from 0.037 ± 0.003 

µm/sec to 0.021 ± 0.003 µm/sec (Fig. 10 A, compare LM/pSMAC WT Actin to LM/pSMAC 

BB Actin; p<0.001; note that this measurement used only the centripetal and non-vertical 

[i.e. moving] portions of individual slopes in the kymographs; see Methods for more details).  

In parallel with this reduction in the rate of actin arc contraction in the LM/pSMAC, the 
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average rate of centripetal TCR MC movement in this zone was reduced following BB 

treatment by 34.2%, from 0.038 ± 0.006 µm/sec to 0.025 ± 0.005 µm/sec (Fig. 10 A, 

compare LM/pSMAC WT TCR to LM/pSMAC BB TCR; p<0.002).  Moreover, the percentage 

of total TCR MC frames recorded where individual MCs did not advance by at least one 

pixel per frame is much higher in the LM/pSMAC region of BB-treated cells (60%) than in the 

LM/pSMAC region of control cells (6%) (Fig. 10 C).  This observation reveals a pronounced 

increase in the frequency of very slow displacements or pauses in the inward transport of 

TCR MCs across the LM/pSMAC with BB treatment.  Since these “pauses” were not 

included in the analysis of TCR MC rates, the data in Fig. 10 A underestimates to some 

extent the magnitude of the decrease in inward TCR MC movement across the LM/pSMAC 

of BB-treated cells.  The directionality of TCR MC movements in the LM/pSMAC of BB-

treated cells was also significantly degraded relative to that in WT cells (Fig. 10 B, compare 

LM/pSMAC BB to LM/pSMAC WT; p<0.001).  Finally, two-color kymographs (Fig. 10 D3-D5) 

show that the paths of TCR MCs in the LM/pSMAC of BB-treated cells follow in zigzag 

fashion the convoluted paths of the inwardly moving actin arcs.  Together, these results 

argue that while myosin IIA is not absolutely essential for the inward movement of actin arcs 

and TCR MCs across the LM/pSMAC, the myosin does make a major contribution to the 

overall organization and inward movement of the actin arcs, and consequently to the speed 

and directional persistence of centripetal TCR MC movements across the LM/pSMAC.  

Moreover, just as the robustness of retrograde actin flow and coupled MC movement in the 

LP/dSMAC is dependent on the pulling force provided by acto-myosin II-driven contraction 

in the LM/pSMAC (see above), we think the persistence of some inward actin arc movement 

and coupled MC movement in the LM/pSMAC in the absence of myosin II-driven contraction 

is due to the persistence of the actin retrograde flow-driven pushing force in the LP/dSMAC.  

Indeed, this pushing force, and the degree to which it pushes the flaccid actin arcs in the 

LM/pSMAC of a BB-treated cells inward, is very clear in time lapse movies of tdTomato-F-
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Tractin-P (DNS).  We note that the rates of actin retrograde flow and inward TCR MC 

movement across the LM/pSMAC of BB-treated cells remain coupled, as these two rates are 

not statistically different (compare LM/pSMAC BB Actin to LM/pSMAC BB TCR in Figure 10 

A; p>0.05).  We also note that myosin IIA, as visualized using its RLC tagged with mRFP, 

does not co-localize with the disorganized actin arcs present in BB-treated cells, consistent 

with the mode of action of this inhibitor (DNS).      

Interestingly, the region in the center of the IS that is normally largely devoid of F-

actin, and that corresponds to the cSMAC, was no longer visible in BB-treated cells (Fig 10 

D1).  This observation is consistent with the proposed role for myosin II in the severing of 

LM actin bundles and the subsequent disassembly of the LM actin network (Medeiros et al., 

2006; Wilson et al., 2010).  

 

g. Inhibition of actin retrograde flow causes the F-actin network and associated TCR 
MCs in the LP/dSMAC to retract at a speed that corresponds to slowed acto-
myosin II arc contraction in the LM/pSMAC 
 

To gauge the relative contribution of actin polymerization-driven retrograde flow to 

TCR MC transport across the IS, we sought to selectively inhibit the polymerization of F-

actin at the distal edge of the LP/dSMAC using cytochalasin D (CD), a membrane 

permeable molecule that tightly caps (Kd = 0.5 nM) the fast-growing, free barbed end of the 

actin filament, preventing further filament elongation (Carlier et al., 1986).  In previous 

studies, 1-5 µM CD was shown to cause the rapid and complete retraction of the LP actin 

network in numerous cell types (Forscher and Smith, 1988; Henson et al., 1999).  Moreover, 

in newt lung cells, low-dose CD (0.1-0.5 µM) was shown to selectively disrupt actin 

retrograde flow in the LP while having no obvious effect on the rate of acto-myosin II-driven 

flow in the LM (Ponti et al., 2004).   In an effort to replicate these effects in Jurkat T cells, we 

initially tested different concentrations of CD on cells expressing mGFP-F-Tractin-P and 

engaged on coverslips coated with anti-CD3ε antibody.  Concentrations of CD above 0.5 µM  
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Figure 11.  Testing the effects of CD, Jas, and CD-Jas treatments on actin retrograde 
flow in cells engaged on coverslips.  
 
(A) Effect of low-dose CD on the organization and dynamics of F-actin at the IS in a 
Jurkat cell stimulated on a coverslip substrate.  (A1) GFP-F-Tractin-P at the IS before 
addition of low-dose CD.  (A2) GFP-F-Tractin-P at the IS of this same cell 4 min after 
addition of low-dose CD.  (A3) Kymograph of GFP-F-Tractin-P in the region 
corresponding to the yellow line in A2.  (A4) Kymograph of GFP-F-Tractin-P in the 
region corresponding to the red line in A2.  The black and orange arrowheads in these 
two kymographs, as well as those in B4 and C4, mark the time when CD and/or Jas 
was added and when the LP network began to retract, respectively.  (B) Effect of Jas 
on the organization and dynamics of F-actin at the IS in a Jurkat cell stimulated on a 
coverslip substrate.  (B1) GFP-F-Tractin-P at the IS before addition of Jas.  (B2) GFP-
F-Tractin-P at the IS in this same cell 4 min after addition of Jas.  (B3) GFP-F-Tractin-P 
at the IS in this same cell 6 min after addition of Jas.  The pronounced rings of F-actin 
that accumulate following Jas addition at the boundary between LP/dSMAC and 
LM/pSMAC, and at the boundary between the LM/pSMAC and cSMAC, are indicated 
by the red and green arrowheads, respectively.  (B4) Kymograph of GFP-F-Tractin-P in 
the region corresponding to the yellow line in B2.  (C) Effect of CD-Jas on the 
organization and dynamics of F-actin at the IS in a Jurkat cell stimulated on a coverslip 
substrate.  (C1)  GFP-F-Tractin-P at the IS before addition of CD-Jas.  (C2) GFP-F-
Tractin-P at the IS in this same cell 4 min after addition of CD-Jas.  (C3) Merged image 
between C2 (green) and farnesylated-RFP (red), which marks the plasma membrane.  
(C4) Kymograph of GFP-F-Tractin-P in the region corresponding to the yellow line in 
C2.  The positions of the LP/dSMAC and LM/pSMAC regions of the IS are indicated by 
the brackets above A3, A4, B4, and C5.  The time scales (in sec) for all of the 
kymographs shown are indicated on the right.  Scale bars in A1, B1, C1 = 5 µm.  Scale 
bars in A3, A4, B3, C4 = 2 µm.     
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caused cells to rapidly round up, making imaging impossible (DNS).  Conversely, CD 

concentrations at or below 0.1 µM had little immediate effect on the cells.  At a CD 

concentration of 0.2 µM, however, a significant fraction of the F-actin network in the 

LP/dSMAC retracted within 4 min (compare the signals for GFP-F-Tractin-P before 

treatment with CD [Fig. 11 A1] to that 4 min after CD addition [Fig. 6 A2]).  The time course 

of this effect was rapid, as retraction of actin in the LP/dSMAC began almost immediately 

after CD addition. This is shown by the kymograph in Fig. 11 A3, which was taken from the 

region of the LP/dSMAC highlighted by the yellow line in A2 (the time when CD was added  

Is marked by the black arrowhead, while the time when retraction began is marked by the 

orange arrowhead).  Moreover, the contraction of acto-myosin II arcs in the LM/pSMAC 

continued uninterrupted for up to 5 min after addition of low-dose CD (see the LM/pSMAC 

region in the kymograph in Fig. 11 A3).  While these observations are reminiscent of the 

effect of CD on newt lung cells (Ponti et al., 2004), the inhibition of actin retrograde flow in 

the LP/dSMAC of these CD-treated Jurkat cells was far from complete.  Specifically, as 

portions of the actin network comprising the LP/dSMAC began to retract, a large number of 

spike-like F-actin-rich structures were left behind (Fig. 11 A2).  In addition, the actin in these 

spikes continued to undergo actin treadmilling, as evidenced by the slopes in the kymograph 

in Fig. 11 A4, which was taken from the region of the LP/dSMAC highlighted by the red line 

in A2 that spans one of these F-actin spikes.  

We next sought an alternative to CD to inhibit actin retrograde flow in the LP/dSMAC 

more completely.  In the previous study by Ponti et al. (Ponti et al., 2004), the addition of 1 

µM jasplakinolide (Jas), a cell permeable molecule that stabilizes actin filaments, was shown 

to block actin retrograde flow in the LP without significantly disrupting myosin II-driven actin 

flow in the LM.  Jas is thought to inhibit actin retrograde flow in the LP by blocking the 

depolymerization of F-actin on the back side of the LP, leading to the rapid depletion of a 

pool of G-actin used preferentially to support polymerization at the leading edge (Cramer, 
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1999; Ponti et al., 2004).  As with CD, we initially tested different concentrations of Jas on 

Jurkat cells expressing mGFP-F-Tractin-P and engaged on coverslips coated with anti-CD3ε 

antibody.  Concentrations of Jas of 1 µM or above caused cells to rapidly round up, making 

imaging difficult (DNS).  The addition of 0.5 µM Jas, however, caused the complete 

retraction of the actin network in the LP/dSMAC within 6 min (compare the signals for GFP-

F-Tractin-P before treatment with Jas [Fig. 11 B1] to that 4 min [Fig. 11 B2] and 6 min [Fig. 

11 B3] after addition of Jas).  Moreover, the actin arcs in the LM/pSMAC continued to 

contract inwardly, as evidenced by the slopes in the LM/pSMAC region of the kymograph in 

Fig. 11 B4, which was taken from the region of the LM/pSMAC highlighted by the yellow line 

in B2.  Additionally, these arcs appeared to accumulate over time in the form of a dense ring 

of actin at the border between the LM/pSMAC and cSMAC (Fig 11 B2 and B3; see green 

arrowheads).  The appearance of this actin ring presumably reflects the Jas-dependent 

inhibition in the disassembly of the acto-myosin II arcs at the inner aspect of the LM 

(Medeiros et al., 2006; Wilson et al., 2010).  We note that Jas addition caused the retracting 

actin network in the LP/dSMAC to also accumulate over time in the form of a broad actin 

ring at the border between LP/dSMAC and LM/pSMAC (Fig. 11 B2 and B3; see red 

arrowheads).  The appearance of this ring presumably reflects the Jas-dependent inhibition 

in the large scale depolymerization of LP F-actin that probably occurs at the inner aspect of 

the LP (Ponti et al., 2004).  

While treatment with 0.5 µM Jas was successful in that, given enough time, it 

resulted in the near complete retraction of the LP actin network, i.e. it did not leave behind 

the F-actin spikes observed with CD treatment, the time course of the effect was relatively 

slow.  Specifically, while the accumulation of actin arcs near the cSMAC border was nearly 

complete after 4 min of Jas treatment (see the green arrowhead in Fig. 11 B2), retraction of 

the actin network in the LP/dSMAC was just beginning at this point in time.  This is evident 

in the kymograph in Fig. 11 B4, where the time of Jas addition and the time when the 
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retraction of the LP/dSMAC began are marked by black and orange arrowheads, 

respectively.  This delay in the retraction of actin at the leading edge is presumably due to 

the fact that the mechanism by which Jas inhibits polymerization (monomer starvation) takes 

time to develop.   

Given the results above, we sought to block actin retrograde flow in the LP/dSMAC 

both rapidly and completely by simultaneously blocking both actin polymerization at the 

leading edge using 0.2 µM CD and actin depolymerization at the rear of the LP using 0.5 µM 

Jas (CD-Jas).  In Jurkat cells expressing GFP-F-Tractin-P and farnesylated-RFP and 

engaged on coverslips, addition of CD-Jas caused the entire actin network in the LP/dSMAC 

to retract within 4 min (compare the signal for GFP-F-Tractin-P before treatment with CD-

Jas [Fig. 11 C1] to that 4 min after CD-Jas addition [Fig. 11 C2]).  Moreover, this inhibitory 

effect was rapid, as the actin network in the LP/dSMAC began to retract within 1 min after 

addition of CD-Jas (compare the time of CD-Jas addition [black arrowhead] to the time when 

the retraction of the LP/dSMAC began [orange arrowhead] in the kymograph in Fig. 11 C4, 

which was taken from the region of the LP/dSMAC highlighted by the yellow line in C2).  

Finally, the inhibitory effect of combined CD-Jas treatment was complete, as residual actin 

spikes were not observed (Fig. 11 C2).  Importantly, using farnesylated-RFP to mark the T 

cell plasma membrane, we confirmed that CD-Jas treatment caused the LP actin network to 

pull away from the leading edge membrane (see the spatial separation between the signals 

for farnesylated-RFP and GFP-F-Tractin-P in Fig. 11 C3).  Therefore, the effect of combined 

CD-Jas treatment in Jurkat cells engaged on coverslips mirrors the classic result seen in 

giant Aplysia growth cones treated with cytochalasin B, where the actin meshwork in the LP 

separates and retreats from the leading edge plasma membrane (Forscher and Smith, 

1988).   

Having established a method to inhibit actin polymerization both rapidly and 

completely for cells engaged on a coverslip substrate, we next transitioned to engaging cells 
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on bilayers in order to test the effect of CD-Jas treatment on the inward movement of TCR 

MCs.  As with coverslip-engaged cells, the addition of CD-Jas to bilayer-engaged cells 

expressing GFP-F-Tractin-P and farnesylated mRFP caused the retraction of the actin 

network in the LP/dSMAC within 4 min (compare the signals for GFP-F-Tractin-P before 

treatment with CD-Jas [Fig. 12 A1] to that 4 min after CD-Jas addition [Fig. 12 A2]).  This 

inhibitory effect was rapid, as retraction of the actin network in the LP/dSMAC began within 

1 min after addition of CD-Jas (compare the time of Jas addition [black arrowhead] to the 

time when the retraction of the LP/dSMAC began [orange arrowhead] in the kymograph in 

Fig. 12 A4, which was taken from the region of the LP/dSMAC highlighted by the yellow line 

in A2).  This inhibitory effect was also complete, as residual actin spikes were not observed 

after treatment (Fig. 12 A2).  In striking contrast to coverslip-engaged cells, however, in 

bilayer-engaged cells much of their leading edge plasma membrane marked with 

farnesylated RFP retracted together with the actin network in the LP/dSMAC (Fig. 12 A3).  

This is presumably due to the lack of opposing friction in the planar bilayer substrate.   

Despite the lack of complete separation between the retracting actin network and the 

leading edge plasma membrane, we proceeded to test the effect of CD-Jas treatment on the 

dynamics of both actin and TCR MCs within each region of the IS.  In the LM/pSMAC, the 

rate of actin arc contraction was reduced following the addition of CD-Jas by 37%, from 

0.037 ± 0.003 µm/sec to 0.023 ± 0.002 µm/sec (Fig. 10 A, compare LM/pSMAC WT Actin to 

LM/pSMAC CD-Jas Actin; p< 0.001).  Moreover, the rate of inward TCR MC movement 

across the LM/pSMAC slowed by 44%, from 0.039 ± 0.006 µm/sec to 0.022 ± 0.002 µm/sec 

(Fig. 10 A, compare LM/pSMAC WT TCR to LM/pSMAC CD-Jas TCR; p< 0.001), matching 

the reduced rate of actin arc contraction in the LM/pSMAC.  The directionality of TCR MC  

movements in the LM/pSMAC were not affected by Jas-CD treatment, however (Fig. 10 B; 

p>0.05).  We do note that a modest level of “pauses” in TCR MC movements was observed 

in the LM/pSMAC (Fig. 10 C).  This pausing may be due to the large accumulation of F-actin 
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Figure 12. Inhibition of actin retrograde flow and acto-myosin II arc contraction 
using  combinations of CD, Jas, and BB. 
 
(A) Effect of CD-Jas treatment on the dynamics and distribution of F-actin at the IS of a 
Jurkat cell stimulated on a planar bilayer.  (A1) GFP-F-Tractin-P at the IS of a cell before 
addition of CD-Jas.  (A2) GFP-F-Tractin at the IS of this same cell 4 min after addition of 
CD-Jas.  (A3) Merged image between A2 (green) and farnesylated-RFP (red), which marks 
the plasma membrane.  (A4) Kymograph of the region corresponding to the yellow line in A1 
and A2.  The black arrowhead indicates the time of CD-Jas addition, while the blue 
arrowhead indicates the start of actin retraction in the LP/dSMAC.  (B) Effect of CD-Jas 
treatment on F-actin dynamics and distribution and on TCR MC movement at the IS of a 
Jurkat cell stimulated on a planar bilayer.  (B1) GFP-F-Tractin-P at the IS of a cell 4 min 
after addition of CD-Jas.  (B2) TCR MCs at the IS of this same cell 4 min after addition of 
CD-Jas.  The red arrowhead marks the position of a marooned TCR MC.  The green 
arrowhead marks a TCR MC that moved with the retracting actin network. (B3) Merged 
image between B1 (red) and B2 (green).  (B4) Kymograph of GFP-F-Tractin-P in the region 
corresponding to the yellow line in B3, (B5) kymograph of TCR MCs in the region 
corresponding to the yellow line in B3, and (B6) merged image between B4 (red) and B5 
(green).  The red arrowhead in B5 indicates the immobile, marooned TCR MC marked in B2 
that was left behind at the IS periphery, while the green arrowhead in B5 indicates the TCR 
MC marked in B2 that moved with the retracting actin network (see B6 for the overlay).  (C) 
The effect of combined CD-Jas-BB treatment on F-actin dynamics and distribution at the IS 
of a Jurkat cell stimulated on a planar bilayer.  (C1) tdTomato-F-Tractin-P at the IS of a BB-
pretreated cell before addition of CD-Jas-BB.  (C2) tdTomato-F-Tractin-P at the IS of this 
same cell 30 sec after addition of CD-Jas-BB.  (C3) Kymograph of the region corresponding 
to the yellow line in C1 and C2.  The black arrowhead in C3 indicates the time of CD-Jas-BB 
addition.  The positions of the LP/dSMAC and LM/pSMAC regions of the IS are indicated by 
the brackets above A4 and C3.  The time scales of the kymographs in A3, B4-B6 and C3 
are indicated to the right of A4, B6 and C3, respectively.  Scale Bars in A1, B1, C1 = 5 µm.  
Scale bars in A4, B3, C3 = 2 µm. 
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at the boundary between the LM/pSMAC and cSMAC seen with Jas addition, which could 

create a logjam for TCR MCs passing into the cSMAC.   

With regard to the LP/dSMAC following CD-Jas treatment, quantification showed that 

the rate at which the actin network in this zone retracted (0.023 ± 0.002 µm/sec) 

corresponds exactly to the reduced speed of acto-myosin II arc contraction in the 

LM/pSMAC (0.023 ± 0.002 µm/sec) (Fig. 10 A, compare LP/dSMAC CD-Jas Actin to 

LM/pSMAC CD-Jas Actin: p> 0.05).  This result is completely consistent with previous  

results in Aplysia neuron growth cones and sea urchin coelomocytes, where acto-myosin II 

contraction in the LM was shown to drive the retraction of the LP actin network following the 

addition of cytochalasin to inhibit actin polymerization at the leading edge (Henson et al., 

1999; Medeiros et al., 2006).  Most importantly, the speed at which TCR MCs move inward 

across the LP/dSMAC of CD-Jas treated cells (0.024 ± 0.002 µm/sec) matches precisely the 

speed of actin network retraction (0.023 ± 0.002 µm/sec) (Fig. 10 A, compare LP/dSMAC 

CD-Jas TCR to LP/dSMAC CD-Jas Actin and LM/pSMAC CD-Jas Actin; p> 0.05).  This 

result is also evident in the kymographs in Fig. 12 B4-B6, which were taken from the region 

of the LP/dSMAC highlighted by the yellow line in B3. Specifically, the green arrowhead in 

B5 indicates that the TCR MC marked by the green arrowhead in B2 moved inward in 

concert with the retracting actin.  These results indicate that TCR MCs are tightly coupled to 

the underlying cortical F-actin network during the retraction process.  Moreover, these 

results argue that the contraction of the acto-myosin II arcs in the LM/pSMAC drives these 

slow inward movements of TCR MCs when actin polymerization is abrogated.  While the 

directionality of TCR MC movements in the LP/dSMAC were not affected by Jas-CD 

treatment (Fig. 10 B), a modest increase in “pauses” relative to control cells was observed 

(Fig. 10 C).  These pauses may be due to the accumulation of F-actin at the border between 

the LP/dSMAC and LM/pSMAC seen with Jas addition, which may create a logjam for TCR 

MCs passing into the pSMAC.   
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Finally, while most of the leading edge plasma membrane of bilayer-engaged cells 

retracted together with the actin network following the addition of CD and Jas (Fig. 12 A3), in 

a few instances portions of the plasma membrane remained in place as the actin network 

retreated (see white arrowheads in Fig. 12 A3).  In these cases, we observed small 

populations of marooned TCR MCs that were left behind by the retracting actin network in 

the LP/dSMAC (Fig. 12 B2; see red arrowhead).  These TCR MCs, which appear totally 

disengaged from the actin network, were completely non-motile, as evidenced by 

kymographs (Fig. 12 B4-B6; see the red arrowhead).  These observations are consistent 

with previous reports showing that the centripetal transport of TCR MCs is completely 

blocked by the depolymerization of F-actin using latrunculin (Varma et al., 2006; Kaizuka et 

al., 2007).  Together, the results above are consistent with actin retrograde flow driving the 

fast (~0.1 µm/sec) movement of TCR MCs in the LP/dSMAC, and myosin II-dependent actin 

arc contraction driving the slow (~0.03 µm/sec) movement of TCR MCs in the LM/pSMAC.   

 

h. Simultaneous inhibition of both actin retrograde flow and acto-myosin II arc 
contraction blocks the vast majority of centripetal TCR MC movements at the IS  
 

 To confirm that TCR MC movements at the IS are driven largely if not entirely by a 

combination of two forces- the pushing force of actin polymerization-driven retrograde flow 

and the pulling force of myosin II-driven actin arc contraction- we sought to inhibit both of 

these forces simultaneously using combined treatment with 50 µM BB, 0.2 µM CD, and 0.5 

µM Jas (BB-CD-Jas).  Using bilayer-engaged Jurkat cells expressing tdTomato-F-Tractin-P 

that had been pre-incubated with BB for 30 min, we found that addition of CD and Jas in the 

continued presence of BB resulted in the nearly immediate and complete inhibition of actin 

retrograde flow and actin arc contraction.  This overall freezing of F-actin movement 

throughout the cell is evident in the kymograph of tdTomato-F-Tractin-P in Fig. 12 C3, which 

was taken from the region of the IS highlighted by the yellow line across the cell in Fig. 12 
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C1 [Tomato-F-Tractin-P in a BB-pretreated cell before addition of BB-CD-Jas] and Fig. 12 

C2  [Tomato-F-Tractin-P in this same BB-pre-treated cell 30 sec after addition of BB-CD-

Jas] (the time of addition of BB-CD-Jas is marked by the black arrowhead in C3).  Indeed, 

the rate of retrograde actin flow across the LP/dSMAC in these cells was reduced by 97%, 

from 0.105 ± 0.006 µm/sec to 0.003 ± 0.002 µm/sec (Fig. 10 A, compare LP/dSMAC WT 

Actin to LP/dSMAC BB-CD-Jas Actin: p<0.001).  Similarly, the rate of actin arc contraction 

across the LM/pSMAC in these cells was reduced by 93%, from 0.037 ± 0.003 µm/sec to 

0.003 ± 0.001 µm/sec (Fig. 10 A, compare LM/pSMAC WT Actin to LM/pSMAC BB-CD-Jas 

Actin; p< 0.001). Of note, these effects on actin flow were reversible, as actin polymerization 

and retrograde flow resumed almost immediately when the three drugs were washed out 5 

min after their addition (DNS).  Most importantly, consistent with our two-force model for the 

inward movement of TCR MCs, TCR MC movement across  the LP/dSMAC was reduced in 

BB-CD-Jas treated cells by 97%, from 0.094 ± 0.016 µm/sec to 0.003 ± 0.002 µm/sec (Fig. 

10 A, compare LP/dSMAC WT TCR to LP/dSMAC BB-CD-Jas TCR; p<0.001), while the 

inward movement of TCR MCs across the LM/pSMAC was reduced by 94%, from 0.038 ± 

0.006 µm/sec to 0.002 ± 0.001 µm/sec (Fig. 10 A, compare LM/pSMAC WT TCR to 

LM/pSMAC BB-CD-Jas TCR; p<0.001).  Taken together, these results argue that actin 

retrograde flow and acto-myosin II arc contraction cooperate to drive the vast majority of 

centripetal TCR MC transport at the IS. 

 

i. Acto-myosin II contraction is required for the accumulation of LFA-1 clusters at 
the inner aspect of the LM/pSMAC 
 

Finally, we investigated the relationship between the F-actin network and the 

distribution of LFA-1 clusters at the IS by characterizing in greater detail the apparent spatial 

overlap (Fig. 4 B1-B6, E1-E6) between these clusters and the acto-myosin II arcs that 

populate the LM/pSMAC.  To report the localization of ligand-bound LFA-1 clusters in the 
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plasma membrane, Jurkat cells were engaged on planar bilayers containing ICAM-1 tagged 

with Alexa-546. One min after bilayer engagement, LFA-1 clusters were distributed largely 

evenly across the LM/pSMAC (Fig. 13 A1 and the corresponding line scan in A2).  Separate 

control experiments performed using Jurkat cells expressing the HC of myosin IIA tagged 

with GFP confirmed that this distribution of LFA-1 clusters largely overlaps that of the acto-

myosin II arcs in the LM/pSMAC (DNS).  After 3 min, however, LFA-1 clusters had begun to 

accumulate near the border between the LM/pSMAC and cSMAC, leading to the formation 

of a gradient of LFA-1 clusters across the LM/pSMAC (Fig. 13 A3).  This gradient is evident 

in line scans across the IS, which show a progressive increase in the fluorescence intensity 

of ICAM-1 as one approaches the pSMAC/cSMAC border (Fig. 13 A4).  Moreover, after 5 

min (Fig. 13 A5), the peak intensity of ICAM-1 signal at the inner aspect of the LM/pSMAC, 

defined as the innermost 1 µm-wide region of the LM/pSMAC, was ~3-fold higher than the 

peak intensity of ICAM-1 in this same region after only 1 min of engagement (compare the 

ICAM-1 signal at the inner aspect of the LM/pSMAC in Fig. 13 A2 [1 min; red arrowheads]  

with that in Fig. 13 A6 [5 min; green arrowheads]).  This is, to our knowledge, the first 

description of LFA-1 cluster accumulation at the inner aspect of the LM/pSMAC, and it may 

represent a distinct maturation step in the formation of the adhesion zone between the T cell 

and the APC. 

 Finally, we used BB to test the role of acto-myosin II arc contraction in driving the two 

distinct phases of LFA-1 cluster localization at the IS, i.e. evenly distributed LFA-1 clusters in 

the LM/pSMAC after 1 min, and accumulation of LFA-1 clusters at the inner aspect of the 

LM/pSMAC after 5 min.  In bilayer-engaged, BB-treated cells, LFA-1 clusters appeared 

evenly distributed across the LM/pSMAC after 1 min of engagement, similar to WT and 

DMSO-treated cells (Fig. 13 B1, C1, D1).  This result indicates that the early phase of LFA-1 

cluster distribution across the LM/pSMAC is independent of myosin II contraction.  In 

contrast, while LFA-1 clusters accumulated at the inner aspect of the LM/pSMAC after 5 min  
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Figure 13.  The effect of myosin II inhibition on the accumulation of LFA-1 clusters at 
the inner aspect of the LM/pSMAC. 
 
(A) Accumulation of LFA-1 clusters at the inner aspect of the LM/pSMAC in Jurkat cells 
stimulated on planar bilayers.  (A1) Distribution of LFA-1clusters, reported by Alexa-546-
labeled ICAM-1 in the bilayer, at the IS of a Jurkat cell 1 min after engagement on a planar 
bilayer.  (A3) LFA-1 clusters in the same cell 3 min after engagement. (A5) LFA-1 clusters in 
the same cell 5 min after engagement.  (A2, A4, A6) Relative intensities of ICAM-1 
fluorescence in the line scans (yellow lines) in A1, A3, and A5, respectively.  Arrowheads 
indicate peaks of ICAM-1 fluorescence intensity in A2 (red) and A6 (green).  (B-D)  
Distributions of LFA-1 clusters at the IS of WT, DMSO-, and BB -treated Jurkat cells 
stimulated on planar bilayers.  (B) LFA-1 clusters at the IS of a WT Jurkat cell 1 min (B1) 
and 5 min (B2) after engagement.  (C) LFA-1 clusters at the IS of a DMSO-treated Jurkat 
cell 1 min (C1) and 5 min (C2) after engagement.  (D) LFA-1 clusters at the IS of a BB-
treated Jurkat cell 1 min (D1) and 5 min (D2) after engagement.  (E) Percent increase in the 
accumulation of ICAM-1 fluorescence at the inner aspect of the pSMAC (i.e. within the 
yellow boxed regions in B1-D2) 5 min after bilayer engagement in WT, DMSO-, and BB-
treated cells.  The numbers of cells used per measurement are indicated inside (or above) 
the bar.  Scale bar in A5 = 5 µm.  Scale Bars in B2, C2, D2 = 2 µm. 
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in WT and DMSO-treated cells (Fig. 13 B2 and C2), they did not accumulate at this region in 

BB-treated cells (Fig. 13 D2).  Quantitation of the increase in intensity of ICAM-1 signals 

within a 1 µm square area at the inner aspect of the pSMAC (boxed regions in Fig. 13 B1, 

B2, C1, C2, D1, and D2) showed that the average total intensity of ICAM-1 in this region 

increased from 1 min of engagement to 5 min of engagement by 41 ± 20% in WT cells and 

by 42 ± 8% in DMSO-treated cells, but by only 2 ± 9% in BB-treated cells (Figure 13 E).  

Indeed, LFA-1 clusters appeared evenly distributed across the LM/pSMAC of BB-treated 

cells even after 10 min of engagement (DNS).  We conclude, therefore, that while myosin II 

activity is not required for the early phase of LFA-1 cluster distribution in the LM/pSMAC, it 

does play an important role in the subsequent accumulation of these clusters at the inner 

aspect of the LM/pSMAC. 

 

IV. Discussion 

Previous studies established that the dSMAC region of the IS corresponds to an 

actin network characterized by robust actin polymerization-driven retrograde flow, i.e. to a 

LP. Using F-Tractin-P, a novel reporter for F-actin, we defined for the first time in a clear way 

the organization of F-actin in the pSMAC region of the IS.  Importantly, the actin arcs that 

populate the pSMAC are endogenous structures, and they undergo myosin II-driven 

contraction that drives their inward movement. These and other observations clearly define 

the pSMAC as a LM actin network, as hypothesized by Dustin (Dustin, 2007).  Moreover, as 

in typical crawling cells, we found that the dynamics of F-actin in the LP/dSMAC and 

LM/pSMAC are both distinct and interdependent.  Specifically, the fast (~0.1 µm/sec) 

pushing force of retrograde actin flow in the LP/dSMAC depends in part on the slower 

(~0.03 µm/sec) pulling force provided by the contracting acto-myosin II arcs in the 

LM/pSMAC, and vice versa.  Most importantly, we showed that the speeds with which TCR 

MCs move from the perimeter of the cell inwards to the cSMAC follow very closely the 
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speeds of actin flow in the LP/dSMAC and LM/pSMAC regions of the IS.  Moreover, 

inhibition of actin flow in these latter two zones individually and in combination showed that 

the flow of actin in these two zones drives most if not all inward TCR MC movement.  Finally, 

we showed that the normal accumulation of integrin clusters at the inner aspect of the 

LM/pSMAC requires myosin II-driven actin arc contraction. 

 

a. Correspondence between LP and LM actin networks and the SMAC regions of the 
IS 
 

Our demonstration that the dSMAC, pSMAC, and cSMAC coincides spatially with the 

LP, LM, and actin-depleted central zone in bilayer-engaged cells provides strong support for 

the model proposed by Dustin (Dustin, 2007).  Moreover, our observations indicate that the 

actin cytoskeleton at the IS conforms to the classical model of spatially-distinct, non-

overlapping LP and LM actin networks at the leading edge of cells (Henson et al., 1999; 

Zhang et al., 2003; Medeiros et al., 2006), as opposed to the two-layered model of Sheetz 

and colleagues (Giannone et al., 2007), where the LP actin network is proposed to overlap 

with and exist on top of the LM network.  Specifically, both endogenous staining and 

dynamic imaging of actin and myosin II show that the LP and LM actin networks at the 

Jurkat IS are completely distinct spatially.  Moreover, kinetic data shows that the inward 

movement of TCR MCs in the LP/dSMAC corresponds to the rate of actin retrograde flow 

and not to a mixture of rates corresponding to actin retrograde flow and acto-myosin II 

contraction, as would be expected from a two-layered organization of actin in the LP/dSMAC.   

Our results using coverslip substrates coated with immobilized anti-CD3ε antibodies 

also show that the LP and LM actin networks form independently of receptor cluster 

reorganization at the IS membrane.  These and other observations argue strongly that the 

formation of LP and LM networks is upstream of SMAC formation, and that, once 

established, actin dynamics in these two networks drive the reorganization of receptors into 
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the concentric SMAC domains.  Indeed, the normal accumulation of LFA-1 clusters near the 

pSMAC-cSMAC border signifies that the pSMAC is but a snapshot of receptors at the 

dynamically changing IS membrane whose distribution is driven by a distinct cortical LM 

network containing contracting acto-myosin II arcs.   

 

b. Novel observation of contracting acto-myosin II arcs in the LM/pSMAC 

We imaged for the first time acto-myosin II arcs in the LM/pSMAC region of the IS.  

These arcs were observed as both endogenous structures and as dynamic structures using 

tdTomato-F-Tractin-P together with GFP-tagged myosin II constructs.  Previous imaging of 

endogenous F-actin at the IS was not of sufficient resolution to identify specific actin 

structures within the LM/pSMAC (Sims et al., 2007).  Even more importantly, essentially all 

previous efforts to image F-actin dynamics at the IS utilized GFP-actin (Bunnell et al., 2001; 

Kaizuka et al., 2007; Yu et al., 2010), which we show here localizes very poorly to these 

actin arcs.  Not surprisingly, therefore, the existence of these actin arcs in the LM/pSMAC 

was not reported in any previous live-imaging study.  That said, close inspection of 

previously published movies made using GFP-actin (see, for example, SI Movie 2 in 

(Kaizuka et al., 2007) hint at the endogenous actin arcs described here.  Moreover, Yu et al. 

reported that the speed with which GFP-actin speckles move inward slows as the speckles 

move further from the cell perimeter, consistent with our observations that actin flow is fast 

in the LP/dSMAC and slow in the LM/pSMAC (Yu et al., 2010).  The key advantage here 

was our use of F-Tractin (Johnson and Schell, 2009), which we think is clearly superior to 

GFP-actin for imaging actin structures/dynamics in Jurkat T cells.  Why GFP-actin does not 

incorporate efficiently into actin arcs is unclear, but may have to do with the likelihood that 

formins, which may play an important role in forming the arcs (Tojkander et al., 2011), do not 

use GFP-actin efficiently (if at all) as a substrate (Wu et al., 2006).  Finally, consistent with 

numerous studies demonstrating that myosin II contraction is the major driving force behind 
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cortical actin flow in the LM (Lin et al., 1996; Henson et al., 1999; Ponti et al., 2004; 

Medeiros et al., 2006), we provided multiple lines of evidence that the acto-myosin II arcs 

reported here are undergoing myosin II-driven contraction.  Most importantly, discontinuities 

in GFP-myosin II fluorescence within arcs get closer together with time, consistent with arc 

contraction, and BB treatment results in flaccid arcs that move inward in a slow and 

haphazard fashion due solely to the continued pushing force of actin retrograde flow in the 

LP.   

    

c. Kinetic coupling between TCR MC movement and cortical actin network flow at 
the IS 
 

We observed a very strong correspondence between the rates of centripetal actin 

flow and inward TCR MC movement across both the LP/dSMAC and LM/pSMAC regions of 

the IS.  Moreover, this strong kinetic coupling between cortical actin flow and inward TCR 

MC movement was maintained after each drug treatment.  This strong coupling is in contrast 

to a previous report using bilayer-engaged Jurkat T cells (Kaizuka et al., 2007), where the 

rate of inward TCR MC movement at the periphery of the IS was reported to be ~40% the 

rate of centripetal actin flow.  As described in more detail in the Introduction, this and other 

studies, especially those that have characterized the effects of physical barriers within the 

bilayer on the rates of TCR MC movement (Hartman and Groves, 2011), have led to a 

dissipative or frictional coupling model of TCR MC-actin cytoskeleton interaction that allows 

slippage between the MC and actin flow.  While we certainly believe that such slippage 

would occur if we had employed physical barriers, we think that in the absence of such 

barriers the coupling between TCR MCs and actin flow is probably quite tight.  That said, at 

least part of the difference between our study and that of Kaizuka and colleagues as regards 

the kinetic coupling between actin flow and TCR MC movement could be due to possible 

differences in bilayer conditions between the two studies (e.g. densities of ICAM-1 and anti-
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CD3ε antibody, lipid mobility).  It is also possible that, in the study by Kaizuka et al., the 

quantitation of actin flow rate was restricted largely to the LP/dSMAC (due to the usage of 

GFP-tagged actin), while the quantitation of TCR MC movements was made predominately 

in the LM/pSMAC, leading to the discrepancy between their respective centripetal rates.  

Obviously, much remains to be learned regarding the components and physical properties 

of the mechanisms that couple TCR MCs and integrin clusters to cortical actin flow during IS 

formation. 

Our demonstration that TCR MCs exhibit two distinct rates of centripetal movement 

across the IS can actually be reconciled with a large number of rates reported previously.  

First, the fast rate (~0.1 µm/sec) across the LP/dSMAC reported here corresponds relatively 

well with rates at the periphery of the IS reported by several groups (~0.14 µm/sec, (Kaizuka 

et al., 2007); ~0.15 µm/sec, (Ilani et al., 2009); ~0.09 µm/sec, (Yokosuka et al., 2005)).  

Moreover, the slow rate (~0.03 µm/sec) across the LM/pSMAC reported here corresponds 

quite well with rates reported for regions of the IS that are almost certainly inside the 

LP/dSMAC i.e. to the LM/pSMAC (~0.02 µm/sec, (DeMond et al., 2008); ~0.03 µm/sec, 

(Varma et al., 2006); ~0.04 µm/sec, (Yokosuka et al., 2005)). Thus, our finding that TCR 

MCs move at different speeds depending on the region of movement, i.e. the LP/dSMAC 

versus the LM/pSMAC, helps to reconcile the wide range of speeds reported previously for 

TCR MC movements at the IS. 

 

d. The role of myosin IIA at the IS 

As discussed in the Introduction, the role of myosin IIA in IS formation has been 

somewhat controversial.  Specifically, an earlier study using BB argued that myosin IIA is 

not required for IS formation (Jacobelli et al., 2004), while a more recent report employing 

BB and RNAi-mediated knockdown of myosin II argued that the myosin is required for 

significant TCR MC transport, cSMAC formation, and IS stability (Ilani et al., 2009).  Our 
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study offers a possible bridge between these divergent reports in that myosin II was found to 

play an important, but not essential, role in IS formation.  Specifically, our data shows that 

actin retrograde flow and acto-myosin II-based flow coordinately drive receptor cluster 

movements at the IS.  Moreover, in the absence of myosin IIA activity, the pushing force of 

actin retrograde flow in the LP/dSMAC can drive residual cortical actin flow and TCR MC 

movement across the LM/pSMAC, albeit slowly and with greatly reduced directional 

persistence. Thus, although the quality and speed of TCR MC movements across the 

LM/pSMAC are dramatically disrupted in BB-treated cells, the overall bull’s eye-patterned IS 

can still form over time in a significant fraction of myosin II-inhibited T cells.  Finally, our 

demonstration of the dramatic effect that BB has on the organization and dynamics of the 

actin arcs that populate the LM/pSMAC, as well as the distortion and slow inward 

displacement of these disorganized, flaccid arcs that occurs as a result of continued actin 

retrograde flow in the LP/dSMAC of BB-treated cells, provide a mechanistic framework to 

understand the effects of myosin II inhibition on the motion of TCR MCs during IS formation.  

 

e. Regulation and dynamics of F-actin networks at the IS   

 Our functional inhibition experiments revealed several important aspects of actin 

network regulation at the IS.  For example, inhibition of acto-myosin II arc contraction slowed 

actin retrograde flow in the LP/dSMAC, while inhibition of actin retrograde flow slowed acto-

myosin II arc contraction in the LM/pSMAC.  Such interdependence between pushing and 

pulling forces in the LP/dSMAC and LM/pSMAC, respectively, have been observed in the LP 

and LM of numerous cells types  (Lin et al., 1996; Henson et al., 1999; Ponti et al., 2004), 

arguing for a conserved mechanism of cortical F-actin regulation in T cells.  Also of note, the 

appearance of two prominent F-actin rings following the addition of Jas suggests that robust 

actin depolymerization is occurring at the borders between the LP/dSMAC-LM/pSMAC and 

the LM/pSMAC-cSMAC.  This conclusion is consistent with studies in other cell types 
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showing that ~90% of LP F-actin depolymerizes at the rear of the LP (Ponti et al., 2004), 

and that myosin II-dependent contraction leads to actin bundle disassembly at the rear of 

the LM (Medeiros et al., 2006; Wilson et al., 2010).  Finally, we note that the rate of actin 

retrograde flow at the IS (~0.10 µm/sec) is much faster than in other model cell systems (e.g. 

~0.01 µm/sec in PTK1 cells (Ponti et al., 2004)) and ~0.06 µm/sec in neuronal growth cones 

(Medeiros et al., 2006)).  This fact, together with the clear presence of organized, dynamic 

actin arcs in the LM/pSMAC, suggest that Jurkat T cells, which are easily transfected and 

amenable to RNAi knockdown, could serve as a robust model system for studying the 

regulation and dynamics of the actin cytoskeleton, similar to what has been done using 

Drosophila S2 cells (Rogers et al., 2003).   

 

f. Role of microtubules and dynein-based TCR MC transport at the IS 

 Recently, Saito and colleagues reported that while actin retrograde flow drives the 

inward movement of TCR MCs at the periphery of the IS (approximately the LP/dSMAC), the 

minus-end directed microtubule motor dynein drives the inward movement of TCR MCs 

along microtubules at the inner regions of the IS (approximately the LM/pSMAC and 

cSMAC) (Hashimoto-Tane et al., 2011).  Furthermore, complementary work by the Batista 

lab showed that dynein associates with the B cell receptor (BCR), and that dynein likewise 

drives the centripetal movement of BCR MCs at the B cell synapse (Schnyder et al., 2011).  

These observations are a distinct departure from the widely-held view that the inward flow of 

cortical F-actin drives the centripetal transport of TCR MCs (Babich and Burkhardt, 2011).  

Indeed, like previous data using latrunculin to disassemble the actin cytoskeleton (Varma et 

al., 2006; Kaizuka et al., 2007), our data using combined treatment with CD, Jas and BB to 

freeze the actin cytoskeleton argues that most if not all inward TCR MC movement is driven 

by the cortical flow of F-actin.  How to reconcile these studies, and how microtubule-

dependent TCR MC transport might be coordinated with actin-based transport, particularly 
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in the LM/pSMAC region of the IS, is at present unclear.  For example, given that the 

inhibition of dynein or microtubule assembly inhibited only those extremely rapid (> 0.4 

µm/sec) TCR MC movements that occur during the first 30 sec of TCR MC movement 

(Hashimoto-Tane et al., 2011), we may have missed many of them.  Alternatively, the 

centripetal movement of TCR MCs in the actin-depleted cSMAC region may be largely 

dynein-driven, while TCR MC movement in the dSMAC and pSMAC may be driven largely 

by actin retrograde flow and acto-myosin II arc contraction, respectively.  The possibility also 

exists that dynein-dependent MC movements only occur in the presence of an intact, 

functioning actin cytoskeleton, although we never witnessed the very rapid movements of 

MCs described by Saito and colleagues even in untreated cells.  More experiments are 

needed to resolve these complex issues.    

 

g. Conclusion 

       Overall, our study provides an integrated model of actin-based receptor cluster 

transport at the IS.  Specifically, our results show that coordination between the pushing 

force of actin retrograde flow in the LP/dSMAC and the pulling force of acto-myosin II arc 

contraction in the LM/pSMAC drives the centripetal transport of TCR MCs at the IS.  Thus, 

as predicted by Dustin (Dustin, 2007) and confirmed here, the actin cytoskeleton at the IS 

represents a symmetric version of a migrating cell, where retrograde forces within LP and 

LM actin networks that serve to move the cell forward are converted into centripetal forces at 

the IS to move receptor complexes toward the center of the IS.  This conservation in 

cytoskeletal mechanism may be further reflected in our observation that the accumulation of 

LFA-1 clusters at the inner LM/pSMAC requires acto-myosin II arc contraction, as the 

contractile force of myosin II links integrin receptors to the extracellular matrix within the LM 

of migrating cells (Pasapera et al., 2010).  Indeed, we think that LFA-1 receptor clusters are 

probably intimately linked to the acto-myosin II arcs identified here within the LM/pSMAC, 
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the region where myosin II-driven receptor transport and substrate adhesion are integrated 

at the IS.  The details of these interactions, which occur within the region of active TCR 

signaling and tightest apposition between the T cell and APC, represent important areas for 

further investigation. 

 

V. Materials and methods 

Cell culture and transfection  

E6.1 Jurkat T cells (gift from L. Samelson, NCI, NIH), which were used for all experiments,  

were maintained at 37oC in IMDM media (Invitrogen, #12440) supplemented with fetal 

bovine serum (Sigma-Aldrich, #F0392), sodium pyruvate (Invitrogen, #11360), L-glutamine 

(Invitrogen, #25030), Penicillin-Streptomycin (Invitrogen, #15140), and MEM non-essential 

amino acids solution (Invitrogen, #11140).  Cells were replated every 48 hrs at a 

concentration of 2.0 x 105 cells/ml.  Transfections were performed by nucleofection using 

cells at a concentration of 1.0 x 106 cells/ml, 1-3 µg of plasmid DNA, Amaxa Kit V (Lonza-

Amaxa), and the electroporation protocol for Jurkat T cells.  

 

Plasmids and reagents 

F-Tractin-P (ITPKA-9-52) tagged with mGFP or tdTomato were gifts from M. Schell 

(Uniformed Services University).  The mouse myosin IIA heavy chain and mouse myosin II 

regulatory light chain constructs tagged with mGFP and mRFP, respectively, as well as the 

polyclonal antibody against human platelet myosin IIA heavy chain, were gifts from R. S. 

Adelstein (NHLBI, NIH).  The anti-p34-arc antibody was purchased from Upstate Cell 

Signaling Solutions (#07-227).  Alexa-568-conjugated phalloidin, Alexa-488 and Alexa-568-

conjugated goat anti-rabbit secondary antibodies, Jasplakinolide (# J7473), and Fluo-4 AM 

(# F14217) were purchased from Molecular Probes/Invitrogen.  Cytochalasin D was 

purchased from Calbiochem (# 250255).  Blebbistatin was purchased from Toronto 
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Research Chemicals (# B592500).  DMSO used to reconstitute inhibitors and as a vehicle 

control was purchased from Sigma (#472301). 

 

Fixation and staining 

Jurkat cells were allowed to adhere to the substrate for 5 min at 37oC and then fixed for 15 

min in a solution containing 4% (w/v) paraformaldehyde (Polysciences, Inc., #00380), 1x 

PBS (pH 7.4) (Quality Biological, Inc., #119-069-101).  Samples were then incubated in a 

blocking solution consisting of 10% fetal bovine serum (Sigma-Aldrich, #F0392), 0.01% 

sodium azide (Sigma, #S8032), 1x PBS, and 0.2% Saponin (Sigma, #S-7900) for 15 min at 

room temperature (RT).  Following three 5 min washes in 1x PBS, the cells were stained 

with primary antibody (1:200-500 fold dilution in 1x PBS) for 60 min at RT, followed by 

secondary antibody (1:1000 fold dilution in 1x PBS) or phalloidin (1: 200 dilution) for 60 min 

at RT.  Following three 5 min washes in PBS, the cells were stored in PBS and imaged 

immediately.  

 

Planar lipid bilayers and immobilized coverslip substrates 

Liposomes were prepared and glass-supported planar lipid bilayers were formed essentially 

as described previously (Dustin et al., 2007).  Liposomes were created using a mixture of 

DOPC (Avanti Polar Lipids, #850375C), biotin-CAP-PE (1% molar ratio) (Avanti Polar Lipids, 

#180061C), and DOGS-NTA (1% molar ratio) (Avanti Polar Lipids, #790528C) lipids.  The 

anti-CD3ε antibody (Biovest International, # OKT3) was mono-biotinylated and labeled with 

fluorescent dyes following the protocol of Carrasco et al. (Carrasco et al,, 2004).  A flow 

chamber was assembled by initially attaching two layers of double-sided tape to the sides of 

a glass slide.    To create a bilayer within the flow cell, a 1.5 µl drop of liposomes was 

deposited on the glass slide in between the strips of double-stick tape, and then a glass 

coverslip that has been washed in Piranha solution (70% [v/v] sulfuric acid [Fisher, #A300] 
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and 30% [v/v] hydrogen peroxide [Fisher, #H325]) was placed on top of the glass slide 

across the double-stick tape, simultaneously allowing a single planar bilayer to form on the 

coverslip surface and creating a flow chamber.  200 µl of HEPES buffer saline was then 

flowed through the chamber to wash away remaining liposomes, followed by 100 µl of a 

blocking solution containing 5% (w/v)  casein (Sigma, #C5890) to block non specific sites.  

Next, a 1:2 ratio of mono-biotinylated anti-CD3ε antibody labeled with either Alexa-647 or 

rhodamine-X (10 µg/ml) and streptavidin (Sigma, #85878) were added to the flow chamber 

to conjugate the anti-CD3ε antibody with the biotin-CAP-PE lipids in the bilayer.  Similarly, 

His-tagged ICAM-1, either unlabeled or labeled with Alexa-647 (0.5 µg/ml), was added to 

the flow chamber to conjugate with the DOGS-NTA lipids in the bilayer.  The uniformity and 

lateral mobility of lipids in the bilayers was accessed by imaging the diffusion of His-tagged 

ICAM-1 molecules labeled with Alexa-647 on the surface of the bilayer.  Coverslip 

substrates coated with immobilized antibodies were prepared following the protocol of 

Bunnell et al. (Bunnell et al., 2003).  Specifically, 8-well cover-glass chamber slides (Labtek, 

#155411) were washed in a cleaning solution consisting of 1M hydrogen chloride 

(Mallinckrodt, #H613) and 70% (v/v) ethanol (Warner-Graham Company, #64-175) diluted in 

ddH2O.  Following three 5 min washes in 1x PBS, each well was then incubated for 30 min 

at RT in 500 µl of a solution containing 0.01% poly-L-Lysine (Sigma, P8920).  After a 

washing step, each well was then incubated for 30 min at RT in 500 µl of a solution 

containing 20 µg/µl of anti-CD3ε antibody and 20 µg/µl of anti-CD28 antibody (BD 

Pharmingen, #555725) diluted in 1x PBS.  Wells were used following a washing step.   

 

Image acquisition 

Images were acquired using either a 100x (1.40 NA) or 150x (1.45 NA) objective on an 

Olympus IX81 microscope fitted with a Yokogawa CSU-X1 spinning disk confocal unit and a 

QuantEM: 512SC camera (Photometrix).  Images were analyzed using MetaMorph software.  
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For dynamic imaging, we loaded cells into a flow chamber containing the planar bilayer, 

placed the chamber on the microscope stage, identified cells which were well engaged and 

spread, then began imaging immediately.  In general this process took 2 min.  All time lapse 

images were acquired at 4 sec/frame over a duration of 5 min, unless indicated otherwise.  

For simultaneous imaging of fluorescent molecules in the bilayer and in the cortex of the 

Jurkat cell, imaging was performed at the plane of the bilayer.   For the z-stack imaging of 

endogenous F-actin structures at the IS, a Prior NanoScan Z stage controller system was 

used to acquire 2 µm-thick z-sections of phalloidin-stained Jurkat cells engaged on bilayers.  

Linescans (through z-x axis) across the LP/dSMAC and LM/pSMAC were obtained from the 

acquired z-stack images using MetaMorph software.  For dynamic imaging, the temperature 

of the stage was maintained at 37oC using a Nevtek stage heater.  For imaging of calcium 

fluxes, Jurkat cells were loaded with Fluo-4 AM as described in the Molecular Probes 

product information sheet, and stimulated using coverslip substrates.  The Prior NanoScan 

Z stage controller was used to take 4D time-lapse images of these cells before and after 

contact with stimulatory coverslip substrates.  The relative intensities of Fluo-4 fluorescence 

over time were calculated using the region measurement tool in MetaMorph software.  For 

inhibitor studies using CD and/or Jas, mGFP-F-Tractin-P expressing cells were imaged for 2 

min after engagement with the substrate.  When 8-well coverslip chambers were used, 0.2 

µM CD and/or 0.5 µM Jas were added directly without removal of the chamber from the 

stage, allowing continuous imaging of the cells.  When planar bilayer substrates were used, 

the flow chamber was removed from the microscope stage and 0.2 µM CD and/or 0.5 µM 

Jas was rapidly flowed into the chamber.  The chamber was then returned to the previous x-

y position on the stage to allow imaging of the same cells.  These procedures took ~30 sec 

to complete.  For BB studies using bilayer-engaged T cells, 50 µM BB was added to the flow 

chambers as just described.  For these experiments, we did not use the 488 nm laser line, 

as blue light rapidly inactivates BB, and the inactivation reaction generates harmful free 
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radicals (Allingham et al., 2005).  Moreover, to ensure the efficacy of BB, we reconstituted it 

in the dark, froze it in aliquots at 10 µl, and used only freshly-thawed aliquots once.  Jurkat 

cells were pre-incubated for 30 min in 50 µM BB before imaging.  In experiments using BB, 

CD, and Jas, tdTomato-F-Tractin-P-expressing Jurkat cells were incubated for 30 min in 50 

µM BB, added to the planar bilayer flow chamber, and imaged for 2 min on the microscope.  

The chamber was then removed, 50 µM BB, 0.2 µM CD, and 0.5 µM Jas were flowed into 

the chamber, and the chamber was returned to the previous x-y position on the stage to 

allow continuous imaging of the same cells.  For imaging of ICAM-1 clusters, we utilized a 

planar bilayer containing His-ICAM-1 labeled with X-Rhodamine and mono-biotinylated anti-

CD3ε antibody labeled with Alexa-647.  For measurements of the total intensity levels of 

Alexa-568-Phalloidin and mGFP-F-Tractin-P in the entire cell volume of Jurkat cells 

engaged on coverslip substrates, we imaged a 20 µm z-section of the cell using the 

NanoScan Z stage controller and measured the total integrated intensity through the entire 

z-stack per acquisition channel per cell using the region measurement tool in MetaMorph 

software.    

 

Analyses of actin flow and TCR MC movements 

The dynamics of cortical F-actin and TCR MCs were measured after engaging Jurkat T cells 

with the planar bilayer by simultaneous imaging of mGFP-F-Tractin-P and the anti-CD3ε 

antibody OKT3 labeled with X-rhodamine, using spinning disk confocal microscopy.  For 

experiments with BB, we used mono-biotinylated anti-CD3ε antibody conjugated to Alexa-

647 and Jurkat cells expressing tdTomato-F-Tractin-P to avoid imaging using blue light.  For 

kymograph analyses of centripetal F-actin flow, the IS was separated into four quadrants 

and a line was drawn from the distal edge to the cell center in each quadrant using 

MetaMorph software.  Each kymograph was made using a 2x2 line width (pixels).  Four 

measurements of F-actin flow rate, each generated by measuring the steepness of the 
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slopes using the kymograph analysis tool in MetaMorph, were made in the LP/dSMAC and 

LM/pSMAC regions within all four quadrants of the kymograph.  The LP/dSMAC and 

LM/pSMAC regions were demarcated by the abrupt change in the slope of F-actin flow that 

was invariably observed between these two regions.  In low-dose CD- and Jas-treated cell, 

where the slopes of F-actin flow in the LP/dSMAC and LM/pSMAC regions were 

indistinguishable, the movement of F-actin before the addition of drugs was tracked in time-

lapse images to define the LP/dSMAC and LM/pSMAC regions so as to mark their positions 

after drug addition.  In BB-treated cells, where the kymograph of F-actin flow in the 

LM/pSMAC often contained positive, negative and vertical slopes (signifying inward, 

backward, and paused movements, respectively), only the positive slopes in the kymograph 

were included in the measurements.  In all experiments, the rates of centripetal F-actin flow 

determined in all four quadrants of the cell were then averaged for the LP/dSMAC region 

and for the LM/pSMAC region to give a single value of centripetal F-actin flow rate for each 

region within a single cell.  The means and standard deviations of F-actin flow rate per 

region were then calculated by averaging the single-cell values of all cells measured using 

Microsoft Excel software.  For analysis of TCR MC dynamics, the frame-to-frame movement 

of every visible TCR MC in each cell was tracked using the particle tracking application in 

MetaMorph software.  The acquired images of TCR MCs and F-Tractin-P were merged to 

allow identification of TCR MC movements relative to the LP/dSMAC and LM/pSMAC 

regions of the IS.  The instantaneous speeds of all TCR MCs were averaged per region to 

calculate the rate of TCR MC movement within the LP/dSMAC and LM/pSMAC regions in a 

single cell.  Instantaneous values of 0 were excluded from the calculation of TCR MC rates.  

The means and standard deviations of TCR MC movements per region were calculated by 

averaging the single-cell values of all cells measured using Excel software.  The particle 

tracking data was also used to calculate the meandering index (net displacement/ total 
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distance traveled) of TCR MC paths per region.  The net displacement of each TCR MC 

path was calculated using the following formula: 

 Net displacement = square root [(X initial – X final)2 + (Y initial – Y final)2]  

The total distance traveled was calculated by summing the distance between the frame-to-

frame movements of all movements in each TCR MC path per IS region.  Net displacement 

was divided by the total distance traveled to give the meandering index per TCR MC path, 

and the meandering index values of all TCR MC paths per region were averaged to give the 

meandering index values of TCR MC paths within the LP/dSMAC and LM/pSMAC regions in 

a single cell.  The means and standard deviations of meandering index values per region 

were calculated by averaging the single-cell values of all cells measured using Excel 

software.  For the analysis of TCR MC pausing data, the instantaneous speeds of all TCR 

MC movements in all cells were collected per region.  We then binned the instantaneous 

speed values into two categories, 0 and greater than 0, and counted the number of values in 

each bin.  Each bin count was divided by the total number of instantaneous speed values to 

give the percent of TCR MC movements at 0 or greater than 0 per region.  For the 

visualization TCR MC paths, we used the x-y position information from the particle tracking 

data to graph the TCR MC paths per region using SigmaPlot 11.0.  For all statistical 

analyses, P values above 0.05 were considered to be not significantly different. 
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CHAPTER 3 
 

CORTICAL FORCE GENERATION BY DYNEIN AND LIS1 DRIVES  
THE BI-PHASIC REPOSITIONING OF THE MTOC IN T CELLS 

 
 

I. Abstract  
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 Upon engagement of APCs, T cells undergo rapid MTOC polarization to position 

their secretory apparatus at the immunological synapse for directed effector function.  Due 

to the lack of spatial and temporal control in most previous studies, the kinetics of MTOC 

repositioning have not been well characterized in T cells.  In addition, the specific roles of 

dynein and dynein regulatory proteins during T cell activation have not been defined.  In this 

study, we show using a novel laser trap-controlled T cell activation method that TCR and 

LFA-1 signaling are both required for robust MTOC repositioning.  This repositioning 

process is bi-phasic, characterized by fast MTOC movement during the first polarization 

phase, and slow MTOC movement during the second docking phase.  Moreover, we report 

evidence of apparent strong cortical force generation at the immunological synapse when 

the MTOC movement is impeded, as the synaptic membranes of both the T cell and the 

APC become dramatically invaginated toward the MTOC.  Lastly, inhibition experiments 

using dominant negative constructs show that dynein and LIS1 are required for rapid and 

persistent MTOC movement during the polarization phase, and for initiation and 

maintenance of the docking phase of MTOC repositioning.  In conclusion, cortical force 

generation by dynein and LIS1 drives the bi-phasic repositioning of the MTOC during T cell 

activation.



II. Introduction 

 T cell recognition of stimulatory antigen occurs in densely populated lymphoid 

regions of the body, requiring directed secretion of effector molecules to specified APCs.  In 

the case of targeted cell killing by CTLs, an organized structure called the IS forms at the 

contact site between the CTL and target cell, to mediate directed secretion of lytic 

components (Stinchcombe et al., 2006).  Specifically, the centrosome repositions toward 

and makes contact with the membrane of the IS, allowing localized delivery of lytic granules 

to the site of contact with the target cell (Stinchcombe and Griffiths, 2007).  These granules 

undergo minus-end directed movement toward the centrosome and fuse with the IS 

membrane to release their lytic contents for targeted cell killing (Stinchcombe and Griffiths, 

2007).  In addition to directed secretion, centrosome repositioning is required for sustained 

TCR signaling, maturation of the IS, and asymmetric cell division after T cell activation 

(Chang et al., 2007; Martin-Cofreces et al., 2008), indicating that the regulation of MT 

cytoskeleton polarization is important for multiple aspects of T cell function.   

While MTOC repositioning is known to be dependent on TCR engagement, the 

downstream signaling pathways leading to repositioning are poorly understood.  Molecules 

involved in early TCR signaling, including Lck, ZAP70, LAT, SLP76, and VAV1, are required 

for MTOC polarization in T cells (Sancho et al., 2002; Kuhne et al., 2003).  Studies also 

show that TCR-proximal events, including calcium flux, are involved in MTOC repositioning 

(Kuhne et al., 2003).  However, the cascade of TCR-proximal events leading to MTOC 

repositioning is unclear, as M. Huse and colleagues reported using a photoactivateable 

pMHC ligand system that DAG, but not calcium flux, is required for MTOC repositioning in T 

cells (Quann et al., 2009).  In their signaling model, PLCγ1-directed cleavage of PIP2 

produces DAG, which then signals through atypical PKCs to recruit the cortical force 

generator to the IS (Quann et al., 2011).   
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 Studies have also pointed to the involvement of cytoplasmic dynein in the MTOC 

repositioning process.  Dynein is localized to the IS after TCR engagement, and inhibition 

studies using siRNA knockdown and overexpression of dominant negative (DN) constructs 

show that dynein is required for MTOC repositioning in T cells (Combs et al., 2006; Martin-

Cofreces et al., 2008).  Moreover, the important role of cytoplasmic dynein in centrosome 

repositioning has been established in other cell systems, as inhibition of dynein causes 

displacement of the centrosome from the cell center in interphase cells and wounded 

fibroblasts (Burakov et al., 2003; Gomes et al., 2005), and from the leading process in 

migrating neural progenitor cells (Tsai et al., 2007).  Additionally, minus end-directed MT 

pulling by cortically-bound dynein is known to drive spindle movements during asymmetric 

cell division in C. Elegans and budding yeast (Adames and Cooper, 2000; Gundersen, 

2002).  In light of these results, dynein has been implicated as the cortical force generator in 

T cells (Kuhn and Poenie, 2002; Combs et al., 2006).  Specifically, cortically anchored 

dynein, localized at an outer SMAC region, has been proposed to capture and pull MTs, 

causing MT sliding and net MTOC polarization to the IS (Combs et al., 2006).  However, the 

precise localization of dynein at the IS, the regulation of dynein activity, and the dynamics of 

MTOC repositioning are not yet known in T cells.   

 The lack of information regarding MTOC repositioning in T cells is due to the difficulty 

of imaging the activation process in T cell-APC conjugates.  Polarization of the MTOC is 

rapid, as it becomes positioned at the contact site within 2-3 min after APC engagement 

(Kuhn and Poenie, 2002).  Moreover, without temporal and spatial control over the 

engagement of T cells and APCs, it is difficult to image full MTOC repositioning events 

consistently and dynamically.  In this study we developed an optical trap system for T cell 

activation, by using the optical trap to guide APCs to a position opposite the location of the 

centrosome in T cells.  Utilizing this approach, we were able to consistently induce MTOC 

repositioning in APC-engaged T cells, and define the relative contributions of TCR and  
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LFA-1 signaling to MTOC repositioning.  Also, our imaging studies showed that the MTOC 

repositioning event is biphasic, and that the transition between the two phases occurs 

consistently when the MTOC gets ~2 µm from the IS.  Moreover, striking evidence of 

apparent strong cortical force generation was observed when MTOC movements were 

impeded, as the T cell and APC synaptic membranes became dramatically invaginated 

toward the T cell’s centrosome in these conjugates.  Using the planar bilayer engagement of 

T cells to image the IS, we observed spots of dynein recruited to and transiently bound at 

the IS, without preferential localization to a specific SMAC region.  Lastly, inhibition studies, 

using DN constructs in T cell-APC conjugates, showed that both dynein and LIS1 were 

required for the rapid and persistent movement of the centrosome during the first 

polarization phase, and for initiation and maintenance of the second docking phase of 

MTOC repositioning.  Overall, our results show that the MTOC repositioning process occurs 

in distinct kinetic steps, and that dynein and LIS1 mediate the cortical force generation 

required for MTOC repositioning in T cells. 

 

III. Results 

a. Optical trap-controlled activation induces robust MTOC repositioning in Jurkat T 
cells 
 

 A number of experiments have assayed MTOC repositioning in T cells.  The general 

strategy has been to mix T cells with stimulatory agents, either anti-TCR antibody-coated 

latex beads or antigen presenting cells, forming activated T cell conjugates (Stowers et al., 

1995; Sedwick et al., 1999; Kuhn and Poenie, 2002; Combs et al., 2006; Gomez et al., 

2007).  These conjugates are then plated, fixed, and stained for the centrosome.  However, 

without spatial and temporal control, these studies lacked dynamic information about the 

MTOC repositioning process in T cells.  Also, due to the random point of contact between 

the T cell and the stimulatory agent, their data suffered from a high level of “background”  
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Figure 14. T cell activation and MTOC repositioning induced by the optical trap 
system of T cell engagement. 
 
(A) Illustration of the optical trap system. (A1) Optical trap (yellow cones) is focused on the 
SEE-coated Raji B cell (light gray) to engage the Jurkat T cell (dark gray). (A2) Conjugation 
of the SEE-coated Raji B cell opposite the position of the MTOC (green dots) induces MTOC 
repositioning to the contact site. (B1) Time lapse images of Flou-4 AM in a Jurkat cell 
engaged by SEE-coated Raji B cell using the optical trap system. (B2) Transmitted time 
lapse images of a Jurkat cell engaged by SEE-coated Raji B cell using the optical trap 
system. (C1) Time lapse images of Flou-4 AM in a Jurkat cell engaged by an uncoated Raji 
B cell using the optical trap system. (C2) Time lapse images of Flou-4 AM in a Jurkat cell 
engaged by an uncoated Raji B cell using the optical trap system. (B3, C3) Graphs showing 
Flou-4 relative intensity levels over time. (D) Merged time lapse images of a GFP-Cen-2 
expressing Jurkat cell engaged by a SEE-coated Raji B cell using the optical trap system. 
All scale bars = 10 µm. 
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MTOC polarization (“background” polarization referring to ~30% MTOC repositioning levels 

reported in negative control experiments due to the MTOC being positioned near the site of 

contact before TCR engagement), and were not useful for detecting partial defects in MTOC 

repositioning.  While a photoactivation system has recently been developed by M. Huse and 

colleagues to overcome these issues, and has provided important information about the 

signaling pathways leading to dynein accumulation and MTOC repositioning, it utilized a 

coverslip substrate coated with immobilized pMHC which does not allow rearrangement of 

membrane receptors to form a mature IS (Huse et al., 2007; Quann et al., 2009; Quann et 

al., 2011).  Therefore, we sought to study MTOC repositioning in T cell-APC conjugates by 

using an optical trap to guide an APC to a coverslip-bound T cell, allowing imaging directly 

after APC engagement, and precise conjugation of the APC opposite the position of the 

centrosome (Fig. 14 A1 and A2).  Staphylococcal Enterotoxin E (SEE)-coated Raji B cells  

were used to stimulate the Jurkat T cells, and transient expression of GFP- or RFP-tagged 

centrin-2 (cen-2) was used to dynamically image the MTOC. 

 The optical trap-controlled method proved to be effective at triggering activation of 

TCR signaling and MTOC repositioning in engaged Jurkat T cells.  Calcium flux, imaged 

using the Flou-4AM probe, was observed in the Jurkat T cell after contact with the optical 

trap-controlled Raji cell coated with SEE (+SEE Raji), showing that TCR signaling is induced 

by the optical trap method of T cell engagement (Fig. 14 B).  On the other hand, calcium flux 

was not observed after contact with uncoated Raji cells (-SEE Raji), showing that T cell 

activation requires SEE stimulation in our system (Fig. 14 C).  Importantly, rapid MTOC 

repositioning was induced in the Jurkat cell after conjugation to a +SEE Raji cell, as we 

observed the centrosome (marked by GFP-Cen-2) translocating across the entire diameter 

of the cell (~6 µm) within 2 min (Fig. 1 D).  This induced MTOC repositioning was robust, as 

~75% of Jurkat cells fully repositioned their MTOC after +SEE Raji engagement (see ‘WT 

+SEE’ in Fig. 15 B).  In addition, “background” MTOC repositioning was avoided, as very 
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few MTOC repositioning events were observed in LAT signaling-deficient Jurkat T cells 

(JCAM2.5) (5% “Full” repositioning; see ‘JCAM2.5 +SEE’ in Fig. 15 B).  We note that the 

optical trap itself did not induce T cell activation, as calcium flux and MTOC polarization 

were not observed in Jurkat T cells irradiated with the infrared laser alone (data not shown 

[DNS]).  Overall, these results show that the optical trap system provides a robust method 

for inducing MTOC repositioning in T cells. 

 

b. TCR and LFA-1 signaling are both required for robust MTOC repositioning 

Having established a method for inducing MTOC repositioning with high spatial and 

temporal control in Jurkat T cells, we sought to test the contribution of TCR and LFA-1 

signaling pathways to MTOC repositioning.  While it is known that key TCR signaling 

components are required for MTOC repositioning, conflicting results have been reported 

regarding the role of LFA-1.  An early study using fixed T cell-APC conjugates showed a 

partial defect in MTOC repositioning in LFA-1α-deficient Jurkat cells (JB2.7) (Kuhn et al., 

2001).  Furthermore, immunostaining experiments by Kuhn et al. suggested that LFA-1 

clusters may be involved in the anchoring of the cortical force generator and MTs at the IS 

(Kuhn and Poenie, 2002).  In contrast, a later study also using the JB2.1 Jurkat cell line 

reported no defects in MTOC repositioning (Combs et al., 2006).  We suspected that high 

“background” levels of MTOC repositioning made it difficult to distinguish partial defects in 

these studies, and therefore, we decided to assay MTOC repositioning in wild type (WT; 

E6.1) and JB2.1 cells using the optical trap system. 

First, we sought to categorize repositioning events after engagement of Jurkat cells 

with optical trap-controlled Raji B cells.  For the purpose of the MTOC repositioning assay, 

translocation of the MTOC to a position < 2 um distance from the plane of contact was 

scored as ‘Full Repositioning’, between 2 – 4 um distance from the plane of contact was 

scored as ‘Partial Repositioning’, and > 4 um distance from the plane of contact was scored  
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Figure 15. Contribution of TCR and LFA-1 signaling pathways to MTOC repositioning. 
 
(A) Illustration of the scoring system used to assay repositioning events in conjugates 
formed between a Jurkat T cell (blue) and a SEE-coated Raji B cell (light brown) using the 
optical trap system. (B) Percentage of repositioning events in WT, JCAM2.5 and JB2.7 
Jurkat cells conjugated to Raji B cells coated with or without SEE using the optical trap 
system.   
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as ‘No Repositioning’ (Fig. 15 A).  In addition to these MTOC repositioning events, we 

sometimes observed repositioning of the Raji B cell to the location of the MTOC, which we 

scored as ‘APC Repositioning’ (Fig. 15 A).  Since the molecular machinery generating the 

pulling forces are anchored at the synapse, obstruction of MTOC movement can lead to a 

tug-of-war between the MTOC and the synaptic interface, at times resulting in APC 

movement toward the centrosome.  In this regard, ‘APC Repositioning’ can be considered 

equivalent to ‘Full Repositioning.’  

To confirm the role of TCR signaling in MTOC repositioning, we engaged WT Jurkat 

cells with +SEE and -SEE Raji B cells.  When WT Jurkat T cells were conjugated to +SEE 

Raji cells (i.e. with TCR engagement), ‘APC/Full MTOC Repositioning’ events were robust, 

occurring in 87.6% of conjugates (n=73; see ‘WT +SEE’ in Fig. 15 B).  After conjugation to   

-SEE Raji cells (i.e. without TCR engagement), WT Jurkat cells exhibited 20.5% ‘Full 

Repositioning’ (n=39; see ‘WT –SEE’ in Fig. 15 B), showing that while TCR engagement is 

needed for robust MTOC repositioning, engagement of LFA-1 and other co-stimulatory 

receptors can also lead to MTOC translocation.  We note here that detection of such 

residual MTOC repositioning activity has not been possible using traditional static assays 

because of the ~30% “background” repositioning inherent in such assays, and demonstrates 

the superior resolution afforded by the optical trap system. 

To test the role of LFA-1 signaling in MTOC repositioning, we engaged JB2.1 Jurkat 

cells with +SEE and -SEE Raji cells.  When JB2.1 cells were conjugated to +SEE Raji cells 

(i.e. no LFA-1 signaling), ~30% ‘APC/Full Repositioning’ events were observed, showing 

that LFA-1 co-stimulation contributes significantly to the MTOC polarization process (n=21; 

see ‘JB2.1 +SEE’ in Fig. 15 B).  Moreover, conjugation of JB2.1 Jurkat cells with -SEE Raji 

cells (i.e. no TCR or LFA-1 signaling) resulted in complete inhibition of ‘APC/Full 

repositioning’ (n=20, see ‘JB2.1 –SEE’ in Fig. 15 B).  Lastly, reconstitution of the JB2.7 cell 

line with GFP-LFA-1α rescued the MTOC polarization defect, as 66.7% ‘Full/APC 
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Repositioning’ events were observed (n=12; see ‘JB2.7 +SEE +LFA-1’ in Fig. 15 B).  

Together, these results show that LFA-1 plays an important role in MTOC repositioning, and 

that both LFA1 and TCR signaling are required for robust polarization of the MTOC toward 

the IS.  Furthermore, these results validate the ability of our optical trap system to avoid 

“background” repositioning, and highlight the importance of temporal and spatial control 

when assaying MTOC repositioning events in T cells.   

 

c. MTOC repositioning in T cells is bi-phasic 

 Next, we proceeded to study the kinetics of the MTOC repositioning process in 

Jurkat T cells.  Expression of GFP-Cen2 and Farnesyl-RFP was utilized to label the 

centrosome and plasma membrane, respectively.  Close examination of the MTOC 

translocation event revealed that the repositioning occurs in two distinct phases: a fast 

movement toward the contact site during the first phase (referred from here on as the 

‘polarization phase’), followed by a slow movement toward the center of the IS during the 

second phase (referred from here on as the ‘docking phase’), leading to the close 

approximation of the centrosome near the IS membrane reported previously (Stinchcombe 

et al., 2006) (Fig. 16 A and D).  Moreover, the transition between the polarization and 

docking phases occurred as the centrosome reach a distance of ~2 um from the synaptic 

membrane (see yellow arrowheads in Fig. 16 A and B).  Stack overlay of the time lapse 

images showed that, in addition to the distinct kinetics of the two phases, the direction of 

MTOC movement changes during the transition into the docking phase (Fig. 16 B).  This is 

likely due to the fact that the MTOC must navigate around the large nucleus (estimated to 

be ~80% cell volume) during the polarization phase, while the MTOC movement is relatively 

unhindered during the docking phase  

 We then analyzed the kinetics of this bi-phasic movement by measuring the relative 

distance between the centrosome and the synaptic membrane, frame by frame.  
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Figure 16. Two kinetic phases of MTOC movement and invagination of the synaptic 
interface during T cell activation. 
 
(A) Merged time lapse images of GFP-Cen-2 and RFP-Farnesyl in a Jurkat cell engaged by 
a +SEE Raji cell using the optical trap system. (B) Stack overlap of GFP-Cen-2 time lapse 
images (left) and transmitted image of Jurkat-Raji cell conjugate (right) shown in A and B.  
Yellow arrowheads in A and B denote transition between the polarization and docking 
phases of MTOC movement. (C) Graph showing the frame-to-frame instantaneous speeds 
of MTOC movement plotted against the distance between the MTOC and the IS during the 
respective frame of movement. n = 9 cells (D) Illustration of the bi-phasic MTOC movement 
in the T cell (blue) during conjugation with +SEE Raji B cell (light brown). MTOC = yellow 
dots. Phase movement = black arrows. (E) Merged time lapse images of GFP-Cen-2 and 
PKH26 (top row) and transmitted time lapse images (bottom row) showing membrane 
invagination in a Jurkat cell engaged by a +SEE Raji cell using the optical trap system. (F) 
Merged time lapse images of GFP-Cen-2 and RFP-Farnesyl (top row) and transmitted time 
lapse images (bottom row) showing membrane invagination in a Jurkat cell engaged by a 
+SEE Raji cell using the optical trap system. Scale bar in A = 5 µm. All other scale bars = 10 
µm. 
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Instantaneous speeds of MTOC movement in 9 Jurkat cells showed that the average rate of 

MTOC movement during the initial repositioning phase (3.26 + 0.77 µm/min; see ‘WT’ under 

‘Repositioning Phase’ in Fig. 18 B) is significantly faster than the rate during the final 

docking phase (0.90 + 0.16 µm/min; see ‘WT’ under ‘Docking Phase’ in Fig. 18 B; p<0.001).  

Furthermore, the range of instantaneous MTOC speeds were bound in a relatively linear 

range across different MTOC distances from the synapse (see 8.25 - 2.25 µm MTOC 

distance away from the synapse for ‘polarization phase’ speeds, and 2.25 - 0.00 µm MTOC 

distance away from the synapse for ‘docking phase’ speeds in Fig. 16 C), and strongly linear 

slopes were observed at each phase in the time-lapse montage (Fig. 16 A), indicating a 

uniform speed and arguing that significant acceleration or deceleration did not occur during 

each phase of MTOC movement.  Additionally, there was a steep drop-off in the 

instantaneous speeds of MTOC movement at the transition point between the two phases 

(see 2.25 µm MTOC distance away from the synapse in Fig. 16 C), suggesting that the 

MTOC may encounter an unknown resistance force at this distance from the synaptic 

membrane.  Together, these results show for the first time that MTOC repositioning occurs 

in two distinct kinetic steps during T cell activation, and that a critical transition between the 

steps occurs at the MTOC approaches a distance of 2.25 µm from the IS.  Moreover, these 

results are consistent with the idea proposed by G. Griffiths and colleagues that MTOC 

repositioning during CTL cell killing is a multi-step process (Jenkins et al., 2009; Tsun et al., 

2011), and suggest that the transition from the polarization phase to the docking phase is a 

possible regulatory checkpoint for T cell effector function.   

  

d. Large invagination of the synaptic interface is observed when MTOC movement is 
impeded 
 

In further trials, the Raji B cell was marked with the membrane dye, PHK67, to allow 

alternative imaging of the synapse interface.  As the MTOC must navigate around the large 
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nucleus during repositioning, there are rare instances when the MTOC movement becomes 

obstructed by the nucleus, presumably because the pulling forces on MTs at opposite sides 

of the nucleus are symmetric.  A striking observation was made in these instances; as the 

centrosome movement was impeded, the attached Raji cell membrane became invaginated 

into the Jurkat T cell (see 4:23 time frame in Fig. 16 E).  This invagination proceeded until 

the APC membrane reached the centrosome of the Jurkat cell, marked by GFP-cen-2 (see 

6:57 time frame in Fig. 16 E). Similar deformation of the synaptic interface was observed 

when the T cell membrane was labeled using RFP-Farnesyl (Fig. 16 F), indicating that the 

APC and T cell membranes both become invaginated in these instances, as expected.  In all, 

we observed invagination of the synaptic membrane in 75% of cells that did not fully 

reposition their MTOC to the IS.  Since these cases of synaptic membrane invaginations can 

be considered to be another form of MTOC repositioning, the 87.6% value of combined 

‘APC/ Full Repositioning’ events observed in our MTOC repositioning assay (see ‘WT + 

SEE’ in Fig. 15 B) is likely an underestimate.  Together, these results indicate that strong 

cortical forces are generated at the synaptic membrane during T cell activation, and provide 

support for the idea that a cortical force generator is recruited to the IS to drive MTOC 

repositioning in T cells, as proposed by M. Poenie and colleagues (Kuhn and Poenie, 2002). 

 

e. Cortical dynein spots are uniformly distributed and transiently bound at the IS 

 Having observed evidence of a strong pulling force at the IS, we sought to 

investigate the role of dynein in cortical force generation during the MTOC repositioning 

process.  First, we sought to image cortical dynein at the IS by utilizing a planar bilayer 

substrate containing anti-CD3ε antibody and ICAM-1 to engage Jurkat cells expressing 

GFP-tagged dynein intermediate chain 2C (GFP-DIC).  Consistent with previous reports 

(Combs et al., 2006; Martin-Cofreces et al., 2008), dynein accumulated at the IS in Jurkat 

cells bound to the stimulatory planar bilayer substrate (Fig. 17 A).  Moreover, this 
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recruitment of dynein was dependent on TCR engagement as dynein did not accumulate at 

the contact plane in cells bound to the planar bilayer substrate containing only ICAM-1 

(DNS).  Contrary to the previous report of dynein localization at the dSMAC ring (Combs et 

al., 2006), we observed a mostly uniform pattern of localization for dynein spots at the IS, 

without preferential localization to a SMAC region or other defined structures at the IS, 

including TCR MCs (see below) (Fig. 17 B).  A noticeable exception, however, was a strong 

accumulation of dynein seen near the centrosome, and more specifically, in a region 

between the two centrioles (red arrowheads point to the two centrioles and green arrowhead 

points to the strong dynein accumulation in Fig. 17 B), that is consistent with the localization 

of dynein observed in other cell systems (Gonczy et al., 1999; Quintyne et al., 1999; King et 

al., 2003; Splinter et al., 2010).   

 Next, we sought to test whether these spots of dynein co-localize with TCR MCs at 

the IS, as recently published by Hashimoto-Tane et al. (Hashimoto-Tane et al., 2011).  

During the early maturation stage of IS formation (3 min after engagement to planar bilayer 

substrate), both TCR MCs and dynein spots were uniformly distributed at the IS (Fig. 17 C).  

However, in contrast to the near-perfect co-localization between TCR MCs and dynein  

reported by Saito and colleagues (Hashimoto-Tane et al., 2011), we observed very little co-  

localization between the dynein spots and TCR MCs at the IS (15.3% co-localization, 4 

cells; also see Fig. 17 C).  Moreover, at the mature stage of IS formation (8 min after 

engagement to planar bilayer substrate), TCR MCs localized at the cSMAC region of the IS 

(see Fig. 17 D [left]), whereas the localization of dynein spots remained uniform (see Fig. 17 

D [middle and right]).  These results show that, in our system, dynein does not strongly co-

localize with TCR MCs, and suggest that TCR MCs are not the preferential anchoring site 

for cortical dynein at the IS.   

To observe the dynamics of these dynein spots at the IS, Jurkat cells were imaged 

on a planar bilayer substrate at a rapid acquisition rate (0.25 sec/frame).  While the strong  
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Figure 17.  Localization of cortical dynein at the IS. 
 
(A) Side view (x-z) images of RFP-Cen-2 (top), GFP-DIC (middle), and RFP-Cen-2 and 
GFP-DIC merged (bottom) in a Jurkat cell bound to a planar bilayer substrate. (B) En face 
view (x-y) images of RFP-Cen-2 (left), GFP-DIC (middle), and RFP-Cen-2 and GFP-DIC 
merged (right) at the IS in a Jurkat cell bound to a planar bilayer substrate.  (C) En face view 
images of TCR (labeled using anti-CD3ε antibodies in the planar bilayer) (left), GFP-DIC 
(middle), and TCR and GFP-DIC merged (right) at the IS in a Jurkat cell bound to a planar 
bilayer substrate for 3 min. (D) En face view images of TCR (labeled using anti-CD3ε 
antibodies in the planar bilayer) (left), GFP-DIC (middle), and TCR and GFP-DIC merged 
(right) at the IS in a Jurkat cell bound to a planar bilayer substrate for 8 min. (E) En face 
view images of mCherry-Tubulin (left), GFP-DIC (middle), and mCherry-Tubulin and GFP-
DIC merged (right) at the IS in a Jurkat cell bound to a planar bilayer substrate for 8 min. (F) 
Zoomed time lapse images of GFP-DIC (right) selected from the area outlined by the white 
box on the left single time frame image. Scale bar in A = 2 µm. Scale bar in F = 1 µm.  All 
other scale bars = 5 µm. 
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accumulation of dynein near the centrosome was consistent both in intensity and duration, 

we observed a more transient localization of dynein spots elsewhere at the IS.  Specifically, 

the appearance of these cortical dynein spots were relatively short-lived (average lifetime of 

4.0 + 2.5 sec, 100 MCs, 4 cells; Fig. 17 F), and did not show lateral movement during their 

appearance at the IS (see time lapse in Fig. 17 F [right]).  Furthermore, in Jurkat cells 

expressing eGFP-DIC2 and mCherry-Tubulin, and engaged on the planar bilayer substrate, 

we observed a modest co-localization between dynein clusters and MTs at the IS (40.3%, 4 

cells; see Fig. 17 E), indicating that at any given time, some of the cortically bound dynein 

clusters may bind and pull on MTs, and that the dynamic localization of dynein is not 

dependent on attachment to MTs.  Moreover, these results suggest that cortical force 

generation at the IS is mediated stochastically by numerous, short-lived clusters of cortically 

bound dynein.   

 

f. Inhibition of dynein impairs MTOC movement during the polarization phase and 
blocks the docking phase of MTOC repositioning 
 

 To test the contribution of dynein in cortical force generation at the IS during MTOC 

repositioning, we inhibited dynein using overexpression of the CC1 portion of the dynactin 

subunit p150 (CC1 DN), which has been shown to inhibit dynein function in vivo without 

noticeable effects on dynactin structure and stability (Quintyne et al., 1999; King et al., 2003).  

CC1 overexpression is thought to inhibit dynein by competing for the common binding site 

on the dynein IC for LIS1/NUDE(L) and dynactin, thus disrupting the regulation of dynein 

activity (Quintyne et al., 1999; King et al., 2003).  Conflicting results have been reported 

regarding the effect of dynein inhibition on MTOC repositioning in T cells.  Previous study by 

Sanchez-Madrid and colleagues showed that dynein inhibition, using dynactin 

overexpression and siRNA knockdown of dynein HC, leads to severe disruption of MTOC 

repositioning in Jurkat T cells engaged to SEE-coated Raji B cells (Martin-Cofreces et al., 
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2008), while Hashimoto-Tane et al. reported that MTOC repositioning was normal in dynein-

inhibited primary T cells conjugated to a planar bilayer substrate (Hashimoto-Tane et al., 

2011).  However, these studies did not observe dynamic MTOC movements (they measured 

MTOC positions in fixed T cells) and did not distinguish between the polarization and 

docking phases of MTOC repositioning.  Thus, we sought to analyze centrosome 

movements during the two phases of MTOC repositioning in dynein-inhibited Jurkat cells 

using the optical trap system.   

In RFP-CC1 DN-overexpressing cells, we observed a modest decrease in ‘APC/Full 

Repositioning’ events (63.6%, n=11 cells; see ‘CC1 DN’ in Fig. 18 A), accompanied by an 

increase in partial MTOC repositioning events (27.3%; see ‘CC1 DN’ in Fig. 18 A) compared 

to WT cells (4.1%; see ‘WT +SEE’ in Fig. 15 B).  However, the dynamics of MTOC 

repositioning during the polarization phase was impaired, with a 59.6% reduction in the rate 

of MTOC movement (1.32 + 0.82 µm/min [CC1 DN] vs. 3.26 + 0.77 µm/min [WT]; see 

‘Polarization Phase’ in Fig. 18 B; p<0.001).  In addition, while the MTOC movement during 

the polarization phase was directionally persistent in WT cells, (see left side of Fig. 16 A), 

MTOC movement in RFP-CC1 DN-overexpressing cells was interrupted by pauses and 

reverse movements of the centrosome away from the synapse, as evidenced by the flat and 

upward slopes, respectively, observed in the time lapse montage (white arrowheads point to 

pauses and reverse movements in Fig. 18 D).  Together, these results indicate that dynein 

is required for the rapid and directionally persistent movement of the centrosome during the 

polarization phase of MTOC repositioning.  With regard to the remaining MTOC movement 

observed in dynein-inhibited cells, we cannot ascertain whether it results from residual 

dynein activity, or from a different cortical force generating mechanism altogether at the IS. 

Next, we observed the effect of dynein inhibition on MTOC movements during the 

docking phase of repositioning.  WT Jurkat cells showed consistent ‘docking’ of their 

centrosome at the IS, as evidenced by the close approximation of the centrosome to the  
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Figure 18. The effect of dynein and LIS 1 inhibition on MTOC repositioning. 
 
(A) Percentage of repositioning events in CC1 DN and LIS1 DN Jurkat cells conjugated to 
+SEE Raji cell using the optical trap system. (B) Rates of MTOC repositioning during the 
repositioning and docking phase in WT, CC1 DN, and LIS1 DN Jurkat cells conjugated to 
+SEE Raji cell using the optical trap system. (C) The average MTOC distance away from 
the synapse in the final minute of conjugation observed in WT, CC1 DN, and LIS1 DN Jurkat 
cells. (D) Time lapse montage of GFP-Cen-2 in a CC1 DN-overexpressing Jurkat cell 
conjugated to +SEE Raji cell.  The plane of conjugation is marked by the yellow line. (E) 
Time lapse montage of RFP-Cen-2 and GFP-LIS1-DN in a LIS-DN-overexpressing Jurkat 
cell conjugated to +SEE Raji cell. The plane of conjugation is marked by the yellow line.  
Time and distance of the time lapse montages are indicated to the right and bottom, 
respectively. Numbers of cells analyzed are indicated inside the bars in A and B.  
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synaptic membrane after completion of its docking phase movement (see right side of the 

time lapse montage in Fig. 16 A), and the small average distance observed between the 

MTOC and the synapse during the final minute of conjugation (0.66 + 0.30 µm, see ‘WT’ in 

Fig. 18 C).  In contrast, the docking phase was inhibited in RFP-CC1 DN-overexpressing 

cells, with the centrosome movement being stalled at the transition point, as evidenced by 

the time lapse montage (see right side of Fig. 18 C), and by the average distance of the 

MTOC from the synaptic membrane during the final minute of conjugation (2.11 + 0.59 µm, 

see ‘CC1 DN’ in Fig. 18 C; p<0.001), which closely matches the measured distance of the 

transition point in WT cells (2.25 µm, Fig. 16 C).  We note here that inhibition of the docking 

phase of MTOC repositioning likely accounts for the increased level of ‘Partial Repositioning’ 

events observed in dynein-inhibited cells (see ‘CC1 DN’ in Fig. 18 A).  While entry into the 

docking phase was severely disrupted with CC1 DN overexpression, on a few occasions we 

observed brief MTOC movements past the transition point during conjugation with the +SEE 

Raji cell.  We note, however, that these movements never resulted in centrosome docking 

and accounted for only 4% of total MTOC movements near the transition point.  

Quantification of these short-lived “docking phase” movements showed that MTOC 

movement during the docking phase in RFP-CC1 DN-overexpressing cells was slower 

compared to WT cells (0.58 + 0.16 µm/min [CC1 DN] vs. 0.90 + 0.16 µm/min [WT]; see 

‘docking phase’ in Fig. 18 A, p<0.05).  In all, these results show that dynein is required for 

the rapid, directionally persistent movement of the centrosome during the polarization phase, 

and transition into the docking phase of MTOC repositioning.  Moreover, these results are 

consistent with the involvement of dynein in cortical force generation at the IS during MTOC 

repositioning in T cells. 

 

g. Inhibition of LIS1 impairs MTOC movement during the polarization phase and 
disrupts prolonged centrosome docking during the docking phase 
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 Having established the requirement for dynein, we next sought to test the role of the 

dynein regulatory protein, LIS1, in MTOC repositioning in T cells.  R. Vallee and colleagues 

have reported that LIS1 is required for the persistent force generation of dynein under high 

load (McKenney et al., 2010), and that inhibition of LIS1 disrupts spindle repositioning during 

mitosis in mammalian cells (Faulkner et al., 2000) and nuclear and MTOC repositioning 

during migration in neural progenitor cells (Tsai et al., 2005; Tsai et al., 2007).  Thus, we 

asked whether regulation of dynein activity by LIS1 is also required for MTOC repositioning 

in T cells.  To inhibit LIS1 in Jurkat T cells, we utilized overexpression of the self-associating 

N-terminal portion of LIS1 (LIS1 DN), which has been reported to selectively inhibit LIS1 

without disrupting the endogenous localization of the dynein complex and other regulatory 

proteins (Tai et al., 2002; Tsai et al., 2005).  The inhibitory effect of LIS1 DN overexpression 

is thought to result from the formation of heterodimers between the endogenous, full length 

LIS1 and the LIS1 DN fragment which show a weak affinity for the binding sites on dynein 

(Tai et al., 2002).  

 In GFP-LIS1 DN-overexpressing Jurkat cells, we observed a normal percentage of 

‘Full/APC Repositioning’ events (83.3%, n=18 cells; see ‘LIS1 DN’ in Fig. 18 A) compared to 

WT cells (see ‘WT +SEE’ in Fig. 15 B).  However, the dynamics of MTOC repositioning 

during the polarization phase was impaired, with a 41.6% reduction in the rate of MTOC 

movement (1.90 + 0.71 µm/min [CC1 DN] vs. 3.26 + 0.77 µm/min [WT]; see ‘Polarization 

Phase’ in Fig. 18 B; p<0.002).  Also, similar to CC1 DN overexpression, MTOC movement in 

LIS1 DN-overexpressing cells was interrupted by pauses and reverse MTOC movements, 

as evidenced by the time lapse montage (see example of a reverse movement [white 

arrowhead] in Fig. 18 E).  Moreover, docking of the MTOC was disrupted in LIS1-inhibited 

cells, as evidenced by the separation between the MTOC and the synaptic membrane 

shown in the time lapse montage (see right side of Fig. 18 E), and the increased average 

distance of the MTOC from the IS during the final minute of conjugation in GFP-LIS1 DN-
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overexpressing cells (1.84 + 1.02 µm; see ‘LIS1 DN’ in Fig. 18 C; p<0.005).  In contrast to 

the stalled MTOC movement at the transition point between the two phases observed with 

CC1 overexpression, we observed movement of the centrosome past the transition point in 

GFP-LIS1 DN-overexpressing cells, leading to docking of the centrosome at the IS (see 

movement of the MTOC toward the synaptic membrane [marked by the yellow line] in the 

time lapse montage in Fig. 18 E).  The rate of MTOC movement during the docking phase in 

LIS1-inhibited cells was only slightly reduced compared to WT cells (0.73 + 0.19 µm/min 

[LIS1 DN] vs. 0.90 + 0.16 µm/min [WT]; see ‘Polarization Phase’ in Fig. 18 B; p<0.05).  

However, these cells were unable to maintain docking of the MTOC at the synaptic 

membrane, as the MTOC retreated back to the transition point after apparent docking at the 

IS (see MTOC movement after contact with the synaptic membrane in Fig. 18 E) and 

meandered near the transition point for the remainder of the conjugation process (see right 

side of the time lapse in Fig. 18 E).  We observed this inability to maintain centrosome 

docking in 60% of LIS1-inhibited cells.  Together, these results show that LIS1 is required 

for the rapid and processive movement of the MTOC during the polarization phase, and 

maintenance of centrosomal docking at the synaptic membrane during the docking phase of 

MTOC repositioning.  Furthermore, our results are consistent with the idea that LIS1 is 

required for dynein-mediated transport of high-load cargo (i.e. centrosome and the 

associated MT array), as proposed by R. Vallee and colleagues, and suggest that the two 

phases of MTOC repositioning require differential regulation of dynein activity in T cells.  

 

IV. Discussion 

Static observations of fixed conjugates in previous studies have suggested that T cell 

activation is a multi-step process, involving polarization of the centrosome toward the 

synaptic interface, followed by docking of the centrosome and associated effector molecules 

at the synaptic membrane for directed secretion (Jenkins et al., 2009; Stinchcombe et al., 
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2006).  Using an optical trap system of T cell-APC engagement, we were able to show 

partial defects in MTOC repositioning in LFA-1-defiecient Jurkat cells, and show for the first 

time distinct kinetic phases of MTOC repositioning in T cells.  Specifically we showed that 

the rate of MTOC movement during the initial polarization phase is ~3 fold faster than the 

subsequent docking phase, and that a transition between the phases occurs reproducibly at 

a distance of ~2 µm from the synaptic interface.  We were also able to perform high 

resolution imaging of cortical dynein at the IS using planar bilayer engagement of T cells.  In 

contrast to previous reports, a relatively uniform distribution of cortical dynein spots were 

observed at the IS, without localization to specific SMAC regions.  Furthermore, we defined 

the role of dynein in MTOC repositioning by showing that the rapid and persistent movement 

of the MTOC during the polarization phase and MTOC movement past the transition point 

require dynein.  Lastly, we report for the first time the involvement of LIS1 in MTOC 

repositioning in T cells, and showed that LIS1 is required for rapid movement of the MTOC 

during the polarization phase, and maintenance of centrosomal docking at the IS during the 

docking phase of MTOC repositioning in T cells.   

 

a. Optical trap-controlled activation of T cells 

The optical trap has become a useful tool for the study of cell biology, allowing 

intricate measurement and manipulation of small objects.  Moreover, the optical trap has 

been utilized to allow consistent temporal and spatial control over the T cell engagement 

process.  In the report by Cahalan and colleagues, optically trapped polystyrene beads 

coated with anti-TCR antibodies were used to test different locations along a polarized T cell 

for sensitivity to T cell activation (Wei et al., 1999).  The optical trap and antibody-coated 

beads, likewise, were utilized in separate in-vitro experiments to probe the mechano-

sensory properties of the TCR, and activation of LFA-1 receptors in T cells (Chen et al., 

2007; Kim et al., 2009).  Although antibody-coated beads were initially tested in our system, 
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we observed that the bead, once engaged to the Jurkat cell, frequently escaped the optical 

trap and repositioned toward the centrosome, giving us very little information about the 

dynamics of the MTOC repositioning event.  Moreover, using an APC allowed engagement 

of the full repertoire of adhesion molecules, accessory receptors, and lateral movement of 

ligand-bound receptors at the T cell-APC interface, which are needed for sustained T cell 

activation.  Interestingly, Davis and colleagues have also used the optical trap to engage 

natural killer (NK) cells with target cells to perform high resolution imaging of the cytoskeletal 

dynamics at the NK synapse (Oddos et al., 2008; Brown et al., 2011), confirming the 

advantages of the optical trap system in studying the lymphocyte activation process. 

 

b. The two phases of MTOC movement during T cell activation 

The rapid movement of the MTOC toward the site of TCR stimulation has been 

reported in previous live-imaging studies by M. Huse and colleagues using their 

photoactivation system and by M. Poenie and colleagues using modulated polarization 

microscopy (Kuhn and Poenie, 2002; Huse et al., 2007; Quann et al., 2009).  Moreover, the 

rates of MTOC repositioning in these studies (approximately ~3 µm/min in Quann et al., 

2009; 3.55 + 1.07 µm/min in Kuhn and Poenie, 2002) closely match the fast rate of MTOC 

movement observed during the polarization phase in our study (3.26 + 0.77 µm/min).  

However, the subsequent docking phase of MTOC movement was not detected in these 

reports.  In regard to the studies by Huse and colleagues, immobilized coverslip substrates 

were used in their photoactivation system, which inhibits maturation of the IS in engaged T 

cells (Huse et al., 2007; Quann et al., 2009).  We suspect that IS maturation, and the 

resulting formation of concentric SMAC domains, are required for the docking phase of 

MTOC repositioning in T cells.  Furthermore, a 3 µm-wide cortical region was photoactivated 

by the laser beam, perhaps obscuring the final docking phase movement of the MTOC, 

which consistently occurs at a distance of ~2 µm from the site of TCR stimulation.  As for the 
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study by M. Poenie and colleagues, their analysis of centrosomal dynamics in CTLs did not 

include movement of the MTOC within a distance of ~4.0 µm from the IS and, therefore, 

could not detect the final docking phase movement (Kuhn and Poenie, 2002).  We note, 

however, that the existence of a distinct docking phase in MTOC repositioning has been 

suggested in recent imaging studies using fixed CTL-target cell conjugates by G. Griffiths 

and colleagues (Jenkins et al., 2009; Tsun et al., 2011).  In particular, Lck signaling was 

shown to be required for centrosomal docking at the IS, as the centrosome in Lck-deficient 

CTLs was consistently polarized toward, but not docked at the synaptic interface (Tsun et al., 

2011), similar to the effect of dynein inhibition observed in our study.  Also, while we agree 

with their assessment that the docking step likely represents an important checkpoint during 

T cell activation, instances of transient docking observed in LIS1-inhibited cells suggest that 

centrosomal docking requires continued maintenance, contrary to the all-or-none 

commitment of the T cell to effector function suggested by Griffiths and colleagues.  

 

c. The role of LFA-1 integrins in MTOC repositioning 

While LFA-1 integrin receptors were initially identified as a possible anchor for 

cortical force generators at the IS (Kuhn and Poenie, 2002), the follow-up study by Combs 

et al. reported that LFA-1-deficient Jurkat cells (JB2.7) repositioned their MTOC normally 

after conjugation with SEE-coated Raji cells (Combs et al., 2006).  The latter result contrasts 

with our finding, as well as with an earlier report by Poenie and colleagues (Kuhn et al., 

2001), which show that JB2.7 cells are partially defective in MTOC repositioning.  The 

difference may lie in the methods used to assay MTOC repositioning in T cells.  While 

Poenie and colleagues imaged the centrosome in fixed Jurkat T cells conjugated to +SEE 

Raji B cells at random contact points, we used the optical trap to always contact the T cell 

opposite the position of the MTOC.  It may be possible that the high MTOC polarization 

levels reported by Combs et al. resulted from ‘background repositioning’ due to the random 
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method of Jurkat T cell conjugation.  In addition, static assays using fixed T cell-APC 

conjugates lack dynamic information about the MTOC repositioning process and do not offer 

the sensitivity required for detection of partial defects in MTOC repositioning.  Given these 

issues, spatial and temporal control over T cell activation, and dynamic imaging capability 

are needed for more detailed studies of cytoskeletal polarization processes in T cells.  

Moreover, further studies using alternative methods to modulate LFA-1 activity (function-

blocking antibodies, siRNA knockdown, chimeric expression, etc.) are needed to understand 

the contribution of LFA-1 integrin signaling to MTOC repositioning in T cells. 

 

d. Generation of cortical pulling force at the IS 

Previous imaging studies have suggested the involvement of a cortical force 

generator that captures and pulls MTs toward the IS during T cell activation (Kuhn and 

Poenie, 2002).  Our observations of synaptic membrane invaginations provide striking 

evidence of such cortical pulling force at the IS.  Interestingly, similar membrane 

invaginations have been reported during spindle repositioning in the C. Elegans embryo 

(Redemann et al., 2010).  After partial depletion of non-muscle myosin 2 using RNAi, 

numerous membrane invaginations were observed, aligning along MTs and requiring 

cortical force generation mediated by the dynein complex.  Importantly, since these 

invaginations indicated the location of cortical force generators along the membrane, they 

were able to deduce the distribution and quantity of cortical force generators anchored at the 

membrane during asymmetric cell division.  In the same vein, based on the observation that 

membrane invaginations originate at the IS center, we can infer that cortical pulling forces 

are concentrated near the center of the synaptic interface during MTOC repositioning in T 

cells.  

 

e. The localization of dynein at the IS 
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Dynein is thought to drive cortical force generation at the IS in T cells.  Support for 

this idea comes partly from imaging studies that show accumulation of dynein in a ring-

shaped pattern near the contact site in conjugated cells, coinciding with the dSMAC region 

of the IS (Combs et al., 2006).  These results contrast with the uniform distribution of cortical 

dynein spots observed in our study and, to a certain extent, in the study by Hashimoto-Tane 

et al. (Hashimoto-Tane et al., 2011).  Moreover, clusters of dynein have been detected in 

limited images of Jurkat-Raji cell conjugates (Martin-Cofreces et al., 2008).  Possible reason 

for the difference in dynein localization patterns reported in Combs et al. and our study may 

be the substrates used to engage the T cells.  While conjugation of T cells with APCs offers 

the most physiologically relevant system for studying the T cell activation process, 3-D 

reconstruction of the T cell-APC conjugate typically yields images with poor resolution due 

to increased diffraction along the axial plane.  Moreover, the synapse is not uniform at the 

axial plane of the conjugation site, thus it is difficult to image the IS in a single plane using T 

cell-APC conjugates.  Furthermore, even though Jurkat cells expressing low levels of GFP-

DIC were imaged in our studies, we noticed a high level of background signal when imaging 

GFP-DIC at the IS, presumably reflecting a large pool of unanchored cytoplasmic dynein, 

which may be difficult to separate from the signals for cortically-bound dynein in 3-D 

reconstructed cells.  Given that the distribution of molecules at the IS in planar bilayer-

engaged T cells closely resembles that of APC-engaged cells, and given that limited number 

of dynein clusters were observed in Jurkat-Raji cell conjugates, we argue that the uniform 

dynein spots observed at the planar bilayer report cortically anchored dynein at the IS.  

However, as recent advances in imaging techniques allow increased resolution in both 

lateral and axial planes of imaging, high resolution imaging of dynein in T cell-APC 

conjugates need to be performed to confirm the uniform distribution of cortical dynein spots 

at the IS.  Moreover, to prove that the dynein spots imaged using GFP-DIC are reporting 

functional dynein complexes at the IS, we plan to generate a stable line of Jurkat cells 
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expressing low levels of GFP-DIC, which will be used to test whether exogenously 

expressed GFP-DIC co-sediments with the endogenous 20S dynein complex on a sucrose 

gradient. 

 

f. The role dynein in MTOC repositioning in T cells 

Further support for the functional involvement of dynein in MTOC repositioning 

comes from inhibition studies showing that overexpression of p50-dynamitin, as well as 

siRNA knockdown of dynein HC results in a severe disruption of MTOC repositioning in 

Jurkat T cells (Martin-Cofreces et al., 2008).  While we used similar methods to inhibit 

dynein (overexpression of the CC1 portion of p150 dynactin and siRNA knockdown of 

dynein HC [see below]), and while our results are in agreement with the important role of 

dynein in the MTOC repositioning process, significant differences exist between our study 

and the report by Martin-Cofreces et al.  First, they observed a severe reduction in the levels 

of MTOC repositioning in dynein-inhibited cells using a static assay, while we see only a 

minor reduction in the overall percentage of MTOC repositioning events (though the kinetics 

of MTOC movement during the polarization phase and entry into docking phase are 

inhibited [see below]).  We note that a recent study by Hashimoto et al. also reported a 

normal percentage of MTOC repositioning in dynein-inhibited primary T cells engaged and 

fixed on a planar bilayer substrate.  Second, in the live imaging of dynein-inhibited Jurkat 

cells by Martin-Cofreces et al., MTOC movement was reported to be completely inhibited, 

whereas we see a slower, less persistent movement of the MTOC toward the IS.  Lastly, 

they did not detect the biphasic movement of the MTOC in WT cells, or the effect of dynein 

inhibition on the docking phase of MTOC movement, as observed in our study.   

With regard to the discrepancy in the percentage of MTOC repositioning events, 

though Martin-Cofreces et al. did not explain the scoring criteria used to assay MTOC 

repositioning, it is possible that ‘Partial Repositioning’ events were filtered out by their 
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scoring system, since the MTOC becomes stalled at the transition point before entry into the 

docking phase.  In addition, as the speed of MTOC repositioning is reduced in dynein-

inhibited cells, the length of the imaging time may not have been long enough to capture full 

MTOC repositioning events in their study.  Furthermore, since Sanchez-Madrid and 

colleagues imaged the centrosome in fixed Jurkat T cells conjugated to +SEE Raji B cells at 

random contact points, it is possible that the partial reduction in “Full Repositioning” events 

was obscured by the high levels of “background” repositioning inherent in such static assays.   

With regard to the discrepancy in the kinetics of MTOC movement and entry into docking 

phase in dynein-inhibited cells, the difference may again lie in the methods used to image 

MTOC repositioning in T cells.  In the study by Martin-Cofreces et al., live imaging was 

performed during chance encounters between the Jurkat T cells and +SEE Raji cells while 

crawling on the coverslip substrate.  As mentioned above, without temporal and spatial 

control over the T cell conjugation process, it is difficult to image full MTOC repositioning 

events consistently and dynamically.  Thus, it is not surprising that their live-imaging data 

consisted of only two videos showing MTOC movement in dynamitin-overexpressing cells, 

and that the two kinetic phases were not detected in their live-imaging of WT Jurkat cells.   

Currently, inhibition experiments using siRNA knockdown of dynein HC are being 

performed to complement the results observed with CC1 DN-overexpression.  Preliminary 

experiments using siRNA knockdown of dynein HC in Jurkat T cells have shown, indeed, 

MTOC movements are slower and less persistent during the polarization phase and that 

entry into the docking phase is inhibited, confirming the effects observed with CC1 

overexpression.  Additional experiments in primary T cells will be needed to confirm the 

functional role of dynein in MTOC repositioning in T cells. 

 

g. The role of dynein regulatory proteins in MTOC repositioning in T cells 
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 The role of dynein regulatory complexes in MTOC repositioning has not been 

previously examined in T cells.  As the emerging paradigm in dynein regulation suggests 

differential and competing regulation of dynein activity by LIS1/NUDE(L) and dynactin, and 

as minus-end directed vesicle/organelle transport requires association of dynein with these 

regulatory proteins, MTOC repositioning in T cells likely involves regulation by 

LIS1/NUDE(L) and dynactin.  Regarding the role of the LIS1/NUDE(L) complex, our results 

show that LIS1 is required for the rapid and persistent movement of the MTOC during the 

polarization phase, and maintenance of centrosome docking during the docking phase.  

Parallel to LIS1 DN overexpression, experiments using shRNA knockdown of LIS1 are being 

performed to alternatively inhibit LIS1 in Jurkat T cells.  Regarding the role of dynactin, 

unpublished results by Poenie and colleagues indicate that MTOC repositioning is normal in 

dynactin-inhibited T cells (Dissertation work by Sarah Youngsun Tan, 2010, University of 

Texas, Austin).  However, since the dynamics of MTOC movement during the two 

repositioning phases have not been observed in dynactin-inhibited T cells, live-imaging 

studies are needed in order to compare directly with the effects of LIS1 inhibition on MTOC 

repositioning.  We plan to do so using siRNA knockdown of the p150 dynactin subunit to 

inhibit dynactin and the optical trap system to engage dynactin-inhibited Jurkat T cells. 

 

h. Conclusion 

 In this study, we introduced a method to induce MTOC repositioning in T cells with 

temporal and spatial control using an optical trap.  Using this approach, we were able to 

probe the dynamics of MTOC movements, as well as the contribution of dynein and LIS1 to 

the MTOC repositioning process in T cells.  Specifically, we showed that the MTOC 

repositioning event occurs in two distinct kinetic phases, with the transition between the 

phases occurring at a distance of ~ 2 µm from the synaptic interface.  Moreover, we 

observed strong evidence of cortical force generation at the IS, as the synaptic interface 
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became sharply invaginated when MTOC movements were impeded in T cells.  Furthermore, 

our inhibition experiments showed that dynein and LIS1 are required for fast and persistent 

movement of the MTOC during the polarization phase, and entry into and maintenance of 

centrosome docking during the docking phase of MTOC repositioning.  Together, these 

results indicate that dynein and LIS1 are important components of the cortical pulling force 

driving MTOC repositioning in T cells.  Lastly, as the MTOC repositioning event is critical for 

effector function in T cells, the molecular mechanisms behind the two phases of centrosome 

movement, and the regulation of centrosome docking at the IS represent important areas to 

be explored in future investigations. 

 

V. Materials and Methods 

Cell culture and transfection  

E6.1 and JCAM2.5 Jurkat T cells (gifts from L. Samelson, NCI, NIH),  JB2.7 Jurkat T cells 

(gift from M. Poenie, University of Texas, Austin) and Raji B cells (gift from J. Martina, 

NHLBI, NIH)  were maintained at 37oC in IMDM media (Invitrogen, #12440) supplemented 

with fetal bovine serum (Sigma-Aldrich, #F0392), sodium pyruvate (Invitrogen, #11360), L-

glutamine (Invitrogen, #25030), Penicillin-Streptomycin (Invitrogen, #15140), and MEM non-

essential amino acids solution (Invitrogen, #11140).  Cells were replated every 48 hrs at a 

concentration of 2.0 x 105 cells/ml for all Jurkat cell lines and 5.0 x 105 cells/ml for the Raji B 

cells.  Transfections were performed by nucleofection using cells at a concentration of 1.0 x 

10 cells/ml, 1-3 µg of plasmid DNA, Amaxa Kit V (Lonza-Amaxa), and the electroporation 

protocol for Jurkat T cells. 

 

Plasmids and reagents 

Centrin-2 tagged with mGFP or mRFP were gifts from J. Martina (NHLBI, NIH).  The dynein 

intermediate chain 2 construct tagged with mGFP was a gift from K. Pfister (Department of 
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Cell Biology, School of Medicine, University of Virginia).  The Farnesyl construct tagged with 

mRFP was a gift from J. Donaldson (NHLBI, NIH).  The N-terminus dominant negative 

construct of LIS1 tagged with mGFP was a gift from R. Vallee (Department of Pathology and 

Cell Biology, Columbia University).  The dominant negative CC1 portion of p150 dynactin 

construct tagged with mRFP was a gift from T. Shroer (Department of Biology, Johns 

Hopkins University).  The LFA-1α construct tagged with mGFP was a gift from M. Kim 

(Department of Microbiology and Immunology, University of Rochester).  Fluo-4 AM was 

purchased from Molecular Probes/Invitrogen (# F14217).  Staphylococcal Enterotoxin E was 

purchased from Toxin Technology (#ET 404).  PHK26 dye for cell membrane labeling was 

purchased from Sigma Aldrich (#MINI26-1KT). 

 

Planar lipid bilayer substrate 

Liposomes were prepared and glass-supported planar lipid bilayers were formed essentially 

as described previously (Dustin et al., 2007).  Liposomes were created using a mixture of 

DOPC (Avanti Polar Lipids, #850375C), biotin-CAP-PE (1% molar ratio) (Avanti Polar Lipids, 

#180061C), and DOGS-NTA (1% molar ratio) (Avanti Polar Lipids, #790528C) lipids.  The 

anti-CD3ε antibody (Biovest International, # OKT3) was mono-biotinylated and labeled with 

fluorescent dyes following the protocol of Carrasco et al. (Carrasco et al., 2004).  A flow 

chamber was assembled by initially attaching two layers of double-sided tape to the sides of 

a glass slide.  To create a bilayer within the flow cell, a 1.5 µl drop of liposomes was 

deposited on the glass slide in between the strips of double-stick tape, and then a glass 

coverslip that has been washed in Piranha solution (70% [v/v] sulfuric acid [Fisher, #A300] 

and 30% [v/v] hydrogen peroxide [Fisher, #H325]) was placed on top of the glass slide 

across the double-stick tape, simultaneously allowing a single planar bilayer to form on the 

coverslip surface and creating a flow chamber.  200 µl of HEPES buffer saline was then 

flowed through the chamber to wash away remaining liposomes, followed by 100 µl of a 
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blocking solution containing 5% (w/v)  casein (Sigma, #C5890) to block non specific sites.  

Next, a 1:2 ratio of mono-biotinylated anti-CD3ε antibody labeled with either Alexa-647 or 

rhodamine-X (10 µg/ml) and streptavidin (Sigma, #85878) were added to the flow chamber 

to conjugate the anti-CD3ε antibody with the biotin-CAP-PE lipids in the bilayer.  Similarly, 

His-tagged ICAM-1, either unlabeled or labeled with Alexa-647 (0.5 µg/ml), was added to 

the flow chamber to conjugate with the DOGS-NTA lipids in the bilayer.  The uniformity and 

lateral mobility of lipids in the bilayers was accessed by imaging the diffusion of His-tagged 

ICAM-1 molecules labeled with Alexa-647 on the surface of the bilayer.  For fixation of 

Jurkat cells on planar lipid bilayer substrates, they were flown into the bilayer chamber and 

incubated for 3 or 8 min at 37oC and then fixed for 15 min in a solution containing 4% (w/v) 

paraformaldehyde (Polysciences, Inc., #00380), 1x PBS (pH 7.4) (Quality Biological, Inc., 

#119-069-101).    

 

Optical Trap Design 

We built a simple optical trap, modeled after an early design by Steven Block (vol. II, sec. 7, 

Cells: A Laboratory Manual, CSHL Press).  A Nd:YVO4 laser of 4 W continuous power at 

1064 nm wavelength provides the IR beam, a Uniblitz shutter gates the laser to a 10x beam 

expander, a ½ λ waveplate coupled with a polarized beam splitter attenuates the laser 

power, and an additional 2x Keplerian beam expansion allows complete filling of the back 

focal plane of the objective.  Also, two mirrors in the pathway enable manual steering of the 

beam, and the beam splitter permits addition of a second beam for dual optical trapping in 

the future.  Lastly, the IR Objective lens, either 60x at NA1.40, 100x at NA 1.42, or 150x at 

NA 1.45, then focuses the beam onto the specimen stage, forming a gradient required for 

optical trapping.  Multiple trials showed that, indeed, we could trap polystyrene latex beads 

minimally at 1 mW of laser power and large lymphocytes at 25 mW. 
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Optical Trap System of Jurkat Cell Engagement 

Raji B cells were incubated in cell culture media containing 2 µg/ml SEE for 1.5 hr at 37oC, 

and then washed twice with culture media.  To create a flow chamber, two strips of double-

stick tape were placed on parallel edges of a glass slide, and then a #1.5 glass coverslip 

coated with fibronectin (Sigma, #F2006) was placed on top of the glass slide across the 

double-stick tape.  Jurkat cells were introduced into the flow chamber and allowed to adhere 

to the fibronectin-coated coverslip for 2 min at 37oC.  The chamber was placed on the 

microscope stage and the adhered Jurkat cell expressing the appropriate reporter was 

selected.  Raji cells were first chilled on ice for 5 min, and then introduced into the flow 

chamber.  The chilling prevented attachment of the Raji cells to the fibronectin coverslip for 

~30 sec, providing a brief window in time to trap a Raji cell.  The optical trap was, then, 

turned on, focused on a nearby floating Raji cell, and controlled to bring the trapped Raji B 

cell opposite the centrosome of the adhered Jurkat cell.  The optical trap was turned off and 

imaging began immediately after contact between the Jurkat T cell and SEE-coated Raji B 

cell.  Jurkat cells were imaged for 30 min following engagement with the Raji B cell, at 15 

sec/ frame unless indicated otherwise.   

 

Image acquisition 

Images were acquired using either a 60x (1.40 NA), 100x (1.42 NA), or 150x (1.45 NA) 

objective on an Olympus IX81 microscope fitted with a Yokogawa CSU-X1 spinning disk 

confocal unit and a QuantEM: 512SC camera (Photometrix).  Images were analyzed using 

MetaMorph software.  For dynamic imaging of Jurkat cells on the planar bilayer substrate, 

we loaded cells into a flow chamber containing the planar bilayer, placed the chamber on 

the microscope stage, identified cells which were well engaged and spread, then began 

imaging immediately.  In general this process took 2 min.  These time lapse images were 

acquired at 4 sec/frame over a duration of 5 min, unless indicated otherwise.  For 
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simultaneous imaging of fluorescent molecules in the bilayer and in the cortex of the Jurkat 

cell, imaging was performed at the plane of the bilayer.  For dynamic imaging, the 

temperature of the stage was maintained at 37oC using a Nevtek stage heater.  For imaging 

of calcium fluxes, Jurkat cells were loaded with Fluo-4 AM as described in the Molecular 

Probes product information sheet, and stimulated using coverslip substrates.  The Prior 

NanoScan Z stage controller was used to take 4D time-lapse images of these cells before 

and after contact with stimulatory coverslip substrates.  The relative intensities of Fluo-4 

fluorescence over time were calculated using the region measurement tool in MetaMorph 

software.   For imaging of TCR MCs, we utilized a planar bilayer containing unlabeled His-

ICAM-1 and mono-biotinylated anti-CD3ε antibody labeled with Alexa-647.   

 

Analysis of MTOC movement 

For measurement of the distance of the MTOC from the IS in GFP- or RFP-Cen-2 

expressing cells, a line was drawn at plane of contact between the Jurkat and Raji cells 

observed in the brightfield image and the line was transferred to the corresponding Cen-2 

image using MetaMorph software.  The distance from the center of the GFP- or RFP-Cen-2 

spot to the line at the plane contact was measured, and this procedure was repeated to 

measure the MTOC distance from the synapse for each frame of the image stack.  For 

Jurkat cells expressing GFP-Cen-2 and RFP-Farnesyl, The GFP and RFP image stacks 

were combined using MetaMorph software, and the distance from the center of the GFP-

Cen-2 spot to the RFP-Farnesyl line at the contact site was measured for each image of the 

stack.  For the assay of repositioning events, MTOC movements were scored as Full, Partial, 

or No Repositioning based on the smallest distance of the MTOC from the IS measured in 

the image stack.  For calculation of the instantaneous speed of MTOC movement, the 

measured MTOC distance from the IS in a single image was subtracted from the previous 

image, and divided by the lapsed time between the two images.  Instantaneous speeds of 
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MTOC movement calculated at >2.25 µm distance of the MTOC from the IS were averaged 

to give the polarization phase speed per cell, and at <2.25 µm distance of the MTOC from 

the IS were averaged to give the docking phase speed per cell.   
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CHAPTER 4 
 

CONCLUDING REMARKS AND FUTURE DIRECTIONS 
 

 
 
I. Overview 

 The process of T cell activation involves a complex orchestration of cytoskeletal 

components.  In this study, we show that TCR stimulation results in the reorganization of F-

actin into radially symmetric LP and LM networks at the IS, and that the cortical actin flow 

generated by these networks drives the inward movement of receptor clusters at the IS.  In 

concert with actin reorganization, the MTOC becomes polarized toward the APC, aligning 

MT minus ends and associated cargo toward the center of the IS for directed secretion.  Our 

results show that this MTOC repositioning process is biphasic, involving signaling by LFA-1 

and TCR, and cortical force generation mediated by dynein and LIS1.  In all, our study 

highlight the critical roles of cytoskeletal components in T cell function, and indicate that 

Jurkat T cells could serve as a robust general model system for studying cytoskeletal 

dynamics and regulation.   

 

II. What is the role of formin-generated actin filaments at the IS? 
 

 Our observations raise new questions about the conserved mechanisms of 

cytoskeletal regulation and function.  For one, numerous filopodial-like ribs undergoing rapid 

actin retrograde flow are revealed by treatment with low-dose CD, representing a population 

of actin structures that are resistant to the inhibitory action of CD at low levels of treatment.  

If, indeed, these filopodial-like ribs are endogenous structures embedded within the LP actin 
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network, their contributions to TCR MC transport in the LP/dSMAC and acto-myosin II 

filament formation in the LM/pSMAC need to be examined in future experiments.   

 We speculate that these intra-lamellipodial, filopodial-like ribs serve as preferential 

tracks for TCR MC transport in the LP/dSMAC.  We often observed prolonged periods of 

radial movement along the outside rim of the IS before TCR MCs initiated movement into 

the LP/dSMAC, suggesting that not all areas of the LP actin network allow inward movement 

of TCR MCs.  In addition, we observed instances when multiple TCR MCs moved 

sequentially along the same linear path in the LP/dSMAC, suggesting that preferential tracks 

exist in the LP/dSMAC for TCR MC transport.  As the LP network in metazoan cells is 

thought to consist of a dendritic actin network nucleated by the Arp2/3 complex and 

filopodial actin filaments nucleated by formins (Chhabra and Higgs, 2007), inhibition 

experiments targeting the two classes of actin nucleators at the IS are needed to test our 

hypothesis.  Furthermore, as the mechanistic coupling between the TCR MCs and cortical 

actin networks is thought to be transient and dissipative (Kaizuka et al., 2007; DeMond et al., 

2008; Yu et al., 2010), the binding strength between the respective actin network (dendritic 

or filopodial actin) and TCR MCs needs to be investigated.  It is possible that the parallel, 

bundled actin filaments of filopodial-like ribs are preferable substrates for TCR MCs than the 

angled, branched filaments of the dendritic actin network.     

 

III. How does F-actin reorganize at the border between the LP/dSMAC and 

LM/pSMAC? 

 According to the dendritic model of actin nucleation, dendritic actin filaments become 

depolymerized at the rear to generate actin monomers, which become sequestered and 

recycled back to the leading edge for actin polymerization (Pollard and Borisy, 2003).  In our 

study, strong accumulation of F-actin is observed at the border between the LP/dSMAC and 

LM/pSMAC in Jas-treated cells, suggesting that robust depolymerization of F-actin normally 
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occurs at the rear of the LP/dSMAC.  This conclusion is consistent with studies in other cell 

types showing that ~90% of LP actin depolymerizes at the rear of the LP (Ponti et al., 2004).  

Given that the dendritic actin network is essentially a closed loop system, and that most 

dendritic actin filaments become depolymerized and recycled back to the leading edge, we 

speculate that formin-generated actin filaments in the LP/dSMAC (i.e. filopodial-like ribs) 

serve in part as the precursors for acto-myosin II arc formation in the LM/pSMAC.   

 Formins are unique among actin nucleating proteins in their ability to accelerate the 

elongation of actin filaments, and in their ability to serve as barbed end polymerization 

machines while remaining associated with the barbed ends of growing actin filaments 

(Chhabra and Higgs, 2007; Chesarone et al., 2010).  As the mechanism of formin-mediated 

actin elongation is thought to occur through alternating contacts between the FH2 domains 

of the formin dimer to the actin subunits of a growing filament, the barbed ends of actin 

filaments are effectively shielded from capping proteins during formin-mediated actin 

elongation (Chesarone et al., 2010).  This is consistent with the continued actin retrograde 

flow observed in filopodial-like ribs in the presence of low-dose CD, which is thought to 

inhibit actin polymerization by capping the free barbed ends of actin filaments (Carlier et al., 

1986).  Furthermore, as formins are thought to bundle actin filaments (Chhabra and Higgs, 

2007; Chesarone et al., 2010), the generation of parallel, crosslinked filaments should 

confer greater stability to these bundled actin structures.  We imagine that the bundled, 

parallel filaments comprising the filopodial-like ribs resist severing by ADF/cofilin at the rear 

of the LP, and continue their treadmilling movement into the LM region, where they become 

associated with bipolar myosin II filaments to form contractile acto-myosin II arcs.  Our 

observation that GFP-actin does not report the acto-myosin II arcs in the LM/pSMAC is 

consistent with this idea, as it has been recently shown that GFP-actin cannot be 

incorporated into formin-generated actin filaments (Chen et al., 2012).  Since mDIA1 and 

FMNL1 have been shown to be the dominantly expressed formins in T cells (Gomez et al., 
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2007), specific inhibition of these two formins using shRNA knockdown, as well as general 

inhibition of formins using SMIFH2 need to be performed to test the role of formins in the 

assembly of acto-myosin II filaments during T cell activation. 

 

IV. What is the “diffusion” barrier for LFA-1 clusters at the pSMAC-cSMAC border? 

 Results from our study, as well as the study by Kaizuka et al., indicate that TCR MCs 

are able to pass through, while LFA-1 integrin clusters are blocked at the border between 

the cSMAC and pSMAC regions (Kaizuka et al., 2007).  R. Vale and colleagues suggest that 

differential coupling between TCR and LFA-1 clusters to the cortical actin network is the 

basis for the selective transport of TCR MCs into the cSMAC (Kaizuka et al., 2007).  

Specifically, once formed, TCR MCs are not dependent on the cortical actin network and 

can continue centripetal movement into the actin-depleted cSMAC region, while LFA-1 

clusters require the cortical actin network as a structural scaffold, and therefore become 

disassembled when acto-myosin II arcs are disassembled at the pSMAC-cSMAC boundary.  

Alternatively, Groves and colleagues suggest that the differential localization of TCR and 

LFA-1 clusters at the IS is due to the relative size of these clusters, and showed using 

multivalents antibodies that artificially enlarged LFA-1 clusters can compete with TCR MCs 

for placement in the cSMAC region (Hartman et al., 2009; Hartman and Groves, 2011).  Our 

results are consistent with the model proposed by Vale and colleagues, as we observe 

accumulation of LFA-1 clusters at the LM/pSMAC-cSMAC border, movement of TCR MCs 

between successive acto-myosin II arcs in the LM/pSMAC, and rapid, complete 

disappearance of actin arcs at the rear of the LM/pSMAC, suggesting a strong overlap in the 

dynamics and behavior of LFA-1 clusters and acto-myosin II arcs at the IS.  That said, when 

the cSMAC region was no longer actin-depleted in BB-treated cells, presumably due to 

inhibition of actin arc disassembly, LFA-1 clusters were still restricted to the pSMAC ring of 
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the IS.  This observation is inconsistent with the differential coupling model, and suggests 

that the “diffusion” barrier may not be actin-dependent.   

 Instead, we speculate that a physical barrier exists at the pSMAC-cSMAC border; 

possibly a large organelle that binds the cortical components of the TCR MC with high 

affinity.  The Golgi apparatus is a strong candidate, as it becomes repositioned to the center 

of the IS via association with the MTOC, and as TCR MCs are internalized at the cSMAC, 

and sorted into multivesicular bodies for eventual degradation (Lee et al., 2003; 

Stinchcombe et al., 2006; Vardhana et al., 2010).  We imagine that pre-Golgi vesicles 

become associated with TCR MCs and are transported between acto-myosin II arcs in the 

LM/pSMAC toward the IS center, where it merges with the repositioned Golgi apparatus to 

form the cSMAC.  In this scenario, the tight connection between the Golgi apparatus and 

TCR MCs at the cSMAC would act as a barrier to restrict movement of actin arcs and LFA-1 

clusters into the cSMAC, and possibly contribute to the close apposition of the MTOC to the 

IS during the docking phase of MTOC repositioning.  Live imaging of pre-Golgi vesicles, the 

Golgi apparatus, and TCR MCs and inhibition experiments targeting the association 

between TCR MCs and the Golgi apparatus need to be performed to test this hypothesis. 

 

V. How is dynein anchored at the IS cortex? 

 Different mechanisms of dynein recruitment to the IS have been suggested in 

previous reports.  Results from Poenie and colleagues suggest that dynein is recruited to 

the IS via association with ADAP at the dSMAC region (Combs et al., 2006).  On the other 

hand, a recent study by Saito and colleagues argued that dynein associates with TCR MCs 

during T cell activation, implying that dynein should localize to the cSMAC region of the IS 

(Yokosuka et al., 2005).  Our results are inconsistent with these proposed mechanisms of 

dynein recruitment, as we observe a uniform distribution of dynein at the IS, without 

preference for specific SMAC regions and without strong co-localization with TCR MCs. 
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However, as MTOC repositioning is dependent on TCR stimulation, and as proximal TCR 

signaling components are also implicated in MTOC repositioning, it is possible that dynein 

associates indirectly with TCRs at the IS.  Live imaging of cortical dynein with TCR adaptor 

proteins, such as SLP76 and LAT, and molecules involved in downstream TCR signaling, 

such as PKCθ, will be needed to address this question.  Lastly, to identify the cortical 

receptor for dynein at the IS in T cells, Jurkat cells bound to stimulatory substrates will be 

unroofed and rapidly fixed to retain the cortical dynein at the IS, and co-

immunoprecipitation-coupled mass spectrometry will be used to identify the associated 

proteins.   

 

VI. What is the mechanism of cortical force generation at the IS? 

 Studies of spindle positioning in yeast and C. elegans, and MTOC repositioning in 

migrating fibroblasts, have identified two mechanisms for MT pulling at the cortex in cells 

(Gundersen, 2002; Burakov et al., 2003; Manneville and Etienne-Manneville, 2006; Tanaka 

and Desai, 2008).  The first mechanism involves the pulling force driven by MT 

depolymerization coupled with MT plus end-attachment to the cortex.  This may be the 

major mechanism for asymmetric spindle positioning in the C. elegans embryo, where 

depolymerizing MT ends are held at the cortex via cortical attachment factors (Gundersen, 

2002; Kaltschmidt and Brand, 2002; Manneville and Etienne-Manneville, 2006). The second 

mechanism involves the pulling force driven by the minus end-directed movement of 

cortically anchored dynein motors along MTs.  Studies in budding yeast show that 

translocation of the nucleus and spindle into the bud neck occurs through such ‘MT capture 

and sliding’ mechanism, driven by dynein localized at the bud cortex via the cortical receptor, 

Num1 (Adames and Cooper, 2000; Gundersen, 2002).  However, recent in vitro results by 

Laan et al., indicate that dynein can also be involved in MT depolymerization-mediated force 

transduction, as cortical dynein bound on microfabricated barriers were shown to capture 
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MT plus ends and trigger MT depolymerization, resulting in a strong pulling force on MTs 

(Laan et al., 2012).   

 Currently, the mechanism of cortical force generation during MTOC repositioning in T 

cells is not yet known.  Since the two mechanisms of MT pulling (MT depolymerization vs. 

dynein pulling) require distinct configurations of cortically associated MTs (end-on vs. lateral), 

we will perform high resolution imaging of MTs at the IS using structured illumination 

microscopy to test the dominant mechanism of MT pulling during T cell activation.  Moreover, 

live-imaging of cortically associated dynein and MTs will allow us to observe MT plus-end 

capture or MT sliding events at the IS.  Lastly, we plan to perform laser ablation on cortically 

associated MTs to test whether net shrinking is observed (indicative of MT 

depolymerization-driven pulling) or whether net MT sliding is observed (indicative of dynein-

driven pulling) in ablated MTs at the IS.   
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