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ABSTRACT

VICENTE ORDÓÑEZ ROMÁN: LANGUAGE AND PERCEPTUAL
CATEGORIZATION IN COMPUTATIONAL VISUAL RECOGNITION.

(Under the direction of Tamara L. Berg.)

Computational visual recognition or giving computers the ability to understand im-

ages as well as humans do is a core problem in Computer Vision. Traditional recognition

systems often describe visual content by producing a set of isolated labels, object loca-

tions, or by even trying to annotate every pixel in an image with a category. People

instead describe the visual world using language. The rich visually descriptive language

produced by people incorporates information from human intuition, world knowledge,

visual saliency, and common sense that go beyond detecting individual visual concepts

like objects, attributes, or scenes. Moreover, due to the rising popularity of social me-

dia, there exist billions of images with associated text on the web, yet systems that can

leverage this type of annotations or try to connect language and vision are scarce.

In this dissertation, we propose new approaches that explore the connections between

language and vision at several levels of detail by combining techniques from Computer

Vision and Natural Language Understanding. We first present a data-driven technique

for understanding and generating image descriptions using natural language, including

automatically collecting a big-scale dataset of images with visually descriptive captions.

Then we introduce a system for retrieving short visually descriptive phrases for describ-
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ing some part or aspect of an image, and a simple technique to generate full image

descriptions by stitching short phrases. Next we introduce an approach for collecting

and generating referring expressions for objects in natural scenes at a much larger scale

than previous studies. Finally, we describe methods for learning how to name objects

by using intuitions from perceptual categorization related to basic-level and entry-level

categories.

The main contribution of this thesis is in advancing our knowledge on how to leverage

language and intuitions from human perception to create visual recognition systems that

can better learn from and communicate with people.
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Dedicada a la memoria de mi abuelo Ángel Paćıfico Román Silva (1931 - 2014).
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CHAPTER 1: INTRODUCTION

The objective of computational visual recognition is to ultimately duplicate the recog-

nition capabilities of human vision using computational methods. This is a definition that

can be very broadly interpreted, and as such, computer vision systems have focused on

several well defined tasks that output different types of symbolic information given input

visual data like images, sets of images, or video. More concretely, traditional computer

vision systems often output a label or a set of disconnected labels (categorization or tag-

ging), a set of labeled boxes (detection), or even try to group and label every individual

pixel in an image with a semantic category (semantic segmentation, parsing). While we

humans are able to perform these kind of tasks, as we often use these abilities to annotate

the training data used in vision systems, our everyday interpretation of the visual world

is more naturally expressed using language. The main goal of this thesis is to study and

bridge the gap between the output of computer vision systems and what humans describe

about the visual world using natural language.

Moreover, computational visual recognition systems have seen a rapid improvement

in the last couple of years and this trend continues for several standard tasks like cate-

gorization and object detection. As we obtain systems that can reason more effectively

about basic visual structures in images, there is an increasing need to understand visual

content at an even higher - more human - level of abstraction. We propose in this thesis

four tasks and techniques that can generate explanations of the visual world that are



closer to human interpretations using natural language.

1.1 Previous work

There are several works that have looked before at the connections between words and

pictures for various tasks (Duygulu et al., 2002; Barnard et al., 2003; Barnard and Yanai,

2006; Berg et al., 2004). While these these systems are either able to associate isolated

words to image content or learn visual models from text, they do not produce language

as an output. Since generating language is not the ultimate goal for these systems, they

also discard a lot of information from language to focus on some specific content like

names or nouns.

Some later work studied image description generation (Aker and Gaizauskas, 2010a;

Farhadi et al., 2010; Kulkarni et al., 2013; Feng and Lapata, 2013) but there are a few

important distinctions with our work. The work of (Aker and Gaizauskas, 2010a) and

(Feng and Lapata, 2013) assume that there is already text associated with images or it

can be readily obtained, and then apply a summarization approach. Our methods do not

assume the existence of text for an input image. The method of (Kulkarni et al., 2013) and

other similar methods proposed later rely on a constructive approach where the language

is built word by word and directly from the output of computer vision detections. Our

automatic image description methods rely heavily on a data-driven approach that tries to

borrow as much as possible from actual captions written by people. The work of (Farhadi

et al., 2010) used an intermediate triplet representation coupled with a retrieval approach

to associate descriptions with images but the set of descriptions in their pool was limited.
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We use a pool of image descriptions that is two orders of magnitude larger. Additionally,

we propose a hybrid caption generation approach that combines retrieving pieces of text

and composing new descriptions. We also cover in this thesis the significantly unexplored

problem of referring to objects in the context of complex natural scenes using referring

expressions, and propose a new task of learning how to name objects with entry-level

categories using computational visual recognition.

1.2 Outline of Contributions

In Chapter 2, we introduce a data-driven sentence retrieval approach to produce full

sentence descriptions for new images (Ordonez et al., 2011). An overview of our baseline

Smallest house in paris 
between red (on right) 
and beige (on left). 

Bridge to temple in 
Hoan Kiem lake. 

The water is clear 
enough to see 
fish swimming 
around in it. 

A walk around the 
lake near our house 
with Abby. 

Hangzhou bridge in 
West lake. 

The daintree river by 
boat. 

. . . 

SBU Captioned Photo Dataset 

Transfer Caption(s) 

Matching using Global  
Image Features 
(GIST + Color) 

e.g. “The water is clear 
enough to see fish 
swimming around in it.” 

1 million captioned images! 

Figure 1.1: We approach this task in a data-driven manner by first building a 1 million
dataset of images with visually relevant captions. We use standard global image feature
descriptors such as GIST and tiny images (Torralba et al., 2008) to retrieve similar images
from which we can directly transfer captions.
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system and starting idea is presented in Figure 1.1. We leverage object detection, stuff

detection, people detection, and scene recognition coupled with text statistics to learn

and improve our similarity metric used during the retrieval step. The effectiveness of

this system heavily relies on data, therefore a key contribution of this work was also to

devise a method to collect from the web a big scale dataset of images paired with visually

descriptive captions. This dataset, that we named the SBU Captioned Dataset, has been

used in several other later publications that aim to produce natural language (Mitchell

et al., 2012; Kuznetsova et al., 2012; Gupta et al., 2012; Mason and Charniak, 2014;

Kuznetsova et al., 2014), including more recent methods that rely on deep learning (Kiros

et al., 2014; Vinyals et al., 2014).

In Chapter 3, we introduce a system that given an input image produces short-

descriptive text phrases that describe only a part or an aspect of an image (Ordonez

et al., 2013b). This is a middle ground between outputting individual labels and full sen-

tences. Short phrases have a descriptive power that goes beyond labels while also being

potentially more generalizable to new images. This system also allows to compose differ-

ent phrases using text statistics. This approach coupled with more sophisticated language

models and constraints was used in a related set of publications (Kuznetsova et al., 2012,

2014). For a complete overview of these and related approaches refer to (Kuznetsova,

2014).

In Chapter 4, we study task-dependent descriptions where the objective is to identify

an individual object using Referring Expressions. We introduce one of the first studies on

referring expressions in the context of natural scenes. We also collect one of the largest
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Input image
Human 
Categorization
(crowdsourcing)

Large-scale
categorization 
system

Linguistically-guided 
naming
(our work)

Visually-guided
naming
(our work)

barn
building
fence
house
tree
yard

corncrib
oast
farmhouse
log cabin
dacha

building
house
home
tent
tree

house
barn
wooden
roof
farm

Figure 1.2: Category predictions for a given input image for a large-scale categorization
system and our translated outputs using linguistically and visually-informed models.
The first column includes names given by people for this image that we collected using
crowdsourcing to measure the performance of our models. We highlight in green the
predicted names that were also mentioned by people. Note that oast is a type of farm
building for drying hops and a dacha is a type of Russian farm building.

datasets for referring expressions by using a purpose-driven game. We also present a

detailed analysis of this data and a technique based on constraint optimization to generate

referring expressions using our dataset statistics (Kazemzadeh, Ordonez et al., 2014).

Finally, we found that even when predicting isolated words, good computational visual

recognition systems still often produce sets of categories that do not correspond to the set

of categories that people would use. In Chapter 5, we present a system that can translate

encyclopedic categories used in large scale image categorization systems into names that

people use in everyday language (Ordonez et al., 2013a). We introduce a sample output

of two of our methods presented here in Figure 1.2 to showcase our motivation. This

problem is related to the notion of basic-level and entry-level categories in cognitive

psychology.

In summary the novel contributions presented in this thesis are as follows:

1. A big-scale dataset of images with visually descriptive captions collected auto-

matically by leveraging existing captioned images on the web and a data-driven
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approach to retrieve image descriptions using various measures of visual similarity

(Chapter 2).

2. A system to retrieve and rank short-text phrases that describe parts or aspects of

an image and two applications of this system to a) generate image descriptions and

b) resolve complex image queries (Chapter 3).

3. A purpose-driven game to collect Referring Expressions of objects in natural scenes

and a system that can use this dataset to generate referring expressions from an-

notated input images with target objects (Chapter 4).

4. A category translation system that predicts the names that people use in everyday

language from encyclopedic concepts and input images. And an application to

retrieve image descriptions using those predicted names (Chapter 5)
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CHAPTER 2: DATA-DRIVEN IMAGE CAPTIONING

Producing a full sentence or image caption that is both relevant and accurate for an

arbitrary input image is extremely challenging. Even if computational visual recognition

systems were able to accurately recognize every visual element in an image it would still

be difficult to use this information to generate a coherent idea about a scene. However

there are already billions of images with visually descriptive captions on the web. We

present a data-driven approach for caption generation. We first describe a technique

for automatically collecting and filtering a big scale collection of images with visually

descriptive text. Then, we use this dataset to retrieve captions using a simple non-

parametric approach in the spirit of previous research that makes use of big data for

various applications (Hays and Efros, 2008; Torralba et al., 2008; Tighe and Lazebnik,

2010). We additionally show that using noisy predictions of image content we can learn

a better similarity metric that can return more relevant visual results and captions.

The collected dataset described in this chapter contains 1 million images with visually

descriptive captions (see examples in Figure 2.1). In addition to using this dataset for

sentence generation, we also use it as the basis for our short-descriptive phrase prediction

system in Chapter 3 and is an important component in the entry-level category prediction

system in Chapter 5.

We describe the dataset collection in Section 2.1, caption generation using a global

representation in Section 2.2, content estimation for various content types in Section 2.3,



Man sits in a rusted car buried in the 
sand on Waitarere beach 


Interior design of modern white and 
brown living room furniture against white 
wall with a lamp hanging.


Emma in her hat looking super cute 
Little girl and her dog in northern 
Thailand. They both seemed 
interested in what we were doing 


Figure 2.1: SBU Captioned Photo Dataset: Photographs with user-associated cap-
tions from our web-scale captioned photo collection. We collect a large number of photos
from Flickr and filter them to produce a data collection containing over 1 million well
captioned pictures.

and we finally present an extension to our generation method that incorporates content

estimates in Section 2.4. This work was originally published in (Ordonez et al., 2011)

and is also summarized in (Ordonez et al., 2013b).

2.1 Building a Web-Scale Captioned Collection

One key contribution presented in this chapter is a novel web-scale database of pho-

tographs with associated descriptive text. To enable effective captioning of novel im-

ages, this database must be good in two ways: 1) It must be large so that image based

matches to a query are reasonably similar, 2) The captions associated with the database

photographs must be visually relevant so that transferring captions between pictures is

useful. To achieve the first requirement we query Flickr using a huge number of pairs of

query terms (objects, attributes, actions, stuff, and scenes). This produces a very large,

but noisy initial set of photographs with associated text. To achieve our second require-

ment we filter this set of photos so that the descriptions attached to a picture are relevant

and visually descriptive. To encourage visual descriptiveness in our collection, we select
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Query image


Gist + Tiny images ranking
 Top re-ranked images

Across the street from Yannicks 
apartment. At night the 
headlight on the handlebars 
above the door lights up.


The building in which I live. My 
window is on the right on the 
4th floor


This is the car I was in after they 
had removed the roof and 
successfully removed me to the 
ambulance.


I really like doors. I took this 
photo out of the car window 
while driving by a church in 
Pennsylvania.


Top associated captions
Extract High Level Information


Query Image


Matched Images & 
extracted content


Figure 2.2: System flow: 1) Input query image, 2) Candidate matched images retrieved
from our web-scale captioned collection using global image representations, 3) High level
information is extracted about image content including objects, attributes, actions, peo-
ple, stuff, scenes, and tfidf weighting, 4) Images are re-ranked by combining all content
estimates, 5) Top 4 resulting captions.

only those images with descriptions of satisfactory length based on observed lengths in

visual descriptions. We also enforce that retained descriptions contain at least 2 words

belonging to our term lists and at least one prepositional word, e.g. “on”, “under” which

often indicate visible spatial relationships.

This results in a final collection of over 1 million images with associated text descrip-

tions – the SBU Captioned Photo Dataset. These text descriptions generally function

in a similar manner to image captions, and usually directly refer to some aspects of the

visual image content (see fig 4.5 for examples). Hereafter, we will refer in this chapter to

this web based collection of captioned images as C.

Query Set: We randomly sample 500 images from our collection for evaluation of

our generation methods (examples are shown in Figure 4.5). As is usually the case with

web photos, the photos in this set display a wide range of difficulty for visual recognition

algorithms and captioning, from images that depict scenes (e.g. beaches), to images with
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Query	
  Image	
   1k	
  matches	
   10k	
  matches	
   100k	
  matches	
   1million	
  matches	
  

Figure 2.3: Size Matters: Example matches to a query image for varying data set sizes.

a relatively simple depictions (e.g. a horse in a field), to images with much more complex

depictions (e.g. a boy handing out food to a group of people).

2.2 Global Description Generation

Internet vision papers have demonstrated that if your data set is large enough, some

very challenging problems can be attacked with very simple matching methods (Hays and

Efros, 2008; Torralba et al., 2008; Tighe and Lazebnik, 2010). In this spirit, we harness

the power of web photo collections in a non-parametric approach. Given a query image,

Iq, our goal is to generate a relevant description. We achieve this by computing the global

similarity of a query image to our large web-collection of captioned images, C. We find

the closest matching image (or images) and simply transfer over the description from the

matching image to the query image. We also collect the 100 most similar images to a

query – our matched set of images Im ∈M – for use in our our content based description

generation method (Sec 2.4).

For image comparison we utilize two image descriptors. The first descriptor is the

well known gist feature, a global image descriptor related to perceptual dimensions –

naturalness, roughness, ruggedness etc – of scenes. The second descriptor is also a global
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image descriptor, computed by resizing the image into a “tiny image”, essentially a

thumbnail of size 32x32. This helps us match not only scene structure, but also the

overall color of images. To find visually relevant images we compute the similarity of the

query image to images in C using a sum of gist similarity and tiny image color similarity

(equally weighted).

Results – Size Matters! Our global caption generation method is illustrated in the

first 2 panes and the first 2 resulting captions of Figure 2.2. This simple method often

performs surprisingly well. As reflected in past work (Hays and Efros, 2008; Torralba

et al., 2008), image retrieval from small collections often produces spurious matches. This

can be seen in Figure 2.3 where increasing data set size has a significant effect on the

quality of retrieved global matches. Quantitative results also reflect this (see Table 2.1).

2.3 Image Content Estimation

Given an initial matched set of images Im ∈M based on global descriptor similarity,

we would like to re-rank the selected captions by incorporating estimates of image content.

For a query image, Iq and images in its matched set we extract and compare 5 kinds of

image content:

• Objects (e.g. cats or hats), with shape, attributes, and actions – sec 2.3.1

• Stuff (e.g. grass or water) – sec 2.3.2

• People (e.g. man), with actions – sec 2.3.3

• Scenes (e.g. pasture or kitchen) – sec 2.3.4
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• TFIDF weights (text or detector based) – sec 2.3.5

Each type of content is used to compute the similarity between matched images (and cap-

tions) and the query image. We then rank the matched images (and captions) according

to each content measure and combine their results into an overall relevancy ranking

(Sec 2.4).

2.3.1 Objects

Detection & Actions: Object detection methods have improved significantly in

the last few years, demonstrating reasonable performance for a small number of object

categories (Everingham et al., 2010), or as a mid-level representation for scene recogni-

tion (Li et al., 2010). Running detectors on general web images however, still produces

quite noisy results, usually in the form of a large number of false positive detections.

As the number of object detectors increases this becomes even more of an obstacle to

content prediction. However, we propose that if we have some prior knowledge about

the content of an image, then we can utilize even these imperfect detectors. In our web

collection, C, there are strong indicators of content in the form of caption words – if an

object is described in the text associated with an image then it is likely to be depicted.

Therefore, for the images, Im ∈ M , in our matched set, we run only those detectors

for objects (or stuff) that are mentioned in the associated caption. In addition, we also

include synonyms and hyponyms for better content coverage, e.g. “dalmatian” triggers

“dog” detector. This produces pleasingly accurate detection results. For a query image

we can essentially perform detection verification against the relatively clean matched

12



image detections.

Specifically, we use mixture of multi-scale deformable part detectors (Felzenszwalb

et al., 2010) to detect a wide variety of objects – 89 object categories selected to cover a

reasonable range of common objects. These categories include the 20 Pascal categories,

49 of the most common object categories with reasonably effective detectors from Object

Bank (Li et al., 2010), and 20 additional common object categories.

For the 8 animate object categories in our list (e.g. cat, cow, duck) we find that detec-

tion performance can be improved significantly by training action specific detectors, for

example “dog sitting” vs “dog running”. This also aids similarity computation between

a query and a matched image because objects can be matched at an action level. Our

object action detectors are trained using the standard object detector with pose specific

training data.

Representation: We represent and compare object detections using two kinds of fea-

tures: shape and appearance. To represent object shape we use a histogram of HoG (Dalal

and Triggs, 2005) visual words, computed at intervals of 8 pixels and quantized into 1000

visual words. These are accumulated into a spatial pyramid histogram (Lazebnik et al.,

2006). We also use an attribute representation to characterize object appearance. We use

the attribute list from (Kulkarni et al., 2013) which covers 21 visual aspects describing

color (e.g. blue), texture (e.g. striped), material (e.g. wooden), general appearance

(e.g. rusty), and shape (e.g. rectangular). Training images for the attribute classifiers

come from Flickr, Google, the attribute dataset provided by (Farhadi et al., 2009), and

ImageNet (Deng et al., 2009). An RBF kernel SVM is used to learn a classifier for each
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Amazing colours in the sky 
at sunset with the orange 
of the cloud and the blue 
of the sky behind.


Strange cloud formation literally 
flowing through the sky like a river in 
relation to the other clouds out there.




Fresh fruit and 
vegetables at the 
market in Port Louis 
Mauritius.


Clock tower 
against the sky.


Tree with red leaves in the field in autumn.


One monkey on the tree in the 
Ourika Valley Morocco 


A female mallard duck in the lake at 
Luukki Espoo


The river running through town I 
cross over this to get to the train 


Street dog in Lijiang 


The sun was coming through 
the trees while I was sitting in 
my chair by the river 


Figure 2.4: Results: Some good captions selected by our system for query images.

attribute term. Then appearance characteristics are represented as a vector of attribute

responses to allow for generalization.

If we have detected an object category, c, in a query image window, Oq and a matched

image window, Om, then we compute the probability of an object match as:

P (Oq, Om) = e−Do(Oq ,Om)

where Do(Oq, Om) is the Euclidean distance between the object (shape or attribute)

vector in the query detection window and the matched detection window.

2.3.2 Stuff

In addition to objects, people often describe the stuff present in images, e.g. “grass”.

Because these categories are more amorphous and do not display defined parts, we use a

region based classification method for detection. We train linear SVMs on the low level
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region features of (Farhadi et al., 2009) and histograms of Geometric Context output

probability maps (Hoiem et al., 2007) to recognize: sky, road, building, tree, water, and

grass stuff categories. While the low level features are useful for discriminating stuff by

their appearance, the scene layout maps introduce a soft preference for certain spatial

locations dependent on stuff type. Training images and bounding boxes are taken from

ImageNet and evaluated at test time on a coarsely sampled grid of overlapping square

regions over whole images. Pixels in any region with a classification probability above a

fixed threshold are treated as detections, and the max probability for a region is used as

the potential value.

If we have detected a stuff category, s, in a query image region, Sq and a matched

image region, Sm, then we compute the probability of a stuff match as:

P (Sq, Sm) = P (Sq = s) ∗ P (Sm = s)

where P (Sq = s) is the SVM probability of the stuff region detection in the query image

and P (Sm = s) is the SVM probability of the stuff region detection in the matched image.

2.3.3 People & Actions

People often take pictures of people, making “person” the most commonly depicted

object category in captioned images. We utilize effective recent work on pedestrian

detectors to detect and represent people in our images. In particular, we make use

of detectors from (Bourdev et al., 2010) which learn poselets – parts that are tightly

clustered in configuration and appearance space – from a large number of 2D annotated
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regions on person images in a max-margin framework. To represent activities, we use

follow up work from (Maji et al., 2011) which classifies actions using a poselet activation

vector. This has been shown to produce accurate activity classifiers for the 9 actions in

the PASCAL VOC 2010 static image action classification challenge (Everingham et al.,

2010). We use the outputs of these 9 classifiers as our action representation vector, to

allow for generalization to other similar activities.

If we have detected a person, Pq, in a query image, and a person Pm in a matched

image, we compute the probability that the people share the same action (pose) as:

P (Pq, Pm) = e−Dp(Pq ,Pm)

where Dp(Pq, Pm) is the Euclidean distance between the person action vector in the query

detection and the person action vector in the matched detection.

2.3.4 Scenes

The last commonly described kind of image content relates to the general scene where

an image was captured. This often occurs when examining captioned photographs of

vacation snapshots or general outdoor settings, e.g. “my dog at the beach”. To recognize

scene types we train discriminative multi-kernel classifiers using the large-scale SUN scene

recognition dataset and code (Xiao et al., 2010). We select 23 common scene categories for

our representation, including indoor (e.g. kitchen) outdoor (e.g. beach), man-made (e.g.

highway), and natural (pasture) settings. Again, here we represent the scene descriptor

as a vector of scene responses for generalization.
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If a scene location, Lm, is mentioned in a matched image, then we compare the scene

representation between our matched image and our query image, Lq as:

P (Lq, Lm) = e−Dl(Lq ,Lm)

where Dl(Lq, Lm) is the Euclidean distance between the scene vector computed on the

query image and the scene vector computed on the matched image.

2.3.5 TFIDF Measures

For a query image, Iq, we wish to select the best caption from the matched set,

Im ∈M . For all of the content measures described so far, we have computed the similarity

of the query image content to the content of each matched image independently. We

would also like to use information from the entire matched set of images and associated

captions to predict importance. To reflect this, we calculate TFIDF on our matched sets.

This is computed as usual as a product of term frequency (tf) and inverse document

frequency (idf). We calculate this weighting both in the standard sense for matched

caption document words and for detection category frequencies (to compensate for more

prolific object detectors).

tfidf =
ni,j∑
k nk,j

∗ log |D|
|j : ti ∈ dj|

We define our matched set of captions (images for detector based tfidf) to be our doc-

ument, j and compute the tfidf score where ni,j represents the frequency of term i in
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I tried to cross the street to get in my 
car but you can see that I failed LOL.


The tower is the 
highest building in 
Hong Kong.


the water the boat was in


girl in a box that is a train 
water under the bridge 
 small dog in the grass 


walking the dog in the primeval 
forest


check out the face on the kid in the 
black hat he looks so enthused 


shadows in the blue sky 


Figure 2.5: Funny Results: Some particularly funny or poetic results.

the matched set of captions (number of detections for detector based tfidf). The inverse

document frequency is computed as the log of the number of documents |D| divided by

the number of documents containing the term i (documents with detections of type i for

detector based tfidf).

2.4 Content Based Description Generation

For a query image, Iq, with global descriptor based matched images, Im ∈ M , we

want to re-rank the matched images according to the similarity of their content to the

query. We perform this re-ranking individually for each of our content measures: object

shape, object attributes, people actions, stuff classification, and scene type (Sec 2.3). We

then combine these individual rankings into a final combined ranking in two ways. The

first method trains a linear regression model of feature ranks against BLEU scores. The

second method divides our training set into two classes, positive images consisting of the

top 50% of the training set by BLEU score, and negative images from the bottom 50%.
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A linear SVM is trained on this data with feature ranks as input. For both methods we

perform 5 fold cross validation with a split of 400 training images and 100 test images

to get average performance and standard deviation. For a novel query image, we return

the captions from the top ranked image(s) as our result.

For an example matched caption like “The little boy sat in the grass with a ball”,

several types of content will be used to score the goodness of the caption. This will be

computed based on words in the caption for which we have trained content models. For

example, for the word “ball” both the object shape and attributes will be used to compute

the best similarity between a ball detection in the query image and a ball detection in

the matched image. For the word “boy” an action descriptor will be used to compare the

activity in which the boy is occupied between the query and the matched image. For the

word “grass” stuff classifications will be used to compare detections between the query

and the matched image. For each word in the caption tfidf overlap (sum of tfidf scores

for the caption) is also used as well as detector based tfidf for those words referring to

objects. In the event that multiple objects (or stuff, people or scenes) are mentioned in a

matched image caption, the object (or stuff, people, or scene) based similarity measures

will be a sum over the set of described terms. For the case where a matched image

caption contains a word, but there is no corresponding detection in the query image, the

similarity is not incorporated.

Results & Evaluation: Our content based captioning method often produces rea-

sonable results (examples are shown in Fig 2.4). Usually results describe the main subject

of the photograph (e.g. “Street dog in Lijiang”, “One monkey on the tree in the Ourika
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Valley Morocco”). Sometimes they describe the depiction extremely well (e.g. “Strange

cloud formation literally flowing through the sky like a river...”, “Clock tower against

the sky”). Sometimes we even produce good descriptions of attributes (e.g. “Tree with

red leaves in the field in autumn”). Other captions can be quite poetic (Fig 2.5) – a

picture of a derelict boat captioned “The water the boat was in”, a picture of monstrous

tree roots captioned “Walking the dog in the primeval forest”. Other times the results

are quite funny. A picture of a flimsy wooden structure says, “The tower is the highest

building in Hong Kong”. Once in awhile they are spookily apropos. A picture of a boy

in a black bandana is described as “Check out the face on the kid in the black hat. He

looks so enthused.” – and he doesn’t.

We also perform two quantitative evaluations. Several methods have been proposed

to evaluate captioning (Kulkarni et al., 2013; Farhadi et al., 2010), including direct user

ratings of relevance and BLEU score (Papineni et al., 2002). User rating tends to suffer

from user variance as ratings are inherently subjective. The BLEU score on the other

hand provides a simple objective measure based on n-gram precision. As noted in past

work (Kulkarni et al., 2013), BLEU is perhaps not an ideal measure due to large variance

in human descriptions (human-human BLEU scores hover around 0.5 (Kulkarni et al.,

2013)). Nevertheless, we report it for comparison.

As can be seen in Table 2.1 data set size has a significant effect on BLEU score; more

data provides more similar and relevant matched images (and captions). Local content

matching also improves BLEU score somewhat over purely global matching.

In addition, we propose a new evaluation task where a user is presented with two
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Method BLEU

Global Matching (1k) 0.0774 +- 0.0059
Global Matching (10k) 0.0909 +- 0.0070
Global Matching (100k) 0.0917 +- 0.0101
Global Matching (1million) 0.1177 +- 0.0099
Global + Content Matching (linear regression) 0.1215 +- 0.0071
Global + Content Matching (linear SVM) 0.1259 +- 0.0060

Table 2.1: Automatic Evaluation: BLEU score measured at 1

photographs and one caption. The user must assign the caption to the most relevant

image (care is taken to remove biases due to placement). For evaluation we use a query

image and caption generated by our method. The other image in the evaluation task

is selected at random from the web-collection. This provides an objective and useful

measure to predict caption relevance. As a sanity check of our evaluation measure we

also evaluate how well a user can discriminate between the original ground truth image

that a caption was written about and a random image. We perform this evaluation on

100 images from our web-collection using Amazon’s mechanical turk service, and find

that users are able to select the ground truth image 96% of the time. This demonstrates

that the task is reasonable and that descriptions from our collection tend to be fairly

visually specific and relevant. Considering the top retrieved caption produced by our

final method – global plus local content matching with a linear SVM classifier – we find

that users are able to select the correct image 66.7% of the time. Because the top caption

is not always visually relevant to the query image even when the method is capturing

some information, we also perform an evaluation considering the top 4 captions produced

by our method. In this case, the best caption out of the top 4 is correctly selected 92.7%

of the time. This demonstrates the strength of our content based method to produce
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relevant captions for images.

2.5 Discussion

We have described a caption generation method for general web images. This method

relies on collecting and filtering a large data set of images from the internet to produce a

novel web-scale captioned photo collection. We present two variations on our approach,

one that uses only global image descriptors to retrieve captions, and one that incorporates

estimates of image content for caption retrieval.

One problem with this approach is that a million image descriptions is still a limited

number if the goal is to be able to represent a large number of novel complex images

using these descriptions. We propose in Chapter 3 a way to describe parts of the image

using text at the phrase level. This allows us more flexibility in the types of things that

we can describe using our dataset and we also present a way to compose new descriptions

using these phrases or pieces of text.
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CHAPTER 3: SELECTING PHRASES THAT DESCRIBE IMAGES

In our previous chapter we focused on producing full image sentences given a query

input image. This approach has the problem that it will be very difficult to find a

sentence that can describe every new picture even with an enormous amount of data.

We instead break down the problem into a smaller problem, that of finding descriptive

short phrases that describe only a part or an aspect of an image. We can then use

those short descriptive phrases to stitch them together to compose new sentences. One

key aspect of this problem is making sure that the phrases have smooth transitions

between each other. We use language models that use text statistics to encourage this

type of consistency. This has parallels to data-driven approaches in other domains. For

instance in texture synthesis previous research found that borrowing patches of pixels

while maintaining consistency at the seams, as opposed to producing individual pixel

models to synthesize new texture, produced better qualitative results (Liang et al., 2001;

Efros and Freeman, 2001; Kwatra et al., 2003). In addition we also present an application

for complex query image retrieval where the user can specify sentences to retrieve visually

relevant images.

3.1 Retrieving and Reranking Phrases Describing Local Image Content

In this section we present methods to retrieve natural language phrases describing

local and global image content from our large database of captioned photographs intro-



duced in Chapter 2. Because we want to directly retrieve relevant phrases about objects,

scene elements, etc, a large amount of image and text processing is first performed on

the collected database (Sec 3.1.1) to extract useful and accurate estimates of local image

content as well as the phrases that refer to that content. For a novel query image, we can

then use image similarity measures to retrieve sets of visually relevant phrases describing

image content (Sec 3.1.2). Finally, we use collective reranking methods to select the most

relevant phrases for the query image (Sec 3.1.3). This work was originally described as

part of (Ordonez et al., 2013b), and is closely related to the work in (Kuznetsova et al.,

2012).

3.1.1 Dataset Processing

We perform four types of dataset processing: object detection, rough image parsing

to obtain background elements, scene classification, and caption processing. This allows

us to obtain textual phrases describing both local (e.g. objects and local object context)

and global (e.g. general scene context) image content within our large data collection.

Object detection: We extract object category detections using deformable part

models (Felzenszwalb et al., 2010) for 89 common object categories (Li et al., 2010;

Ordonez et al., 2011). Here care must be taken because running tens or hundreds of object

detectors on an image produces extremely noisy results (e.g., Fig 3.1). Instead, we place

priors on image content – by only running detectors for objects (or their synonyms and

hyponyms, e.g., Chihuahua for dog) mentioned in the caption associated with a database

image. This produces much cleaner results than blindly running all object detectors.
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Ecuador, amazon basin, near coca, rain forest, passion fruit flower 

airplane attire bicycle bird

boat bottle bus car

cat chair dog flower

fruit person tower train

Figure 3.1: Left: Blindly running many object detectors on an image produces very
noisy results. Running object detectors mentioned in a caption can produce much cleaner
results. Right: Improvement in detection is measured with precision-recall (red shows
raw detector performance, blue shows caption triggered). For some categories (e.g.,
airplane, dog) performance is greatly improved, for others not as much (e.g., cat, chair).

Figure 3.1 shows precision-recall curves for raw detectors in red and caption triggered

detectors in blue for 1000 images from the SBU Dataset covering a balanced number of

categories. We specifically collected bounding box annotations for this set of images to

perform this evaluation. Detection is greatly improved for some categories (e.g., bus,

airplane, dog), and less improved for others (e.g. cat, bicycle, person). From the million

photo database we obtain a large pool of (up to 20k) highly confident object detections

for each object category.

Image parsing: Image parsing is used to estimate regions of background elements

in each database image. Six categories are considered: sky, water, grass, road, tree, and

building, using detectors (Ordonez et al., 2011) which compute color, texton, HoG (Dalal

and Triggs, 2005) and Geometric Context (Hoiem et al., 2005) as input features to a

sliding window based SVM classifier. These detectors are run on all database images for

retrieval.
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Scene Classification: The scene descriptor for each image consists of the outputs

of classifiers for 26 common scene categories. The features, classification method and

training data are from the SUN dataset (Xiao et al., 2010). The descriptor is useful for

capturing and matching overall global scene appearance for a wide range of scene types.

Scene descriptors are computed on 700,000 images from the database to obtain a large

pool of scene descriptors for retrieval.

Caption Parsing: The Berkeley PCFG parser (Petrov et al., 2006; Petrov and

Klein, 2007) is used to obtain a hierarchical parse tree for each caption. From this

tree we gather constituent phrases, (e.g., noun phrases, verb phrases, and prepositional

phrases) referring to each of the above kinds of image content in the database.

3.1.2 Retrieving Phrases

For a query image, we retrieve several types of relevant phrases: noun-phrases (NPs),

verb-phrases (VPs), and prepositional-phrases (PPs). Several different kinds of features

measure visual similarity: Color – LAB histogram, Texture – histogram of vector

quantized responses to a filter bank (Leung and Malik, 1999), SIFT Shape – histogram

of vector quantized dense SIFT descriptors (Lowe, 2004), HoG Shape – histogram of

vector quantized densely computed HoG descriptors (Dalal and Triggs, 2005), Scene

– vector of classification scores for 26 common scene categories. The first 4 features

are computed locally within a region of interest (object or stuff) and the last feature is

computed globally.
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this	
  dog	
  was	
  laying	
  in	
  the	
  
middle	
  of	
  the	
  road	
  on	
  a	
  back	
  
street	
  in	
  jaco	
  

Closeup	
  of	
  my	
  dog	
  sleeping	
  
under	
  my	
  desk.	
  

Detect:	
  dog	
  

Find	
  matching	
  
dog	
  detec=ons	
  by	
  
visual	
  similarity	
  

Peruvian	
  dog	
  sleeping	
  on	
  city	
  
street	
  in	
  the	
  city	
  of	
  Cusco,	
  
(Peru)	
  

Contented	
  dog	
  just	
  laying	
  on	
  
the	
  edge	
  of	
  the	
  road	
  in	
  front	
  
of	
  a	
  house..	
  

Figure 3.2: Top: For a query “fruit” detection, we retrieve similar looking “fruit” de-
tections (including synonyms or holonyms) from the database and transfer the referring
noun-phrase (NP). Bottom: For a query “dog” detection, we retrieve similar looking
“dog” detections (including synonyms or holonyms) from the database and transfer the
referring verb-phrase (VP).

Retrieving Noun-Phrases (NPs): For each proposed object detection in a query

image, we retrieve a set of relevant noun-phrases from the database. For example, if

“fruit” is detected in the query, then we retrieve NPs from database image captions with
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Find	
  matching	
  
region	
  detec/ons	
  
using	
  appearance	
  
+	
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Mini	
  Nike	
  soccer	
  ball	
  all	
  
alone	
  in	
  the	
  grass	
  Comfy	
  chair	
  under	
  a	
  tree.	
  

I	
  posi/oned	
  the	
  chairs	
  
around	
  the	
  lemon	
  tree	
  -­‐-­‐	
  
it's	
  like	
  a	
  shrine	
  Object:	
  car	
  

Cordoba	
  -­‐	
  lonely	
  elephant	
  
under	
  an	
  orange	
  tree...	
  

Figure 3.3: Left: For query object-stuff detection pairs, e.g.,“car” and “tree,” we retrieve
relevant object-stuff detections from the database using visual and geometric configura-
tion similarity (where the database match can be e.g., “any object” and “tree” pair)
and transfer the referring prepositional-phrase (PP). Right: We use whole image scene
classification descriptors to transfer contextual scene prepositional-phrases (PPs).

visually similar “fruit” detections (including synonyms or holonyms, e.g. “apples” or

“oranges”). This process is illustrated in Fig 3.2, left, where a query fruit detection is

matched to visually similar database fruit detections (and their referring NPs in green).

Visual similarity is computed as an unweighted combination of color, texton, SIFT, and

HoG similarity, and produces visually similar and conceptually relevant NPs for a query

object.

Retrieving Verb-Phrases (VPs): For each proposed object detection in a query

image, we retrieve a set of relevant verb-phrases from the database. Here we associate

VPs in database captions to object detections in their corresponding database images

if the detection category (or a synonym or holonym) is the head word in an NP from

the same sentence (e.g. in Fig 3.2 bottom right dog picture, “sleeping under my desk”

is associated with the dog detection in that picture). Our measure of visual similarity

is again based on equally weighted combination of color, texton, SIFT and HoG feature
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the sheep meandered along a 
desolate road in the highlands of 
Scotland through frozen grass 

NP: the sheep  

VP: meandered along a 
desolate road  

PP: in the highlands of 
Scotland 

PP: through frozen 
grass 

object match 

object match 

scene match 

region match 

Figure 3.4: For a query image, we take a data-driven approach to retrieve (and optionally
rerank) a set of visually relevant phrases based on local and global image content esti-
mates. We can then construct an image caption for the query using phrasal description
generation. Our optimization approach to generation maximizes both visual similarity
and language-model estimates of sentence coherence. This produces captions that are
more relevant, and human-sounding than previous approaches.

similarities. As demonstrated in Fig 3.2 (left), this measure often captures similarity in

pose. Note that here we consider as our pool of objects only those instances that have

VPs associated. This effectively changes the kind of similar matching objects that we

find.

Retrieving Image parsing-based PPs: For each proposed object detection and

for each background element detection in a query image, we retrieve relevant PPs ac-

cording to visual and spatial relationship similarity (illustrated on the left in Fig 3.3 for

car plus tree and grass detections). Visual similarity between a background query region

and background database regions is computed based on color, texton, and SIFT co-sine

similarity. Spatial relationship similarity is computed based on the similarity in geomet-

ric configuration between the query object-background pair and object-background pairs

observed in the database (where the object in the database pairs need not be the same
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Some black head 
bird feeding on 
Salthouse beach in 
Norfolk under a 
pine tree against 
blue sky.


Old street light 
looked good against 
the blue sky below a 
dramatic sky. The 
tower built with the 
same face on each 
side in the sky.


Good generation results


This adorable cat 
posed in the window 
of the Nathaniel of 
Colorado hat shop in 
downtown Mancos 
this morning Nov in 
the street in the house 
living room.


A boat 
moored by 
the lake.


The balcony building 
in the Latin quarter in 
Paris with the 
ancient Tourist 
Information building 
under the sky.


This truck parked 
at a house near 
my home on the 
road near the 
river.


A cross propped 
up against the 
church wall 
underneath my big 
sky over roof gap 
midland beach.


This cow come into 
field at the end of 
the garden with the 
ancient Tourist 
Information building 
near 188th street.


Cows grazing in a 
pasture on a farm 
in pomfret in the 
spring of a building 
in a pine tree.


My cat sitting on a 
chair in a food 
center in the bright 
sunny autumn sky 
at spruce tree 
house.


The window in the 
door under orange 
tree in a window.


A train crosses a bridge 
over the Potomac River 
in Washington DC of the 
empire state building in 
the background


Not so good generation results (incorrect objects, missing objects, just wrong)


Duck 
swimming in 
a lake in 
water in the 
water.


That ball is 8 inch 
in diameter in the 
sky


A cat sitting in 
the window of a 
jewelry store at 
the muchmusic 
building in this 
box.


The sheep 
spotted in a field 
near Usk in this 
tree to the water 
park.


Figure 3.5: Using our retrieved, reranked phrases for description generation (Sec 3.2.1).
Reasonably good results are shown on top and less good results (with incorrect objects,
missing objects, or just plain wrong descriptions) are shown on right.

object as the query). This spatial relationship is measured in terms of the normalized dis-

tance between the foreground object and the background region, the normalized overlap

area between the foreground object and the background region, and the absolute vertical

position of the foreground object. Visual similarity and geometric similarity measures

are given equal weights and produce appealing results (Fig 3.3).

Retrieving Scene-based PPs: For a query image, we retrieve PPs referring to

the overall setting or scene by finding the most similar global scene descriptors from the

database. Here we retrieve the last PP in a sentence since it is most likely to describe the

scene content. As shown on the right in Fig 3.3, useful matched phrases often correspond
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to places (e.g., “in Paris”) or general scene context (e.g., “under water”).

3.1.3 Reranking Phrases

Given a set of phrases retrieved independently for a query image, we would like to

rerank these phrases using collective measures computed on the entire set of retrieved

results. Related reranking strategies have been used for other retrieval systems. (Sivic

and Zisserman, 2003) retrieve images using visual words and then rerank them based on

a measure of geometry and spatial consistency. (Torralba et al., 2008) retrieve a set of

images using a reduced representation of their feature space and then perform a second

refined reranking phase on top matching images to produce exact neighbors.

In our case, instead of reranking images, our goal is to rerank retrieved phrases such

that the relevance of the top retrieved phrases is increased. Because each phrase is

retrieved independently in the phrase retrieval step, the results tend to be quite noisy.

Spurious image matches can easily produce irrelevant phrases. The wide variety of Flickr

users and contexts under which they capture their photos can also produce unusual or

irrelevant phrases.

As an intuitive example, if one retrieved phrase describes a dog as “the brown dog”

then the dog may be brown. However, if several retrieved phrases describe the dog in

similar ways, e.g., “the little brown dog”, “my brownish pup”, “a brown and white mutt”,

then it is much more likely that the query dog is brown and the relevance for phrases

describing brown attributes should be increased.

In particular, for each type of retrieved phrase (see Sec 3.1.2), we gather the top 100
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  le:.	
  

Figure 3.6: Complex query image retrieval. For a complex natural language text query
(left), we retrieve images displaying relevant content (right). The image originally asso-
ciated with the complex text query is highlighted in green.

best matches based on visual similarity. Then, we perform phrase reranking to select the

best and most relevant phrases for an image (or part of an image in the case of objects or

regions). We evaluate two possible methods for reranking: 1) PageRank based reranking

using visual and/or text similarity, 2) Phrase-level TFIDF based reranking.

PageRank Reranking

PageRank (Brin and Page, 1998) computes a measure for the relative importance

of items within a set based on the random walk probability of visiting each item. The

algorithm was originally proposed as a measure of importance for web pages using hyper-

links as connections between pages (Brin and Page, 1998), but has also been applied to

other tasks such as reranking images for product search (Jing and Baluja, 2008). For our

task, we use PageRank to compute the relative importance of phrases within a retrieved

set on the premise that phrases displaying strong similarity to other phrases within the

retrieved set are more likely to be relevant to the query image.

32



We construct four graphs, one for each type of retrieved phrase (NP, VP, PPStuff,

or PPScene), from the set of retrieved phrases for that type. Nodes in these graphs

correspond to retrieved phrases (and the corresponding object, region, or image each

phrase described in the SBU database). Edges between nodes are weighted using visual

similarity, textual similarity, or an unweighted combination of the two – denoted as Visual

PageRank, Text PageRank, or Visual + Text PageRank respectively. Text similarity is

computed as the cosine similarity between phrases, where phrases are represented as a

bag of words with a vocabulary size of approximately 100k words, weighted by term-

frequency inverse-document frequency (TFIDF) score (Roelleke and Wang, 2008). Here

IDF measures are computed for each phrase type independently rather than over the

entire corpus of phrases to produce IDF measures that are more type specific. Visual

similarity is computed as cosine similarity of the visual representations used for retrieval

(Sec 3.1.2).

For generating complete image descriptions (Sec 3.2.1), the PageRank score can be

directly used as a unary potential for phrase confidence.

Phrase-level TFIDF Reranking

We would like to produce phrases for an image that are not only relevant, but specific

to the depicted image content. For example, if we have a picture of a cow, a phrase

like “the cow” is always going to be relevant to any picture of a cow. However, if the

cow is mottled with black and white patches then “the spotted cow” is a much better

description for the particular example. If both of these phrases are retrieved for the
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image, then we would prefer to select the second one over the first.

To produce phrases with high description specificity, we define a phrase-level measure

of TFIDF. This measure rewards phrases containing words that occur frequently within

the retrieved phrase set, but infrequently within a larger set of phrases – therefore giving

higher weight to phrases that are specific to the query image content (e.g., “spotted”).

For object and stuff region related phrases (NPs, VPs, PPStuff), IDF is computed over

phrases referring to that object or stuff category (e.g., the frequency of words occurring

in a noun phrase with “cow” in the example above). For whole image related phrases

(PPScene), IDF is computed over all prepositional phrases. To compute TFIDF for a

phrase, the TFIDF for each word in the phrase is calculated (after removing stop words)

and then averaged. Other work that has used TFIDF for image features (we use it for

text associated with an image) include (Sivic and Zisserman, 2003), (Chum et al., 2008)

and (Ordonez et al., 2011).

For composing image descriptions (Sec 3.2.1), we use phrase-level TFIDF to rerank

phrases and select the top ten phrases. The original visual retrieval score (Sec 3.1.2) is

used as phrase confidence score, effectively merging ideas of visual relevance with phrase

specificity (denoted as Visual + TFIDF).

3.2 Applications of Phrases

Once we have retrieved (and reranked) phrases related to an image we can use the

associated phrases in a number of applications. Here we demonstrate two potential

applications: phrasal generation of image descriptions (Sec 3.2.1), and complex query
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image search (Sec 3.2.2).

3.2.1 Phrasal Generation of Image Descriptions

We model caption generation as an optimization problem in order to incorporate two

different types of information: the confidence score of each retrieved phrase provided by

the original retrieval algorithm (Sec 3.1.2) or by our reranking techniques (Sec 3.1.3), and

additional pairwise compatibility scores across phrases computed using observed language

statistics. Our objective is to select a set of phrases that are visually relevant to the image

and that together form a reasonable sentence, which we measure by compatibility across

phrase boundaries.

Let X = {xobj, xverb, xstuff, xscene} be a candidate set of phrases selected for caption

generation. We maximize the following objective over possibilities for X:

E(X ) = Φ(X) + Ψ(X), (3.1)

where Φ(X) aggregates the unary potentials measuring quality of the individual phrases:

Φ(X) = φ(xobj) + φ(xverb) + φ(xstuff) + φ(xscene), (3.2)

and Ψ(X) aggregates binary potentials measuring pairwise compatibility between phrases:

Ψ(X) = ψ(xobj, xverb) + ψ(xverb, xstuff) + ψ(xstuff, xscene). (3.3)
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Unary potentials, φ(x), are computed as the confidence score of phrase x deter-

mined by the retrieval and reranking techniques discussed in Sec 3.1.3. To make scores

across different types of phrases comparable, we normalize them using Z-score (subtract

mean and divide by standard deviation). We further transform the scores so that they

fall in the [0,1] range.

Binary potentials: N-gram statistics are used to compute language naturalness – a

frequent n-gram denotes a commonly used, “natural”, sequence of words. In particular,

we use n-gram frequencies provided by the Google Web 1-T dataset (Brants and Franz.,

2006), which includes frequences up to 5-grams with counts computed from text on the

web. We use these counts in the form of normalized point-wise mutual information scores

to incorporate language-driven compatibility scores across different types of retrieved

phrases. The compatibility score ψ(xi, xj) between a pair of adjacent phrases xi and xj

is defined as follows: ψ(xi, xj) = α · ψL
ij + (1 − α) · ψG

ij . Where ψLij and ψGij are the local

and the global cohesion scores defined below.1

Local Cohesion Score: Let Lij be the set of all possible n-grams (2 ≤ n ≤ 5) across

the boundary of xi and xj. Then we define the n-gram local cohesion score as:

ψL
ij =

∑
l∈Lij

NPMI(l)

‖Lij‖
, (3.4)

where NPMI(v) = (PMI(v) − a)/(b − a) is a normalized point-wise mutual information

(PMI) score where a and b are normalizing constants computed across n-grams so that

the range of NPMI(v) is between 0 and 1. This term encourages smooth transitions

between consecutive phrases. For instance the phrase “The kid on the chair” will fit

1The coefficient α can be tuned via grid search, and scores are normalized ∈ [0, 1].
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better preceding “sits waiting for his meal” than “sleeps comfortably”. This is because

the words at the end of the first phrase including “chair” are more compatible with

the word“sit” at the beginning of the second phrase than with the word “sleep” at the

beginnining of the third phrase.

Global Cohesion Score: These local scores alone are not sufficient to capture semantic

cohesion across very long phrases, because Google n-gram statistics are limited to 5 word

sequences. Therefore, we also consider compatibility scores between the head word of

each phrase, where the head word corresponds semantically to the most important word

in a given phrase (last word or main verb of the phrase). For instance the phrase “The

phone in the hall” is more compatible with the phrase “rings loudly all the time” than

with the phrase “thinks about philosophy everyday” because the head word “phone” is

more compatible with the head word “rings” than with the head word “thinks”. Let hi

and hj be the head words of phrases xi and xi respectively, and let fΣ(hi, hj) be the total

frequency of all n-grams that start with hi and end with hj. Then the global cohesion is

computed as:

ψG
ij =

fΣ(hi, hj)−min(fΣ)

max(fΣ)−min(fΣ)
. (3.5)

Inference by Viterbi decoding: Notice that the potential functions in the objective

function (Equations 3.1 & 3.3) have a linear chain structure. Therefore, we can find the

argmax, X = {xobj, xverb, xstuff, xscene}, efficiently using Viterbi decoding.2

2An interesting but non-trivial extension to this generation technique is allowing re-ordering or omission
of phrases (Kuznetsova et al., 2012).
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3.2.2 Complex Query Image Search

Image retrieval is beginning to work well. Commercial companies like Google and

Bing produce quite reasonable results now for simple image search queries, like “dog”

or “red car”. Where image search still has much room for improvement is for complex

search queries involving appearance attributes, actions, multiple objects with spatial

relationships, or interactions. This is especially true for more unusual situations, that

cannot be mined directly by looking at the meta-data and text surrounding an image,

e.g., “little boy eating his brussels sprouts”.

We demonstrate a prototype application, showing that our approach for finding de-

scriptive phrases for an image can be used to form features that are useful for complex

query image retrieval. We use 1000 test images (described in Sec 3.3) as a dataset. For

each image, we pick the top selected phrases from the vision+text PageRank algorithm

to use as a complex text descriptor for that image – note that the actual human-written

caption for the image is not seen by the system. For evaluation we then use the origi-

nal human caption for an image as a complex query string. We compare it to each of

the automatically derived phrases for images in the dataset and score the matches using

normalized correlation. We then sort the scores and record the rank of the correct image

– the one for which the query caption was written. If the retrieved phrases matched

the actual human captions well, then we expect the query image to be returned first in

the retrieved images. Otherwise, it will be returned later in the ranking. Note that this

is only a demo application performed on a very small dataset of images. A real image
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Method
Noun

Phrases
K = 1, 5, 10

Verb
Phrases

K = 1, 5, 10

Prepositional
Phrases(stuff)
K = 1, 5, 10

Prepositional
Phrases(scenes)
K = 1, 5, 10

No reranking 0.24, 0.24, 0.23 0.15, 0.14, 0.14 0.30, 0.29, 0.27 0.28, 0.26, 0.25

Visual PageRank 0.23, 0.23, 0.23 0.13, 0.14, 0.14 0.28, 0.28, 0.27 0.26, 0.25, 0.25

Text PageRank 0.30, 0.29, 0.28 0.20, 0.19, 0.17 0.38, 0.37, 0.36 0.34, 0.30, 0.27

Visual+Text PageRank 0.28, 0.27, 0.26 0.17, 0.17, 0.16 0.32, 0.30, 0.28 0.27, 0.28, 0.27

TFIDF Reranking 0.29, 0.28, 0.27 0.19, 0.19, 0.18 0.38, 0.37, 0.36 0.40, 0.36, 0.32

Table 3.1: Average BLEU score for the top K retrieved phrases against Flickr captions.

Method
Noun

Phrases
Verb

Phrases
Prepositional
Phrases(stuff)

Prepositional
phrases(scenes)

No reranking 0.2633 0.0759 0.1458 0.1275

Visual PageRank 0.2644 0.0754 0.1432 0.1214

Text PageRank 0.3286 0.1027 0.1862 0.1642

Visual + Text PageRank 0.2262 0.0938 0.1536 0.1631

TFIDF Reranking 0.3143 0.1040 0.2096 0.1912

Table 3.2: Average BLEU score evaluation K=10 against MTurk written descriptions.

retrieval application would have access to billions of images.

3.3 Evaluation

We perform a thorough experimental evaluation on our phrase retrieval and reranking

(Sec 3.3.1), phrase based description generation (Sec 3.3.2), and phrase based complex

query image search (Sec 3.3.3).

For all phrase based evaluations (except where explicitly noted) we use a test set

of 1000 query images, selected to have high detector confidence scores. Random test

images could also be sampled, but for images with poor detector performance we expect

the results to be much the same as for our baseline global generation methods. Therefore,

we focus here on evaluating performance for images where detection is more likely to have
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produced reasonable estimates of local image content.

3.3.1 Phrase Retrieval & Reranking Evaluation

We calculate BLEU scores (without length penalty) for evaluating the retrieved

phrases against the original human associated captions from the SBU Dataset (Ordonez

et al., 2011). Scores are evaluated for the top K phrases for K = 1, 5, 10 for each phrase

type in Table 3.1. We can see that except for Visual PageRank all other reranking strate-

gies yield better BLEU scores than the original (unranked) retrieved phrases. Overall,

Text PageRank and TFIDF Reranking provide the best scores.

One possible weakness in this initial evaluation is that we use single caption as refer-

ence – the captions provided by the owners of the photos – which often include contextual

information unrelated to visual content. To alleviate this effect we further collect 4 ad-

ditional human written descriptions using Amazon Mechanical Turk for a subset of 200

images from our test set (care was taken to ensure workers were located in the US and

filtered for quality control). In this way we obtain good quality sentences referring to the

image content, but we also notice some biases like rich noun-phrases while very few verb-

phrases within those sentences. Results are provided in Table 3.2, further supporting

our previous observations (TFIDF and Text PageRank demonstrate the most increase in

BLEU score performance over the original retrieved ranking).
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Method
No

Reranking
Visual

PageRank
Text

PageRank
Visual + Text

PageRank
Visual + TFIDF

Rerank

BLEU 0.1192 0.1133 0.1257 0.1224 0.1260

ROUGE 0.2300 0.2236 0.2248 0.2470 0.2175

Table 3.3: BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) score evaluation of full
image captions generated using HMM decoding with our strategies for phrase retrieval
and reranking.

Method Percentage

Text PageRank vs. No Reranking 54%/46%

Visual + Text PageRank vs No Reranking 57%/43%

Visual + TFIDF Reranking vs No Reranking 61%/39%

Text + Visual PageRank vs Visual + TFIDF Reranking 49%/51%

Text + Visual PageRank vs Global Description Generation 71%/29%

Table 3.4: Human forced-choice evaluation between various methods.

3.3.2 Application 1: Description Generation Evaluation

We can also evaluate the quality of our retrieved set of phrases indirectly by using

them in an application to compose novel full image descriptions (Sec 3.2.1). Automatic

evaluation is computed again using BLEU score (Papineni et al., 2002) (including length

penalty), and we additionally compute ROUGE scores (Lin, 2004) (analog to BLEU

scores, ROUGE scores are a measure of recall that is also used in machine translation

problems). The original associated captions from Flickr are used as reference descrip-

tions. Table 3.3 shows results. All of our reranking strategies except visual PageRank

outperform the original image based retrieval on the generation task in terms of BLEU

score and Visual plus Text PageRank reranking outperforms on ROUGE. For BLEU,

the best reranking method is found to be Visual similarity plus TFIDF reranking. For

ROUGE, the best reranking strategy is Visual + Text PageRank.
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Further, we also perform human judgment forced choice tasks on Amazon Mechanical

Turk. Here users are presented with an image and two captions (each generated by a

different method) and they must select the caption which better describes the image.

Presentation order is randomized to remove user bias. Table 3.4 shows results. The top

3 rows show our methods are preferred over unranked phrases. Row 4 shows our top 2

methods are comparable. Finally, row 5 shows one of our methods is strongly preferred

over the whole sentence baseline provided with the SBU dataset (Ordonez et al., 2011).

We also show some qualitative results in Fig. 3.5 showing successful cases of generated

captions and different failure cases (due to incorrect objects, missing objects, incorrect

grammar or semantic inconsistencies) for our top performing method.

3.3.3 Application 2: Complex Query Image Retrieval Evaluation

We tested retrieval using 200 captions from the dataset described in Sec. 3.2.2 as

queries. For 3 queries, the corresponding image was ranked first by our retrieval system.

For these images the automatically selected phrases described the images so well that

they matched the ground truth captions better than the phrases selected for any of the

other 999 images. Overall 20% of queries had the corresponding image in the top 1%

of the ranked results (top 10 ranked images), 30% had the corresponding image in the

top 2%, and 43% had the corresponding image in the top 5% of ranked retrievals. In

addition to being able to find the image described out of a set of 1000, the retrieval

system produced reasonable matches for the captions as shown in Fig. 3.6.
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3.4 Discussion

We have explored several methods for collective reranking of sets of phrases and

demonstrated the results in two applications, phrase based generation of image descrip-

tions and complex query image retrieval. Finally, we have presented a thorough evalu-

ation of each of our presented methods through both automatic and human-judgment

based measures.

Generating generic image descriptions that resemble those written by people remains

a challenging problem. There have been several other proposed methods to generate

descriptions since then but one less studied problem is that of task-specific descriptions.

We present in Chapter 4 a study on a particular type of such descriptions known as

Referring Expressions.
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CHAPTER 4: REFERRING EXPRESSIONS FOR OBJECTS IN

NATURAL SCENES

One important aspect of describing objects in natural scenes using language is decid-

ing how to refer to such objects. For unfamiliar objects, this involves deciding what is the

object name, and the set of attributes, properties, and relations that should be mentioned

in a noun-phrase to identify a target or referent object. These type of noun phrases are

called Referring Expressions. From human robot interactions, to image search, to situ-

ated language learning, and natural language grounding, there are a number of research

areas that would benefit from a better understanding of how people refer to physical

entities in the world.

In the previous chapters we focused on generating general image descriptions. One

challenge with evaluating these types of systems is that automatic evaluation metrics like

BLEU or ROUGE were designed for other tasks (Machine Translation and Text Summa-

rization) and might not correlate well with human judgments on the image description

problem (Hodosh et al., 2013; Elliott and Keller, 2014). Referring Expressions are tied

to a task so we can provide a more objective evaluation compared to general image de-

scriptions. First, they should be able to identify the referent object from its context, a

person should be able to use the expression to easily find the referent object in a given

image. This is a rather objective way to verify the validity of the expression. Second, an

automatically generated referring expression should resemble in its mentioned attributes,



properties, and relations, the type of choices that people would make. This set of choices

is considerably more constrained compared to the space of possible things that could be

mentioned in general image descriptions.

In the same spirit as the previous chapters, one can devise a computational recog-

nition system that can identify all the attributes for a given object in an image. But

people do not mention all attributes of an object exhaustively when trying to identify the

object using referring expressions. We present in this chapter an analysis of the types of

attributes that people prefer to mention for different types of objects and the individual

set of words that are preferred for each attribute. Finally, we devise a technique to gener-

ate human-like referring expressions for a given input image with partial annotations so

that it resembles the kind of expressions that people would use. This work was originally

published in (Kazemzadeh, Ordonez et al., 2014).

4.1 Introduction

Recent advances in automatic computer vision methods have started to make tech-

nologies for recognizing thousands of object categories a near reality (Perronnin et al.,

2012; Deng et al., 2012a, 2010; Krizhevsky et al., 2012). As a result, there has been a

spurt of recent work trying to estimate higher level semantics, including exciting efforts

to automatically produce natural language descriptions of images and video (Farhadi

et al., 2010; Kulkarni et al., 2013; Yang et al., 2011; Ordonez et al., 2011; Kuznetsova

et al., 2012; Feng and Lapata, 2013). Common challenges encountered in these pursuits

include the fact that descriptions can be highly task dependent, open-ended, and difficult
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to evaluate automatically.

Previous work on REG has made significant progress toward understanding how peo-

ple generate expressions to refer to objects (a recent survey of techniques is provided

in (Krahmer and van Deemter, 2012)). In this chapter, we study the relatively unex-

plored setting of how people refer to objects in complex photographs of real-world cluttered

scenes. One initial stumbling block to examining this scenario is lack of existing relevant

datasets, as previous collections for studying REG have used relatively focused domains

such as graphics generated objects (van Deemter et al., 2006; Viethen and Dale, 2008),

crafts (Mitchell et al., 2010), or small everyday (home and office) objects arrayed on a

simple background (Mitchell et al., 2013a; FitzGerald et al., 2013).

We present here a new large-scale corpus, currently containing 130,525 expressions,

referring to 96,654 distinct objects, in 19,894 photographs of real world scenes. Some

examples from our dataset are shown in Figure 4.5. To construct this corpus efficiently,

we design a new two player referring expression game (ReferItGame) to crowd-source the

data collection. Popularized by efforts like the ESP game (von Ahn and Dabbish, 2004)

and Peekaboom (von Ahn et al., 2006b), Human Computation based games can be an

effective way to engage users and collect large amounts of data inexpensively. Two player

games can also automate verification of human provided annotations.

Our resulting corpus is both more real-world and much bigger than previous datasets,

allowing us to examine referring expression generation in a new setting at large scale. To

understand and quantify this new dataset, we perform an extensive set of analyses. One

significant difference from previous work is that we study how referring expressions vary
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for different categories. We find that an object’s category greatly influences the types

of attributes used in their referring expression (e.g. people use color words to describe

cars more often than mountains). Additionally, we find that references to an object are

sometimes made with respect to other nearby objects, e.g. “the ball to left of the man”.

Interestingly, the types of reference objects (i.e. “the man”) used in referring expressions

are also biased toward some categories. Finally, we find that the word used to refer to

the object category itself displays consistencies across people. This notion is related to

ideas of entry-level categories from Psychology (Rosch, 1978). We explore this problem

in more detail in Chapter 5.

Given these findings, we propose an optimization model for generating referring ex-

pressions that jointly selects which attributes to include in the expression, and what

attribute values to generate. This model incorporates both visual models for selecting

attribute-values and object category specific priors. Experimental evaluations indicate

that our proposed model produces reasonable results for REG.

In summary, contributions include:

• A two player online game to collect and verify natural language referring expres-

sions.

• A new large-scale dataset containing natural language expressions referring to ob-

jects in photographs of real world scenes.

• Analyses of the collected dataset, including studying category-specific variations in

referring expressions.
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Figure 4.1: An example game. Player 1 (left) sees an image with an object outlined
in red (the man) and provides a referring expression for the object (“man in red shirt
on horse”). Player 2 (right) sees the image and the expression from Player 1 and must
localize the correct object by clicking on it (click indicated by the red square). Elapsed
time and current scores are also provided.

• An optimization based model to generate referring expressions for objects in real-

world scenes with experimental evaluations on three labeled test sets.

The rest of this chapter is organized as follows. First we outline related work from the

vision and language communities (§4.2). Then we describe our online game for collecting

referring expressions (§4.3) and provide an analysis of our new ReferItGame Dataset

(§4.4). Finally, we present and evaluate our model for generating referring expressions

(§4.5) and discuss conclusions and future work (§4.6).

4.2 Related Work

Referring Expression Generation: There has been a long history of research on

understanding how people generate referring expressions, dating back to the 1970s (Wino-

grad, 1972). One common approach is the Incremental Algorithm (Dale and Reiter,

1995, 2000) which uses logical expressions for generation. Much work in REG follows

the Gricean maxims (Grice, 1975) which provide principles for how people will behave in
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conversation. These include four general principles: The principle of quantity which dic-

tates including only the minimum needed amount of information, the principle of quality

which dictates that we would only include truthful information, the principle of rela-

tion which proposes including relevant information, and the principle of manner which

proposes avoiding ambiguity and obscurity.

Recently, there has been progress examining other aspects of the referring expression

problem such as understanding what types of attributes are used (Mitchell et al., 2013a),

modeling variations between speakers (Viethen and Dale, 2010; Viethen et al., 2013;

Van Deemter et al., 2012; Mitchell et al., 2013b), incorporating visual classifiers (Mitchell

et al., 2011), producing algorithms to refer to object sets (Ren et al., 2010; FitzGerald

et al., 2013), or examining impoverished perception REG (Fang et al., 2013). A good

survey of work in this area is provided in (Krahmer and van Deemter, 2012). We build on

past work, extending models to generate attributes jointly in a category specific frame-

work.

Referring Expression Datasets: Some initial datasets in REG used graphics en-

gines to produce images of objects (van Deemter et al., 2006; Viethen and Dale, 2008).

Recently more realistic datasets have been introduced, consisting of craft objects like

pipecleaners, ribbons, and feathers (Mitchell et al., 2010), or everyday home and office

objects such as staplers, combs, or rulers (Mitchell et al., 2013a), arrayed on a simple

background. These datasets helped to move referring expression generation research into

the domain of real world objects. We seek to further these pursuits by constructing a

dataset of natural objects in photographs of the real world.
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Image & Video Description Generation: Recent research on automatic im-

age description has followed two main directions. Retrieval based methods (Aker and

Gaizauskas, 2010b; Farhadi et al., 2010; Ordonez et al., 2011; Feng and Lapata, 2010,

2013) retrieve existing captions or phrases to describe a query image. Bottom up meth-

ods (Kulkarni et al., 2013; Yang et al., 2011; Yao et al., 2010) rely on visual classifiers

to first recognize image content and then construct captions from scratch, perhaps with

some input from natural language statistics. Very recently, these ideas have been ex-

tended to produce descriptions for videos (Guadarrama et al., 2013; Barbu et al., 2012).

Like these methods, we generate descriptions for natural scenes, but focus on referring

to particular objects rather than providing an overall description of an image or video.

Human Computation Games: Games can be a useful tool for collecting large

amounts of labeled data quickly. Human Computation Games were first introduced

by Luis von Ahn in the ESP game (von Ahn and Dabbish, 2004) for image labeling,

and later extended to segment objects (von Ahn et al., 2006b), collect common-sense

knowledge (von Ahn et al., 2006a), or disambiguate words (Seemakurty et al., 2010).

Recently, crowd games have also been introduced into the computer vision community

for tasks like fine grained category recognition (Deng et al., 2013). These games can be

released publicly on the web or used on Mechanical Turk to enhance and encourage turker

(users of Mechanical Turk) participation (Deng et al., 2013). Inspired by the success of

previous games, we create a game to collect and verify natural language expressions

referring to objects in natural scenes.
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4.3 Referring Expression Game (ReferItGame)

In this section we describe our referring expression game (ReferItGame1), a simple

two player game where players alternate between generating expressions referring to

objects in images of natural scenes, and clicking on the locations of described objects.

An example game is shown in Figure 4.1.

4.3.1 Game Play

Player 1: is shown an image with an object outlined in red and provided with a text

box in which to write a referring expression. Player 2: is shown the same image and the

referring expression written by Player 1 and must click on the location of the described

object (note, Player 2 does not see the object segmentation). If Player 2 clicks on the

correct object, then both players receive game points and the Player 1 and Player 2 roles

swap for the next image. If Player 2 does not click on the correct object then no points

are received and the players remain in their current roles.

This provides us with referring expressions for our dataset and verification that the

expressions are valid since they led to correct object localizations. Expressions written

for games where the object was not correctly localized are kept and released with the

dataset for future study, but are not included in our final dataset analyses or statistics.

A game timer encourages players to write expressions quickly, resulting in more natural

expressions. Also, IP addresses are filtered to prevent people from simultaneously playing

both roles.

1Available online at http://referitgame.com
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4.3.2 Playing Against the Computer

To promote engagement, we implement a single player version of the game. When a

player connects, if there is another player online then the two people are paired. If there

are currently no other available players, then the person plays a “canned” game against

the computer. If at any point another person connects, the canned game ends and the

player is paired with the new person.

To implement canned games we seed the game with 5000 pre-recorded referring ex-

pression games (5 referring expressions and resulting clicks for each of 1000 objects)

collected using Amazon’s Mechanical Turk service. Implementing an automated version

of Player 1 is simple; we just show the person one of the pre-collected referring expressions

and they click as usual.

Automating the role of Player 2 is a bit more complicated. In this case, we compare

the person’s written expression against the pre-recorded expressions for the same object.

For this comparison we use a parser to lemmatize the words in an expression and then

compute cosine similarity between expressions with a bag of words representation. Based

on this measure the closest matching expression is determined. If there is no similarity

between the newly generated expression and the canned expressions, the expression is

deemed incorrect and a random click location (outside of the object) is generated. If

there is a successful match with a previously generated expression, then the canned click

from the most similar pre-recorded game is used. More complex similarities could be

used, but since we require real-time performance in our game setting we use this simple
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implementation which works well for our expressions.

4.4 ReferItGame Dataset

In this section we describe the ReferItGame dataset2, including images and labels,

processing the dataset, and analysis of the collection.

4.4.1 Images and Labels

We build our dataset of referring expressions on top of the ImageCLEF IAPR image

retrieval dataset (Grubinger et al., 2006). This dataset is a collection of 20,000 images

available free of charge without copyright restrictions, depicting a variety of aspects of

everyday life, from sports, to animals, to cities, and landscapes. Crucial for our purposes,

the SAIAPR TC-12 expansion (Escalante et al., 2010) includes segmentations of each

image into regions indicating the locations of constituent objects. 238 different object

categories are labeled, including animals, people, buildings, objects, and background

elements like grass or sky. This provides us with information regarding object category,

object location, and object size, as well as the location and categories of other objects

present in the same image.

4.4.2 Collecting the Dataset

From the ImageCLEF dataset, we created a total of over 100k distinct games (one

per object labeled in the dataset). For the games we imposed an ordering to allow for

2Available at http://tamaraberg.com/referitgame
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collecting the most interesting expressions first. Initially we prioritized games for objects

in images with multiple objects of the same category. Once these games were completed,

we prioritized ordering based on object category to include a comprehensive range of

objects. Finally, after successfully collecting referring expressions from the prioritized

games, we posted games for the remaining objects. In order to evaluate consistency of

expression generation across people, we also include a probability of repeating previously

played games during collection.

To date, we have collected 130,525 successfully completed games. This includes 10,431

canned games (a person playing against the computer, not including the initial seed

set) and 120,094 real games (two people playing). We recorded at least 1,115 users

contributing with referring expressions. 96,654 distinct objects from 19,984 photographs

are represented in the dataset. This covers almost all of the objects present in the IAPR

corpus. The remaining objects from the collection were either too small or too ambiguous

to result in successful games.

For data collection, we posted the game online for anyone on the web to play and

encouraged participation through social media and the survey section of reddit. In this

manner we collected over 4 thousand referring expressions over a period of 3 weeks. To

speed up data collection, we also posted the game on Mechanical Turk (MT). Turkers

were paid upon completion of 10 correct games (games where Player 2 clicks on the

correct object of interest). Turkers were pre-screened to have approval ratings above

80% and to be located in the US for language consistency. At the end, due to the time

efficiency of crowdsourcing we collected almost 95% of the referring expressions from MT.
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S ::= subject word

color word ′ ::= rel(S, color word)color word ′=color word |
prep in(S, color word)color word ′=color word

size word ′ ::= rel(S, size word)size word ′=size word

abs loc word ′ ::= rel(S, abs loc word) abs loc word ′=abs loc word|
prep on(S, orientation word) ∧ ¬prep of(S, )abs loc word ′=on+orientation word

rel loc word ′ ::= RL

RL ::= prep rel loc word(S, object word)RL=rel loc word |
prep on(S, orientation word) ∧ prep of(S, object word) RL=on orientation word|
prep to(S, orientation word) ∧ prep of(S, object word) RL=to orientation word|
prep at(S, orientation word) ∧ prep of(S, object word) RL=at orientation word

generic word ′ ::= amod(S, generic word)

Figure 4.2: Templates for parsing attributes from referring expressions (§4.4.3).

4.4.3 Processing the Dataset

Because of the size of the dataset, hand annotation of all referring expressions is

prohibitive. Therefore, similar to past work (FitzGerald et al., 2013), we design an auto-

matic method to pre-process the expressions and extract object and attribute mentions.

These automatically processed expressions are used only for analysis and model training.

We also fully hand label portions of the dataset for evaluation (§4.5.2).

By examining the expressions in the collected dataset, we define a set of attributes

with broad coverage of the attribute types used in the referring expressions. We define

the set of attributes for a referring expression as a 7-tuple R = {r1, r2, r3, r4, r5, r6, r7}:

• r1 is an entry-level category attribute,

• r2 is a color attribute,
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• r3 is a size attribute,

• r4 is an absolute location attribute,

• r5 is a relative location relation attribute,

• r6 is a relative location object attribute,

• r7 is a generic attribute,

Color and size attributes refer to the object color (e.g. “blue”) and object size (e.g.

“tiny”) respectively. Absolute location refers to the location of the object in the image

(e.g. “top of the image”). Relative location relation and relative location object attributes

allow for referring expressions that localize the object with respect to another object in

the picture (e.g. “the car to the left of the tree”). Generic attributes cover all less

frequently observed attribute types (e.g. “wooden” or “round”).

The entry-level category attribute is related to the concept of entry-level categories

first proposed by Psychologists in the 1970s (Rosch, 1978) and explored in Chapter 5. The

idea of entry-level categories is that an object can belong to many different categories;

an indigo bunting is an oscine, a bird, a vertebrate, a chordate, and so on. But, a person

looking at a picture of one would probably call it a bird (unless they are very familiar with

ornithology). Therefore, we include this attribute to capture how people name object

categories in referring expressions.

Parsing the referring expressions: We parse the expressions using the most re-

cent version of the StanfordCoreNLP parser (Socher et al., 2013). We begin by travers-

ing the parse tree in a breadth-first manner and selecting the head noun of the sen-
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Figure 4.3: Analyses of the ReferItGame Dataset. Plot A shows frequency and attribute
occurrence for common object categories. Plot B shows objects frequently used as
reference points, ie “to the left of the man”. Plot C shows frequencies of using 0, 1 or 2
attributes within the same expression. Plot D shows object locations vs location words
used. Plot E shows normalized object size vs size words used (bars show 1st through
3rd quartiles). Plot F shows the frequency of usage of each attribute type for images
containing either a single instance of the object category or multiple instances of the
category.
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Figure 4.4: Left: Tag clouds showing entry-Level category words used in referring ex-
pressions to name various object categories, with word size indicating frequency. For
example, this indicates that “streets” are often called “road”, sometimes “ground”, some-
times “roadway”, etc. Right: example objects predicted to portray some of our color
attribute values. Note sometimes our color predictor is quite accurate, and sometimes it
makes mistakes (see the man in a red shirt predicted as “yellow”).

tence to determine the object of the referring expression, denoted as subject word. We

pre-define a dictionary of attribute-values (color word, size word, abs location word,

rel location word) for each of the attributes based on the observed data using a combi-

nation of POS-tagging and manual labeling.

We then apply a template-based approach on the collapsed dependency relations to

recover the set of attributes (the main template rules are shown in Figure 4.2). The

relationship rel indicates any linguistic binary relationship between the subject word

S and another word, including the amod relationship. Orientation word captures the

words like left, right, top and bottom. For generic word we consider any modifier words

other than those captured by our other attributes (color, size, location).

Using this template-based parser we can for instance parse the following expression:

“Red flower on top of pedestal”. The first rule would match the prep(S, color word)

relation, effectively recovering the attribute color word ′ as “red”. The second rule would

match the prep on(S, orientation word) ∧ prep of(S, object word) relations, recovering
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rel loc word ′ as “on top of ” and object word as “pedestal”.

The accuracy of our parser based processing is 91%. This was evaluated on 4,500

expressions that were manually parsed by a human annotator.

4.4.4 Dataset Analysis

In the resulting dataset, we have a range of coverage over objects. For 10,304 of the

objects we have 2 or more referring expressions while for the rest of the objects we have

collected only one expression. This creates a dataset that emphasizes breadth while also

containing enough data to study speaker variation.

Multiple attribute analyses are provided in Figure 4.3. We find that most expressions

use 0, 1, or 2 attributes (in addition to the entry-level attribute object word), with very

few expressions containing more than 2 attributes (frequencies are shown in Fig 4.3c).

We also examine what types of attributes are used most frequently, according to object

category in Fig 4.3a, and when associated with single or multiple occurrences of the

same object category in an image in Fig 4.3f. The frequency of attribute usage in images

containing multiple objects of the same type increases for all types, compared to single

object occurrences. Perhaps more interestingly, the use of different attributes is highly

category dependent. People use more attribute words overall to describe some categories,

like “man”, “woman”, or “plant”, and the distribution of attribute types also varies by

category. For example, color attributes are used more frequently for categories like “car”

or “woman” than for categories like “sky” or “rock”.

We also examine which objects are most frequently used as points of reference,
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e.g.,“the chair next to the man” in Fig 4.3b. We observe that people and some back-

ground categories like “tree” or “wall” are often used to help localize objects in referring

expressions. Additionally, we provide plots showing the relationship between object lo-

cation in the image and use of absolute location words, Fig 4.3d, as well as size words vs

object area, Fig 4.3e.

Finally, we study entry-level category attribute-values to understand how people name

objects in referring expressions. Tag clouds indicating the frequencies of words used to

name various object categories are provided in Fig 4.4 (left). Objects like “street” are

usually referred to as “road”, but sometimes they are called “ground”, “roadway”, etc.

“Bottles” are usually called “bottle”, but sometimes referred to as “coke” or “beer”.

Interestingly, “man” is usually called “man” while “woman” is most often called “person”

in the referring expressions.

4.5 Generating Referring Expressions

In this section we describe our proposed generation model and provide experimental

evaluations on three test sets.

4.5.1 Generation Model

Given an input tuple I = {P, S}, where P is a target object and S is a scene (image

containing multiple objects), our goal is to generate an output referring expression, R.

For instance, the representation R for the referring expression: The big old white cabin

beside the tree would be R = {cabin, white, big,∅, beside, tree, old}.
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To generate referring expressions we construct vocabularies Vri with candidate values

for each attribute ri ∈ R, where attribute vocabulary Vri contains the set of words

observed in our parsed referring expressions for attribute ri plus an additional ε value

indicating that the attribute should be omitted from the referring expression entirely.

In this way, our framework can jointly determine which attributes to include in the

expression (e.g.,“size” and “color”) and what attribute values to generate (e.g.,“small”

and “blue”) from the list of all possible values. We enforce a constraint to always include

an “entry-level category” attribute (e.g. “boy”) so that we always generate a word

referring to the object.

We pose our problem as an optimization where we map a tuple {P, S} to a referring

expression R∗ as:

R∗ = argmax
R

E(R,P, S)

s. t. fi(R) ≤ bi

(4.1)

Where the objective function E is decomposed as:

E(R,P, S) = α
6∑
i=2

φi(ri, P, S)

+ β

7∑
i=1

ψi(ri, type(P ))

+
∑
i>j

ψi,j(ri, rj)

(4.2)

Where φi is the compatibility function between an attribute-value for ri and the properties

of the observed scene S and object P (described in §4.5.1). The terms ψi and ψi,j

are unary and pairwise priors computed based on observed co-occurrence statistics of
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attribute-values for ri with categories (where type(P ) denotes the type or category of an

object) and between pairs of attribute-values (described in §4.5.1). Attributes r1 and r7

are modeled only in the priors since we do not have visual models for these attributes.

The constraints fi(R) ≤ bi are restricted to be linear constraints and are used to

impose hard constraints on the solution. The first such constraint is used to control the

verbosity (length) of the generated referring expression using a constraint function that

imposes a minimum attribute length requirement by restricting the number of entries ri

that can take value ε in the solution.

∑
i

1[ri = ε] ≤ 7− γ(P, S), (4.3)

where 1[.] is the indicator function and γ(P, S) is a term that allows us to change the

length requirement based on the object and scene (so that images with a larger number

of objects of the same type have a larger length requirement).

Finally we add hard constraints such that r5 = ε ⇐⇒ r6 = ε, so that relative

location and relative object attributes are produced together.

Content-based potentials

Potentials φi are defined for attributes r2 to r6. Attribute r7 represents a variety

of different attributes, e.g. material or shape attributes, but we lack sufficient data

to train visual models for these infrequent attribute terms. Therefore, we model these

attributes using only prior statistics-based potentials (§4.5.1). Visual recognition models
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for recognizing entry-level object categories could also be incorporated for modeling r1,

but we leave this as future work.

Color attribute:

φ2(r2 = ck, P, S) = sim(histck , hist(P )),

where hist(P ) is the HSV color histogram of the object P . We compute similarity sim

using cosine similarity, and histck is the mean histogram of all objects in our training

data that were referred to with color attribute-value ck ∈ Vr2 .

Size attribute:

φ3(r3 = sk, P, S) =
1

σsk
√

2π
e
−(size(P )−µsk)

2
/

2σ2
sk , (4.4)

where size(P ) is the size of object P normalized by image size. We model the probabil-

ities of each size word sk ∈ Vr3 as a Gaussian learned on our training set.

Absolute-location attribute:

φ4(r4 = ak, P, S) =
1√

(2π)n|Σak |
e−

1
2

(loc(P )−µak )T Σak
−1(loc(P )−µak ), (4.5)

where loc(P ) are the 2-dimensional coordinates of the object P normalized to be ∈ [0−1].

Parameters µak and Σak are estimated from training data for each absolute location word
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ak ∈ Vr4 .

Relative-location and Relative object:

φ5(r5 = lk, P, S) = 1[lk = ε] · g(count(type(P ), S)). (4.6)

If there are a larger number of objects of the same type in the image we find that the

probability of using a relative-location-object increases (e.g., “the car to the right of the

man”). For images where P was the only object of that category type, the probability

of using a relative-location-object is 0.12. This increases to 0.22 when there were two

objects of the same type and further increases to 0.26 for additional objects of the same

type. Therefore, we model the probability of selecting relative location value lk ∈ Vr5 as

a function g, where count(type(P ), S) counts the number of objects in the scene S of the

same category type as the object P .

φ6(r6 = ok, P, S) = 1[ok ∈ objectsnear(location(P ), S)]. (4.7)

The above expression filters out potential relative objects ok ∈ Vr6 that are not located

in sufficient proximity to object P or are not present in the image at all.

Prior statistics-based potentials

Prior statistics-based potentials are modeled for all of the attributes r1 - r7. Note

that these potentials do not depend on specific attribute-values but only on the given

64



object category type(P ).

Unary prior potentials ψi are defined as:

ψi(ri, type(P )) =

|D|∑
j=1

1[(r
(j)
i 6= ε) ∧ (type(P (j)) = type(P ))]

|D|∑
j=1

1[type(P (j)) = type(P )]

+

|D|∑
j=1

1[r
(j)
i 6= ε]

|D|
+ λ,

where D = {P (j), S(j), R(j)} is our training dataset and λ is a small additive smoothing

term. The two terms in the above expression represent category-specific counts and global

counts of the number of times a given attribute ri was output in a referring expression

in training data. Pairwise prior potentials ψi,j are defined as:

∑
i<j

ψi,j(ri, rj) =
∑
i<j

ψ
(1)
i,j (ri, rj) + ψ

(2)
5,6(r5, r6),

ψ
(1)
i,j (ri, rj) =


1 if ri = rj = ε

C + λ o.w.,

ψ
(2)
5,6(r5 = a, r6 = b) =

|D|∑
t=1

1[(r
(t)
5 = a) ∧ (r

(t)
6 = b)]

|D|
, (4.8)

where C =

|D|∑
t=1

1[(r
(t)
i 6=ε) ∧ (r

(t)
j 6=ε)]

|D| . The pairwise potential ψ
(1)
i,j captures the pairwise statis-

tics of how frequently people use pairs of attribute types. For instance how frequently

people use both color and size attributes to refer to an object. The pairwise potential

ψ
(2)
i,j produces a cohesion score between relative-location words and relative-object words

based on global dataset statistics.
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Source Prec(%) Recall(%)

Baseline - A 27.92 43.27
Full Model - A 36.28 53.44

Baseline - B 29.87 50.57
Full Model - B 36.68 59.80

Baseline - C 28.85 37.41
Full Model - C 37.73 48.54

Table 4.1: Baseline Model & Full Model performance on the three test sets (A,B,C).

Image	
   Human	
  Expressions	
   Generated	
  Expressions	
  

picture	
  on	
  the	
  wall	
  
picture	
  
picture	
  

Baseline:[picture,	
  white,	
  ,	
  
right,	
  ,	
  ,	
  ]	
  	
  
Full:	
  [picture,	
  ,	
  ,	
  ,	
  prep_on,	
  
wall,	
  ]	
   	
  	
  

Door	
  
white	
  door	
  middle	
  
white	
  door	
  

Baseline:[door,	
  white,	
  ,	
  
right,	
  ,	
  ,	
  ]	
  	
  	
  
Full:[door,	
  white,	
  ,	
  
middle,	
  ,	
  ,	
  ]	
  

big	
  gated	
  window	
  on	
  right	
  of	
  
white	
  sec:on	
  
black	
  big	
  window	
  right	
  
brown	
  railings	
  on	
  right	
  

Baseline:[window,	
  white,	
  ,	
  
right,	
  ,	
  ,	
  ]	
  	
  	
  
Full:[window,	
  brown,	
  ,	
  
right,	
  ,	
  ,	
  ]	
  	
  	
  

white	
  shirt	
  man	
  
white	
  shirt	
  on	
  right	
  
man	
  on	
  right	
  

Baseline:[man,	
  white,	
  ,	
  
right,	
  ,	
  ,	
  ]	
  	
  
Full:[man,	
  white,	
  ,	
  right,	
  ,	
  ,	
  ]	
   	
  	
  

building	
  on	
  right	
  behind	
  guys	
  
blue	
  right	
  building	
  
building	
  on	
  right	
  

Baseline:[building,	
  white,	
  ,	
  
right,	
  ,	
  ,	
  ]	
  	
  	
  
Full:[building,	
  blue,	
  ,	
  
right,	
  ,	
  ,	
  ]	
  	
  

Image	
   Human	
  Expressions	
   Generated	
  Expressions	
  

picture	
  
santa	
  
the	
  santa	
  picture	
  

Baseline:[picture,	
  white,	
  ,	
  
right,	
  ,	
  ,	
  ]	
  	
  
Full:[picture,	
  ,	
  ,	
  ,	
  prep_on,	
  plant,	
  ]	
  

	
  	
  

right	
  doorway	
  
right	
  brown	
  door	
  
right	
  door	
  

Baseline:[door,	
  ,	
  ,	
  right,	
  prep_in,	
  
person,	
  ]	
  	
  	
  
Full:[door,	
  ,	
  ,	
  right,	
  prep_behind,	
  
person,	
  ]	
  	
  

with	
  flag	
  
window	
  top	
  2nd	
  le?	
  
2nd	
  window	
  top	
  le?	
  

Baseline:[window,	
  ,	
  ,	
  right,	
  
prep_in,	
  person,	
  ] 	
  	
  
Full:[window,	
  ,	
  ,	
  middle,	
  
prep_above,	
  door,	
  ]	
   	
  	
  

red	
  guy	
  le?	
  siAng	
  
le?	
  boBom	
  guy	
  
red	
  shirt	
  lef	
  

Baseline:[man,	
  ,	
  ,	
  right,	
  prep_in,	
  
woman,	
  ]	
  	
  
Full:[man,	
  ,	
  ,	
  le?,	
  prep_in,	
  
woman,	
  ]	
   	
  	
  

buildings	
  
buildings	
  
buildings	
  

Baseline:[building,	
  white,	
  ,	
  
right,	
  ,	
  ,	
  ]	
  	
  	
  
Full:[building,	
  brown,	
  ,	
  middle,	
  ,	
  ,	
  	
  	
  

Figure 4.5: Example results, including human generated expressions, baseline and full
model generated expressions. For some images the model does well at mimicking human
expressions (left). For others it does not generate the correct attributes (right).

4.5.2 Experiments

We implement the proposed model using the binary integer linear programming soft-

ware (IBM ILOG CPLEX). This requires introducing a set of indicator variables for each

of our multi-valued attributes and another set of indicator variables to model pairwise

interactions between our variables, as well as incorporating additional consistency con-

straints between variables. Model parameters (α and β) are tuned on data randomly

sampled from our training set consisiting on the entire dataset excluding the images
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used in the test sets. Another consideration is that we only use to train our models the

referring expressions that were validated by the opponent player in the game by success-

fully finding the referent object. Note that our validation step allows grammar errors as

long as the referring expression still includes enough information to identify the referent.

This is not critical for the content planning stage but a full system that includes sur-

face realization should take this in consideration when trying to learn models from these

expressions, or use external text data.

Test Sets: We evaluate our model on three test sets, each containing 500 objects. For

each object in the test sets we collect 3 referring expressions using the ReferItGame and

manually label the attributes mentioned in each expression. We find human agreement

to be 72.31% on our dataset (where we measure agreement as mean matching accuracy

of attribute values for pairs of users across images in our test sets). The three test sets

are created to evaluate different aspects of our data.

Test Set A contains objects sampled randomly from the entire dataset. This test

set is meant to closely resemble the full dataset distribution. The goal of the other two

test sets is to sample expressions for “interesting” objects. We first identify categories

that are mainly related to background content elements, e.g. “sky, ground, floor, sand,

sidewalk, etc”. We consider these categories to be potentially less interesting for study

than categories like people, animals, cars, etc. Test Set B contains objects sampled

from the most frequently occurring object categories in the dataset, selected to contain a

balanced number of objects from each category, excluding the less interesting categories.

Test Set C contains objects sampled from images that contain at least 2 objects of the
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same category, excluding the less interesting categories.

Results: Qualitative examples are shown in Fig 4.5 comparing our results to the

human produced expressions. For some images (left) we do quite well at predicting the

correct attributes and values. For others we do less well (right). We also show example

objects predicted for some color words in Fig 4.4 (right). We see that our model can fail in

several ways, such as generating the wrong attribute-value due to inaccurate predictions

by visual models or selecting incorrect attributes to include in the generated expression.

Quantitative results: precision and recall measures for the 3 test sets are reported in

Table 4.1, including evaluation of a baseline version of our model which incorporates only

the prior potentials (Section 4.5.1) without any content based estimates. We see that our

model performs reasonably on both measures, and outperforms the baseline by a large

margin on all test sets, with highest performance on the broadly sampled interesting

category test set. Note that our problem is somewhat different than traditional REG

where the input is often attribute-value pairs and the task is to select which pairs to

include in the expression. Our goal is to jointly select which attributes to include and

what values to predict from a list of all possible values for the attribute.

4.6 Discussion

In this chapter we have introduced a new game to crowd-source referring expressions

for objects in natural scenes. We have used this game to produce a new large-scale

dataset. We have also proposed an optimization based model for Referring Expression

Generation and performed experimental evaluations. Generating the right set of at-
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tributes and values for each attribute in referring expressions is a challenging problem.

The first principle in the gricean maxims suggests that referring expressions should not be

more informative than required, yet we observe in our data that people are purposefully

redundant in many instances. This redundancy can take many forms while not being

ambiguous enough so that a referring expression stops being efficient. Because if there

is too much redundancy in a referring expression, it might create an unnecessarily high

cognitive load in the recipient. We model this in our REG approach by looking at the

distribution of attributes for each type of object in our dataset. In our current model,

we only encourage a larger set of attributes to be used when there are many distractor

objects. It is still left to model more complex relationships where on occasions one might

need to refer to an object in relation to the distribution of attributes of another object,

or set of objects.

The amount of attributes and the specificity of the words used as values for those

attributes also have a direct relationship with our working vocabulary. For instance, if we

are dealing with a picture depicting three animals and we have words in our vocabulary

to uniquely identify each animal, we might prefer to use one such word instead of other

properties like size, location, or color. But assigning the name that people are likely

to use for categorizing any given object is a challenging task on itself. We specifically

address this problem in the context of basic-level and entry-level categories in Chapter 5.
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CHAPTER 5: PREDICTION OF ENTRY-LEVEL CATEGORIES

In this section we focus our attention to a more basic problem that also tries to

address the disparity between what computational visual recognition systems output and

the visual descriptions of people in the more constrained context of object categorization.

This work was originally published in (Ordonez et al., 2013a) and an expanded version

in (Ordonez et al., 2015).

5.1 Introduction

Algorithms have now advanced to the point where they can recognize or localize

thousands of object categories with reasonable accuracy (Deng et al., 2010; Perronnin

et al., 2012; Krizhevsky et al., 2012; Dean et al., 2013; Simonyan and Zisserman, 2014;

Szegedy et al., 2014). (Russakovsky et al., 2014) present an overview of recent advances

in classification and localization for up to 1000 object categories. While one could predict

any one of many relevant labels for an object, the question of “What should I actually

call it?” is becoming important for large-scale visual recognition. For instance, if a

classifier were lucky enough to get the example in Figure 5.1 correct, it might output

grampus griseus, while most people would simply call this object a dolphin. We propose

to develop categorization systems that are aware of these kinds of human naming choices.

This notion is closely related to ideas of basic and entry-level categories formulated

by psychologists such as Eleanor Rosch (Rosch, 1978) and Stephen Kosslyn (Jolicoeur



grampus griseus dolphin 

Recognition Prediction What should I Call It? 

Figure 5.1: Example translation between a WordNet based object category prediction
and what people might call the depicted object.

et al., 1984). Rosch defines basic-level categories as roughly those categories at the high-

est level of generality that still share many common attributes and have fewer distinctive

attributes. An example of a basic level category is bird where most instances share at-

tributes like having feathers, wings, and beaks. Super-ordinate, more general, categories

such as animal will share fewer attributes and demonstrate more variability. Subordi-

nate, more specific categories, such as American Robin will share even more attributes

like shape, color, and size. Rosch studied basic level categories through human exper-

iments, e.g. asking people to enumerate common attributes for a given category. The

work of (Jolicoeur et al., 1984) further studied the way people identify categories, defining

the concept of entry-level categories. Entry level categories are essentially the categories

that people naturally use to identify objects. The more prototypical an object, the more

likely it will have its entry point at the basic-level category. For less typical objects the

entry point might be at a lower level of abstraction. For example an American robin or a

penguin are both members of the same basic-level bird category. However, the American
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Superordinates: animal, vertebrate
Basic Level: bird
Entry Level: bird
Subordinates: American robin

Superordinates: animal, vertebrate
Basic Level: bird
Entry Level: penguin
Subordinates: Chinstrap penguin

Figure 5.2: An American Robin is a more prototypical type of bird hence its entry-
level category coincides with its basic level category while for penguin which is a less
prototypical example of bird, the entry-level category is at a lower level of abstraction.

robin is more prototypical, sharing many features with other birds and thus its entry-level

category coincides with its basic-level category of bird, while the entry-level category for

a penguin would be at a lower level of abstraction (see Figure 5.2).

So, while objects are members of many categories – e.g. Mr Ed is a palomino, but also

a horse, an equine, an odd-toed ungulate, a placental mammal, a mammal, and so on –

most people looking at Mr Ed would tend to call him a horse, his entry level category

(unless they are fans of the show). This chapter focuses on the problem of object naming

in the context of entry-level categories. We consider two related tasks: 1) learning a map-

ping from fine-grained / encyclopedic categories – e.g., leaf nodes in WordNet (Fellbaum,

1998) – to what people are likely to call them (entry-level categories) and 2) learning to

map from outputs of thousands of noisy computer vision classifiers/detectors evaluated

on an image to what a person is likely to call a depicted object.
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Evaluations show that our models can effectively emulate the naming choices of human

observers. Furthermore, we show that using noisy vision estimates for image content, our

system can output words that are significantly closer to human annotations than either

raw visual classifier predictions or the results of using a state of the art hierarchical

classification system (Deng et al., 2012b) that can output object labels at varying levels

of abstraction from very specific terms to very general categories.

5.1.1 Insights into Entry-Level Categories

At first glance, the task of finding the entry-level categories may seem like a linguistic

problem of finding a hypernym of any given word. Although there is a considerable con-

ceptual connection between entry-level categories and hypernyms, there are two notable

differences:

1. Although “bird” is a hypernym of both “penguin”, and “sparrow”, “bird” may be a

good entry-level category for “sparrow”, but not for “penguin”. This phenomenon

— that some members of a category are more prototypical than others — is dis-

cussed in Prototype Theory (Rosch, 1978).

2. Entry-level categories are not confined by (inherited) hypernyms, in part because

encyclopedic knowledge is different from common sense knowledge. For example

“rhea” is not a kind of “ostrich” in the strict taxonomical sense. However, due to

their visual similarity, people generally refer to a “rhea” as an “ostrich”. Adding

to the challenge is that although extensive, WordNet is neither complete nor prac-
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tically optimal for our purpose. For example, according to WordNet, “kitten” is

not a kind of “cat”, and “tulip” is not a kind of “flower”.

In fact, both of the above points have a connection to visual information of objects, as

visually similar objects are more likely to belong to the same entry-level category. In this

work, we present the first extensive study that (1) characterizes entry-level categories in

the context of translating encyclopedic visual categories to natural names that people

commonly use, and (2) provides methods to predict entry-level categories for input images

guided by semantic word knowledge or by using a large-scale corpus of images with text.

5.1.2 Chapter Overview

This chapter is divided as follows. Section 5.2 presents a summary of related work.

Section 5.3 introduces a large-scale image categorization system based on convolutional

network activations. In Section 5.4 we learn translations from subordinate concepts to

entry-level concepts. In Section 5.5 we propose two models that can take an image as

input and predict entry-level concepts. Finally, in Section 5.6 we provide experimental

evaluations.

5.2 Related work

Questions about entry-level categories are directly relevant to recent work on the con-

nection between computer vision outputs and (generating) natural language descriptions

of images (Farhadi et al., 2010; Ordonez et al., 2011; Kuznetsova et al., 2012; Mitchell

et al., 2012; Gupta et al., 2012; Kulkarni et al., 2013; Hodosh et al., 2013; Ramnath et al.,
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2014; Mason and Charniak, 2014; Kuznetsova et al., 2014). Previous works have not di-

rectly addressed naming preference choices for entry-level categories when generating

sentences. Often the computer vision label predictions are used directly during surface

realization (Mitchell et al., 2012; Kulkarni et al., 2013), resulting in choosing non-human

like namings for constructing sentences even when handling a relatively small number

of categories (i.e. Pascal VOC categories like potted-plant, tv-monitor or person). For

these methods, our entry-level category predictions could be used to generate more nat-

ural names for objects. Other methods handle naming choices indirectly in a data-driven

fashion by borrowing human references from other visually similar objects (Kuznetsova

et al., 2012, 2014; Mason and Charniak, 2014).

Our work is also related to previous works that aim to discover visual categories from

large-scale data. The works of (Yanai and Barnard, 2005) and (Barnard and Yanai, 2006)

learn models for a set of categories by exploring images with loosely associated text from

the web. We learn our set of categories directly as a subset of the WordNet (Fellbaum,

1998) hierarchy, or from the nouns used in a large set of carefully selected image captions

that directly refer to images. The more recent works of (Chen et al., 2013) and (Divvala

et al., 2014) present systems capable of learning any type of visual concept from images

on the web, including efforts to learn simple common sense relationships between visual

concepts (Chen et al., 2013). We provide a related output in our work, learning mappings

between entry-level categories and subordinate/leaf-node categories. The recent work

of (Feng et al., 2015) proposes that entry-level categorization can be viewed as lexical

semantic knowledge, and presents a global inference formulation to map all encyclopedic
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categories to their entry-level categories collectively.

On a technical level, our work is related to (Deng et al., 2012b) that tries to “hedge”

predictions of visual content by optimally backing off in the WordNet hierarchy. One

key difference is that our approach uses a reward function over the WordNet hierarchy

that is non-monotonic along paths from the root to the leaves. Another difference is

that we have replaced the underlying leaf node classifiers from (Deng et al., 2012b) with

recent convolutional network activation features. Our approach also allows mappings to

be learned from a WordNet leaf node, l, to natural word choices that are not along a path

from l to the root, “entity”. In evaluations, our results significantly outperform those

of (Deng et al., 2012b) because although optimal in some sense, they are not optimal

with respect to how people describe image content.

Our work is also related to the growing challenge of harnessing the ever increas-

ing number of pre-trained recognition systems, thus avoiding “starting from scratch”

whenever developing new applications. It is wasteful not to take advantage of the CPU

weeks (Felzenszwalb et al., 2010; Krizhevsky et al., 2012), months (Deng et al., 2010,

2012b), or even millennia (Le et al., 2012) invested in developing recognition models for

increasingly large labeled datasets (Everingham et al., 2010; Russell et al., 2008; Xiao

et al., 2010; Deng et al., 2009; Torralba et al., 2008). However, for any specific end-

user application, the categories of objects, scenes, and attributes labeled in a particular

dataset may not be the most useful predictions. One benefit of our work can be seen

as exploring the problem of translating the outputs of a vision system trained with one

vocabulary of labels (WordNet leaf nodes) to labels in a new vocabulary (commonly used
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visually descriptive nouns).

Our proposed methods take into account several sources of structure and information:

the structure of WordNet, frequencies of word use in large amounts of web text, outputs

of a large-scale visual recognition system, and large amounts of paired image and text

data. In particular, we use the SBU Captioned Photo Dataset (Ordonez et al., 2011),

which consists of 1 million images with natural language descriptions, and Google n-gram

frequencies collected for all words on the web. Taking all of these resources together, we

are able to study patterns for choice of entry-level categories at a much larger scale than

previous psychology experiments.

5.3 A Large-Scale Image Categorization System

Large-scale image categorization has improved drastically in recent years. The com-

puter vision community has moved from handling 101 categories (Fei-Fei et al., 2007)

to 100,000 categories (Dean et al., 2013) in a few years. Large-scale datasets like

ImageNet (Deng et al., 2009) and recent progress in training deep layered architec-

tures (Krizhevsky et al., 2012) have significantly improved the state-of-the-art. We

leverage a system based on these as the starting point for our work.

For features, we use activations from an internal layer of a convolutional network,

following the approach of (Donahue et al., 2013). In particular, we use the pre-trained

reference model from the Caffe framework (Jia et al., 2014) which is in turn based on

the model from (Krizhevsky et al., 2012). This model was trained on the 1,000 Ima-

geNet categories from the ImageNet Large Scale Visual Recognition Challenge 2012. We
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compute the 4,096 activations in the 7th layer of this network for images in 7,404 leaf

node categories from ImageNet and use them as features to train a linear SVM for each

category. We further use a validation set to calibrate the output scores of each SVM

with Platt scaling (Platt, 1999). There is a potential here for increased performance by

using more powerful convolutional network architectures that have been proposed more

recently. For instance (Simonyan and Zisserman, 2014) propose an architecture based on

a larger number of layers with convolution operations involving smaller receptive fields.

5.4 Translating Encyclopedic Concepts to Entry-Level Concepts

Our objective in this section is to discover mappings between subordinate encyclopedic

concepts (ImageNet leaf categories, e.g. Chlorophyllum molybdites) to output concepts

that are more natural (e.g. mushroom). In Section 5.4.1 we present an approach that

relies on the WordNet hierarchy and frequency of words in a web scale corpus. In Section

5.4.2 we follow an approach that uses visual recognition models learned on a paired

image-caption dataset.

5.4.1 Language-based Translation

We first consider a translation approach that relies only on language-based infor-

mation: the hierarchical semantic structure from WordNet (Fellbaum, 1998) and text

statistics from the Google Web 1T corpus (Brants and Franz., 2006). We posit that the

frequencies of terms computed from massive amounts of text on the web reflect the “nat-

uralness” of concepts. We use the n-gram counts of the Google Web 1T corpus (Brants
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Figure 5.3: Our first categorical translation model uses the WordNet hierarchy to find
an hypernym that is close to the leaf node concept (semantic distance) and has a large
naturalness score based on its n-gram frequency. The green arrows indicate the ideal
category that would correspond to the entry-level category for each leaf-node in this
sample semantic hierarchy.

and Franz., 2006) as a proxy for naturalness. Specifically, for a synset w, we quantify

naturalness as, φ(w), the log of the count for the most commonly used synonym in w.

As possible translation concepts for a given category, v, we consider all nodes, w in v′s

inherited hypernym structure (all of the synsets along the WordNet path from w to the

root).

We define a translation function, τ(v, λ), that maximizes a trade-off between natural-

ness, φ(w), and semantic proximity, ψ(w, v), measuring the distance between leaf node

v and node w in the WordNet hypernym structure:

τ(v, λ) = arg max
w

[φ(w)− λψ(w, v)], w ∈ Π(v), (5.1)
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where Π(v) is the set of (inherited) hypernyms from v to the root, including v. For

instance, given an input category v = King penguin we consider all categories along its

set of inherited hypernyms, e.g. penguin, seabird, bird, animal (see Figure 5.3). An

ideal prediction for this concept would be penguin. To control how the overall system

trades off naturalness vs semantic proximity, we perform line search to set λ. For this

purpose we use a held out set of subordinate-category, entry-level category pairs (xi, yi)

collected using Amazon Mechanical Turk (MTurk) (for details refer to Section 5.6.1).

Our objective is to maximize the number of correct translations predicted by our model:

Φ(D,λ) =
∑
i

1[τ(xi, λ) = yi], (5.2)

where 1[·] is the indicator function. We show the relationship between λ and vocabulary
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Figure 5.4: Left: shows the relationship between parameter λ and the target vocabulary
size. Right: shows the relationship between parameter λ and agreement accuracy with
human labeled synsets evaluated against the most agreed human label (red) and any
human label (cyan).
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size in Figure 5.4(a), and between λ and overall translation accuracy, Φ(D,λ), in Fig-

ure 5.4(b). As we increase λ, Φ(D,λ) increases initially and then decreases as too much

generalization or specificity reduces the naturalness of the predictions. For example, gen-

eralizing from grampus griseus to dolphin is good for “naturalness”, but generalizing all

the way to “entity” decreases “naturalness”. In Figure 5.4(b) the red line shows accu-

racy for predicting the most agreed upon word for a synset, while the cyan line shows the

accuracy for predicting any word collected from any user. Our experiment also supports

that entry-level categories seem to lie at a certain level of abstraction where there is a

discontinuity. Going beyond this level of abstraction suddenly makes our predictions con-

siderably worse (see Figure 5.4(b)). (Rosch, 1978) indeed argues in the context of basic

level categories that basic cuts in categorization happen precisely at these discontinuities

where there are bundles of information-rich functional and perceptual attributes.

5.4.2 Visual-based Translation

Next, we try to make use of pre-trained visual classifiers to improve translations

between input concepts and entry-level concepts. For a given leaf synset, v, we sample

a set of n = 100 images from ImageNet. For each image, i, we predict some potential

entry-level nouns, Ni, using pre-trained visual classifiers that we will describe later in

Section 5.5.2. We use the union of this set of labels N = N1 ∪ N2... ∪ Nn as keyword

annotations for synset v and rank them using a TFIDF information retrieval measure.

We consider each category v as a document for computing the inverse document frequency

(IDF) term. We pick the most highly ranked noun for each node, v, as its entry-level
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Friesian,  
Holstein,  
Holstein-Friesian 

(1.9071) cow 
(1.1851) orange_tree 
(0.6136) stall 
(0.5630) mushroom 
(0.3825) pasture 
(0.3156) sheep 
(0.3321) black_bear 
(0.3015) puppy 
(0.2409) pedestrian_bridge 
(0.2353) nest 

Vision 
System 

Figure 5.5: We show the system instances of the category Friesian, Holstein, Holstein-
Friesian and the vision system pre-trained with candidate entry-level categories ranks a
set of candidate keywords and outputs the most relevant, in this case cow.

categorical translation (see an example in Figure 5.5).

5.5 Predicting Entry-Level Concepts for Images

In Section 5.4 we proposed models to translate between one linguistic concept, e.g.

grampus griseus, to a more natural concept, e.g. dolphin. Our objective in this section is

to explore methods that can take an image as input and predict entry-level labels for the

depicted objects. The models we propose are: 1) a method that combines “naturalness”

measures from text statistics with direct estimates of visual content computed at leaf

nodes and inferred for internal nodes (Section 5.5.1) and 2) a method that learns visual

models for entry-level category prediction directly from a large collection of images with

associated captions (Section 5.5.2).
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Input Concept Language-based
Translation

Visual-based
Translation

Human  
Translation

1 eastern kingbird bird bird bird

2 cactus wren bird bird bird

3 buzzard, Buteo buteo hawk hawk hawk

4 whinchat, Saxicola rubetra chat bird bird

6 Weimaraner dog dog dog

7 Gordon setter dog dog dog

8 numbat, banded anteater, anteater anteater dog anteater

9 rhea, Rhea americana bird grass ostrich

10 Africanized bee, killer bee, Apis mellifera bee bee bee

11 conger, conger eel eel fish fish

12 merino, merino sheep sheep sheep sheep

13 Europ. black grouse, heathfowl, Lyrurus tetrix bird bird bird

14 yellowbelly marmot, rockchuck, Marm. flaviventris marmot male squirrel

15 snorkeling, snorkel diving swimming sea turtle snorkel

16 cologne, cologne water, eau de cologne essence bottle perfume

Figure 5.6: Translations from ImageNet leaf node synset categories to entry-level cate-
gories using our automatic approaches from Sections 5.4.1 (left) and 5.4.2 (center) and
crowd-sourced human annotations from Section 5.6.1 (right).

5.5.1 Linguistically-guided Naming

We estimate image content for an image, I, using the pre-trained models from Sec-

tion 5.3. These models predict presence or absence of 7,404 leaf node concepts in Ima-

geNet (WordNet). Following the approach of (Deng et al., 2012b), we compute estimates

of visual content for internal nodes by hierarchically accumulating all predictions below

a node:1

f(v, I) =


f̂(v, I), if v is a leaf node,

∑
v′∈Z(v)

f̂(v′, I), if v is an internal node,

(5.3)

1This function might bias decisions toward internal nodes. Other alternatives could be explored to
estimate internal node scores.

83



where Z(v) is the set of all leaf nodes under node v and f̂(v, I) is a score predicting

the presence of leaf node category v from our large scale image categorization system

introduced in Section 5.3. Similar to our approach in Section 5.4.1, we define for every

node in the ImageNet hierarchy a trade-off function between “naturalness” φ (ngram

counts) and specificity ψ̃ (relative position in the WordNet hierarchy):

γ(v, λ̂) = [φ(w)− λ̂ψ̃(w)], (5.4)

where φ(w) is computed as the log counts of the nouns and compound nouns in the

text corpus from the SBU Captioned Dataset (Ordonez et al., 2011), and ψ̃(w) is an

upper bound on ψ(w, v) from equation (5.1) equal to the maximum path in the WordNet

structure from node v to node w. We parameterize this trade-off by λ̂.

For entry-level category prediction in images, we would like to maximize both “natu-

ralness” and estimates of image content. For example, text based “naturalness” will tell

us that both cat and dog are good entry-level categories, but a confident visual prediction

for German shepherd for an image tells us that dog is a much better entry-level prediction

than cat for that image.

Therefore, for an input image, we want to output a set of concepts that have a large

prediction for both “naturalness” and content estimate score. For our experiments we

output the top K WordNet synsets with the highest fnat scores:

fnat(v, I, λ̂) = f(v, I)γ(v, λ̂). (5.5)
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Figure 5.7: Relationship between average precision agreement and working vocabulary
size (on a set of 1000 images) for the hedging method (Deng et al., 2012b) (red) and our
linguistically-guided naming method that uses text statistics from the generic Google
Web 1T dataset (magenta) and from the SBU Caption Dataset (Sec. 5.5.1). We use
K = 5 to generate this plot and a random set of 1000 images from the SBU Captioned
Dataset.

As we change λ̂ we expect a similar behavior as in our language-based concept transla-

tions (Section 5.4.1). We can tune λ̂ to control the degree of specificity while trying to

preserve “naturalness” using n-gram counts. We compare our framework to the “hedging”

technique of (Deng et al., 2012b) for different settings of λ̂. For a side by side comparison

we modify hedging to output the top K synsets based on their scoring function. Here,

the working vocabulary is the unique set of predicted labels output for each method on

this test set. Results demonstrate (Figure 5.7) that under different parameter settings

we consistently obtain much higher levels of precision for predicting entry-level categories
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than hedging (Deng et al., 2012b). We also obtain an additional gain in performance

than in our previous work (Ordonez et al., 2013a) by relying on the dataset-specific text-

statistics of the SBU Captioned Dataset rather than the more generic Google Web 1T

corpus.

5.5.2 Visually-guided Naming

In the previous section we rely on WordNet structure to compute estimates of im-

age content, especially for internal nodes. However, this is not always a good measure

of content because: 1) The WordNet hierarchy doesn’t encode knowledge about some

semantic relationships between objects (i.e. functional or contextual relationships), 2)

Even with the vast coverage of 7,404 ImageNet leaf nodes we are missing models for

many potentially important entry-level categories that are not at the leaf level.

As an alternative, we can directly train models for entry-level categories from data

where people have provided entry-level labels – in the form of nouns present in visually

descriptive image captions. We postulate that these nouns represent examples of entry-

level labels because they have been naturally annotated by people to describe what is

present in an image. For this task, we leverage the SBU Captioned Photo Dataset (Or-

donez et al., 2011), which contains 1 million captioned images. We transform this dataset

into a set D = {X(j), Y (j) | X(j) ∈ X, Y (j) ∈ Y}, where X = [0–1]s is a vector of esti-

mates of visual content for s = 7, 404 ImageNet leaf node categories and Y = [0, 1]d is a

set of binary output labels for d target categories.

Input content estimates are provided by the SVM content predictors based on con-
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volutional network activation features described in Section 5.3. We run these SVM

predictors over the whole image as opposed to the max-pooling approach over bounding

boxes from our initial work as presented in (Ordonez et al., 2013a) so that we have a more

uniform comparison to our linguistically-guided naming approach (Section 5.5.1) which

does the same. There was some minor drop in performance when running our models

exclusively on the whole image. Compared to our previous work, our visually-guided

naming approach still has a significant gain from using the ConvNet features introduced

in section 5.3.

For training our d target categories, we obtain labels Y from the million captions by

running a POS-tagger (Bird, 2006) and defining Y (j) = {yij} such that:

yij =


1, if caption for image j has noun i,

0, if otherwise.

(5.6)

The POS-tagger helps clean up some word sense ambiguity due to polysemy, by only

selecting those instances where a word is used as a noun. d is determined experimentally

from data by learning models for the most frequent nouns in this dataset. This provides

us with a target vocabulary that is both likely to contain entry-level categories (because

we expect entry-level category nouns to commonly occur in our visual descriptions) and

to contain sufficient images for training effective recognition models. We use up to 10,000

images for training each model. Since we are using human labels from real-world data,

the frequency of words in our target vocabulary follows a power-law distribution. Hence
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tree 

iron tree, iron-tree, ironwood, ironwood tree  
snag  
European silver fir, Christmas tree, Abies alba  
baobab, monkey-bread tree, Adansonia digitata  
Japanese black pine, black pine, Pinus thunbergii  
huisache, cassie, mimosa bush, sweet wattle, sweet acacia, scented wattle, 
flame tree, Acacia farnesiana  
feeder  
bird feeder, birdfeeder, feeder  
koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus  
flying fox  
damask  
American basswood, American lime, Tilia americana  

desk 

furnishing, trappings  
cat box  
reformer  
dining area  
writing desk  
Staffordshire bullterrier, Staffordshire bull terrier  
rubber eraser, rubber, pencil eraser  
shoebox  
flash, photoflash, flash lamp, flashgun, flashbulb, flash bulb  
control room  
sausage dog, sausage hound  
mouse, computer mouse  
workstation  
 

water 

riverbank, riverside  
waterside  
fishbowl, fish bowl, goldfish bowl  
organza  
diving duck  
bathe  
hand towel, face towel  
pier  
horseshoe crab, king crab, Limulus polyphemus, Xiphosurus polyphemus  
background, desktop, screen background  
cling film, clingfilm, Saran Wrap  
water jump  
camouflage, camo  

house 

 
farmhouse  
detached house, single dwelling  
toolshed, toolhouse  
chalet  
fixer-upper  
lowboy  
vibraphone, vibraharp, vibes  
banded purple, white admiral, Limenitis arthemis  
ladies' room, powder room  
cream-of-tartar tree, sour gourd, Adansonia gregorii  
windowsill  
bomb shelter, air-raid shelter, bombproof  

dog_house 

kennel, doghouse, dog house  
chalet  
firebox  
leash, tether, lead  
flamethrower  
fairy bluebird, bluebird  
chicken coop, coop, hencoop, henhouse  
pajama, pyjama  
shadow box  
treasure chest  
Newfoundland, Newfoundland dog  
whitewash  
playpen, pen  

Figure 5.8: Entry-level categories with their corresponding top weighted leaf node fea-
tures after training an SVM on our noisy data and a visualization of weights grouped
by an arbitrary categorization of leaf nodes. vegetation(green), birds(orange), instru-
ments(blue), structures(brown), mammals(red), others(black).
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we only have a very large amount of training data for a few most commonly occurring

noun concepts. Specifically, we learn linear SVMs followed by Platt scaling for each of

our target concepts. We keep d = 1, 169 of the best performing models. Our scoring

function fsvm for a target concept vi is then:

fsvm(vi, I, θi) =
1

1− exp(aiθ>i X + bi)
, (5.7)

where θi are the model parameters for predicting concept vi, and ai and bi are Platt

PR curve Most confident correct predictions Most confident wrong predictions 

house 

market 

girl 

boy 

cat 

bird 

Figure 5.9: Sample predictions from our experiments on a test set for each type of
category. Note that image labels come from caption nouns, so some images marked as
correct predictions might not depict the target concept whereas some images marked as
wrong predictions might actually depict the target category.
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scaling parameters learned for each target concept vi on a held out validation set.

R(θi) =
1

2
‖θi‖+ c

|D|∑
j=1

max(0, 1− yijθ>i X(j))2. (5.8)

We learn the parameters θi by minimizing the squared hinge-loss with `1 regularization

(eqn 5.8). The latter provides a natural way of modeling the relationships between the

input and output label spaces that encourages sparseness (examples in Figure 5.8). We

find c = 0.01 to yield good results for our problem and use this value for training all

individual models.

One of the drawbacks of using the ImageNet hierarchy to aggregate estimates of visual

concepts (Section 5.5.1) is that it ignores more complex relationships between concepts.

Here, our data-driven approach to the problem implicitly discovers these relationships.

For instance a concept like tree has a co-occurrence relationship with bird that may be

useful for prediction. A chair is often occluded by the objects sitting on the chair, but

evidence of those types of objects, e.g. people or cat or co-occurring objects, e.g. table

can help us predict the presence of a chair. See Figure 5.8 for some example learned

relationships.

Given this large dataset of images with noisy visual predictions and text labels, we

manage to learn quite good estimators of high-level content, even for categories with

relatively high intra-class variation (e.g. girl, boy, market, house). We show some results

of images with predicted output labels for a group of images in Figure 5.9.
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5.6 Experimental Evaluation

We evaluate two results – models that learn general translations from encyclope-

dic concepts to entry-level concepts (Section 5.6.1) and models that predict entry-level

concepts for images (Section 5.6.2). We additionally provide an extrinsic evaluation of

our naming prediction methods by using them for a sentence retrieval application (Sec-

tion 5.6.3).

5.6.1 Evaluating Translations

We obtain translations from ImageNet synsets to entry-level categories using Amazon

Mechanical Turk (MTurk). In our experiments, users are presented with a 2x5 array of

images sampled from an ImageNet synset, xi, and asked to label the depicted concept.

Results are obtained for 500 ImageNet synsets and aggregated across 8 users per task. We

found agreement (measured as at least 3 of 8 users in agreement) among users for 447 of

the 500 concepts. We show a plot of the distribution of the number of users agreeing for

various categories in Figure 5.10, indicating that even though there are many potential

labels for each synset (e.g. Sarcophaga carnaria could conceivably be labeled as fly,

dipterous insect, insect, arthropod, etc) people have a strong preference for particular

categories. We denote our resulting set of reference translations as: D = {(xi, yi)}, where

each element pair corresponds to a translation from a leaf node xi to an entry-level word

yi.

We show sample results from each of our methods to learn concept translations in
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Figure 5.10: Here we show the distribution of the number of annotators agreeing among
8 users in the naming task for a group of 500 categories. Note that for more than 120
categories all users had an unanimous (all 8 users) preferred category. There is also a
considerable gap between 2 and 3, and between 7 and 8.

Figure 5.6. In some cases language-based translation fails. For example, whinchat (a

type of bird) translates to “chat” most likely because of the inflated counts for the

most common use of “chat”. Visual-based translation fails when it learns to weight

context words highly, for example “snorkeling” → “water”, or “African bee” → “flower”

even when we try to account for common context words using TFIDF. Finally, even

humans are not always correct, for example “Rhea americana” looks like an ostrich,

but is not taxonomically one. Even for categories like “marmot” most people named

it “squirrel”. Overall, our language-based translation (Section 5.4.1) agrees 37% of the

time with human supplied translations and the visual-based translation (Section 5.4.2)

agrees 33% of the time, indicating that translation learning is a non-trivial task. Our
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visual-based translation benefits significantly from using ConvNet features (Section 5.3)

compared to the 21% agreement that we reported in (Ordonez et al., 2013a). Note

that our visual-based translation unlike our language-based translation does not use the

WordNet semantic hierarchy to constrain the output categories to the set of inherited

hypernyms of the input category.

This experiment expands on previous studies in psychology (Rosch, 1978; Jolicoeur

et al., 1984). Readily available and inexpensive online crowdsourcing enables us to gather

these labels for a much larger set of (500) concepts than previous experiments and to

learn generalizations for a substantially larger set of ImageNet synsets.

5.6.2 Evaluating Image Entry-Level Predictions

We measure the accuracy of our proposed entry-level category prediction methods

by evaluating how well we can predict nouns freely associated with images by users on

Amazon Mechanical Turk. We initially selected two evaluation image sets. Dataset

A: contains 1000 images selected at random from the million image dataset. Dataset

B: contains 1000 images selected from images displaying high confidence in concept

predictions. We additionally collected annotations for another 2000 images so that we

can tune trade-off parameters in our models. Both sets are completely disjoint from the

sets of images used for learning. For each image, we instruct 3 users on MTurk to write

down any nouns that are relevant to the image content. Because these annotations are

free associations we observe a large and varied set of associated nouns – 3,610 distinct

nouns total in our evaluation sets. This makes noun prediction extremely challenging!
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For evaluation, we measure how well we can predict all nouns associated with an image

by Turkers (Figure 5.11) and how well we can predict the nouns commonly associated

by Turkers (assigned by at least 2 of 3 Turkers, Figure 5.12). For reference we compute

the precision of one human annotator against the other two and found that on Dataset

A humans were able to predict what the previous annotators labeled with 0.35 precision

and with 0.45 precision for Dataset B.

Results show precision and recall for prediction on each of our Datasets, comparing:

leaf node classification performance (flat classifier), the outputs of hedging (Deng et al.,

2012b), and our proposed entry-level category predictors (linguistically guided naming

(Section 5.5.1) and visually guided naming (Section 5.5.2)). Qualitative examples for

Dataset A are shown in Figure 5.14 and for Dataset B in Figure 5.15. Performance at this

task on Dataset B is in general better than performance on Dataset A. This is unsurprising

since Dataset B contains images which have confident classifier scores. Surprisingly their

difference in performance is not extreme and performance on both sets is admirable for

this challenging task. When compared to our results reported in (Ordonez et al., 2013a)

that rely on SIFT + LLC features, we found that the inclusion of ConvNet features

provided a significant improvement in the performance for the visually-guided naming

predictions but it did not improve the results using the WordNet semantic hierarchy for

both Hedging (Deng et al., 2012b) and our linguistically-guided naming method.

On the two datasets we find the visually-guided naming model to perform better

(Section 5.5.2) than the linguistically-guided naming prediction (Section 5.5.1). In addi-

tion, we outperform both leaf node classification and the hedging technique (Deng et al.,
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Figure 5.11: Precision-recall curves for different entry-level prediction methods when
using the top K categorical predictions for K = 1, 3, 5, 10, 15, 20, 50. The ground truth
is the union of labels from all users for each image.

2012b).

We additionally collected a third test set Dataset C consisting of random ImageNet

images belonging to the 7,404 categories represented in our leaf node classifiers. We

make sure not to include those images in the training of our leaf node classifiers. These

images are more object-centric, often displaying a single object. This resulted in a smaller

number of unique labels provided by users for each image with an average of 2 unique

labels per image. We report the precision and recall at K = 1, 2, 3 for all of our methods

in this dataset in Table 5.1. We observe that at K = 1 there is a small advantage of our

linguistically-guided naming method compared to the visually-guided naming approach.

Both methods surpass the flat mapping classifiers and the Hedging approach. In this

different dataset the entry-level category predictors using our visually-guided naming

approach still offer better performance than the linguistically-guided naming approach
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Figure 5.12: Precision-recall curves for different entry-level prediction methods when
using the top K categorical predictions for K = 1, 3, 5, 10, 15, 20, 50. The ground truth
is the set of labels where at least two users agreed.

Method
Precision
K = 1, 2, 3

Recall
K = 1, 2, 3

Flat classifier 4.40, 4.00, 3.43 2.10, 3.82, 4.87
Hedging 9.00, 9.55, 10.25 4.90, 11.72, 19.64
Linguist.-guided 26.70, 16.15, 12.90 17.59, 19.52, 22.25
Visually-guided 25.80, 17.95, 13.73 17.50, 22.76, 25.73

Table 5.1: Here we show results on Dataset C which consists of images from ImageNet.
The human labels for each image are the union of the labels collected from different
Mechanical Turk users.

at K = 2, 3. Note that our linguistically-guided naming does not require expensive

retraining of visual models like our visually-guided naming. Also, the gap between our

two naming approaches is smaller than in the previous experiments on Datasets A and

B.
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5.6.3 Evaluating Image Entry-Level Predictions for Sentence Retrieval

Entry-level categories are also the natural categories that people use in casual lan-

guage. We evaluate our produced naming predictions indirectly by using them to retrieve

image descriptions. Our sentence retrieval approach works as follows: We predict entry-

level categories with K = 5 and use them as keywords to retrieve a ranked list of sentences

from the entire 1 million image descriptions in the SBU Captioned Dataset. We use cosine

similarity on a bag-of-words model for representation and ranking.

The images in our test Dataset A and Dataset B in the previous section come from

the SBU Captioned Dataset and therefore already have one image description associated

with each of them. This image description was written by the owner of each picture. Note

that these “ground truth” image descriptions for each of our test images are included in

the pool of 1 million captions. We use the rank of the ground truth image description

for each image as a measure of performance in this task. We report on Table 5.2 the

number of images for which its “ground truth” description was ranked within the top 1%

and the top 10% for the various methods compared here and for each test set. Although

our evaluation uses a rough metric of performance, we observed that the top 5 sentences

retrieved for images that had its original sentence ranked within the top 1% were also

often very good descriptions for the query image. We show some qualitative examples in

Figure 5.13.
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Dataset A Dataset B
Method Top 1% Top 10% Top 1% Top 10%

Flat classifier 40 80 48 93
Hedging 62 172 92 266
Linguistically-guided 71 310 104 416
Visually-guided 162 516 210 617

Table 5.2: Here we show the number of images (for each dataset and method) for which
we could retrieve its original image description within the top 1% and the top 10%. Note
that each dataset has 1000 images in total.

5.7 Discussion

Results indicate that our inferred concept translations are meaningful and that our

models are able to predict entry-level categories—the words people use to describe image

content—for images. Our models managed to leverage a large scale visual categoriza-

tion system to make new types of predictions. These methods could apply to a wide

range of end-user applications that require recognition outputs to be useful for human

consumption, including some of the tasks related to description generation studied in the

previous chapters of this thesis. We also presented an experiment on this direction for

image description using a sentence retrieval approach.
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Method Images Original Caption Top 5 Retrieved Sentences

Visually-guided
Naming

(808) “dining area in great room open to 
kitchen opens to seat 8 people”

(1) [table area beside kitchen]
(2) [work table sitting area in separate room 
bathroom kitchen area sleeping area]
(3) [dining table in kitchen area]
(4) [by the kitchen table area]
(5) [dining room table in kitchen]

Visually-guided
Naming

(1105) “fresh snow on pine trees in yosemite 
national park”

(1) [pine trees forest under snow]
(2) [pine tree in snow]
(3) [pine tree in snow]
(4) [snow in pine tree]
(5) [pine tree in snow]

Visually-guided
Naming

(60747) “theres no room in the chair for me 
so i am sitting in daddys spot on the floor” 

(1) [dog and cat in chair]
(2) [dog and cat in chair]
(3) [bear in a chair poor chair bear]
(4) [dog in cat]
(5) [cat in chair]

Linguistically-
guided Naming

(519) “cat in the box”

(1) [cat in box cat on box]
(2) [cat in the cat box]
(3) [obligatory cat in box picture]
(4) [cat in cats]
(5) [cat in box upside down cat]

Linguistically-
guided Naming

(37153) “we were wondering where you 
could sail a boat in colorado we passed this 
boat about 4 times”

(1) [car under boat]
(2) [car in truck]
(3) [car in car mirror]
(4) [portable car toy box in cars and trucks]
(5) [car in car mirror bw]

Figure 5.13: Good examples of retrieved sentences describing image content. We show
the original sentence for each image with its corresponding rank in parenthesis. We also
show the top 5 retrieved sentences for each image. We are showing here only images that
ranked highly the original caption (within the top 10%) .
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Images Labels Flat Classifier
Hedging 
[Deng et.al.2012]
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Figure 5.14: Example translations on Dataset A (random images). 1st col shows images.
2nd col shows MTurk associated nouns. These represent the ground truth annotations
(entry-level categories) we would like to predict (colored in blue). 3rd col shows predicted
nouns using a standard multi-class flat-classifier. 4th col shows nouns predicted by the
method of (Deng et al., 2012b). 5th col shows our n-gram based method predictions.
6th col shows our SVM mapping predictions and finally the 7th column shows the labels
predicted by our joint model. Matches are colored in green. Figures 5.11,5.12 show the
measured improvements in recall and precision.
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Images Labels Flat Classifier
Hedging 
[Deng et.al.2012]

Linguistically-guided
Naming
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Figure 5.15: Example translations on Dataset B (images with high response to visual
models). 1st col shows images. 2nd col shows MTurk associated nouns. These represent
the ground truth annotations (entry-level categories) we would like to predict (colored in
blue). 3rd col shows predicted nouns using a standard multi-class flat-classifier. 4th col
shows nouns predicted by the method of (Deng et al., 2012b). 5th col shows our n-gram
based method predictions. 6th col shows our SVM mapping predictions and finally the
7th column shows the labels predicted by our joint model. Matches are colored in green.
Figures 5.11,5.12 show the measured improvements in recall and precision.
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CHAPTER 6: DISCUSSION AND FUTURE WORK

6.1 Summary of Contributions

In this thesis we have proposed, implemented, and evaluated systems that can out-

put automatic image descriptions that are closer to the visual descriptions provided by

humans using natural language at various level of detail (full sentences, short phrases,

and names). In contrast, traditional computer vision systems have focused on producing

outputs in the form of labels, locations, and segmentation masks indicating the presence

or absence of individual semantic entities like objects, attributes or scenes.

For the data-driven image captioning approach presented in Chapter 2, we constructed

a dataset of images with captions that was several magnitudes larger than the previous

existing dataset for this task (Farhadi et al., 2010). This allowed us to really take advan-

tage of our method since we showed that performance depends largely on the availability

of such large scale dataset. There have also been later attempts to collect captioned image

datasets, most notably the Microsoft COCO Dataset (Lin et al., 2014). One important

difference is that we relied on careful filtering of already existing captions on the web,

thus bypassing the use of expensive crowdsourcing. Our dataset has been used to train

and evaluate other caption generation systems (Mitchell et al., 2012; Mason and Char-

niak, 2014; Vinyals et al., 2014), to learn multimodal image-sentence embeddings (Gong

et al., 2014; Kiros et al., 2014), and in our own work on prediction of entry-level cate-



gories (Ordonez et al., 2015).

Chapter 3 proposed an idea that is still relevant today: Building a new sentence

by stitching together multiple phrases referring to various aspects of the image. This

approach is in contrast to some of the previous attempts at generating image descrip-

tions that either used templates, tried to construct new descriptions word by word, or

attempted to retrieve entire sentences (Farhadi et al., 2010; Kulkarni et al., 2011; Yang

et al., 2011; Mitchell et al., 2012). Some of the most recent caption generation systems

leverage convolutional networks for visual representation and recurrent neural networks

for language modeling (Karpathy and Fei-Fei, 2014; Vinyals et al., 2014; Chen and Zit-

nick, 2014; Donahue et al., 2014). Closer to the approach presented in Chapter 3 is the

recent work of (Lebret et al., 2015) that generates captions by composing them from

individual phrases while still producing high quality descriptions. Our phrase-based re-

trieval captioning approach and our proposed phrase-based representation for images can

potentially take advantage of better image representations as well.

The dataset and language generation approach presented in Chapter 4 deals with a

task-specific type of descriptions: Referring Expressions. This is in contrast to some of

the previous and current work that focused on generating generic image descriptions.

It also sets apart from the previous work on referring expressions (Krahmer and van

Deemter, 2012; van Deemter et al., 2006; Viethen and Dale, 2008; Mitchell et al., 2010,

2013a; FitzGerald et al., 2013) by dealing with objects in the context of real world

complex scenes. Moreover, we present a dataset that is also several magnitudes larger

and considerably different than previously available datasets. One key contribution was
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the formulation of a purpose-driven game to collect and verify referring expressions. Our

associated referring expression generation (REG) approach is also the first proposed in

this scenario. Our method attempts the standard goal to predict the set of attributes

that people would use to refer to a particular object, and additionally the specific set of

values that people would use for each selected attribute.

Chapter 5 brings a modern perspective to entry-level categorization using computa-

tional visual recognition. Entry-level categories and basic-level categories were studied in

the past in the context of Psychology and the principles of categorization. The availability

of large scale image databases like Imagenet (Deng et al., 2009) allowed us to scale ex-

periments on entry-level categorization to a much larger number of categories than those

studies. We also propose naming, or entry-level category prediction as a complementary

component for large scale image categorization systems. We showed experimentally that

such systems can readily take advantage of ideas of entry-level categorization to better

predict the namings produced by people. Our work is perhaps the first to have this

consideration in the categorization problem, learning what is the right level abstraction

that people use when categorizing and naming objects in the real world.

Finally, I expect this study to influence further analysis in the connections between

images and visually descriptive text of various types, especially increased attention to

the referring expression generation problem and entry-level category prediction.
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6.2 Future Directions

My vision is that future research will take advantage of advances in both compu-

tational visual recognition and natural language understanding to create systems that

can solve these problems for practical applications. Significant progress has been made

recently by other research groups to address the full sentence generation problem using

deep layered architectures especially to leverage better visual representations (Vinyals

et al., 2014; Kiros et al., 2014; Donahue et al., 2014; Lebret et al., 2015). We have also

presented here a system that takes advantage of deep convolutional network representa-

tions to improve entry-level category predictions. Similar gains could be obtained in the

referring expression problem that can in turn be used for robotics or human computer

interaction applications. The increasing availability of higher quality datasets (i.e. Mi-

crosoft COCO (Lin et al., 2014)) will also have a big impact in terms of what will be

possible but also our ability to leverage the existing visual data that is already annotated

with text of various forms; examples include captioned images like the ones we used in

this thesis, images embedded in webpages or video with closed captioning and other types

of annotations.

I also envision in the future more research geared toward a unified view of knowledge

as opposed to attacking visual and language input as disparate sources of information.

We will move from recognizing objects and categories and we will start to recognize

complex human activities in visual data that require information that goes beyond what

pixel or sensor data can provide.
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