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ABSTRACT 

Michael Kelly Altenburg:  Mechanisms Underlying the Atherosclerosis Risk of 

Apolipoprotein E Isoforms in Humans 

(Under the direction of Nobuyo Maeda) 

 

Apolipoprotein E (apoE) is a ligand for the low density lipoprotein receptor (LDLR), 

both of which are well recognized determinants of atherosclerosis risk in humans.  In humans 

the APOE gene is polymorphic, with three alleles APOE2, APOE3, and APOE4 coding for 

the protein apoE2, apoE3, and apoE4.  Despite increased LDLR affinity, apoE4 is associated 

with elevated and apoE2 reduced cholesterol concentration compared to apoE3.  Mice that 

have had their endogenous apoE replaced with the human apoE’s do not replicate their 

human counterparts, and mice with apoE3 and apoE4 are similar to wildtype mice, yet those 

with apoE2 have drastically elevated lipids, a phenotype observed in only 5% of APOE2 

homozygous humans. Either by adenovirus-mediated or global overexpression, elevated 

LDLR decreased plasma cholesterol in mice with apoE2, but led to a dramatic accumulation 

of cholesterol-rich VLDL in mice with apoE4 on a western-type high fat diet.   

In addition to the liver, where both apoE and LDLR are highly expressed and 

contribute to plasma lipoprotein clearance, they are expressed in vascular cells and 

macrophages. Increases in LDLR expression in macrophages significantly increased 

cholesterol uptake in culture, more prominently with lipoproteins containing apoE4 than 

those containing apoE3.  In LDLR-deficient mice expressing the human apoE4 isoform, the 
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replacement of bone marrow cells with those expressing LDLR increased atherosclerotic 

lesions in a dose-dependent manner compared with mice transplanted with cells having no 

LDLR. Thus apoE4, but not apoE3, in macrophages enhances atherosclerotic plaque 

development in mice in an LDLR-dependent manner and this interaction may contribute to 

the association of apoE4 with an increased cardiovascular risk in humans.   

Higher LDLR expression decreased the secretion of apoE4 and increased its 

degradation in both macrophages and hepatocytes.  ApoE localization using apoE-GFP 

fusion proteins expressed by adenovirus in the liver of apoE-deficient mice revealed that 

apoE4 accumulated in the space of Disse, but apoE2 did not.  Using several genetic 

approaches, apoE4s association with increased atherosclerosis risk can be replicated in mice.  

ApoE4 binding to the LDLR in macrophages and localization in hepatocytes both contribute 

to apoE4 pathogenesis. 
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Hyperlipoproteinemia in Human Disease 

 Cardiovascular disease causes the death of approximately 1 million people in the 

United States each year [1].  According to the American Heart Association, elevated total and 

LDL cholesterol levels is one of seven primary risk factors linked to coronary heart disease 

(CHD).  It has been estimated that the apolipoprotein E (apoE) locus accounts for as much as 

10% of the variation of plasma cholesterol levels and that apoE4 is associated with a modest 

increase in cholesterol [2, 3].  One study estimated a 40% increased risk for CHD mortality 

for middle aged male apoE4 carriers compared to apoE3 homozygote or apoE2 carriers [4].  

Considering that 25% of the population carries at least one copy of the apoE4 allele, the 

impacts of its effects are significant.  Mice with human apoE that overexpress the LDLR 

approximate the relationship between apoE and atherosclerosis in humans.  Understanding 

the mechanism of human apoE4-induced atherosclerosis in mice may translate to 

understanding the disease in humans and discovering therapies for its intervention.    
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Lipoprotein Metabolism 

In mammals, there are two main sources of plasma lipoproteins (Figure 1.1). The 

absorption of dietary fats in the gut begins the exogenous pathway of lipoprotein formation.  

The enterocytes of the small intestine package triglycerides, cholesterol, and phospholipids 

into Chylomicrons (CM), which are then secreted into the mesenteric lymphatics, and empty 

into the subclavian vein and the circulation via the thoracic duct.  In the circulation, CM 

particles can acquire apoE and the apolipoprotein CI, CII, and CIII (apoCI, apoCII, and 

apoCIII) from other plasma lipoproteins, such as high-density lipoproteins (HDL) [5].  

Lipoproteins undergo processing in the plasma and their triglyceride content is hydrolyzed by 

lipoprotein lipase (LPL) in the capillary beds into free fatty acids (FFA) and glycerol.  Now 

smaller and more dense, these cholesterol-rich remnants can then be removed from the 

plasma by apoE binding the low-density lipoprotein receptor (LDLR), heparan sulphate 

proteoglycans, and the LDL receptor-related protein (LRP) [6].  Several hours after a meal, 

the CM production by the small intestine is exhausted and the liver becomes the main source 

of plasma lipoproteins.  This endogenous pathway transports lipids from the liver, in humans, 

as ApoB100-containing Very Low Density Lipoproteins (VLDL) particles that are secreted 

into the plasma through the space of Disse.  Similar to CM’s, newly secreted triglyceride-rich 

VLDL is processed by LPL in the peripheral circulation to VLDL remnants.  VLDL 

remnants can then be removed from the circulation by apoE binding to the LDLR.  If not 

removed, VLDL remnants can be further processed into LDL [7].  These small, dense, 

cholesterol ester-rich particles do not contain apoE and can be removed only by the lower 

affinity ApoB100 binding the LDLR [8]. The reduced affinity of ApoB100 LDL results in a 

greater plasma half-life for LDL than VLDL.   ApoE is also a constituent of HDL, a class of 

plasma lipoproteins that contains apolipoprotein A1 as its constitutive protein instead of 
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apoB as in the larger lipoprotein classes.  HDL is thought to mediate reverse-cholesterol 

transport (RCT); sending cholesterol from the peripheral tissues back to the liver via the 

cholesterol ester transfer protein (CETP) or directly through the scavenger receptor B-1 (SR-

B1) [9].  A key player in HDL formation is the ATP-binding cassette, sub-family A, member 

1 (ABCA1) protein which effluxes cholesterol and other lipids from cells to nascent HDL 

[10].  However in contrast to the long held RCT hypotheses, recent work with hepatic 

ABCA1 overexpression or deletion has revealed that the liver may be the source for most of 

the cholesterol in plasma HDL [11, 12].   
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Figure 1.1 Review of Lipoprotein Metabolism. Human lipoprotein metabolism is divided 

into two pathways: the exogenous pathway (left) which after dietary lipid absorption in 

enterocytes of the small intestine are packaged into apoB48 containing TG-rich large 

chylomicrons which are secreted into the lymphatic system (blue).  During fasting, the 

endogenous pathway (bottom left), the liver secretes apoB100 containing VLDL (both 

apoB48 and apoB100 are secreted in mice) which transport lipid derived from the liver.  

Chylomicrons and VLDL are both TG rich and can undergo lipolysis in the capillaries by 

lipases such as LPL.  While in the circulation these particles aquire apoE as well as various 

other apoproteins.  Loss of TG and surface constituents (phospholipid, apoproteins) 

decreases the size, and these smaller more dense cholesterol enriched remnants can, if they 

have sufficient apoE, be cleared by the liver via LDLR, LRP, or HSPG (bottom).  LDL in 

humans does not have apoE and must rely on lower affinity LDLR mediated apoB100 

clearance.  Increased particle residence time, such as that of LDL or apoE-poor remnants, 

increases the likelihood of modification and oxidative changes and subsequent uptake by 

intimal scavenger macrophages in developing atheromas and foam cell formation (lower 

right).  Efflux of cholesterol through ABCA1 and other transporters to HDL can remove 

excess cholesterol from macrophages delaying lesion development.  Most apoA1 and HDL 

are secreted from the liver (bottom). 
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ApoE in lipoprotein metabolism  

 ApoE is a 299 amino acid, 34 kDa protein found on the surface of most lipoproteins 

and is an important ligand for their receptor-mediated endocytosis from the circulation.  In 

humans apoE is polymorphic with three isoforms, apoE2, apoE3, and apoE4, which differ by 

the amino acids at positions 112 and 158.  ApoE2 has two cysteines, while apoE3 has a 

cysteine at 112 and an arginine at 158, and apoE4 has two arginines.  These amino acid 

changes are responsible for apoE2 having a reduced LDLR affinity and apoE4 an increased 

affinity compared to apoE3 [13-15].  Paradoxically, however, apoE2 is associated with 

reduced cholesterol and atherosclerosis risk, except for 5% of homozygotes who develop 

type III hyperlipoproteinemia [16].  In contrast, apoE4, despite its increased LDLR affinity, 

is associated with an elevated plasma cholesterol level and atherosclerotic risk [2, 3].  

Weisgraber, et al has shown that apoE4 has a higher affinity for large TG rich lipoproteins, 

especially VLDL, than apoE3  [17].  The increased risk associated with apoE4 is thought to 

reflect increased intracellular apoE4 mediated lipid delivery, leading to LDLR down-

regulation and accumulation of plasma LDL [3, 18, 19].  However, this has not been proven 

and is difficult to reconcile with both LDL and VLDL being able to bind the LDLR.  ApoE is 

involved in several different lipoprotein metabolic pathways.  Secreted apoE can redistribute 

to chylomicrons, VLDL, remnant lipoprotein particles, and HDL [6, 20].  Lipoprotein-

associated apoE can interact with many cell surface molecules, and can facilitate endocytosis 

via the LDLR, LDLR related protein (LRP), and heparan sulfate proteoglycans (HSPG) [6].  

Hepatocytes secrete lipoprotein-free apoE into the space of Disse, where it associates with 

chylomicron remnants in a process called secretion capture [21].  Accumulation of apoE on 

lipoprotein surfaces can inhibit lipolysis of triglycerides by lipases [22].  In addition to its 
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role in the catabolism of lipoproteins, increased apoE secretion is associated with increased 

VLDL triglyceride production [23].   ApoE can also initiate HDL particle formation [24].  

On cell surfaces, LPL mediates the hydrolysis of triglycerides in CMs and their conversion to 

CMRs.  CMRs, which become enriched with HDL-derived apoE, can then be internalized via 

binding of apoE and LPL to LRP.  The lipid core with apoB48 is targeted to late 

endosomes/prelysosomal compartments.  CMR surface remnants containing apoE with LPL 

and some lipids are retained in early endosomes to mobilize intracellular cholesterol.  Some 

apoE/cholesterol complexes with HDL or lipid poor apoA1 in these peripheral endosomes 

and can be recycled to the cell surface as apoE containing HDL.  In the postprandial state, 

secretion of apoE-HDL can facilitate the enrichment of CMRs with apoE and thereby ensure 

the efficient hepatic clearance of CMRs.  This HDL mediated transfer of apoE to facilitate 

CMR or VLDL remnants is likely to depend on apoE isoform differences in receptor binding 

and recycling.   ApoE affinity to the LDLR may be a key regulator of this process. 
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The LDL Receptor in Lipoprotein Metabolism 

The LDL receptor plays a vital role in lipoprotein metabolism.  The LDLR is a 

receptor for lipoproteins containing the ligands apoE and apoB100.  After binding the 

receptor, these particles are endocytosed via clathrin-coated pits.  The importance of this 

receptor is illustrated by the genetic deficiency of the LDLR, resulting in severe increases in 

low density lipoprotein (LDL) cholesterol and premature atherosclerosis known as familial 

hypercholesterolemia (FH) [25].  In 1974 Goldstein et al determined that elevated lipids in 

patients with FH were due to defects in a  cell surface receptor that has a high affinity for 

apoB and apoE, which they named the LDLR [26].  FH patients have an increase in 

atherosclerosis and early death from myocardial infarction.  Goldstein and Brown went on  to 

show that the cellular levels of the LDLR are feed-back regulated at the transcriptional level 

by concentrations of intracellular cholesterol  [26, 27] 

Mice lacking LDLR, like FH in humans, have elevated LDL and develop 

atherosclerosis.  Overexpression of the LDLR by adenovirus mediated gene transfer has been 

shown to reduce the cholesterol in LDLR knock out mice [28].  
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Species differences 

 Unlike humans, mice do not normally develop atherosclerosis because of key 

differences in lipoprotein metabolism.  For example, the average plasma cholesterol level of 

wild type mice on a regular mouse normal chow (NC) diet (4.5% fat, 0.022% cholesterol) is 

approximately 80mg/dl; most of this cholesterol is carried by HDL particles.   Indeed mice 

have very low levels of LDL and other atherogenic lipoproteins, such as remnants of diet-

derived chylomicrons and liver-derived VLDL.  This is in marked contrast to humans in 

which most of the plasma cholesterol (200 mg/dL) is associated with apolipoprotein B100 

(apoB) containing LDL particles.  These differences are often attributed to differences in 

lipoprotein metabolism between mice and humans. For example, approximately 70% of liver 

apoB mRNA in mice undergoes post transcriptional editing, with a corresponding production 

of apoB48-containing VLDL from the liver, while humans do not have hepatic editing 

activity and secrete only the LDL precursor, apoB100 containing VLDL [4].  While all 

mammals appear to have apoB editing activity in the small intestine, humans do not edit 

apoB mRNA in the liver, while mice do [29].  The notation apoB48 indicates that it contains 

only the N-terminal 48% of the 4536 residues of apoB100.  Consequently, apoB48 lacks the 

putative C-terminal LDL receptor-binding region of apoB100.   ApoB48 is generated by a 

unique RNA editing system where a premature stop codon is created in the apoB mRNA, by 

demethylation of a cytosine to a uracil residue.  This is done by an editing complex that 

contains apobec-1, the catalytic activity of the protein complex, and RNA binding proteins 

that increase the specificity [30].   Another important species difference is in transfer of lipids 

among different lipoprotein classes.  Mice lack cholesterol ester transfer protein (CETP) 

activity which can transfer cholesterol esters from HDL to VLDL [3].  Mice show little to no 
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activity of this enzyme and this results in the characteristically low levels of LDL cholesterol 

seen in mice, which instead transport cholesterol mainly in HDL particles and are resistant to 

atherosclerosis [31].  However, while mice have a less atherogenic profile than humans, the 

pathways for cholesterol transport and metabolism in humans and mice are sufficiently 

similar that mice with mutations or deletions in specific lipoprotein metabolism genes can 

produce human-like hyperlipidemia and atherogenesis.   
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Genetic Approaches to Studying apoE and the LDLR 

Mouse models 

Gene targeting has been used extensively over the past two decades to investigate in 

vivo gene function in mice.  Targeting has several advantages over traditional transgenic 

models, in that only mutations to the germ line generated by homologous recombination are 

selected, giving precise control over target copy number and genome location and 

expression.  This has resulted in “knocking out” specific gene functions by replacing coding 

gene sequences with a selectable marker gene duplication and gene replacement [32].  Gene 

replacement by homologous recombination allows one to change specific gene sequences 

while leaving other regions intact.  

 In the late 90’s our laboratory used gene targeting to replace the murine apoE gene 

with each of the three human apoE alleles[14, 33, 34].  The murine regulatory regions remain 

intact and the mice produce solely the human apoE isoforms (All mouse models used in 

experiments and their abbreviated names are listed in Table 1.1 below).  The resultant lipid 

profiles of these mice reflect their apoE LDLR affinity.  Mice with apoE2, which has less 

than 2% the LDLR affinity of apoE3, exhibit hallmarks of type III hyperlipoproteinemia and 

develop atherosclerosis on a normal chow diet (NC) [34].  Mice expressing apoE3 and apoE4 

had a more mild phenotype and, unlike their human counterparts, did not exhibit 

hyperlipidemia or develop atherosclerosis on NC or high fat western diet (HFW) [14, 33].    

Not long after the apoE-targeted mice were characterized we made mice that 

modestly overexpress a human Ldlr minigene in place of the murine Ldlr, via enhanced 

mRNA stability.  A fragment containing the human LDLR minigene was isolated from 

plasmid pMY3, which was used for generating LDLR transgenic mice by Yokode et al, and 
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was kindly provided by Dr. Masahiro Yokode, [35].  Message stability was increased by 

deleting two of the three 3' "AU-rich elements" in the 3’UTR that normally destabilize the 

mRNA transcript [36].  In addition, the human LDLR minigene contains the poly(A) addition 

signal sequences of the human growth hormone gene.  Homologous recombination between 

the endogenous locus and the targeting construct results in a human LDLR minigene that is 

expressed under the control of the endogenous promoter.  All 5'-regulatory sequences of the 

endogenous mouse locus are intact. Heterozygous mice, via stabilization of the Ldlr mRNA, 

express 2.5 fold higher total LDLR than wildtypes [37, 38].   

 Chimeras were generated from targeted ES cells and bred with C57BL/6 mice to 

obtain germ line transmission of the modified chromosome.  The genotype of the modified 

allele in the animals was determined by the presence of a 300bp PCR fragment produced by 

using the Neo specific primer. 

 Mice that expressed the human apoE’s were crossed to mice that were heterozygous 

for the human Ldlr minigene that results in the stabilized Ldlr mRNA, ultimately generating 

mice that were homozygous for human apoE’s and heterozygous for the stabilized human 

Ldlr (h).  All the mutant mouse strains used in this work were individually backcrossed at 

least 6 generations to the C57BL/6 genetic background before intercrossing.  Mice 

heterozygous for a targeted replacement of the mouse Ldlr gene with the stabilized human 

Ldlr minigene (Apoe+/+Ldlrh/+) [37] were bred to mice homozygous for replacement of the 

mouse apoE gene with either the human APOE*2,  APOE*3, or APOE*4 allele 

(Apoe2/2Ldlr+/+ , Apoe3/3Ldlr+/+ , and Apoe4/4Ldlr+/+) [14, 33, 34].  The littermates generated by 

crossing Apoe2/2Ldlr+/+ (2m) with Apoe2/2Ldlrh/+ (2h), Apoe3/3Ldlr+/+ (3m) with Apoe3/3Ldlrh/+ 

(3h) and Apoe4/4Ldlr+/+ (4m) with Apoe4/4Ldlrh/+ (4h) respectively, were used in experiments 
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as donors of bone marrow cells.  Mice with human APOE*3 and lacking LDLR (3ko) and 

mice with human APOE*4 and lacking LDLR (4ko) were generated by crossing either 

Apoe3/3 or Apoe4/4 mice with Ldlr-/- mice [39], and maintained as Apoe3/3 Ldlr-/- (3ko) or 

Apoe4/4 Ldlr-/- (4ko) respectively (see Table 1.1 for genotypes and nomenclature). 

 The phenotypes of the replacement mice show that the apoE isoforms behave 

similarly when physiologically regulated in humans and mice.  However, there are some 

important differences.  Although 2m mice exhibit features of type III hyperlipidemia, the 

phenotype is fully penetrant in these mice, while only 5-10% of 2/2 humans develop type III.  

The 4m mice have an increase in non-HDL cholesterol compared to 3m mice, but in mice the 

increase is in VLDL-cholesterol, not in LDL-cholesterol as in humans.  Furthermore, steady 

state apoB48 levels are increased in the 4m mice, while only steady state apoB100 levels are 

increased in 4/4 compared to 3/3 human subjects. Surprisingly, introduction of the Ldlrh 

allele into mice expressing human apoE isoforms reproduced the human-like phenotypes 

associated with apoE isoforms.  On a HFW diet, mice with apoE4 overexpressing the LDLR 

(Apoe4/4Ldlrh/+) have increased plasma VLDL/Chylomicron Remnants, decreased HDL 

cholesterol levels, and develop atherosclerosis, while mice with human apoE3 and the Ldlrh 

allele (Apoe3/3Ldlrh/+) have significantly decreased HDL cholesterols as well as total 

cholesterol levels and do not develop atherosclerosis.  Global overexpression of LDLR in 

mice with apoE2 (Apoe2/2Ldlrh/+) resulted in lower plasma cholesterol and the absence of 

atherosclerotic lesions [37-40].   
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Abb Genotype TC, Diet Athero 

2m Apoe2/2,  Human apoE2, wildtype (murine) LDLR 242±59, NC yes 

3m Apoe3/3 ,  Human apoE3, wildtype (murine) LDLR 75±26,   NC no 

4m Apoe4/4,  Human apoE4, wildtype (murine) LDLR 73±27,   NC no 

2h Apoe2/2Ldlrh/+ ,  Human apoE2, Heterozygous for stabilized (human) LDLR 172±43, HFW no 

3h Apoe3/3Ldlrh/+ ,  Human apoE3, Heterozygous for stabilized (human) LDLR 92±9, HFW no 

4h Apoe4/4Ldlrh/+ ,  Human apoE4, Heterozygous for stabilized (human) LDLR   199±17, HFW yes 

2- Apoe2/2Ldlr-/- ,  Human apoE2, LDLR Knockout 747±143, NC yes 

3- Apoe3/3Ldlr-/- ,  Human apoE3, LDLR Knockout 420±77,   NC yes 

4- Apoe4/4Ldlr-/- ,  Human apoE4, LDLR Knockout 340±82,   NC yes 

ee Apoe-/-,  apoE Knockout,  wildtype (murine) LDLR 455±82,  NC yes 

eehh Apoe-/-Ldlrh/h,  apoE Knockout, Homozygous for stabilized (human) LDLR 250±32,  NC yes 

eell Apoe-/-Ldlr-/- ,  apoE Knockout, LDLR Knockout 800NC yes 

TC= Total Cholesterol, NC= Normal Chow,  HFW= High Fat Western 
 

Table 1.1 Genotypes and cholesterol levels of mice used in this work. 
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Figure 1.2 Effect of LDLR level on lipoprotein distribution in mice with human apoE. Mice 

with apoE2 (left), apoE3 (center) and apoE4 (right) with no LDLR (bottom), wildtype 

(center), and overexpression of the huLDLR (top).  All mice were on a HFW diet.  

Lipoprotein distributions of cholesterol (solid lines) and triglycerides (dotted lines) within 

plasma lipoproteins separated by FPLC. 
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Adenovirus-Mediated Gene Expression 

Adenovirae are excellent tools for in vivo gene transfer. This is due to the ability of 

the adenovirus to infect non-dividing cells and to be concentrated to high titers (greater than 

1012 plaque-forming units (pfu)/ml). However, adenovirus–mediated expression of a 

transgene drops in vivo after 4-7 days due to host immune response [41].  A low level of 

adenoviral gene expression induces CD8 T lymphocyte-mediated removal of infected cells 

and CD4 T cell-mediated facilitation of B cell neutralizing antibody production.  

The adenovirae (Ad) are non-enveloped viruses packaged in an icosohedral capsid.  

The adenovirus genome is composed of eight transcriptional units; six are transcribed in the 

early phase of viral infection before viral DNA replication.  The E1 gene is the first gene 

transcribed after infection and its product is involved in the preparation of the viral 

productive cycle through interaction with cellular cyclins and activation of other viral genes 

through interaction with cellular transcription factors.  All the experiments outlined in this 

proposal utilize first-generation adenoviruses that were generated by deletion of the E1 

region as well as the E3 region, which is not required for infection.  Recombinant 

adenoviruses were generated by cloning the gene of interest, with an upstream promoter into 

a cloning site within the deleted E1 region of a shuttle plasmid.  This recombinant plasmid is 

transformed into bacteria that harbor the remaining adenoviral genome.  The two plasmids 

undergo homologous recombination, resulting in generation of the full length Ad5 genome, 

with the E1 region replaced by the inserted gene of interest.  These recombinant adenoviruses 

can be propagated in kidney 293 cells in which the missing E1 gene is expressed in trans.  

The recombinant adenovirus is isolated by CsCl gradient ultracentrifugation, dialyzed, 

tittered in 293 cells, and typically 1 x 109 pfu of virus is injected via tail vein into mice.  This 
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procedure results in greater than 99% reporter gene activity to be found in the liver, with 

more than 90% of all hepatocytes exhibiting gene expression [42].  However, with visual 

detection of GFP transgenes in the liver, adjustment of the pfu-injected was necessary to 

achieve greater than 90% hepatocytes infection and expression. 
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Bone Marrow Transfer 

Atherosclerosis now has established oxidative and immunologic pathways that may 

have larger roles in foam cell formation and lesion progression [43-45].  Hematopoietic stem 

cells (HSC), especially monocyte-derived macrophages, are the chief regulators of 

cholesterol efflux and conversely uptake and foam cell formation.  This role in lipid uptake is 

in addition to their important role in immunoregulation through chemokine secretion.  Bone 

Marrow Transfer (BMT) has been used successfully in many experiments to investigate 

macrophage-dependant pathways of the atherosclerotic process.  Reconstitution of lethally 

irradiated atherosclerosis models, such as Apoe-/-,  or Ldlr-/- mice, with bone marrow cells that 

are harvested from mice carrying additional mutations allows investigators to separate the 

function of gene products in the macrophage from their function in the liver and remaining 

tissues of the recipient animals.  This is important given the potential dual roles some 

proteins play in atherosclerosis development.   

 ApoE isoforms have established liver-dependant pathways that control atherosclerosis 

risk. Apoe-/- or Ldlr-/- BMT models support liver-independent atherosclerosis changes induced 

by both proteins.  Given their different atherosclerosis and disease associations it seemed 

logical to investigate if there were additional macrophage pathways behind this risk.  Many 

of the functions of apoE in vascular tissues are isoform-specific and have been implicated as 

contributing factors to the well-established increased atherosclerosis risk associated with 

apoE4 in humans.  ApoE has been shown to reduce atherosclerosis when expressed in the 

arterial wall without affecting lipid levels [46].  Human apoE3 expressed in macrophages 

binds LDLR and is internalized, and a proportion of the internalized apoE is recycled in both 

hepatocytes and macrophages [47, 48].  The apoE3 and apoE2 proteins carry either one or 
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two free cysteinyl groups respectively, and may function as a better antioxidant than apoE4 

protein which does not have a free cysteinyl group.  It has been shown in vitro that 

lipoprotein oxidation is apoE isoform-dependant [49, 50].   

 While they do not mimic a common pathologic phenomenon, human hematopoietic 

mutations occur only after stem cell therapy.  BMT is useful for the separation of function 

and analysis of HSC monocyte-derived macrophages from hepatic and whole body 

contributions.  This is important in delineating the specific contributions of proteins which 

have roles in inflammation and lipoprotein metabolism in the liver and macrophage such as 

apoE and the LDLR.  
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Abstract 

Objective— Increased expression of the low-density lipoprotein receptor (LDLR) is 

generally considered beneficial for reducing plasma cholesterol and atherosclerosis, and its 

downregulation has been thought to explain the association between apolipoprotein (apo) E4 

and increased risk of coronary heart disease in humans.  

Methods and Results— Contrary to this hypothesis, doubling Ldlr expression caused 

severe atherosclerosis with marked accumulation of cholesterol-rich, apoE-poor remnants in 

mice with human apoE4, but not apoE3, when the animals were fed a Western-type diet. The 

increased Ldlr expression enhanced in vivo clearance of exogenously introduced remnants in 

mice with apoE4 only when the remnants were already enriched with apoE4. The rates of 

nascent lipoprotein production were the same. The adverse effects of increased LDLR 

suggest a possibility that the receptor can trap apoE4, reducing its availability for the transfer 

to nascent lipoproteins needed for their rapid clearance, thereby increasing the production of 

apoE-poor remnants that are slowly cleared. The lower affinity for the LDLR of apoE3 

compared with apoE4 could then explain why increased receptor expression had no adverse 

effects with apoE3.  

Conclusions— Our results emphasize the occurrence of important and unexpected 

interactions between APOE genotype, LDLR expression, and diet.  

 



24  

Introduction 

Apolipoprotein E (apoE) plays a central role in the clearance of atherogenic 

lipoprotein particles from the circulation [6] The APOE gene in humans is polymorphic with 

3 common alleles, APOE*2, APOE*3, and APOE*4, which code for apoE2, apoE3, and 

apoE4. These isoforms differ by the amino acids at positions 112 and 158, where apoE2 has 

Cys at both sites, apoE4 has Arg at both sites, and apoE3 has Cys-112 and Arg-158. There is 

a well-established association between the APOE polymorphism and the risk for vascular 

diseases; individuals with APOE*4 allele have increased plasma cholesterol and an increased 

risk of atherosclerosis[2, 3].  Although these increases are modest, they have a large impact 

on the overall human population, because 25% carry 1 or 2 APOE*4 alleles. However, this 

association is paradoxical when one considers that apoE4 binds to the LDL receptor (LDLR) 

with equal or a slightly greater affinity than apoE3, the most common isoform [13-15].  

Additionally, individuals homozygous for apoE2, which binds to the LDLR with much less 

affinity than either apoE3 or apoE4, have low plasma cholesterol and are generally protected 

from atherosclerosis, except for the 5% to 10% of apoE2 homozygotes who develop type III 

hyperlipoproteinemia [6].  The present explanation of this paradox is that the high affinity of 

apoE4 for the receptor leads to increased apoE-mediated cholesterol uptake followed 

subsequently by downregulation of the LDLR gene. This then leads to reduced apoB100-

mediated uptake of LDL, accumulation of LDL cholesterol, and the vascular problems [3, 18, 

19].  Conversely, the low affinity of apoE2 is thought to lead to upregulation of LDLR. 

Although this explanation seems reasonable given that the loss of function of even one LDLR 

allele leads to markedly elevated plasma LDL and premature atherosclerosis,[25] it has not 

been proven.  
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In the present study, we find that, contrary to the expectations of this hypothesis, 

increased Ldlr expression in mice with human APOE*4 causes severe atherosclerosis with 

marked elevation of plasma cholesterol when they are fed a Western-type diet. Mice with 

APOE*3, on the other hand, are not harmed by the increase in Ldlr expression. Based on 

these studies, we propose an alternative mechanism that the increased amount of LDLR can 

trap apoE and deplete the pool of apoE transferable to nascent lipoproteins.  
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Methods 

Mice heterozygous for targeted replacement of the mouse Ldlr gene with the human 

LDLR minigene (Apoe+/+Ldlrh/+) [37] were bred to mice homozygous for replacement of the 

mouse apoE gene with either the human APOE*3 or APOE*4 allele (Apoe3/3Ldlr+/+ and 

Apoe4/4Ldlr+/+).[14, 33]The experimental animals were mostly littermates generated by 

crossing Apoe3/3Ldlr+/+ (3m) with Apoe3/3Ldlrh/+ (3h) and Apoe4/4Ldlr+/+ (4m) with 

Apoe4/4Ldlrh/+ (4h), respectively. Mice with human APOE*4 and lacking LDLR (4KO) were 

generated by crossing Apoe4/4 and Ldlr-/- mice (see Table 2.1 for the definition of the 

shorthand designation of the mice used in this study). All mice were hybrids between 129 and 

C57BL/6, having approximately one fourth to one eighth of their genome from 129 and the 

remaining three fourths to seven eighths from C57BL/6. Twelve- to 36-week-old mice of 

both sexes were used for experiments that were conducted under protocols approved by the 

Institutional Animal Care and Use Committees. Littermates were used in each experiment as 

much as possible. Mice were fed either normal mouse chow (NC) containing 4.5% 

(wt/wt) fat and 0.022% (wt/wt) cholesterol (Prolab RMH 3000, Agway Inc) or a high-fat 

Western-type diet (HFW) containing 21% (wt/wt) fat and 0.2% (wt/wt) cholesterol 

(TD88137; Teklad).  

Lipid and lipoprotein analysis. Animals were fed normal chow (Prolab 

Rat/Mouse/Hamster 300, Agway, Syracuse, NY) or Western type diet (TD88137, Harlan 

Teklad, Madison WI). For analysis of plasma lipids, 200-300µl of blood were collected from 

retro-orbital plexus into tubes containing of EDTA 2mM, gentamicin 1ug/ml and aprotinin 

0.1UI (final concentrations). Mice were fasted for four hours unless otherwise stated in the 

text.  Total cholesterol and triglycerides were determined by using reagents from Sigma 
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(401-25P Infinity Cholesterol reagent and 339-20 Triglyceride (GPO-TRINDER) 20 

respectively).  HDL was precipitated using the method described4 and measured using the 

cholesterol reagent described above.  Plasma pooled from at least 6 mice (100 µl) was 

fractionated by fast protein liquid chromatography (FPLC) using a Superose 6HR column 

(Pharmacia Biotech Inc. Piscataway, NJ) and lipid analysis of the fractions (500 µl) was 

performed using Sigma reagents.  One ml of pooled plasma from each group was also 

fractionated by sequential density ultracentrifugation as described.5  Lipoprotein fractions 

were isolated by tube cutting and dialyzed against phosphate-buffered saline. 

Apolipoproteins were separated in a denaturing 3-20% SDS-polyacrylamide gel. Relative 

apoprotein ratios were determined by image densitometry using NIH Image following 

Commassie Brilliant Blue staining of the SDS-PAGE, or after Western blotting. Goat anti-

human apo E antibody was from Calbiochem (La Jolla, CA), and rabbit anti-mouse apoB was 

a gift from the late Dr. Harshini de Silva at the University of North Carolina Charlotte. Liver 

lipids were extracted using an adaptation of the method. 
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Mice 

 

Genotype 

 

Definition 

 

3m Apoe3/3Ldlr+/+ Mice with human apoE3 

3h Apoe3/3Ldlrh/+ Mice with human apoE3 and increased LDLR

4m Apoe4/4Ldlr+/+ Mice with human apoE4 

4h Apoe4/4Ldlrh/+ Mice with human apoE4 and increased LDLR

4KO Apoe4/4Ldlr-/- Mice with human apoE4 and no LDLR 

2m Apoe2/2Ldlr+/+ Mice with human apoE2 

2h Apoe2/2Ldlrh/+ Mice with human apoE2 and increased LDLR

Table 2.1. Keys to the Shorthand Definition of Mice Described in This Study 
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Message analysis. RNA was prepared from the livers, harvested from mice fasted for 

four hours, using Trizol reagent (Life Technologies, Geitesburg, MD) with standard 

protocols. The primer extension strategy was designed to simultaneously study both 

messages utilizing a primer (GGAGCACGTCTTGGGGGGACAGCCT) that hybridized to a 

shared homologous sequence of exon 3 of the LDLR.   ddCTP was utilized to terminate 

extension reaction, resulting in the murine message extension of 5 base pairs while the 

human message  extension is 3 base pairs. The amount of RNA was determined in a 

phosphoimager analyzer and normalized by the amount of Gapdh mRNA that was 

simultaneously determined in each reaction.  

Remnant clearance.  The VLDL fraction (d<1.006)) from chow-fed apoE-deficient 

mice  or chow-fed 4KO mice and remnant fraction (d<1.02) from 4h mice on HFW diet were 

isolated by ultracentrifugation.  Approximately 1 mg of VLDL protein was radioidinated  

with 125I or with 131I.  A dose of 5x106 to 107 cpm was injected through the tail vein or 

through the external jugular vein of recipient 4h and 4m mice fed HFW for at least two 

weeks.  Mice were bled (50 µl) at time points indicated, and the radioactivity remaining in 

plasma was measured using a 1272 CliniGamma Gamma Counter (LKB, Turku, Finland) 

assuming that blood volume is 3.5% of total body weight. 

 

VLDL secretion and fat loading. 16 week old 4m and 4h mice were fed HFW diet for 

two weeks.  To examine VLDL secretion, female mice (n=8 for each group) were fasted for 4 

hours prior to injection of Triton WR1339 (Sigma, St. Louis, Mo) in saline solution at a dose 

of 0.7 mg/g body weight.  For fat tolerance test, female mice (n=5 for each group) were fed 

0.4 ml of a 1:1 (w/w) mixture of oil olive and dehydrated egg yolk (Sigma, St. Louis, MO) 



30  

by oral gavage.  Plasma was collected before and at time points indicated for cholesterol and 

triglyceride measurements.  Chylomicron secretion was estimated by fat loading on male 

mice (n=4 for 4h and n=4 for 4m) after iv injection of Triton WR1339 to inhibit the 

clearance. 

 

Atherosclerosis.   Mice were fed HFW diet for three months before euthanization 

with a lethal dose of 2,2,2-tribromoethanol.  The heart and the vascular tree were perfused at 

physiological pressure with 4% phosphate buffered paraformaldehyde, pH 7.4.  

Morphometric analysis of plaque size at the aortic root was made on four segments using 

methods described [14, 37].  

 

Statistical analysis.  All data were first analyzed with general linear modeling using 

JMP software (version 5, SAS Institute, Cary, NC) to assess effects of multiple variables of 

interest (e.g. gender, Apoe genotye and Ldlr genotype). Where interactions between variables 

were not significant, reduced models without interactions were used.   
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Results 

Increased Ldlr expression causes hypercholesterolemia in mice with human APOE*4 

We replaced the endogenous mouse Ldlr with a minigene coding for human LDLR (Ldlrh) 

that produces an mRNA with an increased half-life [37] and introduced 1 copy of this Ldlrh 

allele into mice expressing solely apoE3 (Apoe3/3) or apoE4 (Apoe4/4) [14, 33].  When mice 

were fed NC, the increase in Ldlr expression significantly lowered the plasma lipids in both 

Apoe3/3Ldlrh/+ (3h) and Apoe4/4Ldlrh/+ (4h) mice, relative to the Apoe3/3Ldlr+/+ (3m) or 

Apoe4/4Ldlr+/+ (4m) mice (Table 2). The Ldlr genotype had highly significant effects on total 

cholesterol (TC), triglyceride (TG), and HDL cholesterol (HDL-C) (P<0.0001). The effects 

of the Apoe genotype on TC and HDL-C were not significant, but females with apoE4 tended 

to have higher TG than those with apoE3 whereas males with apoE3 tended to have higher 

TG than those with apoE4 (P=0.0002 for Apoe, sex interaction). All classes of plasma 

lipoproteins including HDL were reduced in mice with increased LDLR, as assayed by FPLC 

analysis (Figure 2.1A,).   Feeding a HFW increased the plasma TC and the HDL-C levels of 

all of the mice (Table 2.2). Surprisingly, however, the increase in plasma TC was much 

greater in the 4h mice than in 4m mice (120±11 versus 32±5 mg/dL, P<0.0001). This increase 

resulted mainly from a dramatic accumulation of non-HDL particles that elute in the VLDL 

region during fast performance liquid chromatography (FPLC, Figure 2.1A). In contrast, the 

3h mice on HFW showed only a small increase in non-HDL particles, and they had 

significantly lower cholesterol levels than the 3m mice primarily because of reduced HDL. 

Thus, the Ldlr genotype has markedly different effects on the response to HFW in mice with 

apoE4 compared with those with apoE3.  
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Table 2.2 Plasma Lipids  
TC, mg/dL 

 
TG, mg/dL 

 
HDL-C, mg/dL 

 Mice Genotype 
(Apoe, Ldlr) 
 

Sex 
 

NC 
 

HFW 
 

NC 
 

HFW 
 

NC 
 

HFW 
 

3m (3/3, +/+) M 95±4 (14) 114±12 
(14)

79±6 (14) 49±5 (14) 77±4 (7) 102±16 (9)

 F 66±3 (18) 106±10 (9) 40±4 (18) 39±6 (9) 49±7 (5) 81±10 (9)
3h (3/3, h/+) M 53±4 (22) 72±8 (12) 44±5 (22) 22±3 (12) 22±2 (5) 31±3 (5)
 F 37±4 (11) 92±9 (7) 27±4 (11) 54±6 (7) 17±2 (7) 30±4 (7)
4m (4/4, +/+) M 78±3 (30) 124±8 (34) 54±2 (29) 63±5 (27) 68±6 (11) 89±8 (16)
 F 63±4 (16) 114±6 (28) 49±5 (16) 48±4 (26) 51±3 (11) 77±11 (8)
4h (4/4, h/+) M 52±4 (28) 187±19 

(22)
35±2 (29) 41±3 (17) 32±3 (11) 36±4 (6)

 F 53±4 (29) 199±17 
(27)

34±4 (29) 41±4 (22) 30±1 (7) 41±5 (4)

Sex effects  P=0.005 NS P<0.0001 NS P=0.001 NS 
Apoe effects  NS P<0.0001 P=0.04 NS NS NS 
Ldlr effects  P<0.0001 P=0.03 P<0.0001 P=0.003 P<0.0001 P<0.0001 
Apoe x Ldlr 
interaction 

 P=0.01 P<0.0001 NS NS NS NS 

Values are mean±SE. The effects of sex and 2 genotypes were estimated with three-way 
factorial analysis of pooled data for both sexes. Numbers of animals are in parentheses. 
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Figure 2.1. Plasma lipoproteins. A, FPLC of plasma lipoproteins of mice fed NC (○) and 

HFW (•). Plasma was pooled from at least 6 male mice of each genotype. Fractions 

containing VLDL, LDL, and HDL are indicated. B, SDS polyacrylamide gel electrophoresis. 

Plasma was collected from mice fed HFW and separated by ultracentrifugation. Lanes 1 

through 7 are density fractions d<1.006, 1.006<d<1.02, 1.02<d<1.04, 1.04<d<1.06, 

1.06<d<1.08, 1.08<d<1.10, and 1.10<d<1. 21,  respectively. Positions of apolipoproteins are 

indicated on the left. 
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The 4h remnants were mostly in very low to intermediate density fractions (d<1.02 

g/mL) by ultracentrifugation and were enriched in TC but poor in TG, with a TC/TG ratio of 

5.3 compared with 0.6, 0.6, and 1.2 in 4m, 3m, and 3h remnants, respectively. The 

apolipoprotein compositions of the VLDL fraction also differed significantly (Figure 1B). 

Densitometric analysis of at least 4 different preparations of the VLDL fractions showed that 

the 4h remnants had a marked reduction of apoE4 (x0.4) but increased apoB48 (x6.7) and 

apoAIV (x4.7) compared with 4m remnants. ApoE3 in the 3h remnants was also reduced 

(x0.5) compared with 3m remnants, but the increase in apoB48 (x3) was less prominent. The 

4h remnant fraction contains an average of 4.5 times more apoB proteins than that of the 3h 

mice and had a smaller apoE/apoB ratio (8±1% relative to that in 4m) compared with 36±4% 

in 3h fraction (P<0.005). Thus, the remnants of the 4h mice are cholesterol-rich, TG-poor, 

and apoE-poor compared with those of the 3h mice.  

The enrichment of apoAIV in the 4h remnants suggests that they are mainly from 

intestine-derived chylomicrons. Consistent with this possibility, plasma cholesterol levels 

declined steadily in fasting 4h mice but not in 4m mice (Figure 2.2A) and remnant particles 

were reduced in 4h mice fasted for 18 hours or longer. There were no significant differences 

in the TC and TG content in the livers of these mice. The relative amounts of apoE protein 

estimated by Western blot analysis indicate that the elevated LDLR expression increases 

liver-associated apoE by 30% but reduces plasma apoE by 60% regardless of their Apoe 

genotype. 
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Figure 2.2. Effects of increased LDLR expression on mice with human apoE4 on HFW. A, 

Fasting effects on plasma cholesterol levels in male 4h (●, n=8) and 4m (○, n=8) mice on 

HFW. Error bars are SEM. P<0.0001 by MANOVA. *P<0.001 and P<0.05 between 

genotypes by 2-tailed Student’s t test. B, Liver mRNA levels for the mouse Ldlr (black bars) 

and for the human Ldlr (white bars) expressed as percent of the Ldlr gene expression in 4m 

mice on NC. Numbers of animals (all males) are shown in the bottom of the bars. Error bars 

are SEM. P<0.05 for diet effect, P<0.0005 for Ldlr genotype effect by 2-way ANOVA. The 

effect of Apoe genotype is not significant. 
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The level of mouse Ldlr mRNA in the liver of 4h mice with a single copy of the gene 

was 61% of that in 4m mice with 2 copies (100%, Figure 2.2B). The human Ldlr message 

was 155% (total, 216%). The regulatory machinery of the Ldlrh allele is intact, because HFW 

downregulated the mouse and human Ldlr messages equally to 60% of their levels in mice 

fed NC. The total Ldlr mRNA level in 4h mice fed HFW was 2-fold higher than in 4m mice 

on HFW and a trace higher than in 4m mice fed NC. Thus, the marked hypercholesterolemia 

in the 4h mice fed HFW occurs despite their having high levels of LDLR expression. Ldlr 

expression is similar in the livers of 4h and 3h mice on HFW, indicating that the 

hypercholesterolemia in the 4h mice, but not the 3h mice, is not attributable to any 

differences in the diet-induced downregulation of Ldlr expression in the liver.  

 

In Vivo Lipoprotein Metabolism in 4h Mice  To estimate the production of VLDL, we 

injected Triton WR1339 into 4h and 4m mice fed the HFW to inhibit lipolysis and the uptake 

of TG-rich particles. The initial rate of TG accumulation in plasma was not different between 

the 4h and 4m mice (Figure 2.3A). Plasma TC increased steadily and equally in both mice. 

They also responded similarly to the fat loading. The rates of plasma TG increase after fat 

loading in 4h mice treated with Triton WR1339 (604±33 mg/dL per h, n=4) was similar to 

those in 4m mice (656±37 mg/dL per h, n=4). Thus, increased LDLR expression seems to 

have no effect on the chylomicron production. These data suggest that the dramatic 

accumulation of remnants in the 4h mice compared with 4m mice is not attributable to 

oversecretion of TG-rich particles. 
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Figure 2.3. In vivo lipoprotein metabolism. A, Triglyceride (left) and cholesterol (right) 

secretion of 4m (○ )and 4h (●) mice after inhibition of lipolysis with Triton WR1339. The 

overall rate of TG secretion was not significantly different between the genotypes by 

MANOVA. B, Clearance of remnants. Radioactivity remaining in the plasma after injection 

of I125-labeled VLDL obtained from 4h remnants into HFW-fed 4h males (n=10) and 4m 

males (n=9) was not significantly different at any time points except at 10 minutes (left, 

P<0.05). Clearance of the 131I radiolabeled apoE4-rich 4KO remnants (right) in 4h males 

(n=5) was significantly faster than in 4m males (n=5, P<0.0001 by MANOVA, and P<0.01 at 

all times up to 120 minutes). 
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To examine the ability of mice to clear cholesterol-enriched remnant particles, we 

isolated remnants (d<1.02) from HFW-fed 4h mice, radiolabeled the particles with 125I, and 

injected them into the jugular vein of 4h and 4m mice fed the HFW diet. Despite the 

increased Ldlr expression in the 4h mice, removal of the apoE-poor remnants from their 

plasma (0.04 pools/min) was not different from that in the 4m mice (0.04 pools/min, Figure 

3B, left). Similar results were obtained with remnants (d<1.006) isolated from apoE-deficient 

mice (not shown). To test whether the 4h mice having increased LDLR are able to clear 

apoE4-enriched remnants, we isolated lipoproteins (d<1.006) from mice expressing apoE4 

but lacking LDLR (4KO) that are markedly enriched with apoE but not with apoAIV (C. 

Knouff and N. Maeda, unpublished data). The plasma decay of 131I-radiolabeled 4KO 

remnants (Figure 2.3B, right) was significantly faster in the 4h mice (0.07 pools/min) than in 

the 4m mice (0.03 pools/min, P<0.0001). Thus, the 4h mice with genetically increased LDLR 

expression clear remnant lipoproteins at an enhanced rate as long as these particles are 

enriched in apoE.  

Taken together, these data indicate that the marked accumulation of remnant particles 

in the 4h mice is neither because they have increased secretion of nascent TG-rich 

lipoproteins nor because they have reduced clearance of apoE-poor remnants compared with 

4m mice. The inference from these data is that the conversion of large TG-rich particles to 

smaller cholesterol-rich remnants is enhanced in the 4h mice.  

Severe Atherosclerosis in 4h But Not 3h Mice on HFW Diet. Accumulation of 

remnant particles and reduction of HDL-cholesterol in HFW-fed 4h mice is a high-risk 

profile for atherosclerosis, even though the average plasma total cholesterol of these mice is 

only marginally elevated (200 mg/dL). We therefore evaluated the development of 
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atherosclerosis in mice fed HFW containing 21% fat and 0.5% cholesterol for 3 months. No 

plaques were found in any of the 3m mice (5 females) or 4m mice (8 females and 5 males) on 

HFW. Similarly, none of the 7 female 3h mice on HFW developed plaques (Figure 2.4A). In 

contrast, all of the 15 female and 7 male 4h mice on HFW developed significant plaques at 

the aortic sinus area (Figures 2.4B through 2.4D) with average plaque sizes of 59±15x103 

µm2 in females and 22±7x103 µm2 in males. Although the numbers and sizes of plaques 

varied in individual animals, most of the mice had mature complex plaques with fibrous caps, 

necrotic lipid cores, cholesterol clefts, and calcifications (Figures 2.4C and 2.4D). Thus, mice 

having human APOE*4 and a moderately increased amount of LDLR develop significant 

atherosclerosis when fed a diet similar in composition to that of Western societies.  
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Figure 2.4. Representative atherosclerotic plaques in the aortic sinus of mice fed HFW for 3 

months. A, 3h female; B, 4h female; C, 4h male; and D, 4h female. Frozen sections were 

stained with Sudan IVB for lipids and counterstained with hematoxylin. Black arrowheads 

indicate fibrous caps. Yellow and blue arrows designate calcification and cholesterol clefts, 

respectively. L indicates lumen; M, media; and A, adventitia. Scale bars=500 µm in a and b 

and 100 µm in c and d. 
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Discussion 

Our clear demonstration of hypercholesterolemia and atherosclerosis in mice that 

have human apoE4, but not apoE3, replicates in mice fed a Western diet the paradoxical 

association between APOE polymorphisms and the risk of atherosclerosis in humans. 

However, contrary to the currently accepted hypothesis that downregulation of LDLR in 

individuals with an APOE*4 allele is the cause of their high plasma cholesterol levels,[3, 18, 

19] we find that these isoform-specific effects are only present when LDLR is increased.  

How can increased LDLR expression ever be harmful? We suggest that this is 

because the LDLR, under some circumstances, traps sufficient apoE and the supply becomes 

inadequate to process a high dietary intake of lipids. Exchange of apoE onto nascent 

triglyceride-rich lipoproteins is a necessary prerequisite for their internalization via LDLR .  

The overall process that we envision is illustrated in Figure 2.5. ApoE4 may be particularly 

susceptible to this trapping because of its strong affinity for the LDLR. Transient particles 

that fail to acquire apoE4 are excellent substrates for lipases, and the resulting enhanced 

lipolysis will increase cholesterol-rich apoE-poor remnant particles in plasma [6]. We suggest 

that apoE3 is less susceptible to trapping than apoE4, perhaps because of its somewhat lower 

affinity for the LDLR [13, 14]. Consequently, the 3h mice have sufficient apoE3 to process 

nascent lipoproteins for rapid internalization. This differential transfer of apoE3 and apoE4 to 

lipoproteins can also explain our previous observation that in vivo clearance of exogenously 

introduced remnants is significantly faster in 3m mice than in 4m mice [14].  
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Figure 2.5. ApoE trapping by the LDLR. Triglyceride-rich chylomicrons (yellow) secreted 

by the intestine into lymph are remodeled to transient particles (orange) mainly in capillaries 

and in the space of Disse in the liver. This initial capturing phase is very rapid and does not 

depend on the LDLR; it probably involves heparan sulfate proteoglycans that facilitate 

lipolysis and apolipoprotein exchange. Enrichment with apoE is a requirement for the fast 

internalization of the transient particles primarily via LDLR-mediated endocytosis. 

Otherwise, the particles are additionally processed to cholesterol-enriched remnants (red) that 

are slowly cleared from the plasma. The lipid composition of the remnants in plasma depends 

on both Apoe genotype and the amount of LDLR. The processing of liver-derived VLDL 

particles is likely to be similar to that illustrated for chylomicrons. 
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Previously we reported that mice expressing solely apoE2 (2m) show features typical 

of type III hyperlipoproteinemia in humans  but that increased LDLR expression in these 

mice (2h) completely ameliorates their hyperlipoproteinemia [14, 34] According to our 

hypothesis, apoE2 with its very low affinity for the LDLR should be virtually free from 

trapping and should therefore be efficiently transferred to transient TG-rich particles. 

Although such an apoE2 enrichment of TG-rich particles is likely to increase their LDLR-

mediated internalization, it will also severely inhibit lipolysis and could account for the 

prominent accumulation of TG-rich remnants seen in the circulation of the 2m mice [14, 34] 

In the 2h mice, however, high LDLR expression tips the balance toward more internalization 

and lowers their plasma cholesterol.  

Clearly, additional studies are necessary to refine and test our proposed apoE trapping 

by the LDLR. For example, we do not know whether it occurs on the cell surface, as 

illustrated in Figure 2.5, or during intracellular trafficking [51, 52].  The word trapping 

should not be taken too literally; difference in the interaction between apoE and LDLR or 

their subsequent processing may result not only from differences in binding affinities but also 

from other properties influenced by the specific amino acids that differ among 3 isoforms. 

Interactions of apoE with other molecules, such as proteoglycans and hepatic lipase, that are 

also expressed on the basolateral microvilli of hepatocytes may also influence the apoE 

interaction with LDLR in an isoform-specific fashion. Published studies have shown that 

newly synthesized apoE is incompletely secreted and partially degraded in HepG2 cells in 

culture and a significant portion of apoE synthesized by macrophages undergoes rapid 

cellular degradation in a non-lysosomal compartment in a sterol-regulated manner [53, 54]. 

Although the role of LDLR in these processes has not been addressed, LDLR is known to 
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bind to newly synthesized apoE in macrophages and limits its secretion [55] LDLR 

expression in macrophages could also contribute to atherogenesis in an apoE isoform–

specific fashion. For example, a differential effect on cholesterol homeostasis in macrophages 

by apoE isoforms with apoE4 being least effective in promoting cholesterol efflux from 

macrophage has been reported [56].  Additionally, Linton et al have shown that C57BL/6 

mice receiving Ldlr-/- marrow developed 63% smaller lesions than mice receiving Ldlr+/+ 

marrow after dietary atherogenic stimuli, demonstrating that macrophage LDLR affects the 

rate of foam cell formation under conditions of dietary stress [57].  

Some comments are required on the relevance of our findings in mice to the effects of 

different APOE genotypes in humans. We note that 4h mice preferentially accumulate 

apoB48-containing lipoproteins of an intermediate density, whereas humans with the 

APOE*4 allele mainly have elevated levels of apoB100-containing LDL [3] This is not 

incompatible with our hypothesis, which predicts that trapping of apoE4 by the LDLR will 

hinder enrichment of VLDL remnants with apoE4, thereby leading to an increase in their 

conversion to LDL. Because the clearance of LDL particles mediated by binding apoB100 to 

the receptor is much slower than apoE-mediated VLDL clearance, we expect that the plasma 

cholesterol levels in individuals with apoE4 will be increased. Supporting this explanation, an 

increased conversion of VLDL to smaller remnants and a relative decrease in direct removal 

of VLDL in APOE*4 homozygotes compared with APOE*3 subjects have been demonstrated 

[58-60].  

Our finding that hypercholesterolemia is seen only when the 4h mice are fed HFW 

diet is also consistent with observations that human subjects carrying the APOE*4 allele are 

more responsive than others to LDL cholesterol–lowering by diet [61, 62]  In addition, some 
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though not all studies have found prolonged postprandial lipemia in normolipidemic subjects 

that carry APOE*4 [63, 64] . Bergeron and Havel have proposed that prolonged residence 

times of chylomicron and VLDL remnants in persons with APOE*4 raise the concentration 

of LDL by increasing the amount of VLDL converted to LDL. We additionally note that an 

apoE5 variant with lysine in place of glutamic acid at position 3 is also associated with 

hyperlipidemia and atherosclerosis and it has a twice-normal LDLR binding activity [17]. 

Finally, some although not all studies have shown that the cholesterol-lowering effects of 

statins, thought to be primarily mediated by increased LDLR, are apoE isoform–dependent. 

In these studies, individuals with the APOE*3/4 and APOE*4/4 genotypes had significantly 

smaller LDL cholesterol reductions in response to statin treatment than those with the 

APOE*3/3 genotype [65] Clinical studies clearly indicate that statin therapies reduce the risk 

of cardiovascular disease in humans, including those with apoE4, and no serious adverse 

effects on plasma lipids have been reported [66, 67].  Nevertheless, our observations suggest 

the need for additional studies of the interaction between the cholesterol-lowering effect of 

statins and genetic variations.  

In conclusion, our studies demonstrate that, contrary to the presently accepted 

downregulation of LDLR hypothesis, increased LDLR has harmful effects in Western diet–

fed mice expressing human apoE4 and causes marked accumulation of apoE-poor lipoprotein 

remnants in plasma and severe atherosclerosis. The alternative mechanism of apoE-trapping 

by LDLR explains our observations and offers a plausible explanation why apoE4, which has 

a greater affinity for the LDLR than apoE3, is associated with higher plasma cholesterol and a 

greater risk of atherosclerosis in humans. Our unexpected findings in mice predict important 

interactions between APOE genotype, LDLR expression, and diet.  
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Abstract 

Low-density lipoprotein receptor (LDLR) is critical for plasma lipoprotein clearance and 

a decreased LDLR expression has been thought to explain the increased plasma cholesterol and 

atherosclerosis risk in humans with apolipoprotein (apo) E4.  However, in mice expressing 

human apoE4 instead of their mouse counterpart, increased LDLR expression caused 

accumulation of cholesterol-rich apoE-poor chylomicron remnants, and resulted in significant 

atherosclerosis.  The production rates of chylomicrons and very low density lipoproteins (VLDL) 

were unchanged, as was the clearance rate of exogenously given apoE deficient remnants.  These 

data suggest an enhanced conversion of nascent lipoprotein particles to cholesterol-rich remnants 

that are poorly cleared.  We hypothesize that the negative effects from elevated LDLR are due to 

the high binding affinity of apoE4 for the receptor which reduces the availability of apoE4 for 

transfer to triglyceride rich lipoproteins (TRL), thereby inhibiting their rapid internalization.  
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Introduction 

The low density lipoprotein receptor LDLR plays a pivotal role in the removal of 

atherogenic lipoproteins from the circulation by removing lipoproteins containing the LDLR 

ligands apoB100 and apoE [1].  In humans, apoE is polymorphic with three isoforms, apoE2, 

apoE3, and apoE4.  These isoforms differ at positions 112 and 158, with apoE2 having two 

Cysteines, apoE3 cysteine at 112 and arginine at 158, and apoE4 two arginines.  ApoE2 has a 

reduced LDLR affinity and apoE4 an increased affinity compared to apoE3 [13-15].  

Paradoxically, apoE4 is associated with an elevated plasma cholesterol level and atherosclerosis, 

while apoE2 a reduction in cholesterol and risk in humans [2, 3].  The increased risk associated 

with apoE4 is thought to be due to elevated intracellular cholesterol from increased apoE4-

mediated lipid delivery, leading to down-regulation of the LDLR [3, 18, 19].  Here we describe 

the over-expression of the LDLR in mice with apoE4 and found increased cholesterol and 

atherosclerosis.  
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Material and Methods 

Mice homozygous for the replacement of APOE*4 allele (Apoe4/4Ldlrh/+) were bred to 

mice heterozygous for targeted replacement of the mouse Ldlr gene with the human Ldlr 

minigene (Apoe+/+Ldlrh/+ )Experimental animals were made by crossing Apoe Apoe4/4Ldlr+/+ 

(4m) to Apoe4/4Ldlrh/+ (4h).  Twelve to 36 week old mice of both sexes were used for 

experiments that were conducted under protocols approved by the Institutional Animal Care and 

Use Committees.  Littermates were used when possible.  Mice were maintained on either a 

normal chow (NC) 4.5%(w/w) fat and 0.022% (w/w) cholesterol (Prolab RMH 3000, Agway 

Inc., Syracuse, NY) or a high fat Western diet (HFW) containing 21% fat and 0.2% cholesterol 

(TD88137; Teklad, Madison WI). 
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Results 

To examine the effects of LDLR expression level on mice with apoE4, mice homozygous 

for the replacement of APOE*4 allele (4m) were bred to mice heterozygous for targeted 

replacement of the mouse Ldlr gene with the human Ldlr minigene (4h) that results in a 

stabilized Ldlr mRNA [4-7].  Total mRNA for LDLR in 4h mice was 2.3 times that of 4m mice.  

On normal chow (NC), plasma cholesterol in 4h mice was about one third that of 4m mice, 

resulting from reduced HDL cholesterol.  When fed a high fat Western diet (HFW), 4h mice 

became markedly hypercholesterolemic with accumulation of apoE-poor, but cholesterol 

enriched, particles in their plasma predominantly in their chylomicron/very low density 

lipoproteins (VLDL) remnant (1.006<d<1.02) fractions [7].  Plasma lipoprotein fractions from 

4m mice fed HFW diet did not change before and after fasting (Figure 3.1).  In contrast, fasting 

18 h almost completely eliminated these 4h remnants, suggesting that these particles are derived 

primarily from the diet.  Interestingly similar prolonged postprandial lipemia has also been 

observed in humans with apoE4[68]. 
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Figure 3.1.  Ultracentrifugation Cholesterol distribution in apoE4 mice with elevated LDLR. 

(mg/dl) in UC fractions before (shaded) and after an 18 hour fast (white).  Plasma was pooled 

from HFW fed 4m (n=5) and 4h (n=5) and separated by ultracentrifugation into density fractions.  
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Figure 3.2. Triglyceride secretion of 4m (open symbol) and 4h (closed symbol) mice after 

inhibition of lipolysis and uptake with Triton WR1339.  Mice (n=4) after olive oil gavage 

reflects VLDL and chylomicron secretion (circles).  VLDL secretion in mice (n=4) fasted 4h 

(squares).  The difference between the top and bottom reflects chylomicron production 
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Triglyceride secretion was indistinguishable in 4m and 4h mice, suggesting that the 

VLDL production from the liver is the same. When mice were gavaged with a 200ul olive oil 

bolus immediately after Triton WR 1339 injection, the rate of TG accumulation after gavage was 

also the same in both 4m and 4h mice (Figure 3.2).  These results indicate that the chylomicron 

secretion there was no significant difference in clearance of remnant particles between 4m and 

4h mice (Figure 3.3).  Therefore, the elevated cholesterol associated with increased LDLR in the 

4h mice is not due to delayed clearance of cholesterol-rich apoE-poor remnants.  The inference 

from these data is that the conversion of nascent triglyceride-rich lipoproteins (TRL) to apoE-

poor remnants is increased in 4h mice. 
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Figure 3.3.  Clearance of apoE-/- VLDL in 4m and 4h mice.  Radioactivity remaining in the 

plasma after injection of  I125 labeled VLDL into HFW fed 4m and 4h mice.  There is no 

significant difference in clearance between 4m and 4h mice. 
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Discussion 

ApoE is normally associated with various proteins and proteoglycans on the surface of 

capillaries and the hepatic space of Disse where it can be transferred to circulating lipoproteins. 

We propose that the increased LDLR can “trap” apoE protein and limit its transfer to circulating 

nascent lipoproteins, which in turn reduces the apoE-mediated removal of larger particles and 

forces their remodeling to slowly cleared remnants.  The clearance of these cholesterol-rich apoE 

poor remnants is equally slow in both 4m and 4h and is seemingly LDLR-independent. The 

higher affinity of apoE4 for the receptor may make it more susceptible to trapping than apoE3 

and apoE2.    

Thus mice expressing human apoE isoforms have revealed important interactions 

between apoE genotype, LDLR expression, and diet.  Contrary to the currently accepted 

hypothesis that increased atherosclerosis risk in humans with apoE4 is due to down-regulation of 

LDLR, we found that increased LDLR has adverse effects on mice expressing apoE4. Our 

proposed mechanism of apoE4 trapping by LDLR is likely to be contributing to the paradoxical 

association between apoE4 and increased atherosclerosis risk.  We expect that humans vary in 

their basal expression of LDLR, and its levels influence the atherosclerosis risk differently 

depending on the apoE genotype (Figure 3.4).  Control of diet would then be more important in 

individuals with apoE4 than those with apoE2 or apoE3 when the LDLR level is relatively high.   
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Figure 3.4. Interaction between apoE isoforms and LDLR level.  On the left-hand side are mice 

expressing the different apoE isoforms with a relatively low wild-type LDLR level.  On the 

right-hand side are the same mice with elevated LDLR level.  We suggest that the human LDLR 

level mean is centered between the extremes in our mice 
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Abstract 

Apolipoprotein E (apoE) and the low density lipoprotein receptor (LDLR) are well 

recognized determinants of atherosclerosis. In addition to hepatocytes, where both are highly 

expressed and contribute to plasma lipoprotein clearance, they are expressed in vascular cells and 

macrophages. In this study, we examined the effects of human apoE isoforms and LDLR levels 

in atherogenic pathways in primary macrophages ex vivo and atherosclerosis development after 

bone marrow transfer in vivo using mice expressing human apoE isoforms and different levels of 

LDLR expression. Increases in LDLR expression significantly increased cholesterol delivery into 

macrophages in culture, and the effects were more prominent with lipoproteins containing apoE4 

than those containing apoE3. Conversely, increased LDLR expression reduced cholesterol efflux 

in macrophages expressing apoE4 but not in macrophages expressing apoE3. Furthermore, 

apoE3 protected VLDL from oxidation in vitro more than did apoE4. In LDLR-deficient mice 

expressing the human apoE4 isoform, Apoe4/4 Ldlr–/–, the replacement of bone marrow cells with 

those expressing LDLR increased atherosclerotic lesions in a dose-dependent manner compared 

with mice transplanted with cells having no LDLR. In contrast, atherosclerosis in Apoe3/3 Ldlr–/– 

mice, expressing the human apoE3 isoform, did not differ by the levels of macrophage LDLR 

expression. Our results demonstrate that apoE4, but not apoE3, in macrophages enhances 

atherosclerotic plaque development in mice in an LDLR-dependent manner and suggests that this 

interaction may contribute to the association of apoE4 with an increased cardiovascular risk in 

humans.  
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Introduction 

Elevated levels of cholesterol in plasma, carried by remnant particles of very low density 

lipoproteins (VLDL) and low-density lipoproteins (LDL), are well known risk factors for 

atherosclerosis.  The bulk of these atherogenic lipoproteins are cleared from the circulation by 

the LDL receptor (LDLR) in the liver with apolipoprotein E (apoE) and apoB100 as ligands.  

There are three common apoE isoforms in humans: apoE2, apoE3, and apoE4, each having 

distinct influences on both lipid metabolism and atherogenesis in humans [6].  Possession of at 

least one copy of the APOE*2 allele is associated with higher plasma apoE and triglyceride but 

lower LDL cholesterol levels and atherosclerosis risk when compared to APOE*3 homozygotes 

[6].  In contrast, the presence of at least one APOE*4 allele is associated with lower plasma 

apoE, increased LDL cholesterol, and a greater risk of coronary artery disease than APOE*3 

homozygotes.  This association is thought to be mainly due to differences in lipoprotein 

clearance and is counterintuitive considering the LDLR affinity of apoE2 is lower while the 

affinity of apoE4 is slightly higher than apoE3 [13, 14].   

To gain insights into the mechanisms underlying the relationship between atherosclerosis 

risk and apoE isoform in humans, we previously made mice expressing human apoE2, apoE3, or 

apoE4 in place of the endogenous mouse apoE [14, 33, 34].  Notably, the atherosclerosis risk 

associated with the resulting mice was different from that in humans; mice with apoE2 had 

increased plasma lipids and develop atherosclerosis while mice with apoE3 and apoE4 were 

normolipidemic and resistant to atherosclerosis.  To further test whether the apoE isoform-

dependent atherosclerosis risk is affected by the LDLR expression, we also developed mice in 

which the endogenous mouse Ldlr gene was replaced with a gene (hLdlr) coding for human 

LDLR.  The transcriptional regulation of the hLdlr gene was normal but the steady state levels of 
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its mRNA in the liver were elevated because the transcripts carry a more stable 3’ untranslated 

region (UTR) sequence than normal.  Somewhat unexpectedly, we found that, when this hLdlr 

allele was introduced into mice expressing human apoE isoforms, physiologic overexpression of 

the LDLR was protective in mice with apoE2 but caused severe atherosclerosis in mice with 

apoE4, recapitulating the associations between apoE isoforms and atherosclerosis risk seen in 

humans [39, 69].  These data suggest that the LDLR apoE interaction is central to the increased 

atherosclerosis risk associated with apoE4.  

A substantial portion of the atherosclerosis risk associated with apoE4 is likely due to its 

hepatic metabolism by the LDLR and the resultant changes to plasma lipids.  However, there is 

ample in-vitro evidence that apoE’s interaction with the LDLR in the liver may not be entirely 

responsible for the risk of coronary artery disease associated with apoE4 in humans [50, 56, 70].  

Both ApoE and the LDLR are expressed in many cell types and are thought to play roles in the 

atherosclerotic process beyond their role in lipoprotein clearance [71].  The effects on 

atherogenesis of apoE isoforms and levels of LDLR in extrahepatic tissues, for example in 

macrophages, are difficult to study in vivo because their combined effects on plasma lipids are 

confounding.   

Herein, we address the effect of LDLR expression level and human apoE3 and E4 

isoforms on lipoprotein uptake and efflux in macrophages isolated from mice having human 

apoE isoforms and different levels of LDLR expression.  We also examined in vivo whether the 

interactions between apoE and LDLR in macrophages, independent of global LDLR expression, 

affect atherosclerosis after bone marrow transfer (BMT) in  mice expressing human apoE3 or 

apoE4 and lacking LDLR (3ko or 4ko) [72].  We found that the expression of LDLR in 

macrophages directly correlated with the extent of atherosclerosis in mice with human apoE4.  In 
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contrast, macrophage LDLR expression did not affect atherosclerosis in mice expressing apoE3.  

These results indicate that apoE4 exerts adverse effects on bone marrow derived cells in the 

vessel wall in an LDLR dependent manner and may contribute to its pathogenesis.   
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Material and Methods 

Mice - All the mutant mouse strains used in this work were individually backcrossed at 

least 6 generations to C57BL/6 genetic background before intercrossing.  Mice heterozygous for 

a targeted replacement of the mouse Ldlr gene with the stabilized human Ldlr minigene 

(Apoe+/+Ldlrh/+) [37] were bred to mice homozygous for replacement of the mouse apoE gene 

with either the human APOE*3 or APOE*4 allele (Apoe3/3Ldlr+/+ and Apoe4/4Ldlr+/+) [14, 33, 34]. 

The littermates generated by crossing Apoe3/3Ldlr+/+ (3m) with Apoe3/3Ldlrh/+ (3h) and 

Apoe4/4Ldlr+/+ (4m) with Apoe4/4Ldlrh/+ (4h) respectively, were used in experiments as donors of 

bone marrow cells.  Mice with human APOE*3 and lacking LDLR (3ko) and mice with human 

APOE*4 and lacking LDLR (4ko) were generated by crossing either Apoe3/3 or Apoe4/4 mice with 

Ldlr-/- mice [39], and maintained as Apoe3/3 Ldlr-/- (3ko) or Apoe4/4 Ldlr-/- (4ko) respectively (see 

Table 3.1 for genotypes and nomenclature).  Mice were fed either normal mouse chow (NC) 

containing 4.5% (wt/wt) fat and 0.022% (wt/wt) cholesterol (Prolab RMH 3000, Agway Inc) or a 

high-fat Western-type diet (HFW) containing 21% (wt/wt) fat and 0.2% (wt/wt) cholesterol 

(TD88137; Teklad).  The animals were handled under protocols approved by the Institutional 

Animal Care and Use Committees of the University of North Carolina–Chapel Hill. 
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Table 4.1 Genotypes of mice  

Mice Genotype Description 

3m Apoe3/3, Ldlr+/+ human apoE3 

3h Apoe3/3, Ldlrh/+ human apoE3 and increased LDLR 

3ko Apoe3/3, Ldlr-/- human apoE3 and no LDLR 

4m Apoe4/4, Ldlr+/+ human apoE4 

4h Apoe4/4, Ldlrh/+ human apoE4 and increased LDLR 

4ko Apoe4/4, Ldlr-/- human apoE4 and no LDLR 
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Peritoneal Macrophage Isolation - Macrophages (MPM) were obtained from the 

peritoneal cavity of mice 4 days after intra-peritoneal injection of 1 ml of 4% (w/v) thioglycolate 

(Becton Dickinson). The cells obtained were either directly used for gene expression analyses 

(below) or washed with Ham's Nutrient Mixture F10 media (F10), spun at 1000g for 5 minutes 

and plated in 12-well plates at a density of 6 x 105 cells/well in F10 media supplemented with 

10% Fetal Bovine Serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine.  

Cells were washed 2 hours later to remove non-adherent cells.  Cells were cultured in media 

without FBS for 24 hours prior to experiments. 

 

Lipoprotein Uptake - LDL was isolated from human plasma as described [69].  Mouse 

VLDL fractions enriched with human apoE3 or apoE4 were isolated from pooled plasma of 3ko 

or 4ko mice respectively by ultracentrifugation at d<1.006.  Lipoproteins were labeled with 1,1′-

dioctadecyl-3,3,3′,3′- tetramethylindocarbocyanine perchlorate (DiI C18; Molecular Probes Inc., 

Eugene, Oregon, USA), as described by Stephan and Yurachek [73].  Macrophages in culture 

were washed and incubated in F10 medium without FBS for 24h, followed by incubation with 

medium containing 1µg/ml of DiI -labeled human LDL or mouse VLDL.  After 2hrs, cells were 

washed with fresh medium and fluorescence was observed with an IX70 inverted microscope 

(Olympus) equipped with a filter set for Texas red (exciter 560/55, dichroic 595, emitter 645/75; 

Chroma Technology Corp).  Fluorescence pixel intensity of each cell was recorded with a SPOT 

RT Slider digital camera, and analyzed with SPOT version 4.0.9 (Diagnostic Instruments) and 

ImageJ 1.33u (NIH) software.    
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Cholesterol Efflux- MPM were cultured 24 hrs in F10 medium without FBS.  Cells were 

radio-labeled by incubating with 2 µCi/ml [3H] cholesterol (Perkin Elmer) for 24hrs. They were 

then washed and further incubated for 24hrs with F10 media with or without 10 µg/ml of 

apolipoprotein A-I (apoA-I) protein (Sigma).  Following incubation, medium was removed, spun 

at 12,500 g for 15 min, and assayed for radioactivity. Cells were washed with ice-cold PBS, 

lipids were extracted with isopropanol for 4 hrs, and assayed for radioactivity.  Radiolabel in the 

medium and the cellular isopropanol extract was measured, and percentage effluxed was 

calculated as the ratio of radioactivity in the medium divided by the total (cells + media).  To 

analyze efflux of cholesterol from cholesterol-loaded foam cells, MPM were incubated with 

acetylated human LDL (AcLDL) and 2 µCi/ml [3H]-cholesterol for 24 hrs, and efflux was 

measured after 16 hrs.  LDL (density1.019-1.063 g/ml) was acetylated by acetic anhydride [74]. 

 

Western blot - To measure ApoE protein content, MPM in culture were washed and 

cultured in lipid free F10 medium.  After 24 hrs, apoE protein amount associated with cells and 

in the medium was a measured using Western blot with antibody against human apoE 

(Calbiochem).  Protein loading was controlled by the amount of tubulin using anti-tubulin 

antibody (Sigma) and gel to gel control for densitometric analysis was done with a standard 

amount of apoE. 

 

Oxidative Stress- VLDL (1 µg protein) from the 3ko or 4ko mice was incubated with 

10µM CuSO4 as described [49].  Oxidation and the increase in the formation of conjugated 

dienes were measured by recording their absorbance at 234 nm every 20 min for 3hrs.  The lag 

time was determined graphically.  Amounts of thiobarbituric acid-reactive substances (TBARS) 
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in plasma, VLDL, and cultured media were assayed as described [49].  MPM were cultured with 

VLDL isolated from apoE deficient mice (50 µg per ml F10 medium) for 24hrs. Oxidized VLDL 

was prepared by incubating VLDL in 10µM CuSO4 for 24 hrs. 

 

Gene Expression - RNA was extracted from MPM using RNAeasy kit (Qiagen, Valencia, 

California, USA) according to the manufacturer’s protocol, either directly from peritoneal cells 

of mice that underwent BMT or cultured MPM from mice fed HFW diet.  Cultured macrophage 

cells were incubated with F10 media or F10 media + 50 µg/ml apoE-deficient VLDL for 16hrs.  

Real-time RT-PCR amplifications (8) were performed in a 96-well plate in the ABI Prism 7700 

sequence detector (PE Biosystems) in a total volume of 30 µl, which included 10 µl of RNA 

sample from the ABI Prism 6700 plus 20 µl of a reaction mixture. Each RT-PCR amplification 

was performed in duplicate: 30 min at 48°C for the RT reaction, then 10 min at 94°C, followed 

by a total of 40 temperature cycles (15 sec at 94°C and 1 min at 60°C). During the amplification, 

the fluorescence of FAM (or TET), TAMRA, and ROX (a passive reference dye) was measured 

by the 7700 sequence detector in each well of the 96-well plate.  To determine total Ldlr mRNA 

levels, a primer probe system specific for murine exon 1, which is also present in mice targeted 

for the hLdlr, was used [37].   

 

Bone Marrow Transfer - Bone marrow cells were collected from the femurs and tibias of 

donor male mice by flushing with F10 media.  Recipient female mice, 6- 8 weeks of age, were 

lethally irradiated (9.5 Gy), and injected with 2x106 bone marrow cells in 0.2 ml medium 

through tail veins.  For 2 weeks after transplantation, mice were given drinking water acidified to 

pH 2.0 by HCl and containing 100 mg/L of neomycin.  Mice were fed a HFW diet for 3 months. 
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 Plasma Lipids, Lipoprotein Analysis - Plasma was isolated, and total cholesterol (free 

and esterified), and triglycerides were measured as described previously [39]. Lipoprotein 

distribution in pooled plasma samples (100 µL) was analyzed by fast protein liquid 

chromatography (FPLC) using a Superose 6 HR10/30 column (Pharmacia Biotech Inc., 

Piscataway, New Jersey, USA).   

 

Evaluation of Atherosclerotic Lesions - BM recipient mice were fed a high fat western 

diet (HFW) for 12 weeks before sacrifice. Mice were perfused through the apex of the left 

ventricle with 4% paraformaldehyde under physiological pressures. Segments of the aortic sinus 

were embedded, and sectioned, and the size of atherosclerotic plaques in aortic roots were scored 

as described previously [75].  

 

Statistical Analysis - The statistical significance of genotype effects were analyzed by 

using ANOVA (JMP software; SAS Inc., Cary, North Carolina, USA). Tukey-Kramer HSD was 

used for post-hoc pair-wise comparisons. 
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Results 

Downregulation of the LDLR Expression by Lipid in Macrophages - Our previous work 

[37, 39] showed that the 3’UTR modification within the hLdlr -allele made its transcripts in the 

liver more stable than the normal mouse allele, but the hLdlr -allele retained the transcriptional 

repression in response to dietary cholesterol intake. To test whether the expression of the hLdlr - 

allele is also normally regulated in macrophages by exogenous lipid, we isolated MPM from 3m, 

3h, 4m and 4h mice (see Table I) and placed them in culture. Both 3h and 4h MPM cells cultured 

for 16 hrs without VLDL had higher LDLR expression than 3m and 4m MPM cells by 

approximately 3-4 fold (Fig 4.1, p≤0.0001).  The levels of Ldlr mRNA decreased in all MPM 

cells when they were incubated with apoE-deficient VLDL for 16 hrs, and the decrease was 

proportional whether cells had wildtype or elevated LDLR.  However, cells with apoE4 had a 

greater proportional decreases in LDLR expression compared to cells with apoE3.  Thus the 

hLdlr gene in macrophages retains its normal feedback response to increased intracellular lipid 

and can be downregulated by high levels of lipid, but its transcripts remain 2-3 fold higher than 

the wildtype Ldlr mRNA.  
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Figure. 4.1. Expression of the Ldlr gene in the primary culture of mouse peritoneal 

macrophages.  MPM from 3m, 3h, 4m, and 4ko mice were cultured in lipid free F10 medium 

with or without 50 µg/ml of VLDL isolated from apoE-deficient mice for 16 hours.  Total 

mRNA amount for the Ldlr gene was measured by RT-PCR, using the exon 1 sequence that is 

common between wild type mouse allele and hLdlr allele, normalized with the beta actin 

expression and shown as expression levels of 3m equal to 100%.  White bars indicate expression 

in cells cultured with VLDL and black bars indicate without VLDL. *p≤0.05, ***p≤0.0005 for 

effect of VLDL , and ### p≤0.0005 for the effect of LDLR with Tukey-Kramer HSD.  
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LDLR Expression and Lipoprotein Uptake in Macrophages – To test whether increased 

expression of the LDLR in macrophages increases uptake of lipoproteins we isolated MPM from 

4ko, 4m, and 4h mice and incubated them with DiI-labeled human LDL in culture.  After two 

hours, intracellular fluorescent intensity in 4h macrophages was twice that of 4m macrophages 

and three times higher than 4ko cells (Figure 4.2A), demonstrating that the LDL uptake by 

macrophages directly correlates with LDLR expression. In hyperlipidemic mice, as well as 

humans, lipoprotein particles accumulate not only in LDL fractions but also in VLDL fractions. 

For example, in the plasma of LDLR -/- mice with human apoE, VLDL particles are enriched 

with cholesterol and triglyceride, as well as apoE protein [69].  We therefore incubated the MPM 

with VLDL fractions enriched in apoE3 or apoE4 from 3ko and 4ko mice.  Uptake of the mouse 

apoE3 enriched VLDL particles by 3h MPM was modestly but significantly increased compared 

to that by 3ko MPM (9%, p=0.02, Figure 4.2B). Uptake of apoE3 enriched VLDL by the 4h 

MPM was not different from the uptake by the 4m MPM.  In marked contrast, both 3h and 4h 

MPM incorporated significantly more apoE4 enriched VLDL than 3ko and 4ko MPM (33%, 

p≤0.0001, and 26%, p≤0.0001, respectively) (Figure 4.2C).  This suggests that the apoE isoform 

present on the VLDL particle and the LDLR in the macrophages, but not macrophage apoE, 

influences uptake, and that apoE4 in the particles promotes VLDL uptake more than apoE3.  

Taken together, the data suggest that increased LDLR in macrophages by mRNA stabilization 

causes increased uptake of LDL particles as well as VLDL particles, and the VLDL uptake 

would be more pronounced when the particles contain apoE4 rather than apoE3. 
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Figure 4.2.  Lipoprotein uptake. (A)  MPM from 4ko, 4m, and 4h mice were cultured and 

incubated for 2hr with 1µg/ml DiI labeled human LDL. Cells were washed three times with PBS 

and fluorescent intensity was measured using NIH Image J.  (B) MPM from 3ko, 3h, 4ko and 4h 

mice were incubated for 2hrs with 1µg/ml each of DiI labeled 3ko VLDL, or (C) 4ko VLDL.  

Pixel intensities reflecting VLDL uptake were measured from four wells per experiment with 

cells pooled from at least 3 mice of each group, and averages of three experiments are shown as 

mean uptake of 3ko cells as 100%.  Effect of VLDL *p≤0.05, ***p≤0.0005 with Tukey-Kramer 

HSD. 
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Effects of ApoE4 and LDLR Expression on Cholesterol Efflux from Macrophages - To 

examine whether the different apoE isoforms facilitate cholesterol efflux from macrophages 

differently and whether the effect is dependent on the levels of LDLR expression in 

macrophages, we measured cholesterol efflux from MPM isolated from mice expressing human 

apoE isoforms with high levels of LDLR (3h and 4h) or without LDLR (3ko and 4ko).  In 

unloaded cells expressing, cholesterol efflux was not influenced by the LDLR expression when 

cells were incubated without apoA-I.  In contrast, the LDLR expression had a significant effect 

when cells expressed apoE4, and the efflux from the 4h cells was 30% less than from 4ko cells 

(p≤0.0005, Figure 4.3A). Addition of apoA-I to the culture medium increased cholesterol efflux 

from cells regardless of apoE isoforms (Figure 4.3B).  ApoA-I-mediated efflux from the 4h cells 

with elevated expression of LDLR was significantly higher than 4ko cells not expressing LDLR.  

The difference was larger and significant between 4ko and 4h cells (p<0.003), than between 3ko 

and 3h cells (not significant).  In contrast, efflux of cholesterol from cholesterol loaded foam 

cells after incubation with AcLDL depended on LDLR but not on apoE genotype (Figure 4.3C).  

These data demonstrate that the LDLR expression in macrophages influences the cholesterol 

efflux in an apoE isoform dependent fashion when macrophages are cultured in lipid free media, 

and suggest that both apoE isoform and LDLR expression may be important determinants for 

foam cell formation. However, when cells were loaded with AcLDL, apoE-isoform effects were 

no longer detectable.   
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Figure 4.3.  Cholesterol efflux from MPM.   Thioglycolate-elicited MPM were isolated from 

mice and incubated with [3H] cholesterol for 24hrs. Cells were then washed and incubated 24hrs 

in media without FBS (A)  or with the same media containing 10 µg/ml of apoA-I for 24 hr (B). 

Radiolabel in medium and the cellular isopropanol extract were quantified, and percentage efflux 

was calculated as the ratio of radioactivity in the medium divided by total radioactivity (cells + 

media) x 100%. Data are mean ± SE for 3 mice of the indicated genotypes assayed in 

quadruplicate. (C) Cholesterol efflux from MPM loaded with 50 µg /ml AcLDL and [3H] 

cholesterol for 24hrs.  (D) ApoE that is cell-associated or secreted into culture medium from 

MPM incubated for 24 hrs in lipid free media.  *p≤0.05,  **p≤0.005, ***p≤0.0005. 
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ApoE secretion from cultured MPM- To address whether cholesterol efflux is related to 

the intracellular levels of apoE isoforms, we examined the apoE contents associated with cells 

and in medium 24hrs after culturing in lipid-free F10 medium by Western blot analysis. The 

intracellular apoE contents in both 3h and 4h cells were consistently higher than in 3ko and 4ko 

cells (Figure 4.3D).  Similarly, apoE protein contents in culture media of 3ko and 4ko cells were 

lower than those of 3h and 4h cells. Relative amounts between apoE3 cells and apoE4 cells 

somewhat varied culture by culture, and were not consistently different.  We conclude that 

LDLR expression in MPM significantly affects apoE uptake and secretion, and likely influences 

the cholesterol efflux. 

 

VLDL Oxidation- We next tested whether lipoprotein oxidation in our mice is apoE 

isoform-dependent which may be due to the free cysteinyl groups on apoE3 and apoE2 [49, 50].  

ApoE2 has two free cysteinyl groups and apoE3 has one, and both have been shown to function 

as a better antioxidant than apoE4 protein which has no free cysteinyl group. We isolated human 

apoE-enriched VLDL particles from 2ko, 3ko, and 4ko mice, and tracked conjugated diene 

formation during Cu2+ -mediated oxidation of these lipoprotein particles. The lag time for 

conjugated diene formation was 24 min in VLDL isolated from 4ko mice compared to 49 min in 

VLDL from 3ko mice and the longest, 70 min, in 2ko VLDL (Figure 4.4A).  Measurement of 

thiobarbiturate reactive substances (TBARS) after overnight oxidation showed that apoE4-

VLDL contained 3-fold more TBARS than did apoE3-VLDL (Figure 4.4B).  
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Figure 4.4.  VLDL oxidation.  (A) VLDL from 3ko and 4ko mice (1 µg) was incubated with 

10µM Cu2+.  Ordinate shows lag time, average of three experiments, until inflection point on 234 

nm absorption curves. (B) TBARS after Cu2+ oxidation of VLDL isolated from 3ko and 4ko 

mice.  TBARS were measured after 16 hr incubation with 10µM Cu2+ at 0.5 mg protein/ml.  (C) 

TBARS in the media of MPM incubated with VLDL in culture.  Thioglycolate-elicited MPM 

isolated from either 4ko or 3ko mice was incubated with 50 µg/ ml of apoE-deficient VLDL.  

TBARS in media were measured after 24 hrs.   *p≤0.05, **p≤0.005,  ***p≤0.0005 with Tukey-

Kramer HSD. 
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To test whether expression of LDLR in macrophages influences VLDL oxidation in an 

apoE-dependent manner, we next cultured MPM in medium with apoE-deficient VLDL for 24 

hrs, and measured TBARS in media as an indicator for oxidized lipids.  The amounts of TBARS 

were borderline detectable, and were slightly higher in media cultured with apoE4 macrophages 

than with apoE3 and lower with elevated LDLR than with no LDLR, but neither apoE genotype 

nor LDLR had statistically significant effects by two-way ANOVA. These data suggest that 

apoE4 isoform does not protect lipoprotein particles from oxidation as well as apoE3 when a 

strong oxidative stress is applied in vitro.  However, effects of apoE isoforms in macrophages on 

oxidation in culture are not significant, even under conditions of elevated triglycerides and 

cholesterol. In addition, we did not detect any statistical differences in the amount of TBARS or 

reduced glutathione (GSH) in the plasma of 3ko and 4ko recipient mice (data not shown). 

 

BMT, and Plasma Lipids- The experiments above indicate that apoE4 proves to be 

impaired relative to apoE3 in several pathways important to lipid homeostasis in macrophages 

and perhaps atherosclerosis lesion formation, and the effects are influenced by the levels of 

LDLR expression in macrophages.  To test whether the observed differences could alter overall 

atherogenesis in vivo, we carried out BMT in mice lacking LDLR but expressing human apoE3 

(3ko) or apoE4 (4ko). To alter macrophage expression of LDLR, 3ko or 4ko females were 

lethally irradiated and transplanted with BM isolated from male mice with the same ApoE 

genotype, having no LDLR (3ko, 4ko), wild type LDLR (3m, 4m), or elevated expression of 

LDLR (3h, 4h).  Three months after BMT, PCR of the Ldlr gene in the blood cells of the 

recipient animals showed only the products corresponding to the genotype of the donor cells, and 

no visible products corresponding to the recipient genotype (ko) were detected in the mice that 
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received (m) or (h) BM cells (Figure 4.5A). This confirmed that the replacement of the BM 

derived cells in the recipients by the donor cells was likely complete. The total Ldlr mRNA 

levels in the peritoneal cells isolated from representative recipient mice showed that the 

macrophages in the 3ko mice receiving 3h BM cells had 4 fold higher Ldlr gene expression than 

the macrophages in the 3ko mice receiving 3m BM cells.  Similarly, total expression of the Ldlr 

gene in macrophages from the 4ko mice receiving 4h BM cells was 4 fold higher than in those 

receiving 4m cells (Figure 4.5B).  Thus the levels of Ldlr mRNA in mice that received 3h or 4h 

bone marrow are elevated compared to those in mice that received wildtype LDLR to similar 

degrees as the MPM cells in culture as shown in Figure 4.1A.   

Feeding HFW diet increased plasma cholesterol levels approximately 3-fold in both 3ko 

and 4ko mice regardless of donor Ldlr genotype (Table 4.2). Both 3ko and 4ko mice have 

elevated cholesterol in VLDL fractions as well as LDL fractions. HDL-cholesterol were very low 

in both 3ko and 4ko mice on HFW diet, and the plasma apoA-I levels were not different between 

them (not shown). The transfer of bone marrows with differing expression levels of LDLR did 

not cause any significant changes in plasma lipoprotein distribution in either the 3ko or 4ko mice 

by fast protein liquid chromatography analyses (Figure 4.5C).  We conclude that the increased 

macrophage LDLR expression is not sufficient to alter plasma VLDL clearance in the LDLR -/- 

mice with apoE3 or apoE4. Consistent with previous work, the LDLR expression in BM-derived 

cells had no influence over plasma lipid profiles [57]. 
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Table 4.2.Plasma lipids expressing human apoE3 or apoE4 after BMT and fed HFW diet 

BM Recipient 3ko 3ko 3ko  
 

4ko 4ko 4ko 

BM Donor  3ko 
 

3m 
 

3h 
 

 4ko 4m 
 

4h 
 

Number 15 15 15  14 15 12 

TC (mg/dl) 1,324±57 1,313±46 1,394±23  1,245±49 
 

1,217±43 1,184±97

TG (mg/dl) 186±61 177±43 221±16  111±17 95±22 133±17 

 
Table 4.3.  Lipids and atherosclerosis in LDLr-/- mice expressing human apoE3 or apoE4 fed a NC diet  

Mice 3ko 3ko 4ko 4ko 

gender Male Female Male Female 

Number 11 12 12 12 

TC (mg/dl) 241±18 386±12 313±25 427±32 

TG (mg/dl) 109±12 102±6 225±22 114±2 

Lesion size 
(103µm2) 

13.4±3.1 55.5±7.2 12.0±2.7 71.0±14.4

Occlusion (%) 1.3±0.3 5.1±0.5 1.0±0.2 5.4±0.8 
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Figure 4.5.  Bone Marrow transfer.  (A), Verification of bone marrow engraftment. DNA was 

isolated from buffy coat cells of recipient mice, and Ldlr genotype was determined by multiplex 

PCR.  First seven lanes are recipients of ko cells showing a single PCR fragment.  Next six lanes 

are recipients of hLdlr cells showing two bands; the upper band corresponds to the wild type 

mouse Ldlr allele and the lower band corresponds to the hLdlr allele.  The last four lanes are 

recipients of m-Ldlr cells showing only the wild type allele.  No bands corresponding to the ko 

allele was detected in the recipients of h or m cells.   (B), Macrophage Ldlr mRNA level.  

Thioglycolate-elicited peritoneal cells were collected from bone marrow transfer recipients. 

Real-time quantitative PCR was used for Ldlr mRNA levels using exon 1 sequence that is 

common to hLdlr and wild type alleles. Averages from mice are shown relative to the expression 

of 3m-donor as 100. **p≤0.005,  ***p≤0.0005.  (C), Lipoprotein distribution in plasma isolated 

from the 3ko or 4ko recipient mice that received BM cells with different Ldlr expression levels.  

Plasma (100 µl) pooled from at least five mice of each group was size-fractionated on an FPLC 

Superose 6 column, and the cholesterol and triglyceride contents of each fraction were measured 

with an enzymatic assay.  
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Macrophage LDLR Expression and Atherosclerosis in Mice with ApoE4 – Both 3ko and 

4ko mice develop lesions in the aortic sinus as summarized in Table 4.3.  Feeding the recipient 

mice with HFW diet for 12 weeks increased atherosclerotic plaque size in both 3ko and 4ko mice 

which received either control 3ko or 4ko BM.  There were no significant apoE genotype effects 

on the lesion area (346 ± 19x103 µm2, n=12, in 3ko vs. 386 ± 28x103 µm2, n=14, in 4ko, p=0.3; 

Figure 4.6).   

We also found no change in the lesion area of 3ko mice as macrophage LDLR level 

increased (Figure. 6).  Thus 3ko mice that received 3m and 3h BM had a mean area of 356 ± 

28x103µm2 (n=13), and 338 ± 28x103 µm2 (n=13) respectively p=0.9.  In contrast, 4ko mice 

developed larger lesions as their macrophages expressed increasing amounts of LDLR.  Thus 

4ko mice that received 4m BM and 4h BM had mean lesion areas of 459 ± 41x103 µm2 (n=15) 

and 511 ± 34x103 µm2 (n=13), respectively.  The difference between the lesion sizes in mice that 

received 4h donor cells and 4ko donor cells was significant (p≤ 0.05).  When all six groups were 

analyzed together, the difference in atherosclerosis between 3ko mice with 3h BM and 4ko mice 

with 4h BM was also significant (p≤0.01).  

Taken together, our data demonstrate that there is an interaction between the apoE 

genotype and LDLR expression of macrophages in determining atherosclerosis development.  In 

the LDLR-/- mice, increased expression of LDLR in BM derived cells has no effect when 

animals are expressing apoE3, while it is detrimental in mice expressing apoE4.  
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Figure 4.6.  Atherosclerotic lesions.  Mean aortic sinus atherosclerotic lesion areas of 3ko mice 

that received 3m, 3h, and 3ko BM cells and of 4ko mice that received 4m, 4h, and 4ko BM cells 

are shown. *p≤0.05 (4ko vs 4h)  , # p≤0.01 (3h vs 4h) with Tukey-Kramer HSD. 
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Gene Expression in the Peritoneal Macrophages of Mice after BMT- To gain insight into 

the mechanism of the interaction between macrophage LDLR expression and apoE expression in 

atherosclerosis development, we isolated MPM from mice receiving BM transfer 4 days after 

stimulation with thioglycollate. Quantitative RT-PCR of peritoneal cells showed that the 

expression of genes coding for monocyte chemotactic protein-1 (MCP1), CD36, LDLR, apoE, 

and scavenger receptor A (SR-A) were not significantly different among recipients who received 

the donor cells with different LDLR levels (Table 4.4).  Thus the effect of apoE4 isoform and 

LDLR level in atherogenesis does not appear to involve pathways affecting expression of MCP1, 

CD36, or SR-A in macrophages. In contrast, ABCA1 expression was increased in MPM that 

expressed elevated LDLR compared to ko MPM regardless of apoE genotype, although the 

increases was statistically significant only in 3h cells compared to 3ko cells.  The up-regulation 

of ABCA1 in 3h and 4h macrophages may indicate higher intracellular cholesterol content in 

these cells relative to 3ko and 4ko cells [76, 77]. This is also consistent with an increased 

cholesterol efflux from 3h and 4h macrophages compared to 3ko and 4ko macrophages when 

exogenous apoA-I acceptor protein  is given to the culture (Figure 4.3B). 
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Table 4.4. Relative mRNA levels of the genes were calculated by the ratio of expression to the levels of 

β-actin mRNA.  Values are mean ±SE and relative to 3ko which was adjusted to 100.  ABCA1 levels 3h 

cells were significantly different from 3ko. *p≤0.05 

 
Table 4.4.  Gene expression of peritoneal macrophage isolated from BM recipients 

Recipient 3ko 3ko 3ko  
 

4ko 
 

4ko 4ko 

macrophage 3ko 
 

3m 3h  4ko 
 

4m 4h 
 

Number 6 7 8  6 
 

2 8 

ABCA1 100±9 126±22 210±32*  111±14 76±4 156±20 

MCP1 102±8 74±17 97±11  79±22 107±22 62±33 

CD36 100±23 102±27 118±25  102±12 
 

70±6 111±12 

SR-A 104±13 64±10 72±23  67±14 
 

78±7 52±10 

ApoE 101±7 125±27 116±21  119±30 108±44 156±28 
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Discussion 

ApoE, as a ligand for the removal of lipoproteins, is generally considered atheroprotective; 

however, the extent to which depends on its isoform, concentration, and location [3, 6, 16, 78].  In this 

study, we tested the interaction of apoE isoforms with LDLR on several atherosclerosis pathways in 

macrophages.  We then used BMT in mice to investigate whether their interaction in macrophages affect 

atherosclerosis development.  Our results showed that expression of macrophage LDLR in the presence of 

apoE4 enhanced atherosclerosis.  In contrast, these same LDLR increases in mice with apoE3 did not 

affect atherosclerosis.  Thus, our results demonstrate, for the first time in animal models, that some of the 

risk associated with human apoE4 isoform may be due to its interaction with the LDLR in macrophages 

as well as with hepatic LDLR.   

We found that apoE isoforms expressed by the macrophages had only a modest, nonsignificant 

effect on apoA-I-stimulated cholesterol efflux from MPM, but that the levels of LDLR expressed by the 

macrophages significantly increased apoA-I-assisted cholesterol efflux from apoE4 macrophages and less 

so from apoE3 macrophages.  Cholesterol efflux, when apoA-I was not present, was generally low but 

affected by LDLR expression only in apoE4 macrophages and in an inverse direction.  Thus, high LDLR 

expression did not alter efflux from macrophages with apoE3, but significantly inhibited efflux from 

macrophages with apoE4. A likely explanation for this is that apoE4 is more efficient than apoE3 for 

capturing and re-uptake of cholesterol containing particles by macrophages. Alternatively, the possible 

increased amount of intracellular apoE4 compared to apoE3 may retard cholesterol secretion with the 

endogenous apoE thus yielding the apparent difference in efflux. In contrast, in cholesterol-loaded foam 

cells, high LDLR expression inhibited efflux in both apoE3 and apoE4 macrophages. The interaction 

between LDLR and apoE4 resulted in significant effects only in un-loaded cells in which LDLR 

expression is high. The difference in efflux between apoE3 and E4 is small in loaded foam cells, in which 

expression of LDLR is down regulated.  In the present work, we observed that cultured MPM expressing 

LDLR have more cell-associated apoE than MPM without LDLR regardless of apoE genotype. 
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Nevertheless, the difference between apoE3 and E4 in intracellular trafficking and accumulation has been 

established [79] and may be contributing to the difference in cholesterol efflux.  Supporting this 

possibility, we reported earlier, in collaboration with Dr. Mazzone and his colleagues at the University of 

Illinois, that MPM with increased LDLR expression showed reduced apoE secretion compared to MPM 

with basal LDLR expression and that the relative reduction was greater with apoE4 than with apoE3. 

Further studies are necessary to elucidate the possible relationships between cholesterol efflux and 

intracellular localization of apoE3 and apoE4 in MPM.  [80].  

Increased cholesterol uptake increases ABCA1 expression and efflux to acceptor proteins [76, 

77].  Thus we observed that macrophages isolated from Ldlr-/- mice receiving BM cells with high Ldlr 

gene expression showed elevated ABCA1 expression. This increase in ABCA1 expression likely accounts 

for the increased apoA-I-mediated cholesterol efflux in the presence of LDLR in macrophages.  In 

addition, the presence of a large amount of apoA-I could interfere with the apoE-mediated re-uptake of 

lipid particles.  Our observation of isoform-specific effects of apoE on cholesterol efflux is consistent 

with previous reports by other investigators.   For example, Cullen et al. observed using macrophages 

isolated from human subjects with different apoE isoforms, that apoE4 macrophages effluxed less 

cholesterol than apoE2 or apoE3 and suggested that a combination of enhanced uptake and degradation of 

apoE4 by macrophages leads to lower cholesterol efflux [56]. Similarly, in a murine macrophage cell line, 

Hara et al. demonstrated that adenovirus-mediated expression of apoE isoforms reduced cellular 

cholesterol in a manner inversely proportional to the LDLR affinity of apoE [81]. Effects of LDLR were 

not investigated in either study by Cullen et al. or Hara et al.  

 The apoE3 and apoE2 proteins carry either one or two free cysteinyl groups respectively, and 

may function as a better antioxidant than apoE4 protein which does not have a free cysteinyl group. It has 

been shown in vitro that lipoprotein oxidation is apoE isoform-dependent [49, 50].  Similarly, we show 

that lipid peroxidation in vitro by Cu2+ of mouse VLDL particles enriched with apoE4 is more susceptible 

to lipid peroxidation than particles with apoE3 or apoE2. However, we were not able to demonstrate the 

antioxidant effects of apoE in-vivo.  Antioxidant effects of apoE in vivo are likely to be small. 
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Nevertheless, differences in the antioxidant capacity of apoE isoforms could be significant when excess 

oxidative stress is applied, such as in lipid-loaded macrophages in the atherosclerotic plaques. 

Many of the functions of apoE in vascular tissues are isoform-specific and have been implicated 

as contributing factors to the well-established increased atherosclerosis risk associated with apoE4 in 

humans.  For example, apoE has been shown to inhibit smooth muscle cell proliferation, with apoE4 

being less effective than apoE2 or apoE3 [82].  This anti-proliferative function may also be related to 

isoform dependent nitric oxide release [83].  ApoE has been shown to reduce atherosclerosis when 

expressed in the arterial wall without affecting lipid levels [46]. Human apoE3 expressed in macrophages 

binds LDLR and is internalized, and a proportion of the internalized apoE is recycled in both hepatocytes 

and macrophages [47, 48].  Consistent with its increased LDLR affinity, apoE4 recycling is impaired 

relative to apoE3 in hepatocytes [79].  Decreased recycling of apoE4 in the subendothelial space of blood 

vessels could result in prolonged retention and modification of lipoproteins.  In contrast, apoE3 and 

apoE2 may exert their anti-atherosclerotic effects multiple times if recycled back to the intimal space.  

 Macrophage LDLR metabolizes LDL and VLDL/chylomicron remnants [6, 20, 74, 84], and 

uptake of LDL by macrophages through the LDLR can induce foam cell formation in culture [84, 85].  

Thus previous studies have shown that WT mice that received BM cells with WT LDLR develop larger 

diet-induced plaques compared to the WT mice that received cells lacking LDLR [57, 85]. However, 

macrophage expression of the LDLR did not significantly increase atherosclerosis in the hyperlipidemic 

setting of LDLR-/- mice recipients when their macrophages expressed WT LDLR [57, 71, 86].  All of 

these experiments used mice with wild type mouse apoE and LDLR.  We now show, in the present paper, 

that the pro-atherogenic effects of human apoE4 isoform are LDLR expression dependent even under the 

severe hyperlipidemic setting.  Mice with apoE3 showed no difference in atherosclerosis when 

macrophage LDLR expression level was changed under the same hyperlipidemic condition. 

Together, our results show that there is an important interaction between the apoE genotypes and 

LDLR expression levels in macrophages in determining cholesterol regulation in the cell (Fig 4.7).  Thus 

the higher LDLR binding affinity of apoE4 increases cholesterol delivery to macrophages compared to 
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apoE3.  This effect is enhanced when lipoprotein particles are enriched with apoE4.  The pro-atherogenic 

effects of apoE4 are further enhanced by a reduction in sterol efflux that is also apoE4 specific and LDLR 

dependent.  This is particularly important when cholesterol acceptors such as HDL and apoA-I are 

reduced in hyperlipidemia. Additionally, the reduced capacity of apoE4 to protect lipoproteins from 

oxidation compared to that of apoE3 could increase the atherogenicity of apoE4 containing lipoproteins.  

Although differences in the individual effects of apoE4 compared to apoE3 are small, the combined 

effects are of importance and likely contribute to the adverse effects of apoE4 on plaque development in 

an LDLR dependent fashion in macrophages.  A similar mechanism is likely to operate in humans during 

the development of atherosclerosis.   
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Figure 4.7.  Hypothetical interactions between macrophage LDLR and apoE isoforms in mice 

that underwent BMT.  Increasing LDLR results in increased macrophage uptake of apoE 

containing VLDL and LDL (solid arrow). The relative uptake of apoE3 containing lipoproteins 

(A) is less than the uptake of apoE4 containing lipoproteins (B).  Elevated LDLR reduced efflux 

in macrophages that were loaded with cholesterol as well as unloaded apoE4 macrophages (open 

arrow).  ApoE3 has greater antioxidant capacity than apoE4. The antioxidant capacity increases 

as more apoE is retained by LDLR (shaded arrow).  Overall the combined effects are balanced in 

apoE3 macrophages and its atherogenicity is not influenced by LDLR expression.  In contrast, 

the combined effects are not balanced in apoE4 macrophage and the atherogenicity is increased 

as LDLR expression increases.  
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Abstract 

Apolipoprotein E (apoE) and the low-density lipoprotein receptor (LDLR) are both well-

recognized determinants of plasma cholesterol levels.  In this study, we investigated the 

contribution of the LDLR expression to the localization of human apoE-isoforms in the liver of 

mice.  Adenoviral overexpression of the LDLR decreased plasma cholesterol in mice with 

human apoE2, but led to a dramatic accumulation of cholesterol-rich VLDL in mice with human 

apoE4 on a western-type high fat diet. Primary hepatocytes with apoE2 secreted more apoE into 

medium than the hepatocytes with apoE4.  Higher LDLR expression decreased the secretion of 

apoE4 and increased its degradation.  ApoE4-GFP fusion protein expressed by adenovirus in the 

liver of apoE-deficient mice accumulated in the space of Disse, but apoE2-GFP protein did not.  

Additionally, LDLR levels significantly influenced the amount of apoE4-GFP on the hepatocyte 

surface.  While the liver of mice with apoE2 and high LDLR avidly internalized DiI-labeled 

VLDL, internalization was slower in the liver with apoE4 and high LDLR despite that the DiI-

VLDL accumulated quickly on the hepatocyte surface.  These data indicate that apoE4 co-

localizing with the LDLR on the surface of hepatocytes is a poorer mediator of VLDL uptake 

than apoE2 despite its higher LDLR binding-affinity. 
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Introduction 

The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearance of 

lipoproteins thereby reducing plasma cholesterol, a leading determinant of atherosclerosis 

susceptibility [6].  Lipoprotein clearance is mediated through the binding to the LDLR of 

apolipoprotein E (apoE) and apolipoprotein B (ApoB), constituents of lipoproteins, in the liver 

where most of LDLR, apoB, and apoE production is found [15] [16]. 

 ApoE is a 34kDa exchangeable protein associated primarily with Triglyceride Rich 

Lipoproteins (TRL) and HDL [6].  In humans the APOE gene is polymorphic, resulting in 

production of three common isoforms apoE2, E3, and E4.  These isoforms differ from one 

another by an amino acid difference at two positions, E2 having a Cys at both position 112 and 

158, E3 having an Arg at 112 and a Cys at 158, and E4 having Arg at both positions.  These 

structural changes alter the LDLR binding affinity; apoE4 binds LDLR with highest affinity 

while apoE2 has drastically reduced binding compared to the other two isoforms [13, 14, 87].  

There is a well-established association between apoE-isoforms and different plasma 

lipid/lipoprotein phenotypes and coronary artery disease risk in humans.  Thus, although a 

majority of individuals homozygous for apoE2 have slightly higher plasma triglycerides and 

lower LDL cholesterol, 5-10% of them develop type III hyperlipoproteinemia characterized by 

significantly elevated plasma levels of triglycerides and cholesterol [6].  In contrast, possession 

of an apoE4 allele is associated with high LDL cholesterol, low plasma triglycerides and 

increased risk of atherosclerosis [2, 3, 6, 16, 19, 71].  The molecular mechanisms whereby the 

apoE isoforms and the LDLR affect these associations are still not clear, and mice with the wild 

type Apoe gene replaced with human APOE*2, APOE*3 and APOE*4 alleles do not simply 

replicate these phenotypes.  Thus all mice expressing apoE2 exhibit type III 
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hyperlipoproteinemia and develop atherosclerosis even on normal, low cholesterol and low fat 

diet, while those expressing apoE3 or apoE4 are normolipidemic and resistant to atherosclerosis 

development [14, 33, 34]. 

Previously we have shown that the Ldlrh allele coding for human LDLR, which has a 

truncation of the 3'-untranslated region, resulted in increased mRNA stability and 2-3 fold 

elevation of expression in mice [37-40].  Surprisingly, introduction of the Ldlrh allele into mice 

expressing human apoE isoforms reproduced the human-like phenotypes associated with apoE 

isoforms. On a HFW diet, mice with apoE4 over-expressing the LDLR (Apoe4/4Ldlrh/+) have 

increased plasma VLDL/Chylomicron Remnants, decreased HDL cholesterol levels, and develop 

atherosclerosis, while mice with human apoE3 and the Ldlrh allele (Apoe3/3Ldlrh/+) have 

significantly decreased HDL cholesterols as well as total cholesterol levels and do not develop 

atherosclerosis.  Global over-expression of LDLR in mice with apoE2 (Apoe2/2Ldlrh/+) resulted in 

lower plasma cholesterol and the absence of atherosclerotic lesions [37-40].  We hypothesized 

that the adverse effects of increased LDLR expression in mice with apoE4 is because the high 

affinity of apoE4 for the LDLR limits its availability for enrichment on larger TRL particles 

consequentially promoting a rapid conversion of these particles to poorly cleared smaller, 

cholesterol enriched remnants.   

This hypothesis predicts the following.  First, the over-expression of LDLR in the liver of 

mice with human apoE isoforms will replicate the phenotypes seen in mice with global LDLR 

expression.  Second, over-expression of apoE4 protein will overcome the hyperlipidemia in 

Apoe4/4Ldlrh/+ mice.  Third, a majority of apoE4, but not apoE2, proteins will co-localize with 

LDLR in the liver cells and accumulate proportionally to the LDLR expression levels.  In the 

present study we have tested these predictions using adenoviral mediated gene transfers.  We 
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show here that LDLR expression in the liver is sufficient, and likely responsible, for the 

hyperlipidemia in the Apoe4/4Ldlrh/+ mice.  We also show that a substantial amount of apoE4 and 

to a lesser extent apoE3, but not apoE2, is co-localized with LDLR to the surface of hepatocytes.  

This interaction with the LDLR increases the association of apoE4 with hepatocytes, limits 

apoE4 secretion, and enhances its degradation in primary cultured hepatocytes.   
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Material and Methods 

Mice- ApoE-deficient mice (Apoe-/-), LDLR-deficient mice (Ldlr-/-), mice homozygous 

for replacement of the mouse apoE gene with either the human APOE*2, APOE*3 or APOE*4 

allele (Apoe2/2. Apoe3/3, and Apoe4/4) and mice over-expressing the human LDLR minigene 

(Ldlrh/+) were individually backcrossed at least 6 generations to C57BL/6 genetic background 

[14, 33, 34, 37].  Mice with various combinations of the Apoe and Ldlr loci were produced by 

intercross of these mutants for the present work as listed in Table 5.1.  Mice were fed either 

normal mouse chow (NC) containing 4.5% (wt/wt) fat and 0.022% (wt/wt) cholesterol (Prolab 

RMH 3000, Agway Inc) or a high-fat Western-type diet (HFW) containing 21% (wt/wt) fat and 

0.2% (wt/wt) cholesterol (TD88137; Teklad). The animals were handled under protocols 

approved by the Institutional Animal Care and Use Committees of the University of North 

Carolina–Chapel Hill. 
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Table 5.1  Genotypes and Descriptions 

Mice Genotype Description 

Apoe2/2 human apoE2 

Apoe2/2 Ldlrh/+ human apoE2 and increased LDLR 

Apoe3/3 human apoE3 

Apoe3/3 Ldlrh/+ human apoE3 and increased LDLR 

Apoe4/4 human apoE4 

Apoe4/4 Ldlrh/+ human apoE4 and increased LDLR 

Apoe4/4 Ldlr-/- human apoE4 and no LDLR 

Apoe-/- no apoE 

Apoe-/- Ldlrh/h no apoE and increased LDLR 
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Culture of primary mouse hepatocytes—Mice were anesthetized using avertin (2,2,2-

tribromo ethanol), the portal vein was cannulated with a 24-gauge plastic cannula, and the liver 

was perfused with Ca2+/Mg2+-free Hanks' Balanced Salt Solution containing glucose (10 mM) 

and HEPES (10 mM) at a flow rate of 3 ml/min for 10 min. The perfusion was continued for 

another 10 min with the same solution containing collagenase (0.05%, type I, Sigma). The liver 

was removed from the animal, minced in phosphate buffered saline (PBS), and the dissociated 

cells were dispersed by shaking followed by filtration through 100-µm nylon cell strainers 

(Falcon). The liver capsule and dish were rinsed in Dulbecco's modified Eagle's medium 

(DMEM) containing 0.02 µg/ml dexamethasone, 100 units/ml of penicillin and 100 µg/ml of 

streptomycin. The cells were pelleted by gravity sedimentation in Percoll for 5 min. at 4 °C. The 

medium was aspirated, leaving 5 ml total volume, and fresh medium was added to 10 ml. The 

cells were resuspended and viability was assessed by trypan blue exclusion. The yield of 

hepatocytes ranged from 3x106 to 6x106 cells/g of liver, and viability was greater than 80%. The 

cells were plated onto 60-mm mouse collagen IV-coated dishes (Falcon) at a density of 1.2x106 

viable cells/dish in 2 ml of the above medium containing 10% FBS unless otherwise stated.  

 

Quantitation of apoE and apoA1— The medium from the primary hepatocytes was 

centrifuged at 13,000 x g for 10 min at 4 °C. Cell associated proteins were isolated from primary 

hepatocytes that were washed 3 times in PBS and  resuspended in 50 mM Tris-HCl, pH 8.0, 2 

mM CaCl2, 80 mM NaCl, and 1% Triton X-100 on ice for 10 min. After centrifugation for 10 

min with 13,000 x g at 4 °C, the supernatants were harvested and cell associated protein 

concentrations were determined by Bradford assay (Bio-Rad). Cellular proteins and media were 

separated by 4–15% SDS-PAGE gradient gels (Bio-Rad), and immunoblotted using goat anti-
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human apoE antibody (Calbiochem). After incubation with peroxidase-conjugated rabbit anti 

goat IgG antibody (Calbiochem), the reaction product was visualized using the ECL system 

(Amersham Biosciences).  Additionally apoE and apoA1 were quantitated by enzyme-linked 

immunosorbent assay (ELISA). 96 well immunoplates were coated with 1.5 µg/ml mouse 

monoclonal anti-human apoE antibody (calbiochem) or anti-apoA1 in 0.2 M Na2CO3/NaHCO3 

buffer.  

 

35S labeling of primary mouse hepatocytes-- Primary hepatocytes were cultured for 16 h 

in low glucose DMEM containing 1% bovine serum albumin. The cells were pulsed with 0.5 ml 

medium containing 35S methionine (100 µCi/ml Amersham).  After a 60 min pulse, the medium 

was removed, and the cells were washed twice with PBS and chased for 1 and 4 h in fresh 

medium with excess cold methionine. ApoE was immunoprecipitated from the media using a 

goat anti-human polyclonal antibody (Calbiochem). The precipitates were dissolved in sample 

buffer and separated by SDS-PAGE.  The gels were dried and signal was visualized by a Fla-

3000 phosphoimager (FujiFilm).  

 

Adenoviruses— The adenoviral vector containing the human LDLR cDNA (Ad-LDLR, 

[28]) was a gift from Dr. Joachim Herz at the University of Texas, Southwestern Medical Center. 

The plasmid vectors containing cytomegalus viral promoter-driven cDNA for fusion proteins, 

ApoE2-GFP, apoE3-GFP, and apoE4-GFP, were provided by Dr. Robert DeKroon at Duke 

University.  These vectors express fusion proteins with EGFP (enhanced green fluorescent 

protein) attached to the C terminal end of each apoE isoform [88].  Adenoviral vectors encoding 

apoE2-GFP, apoE3-GFP, and apoE4-GFP were made using the AdEasy adenoviral system 
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(Stratagene) according to the manufacturer's instructions.  Ad-LDLR and Ad-apoE-GFP were 

amplified in 293 cells, purified by CsCl density gradient ultracentrifugation and dialyzed against 

10 mM Tris pH 8.0, 2mM MgCl2, 4% sucrose. Recombinant adenovirus stock stored at –80 °C 

was diluted with PBS and 1x109 PFU in 0.2 ml of adenovirus was injected to a mouse via tail 

vein.  

 

Plasma lipoprotein analysis, DiI labeling and injection. Plasma was isolated, and total 

cholesterol and triglycerides were measured as described [69].  Pooled plasma samples (100 µL) 

were fractionated by fast protein liquid chromatography (FPLC) using a Superose 6 HR10/30 

column (Pharmacia Biotech Inc).  Plasma HDL was determined by precipitation with dextran 

sulfate (Sigma) according to Warnick et al [89]. For precipitation with dextran sulfate and MgCl2 

was dissolved in PBS. 5 microliters of dextran sulfate (1.0 mg/ml) was mixed with 5 µl of plasma 

and incubated at room temperature for 5 min and subsequently centrifuged at 3,000 g for 10 min. 

HDL cholesterol was determined from the supernatant. The VLDL fraction was isolated from 

pooled plasma by ultracentrifugation at d<1.006 g/ml and labeled with 1,1′-dioctadecyl-3,3,3′,3′- 

tetramethylindocarbocyanine perchlorate (DiI C18; Molecular Probes Inc.), as described by 

Stephan and Yurachek [73].  DiI-labelled VLDL (100 µg protein) was injected into tail veins of 

mice, and livers were fixed with PFA either 10 or 20 min later.  DiI-labeled VLDL remaining in 

the plasma was determined using a microscope fluorometer (Olympus FV500 with a SPOT 

2 digital camera) at 2min 10 min and 20 min using a modification of the fluorometric procedure 

described by Lorenze et al to DiI flouresence [90]. 
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Tissue processing for immunohistochemistry and confocal analyses.  Animals were given 

a lethal overdose of 2, 2, 2-tribromo ethanol.  Livers were perfused through the portal vein at 2 

ml/min with 10 ml’s of 4% paraformaldehyde, excised from animals and further fixed overnight 

in 4% paraformaldehyde.  Liver sections were paraffin embedded and 5 µm thick sections were 

made for immunohistochemistry.  Slides with consecutive liver sections were incubated 

overnight at 4 °C with either goat anti-human apoE antiserum or goat anti-LDLR antibodies 

(1:1000, Calbiochem) followed by an incubation with FITC conjugated anti-goat (1:500, Santa 

Cruz). Slides were cover slipped after application of Vectashield anti-fade mounting medium 

(Vector H-1000, Vector Laboratories,) and were observed with an IX70 inverted microscope 

(Olympus) equipped with a filter set for FITC (exciter 560/55, dichroic 595, emitter 645/75; 

Chroma Technology Corp), and images were captured with a SPOT 2 digital camera (Diagnostic 

Instruments) and analyzed with SPOT version 4.0.9 (Diagnostic Instruments) and ImageJ 1.33u 

(NIH) software.  For confocal microscopic analysis of apoE-GFP expressing tissues, 100 µm-

thick sections were cut with a vibratome and stored free-floating in PBS at 4º C.  Before analyses 

with an Olympus FV500 confocal microscope, individual sections were treated with sodium 

borohydride (1mg/ml in PBS) for 30 minutes at room temperature, and then washed in PBS three 

times for five minutes each at room temperature to reduce fixative-induced fluorescence. 

Individual vibratome sections were also stained with fluorescent (TRITC or AlexaFluor633) 

labeled Wheat germ agglutinin (WGA) (50 micrograms/ml) for 30 min.  For GFP fluorescence, 

the 514 line of an Argon laser was used for excitation and the 535-565 band-pass filter was used 

for emission.  To acquire TRITC labeled WGA images, the 543 line of a Helium/Neon-green 

laser was used for excitation and the 660 band-pass filter for emission (Cy5).  GFP and TRITC 
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fluorescence images were scanned independantly with only their respective excitation and 

emission frequencies to eliminate bleed through. 

Statistical analysis.  The significance of differences between means was calculated by 

using one-way ANOVA (JMP software; SAS Inc). 
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Results 

Overexpression of LDLR in the liver of mice with human apoE.  To determine the 

contribution of hepatic LDLR expression to plasma lipids, we injected Ad-LDLR carrying 

cDNA for the human LDLR (Herz and Gerard 1993) into mice expressing human apoE isoforms 

fed a HFW diet.  Apoe2/2 mice had high plasma cholesterol levels at baseline (733±68 mg/dl, 

n=7) but they decreased to 267±18 mg/dl by day 5 after Ad-LDLR injection.  FPLC analyses of 

plasma showed substantial reductions in their VLDL and LDL fractions and increases in their 

HDL compared to the base line (Figure 5.1A).  Apoe3/3 mice showed little change in total 

cholesterol (140±10 mg/dl to 149±9 mg/dl at day 5, n=8) or in lipoprotein distribution (Figure 

5.1B).  In contrast, liver directed over-expression of LDLR in Apoe4/4 mice increased total 

cholesterol from 126±9 mg/dl to 388±66 mg/dl (n=10) by day 5.  Cholesterol, but not 

triglycerides, were markedly increased mainly in the VLDL/IDL fractions, while HDL 

cholesterol was decreased (Figure 5.1C). The plasma lipid/lipoprotein profiles induced by the 

Ad-LDLR in the Apoe2/2, Apoe3/3 and Apoe4/4 mice are identical to those observed in 

Apoe2/2Ldlrh/+, Apoe3/3Ldlrh/+, and Apoe4/4Ldlrh/+ mice that express 2.5X normal levels of LDLR 

globally [37, 39].  Since gene expression from a recombinant adenoviral vector is mainly 

restricted to the liver [28, 91], we conclude that the interactions between apoE and the LDLR in 

the liver are responsible for the association between apoE isoforms and plasma lipid profiles, and 

that over-production of liver LDLR leads to an accumulation of cholesterol-rich, triglyceride-

poor remnants in mice expressing human apoE4. 
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Figure 5.1.  Adenovirus mediated overexpression of the human LDLR in mice with human apoE 

isoforms. A. Change in total cholesterol over 5 days after Ad-LDLR (left column). Distribution 

of lipids within different lipoprotein fractions, as assessed by FPLC of mice on HFW diet (center 

column) and 5 days after Ad-LDLR (right column) after Ad-LDLR infection. A. Mice with 

ApoE2 before (left), and after 5 days Ad-LDLR (center).  B. Mice with ApoE3. C. Mice with 

ApoE4. 
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Secretion of ApoE from liver and primary hepatocytes.  An increased interaction between 

apoE4 and LDLR in the liver lead to the reduction of apoE associated with plasma lipoproteins 

[39].  Slot blot analysis of plasma and liver apoE from Apoe2/2, Apoe3/3, Apoe4/4, and 

Apoe4/4Ldlrh/+ mice on NC diet confirmed that apoE affinity for the LDLR determines plasma 

apoE levels in mice.  The higher affinity apoE4 in Apoe4/4 mice had the lowest plasma 

concentration among the different isoforms and was further reduced by overexpression of the 

LDLR in Apoe4/4Ldlrh/+ mice (Figure 5.2A). ApoE isoform and LDLR also had modest affects on 

liver apoE concentration (Figure 5.2A). To determine the cellular metabolism of the different 

apoE isoforms, we isolated primary hepatocytes from mice expressing different apoE isoforms 

and compared the apoE protein by using Western blot analysis.   

After culturing in DMEM without FBS for 24 hours, primary hepatocytes from Apoe2/2 

mice secreted more than 10 fold apoE protein into the medium compared to the cells from 

Apoe4/4 mice and had double the ratio of medium apoE to cell-associated apoE (Figure 5.2B).  

After 24 hours in culture, ratios of medium apoE to cell-associated apoE in the Apoe2/2 

hepatocytes were significantly higher than those in the Apoe3/3 or Apoe4/4 mice (Figure 5.2B).  

These results indicate that the affinity of apoE isoform for the LDLR is an important factor for 

the secretion of apoE from the liver.   

In addition, LDLR level affected the amount of apoE secreted from the cell in cultured 

primary hepatocytes and the higher the LDLR receptor expression levels were, the higher the 

cellular apoE increase, and lower the apoE in the medium (Figure 5.2B).  Thus, the ratio of 

medium apoE to cell-associated apoE in the cultured Apoe4/4Ldlrh/+ hepatocytes was significantly 

lower than in Apoe4/4 cells.  In turn, the ratio in Apoe4/4Ldlr-/- hepatocytes lacking LDLR 

expression was significantly higher than in Apoe4/4 hepatocytes.  
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These data indicate that the relative amount of cell-associated apoE is a direct 

consequence of its affinity to the receptor and the levels of LDLR expression. The same 

relationships were also seen in liver slices that were isolated from mice with the human apoE 

isoforms and incubated in lipoprotein-free medium at 37oC for 24 hrs (not shown).   

Effects of LDLR on synthesis and degradation of apoE in primary hepatocytes.  The ratio 

of extracellular to intracellular apoE amounts is likely determined by the uptake, but could also 

be due to changes in apoE synthesis or degradation.  To determine how the LDLR expression 

levels affect production and degradation of apoE, we used a pulse chase system in the primary 

hepatocytes isolated from Apoe4/4 and Apoe4/4Ldlrh/+ mice. The synthesis during a 30 min pulse 

was not significantly different between Apoe4/4 and Apoe4/4Ldlrh/+ hepatocytes indicating that a 

2.5X higher LDLR expression had no effect on the apoE production rate (Figure 5.2F).  

Although Apoe4/4Ldlrh/+ cells had a slightly higher, though not significant, apoE at the start of the 

chase incubation compared to that in Apoe4/4 cells, intracellular apoE after a 4hr chase was the 

same in hepatocytes of both genotypes.  However, consistent with the observation described 

above, a higher LDLR expression led to a decreased amount of apoE secreted from hepatocytes, 

and apoE4 secreted from Apoe4/4Ldlrh/+ cells into the medium was about 40% of the level 

secreted from Apoe4/4 cells.  The sum of the secreted and cell-retained amounts in Apoe4/4 and 

Apoe4/4Ldlrh/+ cells was 65% and 31% respectively, of the initial synthesis amounts.  The 

increased loss of labeled apoE in Apoe4/4Ldlrh/+ cells suggests that an elevated LDLR also 

increases apoE degradation.  This result is consistent with the finding that increased LDL 

receptor expression reduced the secretion and enhanced the degradation of apoE4 in peritoneal 

macrophages of mice by Lucic et al [40].   
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Figure 5.2. ApoE isoform and LDLR modulate apoE secretion from Liver and primary 

hepatocytes. A. Pooled (n=3) plasma (left graph) and liver (right graph) apoE in Apoe2/2, Apoe3/3, 

Apoe4/4, and Apoe4/4Ldlrh/+ mice on NC diet by slot blot.  B. Ratio of apoE in the medium or cell 

associated after over night culture (24hrs) in Apoe2/2, Apoe3/3, Apoe4/4  (left) and Apoe4/4Ldlr-/-, 

Apoe4/4, Apoe4/4Ldlrh/+ (right) primary hepatocytes. C. Pulse chase analysis of Apoe4/4 and 

Apoe4/4Ldlrh/+ hepatocytes. Cells were labeled for 30 min (synthesis), washed and incubated 4hrs.  

Labeled apoE intracellular (retention) and extracellular (secretion) was determined. Values 

shown are means of the duplicate measurements.   * # p≤0.05, **, ## p≤0.005, ***, ### 

p≤0.0005   
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Effect of Ad-apoE-GFP on plasma lipid levels.  In order to track hepatic localization of 

apoE isoforms, we chose to express apoE-GFP fusion proteins using recombinant adenovirus in 

mice expressing different levels of LDLR.  The apoE-GFP fusion proteins appear to function 

normally when mice were infected with Ad-apoE-GFP.  All isoforms lowered cholesterol levels 

in Apoe-/- mice except that apoE2-GFP did not decrease as quickly or to the same levels as 

apoE3-GFP or apoE4-GFP (Figure 5.3A).  However in Apoe-/-Ldlrh/h mice, lacking apoE but 

expressing high levels of LDLR, transfection with Ad-apoE2-GFP normalized cholesterol levels 

to approximately the same as apoE3-GFP and apoE4-GFP (Figure 5.3B).  In contrast, decreases 

in the cholesterol levels of Apoe-/-Ldlrh/h mice injected with Ad-apoE4-GFP were somewhat 

slower to respond than those injected with Ad-apoE3-GFP, or Ad-apoE2-GFP (Figure 5.3C).  

Despite the delayed response, however, apoE4-GFP ultimately decreased cholesterol to similar 

levels as apoE3-GFP, or apoE2-GFP in Apoe-/-Ldlrh/h mice.  Similarly, both Ad-apoE4-GFP or 

Ad-apoE3-GFP was able to ameliorate the hypercholesterolemic phenotype in Apoe4/4Ldlrh/+ 

mice fed a HFW diet (not shown). 

ApoE-GFP was detectable in the plasma of transfected mice and was associated with all 

lipoprotein subclasses by Western blotting (Figure 5.3 E, F).  These data demonstrate that apoE-

GFP fusion proteins are functional and appear to retain isoform-specific characteristics.  Since 

apoE4-GFP can lower cholesterols when over-expressed by adenoviral vector in the liver of 

Apoe4/4Ldlrh/+ mice, adverse effects of LDLR must be dependent on relative ratios between 

apoE4 and LDLR. 
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Figure 5.3. Ad-apoE-GFP decreases plasma lipids in Apoe-/- and Apoe-/-Ldlrh/h mice. A. 

Cholesterol levels in Apoe-/- mice transfected with  Ad-apoE2-GFP, Ad-apoE3-GFP, Ad-apoE4-

GFP, or Ad-GFP over a 5 day span. B. Day 5 distribution of lipids within different lipoprotein 

fractions, as assessed by FPLC.  C. Apoe-/-Ldlrh/h mice with Ad-apoE2-GFP, Ad-apoE3-GFP, 

Ad-apoE4-GFP 5 day Cholesterol time course.   D. Day 5 distribution of lipids within different 

lipoprotein fractions, as assessed by FPLC.  E.  SDSPAGE of plasma isolated from Apoe-/-  mice 

transfected with Ad-apoE3-GFP (lane1), without transfection (lane 2),  VLDL isolated from Ad-

apoE3-GFP transfected Apoe-/-  mice (lane 3), Wt B6 transfected with Ad-apoE3-GFP (lane 4), 

and Wt plasma apoE (lane 5).  F.  Ad-apoE3-GFP associated with VLDL (fraction 15), LDL 

(fraction 23), and HDL (fraction 28).   
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Localization of apoE in the liver. The microenvironment of the liver is unique and plasma 

lipoproteins bind receptors on the hepatic surface in the space of Disse, the space formed 

between hepatocytes and fenestrated endothelial cells in the liver sinusoids.  Immunostaining 

with an antibody against human LDLR of the liver sections of mice carrying the Ldlr*h allele 

illustrated the sinusoidal localization of the human LDLR (Figure 5.4A top row).  ApoE4 co-

localized with LDLR in the Apoe4/4Ldlrh/+ liver as highlighted by the very intense staining of 

sinusoids with antibody against human apoE.  Thus, overproduction of LDLR forces apoE4 to 

accumulate in the space of Disse.  In contrast, apoE4 staining in the Apoe4/4Ldlr+/+ liver was 

diffuse and also present in the cytoplasm in a punctate pattern (arrow in Figure).  Very similar 

staining patterns were observed in the livers from Apoe3/3Ldlrh/+ and Apoe3/3 mice, except that 

the sinusoidal staining relative to cytoplasmic staining was less intense in the Apoe3/3Ldlrh/+ liver 

than in the Apoe4/4Ldlrh/+ liver.  This suggests that the LDLR levels influence sinusoidal 

localization of apoE4 and, to a lesser extent, of apoE3.  Apoe2/2 and Apoe2/2Ldlrh/+ mice both had 

low sinusoidal staining and more intra-hepatic punctate staining than other apoE isoforms 

(Figure 4A bottom row) and   Apoe2/2Ldlrh/+ mice had more intra-cellular staining than Apoe2/2 

mice.  

To compare the hepatic microenvironment localization of apoE2 and apoE4 and the 

effect of increased LDLR in more detail, we injected Ad-apoE2-GFP and Ad-apoE4-GFP into 

Apoe-/- and Apoe-/-Ldlrh/h mice which are deficient of apoE.  ApoE localization was analyzed 

under confocal microscopy in the liver sections stained with the TRITC-labeled lectin to 

demarcate liver sinusoids, endothelial cells, and the space of Disse [92].  Both apoE4-GFP and 

apoE2-GFP were visible as bright green hepatocytes with perinuclear concentration in the 

cytoplasm of 70-80% of the infected liver (Figure 5.4B).  However, substantially more apoE4-
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GFP was also present in the space of Disse than apoE2-GFP (SD in Figure 5.4B).  The sub-

endothelial accumulation of apoE4-GFP was more pronounced in the liver of the Apoe-/-Ldlrh/h 

mice injected with Ad-apoE4-GFP (Figure 5.4B, second column).  In contrast, injection of these 

mice with Ad-apoE2-GFP showed little accumulation of apoE2-GFP on the hepatocyte surface 

despite the increased LDLR and efficient reduction of plasma cholesterol (Figure 5.4B). 

Inspection under higher magnification reveals that GFP and TRITC signals were not 

overlapping, suggesting that the accumulation of apoE4-GFP is sub-endothelial in the space of 

Disse, between hepatocytes and endothelial cells (Figure 5.4C).  These data demonstrate that the 

accumulation of apoE on the hepatocyte surface in the space of Disse is dependent on its affinity 

to the LDLR and the expression levels of LDLR.   
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Figure 5.4. Localization of apoE2, apoE3, and apoE4 in mice overexpressing the LDLR. A. 

Immunodetection of LDLR (red) in Apoe4/4, and Apoe4/4Ldlrh/+  in liver using an anti-huLDLR 

IgG (top row).  Second row shows apoE (green) in apoE isoform mice (left) with elevated LDLR 

(right). Apoe4/4Ldlrh/+ staining for anti-apoE showed similar sinusoidal pattern (second row) as 

anti-huLDLR (arrows). Apoe3/3Ldlrh/+  also had increased sinusoidal apoE compared to Apoe3/3 

(3rd row) but less than Apoe4/4Ldlrh/+.  Apoe2/2Ldlrh/+  had increased intracellular apoE (circled) 

(last row) B. Ad-apoE2GFP (top panels) and Ad-apoE4GFP (bottom panels) were injected into 

Apoe-/- (left panels) and Apoe-/-Ldlrh/h  (right panels) mice were sacrificed after 5 days.  100 µm 

sections were stained with TRITC labeled lectin (red) to show structure and examined confocally 

C. (1500x) AdapoE4-GFP in to Apoe-/-Ldlrh/h mice.  (SD) space of Disse, (EC) endothelial cell, 

(RBC) red blood cell. 
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Sinusoidal localization of apoE and remnant uptake. VLDL remnants are normally 

converted to LDL and cleared by apoB100-binding to LDLR, or directly cleared by apoE-

binding to LDLR and LRP. The striking differences between apoE2 and apoE4 in their cellular 

localizations of Apoe2/2Ldlrh/+ and Apoe4/4Ldlrh/+ livers raises a question regarding the 

physiological relevance of apoE accumulated on the sinusoidal surface in the remnant clearance. 

Apoe2/2 , Apoe2/2Ldlrh/+ , and Apoe4/4Ldlrh/+ mice represent phenotypic extremes in lipoprotein 

profiles and atherosclerosis risk (Figure 5.5A) [37, 39].   Apoe4/4Ldlrh/+ mice have plasma apoE 

levels 30% of Apoe4/4 mice, while apoE in the livers of Apoe4/4Ldlrh/+ mice were slightly higher 

than in the livers of Apoe4/4 mice (Figure 5.2A).  Apoe4/4Ldlrh/+ had 10-fold lower plasma apoE 

than Apoe2/2Ldlrh/+ mice (Figure 5.5D).   The reduced plasma apoE in Apoe4/4Ldlrh/+ was 

associated with a reduced HDL compared to both Apoe2/2Ldlrh/+and Apoe2/2 mice (38.0 ± 4.8 

n=4, 89.5 ± 7.2  n=5, 94.6 ± 15.5 n=4 respectively, Figure 5.5 E).  Apoe2/2, Apoe2/2Ldlrh/+ and 

Apoe4/4Ldlrh/+ mice have markedly different accumulation of apoE in sinusoids as described 

above.  Despite little VLDL and LDL,  Apoe2/2Ldlrh/+ mice have substantially more apoE in their 

larger lipoprotein fractions than Apoe4/4Ldlrh/+ mice.  Apoe2/2Ldlrh/+ mice also have more plasma 

apoA1 than Apoe4/4Ldlrh/+ mice (Figure 5.5B).  To examine how these different phenotypes 

affect plasma VLDL clearance and liver uptake we injected them with DiI labeled Apoe-/- VLDL.   

Decay of plasma DiI-labeled Apoe-/-VLDL particles after injection into these mice showed that 

the Apoe2/2 mice had the slowest clearance of Apoe-/- VLDL (Figure 5.6A, left panel). While the 

decay in the Apoe2/2Ldlrh/+ and Apoe4/4Ldlrh/+ mice were not different at 10 min after injection, 

the disappearance of plasma VLDL during the next 10 min was significantly more in the 

Apoe2/2Ldlrh/+ mice than in Apoe4/4Ldlrh/+mice.  At 20 min post injection, DiI-VLDL were barely 

detectable in the liver of Apoe2/2 mice (Figure 5.6A, second panel), but were avidly internalized 
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in the Apoe2/2Ldlrh/+ liver (Figure 5.6A third panel). Most of the signal was intracellular (circled) 

and surface-bound DiI-VLDL was negligible (arrows SD).  In marked contrast, DiI-signal was 

strongly associated with the hepatic surface in Apoe4/4Ldlrh/+ liver (arrow SD), while intracellular 

DiI-VLDL was minimum (circled in Figure 5.6A, right panel).  Thus while apoE2, which is 

elevated in the plasma and minimally associated with the hepatocyte surface, can facilitate 

internalization of apoE-deficient VLDL remnants in the presence of increased LDLR.  In 

contrast higher LDLR affinity apoE4 that is accumulated on the hepatocyte surface appears to be 

less efficient in internalizing the remnant particles. 
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Figure 5.5. LDLR expression and apoE isoform modulate liver apoE secretion and HDL levels.  

A. Distribution of lipids within different lipoprotein fractions, as assessed by FPLC of mice on 

HFW diet.  B. ApoE and apoA1 ELISA on plasma FPLC fractions on mice fed HFW diet. 

Densitometry of n=3 separate plasma samples.  C.  Western blot for apoE liver cytosol (C) and 

membrane (M) fractions and plasma D. Densitometry of n=3 separate plasma samples. E.  

Plasma HDL cholesterol on mice fed HFW diet. 
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We next sought whether the surface bound apoE4 can  associate with VLDL lacking 

apoE and facilitate lipoprotein internalization, and injected DiI labeled Apoe-/- VLDL into Apoe-/-

Ldlrh/h mice that were infected with Ad-apoE4-GFP 5 days earlier.   When livers were examined 

10 min after the injection for the distribution of apoE4-GFP, strong GFP signal was again on the 

hepatic cell surface (Figure 5.6B left panel). Strong DiI signals demarcated microvessels as well 

as punctated within the cytoplasm of hepatocytes (Figure 5.6B middle panel). Most of the DiI-

labeled VLDL was co-localized with apoE4-GFP in both cell surface and in cytoplasm, but there 

remained significant amount of cell surface apoE4 that was not associated with DiI (Fig 5.6B 

right panel).  This indicates that the cell surface apoE4 is minimally contributing to the 

internalization of exogenous lipoproteins.  

To examine how VLDL, with apoE2 or apoE4 already present on their surface, would 

localize in the liver, we isolated VLDL fractions from Apoe-/- mice 5 days after transfection with 

Ad-apoE2-GFP or Ad-apoE4-GFP and introduced them into Apoe-/-Ldlrh/h mice through tail 

veins.  When livers were examined under confocal microscopy 5 minutes after the injection, 

apoE4-GFP was already localized on hepatocyte surfaces (Figure 5.6C right).  This suggests that 

lipoproteins that aquire apoE4 during the circulation can accumulate in the space of Disse very 

efficiently. In contrast, very little apoE2-GFP was localized on the hepatocyte surface, but there 

were a few cells with some GFP signals (Figure 5.6C).  

Taken together, apoE4 containing VLDL avidly binds and accumulates in the space of 

Disse. While apoE4 on the surface of hepatocytes trapped by the LDLR may play roles in 

sequestering remnant particles to cell surface, they appear to have only a limited capacity to 

participate in the internalization of remnant lipoproteins.  That hepatic surface bound apoE 
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accumulation inhibits clearance is also supported by the absence of apoE2 on the hepatocyte 

surface and its association with better VLDL internalization. 
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Figure 5.6.  Effects of ApoE isoform and LDLR levels on localization and clearance of Apoe-/-  

VLDL and apoE-enriched VLDL.  A. DiI-labeled Apoe-/- VLDL injected into Apoe2/2, 

Apoe2/2Ldlrh/+, and Apoe4/4Ldlrh/+ mice.  (first panel) Plasma DiI was measured at 2, 10, and 20 

minutes. 2 min was taken as 100%.  The liver was removed and analyzed by fluorescence 

microscopy for DiI-VLDL (yellow) distribution. TRITC labeled lectin (blue) shows structure.  B. 

DiL VLDL (250 µg of protein) from Apoe-/- mice was injected into the tail vein of Ad-apoE4-

GFP infected Apoe-/-Ldlrh/h mice, and localizes to the SD, and overlaps with apoE4-GFP in the 

SD.  C. VLDL isolated from Apoe-/- mice transfected to express Ad-apoE4-GFP or Ad-apoE2-

GFP was injected into tail veins of untransfected Apoe-/-Ldlrh/h mice.  5 min after injection 

apoE4-GFP (left panel) was visible subendothelially in the space of Disse (SD).  ApoE2-GFP 

(right panel).  
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Discussion 

The higher binding affinity of the apoE4 isoform to the LDLR than apoE2 or apoE3 has 

been implicated in leading to increased plasma LDL cholesterol and atherosclerosis in 

individuals carrying apoE4 [2, 3]. In this study, we used Adenovirus mediated LDLR and apoE-

GFP expression in mouse models to investigate the effects of LDLR expression on the 

localization of the different apoE isoforms in the liver.  Our data show that over-expression of 

LDLR in the liver of mice with apoE4 elevates plasma cholesterol levels while reducing it in 

mice with apoE2.   ApoE4 co-localizes with LDLR on the sinusoidal surface of the liver, and 

increased LDLR expression enhances this accumulation.  In contrast, apoE2 is minimally present 

on the sinusoidal surface of the liver even when LDLR expression is elevated.  

 The liver is the main source of plasma apoE, although low levels of extra-hepatic apoE 

are sufficient for normalization of hyperlipidemia, since Apoe-/- mice that were transferred with 

wild type bone marrows have near normal plasma cholesterol levels [93].  Remnant lipoproteins 

are cleared in the liver mainly by LDLR and by LRP, but the uptake by these receptors require 

the remnants to acquire and be enriched with apoE proteins [47, 94-96]. Liver-derived and 

localized apoE facilitates the receptor-mediated internalization of remnants in the liver [96, 97].  

Linton et al demonstrated, using bone marrow transfer of apoE marrow to Apoe-/-Ldlr-/- mice, 

that intense immunoreactivity for extrahepatic apoE was present on the cell surface and in the 

space of Disse but the pattern of punctuated staining was not detected within the cytoplasm 

indicating that no uptake of apoE-containing lipoproteins was occurring [93]. The authors 

concluded that whereas the LDLR efficiently clears remnant lipoproteins irrespective of the site 

of origin of apoE, endocytosis by the chylomicron remnant receptor (LRP) is absolutely 

dependent on hepatic expression of apoE.   In contrast, Yu, et al. showed that the chylomicron 
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remnant clearance by the apoE-deficient liver depends on the amount of apoE associated with the 

remnant particles and hepatic apoE is not a pre-requisite for clearance, although the addition of 

hepatic apoE can accelerate their uptake [98].  Previously we showed in mice that all human 

apoE-isoforms are less effective ligands to non-LDLR mediated clearance of TG-rich 

lipoproteins than mouse apoE, and that VLDL remnants with very high cholesterol and apoE 

accumulates in the absence of LDLR [69].  Dependence of remnant clearance on LDLR are 

likely to be exaggerated in mice with human apoE isoforms.   

We earlier observed that mice globally expressing 2-3 times the normal Ldlr gene exhibit 

hypercholesterolemia when fed a HFW diet only when they are also carrying the human apoE 

allele [39].  We hypothesized that a high-affinity interaction between LDLR and apoE4 in the 

liver limits the transfer of apoE protein to the TG-rich lipoproteins, limiting their clearance. 

Over-expression of the LDLR by adenoviral vector raised plasma cholesterol levels only in the 

Apoe4/4 mice, confirming our first prediction based on this hypothesis and demonstrating that the 

interaction between increased LDLR and apoE4 in the liver is sufficient to cause the 

hypercholesterolemia.  Furthermore, adenoviral over-expression of apoE4-GFP fusion protein 

was able to overcome this phenotype in HFW fed Apoe4/4Ldlrh/+ mice, suggesting that a ratio 

between apoE4 and LDLR in the liver is an important factor for this phenotype.  Neither Ad-

LDLR nor Ad-apoE4-GFP expression is physiological as both vectors use a CMV promoter 

which does not respond to physiological gene regulation.  However, since a 2-3 fold decrease in 

the apoE4/LDLR ratio in Apoe4/4Ldlrh/+ mice compared to Apoe4/4 mice causes a dramatic 

phenotypic change [39], a small difference in the basal levels of these two proteins between 

humans and mice may be sufficient to cause the association between apoE4 and the small 

increase in plasma cholesterol seen in humans. 
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The paradoxical association of apoE4 with elevated plasma cholesterol in humans may be 

due to its high LDLR affinity and a reduced ability to exchange onto and clear TRLs and 

remnants.  In cell culture binding or in-vivo clearance, when apoE is already present on the 

particle, apoE4 containing particles show enhanced binding and clearance compared to apoE3 

and apoE2 [14, 19, 99].  In contrast, apoE deficient-VLDL binding and clearance is reduced 

when cells or animals express apoE4 compared to apoE3 [14].  Here we show that apoE2, with 

the lowest LDLR affinity, clears VLDL faster than apoE4 when they are expressed by the liver 

in-vivo and apoE-deficient particles are used.  Thus the clearance of exogenous apoE deficient 

VLDL is faster when the recipient animal expresses apoE with low LDLR affinity and higher 

LDLR level.  Newly secreted chylomicron and VLDL that have yet to acquire apoE, combined 

with the reduced plasma apoE level associated with apoE4, increases the plasma retention time 

of these lipoproteins.  This is consistent with the higher post prandial lipemia in apoE4 humans 

[68] as well as Apoe4/4Ldlrh/+ mice on HFW diet [39].   In contrast, the lower LDLR affinity of 

apoE2 increases its plasma concentration and increases VLDL clearance (Figure 5.7A).  

Previous studies have demonstrated the presence of apoE immunoreactivity along the 

sinusoidal front of hepatocytes together with some punctated cytoplasmic staining in the liver of 

wild type rat and mouse [100, 101].  Electron microscopic examinations by Hamilton et al 

further demonstrated that the immuno-gold labeling for apoE clustered on hepatocytic microvilli 

projecting into the space of Disse[100].  In addition, endosomes near the sinusoidal front and 

multivesicular bodies in the Golgi/biliary area were labeled intensely with apoE.  Confirming 

these observations, we found intense apoE immunoreactivities demarcating the space of Disse 

and as punctated perinuclear staining in the liver of both Apoe3/3 and Apoe4/4 mice.  Importantly, a 

higher expression of LDLR in the Apoe3/3Ldlrh/+ and Apoe4/4Ldlrh/+ animals enhanced the 
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intensity of sinusoidal immunostaining relative to the cytoplasmic staining, and appeared to do 

so more in the liver of mice with apoE4 than with apoE3. We also found intense fluorescence on 

the hepatocyte surface of Apoe-/-Ldlr+/+ mice that received Ad-apoE4-GFP, but the levels in the 

livers of mice that received Ad-apoE2-GFP showed minimal localization of apoE2 in the space 

of Disse.   Injecting Ad-apoE2-GFP to Apoe-/-Ldlrh/h mice did not increase the apoE2-GFP on the 

hepatocyte surface.  Thus these results clearly demonstrate that a majority of apoE4 but not 

apoE2 proteins co-localizes with LDLR on the hepatocyte surface, and that the accumulation 

depends on both affinity to LDLR and on the levels of LDLR. 

Neither immunostaining nor Ad-apoE4-GFP expression allows us to dissociate whether 

apoE accumulating on the hepatocyte surface is newly synthesized by the hepatocyte or 

originated from lipoproteins in circulation.  However, we note that not all the cells demarcated 

by intense sinusoidal apoE4-GFP signals have strong intracellular GFP signals, suggesting that a 

substantial part of the apoE4-GFP may be derived from apoE4-GFP synthesized by other 

infected hepatocytes.  This is also consistent with the apoE4-GFP accumulation in the space of 

Disse of Apoe-/- liver shortly after injection of VLDL particles enriched with apoE4-GFP, while 

no such accumulation of apoE2-GFP was seen (Figure 5.5C).  Multiple experiments both in vivo 

and in vitro have shown that a substantial amount of apoE internalized with TG-rich lipoproteins 

by the liver are recycled back to the cell-surface and re-secreted [52, 79, 102].  HDL appears to 

stimulate this process, serving as an acceptor for recycled apoE in hepatocytes [24, 47, 48].  For 

example, Heeren et al. demonstrated that cell-surface binding and internalization of TG-rich 

lipoprotein-derived apoE4 are increased compared with apoE3 in HuH7 hepatoma cells [79].  

They also showed that HDL-induced recycling of apoE4 is reduced in these cells compared to 

recycling of apoE3. These experiments were carried out with VLDL enriched with human apoE3 
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or apoE4 in vitro and human hepatoma cells which synthesize endogenous apoE, while our 

experiments used genetic models with the VLDL remnants enriched with apoE isoforms in vivo, 

and recipient livers were either apoE-deficient or making the same isoform.  Nevertheless, 

impaired recycling measured by the reduced re-secretion of apoE4 into medium from the 

cultured cells relative to that of apoE3 observed by Heeren et al is consistent with the enhanced 

cellular localization of apoE4 we observed in vivo. Additionally, our experiments showed that 

the localization of apoE4 on the hepatocyte surface is dependent of LDLR levels and that apoE4 

accumulated to this location had enhanced binding but a limited capacity to internalize remnant 

lipoproteins.   

Our results are consistent with and support our “apoE4 trapping by LDLR” as a 

mechanism to explain the hypercholesterolemia associated with apoE4.  Retention of apoE4 at 

the hepatic surface by LDLR reduces its availability in the plasma to bind to and mediate 

remnant internalization. We do not know the form of apoE4 interacting with LDLR on the 

hepatocyte surface at present, but they are unlikely to be free proteins considering the report by  

Ruiz et al. that both LDLR and LRP prefer lipid bound forms of apoE [41].  HDL, which can 

modulate apoE recycling, and is a source of plasma apoE, is a likely regulator of this process [47, 

94, 103-105]. HDL as an apoE carrier may be necessary for timely apoE exchange to other 

lipoproteins such as TRLs, allowing nascent lipoproteins to enter the plasma without immediate 

apoE-mediated reuptake and also to remove them before they become slowly cleared remnant 

LDL.  Modulation of HDL levels by LDLR is apoE isoform dependent; increased LDLR 

expression leads to increased HDL-cholesterol in mice with apoE2 and decreases HDL levels in 

mice with apoE4 [37, 39].  Elevated HDL associated with apoE2 could enrich apoE-poor VLDL 

and promote their clearance.  In contrast, reduced HDL and apoE4 trapped in the space of Disse, 
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directs apoE-poor VLDL to remnant conversion rather than internalization. The decreased apoE 

content on TRLs can increase conversion to remnants by LPL [22, 106-108].  Further studies are 

necessary to elucidate the form of apoE and potential role of HDL in the isoform-specific 

interactions between LDLR and apoE and whether other apolipoproteins are involved in these 

interactions. 

In conclusion, our study in mice with apoE isoform and elevated LDLR revealed that 

there may be a critical range of LDLR levels for proper ratios of cholesterol carried by 

atherogenic non-HDL lipoproteins and by HDL particles (Figure 5.7B).  The optimum range of 

LDLR levels is different for each apoE isoform and proportional to each isoform’s LDLR 

affinity.  For instance, all apoE isoforms mice have elevated VLDL and LDL when the LDLR is 

absent [69].  With wildtype levels of LDLR, both Apoe4/4 and Apoe3/3 mice have high HDL and 

low non-HDL cholesterol [14]. However, ApoE2/2 mice have high non-HDL /HDL ratios [34].  

When LDLR levels are elevated, HDL cholesterol levels dramatically decrease in both Apoe4/4 

Ldlrh/+ and Apoe3/3Ldlrh/+ mice.  Since non-HDL cholesterol are elevated only in Apoe4/4 Ldlrh/+ 

mice their non-HDL /HDL ratios are critically high, while Apoe3/3Ldlrh/+ mice have nonHDL 

/HDL ratios that are modestly increased.  Apoe2/2Ldlrh/+ mice have reductions in their VLDL and 

elevated HDL levels and thus have low non-HDL /HDL.  If we apply the same relationships to 

phenotypes associated with apoE isoforms in humans, one may predict that LDLR activity in 

humans are in the upper ranges of Figure 5.7B where apoE2 is beneficial and apoE4 is somewhat 

detrimental.  In the lower range of LDLR activities, the decreased affinity of apoE2 may cause 

apoE2-rich TRLs to accumulate, similar to the 5% of apoE2 homozygous humans who develop 

type III hyperlipidemia characterized by elevated TG.  Careful titration of apoE and LDLR levels 
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may shed light on the relevance of this mechanism to the well-established associations between 

the risk for coronary heart disease and apoE isoforms. 
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Figure 5.7.  Hypothetical mechanism to explain apoE LDLR affinity affect on VLDL 

metabolism.   

A.Top diagram shows apoE2 metabolism of apoE-poor VLDL.  The lower LDLR affinity 

of apoE2 increases plasma apoE level (green arrow).  This increases the enrichment of apoE2 

onto VLDL which facilitates LDLR and HSPG mediated uptake.  A.  Lower diagram shows 

apoE4 metabolism of apoE-poor VLDL. High LDLR affinity of apoE4 keeps it bound to the 

hepatic surface, which decreases VLDL enrichment.  VLDL at the hepatic surface are not 

internalized and subsequently converted to remnants and LDL possibly by LPL. 

 B. Interaction between LDLR level and apoE affinity and resulting atherosclerosis risk 

(non-HDL cholesterol /HDL cholesterol) in mice.  Legend on the left: darker shaded area shows 

a decreased non-HDL/HDL.  Upper unshaded areas reflect elevated non-HDL/HDL and 

hyperlipidemia. Panel on the right shows non-HDL/HDL ratio (by amount of shading) in mice, 

determined by their LDLR level (y-axis) and apoE affinity (x-axis). Shaded areas reflect a good 

balance between LDLR level and apoE isoform.  Unshaded area is a poor non-HDL/HDL and 

hyperlipidemia.   Similar non-HDL/HDL levels occur at different levels of LDLR for each apoE 

isoform reflected by the change in position of the shaded region. 
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Abstract  

The pathology of atherosclerotic lesions that develop in mouse models of atherosclerosis, 

such as those lacking apolipoprotein E or lacking the low density lipoprotein receptor, is very 

similar to that seen in human patients. Consequently, genetic approaches to studying 

atherosclerosis in these mouse models have produced a wealth of information relevant to the 

genetic factors and pathways that modify the early stages of atherosclerosis in humans.  Despite 

these advances, the later stages of atherosclerosis in humans, including spontaneous plaque 

rupture and hemorrhage, have not been observed reliably in current mouse models.  Increasing 

sophistication and use of genetic manipulations, however, has produced significant advances in 

modeling these processes.  The use of genetic tools to examine the physiology, pathology, and 

cell biology of atherosclerosis will enhance elucidation of the pathogenesis of the disease and 

lead to the development of novel therapeutic strategies. 
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Introduction 

The development of atherosclerosis is largely influenced by genetic factors.  It is also 

modified by a host of non-genetic factors including diet, social habits such as smoking and 

exercise, and pre-existing diseases such as diabetes and hypertension, though arguably even 

these factors have genetic components. Thus multiple genetic risk factors exist, and 

atherosclerosis susceptibility is likely to be determined by unfavorable combinations of small 

variations in the function or quantity of proteins involved in multiple pathways.   

The mouse is a uniquely suited model system for studies of complex diseases.  Its overall 

biology is closely comparable to that of humans and the characteristics of many pathologic 

conditions are quite similar in both species.  The existence of numerous well-characterized and 

recently sequenced inbred mouse strains provides a rich resource for genetic analysis.  Various 

genetic techniques, like transgenesis and gene targeting, are now common laboratory procedures 

for generating specific mutations in mice.  Lastly, not only can the effects of genes be studied in 

mice in controlled environments, but also gene-gene and gene-environment interactions can be 

assessed relatively easily.  In this review we discuss genetic models of atherosclerosis and the 

recent use of the mouse as a genetic tool to identify the genes and pathways involved in various 

stages of atherogenesis. The use of these genetic models, tools, and techniques will ultimately 

identify novel targets for the development of therapeutics to treat and hopefully prevent the 

development of atherosclerosis. 
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I. Genetic Models of Hyperlipidemia and Atherosclerosis   

Atherosclerosis is the leading cause of death in Western society.  Elevated concentrations 

of low-density lipoproteins (LDL) and reduced concentrations of high density lipoproteins 

(HDL), are both clearly associated with increased risk of atherosclerosis in humans and are 

significantly influenced by the genetic makeup of the individual [109, 110]. 

The high prevalence of atherosclerosis among humans contrasts with the fact that none of 

the common laboratory mouse strains develop atherosclerotic plaques.  This is true even when 

the mice are maintained on diets (high fat Western type, HFW; 21 % fat, 0.15% cholesterol) 

similar to those consumed by humans in Western societies.  This difference in susceptibility is 

mainly attributed to the different plasma lipid profiles of the two species.  For example, the 

average plasma cholesterol concentration of wild type mice on a normal chow (NC) diet (4.5% 

fat, 0.022% cholesterol) is approximately 80 mg/dL.  Most of this cholesterol is carried by HDL 

particles.   Mice have very low concentrations of LDL and other atherogenic lipoproteins such as 

remnants of intestinal-derived chylomicrons and liver-derived very low-density lipoproteins 

(VLDL).  This profile is in marked contrast to humans in which most of the plasma cholesterol 

(200 mg/dL) is associated with apolipoprotein B100 (apoB)-containing LDL particles.  These 

differences are often attributed to variations in lipoprotein metabolism between mice and 

humans.  For example, mice lack cholesterol ester transfer protein (CETP) activity that transfers 

cholesterol esters from anti-atherogenic HDL to atherogenic LDL and VLDL in humans [31].  In 

addition, in mice approximately 70% of liver apoB mRNA undergoes post transcriptional 

editing, resulting in production of apoB48-containing VLDL by the liver.  In contrast, humans do 

not have hepatic apoB mRNA editing activity and secrete only the LDL precursor, apoB100-

containing VLDL [29].  However, while the mouse plasma lipoprotein profile is less atherogenic 
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than the profile in humans, the pathways for cholesterol transport and metabolism in the two 

species are sufficiently similar to suggest that inducing disturbances in plasma lipoprotein 

metabolism should trigger atherogenesis in mice.  Indeed, some inbred strains like C57BL/6 are 

susceptible to diet-induced hyperlipidemia and develop fatty streak lesions when fed an 

atherogenic diet (15.5% fat, 1.25% cholesterol) containing 0.5% sodium cholate [111]. 

The first genetic mouse models of atherosclerosis were generated by creating mice 

lacking functional alleles for either apolipoprotein E (apoE) [75, 112] or the LDL receptor 

(LDLR) [113].  ApoE plays a central role in lipoprotein metabolism and is required for the 

efficient receptor-mediated clearance of plasma chylomicrons and VLDL-remnants by the liver 

[16].  Lack of apoE in mice results in accumulation of cholesterol-rich remnant particles and 

elevation of plasma cholesterol concentrations to about 400 mg/dL, even when fed a NC diet.  

The apoE-deficient mice (Apoe-/-) spontaneously develop aortic atherosclerotic plaques similar to 

those seen in humans [75, 112].  The LDLR is crucial for the removal of apoE- and apoB-

containing lipoprotein particles from the circulation.  The Ldlr-/- mice, like humans deficient for 

LDLR function, have increased plasma LDL cholesterol, although they demonstrate less overt 

vascular disease than do the  Apoe-/- mice, and develop plaques more slowly on NC diet [113].  

Feeding  Ldlr-/- mice a HFW diet significantly accelerates atherosclerosis. These genetically 

well-defined hyperlipidemic Apoe-/- and Ldlr-/- mouse models quickly became the primary 

models for the study of atherosclerosis due to similarities to the human disease and the 

reasonable rate of disease progression.   

Many mutant mice with altered lipoprotein profiles that develop varying degrees of 

atherosclerosis have since been described, and some of them are listed in Table 1.  For instance, 

transgenic mice over-expressing a human Apob gene (HuApoB) in the liver have elevated levels 
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of circulating LDL and thus have lipoprotein profiles more similar to those of humans [114].  

These mice develop severe atherosclerosis when fed an atherogenic high fat diet [115].  

Interestingly, transgenic mice over-expressing mouse Apoa-II are also susceptible to diet-

induced atherosclerosis [116].  Although the role of apoA-II in HDL function is not clear, it 

appears that the altered ratio of apoA-I to apoA-II in HDL impairs the anti-atherogenic properties 

of HDL.  In addition to increased triglycerides and VLDL, the Apoa-II transgenic mice also 

exhibit traits associated with human insulin resistance syndrome [117]. 

Genetic manipulation in mice to create models of specific human genetic conditions has 

also been used to provide insight into the mechanisms of the corresponding human condition. 

While complete lack of apoE is extremely rare in humans, some apoE protein variants are 

associated with premature atherosclerosis [16].  Type III hyperlipoproteinemia is a condition 

characterized by elevated plasma cholesterol and triglycerides and an increased risk of premature 

atherosclerosis.  Both dominant and recessive inherited forms of Type III hyperlipoproteinemia  

are known in humans. The dominant inherited form is caused by defective apoE proteins, such as 

apoE3-Leiden or apoE (Arg112, Cys142), and is associated with a plasma accumulation of 

VLDL [78].  Transgenic mice carrying these variant apoE genes are susceptible to diet-induced 

atherosclerosis [118, 119].  The recessive form of Type III hyperlipoproteinemia occurs in 

approximately 5% of humans who are homozygous for APOE*2, one of the three common 

alleles of APOE in humans [23].  The apoE2 isoform binds with lower affinity to the LDLR than 

do the other two common isoforms, apoE3 and apoE4 [13-15].  Because not all APOE*2 

homozygotes develop hyperlipoproteinemia, other factors are thought to be necessary for 

manifestation of this condition in humans [23]. Yet in targeted mice all the homozygous Apoe2/2 

mice that express the human apoE2 isoform in place of mouse apoE exhibit Type III 
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hyperlipoproteinemia  regardless of their gender, age, or sex [34].  Additionally, all Apoe2/2 mice 

develop atherosclerosis that is significantly accelerated by a Western style high fat diet (HFW), 

while mice with apoE3 and apoE4 do not [14, 33, 34].  Apoe2/2 mice may reveal the causative 

factor for Type III hyperlipoproteinemia because the precise species difference necessary to 

precipitate the phenotype in some humans is apparently already present in these mice [34]. 

The Ldlr-/- mouse is a model of human familial hypercholesterolemia (FH) in which 

mutations in the Ldlr gene are the major cause of the autosomal dominant form of the disease 

[120].  In addition, gain of function mutations in the Pcsk9 gene coding for pro-protein 

convertase subtilisin/kexin type 9 cause some rare autosomal dominant cases [121].  PCSK9 

mediates LDLR degradation and therefore its activity is a major determinant of plasma LDL 

concentrations in humans [122].  Mice over-expressing PCSK9 in the liver show accelerated 

degradation of LDLR, and consequently have markedly increased plasma LDL concentrations 

[123, 124].  Autosomal recessive hypercholesterolemia (ARH) was shown to be caused by loss-

of-function mutations in the Arh gene that encodes an adaptor protein that is important for the 

internalization of LDLR [125].  Although plaque development has not been reported, both the 

transgenic mouse overexpressing human PCSK9 and the mouse lacking ARH are likely to be 

excellent models of atherosclerosis since they show plasma lipoprotein profiles similar to the 

Ldlr-/- mice. 

In aggregate the data from these studies suggest that once mice have plasma total 

cholesterol concentrations of over 200 mg/dL, and the cholesterol is primarily in non-HDL 

particles, they will eventually develop atherosclerosis.    However, the data provide no 

compelling evidence that any particular model is more ideal than others for studying the overall 

process of atherogenesis.  The predominance of studies employing Apoe-/- mice and Ldlr-/- mice 
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in recent years likely reflects the relative ease of using mice with single gene defects and the fact 

that these models were the first to be made available.  However, it is important to bear in mind 

the specific mutations or deletions underlying the dyslipidemia in individual models, as certain 

models may be uniquely suited for the study of particular pathways that contribute to the 

atherosclerotic process.    
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Table 6.1.  Mouse Models of Hyperlipidemia and Atherosclerosis  
 

Models Mutation Dieta Notes reference 

C57BL/6  Wild type inbred HFC Relatively more susceptible to diet-induced atherosclerosis than other 

common inbred strains of laboratory mice. 

[111] 

Apoe-/- Homozygous KO NC Elevated cholesterol-rich remnants, and spontaneous atherosclerosis [75, 112] 

Apoe+/- Heterozygous KO HFC Severe atherosclerosis only when fed high fat diet.  [126, 127] 

Ldlr-/- Homozygous KO HFW Elevated LDL-cholesterol and severe atherosclerosis on high fat diet.   [113] 

CETP tg Transgene HFC Accelerated diet-induced atherosclerosis. [128] 

HuApoB tg Transgene HFC Elevated LDL cholesterol and severe diet-induced atherosclerosis  [114] 

ApoAII tg Transgene HFC High plasma triglyceride levels. Increased diet-induced atherosclerosis.  [116] 

ApoE3Leiden, ApoE 

(Arg112,Cys142) tg 

Transgene HFW Type III hyperlipoproteinemia and severe atherosclerosis [118, 119] 

Apoe2/2 Gene replacement HFW Type III hyperlipoproteinemia and severe atherosclerosis in 

homozyotes.   

[34] 

Apoe4/4 Ldlrh/+ Gene replacement HFW Accumulation of CH-rich, TG poor remnants and severe  

atherosclerosis only when mice are on high fat diet. 

[39] 

Srb1-/-, Apoe-/- Double KO NC Very severe atherosclerosis and death at 5 weeks of MI. Treatment with 

probucol prolongs the life span to 40 weeks 

[129] 

sg/sg  

(RORα-/-) 

Natural mutant HFC Staggerer mouse has a mutation in nuclear receptor RORα.   

hypoalphaproteinemia, neurodegeneration  

[130] 

KOR-SHL Natural mutant NC Hyperlipidemic and develop severe xanthomas,  

Spontaneous deletion of the Apoe gene. 

[131] 

a:  Diets necessary to induce atherosclerosis; NC; regular mouse chow generally containing 4.5% (w/w) fat and 0.02% (w/w) cholesterol, HFW; 

Western type high fat diet containing 21.5% (w/w) fat and 0.15% cholesterol; or HFC, atherogenic diet with 15.5% (w/w) fat, 1.25% (w/w) 

cholesterol and 0.5% (w/w) sodium cholate.  
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II. Quantitative Trait Loci Mapping to Identify Atherosclerosis-Susceptible Genes  

The atherosclerotic process is altered by interactions among products of genes from 

throughout the genome, many of which have likely not yet been discovered.  Mapping the 

location of significant quantitative trait loci (QTL) for atherosclerosis in mice appears 

particularly promising due to the number of inbred strains available and because the mouse 

genome is relatively well annotated with markers.  To this end the Jackson Laboratory, using 

43 inbred mouse strains, employed large scale, comprehensive phenotyping efforts to find 

among these strains differences in a number of metabolic and disease parameters [132].  The 

large number of strains was chosen specifically to mimic human genetic diversity.  Mice 

were fed a high fat, high cholesterol, cholate-containing diet; and body weight, percent body 

fat, percent lean mass, bone mineral density, total cholesterol, HDL, triglycerides, glucose, 

leptin, and insulin were measured.  There was a large range in the measured parameters, and 

certain sets of characteristics assorted in a strain-dependent manner.  Notably, CAST/EiJ, 

CBA/J, and MSM/Ms strains were identified as mimics of the human metabolic syndrome, 

for which a mouse model is currently lacking [132].  Results from this study and many other 

smaller phenotyping efforts are available from the Mouse Phenome Project’s database at 

www.jax.org/phenome.  In parallel, a large-scale effort to develop a sizeable group of 

recombinant inbred strains useful for mapping complex disease QTLs, including 

atherosclerosis, is on-going [133]. 

In addition to wild type inbred mouse strains, the Apoe-/- and Ldlr-/- mice on several 

different genetic backgrounds have been generated and intercrossed to map genetic loci that 

modify atherosclerosis characteristics or susceptibility [134, 135].  A large number of QTL 

maps have been created from these crosses.  They have identified multiple chromosomal loci 
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for new QTLs as well as QTLs that span or confirm previous reports.  Used individually, or 

combined with human QTL maps, they promise to accelerate atherosclerosis-related gene 

and therapeutic target discovery.  As mouse genome sequencing efforts expand and marker 

density increases, the ability to pinpoint causative genetic variations for these QTLs will 

continue to improve.   

While it is often difficult to definitively identify a causative gene for atherosclerosis 

susceptibility based on QTL mapping studies, some genes have been identified in recent 

years.  For example, the gene coding for A20, a regulator of nuclear factor-kappa B (NFκB), 

on chromosome 10 was identified using crosses between susceptible (C57BL/6J Apoe-/-) and 

atherosclerosis resistant (FVB/N Apoe-/-) mice [136].  Interestingly, despite C57BL/6J Apoe-/- 

being the susceptible strain in this cross, the C57BL/6J-A20 allele conferred resistance to 

atherosclerosis.  A20, also called tumor necrosis factor α induced protein 3 (TNFαip3), 

terminates activation of NFκB following its stimulation by various agents including TNFα.  

A Glu at position 627 in C57BL/6J-A20 introduces a putative casein kinase 2 

phosphorylation site making it a less effective terminator of TNFα-stimulated NFκB 

activation than the FVB/N-A20 with Ala at 627.  Recently, common A20 polymorphisms in 

humans have been shown to result in significant differences in A20 expression that are 

associated with the susceptibility to coronary artery disease in people with type 2 diabetes 

[137].  In this case, the QTL mapping of A20 in mice led to the detection of a set of 

polymorphisms in humans that are likely to play a role in human atherosclerosis 

susceptibility. 

A second example of gene identification through QTL mapping is the determination 

of the gene underlying Ath1.  The QTL designated Ath1 was originally mapped on 
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chromosome 1 in mice fed an atherogenic diet [138].  The C57BL/6J strain was 

atherosclerosis susceptible and C3H/HeJ and BALB/cJ strains were resistant [139].  Earlier 

studies suggested the Prdx6 gene, coding for peroxiredoxin 6, a thiol-specific antioxidant 

protein, as a likely candidate for the causative gene in the Ath1 QTL.  Elevated Prdx6 

expression levels were associated with both resistant strains and with smaller lesions within 

strains.  Additionally, the most susceptible strain, C57BL/6J, had an Ala124Asp substitution 

in Prdx6 [139].  However, subsequent studies of mice overexpressing Prdx6 showed no 

protection against atherosclerotic plaque development [140].  Eventually, the powerful 

combination of mouse genetics and human association studies helped to find a convincing 

candidate for Ath1, and led to the identification of Tnfsf4 by Wang et al. [141].  Tnfsf4, 

coding for Ox40 ligand (Ox40L), is expressed in the aorta and the level of its expression was 

significantly higher in the atherosclerosis susceptible C57BL/6J strain than in the resistant 

C3H/HeJ strain.  Furthermore, mice overexpressing the Ox40L developed more 

atherosclerosis than wild type mice, and mice lacking Ox40L were protected from 

atherosclerosis.  In support of the potential atherogenic role of Ox40L, a mouse 

atherosclerosis QTL was found on chromosome 4 near the gene coding for Ox40, the 

receptor for Ox40L [135].  In addition, a human mutation association study showed that 

mutations in Ox40L are predictive of myocardial infarction risk [141].  Together this 

evidence suggests that Tnfsf4 is likely to be the gene underlying Ath1.   The Ox40L-Ox40 

pathway is known to control lymphocyte proliferation and survival.  Finally, monoclonal 

antibody inhibition of Ox40L-Ox40 signaling effectively decreased atherosclerotic lesions 

more than 50% in Ldlr-/- mice [142].  The Ath1 story is a lesson in perseverance and 

demonstrates the power of utilizing human association studies in conjunction with mouse 
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genetics to identify the gene responsible for a QTL as well as test potential targets for anti-

atherosclerosis therapy. 

A third example used QTL mapping to identify 5-Lipoxigenase (5LO) as an 

atherosclerosis susceptibility gene located on chromosome 6.  5LO is the rate-limiting 

enzyme in leukotriene synthesis and is expressed primarily in leukocytes, including 

monocytes and macrophages.  Leukotrienes are potent pro-inflammatory lipid mediators and 

5LO could play a role in atherosclerosis by regulating these pathways [143].  The QTL was 

mapped in a C57BL/6J x CAST/Ei F2 population [144].  Two conserved 5LO amino acid 

changes were associated with reduced 5LO expression in the congenic C57BL/6J mice 

carrying the CAST atherosclerosis 5LO allele [143].  In addition, the 5LO hemizygous Ldlr-/- 

mouse model showed significantly smaller atherosclerotic lesions.  However, 5LO is not 

completely responsible for this QTL.  Creation of reciprocal subcongenic lines (in this case a 

C57BL/6J mouse with just the locus of interest derived from CAST/Ei and visa versa) 

showed that two other loci within the same QTL, named Ath37 and Ath38, play a significant 

role in the effect of this QTL [145].  Although rare to find three sizeable effect QTLs so close 

together, it is not uncommon for the large intervals found in most QTLs to subdivide into 

multiple responsible loci.  While gratifying to find one responsible locus for each QTL, the 

likelihood of multiple genes being responsible is significant when the QTL is large. 

Causal relationships between the majority of the atherosclerosis QTLs and the 

responsible strain-dependent genetic variants for atherosclerosis susceptibility remain to be 

proven.  Nevertheless, with the completion of the human and multiple mouse genome 

sequences, as well as genome sequencing of other species, comparative genetics will 
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facilitate genome-wide mapping approaches and the identification of new genes and 

pathways.   
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III. Testing Candidate Genes by Intercross of Genetically Altered Mice  

A highly effective approach to test the contribution of a candidate gene to 

atherosclerosis development in mouse models is to cross Apoe-/- or Ldlr-/- mice with mice 

carrying the candidate mutation. The contributions of many such tested loci to atherosclerosis 

development in mouse models have been extensively reviewed [146-154].  The majority of 

the mutations tested in this manner have been loss of function mutations, which are rare in 

humans.  In addition, because plaque rupture and subsequent thrombi are very rare in Apoe-/- 

mice and Ldlr-/- mice, current evaluations of genetic modifiers in mice focus mainly on the 

development of plaques and their progression to complex lesions.   

Mouse models have confirmed the importance of inflammatory processes in 

atherogenesis and helped identify potential therapeutic targets.  Inflammatory processes are 

crucial in all stages of atherosclerosis [72].  Initiation of the fatty streak is thought to involve 

monocyte recruitment, rolling, adherence, transendothelial migration and activation.  

Absence of monocyte chemoattractant protein-1 (MCP1) decreases lesion size in Ldlr-/- mice 

by at least 20% [44, 155]; absence of its receptor, chemokine receptor 2 (CCR2), limits 

lesion formation and development in Apoe-/- mice [156, 157].  Since plaques still develop in 

the Ccr2-/- Apoe-/- mice and continue to mature with time, the MCP1-CCR2 system cannot be 

the only pathway that is important for the recruitment of monocytes during the initiation of 

an atheroma.  Other chemokines, cell adhesion molecules and various integrins are also 

involved in the recruitment and migration of monocytes.   

Fatal vascular events in humans are rarely the result of lumen occlusion by the 

developing plaque.  Instead they result from plaque rupture that leads to formation of 

occlusive thrombi and subsequent tissue ischemia.  Plaque rupture and thrombosis followed 
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by infarction and heart failure is rarely seen in mice.  However, evidence of unstable plaques 

such as low collagen content and thinning and disruption of the fibrous cap have been 

observed in several models [158-160].  In addition, studies demonstrating intraplaque 

hemorrhage without thrombosis in advanced lesions in the brachiocephalic artery of Apoe-/- 

mice show that lesions in this model progress to the late unstable stages seen in human 

plaque development [161].  Indeed, plaques in high fat fed Apoe-/- mice often show evidence 

of healed or buried plaque ruptures [161-163].  Ruptures in mice may often heal without the 

incidence of pathologic thrombosis [163]. Lack of consistent pathologic thrombosis and 

infarction in murine atherosclerosis models may be due to species and strain differences in 

circulation and coagulation.   

At least one mouse model has shown signs of plaque rupture with resulting 

myocardial infarction and heart failure.  Severe atherosclerosis accompanied by heart disease 

and early death was observed in Apoe-/- mice that also carried a homozygous deletion of the 

high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) [129].  The 

Scarb1-/-Apoe-/- mice develop coronary artery occlusions with complex fibrin-containing 

lesions.  The dramatically accelerated occlusive atherosclerotic disease observed in these 

mice may be caused by an alteration in their lipoprotein metabolism leading to decreased 

biliary cholesterol, increased plasma cholesterol and decreased reverse cholesterol transport 

[129, 164].  Treatment with probucol, a drug with antioxidant and cholesterol-lowering 

effects, prevented early coronary heart disease and death in the Scarb1-/-Apoe-/- mice, and 

extended their life span from 6 weeks to an average of 36 weeks [129, 164].  Although it is 

not clear if thrombosis contributes to their myocardial infarctions, the Scarb1-/-Apoe-/- mouse 

is currently the only model that demonstrates early atherosclerotic death.  Interestingly, they 
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combine mutations from two fundamental pathways in atherosclerosis development-

hyperlipidemia and monocyte cholesterol handling.   

Interpretation of the data obtained from intercrosses of mutants generated by genetic 

engineering must be undertaken only with careful consideration of the genetic background, 

age, gender and diet of the mice, as these factors can significantly influence the experimental 

results.  When the effects of a specific mutation itself are small and/or they interact with 

other yet-to-be-identified factors, the results may vary from one experiment to another due to 

other influences.  For example, the role of inducible nitric oxide synthase (Nos2) on 

atherogenesis has been investigated by four different groups.  Two groups reported a 

significant reduction of plaque development in the Nos2-/-Apoe-/- mice [165, 166]  while two 

others reported no change [167, 168].  Diet, age, and genetic background of the mice used by 

the four groups differed slightly and likely influenced the outcome.  Effects can also be 

gender specific, as reported by Whitman et al., who found that interferon-gamma (IFN-γ) 

deficiency had no effect on lesion size in female Apoe-/- mice, but profoundly decreased it in 

males [169].  In contrast, Matsui et al. observed that lack of osteopontin, a non-collagenous 

adhesive protein, decreased atherosclerosis in female Apoe-/- mice but had no effect in males 

[170].  In a cross of Ldlr-/- mC57BL/6J x fFVB and mFVB x fC57BL/6J  mice, both lineage 

specific and sex-specific effects were apparent suggesting that genetic imprinting and 

hormone mediated effects are likely both important [171].  The mechanisms underlying the 

sex-limited effects of these factors are not known, but constitute an important area for future 

studies.  
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IV. Tissue Specific and Temporal Gene Modification 

Tissues of both the vessel wall and the bone marrow contribute to the atherosclerotic 

process.  The involvement of certain cell types at different stages of plaque development 

suggests that certain genetic pathways, and therefore the function of certain genes, are 

temporally relevant.  Mouse models with tissue-specific or temporal gene expression can test 

the contribution of certain cell types to plaque progression, or their function at different 

stages of atherosclerosis development, respectively.  Dissecting the spatial and temporal 

functions of the molecules, cells, and pathways involved in atherogenesis will be critical for 

understanding the disease process and for developing new therapeutic strategies.   

Bone marrow transfer (BMT) protocols are widely used to investigate macrophage-

dependent pathways that contribute to the atherosclerotic process.  Reconstitution of lethally 

irradiated atherosclerosis-prone mice, such as Apoe-/- or Ldlr-/- mice, with bone marrow cells 

from mice carrying additional mutations have allowed investigators to separate the function 

of gene products in the bone marrow derived cells from their function in the tissues of the 

recipient animals.  For example, proteins involved in lipid metabolism such as LDLR have 

established functions in the liver as well as macrophages.  BMT allows their tissue-specific 

roles to be examined in-vivo.  Macrophage LDLR binds LDL and VLDL/chylomicron 

remnants, and the resulting lipid uptake can induce foam cell formation in culture [85, 172].  

BMT studies have shown that wild type mice that received wild type bone marrow cells 

develop larger diet-induced plaques compared to the mice that received Ldlr -/- bone marrow 

cells [57, 85].  However, macrophage expression of the LDLR did not significantly increase 

atherosclerosis in the hyperlipidemic setting when Ldlr -/- recipient mice were given wild type 

bone marrow cells [86, 173]. 
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We recently showed that LDLR expression affects atherosclerosis development but in 

an apoE isoform dependent manner.  Thus in Apoe4/4 Ldlr-/- mice, the replacement of native 

bone marrow cells with those expressing LDLR increased atherosclerotic lesions in a dose 

dependent manner [38].  In contrast, atherosclerosis was not altered in Apoe3/3 Ldlr-/- mice 

that express the human apoE3 isoform, when the level of macrophage LDLR expression was 

varied.  Results of these BMT experiments suggest that the interaction of macrophage LDLR 

expression with Apoe genotype may contribute to the association in humans between the 

apoE4 isoform and an increased cardiovascular risk. 

Genetic models that employ BMT are also useful for examining the atherogenic role 

of a gene product in hematopoietic cells when mice lacking the product fail to thrive.  For 

example, mice lacking cyclooxygenase 2 (COX2) die before weaning age [174].  Burleigh et 

al. were able to generate Ldlr-/- mice lacking macrophage COX2 by transplanting fetal liver 

cells from the COX2 deficient pups into Ldlr-/-  adults [174, 175].  The Ldlr-/- mice that 

received the COX2-deficient bone marrow cells had significantly smaller atherosclerotic 

lesions than control mice receiving wild type bone marrow cells.  The investigators 

concluded that Cox2 expression in macrophages is pro-atherogenic, and provided further 

confirmation of the anti-atherosclerotic effects of COX2 inhibition. 

 Tissue-specific gene modification is a useful technique for determining the 

role of a gene product in certain tissues, or when global modification is embryonic lethal.  

The Cre/loxP system can be used to delete or activate a gene of choice in a tissue-specific 

manner.  An excellent example in a mouse model of atherosclerosis is the use of this system 

to achieve smooth muscle cell-restricted deletion of the LDL receptor-related protein 1 

(LRP1).  Lack of LRP1 is embryonic lethal in mice.  Therefore, Boucher et al. used the 
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Cre/loxP system to generate viable Ldlr-/- mice that lack LRP1 only in vascular SMCs [176].  

They found that absence of LRP1 in SMCs resulted in the thickening of vessel walls that 

normally occurs as a consequence of SMC proliferation.  Feeding a Western-type high fat 

diet to these mice increased their atherosclerosis burden as much as 10 fold compared to 

Ldlr-/- mice with intact LRP1 in their SMCs.  In addition, a significant aneurysm-related 

dilatation of the aorta was observed in association with large plaques.  The authors further 

demonstrated that LRP1 forms a complex with a receptor for the platelet-derived growth 

factor (PDGF) and controls activation of the receptor.  Thus, models of tissue-specific gene 

deletion helped show that LRP1 plays a pivotal role in protecting the vascular wall and 

preventing atherosclerosis by suppressing SMC proliferation.   

Combining tissue-specific deletion of a gene with BMT allows researchers to ask 

sophisticated questions about the mechanisms of atherogenesis.  Transcription factors, such 

as peroxisome proliferator gamma (PPARγ), often have distinct roles in different cell types.  

Deletion of the Pparγ gene in mice is lethal in the developing embryos [177-179].  Babaev et 

al. generated mice with macrophage-specific deletion of Pparγ using the Cre/loxP system.  

Using BMT, the authors were able to demonstrate that the Ldlr-/- recipients of bone marrow 

with macrophage - PPARγ -/- cells had significantly larger atherosclerotic lesions than mice 

receiving bone marrow with wild type macrophage cells. The authors concluded that Pparγ 

expression in macrophages is anti-atherogenic [180]. The pleiotropic nature of molecules 

such as PPARγ and their prospect as therapeutic targets underscores the importance of 

detailing their tissue specific functions. 

While some genes have important tissue-specific functions, other genes may be 

important at different stages of the disease process.  Advanced human plaques have thick 
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fibrous caps and high collagen content.  Degradation and remodeling of the extracellular 

matrix in these advanced lesions likely determines their vulnerability to rupture.  

Macrophages are believed to regulate plaque stability through their release of matrix 

metalloproteinases (MMP) [181-183].  Gough et al. transferred bone marrow cells that 

overexpress an auto-activating form of MMP-9 into older apoE-deficient mice with existing 

atherosclerosis.  Overexpression of MMP-9 led to plaques with disrupted fibrous caps, 

increased fibrin deposits and intraplaque hemorrhage in the brachiocephalic artery and the 

aortic arch [184].  

Modeling the temporal effect of gene expression has also been investigated using 

drug-inducible changes of gene expression, such as by doxycycline, that can reversibly 

control transgene expression [185, 186].  Environmentally produced reactive oxygen species 

(ROS) have been implicated in atherosclerosis; however, the contribution of metabolically 

produced ROS from oxidative phosphorylation in mitochondria is not clear.  Uncoupling 

protein 1 (UCP1) expression lowers the efficiency of mitochondrial ATP production by 

increasing mitochondrial matrix proton permeability.  Bernal-Mizrachi et al. created 

transgenic mice with doxycycline-inducible expression of UCP1 in SMCs and crossed them 

with Apoe-/- mice [187].  UCP1 expression measurably increased the metabolic production of 

ROS in the aorta and lowered nitric oxide levels, which led to an elevated blood pressure and 

increased atherosclerosis, confirming that metabolically-produced ROS can modulate the risk 

of atherosclerosis.    
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V.  Humanizing the Mouse Systems.   

In some mouse models of atherosclerosis the phenotype does not precisely model all 

aspects of the human disease, even when genetic defects identical to those occurring in 

humans are introduced into the mouse genome.  Humans are genetically diverse, while most 

studies in mice utilize a genetically uniform population.  In certain cases, altered 

atherosclerotic susceptibility between humans and genetic mouse models may be due to 

differences in the concentration, activity, or pattern of expression of a particular homologous 

protein.  Novel techniques have been used to create genetic alterations in mice that can reveal 

and begin to overcome some of these difficulties.  As human therapeutics become 

increasingly tailored to certain mutations and protein isoforms, mouse models that contain 

the human target, or replicate the human physiological system, will allow us to better 

determine their mechanism of action, efficacy, and safety.   

 We tested whether mice can faithfully recapitulate a component of human 

lipid metabolism by replacing the mouse Apoe gene with the three human alleles [14, 33].  In 

humans the APOE  alleles are strongly associated with both the plasma concentration of 

LDL-cholesterol and the risk of atherosclerosis, (in the order APOE*2 < APOE* 3 < APOE* 

4 ) [3].  This association between apoE-isoforms and plasma lipoprotein profiles is one of the 

best predictors of cardiovascular disease in humans [2, 3, 188]. However the mechanisms 

underlying this association are still not clear since apoE4 binds to the receptor with a slightly 

higher affinity than apoE3 while apoE2 binds to the receptor with much less affinity than 

apoE3 or apoE4 [15].  A widely held explanation for this observation is that the high affinity 

of apoE4 for the LDLR leads to an increase in apoE-mediated cholesterol uptake and 

subsequent down-regulation of the Ldlr gene.  Low LDLR levels in humans with apoE4 
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could account for their elevated plasma LDL and increased atherosclerosis.  Conversely, the 

low affinity of apoE2 is thought to lead to up-regulation of Ldlr and decreased plasma LDL 

[3, 19]. 

Unexpectedly, mice expressing human apoE2, E3 or E4, in place of mouse apoE, 

recapitulate the human relationship, but only when the mice also express a high level of the 

human LDLR [37, 39].  Thus, in contrast to the current hypothesis, an increased expression 

of the LDL receptor in the mice with human apoE4 caused a marked accumulation of 

cholesterol-rich, apoE-poor remnants in plasma and severe atherosclerosis.  We hypothesize 

that the LDLR can trap apoE4, and reduce its availability for transfer onto lipoproteins, thus 

delaying their clearance, which increases the plasma concentration of slowly-cleared apoE-

poor remnants.  The overall consequence is that increased LDLR expression is pro-

atherogenic in mice with apoE4 and anti-atherogenic in mice with apoE2.   

In humans who carry the APOE*4 allele, the phenotypic effect is significant but not 

as pronounced as we observe in genetic mouse models.  Nevertheless, the adverse effect of 

the apoE4-LDLR interaction in remnant clearance observed in mice can explain, at least in 

part, the increased risk of atherosclerosis in humans associated with the APOE*4  genotype.  

Our explanation is also consistent with observations that humans carrying APOE*4 have 

prolonged post-prandial lipemia [2, 64, 68].  This work suggests that humans and mice differ 

in their relative use of apoE and LDLR in lipoprotein metabolism.  It also provides an 

example that species differences should not be simply dismissed, because they can reveal 

new insight into old problems.   

These studies demonstrate that genetic models of atherosclerosis that humanize the 

mouse can potentially enhance our understanding of the human disease process.  This 
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approach may be particularly important when studying therapeutic targets to overcome 

species-specific differences in the function of particular gene products.  For instance, 

investigating therapeutic monoclonal antibodies (Mab) in mouse disease models is 

complicated because the target protein may differ from the human homolog.  Recently mice 

with humanized VEGF-A, generated by gene-targeting, were used for testing the efficacy of 

Mab directed against VEGF [106].  In contrast to the cell culture promise of anti-

angiogenesis, anti-VEGF Mab had little effect on tumourogenesis in the in-vivo model, but 

did cause kidney damage.  This model also shows the potential utility of genetic mouse 

models in testing toxicity and efficacy in the early stages of drug development. 

Differences between the human and mouse immune systems result in other challenges 

to using genetic mouse models for disease study and drug discovery.  The role of the immune 

system in atherogenesis is clearly established, but the divergence of genes in the two species 

has resulted in differences both in the innate and adaptive immune systems.  For example, 

mouse A20-binding inhibitor of NFκB-3 (ABIN-3), induced selectively by the anti-

inflammatory cytokine IL-10, is incapable of inhibiting murine NFκB while human ABIN-3 

protein does inhibit human NFκB [189].  One solution would be to replace divergent mouse 

factors with their human counterparts.  For example, replacement of the mouse immune 

system by transferring human hematopoietic stem cells into immunodeficient NOD/SCID 

mice can be used to model human immune responses in mice [190].   

Transgenic mice carrying a large fragment of human genomic DNA often yield more 

human-like temporal and spatial expression of a transgene when compared with the 

endogenous mouse gene.  To this end, techniques have been developed to replace a large 

segment of the mouse genome with the syntenic human region [191].  Finally, although not 
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yet practical for general use, transmission of a whole human chromosome to a mouse has 

been demonstrated in a transspecies aneuploid mouse line carrying an almost complete 

human chromosome 21 that models aspects of human Down syndrome [192].   
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VI. Identifying targets in atherosclerotic disease using systems biology approach. 

Large scale genome analyses and genetic manipulations using transgenic expression, 

knockout, and gene replacement technologies have led successfully to a recent explosion in our 

understanding of the in-vivo molecular and cellular mechanisms of atherosclerosis.  Assessing 

the contribution of a single target and grouping genes and their products according to their 

functional pathophysiology, however, is somewhat tedious.  Scientists are beginning to look 

beyond the analysis of single genes, proteins, or lipids to study the function of these individual 

constituents as components of a larger integrated biologic system.  Systems biology has the 

potential to delineate the components of a given system, define the interaction among those 

components, and thereby help explain the behavior and function of the system.  Recent 

publications detail the systems biology approach to studying atherosclerosis [193-195]. 

Ideally, the study of a complex disease process using systems biology would incorporate 

relevant data and information about the genome, transcriptome, proteome, metabolome, and 

phenome.  To date, integrating these diverse data sets and other methodology challenges has 

limited the systems biology approach to the examination of interactions among a smaller subset 

of these data sets.  Nevertheless, the power of this approach to studying a complex disease such 

as atherosclerosis is evident.  For example, King et al. performed comprehensive micro-array 

gene expression analysis of human coronary artery atherosclerotic lesions and then developed 

pathway generation and network analysis tools to integrate their expression profiles with 

previously known information  [196].  This approach allowed the authors to establish a network 

of interacting genes relevant to the disease process.  It also identified “nexus” genes that are 

pivotal components of the network and therefore are interesting targets both for understanding 

the disease process and for pharmaceutical development.  Similar array and quantitative PCR-
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based approaches were used with human samples to construct pathways with known and novel 

components that are important to the response of endothelial cells to oxidized phospholipids and 

to the process of in-stent restenosis, again identifying interesting therapeutic targets [197, 198] 

Investigators are beginning to apply systems biology techniques to mouse genetic models 

of atherosclerosis.  For example, de Roos et al. used a proteomics approach in Apoe-/- mice to 

examine the pattern of differentially expressed hepatic proteins in response to dietary isomers of 

conjugated linoleic acid [199].  They identified isoform-specific regulation of certain proteins 

and metabolic pathways as well as isoform-dependent linkages to pathways that contribute to 

insulin resistance and the inflammatory response.  Similarly, Mayr et al. compared wild-type and 

Apoe-/- aortic tissue using proteomics combined with metabolomics to describe a set of 

atherosclerosis-related alterations in proteins and metabolites [200].  The results identified 

components of pathways in energy metabolism, oxidative stress, inflammation, and the immune 

response that contribute to atherogenesis. 

Genetic mouse models of atherosclerosis are also yielding gene expression profiles 

associated with this disease.  A recent study used the F2 mice from an intercross of sensitive and 

resistant strains and compared the gene expression profile of bone marrow-derived macrophages 

from animals with large or small lesions [201].  The researchers used the data to identify 

transcription factor binding sites, within promoter elements, that were differentially associated 

with either large or small atherosclerotic lesions.  In combination with QTL data previously 

generated, they used the gene expression data to propose two candidate gene products, Williams-

Bueren syndrome protein (Wbscr) and adaptor protein with pleckstrin and SH2 domains (Aps),  

as possible modifiers of lesion size. 
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In another study, gene expression data was collected from mouse strains with varying 

susceptibility to atherosclerosis, on a normal or high fat diet, and at defined points along the 

course of the disease [202].  Appropriate tools were developed and applied to confirm the 

involvement of known genes and to identify novel genes as well as molecular and biologic 

pathways involved at various stages of the atherosclerotic process.  They combined these data 

with the expression data derived from the study of coronary artery disease in humans to identify 

subsets of differentially expressed genes particularly relevant to describing disease progression 

and severity and distinguishing between native and in-stent atherosclerotic processes [197].  

These examples highlight the potential of the systems biology approach to identify novel 

targets and pathways that contribute to de novo atherosclerosis and related pathologic processes.  

This approach will help to define the complex relationships among, and regulation of, the 

functional components of atherosclerosis and other complex diseases.  A single study can 

generate numerous possible targets to explore.  As methodology improves, these studies are 

becoming more feasible and informative, and they have great potential to unravel complex 

disease processes.  They also provide us with the challenge of validating each of the identified 

components as legitimate and feasible targets for therapeutic manipulation.  In large part, target 

validation in the study of atherosclerosis currently utilizes genetically manipulated mouse 

models including transgene expression and gene knockout.  Thus, systems biology will help us to 

understand the genetics of atherosclerotic disease by identifying potential therapeutic targets.  It 

will simultaneously heighten the need for genetic-based validation of potential therapeutic 

targets using genetic mouse models of atherosclerosis to study the disease process. 
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Conclusion   

The etiology of atherosclerosis is complex. Its pathogenesis is influenced by a 

number of biologic systems including lipoprotein metabolism, inflammation, coagulation, 

and others.  Genetic mouse models of atherosclerosis have allowed us to identify certain 

components of these systems and examine their contribution to the mechanisms of 

atherogenesis. Yet, other components of these systems remain to be discovered, as do their 

precise contributions to atherosclerosis.  The number and nature of genetic tools to identify 

and examine these contributing factors is expanding and they are being used more frequently.  

Our understanding of the complex process of atherosclerosis will be enhanced if we integrate 

the knowledge derived from these different models.  Systems biology approaches will help 

reveal the fundamental mechanisms of atherosclerosis, as well as model-specific mechanisms 

of atherosclerosis. As these mechanisms are better understood, therapeutic targets for 

modulation of atherogenesis will become evident and be validated.  The genetic models of 

atherosclerosis can then also be used to test new therapeutic agents and therefore will lead to 

the development of effective treatments for atherosclerosis (Figure 6.1). 
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Conclusion and future directions 

The higher binding affinity of the apoE4 isoform to the LDLR than apoE2 or apoE3 

has been implicated in leading to increased plasma LDL cholesterol and atherosclerosis in 

individuals carrying apoE4 [2, 3]. Combining mice targeted with human apoE crossed to 

either HuLDLR overexpressing or LDLR knock outs, along with adenovirus mediated LDLR 

and apoE-GFP expression, we investigated the effects of LDLR expression on the 

localization of the different apoE isoforms in the liver.  Additionally, apoE isoforms have 

been shown to have seemingly lipid independent in-vitro affects on oxidation, SMC 

migration, and inflammation.  Using a BMT system we determined that the apoE-LDLR 

interaction has affects on atherosclerosis independent of their affect on lipid levels in the 

plasma.  Our results demonstrate, for the first time in animal models, that some of the risk 

associated with human apoE4 isoform may be due to its interaction with the LDLR in 

macrophages as well as with hepatic LDLR.   

The liver is the main source of plasma apoE.  Remnant lipoproteins are cleared in the 

liver mainly by LDLR and by LRP, but the uptake by these receptors require the remnants to 

acquire and be enriched with apoE proteins [47, 94-96]. Liver-derived and localized apoE 

facilitates the receptor-mediated internalization of remnants in the liver [96, 97].  Previously 

we showed in mice that all human apoE-isoforms are less effective ligands to non-LDLR 

mediated clearance of TG-rich lipoproteins than mouse apoE, and that VLDL remnants with 

very high cholesterol and apoE accumulates in the absence of LDLR [69].  Dependence of 

remnant clearance on LDLR is likely to be exaggerated in mice with human apoE isoforms.   

We earlier observed that mice globally expressing 2-3 times the normal Ldlr gene 

exhibit hypercholesterolemia when fed a HFW diet only when they are also carrying the 
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human apoE allele [39].  We hypothesized that a high-affinity interaction between LDLR and 

apoE4 in the liver limits the transfer of apoE protein to the TG-rich lipoproteins, limiting 

their clearance.   

The paradoxical association of apoE4 with elevated plasma cholesterol in humans 

may be due to its high LDLR affinity and a reduced ability to exchange onto and clear TRLs 

and remnants.  In cell culture binding or in-vivo clearance assays, when apoE is already 

present on the particle, apoE4 containing particles show enhanced binding and clearance 

compared to apoE3 and apoE2 [14, 19, 99].  Assaying apoE LDLR interaction this way may 

be misleading when used to interpret in vivo clearance mechanisms because it does not 

account for apoE isoform dependent differences in VLDL apoE-enrichment.  Acquiring apoE 

is necessary for VLDL remnant clearance.  For example apoE4, due to its high LDLR 

affinity, may stay stuck in or on cells and out of the plasma, leaving circulating VLDL apoE-

poor.  In fact , apoE deficient-VLDL binding and clearance is reduced when cells or animals 

express apoE4 compared to apoE3 [14].  We have shown that apoE2, with the lowest LDLR 

affinity, clears apoE deficient VLDL faster than apoE4 when they are expressed by the liver 

in-vivo and apoE-deficient particles are used.  Thus the clearance of exogenous apoE 

deficient VLDL is faster when the recipient animal expresses apoE with low LDLR affinity 

along with a higher LDLR level.  This may be more relevant to in vivo apoE-LDLR 

interaction because newly secreted chylomicron and VLDL have yet to acquire apoE.  

Combined with the reduced plasma apoE level associated with apoE4, this could increase the 

plasma retention time of these lipoproteins.  Interestingly, this is consistent with the higher 

post prandial lipemia in apoE4 humans [68] as well as Apoe4/4Ldlrh/+ mice on HFW diet [39].  

In contrast, the lower LDLR affinity of apoE2 increases its plasma concentration and HDL 
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levels and this circulating apoE2 has ample opportunity to exchange onto and increases 

VLDL clearance.   For a visual depiction of the clearance of apoE deficient-VLDL in animals 

that synthesize apoE versus the clearance of apoE-containing VLDL see figure 7.1. 

In summary, LDLR affinity determines whether plasma lipoproteins can acquire 

apoE. Acquisition of apoE determines lipoprotein clearance.  Higher affinity apoE4 is not 

available to transfer to nascent VLDL in the plasma and consequently these VLDL 

accumulate. 
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Figure 7.1.  Proposed mechanism to explain apoE effect on VLDL metabolism.  Left 

Diagrams show apoE-poor VLDL clearance by apoE secreting hepatocytes.  Right diagrams 

show apoE-enriched VLDL clearance by apoE deficient hepatocytes. Top left shows apoE2 

metabolism of apoE-poor VLDL.  The lower LDLR affinity of apoE2 increases plasma apoE 

level (green arrow) possibly via its elevated HDL level.  This increases the enrichment of 

apoE2 onto VLDL which facilitates LDLR and HSPG mediated uptake.  A.  Lower diagram 

shows apoE4 metabolism of apoE-poor VLDL.  High LDLR affinity of apoE4 keeps it bound 

to the hepatic surface, which decreases VLDL enrichment.  VLDL at the hepatic surface are 

not internalized and subsequently converted to remnants and LDL possibly by LPL.  When 

VLDL is isolated with, or enriched with apoE clearance of VLDL directly reflects the LDLR 

affinity of apoE.  Right top low affinity apoE2 is poorly cleared.  Right bottom, High affinity 

apoE4-enriched VLDL is rapidly cleared. 
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Our results are consistent with and support our “apoE4 trapping by LDLR” as a 

mechanism to explain the hypercholesterolemia associated with apoE4.  Retention of apoE4 

at the hepatic surface by LDLR reduces its availability in the plasma to bind to and mediate 

remnant internalization.  HDL, which can modulate apoE recycling, and is a source of 

plasma apoE, is a possible regulator of this process [47, 94, 103-105].  HDL as an apoE 

carrier may be necessary for timely apoE exchange to other lipoproteins such as TRLs, 

allowing nascent lipoproteins to enter the plasma without immediate apoE-mediated reuptake 

and also to remove them before they become slowly cleared remnant LDL.  Modulation of 

HDL levels by LDLR is apoE isoform dependant; increased LDLR expression leads to 

increased HDL-cholesterol in mice with apoE2 and decreases HDL levels in mice with 

apoE4 [37, 39].  Elevated HDL with apoE2 could enrich apoE-poor VLDL and promote their 

clearance.  While reduced HDL and apoE4 trapped in the space of Disse, directs apoE-poor 

VLDL to remnant conversion rather than internalization.  Decreased apoE content on TRLs 

can increase conversion to remnants by LPL [22, 106-108].  It is interesting to also consider 

the inverse relationship between HDL and larger LDL and VLDL that exists in many mouse 

models and is typically observed in humans.  Perhaps increased HDL serves as reservoir for 

apoproteins ligands and cofactors to transfer onto larger lipoproteins.  Lack of apoE and 

other apoproteins on newly secreted VLDL and chylomicrons would ensure escape from the 

liver and allow lipid delivery to tissues.  Increased interaction with elevated HDL containing 

transferable apoprotein ligands, such as apoE, could help to clear these larger lipoproteins.   

Further studies are necessary to elucidate the form of apoE and potential role of HDL in the 

isoform-specific interactions between LDLR and apoE and whether other apolipoproteins are 

involved in these interactions.  High affinity ligands such as apoE4 may have difficulty 
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maintaining adequate plasma concentration of both apoE4 and HDL due to increased 

clearance.  Experiments to determine the role of apoE containing HDL in determining VLDL 

and LDL levels can be addressed using the mice in this work.  For instance, directly injecting 

apoE2 or apoE4 HDL into apoE-/- or apoE-/- Ldlrh/h   mice to see if their HDLs can mediate a 

decrease in VLDL remnants that accumulate in the absence of apoE.  Our hypothesis predicts 

that, if equal HDL or apoE is given, apoE4 HDL may assist remnant clearance better than 

apoE2.  However, if volumes of HDL that are actually observed in Apoe4/4Ldlrh/+ and 

Apoe2/2Ldlrh/+ mice are injected, then the elevated apoE2 and HDL in Apoe2/2Ldlrh/+ mice 

could be expected to mediate better VLDL clearance.  

An important difference in our model and apoE4 possessing humans is that the mice 

do not accumulate LDL and instead have elevated VLDL remnants.  This is often attributed 

to the editing of apoB in the mouse liver.  There are several apoB mouse models that have 

either apoB100 only or transgenics that overexpress human apoB100.  ApoB100 only mice 

without LDLR develop more LDL and atherosclerosis than those that still have apoB48 

VLDL, likely due to shunting of apoE VLDL to LRP uptake.  It is also likely that when 

crossed to our Apoe4/4Ldlrh/+ that increased apoB100 and LDL cholesterol will result.  This 

would be more similar to their human counterparts and thus a better model to continue 

studying the apoE isoform risk and interaction with LDLR in hepatic localization. 

Mice with apoE isoform and elevated LDLR revealed that there may be a critical 

range of LDLR levels for proper ratios of cholesterol carried by atherogenic non-HDL 

lipoproteins and by HDL particles. The optimum range of LDLR levels is different for each 

apoE isoform and proportional to each isoforms LDLR affinity.  For instance, all apoE 

isoforms mice have elevated VLDL and LDL when the LDLR is absent [69].  With wildtype 
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levels of LDLR, both Apoe4/4 and Apoe3/3 mice have high HDL and low non-HDL cholesterol 

[14]. However, ApoE2/2 mice have high non-HDL /HDL ratios [34].  When LDLR levels are 

elevated, HDL cholesterol levels dramatically decrease in both Apoe4/4 Ldlrh/+ and 

Apoe3/3Ldlrh/+ mice.  Since non-HDL cholesterol is elevated only in Apoe4/4 Ldlrh/+ mice their 

non-HDL /HDL ratios are critically high, while Apoe3/3Ldlrh/+ mice have nonHDL /HDL 

ratios that are modestly increased.  Apoe2/2Ldlrh/+ mice have reductions in their VLDL and 

elevated HDL levels and thus have low non-HDL /HDL.  If we apply the same relationships 

to phenotypes associated with apoE isoforms in humans, one may predict that LDLR activity 

in humans are in the upper ranges of figure 7.2 where apoE2 is beneficial and apoE4 is 

somewhat detrimental.  In the lower range of LDLR activities, the decreased affinity of 

apoE2 may cause apoE2-rich TRLs to accumulate, similar to the 5% of apoE2 homozygous 

humans who develop type III hyperlipidemia characterized by elevated TG.   
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Figure 7.2. Interaction between LDLR level and apoE affinity and resulting atherosclerosis 

risk (non-HDL cholesterol /HDL cholesterol) in mice.  Legend on the left: darker shaded area 

shows a decreased non-HDL /HDL.  Upper unshaded areas reflect elevated non-HDL/HDL 

and hyperlipidemia.  Darker shading represents a beneficial interaction; low LDL, high HDL.  

For each apoE isoform there is a different non-HDL/HDL level for each LDLR level.  Panel 

on the right shows non-HDL/HDL ratio (by amount of shading) in mice, determined by their 

LDLR level (y-axis) and apoE affinity (x-axis). Darker shaded areas reflect a good balance 

between LDLR level and apoE isoform that results in a good non-HDL/HDL.  Unshaded area 

is a poor non-HDL/HDL and hyperlipidemia.  For each apoE isoform as LDLR level goes up 

or down away from its critical range a poor non-HDL/HDL results. Similar non-HDL/HDL 

levels occur at different levels of LDLR for each apoE isoform reflected by the change in 

position of the shaded region.  For example on an Ldlr-/- background all mice are 

hyperlipidemic regardless of apoE isoform (unshaded area across the bottom).  As LDLR 

level is increased to wildtype mice with apoE3 and apoE4 have reductions in non-HDL 

(darker shading), while mice with apoE2 remain hyperlipidemic with a Type III phenotype 

(unshaded).  With elevated LDLR mice with apoE4 are out of range and hyperlipidemic, 

while mice with apoE2 are now in range and have elevated HDL.  Refer to lipoprotein 

profiles in figure 1.2 on page 22. 
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Careful titration of apoE and LDLR levels may shed light on the relevance of this 

mechanism to the well-established associations between the risk for coronary heart disease 

and Type III penetrance among apoE2 homozygotes as well as that of other apoE isoforms.  

Different doses of AdhuLDLR to induce varying LDLR expression levels combined with 

real-time PCR and western blotting for LDLR message and protein levels coordinated with 

lipid profiles could address this relationship and its predictions.   Determination of this 

relationship could also answer the surprising prediction by this hypothesis that elevation of 

LDLR in Apoe3/3Ldlrh/+ mice would further increase non-HDL lipoproteins.    

ApoE isoform mice that express varying levels of LDLR have generated interesting 

data that have led to novel hypothesis that appear to replicate and predict a consistent 

mechanism to explain the associated apoE isoform risks in humans.  It is important to 

continue to improve this model by elevating LDL and better replicating the human profiles.  

However ultimately these hypothesis will need to be tested in humans.  Human genetic 

variability and different environmental exposure often make these studies difficult to 

interpret and combined with sample availability almost impossible.  Surrogate indicators at 

the DNA level for expression level compared to plasma phenotype and apoE genotype have 

been initiated by Mullem et al. [203].  Immunohistochemical detection of apoE in human 

liver samples could, if similar to our studies, support our predictions.  In combination with 

plasma lipid, testing in human liver samples whether the pattern of elevated LDLR staining 

matches the prediction of a critical change for each isoform.  This would undoubtedly require 

large numbers of samples to first aquire the correct genotypes as well as reduce the sample 

variability. 
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Finally, after these studies, if in agreement with our predictions, the targeting of 

therapeutics to apoE isoform effects would be warranted and interpretable.  Our BMT 

experiments would suggest that the apoE4 isoform has a role in macrophage dependant 

atherosclerosis.   While our hepatic studies suggest that elevated LDLR increases lipid levels. 

Together this would indicate that the response to treatment of atherosclerosis, in humans with 

apoE4, with anti-inflammatory therapy and less reliance on LDLR up-regulating, statin, 

treatment should be investigated. 
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