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ABSTRACT 

 

Alfredo Watkins: Immanent Structuralism: A Neo-Aristotelian Account of Mathematics 

(Under the direction of Marc Lange) 

 

 

The aim of this dissertation is to propose and defend a position in the philosophy of 

mathematics called “immanent structuralism.” This can be contrasted with the standard Platonist 

view in the philosophy of mathematics, which holds that mathematics studies a unique category 

of non-physical, abstract entities. Platonism immediately leads to the epistemological problem of 

how we can know about these entities if they are not part of the physical world. By contrast, 

immanent structuralism holds that the things mathematics studies are structures or structural 

patterns. These structures or patterns are like other physical universals in that they can be 

instantiated by physical systems. Therefore, some of them can be known through ordinary 

perception and, as I argue, the rest can be built out of these ones. 

The first half of the dissertation lays out the core of the theory: I discuss what these 

structural patterns are and how they can constitute the subject-matter of mathematics. I also give 

an essence-based account of mathematical truth which refers only to these properties. I then 

argue that this view avoids the epistemological problems with Platonism, since it allows some 

basic mathematical properties to be literally instantiated in the physical world, making them 

graspable by perception, while others can be constructed out of these. I claim that this view is 

better suited to account for the ordinary knowledge of mathematics had by most people. 
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The second half of the dissertation applies this theory to several special topics in the 

philosophy of mathematics, including mathematical reduction, mathematical treating-as, 

mathematics and modality, and mathematical explanation. I also discuss why immanent 

structuralism presents a unique challenge to indispensability arguments in mathematics and to 

certain parity arguments in other fields of philosophy. The ultimate hope of the dissertation is to 

show that a better path forward for realists in the philosophy of mathematics is to move away 

from object-based accounts like Platonism, and instead move toward more Aristotelian, 

property-based accounts, like the theory presented here. 
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CHAPTER 1: INTRODUCING IMMANENT STRUCTURALISM 

 

1. Introduction 

The aim of this dissertation will be to defend a specific form of structuralism in the 

philosophy of mathematics which I call “immanent structuralism.” Structuralism holds that 

mathematics is about structures or patterns. Immanent structuralism holds that these structures or 

patterns are universals or properties that can be (but need not always be) literally instantiated by 

many different kinds of things, particularly physical systems. Immanent structuralism is distinct 

from the more standard, ante rem structuralism, in that it holds structures to be what are called 

purely structural universals, rather than systems consisting of a special sort of intrinsically 

featureless object or particular.1 According to immanent structuralism, a true mathematical 

statement holds iff – and because – certain facts about the natures of purely structural properties 

obtain. 

2. Platonism and Ante Rem Structuralism 

The structuralist approach can be illustrated by contrast with traditional Platonism. 

According to traditional Platonists, mathematical objects are sui generis. They are their own 

fundamental kind of entity. Moreover, for the Platonist, some mathematical objects are 

 
1 Cf. ante rem theorist Michael Resnik’s description in (1997), p. 201: “The objects of mathematics, that is, the 

entities which our mathematical constants and quantifiers denote, are themselves atoms, structureless points, or 

positions in structures. And as such they have no identity or distinguishing features outside a structure.” 
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particulars. For instance, the number 2 is to be thought of as an abstract individual, i.e., an 

object, or a particular thing. Platonism faces several well-known challenges: 

The Epistemological Challenge: How are most people able to have reliable 

beliefs about mathematics if those beliefs are about causally inert abstract 

objects?2 

The Ontological Challenge: The fewer the fundamental kinds of entities one 

posits, the better. So a theory that can plausibly amend mathematical ontology to 

some already-recognized category is preferable. 

The Applicability Challenge: Why are we able to learn about the physical world 

by  using mathematics (and not just in physics, but in all sorts of natural sciences) 

if mathematics is about a realm of non-physical entities? 

In addition, reductive versions of Platonism, which try to reduce other classes of mathematical 

objects to some subset of them, face a serious problem called the “Multiple Reductions 

Problem.” Consider, for example, a “naïve” set-theoretic Platonism, according to which all 

mathematical objects just are sets.3 On this view, sets are all we need ontologically speaking to 

make sense of mathematics. 

One challenge for this view is that mathematical practice seems to allow for multiple, 

equally salient reductions of the natural numbers to sets. For instance, take the following 

proposed reduction from Von Neumann. Let us call the following series of sets the “V-Sets”: 

 

 
2 Benacerraf (1973) 

 
3 Note on this set-theoretic Platonist view sets are the only kind of sui generis abstract mathematical object. All 

others are reducible to them. Set-theoretic Platonism is the most common form of reductive Platonism. 
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(V-Sets): 0: { }, 1:{ {} }, 2: {{} , { {} }}, …  

[where the n+1th set is the power set of the nth set] 

Consider also the following series, the “Z-Sets” (due to Zermelo): 

(Z-Sets): 0: {}, 1: { {} }, 2: {{ {} }}, …  

[where the n+1th set is the set of the nth set] 

The problem for naïve set-theoretic Platonism is that the Z-Sets are just as good for a 

mathematical reduction of arithmetic to set theory as are the V-Sets. Therefore reductive set-

theoretic Platonism faces an additional problem: 

The Multiple-Reductions Problem: There are multiple, equally good possible 

reductions of the ontology of numbers to the ontology of sets. 

This last problem has inspired structuralist views of mathematics, which treat mathematics as the 

science of structures, or patterns. This is based on the insight that what is important for 

mathematics is not so much which particular series of sets you use – the V-sets or the Z-sets – 

but rather that the series of sets has the right type of structure to serve as a suitable representation 

of the natural numbers. 

According to the standard version of structuralism advanced by Resnik (1997) and 

Shapiro (1997) – ante rem structuralism – the subject matter of mathematics consists of “an 

ontology of featureless objects, called ‘positions’, and … systems of relations or ‘patterns’ in 

which these positions figure.”4 Ante rem structuralists view individual mathematical objects as 

 
4 Resnik (1997) p. 269. 

 



    

4 
 

the “nodes” or “positions” within these systems.5 For example, the natural number system 

according to ante rem structuralists is a system of intrinsically featureless objects with the order 

characteristic of the natural numbers.6 These mathematical objects are taken to have no intrinsic 

nature, instead being entirely defined and constituted by their relations to other objects in the 

system or structure.7 

So, on this view, the number 2 is not intrinsically a set, or a function, or anything else like 

that. Instead, it is an intrinsically featureless object whose essence simply is “that which comes 

before 3, and after 1.”8 Therefore, structuralists will say that the V-sets and the Z-sets both 

exemplify the natural number structure, but that neither is, strictly speaking, identical with the 

series of natural numbers.9  

However, arguably ante rem structuralism, which conceives of structures and their 

positions as abstract objects, still suffers from the three problems of traditional Platonism, viz., 

the epistemological, ontological, and applicability problems. Additionally, ante rem structuralism 

 
5 Note that, like the Platonist, ante rem structuralists interpret reference to mathematical objects as straightforwardly 

singular and referential. See Shapiro (1997) pp. 10-11. See also p. 13: “According to ante rem structuralism, the 

variables of the theory range over the places of that structure, the singular terms denote places in that structure, and 

the relation symbols denote the relations of the structure.” And p. 83: “Places in structures are bona fide objects … 

Bona fide singular terms…like “2” denote bona fide objects.” 

 
6 I.e., they constitute an omega-series. 

 
7 Resnik: “In mathematics, I claim, we do not have objects with an ‘internal’ composition arranged in structures, we 

have only structures. The objects of mathematics … are structureless points or positions in structures. As positions 

in structures, they have no identity or features outside a structure.” (1981) p. 530. Shapiro: “The number 2 is no 

more and no less than the second position in the natural number structure; and 6 is the sixth position. Neither of 

them has any independence from the structure in which they are positions, and as positions in this structure, neither 

number is independent of the other.” (2000) p. 258. 

 
8  These latter numbers themselves are defined in terms of their relations to other objects in the system in the same 

way. Thus, we can say that the objects in the system are all defined in terms of each other. 

 
9 Note that, on the ante rem structuralist view, “The natural-number structure itself exemplifies the natural number 

structure.” (Shapiro 1997, p. 101, emphasis added) 
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takes on a seemingly more obscure ontology than Platonism, in that it is committed to objects 

that are not only abstract, but whose natures are entirely exhausted by their relations to other 

such objects. While I think there is a legitimate insight behind this claim, it would be better if we 

did not have to expand our ontology to include this seemingly esoteric sort of object with such an 

unusual nature. I will say a bit more about these issues in Chapter 5. 

3. Structural Universals 

Faced with these issues, let us look at the version of structuralism I wish to defend: 

Immanent structuralism. The “immanence” in the phrase “immanent structuralism” refers to the 

fact that, according to immanent structuralism, mathematics studies structural universals or 

properties, some of which are literally had or instantiated by physical objects. In just the way 

that other properties like volume, mass and charge are “located in” objects or systems of them, 

mathematical patterns or structures can be as well. Hence, they are “immanent” to the objects 

that have them.10 

One question for the immanent structuralist is what is meant by a “structural property?” I 

think the clearest answer to this question comes from philosopher James Franklin:11 

 
10 This is in contrast to the ante rem structuralist. Cf., Resnik (1997) p. 261: “Some philosophers … have wanted to 

take structural properties, construed as metaphysical universals, as primitive entities and interpret mathematics 

within a theory of universals. … I am a realist about mathematical objects first, without being a realist about 

properties at all.” See also ibid., p. 269. See also Shapiro (1997) pp. 89-90. For ante rem structuralists, a structure is 

more like an exemplar or paradigm, along the lines of Plato’s Ideas or Forms. As such, ante rem theorists do not 

ultimately understand “exemplification” as straightforward property or universal-instantiation, as I would, but rather 

as consisting in something analogous to an isomorphism or congruence relation. See Resnik (1997) p. 204 ff. and 

Shapiro (1997) pp. 90-91. 

 
11 For this definition, see Franklin (2014) p. 57. My view is deeply indebted to Franklin’s work, although my view 

takes the account of mathematical truth and ontology in a rather different direction. 
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(PROP): P is a purely structural property iff P can be defined entirely in terms of 

‘part’, ‘whole’, ‘sameness’, ‘difference’, and purely logical vocabulary. 

This is best illustrated by an example. Consider Euler’s famous Bridges of Konigsberg problem: 

  

(A): Bridge    (B): K-Graph 

The question Euler set out to answer was whether there was a path through the city that would 

cross each bridge exactly once. (The bridges are highlighted.) However, the rules are that the 

islands can only be reached by the bridges (no swimming, flying, or wormhole-ing!) and every 

bridge, once accessed, must be crossed to the other side (no turning back half-way across the 

bridge!). One need not end up at the place one started. One only has to cross each bridge once.  

Now, as it turns out, the answer to Euler’s question is negative: There is no such path. 

However, what is most interesting about this case for our purposes is the fact that many of the 

details mentioned in the question don’t matter, at least mathematically speaking: The question 

can be grasped entirely by looking at the graphical representation in (B). 

I will call the type of object (B) represents a K-graph. To state the definition of a K-graph 

(the type of graph the question is about) all we need to mention are four distinct parts, v1, … , v4 

(represented via four nodes), and some relation E between them (holding between the parts in the 
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same way as the seven lines connect the nodes). Thus, the property of being a K-graph would 

seem to be a purely structural property, since it can be defined as follows: 

(K-graph): The property of being a K-graph is the property of being a whole G 

with some distinct parts v1, … , v4, and some relation E between these parts such 

that v1Ev2, v1Ev3, … (etc.).12 

Contrast this with a paradigmatically non-purely structural property, such as Aristotle’s 

definition of the property of being a human: 

(Human): The property of being an animal, and of having a rational nature, (etc.) 

Assuming, of course, that being an animal and having a rational nature will have to be defined in 

irreducibly physical terms (or maybe even irreducibly mental terms), the property of being 

human, as defined, is not a purely structural property. 

As another example, consider the Klein 4-group.13 It is a group with four elements, e, a, 

b, c, and an operation * on these elements. Its table is given below: 

* e  a b c 

e e a b c 

a a e c b 

b b c e a 

c c b a e 

 
12 Note that by specifying the parts of G with variables and the relations with a predicate we are specifying the 

logical categories of these things, and so we can still say that this property is defined in terms of purely logical 

vocabulary. 

 
13 Lewis (1990) 
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We can define the Klein 4-group as a purely structural property: 

(KLEIN): The property of being a Klein 4-group is the property of being a whole 

that is a group14 with distinct parts e, a, b, c, and a function15 * on these parts such 

that: e*e=e, e*a=a , ... (etc.) 

The property of being a Klein 4-group is spelled out by specifying the definition of * from the 

table we saw above. Note that many algebraic structures can be defined by similar tables. 

We can also draw examples from topology and analysis. For example, take the property 

of being a topological space:16 

(TOP): The property of being a topological space is the property of being a whole 

S with two parts, O and C (called the open parts and closed parts), such that: 

1. There is some part e (called the empty part) that has no parts. 

2. S is a part of O and e is a part of O. 

3. Any sum of parts of O is a part of O 

4. Any finite intersection of parts of O is a part of O. 

This important definition from topology allows us to give the definition of continuity as well: 

 
14 The property of being a group is itself purely structural. If one looks at a definition of a group, one will see that it 

just specifies some whole with some operation obeying closure, associativity, etc., where these properties are 

themselves definable purely structurally in terms of part, whole and logical vocabulary. 

 
15 Talk of functions can be reduced to talk of relations, if one finds talk in terms of relations preferable. 

 
16 See Franklin (2014) p. 61. 
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(CONT): The property of being a continuous function is the property of being 

some function f from parts of a topological space S to parts of S, such that the 

inverse image of any open part is also open.17 

Immanent structuralism holds that, given the abstract nature of mathematics, all of the structures 

that mathematics studies can be defined as purely structural properties similar to these.18 Thus, 

the subject matter of mathematics consists only in purely structural properties, and does not 

include any Platonist-style mathematical objects. I will argue for this more fully in Chapter 4, but 

for now hopefully these simple examples are illustrative of the idea. 

4. Immanent Structuralism: Ontology and Epistemology 

One of the primary benefits I claim for immanent structuralism is that we can avoid some 

of the epistemological and ontological concerns that arise for Platonists and ante rem 

structuralists. 

In the first place, we are able to get rid of sui generis Platonic mathematical objects, and 

only have to deal with properties. Arguably, there will be independent metaphysical pressure 

from the empirical world to deal with properties or universals anyway. Thus, the categories of 

being required to account for mathematical truth are reduced. 

Secondly, on my view, since mathematical properties are purely structural properties, 

they can be literally had or instantiated by physical objects, just as other properties like mass, 

 
17 Hopefully it is clear how ‘inverse image’ would be defined too. And again, if it is easier to think in terms of 

relations, function talk can be wholly explained in terms of relations. 

 
18 For further examples, drawn from the higher reaches of mathematics, along with discussion of the role part and 

whole thinking plays in mathematics, see Bell (2004). I have chosen not to use Bell’s examples, not because I think 

they don’t work, but because the concept of a purely structural property is most easily seen via simple cases. 

Nevertheless, Bell’s examples confirm that this is not just a feature of “simple” mathematics. Arguably, it is the 

defining feature of mathematics. 
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charge and color are.19 Thus, mathematical patterns, or structures, can be “located in” objects or 

regions of space in exactly the same way that an object’s size, mass, or color can be. Hence, at 

least in principle, some mathematical properties and relations can be accessed directly through 

perception.20 

In order for claims about uninstantiated mathematical structures to come out true, 

however, we will need there to be some uninstantiated – and thus, unperceived – properties.21 

Nevertheless, I will argue if immanent structuralism is true then all of the uninstantiated 

properties of mathematics can be built up out of directly perceivable ones – just as the property 

golden mountain can be built out of the perceivable properties golden and mountain.  

For these reasons, immanent structuralism has the potential to provide a more realistic 

epistemology for higher mathematics, where our initial acquisition of mathematical concepts is 

similar to our acquisition of concepts of physical properties (viz., through perception). Adult 

humans can then go on to build and define the more complicated concepts of higher mathematics 

by means of their general logical concepts. 

In these respects, immanent structuralism can hope to provide a more plausible 

epistemology than standard Platonistic theories. Part of the problem for Platonism has been the 

explicitly axiomatic model that it takes as its paradigm case: Mathematical theorems are justified 

by appeal to some fundamental axioms and well-defined rules of inference that are taken to be 

 
19 Though in virtue of their being “purely structural” properties, they can also be had by not-obviously-physical 

things too – e.g., I can count ideas, relations, or even angels if there are any. 

 
20 Often, though by no means exclusively, by visual perception. 

 
21 Though, in a way, immanent structuralism’s ontology is even less committal than this: If one is ultimately a 

nominalist about properties, then presumably one has a way to effectively translate all property-talk – including talk 

about uninstantiated properties – into language that doesn’t require reference to properties. That would be fine with 

me, so long as this paraphrastic elimination is able to capture all the facts about properties that I will need later. 
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valid. And so the quest has been to look for the “foundational” axioms which also specify the 

fundamental “entities” or “objects” of mathematics. This leads to the further problem of how 

these foundational axioms and their postulation of these basic mathematical objects can be 

justified. Various proposals have been given for how to do this, including appeals to a quasi-

perceptual direct intuition, inference to the best explanation, indispensability arguments, and 

revised concepts of analyticity.22 Arguably, none of these solutions is particularly satisfying. 

Undoubtedly, advances in the axiomatic method have contributed decisively to the rigor 

of mathematics. However, it should not be taken as the paradigm case or the starting point for 

philosophical inquiry. In practice, the axiomatic model is not the primary means by which 

mathematical understanding is cultivated or how mathematical results are discovered. Formal or 

quasi-formal proof is very much the last step. Furthermore, proof by fundamental axioms is not 

the only way that mathematical results can be justified. And it is almost certainly not how 

mathematical concepts are initially acquired.23 

Important recent work in cognitive science and philosophy of psychology, such as Carey 

(2011) and Burge (2010), has argued that mathematical concepts and basic mathematical beliefs 

are present from an early age, and likely are represented in the perceptual systems even of 

sufficiently sophisticated animals. And obviously young children learn important mathematical 

results in grade school, and are taught by non-axiomatic, suggestive methods (with a heavy 

emphasis on perceptual aids). Presumably these mathematical results are known. 

 
22 See Shapiro (2000) and Linnebo (2017) for overviews of some of these approaches. 

 
23 I will discuss these claims further in Chapter 3 below. 
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So, while perhaps rigorous proof provides the best justification for mathematical beliefs, 

rigorous proof is not necessary for that. Therefore, even if Platonists were successful in the 

project of providing adequate “foundations” for mathematics in the form of axioms plus a 

plausible story of how these axioms can be known (e.g., via Frege’s view that they are known 

qua analytic truths, or via some indispensability argument), this is still an implausible 

explanation for the vast majority of mathematical knowledge had by most people in most times 

and places. On immanent structuralism, however, explaining this knowledge is not more difficult 

than explaining how people can gain knowledge through perception and the concepts built up 

from perception. 

5. A Preview of Things to Come 

The rest of the dissertation is roughly in two parts: The first part, consisting of Chapters 2 

and 3, constitutes the bulk of the theory. Here I attempt to give a compelling story about the two 

central issues for any philosophy of mathematics: (a) ontology and truth in mathematics and (b) 

the epistemology of mathematics. Chapter 2 contains an essence-based account of mathematical 

truth that assumes the existence of Aristotelian universals. In this chapter I draw on recent work 

in neo-Aristotelian metaphysics that has been unavailable to or underutilized in previous 

discussions of mathematics. This chapter also develops and advances the metaphysics of 

property parthood.24 In Chapter 3 I take the account of mathematical truth and ontology from 

Chapter 2 and try to show how a plausible, quasi-empiricist epistemology of mathematics falls 

out of this account, while clarifying further a few aspects of the ontology. 

 
24 A notion that has seen a resurgence very recently and is likely to become increasingly important as 

intensionalizing accounts of semantics gain traction. See especially Craig Warmke (2015), (2016), and (2019), as 

well as L.A. Paul (2002), (2004) and (2012). 
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The second part of the dissertation applies the metaphysical and epistemological theory 

set out in Part I to more specific issues in mathematical practice and in the philosophy of science. 

Chapter 4 considers the practice of mathematical reduction and what I call “treating-as,” and 

illustrates how immanent structuralism is ideally situated to explain these phenomena. Having 

seen the theory put to use a bit, Chapter 5 constitutes a brief interlude, and compares immanent 

structuralism with some closely related positions – including Shapiro and Resnik’s ante rem 

structuralism, Hellman’s modal structuralism, and Balaguer’s modified “full-blooded” 

Platonism. I try to show how immanent structuralism avoids some of the significant pitfalls that 

even these more sophisticated treatments fall into while retaining their advantages. 

Chapter 6 develops the notion of “de re mathematical necessity,” which has the potential 

to be confused with other notions of necessity related to mathematics. I argue that immanent 

structuralism is much better placed to explain cases of de re mathematical necessity than 

traditional Platonism. Indeed, I argue that – perhaps surprisingly – these cases constitute a 

significant and underappreciated problem for Platonism. Chapter 7 is a concluding chapter, 

where I attempt to draw some broader lessons for ontology and philosophical theorizing. In 

particular, I identify a few forms of reasoning that are common among analytic philosophers and 

ontologists and explain why they are undercut by the theory I’ve presented. 
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CHAPTER 2: MATHEMATICAL TRUTH AND ONTOLOGY 

 

Introduction 

In this chapter I will try to give an account of how all mathematical truths can be seen to 

be true in virtue of the natures of purely structural properties. In Section 1 I will make clearer 

Benacerraf’s original problem of a uniform semantics. In Sections 2 and 3, I will identify a part 

of natural language that I call “essentialist pattern statements.” I will explain how these sorts of 

statements can provide us a model for a theory of mathematical truth so that we can resolve 

Benacerraf’s challenge. In Sections 4 and 5 I discuss the notion of “property parthood” that will 

serve as the basic ontological tool in our theory of mathematical truth. I show that the best 

account of this notion appeals to an Aristotelian notion of essence. In Section 6 I give the 

account of mathematical truth in full. Before concluding, Section 7 discusses two ontological 

interpretations of “essence” that we might take. 

1. The Problem of Uniform Semantics 

In the previous chapter, I provided examples to illustrate how one might plausibly 

construe the subject matter of mathematics in terms of purely structural properties. I have also 

suggested some ways immanent structuralism might provide a more satisfying ontology and 

epistemology for mathematics than its competitors. Before examining these suggestions more 

closely, there is a classic technical concern we must address, also due to Benacerraf. This is 

known as the problem of uniform semantics. 
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The Uniform Semantics Problem: Platonism allows us to give a uniform semantics for 

mathematical and ordinary discourse. For example, ‘2<3’ and ‘Paco is bigger than Lolly’ 

both appear to have a similar logical form; both seem to assert that some relation holds 

between two objects. But if we reject a Platonist interpretation of mathematical 

statements, how are we to provide a semantics that is uniform between mathematical and 

other linguistic discourse? 

In Benacerraf’s seminal article, “Mathematical Truth” (1973), he notes an apparent 

tension that arises for any attempt at an adequate theory of mathematical truth, i.e., any candidate 

for an adequate semantics for mathematical statements. 

On the one hand, we want our semantics for mathematical statements to be an account of 

their truth (rather than, say, an account merely of their theoremhood, or their being felicitous 

utterances on a given occasion). But on the other hand, the concept of truth comes along with 

some requirements, i.e., there are some conditions that are constitutive of truth-hood. 

In particular, if we want to give an explication of truth for some area of discourse, that 

discourse’s having a standard, Tarski-inspired semantics for ordinary singular and quantified 

statements is, ceteris paribus, a plausible constraint on that account of truth. Otherwise, it is hard 

to see how the concept being explicated is a truth-concept. 

Benacerraf’s point can be illustrated by a similar requirement on truth, Tarski’s own 

“Convention T”:25 

 
25 Cf. Tarski (1944). 
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Convention T: Any viable theory of truth for some set of sentences S must satisfy the 

following condition. For any sentence p in S: 

(T) “p” is true iff p. 

For instance, if we are trying to give an account of what it is for statements about my dog 

to be true, that account must entail that “Paco is small” is true just in case Paco is small. This is 

generally taken to be a plausible constraint on any account of truth. 

Benacerraf thinks that a further constraint on a theory of truth is that the relevant 

sentences have a “standard” semantics. What this means is that the semantics explicating our 

idea of mathematical truth must be the usual semantics for ordinary, non-mathematical 

statements, i.e., mathematical statements ought to be given the same sorts of truth-conditions as 

other ordinary indicative sentences. But on the ordinary, Tarski-inspired semantics, names refer 

to objects, quantifiers range over some domain of entities, and predicates indicate properties or 

relations that the objects or entities can have. So the standard semantics gives a Platonist reading 

to mathematical statements. 

From this follows the second horn of Benacerraf’s dilemma: If we do accept a “uniform” 

or “homogeneous” semantics for both mathematical and non-mathematical statements, then we 

seem to saddle mathematical sentences with commitments to an ontology that would 

simultaneously make it impossible for us to know their truth. 

Although Benacerraf frames his challenge specifically in terms of a causal theory of 

knowledge, most philosophers have moved beyond this assumption of his argument.26 

Nevertheless embracing this particular machinery is unnecessary for his argument to go through. 

 
26 See Maddy (1996) and Linnebo (2017). 
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We can pose the same question this way: How can we plausibly account for most people having 

reliable knowledge of entities that are entirely causally disconnected from the physical world?27 

We will come back to this part of Benacerraf’s dilemma later.28 

To sum things up, Benacerraf’s dilemma can be stated succinctly as follows: 

Benacerraf’s Dilemma: You can either have an adequate theory of mathematical truth – 

which would require a uniform semantics between mathematical and non-mathematical 

discourse – or a plausible mathematical epistemology, but not both. 

Now, up this point I have not given an explicit and general account of how immanent 

structuralism would construe the truth-conditions for mathematical statements. But if, as 

immanent structuralism asserts, all that is needed for some mathematical statement to be true is 

for some fact about some structural properties to hold, then it must be possible to give the truth-

conditions for mathematical statements entirely in terms of facts about these structural 

properties. Therefore, my concern in the rest of this chapter will be to provide an immanent 

structuralist account of the truth-conditions for mathematical statements that can meet 

Benacerraf’s challenge. In other words, this chapter will focus on the first horn of Benacerraf’s 

dilemma. 

If we want to reject Benacerraf’s dilemma, we will have to find some premise of his to 

deny. So let us look at his argument a bit more closely. First off, Benacerraf begins by noting 

that a semantics for mathematics must be, in part, an explication of truth, and not some other 

concept (like theoremhood, felicitous-utterance-hood, interesting-metaphor-hood, etc.): 

 
27 Cp. Maddy (1990) pp. 36-50. 

 
28 See Chapter 3 below. 
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“For present purposes we can state it [the uniform semantics requirement] as the 

requirement that there be an over-all theory of truth in terms of which it can be certified 

that the account of mathematical truth is indeed an account of mathematical truth. The 

account should imply truth conditions for mathematical propositions that are evidently 

conditions of their truth (and not simply, say, of their theoremhood in some formal 

system).”29 

Benacerraf then argues that satisfying this requirement requires a semantics that is 

uniform between mathematical and non-mathematical discourse: 

“Another way of putting this first requirement is to demand that any theory of 

mathematical truth be in conformity with a general theory of truth … which certifies that 

the property of sentences that the account calls ‘truth’ is indeed truth. This, it seems to 

me, can be done only on the basis of some general theory for at least the language as a 

whole ... Perhaps the applicability of this requirement to the present case amounts only to 

a plea that the semantical apparatus of mathematics be seen as part and parcel of that of 

the natural language in which it is done, and thus that whatever semantical account we 

are inclined to give of names or, more generally, of singular terms, predicates, and 

quantifiers in the mother tongue include those parts of the mother tongue which we 

classify as mathematese.”30 

Now, one crucial assumption of Benacerraf’s argument here, which I have highlighted, is 

that there even is a uniform semantics for non-mathematical discourse. That is to say, Benacerraf 

 
29 Benacerraf (1973) p. 408. 

 
30 Ibid. 
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seems to assume that, in general, all superficially singular or quantified sentences will have the 

same semantics, and that there is such a thing as “the” semantical apparatus of natural language. 

However, since 1973 when Benacerraf’s paper was first published, many cases have been 

brought up that significantly cast doubt on Benacerraf’s original thesis, even leaving aside 

mathematical discourse. 

Consider, for instance, the following cases, which have been widely discussed in the 

relevant literature: 

(1) “Some dog is black.” [Ordinary ‘count’ quantifier] 

(2) “Some water is wet.” [Mass quantifier] 

(3) “Some critics admire only one another.” [Plural quantifier] 

All three of these sentences superficially have the same grammar, but they appear to have 

rather different truth conditions. The first sentence can be spelled out as being equivalent to 

“There is at least one individual thing that is a dog and is black.” But arguably this way of 

cashing out (1) cannot be applied to (2). After all, it seems strange to say (in any normal context) 

“There is some particular thing that is a water and is wet.”31 This suggests that (1) and (2) have a 

different semantical form. Finally, the third sentence, known as a “Geach-Kaplan sentence,” is a 

famous instance of “non-firstorderizability”: its content cannot accurately be captured by a first-

order sentence with the same sort of quantifier as (1).32 

 
31 Cf. Lowe (2009). 

 
32 Cf. Boolos (1984) p. 56. Some argue that there are ways to capture the contents of these sentences using first-order 

quantification over sets. See, e.g., Quine (1969). But this is not the only way to do so (nor, perhaps, the most plausible). 

And regardless, the important point for our purposes is that the semantics of (3) will be different from the semantics 

of (1), despite having syntax superficially similar to a first-order sentence like “Some dogs love some humans.” 
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There is more to be said about these particular cases, of course, and much has been said. 

To be fair, perhaps there is in fact some more general logical form that all three of these 

quantified statements share. And perhaps even if these sentences do not all share exactly the 

same semantics, Benacerraf’s claim that quantified mathematical statements should have a 

semantics similar to (1) still has prima facie plausibility. My point here though is simply to note 

that Benacerraf’s argument importantly depends on an assumption that is at least challengeable, 

namely: 

• There is just one, uniform semantics for ordinary quantified and singular 

statements. 

The fact that examples like those above cast doubt on Benacerraf’s assumption makes his 

original formulation of the dilemma unworkable. If Benacerraf’s criterion for an adequate 

semantics for mathematics is that it be uniform between mathematics and all non-mathematical 

discourse, then arguably this is impossible for anyone, Platonist or otherwise, if only because 

there is no such thing as “the” semantics for all non-mathematical singular and quantified 

statements.33 

I think other cases I will discuss below show further why Benacerraf’s assumption that 

there is a single uniform semantics is mistaken. With that said, I still agree that it would be nice 

if we could provide a mathematical semantics that is uniform with at least a certain part of 

natural language, while also providing a plausible mathematical epistemology. I believe this is 

possible, and will try to do so in the sections that follow. 

 
33 According to John Burgess, regarding Boolos’ 1984 and 1985 articles, “plural quantification had prior to these 

papers received little or no attention.” (See Burgess in Boolos (1998) p. 10) It is understandable therefore that at the 

time of Benacerraf’s original (1973) discussion he did not take them into consideration. 
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2. Pattern Statements 

My strategy is to consider mathematical statements along the lines of what I call “pattern 

statements.” The basic idea is this: There are many true statements, in grammatical singular 

form, that are about properties or universals, and that can be true even when the relevant 

universal is not instantiated.34 Arguably, some of these “pattern statements” are true because of 

facts about the natures of the relevant properties or universals. Let’s look at some examples. 

Consider a case in biology where one might say “The cell membrane is an organelle” or 

“The cell membrane is semipermeable.” Or, in physics, one might say of some hypothetical 

particle, “The neutralino is a hypothetical particle” and “The neutralino is a fermion with spin 

½,” or “The graviton is a boson.” Or, in the case of baseball, if one were explaining to a friend 

the different positions, one might say “The pitcher is the player who throws the ball”35 or “The 

umpire enforces the rules” or “The coach picks the batting order.” 

Arguably, none of these statements commits one to the existence of some strange, 

particular individual called the cell membrane, or the neutralino, or the graviton, or the coach. 

Arguably, these are true just because of some facts about the natures of the relevant properties, 

e.g., being a cell membrane, being a pitcher, etc. 

The strategy, then, will be to assimilate mathematical statements to singular-form pattern-

statements of this sort. To say “0 is even” is to say “the number with no successor is even,” and 

this can be given a reading similar to “the neutralino has spin 1/2.” To say “0 is less than 1” is to 

 
34 And therefore, as I will argue, the definite descriptions occurring in them cannot be interpreted as disguised, first-

order existentially-quantified statements. 
35 From Wikipedia’s entry on “Pitcher”: "In baseball, the pitcher is the player who throws the baseball from the 

pitcher's mound toward the catcher to begin each play, with the goal of retiring a batter, who attempts to either make 

contact with the pitched ball or draw a walk.” 

https://en.wikipedia.org/wiki/Pitcher
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say “the number with no successor is less than the number that succeeds 1,” and this can be 

given a semantics similar to “the nucleus is positioned behind the cell membrane.” In addition, 

these mathematical statements can themselves be parsed further, so that they are phrased in 

purely structural vocabulary. If this strategy is successful, then we will be able to meet 

Benacerraf’s challenge and show how mathematical statements are uniform with at least a part 

of ordinary natural language. 

3. Properties, Property-Parthood, and Pattern Statements 

Though this gives us a general strategy for making the semantics of mathematical 

statements uniform with (a part of) ordinary discourse, that still leaves open the question of how, 

precisely, to spell out the semantics of the relevant pattern statements entirely in terms of 

universals, thereby allowing us to show that facts about universals are all that is necessary for the 

right mathematical statements to come out true. 

The method I propose is to think in terms of constitutive relations between properties. As 

a simple case, think of the superficially singular-form pattern statement “The dog is an animal.” 

One way to cash this out is to say that this is true if the property of being an animal is “part of” 

the property of being a dog.36 In other words, being an animal is part of the very nature of the 

property being a dog. It is part of what constitutes that property. The strategy will be to 

assimilate mathematical statements to statements of this sort. 

But first, we should make a qualification: In the case of being a mammal and being a 

dog, it seems plausible that the relation between these two properties is, in fact, a necessary and 

 
36 Cf. Warmke (2015). 
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essential one. But it is not clear that all pattern statements have this feature. Consider, for 

instance, the following piece of discourse: 

“The bonobo, also historically called the pygmy chimpanzee and less often, the dwarf or 

gracile chimpanzee, is an endangered great ape and one of the two species making up the 

genus Pan; the other being the common chimpanzee. … The bonobo is distinguished by 

relatively long legs, pink lips, dark face and tail-tuft through adulthood, and parted long 

hair on its head. The bonobo is found in a 500,000 km2 (190,000 sq mi) area of the 

Congo Basin in the Democratic Republic of the Congo, Central Africa.”37 

At least some of the pattern statements here appear to be contingent. For instance, the last 

sentence would be false if the bonobo were to leave its natural habitat and migrate to Tanzania 

(which could happen). So, evidently, these particular pattern statements cannot be explained in 

terms of what properties are part of the nature of being a bonobo. 

It is an interesting question whether contingent pattern statements like “The bonobo is 

found in the Congo Basin” might be understood to have the same underlying structure as 

metaphysically necessary “essentialist” pattern statements like “The dog is an animal.” However, 

I will not try to resolve the issue here. Doing so is not necessary here because all distinctively 

mathematical truths express necessary and essential truths about structural properties.38 

 
37 See https://en.wikipedia.org/wiki/Bonobo. Thanks to Ram Neta for mentioning this point and the example. 

 
38 I can propose one hypothesis though: Perhaps singular-form pattern-statements can be thought of as expressing a 

type of modal relation between properties, but with a stronger or weaker modal force depending on the context. The 

relation between being a mammal and being a bonobo would be the (very) strong modal relation of is part of the 

nature of. The relation between having pink lips and being a bonobo will be a contingent, but still relatively strong 

and stable (presumably nomic-like) relationship. (Cf. Armstrong (2010) p. 37.) The relation between being a bonobo 

and being in the Congo Basin will apparently be still weaker – perhaps just the degenerate one of “having an extension 

that is (mostly) a sub-extension of.” But this is only a suggestion, and I will not attempt to spell this out into a worked-

out theory for all pattern-statements. As I have mentioned, this is happily unnecessary for my purposes. 

https://en.wikipedia.org/wiki/Bonobo
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For our purposes, then, it is only important that there be a sub-class of pattern statements 

– the essentialist pattern statements, you might call them – that are plausibly made true in virtue 

of essential-parthood relations holding between properties, just like the case of “The dog is a 

mammal.”39 Examples like these show that the truth-conditions for at least some pattern-

statements can be given entirely in terms of facts about properties. 

My goal is to give a similar account for more complicated statements, such as those 

found in mathematics, and expand a semantics resting on property-mereological relations of this 

sort to the rest of mathematical discourse. If this is successful, then by showing that the truth-

conditions of mathematical claims can be given entirely in terms of relations between purely 

structural properties we can show that the truths of mathematics do not commit us to anything 

more than certain properties or universals – i.e., that no abstract mathematical objects or 

particulars are necessary.40 

While our approach will have to be generalized to more complex cases later, let us for 

now consider how this might go just for some simple mathematical statement. Consider, for 

instance, the subject-predicate singular-form claim, “0 has a successor.” The Platonist semantics 

for this claim is obvious, and is the same as many ordinary singular subject-predicate statements: 

 
39 This sort of example is used by Warmke (2015), Roy (1993) and Jubien (2009) as a clear illustration of statements 

expressing constitutive property-parthood relations. Warmke, Roy and Jubien have already attempted to give an 

intensional semantics for modal statements in terms of mereological relations among properties/intensions. My hope 

is if I can give a purely intensional account of the truth-conditions for mathematical statements then that will provide 

an interesting contribution to the larger Warmke-Jubien project of “intensionalizing” semantics more generally. 

 
40 If this part of the theory goes through, then that reduces the number of problems to be solved. The problems of 

mathematical ontology and epistemology become the problem of the ontology and epistemology of universals more 

generally. 
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• ‘0 has a successor’ is true iff the object zero has a certain property (viz., having a 

successor)41 

My semantics necessarily will be somewhat less straightforward than this, since I want to 

give a semantics that makes reference only to constitutive parthood relations between purely 

structural properties. 

First, let me reiterate the definition from Section 1.3 of the structural property of being a 

Peano Arithmetic system. To make this easier, we will use some abbreviations. Note that these 

are only abbreviations of natural language, not parts of a formal language: 

• Σx: - "For some x such that" 

• Σ!x - "For exactly one x"  

• ix: - "The x such that" 

• Πx: - "For all x such that" 

• x∘S -"x is a part of S” 

• U≪S - "U is a whole which is a part of S or is identical to S" 

The clauses of the following definition then correspond to the traditional Peano axioms: 

(PA): The property of instantiating Peano Arithmetic is the property of being a whole S 

and function ′ from the parts of S to the parts of S such that: 

(1) Σ!x∘S: ~Σy∘S: x=y′; 0 ≝ ix∘S: ~Σy∘S: x=y′ 

(2) Πx: (x∘S ⇒ x′∘S) 

 
41 On ante rem structuralism, too, this sentence will have the same referential, first-order semantics (cf. Chapter 1 

above). The primary difference from a sui generis Platonist  is that the ante rem structuralist understands the nature of 

the object zero to be different. See Shapiro (1997) p. 72. 
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(3) Πx: Πy: (x′=y′ ⇒ x=y) 

(4) ΠU: U≪S ⇒ [[0∘U & Πx∘S: (x∘U⇒x′∘U)] ⇒ Πx∘S: x∘U] 

What this definition essentially does is to take the traditional Peano axioms and to 

summarize them in purely structural terms, i.e., in terms of part, whole and purely logical 

vocabulary. For example, the second clause states that if x is a part of the system instantiating 

Peano arithmetic, then so is the successor of x. 

So, “PA(S,’)” is true for some whole S and relation ‘ iff S and ‘ together instantiate this 

complex structural property. This is what it means to say some physical “system” instantiates 

Peano arithmetic. 

For the immanent structuralist, in the statement “0 has a successor” the phrase “0” 

connotes some structural property. So for our semantics, the content of the phrase “0” in the 

sentence “0 has a successor” will be some structural property defined in terms of the natural 

number pattern as a whole, namely: “the natural number that is not a successor”: 

[0] = [“The natural number that is not a successor”] 

= λz:∃S∀𝑥(𝐺(𝑥) → 𝐹(𝑥))’[z∘S & PA(S,’) & z = ix∘S: ~Σy∘S: x’=y]42 

= the property of being a z such that (z is in a PA system S with a function ‘ 

satisfying the Peano axioms) and z is the unique x in that system which is not the 

successor of anything in the system 

Spelled out explicitly in this way, this can be seen to be a purely structural property. 

Similarly for the content of “has a successor”: 

 
42 Note: The semantics for the lambda operator here will not be in terms of functions from individuals to truth values, 

as in the traditional way. Rather, lambda expressions will denote actual properties. 
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[“has a successor”] 

= λz:∃S∃’[z∘S & PA(S,’) & Σy∘S: y=z′] 

= the property of being a z such that (z is in a PA system)43 & some y in the 

system is the successor of z 

So, fully spelling out the structural properties involved, the immanent structuralist will 

translate “0 has a successor” as “the natural number that is not a successor has a successor.” 

On the semantics I am proposing, this is to be read as a pattern statement, like “the 

pitcher throws the ball.” So our strategy will be to apply the insight that the above two properties 

stand in constitutive, property parthood relationships to each other. Thus, the semantics for “0 

has a successor” will be in terms of a constitutive property-parthood relation, which we can label 

⋐: 

(CONS): [“has a successor”] ⋐ [“The natural number that is not a successor”] 

I.e.: 

λz:∃S∃’[z∘S & PA(S,’) & Σy∘S: y=z′] ⋐ λz:∃S∃’[z∘S & PA(S,’) & z = ix∘S: ~Σy∘S: 

x=y’] 

The way to read (CONS) is that it is true just in case the former property is part of what it 

is to be the latter property.44 The property having a successor is part of the nature of the property 

 
43 In the rest of the discussion, for ease of readability I will summarize “z is in a PA system S with a function ‘ 

satisfying the Peano axioms” by simply saying “z is in a PA system.” 

 
44 Similar to how the property being a mammal is part of the nature of the property being a dog, which makes the 

pattern statement “the dog is a mammal” come out true. 
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being the member of a PA-series that is not any other member’s successor.45 In that sense, the 

property [“has a successor”] is a constituent or a part of the property [“the natural number with 

no successor”].46 

In sum: The basic idea for a simple singular mathematical sentence “a is F” would be that 

“a is F” is true if the property being F “follows from” or is “part of” the essence of the property 

being a. In the next section, I propose a more general semantics for the rest of mathematical 

discourse based entirely on property-parthood relations of this sort. 

4. Language and Denotation: A First Stab 

Before we begin, we should briefly specify the language we will be working with. The 

semantics I give here will be for a standard sort of language: 

Language: 

Let a1, a2, ... be individual constants. 

Let Fn, Gn, Hn, … be n-place predicates (for each n). 

Let x1, x2, … xn, … be countably many variables. 

We also include the usual first-order logical connectives and symbols, including identity. The 

usual rules for generating formulas and sentences apply.47 

 
45 Note that we do not want to say that “0 has a successor” is true iff the property [“has a successor”] is true of the 

property [“the natural number with no successor”] – that doesn’t really make much sense, and at best seems false. 

 
46 Important: Note that this is a different sense of “part” than the sense in which it occurs in the definitions of the 

mathematical structural properties themselves. There is “property-parthood,” and then there is the use of “part” in the 

ordinary sense. Mathematical definitions make use of the latter sense, while our semantics makes use of the former 

sense. 

 
47 Since the aim is to provide a semantics to rival Platonism, we will want to analyze the same sorts of formulas and 

sentences that a standard semantics does. 
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Let us think about denotation for our language. From our discussion in the previous 

section we gleaned some idea of how an immanent structuralist should spell out a simple 

mathematical statement, as well as what denotation will have to look like. So we begin by 

drawing this out a bit more. 

First, note again that on immanent structuralism, the ontology of mathematics consists of 

just the purely structural properties. All that is available, for mathematical purposes, are purely 

structural properties. Therefore, individual constants must connote purely structural properties.48 

Which ones? Well, naturally, an individual constant will connote the property of being a 

certain individual fulfilling a unique role within some kind of purely structural system.49 We saw 

this in the case of the term “0” for example. This stood for the property of being the unique thing 

in a Peano-arithmetic successor series that is not the successor of anything else in the series. 

So, where [] is a denotation function, and where a is an individual constant:  

(D1): [a] denotes some purely structural individual-property,  

• i.e., properties of the form: [being an x s.t. x is the thing of such and such sort in a 

purely structural system] 

 
48 Note that occasionally I will use the phrase “connotes” instead of “denotes.” While these both express the same 

thing, “connotes” is sometimes used to emphasize the fact that, in our theory, the only thing referred to is properties, 

including when we are using individual names, and furthermore that predicating something of a name in our language 

amounts to saying one property is part of another rather than that an individual entity instantiates a property. 

 
49 Note: An individual constant connotes the property of being the individual with a certain role in a kind of structural 

system; individual constants do not necessarily denote individuals that actually are the role-holders in some 

instantiation of the relevant structure. 
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• For example, [0] denotes λz:∃S∃’[z∘S & PA(S,’) & z = ix∘S: ~Σy∘S: x’=y] = the 

property of being a z such that (z is part of a system instantiates PA) and z is the 

unique x in that system which is not the successor of anything in the system. 

From this, we might take a first stab at a simple atomic, subject-predicate sentence. For 

example, in the last section we saw that “0 has a successor” will have the following truth-

condition: 

(Cons): [“has a successor”] ⋐ [0] 

So we might conclude that in general, where a is an individual constant and [F] a purely 

structural property: 

(T0): [a is F] is true when [F] ⋐ [a] 

• i.e., the purely structural property being F is part of the nature of the purely 

structural individual property [a]50 

Now, up to this point, I have left the “property-parthood” notion that is being used in our 

semantics, and which we have denoted by ⋐, to be understood at an intuitive level. This is a 

good point at which to briefly diverge and elaborate on it a bit more. As the discussion below 

will show, we ultimately will have reasons slightly to modify (T0). 

5. What is Property Parthood? 

What does it mean when we assert an essentialist pattern-statement? Take our example: 

(Dog) ‘The dog is a mammal’ is true because being a mammal is part of being a dog. 

 
50 Note that this truth-condition is ultimately the same in form as other, non-mathematical essentialist pattern 

statements. For example: [The dog is a mammal] is true when [mammal] ⋐ [the dog]. 
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Specifically, what does it mean to say that one property is “part of” another, as in this sentence? 

One attractive account takes this sort of talk literally. Call this the literal account. On this 

view, “part” here just means part in the ordinary sense of the word. So properties like being a 

dog and being a horse will both literally have being a mammal as a part.51 That is why “The dog 

is a mammal” comes out true. 

Craig Warmke, who also uses the example of “dogs are mammals” to illustrate the 

property-parthood relation, takes this view. He develops a formal property mereology with 

definitions and axioms similar to those found in the traditional mereology of physical objects.52 

Warmke includes classic axioms for proper parthood, such as Asymmetry, Transitivity, and 

Weak Supplementation, and for sums he endorses Universal Composition.53 The axioms are 

formally similar to traditional mereological axioms, but for Warmke the variables are intended to 

range over properties: 

• Asymmetry: If x is a proper part of y, y isn’t a proper part of x. 

• Transitivity: If x is a proper part of y, and y is a proper part of z, then x is a 

proper part of z. 

• Weak Supplementation: If x is a proper part of y, then y has another proper part 

disjoint from x. 

 
51 Thus, these properties (being a dog and being a horse) will also, literally, overlap. 

 
52 Cf. Warmke (2016). See also Michael Jubien (2009). L.A. Paul also explicitly develops a property mereology, where 

the notion of “part” in property parthood is understood in an entirely literal manner, and axioms similar to the 

traditional mereological axioms for ordinary physical composites are given. The main difference from Warmke is in 

Paul’s conception of properties. Paul is a trope theorist, taking properties to be tropes, i.e., particular, non-repeatable, 

individual metaphysical constituents of ordinary objects that are local to the objects that have them. Traditional 

Platonists and Aristotelians take properties to be universals – meaning at least that they are repeatable – with 

Aristotelians taking them to be literally located in all their instances, and Platonists taking them not to be literally 

located anywhere. See Paul (2002) pp. 582-3. 

 
53 For a helpful overview of the various axiomatizations of mereology, cf. Varzi (2016). 



    

32 
 

• Unrestricted Composition: For any specifiable set of properties whatever, there 

is a sum of those properties which is itself a property.54 

So, for instance, on Warmke’s ontology the property being a golden mountain will be a 

literal mereological sum of being golden and being a mountain. Given the latter two properties, 

the existence of the former follows from Unrestricted Composition. Also, “Golden mountains are 

physical” will be true because of transitivity, together with the fact that being physical is, 

presumably, part of being a mountain. 

One virtue of this account is that it is relatively straightforward. It takes the phrase “being 

a part of” seriously, allowing us straightforwardly to account for our ways of speaking. Another 

virtue is that it is amenable to clear formal treatment via a familiar system of definitions and 

axioms. 

Furthermore, the literal account nicely explains some of our intuitive judgments about 

property parthood. For example, the transitivity axiom straightforwardly explains the “golden 

mountains are physical” case just mentioned. And asymmetry explains why we think that “cats 

are mammals” is true, but not “mammals are cats”: We think there is more to being a cat than 

being mammalian – i.e., that being mammalian is a proper part of being a cat – and so we can 

infer from this fact together with Asymmetry that “mammals are cats” is false.55 

Nevertheless, I have a few objections to the literal mereological account. 

 
54 From this it quickly follows that some impossible properties exist, i.e., ones that cannot be instantiated. For example, 

being round and square. Arguably this is a benefit of Warmke’s account, at least if non-trivial reasoning about 

impossibilities is possible. 

 
55 Since “mammals are cats” is only true on the account if [cat] is a part of [mammal], i.e., if [cat] is a proper part of 

or identical to [mammal]. And they clearly are not identical. So by Asymmetry and the fact that [mammal] is a proper 

part of [cat] it follows that [cat] is not a part of [mammal]. 
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For one, it is somewhat difficult to assess whether the ordinary property parthood talk we 

use ought to be taken literally enough to merit a formal system of mereology, especially 

considering that properties are a rather different kind of thing from, say, physical atoms. We 

have a relatively clear understanding of “parthood” and “composition” as applied to physical 

objects. We can even use “parthood” clearly in an extended sense to talk about more abstract 

subjects, like “parts” of theories. When it comes to properties, on the other hand, talk of one 

property’s being part of another is perhaps better thought of as a sort of analogy or facon de 

parler to express a different sort of relation. 

This worry is not decisive, however. A more important concern has to do with whether 

the literal mereological account can actually do the theoretical work it is needed to do – in 

particular, whether it can adequately capture the modal force of property-parthood statements. 

This is my more central objection. First, recall our (Dog) example: 

(Dog) “Dogs are mammals” is true because being a mammal is part of being a dog. 

On the literal account, the right-hand side is supposed to be read as a mereological 

statement, with “part” being understood entirely univocally with our ordinary notion.  

The problem is that it is hard to see how, on the literal reading of property “parthood,” 

the right-hand side is equivalent to or even entails the left-hand side. This is because the pattern 

statement “Dogs are mammals” is like “Water is H2O” or “Hydrogen atoms are physical:” It is 

an assertion of a necessary, essential truth. But it is not the case that, in general, the parts of a 

thing are necessary or essential to that thing: From “A is part of B” we cannot, in general, infer 

that “A is necessarily part of B.” And so “being a mammal is part of being a dog” does not, by 

itself, entail the necessary pattern statement “Dogs are mammals.” Therefore, so long as “part” is 
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understood in the usual sense, the right-hand side of (Dog) does not entail the left-hand side, and 

so the two propositions are not necessarily equivalent. 

Tony Roy makes a similar point in a different context using the case of the properties 

being red and being colored: 

“Now, r is the actual BEING RED and c is the actual BEING COLORED … And, in 

reaching the conclusion that it follows from the nature of c that if something instantiates 

r, it instantiates c, have we reached the conclusion that necessarily whatever is red is 

colored? I think not. For if there is a possible world … where BEING RED exists without 

being a disjunctive constituent of BEING COLORED then (plausibly) there is a world 

where it is not the case that everything red is colored. … [G]iven that the structure of 

BEING COLORED is as in actuality, it follows that whatever is red is colored. But to 

move from this to the conclusion that necessarily whatever is red is colored, we need that 

BEING COLORED has its structure necessarily …”56 

In other words (modifying Roy’s example slightly), even if the mereological claim “part 

of being red is being colored” is actually true, if this parthood statement is contingent then from 

the literal account it will follow that “Red is a color” is contingent – which it should not be. In 

short: The relation between a property and its “property-parts” is stronger than that between, e.g., 

my body and any particular atom that happens to be part of it. It is not clear how the literal 

reading of property parthood accounts for this. 

 
56 Roy (1993) p. 345. 
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Of course, the problem might be solved by saying that abstract objects like properties do 

have their parts necessarily. But it is difficult to see how the literal mereological account, by 

itself, has the resources to justify this claim. Consider Roy’s discussion: 

“It might be argued that intrinsic properties of abstract objects and, in particular, 

structures of properties are essential to objects that have them. However, in general, the 

structural properties of a thing may be distinguished from those that are essential to it. 

Let’s say (vaguely) that the structure of a thing has to do with its parts and their 

interrelations. Then it is at least arguable that a lectern’s HAVING THIS 

(PARTICULAR) BIT OF WOOD AS A PART is a nonessential but structural property 

of it.”57 

If the “structures” of other objects are not essential to them, and if the notion of “part” in 

property-parthood statements is not different in kind from the ordinary mereological notion, then 

why is the structure of a property any different? What grounds the fact that abstract objects like 

properties have their intrinsic structures essentially? 

For these reasons, I fear that the literal mereological account is at least incomplete.58 

 
57 Roy (1993) p. 343. 

 
58 Incidentally, this also suggests a worry for the “modal intensionalist” theory of modality advocated by Warmke. 

See Warmke (2015) and Warmke (2016). Warmke’s system takes the literal interpretation of property-parthood, and 

defines “p is necessary” as true when the property being such that p is part of the property being a world: On Warmke’s 

view, □p is true iff being such that p is part of being a world. My worry, based on our discussion above, would be that 

the definiens cannot constitute an analysis of the definiendum if being a world only has being such that p as a part 

contingently. Of course, the two sides might be contingently, materially equivalent, and so Warmke’s analysis might 

still be formally useful. But Warmke explicitly intends his analysis of modal notions to be more than another mere 

formalism: He wishes for it to be explanatory of why the particular truths that are necessary are the ones that are 

necessary. Cf. (2015) pp. 309 and 331. Perhaps Warmke’s analysis can be combined with the discussion below that 

tries to resolve some of these worries for the literal account of property parthood. 
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To help us see what the right account is, consider the following sorts of property-

parthood statements, all of which are apparently ways we might put the same point –and, 

therefore, all of which are potential paraphrases of some essentialist pattern-statements. Where F 

and G are properties: 

• (Being) F is part of (being) G. 

• F is part of what it is to be G. 

• F is part of the essence of G. 

• F is part of the nature of G. 

• F is part of the definition of G. 

• Being F is constitutive of being G. 

These all seem to be equivalent. But some of these ways of speaking suggest, or even 

explicitly appeal to, essentialist notions.59 What I propose then is that if we are to get the right 

modality for essentialist pattern statements we should interpret the ⋐ directly as an essentialist 

notion. 

The preferred conception of essence that I will work with is an Aristotelian conception, 

inspired by Kit Fine’s early discussion in “Essence and Modality.”60 Kit Fine’s view is largely in 

response to a modal conception of essence, where the notion of an essential property is 

understood as a metaphysically necessary property. 

In the case of property-parthood statements, the modal analysis would likely go 

something like this (with the necessity operator □ read as a metaphysical necessity): 

 
59 Others have noted the essentialist nature of these sorts of statements, cf. Correia (2006). 

 
60 See Fine (1993) and (1995). 
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• (Modal): F is part of the essence of G iff □∀𝑥(𝐺𝑥 → 𝐹𝑥) 

Though I think this analysis is in some ways closer to the truth than the literal 

mereological account – note, for instance, that in this analysis, the notion of “part” plays no 

ultimate role – I prefer an interpretation of essence closer to Fine’s notion, which I will explain. 

Fine begins by noting that the modal account of essence fails to capture certain 

asymmetries between necessarily co-existent objects. For example, one might think it is part of 

the essence of Jack – Tarzan’s son – that if Jack exists then Tarzan is his father; but it does not 

seem to be part of Tarzan’s essence that if Jack exists then he is Jack’s father. Although it might 

be a de re necessary property of both that if Jack exists then Tarzan is his father (say, because of 

the essentiality of origins), it does not seem to be definitive of Tarzan in the way that it is of Jack; 

this property is not part of Tarzan’s very definition or nature in the way that it is of Jack’s.61 

In short, there seems to be an asymmetry in essence between Jack and Tarzan that is not 

captured by the modal account. Although it may be true that an essentialist statement entails the 

relevant metaphysical necessity, it does not seem that every metaphysical necessity entails a 

corresponding essentialist statement. 

Other examples of essentialist asymmetries might be: It is part of the very definition of 

salt to contain chlorine, but not part of the very definition of chlorine to be a potential constituent 

of salt (even though it might be a de re necessary feature of both, since necessarily salt is NaCl). 

Or to take Fine’s famous example: It seems to be part of the nature of the set singleton-Socrates 

that it contain Socrates, but not part of Socrates’ own nature or definition that singleton-Socrates 

 
61 The example comes from Gideon Rosen’s helpful discussion in Rosen (2015). 
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contain him. This latter property, although it is necessarily true of him, is not really part of the 

intrinsic nature of him; it does not seem like an intrinsic part of who he is. 

To remedy this, Fine proposes that we introduce a new, hyperintensional modal operator: 

“□G”: “□G p” which is to be read as “It is true in virtue of the nature of G that p.” 

G can be any predicate, including the property of being identical to x, for some specific 

individual x.62 Going back to the chlorine/salt example, the modal definition of essence will fail 

to capture the definitional asymmetry, since both of the following are true: 

• (M1) □∀𝑥(𝜆𝑧𝑃(𝑧)(𝑥) → 𝐹(𝑥)) 

• (M2) □∀𝑥(𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒(𝑥) → 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑦𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑𝑖𝑛𝑆𝑎𝑙𝑡(𝑥)) 

By (Modal) it follows that containing-chlorine is part of being salt, which is good. But it 

also follows that being possibly contained in salt is part of being chlorine, which seems false.63 

This motivates Fine’s hyperintensional operator, which can be used to provide an alternative 

definition to (Modal): 

• (Fine) Being F is part of being G iff □G∀𝑥(𝜆𝑧𝑃(𝑧)(𝑥) → 𝐹(𝑥)) 

What this says is that being F is part of being G iff it is true in virtue of the nature of G 

that all Gs are Fs. This interpretation of property-parthood statements will preserve the 

essentialist asymmetry between chlorine and salt, because the right-hand side of (Fine) does not 

 
62 Fine (1993) and (1995) seems to waver a bit on whether to make the operator relative to an individual, to some set 

of individuals, or to a predicate, but the formulation I’ve given is most suitable to our purposes here. 

 
63 Just to be clear: What Fineans question is not whether it is, in fact, a necessary truth that all chlorine is possibly 

contained in salt. What they would insist is that this feature about salt does not pertain intrinsically to the definition of 

what it is to be chlorine. 
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follow from the mere metaphysical necessity (M2). Thus, the property containing-chlorine will 

be part of being salt, but being possibly contained in salt will not be part of being chlorine. 

So Fine’s essentialist operator seems a more promising notion for the purpose of 

analyzing property-parthood statements. However, there is a further relevant distinction Fine 

makes between two possible interpretations of “□G”. “□G p” can be read as expressing either a 

constitutive-essential fact or a consequentialist-essential fact. Let us briefly draw out this 

distinction. 

Very briefly, the consequentialist essence of something will include all those features that 

are essential to it plus those that follow from the essence together with the natures of the logical 

connectives. In other words, the consequentialist essence of something is the logical closure of 

the essence. The constitutive essence, on the other hand, is restricted to the “core” essential 

features of the thing, from which the rest of the consequentialist essence follows. 

Consider, for example, the classic Aristotelian definition of human: 

• (Human) To be a human is to be a rational animal: 

□Human∀𝑥(𝐻𝑢𝑚𝑎𝑛(𝑥) ↔ 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙(𝑥) ∧ 𝐴𝑛𝑖𝑚𝑎𝑙(𝑥)) 

This definition, which is meant to express the essence of being human, is supposed to 

provide a real definition of human. A real definition, on the traditional Aristotelian 

understanding, will include only those properties that are part of the very core of whatever is 

being defined.64 You might say that the constitutive essence is sparse. So the constitutive essence 

of being human will include the properties being rational and being animal. On the other hand, it 

 
64 Really, in Aristotle’s original understanding, a real definition must be by genus and species. In this case, “rational” 

is the species and “animal” the genus. See David Oderberg, Real Essentialism (2007). 
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will not include conjunctive features like being rational or irrational or being such that if 

animals are material then humans are material. These features would be part of the 

consequentialist essence, however, since they follow from the constitutive essence via logical 

closure. 

Although the idea of constitutive essence is relatively clear – it consists of those features 

or facts that belong to the consequential essence but not in virtue of anything else in the 

consequential essence65 – Fine tends to work more with the consequentialist concept, as it can 

sometimes be difficult in practice to separate out the features that are the “core” of a thing’s 

essence from those that are not. For our purposes, the consequentialist essence is the more 

important notion. This is because mathematical truths include not just claims about the real 

definitions of various mathematical properties, but also claims about what follows from those 

definitions. 

With this in mind, we are now in a position to give an interpretation of property-parthood 

statements: 

• (Part) Being F is part of being G (i.e., F ⋐ G) iff □G∀𝑥(𝐺(𝑥) → 𝐹(𝑥)) 

o (Where “□G” is to be read as “It is true in virtue of the consequentialist-

essence of G”) 

This resolves the problem the literal account of property parthood faced, which was that 

it could not acccount for the essentialist modal force of property parthood statements. On our 

interpretation, this essentialist force is built into property parthood statements from the 

beginning. 

 
65 Cf. Rosen (2015) pp. 195-6. 
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6. A Property-Constituent Theory of Mathematical Truth 

Now that the notion of property-parthood has been given a definite ontological 

interpretation, we can go on to give the rest of our semantics for a mathematical language 

entirely in terms of essentialist relations between properties. 

As we noted earlier in section 2.3, singular phrases should be given the denotation of a 

purely structural individual property. 

Denotation: 

(D1) [a] will denote some purely structural individual-property 

• i.e., properties of the form: [being an x s.t. x is the thing of such and such sort in a 

purely structural system] 

o Again, a purely structural property or system is one that can be defined 

entirely in terms of part, whole, sameness, difference, and purely logical 

vocabulary. 

o e.g., [0] denotes λz:∃S∃’[z∘S & PA(S,’) & z = ix∘S: ~Σy∘S: x’=y] = the 

property of being a z such that (z is part of a system instantiates PA) and z 

is the unique x in that system which is not the successor of anything in the 

system. 

Going back to our earlier attempt at an analysis of singular predications, as a first stab we 

said: 

(T0): [a is F] is true when [F] ⋐ [a] 
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Here, [a] is some purely structural individual property. Let ‘λzP(z)’ denote this property. 

Now that we have an understanding of what the ⋐ operator means, we know ‘[F] ⋐ [a]’ should 

be interpreted as follows: 

• (T0*) [F] ⋐ [a] iff □λzP(z)∀𝑥(𝜆𝑧𝑃(𝑧)(𝑥) → 𝐹(𝑥)) 

Since we are going with a consequentialist interpretation of the essentialist operator, it is 

helpful, formally speaking, to have a convenient way of referring to all the properties that are 

part of a property’s consequentialist essence. 

(D2) [a]* denotes the set of properties that are in the consequential essence of [a] 

• The consequential essence of [a] is the set of all properties that are part of the real 

definition of [a] or that logically follow from it – in other words, all the properties 

that ‘logically follow from the essence’ of [a]. 

o Where [a] is some purely structural individual property and where λzP(z) 

denotes [a]: [F] is in [a]* iff □λzP(z)∀𝑥(𝜆𝑧𝑃(𝑧)(𝑥) → 𝐹(𝑥)) 

With all of this laid out, we can now give the full truth-condition for a singular 

essentialist pattern-statement: 

(T1) [a is F] is true if [F] is in [a]*; otherwise not. 

• That is, if being F is part of the consequential-essence of being a. 
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For example, [0 is even] will be true if being even is in the consequential essence of being 

the thing in a PA-system with no predecessor or else follows logically from something in the 

consequential essence.66 

There is one other technical issue to be resolved before we can give all the other truth-

conditions: We’ve seen what to do in the central case of a singular subject-predicate sentence. 

But how should we handle relational statements that assert a relation between several terms? 

Here I will borrow an idea from Craig Warmke.67 First, let us consider the n-place 

relation Fn: 

(D3) [Fn_, _, … _,] denotes an n-ary purely structural relation between individuals. 

• For example, the arithmetical relation [<_,_] denotes one thing’s being less than 

another in a PA-system (which, given that this is a purely structural property, 

would be what is denoted by the phrase “one thing’s coming before another in a 

successor series”). 

The way to solve the issue is essentially to turn this into a one-place property. We can 

then give the same truth-condition as in (T1). 

Let a1, a2, … , an be some names. [a1], … , [an] are the purely structural individual-

properties that these names denote. Suppose “λzP1(z),” … “λzPn(z)” are specifications of these 

properties in purely structural terms. Then [λz(z=℩xP1(x))], … [λz(z=℩xPn(x))] are properties of 

 
66 Given what the consequentialist essence is, this is just a redundant way of saying “is in the consequential essence.” 

 
67 See Warmke (2019). 
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being identical to the unique thing that has P1, … the property of being identical to the unique 

thing that has Pn , etc.68 

We can now turn the n-place relation Fn into a one-place property: 

(D4) [Fna1, a2, a3, ___, a5, … an] denotes the property of being F-related to a1, a2, a3, and 

a5, a6, … an 

• Or, a bit more formally: Let [Fn_, _, … _,] = λx1λx2 … λxnR(x1, x2, … , xn)  

• Then [Fna1, a2, a3, ___, a5, … an] = λx4R(℩xP1(x),℩xP2(x),℩xP3(x), x4, … ℩xPn(x)) 

With this definition in place we can then state the truth-conditions for n-place relational 

statements with names. Where F2 is a two-place predicate: 

  (T2) [F2ab] is true if [F2a_] is in [b]* and [F2_b] is in [a]*; o/w not 

• More informally: F2ab is true iff being F-related to a is in the essence of b, and 

being F-related to b is in the essence of a.69 

• For example, informally, [2<3] iff 

o The property [_< 3], i.e., the property of coming before the S(S(S(0))), is 

part of [2], i.e., being the S(S(0)) and  

o property [2 < _], i.e., coming after the  S(S(0)), is part of [3], i.e., being the 

S(S(S(0))). 

All other n-place predicates will have a semantics similar to the last clause.  

 
68 This divergence from Warmke’s account in definition (D4) is necessary because for Warmke constants essentially 

denote haecceities that are unique to specific, individual entities, whereas in our case constants denote general 

properties that can be had by more than one individual. 

 
69 Keep in mind that in our language, which is purely structural “a” and “b” will actually have the form of “definite 

descriptions” that ultimately denote some purely structural property. For example, “a” might be “the successor of 0.” 



    

45 
 

The rest of the semantics for basic statements is then relatively straightforward: 

• (T3) [a = b] is true iff [a]* = [b]* 70 

• (T4) [~p] iff [p] is not true 

• (T5) [p & q] iff [p] and [q] are true  

Furthermore, all the other propositional connectives, such as material conditionals and 

disjunctions, can be defined in the usual way in terms of these ones. Also, with the account of 

singular and relational statements being laid down, we can give a straightforward definition for 

quantification as well that parallels the usual one. 

First, we add a countable infinity of variables x1, x2, … xn, and so on to the language 

just as we normally might, and we define formulas with variables in the usual way. We then add 

the idea of a variable assignment f. However, again, since we are working with a purely 

structural ontology, the function f assigns variables to purely structural individual-properties. For 

example, f might assign x to the property “being the successor of 0.” Other than this qualification 

about the variable assignment, the definition of quantification will be rather similar to the usual 

one: 

• (T6) ∀𝑥𝐹𝑥 is true relative to variable assignment f if for any variable assignment 

f’ just like f except perhaps for the variable assigned to x: [F] is part of f’([x])* 

o Here f’([x])* is, of course, the consequential essence of whatever 

individual structural property f’ assigns to x. See (D2) above. 

 
70 Note that this clause gets at the idea – which ante rem structuralists say – that the natures of “mathematical objects” 

are entirely exhausted by their relations to other objects within the structure. Being 2 just is being an object in relation 

to objects in a certain sort of system, because ultimately that’s all there is in the essence of being 2; or at least, so 

structuralists would contend. I just do not think it is necessary to conclude that for any structural mathematical property 

there actually are intrinsically featureless mathematical objects that instantiate that property. 



    

46 
 

With this definition, we can define the existential quantifier in the usual way in terms of 

negation and the universal quantifier, and so we have a language adequate for mathematics 

together with truth-conditions that only make reference to purely structural properties. 

7. Ontology and Ideology 

Given that the truth-conditions of mathematical claims can be given entirely in terms of 

essentialist, property-parthood relations between purely structural properties, it follows that the 

truths of mathematics do not commit us to anything more than certain properties or universals – 

i.e., that no “mathematical objects” are necessary for mathematical truth. This then reduces the 

problems of mathematical ontology and epistemology to the problems of the ontology and 

epistemology of properties or universals more generally. 

Even by itself this is a step forward, insofar as we’ve made the problem of mathematical 

ontology and epistemology part of a more general problem. Furthermore, the latter problem 

seems more soluble prima facie. 

Nevertheless, we should look more closely at the ontological commitments of the theory. 

Before considering the epistemology of mathematical properties in the next chapter, I’d like to 

propose a “pure essentialist” or “primitivist” reading of the theory presented in sections 2.5 and 

2.6 that allows us to have mathematical truths without even the need for properties. 

So far, I have freely referred to properties, and I have couched my theory in terms of 

them. And indeed, this is the most natural way to formulate our theory. However, is it essential 

that we do so? 
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From our discussion in 2.5, we settled on an interpretation of property parthood in terms 

of essence. In particular, we gave the following definition, in terms of Fine’s consequentialist 

essentialist operator (Where λzP(z) denotes the individual-property of being [a]): 

(T0*) [F] ⋐ [a] iff □λzP(z)∀𝑥(𝜆𝑧𝑃(𝑧)(𝑥) → 𝐹(𝑥)) 

What I will call the referential reading of the right-hand side is this: 

• (Referential) “It is true in virtue of the nature of the property λzP(z) that 

whatever is λzP(z) is also F.” 

I call this the “referential” reading because it seems to commit us to a real ontology of 

properties in two ways: First, it seems to refer straightforwardly to a property. Secondly, it seems 

to posit a ground or truthmaker for the truth of the relevant conditional, viz., the nature of the 

relevant property. But presumably: 

• (Grounds) Grounds for truths must exist. 

So, Referential seems to commit us to properties and natures. 

In general, I will work with this reading of (T0*) and assume that it is true. But I believe 

it is worth flagging an alternative way of thinking about the essentialist operator, namely, to 

think of it as a sort of primitive modal operator, the way some philosophers have thought about 

the necessity operator □. 

To make the comparison clearer I will first say a little bit about the more general position 

known as modal primitivism71 which primarily shows up in discussions of metaphysical 

 
71 Cf. Bueno and Shalkowski (2009), (2013) and (2014). See also Vaidya (2015). 
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modality. This position is also known as “modalism.” In Anand Vaidya’s characterization it 

consists of the following theses: 

1. Alethic metaphysical modality is primitive. 

2. Modality does not reduce to quantification over possible worlds. That is, “it is 

possible that P” does not mean that “P is true in some possible world.” And “it is 

necessary that P” does not mean “P is true in all possible worlds”. 

3. The theory does not appeal to or use possible worlds. 

4. An empiricist-friendly approach to the epistemology of modality does not depend 

on conceivability or the postulation of possible worlds. 

One prima facie argument for this view is that any attempt to reduce alethic modality to 

quantification over worlds will seemingly have to involve a specification of those worlds which 

are possible. For example, if we take worlds to be sets of propositions, we will want to analyze 

“possibly p” as being true when p is true in all those sets of propositions that are possibly 

realized.72 But this of course appeals to the notion of possibility again. Thus, the “possibility” 

remains unreduced, and it is difficult to see how we are going to get rid of it. Therefore we 

should just take the possibility operator as primitive.73 

 
72 One might think that we can define the sets of propositions that are “possibly realized” as those that are consistent. 

But that leaves the question of what is meant by consistency. It is widely accepted that a syntactic criterion will be 

inadequate for a number of reasons, with one being that the propositions that are metaphysically possible extend 

beyond those that are describable in any canonical language. But without a syntactic criterion we are then still left 

with the problem of what really constitues a “broadly logically consistent” set of propositions, and the modality 

remains ultimately unanalyzed. Moreover, we cannot simply handwaive away this problem as not being amenable to 

formal analysis, since what we are concerned with is not just formal semantics, but the ontological question of what 

“broadly logical” or  “metaphysical” modality really is. 

 
73 Obviously this argument is strong only if one does not already have a worked-out strategy for reducing the modal 

to the entirely non-modal. Lewisians, of course, do, and will therefore not find the above argument for primitivism 

compelling. However, when it comes to Lewis’ proposal – requiring, as it does, acceptance a priori of dogs with 

dragon heads, or of baseball bats that compose sonatas – few are likely to be willing to accept this strategy. While 
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I propose that we can say something similar about the language of “essence” that we have 

been using. Here is the primitivist or pure essentialist reading of (T0*): 

• (Primitivist) “□G” is a primitive operator, for any G. Thus, there really are very 

many essentialist operators. You might read it aloud as: “G-essentially: p.” And 

for another predicate H, it might be the case that “H-essentially: q.” And so on. 

In other words, this reading purports to describe an essentialist fact without quantifying 

over or referring to any properties. As Quine might put it, it is an attempted trade in ontology for 

ideology.74 

The downside of this trade, of course, is that we can no longer refer to a specific class of 

entities to ground the truth of the essentialist claims. The referentialist reading, on the other 

hand, appeals to properties (and, what seems to come along with them automatically, their 

natures75) as those things in virtue of which the essentialist facts come out true. However, it is 

not clear that this is a decisive advantage for the referentialist, for the following reason. 

Suppose that some property G grounds the truth of the essentialist fact that □G P. Now, it 

seems plausible that essential truths entail metaphysically necessary truths (albeit not vice-versa). 

After all, if it is true because of the very definition or essence of something that P, then surely it 

cannot not be the case that P. For example, if it is true in virtue the nature of water that all water 

contains hydrogen, then surely it couldn’t be the case that some water not contain hydrogen. To 

 
Lewis’s view of the world certainly is fascinating to think about, one can only stare at it for so long before primitive 

modality begins to attract one’s gaze. 

 
74 Cf. Quine (1951) and Sider (2011) pp. 12-14. 

 
75 Actually, long ago when Aristotelian metaphysics dominated philosophical discussions, it was once considered a 

substantive and highly controverted question whether a thing and its essence were merely one thing or two. Cf. 

Aquinas On Being and Essence for the classic case that a thing and its essence are distinct. I side with others, like 

Duns Scotus, in assuming that a property and its nature are not really two separate things. 
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put the point another way: The essentialist operator seems to express a stronger modality than 

the metaphysical-necessity operator, in the sense that an essentialist truth always entails a 

metaphysically necessary truth, but perhaps not all metaphysically necessary truths are 

essentialist ones. 

Given this connection between essential truths and metaphysical necessities then, we 

have the following essentialist-necessity principle: 

• (ENP) □G P entails □ P 

Returning to the referential reading, essentialist statements like ‘□G P’ are supposed to be 

true in virtue of the existence of some properties G and their natures. 

Now let us ask a question: Assume some essentialist truth, like □G P. Does the existence 

of G entail that □G P? Here is why it must: If the existence of G does not entail □G P, then □G P 

could fail to be true.76 In that case it seems that P could fail to be true (since P is, in fact, true in 

virtue of the nature of G, so that it seems to depend on the nature of G for its truth). In that case, 

□ P would be false. But by (ENP) it cannot be the case that □G P is true and □ P is false. So, the 

existence of G must entail that □G P. 

But that raises a new problem: Why does the existence of G entail □G P?  

You might say it is because the existence of G is metaphysically necessary. Of course, 

one might ask “Why?” But suppose we do not press for an explanation of this. Even so, it still 

does not seem to be enough to ground the entailment.  

 
76 Because p entails q when it is not possible for p to be true and q false. So if the existence of G does not entail □G P 

then it is possible for G to exist but □G P to be false.  
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Suppose, for example, that G is the property of being a brown chair. Let our proposition 

P be “Brown chairs are colored.” Let “□G P” be the corresponding essentialist claim. Now, 

suppose that G is a necessary being, existing in all worlds. However, what if in some other 

possible world, G is instead the property being a ghost.77 By itself, this supposition does not 

contradict the claim that G is a necessary being. I only said that G exists necessarily, i.e., that G 

exists in all possible worlds. It does not follow that G has all the same features in every world, 

any more than I have the same features I do in every possible world. 

But in this world where G is the property of being a ghost it does not seem true in virtue 

of G that brown chairs are colored. So, it is not the case that in every world where G exists “□G 

P” is true. Which is to say, the existence of G does not entail □G P.  

The upshot of this discussion is that even if our property G is a necessary being this does 

not by itself explain the entailment relation between the existence of property G and □G P. 

You might say: “Fine, it is the existence of G together with the claim that being a brown 

chair is its nature that entails □G P.” But then we might ask: What if G has a different nature in 

some other possible world?78 Now perhaps one might say that it has its nature necessarily. If that 

is true, then the existence of G does seem to entail □G P, and perhaps we are able to explain EMP 

in this way. 

 
77 By itself, this supposition does not contradict the claim that G is a necessary being. I only said that G exists 

necessarily, i.e., that G exists in all possible worlds. It does not follow that G has all the same features in every world. 

For example, you might say that God is a necessary being, but it doesn’t follow that he is the same in all respects in 

every world. In one world God might choose to create the sun, and in another world he might choose not to. That is 

consistent with God’s being a necessary being. 

 
78 This echoes an objection made in Section 2.5 above against the literal reading of property parthood. 
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However, we may ask yet further: Why does G have its nature necessarily? You might 

just say that this is a primitive, ungrounded metaphysical necessity. Admittedly, that is not an 

obviously bad position to take. But we might wonder: Wouldn’t it have just been better all along 

simply to say that the ultimate, ungrounded “modal” truth was the bare essentialist claim that □G 

P? It is not clear what advantage in explanatory depth is gained by appealing to a primitive 

metaphysically necessary law that properties have their natures in all possible worlds. Why not 

simply say “□G P” is the primitive modal fact? 

For these reasons, it is not clear that the ability of the referential reading to provide 

grounds for essentialist truths is completely decisive, since this dialectic seems to show that it 

can provide adequate grounds only by appealing to another primitive metaphysically necessary 

law. But if that law is indeed primitive, then it is itself a modal fact without grounds, and so it is 

not clear that the referentialist’s desire for “grounds” was ultimately satisfiable in the first place. 

Still, there is one last potential response the referentialist might give. Going back to what 

we said a bit earlier, some Aristotelians have taken a thing and its nature not to be really 

distinct.79 In particular then, if G is a property and N(G) is the nature of G, then G = N(G). We 

could then say that the necessity of identity explains why a property has its nature necessarily. Of 

course, this relies on the slightly controversial claim that a thing and its nature are really 

identical. Nevertheless, it may provide a reasonable stopping point for referentialists about 

essence. 

If the disadvantage of the primitive essentialist reading is that it does not provide 

ontological grounds or truthmakers, it nevertheless has the advantage that it is more 

 
79 See, e.g., footnote 75 above. 
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parsimonious.80 On the primitivist or “pure” essentialist reading, there are primitive essentialist 

facts that are intrinsic to reality, but they need not be localized in some particular set of things 

called “properties” or “natures.”81 This strikes me as a rather elegant picture. 

Nevertheless, going forward, I will officially speak in terms of the standard referentialist 

reading of properties and essences. But the reader should keep in mind that immanent 

structuralists have the primitivist option in their back pockets as well. 

8. Conclusion 

In this chapter, I have provided a story of how all mathematical truths can be grounded in 

purely structural universals, with no reference to specifically “mathematical objects” whatsoever. 

In the process, I have given a theory of property parthood in terms of essentialist facts, and have 

put forward two possible readings of what we are saying when we speak of “the essence” of 

something: the referentialist reading and the primitivist reading. I also have attempted to meet 

Benacerraf’s “uniform semantics” challenge. I have done so by identifying “pattern statements” 

in natural language and then showing how mathematical statements can be taken to have the 

same underlying semantics as a subclass of these, namely, the essentialist pattern statements. 

Now, armed with our account of what it is for a mathematical proposition to be true, we can turn 

to considering how we such a thing might come to be known. 

 

 

 
80 And as I have argued, the lack of entities to ground the primitive essentialist facts is not obviously a disadvantage, 

at least if referentialists themselves also have to posit a further, ungrounded and metaphysically primitive modal law 

which says that properties have their natures necessarily. 

 
81 A further potential advantage I will discuss later is that the pure essentialist view might allow Aristotelians better 

to deal with alien properties. See Chapter 3 below. 
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CHAPTER 3: MATHEMATICAL EPISTEMOLOGY (AND SOME METAPHYSICS) 

 

1. Benacerraf’s Second Horn 

Let us summarize a bit. In Chapter 1 I explained the notion of a purely structural property 

and illustrated how several areas of mathematics can be characterized as dealing with purely 

structural properties of one sort or another. In Chapter 2 I laid out Benacerraf’s dilemma, which 

claimed that it is desirable, but impossible, both to have a semantics for mathematical discourse 

that is uniform with the rest of ordinary language while simultaneously possessing a plausible 

mathematical epistemology. 

However, as we saw, Benacerraf’s assumption that even ordinary singular and quantified 

statements have just one semantics is questionable. At best, then, mathematics can only be 

uniform with a part of ordinary non-mathematical language. 

I then argued that the part of ordinary language that mathematics is uniform with is a 

class of what I’ve called “pattern statements.” If I am correct, at least a certain subclass of these 

statements – the essentialist pattern statements – includes the mathematical ones. I also argued 

these statements should be cashed out in terms of constitutive, property-parthood relations 

holding between various properties. 
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In this chapter I would like to address the second part of Benacerraf’s dilemma and spell 

out a bit the epistemology of mathematics on immanent structuralism. To help guide our thinking 

it will be helpful to return to Benacerraf’s classic discussion. 

In the original formulation of his epistemological argument against Platonism, Benacerraf 

assumed a causal theory of knowledge: 

“I favor a causal account of knowledge on which for X to know that S is true requires 

some causal relation to obtain between X and the referents of the names, predicates, and 

quantifiers of S. I believe in addition in a causal theory of reference, thus making the link 

to my saying knowingly that S doubly causal.”82 

Benacerraf argues this causal theory of knowledge (and reference) rules out the 

possibility of mathematical knowledge given a Platonist semantics and ontology: 

“[C]ombining this view of knowledge with the ‘standard’ view of mathematical truth 

makes it difficult to see how mathematical knowledge is possible. If, for example, 

numbers are the kinds of entities they are normally taken to be, then the connection 

between the truth conditions for the statements of number theory and any relevant events 

connected with the people who are supposed to have mathematical knowledge cannot be 

made out. It will be impossible to account for how anyone knows any properly number-

theoretical propositions.”83 

Benacerraf’s argument runs into some problems, however. For one thing, a natural 

response to all of this is simply to deny the rather strong causal theory of knowledge on which 

 
82 Bencerraf (1973) p. 413. 

 
83 Ibid. p. 414. 
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the argument is based, as many now do.84 This has been the strategy, for example, of those who 

attempt to provide an IBE or “indispensability” argument for the existence of mathematical 

objects: Perhaps mathematical objects can be known by virtue of their having explanatory power 

without having causal power. 

2. Platonism and Seabiscuit Epistemology 

This response can be challenged however. For one thing, we might ask whether IBE or 

indispensability arguments are successful at establishing the existence of all the mathematical 

objects (and the facts about them) that mathematicians take themselves to know.85 One might 

doubt this. On the face of it, indispensability arguments leave unjustified much of higher 

mathematics that has no adequate justification in terms of playing a role in well-confirmed 

physical theories. The postulation of certain infinities of sets, for instance, might not receive 

adequate justification in virtue of the minimal role they play in physics.86 But arguably all 

normal day-to-day mathematics (including the well worked out theory of higher infinities) has at 

least prima facie justification, in the same way that ordinary physical or biological science does. 

However, suppose we leave aside this objection, and grant that inference to the best 

explanation (IBE) arguments can justify all of the parts of mathematics we want to be justified. 

We are still left with another version of the challenge:  

• (Challenge) Given that most people (including mathematicians) do not (and 

cannot) justify their mathematical beliefs via IBE or indispensability arguments, 

 
84 See Linnebo (2017) for an up to date discussion on Benacerraf’s dilemma. 

 
85 See, e.g., Maddy (1990) Ch. 1. A bit more on indispensability arguments later, however. In particular, see Chapters 

6 and 7. 

 
86 This appears to have been Quine’s view, for example. 
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how can their mathematical knowledge be reliable, given that we can have no 

causal connections to abstract mathematical objects?87 

To illustrate the problem for Platonists, consider what I will call the Seabiscuit Example. 

Imagine the following scenario: 

Suppose I were simply to assert, that in a galaxy many light years away, which we have 

never even remotely observed or interacted with, there is a constellation of thirteen 

planets with 80 billion intelligent inhabitants. I say that all of these extraterrestrials are 

less than four feet tall, except on one planet (which I call Planet Seabiscuit), where 

everyone is nine feet tall. I also assert that everyone on Planet Seabiscuit has only one 

hand, and everyone on the other planets has only one foot. Finally, I claim that the twelve 

other planets’ denizens, having two hands and greater numbers, were successfully able to 

enslave those on Planet Seabiscuit, and that they force Seabiscuit’s two-footed 

inhabitants to carry them around like horses. 

The question is this: For most people who have not run any sophisticated philosophical 

argument, how is speculation about mathematical objects any different from wildly speculating a 

priori, from the armchair, about the existence of people in some distant galaxy we have never 

had any experience of or interaction with? Given that the latter a priori speculations cannot be 

knowledge, how could the former be? 

In short, on Platonism, it is hard to see how most of us are not just shooting in the dark. 

 
87 This challenge is slightly different from both Benacerraf’s original version and Maddy’s updated version in terms 

of “reliable connections.” First, it is different in that it is restricted to only a part of the mathematical knowledge that 

exists. Second, it is open to the possibility that IBE or indispensability arguments could, in principle, work for some 

parts of mathematics. Really, the version of the challenge I am proposing is a challenge to adequately account for 

mathematical practice, both that of the average mathematician and that of the ordinary layman. 
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Now, one response is that most average people are justified in their mathematical beliefs 

because mathematicians are justified, and most people learned their mathematics from a 

mathematician.88 But for one thing, it’s not clear that most people with justified mathematical 

beliefs did this or had to. More importantly, this merely pushes back the question as to why all 

the courses mathematicians took and methods they learned are not merely methods of vibrant 

imagining. Why are mathematicians’ beliefs not also on a par with wild speculation about 

causally distant planets? 

You might say it is because the mathematicians, or at least enough of them, learned about 

foundations from a philosopher.89 But this response seems to make mathematical knowledge 

dependent on the arguments of the philosophers. Here I will merely reproduce the wisdom of 

David Lewis in response to the notion that philosophical objections might undermine 

mathematics: 

“I’m moved to laughter at the thought of how presumptuous it would be to reject 

mathematics for philosophical reasons. How would you like the job of telling the 

mathematicians that they must change their ways and abjure their countless errors[?] Can 

you tell them, with a straight face, to follow philosophical argument wherever it may 

lead? If they challenge your credentials, will you boast of philosophy’s other great 

discoveries? … Not me!”90 

 
88 Or, they learned from someone who learned from [someone who learned from … someone who learned from] a 

mathematician. Thanks to Alex Campbell for making this point. 

 
89 Or learned from [someone who learned from … someone who learned from] a philosopher. 

 
90 Lewis Parts of Classes (1991), p. 59. 
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The same sentiment seems applicable to the idea that mathematicians’ knowledge rests 

on the condition that some philosopher has previously justified the methods of mathematics. In 

short, we cannot solve the access problem by appealing to the authority of philosophers. 

3. A More Adequate Epistemology 

Whatever the issues with Benacerraf’s original formulation of the argument, I think he is 

right that the access problem is most pressing if we take mathematical statements to be uniform 

with statements about the existence of persons on other planets. To know the proposition “some 

prime numbers are even” would then have to be like knowing a priori about the wretched 

inhabitants of Seabiscuit. 

On my picture, however, mathematical statements are not known this way, because they 

do not make assertions similar to our celestial conjectures. On the contrary, to know that a 

mathematical statement is true is to know that something is part of the nature of some purely 

structural property.91 Just to take a simple singular statement, like “a is F”, what I need to know 

is that being F is part of the nature of being a.  

In the mathematical case these will both be purely structural properties. That means they 

are ultimately definable entirely in terms of part, whole, sameness, difference and purely logical 

vocabulary. But presumably it is unproblematic how we come to understand these notions from 

experience, or at least not more problematic than how we grasp other empirical concepts.  

Arguably we can learn about concepts like part and whole from our perception of more or 

less complex objects. Vision obviously plays an important role, but we can also discern different 

parts of objects by feeling them, and we can even distinguish different “parts” of sounds, tunes, 

 
91 See Chapter 2 above. 
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etc. Perhaps part of the story also involves some practical experience with putting things together 

and taking them apart. At the very least, the problem of how we have an adequate understanding 

of part and whole does not seem to be a uniquely mathematical problem, but part of the more 

general question of how we gain concepts like these through perception. Similarly for 

“sameness” and “difference” and logical concepts like conjunction, conditionality, and negation. 

These, then, are the building blocks of purely structural properties. But of course, most of 

the time we do not learn mathematics by explicitly constructing formal definitions. So we still 

need a story of how most people form their basic mathematical knowledge. 

Now, if mathematical properties are purely structural properties, then they are just like 

other properties that can be instantiated by concrete systems of physical objects. In that case, 

there is no reason our perceptual systems could not be adapted to pick up on some simple 

mathematical properties directly, just as I come to understand the property of being red by 

seeing, abstracting, and grasping it from its many instances. If so, then there is some stock of 

simple mathematical properties that we can come to know about via perception. A property like 

being circular might be an example. Small numerical quantities might be another case, such as 

being two or being three. 

Putting all of this together, we can give a plausible account of the mathematical 

knowledge ordinary people have. I know that squares have four sides, for example, because I’ve 

perceived them, and have come to know enough about what squares are to know that part of it is 

being four-sided. Simple mathematical knowledge of this sort typically comes at a young age, 

and it usually involves children generalizing by being shown visual examples. 
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Once I gain some concepts of mathematical properties via perception, I can then combine 

my concepts of these properties together via logical operations and thereby understand some 

things about the more complex properties I “build up.”  

For example, I can build the property of being red and circular, and know from my 

knowledge of redness that red circles are crimson or ruby or scarlet, but not teal or beige. Note 

that this is knowledge of a truth about red circles, and it follows from my knowledge of redness.  

In a similar way, I can conceptually “build” new mathematical properties out of the ones 

I already know, and infer various things about the natures of these properties from my 

knowledge of the natures of part, whole, sameness, difference, and my logical concepts. 

Suppose, for instance, I define the property of being a three-tiered-system as the property 

of being an object with three parts, x, y, z, where z is part of y and y is part of x. An example 

might be a system of three concentric circles. Then I can know the relation ‘part z’ is part of 

‘part x’ is part of the nature of being a three-tiered system. That is, I can infer that in a three-

tiered system, the smaller part z is part of the bigger part x. I know this in virtue of my 

knowledge of the natures of part and whole. 

Arguably, this sort of reasoning about properties captures the type of reasoning that 

occurs in mathematics, except that the structural properties mathematicians are working with 

generally are far more complicated. 

Note that the reasoning need not be formalized. Often, long before any proof has been 

discovered, a seasoned mathematician might simply have good enough “insight” to allows him 

or her reliably to “see” the relevant result rather quickly. This is sometimes referred to as 

“intuition.” However, this “insight” is not analogous to the perception of an object, pace 
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Platonists.92 Rather, it is the understanding of what follows from a nature. The final, formal 

proof (if there is one) is then the explicit drawing out – via steps that are ultimately justifiable by 

the natures of part, whole, and logical relations – of what truly does follow from that nature. 

4. The Emptiness Objection 

On the whole then, the epistemology of purely structural properties seems more tractable 

than the epistemology of abstract mathematical objects. However, there is a worry lurking in the 

background. It starts from what we might call the empty definition principle:93 

• (Empty) It is not in general true that any entity that can be defined94 actually 

exists. 

One obvious problem is that we can define inconsistent objects, such as square circles. 

But even if we restrict ourselves to consistent definitions, it does not follow that what is defined 

actually exists. For example, if I define Jack as the goblin that stole my bag from the gym, it does 

not follow that Jack exists or that there are any goblins. Although this principle is not entirely 

uncontroversial,95 something close to it is correct, so I will go with the relatively straightforward 

formulation just given. 

Interestingly, the tension between Empty and our epistemological access to mathematical 

entities partly motivates the position in philosophy of mathematics known as full-blooded 

 
92 Compare Brown (2014) Platonism, Naturalism and Mathematical Knowledge, especially Chapter 5. See also Godel  

(1944) and Maddy (1990) for discussion of Platonist theories based on “intuition.” 

 
93 Thanks to Thomas Hofweber for making this problem clearer to me. 

 
94 Or “consistently defined” 

 
95 Fictional object theorists and some theorists about transworld identity might take issue with it. 
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Platonism.96 Full-blooded Platonists simply deny Empty, and boldly claim that any consistently 

definable mathematical entity exists, so that there will always be enough objects to correspond to 

all the new sorts of systems and structures that mathematicians might come up with. I will talk 

about full-blooded Platonism more in Chapter 5, but for now I will just note it is worth trying to 

avoid these troubles without embracing this somewhat shocking position. I will therefore try to 

give a response based on immanent structuralism instead. 

Prima facie, Empty raises an issue for our view too. Insofar as we wish to account for all 

the truths of higher mathematics, we will need there to be uninstantiated mathematical 

properties. Since these properties are not instantiated, they obviously cannot be directly 

perceived. Therefore, as was explained above, they will have to be built up conceptually, i.e., 

defined in terms of previously grasped properties. 

But given (Empty), the mere fact that uninstantiated mathematical properties can be 

defined does not guarantee that they exist. Let us call this problem the emptiness objection. Two 

conclusions seem to follow from this objection, one general and one about mathematics 

specifically. 

First, just because I know about the properties which could constitute a further complex 

property, it does not follow that I know about that complex property. For example, just because I 

know about being a quadrilateral and having four right angles, it does not follow that I know 

about the property being a rectangle: For given (Empty), the existence of being a rectangle does 

not follow from the mere fact that it is definable in terms of the other two properties. 

 
96 Also known as “plenitudinous Platonism.” The most thorough exposition of the view is Balaguer’s Platonism and 

Anti-Platonism in Mathematics (1998). 
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The second conclusion, which seems to follow from the first, is that we do not have 

knowledge of uninstantiated mathematics, including much of higher mathematics. For if we are 

not justified in assuming the existence of a mathematical property based on the existence of the 

properties it is defined in terms of, then there is no way to know about uninstantiated 

mathematical properties – or, perhaps a bit more carefully, at least most people’s purported 

knowledge of those properties is unjustified.97 

Furthermore, it seems to follow that we lack knowledge even of much instantiated 

mathematics. While I have assumed that some mathematical properties can be physically 

instantiated and therefore are discoverable through perception,98 it is clearly false that all 

physically instantiated mathematical properties are directly perceivable. For example, the large 

number-property 971342580146982676025 is probably physically instantiated, but it is clearly 

impossible for this property to be visually perceived and then abstracted from that perception. It 

is far too large. 

Therefore, for most people, even many instantiated mathematical properties will have to 

be known by being constructed conceptually based on previously known mathematical 

properties. So the emptiness objection seems to impugn the ability of immanent structuralism to 

explain quite a lot of mathematical knowledge, both of uninstantiated and instantiated structures. 

 
97 As I discussed earlier, I admit that perhaps we could establish the existence of some uninstantiated mathematical 

properties by some argument from best explanation, indispensability, etc. But most of the time mathematicians and 

ordinary people don’t think about that. Rather, they define new mathematical structures (or learn the relevant 

definitions) and proceed to reason on that basis without any second thoughts. They certainly do not worry in that 

moment about whether an independent philosophical or scientific argument could be given for the existence of the 

new structural property. 

 
98 No small conclusion I might note! Even if immanent structuralism faced problems about uninstantiated mathematics 

similar to Platonism, that would not make it a philosophical tie. For Platonists have trouble even accounting for – 

perhaps especially accounting for – the most basic mathematical knowledge that ordinary folk including young 

children can have. See Franklin (2014) on this point. 
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Now perhaps there is a simple reply here: Perhaps we should simply posit that there is an 

independent world of properties, and that any logical combination of these properties is a 

property.  And so in particular, any logical combination of instantiated properties will be a 

property. Perhaps we might motivate this by holding an abundant theory of properties, according 

to which any predicate corresponds to a property.99 

While this might work, the trouble is that it is not enough simply to posit that this view is 

true. In fact, to do so seemingly begs the question against the emptiness objection, since the 

empty definition principle (Empty), as applied to properties, straightforwardly entails that one 

cannot simply posit a property without justification. 

To see this, recall the example of Planet Seabiscuit. Imagine we define Planet Seabiscuit 

by describing a group of planets and their denizens, and then asserting their existence without 

any special justification. Clearly this is running afoul of the empty definition principle.  

We say that the same problem applies to the average person doing mathematics on 

Platonism. But then it is difficult to see how it is not falling into the same fallacy simply to posit 

that there are a bunch of properties – many of which we do not have any causal connection with 

because they are uninstantiated. If we simply assume there are abundant properties in order to 

salvage higher mathematics, we will have moved the philosophy of mathematics no further than 

a hundred years ago, when Russell objected to the defining of classes into existence: 

 
99 Or almost any predicate: See Van Inwagen, “A Theory of Properties” (2004) for a defense of the “abundant,” 

property-for-every-predicate view. Van Inwagen qualifies the unrestricted nature of his view when it comes to 

predicates subject to Russellian-type paradoxes (for example, Van Inwagen argues the property of being non-self-

exemplifying cannot exist). 
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“The method of ‘postulating’ what we want has many advantages; they are the same as 

the advantages of theft over honest toil. Let us leave them to others and proceed with our 

honest toil.”100 

So, what if instead of “postulating” we were to argue for the existence of abundant 

properties via a Quinean argument? This is the route Van Inwagen takes,101 as do many others. 

They argue that we are committed to properties because for any predicate F that might be 

instantiated we can say “something could have the feature of being F.” A Russellian analysis of 

descriptions quickly shows that talking about “the feature of being F” involves quantification 

over features or properties. Thus, we are committed to properties for every predicate (or at least 

every logically coherent predicate).  

This is an interesting suggestion, but as the reader might have guessed, I am 

uncomfortable with neo-Quinean arguments of this sort. The same sort of argument could be 

given for Platonic numbers, after all, and it would be ironic to say the least if my attempts to 

provide an alternative to Platonism rested on this sort of argumentation. More fundamentally, I 

doubt whether we can truly draw heavyweight ontological conclusions from reasoning of this 

sort, based as it is on mere paraphrastic constructions in ordinary language. These arguments 

seem “cheap.”102 Furthermore, given the discussion in chapter 2 above, it should come as no 

surprise that I do not take surface-level quantification or definite descriptions to be a simple 

guide to ontological commitment in the way neo-Quineans do.103 Rather than open myself to the 

 
100 Russell, B. (1919) Introduction to Mathematical Philosophy. Dover Publications. 

 
101 See Van Inwagen, ibid. 

 
102 If “postulating” all the properties we need is analogous to theft over honest toil, then perhaps cheap Quinean 

arguments are analogous to fraud. 
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charge of metaphysical hypocrisy, then, we will find another way to justify belief in 

uninstantiated mathematical properties. 

5. Uninstantiated Structural Universals 

So, let us return to our honest toil: To explain how it is that one can reliably assume the 

existence of a newly defined mathematical property, given that one has knowledge of the 

properties it is defined in terms of.104 We must explain how the world guarantees that all  

definable mathematical properties exist given the existence of the perceivable ones. 

What the immanent structuralist should say here, I think, is that all the defined, higher-

level mathematical properties supervene on some basic mathematical properties that are 

instantiated and perceivable. In other words, given that the instantiated and perceivable 

mathematical properties exist, the existence of the ones definable in terms of them comes for 

free. 

So how do we show that the uninstantiated mathematical properties supervene on the 

instantiated ones? 

The first step is to appeal to the core thesis of immanent structuralism: The subject matter 

of mathematics is structure, where structures are understood as purely structural properties: 

 
103 For discussion of similar issues, see some of the contributions in Chalmers, Manley, and Wasserman (2009), 

especially Hofweber (2009) pp. 282-283, and also Hofweber (2005). Hofweber’s discussion brings out a further 

difference in the way that Aristotelians like myself think of properties and the way neo-Quineans do. The latter take 

properties to be the semantic correlates of certain paraphrastic linguistic constructions, whereas I and other 

Aristotelians take them primarily to be metaphysical constituents that are present in concrete entities. Properties 

ground concrete facts about these entities, including their modal attributes and causal powers. This results in a different 

picture of the nature of properties and, importantly, of the exemplification relation. As some metaphysicians put it, 

Aristotelians tend to favor a constituent ontology when it comes to properties and their exemplification, while 

Platonists favor a relational one. See Van Inwagen, “Constituent vs. Relational Ontologies” (2011). 

 
104 Where this latter knowledge may come, for example, from perception or previous definition. 
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Properties that are definable wholly in terms of part, whole, sameness, difference, and logical 

vocabulary. Note that these basic properties, which are the mathematical “building blocks,” 

actually exist in the world and are instantiated. 

The second step is to affirm a “reducibility thesis”: The existence of properties that are 

logical constructs is reducible to the existence of their basic components. Fellow-Aristotelian 

David Armstrong explains it this way – he contrasts what he calls “second-rate” properties with 

the “sparse” properties or universals that he takes to be ontologically fundamental: 

“At the same time, though, even when doing philosophy, we often need to refer to 

properties that are not universals, for instance being a game or being a householder. I call 

these ‘second-rate’ properties. … My idea … for dealing with these properties is to 

deploy a supervenience thesis. Suppose you had a God-like complete account of the 

world organized as the instantiations of all the universals, both properties and relations. 

Then, I suggest, you would at the same time have, with no ontological addition to the 

world, all the instantiation of the second-rate properties and relations. … It is a case of 

‘nothing over and above’ – always an interesting claim because it gives us the more 

ontologically economical theory, a virtue if one can get it.”105 

This reducibility thesis seems especially plausible in the case of properties that are logical 

constructs, like “being F and G,” “being H or not-F or not-G,” and so on. Just as it seems no 

more is needed for the conjunctive fact (Fa & Fb) to obtain than that Fa obtains and Fb obtains, 

 
105 D.M. Armstrong, (2010) Sketch for a Systematic Metaphysics, pp. 19-20. See also Armstrong’s (1997) A World of 

States of Affairs. 
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in a similar way, it seems there is no more needed for the existence of the property of being F 

and G than for both being F and being G to exist.106 

Now, I do not necessarily agree with Armstrong’s characterization of these properties as 

“second-rate,” because I do not take reducibility to impose any sort of inferior ontological status 

on a thing. For example, I do not think dogs are second-rate beings simply because they can be 

reduced to their components.107 Indeed, in more than one respect, dogs are superior to their 

components.108 So I would prefer to say the “constructed” properties are just “non-basic,” “non-

foundational,” or perhaps even “grounded” as opposed to “ungrounded,” not that they are 

“second-rate.” 

Apart from this quibble, however, Armstrong’s description illustrates how constructed 

properties can be taken to exist so long as their components do. Therefore, if the mathematical 

properties are precisely the purely structural ones, then the existence of the properties “part,” 

“whole,” “sameness,” “difference,” together with the basic logical relations is sufficient for the 

existence of all mathematical properties, instantiated or uninstantiated. Therefore, all 

mathematical properties exist. This appears to resolve the emptiness objection. 

However, one might have a lingering worry. Perhaps the reducibility thesis cannot get us 

all uninstantiated properties, thereby leaving some true propositions about possible but actually 

uninstantiated properties ungrounded. For example, Armstrong’s view notoriously faces a 

 
106 One suggestive way you might put this is that it seems like the existence of the natures of F and G is enough to 

determine what it would be like for something to be both F and G. In other words, the actually existent natures of F 

and G metaphysically fix or determine what an F-and-G thing would have to be. And that seems to be all that is 

necessary to say the property of being F-and-G exists. However, if this way of putting the point is less perspicuous to 

the reader, one can simply go with the original reducibility or supervenience claim mentioned above. 

 
107 Assuming they can be, anyway – an admittedly questionable assumption. 

 
108 I certainly prefer their company. 
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challenge in accounting for modal facts about alien properties, i.e. properties that are neither 

instantiated in the actual world at any time nor definable in terms of ones that are. How can we 

account for the possibility that there might be aliens properties, in this sense? 

I have two responses to this objection. The first response is somewhat speculative. Recall 

the discussion at the end of Chapter 2 explaining two different interpretations of essence one 

might give: The “referential” conception and the “primitivist” conception. Recall that on the 

primitivist conception, to say that “the essence of X is to be F” is to say something like “it is 

essential to X’s that: X’s are Fs,” where “it is essential to X” is a primitive modal operator. This 

is in contrast to the “referential” conception, where an essence is taken to be some kind of 

irreducible object or thing. 

Arguably, if the primitivist conception is correct, we get a picture of the world as 

intrinsically and irreducibly modal and essentialist. In that case, one can take all essentialist facts 

as basic.109 One will then have the required grounds for modal facts about alien properties. 

Admittedly, it is less easy to see how the referential conception will account for alien 

properties. The problem is similar to one that David Armstrong faced in his account of 

metaphysical modality.110 In essence, according to Armstrong, we can think of possible worlds 

as combinations of “basic” states of affairs, where a “basic” state of affairs is when some simple 

individual(s) instantiate some simple universal(s). So, for example, we can say there is a possible 

 
109 Obviously, on the primitivist view, the essentialist facts will be left ungrounded by anything further. It is not clear, 

however, that this is a bad thing. After all, should “the essence of water is H2O” have some non-modal, non-essentialist 

grounds? Arguably, this is a reasonable stopping point for explanation. If someone asks “Why is the essence of water 

to be H2O?” it seems reasonable to say “Well, it just is. That’s just what the essence is.” 

 
110 See Armstrong (2010) pp 86-7. 
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world where there are green humans because we can logically construct the state of affairs of 

some individual human having the simple universal “green.” 

The problem for Armstrong’s account is that it does not seem to explain how there can be 

possible worlds with “alien” properties, i.e., properties that are not instantiated in the actual 

world nor definable in terms of ones that are. It does not seem that we can get possible worlds 

with alien properties simply by combining actual properties together. 

Now, there are a few things Armstrong might say. For one, Armstrong could simply deny 

that there are possible worlds where totally alien properties are instantiated.111 Perhaps this could 

be justified by an appeal to the overall elegance of Armstrong’s combinatorial theory of 

modality. If the theory is strongly justified on other grounds, perhaps it can override the initial 

presumption in favor of alien properties. However, this at least seems like a cost that it would at 

least be preferable to avoid, if possible. 

In later work, Armstrong changes his mind, and allows for the introduction of alien 

properties.112 However, it is obscure how they can be admitted given his overall commitment to 

grounding modality in actual entities, together with his claim that only instantiated universals 

exist. Perhaps alien properties can be thought of as logical fictions or idealizations of some 

sort.113  

I will not pursue this line of thought further, however, and instead will turn to my second 

and more central response to the problem. And that is that, whether we go primitivist or 

 
111 Armstrong takes this view in (1989). 

 
112 See Armstrong (1997). 

 
113 Cf. Sider (2002) and (2005) for further discussion of this proposal. 
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referentialist about essences, I can bracket the question of alien properties, as I am not concerned 

here to ground all facts about uninstantiated properties, but rather all the facts of mathematics. I 

have not set myself on the task of solving all problems about the metaphysics of uninstantiated 

properties, but only the case of uninstantiated mathematical ones 

6. Conclusion 

To sum things up: If we can grasp the essences of the basic components of more complex 

uninstantiated mathematical properties, then we can use this grasp together with our reliable 

logical abilities to work out what else is part of the mathematical property’s essence. A 

particularly simple example of this was given in Section 3 above, with the case of the property 

being a three-tiered system. In its idealized form, this reasoning takes place through proof. But 

some people have the ability to reliably grasp logical relations among mathematical properties 

without formal proof. We call this “grasping” mathematical insight, and we call people who have 

this insight mathematicians. 

Overall then, we have a sketch of a story about how mathematical knowledge  can be had 

by a combination of knowledge of simple mathematical properties grasped through perception 

plus logical construction based on that knowledge. Admittedly, there are some broader 

epistemological issues that have not been resolved here. For example, there are more general 

epistemological issues about how we come to have knowledge of essences based on perception 

at all, as well as about the reliability of our logical knowledge. These are much broader questions 

with large literatures behind them, and I will not try to address them here.114 Suffice it to say 

 
114 However, for an account of essentialist knowledge that I find plausible, see Lowe (2013) “What is the Source of 

Our Knowledge of Modal Truths,” especially pp. 934 ff. Incidentally, Lowe finds mathematical propositions to be the 

clearest case of essentialist knowledge, and regularly appeals to them throughout most of his work on essence; Lowe 

especially likes geometrical cases. For further discussion, see also Vaidya (2010) and (2017), and Horvath (2014). 
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that, if my account has shown we can have mathematical knowledge so long as our logical 

knowledge is reliable and we can gain some basic essentialist knowledge from perception, I will 

consider my account to have made some progress. 
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CHAPTER 4: MATHEMATICAL REDUCTION, TREATING-AS, AND 

INSTANTIATION 

 

1. The Problem of Multiple Reductions 

It is standard fare that Platonic numbers have a reduction problem. And I am not talking 

about their weight.115 I am referring to the well-known fact that mathematical reduction is a 

multifarious matter: There are equally salient ways of reducing one part of the mathematical 

world to another. 

The classic example is the V-sets and the Z-sets. Here is the reduction of the natural 

numbers in terms of von Neumann’s “V-sets”: 

• (V-Sets): 0: {}, 1:{{}}, 2: {{},{{}}}, …  

o [where the n+1th set is the power set of the nth set] 

And here it is in terms of the “Z-Sets” as I’m dubbing them, after Zermelo: 

• (Z-Sets): 0: {}, 1: {{}}, 2: {{{}}}, …  

o [where the n+1th set is the set of the nth set] 

 
115 That would be impossible. 
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The problem for set-theoretic Platonism is that the Z-Sets are just as good for a 

mathematical reduction of arithmetic to set theory as are the V-Sets. Thus, reductive, set-

theoretic Platonism faces a problem: 

The Multiple-Reductions Problem: There are multiple, equally good possible 

reductions of the ontology of numbers to the ontology of sets. 

This problem is not new. In its original formulation, it was the inspiration for the idea that 

we should treat mathematics as the science of structures, or patterns. We discussed the problem 

a bit before in Chapter 1 above. 

What is less often discussed, however, is what exactly mathematical reduction is.116 If it 

is not an ontological relation – as the non-identity of the V-sets and Z-sets seems to show117 – 

then how should we understand it? And what sort of ontology best accounts for it? 

In this chapter I will argue that mathematical reduction should be understood as a 

particular instance of a more general phenomenon called mathematical “treating-as,” and that our 

version of structuralism can nicely account for this phenomenon. In Section 2, I will describe 

“treating-as,” and how mathematical reduction should be understood as a specific instance of it. 

Here we will draw out some of the formal properties of treating-as. Section 3 will discuss some 

of the useful epistemic and explanatory functions treating-as serves in mathematical practice. We 

will see that treating-as can allow us both to see why certain results hold, as well as discover new 

results. Finally, Section 4 will discuss how mathematical treating-as can be understood in terms 

 
116 One underappreciated account is Daniel A. Bonevac, Reduction in the Abstract Sciences (1982). However, 

Bonevac’s discussion is centered around the issue of abstract objects generally, and is not primarily interested in 

mathematical reduction for its own sake as a phenomenon in mathematical practice. 

 
117 They are non-identical because of the axiom of extensionality. Assuming A = B and A = C entails B = C, it follows 

from multiple reducibility that mathematical reduction cannot be identity. 
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of the ontology of immanent structuralism. In doing so, I will discuss two important types of 

instantiation relevant to the account. The properties of treating-as will be seen to fall elegantly 

out of this analysis. 

2. Phenomena: Mathematical Treating-As and Reduction 

I claim that mathematical reduction is an instance of a more general phenomenon that we 

can call “mathematical treating-as.” To illustrate this phenomenon, recall the following sort of 

locution from one’s undergraduate mathematics textbooks or lectures: 

• “You can think of vectors as directed line segments on a plane.” 

• “You can think of the set S as a function, which assigns 1 to any object in S, 0 

otherwise.” 

• “You can think of a function as a set of ordered n-tuples.” 

• “You can think of an integral as the area under a curve.” 

• “You can think of complex numbers as rotations around the origin of a plane.” 

• “You can think of complex numbers as ordered pairs of real numbers.” 

And, of course, we have the set-theoretical case that we’ve seen already: 

• “You can treat the natural numbers as the V-sets (or the Z-sets).” 

As even these rather straightforward examples show, mathematical “treating-as” is not 

confined to set theory, but occurs over a wide variety of subject matters. These elementary cases 

deal with vectors, lines, planes, sets, functions, integrals, and complex numbers. 

What’s clear about all of these examples of mathematical “treating-as” is that they do not, 

on the face of it, carry any heavy ontological implications. At least in the examples where sets 
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are not involved, when you treat X as Y it does not seem plausible to literally identify the X’s 

with the Y’s in any metaphysically significant sense. After all, it seems unlikely that a “rotation” 

is what a complex number really is. 

We can further argue based on its formal properties that treating-as is not straightforward 

ontological identification. For one thing, treating-as can be symmetric. In the set/function case 

above, for instance, functions are treated as primitive, and sets are defined in terms of them. 

However, mathematicians will also treat functions as a type of set, viz., as sets of ordered n-

tuples. So sets can be treated as functions, but functions also can be treated as sets. Therefore, the 

“treating-as” relation sometimes is symmetric. However, ontological reduction is never 

symmetric.118 

Furthermore, if treating-as were an ontic relation, what we would normally take to be 

category errors would in fact be mathematical truths. For example, you can treat numbers as 

arrays of dots, and treat addition as the concatenation of such arrays.119 On an ontic interpretation 

of treating-as, therefore, the physical and the abstract can become one. 

Moreover, in some cases where X is treated as Y, it is not totally clear we should be 

committed to the existence of the Y’s at all: Should we really admit the existence of such 

“things” as rotations, or lines in abstracto? It is not immediately obvious we should. However, if 

treating-as is not an ontic relation then it is not necessarily problematic to treat an accepted entity 

as a dubious one: For it seems that even if the ontological status of these items Y is less certain 

 
118 For example, if heat reduces to molecular motion, molecular motion does not reduce to heat. 

 
119 See the discussion in Bigelow (1990). 
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and clear than the X we are treating as Y, it is fine within mathematical practice for you to treat 

X as Y. 

The takeaway from all of this is that the mathematical treatment of X as Y does not have 

any substantive ontological implications for the relationship between X and Y. 

Now, returning to the example of the set-theoretic reduction of the natural numbers, it 

seems plausible that mathematical reduction is also a case of mathematical “treating-as.” After 

all, the reduction of the natural numbers to set theory is often done using the same locution: You 

can “think of” the natural numbers as certain sets.120 Similarly, you can treat the complex 

numbers as ordered pairs. There certainly is no prima facie objection to thinking of mathematical 

reduction as an example of treating-as. So what distinguishes reductions from any other case of 

treating-as? 

The main difference between mathematical reductions and less specific instances of 

treating-as seems to be that in reductions, we usually treat an entire system that we are concerned 

with as a part of another system, one whose “credentials” are already firmly established. For 

instance, we treat the entire system of the natural numbers as the Z-sets or the V-sets, and 

thereby “reduce” them. Similarly for the case of the complex numbers and ordered pairs of reals. 

Now, if mathematical reductions are indeed merely a special case of mathematical 

treating-as, and if the latter relation is not ontically significant, it makes sense why we find 

mathematical reductions not to be either. In other words: We know that mathematical reductions 

cannot be ontological reductions because of the multiple reductions problem. The theory that 

 
120 For this, consult a textbook. See, for example, the classic set theory texts of Stoll (1963) and Quine (1969). 
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we’ve proposed – that “reductions” are just instances of “treating-as” – explains this, since we’ve 

already seen independent reasons that “treating-as” is not an ontologically reductive relation. 

3. Functions: The Uses of Mathematical Treating-As 

While at this point we have seen instances of “treating-as” and learned a bit about its 

formal features, that still leaves the question of what mathematical treating-as is, exactly, and 

what it is for. Let us begin with the latter question. The former question will be addressed in the 

next section. 

Arguably, mathematical treating-as serves several functions. For one, treating-as can be 

heuristic. It can give students an easier way of conceptualizing or visualizing some piece of 

mathematics. For instance, most students find it easier to think of an integral as an area under a 

curve instead of thinking directly in terms of Riemann sums. Physical or pictorial examples of 

treating-as generally serve these sorts of heuristic functions well. Using simpler examples from 

other areas of mathematics that may be more familiar to the student can serve this heuristic 

function as well. 

Looking at the particular case of mathematical reduction, this type of mathematical 

treating-as can serve various “house-cleaning” functions: It can allow us to show how one type 

of mathematical entity X (maybe one that has been considered dubious for some time) is no more 

problematic than another type of mathematical entity Y, either in virtue of the well-definedness 

of Y or in virtue of the assumed consistency of axioms about the Ys. 

This seems to be one reason why mathematicians began to think of complex numbers as 

ordered pairs, for example. By showing how the whole collection of complex numbers can be 

treated as a collection ordered pairs, we can conclude that complex numbers are no more 



    

80 
 

mysterious than ordered pairs. So, mathematical treating-as can help us prove well-definedness 

and relative consistency results. 

Furthermore, treating-as has explanatory functions. This has been well-illustrated in a 

number of cases by William D’Alessandro.121 I will focus on a simple case. 

Suppose we want to understand why the sum of the first n odd natural numbers is n-

squared. In other words, why is it that 1 + 3 = 22, 1 + 3 + 5 = 32, 1 + 3 + 5 + 7 = 42, and so on? 

While there are various proofs that can be given for this result, not all of them will help 

you to see why this result holds. The following picture proof, however, does provide explanatory 

help. D’Alessandro explains the proof as follows: 

Start with 1, the first odd number, which can be regarded as a square array of side 1 (and 

hence of area 12). The second odd number is 3, and we can think of adding 3 to 1 as 

augmenting the original square array so as to make a new one of side 2 (and hence of area 

22). Similarly, adding 5 to 1 + 3 gives a square array of side 3, and so on, as in the 

diagram. 

 
121 See D’Alessandro (2018) and (2020). D’Alessandro instead refers to the phenomenon as mathematical “viewing-

as,” and does so in a somewhat different context, but the phenomena appear to me to be the same. Incidentally, 

D’Alessandro is interested in treating-as precisely because it is not an ontic relation. D’Alessandro tries to use this 

fact to show that explanations in mathematics do not have to be a species of grounding, ontological dependence, or 

causation. After all, if treating-as can be explanatory without being an ontic relation, then it seems some explanations 

are not instances of grounding or ontological dependence. 

 

While I agree with D’Alessandro that treating-as explanations cannot be identified with grounding or dependence 

relations in a naïve way, I will briefly raise a few questions for D’Alessandro’s argument below. See footnote 138. 
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What is interesting about the picture proof is, if you study it closely, it helps you to see 

why the result holds: One way to think about it is if I take the next odd number, I’m going to 

have a “dot” in the upper right corner, because the number is odd, and getting the “next” odd 

number is a matter of adding two dots to the previous odd number.  

That extra dot is always going to allow me to form a new square by combining it with the 

previous square. And so I will always be able to produce a new square. As this point is clearly 

perfectly general, I can now better explain why the result holds by means of this picture proof. 

Treating-as, then, can have very useful explanatory functions. 

Mathematical treating-as can also serve useful epistemic functions. If we reduce one part 

of mathematical discourse X to another part Y, this can give us clues as to how we should 

axiomatize X, since we may be able to catch onto a pattern that is more clear or evident in Y. Or, 

we may able to see that certain proposed axioms are redundant, unnecessary, or perhaps don’t 
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even accurately describe the relevant parts of Y. We might even discover results about X that we 

wouldn’t have seen if we’d not thought of X as Y. 

To illustrate this, consider another example brought up by D’Alessandro.122 The example 

comes from Marc Konvisser’s linear algebra textbook. Suppose we want to know what the 

solutions are to the polynomial xn – 1 = 0. Finding the desired results when n = 1, 2, 3, 4 is rather 

straightforward. We simply use standard algebraic methods of factoring or applying the 

quadratic formula. 

What is interesting though, is that we can discover a much more general result by treating 

complex numbers as rotations on the plane. In particular, we are to think of multiplying a 

complex number z by i as rotating the vector associated with z counterclockwise by an angle of 

π/2  i.e., 90 degrees. Konvisser then describes how this is relevant to the original problem of 

finding the solutions of xn – 1 = 0: 

Now let us see how this interpretation of multiplication by i as rotation by π/2 can help us 

solve our original problem of finding the roots of equations of the form 0 = xn − 1 ... In 

order to find complex numbers that satisfy the equation zn = 1, let us see if we can find 

complex numbers z so that multiplication by z represents a rotation of 1/n way around, 

that is, a rotation of 2π/n.123 

In other words, we want complex numbers z which, when applied n times, bring you back 

to the same place – which is equivalent to just multiplying by “1.” You might say we are treating 

the formula zn = 1 as a statement about rotations.  

 
122 D’Alessandro (2020) 

 
123In ibid. 
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Konvisser then notes a basic result of simple trigonometry: 

Let z = cos θ + isin θ. Multiplication by z represents a counterclockwise rotation by the 

angle θ. (31)  

This can then be used to give us the desired general solution. As D’Alessandro notes:124 

This essentially solves the original problem. We wanted to find the solutions to xn − 1 = 

0, i.e. the complex numbers z corresponding to rotations of 2π/n. By the previous 

proposition, one such solution is z = cos (2π/n) + isin(2π/n). In fact, z is a “primitive nth 

root of unity”, and the remaining roots are the powers z2, z3 , . . . , zn-1. 

What this example shows is that a very simple case of treating-as – treating complex 

numbers as rotation on the plane – can be immensely useful in discovering a new, more general 

result about polynomials. Thus, treating-as serves useful epistemic functions. 

In summary, mathematical treating-as serves important heuristic, house-cleaning, 

explanatory, and epistemic functions. I will now attempt an account of what treating-as is. 

4. Treating-As: An Immanent Structuralist Analysis 

Let’s return to structuralism for a moment. Recall that on the standard version of 

structuralism advanced by Resnik (1997) and Shapiro (1997) – ante rem structuralism – the 

subject matter of mathematics consists of “an ontology of featureless objects, called ‘positions’, 

and … systems of relations or ‘patterns’ in which these positions figure.”125 Ante rem 

 
124 Ibid. 

 
125 Resnik (1997) p. 269. 
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structuralists view individual mathematical objects as the “nodes” or “positions” within these 

systems. 

For example, the natural number system is a structure of intrinsically featureless objects 

with the order characteristic of the natural numbers. Thus, structuralists will say that the V-sets 

and the Z-sets both exemplify the natural number pattern, but that neither is, strictly speaking, 

identical with the series of natural numbers. 

On this view, the natures of mathematical objects (such as the number two, say) are 

wholly constituted by the relations they bear to other positions within the structure. In other 

words, the intrinsic natures of mathematical objects are exhausted by their relations to the other 

objects in the larger structure they are a part of. 

While ante rem structuralism is motivated by a desire to account for how there can be 

multiple salient reductions, unfortunately, as I briefly argued in Chapter 1 and will explain 

further in Chapter 5, ante rem structuralism suffers from some of the same epistemological 

problems as standard Platonism. This seems plausible just based on the fact that it is a version of 

Platonism, albeit one with a particular view about the nature of the relevant Platonica. 

Furthermore, the objectual character of ante rem structuralism that we have just described opens 

it up to objections based on the nature of identity. This will be discussed more in Chapter 5. 

For these reasons, I will instead propose an explanation of treating-as and reduction in 

terms of immanent structuralism. I believe our version of structuralism can explain why treating-

as has the heuristic, house-cleaning, explanatory, and epistemic functions that it does, and why 

the “treating-as” relation is successful in serving them. 
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So, on to our analysis: I propose that we understand mathematical treating-as in terms of 

instantiation of purely structural properties. More specifically, to say that you can treat a 

mathematical structure X as Y is to say X is instantiated by Y: 

(TREAT): We can treat a mathematical structure X as Y if Y instantiates X. 

So, for example, on this account, you can treat vectors as line-segments on a plane, 

because line-segments on a plane instantiate the structure of a vector space. Or you can treat 

complex numbers as rotations, because rotations instantiate the structure of the complex 

numbers. And in general, if we can treat X as Y, that means Y instantiates the pattern X. 

Because of that, we can use information we gain from thinking about Y to tell us about the 

original structure or pattern, X. Of course, different “treatments” might serve some of the various 

functions better than others; this analysis does not mean to say that all “treatments” will be 

useful. But, in principle, one can mathematically treat the X’s as Y’s just in case Y is an instance 

of the X’s. 

Before showing how the properties of treating-as fall out from this analysis, I need to 

clarify a point about universals. The analysis in TREAT implies that when X is treated as Y, Y 

instantiates X. Now, it might seem to follow from this that Y must be physical or concrete, or at 

the very least an object or individual, since it is something that instantiates a universal. However, 

on immanent structuralism, the subject-matter of mathematics consists only in universals. This 

might seem to pose a problem. After all, we can treat one mathematical system as another, as we 

saw in the case of the natural numbers in and the V-sets and Z-sets. 
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To resolve this worry, I will need to say that universals can instantiate other universals.126 

In doing so, I will appeal to a distinction between two sorts of instantiation, corresponding to two 

sorts of predication. This has been known since Aristotle wrote the Categories,127 but the thought 

has arguably been developed most fully by the late metaphysician and fellow neo-Aristotelian, E. 

J. Lowe.128 

Consider the two following sorts of things we might say: 

• To be a dog is to be a certain sort of individual animal.  

o [Or: “The dog is a certain sort of animal.”] 

• To be a dog is a property. 

o [Or: “The dog is a property.”] 

Clearly, these two utterances can both be consistently affirmed, even though in the first 

case being an “animal” is predicated of the subject, while in the second being a “property” is. 

The reason these two statements can be consistent is that the first sort of predication draws out 

the content of doghood, while the latter is a metaphysical claim about the ontological correlate of 

the kind-term “dog.”129 You might say that the first statement talks about what is contained in 

the property being a dog, while the second talks about the property of being a dog qua property. 

You might also say that the latter is an “external” predication, while the former is “internal,” i.e. 

specifying the internal nature of the property’s contents. 

 
126 Thanks to Daniel Bonevac for helping me see this problem clearly. 

 
127 See Aristotle Categories. 

 
128 See, especially Lowe’s Four-Category Ontology (2007) and More Kinds of Being (2009). 

 
129 And, moreover, one that is unlikely to be uttered outside the context of a metaphysical discussion. 
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So we can say that the property of being a dog instantiates being an individual in what I 

have called the “internal” sense, even though the property itself is not an individual (rather, it is a 

property). This is ordinarily the sort of instantiation that is relevant in TREAT when we treat 

one mathematical system as part of another.130 

Note that if TREAT is right, then immanent structuralism is uniquely suited to account 

for treating-as. A Platonist cannot agree with TREAT because Platonic objects, being 

individuals, do not instantiate each other. Only universals can be instantiated. If the number 3 or 

the function y = 2x are objects like Alfredo and Bob, then like Alfredo and Bob, they cannot be 

“instantiated” by each other. They just exist and have the features they do. 

On the immanent structuralist view, you can treat vectors and complex numbers as lines 

and rotations because these latter things instantiate the former mathematical patterns.131 In the 

set-theoretic case in particular, we can think of numbers as V-sets or Z-sets because these series 

of sets are paradigmatic instances of the natural number pattern. 

This analysis predicts that treating-as will have the various formal properties that we’ve 

seen it to have.132 First off, clearly, on this account, treating-as need not have any substantive 

ontological implications, at least not in the sense that if A can be treated as B, A is B. For the 

mere fact that something instantiates a pattern does not in any way tend to make us think that it 

and the pattern are identical. 

 
130 For further discussion, see Chapter 2 above, particularly the discussion of singular pattern statements. 

 
131 Again, given what we’ve just said about instantiation, it is fine if “lines” and “rotations” are themselves universals 

that might be exemplified in various concrete systems. 

 
132 Recall the discussion toward the beginning of Section 2 above. 
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Moreover, treating-as will sometimes be symmetric, since if we have two patterns X and 

Y, then it may sometimes be that both X instantiates Y and Y instantiates X. That is why sets can 

be treated as functions and functions treated as sets. 

Furthermore, there is no reason why treating-as should imply uniqueness: There is no 

reason why we can’t treat the number 2 as both a certain V-set and as a certain Z-set, since both 

the V-sets and the Z-sets might instantiate the natural number pattern. In this way we can easily 

end up with multiple reductions. And that is fine. 

Finally, it can at least sometimes be useful to treat a pattern X as something else Y, even 

when the existential status of Y is dubious. This is because the existential status of Y is 

irrelevant, at least for mathematical purposes, so long as the treatment of X as Y accomplishes 

the relevant heuristic, house-cleaning, explanatory, or epistemic goals. In fact, for mathematical 

purposes, when treating X in terms of Y, it doesn’t matter what Y is intrinsically, so long as it 

instantiates the relevant pattern. 

Allow me briefly to digress and emphasize the last point that was just made. “It doesn’t 

matter what Y is.” If Y instantiates the pattern X, then we can treat X as Y. 

This fact about mathematics is worth highlighting explicitly: For the purposes of 

mathematical truth, it seems that the intrinsic natures of the objects referred to does not matter. 

In other words, it doesn’t matter what you take mathematical statements to be about, so long as 

what you take them to be about instantiates the relevant pattern. I will call this phenomenon 

mathematical abstraction: Mathematics abstracts from the intrinsic natures of objects. Arguably, 

the phenomenon of mathematical abstraction favors immanent structuralism too. Let’s consider a 

few examples. 
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First, the one from number theory that we’ve been discussing repeatedly:  

Consider the student who asks his or her teacher, “Is the number 2 the V-set or is it the Z-

set?” The teacher will probably say, “Think of it whichever way you like! It doesn’t 

matter.”  

Indeed, from this hypothetical discourse we can draw the more general conclusion that, 

so far as the truth of the number statement goes, it doesn’t matter what you take number 

statements to be about. This makes sense on our view, because according to immanent 

structuralism statements asserting features of the number 2 are true so long as certain statements 

about the natural number pattern in general are true. It therefore does not matter which 

particular instance of the pattern you find it helpful to think in terms of, so long as it is an 

instance. 

Another example comes to mind from David Lewis. Consider the Klein 4-group: 

* E A B C 

E E A B C 

A A E C B 

B C B E A 

C C B A E 

 

Lewis nicely explains how this example illustrates mathematical abstraction: 

“Compare an algebraist’s answer to a protesting student who says he hasn’t been told 

what the Klein 4-group is just by being shown the table for it. What are these four things 

e, a, b, c? The Prof may answer: ‘They’re anything you like. No one thing is the Klein 4-
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group; rather, any function (or, equivalently, any four-things-and-a-function) that obeys 

the table is a Klein 4-group. Anything I tell you about ‘the’ Klein 4-group is tacitly 

general.’”133 

This abstraction from subject matter seems to be characteristic of mathematics: Geometry 

can be applied to color spaces, physical spaces, and probability spaces. Linear algebra can be 

applied to rotations, lines, and utility functions. Analysis can be applied to physical curves, 

demand curves, and n-dimensional-manifold “curves.” 

This feature of mathematics – its “abstractness” – is both predicted by and lends support 

to immanent structuralism. Recall that we defined a purely structural property as one that is 

definable entirely in terms of part, whole, sameness, difference, and purely logical vocabulary. 

Immanent structuralism asserts that these are precisely the structures studied by mathematics. It 

is because of the extreme generality of these notions that mathematics can be so abstract. At the 

same time, the fact that mathematics is so abstract suggests that all of its structures can be 

defined in these terms. 

So much for mathematical abstraction. Let us return to treating-as. We have seen how 

TREAT easily explains the formal properties of treating-as, viz., that it is not ontological, that it 

non-unique, that it can be symmetric, and that it is abstract. Let us see whether TREAT can also 

shed light on the heuristic, house-cleaning, explanatory, and epistemic functions that we 

discussed earlier. 

 
133 See Lewis (1993) p. 15. In fact, Lewis in some places describes his view as “structuralist.” Though Lewis’ view is 

not the same as our view insofar as he does not rest his theory on an ontology of universals, his view is indeed similar 

to the immanent structuralist’s “in spirit.” 
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First, it is clear on our analysis how treating-as serves the various logical “house-

cleaning” functions. Consider the following two highly plausible principles about universals: 

1. If concrete system Y instantiates X, then X is a coherent universal. 

That is to say, if the universal X has an instance, then X is not a logically contradictory 

universal.134 This principle is obviously true, and it is the ontological correlate of the principle in 

model theory that consistency can be shown by witnessing a concrete model. This principle 

clearly is most applicable when we are treating one mathematical system as some array of 

concrete physical objects. 

We also have a more general principle, covering both types of “instantiation” discussed 

earlier: 

2. If Y is a concrete object or a coherent universal, and Y instantiates X, then X is a 

coherent universal. 

This principle grounds arguments for and proofs of relative consistency. In cases where Y 

is some mathematical system, this clearly is useful only when Y is itself believed to be coherent. 

But of course that is in fact what is assumed when one tries to give a model of some 

mathematical theory in terms of, say, set-theoretic objects or arithmetic, and it is no secret that 

the consistency of much of mathematics is hostage to the consistency of these more elementary 

parts. 

 
134 An example of a “logically contradictory” universal might be “being green and not-green” or “being a round 

square.” 
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As for heuristics, explanations, and mathematical insight, our analysis in TREAT can 

help us see why treating one pattern as another might help us be more attentive to some aspect of 

the pattern in question.  

For instance, consider the example given earlier, where we treat the natural numbers as 

arrays of dots, and we use this treatment to explain why the first n odd numbers add up to n2. I 

would claim that in this picture proof we are literally able to perceive some necessary facts about 

the pattern in question.135 

 

By our looking closely at a few examples, we can perceive the property of being an (n x 

n) array of dots,136 and we can grasp that the two sides of an (n x n) array of dots must have an 

 
135 On literally perceiving mathematically necessary relations in physical instances, see Legg and Franklin (2017) 

“Perceiving Necessity”. Legg and Franklin give several other instances where it seems plausible that the viewer of the 

picture proof is perceiving a necessity. See also Chapter 6 below. 

 
136 Note that this property is literally instantiated in each of the square arrays of dots. 
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odd number of dots – namely, (2n - 1) dots – because the two sides must “share” a dot. We also 

thereby grasp that (2n – 1) must be the nth odd number of dots. And we can visually see that (2n 

- 1) and (n - 1)2 dots must always fit together to produce n2. In short, what we are perceiving are 

necessary relations between certain numerical properties. 

However, we also can clearly grasp that these necessities are not generated by anything 

about the dots in particular, but rather by the relations between the cardinality properties they 

instantiate, viz., being n2, being (2n - 1) and being (n - 1)2. Thus, by perceiving several concrete 

instances of these properties we are able to grasp a fact about the nature of cardinality in general, 

and we can now see why the general theorem is true, since now we can see what it is about the 

nature of cardinality that makes it true. In short, we can now grasp why something is an essential 

fact about a mathematical pattern (the natural numbers).137 A mathematical induction proof, on 

the other hand, may show us that the theorem is true of the pattern, but does not allow us so 

clearly to see why.138 

 
137Arguably, a similar story can be told for cases where we treat a mathematical system X as another mathematical 

system Y. In this case, however, what does the work is not the physical perception of certain necessities but rather our 

clearer grasp of some essential feature of Y. 

 
138 If the account of treating-as explanations given here works, it may raise questions for D’Alessandro’s argument 

that viewing-as explanations need not be parallel to ontological dependence or grounding relations. (See note 121 

above.) Recall that, treating-as is not an ontological relation: When X is treated as Y, this does not mean Y 

ontologically “grounds” facts about X. D’Alessandro concludes from this that not all explanations involve ontological 

grounding, since viewing X as Y can help explain some fact about X. 

 

However, I am proposing that in a viewing-as explanation, the explanans (whatever it is that a pattern is being treated-

as) allows us to see why the explanandum (a pattern, i.e. a certain universal) has some feature as part of its essence. 

But arguably the relation between the essential features of a property and that property is one of ontological 

determination or grounding: The essential features of a property do, in some sense, ground the existence of the 

property. If that is right, then perhaps what D’Alessandro calls the “dependency thesis” needn’t be rejected, at least 

not wholesale: Perhaps explanatory relations really do parallel ontological dependence or grounding relations.  

 

I should also note that this may nevertheless be consistent with D’Alessandro’s hypothesis that explanatoriness should 

be understood as a type of cognitive relation, for Aristotelians have long thought there to be a tight connection between 

essence and intelligibility. See Koslicki (2011) as well as Reeve (2000). 
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5. Conclusion 

The multiple-reductions problem provides a compelling reason for doubting that 

“mathematical reductions” are, in fact, ontological reductions. This makes it difficult for any 

“reductive” form of Platonism to get off the ground. Instead, we should think of mathematical 

reduction as a specific instance of treating-as. 

As we have seen, treating-as serves important heuristic and epistemic functions in the 

practice of mathematics. Treating-as also possesses certain formal properties. Understanding 

these functions and features of treating-as helps us to see why mathematical reduction is not an 

ontological relation. 

Furthermore, thinking of treating-as in terms of the ontology of immanent structuralism 

allows us nicely to explain how treating-as can have precisely these features and functions. In 

particular, by identifying two sorts of property-instantiation, we can explain why it is possible 

both to treat mathematical systems as concrete systems as well as other mathematical systems. In 

short, the phenomenon of mathematical treating-as is helpfully understood in immanent 

structuralist terms. This provides some confirmation of the immanent structuralist’s framework. 
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CHAPTER 5: COMPARISONS: PLATONISMS AND OTHER STRUCTURALISMS 

 

Introduction 

Up to this point we have discussed the ontology, semantics, and epistemology of 

immanent structuralism. Before moving on to an important application of the view, I would like 

to spend some time discussing where it differs from other related theories in the philosophy of 

mathematics. While I obviously will not be able to discuss every picture of mathematics that has 

been given, I will spend some time comparing immanent structuralism with other versions of 

structuralism, as well as other views in the vicinity of structuralism. 

In Section 1 I will briefly discuss further the ante rem view, which is what most people 

mean when they refer simply to “structuralism.” In Section 2 I will discuss a specific problem 

about identity that ante rem structuralists have long struggled with, but which is easily resolved 

on the immanent version. In Section 3 I first briefly recount what is known as “eliminative 

structuralism.” The difficulties with this theory will help us to see why Hellman develops his 

“modal” version of structuralism. Here I will demonstrate how immanent structuralism avoids 

some important difficulties for Hellman’s view. Finally, in Section 4, I discuss “full-blooded 

Platonism.” Perhaps surprisingly, this particularly thorough version of Platonism has a number of 

features in common with immanent structuralism. But as we will see, immanent structuralism 

and full-blooded Platonism differ on the category of entities they ascribe “fullness” to, and the 

immanent view is far more plausible precisely because of this difference. 



    

96 
 

1. Ante Rem Epistemology and Ontology: Still Too Platonist 

In previous chapters we have touched a bit on the more traditional version of 

structuralism called ante rem structuralism. On ante rem structuralism, mathematics is 

committed to an infinity of structures. These structures are composed of mathematical objects 

that we can call places. They are unique objects in that they are mere “places” in a system, 

having no intrinsic properties apart from their abstract relations to other such “featureless” 

objects. Nevertheless, they still are individual entities that can be named and quantified over just 

like any other entity. As Hellman and Shapiro (2019) explain: 

The ante rem SGS [sui generis structuralism] view, for example, has a straightforward 

account of reference and of the semantics of the languages of mathematics: the variables 

of a branch of mathematics, such as arithmetic, real analysis, or complex analysis, range 

over the places in an ante rem structure. Singular terms denote individual places, so the 

language is understood at face value. 

In other words, an advocate of SGS has it that the straightforward grammatical structure 

of a mathematical language reflects the underlying logical form of the propositions. For 

example, in the simple arithmetic equation 3 x 8 = 24, the numerals ‘3’, ‘8’, and ‘24’ at 

least seem to be singular terms – proper names. In the SGS view, they are singular terms. 

The role of a singular term is to denote an individual object and, in the SGS view, each of 

these numerals denotes a place in the natural number structure. … In this respect, then, 

SGS is a variation on traditional  Platonism. For this perspective to make sense, however, 

one has to think of a place in a structure as a bona fide object, the sort of thing that can be 
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denoted by a singular term, and the sort of thing that can be in the range of first-order 

variables.139 

From Chapter 2, it should be clear how different the ante rem account of mathematical 

truth and ontology is from the immanent structuralist’s: In the end, ante rem structuralism is still 

a version of Platonism. 

We can bring out the differences between the views in a few ways. For one, consider how 

the two views would parse a simple predication, like “2 is even.” For the ante rem theorist, “2” 

refers to some specific object that has no intrinsic features, and “is even” predicates of it a certain 

relation between this thing and other such featureless objects. By contrast, for the immanent 

theorist, “2” refers to a property that can be instantiated by concrete physical systems, and the 

predicate “is even” amounts to the claim that a certain structural feature is part of this property’s 

essence. Arguably, this difference gives the immanent structuralist a leg up on at least two fronts: 

epistemology and ontology.  

As we have already discussed in Chapter 3, the specific ontology and account of the 

truth-conditions for mathematics that we have given allows us to say that mathematical 

knowledge starts from perception and “builds up” from there by logical construction. Insofar as 

ante rem theorists still posit causally isolated Platonic objects as the subject matter of 

mathematics, its advantages over traditional sui generis Platonism do not seem quite as 

substantial as the immanent theorist’s.140 

 
139 Hellman and Shapiro (2019) Mathematical Structuralism, p. 3. 

 
140 Resnik (1997) in particular, relies heavily throughout the book on indispensability arguments in order to justify 

mathematical knowledge. Shapiro on the other hand does not place so much weight on indispensability arguments. 

However, partly for that reason his picture of mathematical knowledge is a bit obscure. While Shapiro suggests that 

mathematical knowledge occurs in some way by abstraction, it is not clear how, precisely, the process he describes 
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On the ontological front, ante rem structuralism has the disadvantage of all Platonist 

theories, in that it increases the number of categories of being we must countenance. By positing 

abstract Platonic individuals, we are no longer able to have simple, clean world of concrete 

objects and their properties. This disadvantage of the ante rem view is in fact part of the 

motivation for Hellman’s modal structuralism, which purports to be a version of “structuralism 

without structures.” Before considering Hellman’s view, however, I would like to address an 

important problem about identity that sometimes comes up for structuralists. This problem is 

another drawback of the ante rem ontology that I think can be avoided by the immanent theorist. 

2. Solving the “Identity Problem” for Structuralism 

To reiterate, on the Shapiro-Resnik ante rem view, Platonism is still true insofar as 

numbers are conceived as abstract individuals with mathematical properties, and  mathematical 

claims are still thought of as being true in virtue of these individuals and their properties. The 

difference is that ante rem structuralists consider these mathematical objects not to have any 

intrinsic natures. Instead, their identities are exhausted by their relations to other (also 

intrinsically featureless) objects within the structure.141 

This leads to a classic problem for structuralists, which was raised by John Burgess in a 

review of Shapiro’s (1997) treatise.142 Fraser MacBride elegantly summarizes the issue: 

 
would reliably track the causally disconnected realm that he takes to constitute the subject matter of mathematics. See 

Shapiro  (1997) pp 112 ff. 

 
141 Traditional Platonists, by contrast, consider mathematical objects to be sui generis, and to have non-relational 

intrinsic natures. See the beginning of Chapter 4, Section 3 above. 

 
142 John Burgess (1999) “Book Review: Stewart Shapiro, Philosophy of Mathematics” 
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Far more worrisome is the concern that Shapiro's notion of a structural position cannot be 

made to cohere with the existence of structures admitting nontrivial automorphisms. The 

concern arises from structuralist slogans like “The essence of a natural number is its 

relation to other natural numbers … there is no more to the individual numbers ‘in 

themselves’ than the relations they bear to each other” (PMSO, pp. 72–73). This makes it 

appear as if Shapiro is committed to a version of the Identity of Indiscernibles for 

mathematical objects: if x and y share just the same intrastructural relations to other 

items, then x = y. There are, however, systems of mathematical objects that contain 

structurally indiscernible elements (systems that admit nontrivial automorphisms): the 

complex numbers (i and −i), the additive integers (+1 and −1), points in the Euclidean 

plane, geometric figures with reflectional symmetry, and so on. This means that Shapiro 

is committed to identifying these indiscernible elements: i with −i, +1 with −1, and so on. 

But we know mathematically that these elements are distinct. It follows that ante rem 

structuralism must be rejected (see Burgess [1999], pp. 287–288; and Keränen [2001]).143 

This is a pressing issue for ante rem structuralism, and among the main hesitations one 

might have with the standard ante rem view are the strange nature and identity conditions of the 

objects it posits. 

Luckily, our view does not suffer from this problem. For simplicity’s sake, let’s take the 

case of +1 and -1. Shapiro and Resnik’s view has the difficulty that it is unable to distinguish 

between these two objects, because they are both intrinsically featureless and are in all extrinsic 

respects symmetric. Since Shapiro claims that there is nothing more to mathematical objects than 

 
143 Fraser MacBride (2005) “Structuralism Reconsidered” pp. 581-582, in Shapiro (2005) The Oxford Handbook of 

Philosophy of Mathematics and Logic. 
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their mutual relations (that’s the structuralism part), he seems to be committed to the identity of 

indiscernibles for mathematical objects. We can put the problem as follows. 

• (1) Suppose ante rem structuralism is true. 

• (2) +1 and -1 in the structure of the integers are in all extrinsic respects 

symmetric. 

• (3) But if ante rem structuralism is true, then for mathematical objects there is 

nothing more to the identity of an object than its extrinsic relations to other 

objects in the structure. 

• (4) Therefore, if two mathematical objects cannot be distinguished by their 

relational properties, then they are identical. 

• (5) So, by (2) and (4): +1 and -1 are identical. 

• (6) However, +1 and -1 are not identical. 

• (7) Therefore, ante rem structuralism is not true. 

This seems like a rather difficult problem for structuralism. However, I will argue below 

that on immanent structuralism, it appears completely to dissolve away.  

To see this, recall the discussion in Chapter 2. For simplicity’s sake, let’s consider the 

case of the positive and negative integers.   

On immanent structuralism, what does it mean to say that +1 and -1 are identical? Well, 

“+1” and “-1” are individual constants like “0.” They are therefore abbreviations for purely 
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structural individual properties.144 Without going through the process of formalizing their 

descriptions, they refer to the following properties: 

• [+1] denotes the property being in an integer system with an ordering relation < 

and being the thing between 0 and 2.145 

• [-1] denotes the property being in an integer system with an ordering relation < 

and being the thing between -2 and 0. 

There is no doubt that one and the same concrete system can be ordered by different 

ordering relations <, and that therefore one thing occupying the “+1” role under one ordering can 

also occupy the “-1” role under a different ordering. However, that is not at all the same as 

saying that the +1 and -1 role are the same under a particular ordering. 

As an analogy, consider the property being the first in a line. This property is defined 

relative to some orientation or direction D. Of course, from some specific orientation D1 I could 

be considered last, while from another orientation D2 I could be considered first. But that does 

not at all make the property of being the first in a line the same property as being the last in a 

line. 

Therefore, on immanent structuralism [+1 = -1] is simply false, because these two 

properties do not share the same consequential essence. After all, there is no way you could 

prove that the thing between -2 and 0 in a system is the same as the thing between 0 and 2 in the 

same system.  A similar story could be told about -i and +i. 

 
144 See Chapter 2 above, sections 2.3 and especially 2.4. 

 
145 In principle, the denotation of these latter constants can be spelled out in purely structural terms as well. I am simply 

not doing so, for the sake of brevity. For an example of a more complete abbreviation, see section 2.3 above. 
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I wish to emphasize how simple a matter this is for immanent structuralism, in contrast to 

the serious challenge it has been taken to be for ante rem. Rather than positing a structural 

universal that can be instantiated by concrete things, ante rem theorists posit strange featureless 

objects that themselves exemplify the relevant pattern (and, therefore, exemplify themselves!146). 

From the immanent point of view, ante rem theorists have gotten themselves into an unnecessary 

quagmire of objections about the nature of identity within structures.147 

Perhaps ante rem theorists were driven to posit this strange class of featureless objects to 

secure a subject-matter for mathematics, in order that much of mathematics will not be empty 

(and therefore false). This is sometimes called the “Empty Model” worry. We will discuss this 

worry further in a moment. But assume for the moment that it is a valid one. If we reject the 

contention that mathematics aims to describe some distinct class of objects, and instead construe 

it as explicating the natures of certain universals, this problem doesn’t arise. You don’t need any 

actual instances of the structural universals in order to ground mathematical truth if you’ve 

already got the universals themselves!148 And after all, why shouldn’t these alone be enough to 

“determine” or “ground” all the facts that mathematics aims to account for? 

 
146 “The natural-number structure itself exemplifies the natural number structure.” (Shapiro 1997, p. 101, emphasis 

added.) Note that for ante rem theorists, a structure is more like an exemplar or paradigm, along the lines of Plato’s 

Ideas or Forms. As such, ante rem theorists do not ultimately understand “exemplification” as straightforward property 

or universal-instantiation, as I would, but rather as consisting in something analogous to an isomorphism or 

congruence relation. See Resnik (1997) p. 204 ff. and Shapiro (1997) pp. 90-91. 

 
147 I should note that some structuralist responses have been given to the problem of identity. One response is to 

“rigidify” the structures by adding a symbols like +i and -i and making a decision to designate determinate places. Cf. 

Halimi 2019. One worry about this however is that we may have uncountably many indiscernibles, and there will not 

be enough names. Another option is to take identity as primitive, rather than a notion defined in terms of how an object 

relates to other objects. But one might wonder whether this undercuts the structuralism of structuralism. Cf. Reck and 

Schiemer (2019) for discussion. Regardless of whether the ante rem theorist can get out of the problem or not, the 

immanent theorist would claim these issues can be easily avoided by abandoning the ante rem approach. 

 
148 When put this way, does this not simply seem intuitive? 
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3. Eliminative Structuralism and Hellman’s Modal Structuralism 

We have seen that immanent and ante rem structuralism differ in their being property-

based and object-based theories, respectively. However, it is worth asking whether we can come 

up with a structuralist theory that appeals neither to properties nor objects. In other words: Can 

we construct a structuralist theory without any special ontology at all? 

In this section I will consider two attempts to do just that. Specifically, we will look at 

what is known as “eliminative” structuralism, as well as Hellman’s modal structuralism. As we 

will see, a problem that is central to both of these views is the model problem. I will try to show 

how immanent structuralism can retain some of the benefits of these views while side-stepping 

other problems these theories face. 

Eliminative Structuralism 

According to eliminative structuralism, mathematics is essentially universal 

quantification, and we can “eliminate” mathematical objects from our ontology entirely – hence 

the name. Marc Gasser helpfully summarizes the distinction between the eliminative and non-

eliminative approaches as follows: 

 

The first approach, eliminative structuralism, is motivated by the thought that objects 

with a purely structural nature are deeply problematic, and that they really shouldn’t 

count as objects at all. Eliminative structuralists seek to paraphrase statements referring 

to mathematical objects into general statements about what holds in any collection of 

objects satisfying certain conditions. Such paraphrase saves the eliminative structuralist 

from referring to mathematical objects—and indeed from referring to any particular 
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structure to which these objects might belong—and thereby frees her from ontological 

commitments she deems problematic. 

 

Noneliminative structuralism, by contrast, doesn’t shy away from an essentially relational 

conception of mathematical objects. Ordinary mathematical statements are taken at face-

value, as statements with singular terms denoting objects like triangles, numbers, sets, 

and so on—it’s just that the nature of these objects is constituted by the structural 

relations they bear to one another, and nothing more. If these objects seem 

metaphysically queer, so be it.149 

 

So, for example, take a statement like “2 + 3 = 5” An eliminative structuralist would paraphrase 

this as saying something along the lines of the following  

• “In any system of objects S that exemplifies the natural number structure:  

o 2S + 3S = 5S ”  

Here, 2S ,  3S and 5S are objects playing the “2, 3, and 5” roles, respectively, and + is a 

function defined according to the relevant Peano axioms. The important point is that the 

eliminative structuralist’s reading does not imply there are any strange “relational” or 

“structural” entities. Arithmetical statements, for instance, are just universal quantification. 

Therefore, whenever we are talking about two systems sharing a “common structure,” this is 

really just a useful way of expressing the fact that two systems are instances of the quantified 

statement above. It does not involve commitment to some independently subsisting abstract 

 
149 Cf. Gasser (2015). Arguably an example of eliminative structuralism would be Putnam (1967) and perhaps also 

Benacerraf (1965). 
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“structure.” Obviously, then, the quintessentially noneliminative version of structuralism would 

be ante rem structuralism.150 

One major problem for eliminative structuralists, however, is that it seems at least 

possible that there not be enough objects to satisfy all the axioms of the various mathematical 

systems or “structures” we want to study. For example, if there are finitely many objects in the 

world – even if the number is astronomically large – then there is no system of objects satisfying 

the axioms of Peano arithmetic, and so every arithmetical statement will be vacuously true. In 

particular, then, it will be true both that 2 + 3 = 5 and 2 + 3 = 92, clearly an undesirable result. 

Moreover, even if there are enough objects to satisfy the relevant axioms, it does not seem like 

the truths of mathematics should be hostage to the state of the world in this way. The truths of 

mathematics are not accidentally true. Call this the problem of model existence. 

Modal Structuralism vs. Immanent Structuralism 

It is in response to this worry that Geoffrey Hellman developed his “modal” variety of 

structuralism.151 In essence, modal structuralism holds that mathematical statements are, indeed, 

disguised universal quantifications. However, they are not just that: They are also inherently 

modal. They are claims about the necessity of some universally quantified statement. 

 
150 It is interesting to consider how we should categorize immanent structuralism in terms of the eliminative vs. non-

eliminative distinction. On the one hand, if non-eliminative structuralism just is understood as the negation of 

eliminative structuralism, immanent structuralism would count as a non-eliminative view, since it does not take 

mathematics-talk merely to be disguised universal quantification. However, Gasser positively describes non-

eliminative structuralism as endorsing “an essentially relational conception of mathematical objects,” and as not 

“shying away” from the metaphysically strange nature of such objects. By describing it this way, Gasser seems simply 

to identify non-eliminative structuralism with Resnik and Shapiro’s ante rem structuralism. In that case, it seems  

immanent structuralism would fall into neither category, and so Gasser’s categorization is not exhaustive of the various 

possible views. 

 
151 Putnam in (1967) is the inspiration for the use of modality to resolve some of the problems associated with model 

existence, but Hellman provides the first fully-developed account. See Hellman (1989). 
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Take again, for instance, the claim that “2 + 3 = 5”. For Hellman, this will get a reading 

that is similar to the one the eliminativist gives, but it will also include a necessity operator at the 

beginning: 

• “Necessarily: In any system of objects S that exemplifies the natural number 

structure: 2S + 3S = 5S ” 

Furthermore, Hellman specifies that in a mathemtical assertion the antecedent of this 

claim is taken to be metaphysically possible: 

• “Possibly, there is some system of objects S that exemplifies the natural number 

structure.”  

These two conditions allow Hellman to avoid the problem of model existence, since even 

if there is no actual model of Peano arithmetic, arguably it is at least possible there is such a 

model. The arithmetical claim, then, would be saying in effect that in any such possible model, 2 

+ 3 = 5 will be satisfied. Therefore, even if there is no actual model of Peano arithmetic, the 

claim that “2 + 3 = 5” is not just trivially true because we still have to consider whether the 

relevant universal claim holds in other possible models. 

Hellman is able to claim a few important benefits for his view. Most importantly, in 

addition to the fact that it seems to avoid the problem of model existence, the theory is intended 

to be entirely nominalistic. Indeed, Hellman sometimes refers to his view as a “structuralism 

without structures.” On Hellman’s picture mathematics is apparently not committed to any 

abstract objects at all, let alone the esoteric, essentially-relational ones found in ante rem 

structuralism. Mathematics only asserts various claims about what is necessary if certain 
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structural conditions hold, together with the claim that those structural conditions are at least 

logically possible. 

Objection 1: Epistemology 

Despite the attractions of Hellman’s approach, however, his view faces a few potential 

worries. The first problem is one of modal epistemology: How do we know the logical 

possibility claim that Hellman takes to be part of the mathematical assertion? 

Note that this part of Hellman’s view is not a mere appendage. It is essential to avoiding 

the problem of model existence. Take again the case of “2 + 3 = 5.” For Hellman this reads as 

follows: 

• “Necessarily: For any system of objects satisfying the natural number structure:  

2S + 3S = 5S“  

Now suppose it is not possible that some system of objects is an instance of Peano 

arithmetic. In that case, the above claim will be trivially true. To see this, we can think in terms 

of possible worlds: Since there are no possible worlds where the natural number structure is 

satisfied, then the claim is true in all the possible worlds where the natural number structure is 

satisfied; for there are no such worlds. In that case, we will end up again with the undesirable 

result that 2 + 3 = 5, but also that 2 + 3 = 92. 

This raises the question of how we can know which mathematical structures are logically 

possible and which are not. Note that, for Hellman, the “possibility” involved is not a mere 

epistemic possibility, in the sense that it “might” turn out true, but a logical one. Otherwise, 

mathematical systems whose structure we are not yet aware of are not “possible,” but 

presumably the truths of mathematics do not turn on the limitations of our knowledge in this 
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way. So, we must be able to give a story of how we know Peano arithemtic is possibly 

instantiated, in a broadly logical sense.152 Otherwise the epistemological issues with modal 

structuralism will be no more tractable than the ones Platonists face. 

One might press this objection further by noting the implications of possible worlds 

semantics for Hellman’s view. One might argue that Hellman’s commitment to a broadly logical 

notion of modality implies he cannot avoid the problem of abstract objects. This is because 

Hellman still is committed to the model theory and semantics of modality.153 But possible worlds 

semantics has shown that we should cash out claims of logical “necessity” and “possibility” in 

terms of possible worlds: 

• “Necessarily p” is true iff p holds in all logically possible worlds. 

• “Possibly p” is true iff p holds in some logically possible world. 

If Hellman’s possibility and necessity claims ultimately must be cashed out in terms of 

possible worlds, however, then we do not actually avoid abstract objects at all, in which case it is 

not clear what epistemological benefits there are for Hellman’s “structuralism without 

structures” over Platonism.  

This is admittedly a powerful challenge. Nevertheless, I think there are a few good 

responses Hellman can give. First of all, it is not clear that Hellman would (or should) agree that 

cashing out modal claims in terms of possible worlds gives a reductive or explanatory analysis. 

Hellman could adopt any number of fictionalist or non-reductivist views about possible worlds, 

and this would certainly fit better with the spirit of Hellman’s views. 

 
152 For Hellman, the type of modality in play is the sort that is captured precisely by the laws of modal system S5. 

 
153See Shapiro (1997) pp. 229-30 for a similar objection. 
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Furthermore, I actually suspect Hellman is at least somewhat better off than the Platonist, 

even if we were to grant that logical possibility claims ought to be semantically cashed out in 

terms of possible worlds. For Hellman can appeal to a de re/de dicto ambiguity in the argument: 

While it might be true that claims about logical possibility de re refer to and are made true by 

facts about possible worlds, this doesn’t entail they simply are assertions about possible worlds 

de dicto.  

Consider an analogy: “Paco (my dog) exists” might be true because various atoms, which 

are themselves composed of subatomic particles, are arranged a certain way. But this in no way 

implies someone must know this latter fact in order to know that my dog exists. After all, people 

knew about dogs long before they knew about quarks. Similarly, one might know a proposition 

is possible without having any conception of “possible worlds” at all. 

For these reasons, I am not sure that the epistemological challenge to Hellman, at least as 

found in these versions, is very compelling. With that said, I do suspect that immanent 

structuralism has something of a leg up on Hellman’s view, although ultimately I donot place too 

much weight on this advantage. But let me first explain what I think the advantage is, as it will 

help to bring out some of the differences between Hellman’s view and the immanent view. 

According to immanent structuralism, there is indeed an element of “modal knowledge” 

present in mathematics. However, it is a specific kind of modal knowledge: essentialist 

knowledge. Moreover, we can give at least a sketch of a story of how we get this essentialist 

knowledge: It is through a posteriori knowledge of basic mathematical essences and of logical 

properties, together with the “building up” of more complicated mathematical properties from 

these ones. Hellman’s modal structuralism is not specific in this way about the relevant kind of 



    

110 
 

modal knowledge in play. For that reason, Hellman appears stuck with the bigger problem of 

how it is that we can know about “broadly logical possibility” in general.  

I suspect that this general problem about modal epistemology is indeed more difficult to 

solve than the one of how we grasp a few basic essences and then understand properties that are 

logically defined in terms of them. A full epistemology of logical possibility likely will have to 

resolve long-standing issues about a priori knowledge and the reliability of imagination, 

conceivability, etc. The immanent theorist’s epistemological problems by contrast seem, at least 

on their face, a bit more tractable.  

In addition to this, the epistemology of immanent structuralism overall seems better 

suited to account for the mathematical knowledge had by most ordinary people, which starts 

from perception. By making mathematical assertions equivalent to rather abstract claims about 

broadly logical necessity and possibility, however, it is not clear how Hellman’s picture connects 

with the ordinary sort of mathematical knowledge that the average person gains, particularly 

from an early point in his or her knowing.  

Nevertheless, I certainly would not claim that a broader story about our knowledge of 

logical possibility cannot be given. For this reason, I consider the epistemological advantages of 

immanent structuralism over Hellman’s view to be a smaller argument in my favor. 

Objection 2: The Possibility Assumption 

I would like now to turn to a second challenge I wish to put forth for Hellman’s view. 

This challenge questions the possibility assumption that Hellman claims is built into 

mathematical assertions.  
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Perhaps this challenge will strike the reader as surprising: After all, don’t we want our 

mathematical systems at least to be possible? Isn’t the coherence of a mathematical theory a 

virtue, if not a requirement? 

I will try to argue that, in fact, this requirement is not a requirement at all, and it is a 

problem with Hellman’s account that it claims it must be. For just as eliminative structuralism 

ties the fate of mathematics too closely to the accidents of the actual world, modal structuralism 

ties the fate of mathematics too closely to what happens to be metaphysically possible. Consider 

the following case. 

Case: The Metaphysics of Infinity 

It is conceivable that some philosopher might construct an argument for why the world 

must have a finite number of objects. These arguments may or may not succeed, but arguments 

of this sort can be and have been given. Consider, for instance, Immanuel Kant’s First Antinomy 

on Space and Time, which argues for the finitude of the past: 

If we assume that the world has no beginning in time, then up to every given moment an 

eternity has elapsed, and there has passed away in that world an infinite series of 

successive states of things. Now the infinity of a series consists in the fact that it can 

never be completed through successive synthesis. It thus follows that it is impossible for 

an infinite world-series to have passed away, and that a beginning of the world is 

therefore a necessary condition of the world's existence.154 

Now, I have nothing here to say directly about the merits or demerits of this or any other 

such arguments. The point is simply that the coherence of an actual, physically instantiated 

 
154 Kant (1929), p. 396. 
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infinity with no beginning has been challenged philosophically, whether successfully or not. And 

yet we can freely discuss such the hypothesis of such infinities in the mathematical sphere. 

So, what if it turned out that certain infinities were not necessarily mathematically 

inconsistent, but simply could not be instantiated in a metaphysically possible, concrete world? 

Would this really cast doubt on the mathematics? Arguably not.  

In fact, it seems the mathematician should not have a care in the world about whether the 

infinities he studies are metaphysically possible according to philosophers, any more than 

whether the theories he constructs are physically possible according to physicists. By building a 

possibility assumption into mathematical statements, however, Hellman seemingly has made the 

facts of mathematics hostage to the terrain of metaphysical possibility. This seems to imply 

mathematicians should be worried about what philosophers have to say about the possibility or 

not of the mathematical systems they develop. But that would be like tying the legitimacy of 

certain areas of mathematical study to whether physicists consider the systems under 

consideration to be physically possible. Except tying it to philosophy seems much worse. 

It is interesting to see why this problem is not pressing for the immanent structuralist: 

The reason is that immanent structuralism goes beyond standard theories of metaphysical 

modality and provides a hyperintensional account of the truth-conditions of mathematics.155 

Recalling our discussion from Chapter 2, we say that an arithmetical statement like “2 + 3 = 5” is 

true just in case certain essential parthood relations hold between the properties being 2, being 3, 

and being 5. Or, to take an even simpler example, “2 is even” is true just in case being even is 

 
155 This is in line with the manner in which hyperintensional approaches to metaphysics have been steadily gaining in 

popularity in the last decade. See Nolan (2014) on how discussions in metaphysics have tended to move beyond the 

mere “modal” approach which leaned heavily on the notion of broadly logical possibility. Arguably, Fine with his 

work on essence has been a key figure in this reorientation. 
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part of the essence of the property being 2. These properties themselves are to be spelled out in 

terms of the larger structural property of being a system of Peano arithmetic. What is interesting 

is that these essentialist relations can hold even if the relevant structure is not metaphysically 

possible. This is a consequence of the fact that we decided to go with the Finean interpretation of 

essence rather than the “modal” interpretation.156 On this interpretation, being even can still be 

part of the property being two even if, hypothetically, it were shown by philosophers that an 

actual infinity is not concretely realizable in any metaphysically possible world. Therefore, 

immanent structuralism explains the fact that mathematics is not hostage to metaphysics. 

More broadly, the issue between the modal and immanent structuralist is whether 

mathematics should be tied to a specific form of possibility: “broadly logical” possibility. While 

I have illustrated the problem by means of a hypothetical philosophical argument, this is not 

really the central concern. I am not particularly worried that philosophers actually will decisively 

overturn the metaphysical possibility of infinity, for example. The point is just that modal 

structuralism seems to place a limit on mathematical structures that the practice of mathematics 

itself does not, viz., that mathematical structures be broadly logically possible. I would claim that 

we should not tie mathematics to this rather philosophical notion of possibility. It is a benefit of 

immanent structuralism that it does not do so. 

4. Revised Platonism: Full-Blooded Platonism 

Before concluding this chapter, I would briefly like to compare immanent structuralism 

to a very special version of Platonism. This is the position known as plenitudinous or full-blood 

Platonism. First, let me explain what that is. 

 
156See the discussion in Section 2.5 above. 
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The name is meant to be descriptive. According to this rare and somewhat remarkable 

version of Platonism, there is a plenitude of mathematical objects. This plenum is specified by a 

plenitude principle, which in essence says that any mathematical objects that could exist actually 

do exist. The idea is supposed to be that any (coherent) mathematical system we might develop 

will have corresponding Platonic entities, no matter how arcane or unique the system might be. 

This position has been most prominently defended by Mark Balaguer, especially in his (1998).157 

To illustrate the basic idea behind the plenitude principle, consider the case of the 

Continuum Hypothesis (CH). CH states that there is no set whose cardinality is strictly between 

that of the integers and the real numbers. In other words, if we are considering sizes of sets, after 

the size of the integers, the size of the reals is the immediately next “largest” size. 

Now, according to a famous result, CH is independent of the standard axiomatization of 

set theory, the Zermelo-Frankel axioms plus Choice (ZFC). That is, CH cannot be proven or 

disproven frosm ZFC. 

What the full-blooded Platonist would say, then, is that there are multiple universes of 

sets. There is one universe of sets which obeys ZFC plus CH, and another universe of sets which 

obeys ZFC plus not-CH. Moreover, neither universe is more or less real than the other. More 

traditional versions of Platonism, by contrast, typically assert that there is just one universe of 

sets, and that the Continuum Hypothesis is either determinately true or determinately false of 

these sets. Whether we can know it or not is a separate question.158 

 
157 See Balaguer (1998), Platonism and Anti-Platonism in Mathematics. 

 
158 See Linnebo (2018) sec. 4.2. 
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Balaguer’s view is, of course, open to some objections. For one thing, your first reaction 

on hearing about full-blooded Platonism might be like the reaction you had on your first 

exposure to David Lewis – that is, a combination of curiosity and staring. After all, how could 

someone be so bold as to propose not only a world of abstract Platonic objects, but a plenitude of 

them? How can anyone do such a thing? More importantly, how can he be allowed to get away 

with it? If people are scandalized by traditional Platonism, wait until they hear about full-blooded 

Platonism. 

On consideration though, it may not be as bad as it sounds. While there is a sense in 

which full-blooded Platonism posits “more” objects for us to consider, in a very literal sense, it 

doesn’t. If the more traditional Platonist hierarchy of cardinals, ordinals, and all sorts of 

unimaginable infinities is not a scandal, then actually it is not so clear why the plenitude should 

be. 

Besides, full-blooded Platonism has some benefits. The main one is that it purports to 

answer the million-dollar-question: How can we know reliably about causally dislocated Platonic 

objects? On full-blooded Platonism the answer is simple: We know how to come up with 

coherent systems, and all of those systems exist. When it comes to positing abstract 

mathematical objects, you really can’t go wrong! 

While there are other objections to full-blooded Platonism, I will not consider them 

here.159 What I would instead like to do is explain how, perhaps surprisingly, immanent 

structuralism and full-blooded Platonism are in some ways rather similar. 

 
159 Though see, e.g. Restall (2003) for worries about whether it is actually possible to specify the “plenitude 

principle” in a precise way. 
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The core of the similarity is that both full-blooded Platonism and immanent structuralism 

at least in principle accept a plenum of mathematical properties. Recall that, for the immanent 

structuralist, a purely structural property is any one that can be defined in terms of part, whole, 

and purely logical vocabulary. Now, some of these mathematical properties might certainly be 

more natural than others, or more useful, or more elegant, so on. But they’re all there: They 

come for free because of the reducibility thesis mentioned in Chapter 3.  

The difference is that the full-blooded Platonist goes on to posit an additional plenum: 

The sui generis mathematical objects. You could think of full-blooded Platonism as being sort of 

like immanent structuralism, but where every structural property is (for some reason) 

instantiated. Or, conversely, you could think of immanent structuralism as full-blooded 

Platonism minus the entitative bloat. However, given the story about mathematical truth told in 

Chapter 2, why not just go with the properties and ditch the objects? They are ontologically 

cheaper, being reducible to a few simple properties and abstract logical relations, and the story of 

how we know about them is straightforward. 

5. Conclusion 

In this chapter I have tried to show how immanent structuralism compares to other 

versions of structuralism and to a unique version of Platonism. In particular, I have tried to show 

that immanent structuralism can handily avoid some of the problems the ante rem view faces in 

its ontology, particularly when it comes to the thorny issue of “identity” between abstract, 

intrinsically featureless “positions.” Immanent structuralism side-steps the issue by instead 

speaking about the identity or non-identity of certain relational properties.  

Furthermore, immanent structuralism avoids the problem of model existence, insofar as it 

defines mathematical truth in terms of various necessary essentialist truths rather than models of 
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objects that instantiate mathematical systems. In other words, we do not have to worry about 

having a “model” for our mathematical theories; all we need is for the relevant essentialist truths 

to hold. Moreover, because of this, we do not even need to worry about possible models. If, for 

some strange reason, philosophy or some other discipline showed a certain infinity studied in 

mathematics to be metaphysically impossible, the mathematician does not have to worry, since 

that still need not affect what is an essential truth about the relevant mathematical property being 

considered. 

Finally, we looked at full-blooded or “plenitudinous” Platonism and compared it to 

immanent structuralism. We saw that the two stories are, in one sense, remarkably similar, while 

in another sense they are drastically different. They are similar in that they both are happy with a 

mathematical “plenum.” They are different in that the plenum of immanent structuralism, being 

one merely of reducible mathematical properties, seems far less scandalous and shocking. 
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CHAPTER 6: EXPLAINING DE RE MATHEMATICAL NECESSITIES 

 

Introduction 

Toward the beginning of his 1921 address, “Geometry and Experience,” Albert Einstein 

remarks on mathematics’ subject-matter and epistemic status: 

”At this point an enigma presents itself which in all ages has agitated inquiring minds. 

How can it be that mathematics, being after all a product of human thought which is 

independent of experience, is so admirably appropriate to the objects of reality? Is human 

reason, then, without experience, merely by taking thought, able to fathom the properties 

of real things? 

In my opinion the answer to this question is, briefly, this: As far as the propositions of 

mathematics refer to reality, they are not certain; and as far as they are certain, they 

do not refer to reality.”160 

If we replace the word “certain” in this passage with “necessary,” one will have grasped a 

common attitude toward mathematical necessity central to many standard philosophies of 

mathematics.161 

 
160 Albert Einstein, “Geometry and Experience, Address of 27 January 1921 to the Prussian Academy of Sciences in 

Berlin. Emphasis added. 

 
161 This thesis seems to accurately characterize most versions of formalism, verificationism, constructivism, 

nominalism, and fictionalism. Indeed, as I will argue below, on this picture of mathematical necessity one will not 

have a wholly inaccurate account of Platonism. 
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I will argue, contrary to this thesis, that there are mathematical truths about physical, 

concrete objects that carry a particularly strong sort of necessity – mathematical necessity. In 

other words, there are physical facts which are mathematically necessary. I call these 

mathematically necessary facts “de re mathematical necessities.” I argue that these physical facts 

carry a type of necessity that is stronger than mere natural or metaphysical necessity, and that 

this sort of necessity requires explanation. I will attempt to give such an explanation below. 

In Section 1, I will clarify what I mean by “mathematical truths about physical, concrete 

objects” – what I call “de re mathematical necessities” – illustrating with examples. In Section 2, 

I will explain what I mean in saying mathematical necessity is a “particularly strong sort of 

necessity,” and will try to make clear what is so “strong” about it. In Section 3, I argue against 

Platonism as a strategy for explaining de re mathematical necessities. I will try to show that the 

standard Platonist ontology of mathematics faces insuperable difficulties with these sorts of 

cases. Section 4 will show how immanent structuralism can better explain these necessities than 

Platonism. The conclusion, Section 5, will briefly relate the story in Section 4 to some recent 

discussions about mathematical explanation in science. 

1. Mathematically Necessary Facts about the World 

I wish to discuss certain necessary facts about concrete, physical objects. However, I 

claim these facts do not carry only nomic or metaphysical necessity. They carry mathematical 

necessity, the same strong sort of necessity characteristic of mathematical theorems. 

Let us first examine some of these putative necessities. Consider the following five cases: 

1. It is impossible to walk a path where one crosses over each of the bridges of 

Konigsberg exactly once. (Pincock 2007) 
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2. My bathroom floor cannot be tiled with regular equal pentagons. (Franklin 2014) 

3. Necessarily, any physical body that is symmetric about both axes is symmetrical 

about the point of intersection of the axes. (Franklin 2014) 

4. Five apples cannot be equally divided among three children. (Braine 1972) 

5. This trefoil knot cannot be unknotted without cutting. (Lange 2017) 

I will discuss each case in turn and ask the reader to notice the necessity involved in each case. 

• The Konigsberg Bridges: It is impossible to walk a path where one crosses over each of 

the bridges of Konigsberg exactly once. 

 

 

 

 

 

 

Here is a graph of the Konigsberg bridges as they were in 1736, when Leonard Euler 

proved a famous result. Euler asked whether there is a path through the city that crosses each 

bridge exactly once. The rules are that the islands can only be reached by walking across the 

bridges (e.g., no swimming) and every bridge, once accessed, must be crossed to the other side 

(no turning back half-way across the bridge). One need not end up at the place one started. One 

need only cross each bridge once. 
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Euler ultimately proved that there is no such path, but you can probably convince 

yourself of the result right now. To see the impossibility of crossing each bridge exactly once, 

just try a few times to do it. (Go ahead!) 

Suppose, for instance, that you start in the top-left corner and attempt 1-5-6-2-4. You will 

either have to choose 3 or 7. Say you choose 3. Then you cannot get to 7 without crossing a 

bridge twice. However, if you had instead chosen 7, you’d have then been unable to get to 3 

without crossing a bridge twice. Sorry! 

After trying out even just a one or two more paths, you may become convinced of the 

necessity of your never walking a path through the city by crossing each bridge exactly once. No 

matter how many times you try to do it, you find that you just can’t. 

• Tiling the Bathroom Floor: My bathroom floor cannot be tiled with regular, equal 

pentagons. 

Suppose my wife asks me to tile the bathroom floor. Not being much of a handyman, I buy 

pentagon tiles. When I first attempt the tiling, I am met with difficulties: 

 

 

 

 

 

 
... Curses! 
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Despite these setbacks, I take solace in the knowledge that what I lack in native cerebral 

talent I make up for in persistence. Undeterred, I give it a second go, trying a different 

arrangement this time: 

 

 

 

 

 

 

 

After a few more tries, I recall another famous (though likely apocryphal) Einstein dictum, and 

realize it is insane for me to continue. After ruling out the possibility that I’ve been sold 

defective pentagons, I eventually come to grasp that one simply cannot tile the bathroom floor 

with equal, regular pentagon tiles, and that I will be hauling my van and future self back to 

Home Depot.162  

 

 

 
162 The facts about my bathroom floor as well as the trajectory of my future self are both confirmed later that day, 

when I open my geometry textbook and learn that a Euclidean plane cannot be tiled by regular pentagons, because 

the internal angle of a regular pentagon is 108°, which does not divide 360° (the angle measure of a full, circular 

turn). Thus, in the diagram above, when I put the sides of my pentagons together and look at the corners where three 

pentagons touch, there must (!) always be a “gap,” which is to say that the pentagons do not tile the plane. 

Curses again! 
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Perhaps I will try hexagon tiles instead: 

 

 

 

(Much better…) 

• Symmetry about Axes: Necessarily, any physical body that is symmetric about both 

axes is symmetrical about the point of intersection of the axes. 

 

 

 

 

 

 

 

To illustrate this case, take the drawing in front of you, which is symmetric about both 

axes. Now put your finger on some point A inside the figure. You will find that, for any point 

you choose, you will be able to find another point B inside of the figure that is the same distance 

from the center, and where the line from A to B runs through the center. 
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Furthermore, if you draw other diagrams that are symmetric about both axes, you will 

find that the same thing happens. You cannot draw a diagram symmetric about both axes without 

it being symmetric about the point of intersection as well. This can be seen by drawing a circle, 

square, or even other, stranger figures, such as this one: 

 

You will also find that you can draw diagrams that are symmetric about one axis without 

being symmetric about the center – for example, an isosceles trapezoid, such as this: 

 

These necessities and possibilites apply not only to the scribblings on paper you might 

draw, but also to rocks you might find, pottery you might build, or even animals you might 

breed. 



    

125 
 

• Dad’s Apples: Five apples cannot be equally divided among three children. 

 

 

 

 

 

 

 

As we are out on a picnic, my three children start to become hungry. Embracing 

egalitarian ideals, but not having been particularly quick at math, I try to divide my five apples 

equally among my children. No matter how many times I try, I fail. Of course, that is because I 

have set myself upon an impossible task. Eventually accepting that the laws of mathematics 

prevent me from achieving an equal outcome any other way, I do the fair thing, and toss two of 

the apples so that everyone receives an equal share. 

• Trefoil Knot: This trefoil knot cannot be unknotted without cutting. 

 

 

 

(Abstract Trefoil Knot) 
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Suppose I have a rope in the form of a trefoil knot. No matter how I contort it, I am 

unable to unknot it. (See the picture on the left, below.) 

 

 

 

 

 

As you will see, if you have one yourself, you can pull one part of the rope through one 

loop, push it back through another, twist it, turn it, pull it, squeeze it. But the only way you will 

be able to undo it is by breaking it. One way, of course, would be to rip the rope apart with your 

bare hands. But I don’t make it to the gym quite that often. So I get a pair of scissors, some duct 

tape, cut the rope at a point, and after undoing the knot I tape the ends back together. (See the 

image on the right, above.) That is what I must do if I am to undo my trefoil knotted rope. 

I contend that in all of these cases, we are dealing with physical facts that are necessary. 

That is, in each case, the fact or proposition that is necessary is a physical fact, involving the 

properties of real, concrete physical objects or systems of them. What are necessary are facts 

about bridges, bathroom floors and tiles, works of pottery, pieces of fabric, drawings, apples, 

and ropes. 

Furthermore, I claim that these physical facts carry a stronger-than-usual sort of 

necessity, mathematical necessity.163 This necessity is the same type of necessity characteristic 

 
163 And a fortiori, they carry the more common “metaphysical” and “physical” flavors of necessity too. 
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of mathematical theorems. I will denote this necessity with a special box symbol, together with a 

special diamond for the corresponding sort of possibility: 

⧈p for “It is mathematically necessary that p.” 

⟡p for “It is mathematically possible that p.” 

I will also use the following abbreviations for the metaphysical modalities: 

 □p for “It is metaphysically necessary that p.” 

◇p for “It is metaphysically possible that p.” 

And for the physical modalities: 

 ▄p for “It is physically necessary that p.” 

◆p for “It is physically possible that p.” 

Like the other forms of modality, we can define the one mathematical modality in terms 

of the other. For example, we can define mathematical possibility in terms of mathematical 

necessity: 

Def: ⟡ 𝑝 ↔ ¬ ⧈¬𝑝 

My claim, then, is that if f is one of our relevant necessary physical facts, and q is a 

mathematical theorem, then when we say that ⧈f and ⧈q, it is the same sort of necessity that is 

expressed in each case. Thus, there are physical facts that are mathematically necessary. I will 

call these “de re mathematical necessities.” 

These are necessities attaching to physical realities. They are not about our ideas, or 

concepts, or any such mental item. They prevent you, and me, and the world from doing certain 
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things. In fact, even if there had been no humans, and so no human ideas or concepts, the de re 

mathematical necessities would still be there. To see this, consider a further example. 

• Ball and Cloth: Necessarily, any sphere of radius 1 meter is not covered by 12 square 

meters of material. 

I claim that it is mathematically necessary that a physical sphere of radius 1 meter is not 

covered by 12 square meters of material (such as fabric). Moreover, even if nobody were around 

to contemplate it or to try it, and even if there had been no concepts or ideas by which someone 

might entertain it, the possibility of such a material covering such a sphere would be foreclosed, 

and the world would still be limited in its arrangements by this necessity. For instance, no matter 

how the wind blows around a 12m2 cloth – even given infinite time – it will never cover any ball 

of radius 1m. And it cannot be otherwise. 

2. Strong Mathematical Modality 

I have claimed that the type of necessity possessed by these physical facts about what 

does and does not happen in the world – mathematical necessity – is the same type of necessity 

characteristic of mathematical theorems. 

Note that this is plausible, because in the examples we have seen the necessity that 

applies to the relevant physical facts seems to be a very strong type of modality. To tile a floor 

with pentagons, or to walk each bridge of Konigsberg exactly once, do not seem just to be very 

difficult things to do. They seem, in some sense, positively incoherent.164 

 
164 Nevertheless, I would hold that it is not a strictly logical necessity that is in play, pace logicists, but a synthetic, 

mathematical one. The necessity is strong, but not quite that strong. 
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Violating these mathematical laws seems more impossible than a violation of mere 

physical law, e.g., a violation of the conservation of energy. Indeed, such feats as we have 

imagined seem more impossible than violations of certain metaphysical laws, e.g., a contingent 

being (say, a pink elephant) popping into being out of nothing.165 

Another way to bring out the point is in terms of counterfactuals. Even if the conservation 

of energy had been false, I would not have been able to take a path crossing each bridge of 

Konigsberg only once. Or even if objects were able to pop into being without a cause, I still 

would not be able to cover a sphere of radius 1 meter with 12 square meters of material. 

So the modality that attaches to our cases is as strong as, but also stronger than, mere 

physical and metaphysical necessity. In other words, if ⧈p holds, then so does □p and ▄p, but 

not necessarily vice versa. 

Objections: These Aren’t Real Necessities 

I will now consider a few objections to the idea of “de re mathematical necessities.” 

There are a few ways one might argue these examples are somehow not “real” necessities. 

Objection 1: Perhaps one might object to the negativity of the examples I’ve given so far. 

After all, aren’t these all just cases of something failing to hold? (For instance, the failure of 

anyone to take a certain path across the Konigsberg bridges.) These are not “positive” 

necessities, only “negative” impossibilities. 

 
165 Assuming it is a metaphysical law that “large-scale physical objects do not pop into existence for no reason.” If 

one doesn’t consider this a metaphysical law, then one can choose a different example, e.g., the truth (or falsity) of 

nominalism, the truth of three- or four-dimensionalism about time, etc. 
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Reply: I have two responses: (A) First, the necessity of something not happening is still a 

type of necessity. Nobody would contend that the physical necessity of nothing’s traveling faster 

than the speed of light, for example, is not a real necessity merely because it is a “negative” 

necessity. (B) Second, it is not true that all the cases of de re mathematical necessity that I’ve 

given are negative examples. For instance, Example 3 shows how certain things positively must 

happen: Necessarily, all physical bodies that you find that are symmetrical about both axes will 

be symmetric about the point of intersection. 

Objection 2: These cases are not absolutely necessary. They are only necessary given 

certain assumptions. For example, you cannot take a certain path across the Konigsberg bridges 

if you do not swim across the river, and the laws of physics hold, and the bridges remain in the 

same pattern, etc. 

Reply: Again, I have two responses. First, even if the necessities described are 

conditional, still, the relevant conditionals are mathematically necessary – and they are not 

trivially true, since in some cases their physically contingent antecedents are satisfied. Secondly, 

some of the cases I’ve described are unconditional, such as the ball and cloth example (Case 6) 

mentioned toward the end of section 1. 

Objection 3: One might argue the notion of a “strength of modality,” which is necessary 

for the idea of a strong mathematical necessity to get off the ground, is only subjective, and is 

perhaps tied to one’s credences. For example, the apparent “absurdity” or “incoherence” 

involved in someone’s tiling a flat surface with regular equal pentagons is really just a 

consequence of one’s near certainty in belief that this won’t happen. 
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Reply: It does not seem like the idea of a “strength of modality” can be reduced to 

credences in general. For example, take the physically necessary fact that nothing can move 

faster than the speed of light. Assuming the lawhood of this fact, I would argue that our rational 

confidence is not the issue. After all, we may not think the speed of light any more likely to be 

surpassed than that some mathematical proposition will be found to be false. Even so, imagining 

a violation of this law even though we know that it is an actual law does not seem incoherent or 

absurd in the same way as a violation of the relevant mathematical proposition, even though we 

know the truth of the mathematical proposition.  So our sense of metaphysical “incoherence” 

does not necessarily track the strength of our credences. 

We can see this further by looking at certain indicative conditionals. Consider the 

following assertions: 

• “Even if it is a true law of physics that the speed of light cannot be surpassed, the world 

could have been set up differently so that something could surpass it.” 

o [or: “...one can imagine it being set up differently so that something could surpass 

it.”]  

Compare that to these two indicative conditionals: 

• “Even if there is a proof that P ≠ NP, the world could have been set up differently, so that 

for any problem verifiable in polynomial time, a computer program could be made that 

solves it in polynomial time.” 

• “Let us call a “prime group” of objects any collection of objects which is numbered by a 

prime number. Then even if Goldbach’s Conjecture is true, the world could have been set 
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up differently, so that there was some even number of apples (greater than 2) that could 

not be split up into two prime groups.” 

These conditionals help bring out the “incoherence” involved in the second and third 

scenarios (and absent from the first) irrespective of confidence levels, since they ask us to 

consider what would be involved if we let our confidence in the antecedents be 1 (certainty). But 

since only the second and third conditionals strike us as incoherent, the counter-intuitiveness of 

the second and third statements is due to the modal strength of mathematical theoremhood and of 

the associated de re mathematical necessities, not the level of credence involved. 

3. Platonic Explanations of De Re Mathematical Necessities 

We have seen that there are de re mathematical necessities that are about the physical 

world. It would be nice if we could explain the strong sort of necessity that attaches to these 

physical facts. The aim of this and the following section will be to try and do so. I will first 

consider, and reject, Platonist attempts to explain de re mathematical necessity. Then, in the 

following section, I will give an immanent structuralist take on the matter. 

I should first clarify what needs explaining. Later in Section 4 I will appeal to my own 

account of mathematical truth which claims that the truths of mathematics are essentialist truths, 

akin to the claim that the essence of water is H2O. What I will not aim to explain is why the 

various essentialist truths hold. I am not sure that there is a deeper set of facts or entities that can 

explain why, for example, the essence of being a dog includes being a mammal, other than the 

fact that that is the essence of the thing. Since I claim mathematical truths are essentialist truths 

of this sort, this may be rock bottom for us. 
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What I will try to explain are the de re mathematical necessities, i.e. those physical facts 

that carry mathematical necessity. I will try to explain why they are necessary, and why with 

such strength. For instance, take some physical generality – say, the fact that any sphere of 

radius 1 meter is not covered by 12 square meters of material – and call it f.166 This claim does 

not just happen to hold. It is necessary in a particularly strong way. ⧈f. Why is that?167 

The first theory we might turn to is the standard view of mathematical truth: Platonism. 

Prima facie, Platonists seem naturally poised to resolve our question. After all, according to 

Platonism, mathematical objects are abstract entities, and exist timelessly, spacelessly, and 

necessarily. Perhaps these necessary beings and their necessary features can help explain the de 

re mathematical necessities, because the de re mathematical necessities are in some way 

derivative from the Platonic objects and their necessity. 

Consider for instance the following facts about the Platonic realm: 

• 1’. There is no path through a K-graph [the abstract graph corresponding to the 

Konigsberg bridges] that touches each edge only once. 

• 2’. The Euclidean plane cannot be tiled by regular, equal pentagons. 

• 3’. Any figure that is symmetric about both axes is symmetrical about the point of 

intersection of the axes. 

• 4’. The number 5 is not divisible by the number 3.  

 
166 This fact f is what Marc Lange calls a “sub-nomic fact.” See Lange (2007). It is a true proposition describing the 

physical world without any modal operators. (In this case, it is a universally quantified one.) 

 
167 The problem can be thought of via analogy with the laws of nature. While some generalities merely happen to 

hold – like the fact that there are no gold cubes exceeding a cubic mile – others hold non-accidentally, such as the 

fact that no body accelerates from rest to beyond the speed of light. Well, it is the same thing here, except that our 

generality f seems to hold with an even greater non-accidentality than the one about the speed of light. If this latter 

non-accident’s non-accidentality calls out for explanation, then so does f’s. 
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• 5’. The trefoil knot in three-dimensional space is not isotopic to the unknot. 

These facts refer to abstract, non-physical mathematical objects and their relations to 

each other. According to Platonists, these facts are necessarily true. They correspond to the five 

examples of de re mathematical necessities we discussed earlier:  

1. It is impossible to walk a path where one crosses over each of the bridges of 

Konigsberg exactly once. 

2. My bathroom floor cannot be tiled with regular equal pentagons. 

3. Necessarily, any physical body that is symmetric about both axes is symmetrical 

about the point of intersection of the axes. 

4. Five apples cannot be equally divided among three children.  

5. This trefoil knot cannot be unknotted without cutting. 

The Platonist explanation for de re mathematical necessities, then, would be that facts 1’ 

– 5’ are necessarily true in virtue of the relevant necessary beings (the Platonica), and 1 – 5 are 

necessarily true because they are grounded in or explained by the truth of 1’ – 5’. 

This heavily metaphysical picture seems initially promising, insofar as it gives us 

objective, necessary beings in order to ground the relevant de re mathematical necessities. 

However, there are several objections to the Platonist strategy. I will present three worries. 

Objection 1: Pushing the Question Back 

One concern is that the Platonist’s solution seems merely to push back the problem we 

began with. There are two parts to this objection. 
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First off, we can grant that there are mathematical objects, but still ask why they exist 

with necessity? In other words, why are they necessary beings? (Note that they must be, if they 

are to explain necessary truths like 1 – 5, since in order to do so 1’ – 5’ must be necessary, and 

that requires that the Platonic objects be necessary.) 

Second, even if we grant that they are necessary beings, in order to explain the relevant 

de re mathematical necessities, the claims in 1’ – 5’ must be necessarily true, and so the 

mathematical objects must have their features and relations necessarily. But we can then ask, 

“Why must they have their features and relations necessarily?” 

Perhaps the Platonist can appeal to the natures or essences of these entities to explain the 

necessity of 1’ – 5’. The features and relations predicated of the Platonic horde are essential to 

them, and so 1’ – 5’ are necessarily true. 

One might worry that this move seems slightly ad hoc. It would be better, for example, if 

we could see why the relevant predications are essential to these objects, other than a bare 

assertion that this is so. Nevertheless, I grant that if the features mentioned in 1’ – 5’ are parts of 

the essences of the Platonic objects then 1’ – 5’ will be necessary. Thus, I will place less weight 

on the second part of Objection 1.168 

Objection 2: Getting the Right Grade 

Still, that leaves the first part of Objection 1 unanswered, and raises a further issue. For 

even granting that the Platonic beings are necessary and have their features essentially, it still is 

not clear how the Platonist can adequately explain the strength of the necessity involved in 1 – 5. 

 
168 With that said, in Section 4 I will try to show how we can explain why the predications in 1’ – 5’ are necessarily, 

and indeed essentially true. I take it as counting in favor of my theory that it does not merely have to assert that 1’ – 

5’ are essentially true, but purports to explain this fact. 
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For the necessity in play is mathematical necessity, the sort of necessity characteristic of 

mathematical theorems, and the sort that makes walking a certain kind of path along the 

Konigsberg bridges seem incoherent. 

It is not enough to say that the Platonic objects are necessary beings, since they could be 

merely metaphysically necessary being. If they were merely metaphysically necessary beings, 

then the strength of the necessity attaching to facts 1 – 5 would remain unexplained. Here is why. 

Take one of the sub-nomic physical facts f that is mathematically necessary according to 

1 – 5.169 For example, we can let f be the fact (corresponding to Example 4) that I never divide 

my five apples equally among my three children. Then (4) says: ⧈f. 

Now take the purported Platonic explanans: 

4’. The number 5 is not divisible by the number 3.  

Note that (4’), as stated, is also a sub-nomic fact. Although it is about abstracta, it does 

not contain any modal operators. However, in order to fully explain (4) (i.e., the fact that ⧈f) it 

must be the case not only that the number 5 happens to not be divisible by 3, but further: 

4*. ⧈(the number 5 is not divisible by the number 3) 

 
169 Again, a sub-nomic fact is essentially one that does not contain any modal operators. It can include, e.g., basic 

predications, conjunctions and disjunctions, universally quantified statements, etc. “All objects travel no faster than 

the speed of light,” for example, is a sub-nomic fact. “It is a law that all objects travel no faster than the speed of 

light” however is not. 
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The reason for this is simple: A weaker necessity, taken just by itself, cannot explain a 

stronger necessity.170 “You cannot give what you don’t have.”171 

It would be bizarre, for instance, to try to explain the metaphysical law (if it is one) that 

every event with a beginning has a cause merely by appealing to the fact that the physical laws 

we have happen to verify this law (if they do). That would be like trying to explain the lawhood 

of the fact no body accelerates from rest to beyond the speed of light by appealing to the bare 

sub-nomic generality that at no time does any material body in fact do so. Similarly, if one 

believed that it is metaphysically necessary that all beings are physical, it would not be sufficient 

to explain this merely if one thought that somehow the actual laws of physics showed all actual 

entities to be physical.172 

So 4* must be true in order for the Platonist to explain 4. However, for 4* to be true, it 

must be the case that in all mathematically-possible worlds there are the numbers 3 and 5. So it 

also must be the case that: 

 
170 I would also claim that in order for one necessary fact to explain another, the first must entail the second. But 

again, since mathematical necessity apparently is stronger than metaphysical necessity, in general □p ⊯ ⧈f. (Where 

□p is the claim that p is metaphysically necessary.) 

 
171 Compare Descartes’s discussion in Meditation III: “[H]ow could the cause give reality to the effect unless it first 

had that reality itself? Two things follow from this: that something cannot arise from nothing, and that what is more 

perfect – that is, contains in itself more reality – cannot arise from what is less perfect.” It seems likely that 

Descartes is here using “cause” in the more general Aristotelian/scholastic sense of “explanation.” 

 
172 To be clear, I am not saying that the laws of nature are irrelevant to discovering the metaphysical laws, or that an 

assertion about the laws of nature could not function in an argument for some putative metaphysical law. I am only 

claiming that the connection will not be as straightforward as explaining □q by the mere fact that ▄q. For example, a 

proper metaphysical argument from the natural necessity of there only being physical beings to the metaphysical 

necessity of this might go as follows: Suppose one held the theory – as some do (e.g., Vetter Potentiality (2015), 

Jacobs (2010), and Pruss Actuality, Possibility and Worlds (2011)) – that in order for something to be 

metaphysically possible, there must be some entity with the power of bringing it about. Then, if the laws of nature 

established there to be only physical entities, and one held that physical entities only have the power to create other 

physical entities, then it follows that it is metaphysically necessary that all beings are physical. This explanation of 

the metaphysical necessity of there being only physical entities appeals to a putative natural law, but only works in 

conjunction with other metaphysical premises. Another strategy might be if one were a scientific essentialist, in the 

manner of Brian Ellis (2001), and held for independent reasons that all physical laws are essential truths. 
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⧈(the number 5 exists) and ⧈(the number 3 exists) 

That is, the relevant mathematical objects must exist with the mathematical necessity 

characteristic of theorems like 4’. Otherwise, 4* would be false and the Platonist explanation of 

4 would fail. 

So, one must posit not only that the Platonic objects are necessary, but also that they exist 

with a very strong sort of necessity. It is not clear, however, that the Platonist can give a 

satisfying explanation for why this should be so. 

In fact, there is a more positive worry for the mathematical Platonist here. For abstract 

objects are posited in all sorts of philosophical contexts, often by arguments similar to the 

standard ones given by mathematical Platonists.173 For instance, philosophers have posited 

abstract properties, propositions, and worlds, using arguments quite similar to ones given for the 

existence of mathematical objects. 

But it is not clear that the necessity that is posited for those objects is the strong kind that 

is expressed by “⧈f”. Or, wording the point slightly differently: To deny the existence of some 

abstract objects, like properties or propositions, and to instead be a nominalist, does not seem 

incoherent in the same way that tiling a floor with regular equal pentagons does, even if 

nominalism is necessarily false. 

With this in mind, we can put the argument in the form of a dilemma. Either 

mathematical objects exist with the same sort of necessity as other abstract objects, or they exist 

with a stronger sort of necessity than other abstract objects. If the former, then they cannot 

 
173 Peter van Inwagen in “A Theory of Properties,” (2004) offers a Quinean argument for the existence of properties 

as abstract objects, and explicitly attempts to demonstrate that they must be necessary beings. 
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explain de re mathematical modality. If the latter, then their necessary existence can explain de 

re mathematical modality, but this stronger necessity seems ad hoc and unmotivated. For there 

does not seem to be anything in one abstract object that would make it a more necessary being 

than another. 

But perhaps all of this is simply putting the original point differently: There does not 

seem to be any Platonist explanation for why mathematical abstracta have a stronger sort of 

necessary existence than other abstracta. However, as I will argue below, immanent structuralism 

does have an explanation for the type of necessity attaching to de re mathematical modalities. 

Thus, we should favor immanent structuralism. 

Before turning to that argument, however, there is a final objection for the Platonist we 

should consider. 

Objection 3: The Kripkean Objection (i.e., the “Humphrey” Worry) 

Suppose we leave aside the previous objections and grant that the Platonist facts in 1’ – 

5’ are necessary, and furthermore that they and the beings they refer to are necessary with the 

right kind of necessity. Even so, I claim there is a further problem. The final and most important 

worry for the Platonist is that there is not a sufficiently close connection between the Platonic 

and physical realms to explain the de re mathematical necessities. 

The issue is simply that it is unclear what the necessary properties of some distant, 

abstract, causally isolated Platonicum, like the number 5, has to do with the physical world. 

Perhaps this non-physical thing we call the number 5 is related to this other non-physical thing 

we call the number 3 in a certain way – but what does that have to do with my apples? 
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The problem is similar to one raised by Saul Kripke in reference to David Lewis’s modal 

realism. Lewis proposed to make modal statements come out true in virtue of the happenings in 

various causally isolated, concrete possible worlds. In particular, modal statements about me and 

my abilities come out true or false in virtue of what my concrete counterparts in these other 

worlds do. 

Kripke, however, laid out an important worry for Lewisianism about possibility, namely, 

that it is unclear how other concrete worlds have anything to do with what it is possible for those 

of us in this world to do. It is not obvious, for example, how the fact that Humphrey could have 

won is related in any way to occurrences involving someone quite somewhere else who reminds 

us of him: 

“[According to modal realism] if we say ‘Humphrey might have won the election (if only 

he had done such-and-such),’ we are not talking about something that might have 

happened to Humphrey, but to someone else, a ‘counterpart’. Probably, however, 

Humphrey could not care less whether someone else, no matter how much resembling 

him, would have been victorious in another possible world.”174 

Similarly, there is no obvious reason why the bridges of Konigsberg should care enough 

about the abstract Platonic graphs to never fail to emulate them. More generally, it is unclear 

how the truths about Plato’s non-physical heaven manage to regulate the physical realm in order 

to produce any de re mathematical necessities. 

That is at least how things seem to stand. But perhaps the Platonist might appeal to the 

existence of a correspondence or structural similarity between the relevant abstracta and 

 
174 Cf. Kripke (1980), p. 45. Probably Nixon did not care either. 
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concreta, e.g., between the physical Konigsberg bridges and the relevant Platonic graph. Maybe 

it is this correspondence or structural congruence that transfers the necessity from the Platonic 

realm to the physical. 

I have two replies to this. First, it is obscure on this picture why it is reference 

specifically to the mathematical facts that explains the relevant de re mathematical necessity. If 

it is the correspondence that confers the necessity on the relevant de re mathematical fact, then 

why is it correspondence specifically with the Platonic entities that explains the de re necessity? 

For example, take the second case we mentioned earlier, and the relevant mathematical 

fact that explains it. 

2. My bathroom floor cannot be tiled with regular, equal pentagons. 

Because: 

2’. The Euclidean plane is not tiled by regular, equal pentagons. 

The proposal then would seem to be that (2’) explains (2) in virtue of the mathematical 

necessity of (2’) together with the correspondence or structural similarity between the objects 

mentioned in (2’) and those mentioned in (2). However, if (2’) explains (2) in virtue of the 

correspondence between the objects mentioned in (2) and those in (2’), then it is unclear why 

any other mathematically necessary fact that mentions structurally similar objects couldn’t do the 

job. For instance, why isn’t it the correspondence between the objects in (2) and some other 

Platonic objects – e.g., certain sets? For that matter, why couldn’t it be the correspondence 

between the objects in (2) and those in the following physical fact (which is also a de re 

mathematical necessity)? 
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2’’. I cannot tile my sheet of paper with drawn pentagons. 

Note that (2’’) has the right kind of necessity – the same kind as (2’). However, it is not 

(2’’) that explains (2), nor (2) that explains (2’’), but rather (2’) that explains both.175 It is not 

clear on the current proposal, however, why (2’) better explains (2) than does (2’’). In both cases 

you have objects with the right sort of correspondence and the right sort of necessity. 

However, the second and more important response is that the “immanent structuralist” 

solution that I will propose renders the Platonic objects superfluous, while also being able better 

to deal with Objections 1 and 2. For if there is a structural similarity between the Platonic objects 

and the physical ones, then why not just appeal to that structural relation directly to explain 1 - 5 

and avoid positing special abstract objects that necessarily instantiate that relation? This is 

exactly what I will do. It is to this solution that we will now turn. 

4. A Structuralist Explanation of De Re Mathematical Necessities 

Before we can give an adequate explanation of the de re mathematical necessities, let us 

briefly recall the theory of mathematical truth from Chapter 2, which does not involve appeal to 

abstract Platonic objects. Instead, immanent structuralism appeals to Aristotelian essences which 

can be literally instantiated in physical systems. 

On this view, mathematics does not study some abstract mathematical objects.176 Rather, 

mathematics studies a certain class of universals or properties – what I call, following James 

 
175 An argument for this is that if (2’’) explained (2), it seems that (2) could explain (2’’) just as easily. There is no 

reason to think that the fact about sheets of paper is prior to the one about plaster tiles. So if (2’’) explains (2), then 

(2) explains (2’’). But then we would have a rather short circle of explanation. But (2’’) does not explain itself, for it 

is explained (by 2’). So (2’’) does not explain (2). Mutatis mutandis for (2) explaining (2’’). 

 
176 In contrast to the Platonist, who, as W.L. Craig puts it, conceives of mathematical objects as “just like 

automobiles, only more numerous, abstract and eternal.” See Craig (2016), p. 9. Craig gets this description from 

Resnik (1980), p. 162. 
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Franklin, the purely structural properties177 – and these can be literally instantiated by physical 

systems. Thus, mathematical patterns, or structures, can be “located in” objects in exactly the 

same way that an object’s size, mass, or color can.  

So, the ontology of immanent structuralism, unlike that of Platonism, does not consist in 

mathematical objects. It instead consists of physically instantiable universals or properties, 

namely, the purely structural ones: those that can be “built up” out of the properties of part, 

whole, sameness, difference, and purely logical vocabulary. 

In addition to its special ontology, immanent structuralism gives a different account of 

the truth-conditions of mathematical statements. Platonists understand a singular mathematical 

statement like “2 is even” as being true when there exists some abstract object, the number 2, and 

it has a certain property, evenness. 

As we saw above, I understand mathematical truth differently.178 I will briefly reiterate 

that account. On immanent structuralism, what actually makes a mathematical statement like “a 

is F” true is when the property being F is part of the essence of the structural property being a. 

In the case of “2 is even,” this statement is true when the property of “being 2” (which I 

claim can be understood as a purely structural property)179 has “being even” (also a purely 

structural property) as part of its essence. 

 
177 See Franklin (2014) A Neo-Aristotelian Realist Philosophy of Mathematics. 

 
178 The full account was given in Chapter 2 above. 

 
179 Namely, the property of occupying a certain place in a successor series. As I argue in Chapter 2 above, this is 

indeed a purely structural property, and can ultimately be reduced to one definable entirely in terms of part, whole, 

sameness, difference, and purely logical vocabulary. 
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To refresh the reader on what I mean by one property’s being “part of the essence” of 

another, consider a non-mathematical example. Take the statement “Dogs are mammals.” 

Arguably, this is an essentialist truth about dogs. This statement is true because being a mammal 

is “part of” the property of being a dog. Being a mammal is part of what it is to be a dog. We can 

use a special symbol, “⋐” to denote this “property-parthood” relation: 

being a mammal ⋐ being a dog 

In a similar way, a statement like “0 has a successor,” which is shorthand for the purely 

structural formulation, “The thing that is not a successor (the number zero) has a successor,” 

asserts: 

having a successor ⋐ being the object that is not a successor 

I understand “property parthood” statements like these to just be equivalent to statements 

about the essences of the relevant properties: 

“Being a mammal ⋐ Being a dog” is true iff being a mammal is essential to (is “part” of 

the essence of) being a dog. 

Thus, if my theory of mathematical truth is right, then mathematical theorems express 

essential truths about the natures of mathematical structural properties. I think this is the key to 

providing a structuralist explanation of de re mathematical necessities.180 

Considering that true mathematical propositions express essential truths about 

mathematical properties, and that these properties, being purely structural, can be literally 

 
180 As a side-note: We can now make the distinction between de re mathematical necessities and the theorems of 

mathematics. De re mathematical necessities are ordinary physical generalizations with a certain necessity operator 

attached, viz., mathematical necessity. Mathematical theorems, on the other hand, are ultimately essentialist 

statements about universals. 
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instantiated by physical systems, the necessity attaching to the essences of these properties 

comes to be had by their physical instances. This produces a strong de re mathematical necessity. 

Allow me to illustrate. 

To see how this works, let’s consider a non-mathematical case where the necessity of the 

essentialist facts transfers to the physical facts. Take my chihuahua, Paco, in all his mammality. 

Why is it the case that he must be an animal, given that he is a mammal? How do we explain the 

de re necessity that Paco is an animal if he is a mammal?  

Well, we can explain the necessity of Paco’s being an animal given that he is a mammal 

by virtue of the fact that it is necessary that all mammals are animals. But then how do we 

explain the necessity of this general fact, that all mammals are animals? 

We can explain the necessity of this by the fact that part of being a mammal is being an 

animal. That is, being an animal is essential to being a mammal. And since whatever is 

essentially true is also metaphysically necessary,181 it is metaphysically necessary that all 

mammals are animals. In short, we have the following route from essential truths to explaining 

necessary generalizations, as well as general and particular sub-nomic facts: 

[Essentially: (x)p] --> [metaphysically necessarily: (x)p] --> (x)p and p(a) 

So, I can explain the necessity of Paco’s being an animal given that he is a mammal in 

this way. Similarly, going back to mathematical de re necessities, we can explain why the 

Konigsberg bridges cannot be crossed once each given their arrangement: It is because the 

 
181 Cf. Fine (1994). 
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Konigsberg bridges instantiate the mathematical property of being a K-graph,182 and, as Euler’s 

theorem has shown us, having no Eulerian path is part of the essence of being a K-Graph.183 

Or, to take another example, suppose I am sorting through a bunch of drawings. Why is it 

that I must find one that is symmetrical about the point of intersection whenever I find one that is 

symmetric about both axes? Or why is it that, no matter what way the wind blows, it cannot 

cover a sphere of radius 1 meter by 12 square meters of material? 

On the immanent structuralist explanation, it is because being symmetric about the point 

of intersection is part of the essence of being something symmetrical about both axes. And not 

being covered by 12 square meters is essential to being a sphere of radius 1 meter. The necessity 

that derives from the essences of these universals – being symmetrical about both axes and being 

a sphere of radius 1 meter – is “transferred” to whatever objects have them. 

To put it somewhat imagistically, we can think of the mathematical universals as creating 

necessities from the “inside out” rather than the “top down.” The universals are metaphysical 

“components” of various physical objects, and by being there they generate necessities in them. 

Whenever these mathematical universals enter the world, making their habitations in various 

systems of physical objects, they, like other universals, bring their essences, and their attendant 

necessities with them. 

In sum: If I am correct that mathematical theorems express essential truths about 

mathematical properties, and that these mathematical properties are purely structural and 

therefore directly instantiable by physical systems, then we can explain de re mathematical 

 
182 Just as Paco instantiates being a mammal. 

 
183 Just as being an animal is part of the essence of being a mammal. 
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necessities in the same way we sometimes explain other physical necessities, viz., by appeal to 

the essences of various properties and kinds.184 

To bring out our solution out more fully, let us consider how the immanent structuralist 

explanation of de re mathematical necessities fares when confronted with the problems 

Platonism faced. 

Objection 1: Pushing the Question Back 

For any Platonist explanation of de re mathematical necessities to get off the ground, 

Platonic objects must be necessary beings, and their mathematical properties must be had 

necessarily. But we saw that Platonists have some difficulty explaining why mathematical 

objects must be necessary, and why the mathematical properties they have are necessary.  

The immanent structuralist on the other hand does not need to posit any necessary 

objects. Instead, she can appeal to the essential truths and take these as basic.185 And it is 

straightforward for the immanent structuralist to explain why it is metaphysically necessary that, 

say, the number 2 is even – unlike the Platonist, who seems to posit it as a brute fact. This truth 

can be explained and made intelligible in terms of the essence of the relevant mathematical 

structural property, viz., being the successor of 1 in a Peano series. 

Objection 2: Getting the Right Grade 

 
184 It should be noted that Platonists cannot take advantage of the essentialist strategy I use here. On Platonism, you 

might argue that the relevant theorem of graph theory is necessary because having no Eulerian path is of the essence 

of the abstract graph-theoretic objects mentioned in the theorem. However, there is no direct route from this to 

explaining why those physical bridges over there cannot have a direct path that crosses each bridge once. See 

Objection 3 of the previous section. 

 
185 Which, presumably, the Platonist will eventually have to do as well, since the best Platonist explanation appeals 

to the essences of the mathematical objects. See the discussion of Objection 1 in Section 6.3 above. 
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How about the issue of the grade of necessity? Take again our theorem (2’): 

 2'. The Euclidean plane has no tiling by regular equal pentagons. 

Again, Platonists have difficulty explaining why mathematical theorems like (2) are 

necessary with mathematical necessity – which is stronger than mere metaphysical necessity – 

since they must explain why Platonic abstracta exist with a stronger sort of necessity than other 

abstracta. 

Immanent structuralists get a stronger grade of necessity for free. From the structuralist 

perspective, the prospects of tiling my floor with pentagons are about as bad as trying to make 

hydrogen-less water, or of trying to breed the first mammal that is not an animal.186 Assuming 

these things really are inconsistent with the essences of water and mammal, these tasks should 

not only strike one as bold, hubristic, or even just outside the bounds of what is physically 

possible, but also as incoherent and absurd. Even if, like some of the saints, you had God’s ear, 

so that He would be willing to change the laws of physics for you, He would have to disappoint 

you in your request for hydrogen-less water.187 

I would suggest it is the same sort of incoherence at play in these non-mathematical cases 

as in the impossible situations posited in our discussion of the de re mathematical necessities.  

Objection 3: The Kripkean Objection (the “Humphrey” Worry) 

 
186 That is, assuming you agree that hydrogen is part of the essence of water, and that being an animal is part of 

being a mammal. If not, the reader may pick his or her preferred example of an essential truth. 

 
187 Even Descartes – perhaps the most thoroughgoing theological voluntarist of all the scholastic philosophers – did 

not think God could change the essences of things, but only that God could make certain essential truths to have no 

truth value. God could make it fail to be the case that water is essentially H2O, but not that there could actually be 

water with a composition other than H2O. 
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It is clear how the structuralist view avoids the Kripkean objection that the Platonist 

faced. If one grants that the essential truths about gold can explain the necessity of the bare 

physical generality “All gold we might find in the world has a proton number of 79, and none 

will be found without it,” then the structuralist explanation for de re mathematical necessities 

will be exactly the same. Thus, no worry similar to the Humphrey objection seems to arise, 

because the structuralist explanation does not appeal to some special class of causally 

inefficacious, spatially disconnected, and existentially apart abstract objects. The de re 

mathematical necessities are instead grounded in the properties that are actually in the physical 

systems that instantiate them. 

Furthermore, we can see more clearly than the Platonist the connection between the de re 

mathematical necessities and the relevant mathematical theorems. Consider the following de re 

mathematical necessities 1 – 5, and the corresponding mathematical facts, 1’ – 5’: 

1. It is impossible for someone to walk over the Konigsberg bridges exactly once each. 

• 1’. Because there is no such path through a K-graph. 

2. This room’s floor cannot be tiled with regular, equal pentagons.  

• 2’. Because the Euclidean plane is not tiled by regular, equal pentagons. 

3. Necessarily, any physical body that is symmetric about both axes is symmetrical 

about the point of intersection of the axes. (Franklin 2014)  

• 3’.Because a similar theorem is true of any symmetric figure. 

4. Five apples cannot be equally divided among three children. (Braine 1972)  

• 4’. Because the number 5 is not divisible by the number 3. 

5. This trefoil knot cannot be unknotted without cutting. (Lange 2017) 
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• 5’. Because a trefoil knot in three-dimensional space is not isotopic to the 

unknot. 

The relevant mathematical statements 1’ – 5’ should be interpreted as telling us 

something about the essences of the relevant mathematical universals. They tell us about the 

“clothes” that the various physical objects and systems might put on. The de re mathematical 

necessities in 1 – 5 tell us about what happens (and, in virtue of 1’-5’, what must happen) to the 

actual physical objects when they wear them. Here, the connection between the mathematical 

fact and the de re necessity in the physical world is made perspicuous. 

5. Conclusion 

Let us summarize our discussion. In Section 1, I argued that there are physical facts that 

carry mathematical necessity. These are called de re mathematical necessities. In Section 2, I 

argued that this “mathematical necessity” is indeed a genuine, strong grade of necessity, stronger 

than both physical and metaphysical necessity. In Section 3, I explained and critiqued possible 

Platonist attempts to explain de re mathematical necessities. Finally, in Section 4, I illustrated 

how our alternative account of mathematical ontology and truth – immanent structuralism – 

handily explains cases of de re mathematical necessity. I will close with a few brief remarks on 

some of the implications of this discussion. 
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CHAPTER 7: CONCLUSION: LESSONS FOR ANALYTIC PHILOSOPHY AND 

METAPHYSICS 

 

Introduction 

At this point, I have provided an account of the ontology, semantics, and epistemology of 

immanent structuralism. I have also illustrated some of the applications of the view, specifically 

to mathematical reduction, mathematical modality, and mathematical explanation. In this 

concluding chapter I would like to reflect briefly on a few implications of our theory for broader 

debates about the methodology of philosophy of mathematics, as well as metaphysics and ethics. 

Sections 1 and 2 will discuss indispensability arguments in mathematics and analytic 

ontology, in both their classic as well as more recent forms. My hope is that immanent 

structuralism can shed light on why these arguments do not work. However, more recent 

versions of the indispensability argument will be seen to fail for different reasons than older 

versions. 

In Section 3 I will discuss some parity arguments that ethicists have given to defend non-

naturalistic accounts of the epistemology and ontology of ethical properties. These parity 

arguments appeal to the alleged need in mathematics for a rationalistic faculty of pure a priori 

intuition. I argue immanent structuralism demonstrates that these arguments fail. 
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Finally, in Section 4, I summarize what I take to be some of the key contributions of the 

dissertation. In particular, I try to highlight a few places where I have tried to move the ontology 

and ideology of structuralism forward. I then briefly note some of the ideas we’ve discussed that 

might provide avenues for further research among philosophers of mathematics and 

metaphysicians. 

1. Classic Quinean Arguments in Mathematics and Metaphysics 

In this section I will briefly discuss how immanent structuralists should think about 

indispensability arguments. Although immanent structuralism can be considered a “realist” 

theory in the sense that it takes mathematics to be true, objective, and to have some sort of 

ontological explanation, its realism still is rather different from the realism of Quine, Putnam, 

and other Platonists. 

In the classic form proposed by Quine and Putnam, the indispensability argument for 

mathematical objects is rather simple, and can be summarized as follows:188 

• (1) We ought to be ontologically committed to whatever entities are indispensable 

to our best scientific theories. (Premise) 

• (2) Mathematical entities are indispensable to our best scientific theories. 

(Premise) 

• (3) Therefore, we ought to be ontologically committed to mathematical entities. 

(Conclusion) 

 
188See Quine (1949/1980) and Putnam (1979) for the classic discussion. See also Colyvan (2019) for an overview. 
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The justification for the first premise is partly based on the theory of ontological 

commitment put forward by Quine. For Quine, “to be is to be the value of a variable.” Therefore, 

when the scientific theories we hold to quantify over something, that is ipso facto to be 

committed to those entities. 

The route from this view of ontological commitment to Premise 1 is most straightforward 

if you are a realist about science. In that case, our “best scientific theories” are just true. And if 

they are true, then whatever is quantified over in those theories exists – since “to exist” is to be 

the value of a variable.189 

It is generally argued in favor of the second premise that there is no way to rid our 

successful scientific theories of mathematical discourse without unacceptably compromising the 

theory in regards to its simplicity, explanatory power, or other theoretical virtues. 

Of course, some nominalists will get off board at this point, claiming we can do the 

relevant science perfectly well without the mathematical discourse.190 I will not assess these 

attempts here. At this point I would only like to flag a couple of ways immanent structuralists 

might interact with the argument. 

First, it is interesting to note that we can accept the first premise without issue. An 

immanent structuralist could, at least in principle, agree that the entities our best scientific 

theories commit us to should be accepted. However, immanent structuralists want to reject the 

 
189Things get trickier when we recognize the fact that our best theories probably are not true – at least not quite. While 

I am not primarily concerned to resolve this problem here, others have recognized and provided thorough discussion 

of the issue. See, e.g., Lewis (1970). Suffice it to say we probably can get an indispensability argument going even 

when we are dealing with approximately true theories. 

190Field (1980) is the classic nominalist attempt. 
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conclusion, since we want to avoid the commitment to abstract mathematical entities. So the 

trouble seems to be in the second premise.  

Ultimately, this trouble goes back to Quine’s criterion of ontological commitment. As we 

saw in Chapter 2, even though mathematical discourse contains statements whose superficial 

syntax is quantificational and includes definite descriptions, immanent structuralists interpret this 

language in a certain way. We claim that these statements can be given sufficient truth-

conditions in terms of purely structural properties without the need to commit ourselves to 

specifically mathematical objects. If the theory proposed in Chapter 2 is successful then, Premise 

2 of the indispensability argument ought to be rejected. Mathematical entities are not 

indispensable to our best scientific theories after all. All we need are mathematical properties. 

Indeed, as the next section will try to show, the case for the indispensability of mathematical 

properties is far stronger than the case for mathematical objects. 

2. Modified Indispensability Arguments: Explanatory Arguments 

While the classic indispensability argument continues to exert an influence, other more 

sophisticated forms of argument have been developed in recent years, partly in response to 

worries about what “indispensability” amounts to. In particular, some have taken note of the fact 

that mathematics seems to figure in a special way in certain scientific explanations. From these 

cases of mathematical explanations of scientific phenomena some have constructed modified 

“indispensability” or “best explanation” arguments for the existence of mathematical entities. 
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One famous case of alleged mathematical explanations in science is the example of the 

cicadas popularized by Baker (2005).191 Mark Colyvan summarizes the case nicely: 

One example of how mathematics might be thought to be explanatory is found in the 

periodic cicada case (Yoshimura 1997 and Baker 2005). North American Magicicadas 

are found to have life cycles of 13 or 17 years. It is proposed by some biologists that 

there is an evolutionary advantage in having such prime-numbered life cycles. Prime-

numbered life cycles mean that the Magicicadas avoid competition, potential predators, 

and hybridisation. The idea is quite simple: because prime numbers have no non-trivial 

factors, there are very few other life cycles that can be synchronised with a prime-

numbered life cycle. The Magicicadas thus have an effective avoidance strategy that, 

under certain conditions, will be selected for. While the explanation being advanced 

involves biology (e.g. evolutionary theory, theories of competition and predation), a 

crucial part of the explanation comes from number theory, namely, the fundamental fact 

about prime numbers. Baker (2005) argues that this is a genuinely mathematical 

explanation of a biological fact. There are other examples of alleged mathematical 

explanations in the literature but this remains the most widely discussed and is something 

of a poster child for mathematical explanation.192 

Of course, there are questions that might be raised about the philosophical implications of 

the example. Indeed, it is possible to question whether the mathematics really plays an essential 

explanatory role in the case at all. But rather than adjudicate those questions, let us suppose the 

 
191Indeed, it would seem that no discussion of mathematical explanation would be complete without it. Perhaps we 

can even say it was necessary de re of this dissertation that it mention it. (At least, according to a certain sense of 

“necessity.”) 

192Colyvan (2019),  Sec. 5. 
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mathematics does play a role in the explanation here. What can we infer from this about the 

status of mathematical entities? 

Some have taken this as an occasion to present a new twist on the indispensability 

argument. Rather than getting entangled in the Quinean aporia of “best scientific theories” and 

the relationship between existence and quantification, the modified argument simply appeals to 

the presence of mathematical entities as theoretical posits in the relevant mathematical 

explanations. Paolo Mancosu summarizes how these sorts of arguments go as follows:193 

• (1) There are genuinely mathematical explanations of empirical phenomena. 

• (2) We ought to be committed to the theoretical posits postulated by such 

explanations. 

• (3) We ought to be committed to the entities postulated by the mathematics in 

question. 

As we have seen in Chapter 6, the immanent structuralist has something to say about this 

sort of argument. First off, the idea in Premise 1 of mathematical explanations of empirical 

phenomena fits nicely with the idea that there are de re mathematical necessities.  

Take the case of the cicadas for instance: Arguably, what is happening here is that the life 

cycles – which are concrete cycles of time – are instantiating various number properties. Some 

instantiate the number 13, others instantiate the number 17. Moreover, it is part of the essence of 

the numerical properties being 13 and being 17 that numbers other than them cannot be 

multiplied so as to get these numbers as a result. That is to say, they are prime. When the life 

cycles instantiate these properties, then, it is not possible for life cycles of a different number to 

 
193Mancosu (2008), p. 137. 
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be synchronized with them. In other words, the cicadas are taking advantage of a de re 

mathematical necessity! The fact about prime numbers at least partly explains the situation 

because it makes necessary the fact that life cycles of different numbers do not synchronize with 

the life cycles of the cicadas. 

However, as we saw in Chapter 6, not only do mathematical entities not seem to play a 

role in this “making necessary,” it is not at all clear how they could do so. Abstract, causally 

inert numbers do not seem to make anything necessary at all. On the other hand, the essences of 

the relevant mathematical properties do help make certain things necessary, and so they are 

ideally suited to play a role in the explanation. 

The lesson to draw from this is that even modified indispensability arguments based on 

mathematical explanations do not have sufficient justification for the second premise. What the 

argument from Chapter 6 seems to imply is that mathematical entities not only are not necessary 

for mathematical explanations of scientific phenomena, but it is difficult to even see how they 

could play a role given their isolated and abstract nature. 

3. Parity Arguments in Non-Naturalist Ethics 

A final broader debate that I would like to touch on occurs in ethics. This is the debate 

about ethical non-naturalism and ethical intuitionism. According to ethical non-naturalists, 

ethical properties like goodness, duty, obligation, and so on, are non-natural properties: They 

cannot be reduced to anything physical or natural. This raises the question of how we are able to 

gain ethical knowledge. If ethical properties are non-natural, then presumably they cannot be 

accessed in the way any other ordinary natural property can, such as through perception. So how 

are they accessed? 
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To answer this question, ethical intuitionists propose that we have a faculty of moral 

intuition that allows us to grasp the ethical properties.194 This is understood to be a non-

perceptual rational faculty that gives us direct (albeit fallible) access to the non-natural ethical 

facts. 

Naturally, one worries that it is difficult to see how such a faculty could be reliable or 

naturalistically explicable. On the face of it, positing an a priori faculty that gives us a “direct 

grasp” on non-natural features of the world seems somewhat mystical. To put the worry a little 

more precisely, insofar as there is no obvious causal or other necessary connection between non-

natural properties and any faculty we might have, a faculty of this sort is not likely to be reliable. 

Now, a number of responses can be given on behalf of the ethical non-naturalist here. I 

certainly do not intend here to adjudicate the overall question. However, I would like to flag one 

particular response that ethical intuitionists have given to this objection against their non-

naturalism. And that is to make a parity argument. 

The strategy of intuitionist parity arguments is not necessarily to give a complete story of 

how our a priori faculty of moral intuition can be reliable. Instead, the response is to point out 

the parity between our a priori moral faculty and other a priori faculties we might have. If there 

is nothing particularly troubling about the latter faculties, then there cannot be anything wrong in 

principle with the former. For there is nothing that makes the one kind of a priori knowledge 

special but not the other. 

 
194Among the most prominent treatments of ethical intuitionism are Michael Huemer’s Ethical Intuitionism (2005) 

and Russ Shafer-Landau’s Moral Realism (2003). Both of these theorists are ethical non-naturalists. 
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Michael Huemer in his popular book Moral Intuitionism brings out the point by 

comparing moral knowledge with our knowledge of mathematics. In both cases, Huemer 

contends, we must rely on our rational perception of at least certain basic facts. The only 

difference, he claims, is in the objects of our rational perception: 

It is important to remember that intuitionists do not say that we have a ‘special moral 

sense’, that is, a separate faculty dedicated solely to cognizing moral truths. Intuition is a 

function of reason. Moral intuition differs from mathematical intuition in the way that 

perceptions of cars differ from perceptions of trees – that is, merely in having different 

objects. Thus there is no special explanation required for … ‘the faculty of moral 

intuition’195 

In a similar way, Russ Shafer-Landau makes an argument based on the parity between 

ethics and metaphysics. He counters critiques of the notion of “intuition” as follows: 

Yet this criticism, if successful, is sufficient to eliminate the justification we might have 

for any of our philosophical beliefs. … In philosophy, as in ethics, we rely very heavily 

on intuitions and considered judgments to adjudicate between conflicting claims. Try 

doing modal metaphysics or analytic epistemology without such convictions. It just 

doesn’t seem possible.196 

Yet despite Huemer’s assertions of a parity between ethical reasoning and mathematics, 

what I have tried to show in the previous pages is that the case of mathematics is not like 

Huemer’s moral intuitionism at all. On the contrary, mathematical knowledge is far more similar 

 
195Huemer (2005) pp. 215-16. 

196Shafer-Landau (2003) p. 220. 
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to the type of knowledge we gain about ordinary natural properties through perception. 

Admittedly, mathematics goes somewhat beyond this, in that it allows for us to define new 

mathematical properties and infer things from those definitions. But to that extent it appears even 

more to be unlike ethical reasoning, which does not purport merely to deduce from what has 

been explicitly defined by logical operations, but rather to discover substantive ethical truths. 

Similarly, Shafer-Landau’s argument for parity between non-naturalistic ethics and 

discussions about modal metaphysics may hold in some cases. But I hope to have also illustrated 

some cases where it might not, viz., when we are considering essential truths about properties 

that we have gained through knowledge by perception. 

In short, I believe the discussion in the previous pages strongly shows that parity 

arguments between ethical intuitionism and mathematics fail. Also, parity arguments between 

ethical intuitionism and modal metaphysics may fail in some cases too. If anything, if there were 

a strong parity between mathematical and ethical reasoning, this would support a more 

naturalistic and broadly Aristotelian picture of ethics, where we gain knowledge of ethical 

properties through experience and by abstraction from concrete examples. 

4. Immanent Structuralist Metaphysics: Future Hopes 

Before concluding, I would like to highlight a few of the goals I have tried to accomplish 

in the previous pages.  

First, I have tried to separate mathematical truth, objectivity and necessity from 

mathematical objects or entities. In my opinion, there is no reason why in order to have 

mathematical realism we must also accept object realism. It is hard to see why, if we have all the 

mathematical properties we need together with their natures, we would then also need 
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specifically mathematical objects. Why shouldn’t a plenum of mathematical properties be 

enough to ground the truths of mathematics? What more could be gained by positing, in addition, 

mathematical entities?197 What is lost without them? 

At this point in our discussion, discarding the mathematical objects as an unnecessary 

appendage may seem obvious. Who needs them? I am glad if by this point it does seem obvious. 

However, for the majority of the history of philosophy of mathematics in the last hundred and 

fifty years or so, this point has not been considered obvious at all. Mathematical entities seem 

constantly to draw mathematical realists to themselves. Even structuralists have tended for the 

most part to develop their theories in a Platonist direction, taking talk of “places” in “structures” 

quite literally, and it is frequently difficult when considering structuralism to think beyond this 

mindset. If I have made this paradigm seem somewhat less inevitable in the reader’s mind, I will 

take that as an accomplishment. I hope that the ontological, semantic and epistemological 

apparatus developed in previous chapters has succeeded to some degree in this goal. 

I also believe the discussion in the previous pages opens up a number of avenues for 

further research. Throughout this work, I have at various places tried to tease out metaphysical 

distinctions that perhaps have not received enough attention or else are only beginning to do so. 

In particular, I believe the following topics which have been touched on here might be worth 

investigating further in the future: 

• The ontology and semantics of specifically essentialist pattern statements 

 
197Note that mathematical entities are, indeed, an addition, because mathematical entities themselves will have to 

instantiate mathematical properties.  
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• The metaphysics of property parthood, and the problems that face the literal 

account 

• Essentialist accounts of property parthood and intensionalist semantics based on 

these accounts 

• Referentialist metaphysics of essences vs. primitivist metaphysics of essences 

• How the epistemology of simple mathematical essences might engage with the 

cognitive science literature on mathematical education 

• The functions of mathematical reductions when these reductions are considered 

instances of “treating-as”  

• The notion of de re mathematical necessity 

• The connection between essences, de re mathematical necessities, and scientific 

explanationsHow the metaphysics of mathematical properties interacts with 

mathematical explanations in science 

I have tried to make progress on a number of these topics, but certainly there is more to 

be investigated. I hope the discussion here will help open up that research. 

Ultimately, I hope that the work I have done on immanent structuralism shows it to be a 

plausible and powerful alternative to the more dominant Platonist and structuralist theories that 

have been proposed. And even if one does not buy it in the end, I hope the words of Giordano 

Bruno may at least ring true of it: “Se non è vero, è ben trovato.”198 

 

 

 
198“Even if it is not true, it is well conceived.” 
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