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ABSTRACT
JAMIE LYNN BIGELOW: BAYESIAN SEMIPARAMETRIC METHODS

FOR FUNCTIONAL DATA.
(Under the direction of Dr. Amy Herring and Dr. David Dunson.)

Motivated by studies of reproductive hormone profiles in the menstrual cycle, we

develop methods for hierarchical functional data analysis. The data come from the

North Carolina Early Pregnancy Study, in which measurements of urinary progesterone

metabolites are available from a cohort of women who were trying to become pregnant.

Methods for menstrual hormone data are needed that avoid standardizing menstrual

cycle lengths while also allowing for flexible relationships between the hormones and

covariates. In addition, it is necessary to account for within-woman dependency in the

hormone trajectories from multiple cycles. All of the methods are developed for and

applied to menstrual hormone data, but they are general enough to be applied in many

other settings.

The statistical approach is based on a hierarchical generalization of Bayesian mul-

tivariate adaptive regression splines. The generalization allows for an unknown set of

basis functions characterizing both the overall trajectory means and woman-specific

covariate effects and allows for the complex dependency structure of the data. To relax

distributional assumptions, we use a Dirichlet process prior on the unknown distribu-

tion of the random basis coefficients in the spline model. This requires the development

of methodology for the use of the Dirichlet process on the distribution of a parameter

of varying dimension. While modeling the curves nonparametrically, the Dirichlet pro-

cess also identifies clusters of similar curves. Finally, we combine our approach with

Bayesian methods for generalized linear models, developing a procedure that clusters

trajectories while jointly estimating the response distribution of each cluster.
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In all of the models, a reversible jump Markov chain Monte Carlo algorithm is de-

veloped for posterior computation. Applying the methods to the progesterone data, we

investigate differences in progesterone profiles between conception and non-conception

cycles, identify clusters of pre-ovulatory progesterone, and demonstrate the ability of

the joint model to distinguish early pregnancy losses from clinical pregnancies.
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CHAPTER 1

LITERATURE REVIEW &

INTRODUCTION

1.1 Motivating Example

1.1.1 Hormones and the menstrual cycle

Certain physiological characteristics, such as hormone levels, basal body temperature,

follicle diameter and cervical mucus are known to vary in accordance with the menstrual

cycle (Stanford et al., 2002). It is of interest to understand how these characteristics

tend to vary within and across different menstrual cycles and in relationship to predic-

tors, such as age or environmental exposures. Also of interest is the inter-relationship

among these different physiological characteristics and their association with fertility

and pregnancy outcomes. In this paper, we develop models appropriate for longitudinal

menstrual data and apply the models to progesterone trajectories. The models can be

generalized to other menstrual and non-menstrual applications based on the concepts

discussed in Section 1.1.3.

A brief review of the menstrual cycle is warranted before discussion of methodology.

The menstrual cycle has traditionally been defined to start at the onset of a menstrual



bleed and to end the day before the onset of the next menstrual bleed. The first phase of

the cycle, occuring up to the day of ovulation, is termed the follicular phase. Ovulation

marks the transition into the luteal phase, which continues until menstrual bleeding

marks the start of the next cycle (Murphy et al., 1995).

Progesterone levels tend to be low at the cycle start, rise to a peak, and then decrease

Baird et al. (1997). The location of the peak is related to the timing of ovulation within

the cycle. Menstrual cycles tend to vary among and even within women with respect

to cycle length and timing of ovulation. Thus modeling the progesterone trajectory is

not a simple matter of the estimation of a function over a fixed amount of time, with a

fixed ovulation point. Researchers have approached this problem using several different

methods.

Since ovulation is an extremely important reference point in the cycle, marking

the end of the fertile interval and known hormonal changes, many investigators have

chosen simply to restrict consideration to a fixed interval surrounding ovulation, usually

between seven and fourteen days in length (see Baird et al., 1997; Brumback and

Rice, 1998; Massafra et al., 1999 for examples). This allows the incorporation of data

from cycles of various lengths without complicated adjustment for cycle length. Mean

progesterone profiles within the interval can easily be estimated by calculating the mean

progesterone level for each day in the interval, and one can potentially incorporate

covariates and allow for within-woman dependency by using a hierarchical model.

This method has several drawbacks. Truncation yields no information about pro-

gesterone levels on the days outside the chosen interval. In addition, if the interval is

chosen to be too wide it may extend outside the current cycle, and thus reflect preced-

ing or subsequent ovulations. In attempts to model progesterone over the whole cycle,

some investigators have chosen to standardize all cycle lengths to 28 days, effectively

shrinking the longer cycles and stretching shorter ones (see Zhang et al., 1998 for an ex-
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ample). This maintains the relative length of the cycle phases, but masks any inherent

relationship between progesterone and cycle length.

Harlow (1991) point out that, in studies of menstrual cycle diary data, long cycles

tend to be underrepresented, and short cycles tend to be overrepresented. One reason

for this is that long cycles are more likely to be truncated at the start or end of the

study period. If all cycles are standardized to the same length in the analysis, then

the results tend to be more representative of short cycles than of long cycles. Another

source of this disproportionate representation of cycle lengths is that women who tend

to have shorter cycles will contribute more over the study period. This is a problem

of informative cluster size, with each cluster being the set of cycles contributed by a

given woman. In scenarios like this, it is well known that failure to correct for cluster

size can lead to biased inference (Dunson et al., 2003; Romero et al., 1992).

The justification for cycle standardization is entirely based on analytical conve-

nience. That is, there is no evidence to suggest that cycles of different lengths will have

similar characteristics. Studies have shown that menstrual cycle length varies among

women according to BMI, exercise habits, and diet, (Kato et al., 1999) all of which also

affect hormone levels (Unzer et al., 1995; Jasienska et al., 2000). Standardizing the

cycle length obscures the relationship between the length of the menstrual cycle and

the hormone levels.

The relationship between hormone levels and covariates has often been assessed by

creating summary variables (i.e. mean progesterone level during the luteal phase, peak

progesterone level, etc.) and comparing them across levels of the covariate of interest

(see Baird et al., 1997, 1999). The simplicity of this method makes it an attractive

way to model and draw inference about progesterone levels, and differences among

women with respect to summary variables can be biologically informative. However,

the creation of summary variables can mask the richness of the available data and result

3



in a loss of information.

A recent study by van Zonneveld et al. (2003) compared hormone trajectories

and follicle development in young and older women of reproductive age. To deal with

the differing cycle lengths and ovulation timings, they compared the two groups on

each of three time-scales: days relative to the start of the cycle, days following the

BBT-shift, and days leading up to the luteinizing hormone peak. They concluded that

each time scale provided slightly different information about the hormone trajectory.

this indicates that the understanding of hormones over the menstrual cycle is best

understood through the consideration of multiple reference points.

1.1.2 Early pregnancy study

The data to we use to develop these methods are from the North Carolina Early Preg-

nancy Study (EPS). This prospective cohort study was conducted to determine the risk

of early loss of pregnancy among healthy women. The study population, recruited in

the early 1980s, consisted of 281 couples who were planning to become pregnant. The

women collected daily first-morning urine samples from the time they stopped using

birth control until six months had passed or until the eighth week of clinical pregnancy.

The urine samples were assayed for pregnanediol-3-glucuronide (PdG), a progesterone

metabolite, along with metabolites of many other hormones of interest. Study protocol

and preliminary findings are detailed by Wilcox et al. (1985) and Wilcox et al. (1988),

and the progesterone data are described in Baird et al. (1997).

We restrict attention to the subset of menstrual cycles for which a hormonally-

determined day of ovulation is available. The ovulation day was estimated by the ratio

of estrogen and progesterone metabolites in urine, which decreases abrubtly in response

to ovulation (Wilcox et al., 1998). This measure of ovulation is superior to BBT-based

estimates, and nearly as accurate as estimates based on the urinary luteinizing hormone

4



surge (Ecochard et al., 2001).

In Chapter 2, we examine hormone profiles over the entire menstrual cycle, com-

paring conception and non-conception cycles. In Chapter 3, we consider progesterone

pre-implantation, which we take to be the follicular phase until two days after ovula-

tion. Finally, in Chapter 4, we consider post-ovulatory progesterone in an analysis of

cycles that resulted in a clinical pregnancy and cycles that resulted in an early loss.

1.1.3 Multiple reference point data

Longitudinal data problems can be adapted to a spatial framework through the iden-

tification of multiple reference points in time. van Zonneveld et al. (2003) indicate

that understanding hormones over the menstrual cycle requires the incorporation of

multiple reference points. For simplicity, suppose we consider two reference points: the

start of the cycle, and the day of ovulation. We expect that both of these points will be

informative about progesterone. Each measurement can be given a set of coordinates

(r, s), where r is the cycle day, and s is the day relative to ovulation. If we are correct

in our assumptions about the importance of these reference points in predicting pro-

gesterone, then measurements on days with similar coordinates will tend to be similar,

and our model should reflect this.

Multiple reference points are not unique to menstrual data. They are also important

in epidemiologic studies of exposures. Consider a study with the goal of determining

the relationship between exposure and disease. Subjects in the study provide their date

of exposure and other time-independent covariates of interest. At follow-up visits, the

age of the subject and the disease status are collected. Each measurement can then be

given a set of coordinates (x, y), where x is the number of years since exposure, and y

is the age of the patient at measurement. In this case, the date of exposure and date

of birth are the reference points for a given subject. The investigators may have reason
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to believe that time since first exposure, age at first exposure, and current age all play

a role in disease status. All of this information is contained in the coordinate pair for

each measurement and if the investigator is correct, we would expect disease status

measurements with similar coordinates to be similar.

There is a need for innovative methods for multiple reference point data. These

methods should allow the response to vary flexibly in relation to the reference points,

accommodate the estimation and testing of covariate effects, and account for within-

trajectory dependency. In terms of the progesterone data, this model will incorporate

the timing relative to the start of the cycle and the day of ovulation. The model should

be flexible enough to account for the various trajectory shapes that are seen in women,

and to allow for dependency within women and within cycles.

If we choose to think of the model in this spatial framework, then the methods

we develop will have applicability to any problem where the framework applies. This

includes regression settings without reference points and not necessarily longitudinal

as well as true spatial settings, such as image analysis or environmental modeling.

The remainder of this chapter summarizes statistical methods that may be adapted

to the multiple reference point setting. Section 1.2 discusses methods for spatial model-

ing, and Section 1.3 discusses regression methods that may be adapted to the multiple

reference point and spatial settings. Section 1.6 is a summary of preliminary work I

have done to this end. Section 1.7 outlines the dissertation project, which includes the

development of a regression method appropriate for multiple reference point data, a

method for clustering based on the regression coefficients, and a joint model describing

the relationship between trajectories and outcomes of interest.
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1.2 Methods for spatial modeling

After demonstrating the spatial nature of these data, a natural first step was to explore

methods for spatial analysis. The model we choose should model the data flexibly,

but should also be easily interpretable in a non-spatial manner that is relevant to the

context of the original data problem. In this section, I discuss several methods that

may be adapted to achieve this goal.

1.2.1 Random fields

A random field is a region in space over which random variables may be observed. It may

be finite or infinite, discrete or continuous, and of any dimension. Every observation

from a random field will be associated with a location in space. The interpretation

of random field data depends on these known locations and the spatial correlation

structure of the field. Random fields are most directly seen in true spatial or space-time

data, and are readily applicable to the study of meteorological phenomena (Handcock

and Wallis, 1994), analysis of agricultural field experiments (Allcroft and Glasbey,

2003), image reconstruction (Besag, 1986) and modeling of disease incidence (Waller

et al., 1997; Knorr-Held et al., 2002; Knorr-Held and Richardson, 2003).

Spatial data often has the property that observations that are near each other tend

to be similar. Modeling and inference through the use of a random field is a powerful

way to use this property. The simplest case of this is data smoothing. For example, a

meteorologist may collect air temperature information over a region, then employ an

algorithm to predict the temperature where there were no observations. This is often

accomplished by a technique known as kriging, in which the analyst uses available

data to model the correlation structure as a function of distance between points. The

correlation structure is then used in an iterative procedure to predict the value of

7



the random field at a large number of unobserved locations given the available data.

(Handcock and Stein, 1993)

A stationary random field has the property that covariance among points is constant

across the field. That is, two points with the same relative position will have the

same correlation regardless of their exact location in the field. The following discussion

assumes that random fields are stationary, although models and computational methods

could be adjusted to relax this assumption.

1.2.2 Markov random fields

Besag (1974) describes a special case of a random field consisting of a finite number of

sites with a univariate random variable observed at each of the sites. For simplicity,

suppose this random field is 1-dimensional with an infinite number of regularly spaced

sites indexed by the integers. Each site r has an associated random variable yr. This

field is called a Markov random field (MRF) if the distribution of yr given y−r, the

observed values at all other sites, depends only upon the values at a finite set of sites

that are ’neighbors’ of r. A simple case is that when the distribution of yr given y−r

depends only upon yr+1 and yr−1. I use ∂r to denote the set of neighbors of site r, and

y(r) to denote the set of observed values at those sites. Neighbor definition is often

arbitrary, and little is known about the impact the chosen neighborhood structure can

have on inference (Assunção et al., 2002).

In this one-dimensional field, distances between locations are fixed. The correlation

between points is only meaningful at specified distances between points, so there is no

need to model correlation as a continuous function of distance. As described in Besag

et al. (1991), the pairwise difference prior can be used to induce this type of correlation

structure. In the context of the one-dimensional random field described above, each

site is defined by a unique integer i. If we let wij = wji be the weight that describes
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the relative degree of association between site i and j, the pairwise difference prior is:

p(x) ∝ exp

{
−
∑
i<j

wijφ(yi − yj)

}
(1.1)

where φ is a function that increases with the absolute value of its argument. We wish

to adapt the pairwise difference prior to induce a Markov random field. If we let wij=0

if j /∈ ∂i, the pairwise difference prior reduces to:

p(x) ∝ exp

{
−
∑
i∼j

wijφ(yi − yj)

}
(1.2)

where i ∼ j indicates all pairs of i and j such that i < j and i and j are neighbors.

This results in a conditional density where the value of yr depends only on the values

at neighboring sites, and thus we have a Markov random field:

p(xr|x−r) ∝ exp

{
−
∑
j∈∂i

wijφ(yi − yj)

}
(1.3)

When this conditional distribution is normal, we are working in a Gaussian MRF.

Choosing φ(u) = τ ∗ u2/2 in the pairwise difference prior will induce a Gaussian MRF

with the following conditional distribution:

xi|x−i ∼ N

(∑
j∈∂iwijyj∑
j∈∂iwij

, τ−1
∑
j∈∂i

wij

)
(1.4)

In words, a value at a point given values at all other points depends only on its neigh-

bors, and is normally distributed with the mean corresponding to a weighted average of

the neighbors. This normality is desirable, as many methods are available for sampling

and inference in the Gaussian distribution.

This prior specification illustrates the two ways in which a MRF structure can be
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induced. Besag and Kooperberg (1995) call these intrinsic and conditional autoregres-

sions. (The terminology is inconsistent throughout the literature, I will use Besag and

Kooperberg’s distinction). Under intrinsic autoregressive model specification, the joint

prior is specified so that a MRF structure results. This is what we do when we choose

the pairwise difference prior and Markov neighbor structure. Another approach would

have been to specify the prior entirely in terms of a dependent set of conditional dis-

tributions that described a MRF. This method, known as conditional autoregression

or auto-modeling, often leads to an easier computational algorithm. This is not an

issue here, as this special case of the pairwise difference prior (an intrinsic autoregres-

sion) leads to a simple conditional structure. The conditional structure induced by the

special case of the pairwise difference prior above has also been called a Gaussian con-

ditional autoregression (Besag, 1974), or an auto-Gaussian model (Cressie and Chan,

1989). Kaiser and Cressie (2000) discuss the specification of models through conditional

distributions and conditions when and how these conditional distributions correspond

to a joint density. In the specifying of a joint prior, we eliminate the need for this

consideration.

Besag et al. (1991) point out that the pairwise difference prior is improper because

it doesn’t address actual values of random variable across the field, only differences

among the values. However, in the presence of informative data, the resulting posterior

distributions will be proper. If necessary, another way to avoid impropriety would be

to restrict any one of the field values to a plausible finite interval.

This model is easily extended to higher dimensions. On the two-dimensional regular

lattice, each site is indexed by an integer pair (r, s) and has an associated random

variable yrs. This field is a MRF if the distribution of yrs given the observed values at

all other sites depends only upon the values at a finite set of ’neighboring’ sites, ∂rs.

Neighboring sites can be defined in various ways, the simplest being the ”first order”

10



setting, where the the distribution of yrs given the observed values at all other sites

depends only on the values of yr+1,s, yr−1,s, yr,s+1, and yr,s−1. When the field is finite,

this can be simplified to the one-dimensional case by implementing a 1-1 transformation

from the coordinate pairs into the integers, and defining neighbors appropriately. This

can be extended to describe a MRF in n dimensions, although neighbor definition

becomes more complex as the number of dimensions increases.

The adaptability of MRFs to longitudinal data has been demonstrated. Besag

et al. (1995) performed Bayesian logistic regression on longitudinal data, with the

incorporation of unobserved covariates to account for extra-binomial variation. The

data are from a cohort study of prostate cancer deaths, and a spatial model is used

to incorporate both information about age at observation and birth cohort. In other

words, the researchers expected the death rate in 50-year-old men in 1940 to be different

from that of 50-year-old men in 1980, so age alone was not sufficient information. They

found a frequentist logistic regression model with age and cohort to be inadequate (i.e.

there was extra-binomial variation), and chose to use Bayesian methods to account for

this. They treated the data as arising from a binomial MRF, where the coordinates of

the three-dimensional field were age group (i), observation year (j), and cohort number

(k). Note that cohort number is uniquely determined by year and age group. Where

zij is the random unobserved covariate for coordinate (i,j,k) and pij is the probability

of prostate cancer at coordinate (i,j,k), the model was:

ln

(
pij

1− pij

)
= µ+ θi + φj + ψk + zij (1.5)

In words, the effect of any one of the three coordinates was the same regardless of the

values of the other two. Thus the age effect was the same for all years and cohorts.

A pairwise difference prior was put on θ, φ, and ψ independently, so that each of

these effect was thought to come from a distinct one-dimensional MRF. An alternative
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approach would have been to model the log-odds directly, setting up a two-dimensional

neighbor structure with a pairwise-difference prior, under the model:

ln

(
pij

1− pij

)
= µij + bk (1.6)

In this model, bk is a cohort random effect with prior mean 0 to allow for the dependence

among observations from the same cohort. This modeling procedure does not separate

the age and year parameters and could allow for a non-linear relationship between the

log-odds, age, and year.

As in the two models above, non-spatial data with multiple reference points in

time (or space) can be adapted to the spatial paradigm for ease of modeling or to

counteract modeling problems. In the current problem, I examine daily measurements

of progesterone levels over the menstrual cycle. Progesterone levels tend to be low at

the start and end of the cycle, with a peak near ovulation. The location of a given

measurement can be classified relative to three reference points: cycle start day, day of

ovulation, and cycle end day.

An important goal of the project is to incorporate covariates that do not vary

systematically with time (i.e. covariates other than the reference points). Assunção

et al. (2002) examine fertility rates across a region of Brazil, fitting a Poisson regression

model for the number of births in each small region. They put a pairwise difference prior

on the model coefficients, allowing the coeffiicients to be more similar in neighboring

regions, but to vary across the entire region. This allows the incorporation of covariate

effects in the usual GLM manner, but gives flexibility in that the covariate effects can

vary across the region. In the multiple reference point problem, these types of covariate

effects would need to be combined with the effects of location relative to the reference

point.

A hidden Markov model (HMM) is a model in which the observed data are not direct
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realizations of the Markov random field. Rather, the field is an underlying process, and

the observed data provide information about this process. In the current problem, we

say that the the mean progesterone value at each site is a realization of a MRF. We

observe several observations at each set of coordinates, which will give us information

about the mean (the MRF), but we have no direct observations of the MRF. More

complex HMMs have applications in speech recognition and image analysis (Kunsch

et al., 1995). Given the hierarchical structure of HMMs, Bayesian hierarchical modeling

through MCMC algorithms is well-suited for computation.

The flexibility of the Bayesian hierarchical model is also useful in dealing with other

non-standard features of the progesterone data. Some sites in the region will have no

observations at all, so it is necessary to estimate the mean at these sites through their

correlation with the means at neighboring sites. Additionally, data are not indepen-

dent across the field. Each menstrual cycle contributes multiple data points, and it

is unreasonable to assume that observations within a cycle have the same correlation

structure as observations from different cycles.

The current problem would require a random field over a regular lattice. When

coordinates are not equally spaced, a generalization of the pairwise difference prior can

be employed. Berthelson and Moller (2003) discuss MCMC inference based on this

prior, which takes into account the exact distance between two points in calculating

their degree of association. The MRF neighborhood structure can still apply here, but

careful problem-specific definition is required.

1.3 Regression methods

Rather than thinking of our covariates and times relative to reference points as coordi-

nates in space, and alternative is to think of them as covariates in a regression model.
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This works conceptually, as we would expect observations with similar times relative

to reference points to be similar in the same way as a regression model tends to assign

similar response values to observations with similar covariates. This section contains a

review of some flexible regression methods that may be adapted to this setting.

1.3.1 Multivariate linear splines

Holmes and Mallick (2001) developed a semiparametric regression methodology for

modeling a response as a function of a design matrix. The response is modeled using

piecewise linear splines, so that the regression surface consists of hyperplanes across

the covariate space. The number and location of splines are treated as random and

are updated using the reversible jump sampler. The resulting samples are non-smooth

surfaces, but Bayesian model averaging can be applied to the samples to produce a

smooth regression surface.

Bayesian model averaging techniques were developed as a method for dealing with

the uncertainty about model correctness. Often, there is uncertainty about which

model to choose, but the standard response is to pick the ’best’ one and use it for all

inference. Bayesian model averaging allows for the incorporation of model uncertainty

into inference (Raftery et al., 1997). Holmes and Mallick (2001) capitalized on the

properties of Bayesian model averaging to create a smooth regression surface from a

sample of implausible but informative non-smooth surfaces.

Holmes and Mallick (2003) generalized this method to the setting where the outcome

is non-normal and multivariate. It remains, however, to implement this method when

the independent response data are vectors of varying lengths with differing covariate

values.
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1.3.2 Non-parametric regression

Lin and Zhang (1999) proposed the generalized additive mixed model (GAMM), where

the linear predictor is the sum of combination of linear functions of the covariates,

non-parametric smooth functions of the covariates, and random effects. These models

allow for flexible covariate effects, but the random effects have an additive effect on the

linear predictor.

Wavelets are orthogonal families of basis functions that can be used to approxi-

mate another function. (Clyde et al., 1998) Modern wavelet theory was brought about

through its applicability to signal and image processing (Akay, 2003) and computer

graphics (Schroder, 1996). Specifically, wavelets are frequently used to remove noise

from signal data and pictures. The ability of wavelets to eliminate noise makes them

broadly applicable in statistical analysis, where the primary goal is to eliminate ran-

dom error and estimate an underlying process. Morris et al. (2003) describe nonpara-

metric wavelet regression in a model with a hierarchical dependence structure, which

was accounted for through random effects. This model shows promise in the current

multiple-reference-point problem, as the dependence structure could be expanded to

allow for spatial association among observations.

Ray and Mallick (2003) propose a wavelet model in the context of a MRF. Their

discussion in framed in the context of image analysis. In summary, they partition

the image and allow the wavelet transformation to vary across partitions. A pairwise

difference prior constrains the transformations to be more similar in neighboring regions

than in non-neighboring regions.

1.3.3 Non-smooth functions

There are times when a function can be expected to have discontinuities in space. In

the context of longitudinal studies, the occurrence of some event (i.e. disease onset,
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ovulation) may be known to cause a discontinuity in the outcome of interest. In the

multiple reference point format, if this event was used as a reference point, the model

would need to be flexible enough to allow for a ’jump’ at that reference point. For

example, there is a rapid drop in estrogen levels at ovulation (Alliende, 2003). In

building a spatial model for this quantity, the best model would relax the degree of

association (i.e. reduce the level of smoothing) among neighboring coordinates at points

of discontinuity. This may be a consideration in choosing a modeling strategy for the

multiple-reference point problem.

1.4 Conclusion of initial literature review

The literature review summarizes methods in spatial analysis as well as flexible re-

gression procedures that may be adapted to a spatial framework. These techniques

may be appropriate in the development of methods for multiple reference point data.

Bayesian methods will be used to implement models with broad assumptions on the

spatial structure and covariate effects. Upon preparing the rest of the document, sev-

eral new research questions were encountered. Citations relevant to these questions are

found throughout the ensuing chapters.

1.5 Choosing an approach

Our inital work in building a flexible model for this hormone data focused on the

extension of Markov random field (MRF) theories. The motivation for this type of

model structure was the time-dependence seen in menstrual hormone data, leading

naturally to modeling the correlation between subsequent measurements. After building

a very flexible MRF model for these data, we realized that this approach was limited

in both computational efficiency and interpretability. We then moved focus from the
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MRF approach to an approach using splines, which capture the changes in time as slopes

rather than modeling a point-by-point dependence structure. Section 1.6 outlines the

MRF we applied initially, highlighting some of its successes and limitations. It also

provides some further insight into multiple reference point data and the spatial nature

of regression.

1.6 Preliminary work in MRFs

1.6.1 Data

At the time of preliminary analyses, the EPS data was not yet available so we used

data from Brumback and Rice (1998) to investigate the applicability of Markov random

fields to menstrual data. The data consisted of menstrual cycles truncated to the eight

days preceding through the 15 days following ovulation. To simulate complete cycles

of varied lengths, I added randomly generated numbers of days and corresponding

measurements onto the beginnings and ends of each cycle. Since the cycle lengths were

simulated, these preliminary analyses allow for no inference about cycle length and

progesterone. However, they serve to illustrate how we applied the MRF paradigm to

multiple reference point data.

Daily measurements of progesterone were available, over 69 total cycles. Consider

the set of measurements from one cycle. For each value, we know the day relative to the

start of the cycle (r) and the day relative to ovulation (s). The measurement location

can be defined by the coordinate pair (r, s). Clearly, there are only certain values of

(r, s) that can occur within the natural constraints of the menstrual cycle. Thus I define

the region of interest in the coordinate plane to be the smallest parallelogram-shaped

region that contains all points at which data were observed. The full model specification

is given in Section 1.6.2. In summary, a HMM was fit to the data, incorporating random
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effects to account for within-cycle dependence. The model still needs to be expanded to

include covariate effects and to account for multiple cycles contributed from the same

woman.

1.6.2 Model specification

A MRF was used to build a model for the mean log-progesterone level at each coor-

dinate. Let µrs be the unknown mean level at (r, s), and let µ be the n × 1 vector

of unknown means. The MRF framework states that, given its neighbors, µrs is in-

dependent of all other elements of µ. We define the neighbors of (r, s) to be the

eight elements that entirely surround the site. Specifically, the neighbors of (r, s) are

(r − 1, s), (r + 1, s), (r, s − 1), (r, s + 1), (r − 1, s − 1), (r + 1, s + 1), (r + 1, s − 1),

and (r − 1, s+ 1). For simplicity, this initial model assumes equal unit weights among

all pairs of neighbors. Note that since we are working in a finite lattice, not all sites

will have all eight neighbors. We denote the number of neighbors of (r, s) by prs, and

uv ∼ jk is the set of all pairs of neighboring sites. The precision parameter, δ, controls

the degree to which neighboring sites are similar. The desired neighborhood structure

can be induced through the following pairwise difference prior:

p(µ) ∝ δn/2exp
{
− δ

2

∑
uv∼jk

(µuv − µ2
jk)
}

(1.7)

Letting ∂rs be the set of all sites that neighbor (r, s) and µ−(rs) contain all elements of

µ except for µrs, the corresponding prior conditional structure is:

µrs | µ−(rs) ∼ N

(∑
jk∈∂rs µjk

prs
, δ−1prs

)
(1.8)

Let yi, be the vector of all log-progesterone levels for cycle i. Let Ri be the set of

coordinate pairs observed in cycle i. The elements of yi are assumed to be independent
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given µi and the random effects, λi and νi. We also assume that, marginalizing over

the random effects, a measurement at (r, s) is normally distributed with mean µrs. To

illustrate the incorporation of the random effects, suppose (r, s) is in Ri, and the mea-

surement at (r, s) from cycle i is called yi,rs. We then assume the following distribution

of the data:

yi,rs | µrs, λi, νi ∼ N
(
λiµrs + νi, τ

−1
)

(1.9)

In this case, λi and νi are the cycle-specific random effects. We assume that, given the

random effects, observations within a cycle are independent. The prior distributions of

λi and νi are normal, centered at 1 and 0 respectively. All elements of λ and ν are a

priori independent.

This specification implies joint normality of all data given µ and the random effects.

If yrs is the nrs× 1 vector of measurements at (r, s) and λrs and νrs are the appropri-

ately ordered vectors of random effects for all cycles with measurements at (r, s), the

likelihood for the data from site (r, s) is:

π(yrs | µrs,λrs,νrs) = N
(
λrsµrs + νi, τ

−1Inrs
)

(1.10)

The joint data likelihood is normal and can be written as:

π(y | µ,λ,ν, τ) =
∏
rs

π(yrs | µrs,λrs,νrs) (1.11)

Since we are not observing direct realizations of the MRF, this is a hidden Markov

model. One attractive effect of this particular specification is that, even though the

MRF structure is present in µ, the data at (r, s), given µrs are independent of all other

elements of µ. The distributional assumptions are given here.
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Likelihood:

π(y | µ,λ,ν, τ) ∝
m∏
i=1

∏
uv∈Ri

τ 1/2exp(−τ
2
(yi,uv − (λiµuv + νi))

2) (1.12)

Priors:

π(τ) ∝ τa−1e−bτ

π(δ) ∝ δc−1e−dδ

π(λ) ∝
m∏
i=1

exp
{
− (λi − 1)2

2σ2
l

}
π(ν) ∝

m∏
i=1

exp
{
− ν2

i

2σ2
n

}
π(µ) ∝ δn/2exp

{
− δ

2

∑
uv∼jk

(µuv − µjk)
2)
}

where a, b, c, d, σl, and σn are specified hyperparameters.

1.6.3 Sampling algorithm

A Gibbs sampling algorithm was implemented to obtain samples from the posterior dis-

tributions. The full conditionals below were used to directly sample from the posterior

distributions of µ, τ , and δ.

µrs|τ, δ,λ,ν,y ∼ N

(
δ
∑

jk∼rs µjk + τ(yrs
′λrs − τλ′rsνrs)

δprs + τλ′rsλrs

, (δprs + τλ′rsλrs)
−1

)

τ |µ, δ,λ,ν,y ∼ Gamma

(
a+

m

2
, b+

1

2

∑
rs

(yrs − µrsλrs − νrs)
′(yrs − µrsλrs − νrs)

)

δ|µ, τ,λ,ν,y ∼ Gamma

(
c+

n

2
, d+

1

2

∑
uv∼jk

(µuv − µjk)
2

)
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FIGURE 1.1: The region of coordinates covered by the simulated data.

Metropolis steps allowed for sampling from the posterior distributions of λ and ν. The

algorithm was implemented in Matlab. The number of samples collected was 8000,

2000 of which were discarded as burn-in. Convergence was apparent for all parameters,

with slower mixing for the random effect parameters.

1.6.4 Results

The first step was to examine the coordinate region covered by the data. The two

reference points were day relative to cycle start and day relative to ovulation. Figure

1.1 shows the range of coordinates that were defined by the data. The smallest paral-

lelogram containing all these points was the region over which the field was modeled.

The next step was to determine how the data varied over the region of interest.
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FIGURE 1.2: Progesterone over the selected region. Red points are the data, and blue
points are the posterior estimate of µ.

Figure 1.2 shows all of the progesterone data, plotted in red according to coordinates.

The posterior estimate of µ is plotted in blue. The versatility of the random effects

structure is illustrated in Figure 1.3. For four different cycles, these plots illustrate the

data, the mean progesterone according to the coordinates of the cycle days coordinates,

and the estimate of the cycle-specific trajectory, accounting for the random effects.

These show that the random effects structure allows for flexible trajectory shapes.

1.6.5 Discussion of the MRF method

This approach has yielded the desired flexible regression model, but it has several

limitations. Firstly, as we are modeling each data point individually, there is little
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FIGURE 1.3: Progesterone for four cycles. On each plot, the diamonds are one cycle
of data. The red line is the elements of µ corresponding to that cycle. The blue line is
the cycle-specific trajectory, which is the elements of µ adjusted according to the cycle
random effects.
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informations directly available about slopes, peaks, etc. Posterior information about

these things could be obtained through careful analysis of the samples. Given our

interest in the trajectories as a whole, however, we prefer a method that focuses less

on the point-to-point correlation structure and more on the shape of the curve.

1.7 This Dissertation

To flexibly model the progesterone curves while dealing with some of the issues that

arose in the development of the MRF model, we propose a flexible spline model with

random coefficients. Each of Chapters 2 and 3 is a self-contained article describing

some methodological innovation and demonstrating its application to progesterone

data. Chapter 2 describes a novel nonparametric regression model and demonstrates

its ability to flexibly characterize curves. Chapter 3 outlines a method for introducing a

nonparametric distribution of the coefficients describing the curves and describes a way

to cluster trajectories into groups according to shape. Chapter 4 describes the joint

modeling of curves and outcome variables. Chapter 5 describes some of the implications

and future directions of these methodological developments.
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CHAPTER 2

BAYESIAN ADAPTIVE

REGRESSION SPLINES FOR

HIERARCHICAL DATA

This chapter considers methodology for hierarchical functional data analysis, moti-

vated by studies of reproductive hormone profiles in the menstrual cycle. Current

methods standardize the cycle lengths and ignore the timing of ovulation within the

cycle, both of which are biologically informative. Methods are needed that avoid stan-

dardization, while flexibly incorporating information on covariates and the timing of

reference events, such as ovulation and onset of menses. In addition, it is necessary to

account for within-woman dependency when data are collected for multiple cycles. We

propose an approach based on a hierarchical generalization of Bayesian multivariate

adaptive regression splines. Our formulation allows for an unknown set of basis func-

tions characterizing the population-averaged and woman-specific trajectories in relation

to covariates. A reversible jump Markov chain Monte Carlo algorithm is developed for

posterior computation. Applying the methods to data from the North Carolina Early

Pregnancy Study, we investigate differences in progesterone profiles between conception



and non-conception cycles.

2.1 Introduction

In many longitudinal studies, each subject contributes a set of data points that can

be considered error-prone realizations of a function of time. Although it is standard

practice to model the longitudinal trajectory relative to a single reference point in time,

such as birth or the start of treatment, there may be several reference points that are

informative about a subject’s response at a given time. One example of reference points

is disease onset, start of treatment, and death in a longitudinal study of quality of life.

The current project uses onset of menses and ovulation as reference points in a study

of reproductive hormones.

Our research was motivated by progesterone data from the North Carolina Early

Pregnancy Study (NCEPS) (Wilcox et al., 1988). Daily measurements of urinary

pregnanediol-3-glucuronide (PdG), a progesterone metabolite, were available for 262

complete menstrual cycles and 199 partial mid-cycle segments from a total of 173

women. It is of special interest to examine the differences in progesterone profiles be-

tween conception and non-conception cycles. The onset of menses marks the start of

the follicular phase of the menstrual cycle, which ends at ovulation. The luteal phase

begins at ovulation and, if no conception occurs, ends at the start of the next menses.

In general, progesterone begins to rise in the follicular phase until several days into the

luteal phase, when it decreases in preparation for the next cycle or, if conception has

occurred, continues to rise. Figure 2.1 displays log-PdG data from one subject for a

non-conception and subsequent conception cycle.

The most common way to examine hormone data within the menstrual cycle is

to restrict attention to a fixed window surrounding ovulation (see Baird et al., 1997;
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FIGURE 2.1: log(PdG) for a non-conception followed by a conception cycle from one
subject. Solid lines indicate first day of each cycle, and dashed lines indicate ovulation
days.
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Brumback and Rice, 1998; Massafra et al., 1999; Dunson et al., 2003 for examples).

This is desirable for ease of modeling, but fails to use all data by discarding days outside

the window. In addition, it ignores cycle length and the relative timing of ovulation

within a cycle. Another approach is to standardize all cycles to a common length.

Zhang et al. (1998) modeled progesterone with smoothing splines after standardizing

cycles to 28 days. Standardization discards biologically important information on the

timing of ovulation, obscuring its well known relationship with hormone trajectories.

van Zonneveld et al. (2003) indicated that both the onset of menses and the day

of ovulation are related to hormone levels within a cycle and implemented separate

analyses for windows around each of these reference points. Ideally, a single model

would allow the response to vary flexibly relative to multiple reference points, while

accommodating covariates and within-woman dependency.

The goal of the analysis is to characterize differences in progesterone profiles be-

tween conception and non-conception cycles. When conception occurs, PdG rises in

response to implantation of the conceptus, which usually occurs around the eighth or

ninth day after ovulation (Baird et al., 1997). We are also interested in differences

before implantation because they may predict the fertility of the cycle. Researchers

have studied conception differences in midluteal (5-6 days after ovulation) and base-

line (preovulatory) PdG. Studies of have shown that conception cycles have elevated

midluteal PdG over paired non-conception cycles with well-timed intercourse or artifi-

cial insemination (Stewart et al., 1993; Baird et al., 1997), but one study (Lipson and

Ellison, 1996) found no difference. None of these three studies found a relationship

between baseline PdG and conception. However, limiting analysis to cycles with well-

timed exposure to semen is biased to include non-conception cycles of inherently low

fertility, failing to represent the true difference between conception and non-conception

cycles. In addition, requiring paired cycles selects against couples of very high or very
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low fertility and fails to use all data from women with more or less than two cycles.

In a previous analysis of the NCEPS data which included cycles without well-timed

intercourse, Baird et al. (1999) found that cycles with very low midluteal PdG were

unlikely to be conception cycles. Although midluteal PdG did not monotonically affect

the odds of conception, increased baseline PdG was associated with decreased odds of

conception.

Hormone data are a special case of hierarchical functional data. The daily mea-

surements are subject to assay errors, yielding a noisy realization of the true trajectory

of urinary PdG. The hierarchy results from the multiple cycles contributed by each

woman. Methods for hierarchical functional data typically require that all curves are

observed over or standardized to fall in the same region (Brumback and Rice, 1998;

Morris et al., 2003; Brumback and Lindstrom, 2004). To accommodate the dependence

structure without cycle standardization, we propose a Bayesian method based on a

hierarchical generalization of multivariate adaptive regression splines.

Our approach is related to methods for nonlinear regression and smoothing for lon-

gitudinal and correlated data. Lin and Zhang (1999) proposed the generalized additive

mixed model (GAMM), where the linear predictor is the sum of linear functions of

the covariates, non-parametric smooth functions of the covariates, and random effects.

The GAMM allows for flexible covariate effects, and could potentially be modified to

accommodate reference points. However, they are designed so that random effects vary

linearly with the covariates, which may not be flexible enough to describe the differences

among women in hormone profiles. Fahrmeir et al. (2004) propose a generalization of

the GAMM for space-time data. They model the response using p-splines with a fixed

number of knots, and each covariate enters the model independently. This successfully

accounts for dependence among observations, but further extensions are needed to al-

low for a random number of knots and flexible interactions among covariates. Guo
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(2002) introduces a non-parametric flexible model for a population trajectory and the

random effects, but does not allow for the introduction of additional non-parametric

covariate effects.

Motivated by applications to speech data, Brumback and Lindstrom (2004) recently

proposed the use of random time transformations to align times or data features (i.e.

reference points) within subjects. Inference about covariate effects is based on a com-

parison of the estimated transformations. Ratcliffe et al. (2002) give an example of

functional regression using a spline basis, where all the functions are observed over the

same region of time. These methods requires standardization of the time scale as in

Zhang et al. (1998). In addition, Ratcliffe et al. (2002) allows for only one curve per

subject and Brumback and Lindstrom (2004) requires that all subjects contribute a

given number of curves under each covariate condition, both of which are unrealistic in

menstrual studies.

James et al. (2000) describe a method for modeling sparsely-sampled growth curve

data. After choosing a spline basis to represent the curves, they employ reduced rank

principal components analysis to estimate the population mean function. Though their

approach doesn’t require standardization of time, we wish to estimate both the popu-

lation curve and the trajectories themselves.

Holmes and Mallick (2001) proposed Bayesian regression with multivariate linear

splines to flexibly characterize the relationship between covariates and a scalar response

from independent sampling units. The number of knots and their locations are random,

and smooth prediction curves are obtained by averaging over MCMC sampled models.

A extension of this method yielded a generalized nonlinear regression model for a vector

response (Holmes and Mallick, 2003). Our goal is to develop a new hierarchical adap-

tive regression splines approach to accommodate clustered functional data, potentially

having unequal numbers and locations of observations per subject, a common compli-
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cation in longitudinal studies. We incorporate reference point information by including

time relative to each of the reference points as covariates in the regression model.

A popular method for analyzing multivariate response data with spline bases is

seemingly unrelated regression (SUR), in which each subject is allowed a unique set

of basis functions, but the basis coefficients are common to all subjects (Percy, 1992).

We instead use one set of unknown basis functions, allowing the basis coefficients to

vary from subject to subject. To estimate the population regression function, we treat

the subject-specific basis coefficients as random, centered around the population mean

basis coefficients. The resulting model is extremely flexible, and can be used to capture

a wide variety of covariate effects and heterogeneity structures.

In section 2.2, we describe the model, prior structure and a reversible jump Markov

chain Monte Carlo (RJMCMC) (Green, 1995) algorithm for posterior computation. In

section 2.3, we illustrate the performance of the approach for a simulation example.

Section 2.4 applies the method to progesterone data from the NC-EPS, and section 2.5

discusses the results.

2.2 Methods

2.2.1 Prior specification

Typically, the number and locations of knots in a piecewise linear spline are unknown.

By allowing for uncertainty in the knot locations and averaging across the resulting

posterior, one can obtain smoothed regression functions. We follow previous authors

(Green, 1995; Holmes and Mallick, 2001) in using the RJMCMC algorithm to move

among candidate models of varying dimension. Our final predictions are constructed

from averages over all sampled models. We assume a priori that all models are equally

probable, so our prior on the model space is uniform.
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Each piecewise linear model, M , is defined by its basis functions (µ1, . . . ,µk), where

µl is p × 1. Consider yij, the jth PdG measurement for subject i. Under model

M , the true relationship between yij and its covariates x′ij = (1, xij2, . . . , xijp) can be

approximated by the piecewise linear model:

yij =
k∑
l=1

bil(x
′
ijµl)+ + εij, (2.1)

where εij
iid∼ N(0, τ−1). The value of the jth response of subject i is approximated

by a linear combination of the positive portion (denoted by the + subscript) of the

inner products of the basis functions with the covariate vector, xij. We require that

each model contain an intercept basis, so we define (x′ijµ1)+ ≡ 1 for all i, j. We extend

previous methods by allowing the spline coefficients, bi to be subject-specific, assuming

that observations within subject i are conditionally independent given bi.

Each piecewise linear model is linear in the basis function transformations of the

covariate vectors:

yi = θibi + εi, (2.2)

where yi and εi are the ni × 1 vectors of responses and random errors and bi is the

k×1 vector of subject specific basis coefficients for subject i. The ni×k design matrix,

θi, contains the basis function transformations of the covariate vectors for subject i:

θi =



1 (x′i1µ2)+ . . . (x′i1µk)+

1 (x′i2µ2)+ . . . (x′i2µk)+

...
...

...
...

1 (x′iniµ2)+ . . . (x′iniµk)+


Since we use only the positive portion of each linear spline, it is possible that a

basis function does not contribute to the model for a given subject (i.e. θi contains
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a column of zeros, which is non-informative about the corresponding element of bi).

To address this problem, we standardize each column of the population design matrix,

Θ = (θ′1, . . . ,θ
′
m)′, to have mean 0 and variance 1. Assuming independent subjects,

this model specification yields the likelihood:

L(y|b, τ,M) ∝
m∏
i=1

τ
ni
2 exp

[
− τ

2
(yi − θibi)′(yi − θibi)

]
(2.3)

This likelihood is defined conditionally on the subject-specific basis coefficients, but

we wish to make inferences also on population parameters. Treating the subject-specific

coefficients as random slopes, we specify a Bayesian random effects model where the

subject-specific coefficients are centered around the population coefficients, β. Under

model M of dimension k, the relationship between the population and subject-specific

coefficients is specified through the hierarchical structure:

bi|k ∼ Nk(β, τ
−1∆−1) ∀i (2.4)

β|k ∼ Nk(0, τ
−1λ−1Ik)

To avoid over-parameterization of an already flexible model, we assume indepen-

dence among the elements of bi. Thus ∆ = diag(δ), where δ is a k × 1 vector. The

elements of δ and the scalars λ and τ are given independent gamma priors:

π(τ, λ, δ) ∝ τaτ−1exp(−bττ)λaλ−1exp(−bλλ)
k∏
l=1

(
δaδ−1
l exp(−bδδl)

)
,

where aτ , bτ , aλ, bλ, aδ and bδ are pre-specified hyperparameters. Each of the k − 1

non-intercept basis functions contains a non-zero intercept and linear effect for at least

one covariate. Including multiple covariate effects in a single basis allows the covariates

to dependently affect the response (i.e. allows for interactions). The number of non-zero
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covariate effects in a particular basis is called the interaction level of the basis.

Under one piecewise linear model, an observation y with covariates x has the fol-

lowing mean and variance:

E(y) = β1 +
k∑
l=2

βl(x
′µl)+

V (y) = δ−1
1 +

k∑
l=2

δ−1
l (x′µl)

2
+ + τ−1

The mean and variance can vary flexibly with the covariates and relative to each

other. The elements of β can be positive or negative, large or small, and the elements

of δ can also be large or small. A given basis could contribute substantially to the mean

and negligibly to the variance (i.e. βl and δl are both large), or vice versa, so that the

mean and variance of the response at a given set of covariates are not constrained to

vary together.

2.2.2 Posterior computation

At each iteration, we obtain a piecewise linear model for which the parameters can

be sampled directly from their full conditionals as derived from the priors and the

likelihood following standard algebraic routes. Omitting details, we obtain the following

full conditional posterior distributions:

β|b, δ, λ, τ,D ∼ Nk

(
[λIk +m∆]−1∆

m∑
i=1

bi, τ
−1[λIk +m∆]−1

)

bi|β, δ, λ, τ ∼ Nki

(
[θ′iθi+∆]−1[θ′iyi+∆β], τ−1[θ′iθi+∆]−1

)
i = 1, . . . ,m

τ |β,b, δ, λ ∼ Gamma
(
aτ+

(m+ 1)k + n

2
,
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bτ +
1

2

m∑
i=1

[(bi − βi)′∆(bi − βi) + (yi − θibi)′(yi − θibi)] + λβ′β
)

λ|β,b, δ, τ ∼ Gamma
(
aλ+

k

2
, bλ+

β′β

2

)
δl|β,b, δ−l, λ, τ ∼ Gamma

(
aδ+

m

2
, bδ+

τ

2

m∑
i=1

(bil−βl)2
)

l = 0, . . . , (k−1)

where a Gamma(a, b) random variable is parameterized to have expected value a/b and

variance a/b2.

The following is a description of the RJMCMC algorithm we employed:

Step 0: Initialize the model to the intercept-only basis function, where k = 1.

Step 1 : Propose with equal probability either to add, alter or remove a basis function.

If k = 1 in the current model, then we cannot remove or change a basis, so we

choose either to add a basis function or to skip to step 2 and redraw the parameters

for the intercept basis.

ADD Generate a new basis function as follows: Draw the interaction level of the basis

uniformly from (1, . . . , p − 1) and randomly select the corresponding number of

covariates. Set basis parameters for all other covariates equal to zero. Sample se-

lected basis function parameters from N(0, 1), then normalize to get (µl1, . . . , µlp),

the non-intercept basis parameters. Randomly select one data point, yij, and let

µl0 = x′ij,−1µl,−1. Add the new basis function to the proposed model.

ALTER: Randomly select a basis in the current model. Generate a new basis function

as described above. Replace the selected basis function with the new one

REMOVE: Randomly select a basis in the current model. Delete the selected basis

from the proposed model.

Step 2: Accept the proposed model with appropriate probability (described below).
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Step 3: If a proposal to add or remove has been accepted, the dimension of the model

has changed. In order to update the parameters from their full conditionals, all

vector parameters must have dimension k∗ of the new model. It suffices to adjust

the dimension of β and δ, as we can then sample {bi} from the full conditionals.

If we’ve added a basis, initialize βk∗ , the new element of β, to a pre-determined

initial value and initialize δk∗ to the mean of δ from the previous model. If a basis

has been removed, delete the corresponding elements of β and δ.

Step 4: Update {bi}, β, τ , δ, and λ from their full conditionals.

Repeat steps 1-4 for a large number of iterations, collecting samples after a burn-in to

allow convergence.

A challenging aspect of the algorithm is comparing models in the RJMCMC sampler.

Our prior assigns equal probability to all piecewise linear models and model proposal is

based on generation of discrete random variables. Under this scenario, the probability,

Q, of accepting a proposed model, M∗, is the Bayes factor comparing it to the current

model, M (Holmes and Mallick, 2003, Denison et al., 2002). The Bayes factor is the

ratio of the marginal likelihoods of the data under the two models:

Q = min
[
1,
p(y|M∗)

p(y|M)

]
.

The marginal likelihoods and thus the Bayes factor for this hierarchical model have

no closed form. Consider instead the following marginal likelihood under model M .

p(y|M, δ, λ) =

∫ ∫ ∫
L(y|b, τ, λ,M)p(b, τ,β|δ, λ,M) db dβ dτ,

where p(y|β,b, τ, δ, λ,M) is the data likelihood under model M , and p(b, τ,β|δ, λ,M)

is the joint prior of b, β, and τ under model M . This integral has a closed form, so
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that the likelihood can be written:

p(y|M, δ, λ) = C(λ, k)|R|−
1
2 (bτ +

α

2
)−(n

2
+aτ )

k∏
l=1

δ
m
2
l

m∏
i=1

|Ui|
1
2 (2.5)

where

Ui = [∆ + θ′iθi]
−1

R = λIk +m∆−∆(
m∑
i=1

Ui)∆

α = y′y −
m∑
i=1

y′iθiUiθ
′
iyi − (

m∑
i=1

Uiθ
′
iyi)

′∆R−1∆(
m∑
i=1

Uiθ
′
iyi)

C(λ, k) =
bτ
aτλ

k
2 Γ(n

2
+ aτ )

Γ(aτ )(2π)
n
2

In a similar fashion, we can write the marginal likelihood for a proposed model M∗

of dimension k∗.

p(y|M∗, δ∗, λ∗) = C(λ∗, k∗)|R∗|−
1
2 (bτ +

α∗

2
)−(n

2
+aτ )

k∗∏
l=1

δ
∗m

2
l

m∏
i=1

|U∗
i|

1
2 (2.6)

Suppose we propose a move from modelM of dimension k to modelM∗ of dimension

k∗. If we let the acceptance probability be the ratio of the two marginal likelihoods,

then it depends on λ and δ. It also depends on λ∗ and δ∗, for which we do not

have estimates. Since we wish to accept or reject a model based only on its set of

basis functions, we want to minimize the effects of these variance components on the

acceptance probability. Specifically, we assume λ=λ∗ at the current sampled value.

Since δ∗ and δ may be of different dimensions, we cannot assume that they are equal.

Instead, we assume that they are equal in the elements corresponding to bases common

to both models and condition only on those elements.
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Consider a proposal to add a basis to the current model. The current model is

nested in the proposed model, and the proposed model has exactly one more basis than

the current model. The acceptance probability is:

Q = min
[
1,
p(y|M∗, λ, δ)

p(y|M,λ, δ)

]

The denominator has closed form, as we’ve shown above, and the numerator can be

derived as follows, where δ∗ = (δ, δk∗).

p(y|M∗, λ, δ) =

∫
p(y, δk∗|M∗, δ, λ)dδk∗ =

∫
p(y|M∗, δ∗, λ)π(δk∗)dδk∗

=
C(λ, k∗)

Γ(aδ)

k∏
l=1

δ
m
2
l

∫ ∞

0

|R∗|−
1
2 (bτ +

α∗

2
)−(n

2
+aτ )δk∗

aδ+
m
2 exp(−bδδk∗)bδaδ

m∏
i=1

|U∗
i|

1
2dδk∗

(2.7)

This integral is complicated, and we approximate it using the Laplace method.

This involves fitting a scaled normal density to the integrand. Specifically, if we wish

to evaluate
∫
h(θ)dθ, we assume that h(θ) ≈ h(θ̂)exp(−(θ−θ̄)2

2σ2 ), where θ̄ is the mode of

h(θ) and σ̂2 is the estimate of the variance of the normal density. A good estimate

of the mode, θ̂, can be obtained with a numerical search algorithm. The variance

can be estimated by noting that h(θ̂)

h(θ̂+ε)
≈ exp(ε22σ2). We evaluate h at (θ̂ + ε) and

(θ̂ − ε) and average the two resulting estimates of σ2 to get σ̂2. The integral is then

approximated by (2π)
1
2 (σ̂)

1
2h(θ̂). For additional information on the Laplace method

and other methods for Bayes factor approximation, see DiCiccio et al. (1997).

Since the integral we want to approximate is defined over <+ and the normal distri-

bution is defined over the entire real line, we will transform δk∗ . Simulations show that

this has the added benefit of making the integrand more symmetric. Let ω = log(δk∗)
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and note that the prior on ωk∗ is:

π(ωk∗) =
exp(aδω − bδ[exp(ω)])bδ

aδ

Γ(aδ)

The integral in (2.7) can be written:

p(y|M∗, δ, λ) =

∫
p(y, ω|M∗, δ, λ)dω =

∫ ∞

−∞
p(y|M∗, δ, ω, λ)π(ω)dω

=
C(λ, k∗)

Γ(aδ)

k∏
l=1

δ
m
2
l

∫
exp(ω(aδ +

m

2
)− bδ[exp(ω)])|R∗|−

1
2 (bτ +

α∗

2
)−(n

2
+aτ )

m∏
i=1

|U∗
i |

1
2dω

Similarly, a basis removal proposal involves integrating out the element of δ cor-

responding to the basis proposed for removal. A proposal to alter a basis involves

integrating out the element of δ corresponding to that basis in both the numerator and

the denominator.

2.2.3 Computation

In implementing the RJMCMC algorithm described above, we run a burn-in period of

several thousand iterations until convergence is apparent. Convergence is evidenced by

the stationarity of the distribution of the marginal likelihood in (2.5) and the distribu-

tion of k, the dimension of sampled models. Then the sampler is run for an additional

period, during which each selected piecewise linear function is saved. Final estimates of

the population regression function are based on averages over all the saved models, and

credible intervals for the response can be calculated for any set of covariate values. In

addition, the subject-specific coefficients are saved at each step, so that the individual

regression function can be estimated and individual credible intervals can be calculated.

The analysis is conducted using Matlab version 7.0.1. The method is computa-

tionally intensive, especially for large datasets. However, the rates of convergence and
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mixing are good enough that it can be practically implemented even in complex set-

tings, such as that described in the data example.

2.3 Simulated data example

The simulated data do not mimic longitudinal data with reference points. Rather,

we illustrate the broad applicability of the method by simulating clustered data with

a covariate-dependent random effect. We simulated data for 200 subjects, with each

subject contributing 30 observations from the following distribution:

(yij|xij) ∼ N
(
x1ij − x2

2ij + x1ijx2ij + bi

√
2|x1ij|, 2

)

where the covariates x1ij and x2ij for the jth observation from subject i are randomly

generated integers between -4 and 4, and bi is a N(0, 1) random term for subject i. Note

that the random effect varies non-linearly with x1. We want the method to be able

to detect this variation. In addition, the model-estimated population mean, subject-

specific means, and random effects should be consistent with the simulated data.

We ran the RJMCMC algorithm for 50,000 iterations, discarding the first 10,000 as

burn-in. In the first chain, the hyperparameters aτ , bτ , aλ, bλ, aδ and bδ were all set to

0.05, yielding vague priors for the variance components. When proposals were accepted,

new elements of β were initialized to 0. Sensitivity to hyperparameters and initial values

was assessed through an additional chain where aτ , aλ, aδ = 1, bτ , bλ, bδ = 0.5, and the

new elements of β were initialized to 1. The two chains yielded virtually identical

results. This suggests that the method is not overly sensitive to specification of initial

values and hyperparameters.

We calculated subject-specific estimates for each data point as well as population

predictions over the covariate space. Figure 2.2 illustrates the model’s ability to discern
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features of the data. Figure 2.2a shows a scatterplot of the population mean values

estimated under the algorithm against the true mean values for each covariate combi-

nation. This indicates that the model was able to distinguish the underlying population

mean structure from the random effects. The empirical estimates of the random effects

were calculated by subtracting the model-predicted population mean from the subject-

specific posterior mean for each data point. As shown in Figure 2.2b, the empirical

estimates of the random effects were generally accurate estimates of the true values of

the random effects, {x2
1bi}. At each iteration, the estimated variance under the current

model for each set of covariate values was calculated:

Ve(y|x1, x2) = δ−1
0 +

k−1∑
l=1

δ−1
l (x′µl)

2
+ + τ−1

where δ and τ are the estimates of the variance components under the current k-

dimensional model. The empirical variance estimate can be compared to the true

variance:

V (y|x1, x2) = |x1|+ 2

Figure 2.2c shows the average over all samples of the empirical variance at each covariate

pair plotted against the true variance. The model-estimated values pick up the general

trend of the true values, but there seems to be a tendency toward slight underestimation.

Figure 2.2d is a traceplot of the model marginal likelihood (2.5) over the sampled

iterations. The distribution of this quantity, and of the associated predictions, appears

to be stationary, so we find no evidence against convergence of the MCMC algorithm.
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FIGURE 2.2: Plots used to evaluate of algorithm performance using simulated data
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2.4 Progesterone example

2.4.1 Estimation

We applied these methods to the progesterone data from the NCEPS described in

Section 2.1 with the goal of assessing differences in PdG profiles between conception

and non-conception cycles. We were particularly interested in examining differences

prior to implantation, since these may indicate hormonal effects on fecundability and

conception probabilities.

We apply the approach described in 2.2 with three covariates and an intercept.

The first covariate is an indicator of whether the cycle during which the measurement

was taken resulted in conception. The final two covariates contain the reference point

information. They are number of days since cycle start (onset of menses) and number

of days relative to ovulation in current cycle. So if response yij was observed on the

third day of a non-conception cycle where ovulation occurred on day 14, then xij =

(1, 0, 3,−11)′.

Vague priors on the variance components were achieved by setting the hyperparam-

eters to 0.05. We collected 40,000 MCMC samples after a 20,000 iteration burn-in.

2.4.2 Inference

We can use model estimates to assess the relationship among progesterone, cycle con-

ception status, and the two reference points. The main analysis goal was to gain a

better understanding of the differences in progesterone between conception and non-

conceptions cycles. At each iteration, we calculate several summary variables for each

cycle based on the trajectories estimated by the subject-specific coefficients. Early fol-

licular PdG was the average over the first 5 days of the cycle, baseline PdG was the

average from 6 days until 2 days before ovulation, and midluteal PdG was the average
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on days 5 and 6 after ovulation. The early luteal PdG rise was the change in PdG

from 1 day to 5 days after ovulation. We record the mean of each of these variables for

conception and non-conception cycles at each iteration, using these samples to create

overall means and credible intervals.

Baird et al. (1999) suggested that conception was less likely in cycles with low

midluteal PdG. To test this, we find the 10th percentile of midluteal PdG over all cycles

at each iteration and record the proportion of cycles that are conceptions both under

and over this threshold. In the process, we obtain posterior means and 95% pointwise

credible intervals for the population PdG trajectory for conception and non-conception

cycles at any location relative to the reference points.

2.5 Results

Convergence was deemed adequate, as the distribution of the marginal likelihood ap-

peared to be stationary. In addition, the distribution of the dimension of sampled

models was stationary. Sample collection took approximately 72 hours.

Figure 2.3 displays data from a single subject, the fitted PdG curve, and the pre-

dicted population mean log-PdG given the woman’s covariates. The subject-specific

curve captures the subject’s data more closely than the population curve, illustrating

the potential for a shape difference between the population-mean and subject-specific

curves.

Table 2.1 gives the estimated differences in log-PdG between conception and non-

conception cycles for the intervals of interest. Early follicular PdG over the first five

days of the cycle tended to be higher in non-conception cycles. In addition, non-

conception cycles tended to have higher baseline and slightly higher midluteal PdG

than conception cycles. There was a larger average early luteal PdG rise in conception
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FIGURE 2.3: log(PdG) data (points) and estimated log(PdG) (solid line) for a single
woman. The dashed line is the estimated population mean log-PdG given her covariates.
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TABLE 2.1: Summary variables describing the conception vs. non-conception differ-
ence in log(PdG) across the menstrual cycle with 95% credible intervals. Estimates are
based on an average of subject-specific trajectories at each iteration.

log-PdG
Conception Non-conception Difference

Early follicular -0.94 [-0.98, -0.90] -0.64 [-0.67, -0.61] -0.30 [-0.35,-0.25]
Baseline -0.94 [-0.97, -0.91] -0.78 [-0.80, -0.77] -0.16 [-0.19,-0.12]
Midluteal 1.19 [1.14, 1.24] 1.31 [1.28, 1.35] -0.13 [-0.18,-0.07]
Early luteal rise 1.18 [1.10, 1.26] 1.12 [1.06, 1.18] 0.07 [-0.05,0.15]

TABLE 2.2: Probability of conception in cycles with very low vs. normal/high mid-
luteal (days 5-6 after ovulation) PdG, with 95% credible intervals.

Estimate, 95% CI
Probability of conception, midluteal PdG < 10th percentile 0.144 [0.098,0.195]
Probability of conception, midluteal PdG ≥ 10th percentile 0.217 [0.211,0.222]
Difference in conception probabilities 0.073 [0.016,0.124]

cycles, though the 95% credible interval for the difference includes zero.

Table 2.2 summarizes the relationship between conception status and low midluteal

progesterone, with 95% credible intervals. Those cycles with estimated midluteal PdG

in the lowest 10% were less likely to be conception cycles than those with higher PdG,

although in Table 2.1 we saw that non-conception cycles had higher midluteal PdG on

average.

These results have been based on the subject-specific basis coefficients only, and we

now examine population progesterone curves. Figure 2.4 displays the predicted popu-

lation mean log-progesterone for the first 28 days of a conception and non-conception

cycle with ovulation on day 14. It is apparent from this figure, and from examination

of similar figures with a range of alternative ovulation days, that progesterone rises

following ovulation in conception cycles, but peaks and then drops in non-conception

cycles. This result is consistent with the biological role of progesterone and with pre-

vious findings of Baird et al. (1997). In addition, these population curves support our

findings that conception cycles tend to have lower pre-ovulatory progesterone.
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FIGURE 2.4: Estimated population mean log(PdG) for a conception (thin line) and
non-conception (heavy line) cycle with ovulation on day 14. Pointwise 95% credible
intervals are given by the dashed lines.
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FIGURE 2.5: Estimated population mean log(PdG) for non-conception cycles with
ovulation on day 10 (thin line) and day 18 (heavy line). Pointwise 95% credible intervals
are given by the dashed lines. Vertical lines indicate ovulation days.

Figure 2.5 shows the population-average progesterone curves for non-conception

cycles when ovulation occurred on the 10th day of the cycle (early) and on the 18th day

of the cycle (late). The estimated curves are different, indicating that the model was

adequate in discerning the effect of the timing of ovulation on progesterone. The fact

that the peak occurs earlier when ovulation occurs earlier is consistent with previous

findings about the relationship between progesterone and ovulation (Baird et al., 1997).

Finally, we examined the adequacy of the Laplace approximation to the marginal

likelihood. Twenty model proposals were selected at equally-spaced intervals through-
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FIGURE 2.6: The unnormalized marginal likelihood for a proposed model,
p(y|λ, δ,M∗) and its corresponding Laplace approximation.

out the sampling period, and a plot of each true unnormalized marginal likelihood was

compared to the scaled normal approximation. The fit was found to be quite good,

although in general the approximation tends to have slightly fatter tails than the true

likelihood. Figure 2.6 displays the likelihood from a birth proposal and its Laplace

approximation.

2.6 Discussion

We proposed Bayesian regression with multivariate linear splines for hierarchical data.

This is an extension of the method for independent responses (Holmes and Mallick,

49



2001) to include subject-specific basis coefficients assumed to be centered around the

population coefficients for each of the sampled models.

A different method was developed independently by Verzilli et al. (2005) for pre-

dicting the functional consequences of amino acid polymorphisms. Their approach also

relies on Bayesian multivariate adaptive regression splines, though they accommodate

within-cluster dependency using a simple cluster-specific random intercept. A random

intercept is not flexible enough to accommodate the variability in hormone trajectories,

motivating our use of a general hierarchical structure for the basis coefficients.

Analysis of the NCEPS data has yielded new insight about the relationship between

progesterone and cycle conception status. It has been speculated that very low mid-

luteal PdG may be indicative of a low fertility cycle, and also that signals from the

conceptus may promote a pre-implantation increase in progesterone. Our results sup-

port both of these hypotheses, as we found evidence for a slightly steeper post-ovulatory

PdG rise in conception cycles.

Previous analyses of these and other data (Baird et al., 1997; Stewart et al., 1993)

found that non-conception cycles have lower midluteal progesterone than conception

cycles, but we found the opposite. However, these previous studies examined non-

conception cycles from women of known fertility who were exposed to sperm during

a potentially fertile phase of the cycle (either through intercourse or artificial insem-

ination). These non-conception cycles were therefore likely to be of low fertility. A

previous analysis of these data using non-conception cycles regardless of intercourse

timing found that cycles with low midluteal progesterone were unlikely to be concep-

tion cycles (Baird et al., 1999). We found the same, but we also found that, on average,

midluteal progesterone was higher in non-conception cycles.

In light of these previous results, our findings suggest that those cycles with very

low progesterone are of low fertility, but that high pre-ovulatory progesterone does not
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imply an increased probability of conception. Intercourse timing was not used as a

covariate here, but it may be informative in future analyses to explicitly differentiate

non-conception cycles that were due to lack of intercourse from those that were of low

fertility.

The method was applied to longitudinal data, but it could be used in any hierarchical

regression problem where the functional form of the relationship between the covariates

and the response is unknown. The NCEPS data lends itself readily to a discussion of

the incorporation of reference points, but this method is also appropriate for regression

when there are no reference points of interest. In this sense, the regression model is

widely applicable.

In addition, reference points are not unique to longitudinal data. Brumback and

Lindstrom (2004) use reference points to line up features of speech pattern data. Func-

tional data can also occur over space (Morris et al., 2003), in which case the reference

points are spatial rather than temporal locations. Rice (2004) discusses the similarities

among modeling longitudinal and other types of functional data. Often, the analysis

goals are the same, and methods designed for one tend to apply to both. This method

is readily applicable to hierarchical functional data such as that studied by Morris et al.

(2003).

The Bayesian RJMCMC paradigm allowed estimation of a smooth function based on

piecewise-linear models with unknown knots and estimation of the population regression

function based on the subject-specific basis coefficients. Although we used piecewise

linear splines for their interpretability, this methods could be applied with other basis

sets (see Denison et al., 2002 for a discussion).
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CHAPTER 3

BAYESIAN SEMIPARAMETRIC

CLASSIFICATION OF

FUNCTIONAL DATA

Motivated by the problem of classifying hormone trajectories, we propose a flexible

semiparametric Bayesian methodology for hierarchical functional data. The approach

is based on a hierarchical spline model, with the number and location of knots and

the distribution of the random spline coefficients treated as unknown. Assuming a

discrete distribution for the spline coefficients, we obtain a procedure that clusters tra-

jectories into classes, with the class-specific trajectories, the number of classes, and the

allocation of subjects to classes unknown. The procedure relies on a generalization of

the Dirichlet process to a collection of unknown distributions having varying dimen-

sion. We develop an efficient reversible jump Markov chain Monte Carlo algorithm

by constructing dependence within this collection of distributions. The methods are

illustrated using progesterone trajectories through the human menstrual cycle.



3.1 Introduction

Latent trajectory models (LTMs) have wide applications in biology and the social sci-

ences (Legler et al., 2004; see Curran and Hussong, 2003 for a review). Most commonly

applied to longitudinal studies, these models treat the data as noisy realizations from

some underlying trajectory. Rather than modeling a distinct trajectory for each sam-

pling unit, sampling units can be classified into groups based on trajectory shape. By

using a nonparametric Bayesian method for the assignment of subjects to clusters, while

also allowing cluster-specific trajectories to be unknown, we obtain a flexible method-

ology for nonparametric modeling and clustering of hierarchical functional data. By

using multivariate adaptive regression splines, with unknown numbers and locations of

knots, the method can also deal flexibly with covariates having complex interactions.

Our method is motivated by reproductive hormone data from the North Carolina

Early Pregnancy Study (EPS) (Wilcox et al., 1988; Baird et al., 1997). The data con-

sist of daily progesterone measurements in women who are trying to become pregnant.

These data are presented as trajectories, one for each menstrual cycle. Progesterone

and other reproductive hormones vary across the menstrual cycle, and modeling the

underlying trajectory is complex. Cycles tend to vary in length and in the timing of

ovulation, which is often closely related to the trajectory shape. We wish to identify

typical clusters of hormone trajectories and determine which, if any, tend to be predic-

tive of high or low fertility. This example is one special case of hierarchical functional

data. Methods for hierarchical functional data typically require that all curves are

observed over or standardized to fall in the same region of time (Brumback and Rice,

1998; Morris et al., 2003; Brumback and Lindstrom, 2004).

The dependency structure of these data is complex, as there is a longitudinal depen-

dence within a trajectory (daily measurements from each cycle) in addition to multiple

trajectories (cycles) from each independent sampling unit. We develop a method where
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the subject-specific random effects are clustered into groups. For ease of presentation,

we restrict attention to one cycle per woman. Thus, clustering the women is equivalent

to clustering curves, and a graphical representation is straightforward.

To accommodate the dependency structure of hierarchical functional data without

requiring truncation of data or standardization of time, we developed a hierarchical gen-

eralization of multivariate linear splines in Chapter 2. We used a Bayesian reversible

jump MCMC (RJMCMC) algorithm to collect a large number of plausible piecewise-

linear spline models with varied numbers and locations of knots. The models were

summarized into one smooth regression function through Bayesian model averaging.

Between-subject variation was accounted for by assigning each subject a set of ran-

dom spline coefficients which are normally distributed around some population mean.

Subjects with similar trajectories should tend to have similar random coefficients, so

classification in terms of these random effects may be appropriate.

Verbeke and Lesaffre (1996) demonstrate that accurate estimation of random effects

can be hindered by incorrect specification of the random effects distribution. Clustering

based on random effects relies on good estimates of these effects, so specifying an overly

restrictive distribution may result in misleading clustering. In addition, the often-

specified normal distribution assumes no identical values, thus doesn’t produce clusters

of identical curves. An approach is needed in which the number of distinct curves is

smaller than the sample size. The normal distribution is also not biologically motivated

in this case, because menstrual cycle hormone curves tend not to vary smoothly and

regularly about a mean function.

In general, the field of cluster analysis examines data for groups of observations that

are similar to one another and dissimilar to the others. Here, our observations of interest

are trajectories. Identifying clusters is a common goal in data mining (Huang, 1998),

especially in large microarray datasets (Medvedovic and Sivaganesan, 2002; Tseng and
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Wong, 2005). Comprehensive reviews of clustering methods are given in Fraley and

Raftery (2002) and Denison et al. (2002).

There have been several methods proposed for clustering curve data. James and

Sugar (2003) use a fixed set of basis functions to describe curves with random effects for

the coefficients, fitting the model with an EM algorithm. They use a method developed

in Sugar and James (2003) to find the most appropriate number of clusters based on a

”distortion function”. This approach is not designed for the case where the underlying

spline model varies. Ma et al. (2005) examine gene expression profiles over a fixed

time interval, dividing the profiles up into three regions and fitting a polynomial spline

in each region. Then they use an EM algorithm to fit the model and BIC to compare

models and determine the best number of clusters.

James and Hastie (2001) apply linear discriminant analysis to classify functional

data, where the number of classes is pre-determined. de la Cruz and Quintana (2005)

use Bayesian methods and Marshall and Barón (2000) developed a mixed effects model

for classification of hormone trajectories into pre-defined groups. With the goal of iden-

tifying Olympic athletes who use growth hormone injections, Brown et al. (2001) de-

veloped a Bayesian method which defines trajectory classes based on a training dataset

with known classification. Muthén and Shedden (1999) use an EM algorithm to identify

trajectories in young adult drinking behavior that are likely to lead to alcohol depen-

dence. Unlike these methods, we wish to allow for both non-parametric specification of

random effects and the underlying spline model and an unspecified number of clusters.

Our approach relies on a hierarchical spline model. The spline model is defined by

a set of basis functions, and within-woman dependence is achieved by allowing each

woman her own set of random spline coefficients. The distribution of the random spline

coefficients is treated as unknown and discrete. This structure automatically groups

subjects into clusters having identical basis coefficients, and hence similar trajectories.
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If the spline basis functions were known, then a Dirichlet process prior (DPP) (Fergu-

son, 1973; 1974) could be used for the unknown distribution of the basis coefficients.

Unfortunately, even though the number of clusters and the allocation of subjects to

clusters would be flexible, the cluster-specific trajectories would be limited in flexibility

by the particular basis functions chosen. Hence, it would be very difficult to capture

the great variety of trajectories in hormones that are observed. It is therefore desirable

to allow uncertainty in the spline basis functions, including the numbers and locations

of knots. We are then faced with the problem of nonparametric modeling of the dis-

tribution of the spline coefficients when the set of basis functions is unknown and of

unknown dimension.

Motivated by this problem, we develop an approach for modeling a collection of

unknown distributions having varied dimension. Starting with a DPP for one partic-

ular distribution in the collection, we build dependence by sharing the prior on the

clustering behavior across distributions. The dependence is such that each distribution

in the collection marginally follows a DPP. This construction is conceptually similar

to the dependent DP of MacEachern (1999; 2001) and De Iorio et al. (2004), though

they did not consider the case in which the dimension varies. Our approach greatly fa-

cilitates posterior computation, and we develop an efficient Markov chain Monte Carlo

(MCMC) algorithm that combines reversible jump (Green, 1995) with the Pólya urn

Gibbs sampler (West et al., 1994; MacEachern, 1994; Ishwaran and James, 2001).

3.2 Methods

3.2.1 Multivariate linear splines

Suppose we have vector observations from N trajectories that we wish to classify ac-

cording to shape. The ability to do this first relies on a flexible and accurate regression
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model for each trajectory. Holmes and Mallick (2001) propose Bayesian regression

with multivariate linear splines (see also Hansen and Kooperberg, 2002; Wood et al.,

2002; Holmes and Mallick, 2002) for scalar response data. Chapter 2 generalized this

approach to hierarchical functional data.

Although the method we propose could be used with a variety of spline bases, we

choose to model the true relationship between covariates and response as piecewise

linear (see Holmes and Mallick, 2001 for a discussion of multivariate linear spline mod-

els). We have no knowledge of the most appropriate piecewise linear model to use. In

fact, the underlying trajectories may be smooth curves that are unlikely to be well-

represented by any one piecewise linear model. Instead, we wish to consider models

from some model space M, with varying numbers and locations of knots. We use the

RJMCMC algorithm of Green (1995) to add and remove knots, sampling models from

M having high posterior probability. The final curve estimates are weighted averages

over all sampled models.

A single multivariate piecewise linear model, M ∈ M, is defined by a set of kM

basis functions, µM = (µM1, . . . ,µMkM ). We consider a regression setting where yij is

the jth response from subject i, i = 1, . . . , N ; j = 1, . . . ni. The relationship between

yij and its (p× 1) set of covariates xij can be approximated by a linear combination of

the positive portions (denoted by the + subscript) of the inner products of the basis

functions with the covariate vector:

yij =

kM∑
l=1

bMil(x
′
ijµMl)+ + εMij, M ∈M (3.1)

where εMij is a random error. More transparently, each piecewise linear model is linear

in the basis function transformations of the covariate vectors:

yi = HMibMi + εMi, M ∈M (3.2)
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where yi and εMi are the ni × 1 vectors of responses and random errors, bMi is the

kM × 1 vector of basis coefficients for subject i, and the design matrix HMi contains

the basis function transformations of the covariate vectors for subject i.

Assuming conditional independence of the elements of yi given bMi, and N(0, τ−1
M )

errors, the conditional likelihood under model M is:

p(y|bM , τM ,M) ∝ τ
n
2
M

N∏
i=1

exp
[
− τM

2
(yi −HMibMi)

′(yi −HMibMi)
]
M ∈M (3.3)

where n =
∑N

i=1 ni. Continuing Bayesian specification of the model, we put a prior on

bM = (bM1, . . . ,bMN):

bMi
iid∼ GM , i = 1, . . . , N ; M ∈M (3.4)

The distribution GM could be given some parametric form for allM ∈M. For example,

in Chapter 2 we specified GM to be Gaussian, which implies that all subject-specific

coefficients are normally distributed around some population mean. In the quest to

uncover clusters of similar trajectories, this normality assumption makes little sense.

Instead, we treat GM as an unknown distribution having a DPP, for all M ∈M.

3.2.2 Dirichlet process

Thie Dirichlet process has been used to relax distributional assumptions on random

effects (Bush and MacEachern, 1996; Mukhopadhyay and Gelfand, 1997; Kleinman and

Ibrahim, 1998; Ishwaran and Takahara, 2002). We develop a method for the use of the

DP to relax distributional assumptions when the random effect is of varying dimension,

taking advantage of the natural clustering behavior of the DP in our analysis.

From the Sethuraman (1994) stick-breaking representation of the DP,GM ∼ DP (αMGM0)
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can be written as an infinite mixture of point masses:

GM =
∞∑
h=1

wMhδθMh
(3.5)

where δθ is the degenerate distribution placing all its mass at θ, {wMh : h = 1, . . . ,∞}

is an infinite sequence of random weights generated from a stick-breaking process,

wMhQh−1
l=1 (1−wMl)

∼ beta(1, αM), and {θMh, h = 1, . . . ,∞} is a corresponding sequence of

random atoms generated independently from the base distribution GM0.

The stick-breaking representation shows that if GM follows a Dirichlet process,

then GM is almost surely discrete. This discreteness implies that, since bMi
iid∼ GM , the

subjects i = 1, . . . , N will be clustered into rM ≤ N groups (Antoniak, 1974; Escobar,

1994). The clustering behavior is more transparent from the Blackwell and MacQueen

(1973) Pólya urn scheme, which shows that the specified prior structure corresponds

to the following set of conditional priors for the elements of bM = {bM1, . . . ,bMN}:

bMi |bM(i),M,GM0 ∼
(

α

α+N − 1

)
GM0 +

(
1

α+N − 1

)∑
i′ 6=i

δbMi′
, i = 1, . . . , N

(3.6)

where bM(i) is the set of random coefficient vectors for all but the ith subject. The

infinite-dimensional GM has been integrated out, and the induced prior on the random

effects for subject i conditional on the random effects for other subjects is a mixture of

the base distribution and a discrete uniform distribution on the other subjects’ values.

This process tends to group subjects into clusters, occasionally assigning a subject to a

new cluster with value sampled from the base distribution. We denote the rM distinct

values of the random coefficients θM = (θM1, . . . ,θMrM ). We let SM be the N × 1

partition vector indicating the cluster membership of each subject. The likelihood of

the data conditional on the allocation of subjects to rM clusters and on θM follows the
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form:

L(y|θM , τM ,M,SM) ∝ τ
n/2
M exp

[
− τM

2

rM∑
j=1

∑
i∈IMj

(yi −HiθMj)
′(yi −HiθMj)

]
(3.7)

where IMj is the set of subjects in cluster j. This specification results from a DPP for

GM for all M ∈M. However, we have not specified any dependency structure between

GM and GM ′ for M,M ′ ∈ M. Note that due to the changing dimension between the

different models in M it is necessary to implement a RJMCMC algorithm for posterior

computation. The next section illustrates the implementation of the RJMCMC. As we

will see later, RJMCMC will be impractical without defining dependence between GM

and GM ′ for all M,M ′ ∈M.

3.2.3 Reversible jump MCMC sampler

The RJMCMC sampler was proposed by Green (1995) as a generalization of the

Metropolis-Hastings algorithm (Hastings, 1970) for a parameter of varying dimension.

Here, we use it to update the model, where the dimension varies because the number

of basis functions can change. At each iteration, a proposal is made to change the

current model, M to an new model, M ′. The proposal is accepted with probability

Q(M ′,M), which must meet certain regularity conditions in order to sample from the

target distribution of interest.

The goal of the RJ step is to sample from the posterior distribution of the elements of

M given the data, y. A sufficient condition for attaining the correct target distribution

is that the Markov chain satisfies detailed balance under that distribution (Green,

1995). If the following equality holds for any M,M ′ ∈ M for a unique distribution

π, then detailed balance is achieved with π as the limiting distribution of the sampler
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(Brémaud, 1999):

π(M)T (M ′,M) = π(M ′)T (M,M ′) (3.8)

where T (M ′,M) is the probability of transitioning to model M ′ given the current model

is M . Given our goal of sampling from the posterior of the model space, we wish to

construct the acceptance probability so that π(M) = p(M |y). Note that T (M ′,M) =

S(M ′,M)Q(M ′,M), where S(M ′,M) is the probability of proposing a transition from

the current modelM toM ′, and Q(M ′,M) is the probability of accepting that proposal.

To minimize sample autocorrelation, it is optimal to make the acceptance probabil-

ity as large as possible subject to (3.8) (Percy, 1973). The optimal probability for the

RJ sampler takes the form (Green, 1995; Denison et al., 2002):

Q(M ′,M) = min
[
1,
p(M ′|y)S(M,M ′)

p(M |y)S(M ′,M)

]
(3.9)

which can be rewritten as:

Q(M ′,M) = min
[
1,
p(y|M ′)p(M ′)S(M,M ′)

p(y|M)p(M)S(M ′,M)

]
(3.10)

where p(y|M) is the marginal likelihood under model M . Thus, the acceptance proba-

bility is the product of the Bayes factor, the ratio of the priors on the models, and the

ratio of the proposal densities governing the moves between models. When the mod-

els have different dimensions, the proposal ratio may contain a Jacobian term (Green,

1995). However, the need for a Jacobian can be avoided through careful specification

of the prior on the model space and generation of proposals (Holmes and Mallick, 2000;

Denison et al., 2002).

We need to choose prior probabilities for each model in M. The number of basis

functions composing model M , denoted kM , is allowed to range from 1 to some maxi-
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mum, K. We specify the following prior for kM , for all M ∈M: p(kM) =
(

T
kM−1

)−1
K−1,

where T is very large. A priori, all basis functions are presumed equally likely, so the

prior probability of any model M is p(M) = p(kM). The prior on the model space is

discussed in more detail in Appendix A.

At each iteration we propose either to add a basis to the model, remove a basis

from the model, or alter a basis in the model. All moves are proposed with equal

probability, except that adding a basis is unacceptable when kM = K and removing

a basis is unacceptable when kM = 1. If we propose to remove a basis, that basis is

randomly chosen. If we propose to add a basis, a new basis is generated as described

by Holmes and Mallick (2001). If we propose to alter a basis, one is randomly chosen,

and a new basis is generated to replace it.

This prior on the model space and move proposal structure leads to the acceptance

probability:

Q(M ′,M) = min
[
1,
p(y|M ′)

p(y|M)
×R

]
(3.11)

where, as shown in Appendix A, R = p(M ′)S(M,M ′)
p(M)S(M ′,M)

simplifies to the ratio of the proba-

bility of proposing the selected move type to the probability of proposing the reverse

move type if we were starting at model M ′. Thus, the acceptance probability is simply

the Bayes factor comparing the proposed model to the current model, multiplied by a

known constant (Holmes and Mallick, 2000, Denison et al., 2002).

Unfortunately, p(y|M) does not have closed form here and the Bayes factor is

intractable. However, the likelihood p(y|M,V), where V is some set of additional

parameters, can be calculated directly. If we choose V to be parameters common to

both M and M ′, straightforward algebra shows that the expression in (3.10) can be

written:

Q(M ′,M) = min
[
1,
p(y|M ′,V)p(V|M ′)p(V|M,y)

p(y|M,V)p(V|M)p(V|M ′,y)
×R

]
(3.12)
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The ratio p(V|M ′)p(V|M,y)
p(V|M)p(V|M ′,y)

may be difficult to calculate. A common approach (Holmes

and Mallick, 2001; Denison et al., 2002) is to instead use the acceptance probability:

Q2(M
′,M) = min

[
1,
p(y|M ′,V)

p(y|M,V)
×R

]
(3.13)

At each iteration, the model is first updated through a reversible jump step and an

MCMC algorithm is used to draw V from p(V|M,y) under the current model. As long

as the reversible jump step appropriately samples from p(M |V ,y), then a large number

of iterations of this process will obtain a sample from p(M |y).

Theorem 1

The acceptance probability Q2 in a reversible jump algorithm yields convergence to

p(M |V ,y) if p(V|M) is constant across all M ∈M.

Proof. Without loss of generality, for two models M and M ′ in M:

Q2(M
′,M) =

p(y|M ′,V)

p(y|M,V)
×R =

p(y|M ′,V)p(M ′)S(M,M ′)

p(y|M,V)p(M)S(M ′,M)

Q2(M,M ′) = 1

Using the detailed balance equations in (3.8), we get:

π(M)S(M ′,M)
p(y|M ′,V)p(M ′)S(M,M ′)

p(y|M,V)p(M)S(M ′,M)
= π(M ′)S(M,M ′) ∀M ∈M

π(M)

p(y|M,V)p(M)
=

π(M ′)

p(y|M ′,V)p(M ′)

Solving these equations for π(M), the limiting distribution of the reversible jump

step, if V is known, is:

π(M) =
p(M |y,V)

p(V|M)
∀M ∈M
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If p(V|M) is constant across all M ∈M, then π(M) = p(M |y,V) is the solution to

the detailed balance equations. So the acceptance probability Q2 is appropriate when

p(V|M) is constant across all M ∈M. �

We propose a more general form of the acceptance probability, where the condition

of equal priors on V over the model space need not be met. Theorem 2 is easily verified

by modeling the proof of Theorem 1.

Theorem 2

If the ratio p(V|M ′)
p(V|M)

is known for any {M,M ′} in M, then the following acceptance

probability satisfies the detailed balance equations for π(M) = p(M |y,V):

Q3(M
′,M) = min

[
1,
p(y|M ′,V)p(V|M ′)

p(y|M,V)p(V|M)
×R

]
(3.14)

�

The acceptance probability in Q3 provides an alternative to Q1 when the Bayes

factor comparing the two models can not be computed. It has the advantage over Q2

that it requires less stringent assumptions about the prior on V .

Embedding this reversible jump step within an MCMC algorithm, we can alternate

between updating the model using the acceptance probability Q3 given in (3.14) and

using an MCMC sampler to update V from its full conditional under the selected model.

After convergence, the sample of models obtained through this MCMC algorithm is then

from the target distribution p(M |y).
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3.3 Model specification & Implementation

3.3.1 Prior specification

Recalling the data likelihood is given in (3.7), we complete the Bayesian specification

of the model described in Section 3.2.1 by putting priors on all parameters. Beginning

with the Dirichlet process on the distribution of the random coefficients, we assign the

following prior structure for model M ∈M:

bMi
iid∼ GM , i = 1, . . . , N

GM ∼ DP (αMGM0)

GM0 = NkM (βM , τ
−1
M ∆−1

M ) (3.15)

βM ∼ NkM (0, τ−1
M λ−1

M IkM )

π(τM , λM , δM) ∝ τaτ−1
M exp(−bττM)λaλ−1

M exp(−bλλM)

kM∏
l=1

(
δaδ−1
Ml exp(−bδδMl)

)
where ∆M = diag(δM) and aτ , bτ , aλ, bλ, aδ and bδ are pre-specified hyperparame-

ters constant across models. The Dirichlet precision parameter αM is assumed to be

known for simplicity, though modifications to place a gamma hyperprior on αM are

straightforward (Escobar and West, 1995).

3.3.2 Reversible Jump

Since we wish to allow the basis functions to change, we implement RJMCMC to move

among models in M. The reversible jump acceptance probability as given in (3.11) is

not appropriate here, as the hierarchical model based on the likelihood in (3.7) and the

priors in (eq.priors) makes p(M ′|y)
p(M |y)

impossible to calculate. However, through careful
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integration, we find:

p(y|M, δM , λM ,SM) = C(λM , kM)|RM |−
1
2 (bτ +

AM
2

)−(N
2

+aτ )

kM∏
l=1

δ
rM/2
Ml

rM∏
j=1

|UMj|−
1
2

(3.16)

where

UMj =
∑
i∈Ij

(∆M + H′
MjHMj) for j = 1, . . . , rM

RM = λMIkM + rM∆M −∆M(
r∑
j=1

U−1
Mj)∆M

AM = y′y −
r∑
j=1

〈
∑
i∈IMj

H′
Miyi,U

−1
Mj〉 − 〈∆M

rM∑
j=1

U−1
MjH

′
Miyi,R

−1
M 〉

C(λM , kM) =
bτ
aτλ

kM
2
M Γ(N

2
+ aτ )

Γ(aτ )(2π)
N
2

where IMj is again the set of subjects in the jth cluster, j = 1, . . . , rM and 〈A,B〉

denotes the quadratic form A′BA. Because we have a closed form for this conditional

likelihood, we would like to use the acceptance probability Q3 given in (3.14). At the

point of model comparison, we have sampled values of all parameters under the current

model. Let V = {SM , δM , λM} be the set of current parameter values, which were

sampled under model M . From Theorem 2, the acceptance probability comparing M

to M ′ can be written:

Q3(M
′,M) = min

[
1,
p(y|M ′,SM , δM , λM)p(SM , δM , λM |M ′)

p(y|M,SM , δM , λM)p(SM , δM , λM |M)
×R

]
(3.17)

This is a ratio of conditional likelihood times a prior ratio times a known constant.

We consider first the conditional likelihoods. For the result in Theorem 2 to hold,

{SM , δM , λM} must be parameters that are defined under both models. The scalar

parameter λM and the N -dimensional vector SM are in all models inM. The parameter
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δM is a vector that is present in all models, but whose dimension is equal to the number

of basis functions, which may vary from model to model.

When the proposal is to alter a basis function in M , kM = kM ′ and we can use (3.16)

to calculate p(y|M ′,SM , δM , λM). However, when we propose to add or remove a basis

function, kM 6= kM ′ and this quantity can not be directly calculated. We define δadj

to be the subset of δM corresponding to basis functions common to both M and M ′.

Consequently, the dimension of δadj is min(kM , kM ′). Letting δadj = δM when we’re

proposing to alter a basis function, we accept a proposal with the following probability:

Q4(M
′,M) = min

[
1,
p(y|M ′,SM , δadj, λM)p(SM , δadj, λM |M ′)

p(y|M,SM , δadj, λM)p(SM , δadj, λM |M)
×R

]
(3.18)

While p(y|M,SM , δM , λM) has closed form, p(y|M,SM , δadj, λM) may not. If we

propose to add a basis to the current model, the current piecewise linear model is nested

in the proposed model and is one basis smaller, and δadj = δM . The denominator of

the acceptance probability has closed form, as shown above, and we use a Laplace

approximation to estimate the one-dimensional integral in the numerator. Similarly, if

the proposal is to remove a basis from M , then δadj is a (kM−1)-dimensional subvector

of δM and we use the Laplace approximation in the numerator. Further details on the

approximation were provided in Chapter 2.

We have defined a closed form for the ratio of the conditional likelihoods, and it is

necessary to derive an expression for the ratio of priors
p(SM ,δadj ,λM |M ′)

p(SM ,δadj ,λM |M)
. Note that this

ratio does not depend on the data. Under our prior structure, p(SM , δadj, λM |M) =

p(SM |M)p(δadj|M)p(λM |M). In addition, the gamma priors on the elements of δadj, and

λM do not depend on the model, so that p(δadj|M) = p(δadj) and p(λM |M) = p(λM)

for all M ∈M.

In the prior specification above, we have a distinct and independent GM for each

M ∈ M. We need to calculate p(SM |M ′)
p(SM |M)

. The parameter SM is discrete with a large
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number of possible values, making p(SM |M) very complicated. The stick-breaking

representation of the Dirichlet process is informative about the complicated distribution

of SM . Specifically, we can note that the prior on the cluster allocation under model

M depends only on the stick-breaking weights. These weights are random observations

from distributions dependent only on αM .

Theorem 3

If αM ≡ α for all M ∈ M, then for some cluster allocation S, p(S|M) = p(S|M ′)

for all {M,M ′} in M

Proof. First note that the prior on the (N × 1) vector S can be written: p(S|M,αM) =

p(S1|M,αM)p(S2|S1,M, αM) . . . p(SN |S1, . . . , SN−1,M, αM). Without loss of generality,

we can choose S1 arbitrarily, yielding the following set of conditional priors:

p(S1|M,αM) = 1

p(S2|S1,M, αM) =

(
1

αM + 1

)1(S2=S1)(
αM

αM + 1

)1(S2 6=S1)

p(Si|S1, . . . , Si−1,M, αM) =

(
αM

αM + i− 1

)1(Si 6=Sh, h<i) i−1∏
h=1

(
1

αM + i− 1

)1(Si=Sh)

for i = 3, . . . , N

If αM ≡ α for all M ∈ M, then these conditional priors and therefore the prior on S

do not depend on the model, so p(S|M) = p(S|M ′) for all {M,M ′} in M. �

As a consequence of Theorem 3, if we specify that the DP precision parameters are

equivalent for all models in M, then the acceptance probability becomes:

Q4(M
′,M) = min

[
1,
p(y|M ′,SM , δadj, λM)

p(y|M,SM , δadj, λM)
×R

]
(3.19)

As shown in Section 3.2.3, since δ and λ are unspecified, the validity of this acceptance

probability relies on alternating between updating the model and then updating S, δ
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and λ under the model, which can be done directly by Gibbs sampling from the full

conditionals.

3.3.3 Pólya urn Gibbs sampling

At each iteration, we use a reversible jump step to sample a model from M. All

other parameters (including the DP cluster allocation) are then updated through Gibbs

sampling under the accepted model, and the process is repeated. Suppose, through a

reversible jump step, we have selected modelM , which may not be equal to the previous

model, Mp. We have values for all model parameters as sampled under Mp, and we

desire to sample all parameters under M .

We then initialize the parameters {λM , τM ,SM} to {λMp , τMp ,SMp}. The other

model parameters depend on the dimension. If kM 6= kMp , then we cannot simply

initialize all the parameters to their values under model Mp. We need to define δM ,θM ,

and βM of the appropriate dimension in order to appropriately sample from the full

conditionals. We also have δMp ,θMp , and βMp from the previous model. If kM = kMp+1,

we initialize the new element of δM to the mean of δMp and we initialize the new element

of θj to 0 for j = 1, . . . , rM . If kM = kMp − 1, we simply create δM ,θM , and βM by

removing the elements of δMp ,θMp , and βMp corresponding the the basis function that

is present in Mp but not in M .

Consequently, the number of clusters rM remains unchanged from the previous

model. We then update all model parameters from their full conditionals under M .

For notational simplicity, we suppress the model indicator subscript on the parameters

so that {kM , δM ,θM , λM , τM , rM ,bM ,βM , GM0} ≡ {k, δ,θ, λ, τ, r,b,β, G0}.

The updating of the random effects, b, is based on the Pólya urn Gibbs sampling

algorithm (MacEachern, 1994; West et al., 1994; Escobar, 1994; Escobar and West,

1995). Under a given model M , recall that the r distinct values of the random effects
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are denoted (θ1, . . . ,θr). Excluding subject i, there are r(i) ≤ r distinct values of the

random effects, denoted (θ
(i)
1 , . . . ,θ

(i)

r(i)
)

As explained by West et al. (1994), the full conditional of bi is a mixture the base

prior updated with subject i’s data and point masses at all other random effects. The

mixing weights are given by:

qi,j =

{
αhi(yi) if j = 0

n
(i)
j fj(yi|θj) if j > 0

where qi,0 is the weight given to the posterior under the base prior, qi,j is the weight

given to a point mass at the jth random effect, and n
(i)
j is the size of the jth cluster

excluding subject i.

hi(yi) =

∫
fi(yi|bi)dG0(bi)

The hierarchical model given in Section 3.3.1 is conjugate under the base prior, so

we can obtain a closed form for hi(yi) and Gi,0.

hi(yi) =
τ
ni
2 |∆| 12 (2π)−

ni
2

|H′
iHi + ∆| 12

exp
(τ
2
[(H′

iyi + ∆β)(H′
iHi + ∆)−1(H′

iyi + ∆β)− (y′iyi + β
′∆β)]

)
(3.20)

Gi,0 = Nk

(
(H′

iHi + ∆)−1(H′
iyi + ∆β), (H′

iHi + ∆)−1
)

(3.21)

We could sample {bi} from its full conditional for each subject, but computational

efficiency is improved by exploiting the clustering behavior of the DP and instead

sampling S and then θ from their full conditional distributions.

The cluster indicator for subject i has the following full conditional posterior dis-

tribution:

p(Si = j|y,b(i),S(i), r(i)) = qi,j for i = 1, . . . , N

Si = 0 implies the creation of a new cluster containing only subject i. A corre-

sponding new value of bi is drawn from Gi,0, the base prior updated with subject i’s
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random coefficients, and θ and r are updated appropriately.

p(θj|y,S, r) = N
(
(∆ +

∑
i∈Ij

H′
iyi)

−1(∆β +
∑
i∈Ij

H′
iHi), τ

−1(∆ +
∑
i∈Ij

H′
iyi)

−1
)

p(β|θ,S, δ, λ) = N
(
(λI + r∆)−1∆

r∑
j=1

θj, τ
−1(λI + r∆)−1

)

Our prior distributions for the precision parameters yield the following Gamma full

conditional posterior distributions:

λ|β,b, δ, τ ∼ Gamma
(
aλ +

k

2
, bλ +

τβ′β

2

)
δl|β,b, λ, τ, δh h 6= l ∼ Gamma

(
aδ +

N

2
, bδ +

τ

2

r∑
j=1

(θjl − βl)
2
)

l = 1, . . . , k

τ |y,b, c, δ, λ, ν ∼ Gamma
(
aτ +

N + (r + 1)k

2
, bτ +

1

2

( N∑
i=1

(yi −Hibi)
′(yi −Hibi)

+λβ′β +
r∑
j=1

(θj − β)′∆(θj − β)
))

3.4 Simulations

3.4.1 Simulated data

To illustrate the method, we simulated data from four clusters, with 25 subjects per

cluster and 10 observations per subject. There were two covariates. One could be

thought of as time and consisted of randomly generated continuous values from 0 to 5.

The other was a time-dependent covariate, which ranged from -10 to 10 and increased

linearly with time. Each subject’s trajectory is a linear combination of this continuous

covariate and one of four smooth functions of time. These four smooth functions, along

with the 250 data points generated for each cluster, are shown in Figure 3.1. Within-

subject dependence was induced by assigning each subject an additive random effect
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FIGURE 3.1: Underlying population curves (lines) and data (points) for each of the
four clusters. Each cluster had 250 observations from 25 subjects

drawn from a N(0, 1/4) distribution, and the additive residual error for each data point

was drawn independently from N(0, 1/16).

We require a priori specification of α, the DP precision parameter. Escobar (1994)

demonstrates that high values of α yield large numbers of clusters. For interpretability,

we wish to have only a small number of clusters. Based on the guidelines given in

Escobar (1994), we choose α = 0.5. The hyperparameters for the gamma priors on the

precision parameters are all set to 0.05, yielding somewhat vague priors centered at 1.

We ran the algorithm in Matlab for 20,000 iterations after a 5,000 iteration burn-in

period. Sample collection took approximately 10 hours. At each iteration, we collected

the cluster membership for each subject, the individual cluster trajectories, and the

population mean trajectory.

To identify a single set of latent classes from our set of 20,000 sampled cluster

structures, we use a hierarchical clustering algorithm. Following Medvedovic and Siva-
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ganesan (2002), who searched for clusters of co-expressed genes in microarray data,

we define the total distance between two vector observations to be the proportion of

MCMC samples at which two observations were put in different clusters. Observations

separated by small distances are often sampled in the same cluster and thus are more

likely to truly belong to the same class.

To use these pairwise distances for classification, we require that any observations

separated by less than some threshold distance be in the same class. This threshold thus

becomes the minimum distance allowed between two observations in separate classes. A

high threshold yields few classes, and a low threshold will result in many smaller classes.

The choice of the threshold may be largely driven by the application. Hierarchical

clustering lends itself readily to the creations of a cluster tree, a visual representation of

how tight the clusters are and how the choice of threshold affects the number of clusters.

Fraley and Raftery (2002) explore an EM algorithm and other methods for estimating

the appropriate threshold or number of classes to choose. This hierarchical clustering

algorithm represents an alternative to the commonly-used k means clustering algorithm,

which is not applicable to the categorical output of the DP clustering procedure, and

the k-modes approach of Huang (1998), which is applicable but not easily applied.

3.4.2 Simulation results

The hierarchical clustering structure can be displayed in a highly informative tree form,

where the observations are plotted on the x-axis and the y-axis gives the maximum dis-

tance within a cluster. Recall that distance is the proportion of MCMC samples in

which the observations were placed in separate clusters. Figure 3.2 shows the top of

the hierarchical tree. The four clusters are correctly distinguished. We notice that ob-

servations from the same cluster may sometimes have low probability of being observed

in the same cluster. However, observations from different true clusters were virtually
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FIGURE 3.2: Hierarchical class tree. The between-class distance is given on the y-axis,
where the distance is the posterior probability that the two classes are distinct. The
four true clusters are the four classes at the top of the tree, and more classes are seen
as the minimum distance decreases. The solid horizontal line is the threshold at which
our classes were created.

never assigned to the same cluster.

We classified the observations so that the minimum between-group distance is 60%,

meaning that observations were grouped together if they appeared in the same cluster

more than 40% of the time. Ten classes resulted. Each of the four true clusters was

split into one large class, ranging in size from 15-24 observations, and one to three

smaller classes ranging in size from 1-6 observations.

Figure 3.3 shows the fitted curve for each of the four true clusters as well as the

fitted curve for each of the ten classes. The model fit the population trajectories closely.

Examination of the raw data indicates that the model correctly identified women in

each of the four groups with unusual random effects. We assessed convergence by

examining the stability of the distributions of the number of basis functions in the
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FIGURE 3.3: Four true clusters (solid lines) and the ten classes (dashed lines)

model, number of clusters, and the precision parameters τ and λ. Traceplots of these

parameters provided no evidence against convergence.

3.5 Progesterone example

3.5.1 Data

The progesterone data are from the North Carolina Early Pregnancy Study (EPS;

Wilcox et al., 1988; Baird et al., 1997). Women in this study provided daily urine

specimens. We consider daily urinary progesterone measurements from the onset of

menstruation up until two days after ovulation. Implantation of a conceptus is known to

affect progesterone, and this region is designed to precede implantation. We randomly

selected one menstrual cycle from each of 172 women to use in our analysis. If a woman

had both conception and non-conception cycles available, we randomly selected first
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the cycle type and then the cycle. Conception cycles made up 65 (38%) of the 172

cycles.

We used Bayesian multivariate linear splines to model the trajectories, allowing for

a nonparametric distribution of the random woman-specific basis coefficients around

the population value. Our goal is to identify trajectory clusters and to describe any

clusters that are predictive of high or low conception probability. Covariates include

day since menstruation and day relative to ovulation, both of which may be related

to hormone trajectories (van Zonneveld et al., 2003). We ran the algorithm for 50,000

iterations after a 10,000 iteration burn-in period.

3.5.2 Progesterone results

Analysis of the EPS data yielded several interesting results. Unlike the more ideal

simulated data case, there were no completely disjoint classes to examine. As in the

simulation, we selected a minimum between-group distance of 60%. This yielded one

very large class with 133 observations and eight small classes with 1-14 observations

each. Figure 3.4 shows the estimated progesterone trajectories for the dominant class

and the eight smaller classes. In general, the trajectory in the dominant class appears

to contain mid-range values and be relatively flat. The other classes tend to have

sharp decreases at the start or end of the window, or to have exceptionally high or

low values. These smaller clusters likely represent less common hormone patterns, and

these trajectories may be clinically important. Perhaps more informative is Figure

3.5, which displays the raw data for each of the nine final classes. The method has

appropriately grouped similar observations together. In addition, the presence of sets

of very similar curves and very different shapes for each cluster support the decision

to relax the parametric assumption that all women are normally distributed around a

trajectory described by some mean set of coefficients and instead describe it through a
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FIGURE 3.4: The dark line is the estimated trajectory for the large final class. The
lighter lines are the estimated trajectories for the smaller classes. Arrows indicate the
number of cycles in each cluster.

Dirichlet process.

3.5.3 Sensitivity Analysis

Adequate mixing and convergence of cluster allocation is sometimes of concern in DPP

models, as the algorithm has a tendency to become trapped in a local mode (Jain and

Neal, 2004). To combat this, we collected a large number of samples. In addition, we

found that parallel chains from different initial cluster allocations yielded nearly iden-

tical results, and the number of clusters appeared to mix adequately across iterations.

This led us to conclude that the mixing was adequate to avoid local mode problems. We

also examined the implications of using different values of α. Large values of α tended

to increase the average number of clusters at each iteration. In the post-processing of

the samples, this meant that distances between observations tended to be larger. The

same final clusters were found, although requiring a larger threshold between-group
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FIGURE 3.5: These are data from all nine final classes. There are twenty trajectories
presented for the dominant cluster (first plot), and the other eight clusters are entirely
displayed.

distance. Small values of α had the expected opposite effect.

3.6 Discussion

We have defined a Dirichlet prior structure that can be successfully applied to param-

eters of varying dimension. In the case of the multivariate spline model with random

knots, the prior relaxes the distributional assumptions on the varying-dimension ran-

dom effects. We have demonstrated the effectiveness of this method in a reversible

jump framework. In addition, we have discussed ways to interpret the clustering infor-

mation that is automatically produced by the Dirichlet process. The simulated data

example shows that this method is appropriate for identifying and describing clusters

of longitudinal trajectories.

Many methods for functional data rely on functions observed over the same region
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of time, often with observations in each function at fixed points. This method instead

allows for variation in number and location of observations, making it applicable in the

presence of missing data. We only examined the response as a function of time relative

to two reference points, but it would be appropriate to also include other covariates

or reference points. Regardless of the covariates used, the method groups together

observations with a similar relationship between the covariates and response.

This Bayesian regression model is useful for semiparametric modeling and clustering

of longitudinal data, but can be identically applied to spatial data or clustered data with

no time/space component. This method also has applications in genetics, especially to

time-course gene expression data, where clustering profiles is of interest both to improve

understanding of gene expression and to reduce the dimensionality of huge microarray

datasets (Luan and Li, 2003; Liang et al., 2005).

Examination of the EPS data has provided an interesting illustration of the un-

derlying clusters, but a deeper analysis of the hormone data is warranted. Previous

results have indicated that low progesterone around the time when implantation of the

conceptus would occur may be indicative of low cycle fecundability (Baird et al., 1997;

Stewart et al., 1993). Future work will examine this hypothesis, apply the method to

other reproductive hormones, and may include extensions to joint modeling of multiple

reproductive hormones or the joint modeling of trajectory and conception status.

In addition, alternative methods to post-process the MCMC samples for cluster in-

terpretation may benefit from further exploration. We found evidence that there may

be small clusters or even outlying observations that do not belong in any cluster. Tseng

and Wong (2005) describe an algorithm for the identification of “tight and stable” clus-

ters, which is designed to identify tight clusters without forcing outlying observations

into clusters.
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CHAPTER 4

JOINT MODELING OF

FUNCTIONAL AND OUTCOME

DATA

This chapter proposes a new method for the joint clustering of trajectories with some

outcome of interest. The trajectories are modeled using the flexible spline model of

Chapter 3. The outcome is modeled through a generalized linear model with a random

intercept. Through specifying the random intercept to follow a Dirichlet process jointly

with the random spline coefficients, we obtain a procedure that clusters trajectories

according to shape while estimating the parameters of the outcome model for each

cluster. This very flexible method allows for the incorporation of covariates in the

models for both the outcome and the trajectory. We apply the method to post-ovulatory

progesterone data from the Early Pregnancy Study and find that the model successfully

separates clinical pregnancies from early pregnancy losses.



4.1 Introduction

The joint modeling literature has generally focused on methods for longitudinal and

time-to-event data. This is useful in determining the relationship between biomarkers

measured over time and the risk of disease progression, cure, or death. Brown and

Ibrahim (2003) use a Bayesian method, specifying a nonparametric Dirichlet process

(DP) prior on the parameters of the longitudinal trajectory, then modeling the hazard

conditional on the trajectory at a given time. Brown et al. (2005) develop a Bayesian

method suitable for the case when the longitudinal variable is multivariate. Tsiatis

and Davidian (2004) give a review of methods for joint longitudinal and time-to-event

modeling. In short, the methods tend to rely on formulating an appropriate model

for the trajectory and then defining the hazard function at each time-point as some

function of the trajectory value at that time-point.

The current joint modeling problem is outside this time-to-event framework, as we

consider the relationship between a function and some outcome random variable. The

outcome need not be the time of some event, and the function need not be longitudinal.

In related work, Chib and Hamilton (2002) propose a Bayesian semiparametric model

for the effect of time-varying binary treatment on a longitudinal response. Instead, we

look at a single time-independent variable along with each trajectory. James (2002)

proposes a generalized linear model where one of the predictors is functional. His

method relies on modeling the function with a cubic spline and using an EM algorithm

to describe the relationship between the response and the integral of the weighted

function. It requires that all functions are observed over the same region of time and

modeled in only one covariate. Ratcliffe et al. (2002) describe a logistic model for a

binary response where one of the covariates is functional. They model fetal heart-rate

traces using a set of Fourier basis functions, then use the model to predict high-risk

pregnancies. We are interested in modeling the joint relationship between a function
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and some outcome, where not all functions have the same domain, and other covariates

may be of interest either in modeling the function or the outcome.

We extend a multivariate linear spline model with random coefficients for the mod-

eling of functional data to the case where each function is observed jointly with some

outcome of interest. We employ the Dirichlet process to relax distributional assump-

tions about the random effects and to glean information about underlying clusters of

functional predictors. Though demonstrated here on longitudinal data, the multivari-

ate adaptive spline model is appropriate for examining the joint relationship between

some outcome and a regression over time, space, or any other support.

The method is applied to progesterone data from the Early Pregnancy Study (Baird

et al., 1997). One of the aims of the Early Pregnancy Study was to study early preg-

nancy loss (EPL). Based on examination of human chorionic gonadotropin (hCG) pro-

files, the study investigators classified cycles that did not result in clinical pregnancy

as either early loss cycles or true non-conception cycles. A detectable rise in urinary

hCG signaled implantation of the conceptus, and a subsequent decline indicated that

the pregnancy was lost. Based on these analyses, Wilcox et al. (1988) reported that

two-thirds of losses occurred before the pregnancy was clinically detected (i.e. before 6

weeks) and that nearly a third of all conceptions resulted in EPL. Other studies have

reported similar incidence of EPL (Ellish et al., 1999; Zinaman et al., 1996; Wang et al.,

2003).

The current project examines post-ovulatory progesterone, comparing EPL men-

strual cycles to those cycles resulting in clinical pregnancy. The most distinctive fea-

ture of progesterone in this context is that it remains high in ongoing pregnancies and

decreases once the pregnancy is lost. It has also been noted that progesterone tends to

be slightly lower in the early weeks of pregnancy in those cycles with EPL (Lower and

Yovich, 1992). This suggests that EPL, in many cases, may be the result of a pregnancy
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that was weak at the onset rather than the immediate result of some trauma.

Winter et al. (2002) note that EPL in the context of assisted reproductive tech-

nology can be financially and emotionally costly. They report a 16% EPL rate and an

increase in risk with smoking and poor quality embryos, but no change in risk with age

or BMI after adjusting for other factors. Henriksen et al. (2004) found that alcohol

consumption during the week of conception also increased the risk of EPL. In a previous

analysis of data from the Early Pregnancy Study, Wilcox et al. (1998) found evidence

that a longer time between ovulation and conception led to to an increased risk of EPL.

They hypothesized that this was due to deterioration of the quality of the oocyte as it

aged after ovulation.

No one mechanism of early loss is known. Environmental factors, stress on the part

of the mother, and poor quality of the embryo may all manifest themselves as early

loss. Consequently, a joint model between progesterone and early loss makes sense. In

some cases, the drop in progesterone may signal the mother’s inability to continue the

pregnancy. In other cases, it may be a response to the embryo’s inability to survive.

There is likely a direct causal relationship between progesterone and EPL, but the

direction of causality may vary.

4.2 Methods

Our model relies on the incorporation of a Bayesian generalized linear model for the

outcome into the flexible longitudinal trajectory model described in Chapter 3. In this

section, we describe a multivariate adaptive spline model for the longitudinal trajectory

and methods for Bayesian analysis of the generalized linear model. Finally, we describe

the integration of these two approaches to create a joint model for a curve and an

outcome.
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4.2.1 Multivariate linear splines

Chapter 3 describes a flexible spline model where the distribution of the individual

curves around the population mean is nonparametric. The spline model is based on a

generalization of the adaptive spline method of Holmes and Mallick (2001), where the

dependency within subjects is accounted for through random effects. A nonparametric

distribution on the random effects naturally groups subjects with similar random effects

into clusters.

We use a Bayesian model which treats the covariates and response as piecewise

linear, with varying numbers and locations of knots. We use the reversible jump MCMC

algorithm of Green (1995) to add and remove knots, sampling models having high

posterior probability. The final curve estimates are weighted averages over all sampled

models, which leads to smooth curve estimates from the non-smooth piecewise linear

samples.

A single multivariate piecewise linear model, M , is defined by a set of kM basis

functions, µM = (µM1, . . . ,µMkM ). When yij is the jth response from subject i, i =

1, . . . , N ; j = 1, . . . ni, the relationship between yij and its (p× 1) set of covariates xij

can be approximated by a linear combination of the positive portions (denoted by the

+ subscript) of the inner products of the basis functions with the covariate vector:

yij =

kM∑
l=1

bMil(x
′
ijµMl)+ + εMij, M ∈M (4.1)

where εMij is a random error. More transparently, each piecewise linear model is linear

in the basis function transformations of the covariate vectors:

yi = HMibMi + εMi, M ∈M (4.2)
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where yi and εMi are the ni × 1 vectors of responses and random errors, bMi is the

kM × 1 vector of random basis coefficients for subject i, and the design matrix HMi

contains the basis function transformations of the covariate vectors for subject i.

Assuming conditional independence of the elements of yi given bMi, and N(0, τ−1
M )

errors, the conditional likelihood under model M is:

p(y|bM , τM ,M) ∝ τ
n
2
M

N∏
i=1

exp
[
− τM

2
(yi −HMibMi)

′(yi −HMibMi)
]
M ∈M (4.3)

where n =
∑N

i=1 ni. Continuing Bayesian specification of the model, we put a prior on

bM = (bM1, . . . ,bMN):

bMi
iid∼ GM , i = 1, . . . , N ; M ∈M (4.4)

The distribution GM could be given some parametric form for all M ∈ M. Chapter

2 specified GM to be Gaussian, which implies that all subject-specific coefficients are

normally distributed around some population mean. In the quest to uncover clusters

of similar trajectories, the normality assumption makes little sense. Instead, we treat

GM as an unknown distribution by assigning it a Dirichlet process prior, which auto-

matically provides information about underlying classes (see Chapter 3 for details.)

4.2.2 Generalized linear models

We combine the trajectory model with a generalized linear model for the outcome.

Generalized linear models are an extension of normal linear models to the case where

the response may not be normal. Here, we consider the response as arising from the

exponential family. The random variable Z follows an exponential family distribution

85



if the density of Z can be written in the following form.

p(z|ξ, φ) = exp
(
a(φ)−1(zξ −B(ξ)) + c(z, φ)

)
(4.5)

where the distribution is said to have canonical parameter ξ and scale parameter φ.

B(·) (the cumulant function) and c(·, ·) are functions that determine the particular

class of distributions within the exponential family. Many common distributions fit

into this form, including the Normal, Poisson, Multinomial, and Gamma distributions.

The term a(φ) is commonly equal to φ, and we assume that here for ease of illustration.

A random variable in this family has expected value µ = ∂B(ξ)/∂ξ, the first deriva-

tive of the cumulant function with respect to the canonical parameter. The correspond-

ing inverse function, ξ(µ), is known as the canonical link function.

The relationship between µ and covariates is often expressed through the generalized

linear model, letting g(µ) = η. The term η ≡ Uγ is the linear predictor where U is

the covariate matrix and γ is the parameter vector. In normal linear models, g(·) is

taken to be the identity function, but the identity function makes little sense unless Z

can take any value on the real line. A natural and commonly used choice for g(·) is the

canonical link ξ(·) (McCullagh and Nelder, 1989).

We may need to accommodate multiple observations from independent sampling

units, so we employ a generalized linear mixed model (GLMM). Suppose we have a set

of independent responses {z1, . . . , zN}, where zi = {zi1, . . . , zini} for i = 1, . . . , N , and

the likelihood of one observation zij is an exponential family density.

p(zij|ξij, φij) = exp
(
φ−1
ij (zijξij −B(ξij)) + c(zij, φij)

)
(4.6)

Suppose each observation zij has corresponding covariates uij, and E(zij) = µij. We

use a generalized linear model with the canonical link, and let ξij(µij) = ηij ≡ u′ijγi,
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where γi is a parameter vector unique to the ith subject. If we assume φij ≡ φi for all

{i, j} and that observations within subject i are independent given {γi, φi}, then the

likelihood becomes:

p(z|ξij, φij) =
N∏
i=1

ni∏
j=1

exp
(
φ−1
i (zij(u

′
ijγi)−B(u′ijγi)) + c(zij, φi)

)
(4.7)

Bayesian methods for generalized linear mixed models have many desirable properties.

The intractable integrals that plague likelihood-based inference in GLMMs are not a

problem here, as we can use the Gibbs sampler to draw from the posteriors of interest.

A common prior structure for the GLMM described above is:

γi
iid∼ N(γ0, diag(ψ)−1)

γ0 ∼ N(0, ω−1Ipo)

π(ω,ψ) ∝ ωaω−1exp(−bωω)

po∏
l=1

(
ψ
aψ−1

l exp(−bψψl)
)

where the gamma hyperparameters are pre-specified. Alternatively, a Wishart distri-

bution and its hyperparameters could be specified for the prior precision of γi. The

random effects {γi} can be sampled through the use of a rejection algorithm, and γ0

and the precision parameters can be updated conjugately from their full condition-

als. Routine implementation of the GLMM in WinBUGS uses an adaptive rejection

algorithm to sample from the random effects distribution.

4.3 Model

We describe the joint modeling of a curve and an outcome, where the likelihood of the

outcome is in the exponential family. The use of the word ’outcome’ does not imply a

causal relationship. In fact, the method we describe is appropriate for characterizing
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relationships when either the trajectory or the outcome is hypothesized to impact the

other or when no causal relationship is hypothesized between the two. The relationship

between progesterone and early loss is a good illustration of the case when no single

causal relationship is biologically motivated.

Combining methods from Chapter 3 with Bayesian methods for generalized linear

models, we obtain a model that clusters jointly the trajectory and the observed outcome.

In the examples presented, the outcome model contains no covariates, but we provide

the theory necessary to include covariates in the Bayesian generalized linear model. In

addition, we focus on the case where each subject provides one trajectory/outcome pair

but present details for the case where there are multiple pairs per subject.

4.3.1 Prior specification

The data consist of N trajectory/outcome pairs. We model the trajectory according to

the methods given in Chapter 3, adding an additional nonparametric component for the

outcome. The trajectory and the outcome follow multivariate normal and exponential

family distributions respectively, with the likelihoods given here.

L(y|θM , τM ,M,SM) ∝ τ
n/2
M exp

[
− τM

2

rM∑
j=1

∑
i∈IMj

(yi −HiθMj)
′(yi −HiθMj)

]
(4.8)

L(Z|ξ,φ) ∝
N∏
i=1

ni∏
j=1

exp
(
φ−1
i (zijξij −B(ξij)) + c(zij, φi)

)
(4.9)

where φi is the canonical parameter and ξi is the dispersion parameter for some expo-

nential family distribution with cumulant function B(·). We use a generalized linear

model with canonical link for the outcome, so that:

ξi = ηi ≡ Uiγi + Jniai (4.10)
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where Ui is an (ni × po) matrix of trajectory-specific covariates and Jni is an (ni × 1)

vector of ones. The (po× 1) vector γi describes the relationship between the covariates

and the outcome, and the scalar intercept ai is jointly modeled with the trajectory. The

DP governs the joint distribution of the random coefficients and a random intercept for

the outcome model. Because of this, the DP will cluster jointly based on the trajectory

and the random intercept, though we expect the likelihood to be heavily dominated by

the more abundant trajectory data. The following is the prior structure under model

M .

(
bMi

ai

)
iid∼ GM , i = 1, . . . , N

GM ∼ DP (α GM0)

GM0 = NkM+1

((βM
0

)
,

 τM∆M 0

0 ν


−1 )

∆M = diag(δM)

βM ∼ NkM (0, τ−1
M λ−1

M IkM )

π(τM , λM , δM) ∝ τaτ−1
M exp(−bττM)λaλ−1

M exp(−bλλM)

kM∏
l=1

(
δaδ−1
Ml exp(−bδδMl)

)
π(ν) ∝ νaν−1exp(−bνν)

where α, aν , bν , aτ , bτ , aλ, bλ, aδ and bδ are pre-specified hyperparameters constant

across models. This prior structure is complete if there are no covariates in the outcome

model, that is po = 0 and the matrices Ui in (4.10) are empty. To include covariates
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in the GLMM for the outcome, we specify the following additional priors:

γi
iid∼ N(γ0, diag(ψ)−1)

γ0 ∼ N(0, ω−1Ipo)

π(ω,ψ) ∝ ωaω−1exp(−bωω)

po∏
l=1

(
ψ
aψ−1

l exp(−bψψl)
)

where aω, bω, aψ and bψ are pre-specified hyperparameters constant across models and

γ is a po × 1 vector describing the relationship between the covariates in the outcome

model and the outcome.

The DP naturally clusters the observations into groups, so that there are r ≤ N

distinct values of {bi, ai}, which are given in the set θ = {θ1, . . . ,θr}. When we exclude

subject i there are r(i) ≤ r distinct values, denoted θ(i) = {θ(i)
1 , . . . ,θ

(i)

r(i)
}

The above specification yields the following conditional joint posterior of the random

effects for subject i. The model indicator is suppressed for notational simplicity.

bi, ai|M,y, z,β, λ, τ, δ, ξ,γ,θ(i) ∼ qi,0Gi,0 +
r(i)∑
j=1

qi,jδθ(i)
j

where δ
θ

(i)
j

is a point mass at θ
(i)
j , and Gi,0 is the full joint posterior of (bi, ai) under the

base prior, G0. In other terms, dGi,0(bi) ∝ fi(yi, zi|bi, ai)dG0, where fi(yi, zi|bi, ai) is

the data likelihood for subject i. The mixing weights are given by:

qi,j ∝
{
αhi(yi, zi) if j = 0

n
(i)
j fj(yi, zi|θj) if j > 0

(4.11)

hi(yi, zi) =

∫
fi(yi, zi|bi, ai)dG0(bi, ai) (4.12)

where fi(yi, zi|θj) is the joint likelihood of the trajectory and the outcome for subject

i. If the joint likelihood fi(yi, zi|bi, ai) is normal, then we have conjugacy, yielding a
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closed form for Gi,0 and hi(yi, zi). In the progesterone example, the outcome (early

loss) is binary, so a rejection algorithm can be used to sample from the posterior.

The random effects {bi, ai} could be sampled directly for each subject, but com-

putational efficiency is improved by exploiting the clustering behavior of the DP and

instead sampling the cluster allocation S and then the distinct random effects θ from

their full conditional distributions (West et al., 1994). The cluster indicator for subject

i has the following full conditional posterior distribution:

p(Si = j|y, z,b(i), a(i),S(i), r(i)) = qi,j for i = 1, . . . , N

Si = 0 implies the creation of a new cluster containing only subject i. A corresponding

new value of {bi, ai} is drawn from Gi,0, and θ and r are updated appropriately.

4.4 Posterior computation

Computation is similar to that for the trajectory-only model in Chapter 3. This section

contains a description of the MCMC algorithm used to update from the posterior

distributions of the parameters. These steps are based on the likelihood and priors given

in Section 4.3.1. At each iteration, we have a current spline model, M , and current

values of the parameters {θ,S,β, τ, λ, δ,γ,γ0, ω, ν,ψ}. These steps demonstrate how

to update the model and then update the parameters from their full conditionals.

Step 1: Update spline model

Propose a change to M by either adding, removing, or altering a basis function. Accept

or reject this change according to the appropriate acceptance probability.

Green (1995) proposed the RJMCMC sampler as a generalization of the Metropolis-

Hastings algorithm (Hastings, 1970) for a parameter of varying dimension. Here, we use

it to update the spline model, where the dimension varies because the number of basis
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functions can change. At each iteration, a proposal is made to change the current model,

M to a new model, M ′. The proposal is accepted with probability Q(M ′,M), which

must meet certain regularity conditions in order to sample from the target distribution

of interest. To minimize sample autocorrelation, it is optimal to make the acceptance

probability as large as possible subject to these regularity conditions (Percy, 1973).

Here, the optimal probability for the RJ sampler takes the form (Green, 1995; Denison

et al., 2002):

Q(M ′,M) = min
[
1,
p(y|M ′)

p(y|M)
×R

]
(4.13)

where p(y|M) is the marginal likelihood under model M and R is the ratio of proposing

the current move type (add, remove, or alter) to the probability of proposing the

reverse move type starting at M ′. Thus, the acceptance probability is the product

of the likelihood ratio and a known constant. However, the acceptance probability

in (4.13) is not appropriate under the current model because we can not calculate

the likelihood ratio. However, p(y|M, δM , λM ,SM) does have closed form. Chapter 3

outlines conditions under which alternative acceptance probabilities are valid, and per

those results we use:

Q(M ′,M) = min
[
1,
p(y|M ′,SM , δadj, λM)

p(y|M,SM , δadj, λM)
×R

]
(4.14)

where we’re conditioning on the current values SM and λM . Recalling that the dimen-

sion of δM is equal to the dimension on the model, we let δadj be a subvector of δM

with number of elements equal to the minimum of the dimensions of M and M ′. The

reasoning behind this has been presented in detail in Chapter 3. In summary, it is

nonsensical to condition on a parameter that is larger than that allowed in the model

and conditioning on the exact same parameter values in the numerator and denom-

inator leads to a valid acceptance probability. If the proposed change to the model
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is addition or removal of a basis, then either the numerator or denominator (but not

both) will have closed form. The other will be a one-dimensional integral, which we

estimate using a Laplace approximation. Further details on the approximation were

given in Chapter 1.

From this point forward, we suppress the model indicator subscript for notational

simplicity. If we have accepted a new model of different dimension than the old model,

we update the current values of β, δ, and θ so that they have the correct dimension,

initializing any new parameters to pre-specified values.

Step 2: Update b and a from their full conditionals.

Updating the random effects that under a DP prior is equivalent to updating the cluster

allocation S and the set of distinct random effects θ.

First update S, one subject at a time:

p(Si = j|y, z,b(i),S(i), r(i)) = qi,j for i = 1, . . . , N ; j = 1, . . . , r.

where qi,j is given in (4.11) and depends on the likelihood and hi(yi, zi) is given in

(4.12). Let g0 be the density associated with the base distribution G0. Under the

base prior we’ve specified, the trajectory parameters and the outcome parameter are

independent so that g0 = g0bg0a, where g0b is the base prior density of the random

spline coefficients for the trajectory model and g0a is the base prior density for the

random intercept in the outcome model. We let G0a and G0b denote the distributions

corresponding to these two densities. Because y and z are a priori independent given

their subject-specific parameters, we can write:

hi(yi, zi) =

∫
fi(yi|bi)dG0b(bi)

∫
fi(zi|ai)dG0a(ai) = hi(yi)hi(zi)

Chapter 3 showed that the trajectory portion, hi(yi), has closed form. The outcome
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portion, hi(zi), can be written as a one dimensional integral.

hi(yi) =
τ
ni
2 |∆| 12 (2π)−

ni
2

|H′
iHi+∆| 12

exp
(τ
2
[(H′

iyi+∆β)′(H′
iHi+∆)−1(H′

iyi+∆β)−(y′iyi+β
′∆β)]

)
hi(zi) =

∫
fi(zi|ai)dG0a(ai)

=

∫
exp
( ni∑
j=1

(zij(uijγi + ai))−B(uijγi + ai) + c(zij)
)( ν

2π

) 1
2 exp(−ν

2
a2
i )dai

If the outcome likelihood is normal, then hi(zi) has closed form. For other exponential

family likelihoods, we use a normal approximation to evaluate hi(zi) for the desired

functions B(·) and c(·). In the Bernoulli case, B(x) = log(1 + exp(x)) and c(x) = 0.

Next we update θ given the new S. For a given cluster j, θj contains k+1 elements.

The first k elements, θj,1:k, correspond to the random slopes used to describe the

trajectory for members of cluster j. The remaining element, θj,k+1, is the random

intercept for the outcome model for members of cluster j. To update θj from the full

conditional, we sample from the base prior updated with the trajectory and outcome

data for all subjects in cluster j, for j = 1, . . . , r.

p(θj|S,y, z, . . . ) ∝
∏
i∈Ij

fi(yi, zi|θj)g0(θj)

where Ij is the set of subjects in cluster j. Since the likelihoods of yi and zi are

independent, we have:

p(θj|S,y, z, . . . ) ∝
(∏
i∈Ij

fi(zi|θj,k+1)g0a(θj,k+1)
)(∏
i∈Ij

fi(yi|θj,1:k)g0b(θj,1:k)
)

Thus, for each cluster j, we can sample θj,1:k independently of θj,k+1. The normal

likelihood for the trajectory data yields conjugacy with the normal base prior and can
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sample θj,1:k from the following full conditional:

p(θj,1:k|y,S, r) = N
(
(∆ +

∑
i∈Ij

H′
iyi)

−1(∆β +
∑
i∈Ij

H′
iHi), τ

−1(∆ +
∑
i∈Ij

H′
iyi)

−1
)

The full conditional of θj,k+1 under the base prior is:

p(θj,k+1|S,y, z, . . . ) ∝ exp(−ν
2
θ2
j,k+1)

∏
i∈Ij

ni∏
j=1

exp(zijθj,k+1 −B(uijγi + θj,k+1))

If the likelihood of the outcome is not normal, we may not be able to sample from this

directly. Instead, a Metropolis step is used to sample from the full conditional under

the appropriate B(·) and c(·, ·). For purposes of illustration, the full conditionals in

the following steps assume c(·, ·) ≡ 0, which is the case in the Bernoulli distribution.

Similar calculations can be used to define a sampling scheme when c(·, ·) 6= 0.

Step 3: Update hyperparameters for longitudinal trajectory

Update β, τ , λ, and δ from their full conditionals. These are all conjugate under the

prior structure in Section 4.3.1.

p(β|θ,S, δ, λ) = N
(
(λI + r∆)−1∆

r∑
j=1

θj,1:k, τ
−1(λI + r∆)−1

)
λ|β,b, δ, τ ∼ Gamma

(
aλ +

k

2
, bλ +

τβ′β

2

)
δl|β,b, δ−l, λ, τ ∼ Gamma

(
aδ +

r

2
, bδ +

τ

2

r∑
j=1

(θjl − βl)
2
)

l = 1, . . . , k

τ |y,θ,Sδ, λ, ν ∼ Gamma
(
aτ +

N + (r + 1)k

2
, bτ +

1

2

( N∑
i=1

(yi −Hibi)
′(yi −Hibi)

+λβ′β +
r∑
j=1

(θj,1:k − β)′∆(θj,1:k − β)
))

(4.15)

Step 4: Update hyperparameters for outcome model
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Update ν, the precision of the random intercept under the base prior. If the outcome

model contains any covariates, then update γ, γ0, ω, and ψ from their full conditionals.

Under the prior structure described, all can be updated conjugately except for the

subject-specific slope vectors, which can be updated using Metropolis steps.

ν| . . . ∼ Gamma
(
aν +

r

2
, bν +

τ
∑r

j=1 θ
2
j,k+1

2

)
p(γi| . . . ) ∝ exp

( ni∑
j=1

zijuijγi −
ni∑
j=1

B(uijγi + ai)−
1

2
(γ ′iΨγi + 2γ ′iΨγ0)

)
ψl| . . . ∼ Gamma

(
aψ +

N

2
, bψ +

1

2

N∑
i=1

(γil − γ0l)
2
)

l = 1, . . . , po

ω| . . . ∼ Gamma
(
aω +

k

2
, bω +

γ ′0γ0

2

)

4.5 Simulated data example

Data were simulated from trajectories centered around one of three parametric curves.

Each simulated trajectory was also assigned a binary outcome status, either 1 or 0.

The data were actually simulated from four distinct groups, where two groups had the

same underlying trajectory but different response probabilities. Figure 4.1 shows the

simulated data, the underlying trajectories, and the probabilities that a member of

each of the 4 groups will have outcome equal to 1. Each of the four groups contained

25 trajectories with 10 measurements at varied timepoints. We ran the algorithm for

25,000 iterations after 2,000 burn-in. Examination of traceplots of precision parame-

ters and the number of basis functions showed no evidence against convergence. As

in Chapter 3, we classified together observations that appeared in the same cluster in

40% or more of the samples. We calculated the mean trajectory for each cluster as

well as the modeled probability that a trajectory in each cluster had outcome equal

to 1. Under this logistic model, the modeled outcome probability is the mean over
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FIGURE 4.1: Underlying population curves (lines) and data (points) for each of the four
clusters along with outcome probabilities. The top two plots have the same underlying
trajectory with different outcome probabilities.
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FIGURE 4.2: The plot in the first quadrant is of the mean trajectory for the three
final clusters. The three remaining plots contain all trajectory data for the three final
clusters.

all samples of the logit of the outcome model’s random intercept, ai. Figure 4.2 gives

the mean trajectory for the three final clusters as well as the data from each. We

estimated the outcome probabilities and compared them to the underlying population

probabilities. The estimates and 95% credible intervals are given in Table 4.1. The

credible interval contained the true value in all cases. The trajectory clusters were

correctly identified. Within the MCMC samples, observations were misclassified only

very rarely. This simulation shows that the model clearly discriminated among trajec-

TABLE 4.1: True population outcome probabilities and estimated probabilities with
95% credible intervals for each of the final clusters.

n Population probability Mean sampled probability [95% CI]
Clusters 1 & 2 50 0.69 0.73 [0.60, 0.83]
Cluster 3 25 0.73 0.76 [0.59, 0.89]
Cluster 4 25 0.50 0.34 [0.18, 0.52]
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tories of different shapes and provided an accurate estimate of the random intercept

in the outcome model for each cluster. As expected, the model did not distinguish

between two clusters with similar trajectories and different response probabilities. This

is because there is only one observation per subject and the response was binary. As a

mixture of Bernoulli distributions is also Bernoulli, two groups of people with the same

underlying trajectory and different outcome probabilities appear as one large group,

with an outcome probability somewhere between that of the two smaller groups. Other

exponential family distributions without this property may affect clustering differently.

4.6 Early Pregnancy Study example

We applied the joint model to conception cycles from the NC-Early Pregnancy study.

In those cycles labeled clinical pregnancies, the embryo appeared to the investigators,

based on hCG, to have survived at least six weeks beyond the last menstrual period.

Cycles in which a detectable hCG rise occurred but did not last more than six weeks

beyond the last menstrual period (LMP) were labeled ’early losses’. The data consisted

of 165 conception cycles, 47 of which resulted in early losses.

To illustrate the joint model for a trajectory and an outcome, we apply it to pro-

gesterone data for the early losses and the clinical pregnancies, with early loss status

serving as the binary outcome for each cycle. The trajectory was defined to begin at

the ratio-determined day of ovulation and to last for up to 40 days. For purposes of

illustration, the only covariate we used was day relative to ovulation. We could, how-

ever, have incorporated other reference-point based covariates such as day relative to

implantation of the conceptus. We could also have included non-reference point based

covariates such as age or parity. Figures 4.3 and 4.4 illustrate some of the data from

early losses and clinical pregnancies. They show how PdG tends to rise when concep-
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FIGURE 4.3: Progesterone data beginning at the estimated day of ovulation for three
early losses.

tion occurs and then drop off if the pregnancy is lost. Using the threshold of 0.40,

we sorted the 165 subjects into final clusters. There were 32 of these clusters, though

16 contained only one observation. We calculated the mean trajectory for each cluster

and the mean probability that a cycle in that cluster was an early loss. Figures 4.5 and

4.6 show the data for each of the 32 clusters and the model-estimated probabilities and

credible intervals that a cycle in a given cluster was an early loss. With the exception

of cluster 11, which contained one early loss and two clinical pregnancies, every cluster

was homogeneous with respect to early loss status. The first cluster consisted of 87

clinical pregnancies, so that 74% of all clinical pregnancies fell into one class. While

both the early loss and clinical groups had outliers, the early losses were more spread

out among several clusters. Ignoring the eight outliers in each group, the remaining

39 early losses were spread out among 12 clusters, whereas the 157 remaining clinical
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FIGURE 4.4: Progesterone data beginning at the estimated day of ovulation for three
clinical pregnancies.
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FIGURE 4.5: Data from the 16 classes containing more than one observation. Below
each plot is the model-estimated probability of early loss for each cluster along with
the 95% credible interval. The cluster sizes are given on the plots.
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FIGURE 4.6: Data from the 16 trajectories that were not clustered with any others.
Below each plot is the model-estimated probability of early loss for each trajectory
along with the 95% credible interval. The first two rows of plots are EPLs, while the
remaining eight are clinical pregnancies.
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pregnancies were in only 5 clusters. This variation in early loss trajectories supports

the hypothesis that there is no one mechanism for EPL.

To gain further insight into the performance of this model and the differences be-

tween early loss and clinical pregnancy trajectories, we fit the model from Chapter 3

to these data. In other words, we re-fit the model without including the outcome. As

expected, since the clustering is based on the trajectory shapes and not the outcome,

we found the same clusters of trajectories. Biologically, the separation of the clus-

ters is interesting because the model has effectively separated hCG-determined early

losses from conceptions resulting in clinical pregnancies based on the shape of the PdG

trajectory.

4.7 Discussion

We’ve developed a model for joint regression of a trajectory and a univariate outcome.

The post-ovulatory progesterone example illustrates the appropriateness of the model

for clustering trajectories and for providing model-based estimates of outcome prob-

abilities. The results support the hypothesis that the types of early loss are varied

and may be due to several underlying biological mechanisms which are manifested in

different hormone trajectories.

The examples focused on the one observation per subject Bernoulli case. Because

a mixture of Bernoulli distributions is itself Bernoulli, the model would not have been

able to form clusters based on the outcome. Thus, although the theory is very similar,

the interpretation may differ substantially when the outcome was from a more complex

exponential family distribution. Although we did not demonstrate it, the model allows

for multiple trajectory/outcome pairs per subject. In that case, each subject’s set of

Bernoulli responses would be binomial, and there would be information available to
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cluster based on outcome probability. However, it is still likely that the clustering

would be dominated by the trajectory since there is a large amount of trajectory data

and only a single outcome. If we were truly interested in clustering according to both

trajectory and outcome, we could increase the weight given to the outcome likelihood

in the Dirichlet process clustering.

Theory has been developed for the incorporation of covariates into the outcome

model. Although we have not yet performed simulations in the setting where covariates

are present, the model is a clear incorporation of methods for Bayesian generalized

linear models into this clustering framework. However, the interpretation of the random

intercept and of the nature of observations with similar random intercepts will change

in the presence of covariates.
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CHAPTER 5

CONCLUDING REMARKS

5.1 Summary

Motivated by reproductive hormone trajectories, this dissertation has proposed new

methodology with applications widely beyond the menstrual hormone setting. Through

the identification of reference points in longitudinal data, we have developed statistical

methodology that is applicable beyond the longitudinal setting.

Chapter 2 described the first mixed model in the setting where the dimension of the

underlying spline model varies and the random effects are modeled flexibly. In addition,

this model is superior to most nonparametric curve models, which tend to require all

curves be observed over the same covariate space. The generalization of longitudinal

data to multiple reference point data has applications in longitudinal medical studies,

and the resulting spline model is widely applicable in non-longitudinal settings.

Chapter 3 described a new method for putting a nonparametric distribution on a

set of nonparametrically modeled curves, yielding a very flexible method that is useful

for both describing curves and for dividing curves into clusters. Chapter 4 proposed an

extension where an outcome can be modeled jointly with the curve itself.



5.2 Computational Notes

The MRF model described in Chapter 1 was implemented in R, and all other compu-

tation was done in Matlab. One average, the sample collection took about 36 hours.

The model in Chapter 2 was the slowest due to the need to calculate a random effect

for every subject at every iteration. The model in Chapter 3 was the fastest.

The Laplace approximation was introduced in order to maintain the theoretical

integrity of the reversible jump sampler. However, I ran the model in Chapter 2 without

the approximation (i.e. just using the naive acceptance probability in (3.17)) and the

results were identical. Unable to come up with a theoretical justification for that

acceptance probability, I continued to use the time-consuming one.

5.3 Methodology for menstrual hormone data

This section contains a summary of some issues that arose in deciding how to best

develop these models to suit the needs of menstrual hormone data. The first issue

that arose was the need to control for intercourse in order to best predict conception.

In Chapter 2, we divided conception and non-conception cycles without controlling for

intercourse patterns. This affected our interpretation of the results. We made inference

about the differences between the set of non-conception and the set of conception cycles.

The set of non-conception cycles probably included low fertility cycles where well-timed

intercourse did not lead to conception and also normal fertility cycles where there was

no well-timed intercourse.

Unable to assume that the non-conception cycles were all of low fertility, we could

not make assertions about PdG differences and fertility. However, our findings were

consistent with previous work comparing conception cycles and non-conception cycles

with well-timed intercourse, which indicated that low fertility cycles have very low
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mid-luteal progesterone (Baird et al., 1997), and we found that the cycles with the

lowest mid-luteal PdG were unlikely to be conception cycles. These cycles with very

low midluteal PdG likely corresponded to the subset of non-conception cycles that were

of low fertility.

We expected the model averaging to produce smooth curves, but instead many of

the real-data plots have changepoints the day before ovulation, although the rest of the

plot appears to be a smooth curve (see Figures 2.5 and 3.5 for examples). Because the

simulated data produced smooth plots, this is more likely an artifact of the ovulation

estimation method than a reflection of the model. The marker of ovulation was based

on a drop in the estrogen to progesterone ratio, which likely corresponds to a rise in

progesterone. This does not affect the quality of the presented results, but was carefully

considered when interpreting those results.

In discussing methods for clustering menstrual cycle data, we repeatedly encoun-

tered the issue of whether it is more appropriate (i.e. biologically informative) to cluster

women or to cluster menstrual cycles. We chose to cluster according to cycle in Chap-

ters 3 and 4 (although the early loss and conception data for Chapter 4 were such that

very few women contributed more than one cycle, so the clustering of cycles and women

were virtually the same thing).

Although we did not perform any predictive analyses, the identification of patterns

of menstrual cycle hormones that are associated with certain outcomes (e.g. early loss,

high or low fertility) could help to prospectively find cycles when a woman is most

likely to achieve pregnancy. This cycle-specific model was the focus of our methods in

Chapters 3 and 4.

The model developed in Chapter 2, however, was for woman-specific characteriza-

tion of menstrual cycle patterns. Rather than modeling each cycle individually, we

modeled a central tendency for all cycles from a woman. So if we ran the clustering
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algorithm from Chapter 2 on the data from Chapter 1, which contained multiple cycles

per woman, we would be identifying clusters of women whose cycles tended to follow

the same general patterns.

It would be possible to include multiple cycles per woman while allowing for cycle-

to-cycle variation. Another level can be added to the hierarchy in the Bayesian model

in Chapter 2, allowing for cycle-specific coefficients to be centered around the woman-

specific basis coefficients. A similar extension of the Dirichlet process model in Chapter

3 to the case with multiple cycles per woman and cycle-specific basis coefficients is

straightforward if the goal is to identify clusters of women, but less so if the goal is to

classify cycles.

5.4 Potential Applications & Future Work

Within the setting of menstrual hormone data, it may be interesting to see how hormone

trajectories predict fertility. This is complicated, however, by the need to control for

timing of intercourse. Several models are available to estimate probability of conception

based on intercourse timing (Barrett and Marshall, 1969; Wilcox et al., 1995; Stanford

et al., 2003; Dunson and Stanford, 2005) and to subsequently quantify the relative

fertility of cycles. A joint model for conception probability due to intercourse and

hormone trajectory could be developed by combining these two model types.

This entire work has focused on the case where the response (progesterone) is nor-

mally distributed given the model and the covariates. Holmes and Mallick (2003) ex-

tended the original Holmes and Mallick (2001) model to include non-normal responses.

We could potentially apply that extension to these models. This would be helpful in the

case of menstrual data for modeling trajectories of discrete responses or of responses

that are clearly not normally distributed. It is of interest to collect daily information
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about cervical mucus, because changes in mucus are known to reflect the timing of

ovulation as well as control the movement of sperm through the cervix (Billing et al.,

1989; WHO, 1983; Katz, 1991; Kunz et al., 1997; Bigelow et al., 2004). Mucus is

often categorized based on texture and color (see Colombo and Masarotto (2000) for

an example). An extension of this model could follow the trajectory of a categorical

variable like mucus.

A potential application of the multiple reference point approach is found in another

area of reproductive epidemiology. Gestational age at birth is a strong predictor of

stillbirth and infant death. However, researchers debate over the most appropriate way

to analyze gestational-age-specific mortality. For example, should an infant born at 28

weeks who survives for four weeks be considered as 28-weeks gestation? Or does he

have something in common with the infant who dies at birth after 32 weeks gestation?

Cheung (2004) discuss various methods for calculating gestational-age-specific mor-

tality, and the advantages and disadvantages of each. In a commentary on Cheung

(2004), Wilcox and Weinberg (2004) point out that birth is a traumatic event and must

certainly be taken into account when looking at gestational-age-specific mortality. Us-

ing the concept of multiple reference points, we could potentially examine mortality

according to both gestational age and time since birth, both providing estimates of

mortality and considering the question of whether both time scales are important.

We have noted the applicability of this method to functional and spatial data.

Images are a type of spatial data. The ability to search through a database and identify

images similar to a presented image has applications in medical imaging as well in

computer-based storage of non-medical images such as photos and artwork. Goldberger

et al. (2006) describe a method for searching through a database of photos to identify

those most similar to one presented. In summary, they use a Gaussian mixture model

to identify homogeneous regions of the image, searching through a database for those
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images whose underlying mixture distributions are most similar (see also Greenspan

et al. (2004)). Our method could be developed to potentially cluster images not only

according to large homogeneous regions, but according to non-homogeneous regions

with similar shading/color gradients.

Our joint model has exciting potential applications in curve and image classification.

For example, suppose rather than modeling longitudinal curves we model the spatial

variation in medical images. As we sort these images into clusters, we can also model

the disease rate of each cluster. A future image of unknown disease status can be

classified into a group of images with known disease status, yielding a prediction of the

disease status. In general, the models that focus on clustering have many potential

applications in prediction. Especially in the context of the joint model, it would be

desirable to present a trajectory, assign it to a cluster, and then predict the distribution

of the outcome based on the distribution on outcomes in that cluster.
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APPENDIX A

Reversible Jump Acceptance

Probability

Let T be the very large set of all basis functions we wish to consider for the piecewise

linear model. Generating a new basis function corresponds to sampling from the set

T . Since this proposal process is discrete, the need for a Jacobian in the acceptance

probability is eliminated. If T , the number of elements in T , is so large compared to the

number of iterations that the probability of ever proposing the same basis function twice

throughout the course of the algorithm is effectively zero, then this discrete process is

equivalent to random generation of a new basis function through a continuous process.

Recall we have specified the following prior for kM , for all M ∈ M: p(kM) =(
T

kM−1

)−1
K−1. A priori, all basis functions are presumed equally likely. So the prior

probability of any model M is p(M) = p(kM) =
(

T
kM−1

)−1
K−1.

At each iteration we propose a change to the current model. If the current model is

of dimension k (suppressing the model indicator subscript for notational convenience),

we propose to add a new basis (birth) with probability bk, we propose to remove a basis

(death) with probability dk, and we propose to alter a basis with probability 1−dk−bk.

All acceptable move types are assigned equal probability, so bk = dk = 1/3 for all k

except that b1 = dK = 1/2, and bK = d1 = 0.

Consider, for example, a proposal to change model M to the (k + 1)-dimensional

model M ′ (birth proposal). The ratio of the model priors is p(M ′)
p(M)

= k+1
T−k . The proposal
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density, S(M ′) = bk × 1
T−k , is the probability of selecting a birth move multiplied

by the probability of adding the correct basis to add. The reverse proposal density,

S(M) = dk+1 × 1
k+1

, is the probability of proposing a death from model M ′ multiplied

by the probability of removing the basis function that would yield model M .

Substituting into (3.10), we get the following acceptance probability for a birth

proposal.

Q = min
[
1,
p(y|M ′)dk+1

p(y|M)bk

]
(A.1)

Similar calculations for proposed basis removals and alterations show that the ac-

ceptance probability has the general form given in (3.11).
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