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ABSTRACT 

 
RICHARD NGUYEN: Applications of sensory perceptual metrics to screen, to track changes in, 

and to differentiate clinical populations. 
(Under the direction of Mark A. Tommerdahl, Ph.D.) 

 

In order to overcome limitations in current neurological screening methods, a portable, non-

invasive, vibrotactile mechanical stimulator was developed to rapidly and quantitatively analyze 

various features of central information processing. Understanding the neurobiological processes 

involved in somatosensory perception of particular types of tactile stimulation, the general hypothesis 

on which these studies are based is that any systemic changes in central information processing can 

be attributed to variations observed in sensory perceptual metrics. These evaluations were designed 

to allow investigation into fundamental neurobiological mechanisms involved in cortical interactions 

and brain functionality. The uniqueness of each of the protocols has thus far demonstrated significant 

sensitivity to detecting alterations in various types of central information processing. This research 

explores the application of the method within young adult clinical populations—migraine, 

alcoholism, and concussion—which can benefit from additional or improved assessments. Analysis 

of the results revealed that sensory perceptual metrics could screen, track changes in, and 

differentiate these clinical populations. Future work consists of further developing dual-site protocols 

and exploring multi-site and bilateral protocols to study adjacent or near-adjacent, as well as cross-

hemispheric, cortical interactions, respectively. The ultimate goal of these studies is to develop and 

establish a quantifiable method of analyzing brain functionality that can be considered as either an 

alternative or complement to current diagnostic or screening evaluations.  
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CHAPTER 1.  INTRODUCTION 

 

Problems with Current Methods of Neuropsychological Screening 

 The primary purpose of conducting neurological diagnostic tests and screening 

assessments is to understand brain functionality and to reveal information about the structural 

integrity of the brain. Various advanced screening methods have been developed and clinically 

implemented over the years to analyze cognitive function, but several problems exist in the 

current approaches. Two common types of minimally-invasive neurological screening methods, 

namely a variety of neuropsychological assessments and imaging techniques, are briefly 

reviewed for their efficacy and limitations, and the quantitative method used throughout this 

research is subsequently introduced as either an alternative or complement to these existing 

methods of evaluation (Neurological Diagnostic Tests and Procedures., 2005). 

Full neuropsychological evaluations consist of a series of lengthy assessments which can 

potentially reveal information about various cognitive processes including intelligence, attention, 

learning and memory, executive function, personality traits, speed of sensory and motor 

processing, among other significant functional domains. Common diagnostic measures might 

include identifying signs and/or symptoms within the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-V) or implementing batteries of neurological tests such as the 

Cambridge Neuropsychological Test Automated Battery (CANTAB), the Mini Mental State 

Examination (MMSE), the Wechsler Adult Intelligence Scale (WAIS), and the Halstead-Reitan 

Neuropsychological Battery, among others. While these test batteries are capable of detecting 
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functional impairment in the absence of imaging biomarkers (Harvey, 2012), evaluations can last 

for several hours with many assessments being subjective with self-reporting of symptoms and 

estimated recollection of notable incidences of neurological dysfunction. 

The use of various imaging modalities, while providing a useful, more quantitative 

method of analyzing the structural integrity and functional correlates of the brain, are costly, 

require a significant amount of time for data acquisition and analytical processing, and are 

limited in accessibility. Common imaging modalities include computed tomography (CT), 

positron emission topography (PET), electroencephalography (EEG), magnetic encephalography 

(MEG), and functional magnetic resonance imaging (fMRI) among others. Although each of the 

imaging techniques can reveal particular systemic or regional aspects associated with brain 

functionality, single modalities alone may be incapable of comprehensively analyzing the 

complex nature of certain types of neurological dysfunction in various clinical populations 

(Shenton, et al., 2012). 

In order to overcome the limitations of current diagnostic tests and screening methods, a 

portable and non-invasive system was developed to analyze particular features of central 

information processing and to rapidly conduct quantitative sensory testing in a variety of clinical 

populations. A four-site mechanical stimulator was designed to optimally deliver non-painful 

vibrotactile stimuli to the fingertips and has been utilized to assess a number of neurosensory 

information processing characteristics in various subject populations. The protocols developed 

for testing are unique in that they have demonstrated significant sensitivity to detecting 

alterations in central nervous system (CNS) information processing. The general hypothesis for 

this research is that any systemic changes in central information processing can be attributed to 

variations observed in these sensory perceptual metrics. 
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In the following chapters, the rationale for the somatosensory testing is described and 

current literature claims are briefly summarized. Next, the experimental methods utilized for 

testing and data analysis are explained, and establishment of objective standards for healthy 

controls are defined. Finally, differences among measures are highlighted within three different 

clinical populations, and, after understanding their etiologies, the results are subsequently used to 

draw conclusions about various features of central information processing. 

 

Sensory Perceptual Metrics 

Quantitative sensory testing has been shown to be an effective, non-invasive, non-painful, 

alternative approach to measuring and analyzing brain functionality (Chong & Cros, 2004). In 

particular, the neurobiological dynamics involved in central information processing have been 

thoroughly investigated through the implementation of vibrotactile psychophysics and 

subsequent analysis and comparison of sensory perceptual metrics. This type of testing has been 

utilized to explore somatosensory pathways, target neurobiological processes, detect 

neuropathies, and associate cortical functionality with measurable aspects of behavior (Gandhi, 

Sesek, Tuckett, & Bamberg, 2011). Because the relationship between cortical mechanisms and 

sensory perception is particularly relevant with respect to clinical populations in which central 

information processing is impaired, the feasibility of implementing a battery of tests to evaluate 

various clinical populations is further explored in order to understand the particular neurological 

mechanisms involved in their etiologies (Puts, Edden, Wodka, Mostofsky, & Tommerdahl, 

2013). 
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Somatosensory System 

 Somatosensation is an ideal sensory modality to analyze for neurological screening 

assessments of central information processing because the system is somatotopically organized, 

stimulation results in a high signal-to-noise ratio, and the system is uniquely integrated with pain 

pathways. The somatotopic organization allows for observations of cortico-cortical interactions 

among adjacent and/or near-adjacent cortical regions. Furthermore, ambivalent environmental 

noise can be easily controlled. Finally, the somatosensory system is highly integrated with pain 

processing, which is often an important aspect of clinical diagnosis. A key concept in this model 

is that changes in sensory perception occur in parallel with systemic cortical alterations, and 

sensory perceptual metrics can allow for a non-invasive, functional biopsy of the cerebral cortex. 

These benefits, among others, are advantageous in understanding timing as well as spatial 

representations of sensory perception. 

 The somatosensory system, like most sensory systems, primarily consists of two 

components: sensory receptors in the peripheral nervous system (PNS) and somatotopic 

representations of these receptors in the cerebral cortex of the central nervous system (CNS). 

While the presence and density of each type of receptor varies according to the specific location 

of the body, a high density of tactile mechanoreceptors are localized in the digits due to their 

involvement with manual interactions. Tactile cutaneous mechanoreceptors can detect and 

transmit sensations of touch, pressure, and vibration through slowly-adapting (SA) receptors 

(Merkel discs and Ruffini endings) and rapidly-adapting (RA) receptors (Meissner’s and 

Pacinian corpuscles) (Abraira & Ginty, 2013; Roudaut, et al., 2012). When stimulated, the tactile 

mechanical sensations received from the digits are transduced into electrical signals which 

propagate through the dorsal horn of the spinal cord and transmit through rapidly conducting Aβ 
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projection fibers through the thalamus to the primary somatosensory cortex (S1), specifically to 

areas 1 and 3b, where the signal is processed into a percept (Abraira & Ginty, 2013; Roudaut, et 

al., 2012). Because the fingers contain a large density of mechanoreceptors, the digit tips were 

appropriately chosen for analysis of adjacent and/or near-adjacent cortical information 

processing. 

Somatosensory studies have progressed from implementing single-site stimulation in 

analyzing the effects of specific types of stimulation on cortical responses to utilizing dual-site 

stimulation to characterize the discriminative abilities among adjacent and/or near-adjacent 

spatial regions. The nature of the stimuli, being punctate or vibrotactile, as well as the 

combination of the digits being tested, have been shown to significantly affect the outcome of the 

resulting percept (Chiu, Tommerdahl, Whitsel, & Favorov, 2005; Favorov, Hester, Lao, & 

Tommerdahl, 2002; Friedman, Chen, & Roe, 2008). Results from animal studies have been 

compared with human experiments to form more accurate characterizations of the 

neurobiological mechanisms underlying somatosensory information processing (LaMotte & 

Mountcastle, 1975; Mountcastle, LaMotte, & Carli, 1972; Mountcastle, Talbot, Sakata, & 

Hyvärinen, 1969; Talbot, Darian-Smith, Kornhuber, & Mountcastle, 1968). While the animal 

studies have allowed the cortical mechanisms to be analyzed through electrophysiological and/or 

imaging techniques, the human studies have been capable of confirming these findings through 

sensory perceptual quantification. 
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CHAPTER 2.  METHODS 

 

Device 

A portable, non-invasive, four-site mechanical stimulator (Cortical Metrics, CM-5), 

designed and fabricated to optimally deliver non-painful vibrotactile stimuli to the fingertips, 

was implemented in the following studies (Figure 2.1.). The independent, computer-controlled 

probe tips were able to deliver a wide range of vibrotactile stimulation of varying amplitudes 

(sinusoidal peak-to-peak displacements in μm), durations (ms), and frequencies (Hz). A number 

of protocols were developed to assess particular features of information processing in various 

populations (Holden, et al., 2012; Puts, Edden, Wodka, Mostofsky, & Tommerdahl, 2013; 

Tannan, Dennis, & Tommerdahl, 2005; Tannan, Dennis, Zhang, & Tommerdahl, 2007; Zhang, 

Tannan, Holden, Dennis, & Tommerdahl, 2008). These groups range from typically-developing 

individuals (Zhang, Francisco, Holden, Dennis, & Tommerdahl, 2011) to subjects with autism 

spectrum disorders (Tannan, Holden, Zhang, Baranek, & Tommerdahl, 2008; Tommerdahl, 

Tannan, Cascio, Baranek, & Whitsel, 2007; Tommerdahl, Tannan, Holden, & Baranek, 2008; 

Puts, Edden, Wodka, Mostofsky, & Tommerdahl, 2013) to patients with chronic pain conditions 

(Nebel, et al., 2010; Zhang, et al., 2011) as well as those with other neurological dysfunctions 

(Nelson, et al., 2012). These biologically-based and hypothesis-driven evaluations were designed 

to evoke interactions between adjacent and/or near-adjacent cortical regions with considerations 

to the unique advantages of the somatosensory system (see Somatosensory System). Subsequent 

analyses of the metrics and sensory thresholds have allowed investigation into the fundamental 
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systemic mechanistic changes which occur within and among cortical regions. The uniqueness of 

each of the protocols has thus far demonstrated significant sensitivity to alterations in central 

information processing.  

 

 

Figure 2.1. Cortical Metrics Vibrotactile Stimulator. 

 

Experimental Session 

Following International Review Board approval and informed consent, over 200 subjects 

ranging from 18 to 70 years of age were recruited from the University of North Carolina at 

Chapel Hill (UNC-CH) to participate in the study. All subjects completed a survey on current 

medications and medical history prior to the experimental tests to exclude participants with any 

history of neurological impairment. The subjects were naïve to the study design and blinded to 

the issue under investigation. 

During the experimental session, subjects were seated comfortably in a chair with the test 

(left) arm situated on an armrest attached to the head unit of the four-site vibrotactile stimulator. 

In these studies, vibrotactile flutter stimulation (25 Hz) were delivered via 5 mm Delrin probes 

on the glabrous tips of either, or both, the second (index, D2) and/or the third (middle, D3) digits 
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of the test hand. These digits were chosen as the test sites not only for convenience and comfort 

but also because of the wealth of neurophysiological data which supports the evaluation of these 

somatotopic regions in the non-human primate cerebral cortex  (Chiu, Tommerdahl, Whitsel, & 

Favorov, 2005; Favorov, Hester, Lao, & Tommerdahl, 2002; Friedman, Chen, & Roe, 2008). A 

semi-automated procedure guided subjects through a series of assessments relating to the 

perception of the mechanical stimuli delivered (see Neurosensory Assessments). The right hand 

was placed on a two-button response device, and, throughout testing, subjects were instructed to 

press the left or right button when the correct response was perceived on the middle (D3) or 

index (D2) finger, respectively. 

Visual cueing was provided through a computer monitor during each of the experimental 

runs. The cues indicated when the experimental stimuli were being delivered and when subjects 

were to respond. Training trials conducted prior to each task familiarized subjects with the tests, 

and correct responses on three consecutive training trials were required prior to the start of each 

assessment. For some tests, subjects were provided with performance feedback during data 

acquisition. Certain protocols implemented a two-alternative forced-choice (2AFC) paradigm to 

determine sensory perceptual thresholds (see Tracking Algorithm). 

Sensory perceptual metrics were easily and rapidly obtained for each subject (1 to 3 

minutes per test), and the battery of tests consisted of three classes of protocols: reaction times 

(RT), vibrotactile detection thresholds (DT), and amplitude discrimination thresholds (AD) (see 

Neurosensory Assessments). The battery, from start to finish, lasted between 10 and 20 minutes 

depending on subject performance on each task. 
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Neurosensory Assessments 

 

Reaction Times: Simple and Choice 

The reaction time tasks required subjects to quickly and accurately respond to a tap 

(Figure 2.2.A.). Previous studies indicate that reaction times are correlated with white matter 

integrity (Kerchner, et al., 2012; Tamnes, Fjell, Westlye, Ostby, & Walhovd, 2012), 

sensorimotor integration, and attentional aspects in addition to other neurological mechanisms 

(Puts, Edden, Wodka, Mostofsky, & Tommerdahl, 2013). 

For the simple reaction time (RTs) task, a single tap (300 μm amplitude, 40 ms duration) 

was delivered to one digit. Subjects were subsequently instructed to quickly click the response 

device as soon as the tap was perceived. 

For the choice reaction time (RTc) task, the single tap was delivered to one of two digits 

(D2 or D3), the location of which was randomly selected on a trial-by-trial basis. Subjects were 

subsequently instructed to quickly click the left or right side of the response device 

corresponding to the stimulated digit as soon as the tap was perceived. 

A randomized delay ranging from 2 to 7 seconds occurred between each of the 20 trials. 

Response times and accuracies were recorded for each of the trials, and the mean reaction times 

were determined by excluding the two slowest and two quickest reaction times and averaging the 

remaining 16 reaction times. 

 

Detection Thresholds: Static and Dynamic 

The detection threshold tasks required subjects to respond to a vibrotactile stimulus by 

accurately identify the locus of stimulation (Figure 2.2.B.). Previous studies indicate that 

detection thresholds are correlated with white matter integrity and feed-forward inhibitory 
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mechanisms presumed to occur in somatosensory cortical input layer IV (Favorov & Kurson, 

2011; Gabernet, Jadhav, Feldman, Carandini, & Scanziani, 2005) in addition to others (Puts, 

Edden, Wodka, Mostofsky, & Tommerdahl, 2013). Two types of detection thresholds were 

determined and have been previously defined as static and dynamic thresholds (Zhang, 

Francisco, Holden, Dennis, & Tommerdahl, 2011). Static thresholds (DTs) were those obtained 

using suprathreshold stimuli which were constant in amplitude during an individual trial (the 

minimum detectable constant-amplitude stimulus) while dynamic thresholds (DTd) were those 

obtained using subthreshold stimuli in which the amplitude was modulated at a defined rate 

during an individual trial (the minimum detectable increasing-amplitude stimulus). 

The feed-forward inhibitory mechanisms for the dynamic threshold task may occur as the 

initial subthreshold stimulus gradually increases in amplitude the detectable level. Inhibitory 

neurons are thought to respond more to subthreshold afferent thalamocortical drive than 

excitatory neurons effectively sharpening receptive field properties through excitatory 

suppression and consequently raising the threshold at which excitatory neurons begin to respond 

to peripheral stimuli (Favorov & Kurson, 2011). 

For the static detection threshold (DTs) task, a vibrotactile stimulus (initial parameters: 

15 μm amplitude, 500 ms duration, 25 Hz flutter frequency) was delivered to one of the two 

digits (D2 or D3). Following each stimulus, subjects were prompted to select the digit on which 

they perceived a weak stimulus. Thresholds were determined over 20 trials using a two-

alternative forced-choice (2AFC) tracking algorithm (see Tracking Algorithm). 

For the dynamic threshold (DTd) task, after a delay period without stimulation (six 

randomized delay (D) conditions of 0, 0.5, 1, 1.5, 2, and 3 s), the device delivered a continuous 

stimulus beginning at 0 μm (25 Hz flutter frequency) to one of the two digits (D2 or D3). The 
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stimulus increased at a rate of 2 μm/s, and subjects were instructed to select the digit on which 

they first perceived the stimulus. The dynamic threshold task consisted of 7 trials (two trials with 

no delay), and the stimulus amplitude at the time of the response was recorded. 

A fixed inter-trial interval (ITI) of 5 s occurred between each of the trials, and the 

stimulus location was randomly selected on a trial-by-trial basis. Detection thresholds were 

recorded for each of the trials, and the mean static thresholds were determined by averaging the 

last 5 test amplitudes recorded. The mean dynamic thresholds were determined by averaging the 

test amplitudes recorded across all trials. 

 

Amplitude Discrimination Thresholds: without and with Adaptation 

The amplitude discrimination tasks required subjects to accurately identify one of two 

digits (D2 or D3) which received the larger of two simultaneously-delivered vibrotactile stimuli 

(Figure 2.2.C.). Amplitude discriminative capacity was defined as the minimal, or just-

noticeable, difference in amplitudes of two mechanical sinusoidal vibratory stimuli in which an 

individual was able to successfully identify the stimulus of larger magnitude. Previous studies 

indicated that amplitude discrimination thresholds are correlated with lateral inhibitory 

mechanisms (Tannan, Dennis, & Tommerdahl, 2005), that they follow Weber’s Law (Francisco, 

Tannan, Zhang, Holden, & Tommerdahl, 2008), and that pre-exposure to relatively brief periods 

of single-site conditioning stimulation significantly elevates discriminative thresholds (Tannan, 

Simons, Dennis, & Tommerdahl, 2007; Tannan, Whitsel, & Tommerdahl, 2006). 

Sensory adaptation is an important fundamental neural mechanism involved in central 

information processing (Hollins, Goble, Whitsel, & Tommerdahl, 1989; Tannan, Simons, 

Dennis, & Tommerdahl, 2007; Tannan, Whitsel, & Tommerdahl, 2006). Impairments in the 
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ability to adapt to conditioning stimulation is suspected to be associated with disruption in the 

balance of excitation and inhibition (Heiss, Katz, Ganmor, & Lampl, 2008; Higley & Contreras, 

2006), which can lead to inefficient neural coding (Reinagel, 2001). Neurophysiological studies 

have demonstrated that repetitive stimulation results in temporal changes in cortical activity, the 

most prominent of which is a reduction in cortical response with extended stimulus duration. At 

the single-cell level, somatosensory cortical pyramidal neurons have been shown to undergo 

prominent stimulus-dependent modifications of their receptive fields and their response 

properties with repetitive stimulation. These alterations can develop within milliseconds of 

stimulus onset and can diminish within seconds following stimulus termination (Kohn & 

Whitsel, Sensory cortical dynamics., 2002; Tommerdahl, et al., 1996; Tommerdahl, Delemos, 

Favorov, Metz, & Whitsel, 1998; Tommerdahl M. , Simons, Chiu, Favorov, & Whitsel, 2005; 

Tommerdahl M. , et al., 2005). At the neuronal population level, optical imaging studies have 

also characterized the short-term dynamics of the primary somatosensory (S1) cortical response 

using various amplitudes and durations of vibrotactile stimulation (Chiu, Tommerdahl, Whitsel, 

& Favorov, 2005; Simons, et al., 2005; Simons, Chiu, Favorov, Whitsel, & Tommerdahl, 2007). 

Previous studies led to the hypothesis that centrally-mediated adaptation is dependent on several 

factors including, but not limited to, the balance between inhibitory γ-aminobutyric acid (GABA) 

and excitatory N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission in addition 

to neuron-glial interactions. Reduced adaptation in a number of clinical populations have 

suggested imbalance in these mechanisms (Tannan, Holden, Zhang, Baranek, & Tommerdahl, 

2008; Tommerdahl, Tannan, Cascio, Baranek, & Whitsel, 2007; Tommerdahl, Tannan, Holden, 

& Baranek, 2008). Furthermore, human studies showed that dextromethorphan (DXM), an 



13 

NMDA receptor antagonist, can also suppress the effects of sensory adaptation (Folger, Tannan, 

Zhang, Holden, & Tommerdahl, 2008). 

For the simple amplitude discrimination (ADs) task, the device delivered simultaneous 

stimuli (initial stimulus parameters: 400 μm test, 200 μm standard, 25 Hz, 500 ms, 20 μm step 

size) to D2 and D3 over 20 trials. Thresholds were determined over 20 trials using a two-

alternative forced-choice (2AFC) tracking algorithm (see Tracking Algorithm), and test 

amplitudes were recorded for all trials. 

For the amplitude discrimination task in the presence of single-site adaptation (ADssa), 

the device delivered a vibrotactile conditioning stimulus (constant stimulus parameter: initial test 

amplitude in μm, 25 Hz, 1000 ms) one second prior to the delivery of the paired test and standard 

stimuli. The result of such a protocol modification is that the discriminative threshold, or 

difference limen (DL), is typically significantly elevated following pre-exposure to a single-site 

conditioning stimulation compared to the simple amplitude discrimination threshold (Tannan, 

Simons, Dennis, & Tommerdahl, 2007; Tannan, Whitsel, & Tommerdahl, 2006). Thresholds 

were determined over 20 trials using a two-alternative forced-choice (2AFC) tracking algorithm 

(see Tracking Algorithm), and test amplitudes were recorded for all trials. 

A fixed inter-trial interval (ITI) of 5 s occurred between each of the trials, and the loci of 

the test and standard stimuli were randomly selected on a trial-by-trial basis. The magnitude of 

the test stimulus was always greater than that of the standard stimulus. The mean thresholds were 

determined by averaging the last 5 test amplitudes recorded in each task. The standard amplitude 

was subtracted from the mean thresholds to obtain difference limens (DL), and these DLs were 

then divided by the standard to obtain the Weber fraction (WF) for comparison across different 

standard amplitudes. When the conditioning stimulus is delivered at the same site as the test 
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stimulus, the gain effect of adaptation, or the reduction of the perceived intensity of the stimulus, 

can be quantified by comparing thresholds obtained in absence and in the presence of single-site 

adaptation stimulation. 

 

 

Figure 2.2. Schematic Diagrams of Experimental Protocols. 
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Tracking Algorithm 

Thresholds (DTs, ADs, and ADssa) for each subject were obtained via a two-alternative 

forced-choice (2AFC) modified Georg von Békésy tracking algorithm (Green & Swets, 1966) 

(Figure 2.3.). Based on previous responses of the subjects, test stimulus amplitudes were 

modified until the completion of the protocols. During the first 10 trials, a 1-up/1-down 

algorithm was implemented for the purposes of rapid amplitude modification. Correct responses 

resulted in the lowering of the magnitude of the test stimulus while incorrect responses raised the 

amplitude of the test stimulus. In the remaining 10 trials, the amplitude was varied using a 2-

up/1-down algorithm whereby two incorrect responses were required to raise the amplitude of 

the test stimulus. The rationale for implementing these algorithms was to initially expedite 

determination of vibrotactile discriminative range (Tannan, Dennis, Zhang, & Tommerdahl, 

2007). 

 

Data Analysis 

Reaction times, detection thresholds, and Weber fractions were calculated for each 

subject, and metrics were averaged across each population by age. In order to normalize the 

results by each subject and analyze the effect of the secondary metric based on the primary 

metric (the effect of choice on reaction time, the effect of feed-forward inhibition on detection 

thresholds, and the effect of single-site adaptation on amplitude discrimination), the ratios of the 

metrics were also calculated. These calculations were arbitrarily converted to percentages where 

larger values implied that the secondary metric significantly affected performance compared to 

the primary metric. 
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Two-sample, one-tailed t-tests, were used to evaluate the difference in the performance of 

healthy control metrics on primary and secondary metrics across the age spectrum. The data are 

presented as means and standard errors of the means. A probability (p-value) of less than 0.05 

was considered statistically significant. 

 

 

Figure 2.3. Tracking Algorithm for Amplitude Discrimination. 
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Summary of Control Metrics 

Control data from previous studies were analyzed to provide a foundation with which to 

compare metrics obtained from clinical populations. The majority of subjects performed worse 

on secondary metrics than on primary metrics (RTc>RTs=92.73 %, DTd>DTs=93.33 %, and 

ADssa>ADs=76.22 %) across all classes of protocols (Table 2.1., Figure 2.3., ***p<<0.01). 

With increasing age, reaction times became significantly slower (Figure 2.3.A.) and detection 

thresholds became significantly higher (Figure 2.3.C.) while there was little effect of age on 

amplitude discrimination thresholds (Figure 2.3.E.). Furthermore, the ratio of the secondary 

metric to the primary metric was reduced with increasing age only for the detection threshold 

task suggesting progressive impairment in feed-forward inhibitory mechanisms (Figure 2.3.D., 

***p=0.0006) while there was no significant change in the reaction time (Figure 2.3.B.) or 

amplitude discrimination tasks (Figure 2.3.F.) over increasing age. The results of the analysis 

were in accordance with previously-published data exploring the effect of age on sensory 

perceptual metrics (Zhang, Francisco, Holden, Dennis, & Tommerdahl, 2011). 

These sensory perceptual metrics can be useful in assessing brain dysfunction as a 

database has been developed in order to establish standard cutoff thresholds for healthy 

performance. These data can be age-matched and compared to patient populations in order to 

evaluate brain functionality under the rationale that these populations undergo systemic 

alterations and plastic changes in central information processing. Understanding the average 

control values can reveal insight into defining healthy and unhealthy information processing. In 

order to avoid effects of age on the sensory perceptual metrics, the clinical applications focused 

on the young adult population defined to be subjects between 18 and 29 years of age (Table 2.1.). 
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Figure 2.4. Summary of Control Metrics by Age. 
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Table 2.1. Summary of Control Metrics for Young Adults. 

 
Protocol 

 

 
Primary 
Metric 

 
Secondary 

Metric 

 
Neurobiological Process 

 
N 

 
Reaction 

Time 

 
247.3±8.9 ms 

 
447.7±11.9 ms 

(92.73 %, N=220*) 

• White Matter Integrity 
• Sensorimotor Integration 
• Attention, Fatigue 
• Choice, Decision 

 
N=101** 

 
Detection 
Threshold 

 

 
6.3±0.2 µm 

 
12.1±0.5 µm 

(93.33 %, N=195*) 

 
• White Matter Integrity 
• Feed-Forward Inhibition 

 
N=119** 

 
Amplitude 

Discrimination 
 

 
27.3±1.3 % 

 
60.7±2.1 % 

(76.22 %, N=286*) 

 
• Lateral Inhibition 
• Short-Term Potentiation 

 
N=139** 

*all ages 
**age <30 years old 
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CHAPTER 3.  CLINICAL APPLICATIONS 

 

Sensory perceptual metrics were assessed in young adults (ages 18 to 29 years) in three 

different clinical populations—migraines, alcoholism, and concussion—to analyze if particular 

measures were uniquely sensitive to changes in central information processing. Results from 

Section 3.1 and Section 3.2 were adapted from published work (Nguyen, et al., 2013a; Nguyen, 

et al., 2013b). The migraine population was analyzed as an extension of previous research 

regarding the effect of chronic pain conditions on these metrics (Nebel, et al., 2010; Zhang, et al., 

2011). The effect of alcohol consumption on these metrics was also analyzed due to previous 

research supporting particular neurobiological mechanisms involved in modulating vibrotactile 

adaptation (Folger, Tannan, Zhang, Holden, & Tommerdahl, 2008). Lastly, the impact of 

mechanical injury on these metrics was assessed in order to determine if recovery could be 

tracked over time following concussions. The results are expected to show that, throughout these 

populations, systemic and focal effects on central information processing through endogenous 

neurological imbalance, chronic drug exposure, and mechanical injury, respectively, account for 

significant alterations in sensory perceptual metrics. Differences among these metrics are 

emphasized, and the combined results are used to differentiate these populations. 
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Section 3.1. Migraines 

 

Background 

Pain perception is a unique sensory experience involving complex associations among 

sensory stimuli and neuropsychological factors such as cognition and emotion. Peripheral 

nociceptors in the form of free nerve endings detect and transmit two forms of pain: sharp and 

aching. While sharp pain is quickly transmitted via Aδ fibers (5-30 m/s), aching pain is 

processed more slowly via C fibers (0.5-2 m/s) (Abraira & Ginty, 2013). These pain signals 

propagate through spinothalamic tracts where they are somatotopically processed in the primary 

(S1) and/or secondary (S2) somatosensory cortices (Omori, et al., 2013). Because pain 

perception can be modulated through central mechanisms, objective approaches to quantifying 

pain have been extensively studied in order to understand the neurobiological and psychological 

influences involved in the experience (Cruz-Almeida & Fillingim, 2014). 

The presence of pain can affect the perception of non-painful somatosensory stimuli 

through touch gating, a phenomenon involving sensory interactions rather than resulting from 

attentional distraction (Apkarian, Stea, & Bolanowski, 1994; Harper & Hollins, 2012). In some 

instances, pain sensitivity can increase due to temporal summation, an NMDA receptor-

dependent wind-up mechanism that occurs resulting from repetitive, frequency- and intensity-

dependent stimulation over time (Herrero, Laird, & Lopez-Garcia, 2000). This mechanism may 

be responsible for hyperalgesia, where normally painful stimuli are perceived as increasingly 

painful, or allodynia where non-painful stimuli are perceived as painful (Sandkuhler, 2009). 

Chronic pain conditions may induce sensitization through cortical reorganization and/or 

descending modulations resulting in altered sensory thresholds and/or pain tolerances (Gustin, et 

al., 2012; Kyranou & Puntillo, 2012; Woolf, 2011)  
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Many chronic pain conditions are poorly understood, have few quantifiable biological 

markers for screening, and can involve a variety of differential or comorbid diagnoses inclusive 

of, but not limited to, migraines, fibromyalgia (FM), irritable bowel syndrome (IBS), temporal 

mandibular disorder (TMD), and vulvar vestibulitis syndrome (VVS) among others. Evaluations 

are primarily dependent on subjective reports of pain and subsequent impact on mood and/or 

function, all of which are difficult to objectively standardize among clinical populations. This 

dependence on subjectivity begins from diagnosis and continues throughout evaluation of 

treatment efficacy in order to determine the severity of impairment or disability. These 

qualitative reports may be biased by various factors that are unrelated to symptoms resulting in 

patients who might catastrophize symptoms due to anxiety, depression, or other issues related to 

secondary pain (Quartana, Campbell, & Edwards, 2009). Thus, there is a compelling need for a 

more objective measure of pain that can track deteriorations or improvements in, and/or 

chronification of, chronic pain symptoms over time. 

In the case of primary headache disorders such as migraines, few objective tests are 

available to assess the burden of illness or track progression over time. This may be due to the 

fact that the causes of migraines are still poorly understood. The etiology of migraines is 

presumed to involve triggers such as cortical spreading depression, trigeminovascular activation, 

and/or sensitization mechanisms (Eikermann-Haerter & Ayata, 2010; Kojic & Stojanovic, 2013). 

More specifically, trigeminal activation is thought to trigger neuropeptide release subsequently 

leading to meningeal vasodilation and neuroinflammation. Signals are then transmitted through 

the brainstem into the cortex promoting waves of spontaneous depolarizations in the form of 

cortical spreading depression which can cause pain associated with migraines. Current treatments 

for migraines include pharmacotherapies targeting reduction of cortical hyper-excitability 
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(topiramate, divalproex) or modulation of trigeminovascular activation (propanalol, timolol, and 

onabotulinumtoxin A). 

Sensory assessments of migraines have been previously explored with the rationale that 

many patients are particularly vulnerable to sensory stimuli such as light (photophobia), noise 

(phonophobia), and even odors (osmophobia) during attacks (Ambrosini & Schoenen, 2006). 

These alterations are supported by the observation of abnormal response patterns in the primary 

sensory cortices in relation to neuronal excitability and habituation mechanisms in subjects with 

migraine (Ambrosini & Schoenen, 2006; Coppola & Schoenen, 2012; Coppola, Pierelli, & 

Schoenen, 2009; Schoenen, 1996). The evaluations revealed altered sensory thresholds for 

certain forms of non-painful and painful somatosensory stimuli (Karanovic, Thabet, Wilson, & 

Wilkinson, 2011; Ladda, Straube, Förderreuther, Krause, & Eggert, 2006; Schwedt, Krauss, 

Frey, & Gereau IV, 2011; Zappaterra, Guerzoni, Cainazzo, Ferrari, & Pini, 2011). Based on 

previous research, alterations in central information processing due to migraines are expected to 

be reflected in sensory perceptual metrics, which have been demonstrated to be sensitive to 

evaluating chronic pain conditions (Nebel, et al., 2010; Zhang, et al., 2011), neurodegenerative 

conditions (Nelson, et al., 2012) and developmental conditions such as autism (Tannan, Holden, 

Zhang, Baranek, & Tommerdahl, 2008). 

A battery of tests (see Neurosensory Assessments) was administered to young adults 

screened as healthy controls as well as those screened to have symptoms of episodic migraines 

(EM). These sensory perceptual metrics provided quantitative indices of brain function which 

were presumed to be associated with chronic pain conditions. In particular, discriminative 

sensory metrics for episodic migraineurs in the presence of conditioning stimulation were 

expected to differ from healthy controls due to neurological dysfunction brought about by 
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cortical spreading depression resulting in cortical hyper-excitability (Coppola & Schoenen, 

2012), impairment of habituation mechanisms (Ambrosini & Schoenen, 2006; Coppola, Pierelli, 

& Schoenen, 2009; Schoenen, 1996), and/or sensitization (Nebel, et al., 2010; Zhang, et al., 

2011). The results of this study demonstrated that certain metrics of central information 

processing were significantly altered in young adult episodic migraineurs. The long-term 

objective of the study was to develop methods that can improve diagnosis and can enable more 

accurate assessments of treatment efficacy for migraineurs. Such quantitative metrics could 

significantly improve the analysis of underlying mechanisms as these objective measures could 

be used for quantitatively assessing impact of treatment on patient-centered studies. Furthermore, 

this method of non-painful quantitative sensory testing allows analysis of metrics that cannot be 

gained by pain testing and that may serve as an alternative biomarker for pain processes. 

 

Methods 

 

Subjects 

Following International Review Board approval and informed consent, 43 subjects 

ranging from 18 to 29 years of age were recruited from the Dental Research Center (DRC) at the 

University of North Carolina at Chapel Hill (UNC-CH) to participate in the study. These subjects 

included healthy controls (n=30) and episodic migraineurs (EM, n=13). All subjects completed a 

survey on current medications and medical history prior to the experimental tests to exclude 

participants with any history of neurological impairment other than chronic pain conditions. 

Subjects were permitted to withdraw from sensory testing due to fatigue prior to the completion 

of the battery. The subjects were naïve to the study design and blinded to the issue under 

investigation. 
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Screening Assessments 

Subjects were screened via Computer-Assisted Telephone Interviews (CATI) resulting in 

a subset of the episodic migraineurs (n=7) being categorized with one or more comorbidities 

including FM, IBS, TMD, and/or VVS. 

 

Neurosensory Assessments 

Six sensory perceptual metrics were analyzed. The reaction times (RTs and RTc) and 

detection thresholds (DTs and DTd) were determined according to standard protocol parameters 

(see Neurosensory Assessments). The amplitude discrimination task was performed in the 

absence (ADs) and presence (ADssa) of single-site adaptation with standard amplitude of 400 

µm and initial test amplitude of 800 µm. 

 

Data Analysis 

Two-sample, one-tailed t-tests, were used to evaluate the difference in the performance of 

the episodic migraine population as compared to control metrics. The data are presented as 

means and standard errors of the means. A probability (p-value) of less than 0.05 was considered 

statistically significant. 
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Results 

 

Reaction times and detection thresholds in episodic migraineurs were similar to those in 

controls. 

The mean simple reaction times were significantly quicker than choice reaction times for 

both the episodic migraineurs (361.2±36.7 ms versus 566.1±43.9 ms, ***p=0.0002, n=13, Figure 

3.1.A) and for the controls (314.0±16.8 ms versus 536.0±25.1 ms, ***p<<0.01, n=30, Figure 

3.1.A). Furthermore, both the simple and choice reaction times (p=0.13 and p=0.28, 

respectively), as well as the effect of choice on reaction times (85.5±13.5 % for controls versus 

67.2±12.7 % for migraineurs, p=0.17, Figure 3.1.B) were similar across both populations. 

The mean static detection thresholds were significantly lower than dynamic detection 

thresholds for both the episodic migraineurs (6.7±1.2 µm versus 10.7±0.8 µm, *p=0.02, Figure 

3.1.C) and for the controls (5.8±0.3 µm versus 10.1±0.5 µm, ***p<<0.01, Figure 3.1.C). 

Furthermore, both the static and dynamic detection thresholds (p=0.23 and p=0.29, respectively), 

as well as the effect of feed-forward inhibition on detection thresholds (86.1±11.0 % for controls 

versus 105.7±30.7 % for migraineurs, p=0.28, Figure 3.1.D) were similar across both 

populations. 

 

The effect of adaptation on amplitude discrimination was reduced for episodic migraineurs 

as compared to that in controls. 

The mean Weber fractions for amplitude discrimination were significantly affected by 

single-site adaptation in controls (0.286±0.024 versus 0.491±0.051, ***p=0.0002, Figure 3.1.E) 

but not in episodic migraineurs (0.442±0.086 versus 0.503±0.114, p=0.29, Figure 3.1.E). Simple 

adaptation difference limens across both populations almost reached significance (p=0.05), but 
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adaptation conditions for amplitude discrimination (p=0.47) were similar across both populations 

(Figure 3.1.E). Additionally, while the mean effect of adaptation on amplitude discrimination 

was lower in episodic migraineurs versus controls, this effect was not statistically significant 

(16.5±4.0 % for controls vs 6.1±7.2  % for migraineurs, p=0.11, Figure 3.1.F). 

 

 

Figure 3.1. Sensory Perceptual Metrics of Episodic Migraineurs versus Controls. 
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Amplitude discrimination thresholds varied across other pain conditions. 

Amplitude discrimination difference limens in the absence and presence of single-site 

adaptation were compared among healthy controls (n=80) and chronic pain subjects regardless of 

age (EM, n=47; FM, n=23; IBS, n=44; TMD, n=19; VVS, n=15) (Figure 3.2.). While subjects 

with FM and IBS responded to conditioning stimulation, subjects with EM, TMD, and VVS 

showed a reduced ability to adapt, which is in accordance with some previous findings (Zhang, 

et al., 2011). 

 

Figure 3.2. Amplitude Discrimination Thresholds across Other Pain Conditions. 
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Discussion 

In this study, six sensory perceptual metrics were obtained in young adults screened for 

symptoms of episodic migraines. The results of the study demonstrated that, although reaction 

times and detection thresholds of episodic migraineurs did not significantly differ from controls, 

metrics reflecting lateral inhibitory mechanisms and the effect of adaptation on amplitude 

discriminative thresholds were significantly different from controls. Furthermore, differences in 

lateral inhibitory mechanisms and adaptation may vary across chronic pain conditions. 

There were no significant differences found between observations obtained from the 

episodic migraineurs and healthy control subjects on reaction time and detection threshold tasks 

which suggest that, for the subjects within this study, peripheral neuropathy may not appear to be 

a manifestation of migraine. While previous research has shown increased thresholds for thermal 

and mechanical noxious stimuli (an anti-nociceptive effect), there have been few reports 

analyzing differences in detection thresholds of non-noxious vibrotactile stimuli (Ladda, Straube, 

Förderreuther, Krause, & Eggert, 2006). Reduced dynamic thresholds relative to static thresholds 

have been previously observed in particular groups of women with vulvodynia (Zhang, et al., 

2011). In a larger or more specific population of migraine patients, similar trends might be more 

evident, so future research must necessarily be conducted to verify if sensory thresholds are 

altered in this clinical population. 

Previous reports have suggested that there may be dysfunction in the balance between 

excitatory and inhibitory neurotransmission with migraine (Cosentino, et al., 2011; Coppola & 

Schoenen, 2012), and this imbalance could be caused either by excessive excitation or by 

insufficient inhibition.  Such systemic cortical hyper-excitability would predictably interfere with 

discrimination between two simultaneously-activated cortical areas such as in the amplitude 
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discrimination task. Previous studies have shown that suppressing inhibition with GABA 

receptor antagonists decreases the resolution of the activity evoked by two electrically-stimulated 

sites in sensorimotor cortical slice (Kohn, Metz, Quibrera, Tommerdahl, & Whitsel, 2000). Thus, 

amplitude discriminative capacity might prove to be a sensitive metric of cortical hyper-

excitability for sufferers of episodic migraines. 

Impairment of sensory habituation in migraineurs has been a promising biomarker for 

headache research and has shown to affect multiple sensory modalities (Ambrosini & Schoenen, 

2006; Coppola, Pierelli, & Schoenen, 2009). In the young adult episodic migraine population, 

although amplitude discriminative capacity was relatively elevated in comparison to controls, the 

impact of the conditioning stimulation on the discriminative task was also reduced. These results 

indicate that the healthy controls adapted to the conditioning stimulus while the episodic 

migraineurs failed to do so. Previous studies support the concept that lack of habituation in 

migraineurs may be to be due to increased neuronal excitability or decreased inhibitory 

mechanisms while conflicting evidence suggest that lowered pre-activation levels may contribute 

to lack of habituation (Coppola, et al., 2005). The results of this study are more consistent with 

previous research analyzing the balance between excitatory and inhibitory neurotransmission in 

observing that migraineurs show a reduced adaptation metric, which is associated with short-

term potentiation or habituation, in comparison to healthy control subjects (Ambrosini & 

Schoenen, 2006; Coppola & Schoenen, 2012; Coppola, Pierelli, & Schoenen, 2009; Schoenen, 

1996). 

Although the neurobiological mechanisms involved in migraine etiology are only 

partially understood, accumulating evidence suggests that structural, functional, and 

pharmacologic changes occur in the brains of migraineurs. Structural changes include subcortical 
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white matter lesions and iron deposits in the periaqueductal gray region (Kruit, van Buchem, 

Launer, Terwindt, & Ferrari, 2010). Functional alterations include focal areas of brain hypo-

metabolism, cortical hyper-excitability, central sensitization, and dysfunction in thalamic gating 

to modulate sensory input (Brighina, Palermo, & Fierro, 2009; Coppola & Schoenen, 2012; 

Siniatchkin, et al., 2011). Previous studies also suggest involvement from pre- and post-synaptic 

mechanisms as well as glial interactions that may be associated with hyper-responsiveness and/or 

cortical spreading depression (Aurora, Kulthia, & Barrodale, 2011; Weir & Cader, 2011). 

Pharmacologic influences include paradoxical responses to opioids and changes in levels of 

excitatory amino acids in the anterior cingulate gyrus and insula (Bahra, Walsh, Menon, & 

Goadsby, 2003). The presence of such alterations in brain physiology suggests the potential for a 

biologically-based assessment to quantify and measure these differences with scores that could 

be characterized, validated, and tracked over time. The long-term objective of this work is to 

develop methods that can improve diagnosis and enable more accurate assessments of treatment 

efficacy for headache populations. Currently, there are no standardized methods for objective, 

quantitative tools to measure the impact that headache has on cortical information processing, or 

the degree to which treatments are effective. The non-invasive technique reported in this study 

has the potential to be utilized in a manner that could enable improvements in diagnosis and 

assessments of treatment efficacy. 
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Section 3.2. Alcoholism 

 

Background 

A number of studies have shown that chronic alcohol use can lead to sensory impairment 

and/or altered central processing. Sensory assessments of individuals with alcoholism, in 

particular assessments of vibration thresholds, thermal sensitivities, and pain tests, have provided 

useful metrics in detecting and describing alcoholic peripheral neuropathy (Hilz, Claus, 

Neundorfer, Zimmermann, & Beric, 1994; Hilz, et al., 1995; Jochum, Boettger, Burkhardt, 

Juckel, & Bar, 2010; Sosenko, et al., 1991; Yamitsky & Zaslansky, 1998). Impairment in central 

neural mechanisms in individuals with alcohol use disorders has also been demonstrated by 

analyzing sensory evoked potentials (Marco, Fuentemilla, & Grau, 2005).  

Alcohol consumption among college students, a population which is particularly 

susceptible to moderate to heavy binge drinking (Grant, et al., 2004; Wechsler & Nelson, 2001; 

Wechsler, et al., 2002), has been shown to impair a variety of centrally-mediated functions of the 

nervous system inclusive of, but not limited to, spatial memory judgment and decision-making, 

mood and behavior, motor performance, learning, executive functioning, and rate of information 

processing (Courtney & Polich, 2009). These studies suggest that central information processing 

could be significantly impacted with long-term alcohol use by college-aged students. 

A battery of tests (see Neurosensory Assessments) was administered to college students 

screened for alcohol consumption and related behaviors. This study serves as an extension of 

previous research exploring the role of adaptation mechanisms on sensory perception (Folger, 

Tannan, Zhang, Holden, & Tommerdahl, 2008). Standard screening methods of alcohol 

consumption (Timeline Followback, TLFB; Alcohol Use Disorders Identification Test, AUDIT; 

Rutgers Alcohol Problems Index, RAPI; Gormally Binge Eating Scale, BES; Tridimensional 
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Personality Questionnaire, TPQ; Family History, FH)  and hedonic preferences to sucrose 

solutions (sweet liking phenotype, SL) were paired with sensory perceptual metrics in order to 

assess potential sensory information processing changes in college-aged students who consumed 

alcohol on a regular basis. Evaluations assessing hedonic responses to sucrose concentrations 

were conducted because the sweet liking phenotype is often associated with alcohol-related 

behavior (Garbutt, et al., 2009; Lange, Kampov-Polevoy, & Garbutt, 2010). The results of the 

study suggested that the sensory perceptual metrics which are presumed to predominantly be 

peripherally-mediated were relatively insensitive to change with increased alcohol use, while 

metrics centrally-mediated metrics were significantly altered with increased consumption. 

 

Methods 

 

Subjects 

Following International Review Board approval and informed consent, 67 college 

students ranging from 18 to 26 years of age were recruited through electronic mail 

announcement from the Office of the Vice Chancellor of Student Affairs at the University of 

North Carolina at Chapel Hill (UNC-CH). These subjects included light (n=22), moderate 

(n=33), and heavy (n=12) drinkers screened for alcohol consumption via the Timeline 

Followback (TLFB) assessment and the Alcohol Use Disorders Identification Test (AUDIT). All 

subjects completed a survey on current medications and medical history prior to the experimental 

tests to exclude participants with any history of neurological impairment. The subjects were 

naïve to the study design and blinded to the issue under investigation. 
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Screening Assessments 

Two screening assessments were implemented to determine the alcohol consumption of 

each of the subjects. The Timeline Followback (TLFB) method (Sobell, Sobell, Leo, & Cancilla, 

1988) was administered to estimate alcohol consumption in a timeframe of one month (drinks 

per month, DPM). Alcohol consumption was defined by the product of the number of episodes in 

which subjects consumed alcohol per month and the drinks that they consumed per drinking day. 

The Alcohol Use Disorders Identification Test (AUDIT) (Schmidt, Barry, & Fleming, 1995) was 

a screening tool used to categorize the subjects according to risk for alcohol problems. Typically 

scores below 8 were considered low risk for alcohol problems while scores above 16 represented 

high risks for alcohol problems. According to these two screening tools, and considering the 

definition of moderate drinking by the National Institute on Alcohol Abuse and Alcoholism 

(NIAAA), the subjects were categorized as light (DPM<30 and AUDIT<8, n=22), moderate 

(DPM≤60 or AUDIT≥8, n=33), and heavy (DPM>60 and AUDIT≥8, n=12) drinkers. 

Additional evaluations were also considered for comparison. The Rutgers Alcohol 

Problems Index (RAPI) (Neal, Corbin, & Fromme, 2006; White, Labouvie, & Papadaratsakis, 

2005)  was a tool used to assess drinking problems where scores less than 10 were considered 

low risk. Moreover, the Gormally Binge Eating Scale (BES) (Gormally, Black, Daston, & 

Rardin, 1982) was an evaluation used to assess binging characteristics in relation to substance 

abuse where scores less than 27 were considered low risk. 

Sweet liking (SL) and novelty seeking (NS) phenotypes have been previously studied in 

the alcoholism population (Garbutt, et al., 2009; Lange, Kampov-Polevoy, & Garbutt, 2010). 

Sweet liking (SL) was determined via hedonic responses of pleasure towards varying sugar 

concentrations (0.05 to 0.8 M solutions) and was measured by utilizing visual analog scales 
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(VAS) of preference to unsweet or sweet solutions. The responses were subsequently categorized 

by the sign of their slopes, which were calculated as the change in hedonic response scale over 

the change in the sugar concentrations measured in units per concentration (M-1). Negative 

hedonic response slopes were categorized as sweet dislikers (SL-) and positive slopes were 

categorized as sweet likers (SL+) regardless of the magnitude of the values. Novelty seeking 

(NS) was determined via one of three components (Novelty Seeking, NS; Harm Avoidance, HA; 

Reward Dependence, RD) of the Tridimensional Personality Questionnaire (TPQ) (Cloninger, 

1987). Based on previous research, only the novelty seeking phenotype was considered for 

analysis, and the cutoff for determining low (NS-) versus high (NS+) novelty seeking 

characteristics was a score of 15. 

Family history (FH) of alcoholism was also analyzed to provide further insight as to 

whether subjects with genetic predispositions of alcohol consumption correlated with 

performance on sensory perceptual metrics. 

 

Neurosensory Assessments 

Six sensory perceptual metrics were analyzed. The reaction times (RTs and RTc) and 

detection thresholds (DTs and DTd) were determined according to the previously-outlined 

protocol parameters (see Neurosensory Assessments). The amplitude discrimination task was 

performed in the absence (ADs) and presence (ADssa) of single-site adaptation with standard 

amplitude of 200 µm and initial test amplitude of 400 µm. 
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Data Analysis 

Two-sample, one-tailed t-tests, were used to evaluate the difference in the performance of 

among groups with difference alcohol consumption behavior. The data are presented as means 

and standard errors of the means. A probability (p-value) of less than 0.05 was considered 

statistically significant. 

 

Results 

This population of college students reported alcohol consumption ranging from 0 to 144 

drinks per month and AUDIT scores ranged from 0 to 28. The RAPI scores ranged from 0 to35, 

Gormally BES scores ranged from 16 to 52, and novelty seeking scores ranged from 3 to 29. 

 

Reaction times and detection thresholds were not significantly impacted over increased 

alcohol consumption. 

The mean simple reaction times were significantly quicker than choice reaction times 

(244.9±14.6 ms versus 415.4±14.3 ms, ***p<<0.01, Figure 3.3.A.) over increased alcohol 

consumption. While simple and choice reaction times were slower for moderate drinkers than for 

heavy drinkers (*p=0.017 and **p=0.008, respectively), the metrics were within normative 

values for controls, and there were no significant trends or differences comparing light drinkers 

to either moderate or heavy drinkers (Figure 3.3.A.). Furthermore, the effect of choice on simple 

reaction times did not differ with increased alcohol consumption (93.1±9.5 %, p>0.05, Figure 

3.3.B.). 

The mean static detection thresholds were significantly lower than dynamic detection 

thresholds (9.9±0.4 µm versus 15.9±0.6 µm, ***p<<0.01, Figure 3.3.C.) over increased alcohol 
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consumption. While dynamic detection thresholds were higher for moderate drinkers than for 

light drinkers (*p=0.017), the metrics were within normative values for controls, and there were 

no significant trends or differences comparing static and dynamic detection thresholds in heavy 

drinkers to either light or moderate drinkers (Figure 3.3.C.). Furthermore, the effect of feed-

forward inhibition on detection thresholds did not differ with increased alcohol consumption 

(77.5±8.9 %, p>0.05, Figure 3.3.D.). 

 

The effect of adaptation on amplitude discrimination was reduced over increased alcohol 

consumption. 

The mean Weber fractions for amplitude discrimination were significantly affected by 

single-site adaptation for low (***p=0.00006) and moderate (***p=0.0001) drinkers, but 

conditioning stimulation failed to significantly affect thresholds for heavy drinkers (p=0.12, 

Figure 3.3.E.). While there was no significant difference in simple amplitude discrimination 

difference limens with increased alcohol consumption (35.9±2.9 %, p>0.05), thresholds in the 

presence of conditioning stimulation were significantly higher for light versus heavy drinkers 

(*p=0.015) (Figure 3.3.E.). Furthermore, the effect of single-site adaptation on amplitude 

discrimination significantly reduced for heavy versus light drinkers (**p=0.0097, Figure 3.3.F.). 
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Figure 3.3. Sensory Perceptual Metrics over Alcohol Consumption. 
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Additional metrics provided insight into potential mechanisms involved in alcohol 

consumption behavior. 

The RAPI categorized subjects according to low (n=44) versus high (n=23) risk of 

drinking problems while the Gormally BES divided subjects into having low (n=42) versus high 

(n=24) binging characteristics. While higher RAPI scores correlated with increased alcohol 

consumption (***p<<0.01, Figure 3.4.A.) and reduced effect of adaptation (*p=0.026, Figure 

3.4.B.), the Gormally BES showed low predictive value for both consumption behavior and 

adaptation responses (Figure 3.4.C.,D.). 

Subjects were also categorized according to novelty seeking and sweet liking phenotypes: 

NS-/SL- (n=8), NS-/SL+ (n=24), NS+/SL- (n=10), NS+/SL+ (n=24). Novelty seeking (NS+) 

correlated with higher alcohol consumption (***p=0.00043, Figure 3.4.E.) while only subjects 

with both novelty seeking and sweet liking traits (NS+/SL+) showed a reduced effect of 

adaptation when compared with those exhibiting neither phenotypic trait (NS-/SL-) (*p=0.032, 

Figure 3.4.F.). 

Finally, family history (FH+, n=27) of alcohol consumption showed significantly higher 

alcohol consumption than those without history of alcoholism (FH-, n=40) (**p=0.007, Figure 

3.4.G.) but did not predict responses to adaptation (Figure 3.4.H.). 
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Figure 3.4. Additional Metrics Comparing Alcohol Consumption and Adaptation. 
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Discussion 

In this study, six sensory perceptual metrics were obtained in college students who 

consumed alcohol. The results of the study demonstrated that, although reaction times and 

detection thresholds of did not significantly differ across ranges of alcohol consumption, metrics 

reflecting the effect of adaptation on amplitude discriminative thresholds were significantly 

reduced over increased reported alcohol consumption. 

The observations from this study indicated that there were no significant changes in 

peripherally-mediated metrics across the spectrum of alcohol consumption even though previous 

studies have indicated that there are altered reaction times and sensory threshold measures with 

alcohol consumption (Schweizer & Vogel-Sprott, 2008; Tzambazis & Stough, 2000). Heavier 

alcohol consumption significantly reduced the impact of adaptation on the amplitude 

discrimination task, an impairment which has been shown to effect centrally-mediated neural 

mechanisms in this population (Marco, Fuentemilla, & Grau, 2005). 

The mechanisms of adaptation are suspected to be impacted in alcoholism because 

chronic exposure to ethanol has been shown to affect GABA neurotransmission as well as 

NMDA receptor availability. Previous animal and human studies have showed that, at the level 

of neurotransmission, chronic exposure to ethanol increases the amount of pre-synaptic GABA 

neurotransmitter released and the post-synaptic response (Fleming, Manis, & Morrow, 2009; 

Valenzuela, 1997; Vengeliene, Celerier, Chaskiel, Penzo, & Spanagel, 2009). Furthermore, there 

is a redistribution and increase in NMDA receptor concentration and density by upregulation 

mechanisms with chronic ethanol exposure (Clapp, Gibson, Dell'acqua, & Hoffman, 2009; 

Chandrasekar, 2013). Other research has shown that chronic alcohol consumption can lead to 

white matter degradation, disrupt neurocircuitry, and induce neural plasticity which can alter 
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neurotransmission, particularly by increasing tonic inhibition (Cardenas, Studholme, Meyerhoff, 

Song, & Weiner, 2005; Crews, et al., 2005; Herting, Schwartz, Mitchell, & Nagel, 2010; Oscar-

Berman & Marinkovic, 2007; Pfefferbaum, Rosenbloom, Fama, Sassoon, & Sullivan, 2010; 

Santhakumar, Wallner, & Otis, 2007; Sullivan & Pfefferbaum, 2005). Alterations in phasic and 

tonic components of information processing may also be affected by alcohol intoxication and 

drug tolerance as well as family history of these diseases (McBurney & Balaban, 2009). These 

changes are likely to reflect the neuroadaptational response to alcohol involving alterations in the 

healthy functional balance between inhibitory and excitatory mechanisms (Clapp, Gibson, 

Dell'acqua, & Hoffman, 2009; Fleming, Manis, & Morrow, 2009; Heiss, Katz, Ganmor, & 

Lampl, 2008; Higley & Contreras, 2006). This imbalance is supported by the use of 

anticonvulsants/sedatives such as topiramate, acamprosate, benzodiazepines, baclofen, 

gabapentin, and valproate to address the suspected cause of neurological dysfunction due to 

plastic changes which occur following chronic alcohol consumption. 

While increased alcohol consumption may have resulted in the reduced adaptation 

capability through alterations in cortical plasticity, these changes may have been alternatively 

due to innate traits associated with motivation. The significance of modulating the reward 

response and reinforcing effects of alcohol addiction is supported by the use of 

pharmacotherapeutics such as naltrexone and disulfiram. In observing the impact of conditioning 

stimulation in relation to other phenotypic measures, the results suggested that alcohol-related 

problems, novelty seeking characteristics, and hedonic preferences, particularly associated with 

the motivational mechanisms of the dopaminergic and opioidergic systems, may be related to 

suppressed adaptation mechanisms. These results suggest that opioidergic, dopaminergic, 

GABAergic, and glutamatergic mechanisms may be involved not only in characterizing 
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behavioral phenotypes related to alcohol use disorders but also in the ability to adapt to 

conditioning stimulation (Johnson, 2010; Kranzler & Edenberg, 2010). Hedonic responses may 

correlate with varying levels of opioid activity which may be subsequently involved in 

GABAergic modulation (Davis, et al., 2009; Faure, Richard, & Berridge, 2010). Ultimately, 

these results may suggest that alcohol use disorders may be related to both the predisposed state 

of subjects, determined by characteristic phenotype, and exposure to alcohol. Together, these 

factors may amplify impulsive nature and motivation to increase frequency of consumption. 

However, the conclusions are limited in that they are not capable of differentiating whether these 

decreased discrimination or adaptation abilities are due to these inherent phenotypes or if heavy 

alcohol consumption results in cortical impairment. 

Analyzing family history (FH) of alcoholism may provide further insight as to whether 

subjects with predispositions of heavy alcohol consumption are impaired in their sensory 

adaptation ability. There may be both genetic and environmental/epigenetic factors of substance 

abuse which can lead to cortical dysfunction such as decreased capability for sensory adaptation. 

Increased alcohol consumption in heavy drinkers may not necessarily result in lower adaptation 

responses based on genetic heritability of alcoholism. Heritable genetic factors may not 

necessarily predispose subjects to abuse alcohol, and the impulsive behavior may be dependent 

on experience thus supporting possible alterations in neurotransmission or structural morphology 

due to chronic alcohol consumption. 

The causal mechanism in chronic alcoholism is still ambiguous. However, the screening 

data paired with the sensory perceptual metrics may suggest differences in phenotypic traits and 

neural compensation mechanisms (Werner, et al., 2009). Family history of alcohol use disorders 

has shown to be associated with hedonic preferences (Tremblay, Bona, & Kranzler, 2009), and 



44 

the results of this study showed variations in adaptation capabilities comparing sweet liking and 

sweet disliking subjects. Because the adaptation metric was significantly affected over increased 

alcohol consumption sparing any effects on reaction time and detection threshold measures, 

these tests may be sensitive in this particular population of college-aged students who engage in 

moderate to heavy drinking patterns. Further studies analyzing the relationship between alcohol 

consumption, hereditary factors, and other sensory perceptual metrics can be conducted in order 

to understand which of the factors are most significantly affected by substance abuse. These 

results are not only capable of evaluating the efficacy of current assessments (TLFB, AUDIT, 

and BES), but may also have diagnostic value. As a more rapid and more cost-effective 

alternative screening method, relationships among sensory metrics and current screening 

assessments may serve to provide clinicians a non-painful and non-invasive method of 

categorizing cortical dysfunction in a population of subjects with suspected or known alcohol or 

substance abuse. 
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Section 3.3. Concussion 

 

Background  

One of the most common mechanisms of acquiring brain injury involves injuries induced 

by mechanical force. These injuries may be caused by non-penetrating external blows to the head 

which may result in concussions or mild traumatic brain injury (mTBI). Previous studies have 

observed systemic changes (metabolic, hemodynamic, structural, and electrical) that occur 

within the brain over time immediately following concussions which could possibly lead to 

significant chronic repercussions. These alterations might induce a neurometabolic cascade 

leading to raised levels of calcium concentrations, spikes in glutamate (excitotoxicity), potassium 

ions, and glucose (hyperglycolysis), and subsequent decreases in cerebral blood flow possibly 

leading to neuronal apoptosis (Barkhoudarian, Hovda, & Giza, 2011; Giza & Hovda, 2001). 

Subsequent molecular imbalances have been suspected to result in spontaneous depolarizations 

and cortical spreading depression potentially due to changes in glial function and/or 

neuroinflammation (Torrente, et al., 2014). 

Current methods of assessing the impact of concussions on brain functionality are limited 

in their ability to comprehensively characterize the multifaceted nature of mild traumatic brain 

injuries (Kubal, 2012; McLeod & Leach, 2012; Shenton, et al., 2012). Changes in brain 

functionality are difficult to objectively identify due to low sensitivity of imaging modalities to 

detect subtle systemic alterations, axonal injuries, and/or microhemorrhages. As a result, 

clinicians screen patients on the basis of clinical and cognitive metrics where non-specific 

symptoms may correlate with other diagnoses (Broglio, Macciocchi, & Ferrara, 2007). While the 

most commonly-reported symptoms may include headaches and dizziness, persistent post-
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concussive symptoms may prolong cognitive, physiological, and clinical symptoms past three 

months post-injury leading to subsequent irritability, fatigue, sleep disturbances, nausea, blurred 

vision, sensory impairments, depression, anxiety, attention, concentration, memory, executive 

function, and speed of processing (Leddy, Sandhu, Sodhi, Baker, & Willer, 2012). 

Sports-related risks of concussion are significantly high (75 % for male football, 50 % for 

female soccer) as college athletes may endure mechanical injury due to impact of at least 20 

miles per hour per concussive blow. Furthermore, in an estimated 47 % of cases, athletes may 

fail to report any significant symptoms following concussive blows (Concussion Facts, 2012). 

Because successive concussions during the critical post-concussion recovery period can result in 

serious, if not fatal, brain dysfunction, there is an imperative need to develop more objective 

methods in order to more confidently assess return-to-play status for athletes. 

A battery of tests (see Neurosensory Assessments) was administered to college athletes 

screened for concussions. The Standardized Concussion Assessment Tool (SCAT) was used 

analyze signs and symptoms of athletes following concussions, and these scores were paired with 

sensory perceptual metrics. Performance on sensory perceptual metrics was expected to be 

significantly be altered compared to baseline measures following injury as concussive blows may 

result induce neurological imbalance due to neuroinflammation and/or compromised systemic 

neuroprotection due to impaired glial function among other possible brain dysfunctions 

(Torrente, et al., 2014). The results of the study suggested that the sensory perceptual metrics can 

be used to track recovery in athletes following concussion. 
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Methods 

 

Subjects 

Following International Review Board approval and informed consent, 67 college student 

athletes ranging from 18 to 22 years of age were recruited. Controls represented baseline metrics 

(n=33) while concussed athletes (n=34) were screened via the Standardized Concussion 

Assessment Tool (SCAT). All subjects completed a survey on current medications and medical 

history prior to the experimental tests to exclude participants with any history of neurological 

impairment other than concussions. The subjects were naïve to the study design and blinded to 

the issue under investigation. 

 

Screening Assessments 

Athletes underwent various screening assessments. Athletic sport (basketball, football, 

lacrosse, soccer, wrestling), suspected location of concussion, and previous history of concussion 

(Hx) were determined for each athlete. The Standardized Concussion Assessment Tool (SCAT) 

was also used to score the athletes on signs and symptoms following a concussive blow. 

Concussed athletes were assessed each week, if possible, following mechanical injury in order to 

track progression of recovery, but not all subjects completed assessments each week. While 

some subjects were only tested once after their concussion, others may have skipped weeks in 

between testing. 
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Neurosensory Assessments 

Five sensory perceptual metrics were analyzed. The simple reaction times (RTs) and 

detection thresholds (DTs and DTd) were determined according to the previously-outlined 

protocol parameters (see Neurosensory Assessments). The amplitude discrimination task was 

performed in the absence (ADs) and presence (ADssa) of single-site adaptation with standard 

amplitude of 200 µm and initial test amplitude of 400 µm. 

 

Data Analysis 

Multivariate principal component analysis (PCA) was used to combine performance 

metrics and generate unique profiles for each athlete. The transformation involved calculation of 

principal components to account for the largest possible variance in the data and to reduce the 

original number of variables. Quantitative performance of each subject on the battery of the five 

sensory tests were treated as localizing these subjects in an n-dimensional (n=5) cortical metrics 

space where each coordinate axis corresponded to one of the sensory perceptual metrics. These 

results were used to understand associations in test performance data collected in the concussed 

and baseline subject populations. 

If subjects were assessed more than once within a week-long period, the first metric was 

considered for analysis. This method was conducted under the assumptions that significant 

changes in performance are negligible within one week and that recovery occurs at similar rates 

for all subjects. While these assumptions may be true for some subjects, they cannot necessarily 

account for performance for all subjects. 
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Results 

Sensory perceptual metrics for control subjects were graphed on a scores plot with an 

area of interest defined within one standard deviation from the control mean (Figure 3.5.A.). 

Metrics for concussed subjects during their initial recorded assessment were also graphed on the 

scores plot. The majority of the baseline subjects (91 %) were within this control area while only 

a fraction of the concussed subjects (47 %) was greater than one standard deviation from the 

control mean (Figure 3.5.B.). 

 

Previous history of concussion predicted worsened performance on sensory perceptual 

metrics. 

Athletes without (Hx-, n=6) and with (Hx+, n=7) previous history of concussion were 

assessed each week following mechanical injury. The majority of Hx- athletes (67%) were 

within the control area, and subjects who were outside of this area tracked to healthy 

performance within one week (Figure 3.5.C.). A fraction of Hx+ athletes (67%) were greater 

than one standard deviation from the control mean, and subjects who were outside of this area 

tracked to healthy performance within, at most, three weeks (Figure 3.5.D.). 
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Figure 3.5. Principal Component Analysis for Concussed Athletes versus Controls. 
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Recovery following concussion was capable of being tracked over time.  

Performance metrics for athletes were calculated in relation to the Euclidean distance 

from the control mean. These values positively correlated with SCAT scores (ranging from 0 to 

66) for each athlete (R2=0.64, Figure 3.6.A.). Because previous history of concussion was 

associated with higher severity of concussion symptoms, both evaluations were utilized to track 

recovery in athletes with (Hx+) and without (Hx-) previous history of concussion. Testing 

occurred for athletes approximately every week, and Hx- athletes showed slight but insignificant 

deviation from the control values while Hx+ athletes showed significantly higher SCAT scores 

(Figure 3.6.B.) and relatively further distances from the control mean (Figure 3.6.C.) within the 

first week following concussion. These metrics for both Hx- and Hx+ athletes were tracked up to 

28 days following injury, and scores significantly approached healthy values by the fourth testing 

session (R2=0.87 and R2=0.86, respectively, Figure 3.6.B./C.). 
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Figure 3.6. Sensory Perceptual Metrics and SCAT Scores Recover over Time. 
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Discussion 

In this study, five sensory perceptual metrics were obtained in college athletes who 

experienced concussions. The results of the study demonstrated that, previous history of 

concussion was associated with worsened performance on sensory perceptual metrics within one 

week following concussion and that recovery following concussion was capable of being tracked 

over time. 

The observations from this study indicated that athletes without previous history of 

concussion generally performed well on the sensory perceptual tasks. Their performance might 

suggest that initial concussions do not result in detectable changes in sensory perceptual metrics 

while subsequent concussions for those with previous history of concussion are more susceptible 

to significant and measurable brain dysfunction. Athletes with previous history of concussion 

performed significantly worse and required more recovery time (at least two weeks) to return to 

baseline metrics than those without previous history of concussion, and this would suggest that 

any other injuries occurring within this recovery timeframe would result in significant 

impairment in central information processing. 

The majority of concussed athletes showed initial impairment on metrics followed by 

recovery over subsequent test days, but some subjects showed worsened performance many 

weeks following the concussion. Data analysis was conducted under the assumption that 

recovery occurs at similar rates for all subjects, and while these assumptions may be true for 

some subjects, they cannot necessarily account for performance for all athletes following 

concussion. These particular results implied that the neurometabolic cascade could lead to 

specific time-dependent impairments which may not occur immediately following concussion 

but instead days or weeks following the injury. Contributing factors might include raised levels 
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of calcium concentrations, spikes in glutamate (excitotoxicity), potassium ions, and glucose 

(hyperglycolysis), and/or subsequent decreases in cerebral blood flow possibly leading to 

neuronal apoptosis (Barkhoudarian, Hovda, & Giza, 2011; Giza & Hovda, 2001). 

The successful implementation of multivariate analysis (PCA) showed that the technique 

could be an alternative method that is capable of generating unique profiles for subjects based on 

performance on sensory perceptual metrics and that this analysis could aid in understanding 

differences between individuals with healthy and impaired brain functionality. While not 

explicitly shown in the results, the analysis revealed that worsened performance for the 

concussed athletes was primarily attributed to slower reaction time measures. Performance on 

additional sensory perceptual metrics might reveal further separation of healthy versus unhealthy 

brain functionality based on severity, location, and/or timing of concussion injuries within this 

athlete population. 

The potential utility of this work is highly significant as there are inherent limitations in 

the implementation of current methods for evaluating concussions (Chan, et al., 2012). There are 

no standardized, biologically-based, quantitative measures for the assessment of concussions. A 

simple, fast, non-invasive, cost-effective means for evaluating the impact of concussion on brain 

functionality that could be utilized by health care providers would have an overwhelming impact 

on return-to-play decisions. The advantage of the proposed methodology is that they system is 

easy to use and effective at both providing information about a subject that would allow for more 

informed decisions about diagnosis or treatment and provide a means for assessing treatment 

efficacy and recovery. 
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CHAPTER 4.  DISCUSSION 

 

Summary 

Six sensory perceptual metrics were analyzed for young adults across three clinical 

populations: migraines, alcoholism, and concussion. The results for the effect of secondary 

metrics on primary metrics are summarized (Table 2.1.). While young adults within these 

populations seemed to perform well on detection threshold tasks showing no significant effect of 

feed-forward inhibitory mechanisms, concussed individuals showed impaired reaction time 

measures while migraineurs and alcoholism subjects performed worse on amplitude 

discrimination tasks in the presence of single-site adaptation. The results from the concussion 

population suggested that previous history of concussion predicted worsened performance on 

sensory perceptual tasks but also that improved performance following concussions implied that 

tracking of recovery over time was possible. Evolution of statistical analytical techniques toward 

multivariate analyses can allow for implementation of more advanced classification methods 

which could be useful for subject screening and/or diagnosis (see Machine Learning Algorithms 

for Classification). 

 

  



56 

Table 4.1. Comparison of Metrics in Control and Clinical Populations. 

 
Population 

 

 
Reaction 

Time 

 
Detection 
Threshold 

 
Amplitude 

Discrimination 
 

Control 
 

 
96.12±6.47 

 
102.34±6.64 

 
26.95±1.62 

 
Migraine 

 

 
67.17±12.72 

 
105.67±30.74 

 
6.12±7.18 

 
Alcoholism 

 

 
93.30±19.28 

 
97.01±32.59 

 
8.86±7.11 

 
Concussion 

 

 
57.82±12.67 

 
96.83±14.62 

 
15.50±5.53 
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Machine Learning Algorithms for Classification 

 Various machine learning algorithms can be implemented in order to classify subjects 

according to healthy versus impaired brain functionality. While principal component analysis 

(PCA) can be used to account for the largest possible data variance and variable reduction, 

additional data analytical methods can subsequently be implemented in order to be able to 

classify unknown variables which might aid in the future screening and diagnostic capabilities of 

sensory perceptual metrics. Two classification techniques are discussed to illustrate 

implementation of more advanced analytical methods. 

 

k-Nearest Neighbors 

k-Nearest Neighbors (k-NN) is a simple, unsupervised classification algorithm utilizing 

instance-based learning. Metrics were assigned to classes according to their proximity to their 

nearest neighbors training group. This algorithm was used in the concussion dataset to classify 

athletes with unknown history of concussion (n=17) evaluated for five sensory perceptual 

metrics (RTs, DTs, DTd, ADs, and ADssa). Because previous history of concussion was 

associated with worsened performance on sensory perceptual metrics (see Concussion: Results), 

those who were classified as Hx+ (23.8 %) were presumed to exhibit more severe symptoms 

compared to those who were classified as Hx- (76.2 %) (Figure 4.1.). Classified athletes were 

subsequently tracked over weeks following concussion, and while the majority of Hx- athletes 

(67 %) were within the control area (Figure 4.1.B.), a large fraction of the Hx+ athletes (83 %) 

were greater than one standard deviation from the control mean (Figure 4.1.C.). Implementation 

of this classification algorithm is useful in rapid categorization to predict healthy versus 

unhealthy subject performance. 
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Figure 4.1. k-Nearest Neighbors Analysis for Classification. 
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Support Vector Machine 

Principal component analysis (PCA) allowed generation of a control area defined within 

one standard deviation from the control mean from the three clinical populations (migraine 

controls, n=36; light drinkers, n=22; baseline metrics in athletes, n=33) evaluated for five 

sensory perceptual metrics (RTs, DTs, DTd, ADs, and ADssa). Further analysis illustrated 

qualitative differentiation among the clinical populations (episodic migraineurs, n=12; heavy 

drinkers, n=10; Hx+ concussed athletes, n=7) (Figure 4.2.A.). A supervised classification 

algorithm was subsequently utilized to determine if healthy and impaired brain functionality 

could be determined from this dataset. 

The Support Vector Machine (SVM) method of analysis involved optimal placement of a 

hyperplane to separate distinct classes of data. The support vectors were generated from training 

samples which determined the orientation of the hyperplane. The data were evaluated by using 

the radial basis kernel function (σ=1) which expressed the similarity of two vectors as a function 

of the Euclidean distance between them. 

The SVM classification was implemented in the young adult population. The training 

samples were extracted from the concussion population while the test samples were from the 

migraine and alcoholism populations. The classification resulted in an accuracy of 66.25 % 

(40.91 % sensitivity and 75.86 % specificity) with positive and negative predictive values of 

39.13 % and 77.19 %, respectively. While these percentages reflected relatively low 

predictability in classification potential, this particular analysis involved only five sensory 

perceptual metrics and training samples were drawn specifically from the concussion population 

(Figure 4.2.B.). Additional metrics are expected to result in higher classification accuracy in 

determining healthy or impaired brain functionality (see Future Directions). 
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Figure 4.2. Support Vector Machine Analysis for Classification. 
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Limitations 

 

Variability 

While sensory perceptual metrics have been able to successfully detect impairments in 

central information processing based on subject performance on particular tasks (Figure 4.6.), 

assuredly categorizing subjects as healthy or impaired remains a challenge. Subject variability is 

a significant issue during testing and may be influenced by environment, attention and fatigue, 

training effects, and other related aspects. Furthermore, in some subject populations, malingering 

may occur where subjects purposefully attempt to perform poorly on the tasks. Many of these 

additional variables may affect classification of neurological function within healthy subject 

populations. Future studies must be conducted in order to analyze these particular effects on 

subject performance, and protocols can be optimized to minimize variability in these measures. 

 

Severity, Comorbidities, and Medication History 

The young adults in these studies may have been unable to exhibit more severe symptoms 

seen typically in these clinical populations. Many chronic migraineurs may show more severe 

symptoms at older ages. Additionally, different types of migraines (with or without aura, cluster, 

tension, and/or sinus headaches), location of pain, comorbid conditions, and medication history 

may contribute to variability in results. For the alcoholism population, considering the legal 

restrictions on alcohol consumption in the United States, measuring the effect of substance abuse 

at these ages may result in inconsistencies in self-reporting. Most chronic alcoholics are 

categorized by consumption around twice or three times more than the highest-consuming 

subjects in these studies, so metrics within this college-aged population are expected to differ 
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from those in adult populations due to the duration and/or severity of alcohol use or abuse. 

Additionally, assessments of other substances which may have been taken or medication history 

may also contribute to skewed results. Lastly, metrics in the college athlete population may be 

limited in that the severity of impact and location of mechanical injury may contribute to 

variable results on particular tasks. The type of sport played by the athletes might also contribute 

to higher susceptibility or risk of obtaining more severe concussive blows resulting in brain 

dysfunction. 

 

Timing 

 For each of the populations, timing of symptoms, use, and injury are factors which must 

be considered in the migraine, alcoholism, and concussion populations, respectively. History of 

migraines, chronicity of occurrences (episodic versus chronic) as well as understanding migraine 

state (pre-ictal versus ictal versus post-ictal states) may reveal more information about the pain 

condition. For alcoholism subjects, drinking patterns concerning amount and timing (binging 

versus chronic drinking) may be factors that might result in variable susceptibility for brain 

dysfunction. Finally, understanding the number of occurrences of previous concussions, time 

periods between multiple concussions, and severity of mechanical injury over particular time 

periods may be helpful in revealing brain dysfunction associated with concussed athletes. 
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Future Directions 

 
Dual-Site Protocols 

Incorporating additional metrics for analysis can aid in further differentiation of subject 

populations. A variety of other protocols testing other aspects of neurobiological function have 

also been developed and tested in different populations (Table 4.2.). Additional protocols include 

temporal order judgment (TOJ) without and with synchronizing carrier stimulation (see 

Temporal Order Judgment), duration discrimination (DD) without and with confounding 

stimulation (see Duration Discrimination), and frequency discrimination among other tasks. The 

presence of illusory conditions on each of the tasks, similar to amplitude discrimination in the 

presence of single-site adaptation, showed that the majority of subjects performed worse on these 

protocols compared to in the absence of the sensory illusions (75.0 % for temporal order 

judgment with carrier stimulation and 66.7 % for duration discrimination with confounding 

stimulation). The implementation of these tests within a battery could result in greater separation 

of subject profiles according to neurobiological processes associated with each particular metric. 
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Table 4.2. Summary of Additional Sensory Perceptual Metrics. 

 
Protocol 

 

 
Mean±SD 

 
N 

 
Reaction Time Simple* 
Reaction Time Choice* 

% choice>simple 
 

 
229.26±50.06 ms 
405.60±75.83 ms 

93.5 % 

 
355 
48 
123 

 
Static Threshold* 

Dynamic Threshold* 
% dynamic>static 

 

 
6.47±2.69 µm 
12.59±5.76 µm 

95.8 % 

 
86 
103 
119 

 
Amplitude Discrimination 

with Single-Site Adaptation 
% adaptation>simple 

 

 
34.08±22.29 % 
61.51±31.82 % 

78.3 % 

 
533 
330 
313 

 
Temporal Order Judgment 

with Carrier 
% carrier>simple 

 

 
31.91±17.19 ms 
45.33±19.68 ms 

75.0 % 

 
271 
74 
56 

 
Duration Discrimination 

with Confound 
% confound>simple 

 

 
67.75±30.81 ms 
94.38±51.47 ms 

66.7 % 

 
255 
96 
96 

* age <30 years old 
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Analysis of 14 different sensory perceptual metrics in the concussion population revealed 

that different athletes (F=football, S=soccer, W=wrestling) could be distinctly separated 

(Sport(Hx,SCAT), Figure 4.3.). These metrics included reaction times (2 RTs, RTc, and variance 

measures for each), detection thresholds (DTs and DTd), amplitude discrimination (ADs and 

ADssa), temporal order judgment (TOJs and TOJc, see Temporal Order Judgment), and duration 

discrimination (DDs and DDc, see Duration Discrimination). The athletes with previous history 

of concussion were also able to track toward healthy performance seen in those with no previous 

history of concussion. As a result, implementing additional metrics for testing may aid in further 

separation of subject populations. 

 

Figure 4.3. Principal Component Analysis with Additional Metrics for Concussed Athletes. 
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Quad-Site Protocols 

 Quad-Site simulation is a novel approach to analyzing central information processing 

because current studies have focused on paired digit stimulation. However, limitations in these 

dual-site stimulation assessments include failure to consider the contribution of the other 

adjacent and non-adjacent digits to the resulting percept. Novel protocols involving stimulation 

of multiple digits may reveal insight into adjacent and/or near-adjacent cortical interactions. 

A finger agnosia protocol was assessed on healthy subjects (n=17) in order to 

demonstrate the capacity of the device to deliver vibrotactile stimuli at four independent sites as 

well as to evaluate the ability of subjects to recognize and identify stimulated digits in the 

absence and presence of conditioning stimuli at different amplitudes (Nguyen, et al., 2013c). 

These assessments showed that increased carrier amplitude stimulation resulted in significantly 

decreased percent accuracies of spatial localizations (Figure 4.4.A.). Because the conditioning 

stimuli at 100 µm resulted in the most significant percentage of incorrect responses when 

compared to task in the absence of conditioning stimuli, the number of inaccurate responses for 

each digit was quantified. These results suggested that subjects, on average, made the most 

inaccurate responses for the ring finger (D4) when compared with other digits while they were 

relatively better at identifying stimulation of the index finger (D2) (Figure 4.4.B.). These 

findings may imply potential interactions among adjacent and non-adjacent pairs of digits based 

on inaccurate responses. The degree of inaccuracies in the different digits with increasing 

conditioning stimulation is also consistent with motor studies of digit interdependencies. In 

studying the autonomy of finger movements, intended motion in one finger often results in 

simultaneous movement, or enslavement, of other digits. More specifically, D3 and D4 show the 

most enslavement, or interdependency, of adjacent digits while D2 is characterized by the 
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greatest independence (Hager-Ross & Schieber, 2000). In observing motor-related cortical 

potentials (MRCPs), the autonomous nature of D2 has been shown to be significantly high while 

D4 showed the most dependency on other digits (Slobounov, Johnston, Chiang, & Ray, 2002). 

When stimulating all four digits simultaneously, the sensory percept is presumed to result 

from interactions among each of the digits (Nguyen, et al., 2013c). Excitatory or inhibitory 

interactions among adjacent and non-adjacent digits can ultimately affect the ability to 

discriminate differences in stimulus amplitudes. These results suggested that adjacent pairs of 

digits interacted more than non-adjacent pairs of digits (Figure 4.4.C.). The role of neural 

communication between adjacent and non-adjacent cortical regions plays an important role in 

understanding the relationship between neurophysiological mechanisms and sensory percept.  

The development of new, more versatile devices and methodologies, could contribute to 

bridging decades of neuroscientific research with human perceptual clinical and clinical research 

studies. One long term goal of the research is to develop sensory-based instrumentation and 

methodologies for the diagnosis and assessment of treatment efficacies for a broad range of 

neurological disorders, and building this aforementioned bridge could provide new insights into 

fundamental information processing mechanisms as well as generating perceptual metrics that 

are more sensitive to alterations in central information processing capacity.  
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Figure 4.4. Quad-Site Stimulation on Spatial Localization and Amplitude Discrimination. 
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Bilateral Protocols 

Bilateral simulation is an approach to analyzing central information processing and 

understanding the way in which sensory perceptual metrics are impacted across the body 

midline. A number of studies support both structural and functional associations between 

homologous regions across cortical hemispheres. Bilateral somatosensory integration is primarily 

mediated by callosal fibers which are involved in interconnections among the left and right 

cerebral hemispheres. These complex connections allow for interhemispheric modulation of 

information processing (Van der Knaap & Van der Ham, 2011). Animal models have revealed 

neuronal mechanisms involved in interhemispheric inhibiton (Palmer, et al., 2012; Wahl, et al., 

2007) while human imaging studies have also revealed that stimulation of one hand leads to 

significant activation in the contralateral somatosensory cortex while inhibiting homologous 

regions in the ipsilateral somatosensory cortex (Tommerdahl M. , Simons, Chiu, Favorov, & 

Whitsel, 2005; Tommerdahl M. , et al., 2005; Zapallow, et al., 2013). While many of these 

studies claim that the secondary somatosensory cortex is primarily responsible for 

interhemispheric information transfer, recent studies have shown that bilateral processing may 

occur in early stages of processing in the caudal portion of the postcentral gyrus  (Iwamura, 

Taoka, & Iriki, 2001; Ragert, Nierhaus, Cohen, & Villringer, 2011). Previous neurophysiological 

and sensory perceptual studies have shown that tactile localization and spatial acuity were 

affected by bilateral stimulation where interhemispheric interactions might account for 

mislocalizations and/or impaired discriminative performance. 

The amplitude discrimination task was performed on control subjects (n=27) with 

standard amplitude of 200 µm and initial test amplitude of 400 µm (see Neurosensory 

Assessments) (Forshey, et al., accepted with revisions). This condition, in the absence of 
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unattended hand stimulation, was compared with several other conditions (dual-site equal-

amplitude stimulation, dual-site unequal-amplitude stimulation, and single-site stimulation) 

whereby stimuli were delivered to the unattended (right) hand while amplitude discrimination 

capacity was determined for the attended (left) hand. Amplitude discrimination performance was 

compromised in conditions where unattended hand stimulation least matched that delivered to 

the attended hand while thresholds did not significantly change for tests in which unattended 

hand stimuli most matched that delivered to the attended hand (Table 4.3., Figure 4.5.). 

Amplitude discriminative capacity was significantly worsened with equal-amplitude 

stimulation regardless of the amplitude applied to digits of the unattended hand (Table 4.3., 

Figure 4.5.). In these cases, the unattended hand stimulation suggested interhemispheric 

modulation of the stimulated digits of the attended hand subsequently resulting in worsened 

performance on the amplitude discrimination task. While this change in performance might be 

due to inhibitory modulation from stimulation of the unattended hand, perceptual differences 

might alternatively be due to a combination of inhibitory and/or excitatory mechanisms. 

Increasing the amplitude of the unattended hand stimulation failed to significantly alter 

discrimination performance in comparison to the lower amplitude condition. Subsequent tests 

with more specific types of unattended hand stimulation were performed to further reveal 

potential mechanisms (interhemispheric inhibition and/or excitation of homologous sites) 

involved in the attenuated performance. 

 Unequal-amplitude unattended hand stimulation differentially impacted amplitude 

discriminative capacity (Table 4.3., Figure 4.5.). In particular, the results suggested that 

mismatching stimulation resulted in a deterioration of amplitude discrimination performance 

while the matching condition indicated that similar patterns of stimulation on homologous sites 
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across hemispheres did not significantly affected discriminative capacity. However, the decrease 

in amplitude discriminative capacity in the mismatching condition suggested that one of several 

potential mechanisms may be involved in perceptual modulation, and thus degraded 

performance. The results implied that unattended hand stimulation may modulate sensory 

perception on the opposite hand through long range interhemispheric connections. The 

magnitude of the unattended hand stimuli may either potentiate or suppress attended hand 

perception depending on the particular pattern and loci of stimulation applied to the attended 

hand. For example, incongruent stimulation may reduce perceptual contrast due to increased 

activation of the locus where the standard stimulus is applied on the attended hand. In this case, 

the standard stimulus would be perceived as more intense, and therefore, the performance on the 

task may subsequently worsen. Alternatively, decreased activation of the locus where the test 

stimulus is applied on the attended hand may also worsen discriminative capacity in the same 

manner (the test stimulus would be perceived as less intense, and performance degrades). Lastly, 

there may be more complex mechanisms involved due to the lateral inhibitory mechanisms that 

exist among the unattended hand itself. The unattended hand percept may induce a perceptual 

rivalry which evokes tactile illusions and thus context-dependent differential performance on the 

amplitude discrimination task in the presence of unequal-amplitude unattended hand stimulation. 

The results of this portion of the study indicate that a mechanism other than inhibition 

contributes to tactile performance. In order to study the effects of unequal-amplitude digit 

stimulation in the absence of potential lateral inhibitory mechanisms in the unattended hand, 

single-site stimulations were applied to observe if there were any similar differential effects on 

amplitude discrimination performance. 
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 The results from the single-site unattended hand stimulation at individual digits (D2 or 

D3) also resulted in differential performance on the amplitude discrimination task (Table 4.3., 

Figure 4.5.). Subjects performed worse when the pattern of stimulation on the unattended hand 

least matched that applied to the homologous site on the attended hand. In other words, when 

similar patterns of stimuli were applied to homologous sites, amplitude discrimination capacity 

was not significantly affected. This conclusion was based on the results which show that subjects 

generally perform worse in the incoherent conditions than in the coherent ones. Repetitive 

vibrotactile stimulation leads to distinct and stimulus parameter specific patterns of evoked 

activity in the primary somatosensory cortex, and if these patterns are perceptually relevant, then 

stimulus amplitude specificity could contribute to differential performance on the attended hand. 

The data show that the stimulus that is delivered on the unattended hand has a significant impact 

on task performance of the attended hand. The implications of this finding are that bimanual 

manipulations and explorations of objects are optimized when both homologous digits receive 

the same or similar input. Whether or not this similarity paradigm exists only for one 

parameter—in this study, amplitude—remains to be tested and future studies will investigate this 

interesting possibility. 

 Prior neurophysiological studies have shown that vibrotactile stimulation of the digits—

as delivered in this study—result in am evoked response with single-site stimulation, and a 

positive response is evoked in both the contralateral and the ipsilateral hemispheres. However, 

when a second stimulus is introduced to the homologous skin site on the opposite side of the 

body, the responses evoked by the two stimuli are not summed. In other words, while positive 

responses are evoked by independently-delivered contralateral or ipsilateral stimuli, the 

combined response evoked by both stimuli in unison is reduced significantly—the sum is much 
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less than computational sum of the individually-evoked responses of the two stimuli. Combining 

those observations with those of the current study suggest that in some cases, magnitude of the 

evoked response does not necessarily correlate with task performance—if stimuli do not match, 

then perhaps some other factor—such as synchronization of cortical ensembles—plays a role in 

stimulus identification. One of the impacts of the change in stimulus conditions can be observed 

in S1—how much influence S2 has on the evoked response of S2 via these types of stimulus 

conditions would be difficult to assess. However, digit specificity was observed in the influence 

that different patterns of stimulation of the unattended hand had on task performance, and these 

observations suggest a strong S1 influence, since S2 receptive fields are much larger than those 

in S1 (are multi-digit).  Both S1 and S2 play a role in the cortical network response that 

modulates the performance on tasks such as the ones deployed in this study, and ascertaining the 

independent roles of those cortical areas could only be teased out with additional 

experimentation, as the available literature simply does not currently provide sufficient 

information to address the questions posed by this study. 

The results from these tests suggest that differential amplitude discriminative 

performance was associated with similarity between magnitudes of stimuli that were 

concurrently applied from on the unattended hand. In other words, the stimulus conditions where 

amplitude discrimination capacity was not significantly affected were when the unattended hand 

stimulations more closely matched the stimuli applied to the attended hand. The results of the 

three parts of the study suggested potential mechanisms involved in interhemispheric 

interactions. When stimuli were applied to the same homologous locus on both hands, if the 

stimulus magnitude on the unattended hand was greater than that on the attended hand, the 

percept of the attended hand stimulation suggested an increase in perceptual intensity 
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(excitatory). On the other hand, if the stimulus amplitude on the unattended hand was less than 

that applied to the attended hand, that percept was thought to decrease in perceptual intensity 

(inhibitory). These interactions were both dependent on the locus and pattern of stimulation 

applied to both hands. The findings suggested that each bilateral interaction was a context-

dependent feature of the cortical network. Inhibitory and excitatory cortical circuits were 

dependent on each other in order to appropriately form balanced networks of activity. However, 

alterations in these networks might cause shifts in network balance. Interhemispheric interactions 

have been shown in studies where stimulus input evoked excitatory cortical responses to the 

contralateral hemisphere (Nihashi, et al., 2005; Zhu, Disbrown, Zumer, McGonigle, & 

Nagarajan, 2007), but there are also implications of inhibitory responses (Hlushchuk & Hari, 

2006; Lipton, Fu, Branch, & Schroeder, 2006). Future neurophysiological studies will be 

required to determine the mechanisms involved in the digit specific interactions that were 

demonstrated in this report. 

The significance of the finding in this report is that a relatively simple protocol, such as 

amplitude discrimination in the presence and absence of a confounding conditioning stimulus 

delivered to the unattended hand, could potentially be used to determine deficits in the 

connectivity across hemispheres. In other words, individuals with atrophied or damaged callosal 

connectivity would be predicted to outperform healthy individuals on a metric that compares 

amplitude discrimination capacity in the presence and absence of conditioning stimuli delivered 

to the unattended hand. Deficiencies in callosal  connectivity have been demonstrated in a 

number of neurological disorders (aging deficits (Voineskos, Rajji, Lobaugh, Miranda, & 

Shenton, 2010; Zahr, Rohlfing, Pfefferbaum, & Sullivan, 2009), autism (Barnea-Goraly, et al., 

2004; Hardan, et al., 2009), schizophrenia (Degreef, Lantos, Bogerts, Ashtari, & Lieberman, 
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1992; Lewis, Reveley, David, & Ron, 1988; Swayze, et al., 1990; Tibbo, Nopoulos, Arndt, & 

Andreasen, 1998; Wolf, Hose, Frasch, Walter, & Vasic, 2008), attention-deficit disorder  (Hynd, 

et al., 1991)). Detection of these deficits utilizing simple and straightforward sensory testing 

methods could provide an efficient means for determining callosal abnormalities, but direct 

validation of this idea with parallel imaging studies needs to be conducted. Such studies are 

planned for the near future and we anticipate that differences in performance in perceptual tasks 

that integrate information across the body mid-line will parallel callosal health. 

 

Table 4.3. Contralateral Stimulation on Amplitude Discimination. 

 Attended Hand 
Stimulation 

(S/T µm) 

Unattended Hand 
Stimulation 

(S/T µm) 

 
Threshold 

(µm) 
 
Amplitude Discrimination 

 
200/[205-400] µm 

 
0/0 µm 

 
44.1±5.0 

 
Equal Amplitude 

   

200 µm 200/[205-400] µm 200/200 µm 94.9±12.6*** 
400 µm 200/[205-400] µm 400/400 µm 81.7±10.2*** 

 
Unequal Amplitude 

   

Matching 200/[205-400] µm 200/400 µm 52.5±22.3 
Mismatching 200/[205-400] µm 400/200 µm 129.1±14.0*** 

 
Single-Site 

   

Mismatching with Standard 200/[205-400] µm 0/200 µm 100.1±13.1*** 
Matching with Standard 200/[205-400] µm 200/0 µm 57.1±12.8 
Matching with Test 200/[205-400] µm 0/400 µm 49.5±9.1 
Mismatching with Test 200/[205-400] µm 400/0 µm 103.8±15.0** 
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Figure 4.5. Contralateral Stimulation on Amplitude Discrimination. 
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Conclusions 

Application of sensory perceptual metrics showed that these assessments can screen, 

track changes in, and differentiate these three clinical populations in young adults. Similar 

sensory perceptual metrics have been explored within other experimental systems allowing for 

further opportunities to expand the capabilities of this particular screening system. For example, 

the schizophrenia population has been thought to have impairments in sensory gating, and thus 

habituation (Potter, Summerfelt, Gold, & Buchanan, 2006), and the adaptation metric may show 

promise in detecting these types of dysfunctions. Furthermore, cross-hemispheric temporal order 

judgment has been explored in pain to reveal insights about spatial processing (Heed & Azanon, 

2014), and this system possesses the capabilities to replicate and expound on these findings. 

Being able to optimize the system to provide a better, quicker, and more comprehensive battery 

of assessments than current methods is advantageous, and the technology has the ability to 

evolve. The goal of the research is to develop quicker and novel protocols to generate unique 

sensory profiles to be able to screen and categorize subjects according to their performance on 

the evaluations. Evaluating a large amount of subjects in different populations with the same 

protocols, various multiparametric approaches can be used to not only separate the populations 

but machine learning algorithms can be effectively implemented in order to categorize and 

predict neurological impairment in unclassified populations. 

 While concrete clinical diagnoses of subjects based on their sensory perceptual metrics is 

difficult to assert with high confidence due to the complex and multifaceted nature of many of 

these neurological disease states, the measures can provide insight into fundamental 

neurobiological mechanisms which may potentially be impaired. This approach of understanding 

particular features of information processing can be advantageous in finding nuanced 
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commonalities and subtle differences among certain systemic neurobiological manifestations. 

One particular example includes adaptation impairments in both the alcoholism and migraine 

populations, taken together with the fact that NMDA receptor antagonism blocks this 

mechanism, may suggest similarities in these populations through imbalanced excitatory and 

inhibitory neurotransmission. Research supports that chronic alcoholism results in 

hyperexcitability following withdrawal, which is a similar phenomenon seen in migraine 

excitotoxicity. As a result, understanding the neurobiological processes involved in these classes 

of protocol with the addition of understanding etiologies of particular neurological diseases can 

provide information about both the disease state as well as the fundamental biological 

mechanisms involved in healthy information processing. 

Evaluation central information processing through this system is useful because control 

values have been established for many of the common tests, neurobiological correlates have been 

associated with the protocols, and the evaluations can take into account that the brain is plastic 

and that there is inherent variation within and among subject populations (Figure 4.6.). While 

there is plenty of room for system optimization, the published data in experimental and clinical 

populations suggest that this tool can provide insight into fundamental neurobiological processes 

and can thus be considered as a useful alternative or complement to current diagnostic or 

screening evaluations. 
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Figure 4.6. Classes of Protocols and Clinical Populations Assessed. 
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APPENDIX: ADDITIONAL PROTOCOLS 

 

Temporal Order Judgment 

The temporal order judgment tasks required subjects to accurately identify one of two 

digits (D2 or D3) which received the first of two sequential taps. Previous studies indicate that 

temporal order judgments are comparable across all sensory modalities (Hirsh & Sherrick, 1961) 

and are correlated with timing perception associated with various cortical regions including, but 

not limited to, the supplementary motor area, posterior parietal cortex, temporal parietal junction, 

and basal ganglia. This task was conducted in the absence and in the presence of concurrent, or 

synchronizing, stimulation. The stimulus-driven effect of the synchronized conditioning stimuli 

is suspected to be associated with coordinated activity of near-adjacent cortical ensembles in 

anterior parietal cortex. The delivery of the stimuli consequently impacts the topography of 

temporal perception by increasing functional connectivity between cortical regions resulting in 

impaired spatial discrimination (Tommerdahl, Tannan, Zachek, Holden, & Favorov, 2007). 

Additional evidence of synchronization is supported by transcranial magnetic stimulation (TMS) 

studies in where the effect of conditioning stimuli on the task was suppressed following TMS. 

For the simple temporal order judgment task (TOJs), two sequential taps (initial stimulus 

parameters: 150 ms interstimulus interval (ISI), 200 μm amplitude, 40 ms duration), were 

delivered, one to each digit tip. Subjects were subsequently instructed to identify the digit which 

received the first stimulus. 
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For the temporal order judgment task in the presence of concurrent, or synchronizing, 

stimulation (TOJc), a carrier stimulus (25 Hz) was delivered for a minimum of 400 ms prior to 

the delivery of the first of the two sequential taps and lasted for the entire duration of the allotted 

interval (1 s) with the exception of the two 40 ms intervals during which the taps were being 

delivered. Subjects were subsequently instructed to identify the digit which received the first 

stimulus. 

A fixed inter-trial interval (ITI) of 5 s occurred between each of the trials, and the locus 

of the digit which received the first of the two pulses was randomized on a trial-by-trial basis. 

Thresholds (interstimulus intervals, ISI) were determined over 20 trials using a two-alternative 

forced-choice (2AFC) tracking algorithm (see Tracking Algorithm), and ISIs were recorded for 

all trials. Correct responses resulted in shorter ISIs while incorrect responses resulted in longer 

ISIs. 

The results show that increased carrier amplitude is positively correlated with longer 

interstimulus intervals on the temporal order judgment task (Figure A.1.). In other words, higher 

magnitude of concurrent conditioning stimuli effectively worsens performance on the temporal 

order judgment task due to synchronization and subsequent increased functional connectivity of 

cortical ensembles. 
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Figure A.1. Temporal Order Judgment. 
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Duration Discrimination 

The duration discrimination tasks required subjects to accurately identify one of two 

digits (D2 or D3) which received the longer of two vibrations. Duration discriminative capacity 

is defined as the minimal difference in durations of two stimuli in which subjects can 

successfully identify the stimulus of larger duration. This task was conducted in the absence and 

in the presence of confounding stimulus. Duration discrimination capacity may be dependent on 

sensory exposure and development but is capable of being generalized across somatotopic 

location, hemisphere, as well as sensory modality. Various models suggest that timing perception 

may either involve multiple brain regions for shorter intervals (network state) or a centralized 

timing region for longer durations (internal clock). In particular, sub-second timing perception is 

hypothesized to reflect right prefrontal and posterior parietal cortical function among 

involvement of other cortical regions. The somatosensory cortex could also play a significant and 

direct role in duration discrimination, as increasing durations of repetitive vibrotactile 

stimulation lead to increases in the duration of the evoked response observed with intrinsic signal 

optical imaging.  Interestingly, any impact on duration discrimination observed at the level of 

somatosensory cortex could be significantly altered by changes in neuron-glial interaction, the 

intrinsic signal in those studies has been demonstrated to be strongly correlated with glial 

activity. 

For the simple duration discrimination task (DDs), two sequential vibrations (initial 

stimulus parameters: 750 ms test, 500 ms standard, 300 μm, 25 Hz, 25 ms step size), were 

delivered, one to each digit tip. Subjects were subsequently instructed to identify the digit which 

received the longer stimulus. 
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Fort the duration discrimination task in the presence of a confounding stimulus (DDc), 

the amplitude of the standard stimulus was 400 μm while that of the test stimulus remained at 

300 μm. Subjects were subsequently instructed to identify the digit which received the longer 

stimulus. 

A fixed inter-trial interval (ITI) of 5 s occurred between each of the trials, and the locus 

of the digit which received the longer of the two pulses was randomized on a trial-by-trial basis. 

The duration of the test stimulus was always greater than that of the standard stimulus. 

Thresholds (difference limens, DL) were determined over 20 trials using a two-alternative 

forced-choice (2AFC) tracking algorithm (see Tracking Algorithm), and DLs were recorded for 

all trials. Correct responses resulted in shorter test durations while incorrect responses resulted in 

longer test durations.  
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