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ABSTRACT 

Aimee Angela D’Aloisio: Evaluation of Insulin-like Growth Factor Polymorphisms  

with Prevalence and Size of Uterine Leiomyomata  

 (Under the direction of Jane C. Schroeder, DVM, PhD) 

 

 

 

Genetic factors influence circulating insulin-like growth factor-one (IGF-I) and IGF 

binding protein-3 (IGFBP-3) levels.  Prior studies with multiple IGF-I and IGFBP-3 

polymorphisms have been limited, especially among African Americans.  We evaluated 

30 IGF-I and 15 IGFBP-3 single nucleotide polymorphisms (SNPs) and estimated 

diplotypes in relation to plasma levels of both proteins among 984 premenopausal 

African Americans and Caucasians from the National Institute of Environmental Health 

Sciences Uterine Fibroid Study.  In both racial groups, IGFBP-3 rs2854746 (Ala32Gly) 

was associated with plasma IGFBP-3, (CC versus GG: Caucasians: 631 ng/ml, 95% 

confidence interval (CI): 398, 864; African Americans: 897 ng/ml, 95% CI: 656, 1138).  

Relative to diplotypes with the rs2854746 CG genotype, IGFBP-3 diplotypes with the 

GG genotype had lower mean plasma IGFBP-3 while IGFBP-3 diplotypes with the CC 

genotype had higher mean plasma IGFBP-3.  The IGFBP-3 promoter SNP, rs2854744, 

which was in strong linkage disequilibrium with rs2854746 in Caucasians only, was 

associated with plasma IGFBP-3 in both races.  Eight additional IGFBP-3 SNPs were 

associated with plasma IGFBP-3, with generally consistent associations between races.  

Twelve IGF-I SNPs were associated with plasma IGF-I; however, associations were 

discordant between races, and were not consistent with diplotype findings.  



  

 iv

Uterine leiomyomata (fibroids) are responsible for substantial morbidity, especially 

among African Americans.  Gene expression studies suggest IGF-I involvement in 

fibroid pathogenesis; IGFBP-3 may be important based on biological interrelations with 

IGF-I.  IGF-I and IGFBP-3 polymorphisms have not been previously studied with 

fibroids.  We evaluated the IGF-I and IGFBP-3 SNPs and estimated diplotypes from our 

first study in association with fibroid prevalence in our African American and Caucasian 

study population.  Relatively precise prevalence differences (PD) with IGF-I and IGFBP-

3 SNPs were predominantly estimated among African Americans, including IGFBP-3 

SNPs of rs9282734 (His158Pro) (PD = -0.130, 95% CI: -0.294, 0.034) and rs2475551 

(splice site) (PD = 0.208, 95% CI: 0.095, 0.320) and IGF-I SNP rs35767 (promoter) (PD 

= 0.208, 95% CI: 0.095, 0.320).  Associations with larger fibroids (2+ cm) were 

consistent or slightly weaker than with any fibroids.  Diplotype associations were not 

consistent with SNP findings.  Future research should validate our findings and examine 

additional genes within the IGF-I pathway.    

 

 

 



  

 v

ACKNOWLEDGEMENTS 

 

I would like to acknowledge and express my gratitude to the following people for 

without their help completing my dissertation would not have been possible. My 

committee members were very generous with their time, experience, and insight, and I 

will always be grateful.  I would like to thank Dr. Jane Schroeder for her support and 

friendship as committee chair and advisor.  A special thanks to Dr. Donna Baird, my 

mentor at the National Institute of Environmental Health Sciences (NIEHS), for the use 

of the NIEHS Uterine Fibroid Study data on which my dissertation is based.  Dr. Baird 

was always available with her unfailing support and insight through this whole process.  I 

wish to thank Dr. Kari North for her help and the time she took to guide me through the 

genetics of my dissertation.  I would also like to thank Dr. Charles Poole for his support 

and help with statistical methods, and his unfailing patience and guidance.  I also wish to 

thank Dr. Suzanne West for not only the support and help she gave as a member of my 

committee, but also for providing the financial support for the genotyping through the 

UNC-GSK Center of Excellence in Pharmacoepidemiology & Public Health.  In addition, 

I would like to acknowledge that this research was supported by an NIEHS Intramural 

Research Training Award. 

Other people I would like to acknowledge are: Dr. Jason Luo from the Mammalian 

Genotyping Core at the Lineberger Comprehensive Cancer Center for his direction of the 

genotyping; the staff at Social & Scientific Systems including Dr. Mary Watson for 



  

 vi

preparation of DNA samples for genotyping; Dr. Greg Travlos from NIEHS for 

conducting the immunoassays;  Dr. Sue Edelstein from NIEHS Graphics for her 

invaluable assistance in preparing dissertation figures; the entire Epidemiology Branch at 

NIEHS with whom I look forward to continue working with as a postdoctoral fellow.     

Finally, I would like to thank my mother for her constant support throughout this 

long process to my PhD.   

  

 



  

 vii

TABLE OF CONTENTS 

 

LIST OF TABLES............................................................................................................. xi 

LIST OF FIGURES ......................................................................................................... xiv 

LIST OF ABBREVIATIONS.......................................................................................... xix 

Chapter 

I REVIEW OF THE LITERATURE ............................................................................1 

Epidemiology of uterine fibroids................................................................................1 

 

Insulin-like growth factor overview ...........................................................................6 

 

Insulin-like growth factor involvement with uterine fibroids.....................................7 

 

Circulating insulin-like growth factor levels ............................................................10 

 

Circulating insulin-like growth factor levels and cancer ..........................................13 

 

Insulin-like growth factor polymorphisms ...............................................................15 

 

References.................................................................................................................21 

 

II STATEMENT OF SPECIFIC AIMS........................................................................34 

Study questions .........................................................................................................34 

 

Primary aims .............................................................................................................35 

 

III METHODS ...............................................................................................................36 

A. Study population ..................................................................................................36 

 

B. Preliminary data ...................................................................................................37 

 

C. Data collection .....................................................................................................38 



  

 viii

1. Uterine fibroids ................................................................................................38 

 

2. Sample collection and assays ...........................................................................39 

 

3. Genetic polymorphisms....................................................................................41 

 

4. Covariates.........................................................................................................45 

 

E. Analytical approach..............................................................................................47 

 

1. Diplotype estimation ........................................................................................47 

 

2. Overview of analyses and confounding ...........................................................50 

 

3. Paper 1 analyses ...............................................................................................51 

 

4. Paper 2 analyses ...............................................................................................53 

 

5. Power calculations............................................................................................55 

 

F. References ............................................................................................................56 

 

IV PAPER 1: IGF-I AND IGFBP-3 POLYMORPHISMS IN RELATION TO 

CIRCULATING LEVELS AMONG AFRICAN AMERICAN AND 

 CAUCASIAN WOMEN...........................................................................................74 

 

A. Abstract ................................................................................................................74 

 

B. Introduction ..........................................................................................................75 

 

C. Methods................................................................................................................77 

 

1. Study population ..............................................................................................77 

 

2. Sample collection and assays ...........................................................................78 

 

3. Genetic polymorphisms....................................................................................78 

 

4. Diplotype estimation ........................................................................................80 

 

5. Statistical analysis ............................................................................................82 

 

D. Results..................................................................................................................84 

 

1. Participant characteristics.................................................................................84 

 



  

 ix

2. IGFBP-3 SNPs .................................................................................................84 

 

3. IGFBP-3 diplotypes .........................................................................................87 

 

4. IGF-I SNPs.......................................................................................................89 

 

5. IGF-I diplotypes...............................................................................................90 

 

E. Discussion ............................................................................................................92 

 

F. References ............................................................................................................99 

 

V PAPER 2: ASSOCIATION OF IGF-I AND IGFBP-3 POLYMORPHISMS  

 WITH UTERINE LEIOMYOMATA AMONG AFRICAN AMERICAN  

 AND CAUCASIAN WOMEN...............................................................................121 

 

A. Abstract ..............................................................................................................121 

 

B. Introduction ........................................................................................................122 

 

C. Methods..............................................................................................................123 

 

1. Study population ............................................................................................123 

 

2. Uterine fibroid assessment .............................................................................124 

 

3. Selection of genetic polymorphisms ..............................................................125 

 

4. Sample collection and genotyping .................................................................126 

 

5. Diplotype estimation ......................................................................................127 

 

6. Statistical analysis ..........................................................................................128 

 

D. Results................................................................................................................130 

 

1. Participant characteristics...............................................................................130 

 

2. IGFBP-3 SNPs ...............................................................................................131 

 

3. IGFBP-3 diplotypes .......................................................................................132 

 

4. IGF-I SNPs.....................................................................................................133 

 

5. IGF-I diplotypes.............................................................................................135 

 



  

 x

E. Discussion ..........................................................................................................137 

 

F. References ..........................................................................................................143 

 

VI CONCLUSIONS.....................................................................................................163 

 

A. Introduction........................................................................................................163 

 

B. Summary of results ............................................................................................165 

 

C. Strengths and limitations....................................................................................167 

 

D. Future research...................................................................................................169 

 

E. References ..........................................................................................................171 

 

APPENDIX......................................................................................................................175 



  

 xi

LIST OF TABLES 

Table 

3.1 Characteristics of premenopausal women with available  

 DNA by race from NIEHS Uterine Fibroid Study.....................................60 

 

3.2 IGF-I single nucleotide polymorphisms (SNPs) selected for  

 genotyping in the NIEHS Uterine Fibroid Study.......................................62 

 

3.3 IGFBP-3 single nucleotide polymorphisms (SNPs) selected  

 for genotyping in the NIEHS Uterine Fibroid Study.................................64 

 

3.4 Genotype distribution of IGF-I single nucleotide polymorphisms  

 (SNPs) among premenopausal Caucasian and African American  

 women in the NIEHS Uterine Fibroid Study.............................................65 

 

3.5 Genotype distribution of IGFBP-3 single nucleotide  

 polymorphisms (SNPs) among premenopausal Caucasian and  

 African American women in the NIEHS Uterine Fibroid Study...............68 

 

3.6 Estimated power to detect main effects prevalence differences  

 (PD) by race with SNPs or diplotypes (α = 0.05)......................................70 

 

4.1 Characteristics of premenopausal women with genotype 

  information by race from NIEHS Uterine Fibroid Study .......................106 

 

4.2 Unadjusted linear regression of IGFBP-3 single nucleotide 

polymorphisms (SNPs) on plasma IGFBP-3 and IGF-I  

 levels among Caucasians .........................................................................107 

 

4.3 Unadjusted linear regression of IGFBP-3 single nucleotide 

polymorphisms (SNPs) on plasma IGFBP-3 and IGF-I  

 levels among African Americans.............................................................109 

 

4.4 Unadjusted linear regression of IGF-I single nucleotide  

 polymorphisms (SNPs) on plasma IGFBP-3 and IGF-I  

 levels among Caucasians .........................................................................111 

 

4.5 Unadjusted linear regression of IGF-I single nucleotide  

 polymorphisms (SNPs) on plasma IGFBP-3 and IGF-I  

 levels among African Americans.............................................................114 

 

5.1 Uterine fibroid status of premenopausal women with genotype 

 information by race from NIEHS Uterine Fibroid Study ........................148 

 



  

 xii

5.2 Unadjusted prevalence differences (PD) and 95% confidence  

 intervals (CI) for uterine fibroids in association with IGFBP-3 

 single nucleotide polymorphisms (SNPs) among Caucasians .................149 

 

5.3 Unadjusted prevalence differences (PD) and 95% confidence  

 intervals (CI) for uterine fibroids in association with IGFBP-3  

 single nucleotide polymorphisms (SNPs) among African  

 Americans ................................................................................................151 

 

5.4 Unadjusted prevalence differences (PD) and 95% confidence 

 intervals (CI) for uterine fibroids in association with IGF-I  

 single nucleotide polymorphisms (SNPs) among Caucasians .................153 

 

5.5 Unadjusted prevalence differences (PD) and 95% confidence  

 intervals (CI) for uterine fibroids in association with IGF-I  

 single nucleotide polymorphisms (SNPs) among African  

 Americans ................................................................................................156 

 

A.1 Pairwise r
2
 between IGFBP-3 single nucleotide  

 polymorphisms (SNPs) among Caucasians .............................................175 

 

A.2 Pairwise r
2
 between IGFBP-3 single nucleotide  

 polymorphisms (SNPs) among African Americans.................................176 

 

A.3 Pairwise r
2
 between IGF-I single nucleotide  

 polymorphisms (SNPs) among Caucasians .............................................178 

 

A.4 Pairwise r
2
 between IGF-I single nucleotide  

 polymorphisms (SNPs) among African Americans.................................180 

 

A.5 Differences of mean differences comparing African  

 American and Caucasian mean plasma IGFBP-3  

 differences associated with index genotypes for IGFBP-3  

 single nucleotide polymorphisms (SNPs)................................................183 

 

A.6 Differences of mean differences comparing African  

 American and Caucasian mean plasma IGF-I  

 differences associated with index genotypes for IGF-I  

 single nucleotide polymorphisms (SNPs)................................................184 

 

A.7 Unadjusted linear regression of IGFBP-3 group-specific  

 diplotypes on plasma IGFBP-3 levels among Caucasians.......................186 

 

A.8 Unadjusted linear regression of IGFBP-3 group-specific  

 diplotypes on plasma IGF-I levels among Caucasians ............................188 

 



  

 xiii

A.9 Unadjusted linear regression of IGFBP-3 group-specific  

 diplotypes on plasma IGFBP-3 levels among African Americans ..........190 

 

A.10 Unadjusted linear regression of IGFBP-3 group-specific  

 diplotypes on plasma IGF-I levels among African Americans................193 

 

A.11 Unadjusted linear regression of IGF-I group-specific diplotypes  

 on plasma IGFBP-3 levels among Caucasians ........................................196 

 

A.12 Unadjusted linear regression of IGF-I group-specific diplotypes 

  on plasma IGF-I levels among Caucasians.............................................198 

 

A.13 Unadjusted linear regression of IGF-I group-specific diplotypes  

 on plasma IGFBP-3 levels among African Americans............................200 

 

A.14 Unadjusted linear regression of IGF-I group-specific diplotypes  

 on plasma IGF-I levels among African Americans .................................204 

 

A.15 Unadjusted prevalence differences of uterine fibroids (any size) 

  with IGFBP-3 group-specific diplotypes among Caucasians .................208 

 

A.16 Unadjusted prevalence differences of uterine fibroids (2+ cm)  

 with IGFBP-3 group-specific diplotypes among Caucasians ..................210 

 

A.17 Unadjusted prevalence differences of uterine fibroids (any size)  

 with IGFBP-3 group-specific diplotypes among  

 African Americans ...................................................................................212 

 

A.18 Unadjusted prevalence differences of uterine fibroids (2+ cm)  

 with IGFBP-3 group-specific diplotypes among  

 African Americans ...................................................................................214 

 

A.19 Unadjusted prevalence differences of uterine fibroids (any size)  

 with IGF-I group-specific diplotypes among Caucasians .......................216 

 

A.20 Unadjusted prevalence differences of uterine fibroids (2+ cm)  

 with IGF-I group-specific diplotypes among Caucasians .......................218 

 

A.21 Unadjusted prevalence differences of uterine fibroids (any size)  

 with IGF-I group-specific diplotypes among African Americans...........220 

 

A.22 Unadjusted prevalence differences of uterine fibroids (2+ cm)  

 with IGF-I group-specific diplotypes among African Americans...........224 

 

 



  

 xiv

LIST OF FIGURES 

Figure 

3.1 Depiction of IGF-I single nucleotide polymorphisms (SNPs)  

 evaluated among premenopausal African American and Caucasian 

participants from the National Institute of Environmental Health  

 Sciences (NIEHS) Uterine Fibroid Study.  Relative distances of  

 SNPs were based on mapping information from the Entrez Gene  

 database sponsored by the National Center for Biotechnology  

 Information (NCBI), National Library of Medicine (NLM).  SNPs  

 selected a priori include: rs3729846, synonymous SNP; rs17884626, 

nonsynonymous SNP.  Race-specific diplotype groups and linkage 

disequilibrium (LD) blocks are listed for each SNP.  Group refers to 

combination of SNPs for diplotype estimation.  LD blocks consist of  

 SNPs with minor allele frequency (MAF) ≥ 5% in strong LD (95%  

 of pairwise SNP comparisons with one-sided 95% confidence  

 intervals for the D prime statistic within 0.7-0.98).  Values for  

 diplotype group and position (--) were not listed for SNPs excluded  

 from diplotype estimation based on either: 1) Tagger algorithm  

 (pairwise r
2
 ≥ 0.8);  2) MAF < 5% (excluded from LD blocks (--))  

 or MAF < 3% for SNPs selected a priori. .................................................71 

 

3.2 Depiction of IGFBP-3 single nucleotide polymorphisms (SNPs)  

 evaluated among premenopausal African American and Caucasian 

participants from the National Institute of Environmental Health  

 Sciences (NIEHS) Uterine Fibroid Study.  Relative distances of  

 SNPs were based on mapping information from the Entrez Gene  

 database sponsored by the National Center for Biotechnology  

 Information (NCBI), National Library of Medicine (NLM).  SNPs 

 selected a priori include: rs2854744 (-202 A/C); rs2854746 and 

rs9282734, nonsynonymous SNPs.  Race-specific diplotype groups  

 and linkage disequilibrium (LD) blocks are listed for each SNP.   

 Group refers to combination of SNPs for diplotype estimation.  LD  

 blocks consist of SNPs with minor allele frequency (MAF) ≥ 5% in  

 strong LD (95% of pairwise SNP comparisons with one-sided 95% 

confidence intervals for the D prime statistic within 0.7-0.98).   

 Values for diplotype group and position (--) were not listed for  

 SNPs excluded from diplotype estimation based on either:  

 1) Tagger algorithm (pairwise r
2
 ≥ 0.8);  2) MAF < 5% (excluded  

 from LD blocks (--)) or MAF < 3% for SNPs selected a priori ................72 

 

3.3 Hypothetical causal diagram......................................................................73 

 

4.1 Unadjusted linear regression of IGFBP-3 diplotypes on plasma  

 IGFBP-3 and IGF-I levels among Caucasians.  Diplotype group- 



  

 xv

 specific models with posterior medians and 95% posterior limits  

 based on prior mean of 0 and prior variance corresponding to one  

 standard deviation of the mean plasma IGFBP-3 and IGF-I levels.  

 Groups were created by combining individual SNPs that were not  

 included in a block with an adjacent block and combining adjacent  

 blocks with each other, if doing so resulted in diplotypes estimated  

 with at least 90% posterior probability for at least 90% of Caucasians.  

After excluding 1 woman missing IGFBP-3 and IGF-I, Group 1  

 (N=370) represents SNPs from blocks 1 and 2; Group 2 (N=391) 

represents 2 SNPs outside block 3 combined with block 3 SNPs.   

 Last diplotype listed in each group is most common (referent)  

 diplotype. Shaded area indicates ±10% of the mean IGFBP-3  

 (Group 1: 4661 ng/ml; Group 2: 4587 ng/ml) or IGF-I (Group 1:  

 177 ng/ml; Group 2: 174 ng/ml) for each group-specific wildtype 

diplotype among Caucasians....................................................................117 

 

4.2 Unadjusted linear regression of IGFBP-3 diplotypes on plasma  

 IGFBP-3 and IGF-I levels among African Americans.  Diplotype  

 group-specific models with posterior medians and 95% posterior  

 limits based on prior mean of 0 and prior variance corresponding  

 to one standard deviation of the mean plasma IGFBP-3 and IGF-I  

 levels. Groups were created by combining individual SNPs that were  

 not included in a block with an adjacent block and combining adjacent 

blocks with each other, if doing so resulted in diplotypes estimated  

 with at least 90% posterior probability for at least 90% of African 

Americans.  After excluding 8 women missing IGFBP-3 and IGF-I,  

 Group 1 (N=539) represents 3 SNPs outside block 1 combined with  

 block 1 SNPs; Group 2 (N=563) represents block 2 SNPs; Group 3 

(N=547) represents SNPs from blocks 3 and 4.  Last diplotype listed  

 in each group is most common (referent) diplotype.  Shaded area  

 indicates ±10% of the mean IGFBP-3 (Group 1: 4327 ng/ml; Group  

 2: 4060 ng/ml; Group 3: 4106 ng/ml) or IGF-I (Group 1: 175 ng/ml; 

Group 2: 162 ng/ml; Group 3: 162 ng/ml) for each group-specific  

 wildtype diplotype among African Americans. .......................................118 

 

4.3 Unadjusted linear regression of IGF-I diplotypes on plasma  

 IGFBP-3 and IGF-I levels among Caucasians.  Diplotype group- 

 specific models with posterior medians and 95% posterior limits  

 based on prior mean of 0 and prior variance corresponding to one  

 standard deviation of the mean plasma IGFBP-3 and IGF-I levels.  

 Groups were created by combining individual SNPs that were not  

 included in a block with an adjacent block and combining adjacent  

 blocks with each other, if doing so resulted in diplotypes estimated  

 with at least 90% posterior probability for at least 90% of  

 Caucasians.  After excluding 1 woman missing IGFBP-3 and  

 IGF-I, Group 1 (N=394) represents 1 SNP (rs35767) outside block  



  

 xvi

 1 since it could not be combined with any adjacent SNPS; Group 2 

(N=393) represents block 1 SNPs; Group 3 (N=389) represents block  

 2 SNPs combined with 1 SNP outside block 2; Group 4 (N=393) 

represents block 3 SNPs.  Last diplotype listed in each group is most 

common (referent) diplotype.  Shaded area indicates ±10% of the  

 mean IGFBP-3 (Group 1: 4525 ng/ml; Group 2: 4559 ng/ml; Group  

 3: 4518 ng/ml; Group 4: 4585 ng/ml) or IGF-I (Group 1: 171 ng/ml; 

Group 2: 173 ng/ml; Group 3: 165 ng/ml; Group 4: 172 ng/ml) for  

 each group-specific wildtype diplotype among Caucasians. ...................119 

 

4.4 Unadjusted linear regression of IGF-I diplotypes on plasma  

 IGFBP-3 and IGF-I levels among African Americans.  Diplotype  

 group-specific models with posterior medians and 95% posterior  

 limits based on prior mean of 0 and prior variance corresponding to  

 one standard deviation of the mean plasma IGFBP-3 and IGF-I  

 levels.  Groups were created by combining individual SNPs that  

 were not included in a block with an adjacent block and combining 

adjacent blocks with each other, if doing so resulted in diplotypes 

estimated with at least 90% posterior probability for at least 90%  

 of African Americans.  After excluding 8 women missing  

 IGFBP-3 and IGF-I, Group 1 (N=565) represents block 1 SNPs  

 combined with 1 SNP outside block 1; Group 2 (N=558)  

 represents 2 SNPs outside block 2 combined with block 2 SNPs;  

 Group 3 (N=545) represents block 3 SNPs combined with 1 SNP  

 outside block 3; Group 4 (N=565) represents block 4 SNPs.  Last 

diplotype listed in each group is most common (referent) diplotype. 

Shaded area indicates ±10% of the mean IGFBP-3 (Group 1: 4043  

 ng/ml; Group 2: 3999 ng/ml; Group 3: 4083 ng/ml; Group 4: 4048  

 ng/ml) or IGF-I (Group 1: 166 ng/ml; Group 2: 162 ng/ml; Group  

 3: 166 ng/ml; Group 4: 162 ng/ml) for each group-specific  

 wildtype diplotype among African Americans. .......................................120 

 

5.1 Unadjusted posterior medians of uterine fibroids with IGFBP-3  

 diplotypes among Caucasians.  Diplotype group-specific models  

 for prevalence of fibroids (any size and those 2+ cm in diameter)  

 with posterior medians and 95% posterior limits based on prior  

 mean of 0 and prior variance of (0.5/3.92)
2
 ≈ 0.016. Groups were  

 created by combining individual SNPs that were not included in  

 a block with an adjacent block and combining adjacent blocks  

 with each other, if doing so resulted in diplotypes estimated with  

 at least 90% posterior probability for at least 90% of Caucasians.   

 After excluding women missing fibroid status (Group 1: missing 

  = 6; Group 2: missing = 8), Group 1 (N=365) represents SNPs  

 from blocks 1 and 2; Group 2 (N=384) represents 2 SNPs outside  

 block 3 combined with block 3 SNPs.  Diplotype category with  

 “*” for fibroid (2+ cm) was included with rare diplotypes.  Last  



  

 xvii

 diplotype listed in each group is the most common (referent)  

 diplotype.  Gray dotted lines indicate ± 10% for posterior medians. ......159 

 

5.2 Unadjusted posterior medians of uterine fibroids with IGFBP-3  

 diplotypes among African Americans.  Diplotype group-specific  

 models for prevalence of fibroids (any size and those 2+ cm in  

 diameter) with posterior medians and 95% posterior limits based  

 on prior mean of 0 and prior variance of (0.5/3.92)
2
 ≈ 0.016.   

 Groups were created by combining individual SNPs that were  

 not included in a block with an adjacent block and combining  

 adjacent blocks with each other, if doing so resulted in  

 diplotypes estimated with at least 90% posterior probability  

 for at least 90% of African Americans.  After excluding  

 women missing fibroid status (Group 1: missing = 6; Group 2:  

 missing = 7; Group 3: missing = 7), Group 1 (N=541) represents  

 3 SNPs outside block 1 combined with block 1 SNPs; Group 2  

 (N=564) represents block 2 SNPs; Group 3 (N=548) represents  

 SNPs from blocks 3 and 4.  Last diplotype listed in each group  

 is the most common (referent) diplotype.  Gray dotted lines 

 indicate ± 10% for posterior medians. .....................................................160 

 

 

5.3 Unadjusted posterior medians of uterine fibroids with IGF-I  

 diplotypes among Caucasians.  Diplotype group-specific models  

 for prevalence of fibroids (any size and those 2+ cm in diameter)  

 with posterior medians and 95% posterior limits based on prior  

 mean of 0 and prior variance of (0.5/3.92)
2
 ≈ 0.016.  Groups  

 were created by combining individual SNPs that were not  

 included in a block with an adjacent block and combining  

 adjacent blocks with each other, if doing so resulted in  

 diplotypes estimated with at least 90% posterior probability  

 for at least 90% of Caucasians.  After excluding 8 women  

 missing fibroid status, Group 1 (N=387) represents 1 SNP  

 (rs35767) outside block 1 since it could not be combined  

 with any adjacent SNPS; Group 2 (N=386) represents block  

 1 SNPs; Group 3 (N=382) represents block 2 SNPs combined  

 with 1 SNP outside block 2; Group 4 (N=386) represents  

 block 3 SNPs.  Last diplotype listed in each group is the most  

 common (referent) diplotype.  Gray dotted lines indicate  

 ± 10% for posterior medians....................................................................161 

 

 

5.4 Unadjusted posterior medians of uterine fibroids with IGF-I  

 diplotypes among African Americans.  Diplotype group- 

 specific models for prevalence of fibroids (any size and  

 those 2+ cm in diameter) with posterior medians and 95%  



  

 xviii

 posterior limits based on prior mean of 0 and prior variance  

 of (0.5/3.92)
2
 ≈ 0.016.  Groups were created by combining  

 individual SNPs that were not included in a block with an  

 adjacent block and combining adjacent blocks with each  

 other, if doing so resulted in diplotypes estimated with at  

 least 90% posterior probability for at least 90% of African  

 Americans.  After excluding 7 women missing fibroid status,  

 Group 1 (N=566) represents block 1 SNPs combined with 1  

 SNP outside block 1; Group 2 (N=559) represents 2 SNPs  

 outside block 2 combined with block 2 SNPs; Group 3  

 (N=546) represents block 3 SNPs combined with 1 SNP  

 outside block 3; Group 4 (N=566) represents block 4 SNPs.   

 Last diplotype listed in each group is the most common  

 (referent) diplotype.  Gray dotted lines indicate ± 10% for  

 posterior medians. ....................................................................................162 



  

 xix

LIST OF ABBREVIATIONS 

 

 

 

A  Adenine 

 

ABI  Applied Biosystems 

 

Ala  Alanine 

 

BMI Body Mass Index 

 

bp  Base Pairs 

 

C Cytosine 

 

CI Confidence Interval 

 

DNA Deoxyribonucleic Acid 

 

G Guanine 

 

GVS Genome Variation Server 

 

Gly Glycine 

 

His Histidine 

 

HWE Hardy-Weinberg Equilibrium 

 

IGF-I Insulin-like Growth Factor-1 Gene 

 

IGF-I Insulin-like Growth Factor-1 

 

IGF-IR Insulin-like Growth Factor-1 Receptor 

 

IGFBP-3 Insulin-like Growth Factor Binding Protein-3 Gene 

 

IGFBP-3 Insulin-like Growth Factor Binding Protein-3 

 

kb Kilo Base Pairs 

 

LD Linkage Disequilibrium 

 

MAF Minor Allele Frequency 

 



  

 xx

mRNA Messenger Ribonucleic Acid 

 

µL Microliter 

 

ng/mL Nanograms per Milliliter 

 

NIEHS National Institute of Environmental Health Sciences 

 

PD Prevalence Difference 

 

Pro Proline 

 

SAS Statistical Analysis System 

 

SD Standard Deviation 

 

SNP Single Nucleotide Polymorphism 

 

T Thymine 

 

Thr Threonine 

 

UFS Uterine Fibroid Study 

 

 

 



 

 

 

CHAPTER I 

REVIEW OF THE LITERATURE 

 

Epidemiology of uterine fibroids 

Uterine leiomyomata (fibroids) are hormonally-dependent benign tumors of smooth 

muscle origin that commonly result in pelvic pain and menstrual irregularities including 

heavy bleeding in addition to potential fertility problems (1).  Uterine fibroids are the 

principal indication for hysterectomies in the United States, resulting in more than 

200,000 of these surgical procedures per year (2, 3).  The National Institute of 

Environmental Health Sciences (NIEHS) Uterine Fibroid Study estimated the risk of 

developing fibroids by age 50 to be over 80% among African Americans and over 60% 

among Caucasians (4), which is in contrast with previous estimates that focused their 

definition of fibroids on women with diagnoses based on clinical symptoms or 

hysterectomy, without accounting for asymptomatic cases.      

The most consistent risk factors for uterine fibroids are age, race, and reproductive 

history.  Fibroid prevalence increases with age up to menopause (4-7); the onset of 

menopause can initiate regression of uterine fibroids, which is most likely due to declines 

in reproductive hormone levels.  Most epidemiologic studies have supported a greater 

prevalence and higher degree of related morbidity from uterine fibroids among African 

Americans compared to Caucasians (4, 5, 8).  In particular, the Nurses’ Health Study II 
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reported an earlier age of onset and higher age-adjusted incidence rates of hysterectomy 

or ultrasound confirmed fibroids among African Americans (30.6 per 1,000 woman-

years) compared with Caucasians (8.9 per 1,000 woman-years) (5).  Only one case-

control study did not support an association between African American race and fibroids, 

but its study population was less than 10% African American (6).   In addition, African 

American women have been reported to have more fibroid-related morbidity, a greater 

number and size of tumors, and an earlier age of diagnosis compared to Caucasians (9).  

Early menarche has been related to fibroid prevalence in three studies (8, 10, 11) in 

addition to the NIEHS Uterine Fibroid Study (unpublished) although a small case-control 

study did not support this finding (6).  Causal explanation for relations between early 

onset of menarche and fibroids involve possible alterations in estrogen and progesterone 

levels in adults, but this mechanism is not established, and  early age at menarche may 

instead act as a marker for other hormonally-related exposures that promote fibroids (12).   

Parity has been inversely associated with uterine fibroids (13, 14); however, the 

timing of births may be a more important factor than the overall number (8) since 

stronger associations have been observed with births after 24 years of age (15).  Baird et 

al. postulated that the protective association of live births after age 24 with fibroids is due 

to uterine remodeling subsequent to each completed pregnancy, which may eliminate 

small fibroids.  According to this hypothesis, only births during mid-reproductive years, 

which is the time of peak tumor development, would decrease fibroid prevalence (15).  

Others have suggested that the inverse associations between fibroids and parity may be 

confounded by infertility or breastfeeding; however, the parity association was not 

reduced by exclusion of infertile women in two large cohort studies (10, 11), and 
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breastfeeding has not been associated with fibroids in the few studies that have evaluated 

it as a risk factor (6, 11).   The relation of infertility with uterine fibroids has not been 

resolved.  Some studies find associations (10, 16), but this could be due to reverse 

causation and possibly common causes.   

Smoking has been inconsistently associated with uterine fibroids (8, 13, 14, 16), with 

inverse associations attributed to reduced estrogen levels in smokers versus non-smokers.  

However, neither the Nurses’ Health Study II (17) nor the Black Women’s Health study 

(18) found an association between smoking and fibroids.  Obesity has been positively 

associated with fibroids, possibly as a consequence of elevated estrogen levels (8, 16, 17, 

19).  Although relations between physical activity and fibroids are highly plausible, 

epidemiologic investigations have been very limited.  Specifically, physical activity has 

been associated with increased levels of estrogen metabolites with low receptor affinity 

among premenopausal women in Bentz et al. (20), but Campbell et al. did not confirm 

this finding (21).  The NIEHS study noted an inverse association between an index of 

current physical activity and fibroid prevalence (22), and Frisch et al. reported reduced 

clinically diagnosed fibroids among former college athletes compared to non-athletes 

(23).   Two studies have reported positive associations between alcohol intake and 

fibroids.  In the NIEHS Uterine Fibroid Study, there was a threshold effect in which even 

low levels of alcohol consumption (at least 0.5 drinks per week) were associated with an 

increased fibroid prevalence among Caucasians, while consumption of over 2 drinks per 

week were positively associated with fibroids in African Americans (24).  These results 

are somewhat consistent with the Black Women’s Health Study, which suggested that 
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strongest associations were for consumption of at least 7 drinks per week (especially beer 

intake) and duration of consumption of at least 20 years (18).   

Associations between fibroids and oral contraceptive use have been inconsistent, 

with some studies reporting inverse  associations with current oral contraceptive use (8, 

25) and duration of oral contraceptive use (8, 14), while another reported a positive 

association with ever use of oral contraceptives (16).  The Black Women’s Health and 

Nurses’ Health Studies did not find an association with current oral contraceptives 

overall, but instead suggested that use during teenage years may be associated with 

increased fibroid risk (10, 11).  Originally, estrogen was regarded as the main hormone 

involved in fibroid development, but more recently progesterone also has been 

considered important in growth promotion of fibroids (26, 27).  A hypothesis involving 

indirect effects of estrogens or progesterones on fibroids through accelerating 

transcription of cytokines or growth factors has been proposed (28, 29).     

Early research suggested that reported positive associations with hypertension and 

uterine fibroids were due to fibroid-mediated hypertension secondary to obstruction of 

the urinary tract by the growing uterine tumors (30, 31).  However, two recent studies 

have refuted this hypothesis because they did not support hypertension occurring 

subsequent to fibroids and instead suggest that fibroids and hypertension may share a 

common pathogenic mechanism (32, 33).  Shared associations with race, obesity, blood 

pressure, and physical activity, support a recent hypothesis that atherosclerosis and 

uterine fibroids share a common biologic mechanism involving hyperinsulinemia (1, 33).  

In addition, smooth muscle proliferation is involved in the pathogenesis of both 
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atheromatous plaques and fibroids (34).  However, fasting insulin was not associated with 

increased prevalence of fibroids in the NIEHS Uterine Fibroid Study (unpublished). 

Studies of genetic susceptibility to fibroids among women in the United States have 

been limited; however, Al-Hendy et al. reported that a catechol-o-methyltransferase 

(COMT) polymorphism (Val158Met) (35) and an estrogen receptor-α polymorphism (36) 

were both related to fibroids, and that the proportion of women with high-risk genotypes 

was greater among African Americans than Caucasians or Hispanics.  However, Gooden 

et al. reported no association between the COMT Val158Met single nucleotide 

polymorphism (SNP) and fibroids within the NIEHS Uterine Fibroid Study (37).  A 

relative increase in the prevalence of fibroids was noted among Taiwanese women with 

SNPs in the progesterone receptor, epidermal growth factor receptor and tumor-necrosis 

factor-alpha genes (38-40) in addition to associations with a CAG trinucleotide repeat 

polymorphism and a TA dinucleotide repeat polymorphism in the androgen and estrogen 

receptor genes respectively (41, 42).  Also, uterine fibroids have been associated with a 

DNA repair gene (XRCC1) polymorphism among Koreans (43), and a cytochrome P450 

(CYP17) polymorphism in a small South African study (44).  Three small German case-

control studies reported that uterine fibroids were not associated with estrogen receptor-

alpha (45), COMT (45), or angiopoietin-2 polymorphisms (46), but were associated with 

a p53 polymorphism (46) and possibly with three cytochrome P450 polymorphisms 

(CYP17A (45), CYP2A13 (47), CYP1A1 (47)).  Null findings were reported in two 

Japanese studies investigating a cytochrome P450 (CYP17) polymorphism (48) and 

matrix metalloproteinase polymorphisms (49).  Overall, conclusions that may be inferred 

from these genetic susceptibility studies are limited due to their inconsistent findings, 
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small sample sizes, emphasis on statistically significant findings, examination of only 

clinically diagnosed or hysterectomy treated fibroids, and lack of representative controls 

(45-47).   

 

Insulin-like growth factor overview  

Insulin-like growth factors (IGFs), formerly known as somatomedins, are a family of 

molecules that include two IGFs (IGF-I and IGF-II), two IGF receptors (IGF-IR and IGF-

IIR), six IGF binding proteins (IGFBP-1 through IGFBP-6), and several IGFBP 

proteases.  IGF-I and IGF-II are polypeptides that are structurally similar to insulin, and 

have mitogenic properties.  IGF-I synthesis is regulated by growth hormone and occurs 

predominantly in the liver, but is also produced in other tissues.  In contrast, IGF-II 

production is not dependent on growth hormone.  IGF-I has historically been the focus of 

research because of its potential role in disease.  Specifically, IGF-I has been implicated 

in many biologic processes, including stimulation of cell cycle activities, differentiation, 

proliferation, hormone secretion, and inhibition of apoptosis.  IGF-II also has important 

roles in cell processes, especially in the context of fetal growth and bone development, 

but it has been less studied regarding its possible involvement in adult disease.  Binding 

to the IGF-IR, which has structural resemblance to the insulin receptor, often precedes 

IGF-I or IGF-II involvement in cellular processes.  IGF-IR has much stronger binding 

affinity to IGF-I than to IGF-II or insulin (50, 51).    

IGFBPs attach to free IGFs in circulation and have even greater binding affinities to 

IGFs than the IGF-IR.  Some IGFBPs reduce the level of IGFs available to act on cells, 

which suggests that they may inhibit IGF-mediated disease processes; however, IGFBP 
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binding also could prevent IGF natural degradation in the blood.  In addition, IGFBPs 

may have independent effects such as through interactions with cell surface molecules 

that may stimulate apoptosis of cancer cells (50, 51).  The function of IGFBPs and the 

preferential binding affinities for IGF-I or IGF-II vary for the six peptides.  IGFBP-3, the 

most studied of the IGFBPs, binds approximately 90% of circulating IGF-I (52).  

Possible independent effects of IGFBP-3 have included preventing cell growth and 

inducing apoptosis of breast cancer cells (53, 54) but these findings have not been 

confirmed.  

 

Insulin-like growth factor involvement with uterine fibroids 

Biologic evidence has accumulated in support of the role of IGFs, especially IGF-I, 

in fibroid development, including in vitro evidence of the promotion of fibroid cell 

growth by IGF-I (55) and increased expression of IGF-I mRNA or peptides (56-58) as 

well as elevated IGF-IR levels in fibroid tumor tissue as opposed to myometrium (57-60).  

Wolanska, et al. reported that the relative increase in IGF-I protein detected in fibroids 

versus normal myometrium was positively related to tumor size (56).  Van der Ven et al. 

reported that increased IGF-I peptide and IGF-IR mRNA levels in fibroids versus 

myometrium occurred in the absence of differences in IGF-I mRNA levels, which may 

indicate IGF-I was elevated due to increased binding by IGF-IR rather than increased 

production of IGF-I in tumor versus myometrial cells (58).   

Treatment of fibroids with gonadotropin-releasing hormone analogue, which 

substantially reduces estrogen and progesterone hormone levels, has been associated with 

reductions in tumor size and IGF-IR, but not changes in IGF-I protein levels (61).  One 
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study did not find IGF-I mRNA differences between fibroids and myometrium (62) but 

another reported a decrease in IGF-I mRNA and protein levels in both tissues after 

treatment with a gonadotropin-releasing hormone analogue (62).  Finally, another study 

detected no differences with IGF-I mRNA but reported increased IGFBP-3 mRNA in 

fibroids versus myometrium upon gonadotropin-releasing hormone analogue treatment; 

however, there was elevation of IGF-I mRNA measured in untreated fibroids that were 

undergoing the proliferative phase of the menstrual cycle (63).    

Two studies have supported the involvement of both IGF-I and IGF-II in fibroids 

(57, 64, 65) based on differential expression in tumors versus the myometrium.  

Specifically, Boehm, et al. reported elevation of both IGF-I and IGF-II mRNAs (65) in 

fibroids, and Vollenhoven et al. observed no difference in IGF-I mRNA but increased 

IGF-II mRNA and reduced IGFBP-3 mRNA in fibroids relative to myometrium (64).  

Gloudemans, et al. did not support IGF-I or IGF-II involvement with fibroid pathogenesis 

based on no IGF-I or IGF-II mRNA or protein differences for fibroids versus 

myometrium (66).   

We have hypothesized that inverse associations between IGFBP-3 and fibroids 

would support IGF-I versus IGF-II involvement in tumor development, especially if 

increased levels of free IGF-I promote tumor growth.  However, it is possible that 

positive associations between IGFBP-3 and fibroids would also support IGF-I 

involvement if IGFBP-3 binding to IGF-I increases IGF-I half-life by preserving it from 

destruction.  In addition, effects of IGFBP-3 that are independent of IGF-I binding could 

affect the estimated association between IGFBP-3 and fibroids.  
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A recent systematic review of microarray gene expression studies (67) emphasized 

IGF-II involvement with fibroids by noting that elevated IGF-II mRNA expression in 

fibroid tumor cells versus normal myometrium is one of the most consistent findings (67-

71) (72-74).  Microarray studies are a useful screening tool to identify genes that may be 

involved in fibroid pathogenesis, but results should be interpreted with caution prior to 

confirmation by other types of studies (75).  A recent microarray study reported elevated 

expression of IGF-I mRNA and protein, along with differences in two factors involved in 

IGF-I pathways (MAP kinase phosphatase-I and A-myb), in fibroids relative to 

myometrium after estrogen treatment (76).   

 IGF-I mRNA concentration is increased in fibroids during the follicular phase 

relative to the luteal phase of the menstrual cycle (63, 65), which is consistent with IGF-I 

regulation by estrogen rather than progesterone; however, menstrual cycle variation in 

IGF-I has not been detected in all studies (77).  Englund et al. found evidence of 

hormonal regulation of IGF-I in fibroids based on positive correlations between 

circulating estradiol levels and IGF-I expression in fibroid tumors compared with 

myometrium (77).  IGF-I may promote fibroid growth by elevating expression of 

proliferating cell nuclear antigen (PCNA) and may inhibit apoptosis by promoting Bcl-2 

expression in tumor cells (78).   

Previous studies have focused primarily on the role of estrogen in regulation of IGF-I 

in fibroid pathogenesis, but more recent studies have focused on the role of progesterone.  

Yamada et al. reported that treatment with progesterone but not estrogen was associated 

with reduced IGF-I mRNA expression in cultured fibroid cells, while neither hormone 

altered IGF-IR mRNA expression (79).  Treatment with a gonadotropin-releasing 
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hormone analogue resulted in decreased expression of progesterone receptor mRNA and 

protein and IGF-I mRNA as compared to untreated women in the proliferative phase, but 

progesterone receptor and IGF-I expression was similar in fibroid and myometrium tissue 

(62). 

In summary, evidence of higher IGF-I mRNA levels in fibroids versus myometrium, 

variation in the expression of IGF-I according to menstrual cycle phase, and in vitro 

stimulation of fibroid growth by IGF-I supports the role of IGF-I in fibroid development; 

however, IGF-II is also implicated because of consistent results from microarray studies.  

Studies with increased IGF-IR expression in fibroids relative to myometrium can support 

involvement of either IGF-I or IGF-II since both IGFs can bind with this receptor, 

although IGF-II has lower affinity than IGF-I.  In addition, the activity of both IGFs is 

influenced by IGFBPs, IGF-IR, hormonal regulation and other cellular factors that can 

affect fibroid associations.   

 

Circulating insulin-like growth factor levels 

Genetic factors regulating IGF serum levels have been estimated to account for 

nearly 40% to 50% of the interindividual variation in IGF-I (80, 81) and approximately 

60% of the variation in IGFBP-3 (80, 82).  In adults, age is the most consistently reported 

nongenetic factor associated with IGF-I blood levels (52, 83-92) and to a lesser extent 

with the IGF-I:IGFBP-3 ratio, (86, 87, 91, 92) with lower circulating IGF-I levels (52, 

83-92) and IGF-I:IGFBP-3 ratio (86, 87, 91, 92) associated with increasing age.  Women 

have lower circulating IGF-I (84, 87, 88, 90, 92, 93) but higher IGFBP-3 concentrations 

(84, 87, 88, 92, 93) than men.  In addition, post-menopausal women generally have lower 
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IGF-I levels than pre-menopausal women; however, distinguishing between age and 

hormonal influences on pre- and postmenopausal IGF-I levels is difficult.  Studies of 

racial differences in circulating IGF levels among women have been limited, but a few 

studies have suggested that African American women have greater circulating IGF-I 

concentrations than Caucasians (88, 94).  IGF-I levels among adolescent girls were 

increased in Caucasians relative to African Americans after adjustment for sexual 

development and body fat, but mean values were higher in African Americans prior to 

adjustment (95) .   

Blood measurements of IGF-I and IGFBP-3 have been inconsistently associated with 

BMI (85, 88, 92, 96-98), smoking (84, 85, 93), alcohol consumption (88, 90, 99-101), 

and physical activity (85-87, 92, 97).  Variations between studies may be at least partly 

due to analytic differences including adjustment for exogenous hormones and factors 

associated with endogenous hormone levels.  Holmes et al., from a cross-sectional 

analysis of a sample from the Nurses Health Study, found an inverse association between 

parity and plasma IGF-I levels (85).   

Oral contraceptive use was inversely associated with circulating IGF-I but positively 

related to IGFBP-3 levels in a cross-sectional study of premenopausal nulliparous women 

(94, 99).  The Jernstrom et al. analysis including only Caucasian women also reported 

that the estradiol dose within oral contraceptives was inversely associated with 

circulating IGF-I but not IGFBP-3 (99), and the Jernstrom et al. analysis of the entire 

study population found that inverse associations between IGF-I and oral contraceptives 

were present among Caucasians but not African Americans (94).  Two U.S. cross 

sectional studies from Holmes et al. and Chang et al. reported inverse relations between 
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hormone replacement therapy (HRT) and circulating IGF-I (85, 93). Holmes et al. 

measured the lowest levels of plasma IGF-I and IGFBP-3 among postmenopausal women 

taking estrogen only, followed by women taking estrogen plus progesterone hormone 

replacement therapy (HRT) (85).   

Jernstrom et al. reported a positive association between age at menarche and plasma 

IGF-I levels among oral contraceptive users only, but no association with plasma IGFBP-

3 levels (99).  Probst-Hensch et al., from a cross-sectional analysis of a sample from the 

Singapore Chinese Health Study, found that women who reported age at menarche age 

was less than 17 years had lower serum IGF-I than women who reported menarche 

occurred at 17 years or older (87).   However, an Italian cross-sectional study, with 

participants from a breast cancer chemoprevention trial (unaffected or early invasive 

breast cancer), reported that women with age at menarche below 13 years had higher 

circulating concentrations of both IGF-I and IGFBP-3 than women age 13 or older at 

menarche (91).  Although the plasma IGF-I:IGFBP-3 ratio increased as nonusers of oral 

contraceptives,  progressed from the follicular phase to the luteal phase until the start of 

menses in Jernstrom et al. (99), Helle et al. reported that plasma IGF-I levels were highest 

in the follicular phase of a Norwegian pilot sample (102), and Wang et al. reported no 

menstrual cycle variation of serum IGF-I and IGFBP-3 in a small sample of women from 

Taiwan (103).   

Dietary factors have also been investigated in relation to circulating IGF levels.  

Specifically, dietary and supplementary calcium was positively associated with IGF-I, 

IGFBP-3, and IGF-I:IGFBP-3 serum levels in Probst-Hensch et al. (87), and milk 

consumption was related to increased plasma IGF-I levels in Morimoto et al. (cross-
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sectional study of controls from The Seattle Colon Cancer Family Registry) and  Holmes 

et al. (92, 101).  Holmes et al. reported that plasma IGF-I was positively associated with 

dietary calcium and Vitamin D but not supplement sources of these nutrients (101).  

Saturated fat was inversely associated with plasma IGFBP-3 in three studies (87, 101, 

104), including Probst-Hensch et al, who also reported positive relations between IGFBP-

3 and dietary fiber and omega-3 polyunsaturated fat (87).  Circulating IGF-I was 

inversely associated with fish intake in a Hawaiian cross-sectional study (105) and with 

consumption of carbohydrates and bread in a small Greek cross-sectional study (104).  

Holmes et al. also reported that plasma IGF-I was associated with energy intake among 

women with normal BMI, protein intake due to dairy foods, and zinc intake regardless of 

the source (101).  Nutritional relations with IGFs were fairly inconsistent although an 

inverse association between saturated fat and IGFBB-3 was detected in three separate 

studies.   Overall conclusions from these nutritional studies with IGF circulating levels 

can be difficult because of correlations between nutritional factors and discrepancies in 

associations with food sources, dietary micronutrients, and supplement sources.   

 

Circulating insulin-like growth factor levels and cancer 

Several studies have focused on IGF-I, and to a lesser extent on IGFBP-3 in 

association with cancer, especially breast cancer.  A small U.S. case-control study 

reported that circulating IGF-I was associated with overall breast cancer risk (106) while 

two case-control studies nested within the Nurses’ Health Study cohort and a New York 

cohort found positive relations with IGF-I but not IGFBP-3 among premenopausal 

women only (107, 108).  A Chinese population-based case-control study reported 
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positive associations between breast cancer and both IGF-I and IGFBP-3 levels among 

women regardless of menopausal status (109), while small U.S. and Italian nested case-

control studies and a case-control study with breast cancer cases pooled from three 

cohorts (Italy, Sweden, U.S.) reported these positive associations among premenopausal 

women only (110-112).   Two case-control studies nested within Dutch and U.S. cohorts 

of postmenopausal women reported null findings for associations between breast cancer 

and circulating IGF-I or IGFBP-3 (113, 114).  A meta-analysis of 21 studies involving 

circulating IGFs in association with common cancers reported that elevated IGF-I 

(OR=1.65; 95% CI: 1.26, 2.08) and IGFBP-3 (OR=1.51; 95% CI: 1.01, 2.27) levels were 

associated with premenopausal breast cancer (115).    

A case-control study nested within the Northern Sweden Health and Disease Cohort 

reported positive associations between circulating both IGF-I and IGFBP-3 and colon 

cancer, but inverse associations with rectal cancer (116).  Increased IGF-I and reduced 

IGFBP-3 in circulation were associated with colorectal cancer among women (117) and 

among men (118) from two case-control studies nested within the Nurses’ Health Study 

and Physicians’ Health Study cohorts respectively.  However, a Chinese nested case-

control study found no relation between serum IGF-I and colorectal cancer in men but 

instead reported positive associations with circulating IGFBP-2 and IGFBP-3 levels 

(119).  Circulating IGF-I and IGFBP-3 were not related to endometrial cancer in a 

Swedish case-control study, although there was a suggestion of a positive association 

with IGFBP-1 among hormone replacement users (120).  A case-control study of ovarian 

cancer nested within three cohorts (Italy, Sweden, U.S.) reported a strong, but imprecise 

positive association with circulating IGF-I but not IGFBP-3 (121).    
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In conclusion, there has been some consistency across studies suggesting a positive 

relation (including postmenopausal breast cancer) between circulating IGF-I and 

premenopausal breast cancer, but studies of other cancers have conflicting results and are 

too few in number.  Evaluation of cancer study results for relations with IGFBP-3 are 

inconclusive.   

 

Insulin-like growth factor polymorphisms 

The IGF-I gene, which is approximately 84.6 kb, is located on chromosome 12q22-

q23.  It has multiple transcription variants, which explains why it has been reported to 

have between 4 to 5 exons (122, 123).  Based on mapping information from the Entrez 

Gene website sponsored by the National Center for Biotechnology Information (NCBI),  

the IGF-I gene is shown with four exons.  Several studies have focused on cancer 

development in association with IGF-I polymorphisms, while fewer studies have 

examined variation in the IGFBP-3 gene. 

The focus of epidemiologic studies within the IGF-I gene has been on the 

dinucleotide CA repeat polymorphism (position -969) located in the promoter 

approximately one kb upstream of the transcription site.  The number of IGF-I 

dinucleotide CA repeats within individuals has been reported to typically range from 15 

to maximum of 23, although as few as 11 repeats have been reported. Substantial racial 

variation exists in the frequency of the predominant 19-repeat allele, which is detected in 

60 to 70% of Caucasians (94, 124, 125, 126, 127) compared with approximately 40% or 

less of African Americans (94, 124, 126, 127).  Inconsistent relations between the CA 

repeat polymorphisms and circulating IGF-I levels have been reported.  Two studies 
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reported that having two copies of the 19 CA repeat allele versus other genotypes was 

inversely associated with plasma IGF-I levels (128), although one found this relation only 

among oral contraceptive users (94).  Two other studies also suggested a relative decrease 

in plasma IGF-I among oral contraceptive users with at least one 19 CA repeat allele 

compared with other genotypes (99, 129).  Specifically, Jernstrom et al. (94) reported that 

racial differences in the association between oral contraceptive use and plasma IGF-I 

were explained by the race-stratified distribution of the IGF-I  CA repeat polymorphism 

(19 repeat allele).  The Rotterdam Study reported that a decline in circulating IGF-I with 

advancing age was only measured for persons having two copies of the 19 CA repeat 

(130).  Lai et al. (131) measured slightly lower IGF-I levels in association with increasing 

number of 19 CA repeat alleles, but only among postmenopausal women.  In contrast, a 

nested case-control study within the Nurses’ Health Study cohort and a study of a 

population-based sample from the Rotterdam cohort reported a positive association 

between circulating IGF-I and the homozygous 19 CA repeat genotype compared with 

having no copies of this allele (132, 133), but three studies found no association between 

the 19 CA repeat allele and circulating IGF-I (127, 134, 135). 

A small case-control study (over 50% African American) reported a positive 

association (OR= 2.87; 95 percent CI: 1.16, 7.06) with breast cancer among women with 

at least one 19 CA repeat allele relative to women with no 19 CA repeat alleles.  In 

addition, they reported that plasma levels of IGF-I synergistically modified this 

association (136).  The Long Island Breast Cancer Study reported a positive association 

with breast cancer (OR=3.31; 95% CI: 1.47, 7.48) among premenopausal women 

carrying at least one allele with less than 19 CA repeats relative to women with at least 
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one 19 CA repeat allele.  There was no independent association with the 19 CA repeat 

allele, although there was suggested modification by hormonal contraceptives and 

postmenopausal BMI (125).  Various IGF-I repeat genotype classifications were 

evaluated in a nested case-control study within the Nurses’ Health Study cohort, but none 

were clearly associated with breast cancer although weak, nonsignificant effect estimates 

were reported for some genotypes (132).  The Multiethnic Cohort Study also did not 

provide strong support for involvement of the IGF-I 19 CA repeat with breast cancer, 

even though nonsignificant, positive associations were reported for Latin American and 

African American women (127).  In addition, they evaluated 29 tagging SNPs as well as 

35 other SNPs to capture IGF-I variation, but found no evidence for involvement with 

breast cancer (137). 

The IGF-I CA repeat polymorphism was not associated with colorectal adenomas 

(135) or colorectal cancer, except for a possible interaction with another insulin-related 

gene that increased cancer risk (138).  However, an inverse association with colorectal 

cancer was reported for two copies of the 19 CA repeat allele versus all other genotypes 

among persons who engaged in high vigorous activity (139).  A Chinese nested case 

control study that assessed the CA repeat polymorphism and an IGF-I SNP (-533 T/C) 

also located in the promoter, reported an inverse association between colorectal cancer 

among persons having two copies of the 21 CA repeat alleles versus other genotypes.  In 

addition, having at least one copy of the variant allele (C) at the -533 C/T SNP decreased 

the risk of colon cancer but not rectal cancer (140). 

IGFBP-3 is a highly conserved gene on chromosome 7p13-p12 with a length of 

approximately 9 kb and 5 exons.  The IGFBP-3 -202 A/C SNP (rs2854744) located 



  

 18

approximately 200 bp in front of the transcription site in the promoter has the most 

substantiated evidence for influence on circulating IGFBP-3.  Deal et al. (141) noted that 

the -202 A/C SNP was the most prevalent of the five IGFBP-3 SNPs examined in 

Physicians’ Health Study participants, and that it was strongly correlated with plasma 

IGFBP-3.  Six studies reported higher circulating IGFBP-3 among women with two 

copies of the A allele compared with women who had no A alleles and intermediate 

levels among -202 A/C heterozygotes (99, 131, 142-145).  Three studies found no 

association between the  -202 A/C SNP and colorectal cancer (138-140).  The 

Multiethnic Cohort Study examined the -202 A/C SNP and a nonsynonymous SNP 

(G2133C, rs2854746) in relation to circulating IGFBP-3 and found that only G2133C 

retained an association after accounting for both SNPs in the model; therefore, G2133C 

was evaluated with colorectal cancer using a dominant model in which having at least 

one variant allele resulted in increased (OR=1.32; 95% CI: 1.07, 1.62) colorectal cancer 

risk (145). 

The Nurses’ Health Study did not detect an association between the -202 A/C SNP 

and breast cancer despite reporting that -202 A/C influenced circulating IGFBP-3 (142), 

and a German case-control study also reported no association of the IGFBP-3 -336 A/C 

SNP with breast cancer (146).  A Chinese population-based case-control study (143) 

evaluated five IGFBP-3 SNPs including -202 A/C (variant allele = C among Chinese) 

and estimated haplotypes in relation to breast cancer, and they reported a positive 

association (OR=2.3; 95% CI:1.3, 3.9) with the haplotype including five variant alleles 

compared to the wildtype haplotype (143) among women under 45 years of age.  
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A case-control study nested within the European Prospective Investigation into 

Cancer and Nutrition measured five IGF-I SNPs and eight IGFBP-3 SNPs in relation to 

breast cancer (144).  The homozygous variant genotype (GG) of the IGF-I intron 1 

(rs2162679) SNP was inversely associated with breast cancer risk but was not associated 

with circulating IGF-I relative to women with the homozygous wildtype genotype.  For 

the IGFBP-3 SNPs, -202 A/C (rs2854744) and three other SNPs in the same haplotype 

block were associated with circulating IGFBP-3.  The -202 A/C homozygous genotype 

(AA) was associated with the highest IGFBP-3 levels; however, there was no consistent 

evidence for a relation between any of the IGFBP-3 SNPs and breast cancer (144).   

A recent British population-based case-control study of breast cancer analyzed nine 

IGF-I SNPs and four IGFBP-3 SNPs in association with circulating IGFs and breast 

cancer (147). Al-Zahrani et al. also based their conclusions regarding associations 

between IGF SNPs and their blood levels on the analysis of a middle-aged British cohort 

of men and women conducted immediately prior to the case-control study.  Five IGF-I 

SNPs were associated with circulating IGF-I, and four of these SNPs, along with another 

IGF-I SNP, were associated with breast cancer.  After simultaneously accounting for the 

effects of all of the IGF-I SNPs, there was only one SNP (rs1520220) associated with 

circulating IGF-I and with breast cancer (OR=1.41; 95% CI: 1.11, 1.79) when comparing 

the homozygous variant genotype (CC) to the homozygous wildtype genotype (GG).  

Specifically, the rs1520220 homozygous variant genotype (CC) was associated with the 

highest circulating IGF-I levels, followed by the heterozygous genotype (CG).  Three of 

the four IGFBP-3 SNPs evaluated were associated with circulating IGFBP-3, and two of 

these SNPs were associated with breast cancer.  The -202 A/C SNP had the highest minor 
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allele frequency (MAF) of the four SNPs and was positively associated with circulating 

IGFBP-3 levels such that levels among those with the homozygous variant genotype 

(AA) were 19% higher than mean IGFBP-3 levels among participants without a copy of 

the A allele (heterozygous genotype: 9% relative increase in IGFBP-3 levels).  Also, a 

weak protective association (OR=0.87; 95% CI: 0.77, 0.99) was estimated with breast 

cancer for the AA genotype relative to the homozygous wildtype genotype (CC) (147).  
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 CHAPTER II 

STATEMENT OF SPECIFIC AIMS 

 

Study questions 

The purpose of this dissertation is to examine whether variation in two genes, IGF-I 

and IGFBP-3, as studied by specific SNPs and estimated diplotypes (paired haplotypes) 

is associated with: 1) circulating IGF-I and IGFBP-3 levels and 2) prevalence of uterine 

leiomyomata (fibroids).  Because of biological interrelations between IGF-I and IGFBP-

3, variants in each gene (IGF-I and IGFBP-3) were evaluated in association with 

circulating levels of both proteins.  We hypothesized that IGF-I and IGFBP-3 variants 

would be associated with prevalence of fibroids based on evidence of IGF-I involvement 

with fibroid pathogenesis from gene expression studies.  Specifically, we conducted two 

separate analyses to evaluated relations with prevalence of fibroids defined by 1) any size 

and 2) at least 2 cm in diameter), which the latter may be more clinically relevant.  We 

hypothesized that IGF-I, which acts as a potent mitogen that is structurally similar to 

insulin, would promote fibroid growth rather than their incidence.  Therefore, IGF-I and 

IGFBP-3 variant associations would be stronger with prevalence of larger fibroids rather 

than with fibroids of any size.  Given that there are substantial allele frequency 

differences by race, analyses of IGF-I and IGFBP-3 variants will be performed separately 
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within African Americans and Caucasians.  The results of this study could help identify 

factors that contribute to the racial disparity in the prevalence and size of these 

hormonally-dependent benign tumors.   

 

Primary aims 

1) To describe the prevalence of SNPs and estimated diplotypes for IGF-I and IGFBP-3 

among African Americans and Caucasians.   

2) To estimate associations between IGF-I and IGFBP-3 gene variants (diplotypes and 

individual polymorphisms) and plasma IGF-I and IGFBP-3 levels among African 

Americans and Caucasian women. 

3) To estimate association in genetic polymorphisms and estimated diplotypes for IGF-I 

and IGFBP-3 in relation to the prevalence of uterine fibroids (any size and 2+ cm in 

diameter) among African American and Caucasian women.  



 

 

CHAPTER III 

METHODS 

 

Study population 

From 1996 to 1999, a random sample of 2,384 George Washington University health 

plan members who were 35 to 49 years of age was contacted for potential enrollment into 

the NIEHS Uterine Fibroid Study (1-3).  The study was approved by Institutional Review 

Boards at NIEHS and George Washington University.  Approximately 50% of the health 

plan population was thought to be African American.  Of the approximately 30,000 

health plan members, most were enrolled through their employers, except for about 1,000 

Medicaid patients.   The parent Uterine Fibroid Study was conducted to ascertain the 

prevalence of uterine fibroids within premenopausal women and to estimate the age-

specific incidence.  A second aim was to investigate the etiologic factors for fibroids, 

including genetic variants that could increase the likelihood of their development.  

Because these benign tumors can develop and continue to grow until menopause, the 

parent study population was restricted to a narrow age range including the late 

premenopausal years, in order to approximate the lifetime risk of developing uterine 

fibroids (1).   

Almost 90% of the random sample (2,102 women) was contacted by telephone and 

consented to eligibility screening for the parent study.  The study criteria were satisfied 

by 1,786 women.  Approximately 70% of excluded women were ineligible because they 
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no longer attended the Washington DC clinic where fibroid screening would be 

performed.  Others were deemed ineligible because they were misidentified as female, 

had no further access to a telephone, were not within the required age range, or did not 

speak English.  Approximately 20% of eligible women refused participation in the study, 

resulting in 1,430 participants (2).   

The prevalence of uterine fibroids and the distribution of IGF gene variants differ 

between racial groups; therefore, to facilitate race-specific analyses, we restricted the 

current study population to African American and Caucasian women.  We also excluded 

postmenopausal women from the current investigation because they did not have the 

clinic visit to draw blood and screen for fibroids since these tumors can regress following 

menopause.  Race and menopausal status criteria were met by 1,146 women from the 

parent study.  Based on availability of DNA samples for genotyping, we further limited 

the study population to 984 women (582 African Americans and 402 Caucasians).  The 

study consent form specified use of specimens for genetic polymorphism analyses. 

 

Preliminary data 

The distribution of study characteristics stratified by race is displayed in Table 3.1.  

The prevalence of fibroids was 72% among African Americans and 50% among 

Caucasians.  A greater proportion of African Americans (24%) had large fibroids (≥4 cm) 

in comparison to Caucasians (11%).  African Americans (11%) were more likely than 

Caucasians (4%) to experience menarche at less than 11 years of age.  The majority of 

women did not have births after 24 years of age (51% of African Americans, 63% of 

Caucasians).  African Americans (60%) reported a greater use of oral contraceptives 
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during teenage years than Caucasians (33%), but few women in either group were taking 

oral contraceptives when they entered the parent study.  There were more African 

Americans classified as overweight or obese than Caucasians, and there were fewer 

African Americans with high levels of physical activity than Caucasians.  In addition, a 

greater proportion of African Americans (30%) reported current smoking than 

Caucasians (8%).  However, fewer African Americans (42%) consumed alcohol on a 

regular basis (at least 0.5 drinks per week in the past year) compared to Caucasians 

(78%).  

 

Data collection 

Uterine fibroids 

Since women can have asymptomatic fibroids, a primary goal of the NIEHS Uterine 

Fibroid Study was to provide a better estimate of fibroid prevalence among 

premenopausal women than previous studies based on clinical diagnosis or treatment by 

hysterectomy alone.  Therefore, transabdominal and transvaginal ultrasound 

examinations were performed to screen for fibroids.  Ultrasound examinations were 

considered the gold standard for measurement of uterine fibroids (4) since very high 

sensitivity (0.99) and specificity (0.91) have been reported in comparison to pathologic 

verification in hysterectomy specimens (5).  Criteria used for ultrasound identification of 

fibroids in this study were based on Muram, et al. (6) with modifications to reflect 

technological changes that have decreased the limits of detection (7), so that tumors of 

0.5 cm diameter can be detected.  
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Both transabdominal and transvaginal ultrasounds were performed at a clinic visit 

that occurred within three months of study entry.  Trained sonographers endorsed by the 

American Registry of Diagnostic Medical Sonographers performed these examinations 

under the supervision of a radiologist who verified their assessments (1).  

Transabdominal ultrasounds for evaluating the superior portion of the uterus were 

performed using 3.5 to 5.0 MHz probes, and transvaginal examinations were conducted 

using 5.0 to 7.0 MHz probes (1) with ATL HDI 9 (ATL, Bothell, WA), Acuson 128 XP 

(Siemens, Issaquah, WA), or Diasonics DRF 400 (GE, Milwaukee, WI) ultrasound 

systems.  Information collected by sonographers included the size and location of the two 

largest fibroids and the number of tumors within the uterus (1).   

Study sonograms were not performed for women who had a recent ultrasound at the 

clinic that conducted study sonograms.  Instead, medical records were abstracted to 

obtain fibroid information for these women, which represent approximately 20% (N = 

204) of the current study sample (African American and Caucasian premenopausal 

women with extracted DNA from blood samples).  In addition, 19 women in our study 

sample were classified with regard to the size and presence of fibroids based on self-

report of previous diagnoses only.  Fibroid status was not assessed in seven African 

Americans and eight Caucasians in our study sample; however, these women were 

genotyped and included in current study for analyses with circulating IGF-I and IGFBP-3 

levels. 

Sample collection and assays 

Approximately 50 cc of blood were obtained from the premenopausal women in the 

parent study who attended the clinic visit.  Blood samples were collected through 



  

 40

venipuncture after an 8-hour fast and processed for plasma.  Plasma aliquots were stored 

at -80°C until analysis. 

Plasma was analyzed for IGF-I and IGFBP-3 as nanograms per milliliter (ng/mL) at 

NIEHS.  Quality control for both IGF-I and IGFBP-3 measurements was performed by 

verifying that standard curve parameters and controls were reproduced for each assay.   

IGF-I was measured by radioimmunoassay using a kit with instructions from Nichols 

Institute Diagnostics (San Juan Capistrano, CA).  The first step involves extraction of 

IGF-I from binding proteins through octadecasilyl-silica cartridges (C18 Sep-Pak, Waters 

& Associates, Milford, MA).  Prior to extraction, approximately 200 µL of EDTA plasma 

is divided into 4 tubes of 50 µL of EDTA plasma, and then each tube is acidified with 

950 µL of 0.5 N HCL.  The C18 Sep-Pak column is pretreated with 5 mL isopropyl 

alcohol followed by 5 mL methanol and 10 mL 4% glacial acetic acid/HPLC H20.  The 

acidified EDTA plasma is then loaded onto the prewashed column, and it is sequentially 

washed with 10 mL 4% glacial acetic acid/HPLC H20 and 2 mL methanol to extract IGF-

I.  The extracted IGF-I samples are dried in nitrogen gas within a 37°C H20 bath, and the 

radioimmunoassay is then performed.  This extraction technique is very reproducible and 

is rapidly completed.   

For the radioimmunoassay, standards for IGF-I range from 0.3 to 4.8 ng/mL, and two 

human EDTA plasma controls with specified IGF-I concentrations were provided by the 

manufacturer for validation.  IGF-I labeled with 
125

I and antiserum for IGF-I from rabbits 

were used for detection in the assays.  Cross-reactivity of antiserum to IGF-I with IGF-II 

has been reported to be <0.5%.  Intra-assay and inter-assay variances for this procedure 
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are 2.3% and 11.4% respectively using samples averaging approximately 1 ng/mL of 

IGF-I.  The reported detection limit of this technique is 0.06 ng/mL.    

 IGFBP-3 was measured by immunoradiometric assay using a kit with instructions 

from Diagnostic Systems Laboratories, Inc. (Webster, TX).  Prior to the assay, a 1:100 

dilution of 10 µL EDTA plasma with a 1 mL 0 ng/mL IGFBP-3 standard consisting of 

bovine serum albumin (BSA) buffer with sodium azide is performed.  IGFBP-3 standards 

ranging from 2.0 to 100.0 ng/mL (in BSA buffer) and controls consisting of 

manufacturer-specified IGFBP-3 concentrations (in BSA buffer preserved with sodium 

azide) were used for validation of the immunoradiometric assay.  The kit contains tubes 

with immobilized antiserum for IGFBP-3 polyclonal immunoglobulin from goats to bind 

IGFBP-3.  Goat antiserum to IGFBP-3 polyclonal immunoglobulin in BSA buffer with 

sodium azide labeled with 
125

I was used to detect IGFBP-3 on the inside walls of the 

tubes.  The IGFBP-3 intra-assay and inter-assay variances ranged from 1.8 to 3.9% and 

0.6 to 1.9% respectively, with a reported detection limit of 0.05 ng/mL.  Less than 3 

ng/mL of IGFBP-3 was reported using other IGF binding proteins as standards.   

Whole blood samples were sent to BioServe Biotechnologies (Laurel, MD) for 

extraction of genomic DNA.  Initially, a phenol:chloroform procedure was utilized for 

DNA extraction.  However, a more efficient and safe modified salt precipitation kit 

(GenQuik Protocol) was adopted when it became available, and was used for the majority 

of samples.   

Genetic polymorphisms 

 

We selected single nucleotide polymorphisms (SNPs) in IGF-I and IGFBP-3 for 

evaluation based on previous research, functional significance, or haplotype-tagging 
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properties (Tables 3.2-3.3; Figures 3.1-3.2).  Because there are substantial differences in 

allele frequencies and in the pattern of linkage disequilibrium among populations, 

haplotype-tagging SNPs were selected separately for African Americans and Caucasians 

according to Genome Variation Server (GVS) software sponsored by the Seattle SNPs 

Program for Genomic Applications (PGA) (8).   We selected the Seattle SNPs database, 

which sequences genes to search for SNPs, as the reference population for IGF-I; 

however, we used the HapMap population for IGFBP-3 because it has not been evaluated 

by Seattle SNPs (8). We expanded coverage for selection of haplotype-tagging SNPs to 

include those within 5 kilobases (kb) of the 5’ and 3’ ends of each gene, and we used a 

value of 0.8 for the pairwise correlation coefficient (r
2
) for identifying haplotype-tagging 

SNPs.  Only haplotype-tagging SNPs with greater than 5% minor allele frequency (MAF) 

among African American or Caucasian reference populations were chosen for 

genotyping.  According to the GVS software, there were 29 haplotype-tagging SNPs for 

IGF-I and 12 haplotype-tagging SNPs for IGFBP-3.  In addition, we selected four SNPs 

a priori based on functional significance, including one nonsynonymous IGF-I SNP 

(rs17884626), one synonymous IGF-I SNP (rs3729846), and two nonsynonymous 

IGFBP-3 SNPs (rs2854746, rs9282734) and an IGFBP-3 promoter SNP (-202 A/C, 

rs2854744) a priori based on previous studies of associations with circulating IGF-I and 

IGFBP-3 levels and health outcomes (9-16). 

Genotyping of SNPs was performed using the TaqMan genotyping approach under 

the supervision of Dr. Jason Luo, Director of the Mammalian Genotyping Core at the 

Lineberger Comprehensive Cancer Center (Chapel Hill, NC).  The TaqMan genotyping 

procedure is advantageous because it is highly accurate, rapid and reliable, and utilizes 
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only small amounts of DNA (17-19).  This method can only measure one SNP at a time 

and may not be as cost-effective as high-throughput methods when genotyping large 

numbers of SNPs (19, 20); however, the number of selected SNPs in our study is small 

enough to make TaqMan genotyping a cost-efficient method.  Specifically, the TaqMan 

procedure utilizes two allele-specific olignonucleotide probes that match the two possible 

alleles of a SNP. Each probe includes a distinct fluorescent reporter dye on its 5’ end and 

a nonfluorescent quencher on its 3’ end that suppresses the reporter dye signal in the 

absence of amplification.  During the polymerase chain reaction (PCR), the allele-

specific probe that corresponds to the target sequence will be disintegrated by Taq DNA 

polymerase, and the fluorescent signal from the reporter dye will strengthen with each 

cycle of DNA amplification due to the absence of the quencher.  In contrast, the 

mismatched allele-specific probe will be dislodged by DNA polymerase without being 

cleaved so that its fluorescent signal remains suppressed by the quencher (18, 19).  

Allele-specific oligonucleotide probes for 39 selected SNPs were purchased from 

Applied Biosystems (ABI; Foster City, CA) “TaqMan® Validated and Coding SNP or 

Pre-Designed SNP Genotyping Assays” (previously known as Assays-On Demand, 

AOD), and ABI attempted to develop custom assays for the 6 remaining SNPs through 

their “Custom TaqMan® SNP Genotyping Assays” service (previously known as Assays-

By-Design, ABD).  Two IGF-I haplotype tagging SNPs were excluded from analyses, 

including one for which a custom assay could not be developed, and one with a pre-

designed assay that did not meet ABI technical specifications.   

We evaluated whether the race-specific distributions of SNP genotypes in our study 

population were consistent with Hardy-Weinberg equilibrium (HWE) based on the exact 
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test statistic with one degree of freedom (21) estimated in Haploview software (22).  We 

genotyped an alternate IGF-I haplotype-tagging SNP (rs9308315) to substitute for a SNP 

(rs4764883), that seemed inconsistent with HWE among African Americans in our study 

population.  Therefore, we genotyped 30 IGF-I and 15 IGFBP-3 SNPs in total, including 

40 haplotype-tagging SNPs and 5 SNPs selected a priori.  Tables 3.4 and 3.5 list the p 

values from exact tests evaluating HWE and the observed genotype frequencies for IGF-I 

and IGFBP-3 SNPs respectively.      

PCR amplification was performed on an ABI GeneAmp® PCR System 9700 thermal 

cycler with dual 384-well-blocks, and then endpoint plates were read using the ABI 

7900HT system.  VIC and 6-FAM reporter dyes were used as the fluorescent signals to 

distinguish wild type and variant alleles.  Alleles were called automatically through 

Sequence Detection System (SDS) 2.3 software, and output was reviewed by experienced 

operators.  DNA concentration of samples from 984 women was validated using a 

NanoDrop® ND-1000 Spectrophotometer prior to diluting them to a concentration of 5 

ng/ul (using DNA grade sterile water).  All of the samples were placed in eleven 96-well 

microtiter plates and then were aliquoted into three 384-well PCR plates for analysis.  

Each of the 11 microtiter plates contained four randomly assigned controls represented by 

two blank samples and two samples consisting of a known DNA standard (Control DNA 

CEPH Individual 1347-02, ABI).  Quality control measures also included blinded 

genotyping of 28 duplicate samples representing 22 women, which produced concordant 

results for all samples.  The overall call rate was 98.8%, and only 5 women had less than 

50% of complete allele calls for the 45 SNPs assayed. 
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Covariates 

Data on potential covariates were obtained through telephone interview, self-

administered mail questionnaires, or the initial clinic visit.  Age was calculated according 

to date of study entry using birth date information provided at telephone interview.  The 

following age categories were created for analyses: 35 to 39, 40 to 44, and ≥45 years.  

Highest level of education was assessed from categorized responses in self-administered 

mail questionnaires.  

Complete reproductive history including detailed information related to pregnancies, 

menstrual cycles, and contraceptive use was provided at telephone interview.   Previous 

research from the parent study identified an inverse association between number of births 

and prevalence of fibroids, specifically for births occurring after age 24.  The 

hypothesized mechanism was apoptosis of early lesions during postpartum remodeling of 

the uterus (23).    The number of births after age 24 was classified into the following 

categories: 0, 1, 2, and ≥3 births.  Oral contraceptive use was assessed at study entry and 

during teenage years based on two studies that found positive associations between early 

initiation of oral contraceptive use and fibroids (24, 25). 

Current body mass index (BMI) in kg/m
2
 was calculated from self-reported height at 

telephone interview and weight at clinic visit.  BMI was categorized as normal (<25), 

overweight (25 to <30), and obese (≥30).   

Information on current physical activity was obtained at the telephone interview 

through separate questions on the duration of vigorous and moderate recreational 

activities.  In addition, women reported the time spent walking and performing household 

chores.  Responses to all of these questions were used to classify overall physical activity 
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into an index calculated at equivalent to hours of vigorous physical activity.  Current 

physical activity index was categorized according to its overall distribution. 

Smoking status was categorized as nonsmoker, former smoker, and current smoker 

based on information given in the telephone interview.  Women were considered 

nonsmokers if they responded “no” when asked if they ever smoked an average of at least 

one cigarette a day for six months or more.  The remaining women were classified as 

either former smokers, if they did not currently smoke at least one cigarette per day, or as 

current smokers. 

Racial classification was based on self-report from mail questionnaires having the 

following categories: White, not Hispanic; White, Hispanic; Black, not Hispanic; Black, 

Hispanic; Asian/Pacific Islander; American Indian/Eskimo/Aleut; and Other.  Women 

who reported “Other” were given the option of describing their race-ethnicity.  Because 

race represents an important variable in all potential analyses of factors related to 

fibroids, additional efforts were made to obtain racial information from women who did 

not return mail questionnaires (N=65, 6.6% of the study sample for the current 

investigation), including follow-up telephone calls and medical records abstraction (only 

if calls could not be completed).  Women were categorized as African American if they 

indicated their race as “black” regardless of whether they also reported other race-

ethnicity groups.  They were considered Caucasian if they specified their race as “white” 

and did not also record their race as “black”.  Women who were not classified as either 

African American or Caucasian will be excluded from the present investigation. 

Alcohol intake was estimated from two self-administered questionnaires.  The first 

questionnaire inquired about usual intake within the past 12 months and at 30 years of 
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age, without regard to the type of alcohol consumed.  Specifically, women selected the 

most appropriate categories for how often and how many alcohol drinks they typically 

consumed.  The second source of data was from a modified Block food frequency 

questionnaire (FFQ) (26, 27) that assessed alcohol intake during the past 12 months.  

Women chose their usual serving size and the collective category reflecting the typical 

number of drinks and frequency for beer, wine, and liquor separately.  We computed the 

drinks per week from each questionnaire by multiplying the midpoints of the frequency 

and amount categories for the two time points (current and 30 years of age) from the first 

questionnaire and the serving size and combined frequency and amount category from the 

FFQ.  There was a strong correlation (Spearman rank correlation coefficient = 0.90) 

between the two reporting sources for estimated drinks per week within the past year. 

Because of concerns with underreporting of alcohol intake (28), we used the maximum 

value of self-reported drinks per week within the past twelve months to reflect current 

intake.  Women were classified as current drinkers (≥0.5 drinks per week) or nondrinkers 

(<0.5 drinks per week) based on previous analyses of parent study data that supported a 

threshold effect of alcohol intake in which even low levels of consumption are associated 

with an increased prevalence of fibroids (29). 

 

Analytical Approach 

Diplotype estimation 

We estimated race-specific diplotypes for groups of related SNPs within each gene, 

as described below.  We excluded one SNP (rs4764883), which appeared inconsistent 

with HWE among African Americans, from African American diplotype analyses since 
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including SNPs with a deviation from HWE can reduce reliability of diplotype 

estimation.  In addition, SNPs were excluded from race-specific diplotype analyses if 

their MAF in our study population was below 5% for haplotype-tagging SNPs or below 

3% for a priori SNPs within the racial group being evaluated.  Women missing genotype 

data for more than 50% of the SNPs included in diplotype analyses within a gene were 

excluded from diplotype estimation for that gene (1 Caucasian and 3 African Americans 

for IGFBP-3 analyses, 3 Caucasians and 2 African Americans for IGF-I analyses).  To 

determine which SNPs in each gene could be combined for diplotype estimation, we 

examined race-specific linkage disequilibrium (LD) patterns using Haploview software 

(22).  We identified LD blocks consisting of individual SNPs (with MAF at least 5%) in 

strong LD based on the Gabriel, et al. definition (95% of pairwise SNP comparisons with 

one-sided 95% confidence intervals for the D prime statistic within 0.7 to 0.98) (30).  We 

also used the Tagger approach (31) in Haploview to identify pairs of redundant SNPs in 

strong LD (pairwise r
2
 values of at least 0.8), and excluded one member of each 

redundant pair from diplotype estimation unless both SNPs were selected a priori.  Race-

specific pairwise r
2
 values are available for IGFBP-3 and IGF-I SNPs in Tables A.1-A.4. 

Race-specific diplotypes representing defined groups of SNPs within each gene were 

estimated using PHASE version 2.1, a software program that employs a Bayesian method 

to determine the phase of ambiguous haplotypes (32, 33).  Specifically, this approach 

involves a Markov chain-Monte Carlo (MCMC) algorithm to allocate the most likely 

diplotype for each person, with the prior assumption that frequently observed haplotypes 

with less ambiguity due to homozygotes are more probable for assignment.  This 
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software program also provides an estimate of the posterior probability, which expresses 

the uncertainty associated with each diplotype assignment.   

Analytic methods to account for diplotype uncertainty in models of gene-disease 

associations have been debated in the literature, but they have focused primarily on case-

control studies (34, 35).  One of these methods assigns individuals to their most probable 

diplotype while eliminating persons with posterior probabilities under a pre-specified 

value.  However, this approach can bias effect estimates towards the null if the criterion 

is set too low (i.e. posterior probability of 70%) or inflate variance estimates when the 

criterion is set too high (i.e. posterior probability of 90%) due to the increased number of 

excluded observations (34).  Excluding persons with posterior probabilities less than 90% 

also may bias estimates due to the systematic removal of observations with a sizeable 

number of heterozygous genotypes (34).  We considered more complex methods to 

account for diplotype uncertainty in our study, but there were still potential issues with 

bias and estimating appropriate variances.  In addition, more complex methods often 

imposed analysis restrictions such as types of estimates for evaluating diplotype 

associations with outcomes.   

We chose to assign the women in our study population to their most probable 

diplotype since this method offered the most flexibility with our analyses.  We eliminated 

women with uncertain diplotypes using a high criterion for the posterior probability 

(90%) to lessen misclassification bias with assigned diplotypes.  To reduce the number of 

women excluded from diplotype analyses, we examined LD patterns as previously 

described using Haploview software (22) to determine which combinations of SNPs 

would estimate diplotypes with a high degree of certainty (posterior probability ≥ 90%) 
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for the greatest proportion of our study population.  Specifically, we created race-specific 

diplotype groups by combining individual SNPs that were not included in a block with an 

adjacent block, and combining adjacent blocks with each other, when doing so resulted in 

estimated diplotypes with at least 90% certainty (posterior probability) for at least 90% of 

observations.  Otherwise, diplotype groups represented individual SNPs not included in a 

block, or SNPs within a single block only.  We assigned women to their most probable 

diplotype for each group, or we classified them as missing for the diplotype group if their 

most probable diplotype had a posterior probability below 90%.   

Overview of analyses and confounding 

All statistical analyses were stratified by race and conducted using SAS V9.1 (SAS 

Institute Inc., Cary, NC).  We evaluated IGF-I and IGFBP-3 variants (individual SNPs 

and estimated diplotypes) as the exposures of interest in association with: 1) circulating 

IGF-I and IGFBP levels and 2) prevalence of fibroids (any size and at least 2 cm in 

diameter). 

A priori investigation of potential confounders using a directed acyclic graph (DAG) 

found that race was the only confounder for the association between IGF-I and IGFBP-3 

variants and their circulating protein levels and for the association between IGF-I and 

IGFBP-3 variants and fibroids (Figure 3.3).  Rather than adjusting for race, we stratified 

all analyses by race (African American or Caucasian) and reported race-specific 

estimates.  Population stratification could still bias our race-specific estimates if outcome 

distribution (plasma levels or fibroid prevalences) and genotype frequencies differ among 

ethnic subgroups within the African American or Caucasian populations in our study.  

There is stronger potential for admixture within African Americans based on their 



  

 51

extensive genetic heterogeneity compared to Caucasians and findings from the literature 

(36-38).  However, a breast cancer study applied the approach provided by the 

Wacholder, et al. evaluation of Caucasians (38) and found that ignoring race in analyses 

did not bias results in a population well represented by both African Americans and 

Caucasians (39).  The findings of two recent simulation studies, including one that used 

African American data, suggest that population stratification results in negligible bias 

when there is substantial ethnic heterogeneity within racial groups, but that bias could 

increase when the number of ethnic subpopulations is small (36, 40).  Although we do 

not have additional information on the ethnic background of Caucasians and African 

Americans in our study population, we expect that conducting separate analyses by race 

may be sufficient to limit bias from population stratification in our study. 

Paper 1 analyses 

We evaluated whether IGF-I and IGFBP-3 variants were associated with IGF-I and 

IGFBP-3 plasma levels using the race-specific ordinary linear regression models for gene 

variants.  Because of biological interrelations between IGF-I and IGFBP-3 plasma, 

variants in each gene were analyzed for associations with circulating levels of both 

proteins.   

For the analysis of individual SNPs, we first considered a codominant (general) 

model of inheritance in which heterozygous and homozygous variant genotypes were 

separately evaluated relative to the wildtype genotype.  Codominant models make the 

fewest assumptions with regard to the inheritance pattern but were not feasible for less 

common variants.  Therefore, when there were 10 or fewer women with the homozygous 

variant genotype, we assumed a dominant model that compared a single index category, 



  

 52

including homozygous variant and heterozygous genotypes, to the homozygous wildtype 

genotype.  We compared race-specific associations with IGF-I or IGFBP-3 levels for 

individual SNPs with similar models of inheritance for both racial groups.  Specifically, 

we combined data from both racial groups and estimated racial differences in mean 

plasma levels (i.e., differences of mean differences) associated with variant vs. referent 

genotypes.  We fit linear regression models that included multiplicative gene by race 

interaction terms along with separate parameters for race and genotypes.  When there 

were differences by race in homozygous wildtype (referent) genotypes for SNPs, we used 

the referent genotype for Caucasians in regression models including both racial groups.   

To estimate diplotype associations with IGF-I or IGFBP-3 plasma levels, we used 

separate race-specific models for each diplotype group, with the most frequent diplotype 

as the reference category.  Imprecision and bias (away from the null) with regression 

estimates were especially problematic for associations with diplotypes based on few 

observations.  We did not estimate associations with individual rare diplotypes (assigned 

to 5 or fewer women), but instead combined them into one “rare diplotype” category for 

each group.  However, due to the heterogeneity of the “rare diplotype” category, we were 

not able to interpret associations with this category.  Despite the creation of “rare 

diplotype” categories, some of the diplotype groups had multiple diplotype categories 

that were not considered rare but were based on small numbers of observations.   

  We used a shrinkage (empirical-Bayes) method of information-weighted averaging 

(41) to improve the validity and precision of diplotype regression estimates.  Specifically, 

we assumed a prior mean of 0, since we did not have prior information to group 

diplotypes according to the anticipated direction or strength of potential associations with 
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plasma levels, and specified a prior variance corresponding to +/- one standard deviation  

(2*standard deviation /3.92)
2
 of the mean plasma level of IGF-I (prior variances: African 

Americans, 1,419; Caucasians, 901) and IGFBP-3 (prior variances: African Americans, 

186,819; Caucasians, 174,161) in the study population.  We applied the shrinkage 

estimator for each diplotype and reported posterior medians (50
th

 percentile of the 

posterior probability distribution) and 95% posterior limits (2.5
th

 and 97.5
th

 percentiles of 

the posterior probability distribution).  With this method, imprecise regression estimates 

based on fewer observations were shifted further toward the prior mean than more precise 

regression estimates.  Despite the increase in bias (toward the prior mean) with posterior 

medians, the reduction in the overall mean square error based on a greater reduction in 

variance of estimates is an advantage with this approach (42).   

Paper 2 analyses 

We estimated race-specific prevalence differences (PDs) to evaluate associations 

between IGF-I and IGFBP-3 gene variants and prevalent fibroids.  We performed two 

separate analyses to 1) estimate associations with gene variants and prevalence of any 

uterine fibroids versus no uterine fibroids, and 2) estimate associations with prevalence of 

fibroids at least 2 cm in diameter versus a combined category including no fibroids and 

fibroids < 2cm.  We used the latter analysis, which excludes women with smaller tumors 

from the fibroid definition, to explore the hypothesis that IGF-I stimulates fibroid growth 

rather than incidence.  We estimated 95% confidence intervals for crude prevalence 

differences (PD) using SAS V9.1, which calculates standard errors from the square root 

of the sum of the fibroid prevalence variances based on formula for independent 

proportions.   
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For the analysis of individual SNPs, we first considered a codominant (general) 

model of inheritance in which heterozygous and homozygous variant genotypes were 

separately evaluated relative to the homozygous wildtype genotype.  However, 

codominant models were feasible only for common variants.  Therefore, for less common 

variants, we used a dominant model in which homozygous variant and heterozygous 

genotypes were combined and compared to those with the homozygous wildtype 

genotype.  When there were 5 or fewer women in a racial group with heterozygous and 

homozygous variant genotypes combined, we did not estimate associations with 

individual SNPs since validity of estimates would be questionable. 

We estimated associations between IGF-I or IGFBP-3 diplotypes and fibroids using 

separate race-specific models for each diplotype group, with the most common diplotype 

as the reference category.  Due to convergence issues with binomial regression models, 

we used Poisson regression with the robust variance option in PROC GENMOD to 

estimate prevalence differences with 95% confidence intervals (43).  Diplotypes assigned 

to 5 or fewer women were combined into a “rare diplotype” category; however, because 

of the heterogeneity of diplotypes within these categories, their estimated associations 

with fibroids could not be interpreted.   

Imprecision and bias (away from the null) were a limitation for interpreting 

estimated associations with diplotypes based on smaller numbers of observations.  

Therefore, we used a shrinkage (empirical-Bayes) method of information-weighted 

averaging (41) to improve the validity and precision of regression estimates.  We 

assumed a prior mean of 0 since we did not have information to group diplotypes 

according to the direction or strength of their potential associations with fibroids.  We 
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specified a prior variance ((0.5/3.92)
2
 ≈ 0.016), which assumed with 95% probability that 

regression estimates would vary within a range of ± 0.25.  For each diplotype, we applied 

the shrinkage estimator and reported posterior medians (50
th

 percentile of the posterior 

probability distribution) and 95% posterior limits (2.5
th

 and 97.5
th

 percentiles of the 

posterior probability distribution).  Imprecise estimates based on few observations were 

shrunk further toward the prior mean than more precise regression estimates.   

Power calculations 

Table 3.6 depicts statistical power to estimate a range of statistically significant 

prevalence differences (α = .05) for dichotomous genotypes (SNPs) based on values 

generated by the PS program (44).  In this scenario, the genotype frequency reflects 

heterozygous and homozygous variant genotypes grouped together in order to maximize 

power.  Estimated values for baseline fibroid prevalence (any size) in calculations were 

based on known values in the study population of 73% and 51% among African 

Americans and Caucasians, respectively.   

  For heterozygous and homozygous variant genotypes with frequencies of at least 

20%, estimated power is over 80% for prevalence differences as low as 0.15 for African 

Americans and 0.20 for Caucasians.  There will be limited power to estimate weaker 

associations (i.e. PD of 0.10 or less) or fibroid relations with rare gene variants.  Power 

estimates were not calculated for diplotype analyses using information-weighted 

averaging (41), but this approach may enhance statistical power over conventional 

regression methods.   
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Table 3.1. Characteristics of premenopausal women with available DNA by race 

from NIEHS Uterine Fibroid Study  
 

Characteristic 
African American (N=582) 

N (%) 

Caucasian (N=402) 

N (%) 

Age (years)   

35-39 219 (37.63) 137 (34.08) 

40-44 205 (35.22) 135 (33.58) 

45+ 158 (27.15) 130 (32.34) 

Education   

High school 121 (20.8)* 12 (3.0) 

Some postsecondary 265 (45.5) 33 (8.2) 

College degree 123 (21.1) 133 (33.1) 

Graduate degree 68 (11.7) 217 (54.0) 

Missing 5 (0.9) 7 (1.7) 

Age at menarche (years)   

<11   65 (11.17) 16 (3.98) 

11 94 (16.15) 62 (15.42) 

12 159 (27.32) 111 (27.61) 

13 138 (23.71) 132 (32.84) 

14 55 (9.45) 44 (10.95) 

>14 68 (11.68) 35 (8.7) 

Missing 3 (0.52) 2 (0.5) 

Oral contraceptive use  

 

  

Current† 28 (4.8) 37 (9.2) 

Teenage years 350 (60.1) 131 (32.6) 

Births (25+ years of age)   

0 295 (50.69) 255 (63.4) 

1 181 (31.10) 57 (14.2) 

2 85 (14.60) 80 (19.9) 

3+ 21 (3.61) 10 (2.5) 

Body mass index    

Under- normal weight (<25) 147 (25.26) 236 (58.7) 

Overweight (25-<30) 178 (30.58) 95 (23.6) 

Obese (30+) 257 (44.16) 71 (17.7) 

Physical activity (index)‡   

0 to <2 223 (38.3) 114 (28.4) 

2 to 4 163 (28.0) 127 (31.6) 

>4 to <6 96 (16.5) 74 (18.4) 

6+ 97 (16.7) 86 (21.4) 

Missing 3 (0.5) 1 (0.25) 

Smoking status   

Current smoker 172 (29.6) 31 (7.7) 

Former smoker 133 (22.9) 139 (34.6) 

Never smoked 277 (47.6) 232 (57.7) 

Alcohol intake (past year)   

<0.5 drinks/week 300 (51.5) 60 (14.9) 

≥0.5 drinks/week   245 (42.1) 314 (78.1) 

Missing 37 (6.4) 28 (7.0) 
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Uterine fibroids   

None 154 (26.46) 194 (48.26) 

Any 421 (72.34) 200 (49.75) 

<2 cm 94 (16.15) 69 (17.16) 

2 - <4 cm 187 (32.13) 87 (21.64) 

≥4 cm 140 (24.05) 44 (10.95) 

Missing 7 (1.20) 8 (1.99) 

 Mean (SD) Mean (SD) 

Plasma IGF-I (ng/mL)† 165 (74.0) 172 (58.7) 

Plasma IGFBP-3 (ng/mL)† 4085 (859.7) 4524 (822.3) 

* Includes 11 women with less than high school education. 

† N missing: oral contraceptives: 4 African Americans, 3 Caucasians; plasma IGF-I and IGFBP-3:  

 8 African Americans, 1 Caucasian. 

‡ Calculated at equivalent to hours of vigorous physical activity. 
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Table 3.2. IGF-I single nucleotide polymorphisms (SNPs) selected for genotyping in the NIEHS Uterine Fibroid Study*  
 

Reference SNP ID Alternate Name Chromosome 

Position 

Location Alleles  Amino Acid 

Change 

TaqMan 

Assay 

rs35767  101399699 promoter A, G N/A Validated 

rs5742612  101398994 promoter A, G N/A Pre-designed 

rs5742614  101397367 intron 1 C, G N/A Pre-designed 

rs17032634†  101395474 intron 1 A, G N/A Pre-designed 

rs3729846 Thr52Thr 101393615 exon 2 C, T None Validated 

rs12821878  101391797 intron 2 A, G N/A Validated 

rs10860869  101389182 intron 2 A, T N/A Pre-designed 

rs1019731  101388555 intron 2 A, C N/A Validated 

rs7956547  101382946 intron 2 C, T N/A Pre-designed 

rs5742626  101382039 intron 2 C, T N/A Pre-designed 

rs17880975  101376814 intron 2 A, G N/A Custom 

rs2033178  101371206 intron 2 A, G N/A Pre-designed 

rs17884646  101369945 intron 2 C, T N/A Custom 

rs5742657  101358998 intron 2 A, G N/A Pre-designed 

rs5742663  101348120 intron 2 G, T N/A Pre-designed 

rs11829586  101344517 intron 2 A, G N/A Pre-designed 

rs4764884  101343729 intron 2 C, T N/A Pre-designed 

rs5742683  101337847 intron 2 A, G N/A Pre-designed 

rs17884626 Ala115Thr 101337476 exon 3 C, T Alanine to 

Threonine 

Validated 

rs5009837  101334399 intron 3 C, T N/A Pre-designed 

rs17727841  101333760 intron 3 C, G N/A Pre-designed 

rs4764883  101330435 intron 3 C, T N/A Pre-designed 

rs9308315  101328023 intron 3  N/A Pre-designed 

rs978458  101326369 intron 3 C, T N/A Validated 

rs12316064†  101324933 intron 3 C, T N/A Custom† 

rs5742692  101323728 intron 3 A, G N/A Pre-designed 

rs11111262  101322307 intron 3 A, G N/A Custom 

rs1520220  101320652 intron 3 C, G N/A Validated 

rs3730204  101319644 exon 4;            

3’ untranslated 

C, T N/A Custom 

rs6214  101317699 exon 4;            

3’ untranslated  

C, T N/A Validated 
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rs6219  101314322 exon 4;            

3’ untranslated  

C, T N/A Validated 

rs2946834  101311944 downstream of 

IGF-I 

A, G N/A Validated 

* Alleles represent DNA strand from TaqMan assays.  rs9308315 was genotyped as an alternate SNP to replace rs4764883, which appeared  

 inconsistent with Hardy Weinberg Equilibrium (α = 0.01) among African Americans. 

† SNPs dropped from analyses due to TaqMan assay failure with design. 
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Table 3.3. IGFBP-3 single nucleotide polymorphisms (SNPs) selected for genotyping in the NIEHS Uterine Fibroid Study* 
 

Reference SNP 

ID 

Alternate Name Chromosome 

Position 

Location Alleles Amino Acid 

Change 

TaqMan 

Assay 

rs903889  45931520 promoter G, T N/A Pre-designed 

rs924140  45929639 promoter C, T N/A Pre-designed 

rs2854744 -202 A/C 45927600 promoter G, T N/A Pre-designed 

rs2854746 G2133C 

(Ala32Gly) 

45927170 exon 1 C, G Alanine to 

Glycine 

Pre-designed 

rs2471551  45923580 intron 1 C, G N/A Pre-designed 

rs9282734 His158Pro 45923494 exon 2 A, C Histidine to 

Proline 

Custom 

rs2453837  45922575 intron 3 A, G N/A Pre-designed 

rs6953668  45922400 intron 3 A, G N/A Pre-designed 

rs3110697  45921554 intron 3 A, G N/A Pre-designed 

rs2453840†  45920337 intron 4 A, C N/A Custom 

rs2453839  45920098 intron 4 C, T N/A Pre-designed 

rs6670  45918779 exon 5;           

 3’ untranslated 

A, T N/A Pre-designed 

rs13223993  45917755 downstream of 

IGFBP-3 

A, G N/A Pre-designed 

rs2270628  45916095 downstream of 

IGFBP-3 

C, T N/A Pre-designed 

rs12671457  45913451 downstream of 

IGFBP-3 

A, C N/A Pre-designed 

* Alleles represent DNA strand from TaqMan assays, except alleles on opposite DNA strand shown for rs2854744 (-202 A/C). 

† Possible triallelic polymorphism but has not been confirmed by sequencing groups.  
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Table 3.4. Genotype distribution of IGF-I single nucleotide polymorphisms (SNPs) among premenopausal Caucasian and 

African American women in the NIEHS Uterine Fibroid Study  
 

Caucasians* African Americans* SNP 

Reference 

ID 
 MAF (%) Genotypes N 

HWE  

 p value† 
 MAF (%) Genotypes N 

HWE  

 p value†  

AA  10 AA  102 

AG 107 AG 266 

rs35767 16.0 

GG 280 

1.000 40.8 

GG 208 

0.322 

 

GG 1 GG 2 

AG 29 AG 34 

rs5742612 3.9 

AA 369 

0.909 3.3 

AA 543 

0.240 

 

CC 0 CC 8 

CG 14 CG 117 

rs5742614 1.8 

GG 386 

1.000 11.5 

GG 451 

1.000 

 

CT 0 CT 9 rs3729846 0 

CC 400 

-- 0.8 

CC 565 

1.000 

 

AA 21 AA 3 

AG 139 AG 61 

rs12821878 22.7 

GG 238 

0.986 5.8 

GG 513 

0.598 

 

TT 31 TT 61 

AT 170 AT 251 

rs10860869 29.1 

AA 197 

0.596 32.3 

AA 266 

0.931 

 

AA 5 AA 0 

AC  88 AC 39 

rs1019731 12.3 

CC 305 

0.858 3.4 

 

CC 536 

1.000 

 

CC 29 CC 44 

CT 160 CT 213 

rs7956547 27.3 

TT 210 

0.971 26.2 

TT 318 

0.363 

 

CC 0 CC 4 

CT 4 CT 75 

rs5742626 0.5 

TT 395 

1.000 7.2 

TT 498 

0.680 

 

AG 1 AG 26 rs17880975 0.1 

GG 396 

1.000 2.3 

GG 548 

1.000 
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AA  1 AA  4 

AG 47 AG 46 

rs2033178 6.2 

GG 349 

1.000 4.7 

GG 521 

0.062 

 

rs17884646 0 TT 398 -- 0 TT 578 -- 

GG 1 GG 10 

AG 16 AG 119 

rs5742657 2.2 

AA 384 

0.354 12.1 

AA 447 

0.625 

 

GG 0 GG 9 

GT 1 GT 115 

rs5742663 0.1 

TT 397 

1.000 11.6 

TT 451 

0.699 

 

AA 0 AA 10 

AG 18 AG 112 

rs11829586 2.3 

GG 381 

1.000 11.5 

GG 452 

0.411 

 

TT 25 TT 35 

CT 154 CT 202 

rs4764884 25.7 

CC 218 

0.880 

 

23.7 

CC 338 

0.570 

 

GG 0 GG 8 

AG 1 AG 106 

rs5742683 0.1 

AA 397 

1.000 10.6 

AA 461 

0.610 

 

CT 0 CT 11 rs17884626 0 

CC 400 

-- 1.0 

CC 567 

1.000 

 

TT 36 TT 107 

CT 168 CT 262 

rs5009837 30.3 

CC 192 

1.000 41.3 

CC 207 

0.155 

 

CC 15 CC 3 

CG 123 CG 48 

rs17727841 19.1 

GG 262 

0.997 4.7 

GG 526 

0.242 

 

CC 37 TT 135 

CT 168 CT 249 

rs4764883 30.9 

TT 186 

1.000 

 

45.8 

CC 183 

0.007‡ 

 

AA 28 TT 154 

AT 167 AT 262 

rs9308315 28.2 

TT 201 

0.490 

 

49.8 

AA 156 

0.052 
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TT 28 TT 85 

CT 165 CT 260 

rs978458 28.0 

CC 202 

0.567 

 

37.5 

CC 229 

0.466 

 

GG 0 GG 11 

AG 17 AG 112 

rs5742692 2.1 

AA 383 

1.000 

 

11.7 

AA 451 

0.270 

 

AA 3 AA 2 

AG 73 AG 27 

rs11111262 9.9 

GG 322 

0.881 

 

2.7 

GG 542 

0.118 

 

GG 13 GG 74 

CG 125 CG 252 

rs1520220 19.1 

CC 258 

0.805 

 

34.7 

CC 250 

0.443 

 

CT 18 CT 3 rs3730204 2.3 

TT 379 

1.000 

 

0.3 

TT 570 

1.000 

 

TT 67 CC 127 

CT 184 CT 264 

rs6214 39.8 

CC 148 

0.495 

 

45.2 

TT 182 

0.107 

 

TT 2 TT 9 

CT 76 CT 87 

rs6219 10.0 

CC 322 

0.429 

 

9.1 

CC 481 

0.072 

 

AA 40 AA 143 

AG 181 AG 282 

rs2946834 33.0 

GG 175 

0.588 

 

49.3 

GG 151 

0.665 

 

NOTE: MAF, minor allele frequency; HWE, Hardy Weinberg Equilibrium. 

* Caucasians: N = 402; African Americans: N = 582. 

† Based on exact test statistic (α = 0.01). 

‡ Appears inconsistent with HWE (α = 0.01). 
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Table 3.5. Genotype distribution of IGFBP-3 single nucleotide polymorphisms (SNPs) among premenopausal Caucasian and 

African American women in the NIEHS Uterine Fibroid Study  
 

Caucasians* African Americans* SNP 

Reference 

ID 
 MAF (%) Genotypes N 

HWE  

 p value†  
 MAF (%) Genotypes N 

HWE  

 p value†   

GG 22 GG 10 

GT 132 GT 88 

rs903889 22.0 

TT 246 

0.510 

 

9.4 

TT 478 

0.040 

 

TT 82 CC 95 

CT 210 CT 258 

rs924140 46.8 

CC 108 

0.335 

 

38.9 

TT 223 

0.188 

 

AA 79 CC 107 

AC 204 AC 265 

rs2854744 46.3 

CC 108 

0.397 

 

42.2 

AA 196 

0.332 

 

CC 65 CC 53 

CG 203 CG 263 

rs2854746 41.7 

GG 131 

0.427 

 

32.1 

GG 259 

0.284 

 

CC 17 CC 27 

CG 120 CG 178 

rs2471551 19.4 

GG 260 

0.587 

 

20.3 

GG 367 

0.425 

 

CC 0 CC 2 

AC 3 AC 34 

rs9282734 0.4 

AA 394 

1.000 

 

3.3 

AA 540 

0.242 

 

rs2453837 0 GG 398 -- 0 GG 576 -- 

AA 0 AA 3 

AG 5 AG 52 

rs6953668 0.6 

GG 395 

1.000 

 

5.0 

GG 521 

0.335 

 

AA 63 AA 80 

AG 203 AG 255 

rs3110697 41.4 

GG 131 

0.347 

 

36.1 

GG 240 

0.391 

 

AA 12 AA 7 

AC 121 AC 92 

rs2453840 18.3 

CC 264 

0.840 

 

9.2 

CC 477 

0.394 
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CC 14 CC 94 

CT 131 CT 282 

rs2453839 20.1 

TT 251 

0.677 

 

40.9 

TT 198 

0.784 

 

AA 12 AA 9 

AT 145 AT 127 

rs6670 21.2 

TT 241 

0.101 

 

12.6 

TT 439 

1.000 

 

AA 19 AA 117 

AG 131 AG 265 

rs13223993 21.4 

GG 245 

0.867 

 

43.6 

GG 190 

0.185 

 

TT 15 TT 84 

CT 138 CT 248 

rs2270628 21.0 

CC 247 

0.542 

 

36.2 

CC 242 

0.137 

 

CC 8 CC 3 

AC 111 AC 52 

rs12671457 16.5 

AA 267 

0.495 

 

5.1 

AA 518 

0.339 

 

NOTE: MAF, minor allele frequency; HWE, Hardy Weinberg Equilibrium. 

* Caucasians: N = 402; African Americans: N = 582. 

† Based on exact test statistic (α = 0.01). 
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Table 3.6. Estimated power to detect main effects prevalence differences (PD) by 

race with SNPs or diplotypes (αααα = 0.05) 
 

 Frequency of Genetic Variant* 

PD 0.05 0.10 0.20 0.30 0.40 0.50 

 African Americans (n=582)† 

0.10 19.7 31.8 49.9 60.8 66.3 68.0 

0.15 37.2 60.0 83.3 91.7 94.6 95.4 

0.20 58.3 84.1 97.5 99.4 99.8 99.8 

0.30 91.6 99.6 >99.9 >99.9 >99.9 >99.9 

 Caucasians (n=402)† 

0.10 17.8 27.0 41.0 49.8 54.4 55.7 

0.15 31.8 50.0 71.9 82.1 86.5 87.7 

0.20 48.8 72.7 91.7 96.7 98.2 98.5 

0.30 80.9 96.8 99.9 >99.9 >99.9 >99.9 

*Refers to combined frequency of heterozygous and homozygous variant genotypes.   

†Given baseline prevalence of 0.40 (African Americans), 0.30 (Caucasians). 
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Figure 3.1. Depiction of IGF-I single nucleotide polymorphisms (SNPs) evaluated among premenopausal African American and Caucasian 

participants from the National Institute of Environmental Health Sciences (NIEHS) Uterine Fibroid Study.  Relative distances of SNPs were 

based on mapping information from the Entrez Gene database sponsored by the National Center for Biotechnology Information (NCBI), National 

Library of Medicine (NLM).  SNPs selected a priori include: rs3729846, synonymous SNP; rs17884626, nonsynonymous SNP.  Race-specific 

diplotype groups and linkage disequilibrium (LD) blocks are listed for each SNP.  Group refers to combination of SNPs for diplotype estimation.  LD 

blocks consist of SNPs with minor allele frequency (MAF) ≥ 5% in strong LD (95% of pairwise SNP comparisons with one-sided 95% confidence 

intervals for the D prime statistic within 0.7-0.98).  Values for diplotype group and position (--) were not listed for SNPs excluded from diplotype 

estimation based on either: 1) Tagger algorithm (pairwise r
2
 ≥ 0.8);  2) MAF < 5% (excluded from LD blocks (--)) or MAF < 3% for SNPs selected a 

priori.   
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Figure 3.2. Depiction of IGFBP-3 single nucleotide polymorphisms (SNPs) evaluated among premenopausal African American and Caucasian 

participants from the National Institute of Environmental Health Sciences (NIEHS) Uterine Fibroid Study.  Relative distances of SNPs were 

based on mapping information from the Entrez Gene database sponsored by the National Center for Biotechnology Information (NCBI), National 

Library of Medicine (NLM).  SNPs selected a priori include: rs2854744 (-202 A/C); rs2854746 and rs9282734, nonsynonymous SNPs.  Race-specific 

diplotype groups and linkage disequilibrium (LD) blocks are listed for each SNP.  Group refers to combination of SNPs for diplotype estimation.  LD 

blocks consist of SNPs with minor allele frequency (MAF) ≥ 5% in strong LD (95% of pairwise SNP comparisons with one-sided 95% confidence 

intervals for the D prime statistic within 0.7-0.98).  Values for diplotype group and position (--) were not listed for SNPs excluded from diplotype 

estimation based on either: 1) Tagger algorithm (pairwise r
2
 ≥ 0.8);  2) MAF < 5% (excluded from LD blocks (--)) or MAF < 3% for SNPs selected a 

priori.   
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Figure 3.3.  Hypothetical causal diagram.   

IGF-I & IGFBP-3 

in Uterine Tissue 

 

Age at Menarche 

Parity 

Oral contraceptives 

Obesity 

Physical Activity 

Alcohol Intake 

Smoking 

 

IGF-I & IGFBP-3 

Variants 
Plasma IGF-I and 

IGFBP-3 

 

Age 

Uterine Fibroids 

Prevalence & Size 

 

Race 



 

 

CHAPTER IV 

 
PAPER 1: IGF-I AND IGFBP-3 POLYMORPHISMS IN RELATION TO 

CIRCULATING LEVELS AMONG AFRICAN AMERICAN AND CAUCASIAN 

WOMEN 
 

 

 

Abstract 

Circulating insulin-like growth factor-one (IGF-I) and IGF binding protein-3 

(IGFBP-3) have been studied in relation to common diseases.  Although twin- and 

family-based studies suggest that genetic variation contributes to circulating IGF-I and 

IGFBP-3 levels, prior analyses of associations with multiple IGF-I and IGFBP-3 

polymorphisms have been limited, especially among African Americans.  We evaluated 

30 IGF-I and 15 IGFBP-3 single nucleotide polymorphisms (SNPs) and estimated 

diplotypes in association with plasma IGF-I and IGFBP-3 levels among 984 

premenopausal African American and Caucasian women.  We noted associations 

between IGF-I and IGFBP-3 SNPs and plasma IGF-I and IGFBP-3 among both races.  In 

both racial groups, IGFBP-3 rs2854746 (Ala32Gly) was positively associated with 

plasma IGFBP-3, (CC versus GG: Caucasians: 631 ng/ml, 95% CI: 398, 864; African 

Americans: 897 ng/ml, 95% CI: 656, 1138).  In comparison to referent diplotypes with 

the rs2854746 CG genotype, IGFBP-3 diplotypes with the GG genotype had lower mean 

plasma IGFBP-3 levels while IGFBP-3 diplotypes with the CC genotype had higher 

mean plasma IGFBP-3 levels among both races.  The nearby IGFBP-3 promoter SNP, 

rs2854744, which was in strong LD (r
2  

> 0.8) with rs2854746 in Caucasians but not 
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African Americans, was also associated with plasma IGFBP-3 in both races.  Eight other 

IGFBP-3 SNPs were associated with plasma IGFBP-3, and associations were generally 

consistent between races.  Twelve IGF-I SNPs were associated with plasma IGF-I, but 

these associations were generally discordant between races.  There was no consistent 

pattern between IGF-I SNP and diplotype associations with plasma IGF-I.  Associations 

were also noted between IGFBP-3 SNPs and plasma IGF-I and between IGF-I SNPs and 

plasma IGFBP-3 although many were relatively imprecise, and there was no consistent 

pattern with their respective diplotype associations.   

 

Introduction 

 Insulin-like growth factor-one (IGF-I), a peptide with structural similarities to 

insulin, has been the focus of prior research because of its potential role in disease.  

Specifically, IGF-I has been implicated in many biologic processes, including cell cycle 

regulation, differentiation, proliferation, hormone secretion, and apoptosis.  IGF-binding 

proteins (IGFBPs)  help regulate the activity of IGFs by influencing their bioavailablity 

and degradation  (1, 2).  IGFBPs may also have independent effects through interactions 

with cell surface molecules (1, 2).  IGFBP-3, which binds approximately 90% of 

circulating IGF-I, has been the most studied of the IGFBPs (3).  Independent of effects on 

IGFs, IGFBP-3 may inhibit growth and increase apoptosis in breast cancer cells (4, 5), 

but these findings have not been confirmed.   

Circulating IGF-I levels, and to a lesser extent circulating IGFBP-3 levels, have been 

studied in association with cardiovascular disease, diabetes, and cancer (6-9).   Prior 

studies have reported positive associations between circulating IGF-I and premenopausal 
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breast cancer (10), but two recent studies reported positive IGF-I associations with 

postmenopausal breast cancer only (11, 12).  Associations between pre- or post-

menopausal breast cancer and circulating IGFBP3 associations have been inconsistent 

(10).    

 Estimates from twin- or family-based studies suggest that genetic factors may 

account for up to 50% of the inter-individual variation in plasma IGF-I levels (13, 14) 

and up to 60% of the variation in plasma IGFBP-3 levels (13, 15).  In adults, age is the 

most consistently reported nongenetic factor associated with IGF-I blood levels (3, 16-

25), with lower circulating IGF-I levels (3, 16-25) associated with increasing age.  

Women have lower circulating IGF-I (17, 20, 21, 23, 25, 26) but higher IGFBP-3 levels 

(17, 20, 21, 25, 26) than men, and  two studies have suggested that African American 

women have higher circulating IGF-I levels than Caucasian women (21, 27).   

Our research goal was to investigate relations between IGF-I and IGFBP-3 

polymorphisms and circulating IGF-I and IGFBP-3 levels among African American and 

Caucasian women.  Prior analysis of dense single nucleotide polymorphisms (SNP) and 

IGF-I and IGFBP-3 levels among African Americans has been limited to the Multiethnic 

Cohort Study, which included only about 150 African Americans (28).  We selected 45 

SNPs in IGF-I and IGFBP-3 and examined whether these SNPs and their estimated 

diplotypes (paired haplotypes) were associated with IGF-I and IGFBP-3 plasma levels in 

premenopausal African American and Caucasian women that participated in the National 

Institute for Environmental Health Sciences (NIEHS) Uterine Fibroid Study. 
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Methods 

 

Study population 

The study population consisted of 984 premenopausal women (582 African 

Americans and 402 Caucasians) with available DNA samples for genotyping from the 

National Institute for Environmental Health Sciences (NIEHS) Uterine Fibroid Study 

(UFS).  The parent study was designed to estimate the prevalence of uterine leiomyomata 

(fibroids) among African American and Caucasian women and evaluate potential 

etiologic factors for fibroids.  Details of the parent study were previously described (29, 

30).  Briefly, a random sample of 2,384 George Washington University female health 

plan members, aged 35 to 49, was obtained for potential enrollment into the parent study 

(29, 30).  The study was approved by Institutional Review Boards at NIEHS and George 

Washington University, and the consent form specified use of specimens for genetic 

polymorphism analyses.    

UFS eligibility criteria were met by 1,786 of the 2,102 women that consented to 

eligibility screening.  Most ineligible women were excluded because they no longer 

attended the health plan clinic where the parent study was based (71%) or they had been 

misidentified as a 35-49 year-old female (16%).  Enrollment occurred from 1996 through 

1999. Approximately 20% of eligible women refused participation, resulting in a total of 

1,430 participants in the parent study (30).  Demographic characteristics, reproductive 

history, smoking status, and alcohol use were assessed from telephone interviews and 

self-administered questionnaires.  Body weight was measured at the clinic visit.   

We restricted the current study population to women that self-identified as African 

American or Caucasian (n = 1,323) to facilitate race-specific analyses, and excluded 
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postmenopausal women because they did not attend the UFS clinic visit for ultrasound 

screening and blood collection (n = 178).  Race and menopausal status criteria for the 

current study were met by 1,145 women, and DNA was extracted for 984 of the 1,003 

women with collected blood samples. 

Sample collection and assays 

Fasting blood samples were collected through venipuncture and processed for 

plasma, which was stored at -80°C.  Plasma IGF-I was measured in nanograms per 

milliliter (ng/mL) at NIEHS using a double-antibody radioimmunoassay by extraction 

method (Nichols Institute Diagnostics, San Juan Capistrano, CA), with a reported 

detection limit of 0.06 ng/mL.   Plasma IGFBP-3 was measured in ng/mL at NIEHS by a 

double-antibody immunoradiometric assay from Diagnostic Systems Laboratories, Inc. 

(Webster, TX), with a  reported detection limit of 0.05 ng/mL  The mean inter-assay 

coefficients of variation on replicate quality control samples was 8.8% for IGF-I and 

4.2% for IGFBP-3. 

Genomic DNA was extracted from whole blood using a phenol:chloroform 

procedure, but a safer and more efficient modified salt precipitation protocol was adopted 

when it became available (GenQuik Protocol). 

Genetic polymorphisms 

 

Race-specific haplotype-tagging SNPs in IGF-I and IGFBP-3 were selected using 

Genome Variation Server (GVS) software (sponsored by the Seattle SNPs Program for 

Genomic Applications (PGA)) (31).  We used the Seattle SNPs database as the reference 

population for IGF-I, while for IGFBP-3, which had not been evaluated by Seattle SNPs,  

we used the HapMap database (31). We expanded coverage to include 5 kilobases (kb) 
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outside the 5’ and 3’ ends of each gene, and specified a value of 0.8 for the pairwise 

correlation coefficient (r
2
) to identify haplotype-tagging SNPs to capture variation across 

the gene.  Haplotype-tagging SNPs with a minor allele frequency (MAF) greater than 5% 

among women in African American or Caucasian reference populations were selected for 

genotyping.  Overall, the GVS software identified 29 haplotype-tagging SNPs for IGF-I 

and 12 haplotype-tagging SNPs for IGFBP-3.  In addition, we selected four SNPs a 

priori based on functional significance, including one nonsynonymous IGF-I SNP 

(rs17884626), one synonymous IGF-I SNP (rs3729846), and two nonsynonymous 

IGFBP-3 SNPs (rs2854746, rs9282734) and an IGFBP-3 promoter SNP (-202 A/C, 

rs2854744) a priori based on previous studies of associations with circulating IGF-I and 

IGFBP-3 levels and health outcomes (28, 32-38). 

Genotyping was performed using the TaqMan genotyping approach (39-41) at an 

outside laboratory (Mammalian Genotyping Core, Lineberger Comprehensive Cancer 

Center; Chapel Hill, NC).  Allele-specific oligonucleotide probes for 39 selected SNPs 

were purchased from Applied Biosystems (ABI; Foster City, CA) “TaqMan® Validated 

and Coding SNP or Pre-Designed SNP Genotyping Assays”.  ABI attempted to develop 

custom assays for the 6 remaining SNPs through their “Custom TaqMan® SNP 

Genotyping Assays” service.  Two IGF-I haplotype tagging SNPs were dropped from 

analyses, including one for which a custom assay could not be developed, and one with a 

pre-designed assay that did not meet ABI technical specifications.  In addition, we 

genotyped an alternate IGF-I haplotype-tagging SNP to substitute one that appeared 

inconsistent with Hardy-Weinberg equilibrium among our African American study 
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population.  Thus, we genotyped 30 IGF-I and 15 IGFBP-3 SNPs, including 40 

haplotype-tagging SNPs and 5 SNPs selected a priori. 

PCR amplification was performed on an ABI GeneAmp® PCR System 9700 thermal 

cycler with dual 384-well-blocks, and endpoint plates were read using the ABI 7900HT 

system.  Fluorescent VIC and 6-FAM reporter dyes were used to distinguish wild type 

and variant alleles.  Alleles were called automatically through Sequence Detection 

System (SDS) 2.3 software, but output also was reviewed by experienced operators.  The 

DNA concentration of all samples was validated using a NanoDrop® ND-1000 

Spectrophotometer prior to dilution to 5 ng/ul (using DNA grade sterile water).  All 

samples were placed into eleven 96-well microtiter plates, with each plate containing two 

blank samples and two known DNA standard (Control DNA CEPH Individual 1347-02, 

ABI) samples.  Samples were subsequently aliquoted into three 384-well PCR plates for 

analysis.  Quality control measures also included blinded genotyping of 28 duplicate 

samples representing 22 women, which produced concordant results for all samples.  The 

overall call rate was 98.8%, and only 5 women had less than 50% of complete allele calls 

for the 45 SNPs assayed.  We confirmed that SNP genotype frequencies were consistent 

with Hardy-Weinberg equilibrium (HWE) within each racial group using the exact test 

statistic with one degree of freedom (alpha = 0.01) (42).   

Diplotype estimation 

We estimated associations with race-specific diplotypes (paired haplotypes), that 

were imputed for groups of related SNPs within each gene, as described below.  SNPs 

were excluded from race-specific diplotype analyses if their MAF in our study population 

was below 5% for haplotype-tagging SNPs or below 3% for a priori SNPs within the 
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racial group being evaluated.  Women missing genotype data for more than 50% of the 

SNPs considered for diplotype analyses within a gene were excluded from diplotype 

estimation for that gene (1 Caucasian and 3 African Americans for IGFBP-3 analyses, 3 

Caucasians and 2 African Americans for IGF-I analyses).  We examined race-specific 

linkage disequilibrium (LD) patterns using Haploview software (43) to identify SNPs in 

each gene that could be combined for estimating diplotypes.  First, we identified blocks 

consisting of individual SNPs (with MAF at least 5%) in strong LD (95% of pairwise 

SNP comparisons with one-sided 95% confidence intervals for the D prime statistic 

within 0.7 to 0.98) (44).  Next, we used the Tagger approach (45) in Haploview to 

identify pairs of redundant SNPs in strong LD (pairwise r
2
 values of at least 0.8), and 

excluded one member of each redundant pair from diplotype estimation unless both SNPs 

were selected a priori.  Race-specific pairwise r
2
 values are available for IGFBP-3 and 

IGF-I SNPs in Tables A.1-A.4.   

  Race-specific diplotypes representing defined groups of SNPs in each gene were 

then estimated using PHASE version 2.1 (46, 47), which allocates the most likely 

diplotypes for each person, with the prior assumption that frequently observed haplotypes 

with less ambiguity due to homozygosity are more probable.  PHASE also provides a 

posterior probability estimate that expresses the uncertainty associated with each 

diplotype assignment.  To reduce the number of race-specific diplotype groups evaluated 

for each gene, we combined individual SNPs that were not included in a block with an 

adjacent block, and combined adjacent blocks with each other, when doing so resulted in 

diplotypes that were estimated with at least 90% certainty (posterior probability) for at 

least 90% of observations.  Otherwise, diplotype groups encompassed individual SNPs 
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not included in a block, or SNPs within a single block only.  Women were assigned their 

most probable diplotype for each group, or were classified as missing for the diplotype 

group if their most probable diplotype had a posterior probability below 90%.   

Statistical analysis 

All statistical analyses were stratified by race and conducted using SAS V9.1 (SAS 

Institute Inc., Cary, NC).  We used ordinary linear regression to estimate associations 

between IGF-I and IGFBP-3 gene variants (individual SNPs and race-specific 

diplotypes) and IGF-I and IGFBP-3 plasma levels.  Because of biological interrelations 

between IGF-I and IGFBP-3, variants in each gene were analyzed for associations with 

circulating levels of both proteins.  Estimated associations are unadjusted since there are 

no known factors other than race that would predict both plasma levels and gene variants.  

For individual SNP analyses, we first considered a codominant model of inheritance 

in which heterozygous and homozygous variant genotypes were separately evaluated 

relative to the homozygous wildtype (referent) genotype (most common for specific 

race).  Codominant models make the fewest assumptions with regard to inheritance 

pattern, but were feasible only for common variants. Therefore, when there were 10 or 

fewer women with the homozygous variant genotype, we assumed a dominant model that 

compared a single index category, including homozygous variant and heterozygous 

genotypes, to the homozygous wildtype genotype.  To compare race-specific associations 

with plasma IGF-I or IGFBP-3 levels, we combined data from both racial groups and 

estimated racial differences in mean plasma levels (i.e., differences of mean differences) 

associated with variant vs. referent genotypes.  Specifically, we fit linear regression 
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models that included multiplicative gene by race interaction terms along with separate 

parameters for race and genotypes (Tables A.5-A.6).   

To estimate diplotype associations with IGF-I or IGFBP-3 plasma levels, we used 

separate race-specific models for each diplotype group, with the most common diplotype 

as the reference category.  Diplotypes assigned to 5 or fewer women were combined into 

one “rare diplotype” category.  To enhance the validity and precision of regression 

estimates, we used an empirical-Bayes method of information-weighted averaging (48).  

Specifically, we assumed a prior mean of 0, since we did not have prior information to 

group diplotypes according to the anticipated direction or strength of potential 

associations with plasma levels. We specified a prior variance corresponding to +/- one 

standard deviation (2*standard deviation /3.92)
2
 of the mean plasma level of IGF-I (prior 

variances: African Americans, 1,419; Caucasians, 901) and IGFBP-3 (prior variances: 

African Americans, 186,819; Caucasians, 174,161) in the study population.  This method 

shrinks regression estimates toward the prior mean such that imprecise estimates based 

on smaller numbers of observations move further toward the prior mean than more 

precise regression estimates.  We applied the shrinkage estimator for each diplotype and 

report posterior medians (50
th

 percentile of the posterior probability distribution) and 

95% posterior limits (2.5
th

 and 97.5
th

 percentiles of the posterior probability distribution).  

Regression estimates and 95% confidence limits estimated directly by linear regression 

are available in Tables A.7-A.14.  
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Results 

Participant characteristics 

Mean plasma IGF-I and IGFBP-3 levels, as well as characteristics of the study 

population are displayed in Table 4.1 by race.  African Americans were less likely than 

Caucasians to have a college or graduate degree (33% vs. 87%), to report regular alcohol 

consumption (at least 0.5 drinks per week in the past year, 42% vs. 78%), or to report 

being nulliparous at UFS enrollment (21% vs. 59%).  African Americans were more 

likely than Caucasians to be overweight or obese (75% vs. 41%) and to report current 

smoking (30% vs. 8%).  Few women in either racial group were currently taking oral 

contraceptives.   

IGFBP-3 SNPs  

For plasma IGFBP-3, we emphasize associations where mean plasma levels 

estimated for the index genotypes are approximately 200 ng/mL higher or lower than the 

mean level estimated for the referent genotype (i.e., roughly +/- 5% of the estimated 

mean level for the referent group, which ranged from about 3798 to 4693 ng/mL).  

However, we do not consider imprecise associations with SNPs having ten or fewer 

observations with heterozygous and homozygous variant genotypes combined.   

Ten IGFBP-3 SNP variants (rs903889, rs924140, rs2854744, rs2854746, rs2471551, 

rs3110697, rs2453840, rs2453839, rs2270628, rs12671457) were associated with plasma 

IGFBP-3 levels in at least one racial group when compared with homozygous wildtype 

genotypes.   Among Caucasians, plasma IGFBP-3 levels were elevated in association 

with variant genotypes for three SNPs (rs924140, rs2854744, rs2854746) relative to 

reference genotypes (approximately 600 ng/mL higher for homozygous variants, almost 
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400 ng/mL higher for heterozygotes) (Table 4.2).  Pairwise r
2
 values for all three SNPs 

were at least 0.8, indicating strong LD.  These three SNPs were also associated with 

plasma IGFBP-3 levels among African Americans.  Specifically, plasma levels were 

about 900 ng/mL higher in association with the CC genotype for the nonsynonymous 

rs2854746 SNP compared to the GG genotype, and about 460 ng/mL higher in 

association with the CG genotype (Table 4.3).  Plasma IGFBP-3 levels in African 

Americans were higher in association with the rs924140 TT and rs2854744 AA 

genotypes corresponding to the homozygous variant genotypes in Caucasians, though 

estimated associations were inverse because these genotypes were the homozygous 

wildtype (referent) genotypes among African Americans.  As in Caucasians, rs924140 

and rs2854744 were in strong LD (r
2
 = 0.82); however, rs2854746 was not in strong LD 

with either of these SNPs (r
2
 range 0.30 to 0.34) among African Americans.   

In both racial groups, rs3110697 variant genotypes were inversely associated with 

plasma IGFBP-3 relative to the referent genotypes (about 430 ng/mL lower in Caucasians 

and 550 ng/mL lower in African Americans for the AA genotype, with smaller 

differences associated with the AG genotype).  Among both racial groups, r
2 

values for 

rs3110697 with rs924140 and rs2854744 ranged from 0.55 to 0.65, indicating moderate 

LD, but rs3110697 was not in LD with rs2854746 (r
2 

< 0.5).  Plasma IGFBP-3 was also 

inversely associated with rs2471551 variants among African Americans (460 ng/mL 

lower for the CC genotype and 260 ng/mL lower for the CG genotype relative to the GG 

genotype). 

Relatively imprecise estimates based on fewer than 25 women suggest inverse 

associations between plasma IGFBP-3 and homozygous variant genotypes for five SNPs 
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(rs903889, rs2471551, rs2453840, rs2453839, rs2270628) among Caucasians.  Among 

African Americans, homozygous and heterozygous variants combined for two less 

common SNPs were positively (rs2453840) and inversely (rs12671457) associated with 

plasma IGFBP-3, with differences of about 200 ng/mL relative to homozygous wildtype 

genotypes. None of the other IGFBP-3 SNPs with plasma IGFBP-3 associations were in 

LD with each other, except for rs2453840 and rs2453839, which were in strong LD 

among Caucasians (r
2
 = 0.87). 

 Based on combined race models with interaction terms, race-specific SNP 

associations with plasma IGFBP-3 showed little evidence of discordance by race (Table 

A.5).  Two possible exceptions were rs2854746, which was more strongly associated 

with plasma IGFBP-3 among African Americans than Caucasians, and rs2270628, which 

had estimated race-specific associations with the homozygous variant that were imprecise 

and in opposite direction.  However, estimated differences of mean differences between 

racial groups, especially for homozygous variant genotypes, were relatively imprecise. 

For plasma IGF-I, we emphasize associations where mean plasma levels estimated 

for the index genotypes are approximately 16-18 ng/mL higher or lower than the mean 

level estimated for the referent genotype (i.e., about +/- 10% of the estimated mean level 

for the referent group, which ranged from 158 to 176 ng/mL).  Homozygous variants for 

two IGFBP-3 SNPs (rs903889, rs6670) among Caucasians and four IGFBP-3 SNPs 

(rs924140, rs2471551, rs3110697, rs2270628) among African Americans were associated 

with plasma IGF-I relative to the homozygous wildtype genotypes.  However, three of 

the six SNP associations (rs903889, rs6670, rs2475551) with plasma IGF-I were 

relatively imprecise due to fewer than 30 homozygous variant observations.   
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IGFBP-3 Diplotypes 

Among Caucasians, there were three LD blocks representing 10 of 12 IGFBP-3 

SNPs for diplotype analyses, with two SNPs outside LD blocks.  After excluding two 

redundant IGFBP-3 SNPs (r
2
 ≥ 0.8), two groups were created for diplotype estimation by 

combining LD blocks or SNPs outside LD blocks as described previously.  Among the 

two Caucasian IGFBP-3 groups, there were 48 unique diplotypes, with 20 of these 

diplotypes classified as rare (5 or fewer women).  Diplotypes for each group were 

estimated for 93% to 98% of the 401 Caucasians for IGFBP-3 diplotype analyses.   

Among African Americans, there were four LD blocks representing 11 of 14 IGFBP-

3 SNPs for diplotype analyses, with three SNPs outside LD blocks.  After excluding one 

redundant IGFBP-3 SNP (r
2
 ≥ 0.8), three groups were created for diplotype estimation.  

Among the three African American IGFBP-3 groups, there were 71 unique diplotypes, 

which included 33 rare diplotypes.  Diplotypes for each group were estimated for 94% to 

99% of the 579 African Americans for IGFBP-3 diplotype analyses.     

Similar to individual SNP analyses, we emphasized associations where the index 

diplotypes were associated with plasma IGFBP-3 differences of at least 200 ng/mL from 

the mean IGFBP-3 level for the referent diplotype.  Six Caucasian IGFBP-3 group 1 

diplotypes (GCGGAC/GCGGAC, TAGGGC/GCGGAC, TCGCAC/GCGGAC, 

TCGCAC/TCGCAC, TCGGGA/GCGGAC, TCGGGA/TCGCAC) were inversely 

associated with plasma IGFBP-3 relative to the TACGGC/GCGGAC (referent) diplotype 

(Figure 4.1).  All six diplotypes included the GG genotype for rs2854746 (3
rd

 diplotype 

position), and five of the diplotypes included the CC genotype for rs2854744 (2
nd

 

diplotype position).  The only two Caucasian IGFBP-3 group 1 diplotypes 
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(TACGGA/TACGGC, TACGGC/TACGGC) having the CC genotype for rs2854746 

were positively associated with plasma IGFBP-3.       

Eight of the ten African American IGFBP-3 group 1 diplotypes 

(TACGAGG/GCGGAGA, TAGGAGA/TAGGAGG, TAGGAGG/GCGGAGA,  

TAGGAGG/TAGGAGG, TCGCAGA/GCGGCAA, TCGCAGA/TAGGAGA, 

TCGCAGA/TAGGAGG, TCGCAGA/TCGCAGA, TCGCAGA/TCGGAGG, 

TCGGAGA/TACGAGG) that were inversely associated with plasma IGFBP-3 relative to 

the TAGGAGG/TACGAGG diplotype (Figure 4.2) included the GG genotype for 

rs2854746 (3
rd

 diplotype position). Three of the ten diplotypes also included the CC 

genotype for rs2854744 (2
nd

 position), and one was the only diplotype that included the 

CC genotype for rs2471551 (4
th

 diplotype position).  The African American IGFBP-3 

group 1 diplotype TACGAGG/TACGAGG, the only diplotype with the CC genotype for 

rs2854746, was positively associated with plasma IGFBP-3.  The African American 

IGFBP-3 group 2 diplotype CC/CC was inversely associated with plasma IGFBP-3 

compared to the CT/CC (referent) diplotype.  

Similar to individual SNP analyses, we generally emphasized associations where the 

index diplotypes were associated with plasma IGF-I differences of at least 10% (16-18 

ng/mL) from the mean IGF-I level for the referent diplotype.  One Caucasian IGFBP-3 

group 1 diplotype (TCGGGA/TCGCAC) was inversely associated with plasma IGF-I 

compared to the TACGGC/GCGGAC diplotype.  Among African Americans, eight 

IGFBP-3 Group 1 diplotypes (TAGGAGA/TACGAGG, TAGGAGA/TAGGAGG, 

TAGGAGG/GCGGAGA, TCGCAGA/GCGGCAA, TCGCAGA/TACGAGG, 

TCGCAGA/TCGCAGA, TCGCAGA/TCGGAGG, TCGGAGG/TACGAGG) were 
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inversely associated with plasma IGF-I, and two IGFBP-3 Group 1 diplotypes 

(TACGAGG/GCGGAGA, TCGGAGG/TCGGAGG) were positively associated with 

plasma IGF-I relative to the TAGGAGG/TACGAGG diplotype.  Seven of the eight 

African American IGFBP-3 Group 1 diplotypes that were inversely associated with 

plasma IGF-I included AG or AA genotypes for rs3110697 (7
th

 diplotype position), 

which were inversely associated with plasma IGF-I in SNP analyses.  Both African 

American IGFBP-3 group 3 diplotypes (TATA/TGTC, TATA/TATA) that included the 

rs2270628 TT genotype (3
rd

 diplotype position) were positively associated with plasma 

IGF-I relative to the TATA/TGCA diplotype. 

IGF-I SNPs 

Among Caucasians, homozygous variants for two common IGF-I SNPs (rs1520220, 

rs6214) and variants for five rare (MAF < 5%) IGF-I SNPs (rs5742612, rs5742614, 

rs5742657, rs5742692, rs3730204) were associated with plasma IGF-I, with estimated 

mean differences of at least 10% (17 ng/mL) relative to the homozygous wildtype 

genotypes (Table 4.4).  However, with the exception of the positive association between 

rs6214 and plasma IGF-I, associations were rather imprecise due to 30 or fewer 

observations with variant genotypes.  None of the IGF-I SNPs noted above were in LD 

(r
2
 < 0.4) except for strong LD between rs5742657 and rs5742692 (r

2
 = 0.94). 

Among Caucasians, nine IGF-I SNP variants were inversely associated (rs4764884, 

rs5009837, rs4764883, rs9308315, rs978458, rs1520220, rs3730204, rs6219, rs2946834) 

with plasma IGFBP-3, while one rare (MAF < 5%) IGF-I SNP variant (rs5742612) was 

positively associated with plasma IGFBP-3 (estimated differences of at least 200 ng/mL 

for variant genotypes relative to homozygous wildtype genotypes), although five SNP 



  

 90

associations (rs5742612, rs4764884, rs9308315, rs978458, rs1520220) were relatively 

imprecise due to 30 or fewer observations with variant genotypes.  Five (rs4764884, 

rs5009837, rs4764883, rs9308315, rs978458) of the ten IGF-I SNPs associated with 

plasma IGFBP-3 were in strong LD with each other (r
2 

≥ 0.8), and rs1520220 was in 

moderate LD with rs978458 and rs9308315 (r
2 

approximately 0.60) but had slightly 

smaller r
2 

values of about 0.50 with rs4764884, rs5009837, and rs4764883. 

Among African Americans, three rare (MAF < 5%) IGF-I (rs2033178, rs17727841, 

rs11111262) variants were associated with plasma IGF-I relative to the homozygous 

wildtype genotypes, although the rs11111262 association was relatively imprecise due to 

fewer than 30 variant observations (Table 4.5).  In addition, variants for two more 

common IGF-I SNPs (rs6219, rs2946834) were positively associated with plasma IGF-I.  

Of the five IGF-I SNPs noted above, only rs17727841 and rs11111262 were in moderate 

LD with each other (r
2 

= 0.56).  The rs1086869 TT genotype was positively associated 

with plasma IGFBP-3 relative to the AA genotype, but there were no other IGF-I SNP 

variants associated with meaningful differences (≥ 200 ng/mL) in plasma IGFBP-3. 

Based on models that included an interaction term with race, mean plasma IGF-I 

levels estimated for several of the IGF-I homozygous variants varied between racial 

groups by at least 16-18 ng/ml, which may indicate modification by race.  However, 

estimated differences of mean differences between African Americans and Caucasians 

were imprecise (Table A.6) 

IGF-I Diplotypes 

Among Caucasians, there were three LD blocks representing 15 of 17 IGF-I SNPs 

for diplotype analyses, with two SNPs outside LD blocks.  After excluding six redundant 



  

 91

IGF-I SNPs (r
2
 ≥ 0.8), four groups were created for diplotype estimation by combining 

LD blocks or SNPs outside LD blocks as described previously.  Among the four 

Caucasian IGF-I groups, there were 40 unique diplotypes, with 13 of these diplotypes 

considered rare (5 or fewer observations).  Diplotypes for each group were estimated for 

97% to 99% of the 399 Caucasians for IGF-I diplotype analyses.   

Among African Americans, there were four LD blocks representing 16 of 20 IGF-I 

SNPs for diplotype analyses, with four SNPs outside LD blocks.  After excluding six 

redundant IGF-I SNPs (r
2
 ≥ 0.8), four groups were created for diplotype estimation.  

Among the four African American IGF-I groups, there were 73 unique diplotypes, with 

25 of these diplotypes considered rare.  Diplotypes for each group were estimated for 

95% to 99% of the 580 African Americans for IGF-I diplotype analyses.     

Five Caucasian IGF-I group 3 diplotypes (GCTCT/GCTGC, GGCCC/AGTGC, 

GGCCT/AGTGC, GGCCT/GGCCT, GGCCT/GGTGT) were positively associated with 

plasma IGF-I, with differences of at least 10% (17 ng/mL) higher than estimated mean 

levels for the referent GGCCC/GGCCT diplotype (Figure 4.3).  However, the 

associations with the GCTCT/GCTGC and GGCCT/GGTGT diplotypes were relatively 

imprecise.  The IGF-I group 3 GGCCT/GGCCT diplotype was positively associated with 

plasma IGFBP-3 (mean difference of at least 200 ng/mL relative to referent diplotype).   

IGF-I group 4 diplotypes (CA/TA and rare (TA/TA), CA/CA) that included the AA 

genotype for rs2946834 (2
nd

 diplotype position) were inversely associated with plasma 

IGFBP-3 relative to the mean level for the referent CG/CG diplotype.  The IGF-I group 4 

diplotype category (CA/TA and TA/TA diplotypes) also was inversely associated with 

plasma IGF-I.   
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The African American IGF-I group 1 GGG/GCG diplotype was positively associated 

with plasma IGF-I relative to the AGG/GGG diplotype, and an imprecise inverse 

association based on fewer than ten observations was noted between the GCG/GCG 

diplotype and plasma IGF-I (Figure 4.4).  Four IGF-I group 2 diplotypes 

(ATCCC/TCTTT, ATTCC/TCTCC, ATTCC/TCTCT, TTTCT/TCTTT) and two IGF-I 

group 3 diplotypes (AAGC/AACT, TACC/TACC) were associated with plasma IGF-I 

relative to the referent diplotypes although estimates were imprecise since there were 15 

or fewer observations with index diplotypes.  In addition, the IGF-I group 4 CA/TA 

diplotype was positively associated with plasma IGF-I relative to the referent CA/CG 

diplotype.  Two IGF-I group 2 diplotypes (ATTCC/TCTCT, TTTCT/TCTTT) and four 

IGF-I group 3 diplotypes (AACC/AGGT, AACC/TACC, AAGC/AACT, TACC/TACC) 

were associated with plasma IGFBP-3, relative to the referent diplotypes, but estimates 

were imprecise due to 15 or fewer observations with index diplotypes.  None of the 

associations between plasma IGFBP-3 or IGF-I levels and African American IGF-I 

diplotypes were explained by patterns with SNP associations. 

 

Discussion 

 

Overall, we noted several associations between individual IGF-I and IGFBP-3 SNPs 

and their respective protein levels.  In addition, we detected associations between IGFBP-

3 SNPs and plasma IGF-I levels and associations between IGF-I SNPs and IGFBP-3 

plasma levels, predominantly among Caucasians.  The strongest evidence of association 

between genetic variation and circulating protein levels was between the nonsynonymous 

IGFBP-3 SNP, rs2854746, and plasma IGFBP-3.  In both races, the CC genotype was 
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associated with higher estimated mean plasma levels than the GG genotype, with 

intermediate mean levels for those with the CG genotype.  In addition, IGFBP-3 

diplotypes with the rs2854746 GG genotype had lower mean plasma IGFBP-3 levels, and 

IGFBP-3 diplotypes with the CC genotype had higher mean plasma IGFBP-3 levels 

relative to referent diplotypes with the CG genotype in both racial groups.   

Among both racial groups, estimated increases in plasma IGFBP-3 levels were 

similar in association with AA versus CC genotypes for s2854744, though estimated 

associations with diplotypes that included this variant were not as consistent as for 

rs2854746.  Associations between rs2854744 and plasma IGFBP-3 in Caucasians might 

be explained by strong LD between rs2854744 and rs2854746 (r
2  

= 0.82); however, these 

two SNPs were not in LD among African Americans (r
2  

= 0.34).  Alternatively, estimated 

plasma IGFBP-3 associations with rs2854744 might be explained by effects of rs924140, 

which was excluded from Caucasian and African American diplotypes, but was in LD 

with rs2854744 among women in both racial groups (Caucasians: r
2  

= 0.99; African 

Americans: r
2  

= 0.82).  However, no functional effects of rs924140 have been reported in 

the literature. 

Biologic evidence supports a causal relation of rs2854746 with plasma IGFBP-3 

levels, since this SNP results in an amino acid change from alanine to glycine.  Evidence 

from protein sequence analysis reported in the UniProtKB/Swiss-Prot database (49) 

suggests that the amino acid coded by the rs2854746 SNP is within the region responsible 

for IGF binding.  The Multiethnic Cohort Study (28) and a small study of controls from a 

population-based cancer case-control study (50) both reported associations between 

rs2854746 and plasma IGFBP-3 in the same direction to our study findings.   
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Other epidemiologic studies have not evaluated rs2854746, but several have 

examined rs2854744 and plasma IGFBP-3 predominantly among Caucasians.  Seven 

studies reported higher circulating IGFBP-3 among women with two copies of the A 

allele compared with women who had no A alleles, and intermediate levels among those 

with AC genotype (32-38), including a study of Physicians’ Health Study participants by 

Deal et al. (33), who noted that rs2854744 (-202 A/C SNP) had the strongest correlation 

with plasma IGFBP-3 of the five evaluated IGFBP-3 promoter SNPs.  In addition, Deal 

et al. reported that  promoter activity was increased in vitro in association with the 

rs2854744 A allele (33), indicating greater IGFBP-3 protein production.  However, 

strong LD with rs2854746 may be a possible causal explanation for associations between 

rs2854744 and plasma IGFBP-3 among Caucasians.  As in our study population, the 

Multiethnic Cohort Study reported strong LD (r
2
 value ≥ 0.8) for rs2854744 and 

rs2854746 among Caucasians but not African Americans (28).  In addition, they noted 

that only rs2854746 was associated with plasma IGFBP-3 levels after accounting for both 

SNPs in their analytic model (142)(28), though sparse data limited inferences across the 

five race/ethnicity groups included in the cohort.  Similar to our study, the Multiethnic 

Cohort Study also reported decreased plasma IGFBP-3 levels in association with 

rs3110697 AA vs. GG genotypes among both races, and that rs3110697 was not in strong 

LD with rs2854744 or rs2854746 (28).  

We also reported consistent inverse associations between IGFBP-3 rs2471551 

variants and plasma IGFBP-3 among both racial groups.  This SNP has potential 

functional relevance as it is located at a splice site (intron 1 within less than 20 kb of exon 

2).  In addition, Canzian et al. (22) reported that rs2471551 (homozygous variant versus 
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homozygous wildtype genotypes) was inversely associated with circulating IGFBP-3 for 

a predominantly Caucasian case-control study nested within the European Prospective 

Investigation into Cancer and Nutrition. 

The focus of many prior epidemiologic studies of IGF-I has been the dinucleotide 

CA repeat polymorphism (position -969) located in the promoter approximately one kb 

upstream of the transcription site; however, relations between CA repeat polymorphisms 

and circulating IGF-I levels have been inconsistent (27, 35-36, 51-58).  Methodological 

differences in the categorization of repeat genotypes and the potential for substantial 

misclassification during genotyping (59) make it difficult to compare results across 

studies.  Although we did not evaluate this repeat polymorphism, we evaluated IGF-I 

SNPs within five kb of the 5’ and 3’ ends of the gene.   

Our study estimated higher mean plasma IGF-I levels in association with the rs6214 

TT genotype relative to the CC genotype among Caucasians and found no clear 

associations between rs35767 and plasma IGF-I or IGFBP-3 among either racial group.  

In contrast, Canzian, et al. measured five IGF-I SNPs in a predominantly Caucasian study 

population and reported associations for rs35767 with circulating IGF-I and IGFBP-3 but 

no associations with rs6214 (32).   

We also estimated an inverse association between plasma IGF-I and the rs1520220 

homozygous variant relative to the homozygous wildtype genotype among Caucasians, 

but noted only a weak positive association among African Americans. We also noted a 

positive association between rs2946834 AA versus GG genotypes and plasma IGF-I 

among African Americans, but a weak inverse association among Caucasians although 

race-specific associations may not be meaningfully different based on imprecision with 
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estimated difference of mean differences.  Al-Zahrani et al. also reported no association 

between rs6214 and plasma IGF-I, but in contrast with our study, they noted a positive 

association with homozygous variant genotypes relative to homozygous wildtype 

genotypes for rs2946834 and rs1520220 (34).  Although both SNPs were tightly 

correlated in this predominantly Caucasian study population, a positive association 

remained with rs1520220 only after adjustment for rs2946834 (34).   

Our study had a very high call rate for genotyping.  We evaluated IGF-I or IGFBP-3 

variants in association with plasma levels of both proteins due to biological interrelations 

between IGF-I and IGFBP-3. Previous studies have evaluated IGF-I or IGFBP-3 variants 

in association with their respective protein levels only, except two studies examined 

associations with both proteins including the Canzian et al. evaluation of several IGF-I 

and IGFBP-3 variants within a Caucasian study population (32) and one study that only 

evaluated the IGF-I dinucleotide CA repeat polymorphism and IGFBP-3 rs2854746 (50). 

Diplotype estimation may have been biased by the removal of women that had a 

lower degree of certainty (posterior probability < 90%) for assigned diplotypes, though 

this bias should be negligible given that 1% to 7% of women were excluded for race-

specific analyses of each diplotype group.  Rare diplotypes were assigned with lower 

certainty, as the PHASE software assumes that frequently observed haplotypes with less 

ambiguity are more probable.  We did not attempt to estimate associations with rare 

diplotypes (5 or fewer observations in our study population) within each group 

individually, but instead combined them into a single category.  Rare diplotype categories 

were associated with plasma IGF-I and IGFBP-3 levels in some instances, but these 
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associations could not be interpreted due to the heterogeneity of the diplotypes included 

in these categories. 

We used a method of information-weighted averaging that intentionally biased 

estimates towards the null, since we assumed a null value for our prior mean; however, 

this approach increased the precision of estimates, particularly diplotypes assigned to 

small numbers of women.  We selected a prior mean of zero since we had no prior 

information to indicate functional similarities between diplotypes and direction of 

associations with plasma IGF-I and IGFBP-3 levels relative to referent diplotypes.  

Despite the increase in bias for posterior medians using this approach, a reduction in the 

overall mean square error based on a greater decrease in variance of estimates has been 

shown with simulation studies and an occupational cohort study (60).   

Possible selection bias exists if women excluded from the study because they lacked 

DNA for genotyping (161 total, 14% of the eligible study population) differed from the 

remaining study population with respect to their genotypes or plasma IGF-I or IGFBP-3 

levels.  A slightly greater proportion of the African Americans (108 total, 16%) in the 

eligible study population were excluded than Caucasians (53 total, 12%).  The parent 

study obtained only one measurement of plasma IGF-I and IGFBP-3 from study 

participants, which may not reflect intra-individual variation; however, the Nurses’ 

Health Study reported high correlations (> 0.8) for plasma IGF-I and IGFBP-3 

measurements across premenopausal women over time (61).  Age and sex are strong 

predictors of circulating IGF-I and IGFBP-3, but these factors were unlikely to influence 

our results since our study population was restricted to women within a narrow 15-year 
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age range (35 to 49 years) and adjusting for age did not affect our results (data not 

shown).   

We restricted our study to Caucasians and African Americans and stratified all 

analyses by race; however, population stratification within each racial group is still a 

potential limitation of our study (62-65).  Several of the reported associations may reflect 

random error or bias; however, at least one (between the nonsynonymous IGFBP-3 SNP 

(rs2854746) and plasma IGFBP-3) showed evidence of a dose-response effect that was 

consistent for the individual SNP and diplotype analyses among both racial groups.  It 

will be important to validate this finding, as well as other results, in additional study 

populations. 

A major strength of our study was the large number of African American 

participants, which allowed us to expand beyond previous research that has focused 

almost exclusively on relations between IGF-I and IGFBP-3 SNPs and their respective 

protein levels in Caucasians. Because African Americans have more genetic 

heterogeneity than Caucasians, the frequency of etiologically relevant SNPs may differ, 

and may at least partly explain racial disparities in the burden of cancer and 

cardiovascular disease.  Therefore, assessing IGF-I and IGFBP-3 variants that predict 

circulating IGF-I and IGFBP-3 is important to improve our understanding of the potential 

biologic role of IGF-I and IGFBP-3 in the etiology of common diseases. 
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Table 4.1. Characteristics of premenopausal women with genotype information by 

race from NIEHS Uterine Fibroid Study  
 

Characteristic 

African Americans 

 (N=582) 

N (%) 

 Caucasians  

(N=402) 

N (%) 

Age (years)    

35-39 219 (37.6)  137 (34.1) 

40-44 205 (35.2)  135 (33.6) 

45+ 158 (27.1)  130 (32.3) 

Education    

High school 121 (20.8)*  12 (3.0) 

Some postsecondary 265 (45.5)  33 (8.2) 

College degree 123 (21.1)  133 (33.1) 

Graduate degree 68 (11.7)  217 (54.0) 

Missing 5 (0.9)  7 (1.7) 

Current oral contraceptives use†  

 

28 (4.8)  37 (9.2) 

Parity    

0 120 (20.6)  236 (58.7) 

1 134 (23.0)  54 (13.4) 

2 194 (33.3)  91 (22.6) 

3+ 134 (23.0)  21 (5.2) 

Body mass index     

Under- normal weight (<25) 147 (25.3)  236 (58.7) 

Overweight (25-<30) 178 (30.6)  95 (23.6) 

Obese (30+) 257 (44.2)  71 (17.7) 

Smoking status    

Current smoker 172 (29.6)  31 (7.7) 

Former smoker 133 (22.9)  139 (34.6) 

Never smoked 277 (47.6)  232 (57.7) 

Alcohol intake (past year)    

<0.5 drinks/week 300 (51.5)  60 (14.9) 

≥0.5 drinks/week   245 (42.1)  314 (78.1) 

Missing 37 (6.4)  28 (7.0) 

 Mean (SD)  Mean (SD) 

Plasma IGF-I (ng/mL)† 165 (74.0)  172 (58.7) 

Plasma IGFBP-3 (ng/mL)† 4085 (859.7)  4524 (822.3) 

* Includes 11 women with less than high school education. 

† N missing: oral contraceptives: 4 African Americans, 3 Caucasians; IGF-I and IGFBP-3:          

   8 African Americans, 1 Caucasian. 
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Table 4.2. Unadjusted linear regression of IGFBP-3 single nucleotide polymorphisms (SNPs) on plasma IGFBP-3 and IGF-I 

levels among Caucasians 

 
Plasma IGFBP-3 (ng/mL)   Plasma IGF-I (ng/mL) 

Block* 
Diplotype 

Group* 

Diplotype 

Position* 

SNP Reference 

ID 

 MAF 

(%)† 
Genotype N‡ 

β§ 95% CI§   β§ 95% CI§ 

GG 22 -398 -754, -42  21 -4, 47 

GT 131 -67 -240, 106  3 -10, 15 

1 1 1 rs903889 22.0 

TT 246 4572 4470, 4674  170 163, 178 

TT 82 581 352, 810  5 -12, 22 

CT 210 375 190, 560  6 -7, 20 

1 -- -- rs924140 46.8 

CC 107 4210 4059, 4361  168 157, 179 

AA 79 592 364, 819  4 -13, 21 

AC 204 353 170, 536  6 -8, 19 

1 1 2 rs2854744|| 46.3 

CC 107 4221 4073, 4370  169 158, 180 

CC 65 631 398, 864  7 -10, 24 

CG 203 379 206, 551  5 -8, 18 

1 1 3 rs2854746|| 41.7 

GG 130 4226 4091, 4360  169 158, 179 

CC 17 -345 -745, 55  -9 -37, 20 

CG 119 -119 -296, 57  -4 -17, 8 

1 1 4 rs2471551 19.4 

GG 260 4583 4484, 4682  174 167, 182 

AC 3 698 -233, 1629  46 -20, 113 -- -- -- rs9282734|| 0.4 

AA 393 4520 4439, 4601  172 166, 178 

-- -- -- rs2453837 0 GG 397 4524 4444, 4605  172 167, 178 

AG 5 394 -330, 1119  33 -18, 85 -- -- -- rs6953668 0.6 

GG 394 4522 4441, 4603  172 166, 178 

AA 62 -425 -670, -181  6 -11, 24 

AG 203 -188 -366, -10  -2 -15, 11 

1 1 5 rs3110697 41.4 

GG 131 4693 4554, 4832  172 162, 182 

AA 12 -535 -1008, -62  -3 -37, 31 

AC 121 -45 -221, 131  -6 -18, 7 

2 1 6 rs2453840 18.3 

CC 263 4560 4461, 4658  174 167, 182 
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CC 14 -325 -760, 111  -5 -36, 26 

CT 131 -114 -285, 57  -10 -22, 2 

2 -- -- rs2453839 20.1 

TT 250 4574 4474, 4675  176 169, 183 

AA 12 74 -402, 551  -22 -56, 12 

AT 145 79 -90, 249  -2 -14, 10 

Outside 2 1 rs6670 21.2 

TT 240 4494 4390, 4598  174 166, 181 

AA 19 39 -343, 421  -4 -31, 24 

AG 131 42 -131, 216  4 -8, 16 

Outside 2 2 rs13223993 21.4 

GG 244 4522 4419, 4624  171 164, 179 

TT 15 -316 -743, 112  -15 -45, 16 

CT 137 -15 -186, 156  3 -9, 15 

3 2 3 rs2270628 21.0 

CC 247 4544 4441, 4646  172 165, 179 

 AC, CC 118 -119 -296, 59  -5 -17, 8 3 2 4 rs12671457 16.5 

AA 267 4558 4460, 4657   174 167, 181 

  NOTE: MAF, minor allele frequency. 

   *  Blocks consist of SNPs with MAF ≥ 5% in strong linkage disequilibrium (LD) (95% of pairwise SNP comparisons with one-sided 95% confidence  

intervals for the D prime statistic within 0.7-0.98).  Group refers to SNP combination for diplotype estimation.  Position refers to SNP order in each group for 

diplotype estimation; the position for each group begins with “1”.  Values for diplotype group and position (--) were not listed for SNPs excluded from 

diplotype estimation based on either: 1) Tagger algorithm (r
2
 ≥ 0.8);  2) MAF < 5% (excluded from blocks (--)).  rs2453840 (block 2) was combined with 

block 1 SNPs for diplotype estimation.  rs6670 and rs13223993 were combined with block 3 SNPs for diplotype estimation. 

  †  Based on total N = 402. 

  ‡  Total N = 401, excluded 1 woman missing plasma IGFBP-3 and IGF-I levels. 

  §  β’s (95% CIs) in last row of each SNP represent the mean plasma IGFBP-3 or IGF-I levels for homozygous wildtype genotypes (reference) estimated  

from linear regression intercepts.  β’s for heterozygous and homozygous variant genotypes represent differences in the mean plasma IGFBP-3 or IGF-I levels 

for the reference genotypes estimated from linear regression.     

  ||  SNPs selected a priori.  rs2854744 is also known as -202 A/C; rs2854746 and rs9282734, nonsynonymous SNPs. 
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Table 4.3. Unadjusted linear regression of IGFBP-3 single nucleotide polymorphisms (SNPs) on plasma IGFBP-3 and IGF-I 

levels among African Americans 

 
Plasma IGFBP-3 (ng/mL)   Plasma IGF-I (ng/mL) 

Block* 
Diplotype 

Group* 

Diplotype 

Position* 

SNP Reference 

ID 

 MAF 

(%)† 
Genotype N‡ 

β§ 95% CI§   β§ 95% CI§ 

GT, GG 97 -131 -318, 55  5 -12, 21 Outside 1 1 rs903889 9.4 

TT 471 4108 4031, 4185  164 157, 171 

CC 95 -560 -761, -360  -17 -35, 1 

CT 251 -276 -427, -125  -8 -21, 5 

1 -- -- rs924140 38.9 

TT 222 4304 4194, 4414  171 161, 181 

CC 107 -534 -728, -339  -13 -31, 4 

AC 258 -258 -412, -105  -8 -21, 6 

1 1 2 rs2854744|| 42.2 

AA 195 4305 4190, 4421  171 161, 181 

CC 52 897 656, 1138  8 -14, 30 

CG 259 458 318, 598  7 -6, 20 

1 1 3 rs2854746|| 32.1 

GG 256 3798 3699, 3897  161 152, 170 

CC 27 -465 -796, -133  -24 -53, 5 

CG 173 -258 -412, -105  -8 -21, 5 

1 1 4 rs2471551 20.3 

GG 364 4193 4106, 4280  169 161, 176 

AC, CC 36 24 -263, 311  -13 -38, 12 -- 1 5 rs9282734|| 3.3 

AA 532 4079 4007, 4151  166 159, 172 

-- -- -- rs2453837 0 GG 568 4083 4012, 4154  165 159, 171 

AG, AA 55 -124 -362, 115  -16 -37, 4 1 1 6 rs6953668 5.0 

GG 513 4094 4020, 4169  166 160, 173 

AA 78 -551 -764, -338  -19 -37, 0 

AG 251 -365 -513, -217  -13 -26, 0 

Outside 1 7 rs3110697 36.1 

GG 238 4325 4219, 4431  173 164, 182 

AC, AA 98 209 24, 394  6 -10, 22 2 2 1 rs2453840 9.2 

CC 470 4045 3969, 4122  164 157, 170 
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CC 93 -167 -380, 45  2 -16, 20 

CT 279 -28 -186, 129  -3 -17, 11 

2 2 2 rs2453839 40.9 

TT 194 4130 4009, 4251  166 156, 176 

AT, AA 133 -44 -210, 121  -9 -23, 6 3 3 1 rs6670 12.6 

TT 434 4100 4020, 4180  167 160, 174 

AA 116 -17 -216, 182  -7 -24, 10 

AG 264 -147 -308, 14  -6 -20, 8 

3 3 2 rs13223993 43.6 

GG 184 4163 4039, 4286  169 158, 180 

TT 83 84 -131, 300  17 -2, 35 

CT 247 -64 -218, 90  -6 -19, 8 

4 3 3 rs2270628 36.2 

CC 236 4101 3991, 4211  165 155, 174 

 AC, CC 55 -218 -456, 21  12 -9, 32 4 3 4 rs12671457 5.1 

AA 510 4106 4032, 4181   163 157, 170 

  NOTE: MAF, minor allele frequency. 

  *  Blocks consist of SNPs with MAF ≥ 5% in strong linkage disequilibrium (LD) (95% of pairwise SNP comparisons with one-sided 95% confidence  

intervals for the D prime statistic within 0.7-0.98).  Group refers to SNP combination for diplotype estimation.  Position refers to SNP order in each group for 

diplotype estimation; the position for each group begins with “1”.  Values for diplotype group and position (--) were not listed for SNPs excluded from 

diplotype estimation based on either: 1) Tagger algorithm (r
2
 ≥ 0.8);  2) MAF < 5% (excluded from blocks (--)) or MAF < 3% for SNPs selected a priori.  

rs903889 and rs3110697 were combined with block 1 SNPs for diplotype estimation.  SNPs in blocks 3 and 4 were combined together for diplotype 

estimation.       

  † Based on total N = 582. 

  ‡ Total N = 574, excluded 8 women missing plasma IGFBP-3 and IGF-I levels. 

  §  β’s (95% CIs) in last row of each SNP represent the mean plasma IGFBP-3 or IGF-I levels for homozygous wildtype genotypes (reference) estimated  

from linear regression intercepts.  β’s for heterozygous and homozygous variant genotypes represent differences in the mean plasma IGFBP-3 or IGF-I  

levels for the reference genotypes estimated from linear regression.     

  ||  SNPs selected a priori.  rs2854744 is also known as -202 A/C; rs2854746 and rs9282734, nonsynonymous SNPs. 
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Table 4.4. Unadjusted linear regression of IGF-I single nucleotide polymorphisms (SNPs) on plasma IGFBP-3 and IGF-I levels 

among Caucasians 

 
Plasma IGFBP-3 (ng/mL)   Plasma IGF-I (ng/mL) 

Block* 
Diplotype 

Group* 

Diplotype 

Position* 

SNP 

Reference ID 

 MAF 

(%)† 
Genotype N‡ 

β§ 95% CI §   β§ 95% CI§  

AG, AA  116 -20 -197, 157  5 -7, 18 Outside 1 1 rs35767 16.0 

GG 280 4525 4429, 4620  171 164, 177 

AG, GG 30 240 -65, 546  21 -1, 42 -- -- -- rs5742612 3.9 

AA 368 4506 4422, 4590  171 165, 177 

CG 14 227 -211, 665  18 -14, 49 -- -- -- rs5742614 1.8 

GG 385 4518 4436, 4600  172 166, 178 

-- -- -- rs3729846|| 0 CC 399 4528 4447, 4608  172 166, 178 

AA 21 235 -130, 601  0 -26, 27 

AG 139 52 -119, 223  5 -8, 17 

1 2 1 rs12821878 22.7 

GG 237 4494 4390, 4598  171 163, 178 

TT 31 -188 -499, 123  -5 -28, 17 

AT 170 29 -140, 198  6 -6, 18 

1 -- -- rs10860869 29.1 

AA 196 4532 4417, 4647  170 162, 179 

 AC, AA 93 98 -93, 288  10 -4, 23 1 2 2 rs1019731 12.3 

CC 304 4509 4417, 4601  170 164, 177 

CC 29 -167 -486, 152  -5 -28, 18 

CT 160 -3 -173, 166  2 -10, 14 

1 2 3 rs7956547 27.3 

TT 209 4541 4429, 4652  172 164, 180 

CT 4 -255 -1058, 548  -3 -61, 54 -- -- -- rs5742626 0.5 

TT 394 4522 4442, 4603  172 166, 178 

AG 1 -607 -2223, 1008  -78 -193, 37 -- -- -- rs17880975 0.1 

GG 395 4531 4450, 4613  173 167, 178 

AG, AA  47 -139 -389, 111  5 -13, 22 2 3 1 rs2033178 6.2 

GG 349 4537 4451, 4623  172 166, 178 

-- -- -- rs17884646 0 TT 397 4523 4443, 4603  172 166, 178 

AG, GG 17 29 -370, 428  18 -11, 46 -- -- -- rs5742657 2.2 

AA 383 4524 4442, 4607  171 166, 177 
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GT 1 -519 -2131, 1093  12 -103, 127 -- -- -- rs5742663 0.1 

TT 396 4532 4451, 4613  172 167, 178 

AG 18 107 -282, 496  16 -12, 43 -- -- -- rs11829586 2.3 

GG 380 4524 4441, 4606  172  166, 178 

TT 25 -251 -587, 85  -16 -40, 8 

CT 153 -128 -296, 40  0 -12, 12 

2 -- -- rs4764884 25.7 

CC 218 4588 4481, 4696  173 165, 181 

AG 1 -512 -2116, 1092  12 -102, 127 -- -- -- rs5742683 0.1 

AA 396 4525 4445, 4606  172 166, 178 

-- -- -- rs17884626|| 0 CC 399 4526 4445, 4607  172 167, 178 

TT 36 -223 -513, 67  -6 -27, 15 

CT 167 -52 -221, 117  6 -6, 18 

2 -- -- rs5009837 30.3 

CC 192 4564 4449, 4680  170 162, 178 

CC 15 -273 -700, 155  -4 -35, 27 

CG 123 -78 -254, 98  -4 -17, 8 

2 3 2 rs17727841 19.1 

GG 261 4559 4459, 4658  174 167, 181 

CC 37 -237 -525, 50  -8 -29, 12 

CT 167 -60 -230, 110  4 -8, 17 

2 -- -- rs4764883 30.9 

TT 186 4577 4460, 4694  171 163, 179 

AA 28 -315 -636, 5  -16 -39, 7 

AT 166 -107 -274, 60  3 -9, 15 

2 -- -- rs9308315 28.2 

TT 201 4590 4478, 4703  172 164, 180 

TT 28 -313 -634, 8  -13 -37, 10 

CT 164 -114 -281, 53  4 -8, 16 

2 3 3 rs978458 28.0 

CC 202 4590 4478, 4702  172 163, 180 

AG 17 27 -373, 426  18 -11, 46 -- -- -- rs5742692 2.1 

AA 382 4526 4444, 4609  171 166, 177 

AG, AA  76 -181 -385, 23  -4 -19, 10 2 -- -- rs11111262 9.9 

GG 321 4567 4478, 4657  173 167, 180 

GG 13 -539 -989, -88  -33 -65, 0 

CG 124 -164 -337, 9  7 -6, 19 

2 3 4 rs1520220 19.1 

CC 258 4590 4491, 4688  171 164, 178 
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CT 18 -206 -595, 183  -24 -52, 3 -- -- -- rs3730204 2.3 

TT 378 4538 4455, 4621  173 168, 179 

TT 67 178 -59, 414  17 0, 34 

CT 183 -59 -236, 119  -2 -14, 11 

Outside 3 5 rs6214 39.8 

CC 148 4524 4392, 4656  170 161, 180 

CT, TT 78 -200 -402, 3  -6 -20, 9 3 4 1 rs6219 10.0 

CC 321 4565 4476, 4655  174  167, 180 

AA 39 -287 -571, -3  -7 -28, 13 

AG 181 -78 -248, 92  1 -11, 13 

3 4 2 rs2946834 33.0 

GG 175 4585 4463, 4706   172 164, 181 

 NOTE: MAF, minor allele frequency. 

  *  Blocks consist of SNPs with MAF ≥ 5% in strong linkage disequilibrium (LD) (95% of pairwise SNP comparisons with one-sided 95% confidence  

intervals for the D prime statistic within 0.7-0.98).  Group refers to SNP combination for diplotype estimation.  Position refers to SNP order in each group for 

diplotype estimation; the position for each group begins with “1”.  Values for diplotype group and position (--) were not listed for SNPs excluded from 

diplotype estimation based on either: 1) Tagger algorithm (r
2
 ≥ 0.8);  2) MAF < 5% (excluded from blocks (--)).  rs6214 was combined with block 2 SNPs for 

diplotype estimation. 

  †  Based on total N = 402. 

  ‡  N = 401, excluded 1 woman missing plasma IGFBP-3 and IGF-I levels. 

  §  β’s (95% CIs) in last row of each SNP represent the mean plasma IGFBP-3 or IGF-I levels for homozygous wildtype genotypes (reference) estimated  

from linear regression intercepts.  β’s for heterozygous and homozygous variant genotypes represent differences in the mean plasma IGFBP-3 or IGF-I levels 

for the reference genotypes estimated from linear regression.     

  ||  SNPs selected a priori.  rs3729846, synonymous SNP; rs17884626, nonsynonymous SNP. 
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Table 4.5. Unadjusted linear regression of IGF-I single nucleotide polymorphisms (SNPs) on plasma IGFBP-3 and IGF-I levels 

among African Americans 

 
Plasma IGFBP-3 (ng/mL)   Plasma IGF-I (ng/mL) 

Block* 
Diplotype 

Group* 

Diplotype 

Position* 

SNP Reference 

ID 

 MAF 

(%)†  
Genotype N‡ 

β§  95% CI§    β§ 95% CI§ 

AA 99 40 -166, 245  -1 -19, 17 

AG 264 -68 -224, 89  -2 -16, 11 

1 1 1 

 

rs35767 40.8 

GG 205 4109 3992, 4227  166 156, 176 

 AG, GG 35 154 -139, 448  5 -20, 31 -- -- -- rs5742612 3.3 

AA 536 4079 4006, 4152  164 158, 171 

CG, CC 124 -48 -219, 123  8 -6, 23 1 1 2 rs5742614 11.5 

GG 444 4097 4017, 4177  163 156, 170 

CT 9 291 -266, 848  33 -16, 82 -- -- -- rs3729846|| 0.8 

CC 557 4070 3999, 4140  164 158, 170 

AG, AA  64 -180 -404, 43  -15 -34, 5 Outside 1 3 rs12821878 5.8 

GG 505 4106 4031, 4181  167 160, 173 

TT 59 265 23, 507  11 -10, 32 

AT 249 54 -95, 202  12 -1, 25 

Outside 2 1 rs10860869 32.3 

AA 262 4034 3930, 4137  158 149, 167 

AC 39 -140 -420, 140  -10 -34, 14 -- -- -- rs1019731 3.4 

CC 528 4096 4023, 4170  165 159, 172 

CC 43 152 -118, 422  8 -16, 32 

CT 210 73 -75, 221  10 -3, 23 

2 2 2 rs7956547 26.2 

TT 314 4042 3949, 4136  160 152, 168 

CT, CC 78 27 -178, 233  -8 -26, 9 2 2 3 rs5742626 7.2 

TT 491 4084 4007, 4160  166 159, 173 

AG 26 319 -19, 657  8 -21, 38 -- -- -- rs17880975 2.3 

GG 540 4075 4002, 4147  165 158, 171 

AG, AA  50 -135 -385, 115  -24 -46, -3 -- -- -- rs2033178 4.7 

GG 513 4099 4025, 4174  167 161, 174 

-- -- -- rs17884646 0 TT 570 4084 4014, 4155  165 159, 171 
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AG, GG 128 75 -94, 243  3 -11, 18 2 -- -- rs5742657 12.1 

AA 440 4063 3984, 4143  164 157, 170 

GT, GG 123 102 -69, 274  8 -6, 23 2 -- -- rs5742663 11.6 

TT 444 4063 3983, 4143  163 156, 170 

AG, AA 121 116 -56, 288  7 -8, 22 2 -- -- rs11829586 11.5 

GG 445 4054 3974, 4133  163 156, 170 

TT 34 102 -202, 405  10 -16, 36 

CT 200 11 -140, 162  5 -8, 18 

2 2 4 rs4764884 23.7 

CC 333 4073 3981, 4165  162 154, 170 

AG, GG 113 112 -65, 289  5 -11, 20 2 -- -- rs5742683 10.6 

AA 454 4061 3982, 4140  164 157, 171 

CT 11 104 -408, 617  13 -31, 57 -- -- -- rs17884626|| 1.0 

CC 559 4085 4014, 4156  164 158, 171 

TT 105 135 -67, 337  8 -9, 26 

CT 260 96 -61, 254  10 -3, 24 

Outside 2 5 rs5009837 41.3 

CC 203 4014 3896, 4132  158 148, 168 

CG, CC 49 74 -178, 326  23 1, 44 -- -- -- rs17727841 4.7 

GG 520 4079 4005, 4153  163 156, 169 

TT 132 -128 -321, 66  -12 -29, 5 

CT 248 -105 -270, 60  -11 -25, 3 

3 -- -- rs4764883 45.8 

CC 180 4169 4043, 4295  173 162, 183 

TT 150 -85 -277, 107  -12 -28, 5 

AT 262 -94 -264, 76  -11 -26, 4 

3 3 1 rs9308315 49.8 

AA 152 4145 4009, 4280  173 161, 185 

TT 83 113 -104, 329  9 -10, 28 

CT 259 72 -82, 226  7 -6, 20 

3 -- -- rs978458 37.5 

CC 224 4039 3926, 4151  160 151, 170 

GG 11 69 -443, 581  14 -31, 58 

AG 111 120 -58, 299  4 -12, 19 

3 3 2 rs5742692 11.7 

AA 444 4054 3974, 4134  164 157, 170 

AG, AA 27 81 -252, 413  40 11, 68 -- -- -- rs11111262 2.7 

GG 536 4083 4010, 4155  163 157, 169 
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GG 73 112 -113, 336  10 -9, 29 

CG 250 111 -40, 263  6 -7, 19 

3 3 3 rs1520220 34.7 

CC 245 4024 3917, 4132  161 151, 170 

CT 3 -736 -1711, 239  6 -79, 90 -- -- -- rs3730204 0.3 

TT 562 4097 4026, 4168  165 159, 171 

CC 124 -63 -259, 133  -3 -20, 14 

CT 263 61 -102, 223  -4 -18, 10 

Outside 3 4 rs6214 45.2 

TT 178 4068 3942, 4193  167 156, 178 

 CT, TT 94 60 -130, 251  16 -1, 32 4 4 1 rs6219 9.1 

CC 475 4074 3996, 4151  162 155, 169 

AA 142 149 -49, 346  16 0, 33 

AG 279 52 -119, 223  2 -12, 17 

4 4 2 rs2946834 49.3 

GG 147 4026 3888, 4165   159 147, 171 

  NOTE: MAF, minor allele frequency. 

  *  Blocks consist of SNPs with MAF ≥ 5% in strong linkage disequilibrium (LD) (95% of pairwise SNP comparisons with one-sided 95% confidence intervals 

for the D prime statistic within 0.7-0.98).  Group refers to SNP combination for diplotype estimation.  Position refers to SNP order in each group for 

diplotype estimation; the position for each group begins with “1”.  Values for diplotype group and position (--) were not listed for SNPs excluded from 

diplotype estimation based on either: 1) Tagger algorithm (r
2
 ≥ 0.8);  2) MAF < 5% (excluded from blocks (--)).  rs12821878 was combined with block 1 

SNPs for diplotype estimation.  rs10860869 and rs5009837 were combined with block 2 SNPs for diplotype estimation.  rs9308315 was substituted for  

rs4764883 (Hardy-Weinberg p value <0.01).  rs6214 was combined with block 3 SNPs for diplotype estimation. 

  †  Based on total N = 582. 

  ‡  Total N = 574, excluded 8 women missing plasma IGFBP-3 and IGF-I levels. 

  §  β’s (95% CIs) in last row of each SNP represent the mean plasma IGFBP-3 or IGF-I levels for homozygous wildtype genotypes (reference) estimated  

from linear regression intercepts.  β’s for heterozygous and homozygous variant genotypes represent differences in the mean plasma IGFBP-3 or IGF-I levels 

for the reference genotypes estimated from linear regression.     

  ||  SNPs selected a priori.  rs3729846, synonymous SNP; rs17884626, nonsynonymous SNP.  
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CHAPTER V 

PAPER 2: ASSOCIATION OF IGF-I AND IGFBP-3 POLYMORPHISMS WITH 

UTERINE LEIOMYOMATA AMONG AFRICAN AMERICAN AND 

CAUCASIAN WOMEN 

 

 

Abstract 

Uterine leiomyomata (fibroids) are responsible for substantial morbidity, especially 

among African Americans.  Insulin-like growth factor-I (IGF-I), a potent mitogen, is 

hypothesized to be involved in fibroid pathogenesis based on gene expression studies, 

and IGFBP-3 may be involved in IGF-I mediated mechanisms based on influencing 

bioavailability of IGF-I.  We evaluated 30 IGF-I and 15 IGFBP-3 SNPs and estimated 

diplotypes in relation to fibroid prevalence (any and 2+ cm) among 984 premenopausal 

African American and Caucasian women.  We noted associations between IGF-I and 

IGFBP-3 variants and fibroids, but findings with diplotypes generally did not support 

SNP associations.  Relatively precise IGF-I and IGFBP-3 SNP variant associations with 

magnitudes of at least 10% were predominantly reported among African Americans, 

including functionally relevant IGFBP-3 SNPs of rs9282734 (nonsynonymous) (overall: 

PD = -0.130, 95% CI: -0.294, 0.034) and rs2475551 (splice site) (overall: PD = 0.208, 

95% CI: 0.095, 0.320) and IGF-I SNP rs35767 (promoter) (overall: PD = 0.208, 95% CI: 

0.095, 0.320).  Associations with larger fibroids were generally consistent or slightly 

weaker than associations with any fibroids, and did not provide stronger evidence for
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IGF-I involvement in promoting growth rather than tumorigenesis.  This is the first 

epidemiologic study to evaluate IGF-I and IGFBP-3 variants in relation to fibroids.  In 

conclusion, this study provides support for hypothesis of IGF-I involvement with 

fibroids.  Future research should validate findings in other populations represented by 

African Americans and examine other genes involved in the IGF-I pathway.    

 

Introduction 

Uterine leiomyomata (fibroids) are hormonally-dependent benign tumors of smooth 

muscle origin that are the principal indication for hysterectomies in the United States (1, 

2).  Age and ethnicity have been the most consistently reported risk factors for uterine 

fibroids, with advancing age until menopause and African American versus Caucasian 

race associated with an increased incidence of fibroids and related morbidity (3-7).  The 

National Institute of Environmental Health Sciences (NIEHS) Uterine Fibroid Study, 

which used ultrasound screening to detect fibroids in cohort participants, estimated that 

the risk of fibroids by age 50 is over 80% among African Americans and over 60% 

among Caucasians (3).      

Estrogens and progesterones are hypothesized to promote fibroid development and 

growth by accelerating the activity of cytokines and growth factors (8).  In particular, 

insulin-like growth factor-I (IGF-I), a polypeptide with structural similarities to insulin, 

has been implicated in fibroid etiology based on in vitro promotion of fibroid cell growth 

(9) and evidence of increased IGF-I mRNA or peptides (10-16) in fibroids relative to 

normal myometrium.  A recent study reported elevated IGF-I mRNA and protein after 

estrogen treatment in fibroids relative to normal myometrium, in addition to relative 
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changes in levels of two IGF-I pathway factors (17).  IGF Binding Protein-3 (IGFBP-3) 

binds approximately 90% of circulating IGF-I (18), and may contribute to IGF-I 

mediated pathogenic mechanisms. Although biologic evidence supporting IGFBP-3 

involvement with uterine fibroids is limited, one gene expression study found elevated 

IGFBP-3 mRNA in fibroids compared to normal myometrium (16).    

We examined whether IGF-I and IGFBP-3 were associated with uterine fibroid 

development and growth by evaluating relations between IGF-I and IGFBP-3 

polymorphisms and the prevalence of uterine fibroids.  Specifically, we evaluated 45 

single nucleotide polymorphisms (SNPs) in IGF-I and IGFBP-3 and estimated diplotypes 

(paired haplotypes) in association with the prevalence of  1) all fibroids versus no fibroids 

and 2) larger (>2cm) fibroids versus small fibroids or no fibroids among premenopausal 

African American and Caucasian participants in the National Institute for Environmental 

Health Sciences (NIEHS) Uterine Fibroid Study. 

 

Methods 

 

Study population 

The study population consisted of 984 premenopausal women (582 African 

Americans and 402 Caucasians) with available DNA samples for genotyping from the 

NIEHS Uterine Fibroid Study (UFS).  The parent study was designed to estimate the 

prevalence of uterine leiomyomata (fibroids) among African American and Caucasian 

women, and to evaluate potential etiologic factors for fibroids.  The consent form 

specified use of biological samples for genetic polymorphism analyses.  Details of the 

parent study, which was approved by the NIEHS and George Washington University 
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Human Subject’s Review Boards, were previously described (3, 19, 20).  Briefly, 

participants in the parent study were recruited from a random sample of 35 to 49-year old 

George Washington University health plan members.  Approximately 20% of eligible 

women refused participation, resulting in a total of 1,430 participants enrolled between 

1996 through 1999 (19).   

We restricted the current study population to women who self-reported their race as 

African American or Caucasian (n = 1,323) to facilitate race-specific analyses, and 

excluded women who were postmenopausal at enrollment since they were not asked to 

participate in ultrasound screening and blood collection (n = 178).  Race and menopausal 

status criteria were met by 1,145 women, and DNA was extracted for 984 of the 1,003 

women with collected blood samples.   

Uterine fibroid assessment 

Many women have asymptomatic fibroids; therefore, the parent study conducted 

ultrasound screening of premenopausal participants to provide a better estimate of fibroid 

prevalence than previous studies based on clinical diagnosis or treatment by 

hysterectomy only.  Both transabdominal and transvaginal ultrasound procedures were 

performed by trained sonographers certified by the American Registry of Diagnostic 

Medical Sonographers under the supervision of a radiologist who verified their 

assessments.  Information collected by sonographers included the size and location of the 

two largest fibroids and the number of tumors within the uterus (3).  Study sonograms 

were not performed for women who had a recent ultrasound at the clinic that conducted 

UFS study sonograms; instead, medical records were abstracted to obtain fibroid 

information for these women (N = 204, approximately 20% of the current study sample).  
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In addition, 19 women in our study sample were classified with regard to the size and 

presence of fibroids based on self-reported previous diagnoses only.  Fibroid status could 

not be assessed in seven African Americans and eight Caucasians in our study sample; 

however, these women were genotyped based on analyses with other outcomes including 

circulating IGF-I and IGFBP-3 levels (not shown in current paper).   

Selection of genetic polymorphisms 

 

Race-specific haplotype-tagging SNPs in IGF-I and IGFBP-3 were selected using 

Genome Variation Server (GVS) software (sponsored by the Seattle SNPs Program for 

Genomic Applications (PGA)) (21).  We used the Seattle SNPs database as the reference 

population for IGF-I, and the HapMap database for IGFBP-3, which has not been 

evaluated by Seattle SNPs (21).  In addition to SNPs within each gene, we included SNPs 

within 5 kilobases (kb) of the 5’ and 3’ ends of IGF-I and IGFBP-3, and used a value of 

0.8 as the pairwise correlation coefficient (r
2
) for identifying haplotype-tagging SNPs.  

We selected only haplotype-tagging SNPs with a minor allele frequency (MAF) greater 

than 5% among women in at least one racial group.  There were 29 haplotype-tagging 

SNPs for IGF-I and 12 haplotype-tagging SNPs for IGFBP-3 overall.  In addition, we 

selected four SNPs a priori based on functional significance, including one 

nonsynonymous IGF-I SNP (rs17884626), one synonymous IGF-I SNP (rs3729846), and 

two nonsynonymous IGFBP-3 SNPs (rs2854746, rs9282734) and an IGFBP-3 promoter 

SNP (-202 A/C, rs2854744) a priori based on previous studies of associations with 

circulating IGF-I and IGFBP-3 levels and health outcomes (22-29). 
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Sample collection and genotyping 

Blood specimens were collected through venipuncture after an 8-hour fast.  Genomic 

DNA was initially extracted from whole blood using a phenol:chloroform procedure, but 

was later replaced by a safer and more efficient modified salt precipitation procedure 

(GenQuik Protocol).  Genotyping was performed using the TaqMan genotyping approach 

(30-32) at an outside laboratory (Mammalian Genotyping Core, Lineberger 

Comprehensive Cancer Center; Chapel Hill, NC).  Allele-specific oligonucleotide probes 

for 39 selected SNPs were purchased from Applied Biosystems (ABI; Foster City, CA) 

“TaqMan® Validated and Coding SNP or Pre-Designed SNP Genotyping Assays”.  In 

addition, ABI attempted to develop custom assays for the 6 remaining SNPs through their 

“Custom TaqMan® SNP Genotyping Assays” service.  Two of the initially selected IGF-

I haplotype tagging SNPs were removed from analyses, including one for which a custom 

assay could not be developed and one with a pre-designed assay that did not meet ABI 

technical specifications.  We also genotyped an alternate IGF-I haplotype-tagging SNP 

after one seemed inconsistent with Hardy-Weinberg equilibrium among African 

Americans.  Thus, 30 IGF-I and 15 IGFBP-3 SNPs were genotyped, including 40 

haplotype-tagging SNPs and 5 SNPs selected a priori. 

PCR amplification was performed on an ABI GeneAmp® PCR System 9700 thermal 

cycler with dual 384-well-blocks, and endpoint plates were read using the ABI 7900HT 

system.  VIC and 6-FAM reporter dyes were used as the fluorescent signals to distinguish 

wild type and variant alleles.  Alleles were called automatically through Sequence 

Detection System (SDS) 2.3 software, and confirmed through a review of all output by 

experienced operators.  The DNA concentration of each sample was validated using a 
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NanoDrop® ND-1000 Spectrophotometer prior to dilution to 5 ng/ul (using DNA grade 

sterile water).  Samples were placed into eleven 96-well microtiter plates and aliquoted 

into three 384-well PCR plates for analysis.  Each of the eleven microtiter plates 

contained four randomly assigned controls, including two blank samples and two with a 

known DNA standard (Control DNA CEPH Individual 1347-02, ABI).  Quality control 

measures also included blinded genotyping of 28 duplicate samples representing 22 

women, which produced concordant results for all samples.  The overall call rate was 

98.8%, and only 5 women had less than 50% of complete allele calls for the 45 SNPs 

assayed.  We confirmed that SNP genotype frequencies were consistent with Hardy-

Weinberg equilibrium (HWE) within each racial group using the exact test statistic with 

one degree of freedom (α = 0.01) (33).   

Diplotype estimation 

In addition to estimating associations with individual SNPs, we estimated 

associations with race-specific diplotypes (paired haplotypes) imputed for groups of 

related SNPs within each gene, as described below.  We excluded SNPs from race-

specific diplotype analyses if their MAF was below 5% (for haplotype-tagging SNPs) or 

3% (for a priori SNPs) within the racial category being evaluated.  In addition, women 

missing genotype data for more than 50% of the SNPs relevant for diplotype estimation 

within a gene were excluded from diplotype analyses for that gene (one Caucasian and 

three African Americans for IGFBP-3, three Caucasians and two African Americans for 

IGF-I).  We then evaluated race-specific linkage disequilibrium (LD) patterns using 

Haploview software (34) to identify SNPs in each gene that could be grouped together to 

estimate diplotypes.  First, we identified blocks consisting of individual SNPs (with MAF 
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at least 5%) in LD based on 95% of pairwise SNP comparisons with one-sided 95% 

confidence intervals for the D prime statistic within 0.7 to 0.98 (35).  Next, we used the 

Tagger approach (36) in Haploview to identify pairs of redundant SNPs in strong LD 

(pairwise r
2
 values ≥ 0.8), and excluded one member of each redundant pair from 

diplotype estimation unless both SNPs had been selected a priori.  Race-specific pairwise 

r
2
 values are available for IGFBP-3 and IGF-I SNPs in Tables A.1-A.4.  

Race-specific diplotypes for defined groups of SNPs were then estimated using 

PHASE version 2.1 (37, 38), which uses a Markov chain-Monte Carlo (MCMC) 

algorithm to allocate the most likely diplotypes for each person, with the prior 

assumption that frequently observed haplotypes with less ambiguity are more probable.  

PHASE also provides a posterior probability estimate that expresses the uncertainty 

associated with each diplotype assignment.  To simplify diplotype analyses, we created 

race-specific groups for diplotype estimation by combining individual SNPs that were not 

included in a block with adjacent blocks, and combined adjacent blocks with each other, 

if doing so resulted in diplotypes that were estimated with at least 90% certainty 

(posterior probability) for at least 90% of individuals within the racial category.  

Otherwise, diplotype groups represented SNPs within a single block, or individual SNPs 

that were not included in a block.  We assigned women to their most probable diplotype 

for each group; however, if their most probable diplotype had a posterior probablility 

below 90%, we classified women as missing for that diplotype group. 

Statistical analysis 

All statistical analyses were stratified by race and conducted using SAS V9.1 (SAS 

Institute Inc., Cary, NC).  We estimated race-specific prevalence differences (PDs) for 
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associations between IGF-I and IGFBP-3 gene variants and prevalent fibroids, including 

associations with individual SNPs and associations with race-specific diplotypes.  We 

performed separate analyses to 1) estimate associations between gene variants and any 

uterine fibroids versus no uterine fibroids, and 2) estimate associations with fibroids at 

least 2 cm in diameter versus no fibroids and fibroids < 2cm.  The latter analysis focuses 

on women with moderate to larger fibroids to explore the hypothesis that IGF-I 

stimulates fibroid growth rather than incidence.  We reported unadjusted associations 

since there are no known factors other than race that would predict both fibroids and gene 

variants.  We estimated 95% confidence intervals for crude prevalence differences (PD) 

in SAS V9.1, which calculates standard errors from the square root of the sum of the 

fibroid prevalence variances based on formula for independent proportions.  For 

diplotype analyses, we used Poisson regression with the robust variance option in PROC 

GENMOD to estimate prevalence differences with 95% confidence intervals (39).   

For the analysis of individual SNPs, we first considered a codominant (general) 

model of inheritance in which heterozygous and homozygous variant genotypes were 

separately evaluated relative to the homozygous wildtype genotype.  Codominant models 

make the fewest assumptions with regard to the inheritance pattern but could be used 

only for common variants.  Therefore, for less common variants, we used a dominant 

model in which we combined homozygous variant and heterozygous genotypes and 

compared to those with the homozygous wildtype genotype.  Associations with 

individual SNPs were not estimated if there were 5 or fewer women in a racial group with 

heterozygous and homozygous variant genoypes combined. 
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We estimated associations between IGF-I or IGFBP-3 diplotypes and fibroids using 

separate race-specific models for each diplotype group, with the most common diplotype 

as the reference category.  Diplotypes assigned to 5 or fewer women were combined into 

a “rare diplotype” category.  We used a Bayesian method of information-weighted 

averaging (40) to improve the validity and precision of estimates.  This method shrinks 

imprecise estimates based on smaller numbers of observations further toward the prior 

mean than more precise regression estimates.  Since we did not have information to 

group diplotypes according to the direction or strength of their potential associations with 

fibroids, we assumed a prior mean of 0, and specified a prior variance, (0.5/3.92)
2
 ≈ 

0.016, that assumed with 95% probability that regression estimates would vary within a 

range of ± 0.25.  For each diplotype, we applied the shrinkage estimator and report 

posterior medians (50
th

 percentile of the posterior probability distribution) and 95% 

posterior limits (2.5
th

 and 97.5
th

 percentiles of the posterior probability distribution).  

Regression estimates and 95% confidence intervals estimated directly by Poisson 

regression with robust variances are available in Tables A.15-A.22. 

 

Results 

 

Participant characteristics 

The study population included 582 African American women and 402 Caucasian 

women that were similar with regard to age (35 to 49 years) based on the study design.  

The overall prevalence of fibroids was 72% among African Americans and 50% among 

Caucasians, with 56% of African Americans having at least one fibroid that was 2 cm 

diameter or larger, compared with 33% of Caucasians (Table 5.1).   
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IGFBP-3 SNPs  

We emphasize SNP associations where fibroid prevalence is increased or decreased 

by at least 10% with variant genotypes relative to homozygous wildtype genotypes, and 

we consider less support for imprecise associations based on small numbers with variant 

genotypes under comparison.  Among Caucasians, the homozygous variant versus the 

homozygous wildtype genotypes for two SNPs (rs2453840, rs2453839) in strong LD 

(pairwise r
2
 value = 0.87) were inversely associated with any fibroids (rs2453840: PD = -

0.105; 95% CI: -0.390, 0.181; rs2453839: PD = -0.088; 95% CI: -0.354, 0.179), but were 

positively associated with larger fibroids (at least 2 cm in diameter) (rs2453840: PD = 

0.077, 95% CI: -0.208, 0.362; rs2453839: PD = 0.091, 95% CI: -0.175, 0.357) (Table 

5.2).  In addition, the homozygous variant versus the homoyzygous wildtype genotypes 

for two SNPs (rs903889, rs2270628) were positively associated with any fibroids 

(rs903889: PD = 0.095, 95% CI: -0.120, 0.310; rs2270628: PD = 0.104, 95% CI: -0.152, 

0.360), but only rs2270628 variants were associated with larger fibroids (PD = 0.149; 

95% CI: -0.111, 0.408).  These two SNPs (rs903889, rs2270628) were not in LD with 

each other nor with any SNPs associated with fibroids (pairwise r
2
 values < 0.2).  

Associations with all four SNPs noted above were imprecise based on fewer than 25 

observations with homozygous variant genotypes.   

Among African Americans, there was an association in the opposite direction to 

Caucasians between rs903889 (combined GT and GG versus TT genotypes) and any 

fibroids (PD = -0.113; 95% CI: -0.216, -0.010), but no association with larger fibroids 

(Table 5.3).  In addition, there were fibroid associations with three additional SNPs 

(rs2471551, rs9282734, rs12671457) among African Americans that were not reported 
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for Caucasians.  The homozygous variant genotype (CC) for rs2471551 was positively 

associated with any fibroids (PD = 0.208; 95% CI: 0.095, 0.320) and larger fibroids (PD 

= 0.167; 95% CI: -0.011, 0.345) relative to the homozygous wildtype genotype (GG), 

with little difference in the prevalence of either fibroid outcome in association with the 

CG genotype.  The combined AC and CC genotypes for the rare rs9283734 

(nonsynonymous, MAF ≈ 3%) and the rs12671457 (MAF ≈ 5%) SNPs were inversely 

associated with prevalence of any fibroids (rs9282734: PD = -0.130; 95%CI: -0.294, 

0.034; rs12671457: PD = -0.081, 95% CI: -0.213, 0.050) and larger fibroids (rs9282734: 

PD = -0.135, 95%CI: -0.303, 0.032; rs12671457: 0.121; 95% CI: -0.259, 0.018) relative 

to the AA genotype.  None of the SNPs with reported fibroid associations among African 

Americans were in LD with each other (pairwise r
2
 values < 0.4). 

IGFBP-3 diplotypes 

We generally emphasize associations between diplotypes and fibroid prevalence 

based on posterior medians with magnitudes of at least 10%, and we focus on more 

precise associations where diplotypes represent at least 10 women.  Patterns of IGFBP-3 

diplotype associations among either Caucasians or African Americans could not be 

explained by associations with individual IGFBP-3 SNPs.  Among Caucasians, IGFBP-3 

group 1 diplotypes (TACGGA/TACGGC, TCGCAC/TCGCAC) relative to the referent 

diplotype (TACGGC/GCGGAC) were inversely associated with prevalence of any 

fibroids (TACGGA/TACGGC: -0.102, 95% posterior limits: -0.274, 0.070;  

TCGCAC/TCGCAC: -0.111, 95% posterior limits: -0.297, 0.076) and larger fibroids (at 

least 2 cm in diameter) (TACGGA/TACGGC: -0.105, 95% posterior limits: -0.268, 

0.057; TCGCAC/TCGCAC:  -0.138, 95% posterior limits: -0.308, 0.032) (Figure 5.1).  
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The IGFBP-3 group 2 diplotype of TACA/TGCA, was inversely associated with 

prevalence of any fibroids (-0.078, 95% posterior limits: -0.225, 0.069) and larger 

fibroids (-0.069, 95% posterior limits: -0.203, 0.066).   Despite representing a weaker 

association with fibroid prevalence (<10%), it was a relatively precise estimate based on 

greater than 10% (n = 51) of Caucasians with the TACA/TGCA diplotype.    

Among African Americans, two IGFBP-3 group 1 diplotypes 

(TCGCAGA/GCGGAGA, TCGCAGA/TCGCAGA) were positively associated with 

prevalence of any fibroids (TCGCAGA/GCGGAGA: 0.112, 95% posterior limits: -0.048, 

0.272; TCGCAGA/TCGCAGA: 0.158; 95% posterior limits: 0.035, 0.281) and larger 

fibroids (TCGCAGA/GCGGAGA: 0.187, 95% posterior limits: 0.026, 0.349; 

TCGCAGA/TCGCAGA: 0.086, 95% posterior limits: -0.072, 0.243) relative to the 

referent diplotype (TAGGAGG/TACGAGG) (Figure 5.2).  Three IGFBP-3 group 3 

diplotypes (TACA/AGCA, TGCA/TGCA, TGTC/TGCA) were inversely associated with 

prevalence of larger fibroids (TACA/AGCA: -0.158, 95% posterior limits: -0.336, 0.020; 

TGCA/TGCA: -0.137, 95% posterior limits: -0.250, -0.023; TGTC/TGCA: -0.120; 95% 

posterior limits: -0.306, 0.065) relative to the referent diplotype (TATA/TGCA), with 

slightly smaller associations with any fibroids.  Of the three IGFBP-3 group 3 diplotypes 

noted above, only the TGCA/TGCA diplotype represented a considerable proportion of 

African American women in our study population (18%, n = 104).   

IGF-I SNPs  

We focus on SNPs where fibroid prevalence is increased or decreased by at least 

10% with variant genotypes relative to homozygous wildtype genotypes, and we place 

less emphasis on imprecise associations based on small numbers with variant genotypes 
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under comparison.  Among Caucasians, prevalence of any fibroids was decreased in 

association with homozygous variant genotypes of rs12821878 (PD = -0.111, 95% CI: -

0.335, 0.113) and rs2946834 (PD = -0.119, 95% CI: -0.289, 0.052) and increased in 

association with homozygous variant genotypes of rs10860869 (PD = 0.133, 95% CI: -

0.053, 0.320) and rs7956547 (PD = 0.114, 95% CI: -0.079, 0.308) relative to 

homozygous wildtype genotypes, with weaker associations estimated in the same 

direction with larger fibroids (Table 5.4).  The pairwise r
2
 value for rs10860869 and 

rs7956547 was 0.91, indicating strong LD among Caucasians, but neither rs12821878 nor 

rs2946834 were in strong LD with each other or with either of the two former IGF-I 

SNPs.  Imprecise associations based on fewer than 20 women with variants were 

estimated between the prevalence of any fibroids and the heterozygous genotypes (no 

homozygous variants) for the rare rs5742614 (MAF ≈ 2%) (PD = -0.159; 95% CI: -0.415, 

0.097) and rs3730204 (MAF ≈ 2%) (PD = 0.116; 95% CI: -0.127, 0.358) SNPs relative to 

homozygous wildtype genotypes, but no associations were evident for larger fibroids.   

Among African Americans, there were three common SNPs (rs35767, rs5742614, 

rs4764884) with fibroid associations.  Specifically, rs35767 AA versus GG genotypes 

and rs4764884 TT versus CC genotypes were positively associated with prevalence of 

any fibroids (rs35767: PD = 0.116, 95% CI: 0.015, 0.216; rs4764884: PD = 0.094, 95% 

CI: -0.040, 0.227) and larger fibroids (rs35767: PD = 0.104, 95% CI: -0.012, 0.221; 

rs4764884: 0.097, 95% CI: -0.069, 0.263), which no fibroid associations with either SNP 

were noted among Caucasians (Table 5.5).  The combined CG and CC genotypes versus 

the GG genotype for rs5742614 were inversely associated with prevalence of any fibroids 

(PD = -0.120; 95% CI: -0.215, -0.026 and larger fibroids (PD = -0.144; 95% CI: -0.243, -
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0.044).  Neither of these three SNPs (rs35767, rs5742614, rs4764884) were in LD with 

each other (pairwise r
2
 values < 0.1) among African Americans.  Positive associations 

between two rare (MAF < 5%) SNP variants and prevalence of overall (rs17880975: PD 

= 0.113, 95% CI: -0.036, 0.262; rs11111262: PD = 0.135, 95% CI: 0.004, 0.266) and 

larger fibroids (rs17880975: PD = 0.157, 95% CI: -0.024, 0.338; rs11111262: PD = 

0.163, 95% CI: -0.005, 0.331) were noted relative to homozygous wildtype genotypes.  

IGF-I diplotypes 

We highlighted diplotype associations with fibroid prevalence based on posterior 

medians with magnitudes of at least 10% and more precise associations where diplotypes 

represent at least 10 women.  Among Caucasians, four IGF-I group 3 diplotypes 

(GGCCC/GCTGC: -0.139, 95% posterior limits: -0.290, 0.012; GGCCC/GGCCC: -

0.107, 95% posterior limits: -0.236, 0.021; GGCCT/AGTGC: -0.119, 95% posterior 

limits: -0.298, 0.060; GGCCT/GGCCT: -0.161, 95% posterior limits: -0.313, -0.009) 

versus referent diplotype (GGCCC/GGCCT) were inversely associated with prevalence 

of any fibroids (Figure 5.3).  Weaker inverse associations with larger fibroids were noted 

for the GGCCC/GCTGC and GGCCT/GGCCT diplotypes, with a stronger inverse 

association for the GGCCT/AGTGC diplotype (-0.162; 95% posterior limits: -0.313, -

0.011).  However, there was no association with larger fibroids for the common 

GGCCC/GGCCC diplotype representing almost 20% of Caucasians (n = 76).  Two IGF-I 

group 4 diplotypes (versus the referent diplotype CG/CG) were inversely associated with 

prevalence of any fibroids (CA/CA: -0.104, 95% posterior limits: -0.267, 0.059; CG/TA: 

-0.077, 95% posterior limits: -0.203, 0.050) and larger fibroids (CA/CA: -0.128, 95% 

posterior limits: -0.273, 0.016; CG/TA: -0.080, 95% posterior limits: -0.198, 0.039).  The 
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latter diplotype (CG/TA) has a weaker association with fibroids (<10%), but estimates 

are relatively precise based on approximately 15% (n = 59) of Caucasians with CG/TA 

diplotype.  There were no patterns in individual SNP associations to explain any of the 

estimated Caucasian IGF-I diplotype associations. 

Among African Americans, the IGF-I group 1 GGG/GCG diplotype, which 

represented approximately 10% of women (n = 55), was inversely associated with 

prevalence of any fibroids (-0.132, 95% posterior limits: -0.257, -0.007) and larger 

fibroids (-0.134, 95% posterior limits: -0.261, -0.006) compared to the referent diplotype 

(AGG/GGG) (Figure 5.4).  The IGF-I group 2 TTTCT/TCTTT diplotype was inversely 

associated with any fibroids (-0.131, 95% posterior limits: -0.314, 0.052), while there was 

a positive association between the TCTTT/TCTTT diplotype and fibroids of any size 

(0.122, 95% posterior limits: 0.001, 0.243) relative to the referent diplotype 

(ATTCC/ATTCC), with weaker associations for both diplotypes estimated with larger 

fibroids.  The latter diplotype (TCTTT/TCTTT) was the only common diplotype that 

included the TT genotype for rs4764884, which was positively associated with fibroids.  

Three IGF-I group 3 diplotypes (versus the referent TACT/TACT diplotype) were 

inversely associated with any fibroids, including AACC/AGGT (-0.156, 95% posterior 

limits: -0.340, 0.028), AACT/TACT (-0.101, 95% posterior limits: -0.289, 0.086), and 

AAGC/AACC (-0.087, 95% posterior limits: -0.232, 0.057), but only the AACC/AGGT 

(-0.124, 95% posterior limits: -0.303, 0.055) diplotype was associated with larger 

fibroids.  There were no consistent patterns in estimated associations with individual 

IGF-I SNPs and any of the African American diplotypes, with the exception of the IGF-I 

group 3 TCTTT/TCTTT diplotype.   
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Discussion 

This is the first study to evaluate IGF-I and IGFBP-3 polymorphisms in association 

with the prevalence of fibroids.  In summary, we noted fibroid prevalence among African 

Americans was associated with five IGF-I (rs35767, rs5742614, rs17880975, rs4764884, 

rs11111262) and four IGFBP-3 (rs903889, rs2471551, rs9282734, rs12671457) SNPs, 

which included two IGF-I (rs17880975, rs11111262) and two IGFBP-3 SNPs 

(rs9282734, rs12671457) with MAF 5% or less.  However, among Caucasians, fibroid 

prevalence was associated with six IGF-I SNPs (rs5742614, rs12821878, rs10860869, 

rs7956547, rs3730204, rs2946834) and four IGFBP-3 SNPs (rs903889, rs2453840, 

rs2453839, rs2270628); however, the majority of associations, including three IGF-I 

SNPs (rs5742614, rs12821878, rs3730204) and four IGFBP-3 SNPs, were relatively 

imprecise due to fewer than 25 observations with variant genotypes.   

Only one of the fibroid associations involved an a priori selected SNP, the rare 

(MAF ≈ 3%) nonsynonymous IGFBP-3 rs9282734 SNP (His158Pro), in which variants 

were inversely associated with fibroids of any size and at least 2 cm in diameter among 

African Americans.  This SNP could not be evaluated among Caucasians, since less than 

five women had the variant genotypes.  Based on protein sequencing analysis reported in 

the UniProtKB/Swiss-Prot database (41), the amino acid coded by rs9282734 is not 

within the protein region affiliated with IGF binding but instead is within a 

compositionally biased region of the IGFBP-3 protein, which is predominantly rich with 

serine and threonine.  Associations with other health outcomes or circulating IGFBP-3 

protein levels have not been reported with this SNP.    
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We reported strong positive associations between another functionally relevant 

IGFBP-3 SNP (rs2471551 CC versus GG genotypes) and fibroid prevalence among 

African Americans.  Specifically, rs2471551 is located at a splice site (intron 1 within 

less than 20 kb of exon 2).  Inverse associations with CC versus GG variants were also 

estimated with circulating IGFBP levels among Caucasians and African Americans in our 

study (not published).  In addition, Canzian et al.(22) reported that rs2471551 

(homozygous variant versus homozygous wildtype genotypes) was inversely associated 

with circulating IGFBP-3 but not with circulating IGF-I or with breast cancer for a 

predominantly Caucasian case-control study nested within the European Prospective 

Investigation into Cancer and Nutrition.  Inverse associations were also reported among 

African Americans between fibroids and two IGFBP-3 SNPs, with possible functional 

effects based on their location outside the 5’ (rs903889) and 3’ (rs12671457) ends of the 

gene; however, other studies have not reported associations with health outcomes or 

circulating levels with these SNPs.  Our study estimated associations between rs903889 

and plasma IGFBP-3 and IGF-I among Caucasians, and associations with plasma IGFBP-

3 only among African Americans (unpublished).  

Relatively imprecise associations between IGFBP-3 SNPs (rs903889, rs2453840, 

rs2453839, rs2270628) and fibroids among Caucasians are likely to be spurious findings, 

especially given that the association with rs2453830 and rs2453839 are in the opposite 

direction with larger fibroids.  Canzian et al. reported that rs2453839 was not associated 

with circulating IGF-I or IGFBP-3 levels or with breast cancer (22).  Also, Tamimi et al. 

estimated no association between IGFBP-3 SNPs, including rs2453839 and rs2270628, 
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and mammographic density among Nurses’ Heath Study controls nested within a breast 

cancer case-control study (42).  

We estimated a positive association between a common IGF-I SNP (rs35767 AA 

versus GG genotypes), which is located within the promoter region, and fibroids among 

African Americans.  Canzian et al. reported inverse associations for rs35767 homozygous 

variant versus homozygous wildtype genotypes with circulating IGFBP-3 and breast 

cancer among a predominantly Caucasian study population (22).  In addition, a common 

IGF-I SNP (rs2946834 AA versus GG genotypes), which is located downstream of IGF-I 

at the 3’ end, was inversely associated with fibroids among Caucasians.  Tamimi et al. 

reported an inverse association for rs2946834 AA versus GG genotypes and percentage 

mammographic density within the Nurses’ Health Study (42).    

Current biological evidence supports a role of IGF-I in fibroid pathogenesis, but is 

lacking for IGFBP-3; however, we hypothesized that IGFBP-3 may indirectly affect 

fibroid pathogenesis by influencing levels of bioavailable IGF-I.  Studies have found 

increased IGF-I mRNA and peptides in fibroids versus normal myometrium (10-16) and 

in fibroids versus normal myometrium in response to estrogen treatment, as well as 

decreases in IGF-I mRNA and protein in response to progesterone (43).  Overall, these 

findings support the hypothesis that fibroid tumorigenesis or growth may be promoted by 

hormonally-mediated alteration of cytokines or growth factors (8).  However, since IGF-I 

is a strong mitogen, we would expect that IGF-I or IGFBP-3 variant associations with 

larger fibroids would be stronger than those with fibroids of any size. 

From previous unpublished analyses in the NIEHS UFS, plasma IGF-I levels were 

inversely associated with fibroid prevalence among Caucasians but not African 
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Americans, while plasma IGFBP-3 levels were not associated with fibroids.  We did not 

find support for fibroid associations with the common nonsynonymous IGFBP-3 SNP of 

rs2854746 or with the rs2854744 (-202 A/C) SNP, both of which were associated with 

plasma IGFBP-3 levels among both Caucasians and African Americans in NIEHS 

Uterine Fibroid Study (cite 1
st
 paper).  However, lack of fibroid associations with 

circulating IGF-I or IGFBP-3 levels or with SNPs strongly predicting circulating levels 

does not negate involvement of IGF-I or IGFBP-3 in fibroid etiology since biological 

evidence for IGF-I in fibroid pathogenesis emphasizes IGF-I levels in the uterine tissue 

rather than the circulation.  In addition, IGF-I or IGFBP-3 variants associated with 

circulating IGF-I or IGFBP-3 may not predict levels within uterine tissue. 

A major strength of our study was the high proportion of African Americans, who 

have consistently been reported to have a greater prevalence of fibroids and fibroid-

related morbidity than Caucasians (3, 4, 6, 7).  Etiologically relevant SNPs between races 

may differ based on differences in race-specific distributions of respective genotypes.  

Given racial differences in fibroid prevalence, it was not surprising that we noted more 

evidence for associations with IGF-I and IGFBP-3 variants among African Americans 

based on relative precision of estimates within racial groups.  We were able to examine 

associations with not only overall fibroid prevalence, but also with larger fibroids (at least 

2 cm in diameter) to assess whether IGF-I and IGFBP-3 variants might influence tumor 

growth versus incidence.  Associations with two fibroid outcomes were generally in the 

same direction, but typically there were slightly stronger associations with any fibroids 

rather than larger fibroids, which was not expected since IGF-I is known for its growth-

promoting actions.  However, differences between analyses were not consistent and large 
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enough to suggest that genetic variants may be more relevant for incidence rather than 

growth of fibroids.  Our study based fibroid status predominantly on ultrasound screening 

rather than clinical diagnosis or treatment by hysterectomy alone, which reduced the 

potential for misclassification bias if IGF-I or IGFBP-3 variants were associated with the 

incidence of all fibroid tumors, regardless of size.   

We restricted our study to Caucasians and African Americans and stratified all 

analyses by race; however, population stratification within each racial group may still be 

a potential bias with our study (44-47).  In addition, we did not have statistical power to 

explore whether gene-environmental interactions could further explain findings.  Race-

specific diplotype associations with fibroids generally did not support patterns with SNP 

associations, suggesting that diplotype associations may be either due to spurious 

findings or if etiologically relevant may be due to interactions between the SNPs within 

the particular diplotype group.  We attempted to reduce spurious findings for less 

common diplotypes by using a Bayesian method of information-weighted averaging that 

increased the precision of estimates, particularly for diplotypes with small numbers of 

women; however, these methods were not applied to individual SNP associations.  

Despite the increase in bias for posterior medians from this method, simulation studies 

indicate that there is a reduction in the overall mean square error based on the greater 

decrease in variance of estimates (48).     

Since fibroids represent a common health outcome related to substantial morbidity, 

even IGF-I or IGFBP-3 variant associations with magnitudes of less than 20% as 

reported in our study could be important.  Some of the reported SNP or diplotype 

associations may reflect random error or bias, especially associations based on small 
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numbers with SNP variant or diplotype.  Validation of findings with other study 

populations well-represented by African Americans would be important for assessing 

whether any of the IGF-I and IGFBP-3 SNPs are relevant with fibroid etiology.  Future 

research should also consider other genes besides IGF-I and IGFBP-3 that are involved 

with the IGF-I pathway based on support for IGF-I involvement with fibroid 

pathogenesis.   
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Table 5.1. Uterine fibroid status of premenopausal women with genotype 

information by race from NIEHS Uterine Fibroid Study  

 
Uterine fibroids African American (N=582) 

N (%) 

 Caucasian (N=402) 

N (%) 

None 154 (26.5)  194 (48.3) 

Any 421 (72.3)  200 (49.8) 

<2 cm 94 (16.2)  69 (17.2) 

2 - <4 cm 187 (32.1)  87 (21.6) 

≥4 cm 140 (24.1)  44 (10.9) 

Missing 7 (1.2)  8 (2.0) 
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Table 5.2. Unadjusted prevalence differences (PD) and 95% confidence intervals (CI) for uterine fibroids in association with 

IGFBP-3 single nucleotide polymorphisms (SNPs) among Caucasians 
 

Uterine Fibroids (any) Uterine Fibroids (2+ cm) 

Block* 
Diplotype 

Group* 

Diplotype 

Position* 

SNP Reference 

ID 

 

MAF 

(%)† 

Genotype 

N(any 

fibroids):  

total N‡ PD§ 95% CI 

 

N(2+ cm 

fibroids): 

total N‡ 

 

PD§ 95% CI 

GG 13:22 0.095 -0.120, 0.310 7:22 -0.008 -0.212, 0.195 

GT 67:128 0.028 -0.080, 0.135 45:128 0.025 -0.077, 0.127 

1 1 1 rs903889 22.0 

TT 120:242 0  79:242 0  

TT 38:80 -0.039 -0.184, 0.106 23:80 -0.012 -0.143, 0.120 

CT 106:205 0.003 -0.114, 0.120 76:205 0.072 -0.037, 0.181 

1 -- -- rs924140 46.8 

CC 55:107 0  32:107 0  

AA 36:77 -0.047 -0.193, 0.100 22:77 -0.013 -0.146, 0.120 

AC 104:199 0.009 -0.109, 0.126 75:199 0.078 -0.032, 0.188 

1 1 2 rs2854744|| 46.3 

CC 55:107 0  32:107 0  

CC 32:63 -0.019 -0.170, 0.131 18:63 -0.040 -0.178, 0.098 

CG 99:199 -0.030 -0.140, 0.081 71:199 0.031 -0.074, 0.136 

1 1 3 rs2854746|| 41.7 

GG 68:129 0  42:129 0  

CC 7:16 -0.063 -0.313, 0.188 5:16 -0.026 -0.261, 0.208 

CG 64:119 0.038 -0.071, 0.147 39:119 -0.011 -0.113, 0.092 

1 1 4 rs2471551 19.4 

GG 127:254 0  86:254 0  

AC 1:3 --   1:3 --   -- -- -- rs9282734|| 0.4 

AA 199:386 0  130:386 0  

-- -- -- rs2453837 0 GG 199:390 --  130:390 --  

AG 1:5 --   1:5 --   -- -- -- rs6953668 0.6 

GG 199:387 0  130:387 0  

AA 32:62 0.036 -0.116, 0.187 18:62 -0.043 -0.182, 0.096 

AG 106:198 0.055 -0.056, 0.166 70:198 0.020 -0.085, 0.125 

1 1 5 rs3110697 41.4 

GG 62:129 0  43:129 0  
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AA 5:12 -0.105 -0.390, 0.181 5:12 0.077 -0.208, 0.362 

AC 59:118 -0.021 -0.130, 0.088 38:118 -0.018 -0.120, 0.084 

2 1 6 rs2453840 18.3 

CC 135:259 0  88:259 0  

CC 6:14 -0.088 -0.354, 0.179 6:14 0.091 -0.175, 0.357 

CT 64:128 -0.016 -0.123, 0.091 42:128 -0.009 -0.110, 0.091 

2 -- -- rs2453839 20.1 

TT 127:246 0  83:246 0  

AT, AA 85:155 0.068 -0.034, 0.169 57:155 0.053 -0.044, 0.149 Outside 2 1 rs6670 21.2 

TT 113:235 0  74:235 0  

AA 9:19 -0.041 -0.274, 0.192 5:19 -0.069 -0.276, 0.138 

AG 65:127 -0.003 -0.110, 0.105 45:127 0.022 -0.080, 0.125 

Outside 2 2 rs13223993 21.4 

GG 124:241 0  80:241 0  

TT 9:15 0.104 -0.152, 0.360 7:15 0.149 -0.111, 0.408 

CT 71:135 0.030 -0.075, 0.135 47:135 0.030 -0.070, 0.130 

3 2 3 rs2270628 21.0 

CC 120:242 0  77:242 0  

 AC, CC 61:117 0.020 -0.090, 0.128 40:117 0.009 -0.095, 0.112 3 2 4 rs12671457 16.5 

AA 131:261 0  87:261 0  

  NOTE: MAF, minor allele frequency. 

  * Blocks consist of SNPs with MAF ≥ 5% in strong linkage disequilibrium (LD) (95% of pairwise SNP comparisons with one-sided 95% confidence intervals 

for the D prime statistic within 0.7-0.98).  Group refers to combination of SNPs for diplotype estimation.  Position refers to SNP order in each group for 

diplotype estimation.; the position for each group begins with “1”.  Values for diplotype group and position (--) were not listed for SNPs excluded from 

diplotype estimation based on either: 1) Tagger algorithm (r
2
 ≥ 0.8);  2) MAF < 5% (excluded from blocks (--)).  rs2453840 (block 2) was combined with 

block 1 SNPs for diplotype estimation.  rs6670 and rs13223993 were combined with block 3 SNPs for diplotype estimation. 

  † Based on total N = 402. 

  ‡ Total N = 394, excluded 8 women missing uterine fibroid status. 

  § PDs were not estimated for SNPs with 5 or fewer women with combined heterozygous and homozygous variant genotypes. 

  || SNPs selected a priori.  rs2854744 is also known as -202 A/C; rs2854746 and rs9282734, nonsynonymous SNPs. 
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Table 5.3. Unadjusted prevalence differences (PD) and 95% confidence intervals (CI) for uterine fibroids in association with 

IGFBP-3 single nucleotide polymorphisms (SNPs) among African Americans 

 

Uterine Fibroids (any) Uterine Fibroids (2+ cm) 

Block* 
Diplotype 

Group* 

Diplotype 

Position* 

SNP 

Reference ID 

 MAF 

(%)† 
Genotypes 

N(any 

fibroids):  

total N‡ PD 95% CI 

  

N(2+ cm 

fibroids): 

total N‡ 

 

PD 95% CI 

GT, GG 62:97 -0.113 -0.216, -0.010 53:97 -0.030 -0.139, 0.079 Outside 1 1 rs903889 9.4 

TT 355:472 0  272:472 0  

CC 71:93 0.021 -0.083, 0.125 59:93 0.060 -0.058, 0.177 

CT 181:255 -0.032 -0.113, 0.048 137:255 -0.037 -0.127, 0.052 

1 -- -- rs924140 38.9 

TT 164:221 0  127:221 0  

CC 77:105 -0.004 -0.109, 0.101 64:105 0.006 -0.110, 0.122 

AC 189:262 -0.016 -0.098, 0.067 138:262 -0.076 -0.168, 0.015 

1 1 2 rs2854744§ 42.2 

AA 143:194 0  117:194 0  

CC 39:52 0.004 -0.125, 0.133 31:52 0.002 -0.144, 0.149 

CG 185:260 -0.035 -0.111, 0.042 141:260 -0.051 -0.137, 0.034 

1 1 3 rs2854746§ 32.1 

GG 191:256 0  152:256 0  

CC 24:26 0.208 0.095, 0.320 19:26 0.167 -0.011, 0.345 

CG 130:177 0.019 -0.061, 0.099 98:177 -0.010 -0.099, 0.079 

1 1 4 rs2471551 20.3 

GG 259:362 0  204:362 0  

AC, CC 22:36 -0.130 -0.294, 0.034 16:36 -0.135 -0.303, 0.032 -- 1 5 rs9282734§ 3.3 

AA 395:533 0  309:533 0  

-- -- -- rs2453837 0 GG 417:569 --  323:569 --  

AG, AA 36:54 -0.069 -0.201, 0.062 29:54 -0.036 -0.176, 0.104 1 1 6 rs6953668 5.0 

GG 379:515 0  295:515 0  

AA 59:78 0.021 -0.089, 0.132 47:78 0.044 -0.082, 0.169 

AG 181:252 -0.017 -0.096, 0.062 142:252 0.005 -0.083, 0.093 

Outside 1 7 rs3110697 36.1 

GG 175:238 0  133:238 0  

AC, AA 68:98 -0.047 -0.147, 0.052 54:98 -0.022 -0.130, 0.086 2 2 1 rs2453840 9.2 

CC 349:471 0  270:471 0  
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CC 69:94 -0.004 -0.113, 0.104 55:94 0.036 -0.085, 0.158 

CT 200:278 -0.019 -0.100, 0.062 158:278 0.020 -0.071, 0.111 

2 2 2 rs2453839 40.9 

TT 144:195 0  107:195 0  

AT, AA 102:135 0.033 -0.051, 0.117 79:135 0.019 -0.076, 0.115 3 3 1 rs6670 12.6 

TT 313:433 0  245:433 0  

AA 87:114 0.044 -0.057, 0.145 68:114 0.067 -0.047, 0.182 

AG 192:262 0.013 -0.070, 0.097 155:262 0.063 -0.030, 0.155 

3 3 2 rs13223993 43.6 

GG 136:189 0  100:189 0  

TT 62:81 0.056 -0.053, 0.165 45:81 0.012 -0.113, 0.137 

CT 183:245 0.037 -0.042, 0.116 148:245 0.061 -0.027, 0.148 

4 3 3 rs2270628 36.2 

CC 171:241 0  131:241 0  

 AC, CC 36:55 -0.081 -0.213, 0.050 25:55 -0.121 -0.259, 0.018 4 3 4 rs12671457 5.1 

AA 376:511 0  294:511 0  

  NOTE: MAF, minor allele frequency. 

 * Blocks consist of SNPs with MAF ≥ 5% in strong linkage disequilibrium (LD) (95% of pairwise SNP comparisons with one-sided 95% confidence intervals 

for the D prime statistic within 0.7-0.98).  Group refers to combination of SNPs for diplotype estimation.  Position refers to SNP order in each group for 

diplotype estimation; the position for each group begins with “1”.  Values for diplotype group and position (--) were not listed for SNPs excluded from 

diplotype estimation based on either: 1) Tagger algorithm (r
2
 ≥ 0.8);  2) MAF < 5% (excluded from blocks (--)) or MAF < 3% for SNPs selected a priori.  

rs903889 and rs3110697 were combined with block 1 SNPs for diplotype estimation.  SNPs in blocks 3 and 4 were combined together for diplotype 

estimation.       

  † Based on total N = 582. 

  ‡ Total N = 575, excluded 7 women missing uterine fibroid status. 

  § SNPs selected a priori.  rs2854744 is also known as -202 A/C; rs2854746 and rs9282734, nonsynonymous SNPs. 
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Table 5.4. Unadjusted prevalence differences (PD) and 95% confidence intervals (CI) for uterine fibroids in association with 

IGF-I single nucleotide polymorphisms (SNPs) among Caucasians 
 

Uterine Fibroids (any) Uterine Fibroids (2+ cm) 

Block* 
Diplotype 

Group* 

Diplotype 

Position* 

SNP 

Reference ID 

 MAF 

(%)† 
Genotypes 

N(any 

fibroids):  

total N‡ PD§ 95% CI  

  

N(2+ cm 

fibroids): 

total N‡ 

  

PD§ 95% CI  

AG, AA  59:116 -0.001 -0.109, 0.108 40:116 0.012 -0.092, 0.115 Outside 1 1 rs35767 16.0 

GG 139:273 0  91:273 0  

AG, GG 14:30 -0.046 -0.232, 0.140 8:30 -0.074 -0.240, 0.092 -- -- -- rs5742612 3.9 

AA 185:361 0  123:361 0  

CG 5:14 -0.159 -0.415, 0.097 4:14 -0.050 -0.292, 0.191 -- -- -- rs5742614 1.8 

GG 195:378 0  127:378 0  

-- -- -- rs3729846|| 0 CC 200:392 --  131:392 --  

AA 8:20 -0.111 -0.335, 0.113 5:20 -0.082 -0.281, 0.117 

AG 70:135 0.008 -0.098, 0.114 47:135 0.016 -0.084, 0.117 

1 2 1 rs12821878 22.7 

GG 120:235 0  78:235 0  

TT 19:30 0.133 -0.053, 0.320 13:30 0.098 -0.091, 0.288 

AT 83:166 0.000 -0.104, 0.104 52:166 -0.022 -0.119, 0.075 

1 -- -- rs10860869 29.1 

AA 97:194 0  65:194 0  

 AC, AA 41:89 -0.064 -0.182, 0.054 28:89 -0.028 -0.138, 0.083 1 2 2 rs1019731 12.3 

CC 158:301 0  103:301 0  

CC 17:28 0.114 -0.079, 0.308 11:28 0.069 -0.123, 0.261 

CT 81:156 0.027 -0.077, 0.130 53:156 0.016 -0.082, 0.114 

1 2 3 rs7956547 27.3 

TT 102:207 0  67:207 0  

CT 3:4 --  2:4 --  -- -- -- rs5742626 0.5 

TT 196:387  0  129:387  0  

AG 1:1 --  1:1 --  -- -- -- rs17880975 0.1 

GG 199:388 0  130:388 0  

AG, AA  22:48 -0.056 -0.207, 0.094 16:48 0.000 -0.142, 0.142 2 3 1 rs2033178 6.2 

GG 176:342 0  114:342 0  

-- -- -- rs17884646 0 TT 199:390 --  131:390 --  
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AG, GG 8:17 -0.040 -0.283, 0.203 5:17 -0.041 -0.263, 0.181 -- -- -- rs5742657 2.2 

AA 192:376 0  126:376 0  

GT 0:1 --  0:1 --  -- -- -- rs5742663 0.1 

TT 200:389 0  131:389 0  

AG 9:18 -0.009 -0.246, 0.227 6:18 -0.002 -0.225, 0.221 -- -- -- rs11829586 2.3 

GG 190:373 0  125:373 0  

TT 11:24 -0.053 -0.264, 0.157 8:24 -0.002 -0.200, 0.197 

CT 77:150 0.002 -0.103, 0.106 50:150 -0.002 -0.100, 0.097 

2 -- -- rs4764884 25.7 

CC 110:215 0  72:215 0  

AG 0:1 --  0:1 --  -- -- -- rs5742683 0.1 

AA 198:389 0  129:389 0  

-- -- -- rs17884626|| 0 CC 200:392 --  131:392 --  

TT 20:35 0.048 -0.131, 0.226 14:35 0.051 -0.125, 0.227 

CT 80:164 -0.036 -0.141, 0.069 51:164 -0.038 -0.136, 0.060 

2 -- -- rs5009837 30.3 

CC 99:189 0  66:189 0  

CC 6:14 -0.081 -0.347, 0.185 4:14 -0.050 -0.294, 0.193 

CG 61:119 0.003 -0.106, 0.112 39:119 -0.008 -0.110, 0.094 

2 3 2 rs17727841 19.1 

GG 132:259 0  87:259 0  

CC 20:36 0.020 -0.158, 0.198 14:36 0.034 -0.140, 0.207 

CT 78:164 -0.060 -0.165, 0.045 50:164 -0.050 -0.149, 0.049 

2 -- -- rs4764883 30.9 

TT 98:183 0  65:183 0  

AA 13:27 -0.044 -0.245, 0.157 10:27 0.022 -0.172, 0.216 

AT 80:163 -0.035 -0.138, 0.069 52:163 -0.030 -0.127, 0.068 

2 -- -- rs9308315 28.2 

TT 104:198 0  69:198 0  

TT 13:27 -0.041 -0.242, 0.160 10:27 0.024 -0.170, 0.217 

CT 80:161 -0.026 -0.130, 0.078 52:161 -0.024 -0.122, 0.074 

2 3 3 rs978458 28.0 

CC 104:199 0  69:199 0  

AG 8:17 -0.041 -0.284, 0.201 5:17 -0.042 -0.264, 0.180 -- -- -- rs5742692 2.1 

AA 192:375 0  126:375 0  

AG, AA  33:73 -0.068 -0.195, 0.058 24:73 -0.006 -0.125, 0.114 2 -- -- rs11111262 9.9 

GG 165:317 0  106:317 0  
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GG 7:13 0.005 -0.273, 0.283 7:13 0.195 -0.083, 0.472 

CG 55:122 -0.083 -0.190, 0.025 36:122 -0.049 -0.149, 0.051 

2 3 4 rs1520220 19.1 

CC 135:253 0  87:253 0  

CT 10:16 0.116 -0.127, 0.358 5:16 -0.025 -0.257, 0.207 -- -- -- rs3730204 2.3 

TT 190:373 0  126:373 0  

TT 30:66 -0.014 -0.159, 0.131 18:66 -0.086 -0.219, 0.047 

CT 102:180 0.098 -0.011, 0.207 61:180 -0.020 -0.124, 0.085 

Outside 3 5 rs6214 39.8 

CC 68:145 0  52:145 0  

CT, TT 35:75 -0.054 -0.179, 0.072 24:75 -0.018 -0.135, 0.100 3 4 1 rs6219 10.0 

CC 165:317 0  107:317 0  

AA 17:40 -0.119 -0.289, 0.052 12:40 -0.074 -0.234, 0.085 

AG 88:177 -0.047 -0.152, 0.058 55:177 -0.064 -0.163, 0.036 

3 4 2 rs2946834 33.0 

GG 93:171 0  64:171 0  

  NOTE: MAF, minor allele frequency. 

 * Blocks consist of SNPs with MAF ≥ 5% in strong linkage disequilibrium (LD) (95% of pairwise SNP comparisons with one-sided 95% confidence intervals 

for the D prime statistic within 0.7-0.98).  Group refers to SNP combination for diplotype estimation.  Position refers to SNP order in each group for diplotype 

estimation; the position for each group begins with “1”.  Values for diplotype group and position (--) were not listed for SNPs excluded from diplotype 

estimation based on either: 1) Tagger algorithm (r
2
 ≥ 0.8);  2) MAF < 5% (excluded from blocks (--)).  rs6214 was combined with block 2 SNPs for diplotype 

estimation. 

 † Based on total N = 402. 

 ‡ Total N = 394, excluded 8 women missing uterine fibroid status. 

 § PDs were not estimated for SNPs with 5 or fewer women with combined heterozygous and homozygous variant genotypes. 

 || SNPs selected a priori.  rs3729846, synonymous SNP; rs17884626, nonsynonymous SNP.  
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Table 5.5. Unadjusted prevalence differences (PD) and 95% confidence intervals (CI) for uterine fibroids in association with 

IGF-I single nucleotide polymorphisms (SNPs) among African Americans 
 

Uterine Fibroids (any) Uterine Fibroids (2+ cm) 

Block* 
Diplotype 

Group* 

Diplotype 

Position* 

SNP 

Reference ID 

 MAF 

(%)†  
Genotypes 

N(any 

fibroids):  

total N‡ PD§ 95% CI 

 

N(2+ cm 

fibroids): 

total N‡ 

   

PD§ 95% CI 

AA 81:101 0.116 0.015, 0.216 64:101 0.104 -0.012, 0.221 

AG 195:264 0.052 -0.031, 0.135 151:264 0.043 -0.048, 0.133 

1 1 1 

 

rs35767 40.8 

GG 140:204 0  108:204 0  

 AG, GG 27:36 0.021 -0.126, 0.167 22:36 0.048 -0.117, 0.212 -- -- -- rs5742612 3.3 

AA 391:536 0  302:536 0  

CG, CC 77:121 -0.120 -0.215, -0.026 55:121 -0.144 -0.243, -0.044 1 1 2 rs5742614 11.5 

GG 339:448 0  268:448 0  

CT 6:9 -0.066 -0.377, 0.244 4:9 -0.125 -0.453, 0.202 -- -- -- rs3729846|| 0.8 

CC 409:558 0  318:558 0  

AG, AA  47:63 0.014 -0.100, 0.129 37:63 0.021 -0.108, 0.150 Outside 1 3 rs12821878 5.8 

GG 371:507 0  287:507 0  

TT 42:61 -0.038 -0.167,  0.090 34:61 0.015 -0.124, 0.154 

AT 186:250 0.017 -0.060, 0.094 149:250 0.054 -0.032, 0.140 

Outside 2 1 rs10860869 32.3 

AA 189:260 0  141:260 0  

AC 26:38 -0.050 -0.202, 0.103 20:38 -0.045 -0.210, 0.119 -- -- -- rs1019731 3.4 

CC 389:530 0  303:530 0  

CC 35:44 0.071 -0.058, 0.200 27:44 0.066 -0.089, 0.220 

CT 154:212 0.002 -0.076, 0.080 123:212 0.032 -0.054, 0.119 

2 2 2 rs7956547 26.2 

TT 226:312 0  171:312 0  

CT, CC 60:78 0.046 -0.056, 0.147 43:78 -0.016 -0.135, 0.103 2 2 3 rs5742626 7.2 

TT 356:492 0  279:492 0  

AG 21:25 0.113 -0.036, 0.262 18:25 0.157 -0.024, 0.338 -- -- -- rs17880975 2.3 

GG 394:542 0  305:542 0  

AG, AA  33:50 -0.079 -0.216, 0.057 27:50 -0.030 -0.175, 0.115 -- -- -- rs2033178 4.7 

GG 380:514 0  293:514 0  
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-- -- -- rs17884646 0 TT 417:571 --  324:571 --  

AG, GG 91:128 -0.024 -0.112, 0.065 73:128 0.006 -0.092, 0.103 2 -- -- rs5742657 12.1 

AA 324:441 0  249:441 0  

GT, GG 88:123 -0.019 -0.109, 0.070 70:123 0.003 -0.096, 0.102 2 -- -- rs5742663 11.6 

TT 327:445 0  252:445 0  

AG, AA 87:122 -0.022 -0.112, 0.068 71:122 0.018 -0.081, 0.117 2 -- -- rs11829586 11.5 

GG 327:445 0  251:445 0  

TT 29:35 0.094 -0.040, 0.227 23:35 0.097 -0.069, 0.263 

CT 142:201 -0.029 -0.107, 0.050 113:201 0.002 -0.085, 0.089 

2 2 4 rs4764884 23.7 

CC 244:332 0  186:332 0  

AG, GG 80:113 -0.028 -0.121, 0.065 63:113 -0.012 -0.114, 0.091 2 -- -- rs5742683 10.6 

AA 335:455 0  259:455 0  

CT 9:11 0.088 -0.143, 0.319 8:11 0.163 -0.103, 0.429 -- -- -- rs17884626|| 1.0 

CC 409:560 0  316:560 0  

TT 77:107 0.007 -0.099, 0.112 62:107 0.050 -0.066, 0.166 

CT 195:260 0.037 -0.045, 0.119 153:260 0.059 -0.032, 0.150 

Outside 2 5 rs5009837 41.3 

CC 144:202 0  107:202 0  

CG, CC 37:51 -0.005 -0.133, 0.124 29:51 0.004 -0.138, 0.147 -- -- -- rs17727841 4.7 

GG 379:519 0  293:519 0  

TT 97:133 0.026 -0.075, 0.127 70:133 -0.012 -0.124, 0.099 

CT 186:245 0.056 -0.029, 0.141 151:245 0.078 -0.017, 0.173 

3 -- -- rs4764883 45.8 

CC 128:182 0  98:182 0  

TT 112:152 0.047 -0.055, 0.148 80:152 0.004 -0.108, 0.116 

AT 195:258 0.066 -0.024, 0.155 161:258 0.102 0.003, 0.200 

3 3 1 rs9308315 49.8 

AA 107:155 0  81:155 0  

TT 64:85 0.016 -0.092, 0.125 52:85 0.058 -0.064, 0.181 

CT 187:258 -0.012 -0.091, 0.068 147:258 0.016 -0.073, 0.105 

3 -- -- rs978458 37.5 

CC 165:224 0  124:224 0  

AG, GG 89:122 -0.005 -0.094, 0.084 72:122 0.026 -0.073, 0.125 3 3 2 rs5742692 11.7 

AA 327:445 0  251:445 0  

AG, AA 25:29 0.135 0.004, 0.266 21:29 0.163 -0.005, 0.331 -- -- -- rs11111262 2.7 

GG 389:535 0  300:535 0  
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GG 57:74 0.044 -0.067, 0.155 46:74 0.083 -0.044, 0.210 

CG 180:250 -0.007 -0.085, 0.072 143:250 0.033 -0.054, 0.121 

3 3 3 rs1520220 34.7 

CC 178:245 0  132:245 0  

CT 1:3 --  1:3 --  -- -- -- rs3730204 0.3 

TT 414:563 0  322:563 0  

CC 93:125 -0.002 -0.101, 0.010 75:125 0.048 -0.065, 0.160 

CT 185:260 -0.034 -0.118, 0.050 147:260 0.013 -0.081, 0.107 

Outside 3 4 rs6214 45.2 

TT 135:181 0  100:181 0  

 CT, TT 75:96 0.062 -0.030, 0.154 58:96 0.045 -0.063, 0.153 4 4 1 rs6219 9.1 

CC 341:474 0  265:474 0  

AA 111:143 0.042 -0.057, 0.140 88:143 0.058 -0.056, 0.171 

AG 197:279 -0.029 -0.118, 0.061 152:279 -0.013 -0.112, 0.086 

4 4 2 rs2946834 49.3 

GG 108:147 0  82:147 0  

  NOTE: MAF, minor allele frequency. 

  * Blocks consist of SNPs with MAF ≥ 5% in strong linkage disequilibrium (LD) (95% of pairwise SNP       

comparisons with one-sided 95% confidence intervals for the D prime statistic within 0.7-0.98).  Group refers to SNP combination for diplotype estimation.  

Position refers to SNP order in each group for diplotype estimation; the position for each group begins with “1”.  Values for diplotype group and position (--) 

were not listed for SNPs excluded from diplotype estimation based on either: 1) Tagger algorithm (r
2
 ≥ 0.8);  2) MAF < 5% (excluded from blocks (--)).  

rs12821878 was combined with block 1 SNPs for diplotype estimation.  rs10860869 and rs5009837 were combined with block 2 SNPs for diplotype 

estimation.  rs9308315 was substituted for rs4764883 (Hardy-Weinberg p value <0.01).  rs6214 was combined with block 3 SNPs for diplotype estimation. 

  † Based on total N = 582. 

  ‡ Total N = 575, excluded 7 women missing uterine fibroid status. 

  § PDs were not estimated for SNPs with 5 or fewer women with combined heterozygous and homozygous variant genotypes. 

  ||  SNPs selected a priori.  rs3729846, synonymous SNP; rs17884626, nonsynonymous SNP.  
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CHAPTER VI 

 

CONCLUSIONS 

 

Introduction 

Insulin-like growth factor-one (IGF-I), a peptide with structural similarities to 

insulin, is important for many cellular functions including cell cycle regulation, 

differentiation, and inhibition of apoptosis (1).  IGF binding protein-3 (IGFBP-3) 

influences IGF-I bioavailability and degradation but may act independently from IGF-I 

such as inhibiting growth and promoting apoptosis.  Associations with circulating IGF-I 

and IGFBP-3 have been evaluated with cardiovascular disease, diabetes, and cancer.  

Genetic factors are important determinants of circulating IGF-I (2, 3) and IGFBP-3 levels 

(2, 4).   

The common theme with both studies is that we evaluated variation in IGF-I and 

IGFBP-3 through single nucleotide polymorphisms and estimated diplotypes among a 

premenopausal population well-represented by both Caucasians and African Americans.  

Dense evaluation IGF-I and IGFBP-3 SNPs in relation to their circulating levels among 

African Americans has been limited to the Multiethnic Cohort study, which included a 

small African American sample (N = 150) (5).  Based on biological interrelations 

between IGF-I and IGFBP-3, we evaluated whether IGF-I and IGFBP-3 variants were 

associated with circulating levels of both proteins in our first study, which had previously 

been done in only two studies (6, 7).     
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In our second study, we analyzed associations between IGF-I and IGFBP-3 variants 

and prevalence of uterine fibroids.  Uterine fibroids are hormonally dependent benign 

tumors, which are the primary indicator for hysterectomies in the United States, and 

occur disproportionately among African Americans.  However, much of their etiology 

has still not been characterized.  One hypothesis is that estrogens and progesterones 

increase cytokine and growth factor activity, which promotes fibroid development and 

growth.  Tissue-specific evidence supports involvement of IGF-I in fibroid pathogenesis 

including in vitro promotion of fibroid growth (8) and increased IGF-I mRNA or peptides 

(9-15) (16) in fibroids relative to normal myometrium.  In particular, one gene expression 

study measured elevated IGF-I mRNA and protein in addition to changes in two IGF-I 

pathway factors after estrogen treatment (16).  Although tissue-specific evidence 

supporting IGFBP-3 involvement with fibroid etiology is limited to one study with 

elevated IGFBP-3 mRNA in fibroids (15), IGFBP-3 may contribute to IGF-I mediated 

mechanisms based on influence of IGFBP-3 on IGF-I bioavailability and degradation.  

However, no epidemiological study has previously investigated associations between 

variants of either gene and fibroids.   

For both studies, the study population was 984 premenopausal African American and 

Caucasian participants with available DNA from the NIEHS Uterine Fibroid Study.  The 

parent study conducted ultrasound screening of premenopausal women for fibroids to 

estimate their prevalence and investigate etiologic factors (17). 
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Summary of results 

Among African Americans and Causasians, one of the most consistent findings was 

the association between IGFBP-3 rs2854746 (Ala32Gly) and plasma IGFBP-3.  In 

particular, this SNP results in an amino acid change from alanine to glycine, and protein 

sequencing tools suggest that it is located in the region responsible for IGF binding.  We 

reported a dose response relation in which the CC genotype is positively associated with 

plasma IGFBP-3 relative to the GG genotype, with intermediate plasma IGFBP-3 levels 

associated with the CG genotype, which two other studies including the Multiethnic 

Cohort Study reported similar findings (5, 7).  In addition, diplotypes for both racial 

groups support individual rs2854746 associations.  We also reported high plasma IGFBP-

3 levels in association with AA versus CC genotypes of an IGFBP-3 promoter SNP 

(rs2854744, -202 A/C), but consistencies with diplotype findings were not as strong as 

with rs2854746, especially for African Americans.  Seven studies also report similar 

associations between rs2854744 and plasma IGFBP-3 (6, 18-23).  However, previous 

studies of this promoter SNP have been predominantly among Caucasians and have not 

evaluated rs2854746.  We reported strong LD between rs2854744 and rs2854746 among 

Caucasians only (r
2
 = 0.82), which may explain Caucasian associations between 

rs2854744 and plasma IGFBP-3.  Strong LD between these two SNPs was not present 

among African Americans (r
2
 = 0.34).  We also estimated associations between IGF-I 

SNPs and plasma IGF-I although we did not find patterns between SNPs and diplotype 

associations with plasma IGF-I, and other studies evaluating IGF-I SNPs were 

inconsistent with our findings.  
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We found more precise associations for IGF-I and IGFBP-3 SNPs with prevalence 

of fibroids among African Americans than Causasians, which had primarily imprecise 

associations due to 25 or fewer observations with homozygous variants.  In particular, 

two IGFBP-3 SNPs associated with fibroids among African Americans have potential 

functional relevance including rs9282734 (His158Pro),  which results in an amino acid 

change from histidine to proline, and rs2475551, which is located at a splice site within 

less than 20 kilobases (kb) from exon 2.  However, rs9282734 and rs2475551 have not 

been reported to be associated with diseases.  Among a Caucasian study population, 

Canzian et al. reported no association for rs2475551 with breast cancer but an inverse 

association with plasma IGFBP-3 (6), which the latter is consistent with our study 

findings.  Other fibroid associations among African Americans included SNPs outside 

IGFBP-3 at the 5’ (rs903889) and 3’ ends (rs12671457) and a SNP outside IGF-I at the 

5’ end (rs35767), and there was an association with a SNP outside IGF-I at the 3’ end 

(rs2946834) among Caucasians.  For the two IGF-I SNPs noted above, associations with 

mammographic density (rs2946834) (24) and breast cancer (rs35767) (6) have been 

reported among predominantly Caucasian study populations.  Generally, we estimated 

slightly stronger associations in a similar direction with prevalence of any fibroids rather 

than larger fibroids for IGF-I and IGFBP-3 variants; however, differences in fibroid 

analyses were not consistent and substantial enough to conclude that variants 

preferentially affect fibroid incidence versus growth. 
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Strengths and limitations 

The study population was well-represented by African Americans (about 60%), 

which was a major strength for both studies.  In addition, we attempted to capture 

variation across both genes by selecting haplotype-tagging SNPs from race-specific 

reference populations using a pairwise r
2  

value of 0.8.  In particular, the first paper 

contributes information on distribution of SNPs as well as associations with circulating 

IGF-I and IGFBP-3 among African Americans, who have been evaluated with dense 

coverage of IGF-I or IGFBP-3 polymorphisms by only one previous study (5).  For the 

second study, the high proportion of African Americans is particularly relevant given that 

greater prevalence of fibroids and related morbidity has been consistently reported among 

this racial group (17, 25-28). 

We are the first epidemiologic study to evaluate IGF-I and IGFBP-3 variants in 

association with uterine fibroids.  A major strength of our study population is that women 

were screened for uterine fibroids using ultrasounds, which reduces misclassification of 

fibroids since many women with fibroids in the parent study were asymptomatic.  Our 

investigation of the hypothesis that IGF-I would preferentially affect fibroid growth 

versus incidence was limited because we did not have statistical power to evaluate each 

of the fibroid size categories in relation to women with no fibroids.  Instead, we were 

only able to evaluate women with larger fibroids compared to women with small fibroids 

and no fibroids combined.   

Our genotyping was very successful, with only five women having less than 50% of 

complete allele calls for the 45 SNPs in study.  In addition, exclusions from uncertain 

estimated diplotypes (posterior probability < 90%) were negligible since 93 to 99% of 
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women were included for race-specific analyses of each diplotype group.  Given the 

heterogeneity of diplotypes represented within race-specific diplotype groups, validity 

and precision of regression estimates was a potential limitation with analyses.  However, 

we utilized an empirical-Bayes method (information-weighted averaging) (29), which 

shrunk imprecise regression estimates based on smaller numbers of observations further 

toward the prior mean of 0 based than more precise estimates.  Overall mean square error 

is reduced with this method based on a greater reduction in precision than the gain in bias 

with estimates (30).   

Possible selection bias is a limitation for both studies if excluded women differed 

from the remaining study population with respect to their genotypes or study outcomes 

(i.e. circulating protein levels or fibroid status).  To evaluate selection bias, we would 

need to consider not only women who were excluded from both studies because there 

was no DNA available, but also women who were dropped earlier from the study 

population for other reasons including postmenopausal at enrollment and refusal to 

participate.  We restricted study population to only African Americans and Caucasians 

and stratified all analyses by race for both studies, but population stratification could still 

be a bias within racial groups of our study population (31-34).  We had limited power to 

evaluate rare SNPs with both studies.  Rare estimated diplotypes (5 or fewer 

observations) were combined into one category for all analyses, but heterogeneity of 

diplotypes within these categories made interpretation of their estimated associations 

impossible.   Finally, we did not have statistical power to explore gene-environmental or 

gene-gene interactions, which may be relevant to our estimated associations, especially 

with differences in associations across racial groups.      
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 Future research 

Findings from the first study reported associations between several IGF-I and 

IGFBP-3 SNPs and their circulating protein levels.  In particular, we had a highly 

consistent finding with evidence suggesting a causal association between IGFBP-3 

rs2854746 (Ala32Gly) and plasma IGFBP-3 among both Caucasians and African 

Americans.  Validation of this association with rs2854746 and with other SNPs in our 

study would be needed in other study populations.  Further study is needed to assess 

functional significance of the SNPs with reported associations in either of our studies.  

For SNPs that have no known functional relevance, some of their associations with 

circulating protein levels or fibroids may be based on spurious findings, but instead they 

may tag a functional variant or affect expression.  Investigation of SNPs having 

associations with circulating protein levels with risk of cancer and cardiovascular disease 

would further our understanding in whether IGF-I mediated mechanisms and IGFBP-3 

independent actions are involved in their etiology, since issue of confounding would be 

lessened for associations with gene variants, unlike with circulating levels of their 

proteins.   

Given that this is the first epidemiologic study to evaluate IGF-I and IGFBP-3 in 

relation to fibroids, estimated associations cannot be considered conclusive without 

replication in other study populations.  Findings from the second study estimated precise 

associations with fibroids predominantly among African Americans.  Therefore, it would 

be important to replicate our findings within a study population with a substantial 

proportion of African Americans.  Other issues that should be considered in future studies 

are gene-gene interactions and gene-environment since IGF-I and IGFBP-3 have strong 
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biological interrelations, and their tissue-specific and circulating levels may be affected 

by environmental factors.  Finally, other genes involved in the IGF-I pathway should be 

considered to further investigate whether IGF-I is involved with fibroid pathogenesis.   
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APPENDIX 

 
 

 

Table A.1. Pairwise r
2
 between IGFBP-3 single nucleotide polymorphisms (SNPs) among Caucasians* 

 

 SNP rs # 903889 924140 2854744 2854746 2471551 3110697 2453840 2453839 6670 13223993 2270628 12671457 

903889             

924140 0.24            

2854744 0.23 0.99           

2854746 0.19 0.81 0.82          

2471551 0.06 0.16 0.16 0.12         

3110697 0.39 0.55 0.55 0.44 0.32        

2453840 0.04 0.00 0.00 0.00 0.05 0.12       

2453839 0.04 0.00 0.00 0.00 0.04 0.11 0..87      

6670 0.04 0.01 0.01 0.01 0.08 0.00 0.01 0.00     

13223993 0.00 0.05 0.05 0.02 0.03 0.00 0.04 0.04 0.07    

2270628 0.11 0.03 0.03 0.08 0.00 0.06 0.03 0.04 0.07 0.00   

12671457 0.12 0.06 0.06 0.06 0.00 0.09 0.02 0.02 0.05 0.05 0.77   

* Based on N = 401, excludes 1 woman missing more than 50% of IGFBP-3 SNPs included in diplotype estimation.  Excludes SNPs with minor allele  

   frequencies < 1%.  Pairwise r
2
 values ≥ 0.80, which are in bold, indicate SNP pairs in strong linkage disequilibrium. 
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 Table A.2. Pairwise r
2
 between IGFBP-3 single nucleotide polymorphisms (SNPs) among African Americans* 

 
SNP rs # 903889 924140 2854744 2854746 2471551 9282734 6953668 3110697 2453840 2453839 

903889           

924140 0.16          

2854744 0.14 0.82         

2854746 0.04 0.30 0.34        

2471551 0.02 0.38 0.33 0.10       

9282734 0.33 0.05 0.04 0.01 0.00      

6953668 0.28 0.08 0.07 0.02 0.01 0.64     

3110697 0.17 0.65 0.57 0.25 0.45 0.05 0.08    

2453840 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01   

2453839 0.04 0.02 0.03 0.09 0.00 0.02 0.02 0.04 0.14  

6670 0.00 0.01 0.04 0.01 0.05 0.00 0.00 0.02 0.00 0.03 

13223993 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 

2270628 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 

12671457 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

* Based on N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation.  Excludes SNPs with minor allele  

   frequencies < 1%.  Pairwise r
2
 values ≥ 0.80, which are in bold, indicate SNP pairs in strong linkage disequilibrium. 
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SNP rs # 6670 13223993 2270628 12671457 

903889     

924140     

2854744     

2854746     

2471551     

9282734     

6953668     

3110697     

2453840     

2453839     

6670     

13223993 0.09    

2270628 0.07 0.45   

12671457 0.00 0.00 0.09  

* Based on N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation.  Excludes SNPs with minor allele  

   frequencies < 1%.  Pairwise r
2
 values ≥ 0.80, which are in bold, indicate SNP pairs in strong linkage disequilibrium. 
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Table A.3. Pairwise r
2
 between IGF-I single nucleotide polymorphisms (SNPs) among Caucasians* 

 

SNP rs # 35767 5742612 5742614 12821878 10860869 1019731 7956547 2033178 5742657 11829586 4764884 

35767            

5742612 0.21           

5742614 0.00 0.00          

12821878 0.04 0.01 0.00         

10860869 0.00 0.09 0.03 0.12        

1019731 0.02 0.00 0.00 0.47 0.05       

7956547 0.01 0.00 0.03 0.11 0.91 0.05      

2033178 0.35 0.00 0.00 0.01 0.02 0.00 0.02     

5742657 0.07 0.33 0.00 0.00 0.02 0.00 0.00 0.00    

11829586 0.07 0.33 0.00 0.00 0.02 0.00 0.00 0.00 0.88   

4764884 0.03 0.01 0.00 0.10 0.32 0.04 0.38 0.19 0.00 0.00  

5009837 0.10 0.04 0.00 0.12 0.45 0.06 0.39 0.15 0.05 0.04 0.79 

17727841 0.04 0.00 0.00 0.06 0.55 0.03 0.60 0.01 0.00 0.00 0.67 

4764883 0.09 0.04 0.00 0.13 0.45 0.06 0.39 0.15 0.05 0.04 0.78 

9308315 0.06 0.00 0.00 0.11 0.38 0.05 0.32 0.17 0.04 0.04 0.89 

978458 0.06 0.00 0.00 0.10 0.38 0.05 0.32 0.17 0.04 0.04 0.88 

5742692 0.08 0.35 0.00 0.00 0.02 0.00 0.00 0.00 0.94 0.94 0.00 

11111262 0.02 0.00 0.00 0.03 0.25 0.01 0.28 0.00 0.00 0.00 0.32 

1520220 0.13 0.01 0.00 0.06 0.11 0.03 0.07 0.28 0.05 0.05 0.49 

3730204 0.00 0.00 0.00 0.00 0.05 0.00 0.06 0.00 0.00 0.00 0.06 

6214 0.01 0.03 0.01 0.10 0.00 0.03 0.00 0.04 0.01 0.01 0.00 

6219 0.02 0.00 0.00 0.03 0.26 0.01 0.28 0.00 0.00 0.00 0.32 

2946834 0.06 0.02 0.00 0.11 0.04 0.06 0.03 0.13 0.03 0.02 0.20 

* Based on N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation.  Excludes SNPs with minor allele  

   frequencies < 1%.  Pairwise r
2
 values ≥ 0.80, which are in bold, indicate SNP pairs in strong linkage disequilibrium. 
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SNP rs # 5009837 17727841 4764883 9308315 978458 5742692 11111262 1520220 3730204 6214 6219 2946834 

35767             

5742612             

5742614             

12821878             

10860869             

1019731             

7956547             

2033178             

5742657             

11829586             

4764884             

5009837             

17727841 0.53            

4764883 0.99 0.53           

9308315 0.88 0.60 0.88          

978458 0.88 0.59 0.87 0.98         

5742692 0.05 0.00 0.05 0.05 0.05        

11111262 0.25 0.47 0.25 0.28 0.28 0.00       

1520220 0.54 0.17 0.53 0.59 0.60 0.06 0.48      

3730204 0.05 0.10 0.05 0.06 0.06 0.00 0.00 0.00     

6214 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.08 0.03    

6219 0.25 0.46 0.25 0.28 0.28 0.00 0.97 0.48 0.00 0.07   

2946834 0.31 0.05 0.31 0.25 0.26 0.02 0.22 0.47 0.01 0.02 0.23   

* Based on N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation.  Excludes SNPs with minor allele  

   frequencies < 1%.  Pairwise r
2
 values ≥ 0.80, which are in bold, indicate SNP pairs in strong linkage disequilibrium. 
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Table A.4. Pairwise r
2
 between IGF-I single nucleotide polymorphisms (SNPs) among African Americans* 

 

SNP rs # 35767 5742612 5742614 12821878 10860869 1019731 7956547 5742626 17880975 2033178 5742657 

35767            

5742612 0.05           

5742614 0.09 0.00          

12821878 0.04 0.00 0.00         

10860869 0.07 0.07 0.02 0.02        

1019731 0.02 0.00 0.00 0.56 0.01       

7956547 0.04 0.06 0.03 0.02 0.75 0.01      

5742626 0.08 0.00 0.01 0.00 0.03 0.00 0.02     

17880975 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00    

2033178 0.00 0.00 0.00 0.00 0.02 0.00 0.03 0.00 0.00   

5742657 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00  

5742663 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.88 

11829586 0.01 0.00 0.00 0.00 0.01 0.00 0.03 0.01 0.00 0.00 0.88 

4764884 0.05 0.00 0.03 0.01 0.48 0.01 0.65 0.01 0.00 0.15 0.04 

5742683 0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.86 

17884626 0.01 0.29 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 

5009837 0.00 0.03 0.04 0.03 0.57 0.01 0.42 0.04 0.01 0.06 0.17 

17727841 0.03 0.00 0.00 0.00 0.10 0.00 0.13 0.00 0.00 0.00 0.00 

4764883 0.01 0.02 0.06 0.06 0.34 0.03 0.25 0.04 0.02 0.04 0.11 

9308315 0.02 0.01 0.08 0.05 0.25 0.03 0.17 0.03 0.01 0.04 0.12 

978458 0.00 0.00 0.03 0.02 0.45 0.01 0.32 0.03 0.01 0.07 0.21 

5742692 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.87 

11111262 0.01 0.00 0.00 0.00 0.05 0.00 0.07 0.00 0.00 0.00 0.00 

1520220 0.00 0.00 0.03 0.03 0.36 0.01 0.26 0.03 0.01 0.08 0.21 

6214 0.13 0.01 0.04 0.02 0.08 0.01 0.14 0.02 0.01 0.06 0.09 

6219 0.04 0.00 0.01 0.00 0.18 0.00 0.24 0.00 0.00 0.01 0.00 

2946834 0.00 0.01 0.02 0.05 0.24 0.03 0.16 0.02 0.02 0.03 0.11 

* Based on N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation.  Excludes SNPs with minor allele  

   frequencies < 1%.  Pairwise r
2
 values ≥ 0.80, which are in bold, indicate SNP pairs in strong linkage disequilibrium. 
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SNP rs # 5742663 11829586 4764884 5742683 17884626 5009837 17727841 4764883 9308315 978458 

35767           

5742612           

5742614           

12821878           

10860869           

1019731           

7956547           

5742626           

17880975           

2033178           

5742657           

5742663           

11829586 0.89          

4764884 0.04 0.04         

5742683 0.88 0.81 0.03        

17884626 0.00 0.00 0.00 0.00       

5009837 0.17 0.17 0.43 0.16 0.01      

17727841 0.00 0.00 0.15 0.00 0.00 0.06     

4764883 0.11 0.11 0.26 0.10 0.00 0.60 0.04    

9308315 0.13 0.13 0.31 0.11 0.01 0.46 0.04 0.84   

978458 0.21 0.21 0.52 0.20 0.00 0.83 0.08 0.50 0.59  

5742692 0.89 0.89 0.04 0.81 0.00 0.16 0.00 0.10 0.12 0.21 

11111262 0.00 0.00 0.08 0.00 0.00 0.03 0.56 0.02 0.02 0.04 

1520220 0.21 0.21 0.44 0.19 0.00 0.71 0.00 0.44 0.52 0.87 

6214 0.09 0.09 0.27 0.10 0.00 0.05 0.00 0.18 0.25 0.08 

6219 0.00 0.00 0.30 0.01 0.00 0.14 0.11 0.08 0.09 0.16 

2946834 0.11 0.11 0.18 0.10 0.01 0.46 0.00 0.23 0.17 0.39 

* Based on N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation.  Excludes SNPs with minor allele  

   frequencies < 1%.  Pairwise r
2
 values ≥ 0.80, which are in bold, indicate SNP pairs in strong linkage disequilibrium. 
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SNP rs # 5742692 11111262 1520220 6214 6219 2946834 

35767       

5742612       

5742614       

12821878       

10860869       

1019731       

7956547       

5742626       

17880975       

2033178       

5742657       

5742663       

11829586       

4764884       

5742683       

17884626       

5009837       

17727841       

4764883       

9308315       

978458       

5742692       

11111262 0.00      

1520220 0.24 0.05     

6214 0.09 0.03 0.11    

6219 0.00 0.24 0.18 0.10   

2946834 0.12 0.02 0.48 0.00 0.10   

* Based on N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation.  Excludes SNPs with minor allele  

   frequencies < 1%.  Pairwise r
2
 values ≥ 0.80, which are in bold, indicate SNP pairs in strong linkage disequilibrium. 
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Table A.5. Differences of mean differences comparing African American and 

Caucasian mean plasma IGFBP-3 differences associated with index genotypes for 

IGFBP-3 single nucleotide polymorphisms (SNPs)* 
 

SNP Reference 

ID 

Genotypes Difference of Mean 

Differences 

95% CI 

GT, GG -17 -267, 233 rs903889† 

TT 0  

TT -21 -328, 286 

CT -91 -362, 181 

rs924140‡ 

CC 0  

AA -58 -360, 244 

AC -78 -340, 184 

rs2854744‡ 

CC 0  

CC 266 -70, 602 

CG 79 -144, 303 

rs2854746 

GG 0  

CC -120 -643, 404 

CG -139 -375, 97 

rs2471551 

GG 0  

AA -126 -452, 201 

AG -177 -410, 56 

rs3110697 

GG 0  

AC, AA 298 45, 551 rs2453840† 

CC 0  

CC 157 -340, 654 

CT 86 -149, 320 

rs2453839 

TT 0  

AT, AA -123 -358, 112 rs6670† 

TT 0  

AA -56 -494, 383 

AG -190 -428, 49 

rs13223993 

GG 0  

TT 400 -88, 888 

CT -49 -281, 183 

rs2270628 

CC 0  

AC, CC -99 -397, 198 rs12671457 

AA 0  

*  Only compares SNPs with at least 2% for minor allele frequencies among both racial groups.     

Combined data from both racial groups and fit linear regression models that included multiplicative gene 

by race interaction terms along with separate parameters for race and genotypes.  Referent genotypes 

were homozygous wildtype genotypes among Caucasians.   

†  These SNPs had different models of inheritance (i.e. codominant, dominant) for each of the  

    race-specific linear regression models.  Dominant model was used for these SNPs in linear    

    regression models with combined racial groups to estimate differences of mean differences.  

‡  These SNPs had opposite homozygous wildtype genotypes for race-specific linear regression  

    models among African Americans.   
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Table A.6. Differences of mean differences comparing African American and 

Caucasian mean plasma IGF-I differences associated with index genotypes for  

IGF-I single nucleotide polymorphisms (SNPs)* 
 

SNP Reference 

ID 

Genotypes Difference of Mean 

Differences 

95% CI 

AG, AA -7 -26, 11 rs35767† 

GG 0  

AG, GG -15 -50, 19 rs5742612 

AA 0  

CG, CC -9 -48, 30 rs5742614 

GG 0  

AG, AA -19 -41, 4 rs12821878† 

GG 0  

TT 16 -16, 48 

AT 6 -12, 24 

rs1086869 

AA 0  

AC, AA -20 -47, 8 rs1019731 

CC 0  

CC 13 -21, 47 

CT 8 -10, 27 

rs7956547 

TT 0  

AG, GG -29 -58, 0 rs2033178 

AA 0  

AG, GG -14 -50, 21 rs5742657 

AA 0  

AG, AA -9 -44, 26 rs11829586 

GG 0  

TT 26 -11, 63 

CT 5 -13, 24 

rs4764884 

CC 0  

TT 14 -15, 43 

CT 4 -14, 23 

rs5009837 

CC 0  

CG, CC 27 2, 51 rs17727841† 

GG 0  

CC 20 -8, 49 

CT -3 -23, 17 

rs4764883‡ 

TT 0  

AA 28 -3, 59 

AT -2 -22, 17 

rs9308315‡ 

TT 0  

TT 22 -10, 54 

CT 3 -16, 21 

rs978458 

CC 0  

AG, GG -13 -49, 23 rs5742692† 

AA 0  

AG, AA 44 13, 75 rs11111262 

GG 0  
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GG 43 1, 85 

CG -1 -20, 18 

rs1520220 

CC 0  

TT -14 -39, 11 

CT 1 -19, 22 

rs6214‡ 

CC 0  

CT, TT 21 -1, 44 rs6219 

CC 0  

AA 24 -4, 52 

AG 1 -19, 21 

rs2946834 

GG 0  

*  Only compares SNPs with at least 2% for minor allele frequencies among both racial groups.     

Combined data from both racial groups and fit linear regression models that included multiplicative gene 

by race interaction terms along with separate parameters for race and genotypes.  Referent genotypes 

were homozygous wildtype genotypes among Caucasians.   

†  These SNPs had different models of inheritance (i.e. codominant, dominant) for each of the  

    race-specific linear regression models.  Dominant model was used for these SNPs in linear    

    regression models with combined racial groups to estimate differences of mean differences.  

‡  These SNPs had opposite homozygous wildtype genotypes for race-specific linear regression  

    models among African Americans.   
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Table A.7. Unadjusted linear regression of IGFBP-3 group-specific diplotypes on plasma IGFBP-3 levels among Caucasians* 

 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4661 4471, 4852   

1 Rare 40 -499 -804, -194 -438 -724, -152 

1 GCGGAC/GCGGAC 21 -508 -889, -128 -418 -763, -73 

1 TACGGA/TACGGC 23 299 -69, 666 249 -87, 584 

1 TACGGA/TCGCAC 10 141 -373, 655 101 -334, 536 

1 TACGGC/TACGGC 34 209 -112, 530 181 -118, 480 

1 TACGGC/TAGGGC 13 -78 -538, 381 -60 -460, 341 

1 TACGGC/TCGCAC 55 -29 -307, 250 -26 -290, 238 

1 TACGGC/TCGGGA 31 -37 -368, 294 -32 -339, 275 

1 TAGGGC/GCGGAC 6 -581 -1225, 64 -358 -864, 148 

1 TAGGGC/TCGCAC 6 -260 -905, 384 -161 -667, 346 

1 TCGCAC/GCGGAC 22 -245 -618, 129 -202 -542, 138 

1 TCGCAC/TCGCAC 14 -304 -750, 142 -235 -626, 157 

1 TCGGGA/GCGGAC 11 -386 -879, 107 -283 -705, 139 

1 TCGGGA/TCGCAC 15 -681 -1114, -247 -531 -914, -148 

1 TCGGGA/TCGGGA 6 -249 -893, 396 -153 -660, 353 

1 TACGGC/GCGGAC 63 REF  REF  

* N = 401, excludes 1 woman missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 370, excludes 30 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing  

   plasma IGFBP-3 level. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4587 4392, 4782   

2 Rare 5 -751 -1487, -16 -415 -962, 132 

2 AGCA/AGCA 12 -18 -516, 480 -13 -438, 412 

2 TACA/AGCA 34 12 -323, 347 10 -300, 320 

2 TACA/TACA 12 101 -397, 598 73 -352, 499 

2 TACA/TATA 6 -174 -851, 502 -104 -625, 418 

2 TACA/TGCA 53 -82 -375, 210 -73 -348, 203 

2 TACA/TGTC 18 -51 -473, 371 -40 -415, 334 

2 TATA/AGCA 9 254 -310, 817 172 -292, 636 

2 TATA/TGCA 10 -41 -579, 497 -29 -478, 421 

2 TGCA/TGCA 63 -80 -359, 200 -71 -336, 193 

2 TGCA/TGTC 61 -142 -423, 140 -127 -393, 140 

2 TGTC/AGCA 32 -68 -409, 274 -58 -373, 257 

2 TGTC/TGTC 10 -163 -701, 376 -113 -563, 336 

2 TGCA/AGCA 66 REF  REF  

* N = 401, excludes 1 woman missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 391, excludes 9 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing  

   plasma IGFBP-3 level. 

‡ Units: ng/ml. 
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Table A.8. Unadjusted linear regression of IGFBP-3 group-specific diplotypes on plasma IGF-I levels among Caucasians* 
 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  177 163, 192   

1 Rare 40 -24 -47, 0 -20 -42, 1 

1 GCGGAC/GCGGAC 21 12 -17, 41 10 -16, 36 

1 TACGGA/TACGGC 23 0 -28, 28 0 -25, 25 

1 TACGGA/TCGCAC 10 -13 -52, 26 -9 -42, 23 

1 TACGGC/TACGGC 34 -5 -29, 19 -4 -27, 18 

1 TACGGC/TAGGGC 13 -9 -44, 26 -7 -37, 23 

1 TACGGC/TCGCAC 55 1 -20, 22 1 -19, 21 

1 TACGGC/TCGGGA 31 2 -23, 27 2 -21, 25 

1 TAGGGC/GCGGAC 6 -7 -56, 42 -4 -42, 33 

1 TAGGGC/TCGCAC 6 -15 -64, 34 -9 -46, 29 

1 TCGCAC/GCGGAC 22 -2 -30, 27 -1 -27, 24 

1 TCGCAC/TCGCAC 14 0 -33, 34 0 -29, 29 

1 TCGGGA/GCGGAC 11 -21 -58, 16 -15 -46, 17 

1 TCGGGA/TCGCAC 15 -24 -57, 8 -19 -47, 10 

1 TCGGGA/TCGGGA 6 -8 -57, 40 -5 -42, 33 

1 TACGGC/GCGGAC 63 REF  REF  

* N = 401, excludes 1 woman missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 370, excludes 30 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing  

 plasma IGF-I level. 

 ‡ Units: ng/ml. 



  

 

1
8
9

 

 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  174 160, 188   

2 Rare 5 -50 -102, 2 -28 -67, 11 

2 AGCA/AGCA 12 -22 -57, 14 -16 -46, 14 

2 TACA/AGCA 34 -10 -34, 14 -9 -31, 13 

2 TACA/TACA 12 2 -33, 38 2 -29, 32 

2 TACA/TATA 6 -9 -58, 39 -6 -43, 32 

2 TACA/TGCA 53 0 -21, 21 0 -19, 20 

2 TACA/TGTC 18 12 -18, 42 9 -17, 36 

2 TATA/AGCA 9 22 -18, 62 15 -18, 48 

2 TATA/TGCA 10 22 -16, 61 16 -16, 48 

2 TGCA/TGCA 63 4 -16, 24 3 -16, 22 

2 TGCA/TGTC 61 -8 -28, 12 -7 -26, 12 

2 TGTC/AGCA 32 -3 -27, 21 -2 -25, 20 

2 TGTC/TGTC 10 0 -38, 39 0 -32, 32 

2 TGCA/AGCA 66 REF  REF  

* N = 401, excludes 1 woman missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 391, excludes 9 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing  

   plasma IGF-I level. 

‡ Units: ng/ml. 
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Table A.9. Unadjusted linear regression of IGFBP-3 group-specific diplotypes on plasma IGFBP-3 levels among African 

Americans* 
 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4327 4166, 4488   

1 Rare 50 -420 -691, -149 -381 -639, -123 

1 TACGAGG/GCGGAGA 18 -332 -729, 65 -272 -632, 87 

1 TACGAGG/GCGGCAA 15 220 -209, 649 175 -208, 558 

1 TACGAGG/TACGAGG 51 372 103, 641 338 81, 594 

1 TAGGAGA/TACGAGG 10 -28 -541, 485 -21 -459, 418 

1 TAGGAGA/TAGGAGG 7 -740 -1344, -136 -491 -982, 1 

1 TAGGAGG/GCGGAGA 12 -835 -1307, -362 -636 -1049, -224 

1 TAGGAGG/TAGGAGG 34 -487 -797, -178 -430 -720, -139 

1 TCGCAGA/GCGGAGA 10 -242 -755, 271 -177 -616, 262 

1 TCGCAGA/GCGGCAA 9 -681 -1219, -144 -486 -940, -32 

1 TCGCAGA/TACGAGG 68 -182 -429, 65 -168 -405, 69 

1 TCGCAGA/TAGGAGA 6 -719 -1368, -71 -453 -969, 62 

1 TCGCAGA/TAGGAGG 44 -410 -693, -128 -369 -637, -101 

1 TCGCAGA/TCGCAGA 26 -640 -982, -298 -550 -867, -233 

1 TCGCAGA/TCGGAGG 20 -901 -1282, -521 -750 -1097, -403 

1 TCGGAGA/TACGAGG 12 -309 -782, 164 -236 -649, 177 

1 TCGGAGG/TACGAGG 30 25 -299, 349 22 -281, 325 

1 TCGGAGG/TAGGAGG 19 -220 -608, 169 -182 -535, 171 

1 TCGGAGG/TCGGAGG 7 -209 -812, 395 -138 -630, 353 

1 TAGGAGG/TACGAGG 91 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 539, excludes 32 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGFBP-3 levels. 

‡ Units: ng/ml. 



  

 

1
9
1

 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4060 3947, 4172   

2 AC/AC 7 225 -410, 860 144 -364, 652 

2 CC/AC 28 229 -103, 560 198 -111, 507 

2 CC/CC 57 -344 -590, -98 -317 -553, -81 

2 CT/AC 60 205 -37, 446 189 -43, 421 

2 CT/CT 194 70 -93, 233 67 -93, 228 

2 CT/CC 217 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 563, excludes 8 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGFBP-3 levels. 

‡ Units: ng/ml.
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4106 3959, 4254   

3 Rare 14 -360 -826, 106 -276 -685, 132 

3 AGCA/AGCA 9 49 -521, 620 34 -439, 507 

3 TACA/AGCA 15 55 -397, 507 43 -356, 441 

3 TACA/TACA 10 21 -522, 565 15 -442, 473 

3 TACA/TGCA 43 -261 -553, 31 -233 -509, 43 

3 TATA/AGCA 47 -193 -476, 90 -174 -442, 95 

3 TATA/TACA 40 -89 -389, 211 -79 -362, 204 

3 TATA/TATA 54 257 -12, 526 234 -23, 490 

3 TATA/TGTC 18 -149 -566, 268 -120 -494, 254 

3 TGCA/AGCA 51 74 -200, 349 67 -194, 328 

3 TGCA/TGCA 101 89 -132, 310 84 -130, 297 

3 TGTC/AGCA 6 -1 -692, 690 -1 -536, 535 

3 TGTC/TGCA 13 -279 -761, 203 -211 -629, 208 

3 TATA/TGCA 126 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 547, excludes 24 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGFBP-3 levels. 

‡ Units: ng/ml. 
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Table A.10. Unadjusted linear regression of IGFBP-3 group-specific diplotypes on plasma IGF-I levels among African 

Americans* 

 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  175 161, 190   

1 Rare 50 -19 -44, 5 -17 -41, 6 

1 TACGAGG/GCGGAGA 18 48 12, 84 39 6, 71 

1 TACGAGG/GCGGCAA 15 -19 -58, 20 -15 -49, 20 

1 TACGAGG/TACGAGG 51 -6 -31, 18 -6 -29, 17 

1 TAGGAGA/TACGAGG 10 -23 -70, 23 -17 -56, 23 

1 TAGGAGA/TAGGAGG 7 -33 -88, 22 -21 -65, 23 

1 TAGGAGG/GCGGAGA 12 -50 -93, -7 -38 -75, 0 

1 TAGGAGG/TAGGAGG 34 1 -27, 29 1 -25, 27 

1 TCGCAGA/GCGGAGA 10 -8 -54, 39 -5 -45, 34 

1 TCGCAGA/GCGGCAA 9 -33 -82, 16 -23 -64, 18 

1 TCGCAGA/TACGAGG 68 -20 -42, 3 -18 -39, 3 

1 TCGCAGA/TAGGAGA 6 4 -55, 63 2 -44, 48 

1 TCGCAGA/TAGGAGG 44 -10 -35, 16 -9 -33, 16 

1 TCGCAGA/TCGCAGA 26 -31 -62, 0 -26 -55, 2 

1 TCGCAGA/TCGGAGG 20 -21 -55, 14 -17 -48, 14 

1 TCGGAGA/TACGAGG 12 -15 -58, 28 -11 -48, 26 

1 TCGGAGG/TACGAGG 30 -19 -49, 10 -17 -44, 11 

1 TCGGAGG/TAGGAGG 19 3 -32, 38 2 -30, 34 

1 TCGGAGG/TCGGAGG 7 30 -24, 85 20 -24, 64 

1 TAGGAGG/TACGAGG 91 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 539, excludes 32 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGF-I levels. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  162 152, 172   

2 AC/AC 7 -20 -76, 36 -13 -57, 32 

2 CC/AC 28 18 -11, 47 15 -12, 43 

2 CC/CC 57 3 -19, 25 3 -18, 24 

2 CT/AC 60 7 -14, 29 7 -14, 27 

2 CT/CT 194 4 -10, 19 4 -10, 18 

2 CT/CC 217 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 563, excludes 8 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGF-I levels. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  162 150, 175   

3 Rare 14 -25 -65, 16 -19 -54, 16 

3 AGCA/AGCA 9 2 -48, 51 1 -40, 42 

3 TACA/AGCA 15 -11 -50, 28 -9 -43, 26 

3 TACA/TACA 10 2 -45, 49 1 -38, 41 

3 TACA/TGCA 43 -8 -34, 17 -8 -31, 16 

3 TATA/AGCA 47 -9 -34, 15 -8 -31, 15 

3 TATA/TACA 40 -7 -33, 19 -7 -31, 18 

3 TATA/TATA 54 12 -11, 35 11 -11, 33 

3 TATA/TGTC 18 62 26, 98 50 17, 82 

3 TGCA/AGCA 51 7 -17, 31 6 -16, 29 

3 TGCA/TGCA 101 10 -10, 29 9 -10, 27 

3 TGTC/AGCA 6 -35 -95, 25 -21 -68, 25 

3 TGTC/TGCA 13 -1 -43, 40 -1 -37, 35 

3 TATA/TGCA 126 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 547, excludes 24 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGF-I levels. 

‡ Units: ng/ml. 
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Table A.11. Unadjusted linear regression of IGF-I group-specific diplotypes on plasma IGFBP-3 levels among Caucasians* 

 

Group† Diplotypes N‡ 

Maximum 

Likelihood 

Estimates§ 

95% Confidence 

Interval§ 

Posterior 

Medians§ 

95% Posterior 

Limits§ 

 Intercept  4525 4429, 4620   

1 A/G, A/A 114 -15 -193, 164 -14 -188, 160 

1 G/G 280 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† rs35767 represents entire group because it could not be combined with block 1 SNPs for diplotype estimation. 

‡ N = 394, excludes 4 women missing SNP genotype and 1 woman missing plasma IGFBP-3 level. 

§ Units: ng/ml. 

 

 

 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4559 4407, 4711   

2 Rare 10 545 19, 1071 386 -57, 828 

2 AAT/ACT 11 -170 -673, 334 -123 -552, 306 

2 AAT/GCC 23 52 -313, 417 43 -290, 377 

2 AAT/GCT 52 75 -193, 343 68 -187, 323 

2 ACT/GCC 27 -173 -515, 169 -147 -463, 168 

2 ACT/GCT 34 -1 -314, 311 -1 -293, 291 

2 GCC/GCC 29 -185 -518, 147 -159 -467, 149 

2 GCT/GCT 97 -100 -322, 122 -93 -307, 121 

2 GCT/GCC 110 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 393, excludes 5 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing    

   plasma IGFBP-3 level. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4518 4353, 4683   

3 Rare 22 -306 -683, 71 -252 -595, 90 

3 GCTCT/GCTGC 9 -33 -588, 522 -23 -482, 437 

3 GGCCC/AGTGC 21 84 -300, 468 69 -279, 417 

3 GGCCC/GCTCT 26 -42 -395, 311 -35 -359, 289 

3 GGCCC/GCTGC 36 -61 -373, 252 -53 -345, 239 

3 GGCCC/GGCCC 78 82 -162, 326 75 -159, 309 

3 GGCCT/AGTGC 15 -213 -656, 230 -165 -554, 225 

3 GGCCT/GCTCT 25 179 -179, 537 150 -178, 478 

3 GGCCT/GCTGC 24 -202 -566, 163 -168 -501, 165 

3 GGCCT/GGCCT 33 291 -32, 613 251 -48, 551 

3 GGCCT/GGTGT 7 -212 -835, 412 -134 -630, 362 

3 GGCCC/GGCCT 93 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 389, excludes 9 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing    

   plasma IGFBP-3 level. 

‡ Units: ng/ml. 

 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4585 4463, 4706   

4 CA/TA, Rare 16 -360 -779, 59 -285 -658, 88 

4 CA/CA 21 -221 -592, 150 -184 -521, 154 

4 CG/CA 119 -23 -214, 167 -22 -208, 164 

4 CG/TA 62 -183 -420, 54 -169 -397, 59 

4 CG/CG 175 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 393, excludes 5 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing    

   plasma IGFBP-3 level. 

‡ Units: ng/ml. 
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Table A.12. Unadjusted linear regression of IGF-I group-specific diplotypes on plasma IGF-I levels among Caucasians* 

 

Group† Diplotypes N‡ 

Maximum 

Likelihood 

Estimates§ 

95% Confidence 

Interval§ 

Posterior 

Medians§ 

95% Posterior 

Limits§ 

 Intercept  171  164, 177   

1 A/G, A/A 114 6 -7, 19 6 -7, 18 

1 G/G 280 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† rs35767 represents entire group because it could not be combined with block 1 SNPs for diplotype estimation. 

‡ N = 394, excludes 4 women missing SNP genotype and 1 woman missing plasma IGF-I level. 

§ Units: ng/ml. 

 

. 

 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  173 162, 184   

2 Rare 10 3 -35, 41 2 -30, 34 

2 AAT/ACT 11 -7 -44, 29 -5 -36, 26 

2 AAT/GCC 23 8 -18, 34 7 -17, 31 

2 AAT/GCT 52 12 -8, 31 11 -8, 29 

2 ACT/GCC 27 -3 -27, 22 -2 -25, 20 

2 ACT/GCT 34 -13 -35, 10 -11 -32, 10 

2 GCC/GCC 29 -6 -30, 18 -5 -28, 17 

2 GCT/GCT 97 -4 -20, 12 -4 -20, 11 

2 GCT/GCC 110 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 393, excludes 5 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing  

   plasma IGF-I level. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  165 153, 176   

3 Rare 22 -24 -51, 3 -20 -44, 5 

3 GCTCT/GCTGC 9 25 -14, 64 17 -15, 50 

3 GGCCC/AGTGC 21 21 -6, 48 17 -8, 42 

3 GGCCC/GCTCT 26 3 -22, 28 3 -20, 26 

3 GGCCC/GCTGC 36 7 -15, 29 6 -15, 27 

3 GGCCC/GGCCC 78 6 -11, 24 6 -11, 23 

3 GGCCT/AGTGC 15 25 -6, 57 20 -8, 48 

3 GGCCT/GCTCT 25 13 -13, 38 11 -13, 34 

3 GGCCT/GCTGC 24 1 -25, 27 1 -23, 24 

3 GGCCT/GGCCT 33 29 6, 52 25 4, 46 

3 GGCCT/GGTGT 7 41 -3, 86 26 -9, 62 

3 GGCCC/GGCCT 93 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 389, excludes 9 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing  

   plasma IGF-I level. 

‡ Units: ng/ml. 

 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  172 164, 181   

4 CA/TA, Rare 16 -31 -61, -1 -25 -52, 2 

4 CA/CA 21 14 -12, 41 12 -12, 36 

4 CG/CA 119 1 -13, 14 1 -13, 14 

4 CG/TA 62 2 -15, 19 2 -14, 18 

4 CG/CG 175 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 393, excludes 5 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 1 woman missing  

   plasma IGF-I level. 

‡ Units: ng/ml. 
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Table A.13. Unadjusted linear regression of IGF-I group-specific diplotypes on plasma IGFBP-3 levels among African 

Americans* 
 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4043 3919, 4167   

1 Rare 9 -841 -1409, -272 -580 -1052, -108 

1 AGG/AGG 99 106 -102, 314 100 -102, 302 

1 AGG/GCG 52 -12 -274, 250 -11 -261, 239 

1 AGG/GGA 31 -3 -327, 320 -3 -305, 299 

1 GCG/GCG 8 -221 -822, 380 -147 -637, 343 

1 GGG/GCG 57 148 -105, 401 136 -106, 378 

1 GGG/GGA 24 7 -355, 368 6 -327, 338 

1 GGG/GGG 105 137 -67, 342 130 -69, 328 

1 AGG/GGG 180 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 565, excludes 7 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGFBP-3 levels. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  3999 3866, 4133   

2 Rare 38 109 -187, 405 97 -182, 377 

2 ATCCC/TCTTT 13 153 -319, 624 117 -295, 529 

2 ATTCC/ATCCC 37 107 -192, 406 95 -187, 377 

2 ATTCC/ATTTT 10 -101 -633, 432 -72 -523, 378 

2 ATTCC/TCTCC 8 -35 -626, 557 -23 -508, 462 

2 ATTCC/TCTCT 15 392 -50, 833 308 -83, 700 

2 ATTCC/TCTTT 119 67 -133, 267 64 -131, 258 

2 ATTCC/TTTCT 34 10 -300, 319 9 -282, 299 

2 ATTCT/ATCCC 6 -212 -891, 466 -129 -659, 400 

2 ATTCT/ATTCC 41 154 -133, 442 138 -134, 411 

2 ATTCT/TCTCT 6 19 -660, 698 12 -518, 541 

2 ATTCT/TCTTT 20 -154 -542, 234 -127 -480, 226 

2 ATTCT/TTTCT 8 186 -405, 778 125 -360, 610 

2 TCTCT/TCTTT 10 73 -460, 605 52 -399, 503 

2 TCTTT/TCTTT 30 179 -147, 505 156 -149, 460 

2 TTTCT/TCTTT 13 783 312, 1255 598 186, 1010 

2 ATTCC/ATTCC 150 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 558, excludes 14 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGFBP-3 levels. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4083 3915, 4251   

3 Rare 9 -679 -1257, -101 -463 -941, 14 

3 AACC/AACC 7 260 -389, 910 164 -351, 679 

3 AACC/AACT 7 -101 -750, 549 -63 -579, 452 

3 AACC/AGGT 15 371 -89, 832 287 -118, 691 

3 AACC/TACC 11 -423 -950, 105 -304 -752, 143 

3 AACC/TACT 55 -107 -386, 173 -96 -362, 169 

3 AACT/AGGT 6 -217 -915, 481 -129 -668, 410 

3 AACT/TACT 13 9 -481, 498 6 -418, 430 

3 AAGC/AACC 35 -68 -394, 259 -59 -364, 246 

3 AAGC/AACT 9 466 -112, 1044 318 -160, 795 

3 AAGC/AAGC 34 58 -272, 388 50 -257, 358 

3 AAGC/AGGT 24 149 -229, 527 124 -221, 470 

3 AAGC/TACC 28 -99 -455, 257 -84 -412, 244 

3 AAGC/TACT 86 19 -226, 264 18 -218, 253 

3 AGGT/AGGT 10 66 -485, 617 47 -415, 508 

3 AGGT/TACT 47 21 -274, 315 18 -260, 297 

3 TACC/TACC 6 -351 -1049, 347 -209 -748, 329 

3 TACC/TACT 45 3 -296, 302 3 -279, 285 

3 TACT/TACT 98 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 545, excludes 27 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGFBP-3 levels. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  4048 3938, 4158   

4 CA/CA 93 171 -34, 377 162 -38, 362 

4 CA/TA 40 -29 -316, 257 -26 -298, 245 

4 CG/CG 147 -22 -199, 155 -21 -194, 152 

4 CG/TA 45 162 -111, 435 147 -113, 407 

4 TA/TA 8 283 -320, 885 188 -304, 679 

4 CA/CG 232 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 565, excludes 7 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGFBP-3 levels. 

‡ Units: ng/ml. 

 

 



  

 

2
0
4

Table A.14. Unadjusted linear regression of IGF-I group-specific diplotypes on plasma IGF-I levels among African 

Americans* 
 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  166 155, 176   

1 Rare 9 -68 -117, -20 -48 -88, -7 

1 AGG/AGG 99 0 -18, 17 0 -18, 17 

1 AGG/GCG 52 -5 -28, 17 -5 -26, 17 

1 AGG/GGA 31 -7 -34, 21 -6 -32, 20 

1 GCG/GCG 8 -27 -78, 25 -18 -60, 24 

1 GGG/GCG 57 31 9, 52 28 8, 49 

1 GGG/GGA 24 -2 -33, 29 -2 -30, 27 

1 GGG/GGG 105 -7 -24, 11 -6 -23, 11 

1 AGG/GGG 180 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 565, excludes 7 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGF-I levels. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  162 150, 174   

2 Rare 38 -1 -28, 25 -1 -26, 23 

2 ATCCC/TCTTT 13 25 -17, 66 19 -17, 55 

2 ATTCC/ATCCC 37 -14 -41, 12 -13 -37, 12 

2 ATTCC/ATTTT 10 -5 -52, 42 -3 -43, 36 

2 ATTCC/TCTCC 8 -29 -81, 24 -19 -62, 23 

2 ATTCC/TCTCT 15 29 -10, 68 23 -12, 57 

2 ATTCC/TCTTT 119 8 -10, 26 8 -10, 25 

2 ATTCC/TTTCT 34 6 -21, 33 5 -20, 31 

2 ATTCT/ATCCC 6 -12 -71, 48 -7 -53, 40 

2 ATTCT/ATTCC 41 2 -24, 27 2 -22, 25 

2 ATTCT/TCTCT 6 8 -52, 67 5 -42, 51 

2 ATTCT/TCTTT 20 -3 -37, 31 -2 -33, 29 

2 ATTCT/TTTCT 8 8 -44, 60 5 -37, 48 

2 TCTCT/TCTTT 10 -13 -60, 34 -9 -49, 31 

2 TCTTT/TCTTT 30 12 -17, 41 10 -16, 37 

2 TTTCT/TCTTT 13 21 -20, 63 16 -20, 52 

2 ATTCC/ATTCC 150 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 558, excludes 14 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGF-I levels. 

‡ Units: ng/ml. 

 



  

 

2
0
6

 

Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  166 152, 181   

3 Rare 9 -38 -87, 12 -26 -67, 15 

3 AACC/AACC 7 5 -51, 61 3 -41, 48 

3 AACC/AACT 7 -18 -74, 38 -12 -56, 33 

3 AACC/AGGT 15 -4 -43, 36 -3 -38, 32 

3 AACC/TACC 11 -10 -55, 35 -7 -46, 31 

3 AACC/TACT 55 -6 -30, 18 -5 -28, 18 

3 AACT/AGGT 6 -14 -74, 46 -8 -55, 38 

3 AACT/TACT 13 10 -33, 52 7 -29, 44 

3 AAGC/AACC 35 0 -28, 28 0 -26, 26 

3 AAGC/AACT 9 109 59, 159 75 34, 116 

3 AAGC/AAGC 34 8 -21, 36 7 -20, 33 

3 AAGC/AGGT 24 4 -28, 37 4 -26, 33 

3 AAGC/TACC 28 -11 -41, 20 -9 -37, 19 

3 AAGC/TACT 86 -9 -30, 12 -9 -29, 12 

3 AGGT/AGGT 10 18 -29, 65 13 -27, 53 

3 AGGT/TACT 47 2 -23, 28 2 -22, 26 

3 TACC/TACC 6 -28 -88, 32 -17 -63, 30 

3 TACC/TACT 45 -12 -37, 14 -10 -35, 14 

3 TACT/TACT 98 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 545, excludes 27 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGF-I levels. 

‡ Units: ng/ml. 
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Group Diplotypes N† 

Maximum 

Likelihood 

Estimates‡ 

95% Confidence 

Interval‡ 

Posterior 

Medians‡ 

95% Posterior 

Limits‡ 

 Intercept  162 152, 171   

4 CA/CA 93 4 -14, 22 4 -13, 21 

4 CA/TA 40 38 13, 63 34 11, 57 

4 CG/CG 147 -2 -18, 13 -2 -17, 12 

4 CG/TA 45 -1 -25, 22 -1 -23, 21 

4 TA/TA 8 -1 -52, 51 0 -43, 42 

4 CA/CG 232 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 565, excludes 7 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   plasma IGF-I levels. 

‡ Units: ng/ml. 
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Table A.15. Unadjusted prevalence differences of uterine fibroids (any size) with IGFBP-3 group-specific diplotypes among 

Caucasians* 
 

Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

1 Rare 24 45 -0.024 -0.216, 0.168 -0.015 -0.167, 0.137 

1 GCGGAC/GCGGAC 13 21 0.062 -0.181, 0.304 0.032 -0.142, 0.206 

1 TACGGA/TACGGC 8 22 -0.194 -0.430, 0.043 -0.102 -0.274, 0.070 

1 TACGGA/TCGCAC 5 10 -0.057 -0.391, 0.277 -0.021 -0.221, 0.180 

1 TACGGC/TACGGC 21 33 0.079 -0.127, 0.285 0.047 -0.112, 0.206 

1 TACGGC/TAGGGC 5 13 -0.173 -0.465, 0.120 -0.073 -0.263, 0.117 

1 TACGGC/TCGCAC 28 55 -0.048 -0.230, 0.133 -0.032 -0.179, 0.115 

1 TACGGC/TCGGGA 13 31 -0.138 -0.352, 0.076 -0.080 -0.242, 0.083 

1 TAGGGC/GCGGAC 1 6 -0.391 -0.714, -0.068 -0.146 -0.344, 0.051 

1 TCGCAC/GCGGAC 11 23 -0.079 -0.318, 0.160 -0.041 -0.214, 0.132 

1 TCGCAC/TCGCAC 4 13 -0.250 -0.530, 0.030 -0.111 -0.297, 0.076 

1 TCGGGA/GCGGAC 4 11 -0.194 -0.504, 0.117 -0.076 -0.271, 0.118 

1 TCGGGA/TCGCAC 10 15 0.109 -0.160, 0.378 0.051 -0.133, 0.234 

1 TCGGGA/TCGGGA 4 6 0.109 -0.288, 0.507 0.031 -0.181, 0.243 

1 TACGGC/GCGGAC 34 61 REF  REF  

* N = 401, excludes 1 woman missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 365, excludes 30 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 6 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 
Differences‡ 

95% Confidence 
Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

2 Rare 2 5 -0.131 -0.578, 0.315 -0.031 -0.249, 0.187 

2 AGCA/AGCA 8 12 0.135 -0.158, 0.429 0.057 -0.133, 0.247 

2 TACA/AGCA 20 34 0.057 -0.149, 0.263 0.034 -0.125, 0.193 

2 TACA/TACA 6 12 -0.031 -0.339, 0.277 -0.012 -0.207, 0.182 

2 TACA/TATA 2 6 -0.198 -0.594, 0.199 -0.056 -0.268, 0.155 

2 TACA/TGCA 21 51 -0.119 -0.302, 0.063 -0.078 -0.225, 0.069 

2 TACA/TGTC 10 17 0.057 -0.207, 0.321 0.027 -0.155, 0.208 

2 TATA/AGCA 5 9 0.024 -0.323, 0.371 0.008 -0.195, 0.211 

2 TATA/TGCA 5 9 0.024 -0.323, 0.371 0.008 -0.195, 0.211 

2 TGCA/TGCA 28 62 -0.080 -0.254, 0.094 -0.054 -0.196, 0.089 

2 TGCA/TGTC 30 61 -0.039 -0.215, 0.136 -0.026 -0.170, 0.117 

2 TGTC/AGCA 17 32 0.000 -0.212, 0.212  0.000 -0.162, 0.162 

2 TGTC/TGTC 7 10 0.169 -0.140, 0.478 0.067 -0.128, 0.261 

2 TGCA/AGCA 34 64 REF  REF  

* N = 401, excludes 1 woman missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 384, excludes 9 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Table A.16. Unadjusted prevalence differences of uterine fibroids (2+ cm) with IGFBP-3 group-specific diplotypes among 

Caucasians* 
 

Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

1 Rare|| 16 51 -0.096 -0.273, 0.081 -0.064 -0.209, 0.081 

1 GCGGAC/GCGGAC 7 21 -0.077 -0.313, 0.160 -0.040 -0.212, 0.131 

1 TACGGA/TACGGC 5 22 -0.183 -0.397, 0.032 -0.105 -0.268, 0.057 

1 TACGGA/TCGCAC 3 10 -0.110 -0.420, 0.200 -0.043 -0.238, 0.151 

1 TACGGC/TACGGC 12 33 -0.046 -0.252, 0.159 -0.028 -0.186, 0.131 

1 TACGGC/TAGGGC 4 13 -0.102 -0.382, 0.177 -0.045 -0.232, 0.141 

1 TACGGC/TCGCAC 19 55 -0.064 -0.241, 0.112 -0.043 -0.187, 0.101 

1 TACGGC/TCGGGA 9 31 -0.120 -0.321, 0.082 -0.072 -0.229, 0.085 

1 TCGCAC/GCGGAC 7 23 -0.105 -0.330, 0.119 -0.058 -0.226, 0.109 

1 TCGCAC/TCGCAC 2 13 -0.256 -0.488, -0.024 -0.138 -0.308, 0.032 

1 TCGGGA/GCGGAC 3 11 -0.137 -0.428, 0.154 -0.058 -0.248, 0.131 

1 TCGGGA/TCGCAC 5 15 -0.077 -0.345, 0.192 -0.036 -0.219, 0.147 

1 TCGGGA/TCGGGA 4 6 0.257 -0.140, 0.654 0.073 -0.139, 0.284 

1 TACGGC/GCGGAC 25 61 REF  REF  

* N = 401, excludes 1 woman missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 365, excludes 30 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 6 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 

|| Includes TAGGGC/GCGGAC diplotype, which was analyzed separately in relation to any fibroids.  However, no women with this diplotype had    

   fibroids 2+ cm, and estimating a prevalence difference for this diplotype resulted in convergences problems for model. 
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Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

2 Rare 2 5 0.088 -0.357, 0.532 0.021 -0.197, 0.239 

2 AGCA/AGCA 5 12 0.104 -0.197, 0.405 0.042 -0.150, 0.235 

2 TACA/AGCA 15 34 0.129 -0.073, 0.331 0.078 -0.079, 0.235 

2 TACA/TACA 3 12 -0.062 -0.333, 0.208 -0.029 -0.212, 0.155 

2 TACA/TATA 1 6 -0.146 -0.465, 0.173 -0.055 -0.252, 0.141 

2 TACA/TGCA 11 51 -0.097 -0.257, 0.063 -0.069 -0.203, 0.066 

2 TACA/TGTC 8 17 0.158 -0.105, 0.421 0.075 -0.106, 0.256 

2 TATA/AGCA 5 9 0.243 -0.101, 0.587 0.084 -0.118, 0.286 

2 TATA/TGCA 4 9 0.132 -0.212, 0.476 0.046 -0.157, 0.248 

2 TGCA/TGCA 22 62 0.042 -0.122, 0.207 0.030 -0.108, 0.167 

2 TGCA/TGTC 17 61 -0.034 -0.194, 0.126 -0.024 -0.159, 0.111 

2 TGTC/AGCA 11 32 0.031 -0.169, 0.231 0.019 -0.137, 0.175 

2 TGTC/TGTC 5 10 0.188 -0.143, 0.518 0.068 -0.131, 0.268 

2 TGCA/AGCA 20 64 REF  REF  

* N = 401, excludes 1 woman missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 384, excludes 9 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Table A.17. Unadjusted prevalence differences of uterine fibroids (any size) with IGFBP-3 group-specific diplotypes among 

African Americans* 
 

Group Diplotypes 
N (any 

fibroids )† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

1 Rare 33 49 -0.038 -0.199, 0.124 -0.027 -0.162, 0.109 

1 TACGAGG/GCGGAGA 11 17 -0.064 -0.310, 0.182 -0.033 -0.208, 0.143 

1 TACGAGG/GCGGCAA 11 15 0.022 -0.220, 0.265 0.011 -0.163, 0.186 

1 TACGAGG/TACGAGG 38 51 0.034 -0.118, 0.186 0.025 -0.105, 0.155 

1 TAGGAGA/TACGAGG 6 10 -0.111 -0.429, 0.207 -0.042 -0.239, 0.154 

1 TAGGAGA/TAGGAGG 5 7 0.003 -0.344, 0.351 0.001 -0.202, 0.204 

1 TAGGAGG/GCGGAGA 7 13 -0.173 -0.459, 0.114 -0.075 -0.263, 0.114 

1 TAGGAGG/TAGGAGG 27 34 0.083 -0.082, 0.248 0.058 -0.080, 0.196 

1 TCGCAGA/GCGGAGA 9 10 0.189 -0.019, 0.397 0.112 -0.048, 0.272 

1 TCGCAGA/GCGGCAA 4 9 -0.267 -0.605, 0.071 -0.094 -0.295, 0.107 

1 TCGCAGA/TACGAGG 52 71 0.021 -0.118, 0.160 0.016 -0.105, 0.138 

1 TCGCAGA/TAGGAGA 6 8 0.039 -0.275, 0.353 0.015 -0.181, 0.211 

1 TCGCAGA/TAGGAGG 33 44 0.039 -0.120, 0.197 0.028 -0.106, 0.162 

1 TCGCAGA/TCGCAGA 23 25 0.209 0.067, 0.351 0.158 0.035, 0.281 

1 TCGCAGA/TCGGAGG 15 20 0.039 -0.173, 0.251 0.023 -0.139, 0.184 

1 TCGGAGA/TACGAGG 8 11 0.016 -0.263, 0.296 0.007 -0.179, 0.193 

1 TCGGAGG/TACGAGG 21 31 -0.034 -0.223, 0.156 -0.021 -0.172, 0.130 

1 TCGGAGG/TAGGAGG 15 19 0.078 -0.127, 0.284 0.047 -0.112, 0.206 

1 TCGGAGG/TCGGAGG 4 7 -0.140 -0.518, 0.239 -0.042 -0.251, 0.166 

1 TAGGAGG/TACGAGG 64 90 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 541, excludes 32 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 6 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

2 AC/AC 6 7 0.121 -0.145, 0.387 0.057 -0.125, 0.239 

2 CC/AC 19 28 -0.058 -0.240, 0.125 -0.038 -0.185, 0.110 

2 CC/CC 44 58 0.023 -0.102, 0.147 0.018 -0.094, 0.130 

2 CT/AC 40 60 -0.069 -0.202, 0.064 -0.054 -0.172, 0.063 

2 CT/CT 144 195 0.002 -0.083, 0.088 0.002 -0.079, 0.083 

2 CT/CC 159 216 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 564, excludes 8 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 

 

Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 
Differences‡ 

95% Confidence 
Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

3 Rare 12 14 0.067 -0.130, 0.264 0.041 -0.113, 0.196 

3 AGCA/AGCA 6 9 -0.124 -0.440, 0.193 -0.048 -0.244, 0.149 

3 TACA/AGCA 8 15 -0.257 -0.519, 0.005 -0.122 -0.303, 0.059 

3 TACA/TACA 7 10 -0.090 -0.383, 0.203 -0.038 -0.228, 0.152 

3 TACA/TGCA 31 43 -0.069 -0.221, 0.083 -0.051 -0.181, 0.079 

3 TATA/AGCA 36 47 -0.024 -0.165, 0.116 -0.019 -0.141, 0.104 

3 TATA/TACA 30 40 -0.040 -0.192, 0.112 -0.029 -0.159, 0.101 

3 TATA/TATA 40 52 -0.021 -0.156, 0.114 -0.016 -0.135, 0.103 

3 TATA/TGTC 12 18 -0.124 -0.353, 0.106 -0.067 -0.236, 0.102 

3 TGCA/AGCA 43 53 0.021 -0.106, 0.148 0.017 -0.097, 0.130 

3 TGCA/TGCA 71 104 -0.108 -0.222, 0.007 -0.089 -0.193, 0.015 

3 TGTC/AGCA 5 6 0.043 -0.264, 0.350 0.017 -0.177, 0.211 

3 TGTC/TGCA 8 13 -0.175 -0.449, 0.099 -0.079 -0.264, 0.105 

3 TATA/TGCA 98 124 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 548, excludes 24 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Table A.18. Unadjusted prevalence differences of uterine fibroids (2+ cm) with IGFBP-3 group-specific diplotypes among 

African Americans* 
 

Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

1 Rare 27 49 -0.027 -0.199, 0.146 -0.018 -0.160, 0.124 

1 TACGAGG/GCGGAGA 10 17 0.010 -0.245, 0.266 0.005 -0.173, 0.184 

1 TACGAGG/GCGGCAA 9 15 0.022 -0.246, 0.290 0.010 -0.173, 0.193 

1 TACGAGG/TACGAGG 30 51 0.010 -0.159, 0.180 0.007 -0.133, 0.147 

1 TAGGAGA/TACGAGG 5 10 -0.078 -0.404, 0.248 -0.029 -0.227, 0.170 

1 TAGGAGA/TAGGAGG 5 7 0.137 -0.213, 0.486 0.046 -0.157, 0.250 

1 TAGGAGG/GCGGAGA 7 13 -0.039 -0.329, 0.250 -0.017 -0.206, 0.172 

1 TAGGAGG/TAGGAGG 23 34 0.099 -0.089, 0.286 0.063 -0.087, 0.213 

1 TCGCAGA/GCGGAGA 9 10 0.322 0.110, 0.534 0.187 0.026, 0.349 

1 TCGCAGA/GCGGCAA 3 9 -0.244 -0.569, 0.080 -0.091 -0.289, 0.107 

1 TCGCAGA/TACGAGG 36 71 -0.071 -0.225, 0.084 -0.051 -0.183, 0.080 

1 TCGCAGA/TAGGAGA 4 8 -0.078 -0.439, 0.283 -0.025 -0.231, 0.180 

1 TCGCAGA/TAGGAGG 25 44 -0.010 -0.188, 0.169 -0.006 -0.152, 0.139 

1 TCGCAGA/TCGCAGA 18 25 0.142 -0.061, 0.346 0.086 -0.072, 0.243 

1 TCGCAGA/TCGGAGG 13 20 0.072 -0.160, 0.305 0.039 -0.132, 0.209 

1 TCGGAGA/TACGAGG 6 11 -0.032 -0.344, 0.279 -0.013 -0.208, 0.182 

1 TCGGAGG/TACGAGG 14 31 -0.126 -0.329, 0.077 -0.076 -0.234, 0.081 

1 TCGGAGG/TAGGAGG 9 19 -0.104 -0.351, 0.143 -0.053 -0.228, 0.123 

1 TCGGAGG/TCGGAGG 2 7 -0.292 -0.642, 0.058 -0.099 -0.302, 0.105 

1 TAGGAGG/TACGAGG 52 90 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 541, excludes 32 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 6 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

2 AC/AC 5 7 0.140 -0.201, 0.481 0.049 -0.153, 0.251 

2 CC/AC 13 28 -0.110 -0.306, 0.086 -0.068 -0.222, 0.086 

2 CC/CC 37 58 0.064 -0.076, 0.204 0.049 -0.074, 0.171 

2 CT/AC 34 60 -0.007 -0.149, 0.134 -0.006 -0.129, 0.118 

2 CT/CT 107 195 -0.025 -0.121, 0.071 -0.022 -0.112, 0.068 

2 CT/CC 124 216 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 564, excludes 8 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 

 

Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 
Differences‡ 

95% Confidence 
Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

3 Rare 8 14 -0.082 -0.354, 0.191 -0.037 -0.222, 0.147 

3 AGCA/AGCA 3 9 -0.320 -0.639, -0.001 -0.122 -0.318, 0.075 

3 TACA/AGCA 5 15 -0.320 -0.573, -0.067 -0.158 -0.336, 0.020 

3 TACA/TACA 7 10 0.047 -0.249, 0.343 0.019 -0.172, 0.210 

3 TACA/TGCA 28 43 -0.002 -0.167, 0.163 -0.001 -0.139, 0.136 

3 TATA/AGCA 27 47 -0.079 -0.243, 0.086 -0.055 -0.192, 0.082 

3 TATA/TACA 26 40 -0.003 -0.173, 0.167 -0.002 -0.143, 0.138 

3 TATA/TATA 29 52 -0.096 -0.254, 0.063 -0.068 -0.202, 0.066 

3 TATA/TGTC 9 18 -0.153 -0.399, 0.092 -0.078 -0.253, 0.097 

3 TGCA/AGCA 36 53 0.026 -0.125, 0.177 0.019 -0.110, 0.148 

3 TGCA/TGCA 50 104 -0.172 -0.300, -0.045 -0.137 -0.250, -0.023 

3 TGTC/AGCA 4 6 0.013 -0.373, 0.400 0.004 -0.206, 0.214 

3 TGTC/TGCA 5 13 -0.269 -0.546, 0.009 -0.120 -0.306, 0.065 

3 TATA/TGCA 81 124 REF  REF  

* N = 579, excludes 3 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 548, excludes 24 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Table A.19. Unadjusted prevalence differences of uterine fibroids (any size) with IGF-I group-specific diplotypes among 

Caucasians* 
 

Group† Diplotypes 
N (any 

fibroids)‡ 
total N‡ 

 Prevalence 

Differences|| 

95% Confidence 

Intervals|| 

Posterior 

Medians 

95% Posterior 

Limits 

1 A/G, A/A 59 114 0.008 -0.101, 0.118 0.007 -0.093, 0.107 

1 G/G 139 273 REF   REF   

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† rs35767 represents entire group because it could not be combined with block 1 SNPs for diplotype estimation. 

‡ N = 387, excludes 4 women missing SNP genotype and 8 women missing uterine fibroid status. 

|| Estimated in SASV9.1 using Poisson regression with robust standard errors. 

 

 

Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

2 Rare 5 10 -0.028 -0.352, 0.296 -0.010 -0.208, 0.188 

2 AAT/ACT 3 10 -0.228 -0.527, 0.071 -0.094 -0.285, 0.098 

2 AAT/GCC 10 22 -0.073 -0.302, 0.155 -0.040 -0.209, 0.129 

2 AAT/GCT 25 50 -0.028 -0.195, 0.140 -0.019 -0.158, 0.120 

2 ACT/GCC 14 26 0.011 -0.203, 0.224 0.006 -0.156, 0.169 

2 ACT/GCT 20 34 0.060 -0.130, 0.251 0.038 -0.113, 0.190 

2 GCC/GCC 17 28 0.079 -0.125, 0.283 0.048 -0.110, 0.206 

2 GCT/GCT 46 98 -0.058 -0.195, 0.078 -0.045 -0.165, 0.075 

2 GCT/GCC 57 108 REF   REF   

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 386, excludes 5 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing        

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

3 Rare 11 22 -0.120 -0.351, 0.112 -0.064 -0.234, 0.105 

3 GCTCT/GCTGC 4 8 -0.120 -0.480, 0.241 -0.039 -0.244, 0.167 

3 GGCCC/AGTGC 11 21 -0.096 -0.331, 0.140 -0.051 -0.222, 0.121 

3 GGCCC/GCTCT 14 25 -0.060 -0.278, 0.159 -0.034 -0.198, 0.131 

3 GGCCC/GCTGC 14 35 -0.220 -0.410, -0.029 -0.139 -0.290, 0.012 

3 GGCCC/GGCCC 36 76 -0.146 -0.296, 0.004 -0.107 -0.236, 0.021 

3 GGCCT/AGTGC 6 16 -0.245 -0.502, 0.013 -0.119 -0.298, 0.060 

3 GGCCT/GCTCT 16 24 0.047 -0.166, 0.260 0.027 -0.135, 0.189 

3 GGCCT/GCTGC 11 23 -0.141 -0.368, 0.086 -0.077 -0.246, 0.091 

3 GGCCT/GGCCT 12 33 -0.256 -0.448, -0.064 -0.161 -0.313, -0.009 

3 GGCCT/GGTGT 2 7 -0.334 -0.683, 0.015 -0.113 -0.316, 0.090 

3 GGCCC/GGCCT 57 92 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 382, excludes 9 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing        

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 

 

 

Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

4 CA/TA, Rare 9 16 0.019 -0.236, 0.273 0.009 -0.169, 0.187 

4 CA/CA 8 22 -0.180 -0.395, 0.034 -0.104 -0.267, 0.059 

4 CG/CA 62 118 -0.018 -0.135, 0.099 -0.015 -0.121, 0.091 

4 CG/TA 26 59 -0.103 -0.250, 0.044 -0.077 -0.203, 0.050 

4 CG/CG 93 171 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 386, excludes 5 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing        

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Table A.20. Unadjusted prevalence differences of uterine fibroids (2+ cm) with IGF-I group-specific diplotypes among 

Caucasians* 
 

Group† Diplotypes 
N (fibroids 

2+ cm)‡ 
total N‡ 

 Prevalence 

Differences|| 

95% Confidence 

Intervals|| 

Posterior 

Medians 

95% Posterior 

Limits 

1 A/G, A/A 40 114 0.018 -0.086, 0.121 0.015 -0.081, 0.111 

1 G/G 91 273 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† rs35767 represents entire group because it could not be combined with block 1 SNPs for diplotype estimation. 

‡ N = 387, excludes 4 women missing SNP genotype and 8 women missing uterine fibroid status. 

|| Estimated in SASV9.1 using Poisson regression with robust standard errors. 

 

 

Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

2 Rare 3 10 -0.024 -0.321, 0.273 -0.010 -0.201, 0.181 

2 AAT/ACT 2 10 -0.124 -0.387, 0.139 -0.059 -0.240, 0.122 

2 AAT/GCC 8 22 0.040 -0.180, 0.259 0.022 -0.143, 0.187 

2 AAT/GCT 16 50 -0.004 -0.161, 0.152 -0.003 -0.136, 0.130 

2 ACT/GCC 10 26 0.061 -0.146, 0.267 0.036 -0.123, 0.195 

2 ACT/GCT 13 34 0.058 -0.127, 0.244 0.038 -0.111, 0.187 

2 GCC/GCC 11 28 0.069 -0.133, 0.270 0.042 -0.115, 0.199 

2 GCT/GCT 32 98 0.002 -0.126, 0.131 0.002 -0.112, 0.116 

2 GCT/GCC 35 108 REF   REF   

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 386, excludes 5 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing        

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

3 Rare 9 22 0.029 -0.199, 0.257 0.016 -0.153, 0.184 

3 GCTCT/GCTGC 2 8 -0.130 -0.446, 0.186 -0.050 -0.246, 0.146 

3 GGCCC/AGTGC 10 21 0.096 -0.140, 0.331 0.051 -0.121, 0.222 

3 GGCCC/GCTCT 9 25 -0.020 -0.233, 0.192 -0.012 -0.174, 0.150 

3 GGCCC/GCTGC 10 35 -0.095 -0.274, 0.085 -0.062 -0.208, 0.083 

3 GGCCC/GGCCC 26 76 -0.038 -0.184, 0.107 -0.029 -0.154, 0.097 

3 GGCCT/AGTGC 2 16 -0.255 -0.445, -0.065 -0.162 -0.313, -0.011 

3 GGCCT/GCTCT 9 24 -0.005 -0.223, 0.212 -0.003 -0.167, 0.161 

3 GGCCT/GCTGC 7 23 -0.076 -0.289, 0.137 -0.044 -0.206, 0.118 

3 GGCCT/GGCCT 8 33 -0.138 -0.315, 0.039 -0.092 -0.236, 0.052 

3 GGCCT/GGTGT 1 7 -0.238 -0.515, 0.040 -0.106 -0.292, 0.079 

3 GGCCC/GGCCT 35 92 REF   REF   

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 382, excludes 9 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing        

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 

 

 

Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

4 CA/TA, Rare 8 16 0.126 -0.130, 0.381 0.061 -0.117, 0.240 

4 CA/CA 4 22 -0.192 -0.369, -0.016 -0.128 -0.273, 0.016 

4 CG/CA 39 118 -0.044 -0.155, 0.068 -0.036 -0.138, 0.065 

4 CG/TA 16 59 -0.103 -0.238, 0.032 -0.080 -0.198, 0.039 

4 CG/CG 64 171 REF  REF  

* N = 399, excludes 3 women missing more than 50% of IGF-I SNPs included in diplotype estimation. 

† N = 386, excludes 5 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 8 women missing        

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Table A.21. Unadjusted prevalence differences of uterine fibroids (any size) with IGF-I group-specific diplotypes among 

African Americans* 
 

Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

1 Rare 6 9 -0.092 -0.406, 0.223 -0.036 -0.231, 0.160 

1 AGG/AGG 81 101 0.044 -0.056, 0.143 0.038 -0.055, 0.130 

1 AGG/GCG 34 51 -0.092 -0.235, 0.052 -0.069 -0.193, 0.056 

1 AGG/GGA 22 30 -0.025 -0.195, 0.145 -0.017 -0.158, 0.124 

1 GCG/GCG 6 8 -0.008 -0.315, 0.298 -0.003 -0.197, 0.190 

1 GGG/GCG 32 55 -0.176 -0.321, -0.032 -0.132 -0.257, -0.007 

1 GGG/GGA 19 24 0.033 -0.141, 0.207 0.023 -0.120, 0.165 

1 GGG/GGG 75 106 -0.051 -0.157, 0.056 -0.043 -0.141, 0.055 

1 AGG/GGG 138 182 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 566, excludes 7 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

2 Rare 28 38 0.025 -0.132, 0.183 0.018 -0.115, 0.152 

2 ATCCC/TCTTT 11 13 0.135 -0.074, 0.344 0.079 -0.081, 0.240 

2 ATTCC/ATCCC 28 37 0.045 -0.111, 0.202 0.033 -0.100,  0.165 

2 ATTCC/ATTTT 7 10 -0.011 -0.305, 0.282 -0.005 -0.195, 0.185 

2 ATTCC/TCTCC 4 8 -0.211 -0.565, 0.143 -0.070 -0.275, 0.134 

2 ATTCC/TCTCT 13 16 0.101 -0.104, 0.306 0.061 -0.098, 0.219 

2 ATTCC/TCTTT 88 119 0.028 -0.079, 0.135 0.024 -0.075, 0.122 

2 ATTCC/TTTCT 23 34 -0.035 -0.208, 0.138 -0.024 -0.166, 0.119 

2 ATTCT/ATCCC 4 6 -0.045 -0.429, 0.339 -0.013 -0.223, 0.196 

2 ATTCT/ATTCC 32 40 0.089 -0.055, 0.232 0.067 -0.058, 0.191 

2 ATTCT/TCTCT 5 6 0.122 -0.185, 0.429 0.049 -0.145, 0.242 

2 ATTCT/TCTTT 14 20 -0.011 -0.225, 0.202 -0.007 -0.169, 0.156 

2 ATTCT/TTTCT 7 8 0.164 -0.077, 0.404 0.085 -0.088, 0.258 

2 TCTCT/TCTTT 6 10 -0.111 -0.424, 0.201 -0.044 -0.239, 0.152 

2 TCTTT/TCTTT 27 31 0.160 0.021, 0.298 0.122 0.001, 0.243 

2 TTTCT/TCTTT 6 14 -0.283 -0.552, -0.014 -0.131 -0.314, 0.052 

2 ATTCC/ATTCC 106 149 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 559, excludes 14 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

3 Rare 5 9 -0.214 -0.549, 0.121 -0.077 -0.277, 0.124 

3 AACC/AACC 6 8 -0.020 -0.331, 0.291 -0.008 -0.203, 0.187 

3 AACC/AACT 5 7 -0.056 -0.400, 0.289 -0.019 -0.222, 0.183 

3 AACC/AGGT 6 14 -0.341 -0.613, -0.069 -0.156 -0.340, 0.028 

3 AACC/TACC 7 10 -0.070 -0.366, 0.226 -0.029 -0.220, 0.162 

3 AACC/TACT 39 53 -0.034 -0.179, 0.110 -0.026 -0.151, 0.100 

3 AACT/AGGT 3 7 -0.341 -0.717, 0.034 -0.105 -0.313, 0.103 

3 AACT/TACT 7 13 -0.232 -0.515, 0.052 -0.101 -0.289, 0.086 

3 AAGC/AACC 23 36 -0.131 -0.308, 0.046 -0.087 -0.232, 0.057 

3 AAGC/AACT 6 9 -0.103 -0.422, 0.215 -0.039 -0.236, 0.157 

3 AAGC/AAGC 29 35 0.059 -0.091, 0.208 0.043 -0.085, 0.172 

3 AAGC/AGGT 18 24 -0.020 -0.212, 0.172 -0.013 -0.165, 0.140 

3 AAGC/TACC 22 27 0.045 -0.123, 0.213 0.031 -0.109, 0.170 

3 AAGC/TACT 64 86 -0.026 -0.150, 0.098 -0.021 -0.132, 0.090 

3 AGGT/AGGT 8 10 0.030 -0.231, 0.291 0.014 -0.166, 0.195 

3 AGGT/TACT 38 47 0.039 -0.101, 0.178 0.029 -0.092, 0.151 

3 TACC/TACC 4 6 -0.103 -0.489, 0.283 -0.031 -0.240, 0.179 

3 TACC/TACT 31 45 -0.081 -0.240, 0.077 -0.058 -0.192, 0.076 

3 TACT/TACT 77 100 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 546, excludes 27 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (any 

fibroids)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

4 CA/CA 71 93 0.071 -0.034, 0.176 0.060 -0.037, 0.157 

4 CA/TA 32 40 0.107 -0.030, 0.245 0.082 -0.038, 0.203 

4 CG/CG 108 147 0.042 -0.051, 0.135 0.037 -0.050, 0.124 

4 CG/TA 35 46 0.068 -0.069, 0.205 0.052 -0.068, 0.173 

4 TA/TA 7 9 0.085 -0.193, 0.363 0.038 -0.148, 0.224 

4 CA/CG 160 231 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 566, excludes 7 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Table A.22. Unadjusted prevalence differences of uterine fibroids (2+ cm) with IGF-I group-specific diplotypes among African 

Americans* 
 

Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

1 Rare 5 9 -0.043 -0.376, 0.289 -0.016 -0.215, 0.184 

1 AGG/AGG 64 101 0.035 -0.083, 0.153 0.028 -0.078, 0.135 

1 AGG/GCG 25 51 -0.109 -0.263, 0.046 -0.079 -0.210, 0.053 

1 AGG/GGA 17 30 -0.032 -0.223, 0.159 -0.020 -0.172, 0.131 

1 GCG/GCG 3 8 -0.224 -0.567, 0.119 -0.078 -0.280, 0.124 

1 GGG/GCG 23 55 -0.181 -0.329, -0.032 -0.134 -0.261, -0.006 

1 GGG/GGA 15 24 0.026 -0.180, 0.232 0.016 -0.144, 0.175 

1 GGG/GGG 60 106 -0.033 -0.151, 0.085 -0.027 -0.134, 0.080 

1 AGG/GGG 109 182 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 566, excludes 7 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 
Differences‡ 

95% Confidence 
Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

2 Rare 23 38 0.062 -0.113, 0.236 0.041 -0.102, 0.185 

2 ATCCC/TCTTT 8 13 0.072 -0.205, 0.348 0.032 -0.153, 0.218 

2 ATTCC/ATCCC 16 37 -0.111 -0.290, 0.067 -0.074 -0.219, 0.072 

2 ATTCC/ATTTT 7 10 0.156 -0.139, 0.451 0.065 -0.125, 0.256 

2 ATTCC/TCTCC 4 8 -0.044 -0.399, 0.312 -0.014 -0.219, 0.190 

2 ATTCC/TCTCT 9 16 0.019 -0.237, 0.275 0.009 -0.170, 0.188 

2 ATTCC/TCTTT 68 119 0.028 -0.092, 0.147 0.023 -0.085, 0.131 

2 ATTCC/TTTCT 19 34 0.015 -0.170, 0.200 0.010 -0.139, 0.159 

2 ATTCT/ATCCC 3 6 -0.044 -0.452, 0.364 -0.012 -0.225, 0.201 

2 ATTCT/ATTCC 24 40 0.056 -0.115, 0.228 0.038 -0.103, 0.180 

2 ATTCT/TCTCT 5 6 0.290 -0.019, 0.598 0.115 -0.080, 0.309 

2 ATTCT/TCTTT 11 20 0.006 -0.226, 0.239 0.003 -0.167, 0.174 

2 ATTCT/TTTCT 6 8 0.206 -0.104, 0.517 0.081 -0.114, 0.276 

2 TCTCT/TCTTT 5 10 -0.044 -0.364, 0.276 -0.017 -0.214, 0.180 

2 TCTTT/TCTTT 21 31 0.134 -0.049, 0.317 0.087 -0.061, 0.235 

2 TTTCT/TCTTT 6 14 -0.115 -0.386, 0.156 -0.053 -0.237, 0.131 

2 ATTCC/ATTCC 81 149 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 559, excludes 14 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 
Differences‡ 

95% Confidence 
Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

3 Rare 3 9 -0.207 -0.530, 0.116 -0.077 -0.275, 0.120 

3 AACC/AACC 3 8 -0.165 -0.514, 0.184 -0.056 -0.259, 0.147 

3 AACC/AACT 3 7 -0.111 -0.491, 0.268 -0.034 -0.242, 0.175 

3 AACC/AGGT 4 14 -0.254 -0.510, 0.002 -0.124 -0.303, 0.055 

3 AACC/TACC 6 10 0.060 -0.259, 0.379 0.023 -0.174, 0.220 

3 AACC/TACT 34 53 0.102 -0.060, 0.263 0.072 -0.064, 0.207 

3 AACT/AGGT 2 7 -0.254 -0.603, 0.094 -0.086 -0.290, 0.117 

3 AACT/TACT 6 13 -0.078 -0.367, 0.210 -0.034 -0.223, 0.155 

3 AAGC/AACC 18 36 -0.040 -0.230, 0.150 -0.025 -0.177, 0.126 

3 AAGC/AACT 5 9 0.016 -0.323, 0.355 0.005 -0.196, 0.207 

3 AAGC/AAGC 24 35 0.146 -0.036, 0.328 0.095 -0.052, 0.242 

3 AAGC/AGGT 14 24 0.043 -0.177, 0.263 0.024 -0.141, 0.190 

3 AAGC/TACC 18 27 0.127 -0.076, 0.330 0.076 -0.081, 0.234 

3 AAGC/TACT 51 86 0.053 -0.090, 0.196 0.040 -0.084, 0.164 

3 AGGT/AGGT 7 10 0.160 -0.140, 0.460 0.065 -0.127, 0.258 

3 AGGT/TACT 30 47 0.098 -0.070, 0.267 0.068 -0.072, 0.207 

3 TACC/TACC 4 6 0.127 -0.263, 0.516 0.037 -0.173, 0.247 

3 TACC/TACT 22 45 -0.051 -0.227, 0.125 -0.034 -0.178, 0.110 

3 TACT/TACT 54 100 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 546, excludes 27 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 
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Group Diplotypes 
N (fibroids 

2+ cm)† 
total N† 

 Prevalence 

Differences‡ 

95% Confidence 

Intervals‡ 

Posterior 

Medians 

95% Posterior 

Limits 

4 CA/CA 56 93 0.061 -0.057, 0.179 0.050 -0.057, 0.157 

4 CA/TA 25 40 0.084 -0.079, 0.247 0.059 -0.078, 0.195 

4 CG/CG 82 147 0.017 -0.086, 0.120 0.014 -0.081, 0.109 

4 CG/TA 26 46 0.024 -0.133, 0.181 0.017 -0.116, 0.150 

4 TA/TA 6 9 0.126 -0.189, 0.440 0.049 -0.147, 0.244 

4 CA/CG 125 231 REF  REF  

* N = 580, excludes 2 women missing more than 50% of IGFBP-3 SNPs included in diplotype estimation. 

† N = 566, excludes 7 women with less than 90% posterior probability for best diplotype assignment in PHASE software and 7 women missing  

   uterine fibroid status. 

‡ Estimated in SASV9.1 using Poisson regression with robust standard errors. 

 

 

 


