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ABSTRACT

JORDAN WALTER HUTCHINSON: Visual and Quantitative Assessment of Poincaré Plots to
Predict Mortality in Critically Ill Children
(Under the direction of Paul Dayton, PhD)

Heart rate variability (HRV) can be used as a noninvasive indicator of autonomic
function.™ Diminished or ectopic heart rate variability is associated with increased
mortality in a variety of diseases in adult and pediatric patients.” Poincaré plots
represent a non-linear method for visually displaying HRV. Poincaré plots are derived by
graphing each normal RR interval (ms) against the subsequent RR interval. In healthy
individuals, Poincaré plots take on a “Comet”-shaped pattern, which arises from the
normal decrease in variability as heart rate slows." In adults with advanced heart failure
the plots are either “Torpedo” shaped, reflecting minimal variability within RR intervals;
“Fan” shaped, reflecting diminished variability within RR intervals; or “Complex” shaped,
reflecting random variability within RR intervals.'® The present study aimed to
determine whether resident physicians could predict whether critically ill children

hospitalized in a Pediatric Intensive Care Unit (PICU) survived to discharge based on the

interpretation of Poincaré plots.
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CHAPTER 1

INTRODUCTION

The measurement of Heart Rate Variability (HRV) is a valuable tool in both
clinical practice and physiological research. The problem herein is predicting mortality
during hospitalization from heart rate variability metrics and from the visualization of
such metrics. Many patients come through the doors, and some of the questions that
arise during hospitalization are: “Who needs immediate attention to prevent hospital
mortality?”, “How should valuable resources (human (MD, RN) and physical locations
(ICU beds)), be divided and triaged?”, and “How can families be counseled during the

course of hospitalization?”

HRV is the measurement of beat-to-beat fluctuation in the heart rate. HRV is a
normal physiologic mechanism, which is sometimes referred to as sinus arrhythmia.
HRV reflects the dynamic response of cardiovascular control systems to physiologic

perturbations such as respiration and thermoregulation.

Sinus arrhythmia refers to a normal phenomenon of mild acceleration and
slowing of the heart rate that occurs with breathing. It is usually quite pronounced in
children and steadily decreases with age. HRV can also be present during

meditation breathing exercises that involve deep inhaling and breath holding

11-12

patterns. Acute life threatening and chronic illness may also impact normal heart

rate variability.">***°
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Figure 1. Brown'. Experimental records from 1 subject. Respiratory rates shown are 6 (A),
15 (B), and 24 breaths/min (C). RR interval variability is greatest at slowest breathing rate.
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Figure 2. Graphical representation of the different intervals obtained in a normal electrocardiogram.
The RR interval is the interval from the peak of the R wave in one QRS complex,
as shown in Figure 2, to the peak of the next R wave. The QRS complex is used to
measure the ventricular rate by taking 60 and dividing by the RR interval (measured in

seconds). The term NN is used in place of RR to emphasize the fact that the processed



beats are "normal” beats. HRV is measured using the NN interval and provides a
noninvasive indicator of autonomic nervous system tone.’® Under normal conditions,
heart rate increases with inspiration (decreased intra-thoracic pressure, increased
venous return = increased sympathetic nervous system (SNS) tone = increased heart
rate), and decreases with expiration (increased intra-thoracic pressure, decreased
venous return = increased parasympathetic nervous system (PSNS) tone > decreased
heart rate). Beat-to-beat changes in blood pressure (BP) are due to various physiologic
mechanisms regulated by the autonomic nervous system (ANS: SNS & PSNS). HRV is the
efferent limb; it is (part of) the response of the ANS to keep BP stable. The effect of the

ANS output works very quickly (on the order of milliseconds.)
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Figure 3. Homeostatic regulation of Heart Rate (HR)

As discussed, HRV is normal and healthy and reduced HRV is pathological.
The loss of HRV is reported to reflect an alteration in autonomic nervous system
function. A number of disease states are associated with changes in HRV, including
heart failure, sudden infant death syndrome, myocardial infarction, prematurity,
neonatal respiratory distress syndrome, and diabetes to name a few."****°

Fetal Heart Rate (FHR) monitoring was one of the first areas in which this
phenomenon was recognized and important clinical observation and intervention

begun.™® It was discovered that abnormal heart rate variability during and after uterine

contraction indicated fetal distress and is used as an indication for immediate caesarean



section delivery. The diminution of the beat-to-beat variation in the fetal HR during

labor signifies fetal distress and the need for rapid delivery.

In 1987, Kleiger® obtained 24 hours of continuous Electrocardiogram (ECG) data
recorded 11 + 3 days after Acute Myocardial Infarction (AMI) and analyzed the data for
HRV. The mortality is 5.3 times higher in patients with a standard deviation (SD or
SDNN) of HRV less than 50 milliseconds (ms) versus patients with SD of HRV greater
than 100ms. A hypothesis for explaining the results infers that low PSNS and high SNS is

abnormal and potentially predisposes patients post AMI to ventricular fibrillation.
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Figure 4. Cumulative survival over total follow up period as a function of HRV.
Survival curves are calculated by the method of Kaplan & Meier."

Kleiger uses the standard deviation of RR intervals (ms) metric to quantify HRV.
With a SD less than 50ms, equating to low variability (RR interval is nearly the same
length every beat), the total mortality during 31 month follow up is 34.4% (odds ratio of
5.3). With a SD of 50-100ms (moderate HRV), the total mortality during follow up is
13.8% (odds ratio of 1.6). Lastly, if the SD is greater than 100ms (good HRV), the total
mortality during follow up is 9.0% (odds ratio of 1.0). The conclusion of the study shows
that the lack of HRV predicts long-term mortality after acute myocardial infarction.

Poincaré plots to analyze HRV have not been previously applied in the PICU setting.



HRV is often measured by the standard deviation (SD) of the RR intervals over a

given time interval. In doing so, beat-to-beat temporal information is lost to retain a

metric on overall temporal fluctuation. A larger SD equates to more HRV and a smaller

SD equates to less HRV. Just as there are time domain measures of HRV, there exist

frequency domain measures of HRV. Current HRV analysis contains a family of metrics;

time domain, including SD, Frequency domain, as well as non-linear metrics.

Variable Units Description
Statistical Measures

SDNN ms Standard Deviation of all NN intervals.

SDANN ms Standard Deviation of the averages of NN intervals in all
5-minute segments of the entire recording.

RMSSD ms The square root of the mean of the sum of the squares of
differences between adjacent NN intervals.

SDNN INDEX ms Mean of the Standard Deviations of all NN intervals for all
5-minute segments of the entire recording.

SDSSD ms Standard Deviation of the differences between adjacent
NN intervals.

NN50 count Number of pairs of adjacent NN intervals differing by
more than 50ms in the entire recording; three variants
are possible counting all such NN intervals: pairs or only
pairs in which the first or the second interval is longer.

pNN50 % NN50 count divided by the total number of NN intervals.

Geometric Measures

HRV Triangular Total number of all NN intervals divided by the height of

Index the histogram of all NN intervals measured on a discrete
scale with bins of 7.8125ms (1/128 seconds).

TINN ms Baseline width of the minimum square difference
triangular interpolation of the highest peak of the
histogram of all NN intervals.

Differential ms Difference between the widths of the histogram of

Index differences between adjacent NN intervals measured at
selected heights (e.g. At the levels of 1000 and 10000
samples).

Logarithmic Coefficient ¢ of the negative exponential curve ke~ ¢,

Index which is the best approximation of the histogram of

absolute differences between adjacent NN intervals.

Table 1. Task Force™®. Selected time domain measures for assessing HRV.




Variable Units Description

Frequency Range

Analysis of Short-term Recordings (5 min)

2

5-min total ms The variance of NN intervals over the ~<0.4 Hz
power temporal segment
VLF ms’ Power in the VLF range <0.04 Hz
LF ms’ Power in the LF range 0.04-0.15 Hz
LF norm nu LF power in normalized units

LF/(total power — VLF)x100
HF ms’ Power in HF range 0.15-0.4 Hz
HF norm nu Power in normalized units HF/(total

power — VLF)x100
LF/HF Ration LF(ms?)/HF(ms?)

Analysis of Entire 24 Hours

Total power ms? Variance of all NN intervals ~<0.4 Hz
ULF ms’ Power in the ULF range <0.003 Hz
VLF ms’ Power in the VLF range 0.003-0.04 Hz
LF ms’ Power in the LF range 0.04-0.15 Hz
HF ms’ Power in the HF range 0.015-0.4 Hz
a Slope of the linear interpolation of ~<0.4 Hz

the spectrum in a log-log scale

Table 2. Task Force™. Selected frequency domain measures for assessing HRV.
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Figure 5. Spectral analysis (autoregressive model, order 12) of RR interval
variability in a healthy subject at rest and during 90 degrees head-up tilt.




Variable

Units

Normal Values (mean £ SD)

Time Domain Analysis of Nominal 24 hours

SDNN ms 141 + 39
SDANN ms 127 £ 35
RMSSD ms 27 +12
HRV Triangular Index ms 37+15

Spectral Analysis of Stationary Supine 5-min Recording

Total Power ms 3466 + 1018
LF ms 1170 + 416
HF ms 975 £ 203
LF nu 54 +4

HE nu 293
LF/HF ratio 1.5-2.0

Table 3. Task Force™. Normal values of standard measures for assessing HRV.
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Figure 6. Kaplanlg. Example of four synthesized time series with identical means,
standard deviations, and ranges. Series (c) and (d) also have identical
autocorrelation functions and therefore identical power spectra.

The predominant problem with using summary statistics (used to summarize a set of
observations, in order to communicate the largest amount of knowledge as efficiently as
possible) in medicine is that the loss of information can obscure data patterns that may
otherwise better inform care decisions. As seen in Figure 6 above, using the summary

statistics of mean, standard deviation, and range will result in the same conclusion
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regardless of the waveform pattern. Many patients with heart failure have arrhythmias
that make the raw heart rate variability data less suitable for the use of summary
statistical measures. This is the issue of RR (which may be an abnormal ectopic beat) vs.
the NN (which is the normal sinus beat) — each is handled in a different way. Non-linear
methods may be better suited to extracting salient information contained within

physiological waveforms.

In 1992, Woo™ et al introduced the use of Poincaré plots as a novel method for
analyzing HRV. Poincaré plots have the benefit of presenting a summarized view of EKG
data while preserving evolving visual patterns in EKG data, thus suggesting their

usefulness in medical decision support.
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Figure 7. Wo0™. Construction of Poincaré plot from ECG wave. A, B, and C represent
consecutive RR intervals.

As shown in Figure 7, Poincaré Plots can be plotted on a Cartesian plane from RR
interval data. The first point is created using the A interval as the x-coordinate and
interval B as the Y-coordinate. The second point uses the B interval as the x-coordinate
and the Cinterval as the y-coordinate. The remaining points are constructed using each

interval in turn as first the x-coordinate and then, in the next point, as the y-coordinate.

8
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Figure 8. Wo00™. This “Comet” shape (shown above) is normal for 24 hour recordings,
other shapes are not.

Woo showed Comet patterns, as seen Figure 8, representing healthy patients,
and other 3 shapes (see Figure 9), seen in pathologic states such as congestive heart
failure (CHF) patients. Decreased HRV is associated with an increased mortality rate in
CHF patients. Woo demonstrated Poincaré plots in twenty-four CHF patients and
compares this to twenty-four healthy controls. All health controls had a Comet shape
pattern to their Poincaré plot. No patients with CHF had the Comet shape, yet findings

show there was no statistical significance in predicting sudden death.

The Comet pattern (Figure 9A) demonstrates a wide range of RR intervals,
typically extending from 500-1000ms (equivalent to heart rates of 120-60 BPM,
respectively) along both axes. Also, as the RR interval increases (i.e. slower heart rates),

the dispersion of subsequent intervals increases. As HR slows, the inter-beat variation



increases, creating the distinctive Comet pattern. As the RR intervals lengthen on the x-
axis, the next RR interval (plotted on the y-axis) is more variable, seen as the widening of
the tail of the Comet. Shorter RR intervals equal faster HRs and there is less HRV, (i.e.
the length of RR interval does not vary as much between beats). Thus, the head of the

Comet is narrower.

As seen in Figure 9B, the Torpedo pattern reflects low RR interval dispersion
over the range of HR; regardless of HR, there is low variability at both slower and faster
HRs. The Fan pattern (Figure 9C) reflects restriction in the range of RR intervals with
enhanced variability seen (i.e. dispersion). The Complex pattern (Figure 9D) shows
clusters of points characteristic of erratic changes in RR intervals, consistent with non-
linear behavior. This indicates jumps in HR from beat to beat, with long RR-intervals
being juxtaposed to short RR-intervals. It should be noted that the mechanisms of these

different patterns are not understood and are thus a rich area for future investigations.

10
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Figure 9. Wo00™. The four predominant shapes described as (A) Comet, (B) Torpedo,
(C) Fan, and (D) Complex.

Poincaré patterns could not be directly predicted from the SD of RR intervals, thus

different information is provided through the use of the Poincaré method. Benefits of

using the Poincaré method for plotting HRV include:

1. Simultaneous display of overall variance, dispersion of RR intervals at HR, and

change in variance at cardiac rate changes'®

2. Ease of visual assessment

3. Nonlinear processing is more readily deciphered by the human brain

11



4. Assessment of instantaneous variation at different HRs
5. Outlier (ectopic beat or artifact) identifier

The Comet pattern, seen in all healthy volunteers, differed markedly from the other
three patterns exhibited exclusively by the CHF patients. Diminished HRV is associated
with high sympathetic tone and an increased mortality rate in CHF patients. Inter-
observer agreement (Kappa) between four blinded observers was 96% (23/24 patients).
Iltems such as physical exam findings, radiographic interpretations, or other diagnostic
tests often rely on some degree of subjective interpretation by observers. Studies that
measure the agreement between two or more observers should include a statistic that
takes into account the fact that observers will sometimes agree or disagree simply by
chance. The Kappa statistic (or Kappa coefficient) is the most commonly used statistic
for this purpose. It gives a score of how much homogeneity, or consensus, there is in the
ratings given by judges. It is useful in refining the tools given to human judges, for
example by determining if a particular scale is appropriate for measuring a particular
variable. If the ratings between the individuals do not agree, then either the scale is

defective or the rating individuals need to be re-trained.

To date, studies have tried to extract summary statistics from Poincaré plots with
limited success to explain the data differently than time domain and frequency domain
methods. Brennan®® aimed to determine if summary descriptors based on Poincaré
plots are independent of existing HRV measures. Tulppo® created an ellipse fitting
technique to the Poincaré plot in order to describe its shape. From the ellipse, a set of

axes oriented with the line of identity is defined as:
1. SD1-Perpendicular to the line of identity; shows short-term variability.
2. SD2 - Collinear to the line of identity; shows long-term variability.

It is often suggested®**° that indices can be derived from Poincaré plots that are
able to measure quantities of the variability that are nonlinear and or independent of
the standard linear indices, but Brennan?® shows that this is not the case. No measure

derived from Poincaré plots to date have been shown to be independent of standard

12



linear time domain or frequency domain measures of HRV. Therefore, the intrinsic
ability of the Poincaré plot to identify nonlinear beat-to-beat structure is not being

exploited quantitatively.

13



CHAPTER 2

STUDY METHODS

AIM 1. The first aim of the study was to evaluate the use of Poincaré plots, visual
displays of heart rate variability, to predict mortality in critically ill children admitted to

the pediatric intensive care unit (PICU).

Twelve subjects who died in the Pediatric Intensive Care Unit (PICU) were
compared against twelve age-matched subjects who survived to discharge from the
PICU. Poincaré plots were generated using continuous ECG data streams from all
twenty-four subjects. ECG data streams from Spacelabs (CA, USA) critical care patient
monitors were obtained at 896 Hz but decimated by the manufacturer to 225 Hz for
storage. These were then filtered for noise and then the R peak was automatically
identified (fiducial point) through a series of biomedical engineering algorithms, and

stored in a back-end archival database.

The data was extracted from the database file of fiducial points listed in
Coordinated Universal Time (UTC) of occurrence. From each R peak time indication,
differences were calculated to determine the RR interval. Once tabulated, ectopic beats
and noise were eliminated from the data by restricting the BPM range to 40 — 250.%" The
Poincaré plots were generated over thirty minute epochs during the patient stay in the
PICU and displayed in a movie format, with each subsequent plot changing every five

seconds.

Two physician anesthesia resident reviewers were trained, blinded to patient
outcome, and independently analyzed the plots for interpretation of the different
shapes present in the Poincaré plots. The residents reviewed the plots for instances of
Comet, Torpedo, Fan, and Complex shapes. The residents reviewed the entire movie of
each patient, which were of different durations depending on the length of stay of the
particular patient. The residents were trained to assess the predominant shape (of
highest occurrence) for each thirty minute epoch in the movie in order to make the

predictions, which were then compared to actual patient outcomes to assess the ability



of Poincaré plots to predict patient mortality. The data analysis procedure is

summarized in Figure 10.

~ 24 PICU patients ’

'//(f, - - \f_‘;..\_‘
12 patients died | ' 12 age-matched |
| before discharge controls discharge

. from the PICU ) alive

-

Poincaré plots created for each 30min interval
before discharge from the PICU

— o

Movie of plots reviewed by two independent blinded observers

Predicted ’ - | Predicted patient
patient died - discharged alive

Figure 10. Graphical representation of study protocol.
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AIM 2. The second aim of the study was to evaluate the use of cluster analysis on
the Poincaré plots generated in order to automate predictions in patient outcome with
high confidence. Automation also removes subjective biases introduced by individuals

making the predictions.

K-means clustering is an unsupervised learning algorithm that aims to partition
the n observations into k sets so as to minimize the within-cluster sum of squares. The

algorithm for minimizing the sum of squares is per the criterion

k
] = argsminZZIxn— wl* (1)

j=1nes;

where x, is a vector representing the nth data point and y; is the geometric centroid,
using Euclidean distance, of the data points in Sj. For step 1, the centroid is
computed for each set. In step 2, every point is assigned to the cluster whose
centroid is closest to that point. The resultant clusters indicate geometric centers of
mass, or locations showing where groups of data lie. K-means clustering was
implemented here with 9 centers (k =9 <n; n =each datum in a 30 minute epoch =

2000 heartbeats).

32-37

K-means clustering has been used extensively in medical imaging. The two key

features of k-means which make it efficient are often regarded as its biggest drawbacks:

1. The number of clusters k is an input parameter: an inappropriate choice of k may
yield poor results. For this data, 9 centers were heuristically determined to be

appropriate.

2. Convergence to a local minimum may produce counterintuitive (wrong) results.
For this data, local minimums do not affect the results because the analyses

account for local minimums.3®

The 9 data clusters (J1, /2, ..., Jo) are characterized with number of data points
belonging per cluster as well as the locations of each. From this information, one

gualitative map is created and two statistics are calculated, where the focus is on

16



characterization of the dispersion of points (a large deviation is used as an indicator for
death), with the hypothesis that as HRV deviates largely from HRV of healthy individuals,

17,39

survivability decreases. The two statistics are:

1. Cumulative Distance (CD) from ideal centers — How severely different is the

current 30 minute epoch Poincaré pattern from the ideal Poincaré pattern?

The Cumulative distance from ideal centers is calculated as

CD = Z(,/xn— yn)z’ (2)

: (2)

where x, is a vector representing the nth computed center location and yn is a

vector representing the nth ideal center location.

2. Median Absolute Deviation (MAD) — a robust measure of the variability of a
univariate sample of quantitative data and defined as the median of the absolute

deviations from the data's median.
The MAD is calculated as

MAD = median(|x — median(x)|), (3)
where x is an array of RR intervals over a thirty-minute epoch.

For the cumulative distance from the ideal centers statistic, the first step was to
create centers that exemplify the Comet shape. Since the Comet shape is the reference
shape seen in healthy individuals, it is used herein for comparison. For each thirty-
minute epoch generated for a patient, the resultant plot will be compared against the

reference Comet plot.

Using Matlab® (R2009a, The Mathworks, Natick, MA), ideal center locations are
created in the process of first creating a random Gaussian distribution of 100,000 data

points within the x-y square plane defined by the minimum (40) and maximum (250)

17



beats per minute of the Poincaré plot. Once created, the outline of the Comet shape

was traced to indicate which of those points are to be saved, as seen in Figure 11.

Comet Shape for Ideal Center Creation
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Figure 11. Resultant ideal Comet shape of data points for cluster analyses.

The saved points of Figure 11 were put through the same 9-center K-means

cluster processing analysis as defined in Aim 1, resulting in the graph of geometric

centers shown in Figure 12. Figure 13 shows a plot of the ideal centers with the centers

created for the first thirty-minute epoch for patient 1 superimposed. For each thirty-
minute epoch, distances are calculated for each center that is projected onto the
associated ideal center. The distances are then summed to provide the summary

statistic for the given epoch.
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Plot of Ideal Centers for RR-Interval Sequence
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Figure 12. Graph of reference ideal centers with relative magnitude (number of datapoints
associated with each center) and locations displayed in the legend.
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Figure 13. Plot of centers for first epoch of patient 1 with ideal centers superimposed.
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For each of the two statistics described above, a threshold is set to indicate
mortality. The thresholds were determined empirically, and each study patient was
categorized as either live or die based on the last 2.5 hours of data obtained from each

patient. The final 2.5 hours of the data was used for two reasons:

1. The record lengths for the patients varied depending on how long they were

in the ICU.

2. With a perspective view, 2.5 hours contained enough data (5 points per

statistic) to provide significant results.

Used to specify death, the empirically defined thresholds of 5000 and above for
the mean and 1000 and above for the standard deviation were used on the CD data.
MAD was also calculated for each epoch and an empirically defined threshold of 4.5 for
the mean and above is used to specify death. The patients are analyzed into groups and
the outcome is compared against the statistics. MAD provides a way to quantify
disparate data in the presence of outliers, which is useful here due to measurement
(patient moves inducing additional or missing heartbeat, etc.) and stochastic (heart rate

suddenly increases due to loud sound, etc.) variations.
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CHAPTER 3

RESULTS AND DISCUSSION

AIM 1. For the first aim, inter-observer agreement is 96%, the same as found in
the Woo study. The discordant observation is 1 patient who died. Both independent

observers correctly classified:

1. Sensitivity = # True Positives/(# True Positives + # False Negatives) = 9/12
=75%

2. Specificity = # True Negatives/(# True Negatives + # False Positives) =
9/12 =75%

3. Positive Predictive Value (PPV) = # True Positives/(# True Positives + #

False Positives) =9/12 = 75%

4. Negative predictive Value (NPV) = # True Negative/(# True Negatives + #
False Negatives) =9/12 = 75%

Patient Observer 1 Prediction Observer 2 Prediction Outcome
1 Die Die Die
2 Live Live Live
3 Live Live Live
4 Die Die Die
5 Live Live Live
6 Die Die Die
7 Die Die Die
8 Die Die Die
9 Die Die Live
10 Live Live Live
11 Live Live Live
12 Die Die Live
13 Live Live Live
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Patient Observer 1 Prediction Observer 2 Prediction Outcome
14 Live Live Live
15 Live Live Live
16 Die Die Die
17 Live Live Die
18 Die Die Die
19 Live Live Live
20 Die Die Die
21 Live Die Die
22 Live Live Die
23 Live Live Die
24 Die Die Live

Table 4. Chart of data collected for evaluation of Poincaré plots by the two trained observers.

Discharge status is predicted as alive if mostly Comet, and expired if mostly other
shapes. Data contained herein shows that adult patient populations exhibit similar
behavior and results to PICU patient populations. Some limitations of the current study

include:

1. Retrospective study — not yet accomplished in real time to provide meaningful

shifts in behavior on the part of the patient or doctor

2. Difficulty in assigning one predominant Poincaré shape to some subjects,

especially since the shapes evolve and revolve over time

3. No specific exclusion criteria (though this can also be beneficial to proving the

expanse of implications due to high sensitivity and specificity)

4. Unable to control for factors such as (though this can also be beneficial to

proving the expanse of implications due to high sensitivity and specificity):
a. Positive pressure ventilation

b. Use of vasopressors and other hemodynamically significant drugs

c. Patients’ sleep/wake cycle
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5. Unknown details of death (though this can also be beneficial to proving the

expanse of implications due to high sensitivity and specificity):

AIM 2. Using two summary statistics, the sensitivity and specificity analysis of
the reported outcome was calculated to evaluate the performance of the statistics and
validate their clinical use. When studied independently, the cumulative distance statistic
has a sensitivity of 100%, specificity of 33%, PPV of 60%, and NPV of 100%. The
interpretation is that the algorithm is able to correctly identify 100% of the patients who
are dying based on the previous 2.5 hours of heart rate variability and 33% of the
patients who are not dying. Alternatively, the MAD has a sensitivity of 83%, specificity of
50%, PPV of 63%, and NPV of 75%.

Patient | Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Average /
CcD CcD CcD CcD CcD SD

2 4838.59 4812.36 4558.96 4840.12 4575.06 4725.0/
144.8

3 4496.56 4759.63 4665.09 4626.60 4608.42 4631.3/
95.3

5 3656.89 3135.74 3001.24 2864.15 2712.52 3074.1/
361.8

9 3363.44 3496.22 5751.23 4717.90 3881.44 4242.0/
995.3

10 3780.73 3850.68 3631.97 4016.50 3814.71 3818.9/
138.3

11 4379.93 4405.49 4666.43 4290.88 4389.13 4426.4 /
141.4

12 3699.31 4463.04 5082.49 4081.06 3783.54 4221.9/
566.5

13 3943.04 4184.14 4045.28 4502.87 4247.72 4184.6 /
213.9

14 3647.88 3914.33 3668.72 4007.99 3850.32 3817.8/
156.2

15 4372.77 4636.11 4607.60 4594.12 4705.33 4583.2 /
125.2

19 4585.29 4660.24 4629.32 4556.18 4250.05 4536.2 /
164.9

24 1661.62 2934.20 1286.72 1372.06 1323.43 1715.6/
697.1

Table 5. Cumulative Distance from Centers given for 5 ultimate epochs from surviving patients.
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Patient | Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Average /
cDh cDh CcDh cDh CcDh SD

1 7464.71 10724.97 | 7403.97 10093.26 | 19577.72 11052.9/
4997.3

4 3614.54 3341.37 4197.83 3736.41 4852.76 3948.6 /
592.7

6 3589.90 | 3572.24 3710.90 3415.52 7605.20 4378.8 /
1806.7

7 7372.65 | 1994.93 3345.76 3467.80 1469.08 3530.0/
23134

8 2105.32 | 2086.34 2120.39 1625.60 2543.42 2096.22 /
324.9

16 6311.87 | 6282.43 5296.63 5001.88 3569.49 5292.5/
1126.1

17 2542.69 2449.64 2549.51 2541.64 2511.27 2518.9/
41.5

18 3335.24 3047.19 4154.20 4310.36 4698.17 3909.0/
692.1

20 2927.04 | 3069.06 3096.40 3167.27 2723.94 2996.7 /
175.7

21 2388.62 2151.81 3004.07 2174.23 2928.29 2529.4/
410.2

22 4859.37 | 4209.18 5277.52 3790.36 4286.12 44845 /
584.5

23 3926.95 | 3847.23 5404.62 4047.39 3827.32 4210.7 /
673.0

Table 6. Cumulative Distance from Centers given for 5 ultimate epochs from expiring patients.

Patient | Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Average
MAD MAD MAD MAD MAD
2 0.05 2.04 0.05 0.05 2.09 0.85
3 1.69 1.69 1.69 1.69 8.77 3.11
5 4.62 1.05 0.94 0.93 1.76 1.86
9 7.25 9.54 19.13 4.36 2.85 8.63
10 4.49 3.03 3.10 3.00 2.88 3.30
11 2.09 4.03 3.89 9.64 2.14 4.36
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Patient | Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Average
MAD MAD MAD MAD MAD
12 1.34 5.00 7.52 3.03 4.33 4.25
13 1.52 1.55 1.52 3.80 0.04 1.68
14 2.85 1.42 2.85 1.37 2.85 2.27
15 0 0 0 0.04 1.95 0.40
19 1.99 1.90 1.90 3.89 5.31 3.00
24 6.99 9.53 3.79 4.52 5.48 6.06

Table 7. Median Absolute Deviation given for 5 ultimate epochs from surviving patients.

Patient | Epoch1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Average
MAD MAD MAD MAD MAD

1 4.48 4.62 2.30 12.73 6.25 6.08
4 9.58 9.64 11.45 14.97 9.19 10.97
6 2.50 2.61 1.26 1.26 1.29 1.78
7 11.54 2.32 14.95 30.74 10.30 13.97
8 0.75 0.72 0.69 1.69 0.99 0.97
16 3.98 2.03 1.72 2.52 2.61 2.57
17 0 0 0 0.79 0.86 0.33
18 1.13 4.68 1.65 3.84 1.99 2.66
20 5.80 4.70 4.97 9.21 4.01 5.74
21 5.34 3.38 5.78 3.45 6.55 4.90
22 3.99 3.54 4.08 1.65 1.65 2.98
23 6.03 3.70 7.83 5.52 5.43 5.70

Table 8. Median Absolute Deviation given for 5 ultimate epochs from expiring patients.




Patient Cumulative Distance Prediction | MAD Prediction Outcome
1 Die Die Die
2 Live Live Live
3 Live Live Live
4 Live Die Die
5 Live Live Live
6 Die Live Die
7 Die Die Die
8 Live Live Die
9 Live Die Live
10 Live Live Live
11 Live Live Live
12 Live Live Live
13 Live Live Live
14 Live Live Live
15 Live Live Live
16 Die Live Die
17 Live Live Die
18 Live Live Die
19 Live Live Live
20 Live Die Die
21 Live Die Die
22 Live Live Die
23 Live Die Die
24 Live Die Live

Table 9. Chart of data collected for evaluation of Poincaré plots by the two summary
statistics: CD and MAD.

However, when combined, using either a CD average greater than 5000, CD SD
greater than 1000, or MAD average greater than 4.5, the sensitivity is 83%, the

specificity is 67%, PPV is 71%, and NPV is 80%. In practice, it would be best to use the
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cumulative distance independently to determine if a patient is dying and to use the

combined statistics in order to determine if a patient is not dying.

Patient Combined Prediction Outcome
1 Die Die
2 Live Live
3 Live Live
4 Die Die
5 Live Live
6 Die Die
7 Die Die
8 Live Die
9 Die Live
10 Live Live
11 Live Live
12 Live Live
13 Live Live
14 Live Live
15 Live Live
16 Die Die
17 Live Die
18 Live Die
19 Live Live
20 Die Die
21 Die Die
22 Live Die
23 Die Die
24 Die Live

Table 10. Chart of data collected for evaluation of Poincaré plots by the combined summary
statistic.

The second aim arises from the problem regarding Poincaré plot use having a

lack of obvious quantitative measures that characterize the salient features of the plot.
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The purpose for creating these statistics is to move in the direction of automating the

mortality diagnosis and to remove observer biases.

A limitation to using the statistics as given is that the study has a limited number
of patients and across a larger sample size, the statistics will not hold up as well.
However, under the conditions given, there is much promise in using these two

summary statistics to provide a real time response decision for patients who are most in

need of attention.
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CHAPTER 4

INNOVATION AND NOVELTY

AIM 1. The results derived from the first aim proved the clinical model. To date,
Poincaré plots are only used in the laboratory setting and the ability to train healthcare
professionals on the interpretation is now shown to be a legitimate method of
prognoses in vivo. The data also represents the first use of Poincaré analysis for
predicting survival in critically ill children. Different from previous studies, Poincaré plots
are generated over a shorter duration (thirty minute epoch), whereas previously plots
are created over a twenty-four hour time period. Therefore, the information contained
in thirty-minute epochs maintained the integrity from which to derive valid conclusions
by both replicating the observations of Woo and presenting statistically significant
metrics. Since the plots are generated over a shorter duration, a “real time” assessment
can be made on the data so that prompt interventions can be given as well as

observation of the consequences of those interventions.

AIM 2. Cluster analysis is used to highlight where most data lie in Poincaré plots.
A number of techniques have been tested in order to characterize the shape and
underlying information contained within the Poincaré plot yet have had very limited
success. Most are analogs to first dimensional statistical analyses on the heart rate
variability data itself without using the Poincaré plot as a non-linear analysis technique.
Now, with the creation of the cumulative distance statistic, the Poincaré plot can be
exploited in a way not yet described. The MAD creates a statistic that is useful in data
collected in the real world where model assumptions as well as data collection errors

cannot be exactly controlled.



CHAPTER 5

CLINICAL IMPLICATIONS

HRV is a noninvasive measure of the balance of autonomic control on the heart,
which has prognostic implications in health and human disease. From a clinical
perspective, the ability to predict clinical outcomes (survival vs. death) in critically ill
children, or more broadly, hospitalized patients helps guide clinical decision making and
potentially, as an important input in end of life decision making (DNR: do not resuscitate
status). Outside of the hospital, HRV metrics have the potential to facilitate triage care
in disaster situations or on the battlefield during wartime or to assist in ambulatory care

at home.

When physicians have reliable prognostic information, appropriate interventions
can be utilized to improve the patient’s clinical course and return them to health. Visual
assessment of Poincaré plots generated during hospitalization in the PICU accurately
predict patient outcome in approximately 75% of both pediatric survivors and deaths.
Poincaré plots might be a very useful visual tool for bedside risk of mortality assessment
by physicians and nurses. Additionally, it may be an important new input variable in a

multivariate clinical decision support system for critically ill and hospitalized patients.

Heart rate Variability can be used to discover hidden health problems. If the
nervous system is not controlling the body well, then anything can go wrong. A
malfunctioning nervous system leads to a malfunctioning body. Since the nervous
system controls sympathetic and parasympathetic activity, any health problem can
affect its activity. Poincaré plots provide non-invasive prognoses into HRV and thus give

healthcare professionals the ability to provide appropriate timely innervation.



Poincaré plots provide clinical insight into the workings of the nervous system.
For this reason, Poincaré plots can be used to study a variety of health conditions
instead of only cardiac disease. Poincaré plots provide a useful visual tool for bedside
risk of mortality assessment. Poincaré plots are useful irrespective of pathology. If
physicians have reliable prognostic information, then hopefully interventions are

possible to change the patient’s course!
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Poincaré plots are a semi-quantitative visual tool applied to the analysis of RR
interval data resulting in a highly predictive assessment of survival in critically ill
children. It allows for a simple and easily implemented method for the assessment of
data that can be used in a clinical setting to augment current patient monitoring devices

in providing “real time” visualization of heart rate variability data.

Poincaré plots detect patterns resulting from nonlinear processes that may not
be observable by other methods of analysis. Other types of analysis provide summary
evaluations of variation in RR intervals. Poincaré plots provide a beat-to-beat visual
display that can reveal patterns resulting from nonlinear processes and non-periodic

fluctuations.

Prior to Poincaré plot analysis, normal or CHF patients could be diagnosed based
on SD (greater SD for normal patients), but could not predict mortality. SD is higher for
normal Comet pattern than other types of patterns. There is no statistical difference for
SD between the different unhealthy types of Poincaré patterns. Nor is there statistical

significance for mortality based on the different unhealthy Poincaré patterns.

Additional variants of cluster analyses could be undertaken. These analyses can
use simple statistical or geometrical parameters commonly used. Examples of such

metrics as:
1. Densities — Number of data points associated with certain clusters.

2. Locations — Where the clusters are located both singularly and relative to

other clusters.
3. Ratios — This can be a ratio of densities, locations, size, etc.

4. Extrema — Distances from furthest clusters.



5. Trajectory of cluster centers — Are the clusters contracting, expanding, or

shifting?

6. Number of clusters 9 vs. ? — Using a different number of clusters may

lead to more significant statistics.

7. Coupling with other types of real time continuously updated physiologic
patient data such as oxygen saturation, respiratory rate, blood pressure,

etc.

8. Combining Poincaré analyses with existing multivariate predictive
analytics may yield more sensitive, specific and reliable real time

predictions of patient outcomes.

Conducting a prospective validation study with larger patient population while
acquiring other important patient and hospital outcomes data (i.e. impact on clinical
decision making, correlation with healthcare providers assessments, length of stay, etc.,

would further the impact of the results stated herein.
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